Sample records for ubiquitously expressed cytosolic

  1. Expression of membrane-bound and cytosolic guanylyl cyclases in the rat inner ear.

    PubMed

    Seebacher, T; Beitz, E; Kumagami, H; Wild, K; Ruppersberg, J P; Schultz, J E

    1999-01-01

    Membrane-bound guanylyl cyclases (GCs) are peptide hormone receptors whereas the cytosolic isoforms are receptors for nitric oxide. In the inner ear, the membrane-bound GCs may be involved in the regulation of fluid homeostasis and the cytosolic forms possibly play a role in signal processing and regulation of local blood flow. In this comprehensive study, we examined, qualitatively and quantitatively, the transcription pattern of all known GC isoforms in the inner ear from rat by RT-PCR. The tissues used were endolymphatic sac, stria vascularis, organ of Corti, organ of Corti outer hair cells, cochlear nerve, Reissner's membrane, vestibular dark cells, and vestibular sensory cells. We show that multiple particulate (GC-A, GC-B, GC-D, GC-E, GC-F and GC-G) and several subunits of the heterodimeric cytosolic GCs (alpha1, alpha2, beta1 and beta2) are expressed, albeit at highly different levels. GC-C was not found. GC-A and the soluble subunits alpha1 and beta1 were transcribed ubiquitously. GC-B was present in all tissues except stria vascularis, which contained GC-A and traces of GC-E and GC-G. GC-B was by far the predominant membrane-bound isoform in the organ of Corti (86%), Reissner's membrane (75%) and the vestibulum (80%). Surprisingly, GC-E, a retinal isoform, was detected in significant amounts in the cochlear nerve (8%) and in the organ of Corti (4%). Although the cytosolic GC is a heterodimer composed of an alpha and a beta subunit, the mRNA transcription of these subunits was not stoichiometric. Particularly in the vestibulum, the transcription of the beta1 subunits was at least four-fold higher than of the alpha1 subunit. The data are compatible with earlier suggestions that membrane receptor GCs may be involved in the control of inner ear electrolyte and fluid composition whereas NO-stimulated GC isoforms mainly participate in the regulation of blood flow and supporting cell physiology.

  2. Lysosomal proteolysis is the primary degradation pathway for cytosolic ferritin and cytosolic ferritin degradation is necessary for iron exit.

    PubMed

    Zhang, Yinghui; Mikhael, Marc; Xu, Dongxue; Li, Yiye; Soe-Lin, Shan; Ning, Bo; Li, Wei; Nie, Guangjun; Zhao, Yuliang; Ponka, Prem

    2010-10-01

    Cytosolic ferritins sequester and store iron, consequently protecting cells against iron-mediated free radical damage. However, the mechanisms of iron exit from the ferritin cage and reutilization are largely unknown. In a previous study, we found that mitochondrial ferritin (MtFt) expression led to a decrease in cytosolic ferritin. Here we showed that treatment with inhibitors of lysosomal proteases largely blocked cytosolic ferritin loss in both MtFt-expressing and wild-type cells. Moreover, cytosolic ferritin in cells treated with inhibitors of lysosomal proteases was found to store more iron than did cytosolic ferritins in untreated cells. The prevention of cytosolic ferritin degradation in MtFt-expressing cells significantly blocked iron mobilization from the protein cage induced by MtFt expression. These studies also showed that blockage of cytosolic ferritin loss by leupeptin resulted in decreased cytosolic ferritin synthesis and prolonged cytosolic ferritin stability, potentially resulting in diminished iron availability. Lastly, we found that proteasomes were responsible for cytosolic ferritin degradation in cells pretreated with ferric ammonium citrate. Thus, the current studies suggest that cytosolic ferritin degradation precedes the release of iron in MtFt-expressing cells; that MtFt-induced cytosolic ferritin decrease is partially preventable by lysosomal protease inhibitors; and that both lysosomal and proteasomal pathways may be involved in cytosolic ferritin degradation.

  3. [Effects of cytosolic bacteria on cyclic GMP-AMP synthase expression in human gingival tissues and periodontal ligament cells].

    PubMed

    Xiaojun, Yang; Yongmei, Tan; Zhihui, Tian; Ting, Zhou; Wanghong, Zhao; Jin, Hou

    2017-04-01

    This work aims to determine the effect of cytosolic bacteria on the expression of cyclic GMP-AMP synthase (cGAS) in human periodontal ligament cells (hPDLCs) and gingival tissues. The ability of Porphyromonas gingivalis (P. gingivalis) to invade hPDLCs was detected using laser scanning confocal microscope assay at a multiplicity of infection of 10. P. gingivalis-infected cells were sorted by fluorescence-activated cell sorting (FACS). Then, quantitative real time reverse transcription polymerase chain reaction (qRT-PCR) and Western blot were used to detect cGAS expression in infected cells. Finally, the location and expression of cGAS in inflammatory and normal gingival tissues were investigated by immunohistochemistry. P. gingivalis actively invaded hPDLCs. Moreover, cGAS expression significantly increased in P. gingivalis-infected cells. Although cGAS was expressed in the epithelial and subepithelial cells of both inflamed and normal gingival tissues, cGAS expression significantly increased in inflamed gingival tissues. Cytosolic bacteria can upregulate cGAS expression in infected cells. These data suggest that cGAS may act as pattern-recognition receptors and participate in recognizing cytosolic nucleic acid pathogen-associated molecular patterns.
.

  4. Oil and Protein Accumulation in Developing Seeds Is Influenced by the Expression of a Cytosolic Pyrophosphatase in Arabidopsis[C][W][OA

    PubMed Central

    Meyer, Knut; Stecca, Kevin L.; Ewell-Hicks, Kim; Allen, Stephen M.; Everard, John D.

    2012-01-01

    This study describes a dominant low-seed-oil mutant (lo15571) of Arabidopsis (Arabidopsis thaliana) generated by enhancer tagging. Compositional analysis of developing siliques and mature seeds indicated reduced conversion of photoassimilates to oil. Immunoblot analysis revealed increased levels of At1g01050 protein in developing siliques of lo15571. At1g01050 encodes a soluble, cytosolic pyrophosphatase and is one of five closely related genes that share predicted cytosolic localization and at least 70% amino acid sequence identity. Expression of At1g01050 using a seed-preferred promoter recreated most features of the lo15571 seed phenotype, including low seed oil content and increased levels of transient starch and soluble sugars in developing siliques. Seed-preferred RNA interference-mediated silencing of At1g01050 and At3g53620, a second cytosolic pyrophosphatase gene that shows expression during seed filling, led to a heritable oil increase of 1% to 4%, mostly at the expense of seed storage protein. These results are consistent with a scenario in which the rate of mobilization of sucrose, for precursor supply of seed storage lipid biosynthesis by cytosolic glycolysis, is strongly influenced by the expression of endogenous pyrophosphatase enzymes. This emphasizes the central role of pyrophosphate-dependent reactions supporting cytosolic glycolysis during seed maturation when ATP supply is low, presumably due to hypoxic conditions. This route is the major route providing precursors for seed oil biosynthesis. ATP-dependent reactions at the entry point of glycolysis in the cytosol or plastid cannot fully compensate for the loss of oil content observed in transgenic events with increased expression of cytosolic pyrophosphatase enzyme in the cytosol. These findings shed new light on the dynamic properties of cytosolic pyrophosphate pools in developing seed and their influence on carbon partitioning during seed filling. Finally, our work uniquely demonstrates that

  5. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae.

    PubMed

    Kozak, Barbara U; van Rossum, Harmen M; Luttik, Marijke A H; Akeroyd, Michiel; Benjamin, Kirsten R; Wu, Liang; de Vries, Simon; Daran, Jean-Marc; Pronk, Jack T; van Maris, Antonius J A

    2014-10-21

    The energetic (ATP) cost of biochemical pathways critically determines the maximum yield of metabolites of vital or commercial relevance. Cytosolic acetyl coenzyme A (acetyl-CoA) is a key precursor for biosynthesis in eukaryotes and for many industrially relevant product pathways that have been introduced into Saccharomyces cerevisiae, such as isoprenoids or lipids. In this yeast, synthesis of cytosolic acetyl-CoA via acetyl-CoA synthetase (ACS) involves hydrolysis of ATP to AMP and pyrophosphate. Here, we demonstrate that expression and assembly in the yeast cytosol of an ATP-independent pyruvate dehydrogenase complex (PDH) from Enterococcus faecalis can fully replace the ACS-dependent pathway for cytosolic acetyl-CoA synthesis. In vivo activity of E. faecalis PDH required simultaneous expression of E. faecalis genes encoding its E1α, E1β, E2, and E3 subunits, as well as genes involved in lipoylation of E2, and addition of lipoate to growth media. A strain lacking ACS that expressed these E. faecalis genes grew at near-wild-type rates on glucose synthetic medium supplemented with lipoate, under aerobic and anaerobic conditions. A physiological comparison of the engineered strain and an isogenic Acs(+) reference strain showed small differences in biomass yields and metabolic fluxes. Cellular fractionation and gel filtration studies revealed that the E. faecalis PDH subunits were assembled in the yeast cytosol, with a subunit ratio and enzyme activity similar to values reported for PDH purified from E. faecalis. This study indicates that cytosolic expression and assembly of PDH in eukaryotic industrial microorganisms is a promising option for minimizing the energy costs of precursor supply in acetyl-CoA-dependent product pathways. Importance: Genetically engineered microorganisms are intensively investigated and applied for production of biofuels and chemicals from renewable sugars. To make such processes economically and environmentally sustainable, the energy

  6. Engineering Acetyl Coenzyme A Supply: Functional Expression of a Bacterial Pyruvate Dehydrogenase Complex in the Cytosol of Saccharomyces cerevisiae

    PubMed Central

    Kozak, Barbara U.; van Rossum, Harmen M.; Luttik, Marijke A. H.; Akeroyd, Michiel; Benjamin, Kirsten R.; Wu, Liang; de Vries, Simon; Daran, Jean-Marc; Pronk, Jack T.

    2014-01-01

    ABSTRACT The energetic (ATP) cost of biochemical pathways critically determines the maximum yield of metabolites of vital or commercial relevance. Cytosolic acetyl coenzyme A (acetyl-CoA) is a key precursor for biosynthesis in eukaryotes and for many industrially relevant product pathways that have been introduced into Saccharomyces cerevisiae, such as isoprenoids or lipids. In this yeast, synthesis of cytosolic acetyl-CoA via acetyl-CoA synthetase (ACS) involves hydrolysis of ATP to AMP and pyrophosphate. Here, we demonstrate that expression and assembly in the yeast cytosol of an ATP-independent pyruvate dehydrogenase complex (PDH) from Enterococcus faecalis can fully replace the ACS-dependent pathway for cytosolic acetyl-CoA synthesis. In vivo activity of E. faecalis PDH required simultaneous expression of E. faecalis genes encoding its E1α, E1β, E2, and E3 subunits, as well as genes involved in lipoylation of E2, and addition of lipoate to growth media. A strain lacking ACS that expressed these E. faecalis genes grew at near-wild-type rates on glucose synthetic medium supplemented with lipoate, under aerobic and anaerobic conditions. A physiological comparison of the engineered strain and an isogenic Acs+ reference strain showed small differences in biomass yields and metabolic fluxes. Cellular fractionation and gel filtration studies revealed that the E. faecalis PDH subunits were assembled in the yeast cytosol, with a subunit ratio and enzyme activity similar to values reported for PDH purified from E. faecalis. This study indicates that cytosolic expression and assembly of PDH in eukaryotic industrial microorganisms is a promising option for minimizing the energy costs of precursor supply in acetyl-CoA-dependent product pathways. PMID:25336454

  7. Impact of myocardial inflammation on cytosolic and mitochondrial creatine kinase activity and expression.

    PubMed

    Ebermann, Linda; Piper, Cornelia; Kühl, Uwe; Klingel, Karin; Schlattner, Uwe; Siafarikas, Nikias; Zeichhardt, Heinz; Schultheiss, Heinz-Peter; Dörner, Andrea

    2009-05-01

    The disturbance of myocardial energy metabolism has been discussed as contributing to the progression of heart failure. Little however is known about the cardiac mitochondrial/cytosolic energy transfer in murine and human inflammatory heart disease. We examined the myocardial creatine kinase (CK) system, which connects mitochondrial ATP-producing and cytosolic ATP-consuming processes and is thus of central importance to the cellular energy homeostasis. The time course of expression and enzymatic activity of mitochondrial (mtCK) and cytosolic CK (cytCK) was investigated in Coxsackievirus B3 (CVB3)-infected SWR mice, which are susceptible to the development of chronic myocarditis. In addition, cytCK activity and isoform expression were analyzed in biopsies from patients with chronic inflammatory heart disease (n = 22). Cardiac CVB3 titer in CVB3-infected mice reached its maximum at 4 days post-infection (pi) and became undetectable at 28 days pi; cardiac inflammation cumulated 14 days pi but persisted through the 28-day survey. MtCK enzymatic activity was reduced by 40% without a concurrent decrease in mtCK protein during early and acute MC. Impaired mtCK activity was correlated with virus replication and increased level of interleukine 1beta (IL-1beta), tumor necrosis factor alpha (TNFalpha), and elevated catalase expression, a marker for intracellular oxidative stress. A reduction in cytCK activity of 48% was observed at day 14 pi and persisted to day 28 pi. This restriction was caused by a decrease in cytCK subunit expression but also by direct inhibition of specific cytCK activity. CytCK activity and expression were also reduced in myocardial biopsies from enterovirus genome-negative patients with inflammatory heart disease. The decrease in cytCK activity correlated with the number of infiltrating macrophages. Thus, viral infection and myocardial inflammation significantly influence the myocardial CK system via restriction of specific CK activity and down

  8. Expressing clinical data sets with openEHR archetypes: a solid basis for ubiquitous computing.

    PubMed

    Garde, Sebastian; Hovenga, Evelyn; Buck, Jasmin; Knaup, Petra

    2007-12-01

    The purpose of this paper is to analyse the feasibility and usefulness of expressing clinical data sets (CDSs) as openEHR archetypes. For this, we present an approach to transform CDS into archetypes, and outline typical problems with CDS and analyse whether some of these problems can be overcome by the use of archetypes. Literature review and analysis of a selection of existing Australian, German, other European and international CDSs; transfer of a CDS for Paediatric Oncology into openEHR archetypes; implementation of CDSs in application systems. To explore the feasibility of expressing CDS as archetypes an approach to transform existing CDSs into archetypes is presented in this paper. In case of the Paediatric Oncology CDS (which consists of 260 data items) this lead to the definition of 48 openEHR archetypes. To analyse the usefulness of expressing CDS as archetypes, we identified nine problems with CDS that currently remain unsolved without a common model underpinning the CDS. Typical problems include incompatible basic data types and overlapping and incompatible definitions of clinical content. A solution to most of these problems based on openEHR archetypes is motivated. With regard to integrity constraints, further research is required. While openEHR cannot overcome all barriers to Ubiquitous Computing, it can provide the common basis for ubiquitous presence of meaningful and computer-processable knowledge and information, which we believe is a basic requirement for Ubiquitous Computing. Expressing CDSs as openEHR archetypes is feasible and advantageous as it fosters semantic interoperability, supports ubiquitous computing, and helps to develop archetypes that are arguably of better quality than the original CDS.

