Sample records for ubiquitous high speed

  1. Ubiquitous Fast Propagating Intensity Disturbances in Solar Chromosphere

    NASA Technical Reports Server (NTRS)

    Kubo, M.; Katsukawa, Y.; Suematsu, Y.; Kano, R.; Bando, T.; Narukage, N.; Ishikawa, R.; Hara, H.; Giono, G.; Winebarger, A.; hide

    2016-01-01

    High cadence observations by the slit-jaw (SJ) optics system of the sounding rocket experiment "the Chromospheric Lyman Alpha SpectroPolarimeter (CLASP)" reveal ubiquitous intensity disturbances that recurrently propagate in either the chromosphere, transition region, or both at a speed much higher than the sound speed.

  2. After Installation: Ubiquitous Computing and High School Science in Three Experienced, High-Technology Schools

    ERIC Educational Resources Information Center

    Drayton, Brian; Falk, Joni K.; Stroud, Rena; Hobbs, Kathryn; Hammerman, James

    2010-01-01

    There are few studies of the impact of ubiquitous computing on high school science, and the majority of studies of ubiquitous computing report only on the early stages of implementation. The present study presents data on 3 high schools with carefully elaborated ubiquitous computing systems that have gone through at least one "obsolescence cycle"…

  3. Laryngeal High-Speed Videoendoscopy: Rationale and Recommendation for Accurate and Consistent Terminology

    PubMed Central

    Deliyski, Dimitar D.; Hillman, Robert E.

    2015-01-01

    Purpose The authors discuss the rationale behind the term laryngeal high-speed videoendoscopy to describe the application of high-speed endoscopic imaging techniques to the visualization of vocal fold vibration. Method Commentary on the advantages of using accurate and consistent terminology in the field of voice research is provided. Specific justification is described for each component of the term high-speed videoendoscopy, which is compared and contrasted with alternative terminologies in the literature. Results In addition to the ubiquitous high-speed descriptor, the term endoscopy is necessary to specify the appropriate imaging technology and distinguish among modalities such as ultrasound, magnetic resonance imaging, and nonendoscopic optical imaging. Furthermore, the term video critically indicates the electronic recording of a sequence of optical still images representing scenes in motion, in contrast to strobed images using high-speed photography and non-optical high-speed magnetic resonance imaging. High-speed videoendoscopy thus concisely describes the technology and can be appended by the desired anatomical nomenclature such as laryngeal. Conclusions Laryngeal high-speed videoendoscopy strikes a balance between conciseness and specificity when referring to the typical high-speed imaging method performed on human participants. Guidance for the creation of future terminology provides clarity and context for current and future experiments and the dissemination of results among researchers. PMID:26375398

  4. Use of Ubiquitous Technologies in Military Logistic System in Iran

    NASA Astrophysics Data System (ADS)

    Jafari, P.; Sadeghi-Niaraki, A.

    2013-09-01

    This study is about integration and evaluation of RFID and ubiquitous technologies in military logistic system management. Firstly, supply chain management and the necessity of a revolution in logistic systems especially in military area, are explained. Secondly RFID and ubiquitous technologies and the advantages of their use in supply chain management are introduced. Lastly a system based on these technologies for controlling and increasing the speed and accuracy in military logistic system in Iran with its unique properties, is presented. The system is based on full control of military logistics (supplies) from the time of deployment to replenishment using sensor network, ubiquitous and RFID technologies.

  5. High-speed and ultrahigh-speed cinematographic recording techniques

    NASA Astrophysics Data System (ADS)

    Miquel, J. C.

    1980-12-01

    A survey is presented of various high-speed and ultrahigh-speed cinematographic recording systems (covering a range of speeds from 100 to 14-million pps). Attention is given to the functional and operational characteristics of cameras and to details of high-speed cinematography techniques (including image processing, and illumination). A list of cameras (many of them French) available in 1980 is presented

  6. UBIQUITOUS SOLAR ERUPTIONS DRIVEN BY MAGNETIZED VORTEX TUBES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitiashvili, I. N.; Kosovichev, A. G.; Lele, S. K.

    2013-06-10

    The solar surface is covered by high-speed jets transporting mass and energy into the solar corona and feeding the solar wind. The most prominent of these jets have been known as spicules. However, the mechanism initiating these eruption events is still unknown. Using realistic numerical simulations we find that small-scale eruptions are produced by ubiquitous magnetized vortex tubes generated by the Sun's turbulent convection in subsurface layers. The swirling vortex tubes (resembling tornadoes) penetrate into the solar atmosphere, capture and stretch background magnetic field, and push the surrounding material up, generating shocks. Our simulations reveal complicated high-speed flow patterns andmore » thermodynamic and magnetic structure in the erupting vortex tubes. The main new results are: (1) the eruptions are initiated in the subsurface layers and are driven by high-pressure gradients in the subphotosphere and photosphere and by the Lorentz force in the higher atmosphere layers; (2) the fluctuations in the vortex tubes penetrating into the chromosphere are quasi-periodic with a characteristic period of 2-5 minutes; and (3) the eruptions are highly non-uniform: the flows are predominantly downward in the vortex tube cores and upward in their surroundings; the plasma density and temperature vary significantly across the eruptions.« less

  7. HSDPA (3.5G)-based ubiquitous integrated biotelemetry system for emergency care.

    PubMed

    Kang, Jaemin; Shin, Il Hyung; Koo, Yoonseo; Jung, Min Yang; Suh, Gil Joon; Kim, Hee Chan

    2007-01-01

    We have developed the second prototype system of Ubiquitous Integrated Biotelemetry System for Emergency Care(UIBSEC) using a HSDPA(High Speed Downlink Packet Access) modem to be used by emergency rescuers to get directions from medical doctors in providing emergency medical services for patients in ambulance. Five vital bio-signal instrumentation modules have been implemented, which include noninvasive arterial blood pressure (NIBP), arterial oxygen saturation (SaO2), 6-channel electro-cardiogram(ECG), blood glucose level, and body temperature and real-time motion picture of the patient and GPS information are also taken. Measured patient data, captured motion picture and GPS information are then transferred to a doctor's PC through the HSDPA and TCP/IP networks using stand-alone HSDPA modem. Most prominent feature of the developed system is that it is based on the HSDPA backbone networks available in Korea now, through which we will be able to establish a ubiquitous emergency healthcare service system.

  8. High-Speed, high-power, switching transistor

    NASA Technical Reports Server (NTRS)

    Carnahan, D.; Ohu, C. K.; Hower, P. L.

    1979-01-01

    Silicon transistor rate for 200 angstroms at 400 to 600 volts combines switching speed of transistors with ruggedness, power capacity of thyristor. Transistor introduces unique combination of increased power-handling capability, unusally low saturation and switching losses, and submicrosecond switching speeds. Potential applications include high power switching regulators, linear amplifiers, chopper controls for high frequency electrical vehicle drives, VLF transmitters, RF induction heaters, kitchen cooking ranges, and electronic scalpels for medical surgery.

  9. High-Speed Sealift Technology. Volume 1

    DTIC Science & Technology

    1998-09-01

    performance of high - speed commercial and military sealift ships , in advance of detailed design studies, in order to help define realistic future mission...Therefore, the viability of new High - Speed Sealift (HSS) ships (oceangoing cargo vessels capable of at least 40 kt that are able to onload and offload... propulsion power for dynamically supported concepts) VK = average ship speed for a voyage (i.e., sustained or service speed )

  10. High-speed sailing

    NASA Astrophysics Data System (ADS)

    Püschl, Wolfgang

    2018-07-01

    This article is to review, for the benefit of university teachers, the most important arguments concerning the theory of sailing, especially regarding its high-speed aspect. The matter presented should be appropriate for students with basic knowledge of physics, such as advanced undergraduate or graduate. It is intended, furthermore, to put recent developments in the art of sailing in the proper historic perspective. We first regard the general geometric and dynamic conditions for steady sailing on a given course and then take a closer look at the high-speed case and its counter-intuitive aspects. A short overview is given on how the aero-hydrodynamic lift force arises, disposing of some wrong but entrenched ideas. The multi-faceted, composite nature of the drag force is expounded, with the special case of wave drag as a phenomenon at the boundary between different media. It is discussed how these various factors have to contribute in order to attain maximum speed. Modern solutions to this optimisation problem are considered, as well as their repercussions on the sport of sailing now and in the future.

  11. System Requirement Analyses for Ubiquitous Environment Management System

    NASA Astrophysics Data System (ADS)

    Lim, Sang Boem; Gil, Kyung Jun; Choe, Ho Rim; Eo, Yang Dam

    We are living in new stage of society. U-City introduces new paradigm that cannot be archived in traditional city to future city. Korea is one of the most active countries to construct U-City based on advances of IT technologies - especially based on high-speed network through out country [1]. Peoples are realizing ubiquitous service is key factor of success of U-City. Among the U-services, U-security service is one of the most important services. Nowadays we have to concern about traditional threat and also personal information. Since apartment complex is the most common residence type in Korea. We are developing security rules and system based on analyses of apartment complex and assert of apartment complex. Based on these analyses, we are developing apartment complex security using various technologies including home network system. We also will discuss basic home network security architecture.

  12. Developing course lecture notes on high-speed rail.

    DOT National Transportation Integrated Search

    2017-07-15

    1. Introduction a. World-wide Development of High-Speed Rail (Japan, Europe, China) b. High-speed Rail in the U.S. 2. High-Speed Rail Infrastructure a. Geometric Design of High Speed Rail i. Horizontal Curve ii. Vertical Curve iii. Grade and Turnout ...

  13. 14 CFR 23.253 - High speed characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...

  14. 14 CFR 23.253 - High speed characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...

  15. Aerodynamic Characteristics of Airfoils at High Speeds

    NASA Technical Reports Server (NTRS)

    Briggs, L J; Hull, G F; Dryden, H L

    1925-01-01

    This report deals with an experimental investigation of the aerodynamical characteristics of airfoils at high speeds. Lift, drag, and center of pressure measurements were made on six airfoils of the type used by the air service in propeller design, at speeds ranging from 550 to 1,000 feet per second. The results show a definite limit to the speed at which airfoils may efficiently be used to produce lift, the lift coefficient decreasing and the drag coefficient increasing as the speed approaches the speed of sound. The change in lift coefficient is large for thick airfoil sections (camber ratio 0.14 to 0.20) and for high angles of attack. The change is not marked for thin sections (camber ratio 0.10) at low angles of attack, for the speed range employed. At high speeds the center of pressure moves back toward the trailing edge of the airfoil as the speed increases. The results indicate that the use of tip speeds approaching the speed of sound for propellers of customary design involves a serious loss in efficiency.

  16. Ubiquitous geospatial concept in evolution of the macro and micro spatial planning

    NASA Astrophysics Data System (ADS)

    Sabri, S.; Ludin, A. N. M.; Majid, M. R.

    2014-02-01

    There are many examples of GIS application in planning such as urban land-use planning, cultural heritage conservation, coastal zone management, and the design of structure plans for sustainable economic development. All these applications are dealing with systems in which natural and human factors are interconnected. But an issue that should be addressed is to what extent the current information technology is able to connect all these parts together? Contemporary improvement in information technology made the computer so imbedded in our everyday practices that we use it without having to think about it. Thus, computing is becoming truly ubiquitous and is available anywhere anytime. Advances in the internet facilities and devices, such as high speed wireless networks, mobile middleware, and smart technologies, has pushed the concept of ubiquitous computing to the forefront of GIS research and development. There are developments in this regards, these are such as GeoWeb 2.0, voluntarily geographic Information (VGI), and Mashups, whereby the application of cloud computing was possible in visualizing urban air pollution and emergency responses to ensure the safety and security. These advancements therefore, have changed the conventional facet of macro and micro spatial planning. Every possible information system such as residential, medical, business, environmental, governmental, and the like can be linked through ubiquitous computing technologies and acts as a virtually one system which works for society. However, the journey to achieve a true ubiquitous GIS is not without challenges. Despite the current potentials there are many issues and obstacles need to be addressed before GIS can to be truly ubiquitous in planning context. Perhaps four criteria as explained by Goodchild et al (1997) can be applied to ubiquitous GIS in planning very well: the system must be distributed (data storage, processing and user interaction can occur at locations that are potentially

  17. High-Speed Photography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paisley, D.L.; Schelev, M.Y.

    1998-08-01

    The applications of high-speed photography to a diverse set of subjects including inertial confinement fusion, laser surgical procedures, communications, automotive airbags, lightning etc. are briefly discussed. (AIP) {copyright} {ital 1998 Society of Photo-Optical Instrumentation Engineers.}

  18. Communications for High Speed Ground Transportation

    DOT National Transportation Integrated Search

    1971-11-15

    This report is an account of investigations and analyses undertaken for the Office of High Speed Ground Transportation (OHSGT), beginning in July of 1970, which relate to communications systems for high speed ground vehicles. The authorized scope of ...

  19. SEAL FOR HIGH SPEED CENTRIFUGE

    DOEpatents

    Skarstrom, C.W.

    1957-12-17

    A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.

  20. High-Speed Data Recorder for Space, Geodesy, and Other High-Speed Recording Applications

    NASA Technical Reports Server (NTRS)

    Taveniku, Mikael

    2013-01-01

    A high-speed data recorder and replay equipment has been developed for reliable high-data-rate recording to disk media. It solves problems with slow or faulty disks, multiple disk insertions, high-altitude operation, reliable performance using COTS hardware, and long-term maintenance and upgrade path challenges. The current generation data recor - ders used within the VLBI community are aging, special-purpose machines that are both slow (do not meet today's requirements) and are very expensive to maintain and operate. Furthermore, they are not easily upgraded to take advantage of commercial technology development, and are not scalable to multiple 10s of Gbit/s data rates required by new applications. The innovation provides a softwaredefined, high-speed data recorder that is scalable with technology advances in the commercial space. It maximally utilizes current technologies without being locked to a particular hardware platform. The innovation also provides a cost-effective way of streaming large amounts of data from sensors to disk, enabling many applications to store raw sensor data and perform post and signal processing offline. This recording system will be applicable to many applications needing realworld, high-speed data collection, including electronic warfare, softwaredefined radar, signal history storage of multispectral sensors, development of autonomous vehicles, and more.

  1. High-speed texture measurement of pavements.

    DOT National Transportation Integrated Search

    2003-01-01

    This study was conducted to validate high-speed texture measuring equipment for use in highway applications. The evaluation included two high-speed systems and a new static referencing device. Tests were conducted on 22 runway and taxiway test sectio...

  2. High speed imaging - An important industrial tool

    NASA Technical Reports Server (NTRS)

    Moore, Alton; Pinelli, Thomas E.

    1986-01-01

    High-speed photography, which is a rapid sequence of photographs that allow an event to be analyzed through the stoppage of motion or the production of slow-motion effects, is examined. In high-speed photography 16, 35, and 70 mm film and framing rates between 64-12,000 frames per second are utilized to measure such factors as angles, velocities, failure points, and deflections. The use of dual timing lamps in high-speed photography and the difficulties encountered with exposure and programming the camera and event are discussed. The application of video cameras to the recording of high-speed events is described.

  3. Cleveland-Columbus-Cincinnati high-speed rail study

    DOT National Transportation Integrated Search

    2001-07-01

    In the past five years, the evaluation of different high-speed rail (HSR) studies in the Midwest has resulted in a realization that high speed rail, with speeds greater than 110 miles per hour, is too expensive in the short term to be implemented in ...

  4. Differences in energy expenditure during high-speed versus standard-speed yoga: A randomized sequence crossover trial.

    PubMed

    Potiaumpai, Melanie; Martins, Maria Carolina Massoni; Rodriguez, Roberto; Mooney, Kiersten; Signorile, Joseph F

    2016-12-01

    To compare energy expenditure and volume of oxygen consumption and carbon dioxide production during a high-speed yoga and a standard-speed yoga program. Randomized repeated measures controlled trial. A laboratory of neuromuscular research and active aging. Sun-Salutation B was performed, for eight minutes, at a high speed versus and a standard-speed separately while oxygen consumption was recorded. Caloric expenditure was calculated using volume of oxygen consumption and carbon dioxide production. Difference in energy expenditure (kcal) of HSY and SSY. Significant differences were observed in energy expenditure between yoga speeds with high-speed yoga producing significantly higher energy expenditure than standard-speed yoga (MD=18.55, SE=1.86, p<0.01). Significant differences were also seen between high-speed and standard-speed yoga for volume of oxygen consumed and carbon dioxide produced. High-speed yoga results in a significantly greater caloric expenditure than standard-speed yoga. High-speed yoga may be an effective alternative program for those targeting cardiometabolic markers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Using a High-Speed Camera to Measure the Speed of Sound

    ERIC Educational Resources Information Center

    Hack, William Nathan; Baird, William H.

    2012-01-01

    The speed of sound is a physical property that can be measured easily in the lab. However, finding an inexpensive and intuitive way for students to determine this speed has been more involved. The introduction of affordable consumer-grade high-speed cameras (such as the Exilim EX-FC100) makes conceptually simple experiments feasible. Since the…

  6. Gated high speed optical detector

    NASA Technical Reports Server (NTRS)

    Green, S. I.; Carson, L. M.; Neal, G. W.

    1973-01-01

    The design, fabrication, and test of two gated, high speed optical detectors for use in high speed digital laser communication links are discussed. The optical detectors used a dynamic crossed field photomultiplier and electronics including dc bias and RF drive circuits, automatic remote synchronization circuits, automatic gain control circuits, and threshold detection circuits. The equipment is used to detect binary encoded signals from a mode locked neodynium laser.

  7. 33 CFR 84.24 - High-speed craft.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false High-speed craft. 84.24 Section... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.24 High-speed craft. (a) The masthead light of high-speed craft with a length to breadth ratio of less than 3.0 may be placed at a...

  8. 33 CFR 84.24 - High-speed craft.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false High-speed craft. 84.24 Section... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.24 High-speed craft. (a) The masthead light of high-speed craft with a length to breadth ratio of less than 3.0 may be placed at a...

  9. Ubiquitous human computing.

    PubMed

    Zittrain, Jonathan

    2008-10-28

    Ubiquitous computing means network connectivity everywhere, linking devices and systems as small as a drawing pin and as large as a worldwide product distribution chain. What could happen when people are so readily networked? This paper explores issues arising from two possible emerging models of ubiquitous human computing: fungible networked brainpower and collective personal vital sign monitoring.

  10. 14 CFR 25.253 - High-speed characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-speed characteristics. 25.253 Section...-speed characteristics. (a) Speed increase and recovery characteristics. The following speed increase and... inadvertent speed increases (including upsets in pitch and roll) must be simulated with the airplane trimmed...

  11. 14 CFR 25.253 - High-speed characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High-speed characteristics. 25.253 Section...-speed characteristics. (a) Speed increase and recovery characteristics. The following speed increase and... inadvertent speed increases (including upsets in pitch and roll) must be simulated with the airplane trimmed...

  12. Reducing Heating In High-Speed Cinematography

    NASA Technical Reports Server (NTRS)

    Slater, Howard A.

    1989-01-01

    Infrared-absorbing and infrared-reflecting glass filters simple and effective means for reducing rise in temperature during high-speed motion-picture photography. "Hot-mirror" and "cold-mirror" configurations, employed in projection of images, helps prevent excessive heating of scenes by powerful lamps used in high-speed photography.

  13. New concept high-speed and high-resolution color scanner

    NASA Astrophysics Data System (ADS)

    Nakashima, Keisuke; Shinoda, Shin'ichi; Konishi, Yoshiharu; Sugiyama, Kenji; Hori, Tetsuya

    2003-05-01

    We have developed a new concept high-speed and high-resolution color scanner (Blinkscan) using digital camera technology. With our most advanced sub-pixel image processing technology, approximately 12 million pixel image data can be captured. High resolution imaging capability allows various uses such as OCR, color document read, and document camera. The scan time is only about 3 seconds for a letter size sheet. Blinkscan scans documents placed "face up" on its scan stage and without any special illumination lights. Using Blinkscan, a high-resolution color document can be easily inputted into a PC at high speed, a paperless system can be built easily. It is small, and since the occupancy area is also small, setting it on an individual desk is possible. Blinkscan offers the usability of a digital camera and accuracy of a flatbed scanner with high-speed processing. Now, about several hundred of Blinkscan are mainly shipping for the receptionist operation in a bank and a security. We will show the high-speed and high-resolution architecture of Blinkscan. Comparing operation-time with conventional image capture device, the advantage of Blinkscan will make clear. And image evaluation for variety of environment, such as geometric distortions or non-uniformity of brightness, will be made.

  14. Chicago-St. Louis high speed rail plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stead, M.E.

    1994-12-31

    The Illinois Department of Transportation (IDOT), in cooperation with Amtrak, undertook the Chicago-St. Louis High Speed Rail Financial and Implementation Plan study in order to develop a realistic and achievable blueprint for implementation of high speed rail in the Chicago-St. Louis corridor. This report presents a summary of the Price Waterhouse Project Team`s analysis and the Financial and Implementation Plan for implementing high speed rail service in the Chicago-St. Louis corridor.

  15. High speed multiphoton imaging

    NASA Astrophysics Data System (ADS)

    Li, Yongxiao; Brustle, Anne; Gautam, Vini; Cockburn, Ian; Gillespie, Cathy; Gaus, Katharina; Lee, Woei Ming

    2016-12-01

    Intravital multiphoton microscopy has emerged as a powerful technique to visualize cellular processes in-vivo. Real time processes revealed through live imaging provided many opportunities to capture cellular activities in living animals. The typical parameters that determine the performance of multiphoton microscopy are speed, field of view, 3D imaging and imaging depth; many of these are important to achieving data from in-vivo. Here, we provide a full exposition of the flexible polygon mirror based high speed laser scanning multiphoton imaging system, PCI-6110 card (National Instruments) and high speed analog frame grabber card (Matrox Solios eA/XA), which allows for rapid adjustments between frame rates i.e. 5 Hz to 50 Hz with 512 × 512 pixels. Furthermore, a motion correction algorithm is also used to mitigate motion artifacts. A customized control software called Pscan 1.0 is developed for the system. This is then followed by calibration of the imaging performance of the system and a series of quantitative in-vitro and in-vivo imaging in neuronal tissues and mice.

  16. Lubrication and cooling for high speed gears

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.

    1985-01-01

    The problems and failures occurring with the operation of high speed gears are discussed. The gearing losses associated with high speed gearing such as tooth mesh friction, bearing friction, churning, and windage are discussed with various ways shown to help reduce these losses and thereby improve efficiency. Several different methods of oil jet lubrication for high speed gearing are given such as into mesh, out of mesh, and radial jet lubrication. The experiments and analytical results for the various methods of oil jet lubrication are shown with the strengths and weaknesses of each method discussed. The analytical and experimental results of gear lubrication and cooling at various test conditions are presented. These results show the very definite need of improved methods of gear cooling at high speed and high load conditions.

  17. The use of high-speed imaging in education

    NASA Astrophysics Data System (ADS)

    Kleine, H.; McNamara, G.; Rayner, J.

    2017-02-01

    Recent improvements in camera technology and the associated improved access to high-speed camera equipment have made it possible to use high-speed imaging not only in a research environment but also specifically for educational purposes. This includes high-speed sequences that are created both with and for a target audience of students in high schools and universities. The primary goal is to engage students in scientific exploration by providing them with a tool that allows them to see and measure otherwise inaccessible phenomena. High-speed imaging has the potential to stimulate students' curiosity as the results are often surprising or may contradict initial assumptions. "Live" demonstrations in class or student- run experiments are highly suitable to have a profound influence on student learning. Another aspect is the production of high-speed images for demonstration purposes. While some of the approaches known from the application of high speed imaging in a research environment can simply be transferred, additional techniques must often be developed to make the results more easily accessible for the targeted audience. This paper describes a range of student-centered activities that can be undertaken which demonstrate how student engagement and learning can be enhanced through the use of high speed imaging using readily available technologies.

  18. High Speed Vortex Flows

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

    2000-01-01

    A review of the research conducted at the National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data reviewed is for flat plates, cavities, bodies, missiles, wings, and aircraft. These data are presented and discussed relative to the design of future vehicles. Also presented is a brief historical review of the extensive body of high-speed vortex flow research from the 1940s to the present in order to provide perspective of the NASA LaRC's high-speed research results. Data are presented which show the types of vortex structures which occur at supersonic speeds and the impact of these flow structures to vehicle performance and control is discussed. The data presented shows the presence of both small- and large scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices and the downstream fins. It was shown that these vortex flow interference effects could be both positive and negative. Data are shown which highlights the effect that leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber has on the aerodynamics of and flow over delta wings. The observed flow fields for delta wings (i.e. separation bubble, classical vortex, vortex with shock, etc.) are discussed in the context of' aircraft design. And data have been shown that indicate that aerodynamic performance improvements are available by considering vortex flows as a primary design feature. Finally a discussing of a design approach for wings which utilize vortex flows for improved aerodynamic performance at supersonic speed is presented.

  19. Ubiquitous Versus One-to-One

    ERIC Educational Resources Information Center

    McAnear, Anita

    2006-01-01

    When we planned the editorial calendar with the topic ubiquitous computing, we were thinking of ubiquitous computing as the one-to-one ratio of computers to students and teachers and 24/7 access to electronic resources. At the time, we were aware that ubiquitous computing in the computer science field had more to do with wearable computers. Our…

  20. High-Speed Photography with Computer Control.

    ERIC Educational Resources Information Center

    Winters, Loren M.

    1991-01-01

    Describes the use of a microcomputer as an intervalometer for the control and timing of several flash units to photograph high-speed events. Applies this technology to study the oscillations of a stretched rubber band, the deceleration of high-speed projectiles in water, the splashes of milk drops, and the bursts of popcorn kernels. (MDH)

  1. Ubiquitous Green Computing Techniques for High Demand Applications in Smart Environments

    PubMed Central

    Zapater, Marina; Sanchez, Cesar; Ayala, Jose L.; Moya, Jose M.; Risco-Martín, José L.

    2012-01-01

    Ubiquitous sensor network deployments, such as the ones found in Smart cities and Ambient intelligence applications, require constantly increasing high computational demands in order to process data and offer services to users. The nature of these applications imply the usage of data centers. Research has paid much attention to the energy consumption of the sensor nodes in WSNs infrastructures. However, supercomputing facilities are the ones presenting a higher economic and environmental impact due to their very high power consumption. The latter problem, however, has been disregarded in the field of smart environment services. This paper proposes an energy-minimization workload assignment technique, based on heterogeneity and application-awareness, that redistributes low-demand computational tasks from high-performance facilities to idle nodes with low and medium resources in the WSN infrastructure. These non-optimal allocation policies reduce the energy consumed by the whole infrastructure and the total execution time. PMID:23112621

  2. Ubiquitous green computing techniques for high demand applications in Smart environments.

    PubMed

    Zapater, Marina; Sanchez, Cesar; Ayala, Jose L; Moya, Jose M; Risco-Martín, José L

    2012-01-01

    Ubiquitous sensor network deployments, such as the ones found in Smart cities and Ambient intelligence applications, require constantly increasing high computational demands in order to process data and offer services to users. The nature of these applications imply the usage of data centers. Research has paid much attention to the energy consumption of the sensor nodes in WSNs infrastructures. However, supercomputing facilities are the ones presenting a higher economic and environmental impact due to their very high power consumption. The latter problem, however, has been disregarded in the field of smart environment services. This paper proposes an energy-minimization workload assignment technique, based on heterogeneity and application-awareness, that redistributes low-demand computational tasks from high-performance facilities to idle nodes with low and medium resources in the WSN infrastructure. These non-optimal allocation policies reduce the energy consumed by the whole infrastructure and the total execution time.

  3. High-speed civil transport study

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A system study of the potential for a high-speed commercial transport has addressed technological, economic, and environmental constraints. Market projections indicate a need for fleets of transports with supersonic or greater cruise speeds by the year 2000 to 2005. The associated design requirements called for a vehicle to carry 250 to 300 passengers over a range of 5,000 to 6,000 nautical miles. The study was initially unconstrained in terms of vehicle characteristic, such as cruise speed, propulsion systems, fuels, or structural materials. Analyses led to a focus on the most promising vehicle concepts. These were concepts that used a kerosene-type fuel and cruised at Mach numbers between 2.0 to 3.2. Further systems study identified the impact of environmental constraints (for community noise, sonic boom, and engine emissions) on economic attractiveness and technological needs. Results showed that current technology cannot produce a viable high-speed civil transport; significant advances are required to reduce takeoff gross weight and allow for both economic attractiveness and environmental accepatability. Specific technological requirements were identified to meet these needs.

  4. Aerodynamic design on high-speed trains

    NASA Astrophysics Data System (ADS)

    Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li

    2016-04-01

    Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.

  5. Printable polymer actuators from ionic liquid, soluble polyimide, and ubiquitous carbon materials.

    PubMed

    Imaizumi, Satoru; Ohtsuki, Yuto; Yasuda, Tomohiro; Kokubo, Hisashi; Watanabe, Masayoshi

    2013-07-10

    We present here printable high-performance polymer actuators comprising ionic liquid (IL), soluble polyimide, and ubiquitous carbon materials. Polymer electrolytes with high ionic conductivity and reliable mechanical strength are required for high-performance polymer actuators. The developed polymer electrolytes comprised a soluble sulfonated polyimide (SPI) and IL, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([C2mim][NTf2]), and they exhibited acceptable ionic conductivity up to 1 × 10(-3) S cm(-1) and favorable mechanical properties (elastic modulus >1 × 10(7) Pa). Polymer actuators based on SPI/[C2mim][NTf2] electrolytes were prepared using inexpensive activated carbon (AC) together with highly electron-conducting carbon such as acetylene black (AB), vapor grown carbon fiber (VGCF), and Ketjen black (KB). The resulting polymer actuators have a trilaminar electric double-layer capacitor structure, consisting of a polymer electrolyte layer sandwiched between carbon electrode layers. Displacement, response speed, and durability of the actuators depended on the combination of carbons. Especially the actuators with mixed AC/KB carbon electrodes exhibited relatively large displacement and high-speed response, and they kept 80% of the initial displacement even after more than 5000 cycles. The generated force of the actuators correlated with the elastic modulus of SPI/[C2mim][NTf2] electrolytes. The displacement of the actuators was proportional to the accumulated electric charge in the electrodes, regardless of carbon materials, and agreed well with the previously proposed displacement model.

  6. Learning with Ubiquitous Computing

    ERIC Educational Resources Information Center

    Rosenheck, Louisa

    2008-01-01

    If ubiquitous computing becomes a reality and is widely adopted, it will inevitably have an impact on education. This article reviews the background of ubiquitous computing and current research projects done involving educational "ubicomp." Finally it explores how ubicomp may and may not change education in both formal and informal settings and…

  7. Full-frame, high-speed 3D shape and deformation measurements using stereo-digital image correlation and a single color high-speed camera

    NASA Astrophysics Data System (ADS)

    Yu, Liping; Pan, Bing

    2017-08-01

    Full-frame, high-speed 3D shape and deformation measurement using stereo-digital image correlation (stereo-DIC) technique and a single high-speed color camera is proposed. With the aid of a skillfully designed pseudo stereo-imaging apparatus, color images of a test object surface, composed of blue and red channel images from two different optical paths, are recorded by a high-speed color CMOS camera. The recorded color images can be separated into red and blue channel sub-images using a simple but effective color crosstalk correction method. These separated blue and red channel sub-images are processed by regular stereo-DIC method to retrieve full-field 3D shape and deformation on the test object surface. Compared with existing two-camera high-speed stereo-DIC or four-mirror-adapter-assisted singe-camera high-speed stereo-DIC, the proposed single-camera high-speed stereo-DIC technique offers prominent advantages of full-frame measurements using a single high-speed camera but without sacrificing its spatial resolution. Two real experiments, including shape measurement of a curved surface and vibration measurement of a Chinese double-side drum, demonstrated the effectiveness and accuracy of the proposed technique.

  8. High Speed Rail (HSR) in the United States

    DTIC Science & Technology

    2009-12-08

    Magnetic Levitation ( Maglev ) ...............................................................................................5 High Speed Rail In...commonly referred to as “ maglev .” 6 Passenger Rail Working Group of the National Surface... maglev train in 2003. Because of the greater costs, and relatively minor benefits,11 of operating at extremely high speeds, the top operating speed

  9. Single-electron random-number generator (RNG) for highly secure ubiquitous computing applications

    NASA Astrophysics Data System (ADS)

    Uchida, Ken; Tanamoto, Tetsufumi; Fujita, Shinobu

    2007-11-01

    Since the security of all modern cryptographic techniques relies on unpredictable and irreproducible digital keys generated by random-number generators (RNGs), the realization of high-quality RNG is essential for secure communications. In this report, a new RNG, which utilizes single-electron phenomena, is proposed. A room-temperature operating silicon single-electron transistor (SET) having nearby an electron pocket is used as a high-quality, ultra-small RNG. In the proposed RNG, stochastic single-electron capture/emission processes to/from the electron pocket are detected with high sensitivity by the SET, and result in giant random telegraphic signals (GRTS) on the SET current. It is experimentally demonstrated that the single-electron RNG generates extremely high-quality random digital sequences at room temperature, in spite of its simple configuration. Because of its small-size and low-power properties, the single-electron RNG is promising as a key nanoelectronic device for future ubiquitous computing systems with highly secure mobile communication capabilities.

  10. HIGH-SPEED GC/MS FOR AIR ANALYSIS

    EPA Science Inventory

    High speed or fast gas chromatography (FGC) consists of narrow bandwidth injection into a high-speed carrier gas stream passing through a short column leading to a fast detector. Many attempts have been made to demonstrate FGC, but until recently no practical method for routin...

  11. A MHz speed wavelength sweeping for ultra-high speed FBG interrogation

    NASA Astrophysics Data System (ADS)

    Kim, Gyeong Hun; Lee, Hwi Don; Eom, Tae Joong; Jeong, Myung Yung; Kim, Chang-Seok

    2015-09-01

    We demonstrated a MHz speed wavelength-swept fiber laser based on the active mode locking (AML) technique and applied to interrogation system of an array of fiber Bragg grating (FBG) sensors. MHz speed wavelength sweeping of wavelength-swept fiber laser can be obtained by programmable frequency modulation of the semiconductor optical amplifier (SOA) without any wavelength tunable filter. Both static and dynamic strain measurement of FBG sensors were successfully characterized with high linearity of an R-square value of 0.9999 at sweeping speed of 50 kHz.

  12. A Character Segmentation Proposal for High-Speed Visual Monitoring of Expiration Codes on Beverage Cans.

    PubMed

    Rodríguez-Rodríguez, José C; Quesada-Arencibia, Alexis; Moreno-Díaz, Roberto; García, Carmelo R

    2016-04-13

    Expiration date labels are ubiquitous in the food industry. With the passage of time, almost any food becomes unhealthy, even when well preserved. The expiration date is estimated based on the type and manufacture/packaging time of that particular food unit. This date is then printed on the container so it is available to the end user at the time of consumption. MONICOD (MONItoring of CODes); an industrial validator of expiration codes; allows the expiration code printed on a drink can to be read. This verification occurs immediately after printing. MONICOD faces difficulties due to the high printing rate (35 cans per second) and problematic lighting caused by the metallic surface on which the code is printed. This article describes a solution that allows MONICOD to extract shapes and presents quantitative results for the speed and quality.

  13. Water flow in high-speed handpieces.

    PubMed

    Cavalcanti, Bruno Neves; Serairdarian, Paulo Isaías; Rode, Sigmar Mello

    2005-05-01

    This study measured the water flow commonly used in high-speed handpieces to evaluate the water flow's influence on temperature generation. Different flow speeds were evaluated between turbines that had different numbers of cooling apertures. Two water samples were collected from each high-speed handpiece at private practices and at the School of Dentistry at São José dos Campos. The first sample was collected at the customary flow and the second was collected with the terminal opened for maximum flow. The two samples were collected into weighed glass receptacles after 15 seconds of turbine operation. The glass receptacles were reweighed and the difference between weights was recorded to calculate the water flow in mL/min and for further statistical analysis. The average water flow for 137 samples was 29.48 mL/min. The flow speeds obtained were 42.38 mL/min for turbines with one coolant aperture; 34.31 mL/min for turbines with two coolant apertures; and 30.44 mL/min for turbines with three coolant apertures. There were statistical differences between turbines with one and three coolant apertures (Tukey-Kramer multiple comparisons test with P < .05). Turbine handpieces with one cooling aperture distributed more water for the burs than high-speed handpieces with more than one aperture.

  14. A Collaborative Model for Ubiquitous Learning Environments

    ERIC Educational Resources Information Center

    Barbosa, Jorge; Barbosa, Debora; Rabello, Solon

    2016-01-01

    Use of mobile devices and widespread adoption of wireless networks have enabled the emergence of Ubiquitous Computing. Application of this technology to improving education strategies gave rise to Ubiquitous e-Learning, also known as Ubiquitous Learning. There are several approaches to organizing ubiquitous learning environments, but most of them…

  15. High Speed Digital Camera Technology Review

    NASA Technical Reports Server (NTRS)

    Clements, Sandra D.

    2009-01-01

    A High Speed Digital Camera Technology Review (HSD Review) is being conducted to evaluate the state-of-the-shelf in this rapidly progressing industry. Five HSD cameras supplied by four camera manufacturers participated in a Field Test during the Space Shuttle Discovery STS-128 launch. Each camera was also subjected to Bench Tests in the ASRC Imaging Development Laboratory. Evaluation of the data from the Field and Bench Tests is underway. Representatives from the imaging communities at NASA / KSC and the Optical Systems Group are participating as reviewers. A High Speed Digital Video Camera Draft Specification was updated to address Shuttle engineering imagery requirements based on findings from this HSD Review. This draft specification will serve as the template for a High Speed Digital Video Camera Specification to be developed for the wider OSG imaging community under OSG Task OS-33.

  16. High Speed Balancing Applied to the T700 Engine

    NASA Technical Reports Server (NTRS)

    Walton, J.; Lee, C.; Martin, M.

    1989-01-01

    The work performed under Contracts NAS3-23929 and NAS3-24633 is presented. MTI evaluated the feasibility of high-speed balancing for both the T700 power turbine rotor and the compressor rotor. Modifications were designed for the existing Corpus Christi Army Depot (CCAD) T53/T55 high-speed balancing system for balancing T700 power turbine rotors. Tests conducted under these contracts included a high-speed balancing evaluation for T700 power turbines in the Army/NASA drivetrain facility at MTI. The high-speed balancing tests demonstrated the reduction of vibration amplitudes at operating speed for both low-speed balanced and non-low-speed balanced T700 power turbines. In addition, vibration data from acceptance tests of T53, T55, and T700 engines were analyzed and a vibration diagnostic procedure developed.

  17. A High-Speed Design of Montgomery Multiplier

    NASA Astrophysics Data System (ADS)

    Fan, Yibo; Ikenaga, Takeshi; Goto, Satoshi

    With the increase of key length used in public cryptographic algorithms such as RSA and ECC, the speed of Montgomery multiplication becomes a bottleneck. This paper proposes a high speed design of Montgomery multiplier. Firstly, a modified scalable high-radix Montgomery algorithm is proposed to reduce critical path. Secondly, a high-radix clock-saving dataflow is proposed to support high-radix operation and one clock cycle delay in dataflow. Finally, a hardware-reused architecture is proposed to reduce the hardware cost and a parallel radix-16 design of data path is proposed to accelerate the speed. By using HHNEC 0.25μm standard cell library, the implementation results show that the total cost of Montgomery multiplier is 130 KGates, the clock frequency is 180MHz and the throughput of 1024-bit RSA encryption is 352kbps. This design is suitable to be used in high speed RSA or ECC encryption/decryption. As a scalable design, it supports any key-length encryption/decryption up to the size of on-chip memory.

  18. High-speed pulse-shape generator, pulse multiplexer

    DOEpatents

    Burkhart, Scott C.

    2002-01-01

    The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.

  19. High-speed photodetectors.

    PubMed

    Anderson, L K; McMurtry, B J

    1966-10-01

    This paper is intended as a status report on high-speed detectors for the visible and near-infrared portion of the optical spectrum. Both vacuum and solid-state detectors are discussed, with the emphasis on those devices which can be used as direct (noncoherent) detectors of weak optical signals modulated at microwave frequencies. The best detectors for this application have internal current gain and in this regard the relevant properties and limitations of high-frequency secondary emission multiplication in vacuum tube devices and avalanche multiplication in p-n junctions are summarized.

  20. Water Containment Systems for Testing High-Speed Flywheels

    NASA Technical Reports Server (NTRS)

    Trase, Larry; Thompson, Dennis

    2006-01-01

    Water-filled containers are used as building blocks in a new generation of containment systems for testing high-speed flywheels. Such containment systems are needed to ensure safety by trapping high-speed debris in the event of centrifugal breakup or bearing failure. Traditional containment systems for testing flywheels consist mainly of thick steel rings. The effectiveness of this approach to shielding against high-speed debris was demonstrated in a series of tests.

  1. High-speed and high-fidelity system and method for collecting network traffic

    DOEpatents

    Weigle, Eric H [Los Alamos, NM

    2010-08-24

    A system is provided for the high-speed and high-fidelity collection of network traffic. The system can collect traffic at gigabit-per-second (Gbps) speeds, scale to terabit-per-second (Tbps) speeds, and support additional functions such as real-time network intrusion detection. The present system uses a dedicated operating system for traffic collection to maximize efficiency, scalability, and performance. A scalable infrastructure and apparatus for the present system is provided by splitting the work performed on one host onto multiple hosts. The present system simultaneously addresses the issues of scalability, performance, cost, and adaptability with respect to network monitoring, collection, and other network tasks. In addition to high-speed and high-fidelity network collection, the present system provides a flexible infrastructure to perform virtually any function at high speeds such as real-time network intrusion detection and wide-area network emulation for research purposes.

  2. High-speed digital signal normalization for feature identification

    NASA Technical Reports Server (NTRS)

    Ortiz, J. A.; Meredith, B. D.

    1983-01-01

    A design approach for high speed normalization of digital signals was developed. A reciprocal look up table technique is employed, where a digital value is mapped to its reciprocal via a high speed memory. This reciprocal is then multiplied with an input signal to obtain the normalized result. Normalization improves considerably the accuracy of certain feature identification algorithms. By using the concept of pipelining the multispectral sensor data processing rate is limited only by the speed of the multiplier. The breadboard system was found to operate at an execution rate of five million normalizations per second. This design features high precision, a reduced hardware complexity, high flexibility, and expandability which are very important considerations for spaceborne applications. It also accomplishes a high speed normalization rate essential for real time data processing.

  3. High Speed Videometric Monitoring of Rock Breakage

    NASA Astrophysics Data System (ADS)

    Allemand, J.; Shortis, M. R.; Elmouttie, M. K.

    2018-05-01

    Estimation of rock breakage characteristics plays an important role in optimising various industrial and mining processes used for rock comminution. Although little research has been undertaken into 3D photogrammetric measurement of the progeny kinematics, there is promising potential to improve the efficacy of rock breakage characterisation. In this study, the observation of progeny kinematics was conducted using a high speed, stereo videometric system based on laboratory experiments with a drop weight impact testing system. By manually tracking individual progeny through the captured video sequences, observed progeny coordinates can be used to determine 3D trajectories and velocities, supporting the idea that high speed video can be used for rock breakage characterisation purposes. An analysis of the results showed that the high speed videometric system successfully observed progeny trajectories and showed clear projection of the progeny away from the impact location. Velocities of the progeny could also be determined based on the trajectories and the video frame rate. These results were obtained despite the limitations of the photogrammetric system and experiment processes observed in this study. Accordingly there is sufficient evidence to conclude that high speed videometric systems are capable of observing progeny kinematics from drop weight impact tests. With further optimisation of the systems and processes used, there is potential for improving the efficacy of rock breakage characterisation from measurements with high speed videometric systems.

  4. Potential scenarios of concern for high speed rail operations

    DOT National Transportation Integrated Search

    2011-03-16

    Currently, multiple operating authorities are proposing the : introduction of high-speed rail service in the United States. : While high-speed rail service shares a number of basic : principles with conventional-speed rail service, the operational : ...

  5. A Dynamic Ubiquitous Learning Resource Model with Context and Its Effects on Ubiquitous Learning

    ERIC Educational Resources Information Center

    Chen, Min; Yu, Sheng Quan; Chiang, Feng Kuang

    2017-01-01

    Most ubiquitous learning researchers use resource recommendation and retrieving based on context to provide contextualized learning resources, but it is the kind of one-way context matching. Learners always obtain fixed digital learning resources, which present all learning contents in any context. This study proposed a dynamic ubiquitous learning…

  6. Survey Of High Speed Test Techniques

    NASA Astrophysics Data System (ADS)

    Gheewala, Tushar

    1988-02-01

    The emerging technologies for the characterization and production testing of high-speed devices and integrated circuits are reviewed. The continuing progress in the field of semiconductor technologies will, in the near future, demand test techniques to test 10ps to lOOps gate delays, 10 GHz to 100 GHz analog functions and 10,000 to 100,000 gates on a single chip. Clearly, no single test technique would provide a cost-effective answer to all the above demands. A divide-and-conquer approach based on a judicial selection of parametric, functional and high-speed tests will be required. In addition, design-for-test methods need to be pursued which will include on-chip test electronics as well as circuit techniques that minimize the circuit performance sensitivity to allowable process variations. The electron and laser beam based test technologies look very promising and may provide the much needed solutions to not only the high-speed test problem but also to the need for high levels of fault coverage during functional testing.

  7. Method for upgrading the performance at track transitions for high-speed service : next generation high-speed rail program

    DOT National Transportation Integrated Search

    2001-09-01

    High-speed trains in the speed range of 100 to 160 mph require tracks of nearly perfect geometry and mechanical uniformity, when subjected to moving wheel loads. Therefore, this report briefly describes the remedies being used by various railroads to...

  8. Predictors of older drivers' involvement in high-range speeding behavior.

    PubMed

    Chevalier, Anna; Coxon, Kristy; Rogers, Kris; Chevalier, Aran John; Wall, John; Brown, Julie; Clarke, Elizabeth; Ivers, Rebecca; Keay, Lisa

    2017-02-17

    Even small increases in vehicle speed raise crash risk and resulting injury severity. Older drivers are at increased risk of involvement in casualty crashes and injury compared to younger drivers. However, there is little objective evidence about older drivers' speeding. This study investigates the nature and predictors of high-range speeding among drivers aged 75-94 years. Speed per second was estimated using Global Positioning System devices installed in participants' vehicles. High-range speeding events were defined as traveling an average 10+km/h above the speed limit over 30 seconds. Descriptive analysis examined speeding events by participant characteristics and mileage driven. Regression analyses were used to examine the association between involvement in high-range speeding events and possible predictive factors. Most (96%, 182/190) participants agreed to have their vehicle instrumented, and speeding events were accurately recorded for 97% (177/182) of participants. While 77% (136/177) of participants were involved in one or more high-range events, 42% (75/177) were involved in greater than five events during 12-months of data collection. Participants involved in high-range events drove approximately twice as many kilometres as those not involved. High-range events tended to be infrequent (median = 6 per 10,000 km; IQR = 2-18). The rate of high-range speeding was associated with better cognitive function and attention to the driving environment. This suggests those older drivers with poorer cognition and visual attention may drive more cautiously, thereby reducing their high-range speeding behavior.

  9. High-speed civil transport study. Summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A system of study of the potential for a high speed commercial transport aircraft addressed technology, economic, and environmental constraints. Market projections indicated a need for fleets of transport with supersonic or greater cruise speeds by the years 2000 to 2005. The associated design requirements called for a vehicle to carry 250 to 300 passengers over a range of 5000 to 6000 nautical miles. The study was initially unconstrained in terms of vehicle characteristics, such as cruise speed, propulsion systems, fuels, or structural materials. Analyses led to a focus on the most promising vehicle concepts. These were concepts that used a kerosene type fuel and cruised at Mach numbers between 2.0 to 3.2. Further systems study identified the impact of environmental constraints (for community noise, sonic boom, and engine emissions) on economic attractiveness and technological needs. Results showed that current technology cannot produce a viable high speed civil transport. Significant advances are needed to take off gross weight and allow for both economic attractiveness and environment acceptability. Specific technological requirements were identified to meet these needs.

  10. High speed hydrogen/graphite interaction

    NASA Technical Reports Server (NTRS)

    Kelly, A. J.; Hamman, R.; Sharma, O. P.; Harrje, D. T.

    1974-01-01

    Various aspects of a research program on high speed hydrogen/graphite interaction are presented. Major areas discussed are: (1) theoretical predictions of hydrogen/graphite erosion rates; (2) high temperature, nonequilibrium hydrogen flow in a nozzle; and (3) molecular beam studies of hydrogen/graphite erosion.

  11. High-Speed Videography Overview

    NASA Astrophysics Data System (ADS)

    Miller, C. E.

    1989-02-01

    The field of high-speed videography (HSV) has continued to mature in recent years, due to the introduction of a mixture of new technology and extensions of existing technology. Recent low frame-rate innovations have the potential to dramatically expand the areas of information gathering and motion analysis at all frame-rates. Progress at the 0 - rate is bringing the battle of film versus video to the field of still photography. The pressure to push intermediate frame rates higher continues, although the maximum achievable frame rate has remained stable for several years. Higher maximum recording rates appear technologically practical, but economic factors impose severe limitations to development. The application of diverse photographic techniques to video-based systems is under-exploited. The basics of HSV apply to other fields, such as machine vision and robotics. Present motion analysis systems continue to function mainly as an instant replay replacement for high-speed movie film cameras. The interrelationship among lighting, shuttering and spatial resolution is examined.

  12. High-speed optical 3D sensing and its applications

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshihiro

    2016-12-01

    This paper reviews high-speed optical 3D sensing technologies for obtaining the 3D shape of a target using a camera. The focusing speed is from 100 to 1000 fps, exceeding normal camera frame rates, which are typically 30 fps. In particular, contactless, active, and real-time systems are introduced. Also, three example applications of this type of sensing technology are introduced, including surface reconstruction from time-sequential depth images, high-speed 3D user interaction, and high-speed digital archiving.

  13. High-Speed Videography Instrumentation And Procedures

    NASA Astrophysics Data System (ADS)

    Miller, C. E.

    1982-02-01

    High-speed videography has been an electronic analog of low-speed film cameras, but having the advantages of instant-replay and simplicity of operation. Recent advances have pushed frame-rates into the realm of the rotating prism camera. Some characteristics of videography systems are discussed in conjunction with applications in sports analysis, and with sports equipment testing.

  14. Active control system for high speed windmills

    DOEpatents

    Avery, D.E.

    1988-01-12

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed. 4 figs.

  15. Active control system for high speed windmills

    DOEpatents

    Avery, Don E.

    1988-01-01

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed.

  16. First Annual High-Speed Research Workshop, part 4

    NASA Technical Reports Server (NTRS)

    Whitehead, Allen H., Jr. (Compiler)

    1992-01-01

    Papers presented at the First Annual High Speed Research Workshop held in Williamsburg, Viginia, on May 14-16, 1991 are presented. This NASA-sponsored workshop provided a national forum for presenting and discussing important technology issues related to the definition of an economically viable and environmentally compatible High Speed Civil Transport. The sessions are developed around the technical components of NASA's Phase 1 High Speed Research Program which addresses the environmental issues of atmospheric emissions, community noise, and sonic boom. In particular, this part of the publication, Part 4, addresses high lift research and supersonic laminar flow control.

  17. Ubiquitous Multicriteria Clinic Recommendation System.

    PubMed

    Chen, Toly

    2016-05-01

    Advancements in information, communication, and sensor technologies have led to new opportunities in medical care and education. Patients in general prefer visiting the nearest clinic, attempt to avoid waiting for treatment, and have unequal preferences for different clinics and doctors. Therefore, to enable patients to compare multiple clinics, this study proposes a ubiquitous multicriteria clinic recommendation system. In this system, patients can send requests through their cell phones to the system server to obtain a clinic recommendation. Once the patient sends this information to the system, the system server first estimates the patient's speed according to the detection results of a global positioning system. It then applies a fuzzy integer nonlinear programming-ordered weighted average approach to assess four criteria and finally recommends a clinic with maximal utility to the patient. The proposed methodology was tested in a field experiment, and the experimental results showed that it is advantageous over two existing methods in elevating the utilities of recommendations. In addition, such an advantage was shown to be statistically significant.