  9. Diversity of cytosolic HSP70 Heat Shock Protein from decapods and their phylogenetic placement within Arthropoda.

    PubMed

    Baringou, Stephane; Rouault, Jacques-Deric; Koken, Marcel; Hardivillier, Yann; Hurtado, Luis; Leignel, Vincent

    2016-10-10

    The 70kDa heat shock proteins (HSP70) are considered the most conserved members of the HSP family. These proteins are primordial to the cell, because of their implications in many cellular pathways (e. g., development, immunity) and also because they minimize the effects of multiple stresses (e. g., temperature, pollutants, salinity, radiations). In the cytosol, two ubiquitous HSP70s with either a constitutive (HSC70) or an inducible (HSP70) expression pattern are found in all metazoan species, encoded by 5 or 6 genes (Drosophila melanogaster or yeast and human respectively). The cytosolic HSP70 protein family is considered a major actor in environmental adaptation, and widely used in ecology as an important biomarker of environmental stress. Nevertheless, the diversity of cytosolic HSP70 remains unclear amongst the Athropoda phylum, especially within decapods. Using 122 new and 311 available sequences, we carried out analyses of the overall cytosolic HSP70 diversity in arthropods (with a focus on decapods) and inferred molecular phylogenies. Overall structural and phylogenetic analyses showed a surprisingly high diversity in cytosolic HSP70 and revealed the existence of several unrecognised groups. All crustacean HSP70 sequences present signature motifs and molecular weights characteristic of non-organellar HSP70, with multiple specific substitutions in the protein sequence. The cytosolic HSP70 family in arthropods appears to be constituted of at least three distinct groups (annotated as A, B and C), which comprise several subdivisions, including both constitutive and inducible forms. Group A is constituted by several classes of Arthropods, while group B and C seem to be specific to Malacostraca and Hexapoda/Chelicerata, respectively. The HSP70 organization appeared much more complex than previously suggested, and far beyond a simple differentiation according to their expression pattern (HSC70 versus HSP70). This study proposes a new classification of cytosolic

  10. Functional complementation of yeast cytosolic pyrophosphatase by bacterial and plant H+-translocating pyrophosphatases.

    PubMed

    Perez-Castineira, Jose R; Lopez-Marques, Rosa L; Villalba, Jose M; Losada, Manuel; Serrano, Aurelio

    2002-12-10

    Two types of proteins that hydrolyze inorganic pyrophosphate (PPi), very different in both amino acid sequence and structure, have been characterized to date: soluble and membrane-bound proton-pumping pyrophosphatases (sPPases and H(+)-PPases, respectively). sPPases are ubiquitous proteins that hydrolyze PPi releasing heat, whereas H+-PPases, so far unidentified in animal and fungal cells, couple the energy of PPi hydrolysis to proton movement across biological membranes. The budding yeast Saccharomyces cerevisiae has two sPPases that are located in the cytosol and in the mitochondria. Previous attempts to knock out the gene coding for a cytosolic sPPase (IPP1) have been unsuccessful, thus suggesting that this protein is essential for growth. Here, we describe the generation of a conditional S. cerevisiae mutant (named YPC-1) whose functional IPP1 gene is under the control of a galactose-dependent promoter. Thus, YPC-1 cells become growth arrested in glucose but they regain the ability to grow on this carbon source when transformed with autonomous plasmids bearing diverse foreign H+-PPase genes under the control of a yeast constitutive promoter. The heterologously expressed H+-PPases are distributed among different yeast membranes, including the plasma membrane, functional complementation by these integral membrane proteins being consistently sensitive to external pH. These results demonstrate that hydrolysis of cytosolic PPi is essential for yeast growth and that this function is not substantially affected by the intrinsic characteristics of the PPase protein that accomplishes it. Moreover, this is, to our knowledge, the first direct evidence that H+-PPases can mediate net hydrolysis of PPi in vivo. YPC-1 mutant strain constitutes a convenient expression system to perform studies aimed at the elucidation of the structure-function relationships of this type of proton pumps.

  11. Gymnocypris przewalskii decreases cytosolic carbonic anhydrase expression to compensate for respiratory alkalosis and osmoregulation in the saline-alkaline lake Qinghai.

    PubMed

    Yao, Zongli; Guo, Wenfei; Lai, Qifang; Shi, Jianquan; Zhou, Kai; Qi, Hongfang; Lin, Tingting; Li, Ziniu; Wang, Hui

    2016-01-01

    Naked carp (Gymnocypris przewalskii), endemic to the saline-alkaline Lake Qinghai, have the capacity to tolerate combined high salinity and alkalinity, but migrate to spawn in freshwater rivers each year. In this study, the full-length cDNA of the cytosolic carbonic anhydrase c isoform of G. przewalskii (GpCAc) was amplified and sequenced; mRNA levels and enzyme activity of GpCAc and blood chemistry were evaluated to understand the compensatory responses as the naked carp returned to the saline-alkaline lake after spawning. We found that GpCAc had a total length of 1400 bp and encodes a peptide of 260 amino acids. Comparison of the deduced amino acid sequences and phylogenetic analysis showed that GpCAc was a member of the cytosolic carbonic anhydrase II-like c family. Cytosolic-carbonic-anhydrase-c-specific primers were used to analyze the tissue distribution of GpCAc mRNA expression. Expression of GpCAc mRNA was found in brain, gill, liver, kidney, gut, and muscle tissues, but primarily in the gill and posterior kidney; however, none was evident in red blood cells. Transferring fish from river water to lake water resulted in a respiratory alkalosis, osmolality, and ion rise in the blood, as well as significant decreases in the expression and enzyme activity of GpCAc in both the gill and kidney within 96 h. These results indicate that GpCAc may play an important role in the acclimation to both high salinity and carbonate alkalinity. Specifically, G. przewalskii decreases cytosolic carbonic anhydrase c expression to compensate for a respiratory alkalosis and to aid in osmoregulation during the transition from river to saline-alkaline lake.

  12. Engineering the expression level of cytosolic nucleoside diphosphate kinase in transgenic Solanum tuberosum roots alters growth, respiration and carbon metabolism.

    PubMed

    Dorion, Sonia; Clendenning, Audrey; Rivoal, Jean

    2017-03-01

    Nucleoside diphosphate kinase (NDPK) is a ubiquitous enzyme that catalyzes the transfer of the γ-phosphate from a donor nucleoside triphosphate to an acceptor nucleoside diphosphate. In this study we used a targeted metabolomic approach and measurement of physiological parameters to report the effects of the genetic manipulation of cytosolic NDPK (NDPK1) expression on physiology and carbon metabolism in potato (Solanum tuberosum) roots. Sense and antisense NDPK1 constructs were introduced in potato using Agrobacterium rhizogenes to generate a population of root clones displaying a 40-fold difference in NDPK activity. Root growth, O 2 uptake, flux of carbon between sucrose and CO 2 , levels of reactive oxygen species and some tricarboxylic acid cycle intermediates were positively correlated with levels of NDPK1 expression. In addition, NDPK1 levels positively affected UDP-glucose and cellulose contents. The activation state of ADP-glucose pyrophosphorylase, a key enzyme in starch synthesis, was higher in antisense roots than in roots overexpressing NDPK1. Further analyses demonstrated that ADP-glucose pyrophosphorylase was more oxidized, and therefore less active, in sense clones than antisense clones. Consequently, antisense NDPK1 roots accumulated more starch and the starch to cellulose ratio was negatively affected by the level of NDPK1. These data support the idea that modulation of NDPK1 affects the distribution of carbon between starch and cellulose biosynthetic pathways. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  13. Development and Evaluation of Transgenic Nude Mice Expressing Ubiquitous Green Fluorescent Protein.

    PubMed

    Iyer, Srikanth; Arindkar, Shailendra; Mishra, Alaknanda; Manglani, Kapil; Kumar, Jerald Mahesh; Majumdar, Subeer S; Upadhyay, Pramod; Nagarajan, Perumal

    2015-08-01

    Researchers had developed and characterized transgenic green/red fluorescent protein (GFP/RFP) nude mouse with ubiquitous RFP or GFP expression, but none has evaluated the level of immune cells and expression levels of GFP in this model. The nude GFP mice were evaluated by imaging, hematological indices, and flow cytometry to compare the proportion of immune T cells. Quantitative real-time PCR (qRT-PCR) was done for evaluating the relative expression of GFP transcripts in few organs of the nude GFP mice. The hematological and immune cells of nude GFP were within the range of nude mice. However, the gene expression levels were relatively less in various tissues compared with B6 GFP mice. These findings suggest that nude GFP is an ideal model resembling normal nude mice; however, GFP expression in various tissues by fluorescence should be considered, as the expression of GFP differs in various organs.

  14. Expression of cytosolic NADP(+)-dependent isocitrate dehydrogenase in melanocytes and its role as an antioxidant.

    PubMed

    Kim, Ji Young; Shin, Jae Yong; Kim, Miri; Hann, Seung-Kyung; Oh, Sang Ho

    2012-02-01

    Cytosolic NADP(+)-dependent ICDH (IDPc) has an antioxidant effect as a supplier of NADPH to the cytosol, which is needed for the production of glutathione. To evaluate the expression of IDPc in melanocytes and to elucidate its role as an antioxidant. The knock-down of IDPc expression in immortalized mouse melanocyte cell lines (melan-a) was performed using the short interfering RNA (siRNA)-targeted gene silencing method. After confirming the silencing of IDPc expression with mRNA and protein levels, viability, apoptosis and necrosis, as well as ROS production in IDPc-silenced melanocytes were monitored under conditions of oxidative stress and non-stress. Also, the ratio of oxidized glutathione to total glutathione was examined, and whether the addition of glutathione recovered cell viability, decreased by oxidant stress, was checked. The expression of IDPc in both primary human melanocytes and melan-a cells was confirmed by Western blot and RT-PCR. The silencing of IDPc expression by transfecting IDPc siRNA in melan-a cells was observed by Western blotting and real-time RT-PCR. IDPc knock-down cells showed significantly decreased cell viability and an increased number of cells under apoptosis and necrosis. IDPc siRNA-treated melanocytes demonstrated a higher intensity of DCFDA after the addition of H(2)O(2) compared with scrambled siRNA-treated melanocytes, and a lower ratio of reduced glutathione to oxidized glutathione were observed in IDPc siRNA transfected melanocytes. In addition, the addition of glutathione recovered cell viability, which was previously decreased after incubation with H(2)O(2). This study suggests that decreased IDPc expression renders melanocytes more vulnerable to oxidative stress, and IDPc plays an important antioxidant function in melanocytes. Copyright © 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Identification of rat Rosa26 locus enables generation of knock-in rat lines ubiquitously expressing tdTomato.

    PubMed

    Kobayashi, Toshihiro; Kato-Itoh, Megumi; Yamaguchi, Tomoyuki; Tamura, Chihiro; Sanbo, Makoto; Hirabayashi, Masumi; Nakauchi, Hiromitsu

    2012-11-01

    Recent discovery of a method for derivation and culture of germline-competent rat pluripotent stem cells (PSCs) enables generation of transgenic rats or knock-out rats via genetic modification of such PSCs. This opens the way to use rats, as is routine in mice, for analyses of gene functions or physiological features. In mouse or human, one widely used technique to express a gene of interest stably and ubiquitously is to insert that gene into the Rosa26 locus via gene targeting of PSCs. Rosa26 knock-in mice conditionally expressing a reporter or a toxin gene have contributed to tracing or ablation of specific cell lineages. We successfully identified a rat orthologue of the mouse Rosa26 locus. Insertion of tdTomato, a variant of red fluorescent protein, into the Rosa26 locus of PSCs of various rat strains allows ubiquitous expression of tdTomato. Through germline transmission of one Rosa26-tdTomato knock-in embryonic stem cell line, we also obtained tdTomato knock-in rats. These expressed tdTomato ubiquitously throughout their bodies, which indicates that the rat Rosa26 locus conserves functions of its orthologues in mouse and human. The new tools described here (targeting vectors, knock-in PSCs, and rats) should be useful for a variety of research using rats.

  16. Eukaryotic starch degradation: integration of plastidial and cytosolic pathways.

    PubMed

    Fettke, Joerg; Hejazi, Mahdi; Smirnova, Julia; Höchel, Erik; Stage, Marion; Steup, Martin

    2009-01-01

    Starch is an important plant product widely used as a nutrient, as a source of renewable energy, and for many technological applications. In plants, starch is the almost ubiquitous storage carbohydrate whereas most heterotrophic prokaryotes and eukaryotes rely on glycogen. Despite close similarities in basic chemical features, starch and glycogen differ in both structural and physicochemical properties. Glycogen is a hydrosoluble macromolecule with evenly distributed branching points. Starch exists as a water-insoluble particle having a defined (and evolutionary conserved) internal structure. The biochemistry of starch requires the co-operation of up to 40 distinct (iso)enzymes whilst approximately 10 (iso)enzymes permit glycogen metabolism. The biosynthesis and degradation of native starch include the transition of carbohydrates from the soluble to the solid phase and vice versa. In this review, two novel aspects of the eukaryotic plastidial starch degradation are discussed: Firstly, biochemical reactions that take place at the surface of particulate glucans and mediate the phase transition of carbohydrates. Secondly, processes that occur downstream of the export of starch-derived sugars into the cytosol. Degradation of transitory starch mainly results in the formation of neutral sugars, such as glucose and maltose, that are transported into the cytosol via the respective translocators. The cytosolic metabolism of the neutral sugars includes the action of a hexokinase, a phosphoglucomutase, and a transglucosidase that utilizes high molecular weight glycans as a transient glucosyl acceptor or donor. Data are included on the transglucosidase (disproportionating isozyme 2) in Cyanophora paradoxa that accumulates storage carbohydrates in the cytosol rather than in the plastid.

  17. Ubiquitous information for ubiquitous computing: expressing clinical data sets with openEHR archetypes.

    PubMed

    Garde, Sebastian; Hovenga, Evelyn; Buck, Jasmin; Knaup, Petra

    2006-01-01

    Ubiquitous computing requires ubiquitous access to information and knowledge. With the release of openEHR Version 1.0 there is a common model available to solve some of the problems related to accessing information and knowledge by improving semantic interoperability between clinical systems. Considerable work has been undertaken by various bodies to standardise Clinical Data Sets. Notwithstanding their value, several problems remain unsolved with Clinical Data Sets without the use of a common model underpinning them. This paper outlines these problems like incompatible basic data types and overlapping and incompatible definitions of clinical content. A solution to this based on openEHR archetypes is motivated and an approach to transform existing Clinical Data Sets into archetypes is presented. To avoid significant overlaps and unnecessary effort during archetype development, archetype development needs to be coordinated nationwide and beyond and also across the various health professions in a formalized process.

  18. A novel cytosolic regulator, Pianissimo, is required for chemoattractant receptor and G protein-mediated activation of the 12 transmembrane domain adenylyl cyclase in Dictyostelium

    PubMed Central

    Chen, Mei-Yu; Long, Yu; Devreotes, Peter N.

    1997-01-01

    Genetic analysis was applied to identify novel genes involved in G protein-linked pathways controlling development. Using restriction enzyme-mediated integration (REMI), we have identified a new gene, Pianissimo (PiaA), involved in cAMP signaling in Dictyostelium discoideum. PiaA encodes a 130-kD cytosolic protein required for chemoattractant receptor and G protein-mediated activation of the 12 transmembrane domain adenylyl cyclase. In piaA− null mutants, neither chemoattractant stimulation of intact cells nor GTPγS treatment of lysates activates the enzyme; constitutive expression of PiaA reverses these defects. Cytosols of wild-type cells that contain Pia protein reconstitute the GTPγS stimulation of adenylyl cyclase activity in piaA− lysates, indicating that Pia is directly involved in the activation. Pia and CRAC, a previously identified cytosolic regulator, are both essential for activation of the enzyme as lysates of crac− piaA− double mutants require both proteins for reconstitution. Homologs of PiaA are found in Saccharomyces cerevisiae and Schizosaccaromyces pombe; disruption of the S. cerevisiae homolog results in lethality. We propose that homologs of Pia and similar modes of regulation of these ubiquitous G protein-linked pathways are likely to exist in higher eukaryotes. PMID:9389653

  19. Induction of defence gene expression by oligogalacturonic acid requires increases in both cytosolic calcium and hydrogen peroxide in Arabidopsis thaliana.

    PubMed

    Hu, Xiang Yang; Neill, Steven J; Cai, Wei Ming; Tang, Zhang Cheng

    2004-06-01

    Responses to oligogalacturonic acid (OGA) were determined in transgenic Arabidopsis thaliana seedlings expressing the calcium reporter protein aequorin. OGA stimulated a rapid, substantial and transient increase in the concentration of cytosolic calcium ([Ca2+]cyt) that peaked after ca. 15 s. This increase was dose-dependent, saturating at ca. 50 ug Gal equiv/ml of OGA. OGA also stimulated a rapid generation of H2O2. A small, rapid increase in H2O2 content was followed by a much larger oxidative burst, with H2O2 content peaking after ca. 60 min and declining thereafter. Induction of the oxidative burst by OGA was also dose-dependent, with a maximum response again being achieved at ca. 50 ug Gal equiv/mL. Inhibitors of calcium fluxes inhibited both increases in [Ca2+]cyt and [H2O2], whereas inhibitors of NADPH oxidase blocked only the oxidative burst. OGA increased strongly the expression of the defence-related genes CHS, GST, PAL and PR-1. This induction was suppressed by inhibitors of calcium flux or NADPH oxidase, indicating that increases in both cytosolic calcium and H2O2 are required for OGA-induced gene expression.

  20. Nanocapsule-mediated cytosolic siRNA delivery for anti-inflammatory treatment.

    PubMed

    Jiang, Ying; Hardie, Joseph; Liu, Yuanchang; Ray, Moumita; Luo, Xiang; Das, Riddha; Landis, Ryan F; Farkas, Michelle E; Rotello, Vincent M

    2018-06-05

    The use of nanoparticle-stabilized nanocapsules for cytosolic siRNA delivery for immunomodulation in vitro and in vivo is reported. These NPSCs deliver siRNA directly to the cytosol of macrophages in vitro with concomitant knockdown of gene expression. In vivo studies showed directed delivery of NPSCs to the spleen, enabling gene silencing of macrophages, with preliminary studies showing 70% gene knockdown at a siRNA dose of 0.28 mg/kg. Significantly, the delivery of siRNA targeting tumor necrosis factor-α efficiently silenced TNF-α expression in LPS-challenged mice, demonstrating efficacy in modulating immune response in an organ-selective manner. This research highlights the potential of the NPSC platform for targeted immunotherapy and further manipulation of the immune system. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Structures of the tRNA export factor in the nuclear and cytosolic states.

    PubMed

    Cook, Atlanta G; Fukuhara, Noemi; Jinek, Martin; Conti, Elena

    2009-09-03

    Transfer RNAs are among the most ubiquitous molecules in cells, central to decoding information from messenger RNAs on translating ribosomes. In eukaryotic cells, tRNAs are actively transported from their site of synthesis in the nucleus to their site of function in the cytosol. This is mediated by a dedicated nucleo-cytoplasmic transport factor of the karyopherin-beta family (Xpot, also known as Los1 in Saccharomyces cerevisiae). Here we report the 3.2 A resolution structure of Schizosaccharomyces pombe Xpot in complex with tRNA and RanGTP, and the 3.1 A structure of unbound Xpot, revealing both nuclear and cytosolic snapshots of this transport factor. Xpot undergoes a large conformational change on binding cargo, wrapping around the tRNA and, in particular, binding to the tRNA 5' and 3' ends. The binding mode explains how Xpot can recognize all mature tRNAs in the cell and yet distinguish them from those that have not been properly processed, thus coupling tRNA export to quality control.

  2. Endo-beta-N-acetylglucosaminidase, an enzyme involved in processing of free oligosaccharides in the cytosol.

    PubMed

    Suzuki, Tadashi; Yano, Keiichi; Sugimoto, Seiji; Kitajima, Ken; Lennarz, William J; Inoue, Sadako; Inoue, Yasuo; Emori, Yasufumi

    2002-07-23

    Formation of oligosaccharides occurs both in the cytosol and in the lumen of the endoplasmic reticulum (ER). Luminal oligosaccharides are transported into the cytosol to ensure that they do not interfere with proper functioning of the glycan-dependent quality control machinery in the lumen of the ER for newly synthesized glycoproteins. Once in the cytosol, free oligosaccharides are catabolized, possibly to maximize the reutilization of the component sugars. An endo-beta-N-acetylglucosaminidase (ENGase) is a key enzyme involved in the processing of free oligosaccharides in the cytosol. This enzyme activity has been widely described in animal cells, but the gene encoding this enzyme activity has not been reported. Here, we report the identification of the gene encoding human cytosolic ENGase. After 11 steps, the enzyme was purified 150,000-fold to homogeneity from hen oviduct, and several internal amino acid sequences were analyzed. Based on the internal sequence and examination of expressed sequence tag (EST) databases, we identified the human orthologue of the purified protein. The human protein consists of 743 aa and has no apparent signal sequence, supporting the idea that this enzyme is localized in the cytosol. By expressing the cDNA of the putative human ENGase in COS-7 cells, the enzyme activity in the soluble fraction was enhanced 100-fold over the basal level, confirming that the human gene identified indeed encodes for ENGase. Careful gene database surveys revealed the occurrence of ENGase homologues in Drosophila melanogaster, Caenorhabditis elegans, and Arabidopsis thaliana, indicating the broad occurrence of ENGase in higher eukaryotes. This gene was expressed in a variety of human tissues, suggesting that this enzyme is involved in basic biological processes in eukaryotic cells.

  3. Endoplasmic reticulum factor ERLIN2 regulates cytosolic lipid content in cancer cells

    PubMed Central

    Wang, Guohui; Zhang, Xuebao; Lee, Jin-Sook; Wang, Xiaogang; Yang, Zeng-Quan; Zhang, Kezhong

    2013-01-01

    Increased de novo lipogenesis is a hallmark of aggressive cancers. Lipid droplets, the major form of cytosolic lipid storage, have been implicated in cancer cell proliferation and tumorigenesis. Recently, we identified the ERLIN2 [ER (endoplasmic reticulum) lipid raft-associated 2) gene that is amplified and overexpressed in aggressive human breast cancer. Previous studies demonstrated that ERLIN2 plays a supporting oncogenic role by facilitating the transformation of human breast cancer cells. In the present study, we found that ERLIN2 supports cancer cell growth by regulating cytosolic lipid droplet production. ERLIN2 is preferably expressed in human breast cancer cells or hepatoma cells and is inducible by insulin signalling or when cells are cultured in lipoprotein-deficient medium. Increased expression of ERLIN2 promotes the accumulation of cytosolic lipid droplets in breast cancer cells or hepatoma cells in response to insulin or overload of unsaturated fatty acids. ERLIN2 regulates activation of SREBP (sterol regulatory element-binding protein) 1c, the key regulator of de novo lipogenesis, in cancer cells. ERLIN2 was found to bind to INSIG1 (insulin-induced gene 1), a key ER membrane protein that blocks SREBP activation. Consistent with the role of ERLIN2 in regulating cytosolic lipid content, down-regulation of ERLIN2 in breast cancer or hepatoma cells led to lower cell proliferation rates. The present study revealed a novel role for ERLIN2 in supporting cancer cell growth by promoting the activation of the key lipogenic regulator SREBP1c and the production of cytosolic lipid droplets. The identification of ERLIN2 as a regulator of cytosolic lipid content in cancer cells has important implications for understanding the molecular basis of tumorigenesis and the treatment of cancer. PMID:22690709

  4. Involvement of polyamine oxidase in abscisic acid-induced cytosolic antioxidant defense in leaves of maize.

    PubMed

    Xue, Beibei; Zhang, Aying; Jiang, Mingyi

    2009-03-01

    Using pharmacological and biochemical approaches, the role of maize polyamine oxidase (MPAO) in abscisic acid (ABA)-induced antioxidant defense in leaves of maize (Zea mays L.) plants was investigated. Exogenous ABA treatment enhanced the expression of the MPAO gene and the activities of apoplastic MPAO. Pretreatment with two different inhibitors for apoplastic MPAO partly reduced hydrogen peroxide (H2O2) accumulation induced by ABA and blocked the ABA-induced expression of the antioxidant genes superoxide dismutase 4 and cytosolic ascorbate peroxidase and the activities of the cytosolic antioxidant enzymes. Treatment with spermidine, the optimum substrate of MPAO, also induced the expression and the activities of the antioxidant enzymes, and the upregulation of the antioxidant enzymes was prevented by two inhibitors of MPAO and two scavengers of H2O2. These results suggest that MPAO contributes to ABA-induced cytosolic antioxidant defense through H2O2, a Spd catabolic product.

  5. Replacement of a cytosolic copper/zinc superoxide dismutase by a novel cytosolic manganese superoxide dismutase in crustaceans that use copper (haemocyanin) for oxygen transport.

    PubMed Central

    Brouwer, Marius; Hoexum Brouwer, Thea; Grater, Walter; Brown-Peterson, Nancy

    2003-01-01

    The blue crab, Callinectes sapidus, which uses the copper-dependent protein haemocyanin for oxygen transport, lacks the ubiquitous cytosolic copper-dependent enzyme copper/zinc superoxide dismutase (Cu,ZnSOD) as evidenced by undetectable levels of Cu,ZnSOD activity, protein and mRNA in the hepatopancreas (the site of haemocyanin synthesis) and gills. Instead, the crab has an unusual cytosolic manganese SOD (cytMnSOD), which is retained in the cytosol, because it lacks a mitochondrial transit peptide. A second familiar MnSOD is present in the mitochondria (mtMnSOD). This unique phenomenon occurs in all Crustacea that use haemocyanin for oxygen transport. Molecular phylogeny analysis suggests the MnSOD gene duplication is as old as the origin of the arthropod phylum. cytMnSOD activity in the hepatopancreas changes during the moulting cycle of the crab. Activity is high in intermoult crabs and non-detectable in postmoult papershell crabs. mtMnSOD is present in all stages of the moulting cycle. Despite the lack of cytCu,ZnSOD, crabs have an extracellular Cu,ZnSOD (ecCu,ZnSOD) that is produced by haemocytes, and is part of a large, approx. 160 kDa, covalently-linked protein complex. ecCu,ZnSOD is absent from the hepatopancreas of intermoult crabs, but appears in this tissue at premoult. However, no ecCu,ZnSOD mRNA can be detected, suggesting that the protein is recruited from the haemolymph. Screening of different taxa of the arthropod phylum for Cu,ZnSOD activity shows that those crustaceans that use haemoglobin for oxygen transport have retained cytCu,ZnSOD. It appears, therefore, that the replacement of cytCu,ZnSOD with cytMnSOD is part of an adaptive response to the dynamic, haemocyanin-linked, fluctuations in copper metabolism that occur during the moulting cycle of the crab. PMID:12769817

  6. Cytosolic NADP(+)-dependent isocitrate dehydrogenase regulates cadmium-induced apoptosis.

    PubMed

    Shin, Seoung Woo; Kil, In Sup; Park, Jeen-Woo

    2010-04-01

    Cadmium ions have a high affinity for thiol groups. Therefore, they may disturb many cellular functions. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme to supply NADPH, a major source of reducing equivalents to the cytosol. Cadmium decreased the activity of IDPc both as a purified enzyme and in cultured cells. In the present study, we demonstrate that the knockdown of IDPc expression in HEK293 cells greatly enhances apoptosis induced by cadmium. Transfection of HEK293 cells with an IDPc small interfering RNA significantly decreased the activity of IDPc and enhanced cellular susceptibility to cadmium-induced apoptosis as indicated by the morphological evidence of apoptosis, DNA fragmentation and condensation, cellular redox status, mitochondria redox status and function, and the modulation of apoptotic marker proteins. Taken together, our results suggest that suppressing the expression of IDPc enhances cadmium-induced apoptosis of HEK293 cells by increasing disruption of the cellular redox status. Copyright 2009 Elsevier Inc. All rights reserved.