  18. High-speed and intercity passenger rail testing strategy.

    DOT National Transportation Integrated Search

    2013-05-01

    This high-speed and intercity passenger rail (HSIPR) testing strategy addresses the requirements for testing of high-speed train sets and technology before introduction to the North American railroad system. The report documents the results of a surv...

  19. Development of high-speed video cameras

    NASA Astrophysics Data System (ADS)

    Etoh, Takeharu G.; Takehara, Kohsei; Okinaka, Tomoo; Takano, Yasuhide; Ruckelshausen, Arno; Poggemann, Dirk

    2001-04-01

    Presented in this paper is an outline of the R and D activities on high-speed video cameras, which have been done in Kinki University since more than ten years ago, and are currently proceeded as an international cooperative project with University of Applied Sciences Osnabruck and other organizations. Extensive marketing researches have been done, (1) on user's requirements on high-speed multi-framing and video cameras by questionnaires and hearings, and (2) on current availability of the cameras of this sort by search of journals and websites. Both of them support necessity of development of a high-speed video camera of more than 1 million fps. A video camera of 4,500 fps with parallel readout was developed in 1991. A video camera with triple sensors was developed in 1996. The sensor is the same one as developed for the previous camera. The frame rate is 50 million fps for triple-framing and 4,500 fps for triple-light-wave framing, including color image capturing. Idea on a video camera of 1 million fps with an ISIS, In-situ Storage Image Sensor, was proposed in 1993 at first, and has been continuously improved. A test sensor was developed in early 2000, and successfully captured images at 62,500 fps. Currently, design of a prototype ISIS is going on, and, hopefully, will be fabricated in near future. Epoch-making cameras in history of development of high-speed video cameras by other persons are also briefly reviewed.

  20. Low Speed and High Speed Correlation of SMART Active Flap Rotor Loads

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi B. R.

    2010-01-01

    Measured, open loop and closed loop data from the SMART rotor test in the NASA Ames 40- by 80- Foot Wind Tunnel are compared with CAMRAD II calculations. One open loop high-speed case and four closed loop cases are considered. The closed loop cases include three high-speed cases and one low-speed case. Two of these high-speed cases include a 2 deg flap deflection at 5P case and a test maximum-airspeed case. This study follows a recent, open loop correlation effort that used a simple correction factor for the airfoil pitching moment Mach number. Compared to the earlier effort, the current open loop study considers more fundamental corrections based on advancing blade aerodynamic conditions. The airfoil tables themselves have been studied. Selected modifications to the HH-06 section flap airfoil pitching moment table are implemented. For the closed loop condition, the effect of the flap actuator is modeled by increased flap hinge stiffness. Overall, the open loop correlation is reasonable, thus confirming the basic correctness of the current semi-empirical modifications; the closed loop correlation is also reasonable considering that the current flap model is a first generation model. Detailed correlation results are given in the paper.

  1. High speed flow cytometric separation of viable cells

    DOEpatents

    Sasaki, D.T.; Van den Engh, G.J.; Buckie, A.M.

    1995-11-14

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  2. High speed flow cytometric separation of viable cells

    DOEpatents

    Sasaki, Dennis T.; Van den Engh, Gerrit J.; Buckie, Anne-Marie

    1995-01-01

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  3. Small Scale High Speed Turbomachinery

    NASA Technical Reports Server (NTRS)

    London, Adam P. (Inventor); Droppers, Lloyd J. (Inventor); Lehman, Matthew K. (Inventor); Mehra, Amitav (Inventor)

    2015-01-01

    A small scale, high speed turbomachine is described, as well as a process for manufacturing the turbomachine. The turbomachine is manufactured by diffusion bonding stacked sheets of metal foil, each of which has been pre-formed to correspond to a cross section of the turbomachine structure. The turbomachines include rotating elements as well as static structures. Using this process, turbomachines may be manufactured with rotating elements that have outer diameters of less than four inches in size, and/or blading heights of less than 0.1 inches. The rotating elements of the turbomachines are capable of rotating at speeds in excess of 150 feet per second. In addition, cooling features may be added internally to blading to facilitate cooling in high temperature operations.

  4. High Speed Surface Thermocouples Interface to Wireless Transmitters

    DTIC Science & Technology

    2017-03-15

    Government and/or Private Sector Use Being able to measure high-speed surface temperatures in hostile environments where wireless transmission of the data...09/16/2016 See Item 16 Draft Reg Repro 16. REMARKS Eric Gingrich, COR I Item 0: High Speed Surface Thermocouples Interface to Wireless ...Speed Surface Thermocouples Interface to Wireless Transmitters W56HZV-16-C-0149 Sb. GRANT NUMBER Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT

  5. High speed demodulation systems for fiber optic grating sensors

    NASA Technical Reports Server (NTRS)

    Udd, Eric (Inventor); Weisshaar, Andreas (Inventor)

    2002-01-01

    Fiber optic grating sensor demodulation systems are described that offer high speed and multiplexing options for both single and multiple parameter fiber optic grating sensors. To attain very high speeds for single parameter fiber grating sensors ratio techniques are used that allow a series of sensors to be placed in a single fiber while retaining high speed capability. These methods can be extended to multiparameter fiber grating sensors. Optimization of speeds can be obtained by minimizing the number of spectral peaks that must be processed and it is shown that two or three spectral peak measurements may in specific multiparameter applications offer comparable or better performance than processing four spectral peaks. Combining the ratio methods with minimization of peak measurements allows very high speed measurement of such important environmental effects as transverse strain and pressure.

  6. Discovery of Ubiquitous Fast-Propagating Intensity Disturbances by the Chromospheric Lyman Alpha Spectropolarimeter (CLASP)

    NASA Astrophysics Data System (ADS)

    Kubo, M.; Katsukawa, Y.; Suematsu, Y.; Kano, R.; Bando, T.; Narukage, N.; Ishikawa, R.; Hara, H.; Giono, G.; Tsuneta, S.; Ishikawa, S.; Shimizu, T.; Sakao, T.; Winebarger, A.; Kobayashi, K.; Cirtain, J.; Champey, P.; Auchère, F.; Trujillo Bueno, J.; Asensio Ramos, A.; Štěpán, J.; Belluzzi, L.; Manso Sainz, R.; De Pontieu, B.; Ichimoto, K.; Carlsson, M.; Casini, R.; Goto, M.

    2016-12-01

    High-cadence observations by the slit-jaw (SJ) optics system of the sounding rocket experiment known as the Chromospheric Lyman Alpha Spectropolarimeter (CLASP) reveal ubiquitous intensity disturbances that recurrently propagate in either the chromosphere or the transition region or both at a speed much higher than the speed of sound. The CLASP/SJ instrument provides a time series of two-dimensional images taken with broadband filters centered on the Lyα line at a 0.6 s cadence. The multiple fast-propagating intensity disturbances appear in the quiet Sun and in an active region, and they are clearly detected in at least 20 areas in a field of view of 527″ × 527″ during the 5 minute observing time. The apparent speeds of the intensity disturbances range from 150 to 350 km s-1, and they are comparable to the local Alfvén speed in the transition region. The intensity disturbances tend to propagate along bright elongated structures away from areas with strong photospheric magnetic fields. This suggests that the observed fast-propagating intensity disturbances are related to the magnetic canopy structures. The maximum distance traveled by the intensity disturbances is about 10″, and the widths are a few arcseconds, which are almost determined by a pixel size of 1.″03. The timescale of each intensity pulse is shorter than 30 s. One possible explanation for the fast-propagating intensity disturbances observed by CLASP is magnetohydrodynamic fast-mode waves.

  7. Discovery of Ubiquitous Fast Propagating Intensity Disturbances by the Chromospheric Lyman Alpha Spectropolarimeter (CLASP)

    NASA Technical Reports Server (NTRS)

    Kubo, M.; Katsukawa, Y.; Suematsu, Y.; Kano, R.; Bando, T.; Narukage, N.; Ishikawa, R.; Hara, H.; Giono, G.; Tsuneta, S.; hide

    2016-01-01

    High cadence observations by the slit-jaw (SJ) optics system of the sounding rocket experiment known as the Chromospheric Lyman Alpha SpectroPolarimeter (CLASP) reveal ubiquitous intensity disturbances that recurrently propagate in one or both of the chromosphere or transition region at a speed much higher than the sound speed. The CLASP/SJ instrument provides a time series of 2D images taken with broadband filters centered on the Ly(alpha) line at a 0.6 s cadence. The fast propagating intensity disturbances are detected in the quiet Sun and in an active region, and at least 20 events are clearly detected in the field of view of 527'' x 527'' during the 5-minute observing time. The apparent speeds of the intensity disturbances range from 150 to 350 km/s, and they are comparable to the local Alfven speed in the transition region. The intensity disturbances tend to propagate along bright elongated structures away from areas with strong photospheric magnetic fields. This suggests that the observed propagating intensity disturbances are related to the magnetic canopy structures. The maximum distance traveled by the intensity disturbances is of about 10'', and the widths are a few arcseconds, which is almost determined by the pixel size of 1.''03. The timescale of each intensity pulse is shorter than 30 s. One possible explanation of the fast propagating intensity disturbances observed by CLASP is magneto-hydrodynamic fast mode waves.

  8. Technologies for Achieving Field Ubiquitous Computing

    NASA Astrophysics Data System (ADS)

    Nagashima, Akira

    Although the term “ubiquitous” may sound like jargon used in information appliances, ubiquitous computing is an emerging concept in industrial automation. This paper presents the author's visions of field ubiquitous computing, which is based on the novel Internet Protocol IPv6. IPv6-based instrumentation will realize the next generation manufacturing excellence. This paper focuses on the following five key issues: 1. IPv6 standardization; 2. IPv6 interfaces embedded in field devices; 3. Compatibility with FOUNDATION fieldbus; 4. Network securities for field applications; and 5. Wireless technologies to complement IP instrumentation. Furthermore, the principles of digital plant operations and ubiquitous production to support the above key technologies to achieve field ubiquitous systems are discussed.

  9. High-speed high-stress ring shear tests on granular sods and clayey soils

    Treesearch

    Hiroshi Fukuoka; Kyoji Sassa

    1991-01-01

    The purposes of this study is to obtain exact knowledge of the influences on friction angle during shear by shearing speeds. Ring shear tests on sandy and clayey materials have been carried out with a newly developed High-speed High-Stress Ring Shear Apparatus to examine if there are some changes in the frictional behaviors of these materials at high shearing speeds of...

  10. Difference in muscle activation patterns during high-speed versus standard-speed yoga: A randomized sequence crossover study.

    PubMed

    Potiaumpai, Melanie; Martins, Maria Carolina Massoni; Wong, Claudia; Desai, Trusha; Rodriguez, Roberto; Mooney, Kiersten; Signorile, Joseph F

    2017-02-01

    To compare the difference in muscle activation between high-speed yoga and standard-speed yoga and to compare muscle activation of the transitions between poses and the held phases of a yoga pose. Randomized sequence crossover trial SETTING: A laboratory of neuromuscular research and active aging Interventions: Eight minutes of continuous Sun Salutation B was performed, at a high speed versus a standard-speed, separately. Electromyography was used to quantify normalized muscle activation patterns of eight upper and lower body muscles (pectoralis major, medial deltoids, lateral head of the triceps, middle fibers of the trapezius, vastus medialis, medial gastrocnemius, thoracic extensor spinae, and external obliques) during the high-speed and standard-speed yoga protocols. Difference in normalized muscle activation between high-speed yoga and standard-speed yoga. Normalized muscle activity signals were significantly higher in all eight muscles during the transition phases of poses compared to the held phases (p<0.01). There was no significant interaction between speed×phase; however, greater normalized muscle activity was seen for highspeed yoga across the entire session. Our results show that transitions from one held phase of a pose to another produces higher normalized muscle activity than the held phases of the poses and that overall activity is greater during highspeed yoga than standard-speed yoga. Therefore, the transition speed and associated number of poses should be considered when targeting specific improvements in performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Safety issues in high speed machining

    NASA Astrophysics Data System (ADS)

    1994-05-01

    There are several risks related to High-Speed Milling, but they have not been systematically determined or studied so far. Increased loads by high centrifugal forces may result in dramatic hazards. Flying tools or fragments from a tool with high kinetic energy may damage surrounding people, machines and devices. In the project, mechanical risks were evaluated, theoretic values for kinetic energies of rotating tools were calculated, possible damages of the flying objects were determined and terms to eliminate the risks were considered. The noise levels of the High-Speed Machining center owned by the Helsinki University of Technology (HUT) and the Technical Research Center of Finland (VTT) in practical machining situation were measured and the results were compared to those after basic preventive measures were taken.

  12. Calibration of Speed Enforcement Down-The-Road Radars

    PubMed Central

    Jendzurski, John; Paulter, Nicholas G.

    2009-01-01

    We examine the measurement uncertainty associated with different methods of calibrating the ubiquitous down-the-road (DTR) radar used in speed enforcement. These calibration methods include the use of audio frequency sources, tuning forks, a fifth wheel attached to the rear of the vehicle with the radar unit, and the speedometer of the vehicle. We also provide an analysis showing the effect of calibration uncertainty on DTR-radar speed measurement uncertainty. PMID:27504217

  13. On-line high-speed rail defect detection.

    DOT National Transportation Integrated Search

    2004-10-01

    This report presents the results of phase 2 of the project On-line high-speed rail defect detection aimed at improving the reliability and the speed of current defect detection in rails. Ultrasonic guided waves, traveling in the rail running di...

  14. Power Conditioning for High-Speed Tracked Vehicles

    DOT National Transportation Integrated Search

    1971-01-01

    The linear induction motor is to provide the propulsion of high-speed tracked vehicles; speed and brake control of the propulsion motor is essential for vehicle operation. The purpose of power conditioning is to provide the power matching interface b...

  15. Power Conditioning for High Speed Tracked Vehicles

    DOT National Transportation Integrated Search

    1973-01-01

    The linear induction motor is to provide the propulsion of high-speed tracked vehicles; speed and brake control of the propulsion motor is essential for vehicle operation. The purpose of power conditioning is to provide the power matching interface b...

  16. Compact high-speed scanning lidar system

    NASA Astrophysics Data System (ADS)

    Dickinson, Cameron; Hussein, Marwan; Tripp, Jeff; Nimelman, Manny; Koujelev, Alexander

    2012-06-01

    The compact High Speed Scanning Lidar (HSSL) was designed to meet the requirements for a rover GN&C sensor. The eye-safe HSSL's fast scanning speed, low volume and low power, make it the ideal choice for a variety of real-time and non-real-time applications including: 3D Mapping; Vehicle guidance and Navigation; Obstacle Detection; Orbiter Rendezvous; Spacecraft Landing / Hazard Avoidance. The HSSL comprises two main hardware units: Sensor Head and Control Unit. In a rover application, the Sensor Head mounts on the top of the rover while the Control Unit can be mounted on the rover deck or within its avionics bay. An Operator Computer is used to command the lidar and immediately display the acquired scan data. The innovative lidar design concept was a result of an extensive trade study conducted during the initial phase of an exploration rover program. The lidar utilizes an innovative scanner coupled with a compact fiber laser and high-speed timing electronics. Compared to existing compact lidar systems, distinguishing features of the HSSL include its high accuracy, high resolution, high refresh rate and large field of view. Other benefits of this design include the capability to quickly configure scan settings to fit various operational modes.

  17. Scientific Visualization in High Speed Network Environments

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi; Kutler, Paul (Technical Monitor)

    1997-01-01

    In several cases, new visualization techniques have vastly increased the researcher's ability to analyze and comprehend data. Similarly, the role of networks in providing an efficient supercomputing environment have become more critical and continue to grow at a faster rate than the increase in the processing capabilities of supercomputers. A close relationship between scientific visualization and high-speed networks in providing an important link to support efficient supercomputing is identified. The two technologies are driven by the increasing complexities and volume of supercomputer data. The interaction of scientific visualization and high-speed networks in a Computational Fluid Dynamics simulation/visualization environment are given. Current capabilities supported by high speed networks, supercomputers, and high-performance graphics workstations at the Numerical Aerodynamic Simulation Facility (NAS) at NASA Ames Research Center are described. Applied research in providing a supercomputer visualization environment to support future computational requirements are summarized.

  18. First Annual High-Speed Research Workshop, part 3

    NASA Technical Reports Server (NTRS)

    Whitehead, Allen H., Jr. (Compiler)

    1992-01-01

    The First High-Speed Research (HSR) Workshop was hosted by NASA LaRC and was held 14-16 May 1991, in Williamsburg, Virginia. The purpose of the workshop was to provide a national forum for the government, industry, and university participants to present and discuss important technology issues related to the development of a commercially viable, environmentally compatible, U.S. High-Speed Civil Transport. The workshop sessions are organized around the major task elements in NASA's Phase 1 High-Speed Research Program which basically addresses the environmental issues of atmospheric emissions, community noise, and sonic boom.

  19. Trend on High-speed Power Line Communication Technology

    NASA Astrophysics Data System (ADS)

    Ogawa, Osamu

    High-speed power line communication (PLC) is useful technology to easily build the communication networks, because construction of new infrastructure is not necessary. In Europe and America, PLC has been used for broadband networks since the beginning of 21th century. In Japan, high-speed PLC was deregulated only indoor usage in 2006. Afterward it has been widely used for home area network, LAN in hotels and school buildings and so on. And recently, PLC is greatly concerned as communication technology for smart grid network. In this paper, the author surveys the high-speed PLC technology and its current status.

  20. Assessment of potential aerodynamic effects on personnel and equipment in proximity to high-speed train operations : safety of high-speed ground transportation systems

    DOT National Transportation Integrated Search

    1999-12-01

    Amtrak is planning to provide high-speed passenger train service at speeds significantly higher than their current top speed of 125 mph, and with these higher speeds, there are concerns with safety from the aerodynamic effects created by a passing tr...

  1. Ubiquitous computing in the military environment

    NASA Astrophysics Data System (ADS)

    Scholtz, Jean

    2001-08-01

    Increasingly people work and live on the move. To support this mobile lifestyle, especially as our work becomes more intensely information-based, companies are producing various portable and embedded information devices. The late Mark Weiser coined the term, 'ubiquitous computing' to describe an environment where computers have disappeared and are integrated into physical objects. Much industry research today is concerned with ubiquitous computing in the work and home environments. A ubiquitous computing environment would facilitate mobility by allowing information users to easily access and use information anytime, anywhere. As war fighters are inherently mobile, the question is what effect a ubiquitous computing environment would have on current military operations and doctrine. And, if ubiquitous computing is viewed as beneficial for the military, what research would be necessary to achieve a military ubiquitous computing environment? What is a vision for the use of mobile information access in a battle space? Are there different requirements for civilian and military users of this technology? What are those differences? Are there opportunities for research that will support both worlds? What type of research has been supported by the military and what areas need to be investigated? Although we don't yet have all the answers to these questions, this paper discusses the issues and presents the work we are doing to address these issues.

  2. Nugget Structure Evolution with Rotation Speed for High-Rotation-Speed Friction-Stir-Welded 6061 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, H. J.; Wang, M.; Zhu, Z.; Zhang, X.; Yu, T.; Wu, Z. Q.

    2018-03-01

    High-rotation-speed friction stir welding (HRS-FSW) is a promising technique to reduce the welding loads during FSW and thus facilitates the application of FSW for in situ fabrication and repair. In this study, 6061 aluminum alloy was friction stir welded at high-rotation speeds ranging from 3000 to 7000 rpm at a fixed welding speed of 50 mm/min, and the effects of rotation speed on the nugget zone macro- and microstructures were investigated in detail in order to illuminate the process features. Temperature measurements during HRS-FSW indicated that the peak temperature did not increase consistently with rotation speed; instead, it dropped remarkably at 5000 rpm because of the lowering of material shear stress. The nugget size first increased with rotation speed until 5000 rpm and then decreased due to the change of the dominant tool/workpiece contact condition from sticking to sliding. At the rotation speed of 5000 rpm, where the weld material experienced weaker thermal effect and higher-strain-rate plastic deformation, the nugget exhibited relatively small grain size, large textural intensity, and high dislocation density. Consequently, the joint showed superior nugget hardness and simultaneously a slightly low tensile ductility.

  3. Vibration compensation for high speed scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Croft, D.; Devasia, S.

    1999-12-01

    Low scanning speed is a fundamental limitation of scanning tunneling microscopes (STMs), making real time imaging of surface processes and nanofabrication impractical. The effective scanning bandwidth is currently limited by the smallest resonant vibrational frequency of the piezobased positioning system (i.e., scanner) used in the STM. Due to this limitation, the acquired images are distorted during high speed operations. In practice, the achievable scan rates are much less than 1/10th of the resonant vibrational frequency of the STM scanner. To alleviate the scanning speed limitation, this article describes an inversion-based approach that compensates for the structural vibrations in the scanner and thus, allows STM imaging at high scanning speeds (relative to the smallest resonant vibrational frequency). Experimental results are presented to show the increase in scanning speeds achievable by applying the vibration compensation methods.

  4. 49 CFR 236.1007 - Additional requirements for high-speed service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Additional requirements for high-speed service..., AND APPLIANCES Positive Train Control Systems § 236.1007 Additional requirements for high-speed... by this subpart, and which have been utilized on high-speed rail systems with similar technical and...

  5. High speed civil transport

    NASA Technical Reports Server (NTRS)

    Bogardus, Scott; Loper, Brent; Nauman, Chris; Page, Jeff; Parris, Rusty; Steinbach, Greg

    1990-01-01

    The design process of the High Speed Civil Transport (HSCT) combines existing technology with the expectation of future technology to create a Mach 3.0 transport. The HSCT was designed to have a range in excess of 6000 nautical miles and carry up to 300 passengers. This range will allow the HSCT to service the economically expanding Pacific Basin region. Effort was made in the design to enable the aircraft to use conventional airports with standard 12,000 foot runways. With a takeoff thrust of 250,000 pounds, the four supersonic through-flow engines will accelerate the HSCT to a cruise speed of Mach 3.0. The 679,000 pound (at takeoff) HSCT is designed to cruise at an altitude of 70,000 feet, flying above most atmospheric disturbances.

  6. The Future of Ubiquitous Elearning

    ERIC Educational Resources Information Center

    Arndt, Timothy

    2014-01-01

    Post-secondary students are increasingly receiving instruction by eLearning. Many or these are part-time students or are working while taking classes. In such circumstances, students may find themselves short of time to study. One mechanism that can be exploited to make the best use of available time is ubiquitous eLearning. Ubiquitous eLearning…

  7. High-speed trains subject to abrupt braking

    NASA Astrophysics Data System (ADS)

    Tran, Minh Thi; Ang, Kok Keng; Luong, Van Hai; Dai, Jian

    2016-12-01

    The dynamic response of high-speed train subject to braking is investigated using the moving element method. Possible sliding of wheels over the rails is accounted for. The train is modelled as a 15-DOF system comprising of a car body, two bogies and four wheels interconnected by spring-damping units. The rail is modelled as a Euler-Bernoulli beam resting on a two-parameter elastic damped foundation. The interaction between the moving train and track-foundation is accounted for through the normal and tangential wheel-rail contact forces. The effects of braking torque, wheel-rail contact condition, initial train speed and severity of railhead roughness on the dynamic response of the high-speed train are investigated. For a given initial train speed and track irregularity, the study revealed that there is an optimal braking torque that would result in the smallest braking distance with no occurrence of wheel sliding, representing a good compromise between train instability and safety.

  8. 36 CFR 1192.175 - High-speed rail cars, monorails and systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false High-speed rail cars... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including but not limited to those using “maglev” or high speed...

  9. 36 CFR 1192.175 - High-speed rail cars, monorails and systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false High-speed rail cars... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including but not limited to those using “maglev” or high speed...

  10. 36 CFR 1192.175 - High-speed rail cars, monorails and systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false High-speed rail cars... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including but not limited to those using “maglev” or high speed...

  11. 36 CFR 1192.175 - High-speed rail cars, monorails and systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false High-speed rail cars... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including but not limited to those using “maglev” or high speed...

  12. High-Speed, High-Temperature Finger Seal Test Evaluated

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.

    2003-01-01

    A finger seal, designed and fabricated by Honeywell Engines, Systems and Services, was tested at the NASA Glenn Research Center at surface speeds up to 1200 ft/s, air temperatures up to 1200 F, and pressures across the seal of 75 psid. These are the first test results obtained with NASA s new High-Temperature, High-Speed Turbine Seal Test Rig (see the photograph). The finger seal is an innovative design recently patented by AlliedSignal Engines, which has demonstrated considerably lower leakage than commonly used labyrinth seals and is considerably cheaper than brush seals. The cost to produce finger seals is estimated to be about half of the cost to produce brush seals. Replacing labyrinth seals with fingers seals at locations that have high-pressure drops in gas turbine engines, typically main engine and thrust seals, can reduce air leakage at each location by 50 percent or more. This directly results in a 0.7- to 1.4-percent reduction in specific fuel consumption and a 0.35- to 0.7-percent reduction in direct operating costs . Because the finger seal is a contacting seal, this testing was conducted to address concerns about its heat generation and life capability at the higher speeds and temperatures required for advanced engines. The test results showed that the seal leakage and wear performance are acceptable for advanced engines.

  13. Measurements of speed of response of high-speed visible and IR optical detectors

    NASA Technical Reports Server (NTRS)

    Rowe, H. E.; Osmundson, J. S.

    1972-01-01

    A technique for measuring speed of response of high speed visible and IR optical detectors to mode-locked Nd:YAG laser pulses is described. Results of measurements of response times of four detectors are presented. Three detectors that can be used as receivers in a 500-MHz optical communication system are tested.

  14. High-speed massively parallel scanning

    DOEpatents

    Decker, Derek E [Byron, CA

    2010-07-06

    A new technique for recording a series of images of a high-speed event (such as, but not limited to: ballistics, explosives, laser induced changes in materials, etc.) is presented. Such technique(s) makes use of a lenslet array to take image picture elements (pixels) and concentrate light from each pixel into a spot that is much smaller than the pixel. This array of spots illuminates a detector region (e.g., film, as one embodiment) which is scanned transverse to the light, creating tracks of exposed regions. Each track is a time history of the light intensity for a single pixel. By appropriately configuring the array of concentrated spots with respect to the scanning direction of the detection material, different tracks fit between pixels and sufficient lengths are possible which can be of interest in several high-speed imaging applications.

  15. High-speed cylindrical collapse of two perfect fluids

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Ahmad, Zahid

    2007-09-01

    In this paper, the study of the gravitational collapse of cylindrically distributed two perfect fluid system has been carried out. It is assumed that the collapsing speeds of the two fluids are very large. We explore this condition by using the high-speed approximation scheme. There arise two cases, i.e., bounded and vanishing of the ratios of the pressures with densities of two fluids given by c s , d s . It is shown that the high-speed approximation scheme breaks down by non-zero pressures p 1, p 2 when c s , d s are bounded below by some positive constants. The failure of the high-speed approximation scheme at some particular time of the gravitational collapse suggests the uncertainty on the evolution at and after this time. In the bounded case, the naked singularity formation seems to be impossible for the cylindrical two perfect fluids. For the vanishing case, if a linear equation of state is used, the high-speed collapse does not break down by the effects of the pressures and consequently a naked singularity forms. This work provides the generalisation of the results already given by Nakao and Morisawa (Prog Theor Phys 113:73, 2005) for the perfect fluid.

  16. MM-122: High speed civil transport

    NASA Technical Reports Server (NTRS)

    Demarest, Bill; Anders, Kurt; Manchec, John; Yang, Eric; Overgaard, Dan; Kalkwarf, Mike

    1992-01-01

    The rapidly expanding Pacific Rim market along with other growing markets indicates that the future market potential for a high speed civil transport is great indeed. The MM-122 is the answer to the international market desire for a state of the art, long range, high speed civil transport. It will carry 250 passengers a distance of 5200 nm at over twice the speed of sound. The MM-122 is designed to incorporate the latest technologies in the areas of control systems, propulsions, aerodynamics, and materials. The MM-122 will accomplish these goals using the following design parameters. First, a double delta wing planform with highly swept canards and an appropriately area ruled fuselage will be incorporated to accomplish desired aerodynamic characteristics. Propulsion will be provided by four low bypass variable cycle turbofan engines. A quad-redundant fly-by-wire flight control system will be incorporated to provide appropriate static stability and level 1 handling qualities. Finally, the latest in conventional metallic and modern composite materials will be used to provide desired weight and performance characteristics. The MM-122 incorporates the latest in technology and cost minimization techniques to provide a viable solution to this future market potential.

  17. Rounding Technique for High-Speed Digital Signal Processing

    NASA Technical Reports Server (NTRS)

    Wechsler, E. R.

    1983-01-01

    Arithmetic technique facilitates high-speed rounding of 2's complement binary data. Conventional rounding of 2's complement numbers presents problems in high-speed digital circuits. Proposed technique consists of truncating K + 1 bits then attaching bit in least significant position. Mean output error is zero, eliminating introducing voltage offset at input.

  18. Technology needs for high-speed rotorcraft, volume 1

    NASA Technical Reports Server (NTRS)

    Wilkerson, J. B.; Schneider, J. J.; Bartie, K. M.

    1991-01-01

    High-speed rotorcraft concepts and the technology needed to extend rotorcraft cruise speeds up to 450 knots (while retaining the helicopter attributes of low downwash velocities) were identified. Task I identified 20 concepts with high-speed potential. These concepts were qualitatively evaluated to determine the five most promising ones. These five concepts were designed with optimum wing loading and disk loading to a common NASA-defined military transport mission. The optimum designs were quantitatively compared against 11 key criteria and ranked accordingly. The two highest ranking concepts were selected for the further study.

  19. Computer Analysis Of High-Speed Roller Bearings

    NASA Technical Reports Server (NTRS)

    Coe, H.

    1988-01-01

    High-speed cylindrical roller-bearing analysis program (CYBEAN) developed to compute behavior of cylindrical rolling-element bearings at high speeds and with misaligned shafts. With program, accurate assessment of geometry-induced roller preload possible for variety of out-ring and housing configurations and loading conditions. Enables detailed examination of bearing performance and permits exploration of causes and consequences of bearing skew. Provides general capability for assessment of designs of bearings supporting main shafts of engines. Written in FORTRAN IV.

  20. Design of noise barrier inspection system for high-speed railway

    NASA Astrophysics Data System (ADS)

    Liu, Bingqian; Shao, Shuangyun; Feng, Qibo; Ma, Le; Cholryong, Kim

    2016-10-01

    The damage of noise barriers will highly reduce the transportation safety of the high-speed railway. In this paper, an online inspection system of noise barrier based on laser vision for the safety of high-speed railway is proposed. The inspection system, mainly consisted of a fast camera and a line laser, installed in the first carriage of the high-speed CIT(Composited Inspection Train).A Laser line was projected on the surface of the noise barriers and the images of the light line were received by the camera while the train is running at high speed. The distance between the inspection system and the noise barrier can be obtained based on laser triangulation principle. The results of field tests show that the proposed system can meet the need of high speed and high accuracy to get the contour distortion of the noise barriers.

  1. High speed door assembly

    DOEpatents

    Shapiro, Carolyn

    1993-01-01

    A high speed door assembly, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  2. High-speed imaging system for observation of discharge phenomena

    NASA Astrophysics Data System (ADS)

    Tanabe, R.; Kusano, H.; Ito, Y.

    2008-11-01

    A thin metal electrode tip instantly changes its shape into a sphere or a needlelike shape in a single electrical discharge of high current. These changes occur within several hundred microseconds. To observe these high-speed phenomena in a single discharge, an imaging system using a high-speed video camera and a high repetition rate pulse laser was constructed. A nanosecond laser, the wavelength of which was 532 nm, was used as the illuminating source of a newly developed high-speed video camera, HPV-1. The time resolution of our system was determined by the laser pulse width and was about 80 nanoseconds. The system can take one hundred pictures at 16- or 64-microsecond intervals in a single discharge event. A band-pass filter at 532 nm was placed in front of the camera to block the emission of the discharge arc at other wavelengths. Therefore, clear images of the electrode were recorded even during the discharge. If the laser was not used, only images of plasma during discharge and thermal radiation from the electrode after discharge were observed. These results demonstrate that the combination of a high repetition rate and a short pulse laser with a high speed video camera provides a unique and powerful method for high speed imaging.

  3. High-speed data word monitor

    NASA Technical Reports Server (NTRS)

    Wirth, M. N.

    1975-01-01

    Small, portable, self-contained device provides high-speed display of bit pattern or any selected portion of transmission, can suppress filler patterns so that display is not updated, and can freeze display so that specific event may be observed in detail.

  4. High speed rail distribution study.

    DOT National Transportation Integrated Search

    2016-08-01

    The Texas Central Partners are in the process of developing a high speed rail line connecting : Houston and Dallas, Texas. Ultimately, plans are for 8 car trains that accommodate 200 people per : vehicle scheduled every 30 minutes. In addition, Texas...

  5. Field-based high-speed imaging of explosive eruptions

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Scarlato, P.; Freda, C.; Moroni, M.

    2012-12-01

    Explosive eruptions involve, by definition, physical processes that are highly dynamic over short time scales. Capturing and parameterizing such processes is a major task in eruption understanding and forecasting, and a task that necessarily requires observational systems capable of high sampling rates. Seismic and acoustic networks are a prime tool for high-frequency observation of eruption, recently joined by Doppler radar and electric sensors. In comparison with the above monitoring systems, imaging techniques provide more complete and direct information of surface processes, but usually at a lower sampling rate. However, recent developments in high-speed imaging systems now allow such information to be obtained with a spatial and temporal resolution suitable for the analysis of several key eruption processes. Our most recent set up for high-speed imaging of explosive eruptions (FAMoUS - FAst, MUltiparametric Set-up,) includes: 1) a monochrome high speed camera, capable of 500 frames per second (fps) at high-definition (1280x1024 pixel) resolution and up to 200000 fps at reduced resolution; 2) a thermal camera capable of 50-200 fps at 480-120x640 pixel resolution; and 3) two acoustic to infrasonic sensors. All instruments are time-synchronized via a data logging system, a hand- or software-operated trigger, and via GPS, allowing signals from other instruments or networks to be directly recorded by the same logging unit or to be readily synchronized for comparison. FAMoUS weights less than 20 kg, easily fits into four, hand-luggage-sized backpacks, and can be deployed in less than 20' (and removed in less than 2', if needed). So far, explosive eruptions have been recorded in high-speed at several active volcanoes, including Fuego and Santiaguito (Guatemala), Stromboli (Italy), Yasur (Vanuatu), and Eyjafiallajokull (Iceland). Image processing and analysis from these eruptions helped illuminate several eruptive processes, including: 1) Pyroclasts ejection. High-speed

  6. Hybrid hydrostatic/ball bearings in high-speed turbomachinery

    NASA Technical Reports Server (NTRS)

    Nielson, C. E.

    1983-01-01

    A high speed, high pressure liquid hydrogen turbopump was designed, fabricated, and tested under a previous contract. This design was then modified to incorporate hybrid hydrostatic/ball bearings on both the pump end and turbine end to replace the original conventional ball bearing packages. The design, analysis, turbopump modification, assembly, and testing of the turbopump with hybrid bearings is presented here. Initial design considerations and rotordynamic performance analysis was made to define expected turbopump operating characteristics and are reported. The results of testing the turbopump to speeds of 9215 rad/s (88,000 rpm) using a wide range of hydrostatic bearing supply pressures are presented. The hydrostatic bearing test data and the rotordynamic behavior of the turbopump was closely analyzed and are included in the report. The testing of hybrid hydrostatic/ball bearings on a turbopump to the high speed requirements has indicated the configuration concept is feasible. The program has presented a great deal of information on the technology requirements of integrating the hybrid bearing into high speed turbopump designs for improved bearing life.

  7. Research on the tool holder mode in high speed machining

    NASA Astrophysics Data System (ADS)

    Zhenyu, Zhao; Yongquan, Zhou; Houming, Zhou; Xiaomei, Xu; Haibin, Xiao

    2018-03-01

    High speed machining technology can improve the processing efficiency and precision, but also reduce the processing cost. Therefore, the technology is widely regarded in the industry. With the extensive application of high-speed machining technology, high-speed tool system has higher and higher requirements on the tool chuck. At present, in high speed precision machining, several new kinds of clip heads are as long as there are heat shrinkage tool-holder, high-precision spring chuck, hydraulic tool-holder, and the three-rib deformation chuck. Among them, the heat shrinkage tool-holder has the advantages of high precision, high clamping force, high bending rigidity and dynamic balance, etc., which are widely used. Therefore, it is of great significance to research the new requirements of the machining tool system. In order to adapt to the requirement of high speed machining precision machining technology, this paper expounds the common tool holder technology of high precision machining, and proposes how to select correctly tool clamping system in practice. The characteristics and existing problems are analyzed in the tool clamping system.

  8. High-Speed Video Analysis of Damped Harmonic Motion

    ERIC Educational Resources Information Center

    Poonyawatpornkul, J.; Wattanakasiwich, P.

    2013-01-01

    In this paper, we acquire and analyse high-speed videos of a spring-mass system oscillating in glycerin at different temperatures. Three cases of damped harmonic oscillation are investigated and analysed by using high-speed video at a rate of 120 frames s[superscript -1] and Tracker Video Analysis (Tracker) software. We present empirical data for…

  9. High-speed photodetectors in optical communication system

    NASA Astrophysics Data System (ADS)

    Zhao, Zeping; Liu, Jianguo; Liu, Yu; Zhu, Ninghua

    2017-12-01

    This paper presents a review and discussion for high-speed photodetectors and their applications on optical communications and microwave photonics. A detailed and comprehensive demonstration of high-speed photodetectors from development history, research hotspots to packaging technologies is provided to the best of our knowledge. A few typical applications based on photodetectors are also illustrated, such as free-space optical communications, radio over fiber and millimeter terahertz signal generation systems. Project supported by the Preeminence Youth Fund of China (No. 61625504).

  10. Analysis and topology optimization design of high-speed driving spindle

    NASA Astrophysics Data System (ADS)

    Wang, Zhilin; Yang, Hai

    2018-04-01

    The three-dimensional model of high-speed driving spindle is established by using SOLIDWORKS. The model is imported through the interface of ABAQUS, A finite element analysis model of high-speed driving spindle was established by using spring element to simulate bearing boundary condition. High-speed driving spindle for the static analysis, the spindle of the stress, strain and displacement nephogram, and on the basis of the results of the analysis on spindle for topology optimization, completed the lightweight design of high-speed driving spindle. The design scheme provides guidance for the design of axial parts of similar structures.

  11. Experiments on high speed ejectors

    NASA Technical Reports Server (NTRS)

    Wu, J. J.

    1986-01-01

    Experimental studies were conducted to investigate the flow and the performance of thrust augmenting ejectors for flight Mach numbers in the range of 0.5 to 0.8, primary air stagnation pressures up to 107 psig (738 kPa), and primary air stagnation temperatures up to 1250 F (677 C). The experiment verified the existence of the second solution ejector flow, where the flow after complete mixing is supersonic. Thrust augmentation in excess of 1.2 was demonstrated for both hot and cold primary jets. The experimental ejector performed better than the corresponding theoretical optimal first solution ejector, where the mixed flow is subsonic. Further studies are required to realize the full potential of the second solution ejector. The research program was started by the Flight Dynamics Research Corporation (FDRC) to investigate the characteristic of a high speed ejector which augments thrust of a jet at high flight speeds.

  12. High-speed ground transportation noise and vibration impact assessment.

    DOT National Transportation Integrated Search

    2012-09-01

    This report is the second edition of a guidance manual originally issued in 2005, which presents procedures for predicting and assessing noise and vibration impacts of high-speed ground transportation projects. Projects involving high-speed trains us...

  13. South Carolina southeast high speed rail corridor improvement study

    DOT National Transportation Integrated Search

    2001-02-01

    The Southeast Rail Corridor was originally designated as a high-speed corridor in Section 1010 of the Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991. More specifically, it involved the high-speed grade-crossing improvement program o...

  14. Application of polarization in high speed, high contrast inspection

    NASA Astrophysics Data System (ADS)

    Novak, Matthew J.

    2017-08-01

    Industrial optical inspection often requires high speed and high throughput of materials. Engineers use a variety of techniques to handle these inspection needs. Some examples include line scan cameras, high speed multi-spectral and laser-based systems. High-volume manufacturing presents different challenges for inspection engineers. For example, manufacturers produce some components in quantities of millions per month, per week or even per day. Quality control of so many parts requires creativity to achieve the measurement needs. At times, traditional vision systems lack the contrast to provide the data required. In this paper, we show how dynamic polarization imaging captures high contrast images. These images are useful for engineers to perform inspection tasks in some cases where optical contrast is low. We will cover basic theory of polarization. We show how to exploit polarization as a contrast enhancement technique. We also show results of modeling for a polarization inspection application. Specifically, we explore polarization techniques for inspection of adhesives on glass.

  15. High speed door assembly

    DOEpatents

    Shapiro, C.

    1993-04-27

    A high speed door assembly is described, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  16. Focused Mission High Speed Combatant

    DTIC Science & Technology

    2003-05-09

    Landing and airborne autonomous vehicle ( AAV ) operations. AMW 6.7 Serve as a helo haven. AMW 14.6 Conduct spotting for Naval gunfire and artillery...for Building and Classing High Speed Naval Craft 2002, Houston, Texas: ABS, 2002. 13 International Maritime Organization. 2000 HSC Code

  17. Advancing high-speed rail policy in the United States.

    DOT National Transportation Integrated Search

    2012-06-01

    This report builds on a review of international experience with high-speed rail projects to develop recommendations for a High-speed rail policy framework for the United States. The international review looked at the experience of Korea, Taiwan, Chin...

  18. Influence of "J"-Curve Spring Stiffness on Running Speeds of Segmented Legs during High-Speed Locomotion.

    PubMed

    Wang, Runxiao; Zhao, Wentao; Li, Shujun; Zhang, Shunqi

    2016-01-01

    Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of "J"-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with "J"-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with "J"-curve spring stiffness reveals that (1) both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2) at fast running speed from 25 to 40/92 m s -1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with "J"-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness.

  19. High-speed adaptive optics for imaging of the living human eye

    PubMed Central

    Yu, Yongxin; Zhang, Tianjiao; Meadway, Alexander; Wang, Xiaolin; Zhang, Yuhua

    2015-01-01

    The discovery of high frequency temporal fluctuation of human ocular wave aberration dictates the necessity of high speed adaptive optics (AO) correction for high resolution retinal imaging. We present a high speed AO system for an experimental adaptive optics scanning laser ophthalmoscope (AOSLO). We developed a custom high speed Shack-Hartmann wavefront sensor and maximized the wavefront detection speed based upon a trade-off among the wavefront spatial sampling density, the dynamic range, and the measurement sensitivity. We examined the temporal dynamic property of the ocular wavefront under the AOSLO imaging condition and improved the dual-thread AO control strategy. The high speed AO can be operated with a closed-loop frequency up to 110 Hz. Experiment results demonstrated that the high speed AO system can provide improved compensation for the wave aberration up to 30 Hz in the living human eye. PMID:26368408

  20. Assessment of rural soundscapes with high-speed train noise.

    PubMed

    Lee, Pyoung Jik; Hong, Joo Young; Jeon, Jin Yong

    2014-06-01

    In the present study, rural soundscapes with high-speed train noise were assessed through laboratory experiments. A total of ten sites with varying landscape metrics were chosen for audio-visual recording. The acoustical characteristics of the high-speed train noise were analyzed using various noise level indices. Landscape metrics such as the percentage of natural features (NF) and Shannon's diversity index (SHDI) were adopted to evaluate the landscape features of the ten sites. Laboratory experiments were then performed with 20 well-trained listeners to investigate the perception of high-speed train noise in rural areas. The experiments consisted of three parts: 1) visual-only condition, 2) audio-only condition, and 3) combined audio-visual condition. The results showed that subjects' preference for visual images was significantly related to NF, the number of land types, and the A-weighted equivalent sound pressure level (LAeq). In addition, the visual images significantly influenced the noise annoyance, and LAeq and NF were the dominant factors affecting the annoyance from high-speed train noise in the combined audio-visual condition. In addition, Zwicker's loudness (N) was highly correlated with the annoyance from high-speed train noise in both the audio-only and audio-visual conditions. © 2013.

  1. Safety Relevant Observations on the ICE High Speed Train

    DOT National Transportation Integrated Search

    1991-07-01

    The safety of high speed rail technology proposed for possible application in the United States is of concern to the Federal Railroad Administration. This report, one in a series of reports planned for high speed rail technologies presents an initial...

  2. Soap-film coating: High-speed deposition of multilayer nanofilms

    PubMed Central

    Zhang, Renyun; Andersson, Henrik A.; Andersson, Mattias; Andres, Britta; Edlund, Håkan; Edström, Per; Edvardsson, Sverker; Forsberg, Sven; Hummelgård, Magnus; Johansson, Niklas; Karlsson, Kristoffer; Nilsson, Hans-Erik; Norgren, Magnus; Olsen, Martin; Uesaka, Tetsu; Öhlund, Thomas; Olin, Håkan

    2013-01-01

    The coating of thin films is applied in numerous fields and many methods are employed for the deposition of these films. Some coating techniques may deposit films at high speed; for example, ordinary printing paper is coated with micrometre-thick layers of clay at a speed of tens of meters per second. However, to coat nanometre thin films at high speed, vacuum techniques are typically required, which increases the complexity of the process. Here, we report a simple wet chemical method for the high-speed coating of films with thicknesses at the nanometre level. This soap-film coating technique is based on forcing a substrate through a soap film that contains nanomaterials. Molecules and nanomaterials can be deposited at a thickness ranging from less than a monolayer to several layers at speeds up to meters per second. We believe that the soap-film coating method is potentially important for industrial-scale nanotechnology. PMID:23503102

  3. High-speed microjet generation using laser-induced vapor bubbles

    NASA Astrophysics Data System (ADS)

    Oudalov, Nikolai; Tagawa, Yoshiyuki; Peters, Ivo; Visser, Claas-Willem; van der Meer, Devaraj; Prosperetti, Andrea; Sun, Chao; Lohse, Detlef

    2011-11-01

    The generation and evolution of microjets are studied both experimentally and numerically. The jets are generated by focusing a laser pulse into a microscopic capillary tube (~50 μm) filled with water-based red dye. A vapor bubble is created instantly after shooting the laser (<1 μs), sending out a shockwave towards the curved free surface at which the high-speed microjet forms. The process of jet formation is captured using high-speed recordings at 1.0 × 106 fps. The velocity of the microjets can reach speeds of ~850 m/s while maintaining a very sharp geometry. The high-speed recordings enable us to study the effect of several parameters on the jet velocity, e.g. the absorbed energy and the distance between the laser spot and the free surface.The results show a clear dependence on these variables, even for supersonic speeds. Comparisons with numerical simulations confirm the nature of these dependencies.

  4. Introduction of the M-85 high-speed rotorcraft concept

    NASA Technical Reports Server (NTRS)

    Stroub, Robert H.

    1991-01-01

    As a result of studying possible requirements for high-speed rotorcraft and studying many high-speed concepts, a new high-speed rotorcraft concept, designated as M-85, was derived. The M-85 is a helicopter that is reconfigured to a fixed-wing aircraft for high-speed cruise. The concept was derived as an approach to enable smooth, stable conversion between fixed-wing and rotary-wing while retaining hover and low-speed flight characteristics of a low disk loading helicopter. The name, M-85, reflects the high-speed goals of 0.85 Mach number at high altitude. For a high-speed rotorcraft, it is expected that a viable concept must be a cruise-efficient, fixed-wing aircraft so it may be attractive for a multiplicity of missions. It is also expected that a viable high-speed rotorcraft concept must be cruise efficient first and secondly, efficient in hover. What makes the M-85 unique is the large circular hub fairing that is large enough to support the aircraft during conversion between rotary-wind and fixed-wing modes. With the aircraft supported by this hub fairing, the rotor blades can be unloaded during the 100 percent change in rotor rpm. With the blades unloaded, the potential for vibratory loads would be lessened. In cruise, the large circular hub fairing would be part of the lifting system with additional lifting panels deployed for better cruise efficiency. In hover, the circular hub fairing would slightly reduce lift potential and/or decrease hover efficiency of the rotor system. The M-85 concept is described and estimated forward flight performance characteristics are presented in terms of thrust requirements and L/D with airspeed. The forward flight performance characteristics reflect recent completed wind tunnel tests of the wing concept. Also presented is a control system technique that is critical to achieving low oscillatory loads in rotary-wing mode. Hover characteristics, C(sub p) versus C(sub T) from test data, is discussed. Other techniques pertinent to

  5. Thermomechanical simulations and experimental validation for high speed incremental forming

    NASA Astrophysics Data System (ADS)

    Ambrogio, Giuseppina; Gagliardi, Francesco; Filice, Luigino; Romero, Natalia

    2016-10-01

    Incremental sheet forming (ISF) consists in deforming only a small region of the workspace through a punch driven by a NC machine. The drawback of this process is its slowness. In this study, a high speed variant has been investigated from both numerical and experimental points of view. The aim has been the design of a FEM model able to perform the material behavior during the high speed process by defining a thermomechanical model. An experimental campaign has been performed by a CNC lathe with high speed to test process feasibility. The first results have shown how the material presents the same performance than in conventional speed ISF and, in some cases, better material behavior due to the temperature increment. An accurate numerical simulation has been performed to investigate the material behavior during the high speed process confirming substantially experimental evidence.

  6. Dashboard for Analyzing Ubiquitous Learning Log

    ERIC Educational Resources Information Center

    Lkhagvasuren, Erdenesaikhan; Matsuura, Kenji; Mouri, Kousuke; Ogata, Hiroaki

    2016-01-01

    Mobile and ubiquitous technologies have been applied to a wide range of learning fields such as science, social science, history and language learning. Many researchers have been investigating the development of ubiquitous learning environments; nevertheless, to date, there have not been enough research works related to the reflection, analysis…

  7. High Speed Photomicrography

    NASA Astrophysics Data System (ADS)

    Hyzer, William G.

    1983-03-01

    One of the most challenging areas in applying high-speed photography and videography in the plant and laboratory is in the recording of rapid events at macro and microscopic scales. Depth of field, exposure efficiency, working distance, and required exposure time are all reduced as optical magnification is increased, which severely taxes the skill and ingenuity of workers interested in recording any fast moving phenomena through the microscope or with magnifying lenses. This paper defines the problems inherent in photographing within macro and microscopic ranges and offers a systematic approach to optimizing the selection of equipment and choice of applicable techniques.

  8. Material requirements for the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.; Hecht, Ralph J.; Johnson, Andrew M.

    1993-01-01

    Under NASA-sponsored High Speed Research (HSR) programs, the materials and processing requirements have been identified for overcoming the environmental and economic barriers of the next generation High Speed Civil Transport (HSCT) propulsion system. The long (2 to 5 hours) supersonic cruise portion of the HSCT cycle will place additional durability requirements on all hot section engine components. Low emissions combustor designs will require high temperature ceramic matrix composite liners to meet an emission goal of less than 5g NO(x) per Kg fuel burned. Large axisymmetric and two-dimensional exhaust nozzle designs are now under development to meet or exceed FAR 36 Stage III noise requirements, and will require lightweight, high temperature metallic, intermetallic, and ceramic matrix composites to reduce nozzle weight and meet structural and acoustic component performance goals. This paper describes and discusses the turbomachinery, combustor, and exhaust nozzle requirements of the High Speed Civil Transport propulsion system.

  9. Evaluating safety and operation of high-speed intersections.

    DOT National Transportation Integrated Search

    2010-03-01

    This Final Report reviews a research effort to evaluate the safety and operations of high-speed intersections in the State of : Oregon. In particular, this research effort focuses on four-leg, signalized intersections with speed limits of 45 mph or :...