  7. The ubiquitous PM component Zn2+ induces HO-1 expression through multiple targets in the Nrf2/Keap1 signaling pathway

    EPA Science Inventory

    Oxidant stress can play an important role in particulate matter (PM)–mediated toxicity in the respiratory tract. Zinc (Zn2+) is a ubiquitous component of ambient PM that induces adverse responses such as inflammatory and adaptive gene expression in human airway epithelial c...

  8. Expression of novel cytosolic malate dehydrogenases (cMDH) in Lupinus angustifolius nodules during phosphorus starvation.

    PubMed

    Le Roux, Marcellous; Phiri, Ethel; Khan, Wesaal; Sakiroğlu, Muhammet; Valentine, Alex; Khan, Sehaam

    2014-11-01

    During P deficiency, the increased activity of malate dehydrogenase (MDH, EC 1.1.1.37) can lead to malate accumulation. Cytosolic- and nodule-enhanced MDH (cMDH and neMDH, respectively) are known isoforms, which contribute to MDH activity in root nodules. The aim of this study was to investigate the role of the cMDH isoforms in nodule malate supply under P deficiency. Nodulated lupins (Lupinus angustifolius var. Tanjil) were hydroponically grown at adequate P (+P) or low P (-P). Total P concentration in nodules decreased under P deficiency, which coincided with an increase in total MDH activity. A consequence of higher MDH activity was the enhanced accumulation of malate derived from dark CO2 fixation via PEPC and not from pyruvate. Although no measurable neMDH presence could be detected via PCR, gene-specific primers detected two 1kb amplicons of cMDH, designated LangMDH1 (corresponding to +P, HQ690186) and LangMDH2 (corresponding to -P, HQ690187), respectively. Sequencing analyses of these cMDH amplicons showed them to be 96% identical on an amino acid level. There was a high degree of diversification between proteins detected in this study and other known MDH proteins, particularly those from other leguminous plants. Enhanced malate synthesis in P-deficient nodules was achieved via increased anaplerotic CO2 fixation and subsequent higher MDH activities. Novel isoforms of cytosolic MDH may be involved, as shown by gene expression of specific genes under P deficiency. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Aquaporin 4 is a Ubiquitously Expressed Isoform in the Dogfish (Squalus acanthias) Shark.

    PubMed

    Cutler, Christopher P; Maciver, Bryce; Cramb, Gordon; Zeidel, Mark

    2011-01-01

    The dogfish ortholog of aquaporin 4 (AQP4) was amplified from cDNA using degenerate PCR followed by cloning and sequencing. The complete coding region was then obtained using 5' and 3' RACE techniques. Alignment of the sequence with AQP4 amino acid sequences from other species showed that dogfish AQP4 has high levels (up to 65.3%) of homology with higher vertebrate sequences but lower levels of homology to Agnathan (38.2%) or teleost (57.5%) fish sequences. Northern blotting indicated that the dogfish mRNA was approximately 3.2 kb and was highly expressed in the rectal gland (a shark fluid secretory organ). Semi-quantitative PCR further indicates that AQP4 is ubiquitous, being expressed in all tissues measured but at low levels in certain tissues, where the level in liver > gill >  intestine. Manipulation of the external environmental salinity of groups of dogfish showed that when fish were acclimated in stages to 120% seawater (SW) or 75% SW, there was no change in AQP4 mRNA expression in either rectal gland, kidney, or esophagus/cardiac stomach. Whereas quantitative PCR experiments using the RNA samples from the same experiment, showed a significant 63.1% lower abundance of gill AQP4 mRNA expression in 120% SW-acclimated dogfish. The function of dogfish AQP4 was also determined by measuring the effect of the AQP4 expression in Xenopus laevis oocytes. Dogfish AQP4 expressing-oocytes, exhibited significantly increased osmotic water permeability (P(f)) compared to controls, and this was invariant with pH. Permeability was not significantly reduced by treatment of oocytes with mercury chloride, as is also the case with AQP4 in other species. Similarly AQP4 expressing-oocytes did not exhibit enhanced urea or glycerol permeability, which is also consistent with the water-selective property of AQP4 in other species.

  10. Cytosolic ppGpp accumulation induces retarded plant growth and development.

    PubMed

    Ihara, Yuta; Masuda, Shinji

    2016-01-01

    In bacteria a second messenger, guanosine 5'-diphosphate 3'-diphosphate (ppGpp), synthesized upon nutrient starvation, controls many gene expressions and enzyme activities, which is necessary for growth under changeable environments. Recent studies have shown that ppGpp synthase and hydrolase are also conserved in eukaryotes, although their functions are not well understood. We recently showed that ppGpp-overaccumulation in Arabidopsis chloroplasts results in robust growth under nutrient-limited conditions, demonstrating that the bacterial-like stringent response at least functions in plastids. To test if ppGpp also functions in the cytosol, we constructed the transgenic Arabidopsis expressing Bacillus subtilis ppGpp synthase gene yjbM. Upon induction of the gene, the mutant synthesizes ∼10-20-fold higher levels of ppGpp, and its fresh weight was reduced to ˜80% that of the wild type. These results indicate that cytosolic ppGpp negatively regulates plant growth and development.

  11. Cytosolic T3-binding protein modulates dynamic alteration of T3-mediated gene expression in cells.

    PubMed

    Takeshige, Keiko; Sekido, Takashi; Kitahara, Jun-ichirou; Ohkubo, Yousuke; Hiwatashi, Dai; Ishii, Hiroaki; Nishio, Shin-ichi; Takeda, Teiji; Komatsu, Mitsuhisa; Suzuki, Satoru

    2014-01-01

    μ-Crystallin (CRYM) is also known as NADPH-dependent cytosolic T3-binding protein. A study using CRYM-null mice suggested that CRYM stores triiodothyronine (T3) in tissues. We previously established CRYM-expressing cells derived from parental GH3 cells. To examine the precise regulation of T3-responsive genes in the presence of CRYM, we evaluated serial alterations of T3-responsive gene expression by changing pericellular T3 concentrations in the media. We estimated the constitutive expression of three T3-responsive genes, growth hormone (GH), deiodinase 1 (Dio1), and deiodinase 2 (Dio2), in two cell lines. Subsequently, we measured the responsiveness of these three genes at 4, 8, 16, and 24 h after adding various concentrations of T3. We also estimated the levels of these mRNAs 24 and 48 h after removing T3. The levels of constitutive expression of GH and Dio1 were low and high in C8 cells, respectively, while Dio2 expression was not significantly different between GH3 and C8 cells. When treated with T3, Dio2 expression was significantly enhanced in C8 cells, while there were no differences in GH or Dio1 expression between GH3 and C8 cell lines. In contrast, removal of T3 retained the mRNA expression of GH and Dio2 in C8 cells. These results suggest that CRYM expression increases and sustains the T3 responsiveness of genes in cells, especially with alteration of the pericellular T3 concentration. The heterogeneity of T3-related gene expression is dependent on cellular CRYM expression in cases of dynamic changes in pericellular T3 concentration.

  12. A transgenic rat with ubiquitous expression of firefly luciferase gene

    NASA Astrophysics Data System (ADS)

    Hakamata, Yoji; Murakami, Takashi; Kobayashi, Eiji

    2006-02-01

    In vivo imaging strategies provide cellular and molecular events in real time that helps us to understand biological processes in living animals. The development of molecular tags such as green fluorescent proteins and luciferase from the firefly Photinus pyralis has lead to a revolution in the visualization of complex biochemical processes. We developed a novel inbred transgenic rat strain containing firefly luciferase based on the transgenic (Tg) technique in rats. This Tg rat expressed the luciferase gene ubiquitously under control of the ROSA26 promoter. Cellular immune responsiveness against the luciferase protein was evaluated using conventional skin grafting and resulted in the long-term acceptance of Tg rat skin on wild-type rats. Strikingly, organ transplant with heart and small bowel demonstrated organ viability and graft survival, suggesting that cells from luciferase-Tg are transplantable to track their fate. Taking advantage of the less immunogenic luciferase, we also tested the role of hepatocyte-infusion in a liver injury model, and bone marrow-derived cells in a skin defect model. Employed in conjunction with modern advances in optical imaging, this luciferase-Tg rat system provides an innovative animal tool and a new means of facilitating biomedical research such as in the case of regeneration medicine.

  13. The CLAVATA signaling pathway mediating stem cell fate in shoot meristems requires Ca(2+) as a secondary cytosolic messenger.

    PubMed

    Chou, Hsuan; Zhu, Yingfang; Ma, Yi; Berkowitz, Gerald A

    2016-02-01

    CLAVATA1 (CLV1) is a receptor protein expressed in the shoot apical meristem (SAM) that translates perception of a non-cell-autonomous CLAVATA3 (CLV3) peptide signal into altered stem cell fate. CLV3 reduces expression of WUSCHEL (WUS) and FANTASTIC FOUR 2 (FAF2) in the SAM. Expression of WUS and FAF2 leads to maintenance of undifferentiated stem cells in the SAM. CLV3 binding to CLV1 inhibits expression of these genes and controls stem cell fate in the SAM through an unidentified signaling pathway. Cytosolic Ca(2+) elevations, cyclic nucleotide (cGMP)-activated Ca(2+) channels, and cGMP have been linked to signaling downstream of receptors similar to CLV1. Hence, we hypothesized that cytosolic Ca(2+) elevation mediates the CLV3 ligand/CLV1 receptor signaling that controls meristem stem cell fate. CLV3 application to Arabidopsis seedlings results in elevation of cytosolic Ca(2+) and cGMP. CLV3 control of WUS was prevented in a genotype lacking a functional cGMP-activated Ca(2+) channel. In wild-type plants, CLV3 inhibition of WUS and FAF2 expression was impaired by treatment with either a Ca(2+) channel blocker or a guanylyl cyclase inhibitor. When CLV3-dependent repression of WUS is blocked, altered control of stem cell fate leads to an increase in SAM size; we observed a larger SAM size in seedlings treated with the Ca(2+) channel blocker. These results suggest that the CLV3 ligand/CLV1 receptor system initiates a signaling cascade that elevates cytosolic Ca(2+), and that this cytosolic secondary messenger is involved in the signal transduction cascade linking CLV3/CLV1 to control of gene expression and stem cell fate in the SAM. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  14. Aquaporin 4 is a Ubiquitously Expressed Isoform in the Dogfish (Squalus acanthias) Shark

    PubMed Central

    Cutler, Christopher P; MacIver, Bryce; Cramb, Gordon; Zeidel, Mark

    2012-01-01

    The dogfish ortholog of aquaporin 4 (AQP4) was amplified from cDNA using degenerate PCR followed by cloning and sequencing. The complete coding region was then obtained using 5′ and 3′ RACE techniques. Alignment of the sequence with AQP4 amino acid sequences from other species showed that dogfish AQP4 has high levels (up to 65.3%) of homology with higher vertebrate sequences but lower levels of homology to Agnathan (38.2%) or teleost (57.5%) fish sequences. Northern blotting indicated that the dogfish mRNA was approximately 3.2 kb and was highly expressed in the rectal gland (a shark fluid secretory organ). Semi-quantitative PCR further indicates that AQP4 is ubiquitous, being expressed in all tissues measured but at low levels in certain tissues, where the level in liver > gill >  intestine. Manipulation of the external environmental salinity of groups of dogfish showed that when fish were acclimated in stages to 120% seawater (SW) or 75% SW, there was no change in AQP4 mRNA expression in either rectal gland, kidney, or esophagus/cardiac stomach. Whereas quantitative PCR experiments using the RNA samples from the same experiment, showed a significant 63.1% lower abundance of gill AQP4 mRNA expression in 120% SW-acclimated dogfish. The function of dogfish AQP4 was also determined by measuring the effect of the AQP4 expression in Xenopus laevis oocytes. Dogfish AQP4 expressing-oocytes, exhibited significantly increased osmotic water permeability (Pf) compared to controls, and this was invariant with pH. Permeability was not significantly reduced by treatment of oocytes with mercury chloride, as is also the case with AQP4 in other species. Similarly AQP4 expressing-oocytes did not exhibit enhanced urea or glycerol permeability, which is also consistent with the water-selective property of AQP4 in other species. PMID:22291652

  15. Establishment of Genetically Encoded Biosensors for Cytosolic Boric Acid in Plant Cells.

    PubMed

    Fukuda, Makiha; Wakuta, Shinji; Kamiyo, Jio; Fujiwara, Toru; Takano, Junpei

    2018-06-08

    Boron (B) is an essential micronutrient for plants. To maintain B concentration in tissues at appropriate levels, plants use boric acid channels belonging to the NIP subfamily of aquaporins and BOR borate exporters. To regulate B transport, these transporters exhibit different cell-type specific expression, polar localization, and B-dependent post-transcriptional regulation. Here, we describe the development of genetically encoded biosensors for cytosolic boric acid to visualize the spatial distribution and temporal dynamics of B in plant tissues. The biosensors were designed based on the function of the NIP5;1 5'-untranslated region (UTR), which promotes mRNA degradation in response to an elevated cytosolic boric acid concentration. The signal intensities of the biosensor coupled with Venus fluorescent protein and a nuclear localization signal (uNIP5;1-Venus) showed a negative correlation with intracellular B concentrations in cultured tobacco BY-2 cells. When expressed in Arabidopsis thaliana, uNIP5;1-Venus enabled quantification of the B distribution in roots at single-cell resolution. In mature roots, cytosolic B levels in stele were maintained under low-B supply, while those in epidermal, cortical, and endodermal cells were influenced by external B concentrations. Another biosensor coupled with a luciferase protein fused to a destabilization PEST sequence (uNIP5;1-Luc) was used to visualize changes in cytosolic boric acid concentrations. Thus, uNIP5;1-Venus/Luc enables visualization of B transport in various plant cells/tissues. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Metformin Restores Parkin-Mediated Mitophagy, Suppressed by Cytosolic p53

    PubMed Central

    Song, Young Mi; Lee, Woo Kyung; Lee, Yong-ho; Kang, Eun Seok; Cha, Bong-Soo; Lee, Byung-Wan

    2016-01-01

    Metformin is known to alleviate hepatosteatosis by inducing 5’ adenosine monophosphate (AMP)-kinase-independent, sirtuin 1 (SIRT1)-mediated autophagy. Dysfunctional mitophagy in response to glucolipotoxicities might play an important role in hepatosteatosis. Here, we investigated the mechanism by which metformin induces mitophagy through restoration of the suppressed Parkin-mediated mitophagy. To this end, our ob/ob mice were divided into three groups: (1) ad libitum feeding of a standard chow diet; (2) intraperitoneal injections of metformin 300 mg/kg; and (3) 3 g/day caloric restriction (CR). HepG2 cells were treated with palmitate (PA) plus high glucose in the absence or presence of metformin. We detected enhanced mitophagy in ob/ob mice treated with metformin or CR, whereas mitochondrial spheroids were observed in mice fed ad libitum. Metabolically stressed ob/ob mice and PA-treated HepG2 cells showed an increase in expression of endoplasmic reticulum (ER) stress markers and cytosolic p53. Cytosolic p53 inhibited mitophagy by disturbing the mitochondrial translocation of Parkin, as demonstrated by immunoprecipitation. However, metformin decreased ER stress and p53 expression, resulting in induction of Parkin-mediated mitophagy. Furthermore, pifithrin-α, a specific inhibitor of p53, increased mitochondrial incorporation into autophagosomes. Taken together, these results indicate that metformin treatment facilitates Parkin-mediated mitophagy rather than mitochondrial spheroid formation by decreasing the inhibitory interaction with cytosolic p53 and increasing degradation of mitofusins. PMID:26784190

  17. Transgenic nude mice ubiquitously expressing fluorescent proteins for color-coded imaging of the tumor microenvironment.

    PubMed

    Hoffman, Robert M

    2014-01-01

    We have developed a transgenic green fluorescent protein (GFP) nude mouse with ubiquitous GFP expression. The GFP nude mouse was obtained by crossing nontransgenic nude mice with the transgenic C57/B6 mouse in which the β-actin promoter drives GFP expression in essentially all tissues. In the adult mice, many organs brightly expressed GFP, including the spleen, heart, lungs, spleen, pancreas, esophagus, stomach, and duodenum as well as the circulatory system. The liver expressed GFP at a lesser level. The red fluorescent protein (RFP) transgenic nude mouse was obtained by crossing non-transgenic nude mice with the transgenic C57/B6 mouse in which the beta-actin promoter drives RFP (DsRed2) expression in essentially all tissues. In the RFP nude mouse, the organs all brightly expressed RFP, including the heart, lungs, spleen, pancreas, esophagus, stomach, liver, duodenum, the male and female reproductive systems; brain and spinal cord; and the circulatory system, including the heart, and major arteries and veins. The skinned skeleton highly expressed RFP. The bone marrow and spleen cells were also RFP positive. The cyan fluorescent protein (CFP) nude mouse was developed by crossing nontransgenic nude mice with the transgenic CK/ECFP mouse in which the β-actin promoter drives expression of CFP in almost all tissues. In the CFP nude mice, the pancreas and reproductive organs displayed the strongest fluorescence signals of all internal organs, which vary in intensity. The GFP, RFP, and CFP nude mice when transplanted with cancer cells of another color are powerful models for color-coded imaging of the tumor microenvironment (TME) at the cellular level.

  18. New Insights into Cytosolic Glucose Levels during Differentiation of 3T3-L1 Fibroblasts into Adipocytes*

    PubMed Central

    Kovacic, Petra Brina; Chowdhury, Helena H.; Velebit, Jelena; Kreft, Marko; Jensen, Jørgen; Zorec, Robert

    2011-01-01

    Cytosolic glucose concentration reflects the balance between glucose entry across the plasma membrane and cytosolic glucose utilization. In adipocytes, glucose utilization is considered very rapid, meaning that every glucose molecule entering the cytoplasm is quickly phosphorylated. Thus, the cytosolic free glucose concentration is considered to be negligible; however, it was never measured directly. In the present study, we monitored cytosolic glucose dynamics in 3T3-L1 fibroblasts and adipocytes by expressing a fluorescence resonance energy transfer (FRET)-based glucose nanosensor: fluorescent indicator protein FLIPglu-600μ. Specifically, we monitored cytosolic glucose responses by varying transmembrane glucose concentration gradient. The changes in cytosolic glucose concentration were detected in only 56% of 3T3-L1 fibroblasts and in 14% of 3T3-L1 adipocytes. In adipocytes, the resting cytosolic glucose concentration was reduced in comparison with the one recorded in fibroblasts. Membrane permeabilization increased cytosolic glucose concentration in adipocytes, and glycolytic inhibitor iodoacetate failed to increase cytosolic glucose concentration, indicating low adipocyte permeability for glucose at rest. We also examined the effects of insulin and adrenaline. Insulin significantly increased cytosolic glucose concentration in adipocytes by a factor of 3.6; however, we recorded no effect on delta ratio (ΔR) in fibroblasts. Adrenaline increased cytosolic glucose concentration in fibroblasts but not in adipocytes. However, in adipocytes in insulin-stimulated conditions, glucose clearance was significantly faster following adrenaline addition in comparison with controls (p < 0.001). Together, these results demonstrate that during differentiation, adipocytes develop more efficient mechanisms for maintaining low cytosolic glucose concentration, predominantly with reduced membrane permeability for glucose. PMID:21349852

  19. Heat Stress Modulates Mycelium Growth, Heat Shock Protein Expression, Ganoderic Acid Biosynthesis, and Hyphal Branching of Ganoderma lucidum via Cytosolic Ca2+

    PubMed Central

    Zhang, Xue; Ren, Ang; Li, Meng-Jiao; Cao, Peng-Fei; Chen, Tian-Xi; Zhang, Guang; Shi, Liang; Jiang, Ai-Liang

    2016-01-01

    ABSTRACT Heat stress (HS) influences the growth and development of organisms. Thus, a comprehensive understanding of how organisms sense HS and respond to it is required. Ganoderma lucidum, a higher basidiomycete with bioactive secondary metabolites, has become a potential model system due to the complete sequencing of its genome, transgenic systems, and reliable reverse genetic tools. In this study, we found that HS inhibited mycelium growth, reduced hyphal branching, and induced the accumulation of ganoderic acid biosynthesis and heat shock proteins (HSPs) in G. lucidum. Our data showed that HS induced a significant increase in cytosolic Ca2+ concentration. Further evidence showed that Ca2+ might be a factor in the HS-mediated regulation of hyphal branching, ganoderic acid (GA) biosynthesis, and the accumulation of HSPs. Our results further showed that the calcium-permeable channel gene (cch)-silenced and phosphoinositide-specific phospholipase gene (plc)-silenced strains reduced the HS-induced increase in HSP expression compared with that observed for the wild type (WT). This study demonstrates that cytosolic Ca2+ participates in heat shock signal transduction and regulates downstream events in filamentous fungi. IMPORTANCE Ganoderma lucidum, a higher basidiomycete with bioactive secondary metabolites, has become a potential model system for evaluating how environmental factors regulate the development and secondary metabolism of basidiomycetes. Heat stress (HS) is an important environmental challenge. In this study, we found that HS inhibited mycelium growth, reduced hyphal branching, and induced HSP expression and ganoderic acid biosynthesis in G. lucidum. Further evidence showed that Ca2+ might be a factor in the HS-mediated regulation of hyphal branching, GA biosynthesis, and the accumulation of HSPs. This study demonstrates that cytosolic Ca2+ participates in heat shock signal transduction and regulates downstream events in filamentous fungi. Our research

  20. Heat Stress Modulates Mycelium Growth, Heat Shock Protein Expression, Ganoderic Acid Biosynthesis, and Hyphal Branching of Ganoderma lucidum via Cytosolic Ca2.

    PubMed

    Zhang, Xue; Ren, Ang; Li, Meng-Jiao; Cao, Peng-Fei; Chen, Tian-Xi; Zhang, Guang; Shi, Liang; Jiang, Ai-Liang; Zhao, Ming-Wen

    2016-07-15

    Heat stress (HS) influences the growth and development of organisms. Thus, a comprehensive understanding of how organisms sense HS and respond to it is required. Ganoderma lucidum, a higher basidiomycete with bioactive secondary metabolites, has become a potential model system due to the complete sequencing of its genome, transgenic systems, and reliable reverse genetic tools. In this study, we found that HS inhibited mycelium growth, reduced hyphal branching, and induced the accumulation of ganoderic acid biosynthesis and heat shock proteins (HSPs) in G. lucidum Our data showed that HS induced a significant increase in cytosolic Ca(2+) concentration. Further evidence showed that Ca(2+) might be a factor in the HS-mediated regulation of hyphal branching, ganoderic acid (GA) biosynthesis, and the accumulation of HSPs. Our results further showed that the calcium-permeable channel gene (cch)-silenced and phosphoinositide-specific phospholipase gene (plc)-silenced strains reduced the HS-induced increase in HSP expression compared with that observed for the wild type (WT). This study demonstrates that cytosolic Ca(2+) participates in heat shock signal transduction and regulates downstream events in filamentous fungi. Ganoderma lucidum, a higher basidiomycete with bioactive secondary metabolites, has become a potential model system for evaluating how environmental factors regulate the development and secondary metabolism of basidiomycetes. Heat stress (HS) is an important environmental challenge. In this study, we found that HS inhibited mycelium growth, reduced hyphal branching, and induced HSP expression and ganoderic acid biosynthesis in G. lucidum Further evidence showed that Ca(2+) might be a factor in the HS-mediated regulation of hyphal branching, GA biosynthesis, and the accumulation of HSPs. This study demonstrates that cytosolic Ca(2+) participates in heat shock signal transduction and regulates downstream events in filamentous fungi. Our research offers a new

  1. Role of cytosolic NADP+-dependent isocitrate dehydrogenase in ischemia-reperfusion injury in mouse kidney.

    PubMed

    Kim, Jinu; Kim, Ki Young; Jang, Hee-Seong; Yoshida, Takumi; Tsuchiya, Ken; Nitta, Kosaku; Park, Jeen-Woo; Bonventre, Joseph V; Park, Kwon Moo

    2009-03-01

    Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) synthesizes reduced NADP (NADPH), which is an essential cofactor for the generation of reduced glutathione (GSH), the most abundant and important antioxidant in mammalian cells. We investigated the role of IDPc in kidney ischemia-reperfusion (I/R) in mice. The activity and expression of IDPc were highest in the cortex, modest in the outer medulla, and lowest in the inner medulla. NADPH levels were greatest in the cortex. IDPc expression in the S1 and S2 segments of proximal tubules was higher than in the S3 segment, which is much more susceptible to I/R. IDPc protein was also highly expressed in the mitochondrion-rich intercalated cells of the collecting duct. IDPc activity was 10- to 30-fold higher than the activity of glucose-6-phosphate dehydrogenase, another producer of cytosolic NADPH, in various kidney regions. This study identifies that IDPc may be the primary source of NADPH in the kidney. I/R significantly reduced IDPc expression and activity and NADPH production and increased the ratio of oxidized glutathione to total glutathione [GSSG/(GSH+GSSG)], resulting in kidney dysfunction, tubular cell damage, and lipid peroxidation. In LLC-PK(1) cells, upregulation of IDPc by IDPc gene transfer protected the cells against hydrogen peroxide, enhancing NADPH production, inhibiting the increase of GSSG/(GSH+GSSG), and reducing lipid peroxidation. IDPc downregulation by small interference RNA treatment presented results contrasting with the upregulation. In conclusion, these results demonstrate that IDPc is expressed differentially along tubules in patterns that may contribute to differences in susceptibility to injury, is a major enzyme in cytosolic NADPH generation in kidney, and is downregulated with I/R.

  2. Role of cytosolic NADP+-dependent isocitrate dehydrogenase in ischemia-reperfusion injury in mouse kidney

    PubMed Central

    Kim, Jinu; Kim, Ki Young; Jang, Hee-Seong; Yoshida, Takumi; Tsuchiya, Ken; Nitta, Kosaku; Park, Jeen-Woo; Bonventre, Joseph V.; Park, Kwon Moo

    2009-01-01

    Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) synthesizes reduced NADP (NADPH), which is an essential cofactor for the generation of reduced glutathione (GSH), the most abundant and important antioxidant in mammalian cells. We investigated the role of IDPc in kidney ischemia-reperfusion (I/R) in mice. The activity and expression of IDPc were highest in the cortex, modest in the outer medulla, and lowest in the inner medulla. NADPH levels were greatest in the cortex. IDPc expression in the S1 and S2 segments of proximal tubules was higher than in the S3 segment, which is much more susceptible to I/R. IDPc protein was also highly expressed in the mitochondrion-rich intercalated cells of the collecting duct. IDPc activity was 10- to 30-fold higher than the activity of glucose-6-phosphate dehydrogenase, another producer of cytosolic NADPH, in various kidney regions. This study identifies that IDPc may be the primary source of NADPH in the kidney. I/R significantly reduced IDPc expression and activity and NADPH production and increased the ratio of oxidized glutathione to total glutathione [GSSG/(GSH+GSSG)], resulting in kidney dysfunction, tubular cell damage, and lipid peroxidation. In LLC-PK1 cells, upregulation of IDPc by IDPc gene transfer protected the cells against hydrogen peroxide, enhancing NADPH production, inhibiting the increase of GSSG/(GSH+GSSG), and reducing lipid peroxidation. IDPc downregulation by small interference RNA treatment presented results contrasting with the upregulation. In conclusion, these results demonstrate that IDPc is expressed differentially along tubules in patterns that may contribute to differences in susceptibility to injury, is a major enzyme in cytosolic NADPH generation in kidney, and is downregulated with I/R. PMID:19106211

  3. Functional Reconstitution of a Pyruvate Dehydrogenase in the Cytosol of Saccharomyces cerevisiae through Lipoylation Machinery Engineering.