  10. High-speed AFM and the reduction of tip-sample forces

    NASA Astrophysics Data System (ADS)

    Miles, Mervyn; Sharma, Ravi; Picco, Loren

    High-speed DC-mode AFM has been shown to be routinely capable of imaging at video rate, and, if required, at over 1000 frames per second. At sufficiently high tip-sample velocities in ambient conditions, the tip lifts off the sample surface in a superlubricity process which reduces the level of shear forces imposed on the sample by the tip and therefore reduces the potential damage and distortion of the sample being imaged. High-frequency mechanical oscillations, both lateral and vertical, have been reported to reduced the tip-sample frictional forces. We have investigated the effect of combining linear high-speed scanning with these small amplitude high-frequency oscillations with the aim of reducing further the force interaction in high-speed imaging. Examples of this new version of high-speed AFM imaging will be presented for biological samples.

  11. High-Speed TCP Testing

    NASA Technical Reports Server (NTRS)

    Brooks, David E.; Gassman, Holly; Beering, Dave R.; Welch, Arun; Hoder, Douglas J.; Ivancic, William D.

    1999-01-01

    Transmission Control Protocol (TCP) is the underlying protocol used within the Internet for reliable information transfer. As such, there is great interest to have all implementations of TCP efficiently interoperate. This is particularly important for links exhibiting long bandwidth-delay products. The tools exist to perform TCP analysis at low rates and low delays. However, for extremely high-rate and lone-delay links such as 622 Mbps over geosynchronous satellites, new tools and testing techniques are required. This paper describes the tools and techniques used to analyze and debug various TCP implementations over high-speed, long-delay links.

  12. Wideband quad optical sensor for high-speed sub-nanometer interferometry.

    PubMed

    Riobo, L M; Veiras, F E; Sorichetti, P A; Garea, M T

    2017-01-20

    This paper describes the design and performance of a low-noise and high-speed optical sensor that provides two output signals in quadrature from the simultaneous detection of four phase-shifted interferograms. The sensor employs four high-speed photodiodes and high-speed, low-noise transimpedance amplifiers. The optical and electronic design was optimized for high-speed displacement measurement interferometry, over a broad range of operating frequencies. Compared to other experimental schemes, the sensor is simpler and of lower cost. The performance of the sensor is demonstrated by characterizing a piezoelectric transducer for ultrasonic applications. We measured displacements between 38 pm and 32 nm with 6% relative uncertainty, in the frequency range from 1 to 2 MHz.

  13. Optimal design of high-speed loading spindle based on ABAQUS

    NASA Astrophysics Data System (ADS)

    Yang, Xudong; Dong, Yu; Ge, Qingkuan; Yang, Hai

    2017-12-01

    The three-dimensional model of high-speed loading spindle is established by using ABAQUS’s modeling module. A finite element analysis model of high-speed loading spindle was established by using spring element to simulate bearing boundary condition. The static and dynamic performance of the spindle structure with different specifications of the rectangular spline and the different diameter neck of axle are studied in depth, and the influence of different spindle span on the static and dynamic performance of the high-speed loading spindle is studied. Finally, the optimal structure of the high-speed loading spindle is obtained. The results provide a theoretical basis for improving the overall performance of the test-bed

  14. Comprehensive surface treatment of high-speed steel tool

    NASA Astrophysics Data System (ADS)

    Fedorov, Sergey V.; Aleshin, Sergey V.; Swe, Min Htet; Abdirova, Raushan D.; Kapitanov, Alexey V.; Egorov, Sergey B.

    2018-03-01

    One of the promising directions of hardening of high-speed steel tool is the creation on their surface of the layered structures with the gradient of physic-chemical properties between the wear-resistant coatings to the base material. Among the methods of such surface modification, a special process takes place based on the use of pulsed high-intensity charged particle beams. The high speed of heating and cooling allows structural-phase transformations in the surface layer, which cannot be realized in a stationary mode. The treatment was conducted in a RITM-SP unit, which constitutes a combination of a source of low-energy high-current electron beams "RITM" and two magnetron spraying systems on a single vacuum chamber. The unit enables deposition of films on the surface of the desired product and subsequent liquid-phase mixing of materials of the film and the substrate by an intense pulse electron beam. The article discusses features of the structure of the subsurface layer of high-speed steel M2, modified by surface alloying of a low-energy high-current electron beam, and its effect on the wear resistance of the tool when dry cutting hard to machine Nickel alloy. A significant decrease of intensity of wear of high-speed steel with combined treatment happens due to the displacement of the zone of wear and decrease the radius of rounding of the cutting edge because of changes in conditions of interaction with the material being treated.

  15. 36 CFR § 1192.175 - High-speed rail cars, monorails and systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true High-speed rail cars... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including but not limited to those using “maglev” or high speed...

  16. High-speed railway signal trackside equipment patrol inspection system

    NASA Astrophysics Data System (ADS)

    Wu, Nan

    2018-03-01

    High-speed railway signal trackside equipment patrol inspection system comprehensively applies TDI (time delay integration), high-speed and highly responsive CMOS architecture, low illumination photosensitive technique, image data compression technique, machine vision technique and so on, installed on high-speed railway inspection train, and achieves the collection, management and analysis of the images of signal trackside equipment appearance while the train is running. The system will automatically filter out the signal trackside equipment images from a large number of the background image, and identify of the equipment changes by comparing the original image data. Combining with ledger data and train location information, the system accurately locate the trackside equipment, conscientiously guiding maintenance.

  17. 49 CFR 38.175 - High-speed rail cars, monorails and systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... for high-platform, level boarding and shall comply with § 38.111(a) of this part for each type of car...

  18. 49 CFR 38.175 - High-speed rail cars, monorails and systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... for high-platform, level boarding and shall comply with § 38.111(a) of this part for each type of car...

  19. 49 CFR 38.175 - High-speed rail cars, monorails and systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... for high-platform, level boarding and shall comply with § 38.111(a) of this part for each type of car...

  20. 49 CFR 38.175 - High-speed rail cars, monorails and systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... for high-platform, level boarding and shall comply with § 38.111(a) of this part for each type of car...

  1. 49 CFR 38.175 - High-speed rail cars, monorails and systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... for high-platform, level boarding and shall comply with § 38.111(a) of this part for each type of car...

  2. Driver speed selection on high-speed two-lane highways: Comparing speed profiles between uniform and differential speed limits.

    PubMed

    Russo, Brendan J; Savolainen, Peter T; Gates, Timothy J; Kay, Jonathan J; Frazier, Sterling

    2017-07-04

    Although a considerable amount of prior research has investigated the impacts of speed limits on traffic safety and operations, much of this research, and nearly all of the research related to differential speed limits, has been specific to limited access freeways. The unique safety and operational issues on highways without access control create difficulty relating the conclusions from prior freeway-related speed limit research to 2-lane highways, particularly research on differential limits due to passing limitations and subsequent queuing. Therefore, the objective of this study was to assess differences in driver speed selection with respect to the posted speed limit on rural 2-lane highways, with a particular emphasis on the differences between uniform and differential speed limits. Data were collected from nearly 59,000 vehicles across 320 sites in Montana and 4 neighboring states. Differences in mean speeds, 85th percentile speeds, and the standard deviation in speeds for free-flowing vehicles were examined across these sites using ordinary least squares regression models. Ultimately, the results of the analysis show that the mean speed, 85th percentile speed, and variability in travel speeds for free-flowing vehicles on 2-lane highways are generally lower at locations with uniform 65 mph speed limits, compared to locations with differential limits of 70 mph for cars and 60 mph for trucks. In addition to posted speed limits, several site characteristics were shown to influence speed selection including shoulder widths, frequency of horizontal curves, percentage of the segment that included no passing zones, and hourly volumes. Differences in vehicle speed characteristics were also observed between states, indicating that speed selection may also be influenced by local factors, such as driver population or enforcement.

  3. Pulse-burst PIV in a high-speed wind tunnel

    NASA Astrophysics Data System (ADS)

    Beresh, Steven; Kearney, Sean; Wagner, Justin; Guildenbecher, Daniel; Henfling, John; Spillers, Russell; Pruett, Brian; Jiang, Naibo; Slipchenko, Mikhail; Mance, Jason; Roy, Sukesh

    2015-09-01

    Time-resolved particle image velocimetry (TR-PIV) has been achieved in a high-speed wind tunnel, providing velocity field movies of compressible turbulence events. The requirements of high-speed flows demand greater energy at faster pulse rates than possible with the TR-PIV systems developed for low-speed flows. This has been realized using a pulse-burst laser to obtain movies at up to 50 kHz, with higher speeds possible at the cost of spatial resolution. The constraints imposed by use of a pulse-burst laser are limited burst duration of 10.2 ms and a low duty cycle for data acquisition. Pulse-burst PIV has been demonstrated in a supersonic jet exhausting into a transonic crossflow and in transonic flow over a rectangular cavity. The velocity field sequences reveal the passage of turbulent structures and can be used to find velocity power spectra at every point in the field, providing spatial distributions of acoustic modes. The present work represents the first use of TR-PIV in a high-speed ground-test facility.

  4. Advanced superposition methods for high speed turbopump vibration analysis

    NASA Technical Reports Server (NTRS)

    Nielson, C. E.; Campany, A. D.

    1981-01-01

    The small, high pressure Mark 48 liquid hydrogen turbopump was analyzed and dynamically tested to determine the cause of high speed vibration at an operating speed of 92,400 rpm. This approaches the design point operating speed of 95,000 rpm. The initial dynamic analysis in the design stage and subsequent further analysis of the rotor only dynamics failed to predict the vibration characteristics found during testing. An advanced procedure for dynamics analysis was used in this investigation. The procedure involves developing accurate dynamic models of the rotor assembly and casing assembly by finite element analysis. The dynamically instrumented assemblies are independently rap tested to verify the analytical models. The verified models are then combined by modal superposition techniques to develop a completed turbopump model where dynamic characteristics are determined. The results of the dynamic testing and analysis obtained are presented and methods of moving the high speed vibration characteristics to speeds above the operating range are recommended. Recommendations for use of these advanced dynamic analysis procedures during initial design phases are given.

  5. Development of a 300,000-pixel ultrahigh-speed high-sensitivity CCD

    NASA Astrophysics Data System (ADS)

    Ohtake, H.; Hayashida, T.; Kitamura, K.; Arai, T.; Yonai, J.; Tanioka, K.; Maruyama, H.; Etoh, T. Goji; Poggemann, D.; Ruckelshausen, A.; van Kuijk, H.; Bosiers, Jan T.

    2006-02-01

    We are developing an ultrahigh-speed, high-sensitivity broadcast camera that is capable of capturing clear, smooth slow-motion videos even where lighting is limited, such as at professional baseball games played at night. In earlier work, we developed an ultrahigh-speed broadcast color camera1) using three 80,000-pixel ultrahigh-speed, highsensitivity CCDs2). This camera had about ten times the sensitivity of standard high-speed cameras, and enabled an entirely new style of presentation for sports broadcasts and science programs. Most notably, increasing the pixel count is crucially important for applying ultrahigh-speed, high-sensitivity CCDs to HDTV broadcasting. This paper provides a summary of our experimental development aimed at improving the resolution of CCD even further: a new ultrahigh-speed high-sensitivity CCD that increases the pixel count four-fold to 300,000 pixels.

  6. Noise in the passenger cars of high-speed trains.

    PubMed

    Hong, Joo Young; Cha, Yongwon; Jeon, Jin Yong

    2015-12-01

    The aim of this study is to investigate the effects of both room acoustic conditions and spectral characteristics of noises on acoustic discomfort in a high-speed train's passenger car. Measurement of interior noises in a high-speed train was performed when the train was operating at speeds of 100 km/h and 300 km/h. Acoustic discomfort caused by interior noises was evaluated by paired comparison methods based on the variation of reverberation time (RT) in a passenger car and the spectral differences in interior noises. The effect of RT on acoustic discomfort was not significant, whereas acoustic discomfort significantly varied depending on spectral differences in noise. Acoustic discomfort increased with increment of the sound pressure level (SPL) ratio at high frequencies, and variation in high-frequency noise components were described using sharpness. Just noticeable differences of SPL with low- and high-frequency components were determined to be 3.7 and 2.9 dB, respectively. This indicates that subjects were more sensitive to differences in SPLs at the high-frequency range than differences at the low-frequency range. These results support that, for interior noises, reduction in SPLs at high frequencies would significantly contribute to improved acoustic quality in passenger cars of high-speed trains.

  7. Research on natural frequency based on modal test for high speed vehicles

    NASA Astrophysics Data System (ADS)

    Ma, Guangsong; He, Guanglin; Guo, Yachao

    2018-04-01

    High speed vehicle as a vibration system, resonance generated in flight may be harmful to high speed vehicles. It is possible to solve the resonance problem by acquiring the natural frequency of the high-speed aircraft and then taking some measures to avoid the natural frequency of the high speed vehicle. Therefore, In this paper, the modal test of the high speed vehicle was carried out by using the running hammer method and the PolyMAX modal parameter identification method. Firstly, the total frequency response function, coherence function of the high speed vehicle are obtained by the running hammer stimulation test, and through the modal assurance criterion (MAC) to determine the accuracy of the estimated parameters. Secondly, the first three order frequencies, the pole steady state diagram of the high speed vehicles is obtained by the PolyMAX modal parameter identification method. At last, the natural frequency of the vibration system was accurately obtained by the running hammer method.

  8. High speed magneto-resistive random access memory

    NASA Technical Reports Server (NTRS)

    Wu, Jiin-Chuan (Inventor); Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor)

    1992-01-01

    A high speed read MRAM memory element is configured from a sandwich of magnetizable, ferromagnetic film surrounding a magneto-resistive film which may be ferromagnetic or not. One outer ferromagnetic film has a higher coercive force than the other and therefore remains magnetized in one sense while the other may be switched in sense by a switching magnetic field. The magneto-resistive film is therefore sensitive to the amplitude of the resultant field between the outer ferromagnetic films and may be constructed of a high resistivity, high magneto-resistive material capable of higher sensing currents. This permits higher read voltages and therefore faster read operations. Alternate embodiments with perpendicular anisotropy, and in-plane anisotropy are shown, including an embodiment which uses high permeability guides to direct the closing flux path through the magneto-resistive material. High density, high speed, radiation hard, memory matrices may be constructed from these memory elements.

  9. Quiet High-Speed Fan

    NASA Technical Reports Server (NTRS)

    Lieber, Lysbeth; Repp, Russ; Weir, Donald S.

    1996-01-01

    A calibration of the acoustic and aerodynamic prediction methods was performed and a baseline fan definition was established and evaluated to support the quiet high speed fan program. A computational fluid dynamic analysis of the NASA QF-12 Fan rotor, using the DAWES flow simulation program was performed to demonstrate and verify the causes of the relatively poor aerodynamic performance observed during the fan test. In addition, the rotor flowfield characteristics were qualitatively compared to the acoustic measurements to identify the key acoustic characteristics of the flow. The V072 turbofan source noise prediction code was used to generate noise predictions for the TFE731-60 fan at three operating conditions and compared to experimental data. V072 results were also used in the Acoustic Radiation Code to generate far field noise for the TFE731-60 nacelle at three speed points for the blade passage tone. A full 3-D viscous flow simulation of the current production TFE731-60 fan rotor was performed with the DAWES flow analysis program. The DAWES analysis was used to estimate the onset of multiple pure tone noise, based on predictions of inlet shock position as a function of the rotor tip speed. Finally, the TFE731-60 fan rotor wake structure predicted by the DAWES program was used to define a redesigned stator with the leading edge configured to minimize the acoustic effects of rotor wake / stator interaction, without appreciably degrading performance.

  10. Influence of “J”-Curve Spring Stiffness on Running Speeds of Segmented Legs during High-Speed Locomotion

    PubMed Central

    2016-01-01

    Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of “J”-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with “J”-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with “J”-curve spring stiffness reveals that (1) both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2) at fast running speed from 25 to 40/92 m s−1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with “J”-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness. PMID:28018127

  11. High Speed Research Program Sonic Fatigue

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A. (Technical Monitor); Beier, Theodor H.; Heaton, Paul

    2005-01-01

    The objective of this sonic fatigue summary is to provide major findings and technical results of studies, initiated in 1994, to assess sonic fatigue behavior of structure that is being considered for the High Speed Civil Transport (HSCT). High Speed Research (HSR) program objectives in the area of sonic fatigue were to predict inlet, exhaust and boundary layer acoustic loads; measure high cycle fatigue data for materials developed during the HSR program; develop advanced sonic fatigue calculation methods to reduce required conservatism in airframe designs; develop damping techniques for sonic fatigue reduction where weight effective; develop wing and fuselage sonic fatigue design requirements; and perform sonic fatigue analyses on HSCT structural concepts to provide guidance to design teams. All goals were partially achieved, but none were completed due to the premature conclusion of the HSR program. A summary of major program findings and recommendations for continued effort are included in the report.

  12. Design of the low-speed NLF(1)-0414F and the high-speed HSNLF(1)-0213 airfoils with high-lift systems

    NASA Technical Reports Server (NTRS)

    Viken, Jeffrey K.; Watson-Viken, Sally A.; Pfenninger, Werner; Morgan, Harry L., Jr.; Campbell, Richard L.

    1987-01-01

    The design and testing of Natural Laminar Flow (NLF) airfoils is examined. The NLF airfoil was designed for low speed, having a low profile drag at high chord Reynolds numbers. The success of the low speed NLF airfoil sparked interest in a high speed NLF airfoil applied to a single engine business jet with an unswept wing. Work was also conducted on the two dimensional flap design. The airfoil was decambered by removing the aft loading, however, high design Mach numbers are possible by increasing the aft loading and reducing the camber overall on the airfoil. This approach would also allow for flatter acceleration regions which are more stabilizing for cross flow disturbances. Sweep could then be used to increase the design Mach number to a higher value also. There would be some degradation of high lift by decambering the airfoil overall, and this aspect would have to be considered in a final design.

  13. Remote Transmission at High Speed

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Omni and NASA Test Operations at Stennis entered a Dual-Use Agreement to develop the FOTR-125, a 125 megabit-per-second fiber-optic transceiver that allows accurate digital recordings over a great distance. The transceiver s fiber-optic link can be as long as 25 kilometers. This makes it much longer than the standard coaxial link, which can be no longer than 50 meters.The FOTR-125 utilizes laser diode transmitter modules and integrated receivers for the optical interface. Two transmitters and two receivers are employed at each end of the link with automatic or manual switchover to maximize the reliability of the communications link. NASA uses the transceiver in Stennis High-Speed Data Acquisition System (HSDAS). The HSDAS consists of several identical systems installed on the Center s test stands to process all high-speed data related to its propulsion test programs. These transceivers allow the recorder and HSDAS controls to be located in the Test Control Center in a remote location while the digitizer is located on the test stand.

  14. ACTS High-Speed VSAT Demonstrated

    NASA Technical Reports Server (NTRS)

    Tran, Quang K.

    1999-01-01

    The Advanced Communication Technology Satellite (ACTS) developed by NASA has demonstrated the breakthrough technologies of Ka-band transmission, spot-beam antennas, and onboard processing. These technologies have enabled the development of very small and ultrasmall aperture terminals (VSAT s and USAT's), which have capabilities greater than have been possible with conventional satellite technologies. The ACTS High Speed VSAT (HS VSAT) is an effort at the NASA Glenn Research Center at Lewis Field to experimentally demonstrate the maximum user throughput data rate that can be achieved using the technologies developed and implemented on ACTS. This was done by operating the system uplinks as frequency division multiple access (FDMA), essentially assigning all available time division multiple access (TDMA) time slots to a single user on each of two uplink frequencies. Preliminary results show that, using a 1.2-m antenna in this mode, the High Speed VSAT can achieve between 22 and 24 Mbps of the 27.5 Mbps burst rate, for a throughput efficiency of 80 to 88 percent.

  15. Radiated Sound of a High-Speed Water-Jet-Propelled Transportation Vessel.

    PubMed

    Rudd, Alexis B; Richlen, Michael F; Stimpert, Alison K; Au, Whitlow W L

    2016-01-01

    The radiated noise from a high-speed water-jet-propelled catamaran was measured for catamaran speeds of 12, 24, and 37 kn. The radiated noise increased with catamaran speed, although the shape of the noise spectrum was similar for all speeds and measuring hydrophone depth. The spectra peaked at ~200 Hz and dropped off continuously at higher frequencies. The radiated noise was 10-20 dB lower than noise from propeller-driven ships at comparable speeds. The combination of low radiated noise and high speed could be a factor in the detection and avoidance of water-jet-propelled ships by baleen whales.

  16. High-speed OCT light sources and systems [Invited

    PubMed Central

    Klein, Thomas; Huber, Robert

    2017-01-01

    Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light sources and swept source OCT systems. PMID:28270988

  17. High-speed flow visualization in hypersonic, transonic, and shock tube flows

    NASA Astrophysics Data System (ADS)

    Kleine, H.; Olivier, H.

    2017-02-01

    High-speed flow visualisation has played an important role in the investigations conducted at the Stoßwellenlabor of the RWTH Aachen University for many decades. In addition to applying the techniques of high-speed imaging, this laboratory has been actively developing new or enhanced visualisation techniques and approaches such as various schlieren methods or time-resolved Mach-Zehnder interferometry. The investigated high-speed flows are inherently highly transient, with flow Mach numbers ranging from about M = 0.7 to M = 8. The availability of modern high-speed cameras has allowed us to expand the investigations into problems where reduced reproducibility had so far limited the amount of information that could be extracted from a limited number of flow visualisation records. Following a brief historical overview, some examples of recent studies are given, which represent the breadth of applications in which high-speed imaging has been an essential diagnostic tool to uncover the physics of high-speed flows. Applications include the stability of hypersonic corner flows, the establishment of shock wave systems in transonic airfoil flow, and the complexities of the interactions of shock waves with obstacles of various shapes.

  18. High speed transient sampler

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A high speed sampler comprises a meandered sample transmission line for transmitting an input signal, a straight strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates along the transmission lines. The sampling gates comprise a four terminal diode bridge having a first strobe resistor connected from a first terminal of the bridge to the positive strobe line, a second strobe resistor coupled from the third terminal of the bridge to the negative strobe line, a tap connected to the second terminal of the bridge and to the sample transmission line, and a sample holding capacitor connected to the fourth terminal of the bridge. The resistance of the first and second strobe resistors is much higher than the signal transmission line impedance in the preferred system. This results in a sampling gate which applies a very small load on the sample transmission line and on the strobe generator. The sample holding capacitor is implemented using a smaller capacitor and a larger capacitor isolated from the smaller capacitor by resistance. The high speed sampler of the present invention is also characterized by other optimizations, including transmission line tap compensation, stepped impedance strobe line, a multi-layer physical layout, and unique strobe generator design. A plurality of banks of such samplers are controlled for concatenated or interleaved sample intervals to achieve long sample lengths or short sample spacing.

  19. High speed curving performance of rail vehicles

    DOT National Transportation Integrated Search

    2015-03-23

    On March 13, 2013, the Federal Railroad Administration (FRA) published a final rule titled Vehicle/Track Interaction Safety Standards; High-Speed and High Cant Deficiency Operations which amended the Track Safety Standards (49 CFR Part213) and ...

  20. Controllable High-Speed Rotation of Nanowires

    NASA Astrophysics Data System (ADS)

    Fan, D. L.; Zhu, F. Q.; Cammarata, R. C.; Chien, C. L.

    2005-06-01

    We report a versatile method for executing controllable high-speed rotation of nanowires by ac voltages applied to multiple electrodes. The rotation of the nanowires can be instantly switched on or off with precisely controlled rotation speed (to at least 1800 rpm), definite chirality, and total angle of rotation. We have determined the torque due to the fluidic drag force on nanowire of different lengths. We also demonstrate a micromotor using a rotating nanowire driving a dust particle into circular motion. This method has been used to rotate magnetic and nonmagnetic nanowires as well as carbon nanotubes.

  1. Modeling Compressibility Effects in High-Speed Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Sarkar, S.

    2004-01-01

    Man has strived to make objects fly faster, first from subsonic to supersonic and then to hypersonic speeds. Spacecraft and high-speed missiles routinely fly at hypersonic Mach numbers, M greater than 5. In defense applications, aircraft reach hypersonic speeds at high altitude and so may civilian aircraft in the future. Hypersonic flight, while presenting opportunities, has formidable challenges that have spurred vigorous research and development, mainly by NASA and the Air Force in the USA. Although NASP, the premier hypersonic concept of the eighties and early nineties, did not lead to flight demonstration, much basic research and technology development was possible. There is renewed interest in supersonic and hypersonic flight with the HyTech program of the Air Force and the Hyper-X program at NASA being examples of current thrusts in the field. At high-subsonic to supersonic speeds, fluid compressibility becomes increasingly important in the turbulent boundary layers and shear layers associated with the flow around aerospace vehicles. Changes in thermodynamic variables: density, temperature and pressure, interact strongly with the underlying vortical, turbulent flow. The ensuing changes to the flow may be qualitative such as shocks which have no incompressible counterpart, or quantitative such as the reduction of skin friction with Mach number, large heat transfer rates due to viscous heating, and the dramatic reduction of fuel/oxidant mixing at high convective Mach number. The peculiarities of compressible turbulence, so-called compressibility effects, have been reviewed by Fernholz and Finley. Predictions of aerodynamic performance in high-speed applications require accurate computational modeling of these "compressibility effects" on turbulence. During the course of the project we have made fundamental advances in modeling the pressure-strain correlation and developed a code to evaluate alternate turbulence models in the compressible shear layer.

  2. High-Speed 3D Printing of High-Performance Thermosetting Polymers via Two-Stage Curing.

    PubMed

    Kuang, Xiao; Zhao, Zeang; Chen, Kaijuan; Fang, Daining; Kang, Guozheng; Qi, Hang Jerry

    2018-04-01

    Design and direct fabrication of high-performance thermosets and composites via 3D printing are highly desirable in engineering applications. Most 3D printed thermosetting polymers to date suffer from poor mechanical properties and low printing speed. Here, a novel ink for high-speed 3D printing of high-performance epoxy thermosets via a two-stage curing approach is presented. The ink containing photocurable resin and thermally curable epoxy resin is used for the digital light processing (DLP) 3D printing. After printing, the part is thermally cured at elevated temperature to yield an interpenetrating polymer network epoxy composite, whose mechanical properties are comparable to engineering epoxy. The printing speed is accelerated by the continuous liquid interface production assisted DLP 3D printing method, achieving a printing speed as high as 216 mm h -1 . It is also demonstrated that 3D printing structural electronics can be achieved by combining the 3D printed epoxy composites with infilled silver ink in the hollow channels. The new 3D printing method via two-stage curing combines the attributes of outstanding printing speed, high resolution, low volume shrinkage, and excellent mechanical properties, and provides a new avenue to fabricate 3D thermosetting composites with excellent mechanical properties and high efficiency toward high-performance and functional applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. High speed multiwire photon camera

    NASA Technical Reports Server (NTRS)

    Lacy, Jeffrey L. (Inventor)

    1991-01-01

    An improved multiwire proportional counter camera having particular utility in the field of clinical nuclear medicine imaging. The detector utilizes direct coupled, low impedance, high speed delay lines, the segments of which are capacitor-inductor networks. A pile-up rejection test is provided to reject confused events otherwise caused by multiple ionization events occuring during the readout window.

  4. High speed multiwire photon camera

    NASA Technical Reports Server (NTRS)

    Lacy, Jeffrey L. (Inventor)

    1989-01-01

    An improved multiwire proportional counter camera having particular utility in the field of clinical nuclear medicine imaging. The detector utilizes direct coupled, low impedance, high speed delay lines, the segments of which are capacitor-inductor networks. A pile-up rejection test is provided to reject confused events otherwise caused by multiple ionization events occurring during the readout window.

  5. Italian High-speed Airplane Engines

    NASA Technical Reports Server (NTRS)

    Bona, C F

    1940-01-01

    This paper presents an account of Italian high-speed engine designs. The tests were performed on the Fiat AS6 engine, and all components of that engine are discussed from cylinders to superchargers as well as the test set-up. The results of the bench tests are given along with the performance of the engines in various races.

  6. Sound transmission loss of windows on high speed trains

    NASA Astrophysics Data System (ADS)

    Zhang, Yumei; Xiao, Xinbiao; Thompson, David; Squicciarini, Giacomo; Wen, Zefeng; Li, Zhihui; Wu, Yue

    2016-09-01

    The window is one of the main components of the high speed train car body structure through which noise can be transmitted. To study the windows’ acoustic properties, the vibration of one window of a high speed train has been measured for a running speed of 250 km/h. The corresponding interior noise and the noise in the wheel-rail area have been measured simultaneously. The experimental results show that the window vibration velocity has a similar spectral shape to the interior noise. Interior noise source identification further indicates that the window makes a contribution to the interior noise. Improvement of the window's Sound Transmission Loss (STL) can reduce the interior noise from this transmission path. An STL model of the window is built based on wave propagation and modal superposition methods. From the theoretical results, the window's STL property is studied and several factors affecting it are investigated, which provide indications for future low noise design of high speed train windows.

  7. Analysis of optical route in a micro high-speed magneto-optic switch

    NASA Astrophysics Data System (ADS)

    Weng, Zihua; Yang, Guoguang; Huang, Yuanqing; Chen, Zhimin; Zhu, Yun; Wu, Jinming; Lin, Shufen; Mo, Weiping

    2005-02-01

    A novel micro high-speed 2x2 magneto-optic switch and its optical route, which is used in high-speed all-optical communication network, is designed and analyzed in this paper. The study of micro high-speed magneto-optic switch mainly involves the optical route and high-speed control technique design. The optical route design covers optical route design of polarization in optical switch, the performance analysis and material selection of magneto-optic crystal and magnetic path design in Faraday rotator. The research of high-speed control technique involves the study of nanosecond pulse generator, high-speed magnetic field and its control technique etc. High-speed current transients from nanosecond pulse generator are used to switch the magnetization of the magneto-optic crystal, which propagates a 1550nm optical beam. The optical route design schemes and electronic circuits of high-speed control technique are both simulated on computer and test by the experiments respectively. The experiment results state that the nanosecond pulse generator can output the pulse with rising edge time 3~35ns, voltage amplitude 10~90V and pulse width 10~100ns. Under the control of CPU singlechip, the optical beam can be stably switched and the switching time is less than 1μs currently.

  8. Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation

    DTIC Science & Technology

    2016-04-30

    AFRL-AFOSR-VA-TR-2016-0195 Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation Kenneth Yu MARYLAND UNIV COLLEGE...MARCH 2016 4. TITLE AND SUBTITLE FUNDAMENTAL STRUCTURE OF HIGH-SPEED REACTING FLOWS: SUPERSONIC COMBUSTION AND DETONATION 5a. CONTRACT NUMBER...public release. Final Report on Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation Grant

  9. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag, prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executives summaries for all the Aerodynamic Performance technology areas.

  10. A high sensitivity 20Mfps CMOS image sensor with readout speed of 1Tpixel/sec for visualization of ultra-high speed phenomena

    NASA Astrophysics Data System (ADS)

    Kuroda, R.; Sugawa, S.

    2017-02-01

    Ultra-high speed (UHS) CMOS image sensors with on-chop analog memories placed on the periphery of pixel array for the visualization of UHS phenomena are overviewed in this paper. The developed UHS CMOS image sensors consist of 400H×256V pixels and 128 memories/pixel, and the readout speed of 1Tpixel/sec is obtained, leading to 10 Mfps full resolution video capturing with consecutive 128 frames, and 20 Mfps half resolution video capturing with consecutive 256 frames. The first development model has been employed in the high speed video camera and put in practical use in 2012. By the development of dedicated process technologies, photosensitivity improvement and power consumption reduction were simultaneously achieved, and the performance improved version has been utilized in the commercialized high-speed video camera since 2015 that offers 10 Mfps with ISO16,000 photosensitivity. Due to the improved photosensitivity, clear images can be captured and analyzed even under low light condition, such as under a microscope as well as capturing of UHS light emission phenomena.

  11. High-Speed Additive Manufacturing Through High-Aspect-Ratio Nozzles

    NASA Astrophysics Data System (ADS)

    Shaw, Leon; Islam, Mashfiqul; Li, Jie; Li, Ling; Ayub, S. M. Imran

    2018-03-01

    The feasibility of layer-by-layer manufacturing through high-aspect-ratio (HAR) nozzles for microextrusion of paste to deposit planes has been investigated. Various conditions for paste extrusion, including nozzle moving speed, piston speed, extrusion rate, and distance between the nozzle tip and substrate, have been evaluated. By linking various microextrusion parameters together with the aid of a critical distance concept derived from microextrusion using circular nozzles and addressing the extrusion delay in response to the change of the piston speed and air pocket problems properly, we successfully microextruded single planes, multilayer objects, and larger planes made of multiple smaller planes side by side through HAR nozzles. It is further demonstrated that the X- Y dimensions of an extruded plane in the steady-state extrusion stage are determined by the nozzle travel distance and the length of the HAR nozzle opening if microextrusion is conducted with proper conditions. However, the height of the extruded plane is not only determined by the microextrusion conditions, but also affected by the drying shrinkage of the paste after microextrusion. This demonstration of the feasibility of using a HAR nozzle machine opens the door to manufacture of multimaterial, multilayer devices with high productivity in the near future.

  12. Privacy-related context information for ubiquitous health.

    PubMed

    Seppälä, Antto; Nykänen, Pirkko; Ruotsalainen, Pekka

    2014-03-11

    Ubiquitous health has been defined as a dynamic network of interconnected systems. A system is composed of one or more information systems, their stakeholders, and the environment. These systems offer health services to individuals and thus implement ubiquitous computing. Privacy is the key challenge for ubiquitous health because of autonomous processing, rich contextual metadata, lack of predefined trust among participants, and the business objectives. Additionally, regulations and policies of stakeholders may be unknown to the individual. Context-sensitive privacy policies are needed to regulate information processing. Our goal was to analyze privacy-related context information and to define the corresponding components and their properties that support privacy management in ubiquitous health. These properties should describe the privacy issues of information processing. With components and their properties, individuals can define context-aware privacy policies and set their privacy preferences that can change in different information-processing situations. Scenarios and user stories are used to analyze typical activities in ubiquitous health to identify main actors, goals, tasks, and stakeholders. Context arises from an activity and, therefore, we can determine different situations, services, and systems to identify properties for privacy-related context information in information-processing situations. Privacy-related context information components are situation, environment, individual, information technology system, service, and stakeholder. Combining our analyses and previously identified characteristics of ubiquitous health, more detailed properties for the components are defined. Properties define explicitly what context information for different components is needed to create context-aware privacy policies that can control, limit, and constrain information processing. With properties, we can define, for example, how data can be processed or how components

  13. Analyses of track shift under high-speed vehicle-track interaction : safety of high speed ground transportation systems

    DOT National Transportation Integrated Search

    1997-06-01

    This report describes analysis tools to predict shift under high-speed vehicle- : track interaction. The analysis approach is based on two fundamental models : developed (as part of this research); the first model computes the track lateral : residua...

  14. High speed commercial transport fuels considerations and research needs

    NASA Technical Reports Server (NTRS)

    Lee, C. M.; Niedzwiecki, R. W.

    1989-01-01

    NASA is currently evaluating the potential of incorporating High Speed Civil Transport (HSCT) aircraft in the commercial fleet in the beginning of the 21st century. NASA sponsored HSCT enabling studies currently underway with airframers and engine manufacturers, are addressing a broad range of technical, environmental, economic, and related issues. Supersonic cruise speeds for these aircraft were originally focused in the Mach 2 to 5 range. At these flight speeds, both jet fuels and liquid methane were considered potential fuel candidates. For the year 2000 to 2010, cruise Mach numbers of 2 to 3+ are projected for aircraft fuel with thermally stable liquid jet fuels. For 2015 and beyond, liquid methane fueled aircraft cruising at Mach numbers of 4+ may be viable candidates. Operation at supersonic speeds will be much more severe than those encountered at subsonic flight. One of the most critical problems is the potential deterioration of the fuel due to the high temperature environment. HSCT fuels will not only be required to provide the energy necessary for flight, but will also be subject to aerodynamic heating and, will be required to serve as the primary heat sink for cooling the engine and airframe. To define fuel problems for high speed flight, a fuels workshop was conducted at NASA Lewis Research Center. The purpose of the workshop was to gather experts on aviation fuels, airframe fuel systems, airport infrastructure, and combustion systems to discuss high speed fuel alternatives, fuel supply scenarios, increased thermal stability approaches and measurements, safety considerations, and to provide directional guidance for future R and D efforts. Subsequent follow-up studies defined airport infrastructure impacts of high speed fuel candidates. The results of these activities are summarized. In addition, an initial case study using modified in-house refinery simulation model Gordian code (1) is briefly discussed. This code can be used to simulate different

  15. Low-Speed Stability-and-Control and Ground-Effects Measurements on the Industry Reference High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Kemmerly, Guy T.; Campbell, Bryan A.; Banks, Daniel W.; Yaros, Steven F.

    1999-01-01

    As a part of a national effort to develop an economically feasible High Speed Civil Transport (HSCT), a single configuration has been accepted as the testing baseline by the organizations working in the High Speed Research (HSR) program. The configuration is based on a design developed by the Boeing Company and is referred to as the Reference H (Ref H). The data contained in this report are low-speed stability-and-control and ground-effect measurements obtained on a 0.06 scale model of the Ref H in a subsonic tunnel.

  16. High-Modulation-Speed LEDs Based on III-Nitride

    NASA Astrophysics Data System (ADS)

    Chen, Hong

    III-nitride InGaN light-emitting diodes (LEDs) enable wide range of applications in solid-state lighting, full-color displays, and high-speed visible-light communication. Conventional InGaN quantum well LEDs grown on polar c-plane substrate suffer from quantum confined Stark effect due to the large internal polarization-related fields, leading to a reduced radiative recombination rate and device efficiency, which limits the performance of InGaN LEDs in high-speed communication applications. To circumvent these negative effects, non-trivial-cavity designs such as flip-chip LEDs, metallic grating coated LEDs are proposed. This oral defense will show the works on the high-modulation-speed LEDs from basic ideas to applications. Fundamental principles such as rate equations for LEDs/laser diodes (LDs), plasmonic effects, Purcell effects will be briefly introduced. For applications, the modal properties of flip-chip LEDs are solved by implementing finite difference method in order to study the modulation response. The emission properties of highly polarized InGaN LEDs coated by metallic gratings are also investigated by finite difference time domain method.

  17. Development of a high-specific-speed centrifugal compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, C.

    1997-07-01

    This paper describes the development of a subscale single-stage centrifugal compressor with a dimensionless specific speed (Ns) of 1.8, originally designed for full-size application as a high volume flow, low pressure ratio, gas booster compressor. The specific stage is noteworthy in that it provides a benchmark representing the performance potential of very high-specific-speed compressors, of which limited information is found in the open literature. Stage and component test performance characteristics are presented together with traverse results at the impeller exit. Traverse test results were compared with recent CFD computational predictions for an exploratory analytical calibration of a very high-specific-speed impellermore » geometry. The tested subscale (0.583) compressor essentially satisfied design performance expectations with an overall stage efficiency of 74% including, excessive exit casing losses. It was estimated that stage efficiency could be increased to 81% with exit casing losses halved.« less

  18. Popping a Hole in High-Speed Pursuits

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA s Plum Brook Station, a 6,400-acre, remote test installation site for Glenn Research Center, houses unique, world-class test facilities, including the world s largest space environment simulation chamber and the world s only laboratory capable of full-scale rocket engine firings and launch vehicle system level tests at high-altitude conditions. Plum Brook Station performs complex and innovative ground tests for the U.S. Government (civilian and military), the international aerospace community, as well as the private sector. Popping a Hole in High-Speed Pursuits Recently, Plum Brook Station s test facilities and NASA s engineering experience were combined to improve a family of tire deflating devices (TDDs) that helps law enforcement agents safely, simply, and successfully stop fleeing vehicles in high-speed pursuit

  19. A wearable context aware system for ubiquitous healthcare.

    PubMed

    Kang, Dong-Oh; Lee, Hyung-Jik; Ko, Eun-Jung; Kang, Kyuchang; Lee, Jeunwoo

    2006-01-01

    Recent developments of information technologies are leading the advent of the era of ubiquitous healthcare, which means healthcare services at any time and at any places. The ubiquitous healthcare service needs a wearable system for more continual measurement of biological signals of a user, which gives information of the user from wearable sensors. In this paper, we propose a wearable context aware system for ubiquitous healthcare, and its systematic design process of a ubiquitous healthcare service. Some wearable sensor systems are introduced with Zigbee communication. We develop a context aware framework to send information from wearable sensors to healthcare service entities as a middleware to solve the interoperability problem between sensor makers and healthcare service providers. And, we propose a systematic process of design of ubiquitous healthcare services with the context aware framework. In order to show the feasibility of the proposed system, some application examples are given, which are applied to remote monitoring, and a self check service.

  20. High-speed optical feeder-link system using adaptive optics

    NASA Astrophysics Data System (ADS)

    Arimoto, Yoshinori; Hayano, Yutaka; Klaus, Werner

    1997-05-01

    We propose a satellite laser communication system between a ground station and a geostationary satellite, named high- speed optical feeder link system. It is based on the application of (a) high-speed optical devices, which have been developed for ground-based high-speed fiber-optic communications, and (b) the adaptive optics which compensates wavefront distortions due to atmospheric turbulences using a real time feedback control. A link budget study shows that a system with 10-Gbps bit-rate are available assuming the state-of-the-art device performance of the Er-doped fiber amplifier. We further discuss preliminary measurement results of the atmospheric turbulence at the telescope site in Tokyo, and present current study on the design of the key components for the feeder-link laser transceiver.

  1. A large high vacuum, high pumping speed space simulation chamber for electric propulsion

    NASA Technical Reports Server (NTRS)

    Grisnik, Stanley P.; Parkes, James E.

    1994-01-01

    Testing high power electric propulsion devices poses unique requirements on space simulation facilities. Very high pumping speeds are required to maintain high vacuum levels while handling large volumes of exhaust products. These pumping speeds are significantly higher than those available in most existing vacuum facilities. There is also a requirement for relatively large vacuum chamber dimensions to minimize facility wall/thruster plume interactions and to accommodate far field plume diagnostic measurements. A 4.57 m (15 ft) diameter by 19.2 m (63 ft) long vacuum chamber at NASA Lewis Research Center is described. The chamber utilizes oil diffusion pumps in combination with cryopanels to achieve high vacuum pumping speeds at high vacuum levels. The facility is computer controlled for all phases of operation from start-up, through testing, to shutdown. The computer control system increases the utilization of the facility and reduces the manpower requirements needed for facility operations.

  2. 49 CFR 236.1007 - Additional requirements for high-speed service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Additional requirements for high-speed service. 236.1007 Section 236.1007 Transportation Other Regulations Relating to Transportation (Continued..., AND APPLIANCES Positive Train Control Systems § 236.1007 Additional requirements for high-speed...

  3. Florida High Speed Rail Authority - 2003 report to the legislature

    DOT National Transportation Integrated Search

    2003-01-01

    Since its last full report to the Legislature in January 2002, the Florida High Speed Rail Authority (FHSRA) has continued to fulfill the duties defined in the Florida High Speed Rail Authority Act, Section 341.8201 to 341.842, Florida Statutes. The ...

  4. Experimental ball bearing dynamics study. [by high speed photography

    NASA Technical Reports Server (NTRS)

    Signer, H. R.

    1973-01-01

    A photographic method was employed to record the kinematic performance of rolling elements in turbo machinery ball bearings. The 110 mm split inner ring test bearings had nominal contact angles of 26 deg and 34 deg. High speed films were taken at inner ring speeds of 4,000, 8,000 and 12,000 rpm and at thrust loads of 4,448 N and 22,240 N (1,000 and 5,000 lbs). The films were measured and this data reduced to obtain separator speed, ball speed and ball spin axis orientation.

  5. High speed printing with polygon scan heads

    NASA Astrophysics Data System (ADS)

    Stutz, Glenn

    2016-03-01

    To reduce and in many cases eliminate the costs associated with high volume printing of consumer and industrial products, this paper investigates and validates the use of the new generation of high speed pulse on demand (POD) lasers in concert with high speed (HS) polygon scan heads (PSH). Associated costs include consumables such as printing ink and nozzles, provisioning labor, maintenance and repair expense as well as reduction of printing lines due to high through put. Targets that are applicable and investigated include direct printing on plastics, printing on paper/cardboard as well as printing on labels. Market segments would include consumer products (CPG), medical and pharmaceutical products, universal ID (UID), and industrial products. In regards to the POD lasers employed, the wavelengths include UV(355nm), Green (532nm) and IR (1064nm) operating within the repetition range of 180 to 250 KHz.

  6. Noise isolation system for high-speed circuits

    DOEpatents

    McNeilly, D.R.

    1983-12-29

    A noise isolation circuit is provided that consists of a dual function bypass which confines high-speed switching noise to the component or circuit which generates it and isolates the component or circuit from high-frequency noise transients which may be present on the ground and power supply busses. A local circuit ground is provided which is coupled to the system ground by sufficient impedance to force the dissipation of the noise signal in the local circuit or component generating the noise. The dual function bypass network couples high-frequency noise signals generated in the local component or circuit through a capacitor to the local ground while isolating the component or circuit from noise signals which may be present on the power supply busses or system ground. The network is an effective noise isolating system and is applicable to both high-speed analog and digital circuits.

  7. Noise isolation system for high-speed circuits

    DOEpatents

    McNeilly, David R.

    1986-01-01

    A noise isolation circuit is provided that consists of a dual function bypass which confines high-speed switching noise to the component or circuit which generates it and isolates the component or circuit from high-frequency noise transients which may be present on the ground and power supply busses. A local circuit ground is provided which is coupled to the system ground by sufficient impedance to force the dissipation of the noise signal in the local circuit or component generating the noise. The dual function bypass network couples high-frequency noise signals generated in the local component or circuit through a capacitor to the local ground while isolating the component or circuit from noise signals which may be present on the power supply busses or system ground. The network is an effective noise isolating system and is applicable to both high-speed analog and digital circuits.

  8. A portable high-speed camera system for vocal fold examinations.

    PubMed

    Hertegård, Stellan; Larsson, Hans

    2014-11-01

    In this article, we present a new portable low-cost system for high-speed examinations of the vocal folds. Analysis of glottal vibratory parameters from the high-speed recordings is compared with videostroboscopic recordings. The high-speed system is built around a Fastec 1 monochrome camera, which is used with newly developed software, High-Speed Studio (HSS). The HSS has options for video/image recording, contains a database, and has a set of analysis options. The Fastec/HSS system has been used clinically since 2011 in more than 2000 patient examinations and recordings. The Fastec 1 camera has sufficient time resolution (≥4000 frames/s) and light sensitivity (ISO 3200) to produce images for detailed analyses of parameters pertinent to vocal fold function. The camera can be used with both rigid and flexible endoscopes. The HSS software includes options for analyses of glottal vibrations, such as kymogram, phase asymmetry, glottal area variation, open and closed phase, and angle of vocal fold abduction. It can also be used for separate analysis of the left and vocal fold movements, including maximum speed during opening and closing, a parameter possibly related to vocal fold elasticity. A blinded analysis of 32 patients with various voice disorders examined with both the Fastec/HSS system and videostroboscopy showed that the high-speed recordings were significantly better for the analysis of glottal parameters (eg, mucosal wave and vibration asymmetry). The monochrome high-speed system can be used in daily clinical work within normal clinical time limits for patient examinations. A detailed analysis can be made of voice disorders and laryngeal pathology at a relatively low cost. Copyright © 2014 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  9. Integrating Collaborative and Decentralized Models to Support Ubiquitous Learning

    ERIC Educational Resources Information Center

    Barbosa, Jorge Luis Victória; Barbosa, Débora Nice Ferrari; Rigo, Sandro José; de Oliveira, Jezer Machado; Rabello, Solon Andrade, Jr.

    2014-01-01

    The application of ubiquitous technologies in the improvement of education strategies is called Ubiquitous Learning. This article proposes the integration between two models dedicated to support ubiquitous learning environments, called Global and CoolEdu. CoolEdu is a generic collaboration model for decentralized environments. Global is an…

  10. A simulation-based study of HighSpeed TCP and its deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, Evandro de

    2003-05-01

    The current congestion control mechanism used in TCP has difficulty reaching full utilization on high speed links, particularly on wide-area connections. For example, the packet drop rate needed to fill a Gigabit pipe using the present TCP protocol is below the currently achievable fiber optic error rates. HighSpeed TCP was recently proposed as a modification of TCP's congestion control mechanism to allow it to achieve reasonable performance in high speed wide-area links. In this research, simulation results showing the performance of HighSpeed TCP and the impact of its use on the present implementation of TCP are presented. Network conditions includingmore » different degrees of congestion, different levels of loss rate, different degrees of bursty traffic and two distinct router queue management policies were simulated. The performance and fairness of HighSpeed TCP were compared to the existing TCP and solutions for bulk-data transfer using parallel streams.« less

  11. Integrated High-Speed Torque Control System for a Robotic Joint

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Valvo, Michael C. (Inventor); Askew, R. Scott (Inventor)

    2013-01-01

    A control system for achieving high-speed torque for a joint of a robot includes a printed circuit board assembly (PCBA) having a collocated joint processor and high-speed communication bus. The PCBA may also include a power inverter module (PIM) and local sensor conditioning electronics (SCE) for processing sensor data from one or more motor position sensors. Torque control of a motor of the joint is provided via the PCBA as a high-speed torque loop. Each joint processor may be embedded within or collocated with the robotic joint being controlled. Collocation of the joint processor, PIM, and high-speed bus may increase noise immunity of the control system, and the localized processing of sensor data from the joint motor at the joint level may minimize bus cabling to and from each control node. The joint processor may include a field programmable gate array (FPGA).

  12. Cryogenic, high speed, turbopump bearing cooling requirements

    NASA Technical Reports Server (NTRS)

    Dolan, Fred J.; Gibson, Howard G.; Cannon, James L.; Cody, Joe C.

    1988-01-01

    Although the Space Shuttle Main Engine (SSME) has repeatedly demonstrated the capability to perform during launch, the High Pressure Oxidizer Turbopump (HPOTP) main shaft bearings have not met their 7.5 hour life requirement. A tester is being employed to provide the capability of subjecting full scale bearings and seals to speeds, loads, propellants, temperatures, and pressures which simulate engine operating conditions. The tester design permits much more elaborate instrumentation and diagnostics than could be accommodated in an SSME turbopump. Tests were made to demonstrate the facilities; and the devices' capabilities, to verify the instruments in its operating environment and to establish a performance baseline for the flight type SSME HPOTP Turbine Bearing design. Bearing performance data from tests are being utilized to generate: (1) a high speed, cryogenic turbopump bearing computer mechanical model, and (2) a much improved, very detailed thermal model to better understand bearing internal operating conditions. Parametric tests were also made to determine the effects of speed, axial loads, coolant flow rate, and surface finish degradation on bearing performance.

  13. Pressure Distribution Over Airfoils at High Speeds

    NASA Technical Reports Server (NTRS)

    Briggs, L J; Dryden, H L

    1927-01-01

    This report deals with the pressure distribution over airfoils at high speeds, and describes an extension of an investigation of the aerodynamic characteristics of certain airfoils which was presented in NACA Technical Report no. 207. The results presented in report no. 207 have been confirmed and extended to higher speeds through a more extensive and systematic series of tests. Observations were also made of the air flow near the surface of the airfoils, and the large changes in lift coefficients were shown to be associated with a sudden breaking away of the flow from the upper surface. The tests were made on models of 1-inch chord and comparison with the earlier measurements on models of 3-inch chord shows that the sudden change in the lift coefficient is due to compressibility and not to a change in the Reynolds number. The Reynolds number still has a large effect, however, on the drag coefficient. The pressure distribution observations furnish the propeller designer with data on the load distribution at high speeds, and also give a better picture of the air-flow changes.

  14. High speed transient sampler

    DOEpatents

    McEwan, T.E.

    1995-11-28

    A high speed sampler comprises a meandered sample transmission line for transmitting an input signal, a straight strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates along the transmission lines. The sampling gates comprise a four terminal diode bridge having a first strobe resistor connected from a first terminal of the bridge to the positive strobe line, a second strobe resistor coupled from the third terminal of the bridge to the negative strobe line, a tap connected to the second terminal of the bridge and to the sample transmission line, and a sample holding capacitor connected to the fourth terminal of the bridge. The resistance of the first and second strobe resistors is much higher than the signal transmission line impedance in the preferred system. This results in a sampling gate which applies a very small load on the sample transmission line and on the strobe generator. The sample holding capacitor is implemented using a smaller capacitor and a larger capacitor isolated from the smaller capacitor by resistance. The high speed sampler of the present invention is also characterized by other optimizations, including transmission line tap compensation, stepped impedance strobe line, a multi-layer physical layout, and unique strobe generator design. A plurality of banks of such samplers are controlled for concatenated or interleaved sample intervals to achieve long sample lengths or short sample spacing. 17 figs.

  15. Effects of High-Speed Power Training on Muscle Performance and Braking Speed in Older Adults

    PubMed Central

    Sayers, Stephen P.; Gibson, Kyle

    2012-01-01

    We examined whether high-speed power training (HSPT) improved muscle performance and braking speed using a driving simulator. 72 older adults (22 m, 50 f; age = 70.6 ± 7.3 yrs) were randomized to HSPT at 40% one-repetition maximum (1RM) (HSPT: n = 25; 3 sets of 12–14 repetitions), slow-speed strength training at 80%1RM (SSST: n = 25; 3 sets of 8–10 repetitions), or control (CON: n = 22; stretching) 3 times/week for 12 weeks. Leg press and knee extension peak power, peak power velocity, peak power force/torque, and braking speed were obtained at baseline and 12 weeks. HSPT increased peak power and peak power velocity across a range of external resistances (40–90% 1RM; P < 0.05) and improved braking speed (P < 0.05). Work was similar between groups, but perceived exertion was lower in HSPT (P < 0.05). Thus, the less strenuous HSPT exerted a broader training effect and improved braking speed compared to SSST. PMID:22500229

  16. High-Speed Schlieren Movies of Decelerators at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    1960-01-01

    Tests were conducted on several types of porous parachutes, a paraglider, and a simulated retrorocket. Mach numbers ranged from 1.8-3.0, porosity from 20-80 percent, and camera speeds from 1680-3000 feet per second (fps) in trials with porous parachutes. Trials of reefed parachutes were conducted at Mach number 2.0 and reefing of 12-33 percent at camera speeds of 600 fps. A flexible parachute with an inflatable ring in the periphery of the canopy was tested at Reynolds number 750,000 per foot, Mach number 2.85, porosity of 28 percent, and camera speed of 36oo fps. A vortex-ring parachute was tested at Mach number 2.2 and camera speed of 3000 fps. The paraglider, with a sweepback of 45 degrees at an angle of attack of 45 degrees was tested at Mach number 2.65, drag coefficient of 0.200, and lift coefficient of 0.278 at a camera speed of 600 fps. A cold air jet exhausting upstream from the center of a bluff body was used to simulate a retrorocket. The free-stream Mach number was 2.0, free-stream dynamic pressure was 620 lb/sq ft, jet-exit static pressure ratio was 10.9, and camera speed was 600 fps.

  17. Technology needs for high speed rotorcraft (3)

    NASA Technical Reports Server (NTRS)

    Detore, Jack; Conway, Scott

    1991-01-01

    The spectrum of vertical takeoff and landing (VTOL) type aircraft is examined to determine which aircraft are most likely to achieve high subsonic cruise speeds and have hover qualities similar to a helicopter. Two civil mission profiles are considered: a 600-n.mi. mission for a 15- and a 30-passenger payload. Applying current technology, only the 15- and 30-passenger tiltfold aircraft are capable of attaining the 450-knot design goal. The two tiltfold aircraft at 450 knots and a 30-passenger tiltrotor at 375 knots were further developed for the Task II technology analysis. A program called High-Speed Total Envelope Proprotor (HI-STEP) is recommended to meet several of these issues based on the tiltrotor concept. A program called Tiltfold System (TFS) is recommended based on the tiltrotor concept. A task is identified to resolve the best design speed from productivity and demand considerations based on the technology that emerges from the recommended programs. HI-STEP's goals are to investigate propulsive efficiency, maneuver loads, and aeroelastic stability. Programs currently in progress that may meet the other technology needs include the Integrated High Performance Turbine Engine Technology (IHPTET) (NASA Lewis) and the Advanced Structural Concepts Program funded through NASA Langley.

  18. Optimum Design of High-Speed Prop-Rotors

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; McCarthy, Thomas Robert

    1993-01-01

    An integrated multidisciplinary optimization procedure is developed for application to rotary wing aircraft design. The necessary disciplines such as dynamics, aerodynamics, aeroelasticity, and structures are coupled within a closed-loop optimization process. The procedure developed is applied to address two different problems. The first problem considers the optimization of a helicopter rotor blade and the second problem addresses the optimum design of a high-speed tilting proprotor. In the helicopter blade problem, the objective is to reduce the critical vibratory shear forces and moments at the blade root, without degrading rotor aerodynamic performance and aeroelastic stability. In the case of the high-speed proprotor, the goal is to maximize the propulsive efficiency in high-speed cruise without deteriorating the aeroelastic stability in cruise and the aerodynamic performance in hover. The problems studied involve multiple design objectives; therefore, the optimization problems are formulated using multiobjective design procedures. A comprehensive helicopter analysis code is used for the rotary wing aerodynamic, dynamic and aeroelastic stability analyses and an algorithm developed specifically for these purposes is used for the structural analysis. A nonlinear programming technique coupled with an approximate analysis procedure is used to perform the optimization. The optimum blade designs obtained in each case are compared to corresponding reference designs.

  19. High-speed wavefront modulation in complex media (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Turtaev, Sergey; Leite, Ivo T.; Cizmár, TomáÅ.¡

    2017-02-01

    Using spatial light modulators(SLM) to control light propagation through scattering media is a critical topic for various applications in biomedical imaging, optical micromanipulation, and fibre endoscopy. Having limited switching rate, typically 10-100Hz, current liquid-crystal SLM can no longer meet the growing demands of high-speed imaging. A new way based on binary-amplitude holography implemented on digital micromirror devices(DMD) has been introduced recently, allowing to reach refreshing rates of 30kHz. Here, we summarise the advantages and limitations in speed, efficiency, scattering noise, and pixel cross-talk for each device in ballistic and diffusive regimes, paving the way for high-speed imaging through multimode fibres.

  20. Applications of High-speed motion analysis system on Solid Rocket Motor (SRM)

    NASA Astrophysics Data System (ADS)

    Liu, Yang; He, Guo-qiang; Li, Jiang; Liu, Pei-jin; Chen, Jian

    2007-01-01

    High-speed motion analysis system could record images up to 12,000fps and analyzed with the image processing system. The system stored data and images directly in electronic memory convenient for managing and analyzing. The high-speed motion analysis system and the X-ray radiography system were established the high-speed real-time X-ray radiography system, which could diagnose and measure the dynamic and high-speed process in opaque. The image processing software was developed for improve quality of the original image for acquiring more precise information. The typical applications of high-speed motion analysis system on solid rocket motor (SRM) were introduced in the paper. The research of anomalous combustion of solid propellant grain with defects, real-time measurement experiment of insulator eroding, explosion incision process of motor, structure and wave character of plume during the process of ignition and flameout, measurement of end burning of solid propellant, measurement of flame front and compatibility between airplane and missile during the missile launching were carried out using high-speed motion analysis system. The significative results were achieved through the research. Aim at application of high-speed motion analysis system on solid rocket motor, the key problem, such as motor vibrancy, electrical source instability, geometry aberrance, and yawp disturbance, which damaged the image quality, was solved. The image processing software was developed which improved the capability of measuring the characteristic of image. The experimental results showed that the system was a powerful facility to study instantaneous and high-speed process in solid rocket motor. With the development of the image processing technique, the capability of high-speed motion analysis system was enhanced.

  1. Evaluating safety and operations of high-speed signalized intersections.

    DOT National Transportation Integrated Search

    2010-03-01

    This Final Report reviews a research effort to evaluate the safety and operations of high-speed intersections in the State of : Oregon. In particular, this research effort focuses on four-leg, signalized intersections with speed limits of 45 mph or :...

  2. Ethylene Trace-gas Techniques for High-speed Flows

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Reichert, Bruce A.

    1994-01-01

    Three applications of the ethylene trace-gas technique to high-speed flows are described: flow-field tracking, air-to-air mixing, and bleed mass-flow measurement. The technique involves injecting a non-reacting gas (ethylene) into the flow field and measuring the concentration distribution in a downstream plane. From the distributions, information about flow development, mixing, and mass-flow rates can be dtermined. The trace-gas apparatus and special considerations for use in high-speed flow are discussed. A description of each application, including uncertainty estimates is followed by a demonstrative example.

  3. Flexible high-speed CODEC

    NASA Technical Reports Server (NTRS)

    Segallis, Greg P.; Wernlund, Jim V.; Corry, Glen

    1993-01-01

    This report is prepared by Harris Government Communication Systems Division for NASA Lewis Research Center under contract NAS3-25087. It is written in accordance with SOW section 4.0 (d) as detailed in section 2.6. The purpose of this document is to provide a summary of the program, performance results and analysis, and a technical assessment. The purpose of this program was to develop a flexible, high-speed CODEC that provides substantial coding gain while maintaining bandwidth efficiency for use in both continuous and bursted data environments for a variety of applications.

  4. The Construction of an Ontology-Based Ubiquitous Learning Grid

    ERIC Educational Resources Information Center

    Liao, Ching-Jung; Chou, Chien-Chih; Yang, Jin-Tan David

    2009-01-01

    The purpose of this study is to incorporate adaptive ontology into ubiquitous learning grid to achieve seamless learning environment. Ubiquitous learning grid uses ubiquitous computing environment to infer and determine the most adaptive learning contents and procedures in anytime, any place and with any device. To achieve the goal, an…

  5. High-Speed Jet Noise Reduction NASA Perspective

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Handy, J. (Technical Monitor)

    2001-01-01

    History shows that the problem of high-speed jet noise reduction is difficult to solve. the good news is that high performance military aircraft noise is dominated by a single source called 'jet noise' (commercial aircraft have several sources). The bad news is that this source has been the subject of research for the past 50 years and progress has been incremental. Major jet noise reduction has been achieved through changing the cycle of the engine to reduce the jet exit velocity. Smaller reductions have been achieved using suppression devices like mixing enhancement and acoustic liners. Significant jet noise reduction without any performance loss is probably not possible! Recent NASA Noise Reduction Research Programs include the High Speed Research Program, Advanced Subsonic Technology Noise Reduction Program, Aerospace Propulsion and Power Program - Fundamental Noise, and Quiet Aircraft Technology Program.

  6. Factors Affecting Noise Levels of High-Speed Handpieces

    DTIC Science & Technology

    2012-06-01

    regarding handpiece -induced hearing loss among dental providers remains equivocal, warranting continued concern. Moreover, handpiece noise may hinder...turbines can be applied to dental handpieces to reduce noise emission without compromising performance. Methods: Three samples of three brands of...high-speed dental handpieces were chosen. Following baseline measurements for speed (rpm) and noise level (dB), the following internal modifications

  7. Privacy-Related Context Information for Ubiquitous Health

    PubMed Central

    Nykänen, Pirkko; Ruotsalainen, Pekka

    2014-01-01

    Background Ubiquitous health has been defined as a dynamic network of interconnected systems. A system is composed of one or more information systems, their stakeholders, and the environment. These systems offer health services to individuals and thus implement ubiquitous computing. Privacy is the key challenge for ubiquitous health because of autonomous processing, rich contextual metadata, lack of predefined trust among participants, and the business objectives. Additionally, regulations and policies of stakeholders may be unknown to the individual. Context-sensitive privacy policies are needed to regulate information processing. Objective Our goal was to analyze privacy-related context information and to define the corresponding components and their properties that support privacy management in ubiquitous health. These properties should describe the privacy issues of information processing. With components and their properties, individuals can define context-aware privacy policies and set their privacy preferences that can change in different information-processing situations. Methods Scenarios and user stories are used to analyze typical activities in ubiquitous health to identify main actors, goals, tasks, and stakeholders. Context arises from an activity and, therefore, we can determine different situations, services, and systems to identify properties for privacy-related context information in information-processing situations. Results Privacy-related context information components are situation, environment, individual, information technology system, service, and stakeholder. Combining our analyses and previously identified characteristics of ubiquitous health, more detailed properties for the components are defined. Properties define explicitly what context information for different components is needed to create context-aware privacy policies that can control, limit, and constrain information processing. With properties, we can define, for example, how

  8. Development of a Ubiquitous Learning Platform Based on a Real-Time Help-Seeking Mechanism

    ERIC Educational Resources Information Center

    Hwang, Gwo-Jen; Wu, Chih-Hsiang; Tseng, Judy C. R.; Huang, Iwen

    2011-01-01

    The popularity of mobile devices has encouraged the advance of ubiquitous learning, in which students are situated in a real-world learning environment with support from the digital world via the use of mobile, wireless communications, or even sensing technologies. Most of the ubiquitous learning systems are implemented with high-cost sensing…

  9. Architecture Of High Speed Image Processing System

    NASA Astrophysics Data System (ADS)

    Konishi, Toshio; Hayashi, Hiroshi; Ohki, Tohru

    1988-01-01

    One of architectures for a high speed image processing system which corresponds to a new algorithm for a shape understanding is proposed. And the hardware system which is based on the archtecture was developed. Consideration points of the architecture are mainly that using processors should match with the processing sequence of the target image and that the developed system should be used practically in an industry. As the result, it was possible to perform each processing at a speed of 80 nano-seconds a pixel.

  10. Calculated performance, stability and maneuverability of high-speed tilting-prop-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Lau, Benton H.; Bowles, Jeffrey V.

    1986-01-01

    The feasibility of operating tilting-prop-rotor aircraft at high speeds is examined by calculating the performance, stability, and maneuverability of representative configurations. The rotor performance is examined in high-speed cruise and in hover. The whirl-flutter stability of the coupled-wing and rotor motion is calculated in the cruise mode. Maneuverability is examined in terms of the rotor-thrust limit during turns in helicopter configuration. Rotor airfoils, rotor-hub configuration, wing airfoil, and airframe structural weights representing demonstrated advance technology are discussed. Key rotor and airframe parameters are optimized for high-speed performance and stability. The basic aircraft-design parameters are optimized for minimum gross weight. To provide a focus for the calculations, two high-speed tilt-rotor aircraft are considered: a 46-passenger, civil transport and an air-combat/escort fighter, both with design speeds of about 400 knots. It is concluded that such high-speed tilt-rotor aircraft are quite practical.

  11. Ultra-high-speed variable focus optics for novel applications in advanced imaging

    NASA Astrophysics Data System (ADS)

    Kang, S.; Dotsenko, E.; Amrhein, D.; Theriault, C.; Arnold, C. B.

    2018-02-01

    With the advancement of ultra-fast manufacturing technologies, high speed imaging with high 3D resolution has become increasingly important. Here we show the use of an ultra-high-speed variable focus optical element, the TAG Lens, to enable new ways to acquire 3D information from an object. The TAG Lens uses sound to adjust the index of refraction profile in a liquid and thereby can achieve focal scanning rates greater than 100 kHz. When combined with a high-speed pulsed LED and a high-speed camera, we can exploit this phenomenon to achieve high-resolution imaging through large depths. By combining the image acquisition with digital image processing, we can extract relevant parameters such as tilt and angle information from objects in the image. Due to the high speeds at which images can be collected and processed, we believe this technique can be used as an efficient method of industrial inspection and metrology for high throughput applications.

  12. Computational Analyses of the LIMX TBCC Inlet High-Speed Flowpath

    NASA Technical Reports Server (NTRS)

    Dippold, Vance F., III

    2012-01-01

    Reynolds-Averaged Navier-Stokes (RANS) simulations were performed for the high-speed flowpath and isolator of a dual-flowpath Turbine-Based Combined-Cycle (TBCC) inlet using the Wind-US code. The RANS simulations were performed in preparation for the Large-scale Inlet for Mode Transition (LIMX) model tests in the NASA Glenn Research Center (GRC) 10- by 10-ft Supersonic Wind Tunnel. The LIMX inlet has a low-speed flowpath that is coupled to a turbine engine and a high-speed flowpath designed to be coupled to a Dual-Mode Scramjet (DMSJ) combustor. These RANS simulations were conducted at a simulated freestream Mach number of 4.0, which is the nominal Mach number for the planned wind tunnel testing with the LIMX model. For the simulation results presented in this paper, the back pressure, cowl angles, and freestream Mach number were each varied to assess the performance and robustness of the high-speed inlet and isolator. Under simulated wind tunnel conditions at maximum inlet mass flow rates, the high-speed flowpath pressure rise was found to be greater than a factor of four. Furthermore, at a simulated freestream Mach number of 4.0, the high-speed flowpath and isolator showed stability for freestream Mach number that drops 0.1 Mach below the design point. The RANS simulations indicate the yet-untested highspeed inlet and isolator flowpath should operate as designed. The RANS simulation results also provided important insight to researchers as they developed test plans for the LIMX experiment in GRC s 10- by 10-ft Supersonic Wind Tunnel.

  13. High speed packet switching

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document constitutes the final report prepared by Proteon, Inc. of Westborough, Massachusetts under contract NAS 5-30629 entitled High-Speed Packet Switching (SBIR 87-1, Phase 2) prepared for NASA-Greenbelt, Maryland. The primary goal of this research project is to use the results of the SBIR Phase 1 effort to develop a sound, expandable hardware and software router architecture capable of forwarding 25,000 packets per second through the router and passing 300 megabits per second on the router's internal busses. The work being delivered under this contract received its funding from three different sources: the SNIPE/RIG contract (Contract Number F30602-89-C-0014, CDRL Sequence Number A002), the SBIR contract, and Proteon. The SNIPE/RIG and SBIR contracts had many overlapping requirements, which allowed the research done under SNIPE/RIG to be applied to SBIR. Proteon funded all of the work to develop new router interfaces other than FDDI, in addition to funding the productization of the router itself. The router being delivered under SBIR will be a fully product-quality machine. The work done during this contract produced many significant findings and results, summarized here and explained in detail in later sections of this report. The SNIPE/RIG contract was completed. That contract had many overlapping requirements with the SBIR contract, and resulted in the successful demonstration and delivery of a high speed router. The development that took place during the SNIPE/RIG contract produced findings that included the choice of processor and an understanding of the issues surrounding inter processor communications in a multiprocessor environment. Many significant speed enhancements to the router software were made during that time. Under the SBIR contract (and with help from Proteon-funded work), it was found that a single processor router achieved a throughput significantly higher than originally anticipated. For this reason, a single processor router was

  14. High-speed cell recognition algorithm for ultrafast flow cytometer imaging system

    NASA Astrophysics Data System (ADS)

    Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang

    2018-04-01

    An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform.

  15. CILT2000: Ubiquitous Computing--Spanning the Digital Divide.

    ERIC Educational Resources Information Center

    Tinker, Robert; Vahey, Philip

    2002-01-01

    Discusses the role of ubiquitous and handheld computers in education. Summarizes the contributions of the Center for Innovative Learning Technologies (CILT) and describes the ubiquitous computing sessions at the CILT2000 Conference. (Author/YDS)

  16. High-speed and low-power repeater for VLSI interconnects

    NASA Astrophysics Data System (ADS)

    Karthikeyan, A.; Mallick, P. S.

    2017-10-01

    This paper proposes a repeater for boosting the speed of interconnects with low power dissipation. We have designed and implemented at 45 and 32 nm technology nodes. Delay and power dissipation performances are analyzed for various voltage levels at these technology nodes using Spice simulations. A significant reduction in delay and power dissipation are observed compared to a conventional repeater. The results show that the proposed high-speed low-power repeater has a reduced delay for higher load capacitance. The proposed repeater is also compared with LPTG CMOS repeater, and the results shows that the proposed repeater has reduced delay. The proposed repeater can be suitable for high-speed global interconnects and has the capacity to drive large loads.

  17. Stability control for high speed tracked unmanned vehicles

    NASA Astrophysics Data System (ADS)

    Pape, Olivier; Morillon, Joel G.; Houbloup, Philippe; Leveque, Stephane; Fialaire, Cecile; Gauthier, Thierry; Ropars, Patrice

    2005-05-01

    The French Military Robotic Study Program (introduced in Aerosense 2003), sponsored by the French Defense Procurement Agency and managed by Thales as the prime contractor, focuses on about 15 robotic themes which can provide an immediate "operational add-on value". The paper details the "automatic speed adjustment" behavior (named SYR4), developed by Giat Industries Company, which main goal is to secure the teleoperated mobility of high speed tracked vehicles on rough grounds; more precisely, the validated low level behavior continuously adjusts the vehicle speed taking into account the teleperator wish AND the maximum speed that the vehicle can manage safely according to the commanded radius of curvature. The algorithm is based on a realistic physical model of the ground-tracks relation, taking into account many vehicle and ground parameters (such as ground adherence and dynamic specificities of tracked vehicles). It also deals with the teleoperator-machine interface, providing a balanced strategy between both extreme behaviors: a) maximum speed reduction before initiating the commanded curve; b) executing the minimum possible radius without decreasing the commanded speed. The paper presents the results got from the military acceptance tests performed on tracked SYRANO vehicle (French Operational Demonstrator).

  18. Development of aerodynamic foil journal bearings for a high speed cryogenic turboexpander

    NASA Astrophysics Data System (ADS)

    Xiong, L.-Y.; Wu, G.; Hou, Y.; Liu, L.-Q.; Ling, M.-F.; Chen, C.-Z.

    The research presented in this paper is aimed at the development of aerodynamic foil journal bearings applying to a small high speed cryogenic turboexpander. A small high speed cryogenic turboexpander is designed. Attention has been paid to the study of the effect of foil stiffness on the vibration performance of bearings. From rotation tests, it is clear that, with the proper choice of foil stiffness, the foil bearing presented here can possess sufficiently high stability. The maximum rotational speed obtained is greater than 230 000 rpm. Therefore, owing to its simplicity and high performance, this type of foil journal bearing can hopefully be applied to a small high speed cryogenic turboexpander.

  19. Motion-induced eddy current thermography for high-speed inspection

    NASA Astrophysics Data System (ADS)

    Wu, Jianbo; Li, Kongjing; Tian, Guiyun; Zhu, Junzhen; Gao, Yunlai; Tang, Chaoqing; Chen, Xiaotian

    2017-08-01

    This letter proposes a novel motion-induced eddy current based thermography (MIECT) for high-speed inspection. In contrast to conventional eddy current thermography (ECT) based on a time-varying magnetic field created by an AC coil, the motion-induced eddy current is induced by the relative motion between magnetic field and inspected objects. A rotating magnetic field created by three-phase windings is used to investigate the heating principle and feasibility of the proposed method. Firstly, based on Faraday's law the distribution of MIEC is investigated, which is then validated by numerical simulation. Further, experimental studies are conducted to validate the proposed method by creating rotating magnetic fields at different speeds from 600 rpm to 6000 rpm, and it is verified that rotating speed will increase MIEC intensity and thereafter improve the heating efficiency. The conclusion can be preliminarily drawn that the proposed MIECT is a platform suitable for high-speed inspection.

  20. High-Speed RaPToRS

    NASA Astrophysics Data System (ADS)

    Henchen, Robert; Esham, Benjamin; Becker, William; Pogozelski, Edward; Padalino, Stephen; Sangster, Thomas; Glebov, Vladimir

    2008-11-01

    The High-Speed Rapid Pneumatic Transport of Radioactive Samples (HS-RaPToRS) system, designed to quickly and safely move radioactive materials, was assembled and tested at the Mercury facility of the Naval Research Laboratory (NRL) in Washington D.C. A sample, which is placed inside a four-inch-diameter carrier, is activated before being transported through a PVC tube via airflow. The carrier travels from the reaction chamber to the end station where it pneumatically brakes prior to the gate. A magnetic latch releases the gate when the carrier arrives and comes to rest. The airflow, optical carrier-monitoring devices, and end gate are controlled manually or automatically with LabView software. The installation and testing of the RaPToRS system at NRL was successfully completed with transport times of less than 3 seconds. The speed of the carrier averaged 16 m/s. Prospective facilities for similar systems include the Laboratory for Laser Energetics and the National Ignition Facility.

  1. High-speed cell recognition algorithm for ultrafast flow cytometer imaging system.

    PubMed

    Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang

    2018-04-01

    An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  2. 6. FAN HOUSE OF 8FOOT HIGH SPEED TUNNEL. AIR INTAKES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. FAN HOUSE OF 8-FOOT HIGH SPEED TUNNEL. AIR INTAKES AND FILTERS ARE ENCLOSED IN THE UPPER LEVEL STRUCTURE. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  3. High Resolution, High-Speed Photography, an Increasingly Prominent Diagnostic in Ballistic Research Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, L.; Muelder, S.

    1999-10-22

    High resolution, high-speed photography is becoming a prominent diagnostic in ballistic experimentation. The development of high speed cameras utilizing electro-optics and the use of lasers for illumination now provide the capability to routinely obtain high quality photographic records of ballistic style experiments. The purpose of this presentation is to review in a visual manner the progress of this technology and how it has impacted ballistic experimentation. Within the framework of development at LLNL, we look at the recent history of large format high-speed photography, and present a number of photographic records that represent the state of the art at themore » time they were made. These records are primarily from experiments involving shaped charges. We also present some examples of current photographic technology, developed within the ballistic community, that has application to hydro diagnostic experimentation at large. This paper is designed primarily as an oral-visual presentation. This written portion is to provide general background, a few examples, and a bibliography.« less

  4. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    The High-Speed Research Program sponsored the NASA High-Speed Research Program Aerodynamic Performance Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of: Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization) and High-Lift. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. The HSR AP Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas within the airframe element of the HSR Program. This Volume 2/Part 1 publication presents the High-Lift Configuration Development session.

  5. High-speed high-sensitivity infrared spectroscopy using mid-infrared swept lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Childs, David T. D.; Groom, Kristian M.; Hogg, Richard A.; Revin, Dmitry G.; Cockburn, John W.; Rehman, Ihtesham U.; Matcher, Stephen J.

    2016-03-01

    Infrared spectroscopy is a highly attractive read-out technology for compositional analysis of biomedical specimens because of its unique combination of high molecular sensitivity without the need for exogenous labels. Traditional techniques such as FTIR and Raman have suffered from comparatively low speed and sensitivity however recent innovations are challenging this situation. Direct mid-IR spectroscopy is being speeded up by innovations such as MEMS-based FTIR instruments with very high mirror speeds and supercontinuum sources producing very high sample irradiation levels. Here we explore another possible method - external cavity quantum cascade lasers (EC-QCL's) with high cavity tuning speeds (mid-IR swept lasers). Swept lasers have been heavily developed in the near-infrared where they are used for non-destructive low-coherence imaging (OCT). We adapt these concepts in two ways. Firstly by combining mid-IR quantum cascade gain chips with external cavity designs adapted from OCT we achieve spectral acquisition rates approaching 1 kHz and demonstrate potential to reach 100 kHz. Secondly we show that mid-IR swept lasers share a fundamental sensitivity advantage with near-IR OCT swept lasers. This makes them potentially able to achieve the same spectral SNR as an FTIR instrument in a time x N shorter (N being the number of spectral points) under otherwise matched conditions. This effect is demonstrated using measurements of a PDMS sample. The combination of potentially very high spectral acquisition rates, fundamental SNR advantage and the use of low-cost detector systems could make mid-IR swept lasers a powerful technology for high-throughput biomedical spectroscopy.

  6. Polymer Surface Textured with Nanowire Bundles to Repel High-Speed Water Drops.

    PubMed

    Li, Y P; Li, X Y; Zhu, X P; Lei, M K; Lakhtakia, A

    2018-05-22

    Water drops impacting windshields of high-speed trains and aircraft as well as blades in steam turbine power generators obliquely and at high speeds are difficult to repel. Impacting drops penetrate the void regions of nanotextured and microtextured superhydrophobic coatings, with this pinning resulting in the loss of drop mobility. In order to repel high-speed water drops, we nanotextured polymer surfaces with nanowire bundles separated from their neighbors by microscale void regions, with the nanowires in a bundle separated from their neighbors by nanoscale void regions. Water drops with speeds below a critical speed rebound completely. Water drops with speeds exceeding a critical speed rebound partially, but residual droplets that begin to be pinned undergo a spontaneous dewetting process and slide off. The natural oscillations of residual droplets drive this dewetting process in the interbundle void regions, resulting in a transition from the sticky Wenzel state to the slippery Cassie state without external stimuli.

  7. Unsteady Viscous Flow in a High Speed Core Compressor

    DTIC Science & Technology

    1990-12-01

    in a High Speed Core Compressor by M. A. Cherrett DTICJ. D.Bryc ELECTE J. D. Bryce MAR 2 81991 ED Procurement Executive, Ministry of Defence...ESTABLISHMENT Technical Memorandum P 1198 Received for printing 10 December 1990 UNSTEADY VISCOUS FLOW IN A HIGH SPEED CORE COMPRESSOR by M. A. Cherrett J. D...processed in the Compressor," ASME PaperNo 89-GT-24 following manner to determine the periodic (phase-locked Cherrett , MA, 1990, Temperature Error

  8. Technology needs for high speed rotorcraft (2)

    NASA Technical Reports Server (NTRS)

    Scott, Mark W.

    1991-01-01

    An analytical study was conducted to identify rotorcraft concepts best capable of combining a cruise speed of 350 to 450 knots with helicopter-like low speed attributes, and to define the technology advancements needed to make them viable by the year 2000. A systematic approach was used to compare the relative attributes and mission gross weights for a wide range of concepts, resulting in a downselect to the most promising concept/mission pairs. For transport missions, tilt-wing and variable diameter tilt-rotor (VDTR) concepts were found to be superior. For a military scout/attack role, the VDTR was best, although a shrouded rotor concept could provide a highly agile, low observable alternative if its weight empty fraction could be reduced. A design speed of 375 to 425 knots was found to be the maximum desirable for transport missions, with higher speed producing rapidly diminishing benefits in productivity. The key technologies that require advancement to make the tilt-wing and VDTR concepts viable are in the areas of wing and proprotor aerodynamics, efficient structural design, flight controls, refinement of the geared flap pitch control system, expansion of the speed/descent envelope, and the structural and aerodynamic tradeoffs of wing thickness and forward sweep. For the shrouded rotor, weight reduction is essential, particularly with respect to the mechanism for covering the rotor in cruise.

  9. High Speed Video Applications In The Pharmaceutical Industry

    NASA Astrophysics Data System (ADS)

    Stapley, David

    1985-02-01

    The pursuit of quality is essential in the development and production of drugs. The pursuit of excellence is relentless, a never ending search. In the pharmaceutical industry, we all know and apply wide-ranging techniques to assure quality production. We all know that in reality none of these techniques are perfect for all situations. We have all experienced, the damaged foil, blister or tube, the missing leaflet, the 'hard to read' batch code. We are all aware of the need to supplement the traditional techniques of fault finding. This paper shows how high speed video systems can be applied to fully automated filling and packaging operations as a tool to aid the company's drive for high quality and productivity. The range of products involved totals some 350 in approximately 3,000 pack variants, encompassing creams, ointments, lotions, capsules, tablets, parenteral and sterile antibiotics. Pharmaceutical production demands diligence at all stages, with optimum use of the techniques offered by the latest technology. Figure 1 shows typical stages of pharmaceutical production in which quality must be assured, and highlights those stages where the use of high speed video systems have proved of value to date. The use of high speed video systems begins with the very first use of machine and materials: commissioning and validation, (the term used for determining that a process is capable of consistently producing the requisite quality) and continues to support inprocess monitoring, throughout the life of the plant. The activity of validation in the packaging environment is particularly in need of a tool to see the nature of high speed faults, no matter how infrequently they occur, so that informed changes can be made precisely and rapidly. The prime use of this tool is to ensure that machines are less sensitive to minor variations in component characteristics.

  10. Ubiquitous Mobile Knowledge Construction in Collaborative Learning Environments

    PubMed Central

    Baloian, Nelson; Zurita, Gustavo

    2012-01-01

    Knowledge management is a critical activity for any organization. It has been said to be a differentiating factor and an important source of competitiveness if this knowledge is constructed and shared among its members, thus creating a learning organization. Knowledge construction is critical for any collaborative organizational learning environment. Nowadays workers must perform knowledge creation tasks while in motion, not just in static physical locations; therefore it is also required that knowledge construction activities be performed in ubiquitous scenarios, and supported by mobile and pervasive computational systems. These knowledge creation systems should help people in or outside organizations convert their tacit knowledge into explicit knowledge, thus supporting the knowledge construction process. Therefore in our understanding, we consider highly relevant that undergraduate university students learn about the knowledge construction process supported by mobile and ubiquitous computing. This has been a little explored issue in this field. This paper presents the design, implementation, and an evaluation of a system called MCKC for Mobile Collaborative Knowledge Construction, supporting collaborative face-to-face tacit knowledge construction and sharing in ubiquitous scenarios. The MCKC system can be used by undergraduate students to learn how to construct knowledge, allowing them anytime and anywhere to create, make explicit and share their knowledge with their co-learners, using visual metaphors, gestures and sketches to implement the human-computer interface of mobile devices (PDAs). PMID:22969333

  11. Ubiquitous mobile knowledge construction in collaborative learning environments.

    PubMed

    Baloian, Nelson; Zurita, Gustavo

    2012-01-01

    Knowledge management is a critical activity for any organization. It has been said to be a differentiating factor and an important source of competitiveness if this knowledge is constructed and shared among its members, thus creating a learning organization. Knowledge construction is critical for any collaborative organizational learning environment. Nowadays workers must perform knowledge creation tasks while in motion, not just in static physical locations; therefore it is also required that knowledge construction activities be performed in ubiquitous scenarios, and supported by mobile and pervasive computational systems. These knowledge creation systems should help people in or outside organizations convert their tacit knowledge into explicit knowledge, thus supporting the knowledge construction process. Therefore in our understanding, we consider highly relevant that undergraduate university students learn about the knowledge construction process supported by mobile and ubiquitous computing. This has been a little explored issue in this field. This paper presents the design, implementation, and an evaluation of a system called MCKC for Mobile Collaborative Knowledge Construction, supporting collaborative face-to-face tacit knowledge construction and sharing in ubiquitous scenarios. The MCKC system can be used by undergraduate students to learn how to construct knowledge, allowing them anytime and anywhere to create, make explicit and share their knowledge with their co-learners, using visual metaphors, gestures and sketches to implement the human-computer interface of mobile devices (PDAs).

  12. High-speed and supersonic upward plasma drifts: multi-instrumental study

    NASA Astrophysics Data System (ADS)

    Astafyeva, E.; Zakharenkova, I.; Hairston, M. R.; Huba, J.; Coley, W. R.

    2017-12-01

    Since the pioneering observations by Aggson et al. (1992, JGR, doi: 10.1002/92JA00644), there have been several reports of the occurrence of high-speed (Vz>800 m/s) and supersonic plasma flows in the post-sunset (e.g., Hysell et al., 1994, JGR, doi: 10.1029/94JA00476; Hanson et al., 1997, JGR, doi: 10.1029/96JA03376) and the pre-dawn sector (Astafyeva and Zakharenkova, 2015, GRL, doi:10.1002/2015GL066369). However, despite this observational evidence, these events remain rare and are not well understood. The main issue is to determine the background conditions leading to the occurrence of these high-speed plasma drifts. In this work, we perform a multi-instrumental study of high-speed and supersonic upward plasma drift events/structures. For this purpose, we analyze data from several ground-based and space-borne instruments, including data from the DMSP, Swarm and C/NOFS (IVM instrument) satellites. In addition to the space-borne instruments, we use data from ground-based GPS-receivers and ionosondes to further investigate the background ionosphere conditions, as well as the effects produced by the plasma bubbles and ionospheric irregularities. Besides the observations, we add the SAMI3/ESF modeling results on plasma bubble simulations and high-speed drifts inside plasma bubbles. TIE-GCM runs (from the CCMC, https://ccmc.gsfc.nasa.gov) are used to define the background atmospheric/ionospheric and electrodynamical conditions leading to the occurrence of the high-speed and supersonic plasma drift events. Our search of events with upward plasma drift exceeding 800 m/s in the data of DMSP for the years 2002-2016 shows that such high-speed events are extremely rare. During this period of time, only 6 events were found, two of them occurred during the recovery phase of a geomagnetic storm, while the other four were detected during geomagnetically quiet conditions. Concerning the generation of such events, our preliminary results show that enhanced electric fields are

  13. On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles

    DTIC Science & Technology

    2006-02-17

    On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles Report Title ABSTRACT In this work we proposed two semi-analytic...298-102 Enclosure 1 On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles by...Specifically, the following problems will be addressed during this project: 2.1 Challenges The problem of trajectory planning for high-speed autonomous vehicles is

  14. 11. INTERIOR VIEW OF 8FOOT HIGH SPEED WIND TUNNEL. SAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. INTERIOR VIEW OF 8-FOOT HIGH SPEED WIND TUNNEL. SAME CAMERA POSITION AS VA-118-B-10 LOOKING IN THE OPPOSITE DIRECTION. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  15. Novel high speed fiber-optic pressure sensor systems.

    DOT National Transportation Integrated Search

    2014-03-01

    The goal of this project is to develop a complete test of this technology for high-speed, high-accuracy applications, specifically cost-effective data acquisition techniques and practical mounting methods tailored for the subject environment. The sec...

  16. The 1989 high-speed civil transport studies

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The results of the Douglas Aircraft Company system studies related to high speed civil transports (HSCT) are discussed. The studies were conducted to assess the environmental compatibility of a high speed civil transport at a design Mach number of 3.2. Sonic boom minimization, external noise, and engine emissions were assessed together with the effect of the laminar flow control (LFC) technology on vehicle gross weight. The general results indicated that a sonic boom loudness level of 90-PLdB at Mach 3.2 may not be achievable for a practical design; the high flow engine cycle concept shows promise of achieving the sideline FAR Part 36 noise limit, but may not achieve the aircraft range design goal of 6,500 nautical miles; the rich burn/quick quench (RB/QQ) combustor concept shows promise for achieving low EINO sub x levels when combined with a premixed pilot stage/advanced technology, high power stage duct burner in the Pratt and Whitney variable steam control engine (VSCE); and full chord wing LFC has significant performance and economic advantages relative to the turbulent wing baseline.

  17. Research notes : safety at high-speed intersections.

    DOT National Transportation Integrated Search

    2010-04-01

    A 2010 study for ODOT by researchers at the Oregon State University School of Civil and Construction Engineering titled, Evaluating Safety and Operations of High-Speed Signalized Intersections, examined effective means for improving safety at isolate...

  18. High-speed flight propulsion systems. Progress in Astronautics and Aeronautics. Vol. 137

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, S.N.B.; Curran, E.T.

    1991-01-01

    Various papers on high-speed flight propulsion systems are presented. The topics addressed are: propulsion systems from takeoff to high-speed flight, propulsion system performance and integration for high Mach air-breathing flight, energy analysis of high-speed flight systems, waves and thermodynamics in high Mach number propulsive ducts, turbulent free shear layer mixing and combustion, turbulent mixing in supersonic combustion systems, mixing and mixing enhancement in supersonic reacting flowfields, study of combustion and heat-exchange processes in high-enthalpy short-duration facilities, and facility requirements for hypersonic propulsion system testing.

  19. High Rotation Speed Friction Stir Welding for 2014 Aluminum Alloy Thin Sheets

    NASA Astrophysics Data System (ADS)

    Chen, Shujin; Zhou, Yang; Xue, Junrong; Ni, Ruiyang; Guo, Yue; Dong, Jianghui

    2017-03-01

    In this study, 2014 aluminum alloy sheets with 1 mm thickness are welded successfully by friction stir welding (FSW) robot under the condition of high rotation speed. When the high rotation speed of 10,000-16,500 rpm is applied, the lower axial pressure (less than 200 N) is obtained, which reduces stiffness requirements for equipment. Welding deformation is inevitable because high rotation speed can easily result in rapid heating rate and uneven heat input. The welding distortion caused by two cooling methods is measured, respectively, by laser range finder. The experimental results show that the welding distortion is smaller under the condition of water cooling. When the rotation speed is up to 15,000 rpm and welding speed 50-170 mm/min, the whole welding process is controllable. Under the higher rotation speed condition, the welding defects disappear gradually and more stable mechanical properties can be obtained up to 75% of base metal (ω = 16,000 rpm, ν = 110 mm/min). The results of different welding parameters demonstrate that the high rotation speed can increase material mixing and reduce the axial force (z force), and it can benefit lightweight sheet welding by using FSW robot.

  20. First Annual High-Speed Research Workshop, part 1

    NASA Technical Reports Server (NTRS)

    Whitehead, Allen H., Jr. (Compiler)

    1992-01-01

    The workshop was presented to provide a national forum for the government, industry, and university participants in the program to present and discuss important technology issues related to the development of a commercially viable, environmentally compatible U.S. High Speed Civil Transport. The workshop sessions were organized around the major task elements in NASA's Phase 1 High Speed Research Program which basically addressed the environmental issues of atmospheric emissions, community noise, and sonic boom. This volume is divided into three sessions entitled: Plenary Session (which gives overviews from NASA, Boeing, Douglas, GE, and Pratt & Whitney on the HSCT program); Airframe Systems Studies; and Atmospheric Effects.

  1. Synchronizing Photography For High-Speed-Engine Research

    NASA Technical Reports Server (NTRS)

    Chun, K. S.

    1989-01-01

    Light flashes when shaft reaches predetermined angle. Synchronization system facilitates visualization of flow in high-speed internal-combustion engines. Designed for cinematography and holographic interferometry, system synchronizes camera and light source with predetermined rotational angle of engine shaft. 10-bit resolution of absolute optical shaft encoder adapted, and 2 to tenth power combinations of 10-bit binary data computed to corresponding angle values. Pre-computed angle values programmed into EPROM's (erasable programmable read-only memories) to use as angle lookup table. Resolves shaft angle to within 0.35 degree at rotational speeds up to 73,240 revolutions per minute.

  2. Ultra-High Surface Speed for Metal Removal, Artillery Shell

    DTIC Science & Technology

    1981-07-01

    TECHNICAL LIBRARY "y/a^^cr^ AD-E400 660 CONTRACTOR REPORT ARLCD-CR- 81019 ULTRA-HIGH SURFACE SPEED FOR METAL REMOVAL, ARTILLERY SHELL RICHARD F...Report ARLCD-CR- 81019 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER 4. TITLE (and Subtitle) ULTRA-HIGH SURFACE SPEED FOR METAL...UNIT* tuiPPtO 1 MIL -STD-43CA i, ASTM A-274-64 EF A1SI~1340 SEHI FIN FORGING STEEL 6 RC SQ ■ IP 120093* a LIFTS 38 PCS

  3. Acceleration ramps along high operating speed roadways.

    DOT National Transportation Integrated Search

    2010-11-01

    Until recently, guidelines for the geometric design of acceleration lanes used for the : successful merge of an entering vehicle into a high-speed surface transportation system : through-traffic lane have been based upon concepts and vehicle characte...

  4. Dilemma zone protection on high-speed arterials.

    DOT National Transportation Integrated Search

    2014-12-01

    Driver behavior within the dilemma zone can be a major safety concern at high-speed signalized intersections, especially : for heavy trucks. The Nebraska Department of Roads (NDOR) has developed and implemented an Actuated Advance : Warning (AAW) dil...

  5. High-Speed Digital Scan Converter for High-Frequency Ultrasound Sector Scanners

    PubMed Central

    Chang, Jin Ho; Yen, Jesse T.; Shung, K. Kirk

    2008-01-01

    This paper presents a high-speed digital scan converter (DSC) capable of providing more than 400 images per second, which is necessary to examine the activities of the mouse heart whose rate is 5–10 beats per second. To achieve the desired high-speed performance in cost-effective manner, the DSC developed adopts a linear interpolation algorithm in which two nearest samples to each object pixel of a monitor are selected and only angular interpolation is performed. Through computer simulation with the Field II program, its accuracy was investigated by comparing it to that of bilinear interpolation known as the best algorithm in terms of accuracy and processing speed. The simulation results show that the linear interpolation algorithm is capable of providing an acceptable image quality, which means that the difference of the root mean square error (RMSE) values of the linear and bilinear interpolation algorithms is below 1 %, if the sample rate of the envelope samples is at least four times higher than the Nyquist rate for the baseband component of echo signals. The designed DSC was implemented with a single FPGA (Stratix EP1S60F1020C6, Altera Corporation, San Jose, CA) on a DSC board that is a part of a high-speed ultrasound imaging system developed. The temporal and spatial resolutions of the implemented DSC were evaluated by examining its maximum processing time with a time stamp indicating when an image is completely formed and wire phantom testing, respectively. The experimental results show that the implemented DSC is capable of providing images at the rate of 400 images per second with negligible processing error. PMID:18430449

  6. Ubiquitous Learning Environments in Higher Education: A Scoping Literature Review

    ERIC Educational Resources Information Center

    Virtanen, Mari Aulikki; Haavisto, Elina; Liikanen, Eeva; Kääriäinen, Maria

    2018-01-01

    Ubiquitous learning and the use of ubiquitous learning environments heralds a new era in higher education. Ubiquitous learning environments enhance context-aware and seamless learning experiences available from any location at any time. They support smooth interaction between authentic and digital learning resources and provide personalized…

  7. A Ubiquitous Blood Pressure Sensor Worn at the Ear

    NASA Astrophysics Data System (ADS)

    Koizumi, Hiroshi; Shimada, Junichi; Uenishi, Yuji; Tochikubo, Osamu

    2009-12-01

    Blood pressure (BP) measurement and BP control are important for the prevention of lifestyle diseases, especially hypertension, which can lead to more serious conditions, such as cardiac infarction and cerebral apoplexy. The purpose of our study is to develop a ubiquitous blood pressure sensor that is more comfortable and less disruptive of users' daily activities than conventional blood pressure sensors. Our developed sensor is worn at an ear orifice and measures blood pressure at the tragus. This paper describes the concept, configuration, and the optical and electronic details of the developed ear-worn blood pressure sensor and presents preliminary evaluation results. The developed sensor causes almost no discomfort and produces signals whose quality is high enough for detecting BP at an ear, making it suitable for ubiquitous usage.

  8. Impact of Increased Football Field Width on Player High-Speed Collision Rate.

    PubMed

    Joseph, Jacob R; Khalsa, Siri S; Smith, Brandon W; Park, Paul

    2017-07-01

    High-acceleration head impact is a known risk for mild traumatic brain injury (mTBI) based on studies using helmet accelerometry. In football, offensive and defensive players are at higher risk of mTBI due to increased speed of play. Other collision sport studies suggest that increased playing surface size may contribute to reductions in high-speed collisions. We hypothesized that wider football fields lead to a decreased rate of high-speed collisions. Computer football game simulation was developed using MATLAB. Four wide receivers were matched against 7 defensive players. Each offensive player was randomized to one of 5 typical routes on each play. The ball was thrown 3 seconds into play; ball flight time was 2 seconds. Defensive players were delayed 0.5 second before reacting to ball release. A high-speed collision was defined as the receiver converging with a defensive player within 0.5 second of catching the ball. The simulation counted high-speed collisions for 1 team/season (65 plays/game for 16 games/season = 1040 plays/season) averaged during 10 seasons, and was validated against existing data using standard field width (53.3 yards). Field width was increased in 1-yard intervals up to 58.3 yards. Using standard field width, 188 ± 4 high-speed collisions were seen per team per season (18% of plays). When field width increased by 3 yards, high-speed collision rate decreased to 135 ± 3 per team per season (28% decrease; P < 0.0001). Even small increases in football field width can lead to substantial decline in high-speed collisions, with potential for reducing instances of mTBI in football players. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. New functionalities in abundant element oxides: ubiquitous element strategy

    PubMed Central

    Hosono, Hideo; Hayashi, Katsuro; Kamiya, Toshio; Atou, Toshiyuki; Susaki, Tomofumi

    2011-01-01

    While most ceramics are composed of ubiquitous elements (the ten most abundant elements within the Earth's crust), many advanced materials are based on rare elements. A ‘rare-element crisis’ is approaching owing to the imbalance between the limited supply of rare elements and the increasing demand. Therefore, we propose a ‘ubiquitous element strategy’ for materials research, which aims to apply abundant elements in a variety of innovative applications. Creation of innovative oxide materials and devices based on conventional ceramics is one specific challenge. This review describes the concept of ubiquitous element strategy and gives some highlights of our recent research on the synthesis of electronic, thermionic and structural materials using ubiquitous elements. PMID:27877391

  10. HIGH SPEED CAMERA

    DOEpatents

    Rogers, B.T. Jr.; Davis, W.C.

    1957-12-17

    This patent relates to high speed cameras having resolution times of less than one-tenth microseconds suitable for filming distinct sequences of a very fast event such as an explosion. This camera consists of a rotating mirror with reflecting surfaces on both sides, a narrow mirror acting as a slit in a focal plane shutter, various other mirror and lens systems as well as an innage recording surface. The combination of the rotating mirrors and the slit mirror causes discrete, narrow, separate pictures to fall upon the film plane, thereby forming a moving image increment of the photographed event. Placing a reflecting surface on each side of the rotating mirror cancels the image velocity that one side of the rotating mirror would impart, so as a camera having this short a resolution time is thereby possible.

  11. Tri-state high speed rail study : Chicago - Milwaukee - Twin Cities corridor

    DOT National Transportation Integrated Search

    1991-05-01

    This report, the Final Report for the Tri-State Study of High Speed Rail Service, describes the work carried out by TMS/Benesch in analyzing the potential for high speed rail in the Tri-State Corridor. Specifically, the study provides a pre-feasibili...

  12. Software Developed for Analyzing High- Speed Rolling-Element Bearings

    NASA Technical Reports Server (NTRS)

    Fleming, David P.

    2005-01-01

    COBRA-AHS (Computer Optimized Ball & Roller Bearing Analysis--Advanced High Speed, J.V. Poplawski & Associates, Bethlehem, PA) is used for the design and analysis of rolling element bearings operating at high speeds under complex mechanical and thermal loading. The code estimates bearing fatigue life by calculating three-dimensional subsurface stress fields developed within the bearing raceways. It provides a state-of-the-art interactive design environment for bearing engineers within a single easy-to-use design-analysis package. The code analyzes flexible or rigid shaft systems containing up to five bearings acted upon by radial, thrust, and moment loads in 5 degrees of freedom. Bearing types include high-speed ball, cylindrical roller, and tapered roller bearings. COBRA-AHS is the first major upgrade in 30 years of such commercially available bearing software. The upgrade was developed under a Small Business Innovation Research contract from the NASA Glenn Research Center, and incorporates the results of 30 years of NASA and industry bearing research and technology.

  13. Graphene-MoS2 Heterojunctions for High-Speed Opto-electronics

    NASA Astrophysics Data System (ADS)

    Horng, Jason; Wang, Alex; Wang, Danqing; Li, Alexander Shengzhi; Wang, Feng

    Heterostructures consisting of two-dimensional materials has drawn significant attention in different research fields owning to their novel electronic states and potential applications. Transmitting information with transition metal dichalcogenides(TMDC) electro-optical modulator switch interconnect is of great interest for technological applications. However, their high-speed applications have been slowed by their intrinsically high resistivity as well as the difficulties in making optimized metal contacts. Here, we present a new strategy by using graphene as a tunable contact to two-dimensional semiconductors to explore possible applications in high-speed opto-electronics. We will present an optical study to provide better understanding of band alignment in graphene/MoS2 heterostructures and a demonstration of high-speed opto-electronics based on these heterostructures. The result shows the new scheme could have potential in both opto-modulators and optical sensing applications.

  14. Coronal holes and high-speed wind streams

    NASA Technical Reports Server (NTRS)

    Zirker, J. B.