    PubMed

    Lian, Jiazhang; Zhao, Huimin

    2016-07-15

    Acetyl-CoA is a key precursor for the biosynthesis of a wide range of fuels, chemicals, and value-added compounds, whose biosynthesis in Saccharomyces cerevisiae involves acetyl-CoA synthetase (ACS) and is energy intensive. Previous studies have demonstrated that functional expression of a pyruvate dehydrogenase (PDH) could fully replace the endogenous ACS-dependent pathway for cytosolic acetyl-CoA biosynthesis in an ATP-independent manner. However, the requirement for lipoic acid (LA) supplementation hinders its wide industrial applications. In the present study, we focus on the engineering of a de novo synthetic lipoylation machinery for reconstitution of a functional PDH in the cytosol of yeast. First, a LA auxotrophic yeast strain was constructed through the expression of the Escherichia coli PDH structural genes and a lipoate-protein ligase gene in an ACS deficient (acs1Δ acs2Δ) strain, based on which an in vivo acetyl-CoA reporter was developed for following studies. Then the de novo lipoylation pathway was reconstituted in the cytosol of yeast by coexpressing the yeast mitochondrial lipoylation machinery genes and the E. coli type II fatty acid synthase (FAS) genes. Alternatively, an unnatural de novo synthetic lipoylation pathway was constructed by combining the reversed β-oxidation pathway with an acyl-ACP synthetase gene. To the best of our knowledge, reconstitution of natural and unnatural de novo synthetic lipoylation pathways for functional expression of a PDH in the cytosol of yeast has never been reported. Our study has laid a solid foundation for the construction and further optimization of acetyl-CoA overproducing yeast strains.

  4. Quantitative assessment of cellular uptake and cytosolic access of antibody in living cells by an enhanced split GFP complementation assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ji-sun; Choi, Dong-Ki; Park, Seong-wook

    Considering the number of cytosolic proteins associated with many diseases, development of cytosol-penetrating molecules from outside of living cells is highly in demand. To gain access to the cytosol after cellular uptake, cell-penetrating molecules should be released from intermediate endosomes prior to the lysosomal degradation. However, it is very challenging to distinguish the pool of cytosolic-released molecules from those trapped in the endocytic vesicles. Here we describe a method to directly demonstrate the cytosolic localization and quantification of cytosolic amount of a cytosol-penetrating IgG antibody, TMab4, based on enhanced split GFP complementation system. We generated TMab4 genetically fused with onemore » GFP fragment and separately established HeLa cells expressing the other GFP fragment in the cytosol such that the complemented GFP fluorescence is observed only when extracellular-treated TMab4 reaches the cytosol after cellular internalization. The high affinity interactions between streptavidin-binding peptide 2 and streptavidin was employed as respective fusion partners of GFP fragments to enhance the sensitivity of GFP complementation. With this method, cytosolic concentration of TMab4 was estimated to be about 170 nM after extracellular treatment of HeLa cells with 1 μM TMab4 for 6 h. We also found that after cellular internalization into living cells, nearly 1.3–4.3% of the internalized TMab4 molecules escaped into the cytosol from the endocytic vesicles. Our enhanced split GFP complementation assay provides a useful tool to directly quantify cytosolic amount of cytosol-penetrating agents and allows cell-based high-throughput screening for cytosol-penetrating agents with increased endosomal-escaping activity.« less

  5. Quantitative assessment of cellular uptake and cytosolic access of antibody in living cells by an enhanced split GFP complementation assay.

    PubMed

    Kim, Ji-sun; Choi, Dong-Ki; Park, Seong-wook; Shin, Seung-Min; Bae, Jeomil; Kim, Dong-Myung; Yoo, Tae Hyeon; Kim, Yong-Sung

    2015-11-27

    Considering the number of cytosolic proteins associated with many diseases, development of cytosol-penetrating molecules from outside of living cells is highly in demand. To gain access to the cytosol after cellular uptake, cell-penetrating molecules should be released from intermediate endosomes prior to the lysosomal degradation. However, it is very challenging to distinguish the pool of cytosolic-released molecules from those trapped in the endocytic vesicles. Here we describe a method to directly demonstrate the cytosolic localization and quantification of cytosolic amount of a cytosol-penetrating IgG antibody, TMab4, based on enhanced split GFP complementation system. We generated TMab4 genetically fused with one GFP fragment and separately established HeLa cells expressing the other GFP fragment in the cytosol such that the complemented GFP fluorescence is observed only when extracellular-treated TMab4 reaches the cytosol after cellular internalization. The high affinity interactions between streptavidin-binding peptide 2 and streptavidin was employed as respective fusion partners of GFP fragments to enhance the sensitivity of GFP complementation. With this method, cytosolic concentration of TMab4 was estimated to be about 170 nM after extracellular treatment of HeLa cells with 1 μM TMab4 for 6 h. We also found that after cellular internalization into living cells, nearly 1.3-4.3% of the internalized TMab4 molecules escaped into the cytosol from the endocytic vesicles. Our enhanced split GFP complementation assay provides a useful tool to directly quantify cytosolic amount of cytosol-penetrating agents and allows cell-based high-throughput screening for cytosol-penetrating agents with increased endosomal-escaping activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Targeting of mitochondrial Saccharomyces cerevisiae Ilv5p to the cytosol and its effect on vicinal diketone formation in brewing.

    PubMed

    Omura, Fumihiko

    2008-03-01

    Vicinal diketones (VDK) cause butter-like off-flavors in beer and are formed by a non-enzymatic oxidative decarboxylation of alpha-aceto-alpha-hydroxybutyrate and alpha-acetolactate, which are intermediates in isoleucine and valine biosynthesis taking place in the mitochondria. On the assumption that part of alpha-acetolactate can be formed also in the cytosol due to a mislocalization of the responsible acetohydroxyacid synthase encoded by ILV2 and ILV6, functional expression in the cytosol of acetohydroxyacid reductoisomerase (Ilv5p) was explored. Using the cytosolic Ilv5p, I aimed to metabolize the cytosolically formed alpha-aetolactate, thereby lowering the total VDK production. Among mutant Ilv5p enzymes with varying degrees of N-terminal truncation, one with a 46-residue deletion (Ilv5pDelta46) exhibited an unequivocal localization in the cytosol judged from microscopy of the Ilv5pDelta46-green fluorescent protein fusion protein and the inability of Ilv5pDelta46 to remedy the isoleucine/valine requirement of an ilv5Delta strain. When introduced into an industrial lager brewing strain, a robust expression of Ilv5pDelta46 was as effective as that of a wild-type Ilv5p in lowering the total VDK production in a 2-l scale fermentation trial. Unlike the case of the wild-type Ilv5p, an additional expression of Ilv5pDelta46 did not alter the quality of the resultant beer in terms of contents of aromatic compounds and organic acids.

  7. Ubiquitous human computing.

    PubMed

    Zittrain, Jonathan

    2008-10-28

    Ubiquitous computing means network connectivity everywhere, linking devices and systems as small as a drawing pin and as large as a worldwide product distribution chain. What could happen when people are so readily networked? This paper explores issues arising from two possible emerging models of ubiquitous human computing: fungible networked brainpower and collective personal vital sign monitoring.

  8. Ubiquitous LEA29Y Expression Blocks T Cell Co-Stimulation but Permits Sexual Reproduction in Genetically Modified Pigs.

    PubMed

    Bähr, Andrea; Käser, Tobias; Kemter, Elisabeth; Gerner, Wilhelm; Kurome, Mayuko; Baars, Wiebke; Herbach, Nadja; Witter, Kirsti; Wünsch, Annegret; Talker, Stephanie C; Kessler, Barbara; Nagashima, Hiroshi; Saalmüller, Armin; Schwinzer, Reinhard; Wolf, Eckhard; Klymiuk, Nikolai

    2016-01-01

    We have successfully established and characterized a genetically modified pig line with ubiquitous expression of LEA29Y, a human CTLA4-Ig derivate. LEA29Y binds human B7.1/CD80 and B7.2/CD86 with high affinity and is thus a potent inhibitor of T cell co-stimulation via this pathway. We have characterized the expression pattern and the biological function of the transgene as well as its impact on the porcine immune system and have evaluated the potential of these transgenic pigs to propagate via assisted breeding methods. The analysis of LEA29Y expression in serum and multiple organs of CAG-LEA transgenic pigs revealed that these animals produce a biologically active transgenic product at a considerable level. They present with an immune system affected by transgene expression, but can be maintained until sexual maturity and propagated by assisted reproduction techniques. Based on previous experience with pancreatic islets expressing LEA29Y, tissues from CAG-LEA29Y transgenic pigs should be protected against rejection by human T cells. Furthermore, their immune-compromised phenotype makes CAG-LEA29Y transgenic pigs an interesting large animal model for testing human cell therapies and will provide an important tool for further clarifying the LEA29Y mode of action.

  9. Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz).

    PubMed

    Xu, Jia; Yang, Jun; Duan, Xiaoguang; Jiang, Yueming; Zhang, Peng

    2014-08-05

    Cassava (Manihot esculenta Crantz) is a tropical root crop, and is therefore, extremely sensitive to low temperature; its antioxidative response is pivotal for its survival under stress. Timely turnover of reactive oxygen species (ROS) in plant cells generated by chilling-induced oxidative damages, and scavenging can be achieved by non-enzymatic and enzymatic reactions in order to maintain ROS homeostasis. Transgenic cassava plants that co-express cytosolic superoxide dismutase (SOD), MeCu/ZnSOD, and ascorbate peroxidase (APX), MeAPX2, were produced and tested for tolerance against oxidative and chilling stresses. The up-regulation of MeCu/ZnSOD and MeAPX2 expression was confirmed by the quantitative reverse transcriptase-polymerase chain reaction, and enzymatic activity analyses in the leaves of transgenic cassava plant lines with a single-transgene integration site. Upon exposure to ROS-generating agents, 100 μM ROS-generating reagent methyl viologen and 0.5 M H₂O₂, higher levels of enzymatic activities of SOD and APX were detected in transgenic plants than the wild type. Consequently, the oxidative stress parameters, such as lipid peroxidation, chlorophyll degradation and H₂O₂ synthesis, were lower in the transgenic lines than the wild type. Tolerance to chilling stress at 4°C for 2 d was greater in transgenic cassava, as observed by the higher levels of SOD, catalase, and ascorbate-glutathione cycle enzymes (e.g., APX, monodehydroascorbate reductase, dehydroascorbate reducatase and glutathione reductase) and lower levels of malondialdehyde content. These results suggest that the expression of native cytosolic SOD and APX simultaneously activated the antioxidative defense mechanisms via cyclic ROS scavenging, thereby improving its tolerance to cold stress.

  10. Overexpression of a Cytosolic Abiotic Stress Responsive Universal Stress Protein (SbUSP) Mitigates Salt and Osmotic Stress in Transgenic Tobacco Plants

    PubMed Central

    Udawat, Pushpika; Jha, Rajesh K.; Sinha, Dinkar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    The universal stress protein (USP) is a ubiquitous protein and plays an indispensable role in plant abiotic stress tolerance. The genome of Salicornia brachiata contains two homologs of intron less SbUSP gene which encodes for salt and osmotic responsive USP. In vivo localization reveals that SbUSP is a membrane bound cytosolic protein. The role of the gene was functionally validated by developing transgenic tobacco and compared with control [wild-type (WT) and vector control (VC)] plants under different abiotic stress condition. Transgenic lines (T1) exhibited higher chlorophyll, relative water, proline, total sugar, reducing sugar, free amino acids, polyphenol contents, osmotic potential, membrane stability, and lower electrolyte leakage and lipid peroxidation (malondialdehyde content) under stress treatments than control (WT and VC) plants. Lower accumulation of H2O2 and O2− radicals was also detected in transgenic lines compared to control plants under stress conditions. Present study confers that overexpression of the SbUSP gene enhances plant growth, alleviates ROS buildup, maintains ion homeostasis and improves the physiological status of the plant under salt and osmotic stresses. Principal component analysis exhibited a statistical distinction of plant response to salinity stress, and a significant response was observed for transgenic lines under stress, which provides stress endurance to the plant. A possible signaling role is proposed that some downstream genes may get activated by abiotic stress responsive cytosolic SbUSP, which leads to the protection of cell from oxidative damages. The study unveils that ectopic expression of the gene mitigates salt or osmotic stress by scavenging ROS and modulating the physiological process of the plant. PMID:27148338

  11. Ubiquitous Versus One-to-One

    ERIC Educational Resources Information Center

    McAnear, Anita

    2006-01-01

    When we planned the editorial calendar with the topic ubiquitous computing, we were thinking of ubiquitous computing as the one-to-one ratio of computers to students and teachers and 24/7 access to electronic resources. At the time, we were aware that ubiquitous computing in the computer science field had more to do with wearable computers. Our…

  12. PUMA amplifies necroptosis signaling by activating cytosolic DNA sensors

    PubMed Central

    Tong, Jingshan; Yang, Liheng; Wei, Liang; Stolz, Donna B.; Yu, Jian; Zhang, Jianke; Zhang, Lin

    2018-01-01

    Necroptosis, a form of regulated necrotic cell death, is governed by RIP1/RIP3-mediated activation of MLKL. However, the signaling process leading to necroptotic death remains to be elucidated. In this study, we found that PUMA, a proapoptotic BH3-only Bcl-2 family member, is transcriptionally activated in an RIP3/MLKL-dependent manner following induction of necroptosis. The induction of PUMA, which is mediated by autocrine TNF-α and enhanced NF-κB activity, contributes to necroptotic death in RIP3-expressing cells with caspases inhibited. On induction, PUMA promotes the cytosolic release of mitochondrial DNA and activation of the DNA sensors DAI/Zbp1 and STING, leading to enhanced RIP3 and MLKL phosphorylation in a positive feedback loop. Furthermore, deletion of PUMA partially rescues necroptosis-mediated developmental defects in FADD-deficient embryos. Collectively, our results reveal a signal amplification mechanism mediated by PUMA and cytosolic DNA sensors that is involved in TNF-driven necroptotic death in vitro and in vivo. PMID:29581256

  13. Upregulation of cytosolic NADP+-dependent isocitrate dehydrogenase by hyperglycemia protects renal cells against oxidative stress.