    1977-01-01

    Coronal holes, regions of unusually low density and low temperature in the solar corona, are identified as Bartel's M regions, i.e., sources of high-speed wind streams that produce recurrent geomagnetic variations. Throughout the Skylab period the polar caps of the sun were coronal holes, and at lower latitudes the most persistent and recurrent holes were equatorial extensions of the polar caps. The holes rotated 'rigidly' at the equatorial synodic rate. They formed in regions of unipolar photospheric magnetic field, and their internal magnetic fields diverged rapidly with increasing distance from the sun. The geometry of the magnetic field in the inner corona seems to control both the physical properties of the holes and the global distribution of high-speed wind streams in the heliosphere. Phenomenological models for the birth and decay of coronal holes have been proposed.

  15. Ubiquitous information for ubiquitous computing: expressing clinical data sets with openEHR archetypes.

    PubMed

    Garde, Sebastian; Hovenga, Evelyn; Buck, Jasmin; Knaup, Petra

    2006-01-01

    Ubiquitous computing requires ubiquitous access to information and knowledge. With the release of openEHR Version 1.0 there is a common model available to solve some of the problems related to accessing information and knowledge by improving semantic interoperability between clinical systems. Considerable work has been undertaken by various bodies to standardise Clinical Data Sets. Notwithstanding their value, several problems remain unsolved with Clinical Data Sets without the use of a common model underpinning them. This paper outlines these problems like incompatible basic data types and overlapping and incompatible definitions of clinical content. A solution to this based on openEHR archetypes is motivated and an approach to transform existing Clinical Data Sets into archetypes is presented. To avoid significant overlaps and unnecessary effort during archetype development, archetype development needs to be coordinated nationwide and beyond and also across the various health professions in a formalized process.

  16. High-Speed, High-Resolution Time-to-Digital Conversion

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Kleyner, Igor; Garcia, Rafael

    2013-01-01

    This innovation is a series of time-tag pulses from a photomultiplier tube, featuring short time interval between pulses (e.g., 2.5 ns). Using the previous art, dead time between pulses is too long, or too much hardware is required, including a very-high-speed demultiplexer. A faster method is needed. The goal of this work is to provide circuits to time-tag pulses that arrive at a high rate using the hardwired logic in an FPGA - specifically the carry chain - to create what is (in effect) an analog delay line. High-speed pulses travel down the chain in a "wave." For instance, a pulse train has been demonstrated from a 1- GHz source reliably traveling down the carry chain. The size of the carry chain is over 10 ns in the time domain. Thus, multiple pulses will travel down the carry chain in a wave simultaneously. A register clocked by a low-skew clock takes a "snapshot" of the wave. Relatively simple logic can extract the pulses from the snapshot picture by detecting the transitions between logic states. The propagation delay of CMOS (complementary metal oxide semiconductor) logic circuits will differ and/or change as a result of temperature, voltage, age, radiation, and manufacturing variances. The time-to-digital conversion circuits can be calibrated with test signals, or the changes can be nulled by a separate on-die calibration channel, in a closed loop circuit.

  17. Maneuverability Estimation of High-Speed Craft

    DTIC Science & Technology

    2015-06-01

    derived based on equations by Lewandowski and Denny- Hubble in order to find the fundamental maneuvering characteristics. The model is developed in...characteristic of high- speed craft. A mathematical model is derived based on equations by Lewandowski and Denny- Hubble in order to find the fundamental...33 C. EQUATIONS BY DENNY AND HUBBLE ................................................43 D. NOMOTO

  18. Combined High-Speed 3D Scalar and Velocity Reconstruction of Hairpin Vortex

    NASA Astrophysics Data System (ADS)

    Sabatino, Daniel; Rossmann, Tobias; Zhu, Xuanyu; Thorsen, Mary

    2017-11-01

    The combination of 3D scanning stereoscopic particle image velocimetry (PIV) and 3D Planar Laser Induced Fluorescence (PLIF) is used to create high-speed three-dimensional reconstructions of the scalar and velocity fields of a developing hairpin vortex. The complete description of the regenerating hairpin vortex is needed as transitional boundary layers and turbulent spots are both comprised of and influenced by these vortices. A new high-speed, high power, laser-based imaging system is used which enables both high-speed 3D scanning stereo PIV and PLIF measurements. The experimental system uses a 250 Hz scanning mirror, two high-speed cameras with a 10 kHz frame rate, and a 40 kHz pulsed laser. Individual stereoscopic PIV images and scalar PLIF images are then reconstructed into time-resolved volumetric velocity and scalar data. The results from the volumetric velocity and scalar fields are compared to previous low-speed tomographic PIV data and scalar visualizations to determine the accuracy and fidelity of the high-speed diagnostics. Comparisons between the velocity and scalar field during hairpin development and regeneration are also discussed. Supported by the National Science Foundation under Grant CBET-1531475, Lafayette College,and the McCutcheon Foundation.

  19. HDR {sup 192}Ir source speed measurements using a high speed video camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonseca, Gabriel P.; Viana, Rodrigo S. S.; Yoriyaz, Hélio

    Purpose: The dose delivered with a HDR {sup 192}Ir afterloader can be separated into a dwell component, and a transit component resulting from the source movement. The transit component is directly dependent on the source speed profile and it is the goal of this study to measure accurate source speed profiles. Methods: A high speed video camera was used to record the movement of a {sup 192}Ir source (Nucletron, an Elekta company, Stockholm, Sweden) for interdwell distances of 0.25–5 cm with dwell times of 0.1, 1, and 2 s. Transit dose distributions were calculated using a Monte Carlo code simulatingmore » the source movement. Results: The source stops at each dwell position oscillating around the desired position for a duration up to (0.026 ± 0.005) s. The source speed profile shows variations between 0 and 81 cm/s with average speed of ∼33 cm/s for most of the interdwell distances. The source stops for up to (0.005 ± 0.001) s at nonprogrammed positions in between two programmed dwell positions. The dwell time correction applied by the manufacturer compensates the transit dose between the dwell positions leading to a maximum overdose of 41 mGy for the considered cases and assuming an air-kerma strength of 48 000 U. The transit dose component is not uniformly distributed leading to over and underdoses, which is within 1.4% for commonly prescribed doses (3–10 Gy). Conclusions: The source maintains its speed even for the short interdwell distances. Dose variations due to the transit dose component are much lower than the prescribed treatment doses for brachytherapy, although transit dose component should be evaluated individually for clinical cases.« less

  20. High speed, high performance, portable, dual-channel, optical fiber Bragg grating (FBG) demodulator

    NASA Astrophysics Data System (ADS)

    Zhang, Hongtao; Wei, Zhanxiong; Fan, Lingling; Wang, Pengfei; Zhao, Xilin; Wang, Zhenhua; Yang, Shangming; Cui, Hong-Liang

    2009-10-01

    A high speed, high performance, portable, dual-channel, optical Fiber Bragg Grating demodulator based on fiber Fabry- Pérot tunable filter (FFP-FT) is reported in this paper. The high speed demodulation can be achieved to detect the dynamical loads of vehicles with speed of 15 mph. However, the drifts of piezoelectric transducer (PZT) in the cavity of FFP-FT dramatically degrade the stability of system. Two schemes are implemented to improve the stability of system. Firstly, a temperature control system is installed to effectively remove the thermal drifts of PZT. Secondly, a scheme of changing the bias voltage of FFP-FT to restrain non-thermal drifts has been realized at lab and will be further developed to an automatic control system based on microcontroller. Although this demodulator is originally used in Weight-In- Motion (WIM) sensing system, it can be extended into other aspects and the schemes presented in this paper will be useful in many applications.

  1. 75 FR 417 - Certificate of Alternative Compliance for the High Speed Ferry SUSITNA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... Compliance for the High Speed Ferry SUSITNA AGENCY: Coast Guard, DHS. ACTION: Notice. SUMMARY: The Coast Guard announces that a Certificate of Alternative Compliance was issued for the high speed ferry SUSITNA... been issued for the high speed ferry SUSITNA, O.N. 1189367. Full compliance with 72 COLREGS and the...

  2. Privacy Policy Enforcement for Ambient Ubiquitous Services

    NASA Astrophysics Data System (ADS)

    Oyomno, Were; Jäppinen, Pekka; Kerttula, Esa

    Ubiquitous service providers leverage miniaturised computing terminals equipped with wireless capabilities to avail new service models. These models are pivoted on personal and inexpensive terminals to customise services to individual preferences. Portability, small sizes and compact keyboards are few features popularising mobile terminals. Features enable storing and carrying of ever increasing proportions of personal data and ability to use them in service adaptations. Ubiquitous services automate deeper soliciting of personal data transparently without the need for user interactions. Transparent solicitations, acquisitions and handling of personal data legitimises privacy concerns regarding disclosures, retention and re-use of the data. This study presents a policy enforcement for ubiquitous services that safeguards handling of users personal data and monitors adherence to stipulated privacy policies. Enforcement structures towards usability and scalability are presented.

  3. High frequency modal identification on noisy high-speed camera data

    NASA Astrophysics Data System (ADS)

    Javh, Jaka; Slavič, Janko; Boltežar, Miha

    2018-01-01

    Vibration measurements using optical full-field systems based on high-speed footage are typically heavily burdened by noise, as the displacement amplitudes of the vibrating structures are often very small (in the range of micrometers, depending on the structure). The modal information is troublesome to measure as the structure's response is close to, or below, the noise level of the camera-based measurement system. This paper demonstrates modal parameter identification for such noisy measurements. It is shown that by using the Least-Squares Complex-Frequency method combined with the Least-Squares Frequency-Domain method, identification at high-frequencies is still possible. By additionally incorporating a more precise sensor to identify the eigenvalues, a hybrid accelerometer/high-speed camera mode shape identification is possible even below the noise floor. An accelerometer measurement is used to identify the eigenvalues, while the camera measurement is used to produce the full-field mode shapes close to 10 kHz. The identified modal parameters improve the quality of the measured modal data and serve as a reduced model of the structure's dynamics.

  4. Effects of lubrication on the performance of high speed spur gears

    NASA Technical Reports Server (NTRS)

    Mizutani, Hachiro; Isikawa, Yuuichi; Townsend, Dennis P.

    1989-01-01

    An experimental analysis was conducted to determine power loss and gear noise of high speed spur gears with long addendum under various conditions of load, speed, and oil jet pressure for into mesh lubrication. Power losses were calculated from temperature measurements of lubricating oil, gears, gear box, and oil flow rate. Furthermore, power loss was divided into windage loss, friction loss and churning loss. The results show that windage loss and churning loss were the main components of gear power loss of high gear speed. In addition, lubricating conditions had some influences on gear noise especially under low oil temperature or high viscosity.

  5. Gearbox Reliability Collaborative Investigation of Gearbox Motion and High-Speed-Shaft Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Jon; Guo, Yi; Sethuraman, Latha

    2016-03-18

    This paper extends a model-to-test validation effort to examine the effect of different constant rotor torque and moment conditions and intentional generator misalignment on the gearbox motion and high-speed-shaft loads. Fully validating gearbox motion and high-speed-shaft loads across a range of test conditions is a critical precursor to examining the bearing loads, as the gearbox motion and high-speed-shaft loads are the drivers of these bearing loads.

  6. High-Power, High-Speed Electro-Optic Pockels Cell Modulator

    NASA Technical Reports Server (NTRS)

    Hawthorne, Justin; Battle, Philip

    2013-01-01

    Electro-optic modulators rely on a change in the index of refraction for the optical wave as a function of an applied voltage. The corresponding change in index acts to delay the wavefront in the waveguide. The goal of this work was to develop a high-speed, high-power waveguide- based modulator (phase and amplitude) and investigate its use as a pulse slicer. The key innovation in this effort is the use of potassium titanyl phosphate (KTP) waveguides, making the highpower, polarization-based waveguide amplitude modulator possible. Furthermore, because it is fabricated in KTP, the waveguide component will withstand high optical power and have a significantly higher RF modulation figure of merit (FOM) relative to lithium niobate. KTP waveguides support high-power TE and TM modes - a necessary requirement for polarization-based modulation as with a Pockels cell. High-power fiber laser development has greatly outpaced fiber-based modulators in terms of its maturity and specifications. The demand for high-performance nonlinear optical (NLO) devices in terms of power handling, efficiency, bandwidth, and useful wavelength range has driven the development of bulk NLO options, which are limited in their bandwidth, as well as waveguide based LN modulators, which are limited by their low optical damage threshold. Today, commercially available lithium niobate (LN) modulators are used for laser formatting; however, because of photorefractive damage that can reduce transmission and increase requirements on bias control, LN modulators cannot be used with powers over several mW, dependent on wavelength. The high-power, high-speed modulators proposed for development under this effort will enable advancements in several exciting fields including lidarbased remote sensing, atomic interferometry, free-space laser communications, and others.

  7. Mid- to high-frequency noise from high-speed boats and its potential impacts on humpback dolphins.

    PubMed

    Li, Songhai; Wu, Haiping; Xu, Youhou; Peng, Chongwei; Fang, Liang; Lin, Mingli; Xing, Luru; Zhang, Peijun

    2015-08-01

    The impact of noise made by vessels on marine animals has come under increased concern. However, most measurements on noise from vessels have only taken into account the low-frequency components. For cetaceans operating in the mid- and high-frequencies, such as the Indo-Pacific humpback dolphin (Sousa chinensis), mid- to high-frequency noise components may be of more concern, in terms of their potential impacts. In this study, noise made by a small high-speed boat was recorded using a broadband recording system in a dolphin watching area focusing on the effects on humpback dolphins in Sanniang Bay, China. The high-speed boat produced substantial mid- to high-frequency noise components with frequencies to >100 kHz, measured at three speeds: ∼40, 30, and 15 km/h. The noise from the boat raised the ambient noise levels from ∼5 to 47 decibels (dB) root-mean-square (rms) across frequency bands ranging from 1 to 125 kHz at a distance of 20 to 85 m, with louder levels recorded at higher speeds and at closer distances. To conclude, the noise produced by the small high-speed boat could be heard by Sousa chinensis and therefore potentially had adverse effects on the dolphins.

  8. Quiescence near the X-point of MAST measured by high speed visible imaging

    NASA Astrophysics Data System (ADS)

    Walkden, N. R.; Harrison, J.; Silburn, S. A.; Farley, T.; Henderson, S. S.; Kirk, A.; Militello, F.; Thornton, A.; The MAST Team

    2017-12-01

    Using high speed imaging of the divertor volume, the region close to the X-point in MAST is shown to be quiescent. This is confirmed by three different analysis techniques and the quiescent X-point region (QXR) spans from the separatrix to the \\psiN = 1.02 flux surface. Local reductions to the atomic density and effects associated with the camera viewing geometry are ruled out as causes of the QXR, leaving quiescence in the local plasma conditions as being the most likely cause. The QXR is found to be ubiquitous across a significant operational space in MAST including L-mode and H-mode discharges across maximal ranges of 9.8×1019~m-2 in line integrated density, 0.36 MA in plasma current, 0.11 T in toroidal magnetic field and 3.2 MW in NBI power. When mapped to the divertor target the QXR occupies approximately an e-folding length of the heat-flux profile, containing  ∼60% of the total heat flux to the target, and also shows a tendency towards higher frequency shorter lived fluctuations in the ion-saturation current. This is consistent with short-lived divertor localised filamentary structures observed further down the outer divertor leg in the camera images, and suggests a complex multi-region picture of filamentary transport in the divertor.

  9. Double Tunneling Injection Quantum Dot Lasers for High Speed Operation

    DTIC Science & Technology

    2017-10-23

    Double Tunneling-Injection Quantum Dot Lasers for High -Speed Operation The views, opinions and/or findings contained in this report are those of...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6...State University Title: Double Tunneling-Injection Quantum Dot Lasers for High -Speed Operation Report Term: 0-Other Email: asryan@vt.edu Distribution

  10. A high-speed network for cardiac image review.

    PubMed

    Elion, J L; Petrocelli, R R

    1994-01-01

    A high-speed fiber-based network for the transmission and display of digitized full-motion cardiac images has been developed. Based on Asynchronous Transfer Mode (ATM), the network is scaleable, meaning that the same software and hardware is used for a small local area network or for a large multi-institutional network. The system can handle uncompressed digital angiographic images, considered to be at the "high-end" of the bandwidth requirements. Along with the networking, a general-purpose multi-modality review station has been implemented without specialized hardware. This station can store a full injection sequence in "loop RAM" in a 512 x 512 format, then interpolate to 1024 x 1024 while displaying at 30 frames per second. The network and review stations connect to a central file server that uses a virtual file system to make a large high-speed RAID storage disk and associated off-line storage tapes and cartridges all appear as a single large file system to the software. In addition to supporting archival storage and review, the system can also digitize live video using high-speed Direct Memory Access (DMA) from the frame grabber to present uncompressed data to the network. Fully functional prototypes have provided the proof of concept, with full deployment in the institution planned as the next stage.

  11. A high-speed network for cardiac image review.

    PubMed Central

    Elion, J. L.; Petrocelli, R. R.

    1994-01-01

    A high-speed fiber-based network for the transmission and display of digitized full-motion cardiac images has been developed. Based on Asynchronous Transfer Mode (ATM), the network is scaleable, meaning that the same software and hardware is used for a small local area network or for a large multi-institutional network. The system can handle uncompressed digital angiographic images, considered to be at the "high-end" of the bandwidth requirements. Along with the networking, a general-purpose multi-modality review station has been implemented without specialized hardware. This station can store a full injection sequence in "loop RAM" in a 512 x 512 format, then interpolate to 1024 x 1024 while displaying at 30 frames per second. The network and review stations connect to a central file server that uses a virtual file system to make a large high-speed RAID storage disk and associated off-line storage tapes and cartridges all appear as a single large file system to the software. In addition to supporting archival storage and review, the system can also digitize live video using high-speed Direct Memory Access (DMA) from the frame grabber to present uncompressed data to the network. Fully functional prototypes have provided the proof of concept, with full deployment in the institution planned as the next stage. PMID:7949964

  12. In situ flash x-ray high-speed computed tomography for the quantitative analysis of highly dynamic processes

    NASA Astrophysics Data System (ADS)

    Moser, Stefan; Nau, Siegfried; Salk, Manfred; Thoma, Klaus

    2014-02-01

    The in situ investigation of dynamic events, ranging from car crash to ballistics, often is key to the understanding of dynamic material behavior. In many cases the important processes and interactions happen on the scale of milli- to microseconds at speeds of 1000 m s-1 or more. Often, 3D information is necessary to fully capture and analyze all relevant effects. High-speed 3D-visualization techniques are thus required for the in situ analysis. 3D-capable optical high-speed methods often are impaired by luminous effects and dust, while flash x-ray based methods usually deliver only 2D data. In this paper, a novel 3D-capable flash x-ray based method, in situ flash x-ray high-speed computed tomography is presented. The method is capable of producing 3D reconstructions of high-speed processes based on an undersampled dataset consisting of only a few (typically 3 to 6) x-ray projections. The major challenges are identified, discussed and the chosen solution outlined. The application is illustrated with an exemplary application of a 1000 m s-1 high-speed impact event on the scale of microseconds. A quantitative analysis of the in situ measurement of the material fragments with a 3D reconstruction with 1 mm voxel size is presented and the results are discussed. The results show that the HSCT method allows gaining valuable visual and quantitative mechanical information for the understanding and interpretation of high-speed events.

  13. Influences of Cutting Speed and Material Mechanical Properties on Chip Deformation and Fracture during High-Speed Cutting of Inconel 718.

    PubMed

    Wang, Bing; Liu, Zhanqiang; Hou, Xin; Zhao, Jinfu

    2018-03-21

    The paper aims to investigate the influences of material constitutive and fracture parameters in addition to cutting speed on chip formation during high-speed cutting of Inconel 718. Finite element analyses for chip formation are conducted with Johnson-Cook constitutive and fracture models. Meanwhile, experiments of high-speed orthogonal cutting are performed to verify the simulation results with cutting speeds ranging from 50 m/min to 7000 m/min. The research indicates that the chip morphology transforms from serrated to fragmented at the cutting speed of 7000 m/min due to embrittlement of the workpiece material under ultra-high cutting speeds. The parameter of shear localization sensitivity is put forward to describe the influences of material mechanical properties on serrated chip formation. The results demonstrate that the effects of initial yield stress and thermal softening coefficient on chip shear localization are much more remarkable than the other constitutive parameters. For the material fracture parameters, the effects of initial fracture strain and exponential factor of stress state on chip shear localization are more much prominent. This paper provides guidance for controlling chip formation through the adjustment of material mechanical properties and the selection of appropriate cutting parameters.

  14. Influences of Cutting Speed and Material Mechanical Properties on Chip Deformation and Fracture during High-Speed Cutting of Inconel 718

    PubMed Central

    Hou, Xin; Zhao, Jinfu

    2018-01-01

    The paper aims to investigate the influences of material constitutive and fracture parameters in addition to cutting speed on chip formation during high-speed cutting of Inconel 718. Finite element analyses for chip formation are conducted with Johnson–Cook constitutive and fracture models. Meanwhile, experiments of high-speed orthogonal cutting are performed to verify the simulation results with cutting speeds ranging from 50 m/min to 7000 m/min. The research indicates that the chip morphology transforms from serrated to fragmented at the cutting speed of 7000 m/min due to embrittlement of the workpiece material under ultra-high cutting speeds. The parameter of shear localization sensitivity is put forward to describe the influences of material mechanical properties on serrated chip formation. The results demonstrate that the effects of initial yield stress and thermal softening coefficient on chip shear localization are much more remarkable than the other constitutive parameters. For the material fracture parameters, the effects of initial fracture strain and exponential factor of stress state on chip shear localization are more much prominent. This paper provides guidance for controlling chip formation through the adjustment of material mechanical properties and the selection of appropriate cutting parameters. PMID:29561770

  15. Calibration of GPS based high accuracy speed meter for vehicles

    NASA Astrophysics Data System (ADS)

    Bai, Yin; Sun, Qiao; Du, Lei; Yu, Mei; Bai, Jie

    2015-02-01

    GPS based high accuracy speed meter for vehicles is a special type of GPS speed meter which uses Doppler Demodulation of GPS signals to calculate the speed of a moving target. It is increasingly used as reference equipment in the field of traffic speed measurement, but acknowledged standard calibration methods are still lacking. To solve this problem, this paper presents the set-ups of simulated calibration, field test signal replay calibration, and in-field test comparison with an optical sensor based non-contact speed meter. All the experiments were carried out on particular speed values in the range of (40-180) km/h with the same GPS speed meter. The speed measurement errors of simulated calibration fall in the range of +/-0.1 km/h or +/-0.1%, with uncertainties smaller than 0.02% (k=2). The errors of replay calibration fall in the range of +/-0.1% with uncertainties smaller than 0.10% (k=2). The calibration results justify the effectiveness of the two methods. The relative deviations of the GPS speed meter from the optical sensor based noncontact speed meter fall in the range of +/-0.3%, which validates the use of GPS speed meter as reference instruments. The results of this research can provide technical basis for the establishment of internationally standard calibration methods of GPS speed meters, and thus ensures the legal status of GPS speed meters as reference equipment in the field of traffic speed metrology.

  16. Multivariable Techniques for High-Speed Research Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Newman, Brett A.

    1999-01-01

    This report describes the activities and findings conducted under contract with NASA Langley Research Center. Subject matter is the investigation of suitable multivariable flight control design methodologies and solutions for large, flexible high-speed vehicles. Specifically, methodologies are to address the inner control loops used for stabilization and augmentation of a highly coupled airframe system possibly involving rigid-body motion, structural vibrations, unsteady aerodynamics, and actuator dynamics. Design and analysis techniques considered in this body of work are both conventional-based and contemporary-based, and the vehicle of interest is the High-Speed Civil Transport (HSCT). Major findings include: (1) control architectures based on aft tail only are not well suited for highly flexible, high-speed vehicles, (2) theoretical underpinnings of the Wykes structural mode control logic is based on several assumptions concerning vehicle dynamic characteristics, and if not satisfied, the control logic can break down leading to mode destabilization, (3) two-loop control architectures that utilize small forward vanes with the aft tail provide highly attractive and feasible solutions to the longitudinal axis control challenges, and (4) closed-loop simulation sizing analyses indicate the baseline vane model utilized in this report is most likely oversized for normal loading conditions.

  17. High-speed imaging using compressed sensing and wavelength-dependent scattering (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shin, Jaewook; Bosworth, Bryan T.; Foster, Mark A.

    2017-02-01

    The process of multiple scattering has inherent characteristics that are attractive for high-speed imaging with high spatial resolution and a wide field-of-view. A coherent source passing through a multiple-scattering medium naturally generates speckle patterns with diffraction-limited features over an arbitrarily large field-of-view. In addition, the process of multiple scattering is deterministic allowing a given speckle pattern to be reliably reproduced with identical illumination conditions. Here, by exploiting wavelength dependent multiple scattering and compressed sensing, we develop a high-speed 2D time-stretch microscope. Highly chirped pulses from a 90-MHz mode-locked laser are sent through a 2D grating and a ground-glass diffuser to produce 2D speckle patterns that rapidly evolve with the instantaneous frequency of the chirped pulse. To image a scene, we first characterize the high-speed evolution of the generated speckle patterns. Subsequently we project the patterns onto the microscopic region of interest and collect the total light from the scene using a single high-speed photodetector. Thus the wavelength dependent speckle patterns serve as high-speed pseudorandom structured illumination of the scene. An image sequence is then recovered using the time-dependent signal received by the photodetector, the known speckle pattern evolution, and compressed sensing algorithms. Notably, the use of compressed sensing allows for reconstruction of a time-dependent scene using a highly sub-Nyquist number of measurements, which both increases the speed of the imager and reduces the amount of data that must be collected and stored. We will discuss our experimental demonstration of this approach and the theoretical limits on imaging speed.

  18. Aerodynamic effects of high-speed passenger trains on other trains.

    DOT National Transportation Integrated Search

    2002-04-01

    This study assesses the potential safety risks associated with aerodynamic loads produced by the Acela high-speed train when passing freight and bi-level commuter passenger cars. Acela operates at speeds up to 150 mph, on tangent tracks adjacent to n...

  19. High-speed rail aerodynamic assessment and mitigation report : final report.

    DOT National Transportation Integrated Search

    2015-12-01

    This report advances the current state of knowledge, as well as shared understanding and evaluation of present procedures used to : mitigate the impacts effects from high-speed trains (HST) operating at speeds between 110 mph and 250 mph. This work g...

  20. High Speed and High Spatial Density Parameter Measurement Using Fiber Optic Sensing Technology

    NASA Technical Reports Server (NTRS)

    Richards, William Lance (Inventor); Piazza, Anthony (Inventor); Parker, Allen R. Jr. (Inventor); Hamory, Philip J (Inventor); Chan, Hon Man (Inventor)

    2017-01-01

    The present invention is an improved fiber optic sensing system (FOSS) having the ability to provide both high spatial resolution and high frequency strain measurements. The inventive hybrid FOSS fiber combines sensors from high acquisition speed and low spatial resolution Wavelength-Division Multiplexing (WDM) systems and from low acquisition speed and high spatial resolution Optical Frequency Domain Reflection (OFDR) systems. Two unique light sources utilizing different wavelengths are coupled with the hybrid FOSS fiber to generate reflected data from both the WDM sensors and OFDR sensors operating on a single fiber optic cable without incurring interference from one another. The two data sets are then de-multiplexed for analysis, optionally with conventionally-available WDM and OFDR system analyzers.

  1. Electron heating within interaction zones of simple high-speed solar wind streams

    NASA Technical Reports Server (NTRS)

    Feldman, W. C.; Asbridge, J. R.; Bame, S. J.; Gosling, J. T.; Lemons, D. S.

    1978-01-01

    In the present paper, electron heating within the high-speed portions of three simple stream-stream interaction zones is studied to further our understanding of the physics of heat flux regulation in interplanetary space. To this end, the thermal signals present in the compressions at the leading edges of the simple high-speed streams are analyzed, showing that the data are inconsistent with the Spitzer conductivity. Instead, a polynomial law is found to apply. Its implication concerning the mechanism of interplanetary heat conduction is discussed, and the results of applying this conductivity law to high-speed flows inside of 1 AU are studied. A self-consistent model of the radial evolution of electrons in the high-speed solar wind is proposed.

  2. Vibration characteristics of dental high-speed turbines and speed-increasing handpieces.

    PubMed

    Poole, Ruth L; Lea, Simon C; Dyson, John E; Shortall, Adrian C C; Walmsley, A Damien

    2008-07-01

    Vibrations of dental handpieces may contribute to symptoms of hand-arm vibration syndrome in dental personnel and iatrogenic enamel cracking in teeth. However, methods for measuring dental handpiece vibrations have previously been limited and information about vibration characteristics is sparse. This preliminary study aimed to use a novel approach to assess the vibrations of unloaded high-speed handpieces in vitro. Maximum vibration displacement amplitudes of five air turbines and two speed-increasing handpieces were recorded whilst they were operated with and without a rotary cutting instrument (RCI) using a scanning laser vibrometer (SLV). RCI rotation speeds, calculated from frequency peaks, were consistent with expected values. ANOVA statistical analysis indicated significant differences in vibrations between handpiece models (p<0.01), although post hoc tests revealed that differences between most individual models were not significant (p>0.11). Operating handpieces with a RCI resulted in greater vibrations than with no RCI (p<0.01). Points on the head of the handpiece showed greater vibration displacement amplitudes than points along the body (p<0.01). Although no single measurement exceeded 4 microm for the handpieces in the current test setup (implying that these vibrations may be unlikely to cause adverse effects), this study has formed the basis for future work which will include handpiece vibration measurements whilst cutting under clinically representative loads.

  3. Fabrication and Testing of High-Speed-Single-Rotor and Compound-Rotor Systems

    DTIC Science & Technology

    2016-05-04

    pitch link loads, hub loads, rotor wakes and performance of high -speed single-rotor and compound-rotor systems to support 1. REPORT DATE (DD-MM-YYYY) 4...Public Release; Distribution Unlimited UU UU UU UU 05-04-2016 14-Jul-2014 13-Jan-2016 Final Report: Fabrication and Testing of High -Speed Single- Rotor and...Final Report: Fabrication and Testing of High -Speed Single-Rotor and Compound-Rotor Systems Report Title The Alfred Gessow Rotorcraft Center has

  4. Fabrication and Testing of High-Speed Single-Rotor and Compound-Rotor Systems

    DTIC Science & Technology

    2016-04-05

    pitch link loads, hub loads, rotor wakes and performance of high -speed single-rotor and compound-rotor systems to support 1. REPORT DATE (DD-MM-YYYY) 4...Public Release; Distribution Unlimited UU UU UU UU 05-04-2016 14-Jul-2014 13-Jan-2016 Final Report: Fabrication and Testing of High -Speed Single- Rotor and...Final Report: Fabrication and Testing of High -Speed Single-Rotor and Compound-Rotor Systems Report Title The Alfred Gessow Rotorcraft Center has

  5. Pulsed laser triggered high speed microfluidic switch

    NASA Astrophysics Data System (ADS)

    Wu, Ting-Hsiang; Gao, Lanyu; Chen, Yue; Wei, Kenneth; Chiou, Pei-Yu

    2008-10-01

    We report a high-speed microfluidic switch capable of achieving a switching time of 10 μs. The switching mechanism is realized by exciting dynamic vapor bubbles with focused laser pulses in a microfluidic polydimethylsiloxane (PDMS) channel. The bubble expansion deforms the elastic PDMS channel wall and squeezes the adjacent sample channel to control its fluid and particle flows as captured by the time-resolved imaging system. A switching of polystyrene microspheres in a Y-shaped channel has also been demonstrated. This ultrafast laser triggered switching mechanism has the potential to advance the sorting speed of state-of-the-art microscale fluorescence activated cell sorting devices.

  6. Error mapping of high-speed AFM systems

    NASA Astrophysics Data System (ADS)

    Klapetek, Petr; Picco, Loren; Payton, Oliver; Yacoot, Andrew; Miles, Mervyn

    2013-02-01

    In recent years, there have been several advances in the development of high-speed atomic force microscopes (HSAFMs) to obtain images with nanometre vertical and lateral resolution at frame rates in excess of 1 fps. To date, these instruments are lacking in metrology for their lateral scan axes; however, by imaging a series of two-dimensional lateral calibration standards, it has been possible to obtain information about the errors associated with these HSAFM scan axes. Results from initial measurements are presented in this paper and show that the scan speed needs to be taken into account when performing a calibration as it can lead to positioning errors of up to 3%.

  7. Magneto-optical system for high speed real time imaging.

    PubMed

    Baziljevich, M; Barness, D; Sinvani, M; Perel, E; Shaulov, A; Yeshurun, Y

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  8. Magneto-optical system for high speed real time imaging

    NASA Astrophysics Data System (ADS)

    Baziljevich, M.; Barness, D.; Sinvani, M.; Perel, E.; Shaulov, A.; Yeshurun, Y.

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  9. CMOS Image Sensors for High Speed Applications.

    PubMed

    El-Desouki, Munir; Deen, M Jamal; Fang, Qiyin; Liu, Louis; Tse, Frances; Armstrong, David

    2009-01-01

    Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD) imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4∼5 μm) due to limitations in the optics, CMOS technology scaling can allow for an increased number of transistors to be integrated into the pixel to improve both detection and signal processing. Such smart pixels truly show the potential of CMOS technology for imaging applications allowing CMOS imagers to achieve the image quality and global shuttering performance necessary to meet the demands of ultrahigh-speed applications. In this paper, a review of CMOS-based high-speed imager design is presented and the various implementations that target ultrahigh-speed imaging are described. This work also discusses the design, layout and simulation results of an ultrahigh acquisition rate CMOS active-pixel sensor imager that can take 8 frames at a rate of more than a billion frames per second (fps).

  10. High speed cryogenic self-acting, shaft seals for liquid rocket turbopumps

    NASA Technical Reports Server (NTRS)

    Burcham, R. E.

    1983-01-01

    Three self acting lift pad liquid oxygen face seals and two self acting gaseous helium circumferential seals for high speed liquid oxygen turbopump were evaluated. The development of a technology for reliable, 10 hour life, multiple start seals for use in high speed liquid oxygen turbopumps is discussed.

  11. ARINC 818 adds capabilities for high-speed sensors and systems

    NASA Astrophysics Data System (ADS)

    Keller, Tim; Grunwald, Paul

    2014-06-01

    ARINC 818, titled Avionics Digital Video Bus (ADVB), is the standard for cockpit video that has gained wide acceptance in both the commercial and military cockpits including the Boeing 787, the A350XWB, the A400M, the KC- 46A and many others. Initially conceived of for cockpit displays, ARINC 818 is now propagating into high-speed sensors, such as infrared and optical cameras due to its high-bandwidth and high reliability. The ARINC 818 specification that was initially release in the 2006 and has recently undergone a major update that will enhance its applicability as a high speed sensor interface. The ARINC 818-2 specification was published in December 2013. The revisions to the specification include: video switching, stereo and 3-D provisions, color sequential implementations, regions of interest, data-only transmissions, multi-channel implementations, bi-directional communication, higher link rates to 32Gbps, synchronization signals, options for high-speed coax interfaces and optical interface details. The additions to the specification are especially appealing for high-bandwidth, multi sensor systems that have issues with throughput bottlenecks and SWaP concerns. ARINC 818 is implemented on either copper or fiber optic high speed physical layers, and allows for time multiplexing multiple sensors onto a single link. This paper discusses each of the new capabilities in the ARINC 818-2 specification and the benefits for ISR and countermeasures implementations, several examples are provided.

  12. In-pavement fiber Bragg grating sensors for high-speed weigh-in-motion measurements

    NASA Astrophysics Data System (ADS)

    Al-Tarawneh, Mu'ath; Huang, Ying

    2017-04-01

    The demand on high-speed weigh-in-motion (WIM) measurement rises significantly in last decade to collect weight information for traffic managements especially after the introduction of weigh-station bypass programs such as Pre-Pass. In this study, a three-dimension glass fiber-reinforced polymer packaged fiber Bragg grating sensor (3D GFRP-FBG) is introduced to be embedded inside flexible pavements for weigh-in-motion (WIM) measurement at high speed. Sensitivity study showed that the developed sensor is very sensitive to the passing weights at high speed. Field tests also validated that the developed sensor was able to detect weights at a vehicle driving speed up to 55mph, which can be applied for WIM measurements at high speed.

  13. Environmental impact statement : Chicago-St. Louis high speed rail project

    DOT National Transportation Integrated Search

    2000-05-16

    The proposed action would provide High-Speed Rail (HSR) passenger service between Chicago and St. Louis, operating at top speeds of 110 mph (180 kph) through most of the project area, except for a 29-kilometer (18-mile) segment between Lincoln and Sp...

  14. Modal identification of spindle-tool unit in high-speed machining

    NASA Astrophysics Data System (ADS)

    Gagnol, Vincent; Le, Thien-Phu; Ray, Pascal

    2011-10-01

    The accurate knowledge of high-speed motorised spindle dynamic behaviour during machining is important in order to ensure the reliability of machine tools in service and the quality of machined parts. More specifically, the prediction of stable cutting regions, which is a critical requirement for high-speed milling operations, requires the accurate estimation of tool/holder/spindle set dynamic modal parameters. These estimations are generally obtained through Frequency Response Function (FRF) measurements of the non-rotating spindle. However, significant changes in modal parameters are expected to occur during operation, due to high-speed spindle rotation. The spindle's modal variations are highlighted through an integrated finite element model of the dynamic high-speed spindle-bearing system, taking into account rotor dynamics effects. The dependency of dynamic behaviour on speed range is then investigated and determined with accuracy. The objective of the proposed paper is to validate these numerical results through an experiment-based approach. Hence, an experimental setup is elaborated to measure rotating tool vibration during the machining operation in order to determine the spindle's modal frequency variation with respect to spindle speed in an industrial environment. The identification of natural frequencies of the spindle under rotating conditions is challenging, due to the low number of sensors and the presence of many harmonics in the measured signals. In order to overcome these issues and to extract the characteristics of the system, the spindle modes are determined through a 3-step procedure. First, spindle modes are highlighted using the Frequency Domain Decomposition (FDD) technique, with a new formulation at the considered rotating speed. These extracted modes are then analysed through the value of their respective damping ratios in order to separate the harmonics component from structural spindle natural frequencies. Finally, the stochastic

  15. Large area high-speed metrology SPM system.

    PubMed

    Klapetek, P; Valtr, M; Picco, L; Payton, O D; Martinek, J; Yacoot, A; Miles, M

    2015-02-13

    We present a large area high-speed measuring system capable of rapidly generating nanometre resolution scanning probe microscopy data over mm(2) regions. The system combines a slow moving but accurate large area XYZ scanner with a very fast but less accurate small area XY scanner. This arrangement enables very large areas to be scanned by stitching together the small, rapidly acquired, images from the fast XY scanner while simultaneously moving the slow XYZ scanner across the region of interest. In order to successfully merge the image sequences together two software approaches for calibrating the data from the fast scanner are described. The first utilizes the low uncertainty interferometric sensors of the XYZ scanner while the second implements a genetic algorithm with multiple parameter fitting during the data merging step of the image stitching process. The basic uncertainty components related to these high-speed measurements are also discussed. Both techniques are shown to successfully enable high-resolution, large area images to be generated at least an order of magnitude faster than with a conventional atomic force microscope.

  16. Large area high-speed metrology SPM system

    NASA Astrophysics Data System (ADS)

    Klapetek, P.; Valtr, M.; Picco, L.; Payton, O. D.; Martinek, J.; Yacoot, A.; Miles, M.

    2015-02-01

    We present a large area high-speed measuring system capable of rapidly generating nanometre resolution scanning probe microscopy data over mm2 regions. The system combines a slow moving but accurate large area XYZ scanner with a very fast but less accurate small area XY scanner. This arrangement enables very large areas to be scanned by stitching together the small, rapidly acquired, images from the fast XY scanner while simultaneously moving the slow XYZ scanner across the region of interest. In order to successfully merge the image sequences together two software approaches for calibrating the data from the fast scanner are described. The first utilizes the low uncertainty interferometric sensors of the XYZ scanner while the second implements a genetic algorithm with multiple parameter fitting during the data merging step of the image stitching process. The basic uncertainty components related to these high-speed measurements are also discussed. Both techniques are shown to successfully enable high-resolution, large area images to be generated at least an order of magnitude faster than with a conventional atomic force microscope.

  17. Development of a High-speed Electromagnetic Repulsion Mechanism for High-voltage Vacuum Circuit Breakers

    NASA Astrophysics Data System (ADS)

    Tsukima, Mitsuru; Takeuchi, Toshie; Koyama, Kenichi; Yoshiyasu, Hajimu

    This paper presents a design and testing of a new high-speed electromagnetic driving mechanism for a high-voltage vacuum circuit breaker (VCB). This mechanism is based on a high-speed electromagnetic repulsion and a permanent magnet spring (PMS). This PMS is introduced instead of the conventional disk spring due to its low spring energy and more suitable force characteristics for VCB application. The PMS has been optimally designed by the 3d non-linear finite-elements magnetic field analysis and investigated its internal friction and eddy-current effect. Furthermore, we calculated the dynamic of this mechanism coupling with the electromagnetic field and circuit analysis, in order to satisfy the operating characteristics—contact velocity, response time and so on, required for the high-speed VCB. A prototype VCB, which was built based on the above analysis shows sufficient operating performance. Finally, the short circuit interruption tests were carried out with this prototype breaker, and we have been able to verify its satisfying performance.

  18. Kinematic and Dynamic Analysis of High-Speed Intermittent-Motion Mechanisms.

    DTIC Science & Technology

    1984-01-16

    intermittent-motion mechanisms which -"have potential application to the high-speed automatic weapon system , and an investigation on the workspace of a robotic...manipulator system . The problems of this investigation belong to a selected group of unsolved or partially solved problems which are relevant and...design of high-speed machinery and automated manufacturing systems . Accession For IiTIS GRA&I DTIC TAB Unamounced 0 Justificatio By_, Distribut ion

  19. REDUCTION OF EMISSIONS FROM A HIGH SPEED FERRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson,G.; Gautam, M; Clark, N

    2003-08-24

    Emissions from marine vessels are being scrutinized as a major contributor to the total particulate matter (TPM), oxides of sulfur (SOx) and oxides of nitrogen (NOx) environmental loading. Fuel sulfur control is the key to SOx reduction. Significant reductions in the emissions from on-road vehicles have been achieved in the last decade and the emissions from these vehicles will be reduced by another order of magnitude in the next five years: these improvements have served to emphasize the need to reduce emissions from other mobile sources, including off road equipment, locomotives, and marine vessels. Diesel-powered vessels of interest include oceanmore » going vessels with low- and medium-speed engines, as well as ferries with high speed engines, as discussed below. A recent study examined the use of intake water injection (WIS) and ultra low sulfur diesel (ULSD) to reduce the emissions from a high-speed passenger ferry in southern California. One of the four Detroit Diesel 12V92 two-stroke high speed engines that power the Waverider (operated by SCX, inc.) was instrumented to collect intake airflow, fuel flow, shaft torque, and shaft speed. Engine speed and shaft torque were uniquely linked for given vessel draft and prevailing wind and sea conditions. A raw exhaust gas sampling system was utilized to measure the concentration of NOx, carbon dioxide (CO2), and oxygen (O2) and a mini dilution tunnel sampling a slipstream from the raw exhaust was used to collect TPM on 70 mm filters. The emissions data were processed to yield brake-specific mass results. The system that was employed allowed for redundant data to be collected for quality assurance and quality control. To acquire the data, the Waverider was operated at five different steady state speeds. Three modes were in the open sea off Oceanside, CA, and idle and harbor modes were also used. Data have showed that the use of ULSD along with water injection (WIS) could significantly reduce the emissions of NOx

  20. An Ultra-High Speed Whole Slide Image Viewing System

    PubMed Central

    Yagi, Yukako; Yoshioka, Shigeatsu; Kyusojin, Hiroshi; Onozato, Maristela; Mizutani, Yoichi; Osato, Kiyoshi; Yada, Hiroaki; Mark, Eugene J.; Frosch, Matthew P.; Louis, David N.

    2012-01-01

    Background: One of the goals for a Whole Slide Imaging (WSI) system is implementation in the clinical practice of pathology. One of the unresolved problems in accomplishing this goal is the speed of the entire process, i.e., from viewing the slides through making the final diagnosis. Most users are not satisfied with the correct viewing speeds of available systems. We have evaluated a new WSI viewing station and tool that focuses on speed. Method: A prototype WSI viewer based on PlayStation®3 with wireless controllers was evaluated at the Department of Pathology at MGH for the following reasons: 1. For the simulation of signing-out cases; 2. Enabling discussion at a consensus conference; and 3. Use at slide seminars during a Continuing Medical Education course. Results: Pathologists were being able to use the system comfortably after 0–15 min training. There were no complaints regarding speed. Most pathologists were satisfied with the functionality, usability and speed of the system. The most difficult situation was simulating diagnostic sign-out. Conclusion: The preliminary results of adapting the Sony PlayStation®3 (PS3®) as an ultra-high speed WSI viewing system were promising. The achieved speed is consistent with what would be needed to use WSI in daily practice. PMID:22063731

  1. An ultra-high speed Whole Slide Image viewing system.

    PubMed

    Yagi, Yukako; Yoshioka, Shigeatsu; Kyusojin, Hiroshi; Onozato, Maristela; Mizutani, Yoichi; Osato, Kiyoshi; Yada, Hiroaki; Mark, Eugene J; Frosch, Matthew P; Louis, David N

    2012-01-01

    One of the goals for a Whole Slide Imaging (WSI) system is implementation in the clinical practice of pathology. One of the unresolved problems in accomplishing this goal is the speed of the entire process, i.e., from viewing the slides through making the final diagnosis. Most users are not satisfied with the correct viewing speeds of available systems. We have evaluated a new WSI viewing station and tool that focuses on speed. A prototype WSI viewer based on PlayStation®3 with wireless controllers was evaluated at the Department of Pathology at MGH for the following reasons: 1. For the simulation of signing-out cases; 2. Enabling discussion at a consensus conference; and 3. Use at slide seminars during a Continuing Medical Education course. Pathologists were being able to use the system comfortably after 0-15 min training. There were no complaints regarding speed. Most pathologists were satisfied with the functionality, usability and speed of the system. The most difficult situation was simulating diagnostic sign-out. The preliminary results of adapting the Sony PlayStation®3 (PS3®) as an ultra-high speed WSI viewing system were promising. The achieved speed is consistent with what would be needed to use WSI in daily practice.

  2. An ultra-high speed whole slide image viewing system.

    PubMed

    Yagi, Yukako; Yoshioka, Shigeatsu; Kyusojin, Hiroshi; Onozato, Maristela; Mizutani, Yoichi; Osato, Kiyoshi; Yada, Hiroaki; Mark, Eugene J; Frosch, Matthew P; Louis, David N

    2012-01-01

    One of the goals for a Whole Slide Imaging (WSI) system is implementation in the clinical practice of pathology. One of the unresolved problems in accomplishing this goal is the speed of the entire process, i.e., from viewing the slides through making the final diagnosis. Most users are not satisfied with the correct viewing speeds of available systems. We have evaluated a new WSI viewing station and tool that focuses on speed. A prototype WSI viewer based on PlayStation®3 with wireless controllers was evaluated at the Department of Pathology at MGH for the following reasons: 1. For the simulation of signing-out cases; 2. Enabling discussion at a consensus conference; and 3. Use at slide seminars during a Continuing Medical Education course. Pathologists were being able to use the system comfortably after 0-15 min training. There were no complaints regarding speed. Most pathologists were satisfied with the functionality, usability and speed of the system. The most difficult situation was simulating diagnostic sign-out. The preliminary results of adapting the Sony PlayStation®3 (PS3®) as an ultra-high speed WSI viewing system were promising. The achieved speed is consistent with what would be needed to use WSI in daily practice.

  3. Trust information-based privacy architecture for ubiquitous health.

    PubMed

    Ruotsalainen, Pekka Sakari; Blobel, Bernd; Seppälä, Antto; Nykänen, Pirkko

    2013-10-08

    Ubiquitous health is defined as a dynamic network of interconnected systems that offers health services independent of time and location to a data subject (DS). The network takes place in open and unsecure information space. It is created and managed by the DS who sets rules that regulate the way personal health information is collected and used. Compared to health care, it is impossible in ubiquitous health to assume the existence of a priori trust between the DS and service providers and to produce privacy using static security services. In ubiquitous health features, business goals and regulations systems followed often remain unknown. Furthermore, health care-specific regulations do not rule the ways health data is processed and shared. To be successful, ubiquitous health requires novel privacy architecture. The goal of this study was to develop a privacy management architecture that helps the DS to create and dynamically manage the network and to maintain information privacy. The architecture should enable the DS to dynamically define service and system-specific rules that regulate the way subject data is processed. The architecture should provide to the DS reliable trust information about systems and assist in the formulation of privacy policies. Furthermore, the architecture should give feedback upon how systems follow the policies of DS and offer protection against privacy and trust threats existing in ubiquitous environments. A sequential method that combines methodologies used in system theory, systems engineering, requirement analysis, and system design was used in the study. In the first phase, principles, trust and privacy models, and viewpoints were selected. Thereafter, functional requirements and services were developed on the basis of a careful analysis of existing research published in journals and conference proceedings. Based on principles, models, and requirements, architectural components and their interconnections were developed using system

  4. Trust Information-Based Privacy Architecture for Ubiquitous Health

    PubMed Central

    2013-01-01

    Background Ubiquitous health is defined as a dynamic network of interconnected systems that offers health services independent of time and location to a data subject (DS). The network takes place in open and unsecure information space. It is created and managed by the DS who sets rules that regulate the way personal health information is collected and used. Compared to health care, it is impossible in ubiquitous health to assume the existence of a priori trust between the DS and service providers and to produce privacy using static security services. In ubiquitous health features, business goals and regulations systems followed often remain unknown. Furthermore, health care-specific regulations do not rule the ways health data is processed and shared. To be successful, ubiquitous health requires novel privacy architecture. Objective The goal of this study was to develop a privacy management architecture that helps the DS to create and dynamically manage the network and to maintain information privacy. The architecture should enable the DS to dynamically define service and system-specific rules that regulate the way subject data is processed. The architecture should provide to the DS reliable trust information about systems and assist in the formulation of privacy policies. Furthermore, the architecture should give feedback upon how systems follow the policies of DS and offer protection against privacy and trust threats existing in ubiquitous environments. Methods A sequential method that combines methodologies used in system theory, systems engineering, requirement analysis, and system design was used in the study. In the first phase, principles, trust and privacy models, and viewpoints were selected. Thereafter, functional requirements and services were developed on the basis of a careful analysis of existing research published in journals and conference proceedings. Based on principles, models, and requirements, architectural components and their interconnections

  5. High-speed Civil Transport Aircraft Emissions

    NASA Technical Reports Server (NTRS)

    Miake-Lye, Richard C.; Matulaitis, J. A.; Krause, F. H.; Dodds, Willard J.; Albers, Martin; Hourmouziadis, J.; Hasel, K. L.; Lohmann, R. P.; Stander, C.; Gerstle, John H.

    1992-01-01

    Estimates are given for the emissions from a proposed high speed civil transport (HSCT). This advanced technology supersonic aircraft would fly in the lower stratosphere at a speed of roughly Mach 1.6 to 3.2 (470 to 950 m/sec or 920 to 1850 knots). Because it would fly in the stratosphere at an altitude in the range of 15 to 23 km commensurate with its design speed, its exhaust effluents could perturb the chemical balance in the upper atmosphere. The first step in determining the nature and magnitude of any chemical changes in the atmosphere resulting from these proposed aircraft is to identify and quantify the chemically important species they emit. Relevant earlier work is summarized, dating back to the Climatic Impact Assessment Program of the early 1970s and current propulsion research efforts. Estimates are provided of the chemical composition of an HSCT's exhaust, and these emission indices are presented. Other aircraft emissions that are not due to combustion processes are also summarized; these emissions are found to be much smaller than the exhaust emissions. Future advances in propulsion technology, in experimental measurement techniques, and in understanding upper atmospheric chemistry may affect these estimates of the amounts of trace exhaust species or their relative importance.