    PubMed

    Lee, Soh-Hyun; Ha, Sun-Ok; Koh, Ho-Jin; Kim, KilSoo; Jeon, Seon-Min; Choi, Myung-Sook; Kwon, Oh-Shin; Huh, Tae-Lin

    2010-02-28

    Hyperglycemia-induced oxidative stress is widely recognized as a key mediator in the pathogenesis of diabetic nephropathy, a complication of diabetes. We found that both expression and enzymatic activity of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) were upregulated in the renal cortexes of diabetic rats and mice. Similarly, IDPc was induced in murine renal proximal tubular OK cells by high hyperglycemia, while it was abrogated by co-treatment with the antioxidant N-Acetyl-Cysteine (NAC). In OK cells, increased expression of IDPc by stable transfection prevented hyperglycemia-mediated reactive oxygen species (ROS) production, subsequent cellular oxidative stress and extracellular matrix accumulation, whereas these processes were all stimulated by decreased IDPc expression. In addition, production of NADPH and GSH in the cytosol was positively correlated with the expression level of IDPc in OK cells. These results together indicate that upregulation of IDPc in response to hyperglycemia might play an essential role in preventing the progression of diabetic nephropathy, which is accompanied by ROS-induced cellular damage and fibrosis, by providing NADPH, the reducing equivalent needed for recycling reduced glutathione and low molecular weight antioxidant thiol proteins.

  14. Man2C1, an alpha-mannosidase, is involved in the trimming of free oligosaccharides in the cytosol.

    PubMed

    Suzuki, Tadashi; Hara, Izumi; Nakano, Miyako; Shigeta, Masaki; Nakagawa, Takatoshi; Kondo, Akihiro; Funakoshi, Yoko; Taniguchi, Naoyuki

    2006-11-15

    The endoplasmic-reticulum-associated degradation of misfolded (glyco)proteins ensures that only functional, correctly folded proteins exit from the endoplasmic reticulum and that misfolded ones are degraded by the ubiquitin-proteasome system. During the degradation of misfolded glycoproteins, they are deglycosylated by the PNGase (peptide:N-glycanase). The free oligosaccharides released by PNGase are known to be further catabolized by a cytosolic alpha-mannosidase, although the gene encoding this enzyme has not been identified unequivocally. The findings in the present study demonstrate that an alpha-mannosidase, Man2C1, is involved in the processing of free oligosaccharides that are formed in the cytosol. When the human Man2C1 orthologue was expressed in HEK-293 cells, most of the enzyme was localized in the cytosol. Its activity was enhanced by Co2+, typical of other known cytosolic alpha-mannosidases so far characterized from animal cells. The down-regulation of Man2C1 activity by a small interfering RNA drastically changed the amount and structure of oligosaccharides accumulating in the cytosol, demonstrating that Man2C1 indeed is involved in free oligosaccharide processing in the cytosol. The oligosaccharide processing in the cytosol by PNGase, endo-beta-N-acetylglucosaminidase and alpha-mannosidase may represent the common 'non-lysosomal' catabolic pathway for N-glycans in animal cells, although the molecular mechanism as well as the functional importance of such processes remains to be determined.

  15. Man2C1, an α-mannosidase, is involved in the trimming of free oligosaccharides in the cytosol

    PubMed Central

    Suzuki, Tadashi; Hara, Izumi; Nakano, Miyako; Shigeta, Masaki; Nakagawa, Takatoshi; Kondo, Akihiro; Funakoshi, Yoko; Taniguchi, Naoyuki

    2006-01-01

    The endoplasmic-reticulum-associated degradation of misfolded (glyco)proteins ensures that only functional, correctly folded proteins exit from the endoplasmic reticulum and that misfolded ones are degraded by the ubiquitin–proteasome system. During the degradation of misfolded glycoproteins, they are deglycosylated by the PNGase (peptide:N-glycanase). The free oligosaccharides released by PNGase are known to be further catabolized by a cytosolic α-mannosidase, although the gene encoding this enzyme has not been identified unequivocally. The findings in the present study demonstrate that an α-mannosidase, Man2C1, is involved in the processing of free oligosaccharides that are formed in the cytosol. When the human Man2C1 orthologue was expressed in HEK-293 cells, most of the enzyme was localized in the cytosol. Its activity was enhanced by Co2+, typical of other known cytosolic α-mannosidases so far characterized from animal cells. The down-regulation of Man2C1 activity by a small interfering RNA drastically changed the amount and structure of oligosaccharides accumulating in the cytosol, demonstrating that Man2C1 indeed is involved in free oligosaccharide processing in the cytosol. The oligosaccharide processing in the cytosol by PNGase, endo-β-N-acetylglucosaminidase and α-mannosidase may represent the common ‘non-lysosomal’ catabolic pathway for N-glycans in animal cells, although the molecular mechanism as well as the functional importance of such processes remains to be determined. PMID:16848760

  16. Cytosolic delivery of materials with endosome-disrupting colloids

    DOEpatents

    Helms, Brett A.; Bayles, Andrea R.

    2016-03-15

    A facile procedure to deliver nanocrystals to the cytosol of live cells that is both rapid and general. The technique employs a unique cationic core-shell polymer colloid that directs nanocrystals to the cytosol of living cells within a few hours of incubation. The present methods and compositions enable a host of advanced applications arising from efficient cytosolic delivery of nanocrystal imaging probes: from single particle tracking experiments to monitoring protein-protein interactions in live cells for extended periods.

  17. GABA transaminases from Saccharomyces cerevisiae and Arabidopsis thaliana complement function in cytosol and mitochondria.

    PubMed

    Cao, Juxiang; Barbosa, Jose M; Singh, Narendra; Locy, Robert D

    2013-07-01

    GABA transaminase (GABA-T) catalyses the conversion of GABA to succinate semialdehyde (SSA) in the GABA shunt pathway. The GABA-T from Saccharomyces cerevisiae (ScGABA-TKG) is an α-ketoglutarate-dependent enzyme encoded by the UGA1 gene, while higher plant GABA-T is a pyruvate/glyoxylate-dependent enzyme encoded by POP2 in Arabidopsis thaliana (AtGABA-T). The GABA-T from A. thaliana is localized in mitochondria and mediated by an 18-amino acid N-terminal mitochondrial targeting peptide predicated by both web-based utilities TargetP 1.1 and PSORT. Yeast UGA1 appears to lack a mitochondrial targeting peptide and is localized in the cytosol. To verify this bioinformatic analysis and examine the significance of ScGABA-TKG and AtGABA-T compartmentation and substrate specificity on physiological function, expression vectors were constructed to modify both ScGABA-TKG and AtGABA-T, so that they express in yeast mitochondria and cytosol. Physiological function was evaluated by complementing yeast ScGABA-TKG deletion mutant Δuga1 with AtGABA-T or ScGABA-TKG targeted to the cytosol or mitochondria for the phenotypes of GABA growth defect, thermosensitivity and heat-induced production of reactive oxygen species (ROS). This study demonstrates that AtGABA-T is functionally interchangeable with ScGABA-TKG for GABA growth, thermotolerance and limiting production of ROS, regardless of location in mitochondria or cytosol of yeast cells, but AtGABA-T is about half as efficient in doing so as ScGABA-TKG. These results are consistent with the hypothesis that pyruvate/glyoxylate-limited production of NADPH mediates the effect of the GABA shunt in moderating heat stress in Saccharomyces. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz)

    PubMed Central

    2014-01-01

    Background Cassava (Manihot esculenta Crantz) is a tropical root crop, and is therefore, extremely sensitive to low temperature; its antioxidative response is pivotal for its survival under stress. Timely turnover of reactive oxygen species (ROS) in plant cells generated by chilling-induced oxidative damages, and scavenging can be achieved by non-enzymatic and enzymatic reactions in order to maintain ROS homeostasis. Results Transgenic cassava plants that co-express cytosolic superoxide dismutase (SOD), MeCu/ZnSOD, and ascorbate peroxidase (APX), MeAPX2, were produced and tested for tolerance against oxidative and chilling stresses. The up-regulation of MeCu/ZnSOD and MeAPX2 expression was confirmed by the quantitative reverse transcriptase-polymerase chain reaction, and enzymatic activity analyses in the leaves of transgenic cassava plant lines with a single-transgene integration site. Upon exposure to ROS-generating agents, 100 μM ROS-generating reagent methyl viologen and 0.5 M H2O2, higher levels of enzymatic activities of SOD and APX were detected in transgenic plants than the wild type. Consequently, the oxidative stress parameters, such as lipid peroxidation, chlorophyll degradation and H2O2 synthesis, were lower in the transgenic lines than the wild type. Tolerance to chilling stress at 4°C for 2 d was greater in transgenic cassava, as observed by the higher levels of SOD, catalase, and ascorbate-glutathione cycle enzymes (e.g., APX, monodehydroascorbate reductase, dehydroascorbate reducatase and glutathione reductase) and lower levels of malondialdehyde content. Conclusions These results suggest that the expression of native cytosolic SOD and APX simultaneously activated the antioxidative defense mechanisms via cyclic ROS scavenging, thereby improving its tolerance to cold stress. PMID:25091029

  19. Live cell imaging of cytosolic NADH/NAD+ ratio in hepatocytes and liver slices.

    PubMed

    Masia, Ricard; McCarty, William J; Lahmann, Carolina; Luther, Jay; Chung, Raymond T; Yarmush, Martin L; Yellen, Gary

    2018-01-01

    Fatty liver disease (FLD), the most common chronic liver disease in the United States, may be caused by alcohol or the metabolic syndrome. Alcohol is oxidized in the cytosol of hepatocytes by alcohol dehydrogenase (ADH), which generates NADH and increases cytosolic NADH/NAD + ratio. The increased ratio may be important for development of FLD, but our ability to examine this question is hindered by methodological limitations. To address this, we used the genetically encoded fluorescent sensor Peredox to obtain dynamic, real-time measurements of cytosolic NADH/NAD + ratio in living hepatocytes. Peredox was expressed in dissociated rat hepatocytes and HepG2 cells by transfection, and in mouse liver slices by tail-vein injection of adeno-associated virus (AAV)-encoded sensor. Under control conditions, hepatocytes and liver slices exhibit a relatively low (oxidized) cytosolic NADH/NAD + ratio as reported by Peredox. The ratio responds rapidly and reversibly to substrates of lactate dehydrogenase (LDH) and sorbitol dehydrogenase (SDH). Ethanol causes a robust dose-dependent increase in cytosolic NADH/NAD + ratio, and this increase is mitigated by the presence of NAD + -generating substrates of LDH or SDH. In contrast to hepatocytes and slices, HepG2 cells exhibit a relatively high (reduced) ratio and show minimal responses to substrates of ADH and SDH. In slices, we show that comparable results are obtained with epifluorescence imaging and two-photon fluorescence lifetime imaging (2p-FLIM). Live cell imaging with Peredox is a promising new approach to investigate cytosolic NADH/NAD + ratio in hepatocytes. Imaging in liver slices is particularly attractive because it allows preservation of liver microanatomy and metabolic zonation of hepatocytes. NEW & NOTEWORTHY We describe and validate a new approach for measuring free cytosolic NADH/NAD + ratio in hepatocytes and liver slices: live cell imaging with the fluorescent biosensor Peredox. This approach yields dynamic, real

  20. A Novel Cytosolic Isoform of Mitochondrial Trans-2-Enoyl-CoA Reductase Enhances Peroxisome Proliferator-Activated Receptor α Activity.

    PubMed

    Kim, Dong-Gyu; Yoo, Jae Cheal; Kim, Eunju; Lee, Young-Sun; Yarishkin, Oleg V; Lee, Da Yong; Lee, Kun Ho; Hong, Seong-Geun; Hwang, Eun Mi; Park, Jae-Yong

    2014-06-01

    Mitochondrial trans-2-enoyl-CoA reductase (MECR) is involved in mitochondrial synthesis of fatty acids and is highly expressed in mitochondria. MECR is also known as nuclear receptor binding factor-1, which was originally reported with yeast two-hybrid screening as a binding protein of the nuclear hormone receptor peroxisome proliferator-activated receptor α (PPARα). However, MECR and PPARα are localized at different compartment, mitochondria, and the nucleus, respectively. Therefore, the presence of a cytosolic or nuclear isoform of MECR is necessary for functional interaction between MECR and PPARα. To identify the expression pattern of MECR and the cytosolic form of MECR (cMECR), we performed reverse transcription polymerase chain reaction (RT-PCR) with various tissue samples from Sprague-Dawley rats. To confirm the interaction between cMECR and PPARα, we performed several binding assays such as yeast two-hybrid, coimmunoprecipitation, and bimolecular fluorescence complementation. To observe subcellular localization of these proteins, immunocytochemistry was performed. A luciferase assay was used to measure PPARα activity. We provide evidence of an alternatively spliced variant of the rat MECR gene that yields cMECR. The cMECR lacks the N-terminal 76 amino acids of MECR and shows uniform distribution in the cytoplasm and nucleus of HeLa cells. cMECR directly bound PPARα in the nucleus and increased PPARα-dependent luciferase activity in HeLa cells. We found the cytosolic form of MECR (cMECR) was expressed in the cytosolic and/or nuclear region, directly binds with PPARα, and enhances PPARα activity.