  6. Mining the preferences of patients for ubiquitous clinic recommendation.

    PubMed

    Chen, Tin-Chih Toly; Chiu, Min-Chi

    2018-03-06

    A challenge facing all ubiquitous clinic recommendation systems is that patients often have difficulty articulating their requirements. To overcome this problem, a ubiquitous clinic recommendation mechanism was designed in this study by mining the clinic preferences of patients. Their preferences were defined using the weights in the ubiquitous clinic recommendation mechanism. An integer nonlinear programming problem was solved to tune the values of the weights on a rolling basis. In addition, since it may take a long time to adjust the values of weights to their asymptotic values, the back propagation network (BPN)-response surface method (RSM) method is applied to estimate the asymptotic values of weights. The proposed methodology was tested in a regional study. Experimental results indicated that the ubiquitous clinic recommendation system outperformed several existing methods in improving the successful recommendation rate.

  7. Toward ubiquitous healthcare services with a novel efficient cloud platform.

    PubMed

    He, Chenguang; Fan, Xiaomao; Li, Ye

    2013-01-01

    Ubiquitous healthcare services are becoming more and more popular, especially under the urgent demand of the global aging issue. Cloud computing owns the pervasive and on-demand service-oriented natures, which can fit the characteristics of healthcare services very well. However, the abilities in dealing with multimodal, heterogeneous, and nonstationary physiological signals to provide persistent personalized services, meanwhile keeping high concurrent online analysis for public, are challenges to the general cloud. In this paper, we proposed a private cloud platform architecture which includes six layers according to the specific requirements. This platform utilizes message queue as a cloud engine, and each layer thereby achieves relative independence by this loosely coupled means of communications with publish/subscribe mechanism. Furthermore, a plug-in algorithm framework is also presented, and massive semistructure or unstructured medical data are accessed adaptively by this cloud architecture. As the testing results showing, this proposed cloud platform, with robust, stable, and efficient features, can satisfy high concurrent requests from ubiquitous healthcare services.

  8. Research notes : high-speed rail survey results.

    DOT National Transportation Integrated Search

    2010-08-01

    The survey was conducted from April 2010 to June 2010 using both a print and a web version with identical questions. The print version of the survey was distributed at open house meetings on high-speed rail held in Eugene, Junction City, Albany, Sale...

  9. HIGH SPEED GC/MS FOR AIR ANALYSIS

    EPA Science Inventory

    A high speed GC/MS system consisting of a gas chromatograph equipped with a narrow bandwidth injection accessory and using a time-of-flight mass spectrometer detector has been adapted for analysis of ambient whole air samples which have been collected in passivated canisters. ...

  10. Speed limit recommendation in vicinity of signalized, high-speed intersection.

    DOT National Transportation Integrated Search

    2012-04-01

    We evaluated the traffic operations and safety effects of 5 mph and 10 mph speed limit reductions in the vicinity of highspeed, : signalized intersections with advance warning flashers (AWF). Traffic operational effects of the reduced speed : limits ...

  11. Visualization of High Speed Liquid Jet Impaction on a Moving Surface

    PubMed Central

    Guo, Yuchen; Green, Sheldon

    2015-01-01

    Two apparatuses for examining liquid jet impingement on a high-speed moving surface are described: an air cannon device (for examining surface speeds between 0 and 25 m/sec) and a spinning disk device (for examining surface speeds between 15 and 100 m/sec). The air cannon linear traverse is a pneumatic energy-powered system that is designed to accelerate a metal rail surface mounted on top of a wooden projectile. A pressurized cylinder fitted with a solenoid valve rapidly releases pressurized air into the barrel, forcing the projectile down the cannon barrel. The projectile travels beneath a spray nozzle, which impinges a liquid jet onto its metal upper surface, and the projectile then hits a stopping mechanism. A camera records the jet impingement, and a pressure transducer records the spray nozzle backpressure. The spinning disk set-up consists of a steel disk that reaches speeds of 500 to 3,000 rpm via a variable frequency drive (VFD) motor. A spray system similar to that of the air cannon generates a liquid jet that impinges onto the spinning disc, and cameras placed at several optical access points record the jet impingement. Video recordings of jet impingement processes are recorded and examined to determine whether the outcome of impingement is splash, splatter, or deposition. The apparatuses are the first that involve the high speed impingement of low-Reynolds-number liquid jets on high speed moving surfaces. In addition to its rail industry applications, the described technique may be used for technical and industrial purposes such as steelmaking and may be relevant to high-speed 3D printing. PMID:25938331

  12. Visualization of high speed liquid jet impaction on a moving surface.

    PubMed

    Guo, Yuchen; Green, Sheldon

    2015-04-17

    Two apparatuses for examining liquid jet impingement on a high-speed moving surface are described: an air cannon device (for examining surface speeds between 0 and 25 m/sec) and a spinning disk device (for examining surface speeds between 15 and 100 m/sec). The air cannon linear traverse is a pneumatic energy-powered system that is designed to accelerate a metal rail surface mounted on top of a wooden projectile. A pressurized cylinder fitted with a solenoid valve rapidly releases pressurized air into the barrel, forcing the projectile down the cannon barrel. The projectile travels beneath a spray nozzle, which impinges a liquid jet onto its metal upper surface, and the projectile then hits a stopping mechanism. A camera records the jet impingement, and a pressure transducer records the spray nozzle backpressure. The spinning disk set-up consists of a steel disk that reaches speeds of 500 to 3,000 rpm via a variable frequency drive (VFD) motor. A spray system similar to that of the air cannon generates a liquid jet that impinges onto the spinning disc, and cameras placed at several optical access points record the jet impingement. Video recordings of jet impingement processes are recorded and examined to determine whether the outcome of impingement is splash, splatter, or deposition. The apparatuses are the first that involve the high speed impingement of low-Reynolds-number liquid jets on high speed moving surfaces. In addition to its rail industry applications, the described technique may be used for technical and industrial purposes such as steelmaking and may be relevant to high-speed 3D printing.

  13. High-speed GPU-based finite element simulations for NDT

    NASA Astrophysics Data System (ADS)

    Huthwaite, P.; Shi, F.; Van Pamel, A.; Lowe, M. J. S.

    2015-03-01

    The finite element method solved with explicit time increments is a general approach which can be applied to many ultrasound problems. It is widely used as a powerful tool within NDE for developing and testing inspection techniques, and can also be used in inversion processes. However, the solution technique is computationally intensive, requiring many calculations to be performed for each simulation, so traditionally speed has been an issue. For maximum speed, an implementation of the method, called Pogo [Huthwaite, J. Comp. Phys. 2014, doi: 10.1016/j.jcp.2013.10.017], has been developed to run on graphics cards, exploiting the highly parallelisable nature of the algorithm. Pogo typically demonstrates speed improvements of 60-90x over commercial CPU alternatives. Pogo is applied to three NDE examples, where the speed improvements are important: guided wave tomography, where a full 3D simulation must be run for each source transducer and every different defect size; scattering from rough cracks, where many simulations need to be run to build up a statistical model of the behaviour; and ultrasound propagation within coarse-grained materials where the mesh must be highly refined and many different cases run.

  14. A Review on High-Speed Machining of Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Rahman, Mustafizur; Wang, Zhi-Gang; Wong, Yoke-San

    Titanium alloys have been widely used in the aerospace, biomedical and automotive industries because of their good strength-to-weight ratio and superior corrosion resistance. However, it is very difficult to machine them due to their poor machinability. When machining titanium alloys with conventional tools, the tool wear rate progresses rapidly, and it is generally difficult to achieve a cutting speed of over 60m/min. Other types of tool materials, including ceramic, diamond, and cubic boron nitride (CBN), are highly reactive with titanium alloys at higher temperature. However, binder-less CBN (BCBN) tools, which do not have any binder, sintering agent or catalyst, have a remarkably longer tool life than conventional CBN inserts even at high cutting speeds. In order to get deeper understanding of high speed machining (HSM) of titanium alloys, the generation of mathematical models is essential. The models are also needed to predict the machining parameters for HSM. This paper aims to give an overview of recent developments in machining and HSM of titanium alloys, geometrical modeling of HSM, and cutting force models for HSM of titanium alloys.

  15. Visualization of Projectile Flying at High Speed in Dusty Atmosphere

    NASA Astrophysics Data System (ADS)

    Masaki, Chihiro; Watanabe, Yasumasa; Suzuki, Kojiro

    2017-10-01

    Considering a spacecraft that encounters particle-laden environment, such as dust particles flying up over the regolith by the jet of the landing thruster, high-speed flight of a projectile in such environment was experimentally simulated by using the ballistic range. At high-speed collision of particles on the projectile surface, they may be reflected with cracking into smaller pieces. On the other hand, the projectile surface will be damaged by the collision. To obtain the fundamental characteristics of such complicated phenomena, a projectile was launched at the velocity up to 400 m/s and the collective behaviour of particles around projectile was observed by the high-speed camera. To eliminate the effect of the gas-particle interaction and to focus on only the effect of the interaction between the particles and the projectile's surface, the test chamber pressure was evacuated down to 30 Pa. The particles about 400μm diameter were scattered and formed a sheet of particles in the test chamber by using two-dimensional funnel with a narrow slit. The projectile was launched into the particle sheet in the tangential direction, and the high-speed camera captured both projectile and particle motions. From the movie, the interaction between the projectile and particle sheet was clarified.

  16. High-speed line-scan camera with digital time delay integration

    NASA Astrophysics Data System (ADS)

    Bodenstorfer, Ernst; Fürtler, Johannes; Brodersen, Jörg; Mayer, Konrad J.; Eckel, Christian; Gravogl, Klaus; Nachtnebel, Herbert

    2007-02-01

    Dealing with high-speed image acquisition and processing systems, the speed of operation is often limited by the amount of available light, due to short exposure times. Therefore, high-speed applications often use line-scan cameras, based on charge-coupled device (CCD) sensors with time delayed integration (TDI). Synchronous shift and accumulation of photoelectric charges on the CCD chip - according to the objects' movement - result in a longer effective exposure time without introducing additional motion blur. This paper presents a high-speed color line-scan camera based on a commercial complementary metal oxide semiconductor (CMOS) area image sensor with a Bayer filter matrix and a field programmable gate array (FPGA). The camera implements a digital equivalent to the TDI effect exploited with CCD cameras. The proposed design benefits from the high frame rates of CMOS sensors and from the possibility of arbitrarily addressing the rows of the sensor's pixel array. For the digital TDI just a small number of rows are read out from the area sensor which are then shifted and accumulated according to the movement of the inspected objects. This paper gives a detailed description of the digital TDI algorithm implemented on the FPGA. Relevant aspects for the practical application are discussed and key features of the camera are listed.

  17. High speed turboprops for executive aircraft, potential and recent test results

    NASA Technical Reports Server (NTRS)

    Mikkelson, D. C.; Mitchell, G. A.

    1980-01-01

    Four high speed propeller models were designed and tested in an 8x6 foot wind tunnel in order to evaluate the potential of advanced propeller technology. Results from these tests show that the combination of: increased blade number, aerodynamically integrated propeller/nacelles, reduced blade thickness, spinner area ruling, and blade sweep are important in achieving high propeller efficiency at the high cruise speeds.

  18. Unique research challenges for high-speed civil transports

    NASA Technical Reports Server (NTRS)

    Jackson, Charlie M., Jr.; Morris, E. K., Jr.

    1988-01-01

    Market growth and technological advances are expected to lead to a generation of long-range transports that cruise at supersonic or even hypersonic speeds. Current NASA/industry studies will define the market windows in terms of time frame, Mach number, and technology requirements for these aircraft. Initial results indicate that, for the years 2000 to 2020, economically attractive vehicles could have a cruise speed up to Mach 6. The resulting research challenges are unique. They must be met with technologies that will produce commercially successful and environmentally compatible vehicles where none have existed. Several important areas of research were identified for the high-speed civil transports. Among these are sonic boom, takeoff noise, thermal management, lightweight structures with long life, unique propulsion concepts, unconventional fuels, and supersonic laminar flow.

  19. Unique research challenges for high-speed civil transports

    NASA Technical Reports Server (NTRS)

    Jackson, Charlie M., Jr.; Morris, Charles E. K., Jr.

    1987-01-01

    Market growth and technological advances are expected to lead to a generation of long-range transports that cruise at supersonic or even hypersonic speeds. Current NASA/industry studies will define the market windows in terms of time frame, Mach number, and technology requirements for these aircraft. Initial results indicate that, for the years 2000 to 2020, economically attractive vehicles could have a cruise speed up to Mach 6. The resulting research challenges are unique. They must be met with technologies that will produce commercially successful and environmentally compatible vehicles where none have existed. Several important areas of research were identified for the high-speed civil transports. Among these are sonic boom, takeoff noise, thermal management, lightweight structures with long life, unique propulsion concepts, unconventional fuels, and supersonic laminar flow.

  20. Fusion: ultra-high-speed and IR image sensors

    NASA Astrophysics Data System (ADS)

    Etoh, T. Goji; Dao, V. T. S.; Nguyen, Quang A.; Kimata, M.

    2015-08-01

    Most targets of ultra-high-speed video cameras operating at more than 1 Mfps, such as combustion, crack propagation, collision, plasma, spark discharge, an air bag at a car accident and a tire under a sudden brake, generate sudden heat. Researchers in these fields require tools to measure the high-speed motion and heat simultaneously. Ultra-high frame rate imaging is achieved by an in-situ storage image sensor. Each pixel of the sensor is equipped with multiple memory elements to record a series of image signals simultaneously at all pixels. Image signals stored in each pixel are read out after an image capturing operation. In 2002, we developed an in-situ storage image sensor operating at 1 Mfps 1). However, the fill factor of the sensor was only 15% due to a light shield covering the wide in-situ storage area. Therefore, in 2011, we developed a backside illuminated (BSI) in-situ storage image sensor to increase the sensitivity with 100% fill factor and a very high quantum efficiency 2). The sensor also achieved a much higher frame rate,16.7 Mfps, thanks to the wiring on the front side with more freedom 3). The BSI structure has another advantage that it has less difficulties in attaching an additional layer on the backside, such as scintillators. This paper proposes development of an ultra-high-speed IR image sensor in combination of advanced nano-technologies for IR imaging and the in-situ storage technology for ultra-highspeed imaging with discussion on issues in the integration.

  1. Effects of high sound speed confiners on ANFO detonations

    NASA Astrophysics Data System (ADS)

    Kiyanda, Charles; Jackson, Scott; Short, Mark

    2011-06-01

    The interaction between high explosive (HE) detonations and high sound speed confiners, where the confiner sound speed exceeds the HE's detonation speed, has not been thoroughly studied. The subsonic nature of the flow in the confiner allows stress waves to travel ahead of the main detonation front and influence the upstream HE state. The interaction between the detonation wave and the confiner is also no longer a local interaction, so that the confiner thickness now plays a significant role in the detonation dynamics. We report here on larger scale experiments in which a mixture of ammonium nitrate and fuel oil (ANFO) is detonated in aluminium confiners with varying charge diameter and confiner thickness. The results of these large-scale experiments are compared with previous large-scale ANFO experiments in cardboard, as well as smaller-scale aluminium confined ANFO experiments, to characterize the effects of confiner thickness.

  2. Network-linked long-time recording high-speed video camera system

    NASA Astrophysics Data System (ADS)

    Kimura, Seiji; Tsuji, Masataka

    2001-04-01

    This paper describes a network-oriented, long-recording-time high-speed digital video camera system that utilizes an HDD (Hard Disk Drive) as a recording medium. Semiconductor memories (DRAM, etc.) are the most common image data recording media with existing high-speed digital video cameras. They are extensively used because of their advantage of high-speed writing and reading of picture data. The drawback is that their recording time is limited to only several seconds because the data amount is very large. A recording time of several seconds is sufficient for many applications. However, a much longer recording time is required in some applications where an exact prediction of trigger timing is hard to make. In the Late years, the recording density of the HDD has been dramatically improved, which has attracted more attention to its value as a long-recording-time medium. We conceived an idea that we would be able to build a compact system that makes possible a long time recording if the HDD can be used as a memory unit for high-speed digital image recording. However, the data rate of such a system, capable of recording 640 X 480 pixel resolution pictures at 500 frames per second (fps) with 8-bit grayscale is 153.6 Mbyte/sec., and is way beyond the writing speed of the commonly used HDD. So, we developed a dedicated image compression system and verified its capability to lower the data rate from the digital camera to match the HDD writing rate.

  3. Improving traditional balancing methods for high-speed rotors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, J.; Cao, Y.

    1996-01-01

    This paper introduces frequency response functions, analyzes the relationships between the frequency response functions and influence coefficients theoretically, and derives corresponding mathematical equations for high-speed rotor balancing. The relationships between the imbalance masses on the rotor and frequency response functions are also analyzed based upon the modal balancing method, and the equations related to the static and dynamic imbalance masses and the frequency response function are obtained. Experiments on a high-speed rotor balancing rig were performed to verify the theory, and the experimental data agree satisfactorily with the analytical solutions. The improvement on the traditional balancing method proposed in thismore » paper will substantially reduce the number of rotor startups required during the balancing process of rotating machinery.« less

  4. Comparison of high-speed rail and maglev systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Najafi, F.T.; Nassar, F.E.

    1996-07-01

    European and Japanese high-speed rail (HSR) and magnetically levitated (maglev) systems were each developed to respond to specific transportation needs within local economic, social, and political constraints. Not only is maglev technology substantially different from that of HSR, but also HSR and maglev systems differ in trainset design, track characteristics, cost structure, and cost sensitivity to design changes. This paper attempts to go beyond the traditional technology comparison table and focuses on the characteristics and conditions for which existing European and Japanese systems were developed. The technologies considered are the French train a grand vitesse (TGV), the Swedish X2000, themore » German Intercity Express (ICE) and Transrapid, and the Japanese Shinkansen, MLU, and high-speed surface train (HSST).« less

  5. Acoustic Source Modeling for High Speed Air Jets

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.; Khavaran, Abbas

    2005-01-01

    The far field acoustic spectra at 90deg to the downstream axis of some typical high speed jets are calculated from two different forms of Lilley s equation combined with some recent measurements of the relevant turbulent source function. These measurements, which were limited to a single point in a low Mach number flow, were extended to other conditions with the aid of a highly developed RANS calculation. The results are compared with experimental data over a range of Mach numbers. Both forms of the analogy lead to predictions that are in excellent agreement with the experimental data at subsonic Mach numbers. The agreement is also fairly good at supersonic speeds, but the data appears to be slightly contaminated by shock-associated noise in this case.

  6. High-speed Fourier ptychographic microscopy based on programmable annular illuminations.

    PubMed

    Sun, Jiasong; Zuo, Chao; Zhang, Jialin; Fan, Yao; Chen, Qian

    2018-05-16

    High-throughput quantitative phase imaging (QPI) is essential to cellular phenotypes characterization as it allows high-content cell analysis and avoids adverse effects of staining reagents on cellular viability and cell signaling. Among different approaches, Fourier ptychographic microscopy (FPM) is probably the most promising technique to realize high-throughput QPI by synthesizing a wide-field, high-resolution complex image from multiple angle-variably illuminated, low-resolution images. However, the large dataset requirement in conventional FPM significantly limits its imaging speed, resulting in low temporal throughput. Moreover, the underlying theoretical mechanism as well as optimum illumination scheme for high-accuracy phase imaging in FPM remains unclear. Herein, we report a high-speed FPM technique based on programmable annular illuminations (AIFPM). The optical-transfer-function (OTF) analysis of FPM reveals that the low-frequency phase information can only be correctly recovered if the LEDs are precisely located at the edge of the objective numerical aperture (NA) in the frequency space. By using only 4 low-resolution images corresponding to 4 tilted illuminations matching a 10×, 0.4 NA objective, we present the high-speed imaging results of in vitro Hela cells mitosis and apoptosis at a frame rate of 25 Hz with a full-pitch resolution of 655 nm at a wavelength of 525 nm (effective NA = 0.8) across a wide field-of-view (FOV) of 1.77 mm 2 , corresponding to a space-bandwidth-time product of 411 megapixels per second. Our work reveals an important capability of FPM towards high-speed high-throughput imaging of in vitro live cells, achieving video-rate QPI performance across a wide range of scales, both spatial and temporal.

  7. Pulse Detonation Engines for High Speed Flight

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    2002-01-01

    Revolutionary concepts in propulsion are required in order to achieve high-speed cruise capability in the atmosphere and for low cost reliable systems for earth to orbit missions. One of the advanced concepts under study is the air-breathing pulse detonation engine. Additional work remains in order to establish the role and performance of a PDE in flight applications, either as a stand-alone device or as part of a combined cycle system. In this paper, we shall offer a few remarks on some of these remaining issues, i.e., combined cycle systems, nozzles and exhaust systems and thrust per unit frontal area limitations. Currently, an intensive experimental and numerical effort is underway in order to quantify the propulsion performance characteristics of this device. In this paper, we shall highlight our recent efforts to elucidate the propulsion potential of pulse detonation engines and their possible application to high-speed or hypersonic systems.

  8. Construction of Course Ubiquitous Learning Based on Network

    ERIC Educational Resources Information Center

    Wang, Xue; Zhang, Wei; Yang, Xinhui

    2017-01-01

    Ubiquitous learning has been more and more recognized, which describes a new generation of learning from a new point of view. Ubiquitous learning will bring the new teaching practice and teaching reform, which will become an essential way of learning in 21st century. Taking translation course as a case study, this research constructed a system of…

  9. Miniature high speed compressor having embedded permanent magnet motor

    NASA Technical Reports Server (NTRS)

    Zhou, Lei (Inventor); Zheng, Liping (Inventor); Chow, Louis (Inventor); Kapat, Jayanta S. (Inventor); Wu, Thomas X. (Inventor); Kota, Krishna M. (Inventor); Li, Xiaoyi (Inventor); Acharya, Dipjyoti (Inventor)

    2011-01-01

    A high speed centrifugal compressor for compressing fluids includes a permanent magnet synchronous motor (PMSM) having a hollow shaft, the being supported on its ends by ball bearing supports. A permanent magnet core is embedded inside the shaft. A stator with a winding is located radially outward of the shaft. The PMSM includes a rotor including at least one impeller secured to the shaft or integrated with the shaft as a single piece. The rotor is a high rigidity rotor providing a bending mode speed of at least 100,000 RPM which advantageously permits implementation of relatively low-cost ball bearing supports.

  10. Data Capture Technique for High Speed Signaling

    DOEpatents

    Barrett, Wayne Melvin; Chen, Dong; Coteus, Paul William; Gara, Alan Gene; Jackson, Rory; Kopcsay, Gerard Vincent; Nathanson, Ben Jesse; Vranas, Paylos Michael; Takken, Todd E.

    2008-08-26

    A data capture technique for high speed signaling to allow for optimal sampling of an asynchronous data stream. This technique allows for extremely high data rates and does not require that a clock be sent with the data as is done in source synchronous systems. The present invention also provides a hardware mechanism for automatically adjusting transmission delays for optimal two-bit simultaneous bi-directional (SiBiDi) signaling.

  11. A high speed sequential decoder

    NASA Technical Reports Server (NTRS)

    Lum, H., Jr.

    1972-01-01

    The performance and theory of operation for the High Speed Hard Decision Sequential Decoder are delineated. The decoder is a forward error correction system which is capable of accepting data from binary-phase-shift-keyed and quadriphase-shift-keyed modems at input data rates up to 30 megabits per second. Test results show that the decoder is capable of maintaining a composite error rate of 0.00001 at an input E sub b/N sub o of 5.6 db. This performance has been obtained with minimum circuit complexity.

  12. The High Speed Photometer for the Space Telescope

    NASA Technical Reports Server (NTRS)

    Bless, R. C.

    1982-01-01

    An overview of the high speed photometer (HSP), its optics and detectors, its electronics, its mechanical structure, and some observational considerations are presented. The capabilities and limitations of the HSP are outlined.

  13. Experimental analysis of a high-speed railway bridge under Thalys trains

    NASA Astrophysics Data System (ADS)

    Xia, H.; De Roeck, G.; Zhang, N.; Maeck, J.

    2003-11-01

    In this paper dynamic experiments on the Antoing Bridge located on the high-speed railway line between Paris and Brussels are reported. The experiments were co-operatively carried out by the Northern Jiaotong University from China, the Catholic University of Leuven, the Free University of Brussels and the Belgium Railway Company NMBS-SNCB from Belgium. The bridge is composed of multi-span simply supported PC girders with spans of 50 m and U-shaped sections. The loads are the high-speed Thalys trains with articulated vehicles. The speeds of the Thalys trains were between 265 and 310 km/h. In the experiments, the dynamic responses of the bridge such as the deflections, the accelerations and the strains that were measured by a laser velocity displacement transducer accelerometers and strain gauges, respectively. Many useful results have been obtained from the analysis of the recorded data. The tests and the measured results can be a reference for the study and the design of high-speed railway bridges.

  14. Goldstone R/D High Speed Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Deutsch, L. J.; Jurgens, R. F.; Brokl, S. S.

    1984-01-01

    A digital data acquisition system that meets the requirements of several users (initially the planetary radar program) is planned for general use at Deep Space Station 14 (DSS 14). The system, now partially complete, is controlled by VAX 11/780 computer that is programmed in high level languages. A DEC Data Controller is included for moderate-speed data acquisition, low speed data display, and for a digital interface to special user-provided devices. The high-speed data acquisition is performed in devices that are being designed and built at JPL. Analog IF signals are converted to a digitized 50 MHz real signal. This signal is filtered and mixed digitally to baseband after which its phase code (a PN sequence in the case of planetary radar) is removed. It may then be accumulated (or averaged) and fed into the VAX through an FPS 5210 array processor. Further data processing before entering the VAX is thus possible (computation and accumulation of the power spectra, for example). The system is to be located in the research and development pedestal at DSS 14 for easy access by researchers in radio astronomy as well as telemetry processing and antenna arraying.

  15. Ubiquitous CM and DM

    NASA Technical Reports Server (NTRS)

    Crowley, Sandra L.

    2000-01-01

    Ubiquitous is a real word. I thank a former Total Quality Coach for my first exposure some years ago to its existence. My version of Webster's dictionary defines ubiquitous as "present, or seeming to be present, everywhere at the same time; omnipresent." While I believe that God is omnipresent, I have come to discover that CM and DM are present everywhere. Oh, yes; I define CM as Configuration Management and DM as either Data or Document Management. Ten years ago, I had my first introduction to the CM world. I had an opportunity to do CM for the Space Station effort at the NASA Lewis Research Center. I learned that CM was a discipline that had four areas of focus: identification, control, status accounting, and verification. I was certified as a CMIl graduate and was indoctrinated about clear, concise, and valid. Off I went into a world of entirely new experiences. I was exposed to change requests and change boards first hand. I also learned about implementation of changes, and then of technical and CM requirements.

  16. High speed turbulent reacting flows: DNS and LES

    NASA Technical Reports Server (NTRS)

    Givi, Peyman

    1990-01-01

    Work on understanding the mechanisms of mixing and reaction in high speed turbulent reacting flows was continued. Efforts, in particular, were concentrated on taking advantage of modern computational methods to simulate high speed turbulent flows. In doing so, two methodologies were used: large eddy simulations (LES) and direct numerical simulations (DNS). In the work related with LES the objective is to study the behavior of the probability density functions (pdfs) of scalar properties within the subgrid in reacting turbulent flows. The data base obtained by DNS for a detailed study of the pdf characteristics within the subgrid was used. Simulations are performed for flows under various initializations to include the effects of compressibility on mixing and chemical reactions. In the work related with DNS, a two-dimensional temporally developing high speed mixing layer under the influence of a second-order non-equilibrium chemical reaction of the type A + B yields products + heat was considered. Simulations were performed with different magnitudes of the convective Mach numbers and with different chemical kinetic parameters for the purpose of examining the isolated effects of the compressibility and the heat released by the chemical reactions on the structure of the layer. A full compressible code was developed and utilized, so that the coupling between mixing and chemical reactions is captured in a realistic manner.

  17. High-speed civil transport study: Special factors

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Studies relating to environmental factors associated with high speed civil transports were conducted. Projected total engine emissions for year 2015 fleets of several subsonic/supersonic transport fleet scenarios, discussion of sonic boom reduction methods, discussion of community noise level requirements, fuels considerations, and air traffic control impact are presented.

  18. High speed CMOS/SOS standard cell notebook

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The NASA/MSFC high speed CMOS/SOS standard cell family, designed to be compatible with the PR2D (Place, Route in 2-Dimensions) automatic layout program, is described. Standard cell data sheets show the logic diagram, the schematic, the truth table, and propagation delays for each logic cell.

  19. High-speed ethanol micro-droplet impact on a solid surface

    NASA Astrophysics Data System (ADS)

    Fujita, Yuta; Kiyama, Akihito; Tagawa, Yoshiyuki

    2016-11-01

    Recently, droplet impact draws great attention in the fluid mechanics. In previous work, micro-droplet impact on a solid surface at velocities up to 100 m s-1 was studied. However the study was only on water micro-droplets. In this study, we experimentally investigate high-speed impact of ethanol micro-droplets in order to confirm the feature about maximum spreading radius with another liquid. A droplet is generated from a laser-induced high-speed liquid jet. The diameter of droplets is around 80 μm and the velocity is larger than 30 m s-1. The surface tension of ethanol is 22.4 mNm-1 and density is 789 kgm-3. Weber number ranges We >1000. By using a high-speed camera, we investigate the deformation of droplets as a function of Weber number. This work was supported by JSPS KAKENHI Grant Number JP26709007.

  20. Ultra high speed image processing techniques. [electronic packaging techniques

    NASA Technical Reports Server (NTRS)

    Anthony, T.; Hoeschele, D. F.; Connery, R.; Ehland, J.; Billings, J.

    1981-01-01

    Packaging techniques for ultra high speed image processing were developed. These techniques involve the development of a signal feedthrough technique through LSI/VLSI sapphire substrates. This allows the stacking of LSI/VLSI circuit substrates in a 3 dimensional package with greatly reduced length of interconnecting lines between the LSI/VLSI circuits. The reduced parasitic capacitances results in higher LSI/VLSI computational speeds at significantly reduced power consumption levels.

  1. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    PubMed

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  2. Feature Tracking for High Speed AFM Imaging of Biopolymers.

    PubMed

    Hartman, Brett; Andersson, Sean B

    2018-03-31

    The scanning speed of atomic force microscopes continues to advance with some current commercial microscopes achieving on the order of one frame per second and at least one reaching 10 frames per second. Despite the success of these instruments, even higher frame rates are needed with scan ranges larger than are currently achievable. Moreover, there is a significant installed base of slower instruments that would benefit from algorithmic approaches to increasing their frame rate without requiring significant hardware modifications. In this paper, we present an experimental demonstration of high speed scanning on an existing, non-high speed instrument, through the use of a feedback-based, feature-tracking algorithm that reduces imaging time by focusing on features of interest to reduce the total imaging area. Experiments on both circular and square gratings, as well as silicon steps and DNA strands show a reduction in imaging time by a factor of 3-12 over raster scanning, depending on the parameters chosen.

  3. High speed digital holographic interferometry for hypersonic flow visualization

    NASA Astrophysics Data System (ADS)

    Hegde, G. M.; Jagdeesh, G.; Reddy, K. P. J.

    2013-06-01

    Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.

  4. Internet messenger based smart virtual class learning using ubiquitous computing

    NASA Astrophysics Data System (ADS)

    Umam, K.; Mardi, S. N. S.; Hariadi, M.

    2017-06-01

    Internet messenger (IM) has become an important educational technology component in college education, IM makes it possible for students to engage in learning and collaborating at smart virtual class learning (SVCL) using ubiquitous computing. However, the model of IM-based smart virtual class learning using ubiquitous computing and empirical evidence that would favor a broad application to improve engagement and behavior are still limited. In addition, the expectation that IM based SVCL using ubiquitous computing could improve engagement and behavior on smart class cannot be confirmed because the majority of the reviewed studies followed instructions paradigms. This article aims to present the model of IM-based SVCL using ubiquitous computing and showing learners’ experiences in improved engagement and behavior for learner-learner and learner-lecturer interactions. The method applied in this paper includes design process and quantitative analysis techniques, with the purpose of identifying scenarios of ubiquitous computing and realize the impressions of learners and lecturers about engagement and behavior aspect and its contribution to learning

  5. Large motion high cycle high speed optical fibers for space based applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stromberg, Peter G.; Tandon, Rajan; Gibson, Cory S.

    2014-10-01

    Future remote sensing applications will require higher resolution and therefore higher data rates (up to perhaps 100 gigabits per second) while achieving lower mass and cost. A current limitation to the design space is high speed high bandwidth data does not cross movable gimbals because of cabling issues. This requires the detectors to be off gimbal. The ability to get data across the gimbal would open up efficiencies in designs where the detectors and the electronics can be placed anywhere on the system. Fiber optic cables provide light weight high speed high bandwidth connections. Current options are limited to 20,000more » cycles as opposed to the 1,000,000 cycles needed for future space based applications. To extend this to the million+ regime, requires a thorough understanding of the failure mechanisms and the materials, proper selection of materials (e.g., glass and jacket material) allowable geometry changes to the cable, radiation hardness, etc.« less

  6. High speed data transmission coaxial-cable in the space communication system

    NASA Astrophysics Data System (ADS)

    Su, Haohang; Huang, Jing

    2018-01-01

    An effective method is proved based on the scattering parameter of high speed 8-core coaxial-cable measured by vector network analyzer, and the semi-physical simulation is made to receive the eye diagram at different data transmission rate. The result can be apply to analysis decay and distortion of the signal through the coaxial-cable at high frequency, and can extensively design for electromagnetic compatibility of high-speed data transmission system.

  7. High-speed clock recovery unit based on a phase aligner

    NASA Astrophysics Data System (ADS)

    Tejera, Efrain; Esper-Chain, Roberto; Tobajas, Felix; De Armas, Valentin; Sarmiento, Roberto

    2003-04-01

    Nowadays clock recovery units are key elements in high speed digital communication systems. For an efficient operation, this units should generate a low jitter clock based on the NRZ received data, and be tolerant to long absence of transitions. Architectures based on Hogge phase detectors have been widely used, nevertheless, they are very sensitive to jitter of the received data and they have a limited tolerance to the absence of transitions. This paper shows a novel high speed clock recovery unit based on a phase aligner. The system allows a very fast clock recovery with a low jitter, moreover, it is very resistant to absence of transitions. The design is based on eight phases obtained from a reference clock running at the nominal frequency of the received signal. This high speed reference clock is generated using a crystal and a clock multiplier unit. The phase alignment system chooses, as starting point, the two phases closest to the data phase. This allows a maximum error of 45 degrees between the clock and data signal phases. Furthermore, the system includes a feed-back loop that interpolates the chosen phases to reduce the phase error to zero. Due to the high stability and reduced tolerance of the local reference clock, the jitter obtained is highly reduced and the system becomes able to operate under long absence of transitions. This performances make this design suitable for systems such as high speed serial link technologies. This system has been designed for CMOS 0.25μm at 1.25GHz and has been verified through HSpice simulations.

  8. Dynamic performance of high speed solenoid valve with parallel coils

    NASA Astrophysics Data System (ADS)

    Kong, Xiaowu; Li, Shizhen

    2014-07-01

    The methods of improving the dynamic performance of high speed on/off solenoid valve include increasing the magnetic force of armature and the slew rate of coil current, decreasing the mass and stroke of moving parts. The increase of magnetic force usually leads to the decrease of current slew rate, which could increase the delay time of the dynamic response of solenoid valve. Using a high voltage to drive coil can solve this contradiction, but a high driving voltage can also lead to more cost and a decrease of safety and reliability. In this paper, a new scheme of parallel coils is investigated, in which the single coil of solenoid is replaced by parallel coils with same ampere turns. Based on the mathematic model of high speed solenoid valve, the theoretical formula for the delay time of solenoid valve is deduced. Both the theoretical analysis and the dynamic simulation show that the effect of dividing a single coil into N parallel sub-coils is close to that of driving the single coil with N times of the original driving voltage as far as the delay time of solenoid valve is concerned. A specific test bench is designed to measure the dynamic performance of high speed on/off solenoid valve. The experimental results also prove that both the delay time and switching time of the solenoid valves can be decreased greatly by adopting the parallel coil scheme. This research presents a simple and practical method to improve the dynamic performance of high speed on/off solenoid valve.

  9. The 1995 NASA High-Speed Research Program Sonic Boom Workshop. Volume 1

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1996-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Sonic Boom Workshop on September 12-13, 1995. The workshop was designed to bring together NASAs scientists and engineers and their counterparts in industry, other Government agencies, and academia working together in the sonic boom element of NASAs High-Speed Research Program. Specific objectives of this workshop were to (1) report the progress and status of research in sonic boom propagation, acceptability, and design; (2) promote and disseminate this technology within the appropriate technical communities; (3) help promote synergy among the scientists working in the Program; and (4) identify technology pacing the development of viable reduced-boom High-Speed Civil Transport concepts. The Workshop included these sessions: Session 1 - Sonic Boom Propagation (Theoretical); Session 2 - Sonic Boom Propagation (Experimental); and Session 3 - Acceptability Studies - Human and Animal.

  10. Some aspects of the aeroacoustics of high-speed jets

    NASA Technical Reports Server (NTRS)

    Lighthill, James

    1993-01-01

    Some of the background to contemporary jet aeroacoustics is addressed. Then scaling laws for noise generation by low-Mach-number airflows and by turbulence convected at 'not so low' Mach number is reviewed. These laws take into account the influence of Doppler effects associated with the convection of aeroacoustic sources. Next, a uniformly valid Doppler-effect approximation exhibits the transition, with increasing Mach number of convection, from compact-source radiation at low Mach numbers to a statistical assemblage of conical shock waves radiated by eddies convected at supersonic speed. In jets, for example, supersonic eddy convection is typically found for jet exit speeds exceeding twice the atmospheric speed of sound. The Lecture continues by describing a new dynamical theory of the nonlinear propagation of such statistically random assemblages of conical shock waves. It is shown, both by a general theoretical analysis and by an illustrative computational study, how their propagation is dominated by a characteristic 'bunching' process. That process associated with a tendency for shock waves that have already formed unions with other shock waves to acquire an increased proneness to form further unions - acts so as to enhance the high-frequency part of the spectrum of noise emission from jets at these high exit speeds.

  11. 78 FR 22031 - California High-Speed Rail Authority-Construction Exemption-In Merced, Madera and Fresno Counties...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... High-Speed Rail Authority--Construction Exemption--In Merced, Madera and Fresno Counties, CA AGENCY... High-Speed Rail Authority (Authority). This Final EIS is titled ``California High-Speed Train: Merced... Final EIS assesses the potential environmental impacts of constructing and operating a high-speed...

  12. Supersonic Quadrupole Noise Theory for High-Speed Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1997-01-01

    High-speed helicopter rotor impulsive noise prediction is an important problem of aeroacoustics. The deterministic quadrupoles have been shown to contribute significantly to high-speed impulsive (HSI) noise of rotors, particularly when the phenomenon of delocalization occurs. At high rotor-tip speeds, some of the quadrupole sources lie outside the sonic circle and move at supersonic speed. Brentner has given a formulation suitable for efficient prediction of quadrupole noise inside the sonic circle. In this paper, we give a simple formulation based on the acoustic analogy that is valid for both subsonic and supersonic quadrupole noise prediction. Like the formulation of Brentner, the model is exact for an observer in the far field and in the rotor plane and is approximate elsewhere. We give the full analytic derivation of this formulation in the paper. We present the method of implementation on a computer for supersonic quadrupoles using marching cubes for constructing the influence surface (Sigma surface) of an observer space- time variable (x; t). We then present several examples of noise prediction for both subsonic and supersonic quadrupoles. It is shown that in the case of transonic flow over rotor blades, the inclusion of the supersonic quadrupoles improves the prediction of the acoustic pressure signature. We show the equivalence of the new formulation to that of Brentner for subsonic quadrupoles. It is shown that the regions of high quadrupole source strength are primarily produced by the shock surface and the flow over the leading edge of the rotor. The primary role of the supersonic quadrupoles is to increase the width of a strong acoustic signal.

  13. High-speed machining of Space Shuttle External Tank (ET) panels

    NASA Technical Reports Server (NTRS)

    Miller, J. A.

    1983-01-01

    Potential production rates and project cost savings achieved by converting the conventional machining process in manufacturing shuttle external tank panels to high speed machining (HSM) techniques were studied. Savings were projected from the comparison of current production rates with HSM rates and with rates attainable on new conventional machines. The HSM estimates were also based on rates attainable by retrofitting existing conventional equipment with high speed spindle motors and rates attainable using new state of the art machines designed and built for HSM.

  14. Speed control with end cushion for high speed air cylinder

    DOEpatents

    Stevens, Wayne W.; Solbrig, Charles W.

    1991-01-01

    A high speed air cylinder in which the longitudinal movement of the piston within the air cylinder tube is controlled by pressurizing the air cylinder tube on the accelerating side of the piston and releasing pressure at a controlled rate on the decelerating side of the piston. The invention also includes a method for determining the pressure required on both the accelerating and decelerating sides of the piston to move the piston with a given load through a predetermined distance at the desired velocity, bringing the piston to rest safely without piston bounce at the end of its complete stroke.

  15. Research on high-speed railway's vibration analysis checking based on intelligent mobile terminal

    NASA Astrophysics Data System (ADS)

    Li, Peigang; Xie, Shulin; Zhao, Xuefeng

    2017-04-01

    Recently, the development of high-speed railway meets the requirement of society booming and it has gradually become the first choice for long-length journey. Since ensuring the safety and stable operation are of great importance to high-speed trains owing to its unique features, vibration analysis checking is one of main means to be adopted. Due to the popularization of Smartphone, in this research, a novel public-participating method to achieve high-speed railway's vibration analysis checking based on smartphone and an inspection application of high-speed railway line built in the intelligent mobile terminal were proposed. Utilizing the accelerometer, gyroscope, GPS and other high-performance sensors which were integrated in smartphone, the application can obtain multiple parameters like acceleration, angle, etc and pinpoint the location. Therefore, through analyzing the acceleration data in time domain and frequency domain using fast Fourier transform, the research compared much of data from monitoring tests under different measure conditions and measuring points. Furthermore, an idea of establishing a system about analysis checking was outlined in paper. It has been validated that the smartphone-based high-speed railway line inspection system is reliable and feasible on the high-speed railway lines. And it has more advantages, such as convenience, low cost and being widely used. Obviously, the research has important practical significance and broad application prospects.

  16. High-speed imaging on static tensile test for unidirectional CFRP

    NASA Astrophysics Data System (ADS)

    Kusano, Hideaki; Aoki, Yuichiro; Hirano, Yoshiyasu; Kondo, Yasushi; Nagao, Yosuke

    2008-11-01

    The objective of this study is to clarify the fracture mechanism of unidirectional CFRP (Carbon Fiber Reinforced Plastics) under static tensile loading. The advantages of CFRP are higher specific stiffness and strength than the metal material. The use of CFRP is increasing in not only the aerospace and rapid transit railway industries but also the sports, leisure and automotive industries. The tensile fracture mechanism of unidirectional CFRP has not been experimentally made clear because the fracture speed of unidirectional CFRP is quite high. We selected the intermediate modulus and high strength unidirectional CFRP laminate which is a typical material used in the aerospace field. The fracture process under static tensile loading was captured by a conventional high-speed camera and a new type High-Speed Video Camera HPV-1. It was found that the duration of fracture is 200 microseconds or less, then images taken by a conventional camera doesn't have enough temporal-resolution. On the other hand, results obtained by HPV-1 have higher quality where the fracture process can be clearly observed.

  17. A new continuous light source for high-speed imaging

    NASA Astrophysics Data System (ADS)

    Paton, R. T.; Hall, R. E.; Skews, B. W.

    2017-02-01

    Xenon arc lamps have been identified as a suitable continuous light source for high-speed imaging, specifically high-speed Schlieren and shadowgraphy. One issue when setting us such systems is the time that it takes to reduce a finite source to the approximation of a point source for z-type schlieren. A preliminary design of a compact compound lens for use with a commercial Xenon arc lamp was tested for suitability. While it was found that there is some dimming of the illumination at the spot periphery, the overall spectral and luminance distribution of the compact source is quite acceptable, especially considering the time benefit that it represents.

  18. High-speed rail turnout literature review : final report.

    DOT National Transportation Integrated Search

    2016-08-01

    High-speed rail (HSR) turnout design criteria generally address unbalanced lateral acceleration or cant deficiency (CD), cant deficiency change rate (CDCR), and entry and exit jerk. Various countries have adopted different design values for their HSR...

  19. Study of high-speed civil transports

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A systems study to identify the economic potential for a high-speed commercial transport (HSCT) has considered technology, market characteristics, airport infrastructure, and environmental issues. Market forecasts indicate a need for HSCT service in the 2000/2010 time frame conditioned on economic viability and environmental acceptability. Design requirements focused on a 300 passenger, 3 class service, and 6500 nautical mile range based on the accelerated growth of the Pacific region. Compatibility with existing airports was an assumed requirement. Mach numbers between 2 and 25 were examined in conjunction with the appropriate propulsion systems, fuels, structural materials, and thermal management systems. Aircraft productivity was a key parameter with aircraft worth, in comparison to aircraft price, being the airline-oriented figure of merit. Aircraft screening led to determination that Mach 3.2 (TSJF) would have superior characteristics to Mach 5.0 (LNG) and the recommendation that the next generation high-speed commercial transport aircraft use a kerosene fuel. The sensitivity of aircraft performance and economics to environmental constraints (e.g., sonic boom, engine emissions, and airport/community noise) was identified together with key technologies. In all, current technology is not adequate to produce viable HSCTs for the world marketplace. Technology advancements must be accomplished to meet environmental requirements (these requirements are as yet undetermined for sonic boom and engine emissions). High priority is assigned to aircraft gross weight reduction which benefits both economics and environmental aspects. Specific technology requirements are identified and national economic benefits are projected.

  20. High speed sampler and demultiplexer

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A high speed sampling demultiplexer based on a plurality of sampler banks, each bank comprising a sample transmission line for transmitting an input signal, a strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates at respective positions along the sample transmission line for sampling the input signal in response to the strobe signal. Strobe control circuitry is coupled to the plurality of banks, and supplies a sequence of bank strobe signals to the strobe transmission lines in each of the plurality of banks, and includes circuits for controlling the timing of the bank strobe signals among the banks of samplers. Input circuitry is included for supplying the input signal to be sampled to the plurality of sample transmission lines in the respective banks. The strobe control circuitry can repetitively strobe the plurality of banks of samplers such that the banks of samplers are cycled to create a long sample length. Second tier demultiplexing circuitry is coupled to each of the samplers in the plurality of banks. The second tier demultiplexing circuitry senses the sample taken by the corresponding sampler each time the bank in which the sampler is found is strobed. A plurality of such samples can be stored by the second tier demultiplexing circuitry for later processing. Repetitive sampling with the high speed transient sampler induces an effect known as "strobe kickout". The sample transmission lines include structures which reduce strobe kickout to acceptable levels, generally 60 dB below the signal, by absorbing the kickout pulses before the next sampling repetition.

  1. High speed sampler and demultiplexer

    DOEpatents

    McEwan, T.E.

    1995-12-26

    A high speed sampling demultiplexer based on a plurality of sampler banks, each bank comprising a sample transmission line for transmitting an input signal, a strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates at respective positions along the sample transmission line for sampling the input signal in response to the strobe signal. Strobe control circuitry is coupled to the plurality of banks, and supplies a sequence of bank strobe signals to the strobe transmission lines in each of the plurality of banks, and includes circuits for controlling the timing of the bank strobe signals among the banks of samplers. Input circuitry is included for supplying the input signal to be sampled to the plurality of sample transmission lines in the respective banks. The strobe control circuitry can repetitively strobe the plurality of banks of samplers such that the banks of samplers are cycled to create a long sample length. Second tier demultiplexing circuitry is coupled to each of the samplers in the plurality of banks. The second tier demultiplexing circuitry senses the sample taken by the corresponding sampler each time the bank in which the sampler is found is strobed. A plurality of such samples can be stored by the second tier demultiplexing circuitry for later processing. Repetitive sampling with the high speed transient sampler induces an effect known as ``strobe kickout``. The sample transmission lines include structures which reduce strobe kickout to acceptable levels, generally 60 dB below the signal, by absorbing the kickout pulses before the next sampling repetition. 16 figs.

  2. Visualization of hump formation in high-speed gas metal arc welding

    NASA Astrophysics Data System (ADS)

    Wu, C. S.; Zhong, L. M.; Gao, J. Q.

    2009-11-01

    The hump bead is a typical weld defect observed in high-speed welding. Its occurrence limits the improvement of welding productivity. Visualization of hump formation during high-speed gas metal arc welding (GMAW) is helpful in the better understanding of the humping phenomena so that effective measures can be taken to suppress or decrease the tendency of hump formation and achieve higher productivity welding. In this study, an experimental system was developed to implement vision-based observation of the weld pool behavior during high-speed GMAW. Considering the weld pool characteristics in high-speed welding, a narrow band-pass and neutral density filter was equipped for the CCD camera, the suitable exposure time was selected and side view orientation of the CCD camera was employed. The events that took place at the rear portion of the weld pools were imaged during the welding processes with and without hump bead formation, respectively. It was found that the variation of the weld pool surface height and the solid-liquid interface at the pool trailing with time shows some useful information to judge whether the humping phenomenon occurs or not.

  3. High speed turbogenerator for power recovery from fluid flow within conduit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irvine, M. D.

    1985-11-26

    A high speed turbogenerator functionally combining, in one machine, an electrical generator and an expansion turbine. The electrical generator itself has a shaft supported on two bearings and the expansion turbine comprises an expander wheel overhung on the generator shaft and which rotates as a high pressure gas is let down in the expansion turbine to a lower pressure at a minimum predetermined flow rate and pressure drop. The shaft operates at speeds of about 6,000 rpm to 32,000 rpm, preferably at the higher end of such range, i.e. 20,000 to 24,000 rpm. The unit is sufficiently compact that amore » new use for the electrical generator is to modify the same such that the entire high speed turbogenerator is contained within the conduit carrying the gas to be let down in pressure and only electrical wires need be led through the conduit. The integrity of the conduit is thus retained to the extent possible and only a high pressure cable fitting extends through the conduit. In the preferred embodiment, the high speed turbogenerator is entirely fitted within a natural gas conduit in a gas distribution station, thereby achieving the pressure letdown and also obtaining useful electrical power.« less

  4. Subsidence Evaluation of High-Speed Railway in Shenyang Based on Time-Series Insar

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Wei, Lianhuan; Li, Jiayu; Liu, Shanjun; Mao, Yachun; Wu, Lixin

    2018-04-01

    More and more high-speed railway are under construction in China. The slow settlement along high-speed railway tracks and newly-built stations would lead to inhomogeneous deformation of local area, and the accumulation may be a threat to the safe operation of high-speed rail system. In this paper, surface deformation of the newly-built high-speed railway station as well as the railway lines in Shenyang region will be retrieved by time series InSAR analysis using multi-orbit COSMO-SkyMed images. This paper focuses on the non-uniform subsidence caused by the changing of local environment along the railway. The accuracy of the settlement results can be verified by cross validation of the results obtained from two different orbits during the same period.

  5. High-Speed Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Ando, Toshio; Uchihashi, Takayuki; Kodera, Noriyuki

    2012-08-01

    The technology of high-speed atomic force microscopy (HS-AFM) has reached maturity. HS-AFM enables us to directly visualize the structure and dynamics of biological molecules in physiological solutions at subsecond to sub-100 ms temporal resolution. By this microscopy, dynamically acting molecules such as myosin V walking on an actin filament and bacteriorhodopsin in response to light are successfully visualized. High-resolution molecular movies reveal the dynamic behavior of molecules in action in great detail. Inferences no longer have to be made from static snapshots of molecular structures and from the dynamic behavior of optical markers attached to biomolecules. In this review, we first describe theoretical considerations for the highest possible imaging rate, then summarize techniques involved in HS-AFM and highlight recent imaging studies. Finally, we briefly discuss future challenges to explore.

  6. High speed holographic digital recorder.

    PubMed

    Roberts, H N; Watkins, J W; Johnson, R H

    1974-04-01

    Concepts, feasibility experiments, and key component developments are described for a holographic digital record/reproduce system with the potential for 1.0 Gbit/sec rates and higher. Record rates of 500 Mbits/sec have been demonstrated with a ten-channel acoustooptic modulator array and a mode-locked, cavity-dumped argon-ion laser. Acoustooptic device technology has been advanced notably during the development of mode lockers, cavity dumpers, beam deflectors, and multichannel modulator arrays. The development of high speed multichannel photodetector arrays for the readout subsystem requires special attention. The feasibility of 1.0 Gbits/sec record rates has been demonstrated.

  7. High speed quantitative digital microscopy

    NASA Technical Reports Server (NTRS)

    Castleman, K. R.; Price, K. H.; Eskenazi, R.; Ovadya, M. M.; Navon, M. A.

    1984-01-01

    Modern digital image processing hardware makes possible quantitative analysis of microscope images at high speed. This paper describes an application to automatic screening for cervical cancer. The system uses twelve MC6809 microprocessors arranged in a pipeline multiprocessor configuration. Each processor executes one part of the algorithm on each cell image as it passes through the pipeline. Each processor communicates with its upstream and downstream neighbors via shared two-port memory. Thus no time is devoted to input-output operations as such. This configuration is expected to be at least ten times faster than previous systems.

  8. Commercially available high-speed system for recording and monitoring vocal fold vibrations.

    PubMed

    Sekimoto, Sotaro; Tsunoda, Koichi; Kaga, Kimitaka; Makiyama, Kiyoshi; Tsunoda, Atsunobu; Kondo, Kenji; Yamasoba, Tatsuya

    2009-12-01

    We have developed a special purpose adaptor making it possible to use a commercially available high-speed camera to observe vocal fold vibrations during phonation. The camera can capture dynamic digital images at speeds of 600 or 1200 frames per second. The adaptor is equipped with a universal-type attachment and can be used with most endoscopes sold by various manufacturers. Satisfactory images can be obtained with a rigid laryngoscope even with the standard light source. The total weight of the adaptor and camera (including battery) is only 1010 g. The new system comprising the high-speed camera and the new adaptor can be purchased for about $3000 (US), while the least expensive stroboscope costs about 10 times that price, and a high-performance high-speed imaging system may cost 100 times as much. Therefore the system is both cost-effective and useful in the outpatient clinic or casualty setting, on house calls, and for the purpose of student or patient education.

  9. A general high-speed laser drilling method for nonmetal thin material

    NASA Astrophysics Data System (ADS)

    Cai, Zhijian; Xu, Guangsheng; Xu, Zhou; Xu, Zhiqiang

    2013-05-01

    Many nonmetal film products, such as herbal plaster, medical adhesive tape and farm plastic film, require drilling dense small holes to enhance the permeability without affecting the appearance. For many medium and small enterprises, a low-cost, high-speed laser drilling machine with the ability of processing different kinds of nonmetal material is highly demanded. In this paper, we proposed a general purpose high-speed laser drilling method for micro-hole production on thin nonmetal film. The system utilizes a rotating polygonal mirror to perform high-speed laser scan, which is simpler and more efficient than the oscillating mirror scan. In this system, an array of closepacked paraboloid mirrors is mounted on the laser scan track to focus the high-power laser onto the material sheet, which could produce up to twenty holes in a single scan. The design of laser scan and focusing optics is optimized to obtain the best holes' quality, and the mirrors can be flexibly adjusted to get different drilling parameters. The use of rotating polygonal mirror scan and close-packed mirror array focusing greatly improves the drilling productivity to enable the machine producing thirty thousand holes per minute. With proper design, the hold uniformity can also get improved. In this paper, the detailed optical and mechanical design is illustrated, the high-speed laser drilling principle is introduced and the preliminary experimental results are presented.

  10. High-speed wavefront control using MEMS micromirrors

    NASA Astrophysics Data System (ADS)

    Bifano, T. G.; Stewart, J. B.

    2005-08-01

    Over the past decade, a number of electrostatically-actuated MEMS deformable mirror devices have been used for adaptive control in beam-forming and imaging applications. One architecture that has been widely used is the silicon device developed by Boston University, consisting of a continuous or segmented mirror supported by post attachments to an array of parallel plate electrostatic actuators. MEMS deformable mirrors and segmented mirrors with up to 1024 of these actuators have been used in open loop and closed loop control systems to control wavefront errors. Frame rates as high as 11kHz have been demonstrated. Mechanically, the actuators used in this device exhibit a first-mode resonant frequency that is in the range of many tens of kilohertz up to a few hundred kilohertz. Viscous air damping has been found to limit operation at such high frequencies in air at standard pressure. Some applications in high-speed tracking and beam-forming could benefit from increased speed. In this paper, several approaches to achieving critically-damped performance with such MEMS DMs are detailed, and theoretical and experimental results are presented. One approach is to seal the MEMS DM in a full or partial vacuum environment, thereby affecting air damping. After vacuum sealing the device's predicted resonant behavior at tens of kilohertz was observed. In vacuum, the actuator's intrinsic material damping is quite small, resulting in considerable oscillation in step response. To alleviate this problem, a two-step actuation algorithm was employed. Precise control of a single actuator frequencies up to 100kHz without overshoot was demonstrated using this approach. Another approach to increasing actuation speed was to design actuators that reduce air damping effects. This is also demonstrated in the paper.

  11. The Next Generation of High-Speed Dynamic Stability Wind Tunnel Testing (Invited)

    NASA Technical Reports Server (NTRS)

    Tomek, Deborah M.; Sewall, William G.; Mason, Stan E.; Szchur, Bill W. A.

    2006-01-01

    Throughout industry, accurate measurement and modeling of dynamic derivative data at high-speed conditions has been an ongoing challenge. The expansion of flight envelopes and non-conventional vehicle design has greatly increased the demand for accurate prediction and modeling of vehicle dynamic behavior. With these issues in mind, NASA Langley Research Center (LaRC) embarked on the development and shakedown of a high-speed dynamic stability test technique that addresses the longstanding problem of accurately measuring dynamic derivatives outside the low-speed regime. The new test technique was built upon legacy technology, replacing an antiquated forced oscillation system, and greatly expanding the capabilities beyond classic forced oscillation testing at both low and high speeds. The modern system is capable of providing a snapshot of dynamic behavior over a periodic cycle for varying frequencies, not just a damping derivative term at a single frequency.

  12. High-Speed On-Board Data Processing for Science Instruments

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Lin, Bing; Hu, Yongxiang; Harrison, Wallace

    2014-01-01

    A new development of on-board data processing platform has been in progress at NASA Langley Research Center since April, 2012, and the overall review of such work is presented in this paper. The project is called High-Speed On-Board Data Processing for Science Instruments (HOPS) and focuses on a high-speed scalable data processing platform for three particular National Research Council's Decadal Survey missions such as Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS), Aerosol-Cloud-Ecosystems (ACE), and Doppler Aerosol Wind Lidar (DAWN) 3-D Winds. HOPS utilizes advanced general purpose computing with Field Programmable Gate Array (FPGA) based algorithm implementation techniques. The significance of HOPS is to enable high speed on-board data processing for current and future science missions with its reconfigurable and scalable data processing platform. A single HOPS processing board is expected to provide approximately 66 times faster data processing speed for ASCENDS, more than 70% reduction in both power and weight, and about two orders of cost reduction compared to the state-of-the-art (SOA) on-board data processing system. Such benchmark predictions are based on the data when HOPS was originally proposed in August, 2011. The details of these improvement measures are also presented. The two facets of HOPS development are identifying the most computationally intensive algorithm segments of each mission and implementing them in a FPGA-based data processing board. A general introduction of such facets is also the purpose of this paper.

  13. Safety evaluation of high-speed rail bogie concepts.

    DOT National Transportation Integrated Search

    2013-10-01

    The study defines the basic design concepts required to provide a safe, reliable, high-speed bogie for the next generation PRIIA passenger locomotive. The requirements and conditions for the U.S. market create unique design challenges that currently ...

  14. Implications of Ubiquitous Computing for the Social Studies Curriculum

    ERIC Educational Resources Information Center

    van Hover, Stephanie D.; Berson, Michael J.; Bolick, Cheryl Mason; Swan, Kathleen Owings

    2004-01-01

    In March 2002, members of the National Technology Leadership Initiative (NTLI) met in Charlottesville, Virginia to discuss the potential effects of ubiquitous computing on the field of education. Ubiquitous computing, or "on-demand availability of task-necessary computing power," involves providing every student with a handheld computer--a…

  15. Comparison of high speed DI-LIGBT structures

    NASA Astrophysics Data System (ADS)

    Sunkavalli, Ravishankar; Baliga, B. Jayant

    1997-12-01

    The performance of the DI segmented collector (SC)-LIGBT is compared to the collector shorted (CS)-LIGBT. The SC-LIGBT allows for adjusting the tradeoff between switching speed and on-state voltage drop by simply changing the P+ collector segment width during device layout. In contrast to previously reported junction isolated (JI) devices, the DI SC-LIGBT was observed to have a turnoff speed similar to the CS-LIGBT with a higher forward drop than the conventional LIGBT. The on-state performance of the integral diodes of the SC-LIGBTs was found to be superior to the integral diode of the CS-LIGBT. The integral diodes of both the CS and the SC-LIGBTs were found to have much superior switching characteristics compared to a lateral PiN diode at the expense of a higher on-state voltage drop. Thus, the superior switching characteristics of the integral diode in the SC-LIGBT complements its fast switching behavior making this device attractive for compact, high frequency, high efficient, power ICs.

  16. Laryngeal High-Speed Videoendoscopy: Rationale and Recommendation for Accurate and Consistent Terminology

    ERIC Educational Resources Information Center

    Deliyski, Dimitar D.; Hillman, Robert E.; Mehta, Daryush D.

    2015-01-01

    Purpose: The authors discuss the rationale behind the term "laryngeal high-speed videoendoscopy" to describe the application of high-speed endoscopic imaging techniques to the visualization of vocal fold vibration. Method: Commentary on the advantages of using accurate and consistent terminology in the field of voice research is…

  17. Robust adaptive cruise control of high speed trains.

    PubMed

    Faieghi, Mohammadreza; Jalali, Aliakbar; Mashhadi, Seyed Kamal-e-ddin Mousavi

    2014-03-01

    The cruise control problem of high speed trains in the presence of unknown parameters and external disturbances is considered. In particular a Lyapunov-based robust adaptive controller is presented to achieve asymptotic tracking and disturbance rejection. The system under consideration is nonlinear, MIMO and non-minimum phase. To deal with the limitations arising from the unstable zero-dynamics we do an output redefinition such that the zero-dynamics with respect to new outputs becomes stable. Rigorous stability analyses are presented which establish the boundedness of all the internal states and simultaneously asymptotic stability of the tracking error dynamics. The results are presented for two common configurations of high speed trains, i.e. the DD and PPD designs, based on the multi-body model and are verified by several numerical simulations. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  18. The high speed interconnect system architecture and operation

    NASA Astrophysics Data System (ADS)

    Anderson, Steven C.

    The design and operation of a fiber-optic high-speed interconnect system (HSIS) being developed to meet the requirements of future avionics and flight-control hardware with distributed-system architectures are discussed. The HSIS is intended for 100-Mb/s operation of a local-area network with up to 256 stations. It comprises a bus transmission system (passive star couplers and linear media linked by active elements) and network interface units (NIUs). Each NIU is designed to perform the physical, data link, network, and transport functions defined by the ISO OSI Basic Reference Model (1982 and 1983) and incorporates a fiber-optic transceiver, a high-speed protocol based on the SAE AE-9B linear token-passing data bus (1986), and a specialized application interface unit. The operating modes and capabilities of HSIS are described in detail and illustrated with diagrams.

  19. Plasma measurement by optical visualization and triple probe method under high-speed impact

    NASA Astrophysics Data System (ADS)

    Sakai, T.; Umeda, K.; Kinoshita, S.; Watanabe, K.

    2017-02-01

    High-speed impact on spacecraft by space debris poses a threat. When a high-speed projectile collides with target, it is conceivable that the heat created by impact causes severe damage at impact point. Investigation of the temperature is necessary for elucidation of high-speed impact phenomena. However, it is very difficult to measure the temperature with standard methods for two main reasons. One reason is that a thermometer placed on the target is instantaneously destroyed upon impact. The other reason is that there is not enough time resolution to measure the transient temperature changes. In this study, the measurement of plasma induced by high-speed impact was investigated to estimate temperature changes near the impact point. High-speed impact experiments were performed with a vertical gas gun. The projectile speed was approximately 700 m/s, and the target material was A5052. The experimental data to calculate the plasma parameters of electron temperature and electron density were measured by triple probe method. In addition, the diffusion behavior of plasma was observed by optical visualization technique using high-speed camera. The frame rate and the exposure time were 260 kfps and 1.0 μs, respectively. These images are considered to be one proof to show the validity of plasma measurement. The experimental results showed that plasma signals were detected for around 70 μs, and the rising phase of the wave form was in good agreement with timing of optical visualization image when the plasma arrived at the tip of triple probe.

  20. High-speed atomic force microscopy and peak force tapping control

    NASA Astrophysics Data System (ADS)

    Hu, Shuiqing; Mininni, Lars; Hu, Yan; Erina, Natalia; Kindt, Johannes; Su, Chanmin

    2012-03-01

    ITRS Roadmap requires defect size measurement below 10 nanometers and challenging classifications for both blank and patterned wafers and masks. Atomic force microscope (AFM) is capable of providing metrology measurement in 3D at sub-nanometer accuracy but has long suffered from drawbacks in throughput and limitation of slow topography imaging without chemical information. This presentation focus on two disruptive technology developments, namely high speed AFM and quantitative nanomechanical mapping, which enables high throughput measurement with capability of identifying components through concurrent physical property imaging. The high speed AFM technology has allowed the imaging speed increase by 10-100 times without loss of the data quality. Such improvement enables the speed of defect review on a wafer to increase from a few defects per hour to nearly 100 defects an hour, approaching the requirements of ITRS Roadmap. Another technology development, Peak Force Tapping, substantially simplified the close loop system response, leading to self-optimization of most challenging samples groups to generate expert quality data. More importantly, AFM also simultaneously provides a series of mechanical property maps with a nanometer spatial resolution during defect review. These nanomechanical maps (including elastic modulus, hardness, and surface adhesion) provide complementary information for elemental analysis, differentiate defect materials by their physical properties, and assist defect classification beyond topographic measurements. This paper will explain the key enabling technologies, namely high speed tip-scanning AFM using innovative flexure design and control algorithm. Another critical element is AFM control using Peak Force Tapping, in which the instantaneous tip-sample interaction force is measured and used to derive a full suite of physical properties at each imaging pixel. We will provide examples of defect review data on different wafers and media disks

  1. PCIE interface design for high-speed image storage system based on SSD

    NASA Astrophysics Data System (ADS)

    Wang, Shiming

    2015-02-01

    This paper proposes and implements a standard interface of miniaturized high-speed image storage system, which combines PowerPC with FPGA and utilizes PCIE bus as the high speed switching channel. Attached to the PowerPC, mSATA interface SSD(Solid State Drive) realizes RAID3 array storage. At the same time, a high-speed real-time image compression patent IP core also can be embedded in FPGA, which is in the leading domestic level with compression rate and image quality, making that the system can record higher image data rate or achieve longer recording time. The notebook memory card buckle type design is used in the mSATA interface SSD, which make it possible to complete the replacement in 5 seconds just using single hand, thus the total length of repeated recordings is increased. MSI (Message Signaled Interrupts) interruption guarantees the stability and reliability of continuous DMA transmission. Furthermore, only through the gigabit network, the remote display, control and upload to backup function can be realized. According to an optional 25 frame/s or 30 frame/s, upload speeds can be up to more than 84 MB/s. Compared with the existing FLASH array high-speed memory systems, it has higher degree of modularity, better stability and higher efficiency on development, maintenance and upgrading. Its data access rate is up to 300MB/s, realizing the high speed image storage system miniaturization, standardization and modularization, thus it is fit for image acquisition, storage and real-time transmission to server on mobile equipment.

  2. Engineering Data on Selected High Speed Passenger Trucks

    DOT National Transportation Integrated Search

    1978-07-01

    The purpose of this project is to compile a list of high speed truck engineering parameters for characterization in dynamic performance modeling activities. Data tabulations are supplied for trucks from France, Germany, Italy, England, Japan, U.S.S.R...

  3. Socio-technical Issues for Ubiquitous Information Society in 2010

    NASA Astrophysics Data System (ADS)

    Funabashi, Motohisa; Homma, Koichi; Sasaki, Toshiro; Sato, Yoshinori; Kido, Kunihiko; Fukumoto, Takashi; Yano, Koujin

    Impact of the ubiquitous information technology on our society is so significant that directing technological development and preparing institutional apparatus are quite important and urgent. The present paper elaborates, with the efforts by both humanity and engineering disciplines, to find out the socio-technical issues of ubiquitous information society in 2010 by inspecting social implications of emerging technology as well as social expectations. In order to deliberate the issues, scenarios are developed that describes possible life in ubiquitous information society. The derived issues cover integrating information technology and human body, producing smart sharable environment, protecting individual rights, fostering new service business, and forming community.

  4. Optical characterization of high speed microscanners based on static slit profiling method

    NASA Astrophysics Data System (ADS)

    Alaa Elhady, A.; Sabry, Yasser M.; Khalil, Diaa

    2017-01-01

    Optical characterization of high-speed microscanners is a challenging task that usually requires special high speed, extremely expensive camera systems. This paper presents a novel simple method to characterize the scanned beam spot profile and size in high-speed optical scanners under operation. It allows measuring the beam profile and the spot sizes at different scanning angles. The method is analyzed theoretically and applied experimentally on the characterization of a Micro Electro Mechanical MEMS scanner operating at 2.6 kHz. The variation of the spot size versus the scanning angle, up to ±15°, is extracted and the dynamic bending curvature effect of the micromirror is predicted.

  5. High-throughput machining using a high-average power ultrashort pulse laser and high-speed polygon scanner

    NASA Astrophysics Data System (ADS)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-09-01

    High-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (aluminum, copper, and stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high-average power picosecond laser in conjunction with a unique, in-house developed polygon mirror-based biaxial scanning system. Therefore, different concepts of polygon scanners are engineered and tested to find the best architecture for high-speed and precision laser beam scanning. In order to identify the optimum conditions for efficient processing when using high-average laser powers, the depths of cavities made in the samples by varying the processing parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. For overlapping pulses of optimum fluence, the removal rate is as high as 27.8 mm3/min for aluminum, 21.4 mm3/min for copper, 15.3 mm3/min for stainless steel, and 129.1 mm3/min for Al2O3, when a laser beam of 187 W average laser powers irradiates. On stainless steel, it is demonstrated that the removal rate increases to 23.3 mm3/min when the laser beam is very fast moving. This is thanks to the low pulse overlap as achieved with 800 m/s beam deflection speed; thus, laser beam shielding can be avoided even when irradiating high-repetitive 20-MHz pulses.

  6. High speed propeller acoustics and aerodynamics - A boundary element approach

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Myers, M. K.; Dunn, M. H.

    1989-01-01

    The Boundary Element Method (BEM) is applied in this paper to the problems of acoustics and aerodynamics of high speed propellers. The underlying theory is described based on the linearized Ffowcs Williams-Hawkings equation. The surface pressure on the blade is assumed unknown in the aerodynamic problem. It is obtained by solving a singular integral equation. The acoustic problem is then solved by moving the field point inside the fluid medium and evaluating some surface and line integrals. Thus the BEM provides a powerful technique in calculation of high speed propeller aerodynamics and acoustics.

  7. Quiet High Speed Fan II (QHSF II): Final Report

    NASA Technical Reports Server (NTRS)

    Kontos, Karen; Weir, Don; Ross, Dave

    2012-01-01

    This report details the aerodynamic, mechanical, structural design and fabrication of a Honey Engines Quiet High Speed Fan II (lower hub/tip ratio and higher specific flow than the Baseline I fan). This fan/nacelle system incorporates features such as advanced forward sweep and an advanced integrated fan/fan exit guide vane design that provides for the following characteristics: (1) Reduced noise at supersonic tip speeds, in comparison to current state-of-the-art fan technology; (2) Improved aeroelastic stability within the anticipated operating envelope; and (3) Aerodynamic performance consistent with current state-of-the-art fan technology. This fan was fabricated by Honeywell and tested in the NASA Glenn 9- by 15-Ft Low Speed Wind Tunnel for aerodynamic, aeromechanical, and acoustic performance.

  8. Flame Acceleration and Transition to Detonation in High-Speed Turbulent Combustion

    DTIC Science & Technology

    2016-12-21

    Turbulent Combustion 1. Introduction to the Challenge Problem The importance of high-speed t urbulent combustion of gas mixtures and sprays is dif...engines, gas turbines, various types of jet engines, and some rocket engines . On the other hand , preventing high-speed combustion is critical for...the safety of any human activities that involve handling of po- t entially explosive gases or volatile liquids . Thus, the development of more fuel

  9. Numerical Simulation of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Taulbee, D. B.; Madnia, C. K.; Jaberi, F. A.; Colucci, P. J.; Gicquel, L. Y. M.; Adumitroaie, V.; James, S.

    1999-01-01

    The objectives of this research are: (1) to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic turbulence closures for statistical description of chemically reacting turbulent flows.

  10. Supersonic Jet Exhaust Noise at High Subsonic Flight Speed

    NASA Technical Reports Server (NTRS)

    Norum, Thomas D.; Garber, Donald P.; Golub, Robert A.; Santa Maria, Odilyn L.; Orme, John S.

    2004-01-01

    An empirical model to predict the effects of flight on the noise from a supersonic transport is developed. This model is based on an analysis of the exhaust jet noise from high subsonic flights of the F-15 ACTIVE Aircraft. Acoustic comparisons previously attainable only in a wind tunnel were accomplished through the control of both flight operations and exhaust nozzle exit diameter. Independent parametric variations of both flight and exhaust jet Mach numbers at given supersonic nozzle pressure ratios enabled excellent correlations to be made for both jet broadband shock noise and jet mixing noise at flight speeds up to Mach 0.8. Shock noise correlated with flight speed and emission angle through a Doppler factor exponent of about 2.6. Mixing noise at all downstream angles was found to correlate well with a jet relative velocity exponent of about 7.3, with deviations from this behavior only at supersonic eddy convection speeds and at very high flight Mach numbers. The acoustic database from the flight test is also provided.

  11. A low-complexity and high performance concatenated coding scheme for high-speed satellite communications

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Rhee, Dojun; Rajpal, Sandeep

    1993-01-01

    This report presents a low-complexity and high performance concatenated coding scheme for high-speed satellite communications. In this proposed scheme, the NASA Standard Reed-Solomon (RS) code over GF(2(exp 8) is used as the outer code and the second-order Reed-Muller (RM) code of Hamming distance 8 is used as the inner code. The RM inner code has a very simple trellis structure and is decoded with the soft-decision Viterbi decoding algorithm. It is shown that the proposed concatenated coding scheme achieves an error performance which is comparable to that of the NASA TDRS concatenated coding scheme in which the NASA Standard rate-1/2 convolutional code of constraint length 7 and d sub free = 10 is used as the inner code. However, the proposed RM inner code has much smaller decoding complexity, less decoding delay, and much higher decoding speed. Consequently, the proposed concatenated coding scheme is suitable for reliable high-speed satellite communications, and it may be considered as an alternate coding scheme for the NASA TDRS system.

  12. High-speed reconstruction of compressed images

    NASA Astrophysics Data System (ADS)

    Cox, Jerome R., Jr.; Moore, Stephen M.

    1990-07-01

    A compression scheme is described that allows high-definition radiological images with greater than 8-bit intensity resolution to be represented by 8-bit pixels. Reconstruction of the images with their original intensity resolution can be carried out by means of a pipeline architecture suitable for compact, high-speed implementation. A reconstruction system is described that can be fabricated according to this approach and placed between an 8-bit display buffer and the display's video system thereby allowing contrast control of images at video rates. Results for 50 CR chest images are described showing that error-free reconstruction of the original 10-bit CR images can be achieved.

  13. Thermographic measurements of high-speed metal cutting

    NASA Astrophysics Data System (ADS)

    Mueller, Bernhard; Renz, Ulrich

    2002-03-01

    Thermographic measurements of a high-speed cutting process have been performed with an infrared camera. To realize images without motion blur the integration times were reduced to a few microseconds. Since the high tool wear influences the measured temperatures a set-up has been realized which enables small cutting lengths. Only single images have been recorded because the process is too fast to acquire a sequence of images even with the frame rate of the very fast infrared camera which has been used. To expose the camera when the rotating tool is in the middle of the camera image an experimental set-up with a light barrier and a digital delay generator with a time resolution of 1 ns has been realized. This enables a very exact triggering of the camera at the desired position of the tool in the image. Since the cutting depth is between 0.1 and 0.2 mm a high spatial resolution was also necessary which was obtained by a special close-up lens allowing a resolution of app. 45 microns. The experimental set-up will be described and infrared images and evaluated temperatures of a titanium alloy and a carbon steel will be presented for cutting speeds up to 42 m/s.

  14. Teaching high-speed photography and photo-instrumentation

    NASA Astrophysics Data System (ADS)

    Davidhazy, Andrew

    2005-03-01

    As the tools available to the high speed photographer have become more powerful the underlying technology has increased in complexity and often is beyond the reach of most practitioners in terms of in-the-field troubleshooting or adaptation and this specialization has also driven many systems beyond the reach of high school, community college and undergraduate, non-research funded, universities. In spite of this and with the belief that fundamental techniques, reasoning and approaches have not changed much over the years, several courses in photo-instrumentation at the Imaging and Photographic Technology program at the Rochester Institute of Technology present to a couple dozen undergraduate students a year the principles associated with a various imaging systems and techniques for visualization and data analysis of high speed or "invisible" phenomena. This paper reviews the objectives and philosophy of these courses in the context of a total imaging technology education. It describes and illustrates current topics included in the program. In brief, calibration and time measurement concepts, instantaneous and repetitive time sampling equipment, various visualization technologies, strip and streak cameras and applications using film and improvised digital recorders, basic velocimetry techniques including sensitometric velocimetry and synchro-ballistic photography plus other related techniques are introduced to undergraduate students.

  15. Farfield inflight measurements of high-speed turboprop noise

    NASA Technical Reports Server (NTRS)

    Balombin, J. R.; Loeffler, I. J.

    1983-01-01

    A flight program was carried out to determine the variation of noise level with distance from a model high-speed propeller. Noise measurements were obtained at different distances from a SR-3 propeller mounted on a JetStar aircraft, with the test instrumentation mounted on a Learjet flown in formation. The propeller was operated at 0.8 m flight Mach number, 1.12 helical tip Mach number and at 0.7 flight Mach number, 1.0 helical tip Mach number. The instantaneous pressure from individual blades was observed to rise faster at the 0.8 flight speed, than at the 0.7 M flight speed. The measured levels appeared to decrease in good agreement with a 6 dB/doubling of distance decay, over the measurement range of approximately 16 m to 100 m distance. Further extrapolation, to the distances represented by a community, would suggest that the propagated levels during cruise would not cause a serious community annoyance.

  16. Farfield inflight measurement of high-speed turboprop noise

    NASA Technical Reports Server (NTRS)

    Balombin, J. R.; Loeffler, I. J.

    1982-01-01

    A flight program was carried out to determine the variation of noise level with distance from a model high speed propeller. Noise measurements were obtained at different distances from a SR-3 propeller mounted on a JetStar aircraft, with the test instrumentation mounted on a Lear jet flown in formation. The propeller was operated at 0.8 flight Mach number, 1.12 helical tip Mach number and at 0.7 flight Mach number, 1.0 helical tip Mach number. The instantaneous pressure from individual blades was observed to rise faster at the 0.8 M flight speed, than at the 0.7 M flight speed. The measured levels appeared to decrease in good agreement with a 6 dB/doubling of distance decay, over the measurement range of approximately 16 m to 100 m distance. Further extrapolation, to the distances represented by a community, would suggest that the propagated levels during cruise would not cause a serious community annoyance.

  17. High speed machining of space shuttle external tank liquid hydrogen barrel panel

    NASA Technical Reports Server (NTRS)

    Hankins, J. D.

    1983-01-01

    Actual and projected optimum High Speed Machining data for producing shuttle external tank liquid hydrogen barrel panels of aluminum alloy 2219-T87 are reported. The data included various machining parameters; e.g., spindle speeds, cutting speed, table feed, chip load, metal removal rate, horsepower, cutting efficiency, cutter wear (lack of) and chip removal methods.

  18. High speed machining of space shuttle external tank liquid hydrogen barrel panel

    NASA Astrophysics Data System (ADS)

    Hankins, J. D.

    1983-11-01

    Actual and projected optimum High Speed Machining data for producing shuttle external tank liquid hydrogen barrel panels of aluminum alloy 2219-T87 are reported. The data included various machining parameters; e.g., spindle speeds, cutting speed, table feed, chip load, metal removal rate, horsepower, cutting efficiency, cutter wear (lack of) and chip removal methods.

  19. Evaluating outcomes of raising speed limits on high speed non-freeways.

    DOT National Transportation Integrated Search

    2015-04-01

    The purpose of this research was to assist in determining the potential impacts of implementing a : proposed 65 mph speed limit on non-freeways in Michigan. Consideration was given to a broad range of : performance measures, including operating speed...

  20. Overview of High Speed Close-Up Imaging in an Icing Environment

    NASA Technical Reports Server (NTRS)

    Miller, Dean R.; Lynch, Christopher J.; Tate, Peter A.

    2004-01-01

    The Icing Branch and Imaging Technology Center at NASA Glenn Research Center have recently been involved in several projects where high speed close-up imaging was used to investigate water droplet impact/splash, and also ice particle impact/bounce in an icing wind tunnel. The combination of close-up and high speed imaging capabilities were required because the particles being studied were relatively small (d < 1 mm in diameter), and the impact process occurred in a very short time period (t(sub impact) << 1 sec). High speed close-up imaging was utilized to study the dynamics of droplet impact and splash in simulated Supercooled Large Droplet (SLD) icing conditions. The objective of this test was to evaluate the capability of a ultra high speed camera system to acquire quantitative information about the impact process (e.g., droplet size, velocity). Imaging data were obtained in an icing wind tunnel for spray cloud MVD > 50 m. High speed close-up imaging was also utilized to characterize the impact of ice particles on an airfoil with a thermally protected leading edge. The objective of this investigation was to determine whether ice particles tend to "stick" or "bounce" after impact. Imaging data were obtained for cases where the airfoil surface was heated and unheated. Based on the results from this test, follow on tests were conducted to investigate ice particle impact on the sensing elements of water content measurement devices. This paper will describe the use of the imaging systems to support these experimental investigations, present some representative results, and summarize what was learned about the use of these systems in an icing environment.

  1. High Speed Imaging of Cavitation around Dental Ultrasonic Scaler Tips.

    PubMed

    Vyas, Nina; Pecheva, Emilia; Dehghani, Hamid; Sammons, Rachel L; Wang, Qianxi X; Leppinen, David M; Walmsley, A Damien

    2016-01-01

    Cavitation occurs around dental ultrasonic scalers, which are used clinically for removing dental biofilm and calculus. However it is not known if this contributes to the cleaning process. Characterisation of the cavitation around ultrasonic scalers will assist in assessing its contribution and in developing new clinical devices for removing biofilm with cavitation. The aim is to use high speed camera imaging to quantify cavitation patterns around an ultrasonic scaler. A Satelec ultrasonic scaler operating at 29 kHz with three different shaped tips has been studied at medium and high operating power using high speed imaging at 15,000, 90,000 and 250,000 frames per second. The tip displacement has been recorded using scanning laser vibrometry. Cavitation occurs at the free end of the tip and increases with power while the area and width of the cavitation cloud varies for different shaped tips. The cavitation starts at the antinodes, with little or no cavitation at the node. High speed image sequences combined with scanning laser vibrometry show individual microbubbles imploding and bubble clouds lifting and moving away from the ultrasonic scaler tip, with larger tip displacement causing more cavitation.

  2. High Speed Imaging of Cavitation around Dental Ultrasonic Scaler Tips

    PubMed Central

    Vyas, Nina; Pecheva, Emilia; Dehghani, Hamid; Sammons, Rachel L.; Wang, Qianxi X.; Leppinen, David M.; Walmsley, A. Damien

    2016-01-01

    Cavitation occurs around dental ultrasonic scalers, which are used clinically for removing dental biofilm and calculus. However it is not known if this contributes to the cleaning process. Characterisation of the cavitation around ultrasonic scalers will assist in assessing its contribution and in developing new clinical devices for removing biofilm with cavitation. The aim is to use high speed camera imaging to quantify cavitation patterns around an ultrasonic scaler. A Satelec ultrasonic scaler operating at 29 kHz with three different shaped tips has been studied at medium and high operating power using high speed imaging at 15,000, 90,000 and 250,000 frames per second. The tip displacement has been recorded using scanning laser vibrometry. Cavitation occurs at the free end of the tip and increases with power while the area and width of the cavitation cloud varies for different shaped tips. The cavitation starts at the antinodes, with little or no cavitation at the node. High speed image sequences combined with scanning laser vibrometry show individual microbubbles imploding and bubble clouds lifting and moving away from the ultrasonic scaler tip, with larger tip displacement causing more cavitation. PMID:26934340

  3. Numerical simulation of high speed incremental forming of aluminum alloy

    NASA Astrophysics Data System (ADS)

    Giuseppina, Ambrogio; Teresa, Citrea; Luigino, Filice; Francesco, Gagliardi

    2013-12-01

    In this study, an innovative process is analyzed with the aim to satisfy the industrial requirements, such as process flexibility, differentiation and customizing of products, cost reduction, minimization of execution time, sustainable production, etc. The attention is focused on incremental forming process, nowadays used in different fields such as: rapid prototyping, medical sector, architectural industry, aerospace and marine, in the production of molds and dies. Incremental forming consists in deforming only a small region of the workspace through a punch driven by a NC machine. SPIF is the considered variant of the process, in which the punch gives local deformation without dies and molds; consequently, the final product geometry can be changed by the control of an actuator without requiring a set of different tools. The drawback of this process is its slowness. The aim of this study is to assess the IF feasibility at high speeds. An experimental campaign will be performed by a CNC lathe with high speed to test process feasibility and the influence on materials formability mainly on aluminum alloys. The first results show how the material presents the same performance than in conventional speed IF and, in some cases, better material behavior due to the temperature field. An accurate numerical simulation has been performed to investigate the material behavior during the high speed process substantially confirming experimental evidence.

  4. Trust models in ubiquitous computing.

    PubMed

    Krukow, Karl; Nielsen, Mogens; Sassone, Vladimiro

    2008-10-28

    We recapture some of the arguments for trust-based technologies in ubiquitous computing, followed by a brief survey of some of the models of trust that have been introduced in this respect. Based on this, we argue for the need of more formal and foundational trust models.

  5. The Status of Ubiquitous Computing.

    ERIC Educational Resources Information Center

    Brown, David G.; Petitto, Karen R.

    2003-01-01

    Explains the prevalence and rationale of ubiquitous computing on college campuses--teaching with the assumption or expectation that all faculty and students have access to the Internet--and offers lessons learned by pioneering institutions. Lessons learned involve planning, technology, implementation and management, adoption of computer-enhanced…

  6. High-speed single-pixel digital holography

    NASA Astrophysics Data System (ADS)

    González, Humberto; Martínez-León, Lluís.; Soldevila, Fernando; Araiza-Esquivel, Ma.; Tajahuerce, Enrique; Lancis, Jesús

    2017-06-01

    The complete phase and amplitude information of biological specimens can be easily determined by phase-shifting digital holography. Spatial light modulators (SLMs) based on liquid crystal technology, with a frame-rate around 60 Hz, have been employed in digital holography. In contrast, digital micro-mirror devices (DMDs) can reach frame rates up to 22 kHz. A method proposed by Lee to design computer generated holograms (CGHs) permits the use of such binary amplitude modulators as phase-modulation devices. Single-pixel imaging techniques record images by sampling the object with a sequence of micro-structured light patterns and using a simple photodetector. Our group has reported some approaches combining single-pixel imaging and phase-shifting digital holography. In this communication, we review these techniques and present the possibility of a high-speed single-pixel phase-shifting digital holography system with phase-encoded illumination. This system is based on a Mach-Zehnder interferometer, with a DMD acting as the modulator for projecting the sampling patterns on the object and also being used for phase-shifting. The proposed sampling functions are phaseencoded Hadamard patterns generated through a Lee hologram approach. The method allows the recording of the complex amplitude distribution of an object at high speed on account of the high frame rates of the DMD. Reconstruction may take just a few seconds. Besides, the optical setup is envisaged as a true adaptive system, which is able to measure the aberration induced by the optical system in the absence of a sample object, and then to compensate the wavefront in the phasemodulation stage.

  7. Method for transition prediction in high-speed boundary layers, phase 2

    NASA Astrophysics Data System (ADS)

    Herbert, T.; Stuckert, G. K.; Lin, N.

    1993-09-01

    The parabolized stability equations (PSE) are a new and more reliable approach to analyzing the stability of streamwise varying flows such as boundary layers. This approach has been previously validated for idealized incompressible flows. Here, the PSE are formulated for highly compressible flows in general curvilinear coordinates to permit the analysis of high-speed boundary-layer flows over fairly general bodies. Vigorous numerical studies are carried out to study convergence and accuracy of the linear-stability code LSH and the linear/nonlinear PSE code PSH. Physical interfaces are set up to analyze the M = 8 boundary layer over a blunt cone calculated by using a thin-layer Navier Stokes (TNLS) code and the flow over a sharp cone at angle of attack calculated using the AFWAL parabolized Navier-Stokes (PNS) code. While stability and transition studies at high speeds are far from routine, the method developed here is the best tool available to research the physical processes in high-speed boundary layers.

  8. High-Speed, High-Temperature Finger Seal Test Results

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Kumar, Arun; Delgado, Irebert R.

    2002-01-01

    Finger seals have significantly lower leakage rates than conventional labyrinth seals used in gas turbine engines and are expected to decrease specific fuel consumption by over 1 percent and to decrease direct operating cost by over 0.5 percent. Their compliant design accommodates shaft growth and motion due to thermal and dynamic loads with minimal wear. The cost to fabricate these finger seals is estimated to be about half the cost to fabricate brush seals. A finger seal has been tested in NASA's High Temperature, High Speed Turbine Seal Test Rig at operating conditions up to 1200 F, 1200 ft/s, and 75 psid. Static, performance and endurance test results are presented. While seal leakage and wear performance are acceptable, further design improvements are needed to reduce the seal power loss.

  9. High speed turboprop aeroacoustic study (counterrotation). Volume 2: Computer programs

    NASA Technical Reports Server (NTRS)

    Whitfield, C. E.; Mani, R.; Gliebe, P. R.

    1990-01-01

    The isolated counterrotating high speed turboprop noise prediction program developed and funded by GE Aircraft Engines was compared with model data taken in the GE Aircraft Engines Cell 41 anechoic facility, the Boeing Transonic Wind Tunnel, and in the NASA-Lewis 8 x 6 and 9 x 15 wind tunnels. The predictions show good agreement with measured data under both low and high speed simulated flight conditions. The installation effect model developed for single rotation, high speed turboprops was extended to include counter rotation. The additional effect of mounting a pylon upstream of the forward rotor was included in the flow field modeling. A nontraditional mechanism concerning the acoustic radiation from a propeller at angle of attack was investigated. Predictions made using this approach show results that are in much closer agreement with measurement over a range of operating conditions than those obtained via traditional fluctuating force methods. The isolated rotors and installation effects models were combined into a single prediction program. The results were compared with data taken during the flight test of the B727/UDF (trademark) engine demonstrator aircraft.

  10. High speed turboprop aeroacoustic study (counterrotation). Volume 2: Computer programs

    NASA Astrophysics Data System (ADS)

    Whitfield, C. E.; Mani, R.; Gliebe, P. R.

    1990-07-01

    The isolated counterrotating high speed turboprop noise prediction program developed and funded by GE Aircraft Engines was compared with model data taken in the GE Aircraft Engines Cell 41 anechoic facility, the Boeing Transonic Wind Tunnel, and in the NASA-Lewis 8 x 6 and 9 x 15 wind tunnels. The predictions show good agreement with measured data under both low and high speed simulated flight conditions. The installation effect model developed for single rotation, high speed turboprops was extended to include counter rotation. The additional effect of mounting a pylon upstream of the forward rotor was included in the flow field modeling. A nontraditional mechanism concerning the acoustic radiation from a propeller at angle of attack was investigated. Predictions made using this approach show results that are in much closer agreement with measurement over a range of operating conditions than those obtained via traditional fluctuating force methods. The isolated rotors and installation effects models were combined into a single prediction program. The results were compared with data taken during the flight test of the B727/UDF (trademark) engine demonstrator aircraft.

  11. Development of embedded real-time and high-speed vision platform

    NASA Astrophysics Data System (ADS)

    Ouyang, Zhenxing; Dong, Yimin; Yang, Hua

    2015-12-01

    Currently, high-speed vision platforms are widely used in many applications, such as robotics and automation industry. However, a personal computer (PC) whose over-large size is not suitable and applicable in compact systems is an indispensable component for human-computer interaction in traditional high-speed vision platforms. Therefore, this paper develops an embedded real-time and high-speed vision platform, ER-HVP Vision which is able to work completely out of PC. In this new platform, an embedded CPU-based board is designed as substitution for PC and a DSP and FPGA board is developed for implementing image parallel algorithms in FPGA and image sequential algorithms in DSP. Hence, the capability of ER-HVP Vision with size of 320mm x 250mm x 87mm can be presented in more compact condition. Experimental results are also given to indicate that the real-time detection and counting of the moving target at a frame rate of 200 fps at 512 x 512 pixels under the operation of this newly developed vision platform are feasible.

  12. Double Helical Gear Performance Results in High Speed Gear Trains

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Ehinger, Ryan; Sinusas, Eric; Kilmain, Charles

    2009-01-01

    The operation of high speed gearing systems in the transmissions of tiltrotor aircraft has an effect on overall propulsion system efficiency. Recent work has focused on many aspects of high-speed helical gear trains as would be used in tiltrotor aircraft such as operational characteristics, comparison of analytical predictions to experimental data and the affect of superfinishing on transmission performance. Baseline tests of an aerospace quality system have been conducted in the NASA Glenn High-Speed Helical Gear Train Test Facility and have been described in earlier studies. These earlier tests had utilized single helical gears. The results that will be described in this study are those attained using double helical gears. This type of gear mesh can be configured in this facility to either pump the air-oil environment from the center gap between the meshing gears to the outside of tooth ends or in the reverse direction. Tests were conducted with both inward and outward air-oil pumping directions. Results are compared to the earlier baseline results of single helical gears.

  13. Double Helical Gear Performance Results in High Speed Gear Trains

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Ehinger, Ryan; Sinusas, Eric; Kilmain, Charles

    2010-01-01

    The operation of high speed gearing systems in the transmissions of tiltrotor aircraft has an effect on overall propulsion system efficiency. Recent work has focused on many aspects of high-speed helical gear trains as would be used in tiltrotor aircraft such as operational characteristics, comparison of analytical predictions to experimental data and the affect of superfinishing on transmission performance. Baseline tests of an aerospace quality system have been conducted in the NASA Glenn High-Speed Helical Gear Train Test Facility and have been described in earlier studies. These earlier tests had utilized single helical gears. The results that will be described in this study are those attained using double helical gears. This type of gear mesh can be configured in this facility to either pump the air-oil environment from the center gap between the meshing gears to the outside of tooth ends or in the reverse direction. Tests were conducted with both inward and outward air-oil pumping directions. Results are compared to the earlier baseline results of single helical gears.

  14. High speed turning of compacted graphite iron using controlled modulation

    NASA Astrophysics Data System (ADS)

    Stalbaum, Tyler Paul

    Compacted graphite iron (CGI) is a material which emerged as a candidate material to replace cast iron (CI) in the automotive industry for engine block castings. Its thermal and mechanical properties allow the CGI-based engines to operate at higher cylinder pressures and temperatures than CI-based engines, allowing for lower fuel emissions and increased fuel economy. However, these same properties together with the thermomechanical wear mode in the CGI-CBN system result in poor machinability and inhibit CGI from seeing wide spread use in the automotive industry. In industry, machining of CGI is done only at low speeds, less than V = 200 m/min, to avoid encountering rapid wear of the cutting tools during cutting. Studies have suggested intermittent cutting operations such as milling suffer less severe tool wear than continuous cutting. Furthermore, evidence that a hard sulfide layer which forms over the cutting edge in machining CI at high speeds is absent during machining CGI is a major factor in the difference in machinability of these material systems. The present study addresses both of these issues by modification to the conventional machining process to allow intermittent continuous cutting. The application of controlled modulation superimposed onto the cutting process -- modulation-assisted machining (MAM) -- is shown to be quite effective in reducing the wear of cubic boron nitride (CBN) tools when machining CGI at high machining speeds (> 500 m/min). The tool life is at least 20 times greater than found in conventional machining of CGI. This significant reduction in wear is a consequence of reduction in the severity of the tool-work contact conditions with MAM. The propensity for thermochemical wear of CBN is thus reduced. It is found that higher cutting speed (> 700 m/min) leads to lower tool wear with MAM. The MAM configuration employing feed-direction modulation appears feasible for implementation at high speeds and offers a solution to this challenging

  15. Grade Crossing Protection in High-Speed, High-Density, Passenger-Service Rail Corridors

    DOT National Transportation Integrated Search

    1973-01-01

    The report is a preliminary examination of special aspects of grade crossing protection for operation of high-speed passenger trains in rail corridors for which complete grade separation is not possible. Overall system needs and constraints are indic...

  16. An Evolutionary Method for Financial Forecasting in Microscopic High-Speed Trading Environment.

    PubMed

    Huang, Chien-Feng; Li, Hsu-Chih

    2017-01-01

    The advancement of information technology in financial applications nowadays have led to fast market-driven events that prompt flash decision-making and actions issued by computer algorithms. As a result, today's markets experience intense activity in the highly dynamic environment where trading systems respond to others at a much faster pace than before. This new breed of technology involves the implementation of high-speed trading strategies which generate significant portion of activity in the financial markets and present researchers with a wealth of information not available in traditional low-speed trading environments. In this study, we aim at developing feasible computational intelligence methodologies, particularly genetic algorithms (GA), to shed light on high-speed trading research using price data of stocks on the microscopic level. Our empirical results show that the proposed GA-based system is able to improve the accuracy of the prediction significantly for price movement, and we expect this GA-based methodology to advance the current state of research for high-speed trading and other relevant financial applications.

  17. Harnessing the damping properties of materials for high-speed atomic force microscopy.

    PubMed

    Adams, Jonathan D; Erickson, Blake W; Grossenbacher, Jonas; Brugger, Juergen; Nievergelt, Adrian; Fantner, Georg E

    2016-02-01

    The success of high-speed atomic force microscopy in imaging molecular motors, enzymes and microbes in liquid environments suggests that the technique could be of significant value in a variety of areas of nanotechnology. However, the majority of atomic force microscopy experiments are performed in air, and the tapping-mode detection speed of current high-speed cantilevers is an order of magnitude lower in air than in liquids. Traditional approaches to increasing the imaging rate of atomic force microscopy have involved reducing the size of the cantilever, but further reductions in size will require a fundamental change in the detection method of the microscope. Here, we show that high-speed imaging in air can instead be achieved by changing the cantilever material. We use cantilevers fabricated from polymers, which can mimic the high damping environment of liquids. With this approach, SU-8 polymer cantilevers are developed that have an imaging-in-air detection bandwidth that is 19 times faster than those of conventional cantilevers of similar size, resonance frequency and spring constant.

  18. An Evolutionary Method for Financial Forecasting in Microscopic High-Speed Trading Environment

    PubMed Central

    Li, Hsu-Chih

    2017-01-01

    The advancement of information technology in financial applications nowadays have led to fast market-driven events that prompt flash decision-making and actions issued by computer algorithms. As a result, today's markets experience intense activity in the highly dynamic environment where trading systems respond to others at a much faster pace than before. This new breed of technology involves the implementation of high-speed trading strategies which generate significant portion of activity in the financial markets and present researchers with a wealth of information not available in traditional low-speed trading environments. In this study, we aim at developing feasible computational intelligence methodologies, particularly genetic algorithms (GA), to shed light on high-speed trading research using price data of stocks on the microscopic level. Our empirical results show that the proposed GA-based system is able to improve the accuracy of the prediction significantly for price movement, and we expect this GA-based methodology to advance the current state of research for high-speed trading and other relevant financial applications. PMID:28316618

  19. High speed micromachining with high power UV laser

    NASA Astrophysics Data System (ADS)

    Patel, Rajesh S.; Bovatsek, James M.

    2013-03-01

    Increasing demand for creating fine features with high accuracy in manufacturing of electronic mobile devices has fueled growth for lasers in manufacturing. High power, high repetition rate ultraviolet (UV) lasers provide an opportunity to implement a cost effective high quality, high throughput micromachining process in a 24/7 manufacturing environment. The energy available per pulse and the pulse repetition frequency (PRF) of diode pumped solid state (DPSS) nanosecond UV lasers have increased steadily over the years. Efficient use of the available energy from a laser is important to generate accurate fine features at a high speed with high quality. To achieve maximum material removal and minimal thermal damage for any laser micromachining application, use of the optimal process parameters including energy density or fluence (J/cm2), pulse width, and repetition rate is important. In this study we present a new high power, high PRF QuasarR 355-40 laser from Spectra-Physics with TimeShiftTM technology for unique software adjustable pulse width, pulse splitting, and pulse shaping capabilities. The benefits of these features for micromachining include improved throughput and quality. Specific example and results of silicon scribing are described to demonstrate the processing benefits of the Quasar's available power, PRF, and TimeShift technology.

  20. High-speed optical links for UAV applications

    NASA Astrophysics Data System (ADS)

    Chen, C.; Grier, A.; Malfa, M.; Booen, E.; Harding, H.; Xia, C.; Hunwardsen, M.; Demers, J.; Kudinov, K.; Mak, G.; Smith, B.; Sahasrabudhe, A.; Patawaran, F.; Wang, T.; Wang, A.; Zhao, C.; Leang, D.; Gin, J.; Lewis, M.; Nguyen, D.; Quirk, K.

    2017-02-01

    High speed optical backbone links between a fleet of UAVs is an integral part of the Facebook connectivity architecture. To support the architecture, the optical terminals need to provide high throughput rates (in excess of tens of Gbps) while achieving low weight and power consumption. The initial effort is to develop and demonstrate an optical terminal capable of meeting the data rate requirements and demonstrate its functions for both air-air and air-ground engagements. This paper is a summary of the effort to date.

  1. Optimum Design of High Speed Prop-Rotors

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi

    1992-01-01

    The objective of this research is to develop optimization procedures to provide design trends in high speed prop-rotors. The necessary disciplinary couplings are all considered within a closed loop optimization process. The procedures involve the consideration of blade aeroelastic, aerodynamic performance, structural and dynamic design requirements. Further, since the design involves consideration of several different objectives, multiobjective function formulation techniques are developed.

  2. Exploring microwave resonant multi-point ignition using high-speed schlieren imaging

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Zhang, Guixin; Xie, Hong; Deng, Lei; Wang, Zhi

    2018-03-01

    Microwave plasma offers a potential method to achieve rapid combustion in a high-speed combustor. In this paper, microwave resonant multi-point ignition and its control method have been studied via high-speed schlieren imaging. The experiment was conducted with the microwave resonant ignition system and the schlieren optical system. The microwave pulse in 2.45 GHz with 2 ms width and 3 kW peak power was employed as an ignition energy source to produce initial flame kernels in the combustion chamber. A reflective schlieren method was designed to illustrate the flame development process with a high-speed camera. The bottom of the combustion chamber was made of a quartz glass coated with indium tin oxide, which ensures sufficient microwave reflection and light penetration. Ignition experiments were conducted at 2 bars of stoichiometric methane-air mixtures. Schlieren images show that flame kernels were generated at more than one location simultaneously and flame propagated with different speeds in different flame kernels. Ignition kernels were discussed in three types according to their appearances. Pressure curves and combustion duration also show that multi-point ignition plays a significant role in accelerating combustion.

  3. Exploring microwave resonant multi-point ignition using high-speed schlieren imaging.

    PubMed

    Liu, Cheng; Zhang, Guixin; Xie, Hong; Deng, Lei; Wang, Zhi

    2018-03-01

    Microwave plasma offers a potential method to achieve rapid combustion in a high-speed combustor. In this paper, microwave resonant multi-point ignition and its control method have been studied via high-speed schlieren imaging. The experiment was conducted with the microwave resonant ignition system and the schlieren optical system. The microwave pulse in 2.45 GHz with 2 ms width and 3 kW peak power was employed as an ignition energy source to produce initial flame kernels in the combustion chamber. A reflective schlieren method was designed to illustrate the flame development process with a high-speed camera. The bottom of the combustion chamber was made of a quartz glass coated with indium tin oxide, which ensures sufficient microwave reflection and light penetration. Ignition experiments were conducted at 2 bars of stoichiometric methane-air mixtures. Schlieren images show that flame kernels were generated at more than one location simultaneously and flame propagated with different speeds in different flame kernels. Ignition kernels were discussed in three types according to their appearances. Pressure curves and combustion duration also show that multi-point ignition plays a significant role in accelerating combustion.

  4. 78 FR 16051 - Vehicle/Track Interaction Safety Standards; High-Speed and High Cant Deficiency Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-13

    ...FRA is amending the Track Safety Standards and Passenger Equipment Safety Standards to promote the safe interaction of rail vehicles with the track over which they operate under a variety of conditions at speeds up to 220 m.p.h. The final rule revises standards for track geometry and safety limits for vehicle response to track conditions, enhances vehicle/track qualification procedures, and adds flexibility for permitting high cant deficiency train operations through curves at conventional speeds. The rule accounts for a range of vehicle types that are currently in operation, as well as vehicle types that may likely be used in future high-speed or high cant deficiency rail operations, or both. The rule is based on the results of simulation studies designed to identify track geometry irregularities associated with unsafe wheel/rail forces and accelerations, thorough reviews of vehicle qualification and revenue service test data, and consideration of international practices.

  5. Application of high-speed photography to chip refining

    NASA Astrophysics Data System (ADS)

    Stationwala, Mustafa I.; Miller, Charles E.; Atack, Douglas; Karnis, A.

    1991-04-01

    Several high speed photographic methods have been employed to elucidate the mechanistic aspects of producing mechanical pulp in a disc refiner. Material flow patterns of pulp in a refmer were previously recorded by means of a HYCAM camera and continuous lighting system which provided cine pictures at up to 10,000 pps. In the present work an IMACON camera was used to obtain several series of high resolution, high speed photographs, each photograph containing an eight-frame sequence obtained at a framing rate of 100,000 pps. These high-resolution photographs made it possible to identify the nature of the fibrous material trapped on the bars of the stationary disc. Tangential movement of fibre floes, during the passage of bars on the rotating disc over bars on the stationary disc, was also observed on the stator bars. In addition, using a cinestroboscopic technique a large number of high resolution pictures were taken at three different positions of the rotating disc relative to the stationary disc. These pictures were computer analyzed, statistically, to determine the fractional coverage of the bars of the stationary disc with pulp. Information obtained from these studies provides new insights into the mechanism of the refining process.

  6. Characterizing Vibratory Kinematics in Children and Adults with High-Speed Digital Imaging

    ERIC Educational Resources Information Center

    Patel, Rita; Dubrovskiy, Denis; Döllinger, Michael

    2014-01-01

    Purpose: The aim of this study is to quantify and identify characteristic vibratory motion in typically developing prepubertal children and young adults using high-speed digital imaging. Method: The vibrations of the vocal folds were recorded from 27 children (ages 5-9 years) and 35 adults (ages 21-45 years), with high speed at 4,000 frames per…

  7. Nanoscale wear and kinetic friction between atomically smooth surfaces sliding at high speeds

    NASA Astrophysics Data System (ADS)

    Rajauria, Sukumar; Canchi, Sripathi V.; Schreck, Erhard; Marchon, Bruno

    2015-02-01

    The kinetic friction and wear at high sliding speeds is investigated using the head-disk interface of hard disk drives, wherein the head and the disk are less than 10 nm apart and move at sliding speeds of 5-10 m/s relative to each other. While the spacing between the sliding surfaces is of the same order of magnitude as various AFM based fundamental studies on friction, the sliding speed is nearly six orders of magnitude larger, allowing a unique set-up for a systematic study of nanoscale wear at high sliding speeds. In a hard disk drive, the physical contact between the head and the disk leads to friction, wear, and degradation of the head overcoat material (typically diamond like carbon). In this work, strain gauge based friction measurements are performed; the friction coefficient as well as the adhering shear strength at the head-disk interface is extracted; and an experimental set-up for studying friction between high speed sliding surfaces is exemplified.

  8. Role of Passive Capturing in a Ubiquitous Learning Environment

    ERIC Educational Resources Information Center

    Ogata, Hiroaki; Hou, Bin; Li, MengMeng; Uosaki, Noriko; Mouri, Kousuke

    2013-01-01

    Ubiquitous Learning Log (ULL) is defined as a digital record of what you have learned in the daily life using ubiquitous technologies. This paper focuses on how to capture learning experiences in our daily life for vocabulary learning. In our previous works, we developed a system named SCROLL (System for Capturing and Reminding Of Learning Log) in…

  9. Ubiquitous Learning Project Using Life-Logging Technology in Japan

    ERIC Educational Resources Information Center

    Ogata, Hiroaki; Hou, Bin; Li, Mengmeng; Uosaki, Noriko; Mouri, Kosuke; Liu, Songran

    2014-01-01

    A Ubiquitous Learning Log (ULL) is defined as a digital record of what a learner has learned in daily life using ubiquitous computing technologies. In this paper, a project which developed a system called SCROLL (System for Capturing and Reusing Of Learning Log) is presented. The aim of developing SCROLL is to help learners record, organize,…

  10. Numerical Simulation of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Jaberi, F. A.; Colucci, P. J.; James, S.; Givi, P.

    1996-01-01

    The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES) methods for computational analysis of high-speed reacting turbulent flows. We have just completed the first year of Phase 3 of this research.

  11. Implementation of High Speed Distributed Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Raju, Anju P.; Sekhar, Ambika

    2012-09-01

    This paper introduces a high speed distributed data acquisition system based on a field programmable gate array (FPGA). The aim is to develop a "distributed" data acquisition interface. The development of instruments such as personal computers and engineering workstations based on "standard" platforms is the motivation behind this effort. Using standard platforms as the controlling unit allows independence in hardware from a particular vendor and hardware platform. The distributed approach also has advantages from a functional point of view: acquisition resources become available to multiple instruments; the acquisition front-end can be physically remote from the rest of the instrument. High speed data acquisition system transmits data faster to a remote computer system through Ethernet interface. The data is acquired through 16 analog input channels. The input data commands are multiplexed and digitized and then the data is stored in 1K buffer for each input channel. The main control unit in this design is the 16 bit processor implemented in the FPGA. This 16 bit processor is used to set up and initialize the data source and the Ethernet controller, as well as control the flow of data from the memory element to the NIC. Using this processor we can initialize and control the different configuration registers in the Ethernet controller in a easy manner. Then these data packets are sending to the remote PC through the Ethernet interface. The main advantages of the using FPGA as standard platform are its flexibility, low power consumption, short design duration, fast time to market, programmability and high density. The main advantages of using Ethernet controller AX88796 over others are its non PCI interface, the presence of embedded SRAM where transmit and reception buffers are located and high-performance SRAM-like interface. The paper introduces the implementation of the distributed data acquisition using FPGA by VHDL. The main advantages of this system are high

  12. The temperature of unheated bodies in a high-speed gas stream

    NASA Technical Reports Server (NTRS)

    Eckert, E; Weise, W

    1941-01-01

    The present report deals with temperature measurements on cylinders of 0.2 to 3 millimeters diameter in longitudinal and transverse air flow at speeds of 100 to 300 meters per second. Within the explored test range, that is, the probable laminar boundary layer region, the temperature of the cylinders in axial flow is practically independent of the speed and in good agreement with Pohlhausen's theoretical values; Whereas, in transverse flow, cylinders of certain diameter manifest a close relationship with speed, the ratio of the temperature above the air of the body to the adiabatic stagnation temperature decreases with rising speed and then rises again from a Mach number of 0.6. The importance of this "specific temperature" of the body for heat-transfer studies at high speed is discussed.

  13. Computational Model for Impact-Resisting Critical Thickness of High-Speed Machine Outer Protective Plate

    NASA Astrophysics Data System (ADS)

    Wu, Huaying; Wang, Li Zhong; Wang, Yantao; Yuan, Xiaolei

    2018-05-01

    The blade or surface grinding blade of the hypervelocity grinding wheel may be damaged due to too high rotation rate of the spindle of the machine and then fly out. Its speed as a projectile may severely endanger the field persons. Critical thickness model of the protective plate of the high-speed machine is studied in this paper. For easy analysis, the shapes of the possible impact objects flying from the high-speed machine are simplified as sharp-nose model, ball-nose model and flat-nose model. Whose front ending shape to represent point, line and surface contacting. Impact analysis based on J-C model is performed for the low-carbon steel plate with different thicknesses in this paper. One critical thickness computational model for the protective plate of high-speed machine is established according to the damage characteristics of the thin plate to get relation among plate thickness and mass, shape and size and impact speed of impact object. The air cannon is used for impact test. The model accuracy is validated. This model can guide identification of the thickness of single-layer outer protective plate of a high-speed machine.

  14. Design optimization of high-speed proprotor aircraft

    NASA Technical Reports Server (NTRS)

    Schleicher, David R.; Phillips, James D.; Carbajal, Kevin B.

    1993-01-01

    NASA's high-speed rotorcraft (HSRC) studies have the objective of investigating technology for vehicles that have both low downwash velocities and forward flight speed capability of up to 450 knots. This paper investigates a tilt rotor, a tilt wing, and a folding tilt rotor designed for a civil transport mission. Baseline aircraft models using current technology are developed for each configuration using a vertical/short takeoff and landing (V/STOL) aircraft design synthesis computer program to generate converged vehicle designs. Sensitivity studies and numerical optimization are used to illustrate each configuration's key design tradeoffs and constraints. Minimization of the gross takeoff weight is used as the optimization objective function. Several advanced technologies are chosen, and their relative impact on future configurational development is discussed. Finally, the impact of maximum cruise speed on vehicle figures of merit (gross weight, productivity, and direct operating cost) is analyzed. The three most important conclusions from the study are payload ratios for these aircraft will be commensurate with current fixed-wing commuter aircraft; future tilt rotors and tilt wings will be significantly lighter, more productive, and cheaper than competing folding tilt rotors; and the most promising technologies are an advanced-technology proprotor for both tilt rotor and tilt wing and advanced structural materials for the folding tilt rotor.

  15. Field Test Data for Detecting Vibrations of a Building Using High-Speed Video Cameras

    DTIC Science & Technology

    2017-10-01

    ARL-TR-8185 ● OCT 2017 US Army Research Laboratory Field Test Data for Detecting Vibrations of a Building Using High -Speed Video...Field Test Data for Detecting Vibrations of a Building Using High -Speed Video Cameras by Caitlin P Conn and Geoffrey H Goldman Sensors and...June 2016 – October 2017 4. TITLE AND SUBTITLE Field Test Data for Detecting Vibrations of a Building Using High -Speed Video Cameras 5a. CONTRACT

  16. 78 FR 36823 - California High-Speed Rail Authority-Construction Exemption-in Merced, Madera and Fresno Counties...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ...-Speed Rail Authority--Construction Exemption--in Merced, Madera and Fresno Counties, Cal AGENCY: Surface...-Speed Rail Authority (Authority) to construct an approximately 65- mile high-speed passenger rail line... statewide California High-Speed Train System. This exemption is subject to environmental mitigation...

  17. Anthropometry as a predictor of high speed performance.

    PubMed

    Caruso, J F; Ramey, E; Hastings, L P; Monda, J K; Coday, M A; McLagan, J; Drummond, J

    2009-07-01

    To assess anthropometry as a predictor of high-speed performance, subjects performed four seated knee- and hip-extension workouts with their left leg on an inertial exercise trainer (Impulse Technologies, Newnan GA). Workouts, done exclusively in either the tonic or phasic contractile mode, entailed two one-minute sets separated by a 90-second rest period and yielded three performance variables: peak force, average force and work. Subjects provided the following anthropometric data: height, weight, body mass index, as well as total, upper and lower left leg lengths. Via multiple regression, anthropometry attempted to predict the variance per performance variable. Anthropometry explained a modest (R2=0.27-0.43) yet significant degree of variance from inertial exercise trainer workouts. Anthropometry was a better predictor of peak force variance from phasic workouts, while it accounted for a significant degree of average force and work variance solely from tonic workouts. Future research should identify variables that account for the unexplained variance from high-speed exercise performance.

  18. A Study of High Speed Friction

    DTIC Science & Technology

    1978-09-30

    SUPPLEMENTARY NOTES T~iEVIE, OIN’~S, F1,~ I.!,,_ C’ITANED IN THIS REPORT "Ic VlIM.S 0F~J’~Z ’ CONSTRU D AS AN ~-~CY.L!~t>AcoYY3. POLICY, OR DE - ~ION... grafite , iron, polycarbonate, poly- ethylene and woods metal. SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) A study of high speed friction Final...nylon, D03, Rulon A, vulcanized fiber, constantan, zinc, bismuth, Delrin, solder, grafite , iron, polycarbo- nate, polyethylene and woods metal

  19. Modular high speed counter employing edge-triggered code

    DOEpatents

    Vanstraelen, Guy F.

    1993-06-29

    A high speed modular counter (100) utilizing a novel counting method in which the first bit changes with the frequency of the driving clock, and changes in the higher order bits are initiated one clock pulse after a "0" to "1" transition of the next lower order bit. This allows all carries to be known one clock period in advance of a bit change. The present counter is modular and utilizes two types of standard counter cells. A first counter cell determines the zero bit. The second counter cell determines any other higher order bit. Additional second counter cells are added to the counter to accommodate any count length without affecting speed.

  20. Modular high speed counter employing edge-triggered code

    DOEpatents

    Vanstraelen, G.F.

    1993-06-29

    A high speed modular counter (100) utilizing a novel counting method in which the first bit changes with the frequency of the driving clock, and changes in the higher order bits are initiated one clock pulse after a 0'' to 1'' transition of the next lower order bit. This allows all carries to be known one clock period in advance of a bit change. The present counter is modular and utilizes two types of standard counter cells. A first counter cell determines the zero bit. The second counter cell determines any other higher order bit. Additional second counter cells are added to the counter to accommodate any count length without affecting speed.

  1. High speed reaction wheels for satellite attitude control and energy storage

    NASA Technical Reports Server (NTRS)

    Studer, P.; Rodriguez, E.

    1985-01-01

    The combination of spacecraft attitude control and energy storage (ACES) functions in common hardware, to synergistically maintain three-axis attitude control while supplying electrical power during earth orbital eclipses, allows the generation of control torques by high rotating speed wheels that react against the spacecraft structure via a high efficiency bidirectional energy conversion motor/generator. An ACES system encompasses a minimum of four wheels, controlling power and the three torque vectors. Attention is given to the realization of such a system with composite flywheel rotors that yield high energy density, magnetic suspension technology yielding low losses at high rotational speeds, and an ironless armature permanent magnet motor/generator yielding high energy conversion efficiency.

  2. High speed intravascular photoacoustic imaging of atherosclerotic arteries (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Piao, Zhonglie; Ma, Teng; Qu, Yueqiao; Li, Jiawen; Yu, Mingyue; He, Youmin; Shung, K. Kirk; Zhou, Qifa; Kim, Chang-Seok; Chen, Zhongping

    2016-02-01

    Cardiovascular disease is the leading cause of death in the industrialized nations. Accurate quantification of both the morphology and composition of lipid-rich vulnerable atherosclerotic plaque are essential for early detection and optimal treatment in clinics. In previous works, intravascular photoacoustic (IVPA) imaging for detection of lipid-rich plaque within coronary artery walls has been demonstrated in ex vivo, but the imaging speed is still limited. In order to increase the imaging speed, a high repetition rate laser is needed. In this work, we present a high speed integrated IVPA/US imaging system with a 500 Hz optical parametric oscillator laser at 1725 nm. A miniature catheter with 1.0 mm outer diameter was designed with a 200 μm multimode fiber and an ultrasound transducer with 45 MHz center frequency. The fiber was polished at 38 degree and enclosed in a glass capillary for total internal reflection. An optical/electrical rotary junction and pull-back mechanism was applied for rotating and linearly scanning the catheter to obtain three-dimensional imaging. Atherosclerotic rabbit abdominal aorta was imaged as two frame/second at 1725 nm. Furthermore, by wide tuning range of the laser wavelength from 1680 nm to 1770 nm, spectroscopic photoacoustic analysis of lipid-mimicking phantom and an human atherosclerotic artery was performed ex vivo. The results demonstrated that the developed IVPA/US imaging system is capable for high speed intravascular imaging for plaque detection.

  3. Evaluation of intrusion detection technologies for high speed rail grade crossings : final report.

    DOT National Transportation Integrated Search

    2003-12-01

    The rail industry is in the process of developing a prototype system for high speed rail. One of the concerns when using high speed rail is the danger of obstructions on the track. This level of danger is much higher than with traditional railway veh...

  4. Propulsion Strategy Analysis of High-Speed Swordfish

    NASA Astrophysics Data System (ADS)

    Lee, Hsing-Juin; Jong, Yow-Jeng; Chang, Li-Min; Wu, Wen-Lin

    Fish have appeared since Precambrian more than 500 million years ago. Yet, there are still much untamed areas for fish propulsion research. The swordfish has evolved a light thin/high crescent tail fin for pushing a large amount of water backward with a small velocity difference. Together with a streamlined forward-enlarged thin/high body and forward-biased dorsal fin enclosing sizable muscles as the power source, the swordfish can thus achieve unimaginably high propulsion efficiency and an awesome maximum speed of 130 km/h as the speed champion at sea. This paper presents the innovative concepts of “kidnapped airfoils” and “circulating horsepower” using a vivid neat-digit model to illustrate the swordfish’s superior swimming strategy. The body and tail work like two nimble deformable airfoils tightly linked to use their lift forces in a mutually beneficial manner. Moreover, they use sensitive rostrum/lateral-line sensors to detect upcoming/ambient water pressure and attain the best attack angle to capture the body lift power aided by the forward-biased dorsal fin to compensate for most of the water resistance power. This strategy can thus enhance the propulsion efficiency greatly to easily exceed an astonishing 500%. Meanwhile, this amazing synergy of force/beauty also solves the perplexity of dolphin’s Gray paradox lasting for more than 70 years and gives revelations for panoramic fascinating future studies.

  5. First NASA/Industry High Speed Research Program Nozzle Symposium

    NASA Technical Reports Server (NTRS)

    Long-Davis, Mary Jo

    1999-01-01

    The First High Speed Research (HSR) Nozzle Symposium was hosted by NASA Lewis Research Center on November 17-19, 1992 in Cleveland, Ohio, and was sponsored by the HSR Source Noise Working Group. The purpose of this symposium was to provide a national forum for the government, industry, and university participants in the program to present and discuss important low noise nozzle research results and technology issues related to the development of appropriate nozzles for a commercially viable, environmentally compatible, U.S. High-Speed Civil Transport. The HSR Phase I research program was initiated in FY90 and is approaching the first major milestone (end of FY92) relative to an initial FAR 36 Stage 3 nozzle noise assessment. Significant research results relative to that milestone were presented. The opening session provided a brief overview of the Program and status of the Phase H plan. The next five sessions were technically oriented and highlighted recent significant analytical and experimental accomplishments. The last Session included a panel discussion by the Session Chairs, summarizing the progress seen to date and discussing issues relative to further advances in technology necessary to achieve the Program Goals. Attendance at the Symposium was by invitation only and included only industry, academic, and government participants who are actively involved in the High-Speed Research Program. The technology presented in this meeting is considered commercially sensitive.

  6. A high-speed pnCCD detector system for optical applications

    NASA Astrophysics Data System (ADS)

    Hartmann, R.; Buttler, W.; Gorke, H.; Herrmann, S.; Holl, P.; Meidinger, N.; Soltau, H.; Strüder, L.

    2006-11-01

    Measurements of a frame-store pnCCD detector system, optimized for high-speed applications in the optical and near infrared (NIR) region, will be presented. The device with an image area of 13.5 mm by 13.5 mm and a pixelsize of 51 μm by 51 μm exhibits a readout time faster than 1100 frames per second with an overall electronic noise contribution of less than three electrons. Variable operation modes of the detector system allow for even higher readout speeds by a pixel binning in transfer direction or, at slightly slower readout speeds, a further improvement in noise performance. We will also present the concept of a data acquisition system being able to handle pixel rates of more than 75 megapixel per second. The application of an anti-reflective coating on the ultra-thin entrance window of the back illuminated detector together with the large sensitive volume ensures a high and uniform detection efficiency from the ultra violet to the NIR.

  7. High-speed AFM for scanning the architecture of living cells

    NASA Astrophysics Data System (ADS)

    Li, Jing; Deng, Zhifeng; Chen, Daixie; Ao, Zhuo; Sun, Quanmei; Feng, Jiantao; Yin, Bohua; Han, Li; Han, Dong

    2013-08-01

    We address the modelling of tip-cell membrane interactions under high speed atomic force microscopy. Using a home-made device with a scanning area of 100 × 100 μm2, in situ imaging of living cells is successfully performed under loading rates from 1 to 50 Hz, intending to enable detailed descriptions of physiological processes in living samples.We address the modelling of tip-cell membrane interactions under high speed atomic force microscopy. Using a home-made device with a scanning area of 100 × 100 μm2, in situ imaging of living cells is successfully performed under loading rates from 1 to 50 Hz, intending to enable detailed descriptions of physiological processes in living samples. Electronic supplementary information (ESI) available: Movie of the real-time change of inner surface within fresh blood vessel. The movie was captured at a speed of 30 Hz in the range of 80 μm × 80 μm. See DOI: 10.1039/c3nr01464a

  8. A rough set-based measurement model study on high-speed railway safety operation.

    PubMed

    Hu, Qizhou; Tan, Minjia; Lu, Huapu; Zhu, Yun

    2018-01-01

    Aiming to solve the safety problems of high-speed railway operation and management, one new method is urgently needed to construct on the basis of the rough set theory and the uncertainty measurement theory. The method should carefully consider every factor of high-speed railway operation that realizes the measurement indexes of its safety operation. After analyzing the factors that influence high-speed railway safety operation in detail, a rough measurement model is finally constructed to describe the operation process. Based on the above considerations, this paper redistricts the safety influence factors of high-speed railway operation as 16 measurement indexes which include staff index, vehicle index, equipment index and environment. And the paper also provides another reasonable and effective theoretical method to solve the safety problems of multiple attribute measurement in high-speed railway operation. As while as analyzing the operation data of 10 pivotal railway lines in China, this paper respectively uses the rough set-based measurement model and value function model (one model for calculating the safety value) for calculating the operation safety value. The calculation result shows that the curve of safety value with the proposed method has smaller error and greater stability than the value function method's, which verifies the feasibility and effectiveness.

  9. Study of fish response using particle image velocimetry and high-speed, high-resolution imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Z.; Richmond, M. C.; Mueller, R. P.

    2004-10-01

    Fish swimming has fascinated both engineers and fish biologists for decades. Digital particle image velocimetry (DPIV) and high-speed, high-resolution digital imaging are recently developed analysis tools that can help engineers and biologists better understand how fish respond to turbulent environments. This report details studies to evaluate DPIV. The studies included a review of existing literature on DPIV, preliminary studies to test the feasibility of using DPIV conducted at our Flow Biology Laboratory in Richland, Washington September through December 2003, and applications of high-speed, high-resolution digital imaging with advanced motion analysis to investigations of fish injury mechanisms in turbulent shear flowsmore » and bead trajectories in laboratory physical models. Several conclusions were drawn based on these studies, which are summarized as recommendations for proposed research at the end of this report.« less

  10. Design and Test of Fan/Nacelle Models Quiet High-Speed Fan

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J. (Technical Monitor); Weir, Donald

    2003-01-01

    The Quiet High-Speed Fan program is a cooperative effort between Honeywell Engines & Systems (formerly AlliedSignal Engines & Systems) and the NASA Glenn Research Center. Engines & Systems has designed an advanced high-speed fan that will be tested on the Ultra High Bypass Propulsion Simulator in the NASA Glenn 9 x 15 foot wind tunnel, currently scheduled for the second quarter of 2000. An Engines & Systems modern fan design will be used as a baseline. A nacelle model is provided that is characteristic of a typical, modern regional aircraft nacelle and meets all of the program test objectives.

  11. Multimodal and ubiquitous computing systems: supporting independent-living older users.

    PubMed

    Perry, Mark; Dowdall, Alan; Lines, Lorna; Hone, Kate

    2004-09-01

    We document the rationale and design of a multimodal interface to a pervasive/ubiquitous computing system that supports independent living by older people in their own homes. The Millennium Home system involves fitting a resident's home with sensors--these sensors can be used to trigger sequences of interaction with the resident to warn them about dangerous events, or to check if they need external help. We draw lessons from the design process and conclude the paper with implications for the design of multimodal interfaces to ubiquitous systems developed for the elderly and in healthcare, as well as for more general ubiquitous computing applications.

  12. A model for ubiquitous care of noncommunicable diseases.

    PubMed

    Vianna, Henrique Damasceno; Barbosa, Jorge Luis Victória

    2014-09-01

    The ubiquitous computing, or ubicomp, is a promising technology to help chronic diseases patients managing activities, offering support to them anytime, anywhere. Hence, ubicomp can aid community and health organizations to continuously communicate with patients and to offer useful resources for their self-management activities. Communication is prioritized in works of ubiquitous health for noncommunicable diseases care, but the management of resources is not commonly employed. We propose the UDuctor, a model for ubiquitous care of noncommunicable diseases. UDuctor focuses the resources offering, without losing self-management and communication supports. We implemented a system and applied it in two practical experiments. First, ten chronic patients tried the system and filled out a questionnaire based on the technology acceptance model. After this initial evaluation, an alpha test was done. The system was used daily for one month and a half by a chronic patient. The results were encouraging and show potential for implementing UDuctor in real-life situations.

  13. Navigation studies based on the ubiquitous positioning technologies

    NASA Astrophysics Data System (ADS)

    Ye, Lei; Mi, Weijie; Wang, Defeng

    2007-11-01

    This paper summarized the nowadays positioning technologies, such as absolute positioning methods and relative positioning methods, indoor positioning and outdoor positioning, active positioning and passive positioning. Global Navigation Satellite System (GNSS) technologies were introduced as the omnipresent out-door positioning technologies, including GPS, GLONASS, Galileo and BD-1/2. After analysis of the shortcomings of GNSS, indoor positioning technologies were discussed and compared, including A-GPS, Cellular network, Infrared, Electromagnetism, Computer Vision Cognition, Embedded Pressure Sensor, Ultrasonic, RFID (Radio Frequency IDentification), Bluetooth, WLAN etc.. Then the concept and characteristics of Ubiquitous Positioning was proposed. After the ubiquitous positioning technologies contrast and selection followed by system engineering methodology, a navigation system model based on Incorporate Indoor-Outdoor Positioning Solution was proposed. And this model was simulated in the Galileo Demonstration for World Expo Shanghai project. In the conclusion, the prospects of ubiquitous positioning based navigation were shown, especially to satisfy the public location information acquiring requirement.

  14. Flexible High Speed Codec (FHSC)

    NASA Technical Reports Server (NTRS)

    Segallis, G. P.; Wernlund, J. V.

    1991-01-01

    The ongoing NASA/Harris Flexible High Speed Codec (FHSC) program is described. The program objectives are to design and build an encoder decoder that allows operation in either burst or continuous modes at data rates of up to 300 megabits per second. The decoder handles both hard and soft decision decoding and can switch between modes on a burst by burst basis. Bandspreading is low since the code rate is greater than or equal to 7/8. The encoder and a hard decision decoder fit on a single application specific integrated circuit (ASIC) chip. A soft decision applique is implemented using 300 K emitter coupled logic (ECL) which can be easily translated to an ECL gate array.

  15. Complete de-Dopplerization and acoustic holography for external noise of a high-speed train.

    PubMed

    Yang, Diange; Wen, Junjie; Miao, Feng; Wang, Ziteng; Gu, Xiaoan; Lian, Xiaomin

    2016-09-01

    Identification and measurement of moving sound sources are the bases for vehicle noise control. Acoustic holography has been applied in successfully identifying the moving sound source since the 1990s. However, due to the high demand for the accuracy of holographic data, currently the maximum velocity achieved by acoustic holography is just above 100 km/h. The objective of this study was to establish a method based on the complete Morse acoustic model to restore the measured signal in high-speed situations, and to propose a far-field acoustic holography method applicable for high-speed moving sound sources. Simulated comparisons of the proposed far-field acoustic holography with complete Morse model, the acoustic holography with simplified Morse model and traditional delay-and-sum beamforming were conducted. Experiments with a high-speed train running at the speed of 278 km/h validated the proposed far-field acoustic holography. This study extended the applications of acoustic holography to high-speed situations and established the basis for quantitative measurements of far-field acoustic holography.

  16. High-speed bipolar phototransistors in a 180 nm CMOS process.

    PubMed

    Kostov, P; Gaberl, W; Zimmermann, H

    2013-03-01

    Several high-speed pnp phototransistors built in a standard 180 nm CMOS process are presented. The phototransistors were implemented in sizes of 40×40 μm 2 and 100×100 μm 2 . Different base and emitter areas lead to different characteristics of the phototransistors. As starting material a p + wafer with a p - epitaxial layer on top was used. The phototransistors were optically characterized at wavelengths of 410, 675 and 850 nm. Bandwidths up to 92 MHz and dynamic responsivities up to 2.95 A/W were achieved. Evaluating the results, we can say that the presented phototransistors are well suited for high speed photosensitive optical applications where inherent amplification is needed. Further on, the standard silicon CMOS implementation opens the possibility for cheap integration of integrated optoelectronic circuits. Possible applications for the presented phototransistors are low cost high speed image sensors, opto-couplers, etc.

  17. First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop

    NASA Technical Reports Server (NTRS)

    Wood, Richard M. (Editor)

    1999-01-01

    This publication is a compilation of documents presented at the First NASA/Industry High Speed Research Configuration Aerodynamics Workshop held on February 27-29, 1996 at NASA Langley Research Center. The purpose of the workshop was to bring together the broad spectrum of aerodynamicists, engineers, and scientists working within the Configuration Aerodynamics element of the HSR Program to collectively evaluate the technology status and to define the needs within Computational Fluid Dynamics (CFD) Analysis Methodology, Aerodynamic Shape Design, Propulsion/Airframe Integration (PAI), Aerodynamic Performance, and Stability and Control (S&C) to support the development of an economically viable High Speed Civil Transport (HSCT) aircraft. To meet these objectives, papers were presented by representative from NASA Langley, Ames, and Lewis Research Centers; Boeing, McDonnell Douglas, Northrop-Grumman, Lockheed-Martin, Vigyan, Analytical Services, Dynacs, and RIACS.

  18. Compensator design for improved counterbalancing in high speed atomic force microscopy

    PubMed Central

    Bozchalooi, I. S.; Youcef-Toumi, K.; Burns, D. J.; Fantner, G. E.

    2011-01-01

    High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, feedforward controlled, counter actuation mechanism to compensate for the excited out-of-plane scanner dynamics. For this purpose, the AFM controller output is properly filtered via a linear compensator and then applied to a counter actuating piezo. An effective algorithm for estimating the compensator parameters is developed. The information required for compensator design is extracted from the cantilever deflection signal, hence eliminating the need for any additional sensors. The proposed approach is implemented and experimentally evaluated on the dynamic response of a custom made AFM. It is further assessed by comparing the imaging performance of the AFM with and without the application of the proposed technique and in comparison with the conventional counterbalancing methodology. The experimental results substantiate the effectiveness of the method in significantly improving the imaging performance of AFM at high scan speeds. PMID:22128989

  19. Compensator design for improved counterbalancing in high speed atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Bozchalooi, I. S.; Youcef-Toumi, K.; Burns, D. J.; Fantner, G. E.

    2011-11-01

    High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, feedforward controlled, counter actuation mechanism to compensate for the excited out-of-plane scanner dynamics. For this purpose, the AFM controller output is properly filtered via a linear compensator and then applied to a counter actuating piezo. An effective algorithm for estimating the compensator parameters is developed. The information required for compensator design is extracted from the cantilever deflection signal, hence eliminating the need for any additional sensors. The proposed approach is implemented and experimentally evaluated on the dynamic response of a custom made AFM. It is further assessed by comparing the imaging performance of the AFM with and without the application of the proposed technique and in comparison with the conventional counterbalancing methodology. The experimental results substantiate the effectiveness of the method in significantly improving the imaging performance of AFM at high scan speeds.

  20. Estimating workforce development needs for high-speed rail in California.

    DOT National Transportation Integrated Search

    2012-03-01

    This study provides an assessment of the job creation and attendant education and training needs associated with the creation of the California High-Speed Rail (CHSR) network, scheduled to begin construction in September 2012. Given the high profile ...

  1. A current review of high speed railways experiences in Asia and Europe

    NASA Astrophysics Data System (ADS)

    Purba, Aleksander; Nakamura, Fumihiko; Dwsbu, Chatarina Niken; Jafri, Muhammad; Pratomo, Priyo

    2017-11-01

    High-Speed Railways (HSR) is currently regarded as one of the most significant technological breakthroughs in passenger transportation developed in the second half of the 20th century. At the beginning of 2008, there were about 10,000 kilometers of new high-speed lines in operation in Asia and Europe regions to provide high-speed services to passengers willing to pay for lower travel time and quality improvement in rail transport. And since 2010, HSR itself has received a great deal of attention in Indonesia. Some transportation analysts contend that Indonesia, particularly Java and Sumatera islands need a high-speed rail network to be economically competitive with countries in Asia and Europe. On April 2016, Indonesia-China consortium Kereta Cepat Indonesia China (KCIC) signed an engineering, procurement, and construction contract to build the HSR with a consortium of seven companies called the High-Speed Railway Contractor Consortium. The HSR is expected to debut by May 2019, offering a 45-minute trip covering a roughly 150 km route. However, building, maintaining and operating HSR line is expensive; it involves a significant amount of sunk costs and may substantially compromise both the transport policy of a country and the development of its transport sector for decades. The main objective of this paper is to discuss some characteristics of the HSR services from an economic viewpoint, while simultaneously developing an empirical framework that should help us to understand, in more detail, the factors determining the success of the HSR as transport alternative based on current experiences of selected Asian and European countries.

  2. Temperature Prediction in High Speed Bone Grinding using Motor PWM Signal

    PubMed Central

    Tai, Bruce L.; Zhang, Lihui; Wang, Anthony C.; Sullivan, Stephen; Wang, Guangjun; Shih, Albert J.

    2013-01-01

    This research explores the feasibility of using motor electrical feedback to estimate temperature rise during a surgical bone grinding procedure. High-speed bone grinding is often used during skull base neurosurgery to remove cranial bone and approach skull base tumors through the nasal corridor. Grinding-induced heat could propagate and potentially injure surrounding nerves and arteries, and therefore, predicting the temperature in the grinding region would benefit neurosurgeons during the operation. High-speed electric motors are controlled by pulse-width-modulation (PWM) to alter the current input and thus maintain the rotational speed. Assuming full mechanical to thermal power conversion in the grinding process, PWM can be used as feedback for heat generation and temperature prediction. In this study, the conversion model was established from experiments under a variety of grinding conditions and an inverse heat transfer method to determine heat flux. Given a constant rotational speed, the heat conversion was represented by a linear function, and could predict temperature from the experimental data with less than 20% errors. Such results support the advance of this technology for practical application. PMID:23806419

  3. High-speed polarized light microscopy for in situ, dynamic measurement of birefringence properties

    NASA Astrophysics Data System (ADS)

    Wu, Xianyu; Pankow, Mark; Shadow Huang, Hsiao-Ying; Peters, Kara

    2018-01-01

    A high-speed, quantitative polarized light microscopy (QPLM) instrument has been developed to monitor the optical slow axis spatial realignment during controlled medium to high strain rate experiments at acquisition rates up to 10 kHz. This high-speed QPLM instrument is implemented within a modified drop tower and demonstrated using polycarbonate specimens. By utilizing a rotating quarter wave plate and a high-speed camera, the minimum acquisition time to generate an alignment map of a birefringent specimen is 6.1 ms. A sequential analysis method allows the QPLM instrument to generate QPLM data at the high-speed camera imaging frequency 10 kHz. The obtained QPLM data is processed using a vector correlation technique to detect anomalous optical axis realignment and retardation changes throughout the loading event. The detected anomalous optical axis realignment is shown to be associated with crack initiation, propagation, and specimen failure in a dynamically loaded polycarbonate specimen. The work provides a foundation for detecting damage in biological tissues through local collagen fiber realignment and fracture during dynamic loading.

  4. Optimization of a PCRAM Chip for high-speed read and highly reliable reset operations

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyun; Chen, Houpeng; Li, Xi; Wang, Qian; Fan, Xi; Hu, Jiajun; Lei, Yu; Zhang, Qi; Tian, Zhen; Song, Zhitang

    2016-10-01

    The widely used traditional Flash memory suffers from its performance limits such as its serious crosstalk problems, and increasing complexity of floating gate scaling. Phase change random access memory (PCRAM) becomes one of the most potential nonvolatile memories among the new memory techniques. In this paper, a 1M-bit PCRAM chip is designed based on the SMIC 40nm CMOS technology. Focusing on the read and write performance, two new circuits with high-speed read operation and highly reliable reset operation are proposed. The high-speed read circuit effectively reduces the reading time from 74ns to 40ns. The double-mode reset circuit improves the chip yield. This 1M-bit PCRAM chip has been simulated on cadence. After layout design is completed, the chip will be taped out for post-test.

  5. A programmable computational image sensor for high-speed vision

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Shi, Cong; Long, Xitian; Wu, Nanjian

    2013-08-01

    In this paper we present a programmable computational image sensor for high-speed vision. This computational image sensor contains four main blocks: an image pixel array, a massively parallel processing element (PE) array, a row processor (RP) array and a RISC core. The pixel-parallel PE is responsible for transferring, storing and processing image raw data in a SIMD fashion with its own programming language. The RPs are one dimensional array of simplified RISC cores, it can carry out complex arithmetic and logic operations. The PE array and RP array can finish great amount of computation with few instruction cycles and therefore satisfy the low- and middle-level high-speed image processing requirement. The RISC core controls the whole system operation and finishes some high-level image processing algorithms. We utilize a simplified AHB bus as the system bus to connect our major components. Programming language and corresponding tool chain for this computational image sensor are also developed.

  6. A second-generation high speed civil transport: Stingray

    NASA Technical Reports Server (NTRS)

    Engdahl, Sean; Lopes, Kevin; Ngan, Angelen; Perrin, Joseph; Phipps, Marcus; Westman, Blake; Yeo, Urn

    1992-01-01

    The Stingray is the second-generation High Speed Civil Transport (HSCT) designed for the 21st Century. This aircraft is designed to be economically viable and environmentally sound transportation competitive in markets currently dominated by subsonic aircraft such as the Boeing 747 and upcoming McDonnell Douglas MD-12. With the Stringray coming into service in 2005, a ticket price of 21 percent over current subsonic airlines will cover operational costs with a 10 percent return on investment. The cost per aircraft will be $202 million with the Direct Operating Cost equal to $0.072 per mile per seat. This aircraft has been designed to be a realistic aircraft that can be built within the next ten to fifteen years. There was only one main technological improvement factor used in the design, that being for the engine specific fuel consumption. The Stingray, therefore, does not rely on technology that does not exist. The Stingray will be powered by four mixed flow turbofans that meet both nitrous oxide emissions and FAR 36 Stage 3 noise regulations. It will carry 250 passengers a distance of 5200 nautical miles at a speed of Mach 2.4. The shape of the Stingray, while optimized for supersonic flight, is compatible with all current airline facilities in airports around the world. As the demand for economical, high-speed flight increases, the Stingray will be ready and able to meet those demands.

  7. High-speed spatial scanning pyrometer

    NASA Technical Reports Server (NTRS)

    Cezairliyan, A.; Chang, R. F.; Foley, G. M.; Miller, A. P.

    1993-01-01

    A high-speed spatial scanning pyrometer has been designed and developed to measure spectral radiance temperatures at multiple target points along the length of a rapidly heating/cooling specimen in dynamic thermophysical experiments at high temperatures (above about 1800 K). The design, which is based on a self-scanning linear silicon array containing 1024 elements, enables the pyrometer to measure spectral radiance temperatures (nominally at 650 nm) at 1024 equally spaced points along a 25-mm target length. The elements of the array are sampled consecutively every 1 microsec, thereby permitting one cycle of measurements to be completed in approximately 1 msec. Procedures for calibration and temperature measurement as well as the characteristics and performance of the pyrometer are described. The details of sources and estimated magnitudes of possible errors are given. An example of measurements of radiance temperatures along the length of a tungsten rod, during its cooling following rapid resistive pulse heating, is presented.

  8. On The Export Control Of High Speed Imaging For Nuclear Weapons Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Scott Avery; Altherr, Michael Robert

    Since the Manhattan Project, the use of high-speed photography, and its cousins flash radiography1 and schieleren photography have been a technological proliferation concern. Indeed, like the supercomputer, the development of high-speed photography as we now know it essentially grew out of the nuclear weapons program at Los Alamos2,3,4. Naturally, during the course of the last 75 years the technology associated with computers and cameras has been export controlled by the United States and others to prevent both proliferation among non-P5-nations and technological parity among potential adversaries among P5 nations. Here we revisit these issues as they relate to high-speed photographicmore » technologies and make recommendations about how future restrictions, if any, should be guided.« less

  9. Development of a simulation model for dynamic derailment analysis of high-speed trains

    NASA Astrophysics Data System (ADS)

    Ling, Liang; Xiao, Xin-Biao; Jin, Xue-Song

    2014-12-01

    The running safety of high-speed trains has become a major concern of the current railway research with the rapid development of high-speed railways around the world. The basic safety requirement is to prevent the derailment. The root causes of the dynamic derailment of high-speed trains operating in severe environments are not easy to identify using the field tests or laboratory experiments. Numerical simulation using an advanced train-track interaction model is a highly efficient and low-cost approach to investigate the dynamic derailment behavior and mechanism of high-speed trains. This paper presents a three-dimensional dynamic model of a high-speed train coupled with a ballast track for dynamic derailment analysis. The model considers a train composed of multiple vehicles and the nonlinear inter-vehicle connections. The ballast track model consists of rails, fastenings, sleepers, ballasts, and roadbed, which are modeled by Euler beams, nonlinear spring-damper elements, equivalent ballast bodies, and continuous viscoelastic elements, in which the modal superposition method was used to reduce the order of the partial differential equations of Euler beams. The commonly used derailment safety assessment criteria around the world are embedded in the simulation model. The train-track model was then used to investigate the dynamic derailment responses of a high-speed train passing over a buckled track, in which the derailment mechanism and train running posture during the dynamic derailment process were analyzed in detail. The effects of train and track modelling on dynamic derailment analysis were also discussed. The numerical results indicate that the train and track modelling options have a significant effect on the dynamic derailment analysis. The inter-vehicle impacts and the track flexibility and nonlinearity should be considered in the dynamic derailment simulations.

  10. Illinois high-speed rail four-quadrant gate reliability assessment

    DOT National Transportation Integrated Search

    2009-10-01

    The Federal Railroad Administration (FRA) tasked the John A. Volpe National Transportation Systems Center (Volpe Center) to conduct a reliability analysis of the four-quadrant gate/vehicle detection equipment installed on the future high-speed rail (...

  11. Discharge characteristics of a high speed fuel injection system

    NASA Technical Reports Server (NTRS)

    Matthews, Robertson

    1925-01-01

    Discussed here are some discharge characteristics of a fuel injection system intended primarily for high speed service. The system consisted of a cam actuated fuel pump, a spring loaded automatic injection valve, and a connecting tube.

  12. Exposure to electromagnetic fields aboard high-speed electric multiple unit trains.

    PubMed

    Niu, D; Zhu, F; Qiu, R; Niu, Q

    2016-01-01

    High-speed electric multiple unit (EMU) trains generate high-frequency electric fields, low-frequency magnetic fields, and high-frequency wideband electromagnetic emissions when running. Potential human health concerns arise because the electromagnetic disturbances are transmitted mainly into the car body from windows, and from there to passengers and train staff. The transmission amount and amplitude distribution characteristics that dominate electromagnetic field emission need to be studied, and the exposure level of electromagnetic field emission to humans should be measured. We conducted a series of tests of the on board electromagnetic field distribution on several high-speed railway lines. While results showed that exposure was within permitted levels, the possibility of long-term health effects should be investigated.

  13. High-speed photoacoustic imaging using an LED-based photoacoustic imaging system

    NASA Astrophysics Data System (ADS)

    Sato, Naoto; Kuniyil Ajith Singh, Mithun; Shigeta, Yusuke; Hanaoka, Takamitsu; Agano, Toshitaka

    2018-02-01

    Recently we developed a multispectral LED-based photoacoustic/ultrasound imaging system (AcousticX) and have been continuously working on its technical/functional improvements. AcousticX is a linear array ultrasound transducer (128 elements, 10 MHz)-based system in which LED arrays (selectable wavelengths, pulse repetition frequency: 4 kHz, pulse width: tunable from 40 - 100 ns) are fixed on both sides of the transducer to illuminate the tissue for photoacoustic imaging. The ultrasound/photoacoustic data from all 128 elements can be simultaneously acquired, processed and displayed. We already demonstrated our system's capability to perform photoacoustic/ultrasound imaging for dynamic imaging of the tissue at a frame rate of 10 Hz (for example to visualize the pulsation of arteries in vivo in human subjects). In this work, we present the development of a new high-speed imaging mode in AcousticX. In this mode, instead of toggling between ultrasound and photoacoustic measurements, it is possible to continuously acquire only photoacoustic data for 1.5 seconds with a time interval of 1 ms. With this improvement, we can record photoacoustic signals from the whole aperture (38 mm) at fast rate and can be reviewed later at different speeds for analyzing dynamic changes in the photoacoustic signals. We believe that AcousticX with this new high-speed mode opens up a feasible technical path for multiple dynamic studies, for example one which focus on imaging the response of voltage sensitive dyes. We envisage to improve the acquisition speed further in future for exploring ultra-high-speed applications.

  14. Highball: A high speed, reserved-access, wide area network

    NASA Technical Reports Server (NTRS)

    Mills, David L.; Boncelet, Charles G.; Elias, John G.; Schragger, Paul A.; Jackson, Alden W.

    1990-01-01

    A network architecture called Highball and a preliminary design for a prototype, wide-area data network designed to operate at speeds of 1 Gbps and beyond are described. It is intended for applications requiring high speed burst transmissions where some latency between requesting a transmission and granting the request can be anticipated and tolerated. Examples include real-time video and disk-disk transfers, national filestore access, remote sensing, and similar applications. The network nodes include an intelligent crossbar switch, but have no buffering capabilities; thus, data must be queued at the end nodes. There are no restrictions on the network topology, link speeds, or end-end protocols. The end system, nodes, and links can operate at any speed up to the limits imposed by the physical facilities. An overview of an initial design approach is presented and is intended as a benchmark upon which a detailed design can be developed. It describes the network architecture and proposed access protocols, as well as functional descriptions of the hardware and software components that could be used in a prototype implementation. It concludes with a discussion of additional issues to be resolved in continuing stages of this project.

  15. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  16. High-speed uncooled MWIR hostile fire indication sensor

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Pantuso, F. P.; Jin, G.; Mazurenko, A.; Erdtmann, M.; Radhakrishnan, S.; Salerno, J.

    2011-06-01

    Hostile fire indication (HFI) systems require high-resolution sensor operation at extremely high speeds to capture hostile fire events, including rocket-propelled grenades, anti-aircraft artillery, heavy machine guns, anti-tank guided missiles and small arms. HFI must also be conducted in a waveband with large available signal and low background clutter, in particular the mid-wavelength infrared (MWIR). The shortcoming of current HFI sensors in the MWIR is the bandwidth of the sensor is not sufficient to achieve the required frame rate at the high sensor resolution. Furthermore, current HFI sensors require cryogenic cooling that contributes to size, weight, and power (SWAP) in aircraft-mounted applications where these factors are at a premium. Based on its uncooled photomechanical infrared imaging technology, Agiltron has developed a low-SWAP, high-speed MWIR HFI sensor that breaks the bandwidth bottleneck typical of current infrared sensors. This accomplishment is made possible by using a commercial-off-the-shelf, high-performance visible imager as the readout integrated circuit and physically separating this visible imager from the MWIR-optimized photomechanical sensor chip. With this approach, we have achieved high-resolution operation of our MWIR HFI sensor at 1000 fps, which is unprecedented for an uncooled infrared sensor. We have field tested our MWIR HFI sensor for detecting all hostile fire events mentioned above at several test ranges under a wide range of environmental conditions. The field testing results will be presented.

  17. Promoting intermodal connectivity at California's high-speed rail stations.

    DOT National Transportation Integrated Search

    2015-07-01

    High-speed rail (HSR) has emerged as one of the most revolutionary and transformative transportation technologies, having a : profound impact on urban-regional accessibility and inter-city travel across Europe, Japan, and more recently China and othe...

  18. Study on Stability of High Speed Traction Drive CVT for Aircraft Generator

    NASA Astrophysics Data System (ADS)

    Goi, Tatsuhiko; Tanaka, Hirohisa; Nakashima, Kenichi; Watanabe, Koji

    A half-toroidal traction drive CVT has a feature of small spin at traction pitch in whole speed ratio range of 1:4, which suits to transmit high rotational speed with minimum temperature increase of traction surface. Research activity on traction drive CVT has commenced in 1996 for applying it to an aircraft 24,000rpm constant-speed generator instead of a hydro-static transmission. This paper shows fundamental design of 90kW traction drive integrated drive generator, ``T-IDG", and stability analysis on a sensor-less electro-hydraulic speed control servo-mechanism by bond graphs. The performance test of T-IDG mounted on a test bench and an actual jet engine proved that the control system using sensor-less servomechanism can keep the generator speed within MIL-STD-704E allowable limit against steep changes of speed and load.

  19. Faster than "g", Revisited with High-Speed Imaging

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter

    2012-01-01

    The introduction of modern high-speed cameras in physics teaching provides a tool not only for easy visualization, but also for quantitative analysis of many simple though fast occurring phenomena. As an example, we present a very well-known demonstration experiment--sometimes also discussed in the context of falling chimneys--which is commonly…

  20. High-Speed Imaging of Dusty Plasma Instabilities

    NASA Astrophysics Data System (ADS)

    Tawidian, H.; Couëdel, L.; Mikikian, M.; Lecas, T.; Boufendi, L.; Vallée, O.

    2011-11-01

    Dust particles in a plasma acquire negative charges by capturing electrons. If the dust particle density is high, a huge loss of free electrons can trigger unstable behaviors in the plasma. Several types of plasma behaviors are analyzed thanks to a high-speed camera like dust particle growth instabilities (DPGI) and a new phenomenon called plasma spheroids. These small plasma spheroids are about a few mm, have a slightly enhanced luminosity, and are observed in the vicinity of the electrodes. Different behaviors are identified for these spheroids like a rotational motion, or a chaotic regime (fast appearance and disappearance).