  1. Learning with Ubiquitous Computing

    ERIC Educational Resources Information Center

    Rosenheck, Louisa

    2008-01-01

    If ubiquitous computing becomes a reality and is widely adopted, it will inevitably have an impact on education. This article reviews the background of ubiquitous computing and current research projects done involving educational "ubicomp." Finally it explores how ubicomp may and may not change education in both formal and informal settings and…

  2. Cytosolic iron chaperones: Proteins delivering iron cofactors in the cytosol of mammalian cells.

    PubMed

    Philpott, Caroline C; Ryu, Moon-Suhn; Frey, Avery; Patel, Sarju

    2017-08-04

    Eukaryotic cells contain hundreds of metalloproteins that are supported by intracellular systems coordinating the uptake and distribution of metal cofactors. Iron cofactors include heme, iron-sulfur clusters, and simple iron ions. Poly(rC)-binding proteins are multifunctional adaptors that serve as iron ion chaperones in the cytosolic/nuclear compartment, binding iron at import and delivering it to enzymes, for storage (ferritin) and export (ferroportin). Ferritin iron is mobilized by autophagy through the cargo receptor, nuclear co-activator 4. The monothiol glutaredoxin Glrx3 and BolA2 function as a [2Fe-2S] chaperone complex. These proteins form a core system of cytosolic iron cofactor chaperones in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Correlation between oestrogen receptor protein expression in infiltrating ductal carcinoma of the breast by immunohistochemistry and cytosol measurements.

    PubMed

    Looi, L M; Yap, S F; Cheah, P L

    1997-11-01

    Fresh frozen neoplastic tissues from 70 infiltrating ductal breast carcinomas were analysed for cytosolic oestrogen receptor (ER) protein content using a solid phase enzyme immunoassay (EIA) method based on a "sandwich" principle (Abbott ER-EIA monoclonal). Formalin-fixed, paraffin-embedded sections from the same carcinomas were examined for nuclear immunoreactivity against a monoclonal antibody for ER protein (Dako) using the standard avidin-biotin complex immunoperoxidase (IP) method after microwave antigen retrieval. The degree of ER positivity by IP was also scored according to a visual estimation of the percentage of cells expressing immunopositivity and the intensity of staining. Twenty-eight (40%) of the carcinomas were ER-positive by EIA and 34 (48.6%) were positive by IP. Twenty-five (35.7%) were ER-positive and 33 (47.1%) were ER-negative by both methods. Nine (12.9%) were ER-negative by EIA but were positive by IP, this discrepancy being ascribed to sampling inadequacy for EIA. However, 3 (4.3%) tumours were ER-positive by EIA and negative by IP. This discrepancy may be variously due to inadequate antigen retrieval, faulty technique and the possibility that the two methods do not measure identical ER proteins. IP appears to have an advantage over EIA in that it has a higher pick-up rate, does not require fresh tissue and can be applied to archival material. However, to reduce false negative estimations, it may be necessary to run IP staining using more than one ER antibody. Standardisation of the IP method for ER is desirable before this method is to be widely adopted in Malaysian laboratories. Quantitation of ER positivity by IP scoring correlated poorly with actual cytosolic levels. Caution should be exercised in attaching patient management value to visual IP scoring.

  4. Characterizing the Specificity and Co-operation of Aminopeptidases in the Cytosol and ER During MHC Class I antigen Presentation1

    PubMed Central

    Hearn, Arron; York, Ian A.; Bishop, Courtney; Rock, Kenneth L.

    2010-01-01

    Many MHC class I binding peptides are generated as N-extended precursors during protein degradation by the proteasome. These peptides can be subsequently trimmed by aminopeptidases in the cytosol and/or the ER to produce mature epitope. However, the contribution and specificity of each of these subcellular compartments in removing N-terminal amino acids for antigen presentation is not well defined. Here we investigate this issue for antigenic precursors that are expressed in the cytosol. By systematically varying the N-terminal flanking sequences of peptides we show that the amino acids upstream of an epitope precursor are a major determinant of the amount of antigen presentation. In many cases MHC class I binding peptides are produced through sequential trimming in both the cytosol and ER. Trimming of flanking residues in the cytosol contributes most to sequences that are poorly trimmed in the ER. Since N-terminal trimming has different specificity in the cytosol and ER, the cleavage of peptides in both of these compartments serves to broaden the repertoire of sequences that are presented. PMID:20351195

  5. The human two-pore channel 1 is modulated by cytosolic and luminal calcium

    PubMed Central

    Lagostena, Laura; Festa, Margherita; Pusch, Michael; Carpaneto, Armando

    2017-01-01

    Two-pore channels (TPC) are intracellular endo-lysosomal proteins with only recently emerging roles in organellar signalling and involvement in severe human diseases. Here, we investigated the functional properties of human TPC1 expressed in TPC-free vacuoles from Arabidopsis thaliana cells. Large (20 pA/pF) TPC1 currents were elicited by cytosolic addition of the phosphoinositide phosphatidylinositol-(3,5)-bisphosphate (PI(3,5)P2) with an apparent binding constant of ~15 nM. The channel is voltage-dependent, activating at positive potentials with single exponential kinetics and currents are Na+ selective, with measurable but low permeability to Ca2+. Cytosolic Ca2+ modulated hTPC1 in dual way: low μM cytosolic Ca2+ increased activity by shifting the open probability towards negative voltages and by accelerating the time course of activation. This mechanism was well-described by an allosteric model. Higher levels of cytosolic Ca2+ induced a voltage-dependent decrease of the currents compatible with Ca2+ binding in the permeation pore. Conversely, an increase in luminal Ca2+ decreased hTPC1 activity. Our data point to a process in which Ca2+ permeation in hTPC1 has a positive feedback on channel activity while Na+ acts as a negative regulator. We speculate that the peculiar Ca2+ and Na+ dependence are key for the physiological roles of the channel in organellar homeostasis and signalling. PMID:28252105

  6. A Collaborative Model for Ubiquitous Learning Environments

    ERIC Educational Resources Information Center

    Barbosa, Jorge; Barbosa, Debora; Rabello, Solon

    2016-01-01

    Use of mobile devices and widespread adoption of wireless networks have enabled the emergence of Ubiquitous Computing. Application of this technology to improving education strategies gave rise to Ubiquitous e-Learning, also known as Ubiquitous Learning. There are several approaches to organizing ubiquitous learning environments, but most of them…

  7. Holocarboxylase Synthetase: A Moonlighting Transcriptional Coregulator of Gene Expression and a Cytosolic Regulator of Biotin Utilization.

    PubMed

    León-Del-Río, Alfonso; Valadez-Graham, Viviana; Gravel, Roy A

    2017-08-21

    The vitamin biotin is an essential nutrient for the metabolism and survival of all organisms owing to its function as a cofactor of enzymes collectively known as biotin-dependent carboxylases. These enzymes use covalently attached biotin as a vector to transfer a carboxyl group between donor and acceptor molecules during carboxylation reactions. In human cells, biotin-dependent carboxylases catalyze key reactions in gluconeogenesis, fatty acid synthesis, and amino acid catabolism. Biotin is attached to apocarboxylases by a biotin ligase: holocarboxylase synthetase (HCS) in mammalian cells and BirA in microbes. Despite their evolutionary distance, these proteins share structural and sequence similarities, underscoring their importance across all life forms. However, beyond its role in metabolism, HCS participates in the regulation of biotin utilization and acts as a nuclear transcriptional coregulator of gene expression. In this review, we discuss the function of HCS and biotin in metabolism and human disease, a putative role for the enzyme in histone biotinylation, and its participation as a nuclear factor in chromatin dynamics. We suggest that HCS be classified as a moonlighting protein, with two biotin-dependent cytosolic metabolic roles and a distinct biotin-independent nuclear coregulatory function.

  8. Cytosolic Ca2+ Buffers

    PubMed Central

    Schwaller, Beat

    2010-01-01

    “Ca2+ buffers,” a class of cytosolic Ca2+-binding proteins, act as modulators of short-lived intracellular Ca2+ signals; they affect both the temporal and spatial aspects of these transient increases in [Ca2+]i. Examples of Ca2+ buffers include parvalbumins (α and β isoforms), calbindin-D9k, calbindin-D28k, and calretinin. Besides their proven Ca2+ buffer function, some might additionally have Ca2+ sensor functions. Ca2+ buffers have to be viewed as one of the components implicated in the precise regulation of Ca2+ signaling and Ca2+ homeostasis. Each cell is equipped with proteins, including Ca2+ channels, transporters, and pumps that, together with the Ca2+ buffers, shape the intracellular Ca2+ signals. All of these molecules are not only functionally coupled, but their expression is likely to be regulated in a Ca2+-dependent manner to maintain normal Ca2+ signaling, even in the absence or malfunctioning of one of the components. PMID:20943758

  9. A mammalian germ cell-specific RNA-binding protein interacts with ubiquitously expressed proteins involved in splice site selection

    NASA Astrophysics Data System (ADS)

    Elliott, David J.; Bourgeois, Cyril F.; Klink, Albrecht; Stévenin, James; Cooke, Howard J.

    2000-05-01

    RNA-binding motif (RBM) genes are found on all mammalian Y chromosomes and are implicated in spermatogenesis. Within human germ cells, RBM protein shows a similar nuclear distribution to components of the pre-mRNA splicing machinery. To address the function of RBM, we have used protein-protein interaction assays to test for possible physical interactions between these proteins. We find that RBM protein directly interacts with members of the SR family of splicing factors and, in addition, strongly interacts with itself. We have mapped the protein domains responsible for mediating these interactions and expressed the mouse RBM interaction region as a bacterial fusion protein. This fusion protein can pull-down several functionally active SR protein species from cell extracts. Depletion and add-back experiments indicate that these SR proteins are the only splicing factors bound by RBM which are required for the splicing of a panel of pre-mRNAs. Our results suggest that RBM protein is an evolutionarily conserved mammalian splicing regulator which operates as a germ cell-specific cofactor for more ubiquitously expressed pre-mRNA splicing activators.

  10. Cytosolic malate dehydrogenase regulates RANKL-mediated osteoclastogenesis via AMPK/c-Fos/NFATc1 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Se Jeong; Gu, Dong Ryun; Center for Metabolic Function Regulation

    2016-06-17

    Cytosolic malate dehydrogenase (malate dehydrogenase 1, MDH1) plays pivotal roles in the malate/aspartate shuttle that might modulate metabolism between the cytosol and mitochondria. In this study, we investigated the role of MDH1 in osteoclast differentiation and formation. MDH1 expression was induced by receptor activator of nuclear factor kappa-B ligand (RANKL) treatment. Knockdown of MDH1 by infection with retrovirus containing MDH1-specific shRNA (shMDH1) reduced mature osteoclast formation and bone resorption activity. Moreover, the expression of marker genes associated with osteoclast differentiation was downregulated by shMDH1 treatment, suggesting a role of MDH1 in osteoclast differentiation. In addition, intracellular ATP production was reducedmore » following the activation of adenosine 5′ monophosphate-activated protein kinase (AMPK), a cellular energy sensor and negative regulator of RANKL-induced osteoclast differentiation, in shMDH1-infected osteoclasts compared to control cells. In addition, the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a critical transcription factor of osteoclastogenesis, was decreased with MDH1 knockdown during RANKL-mediated osteoclast differentiation. These findings provide strong evidence that MDH1 plays a critical role in osteoclast differentiation and function via modulation of the intracellular energy status, which might affect AMPK activity and NFATc1 expression.« less

  11. The endocrine disrupting alkylphenols and 4,4'-DDT interfere with estrogen conversion and clearance by mouse liver cytosol.

    PubMed

    El-Hefnawy, Talal; Hernandez, Claudia; Stabile, Laura P

    2017-09-01

    Endocrine disrupting chemicals (EDCs) are ubiquitous compounds known for negative impacts on reproductive functions and for increasing cancer risk. EDCs are believed to cause the harmful effects in part through their inappropriate low-affinity binding to steroid receptors and other possible non-receptor mediated paradigms, however there is a need to further elucidate other mechanisms involving the direct and indirect impact of EDCs on reproductive functions. We examined the metabolism of 17β-estradiol (E2) and estrone (E1) by cell-free hepatic cytosol in the presence of alkylphenols (nonylphenol/NP and 4-tert-octylphenol/tOP), Dichlorodiphenyltrichloroethane (4,4'-DDT) and other EDCs. Tandem liquid chromatography mass spectrometry was utilized to quantitatively assess the impact of each EDC on estrogen clearance, inter-conversions and downstream metabolism by mouse liver cytosol. The results revealed that NP and tOP (0.1-3μg/mL) significantly reduced the hepatic cytosol clearance and biotransformation of estrogens with inclination for accumulating E2, the stronger estrogen form, than E1. Alkylphenols also caused up to a 34-fold increase in the E2/E1 ratio possibly by suppressing the hepatic E2→E1 conversion by 17β-hydroxysteroid dehydrogenase (17βHSD) types 2, 4 while displaying a weaker inhibition of E1→E2 conversion by type 1, 17βHSD. On the other hand, the pesticide 4,4'-DDT was a weaker inhibitor of clearance of estrogens by the cytosol preparations when compared to alkylphenols, whereas chemicals such as phthalates and atrazine were ineffective. Our data suggest that exposure to NP, tOP and DDT can indirectly increase the estrogenic load by suppressing the hepatic clearance of estrogens and by elevating the E2/1 ratio and could therefore increase the risk of reproductive lesions. Copyright © 2017 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier

  12. Circadian oscillations of cytosolic and chloroplastic free calcium in plants

    NASA Technical Reports Server (NTRS)

    Johnson, C. H.; Knight, M. R.; Kondo, T.; Masson, P.; Sedbrook, J.; Haley, A.; Trewavas, A.

    1995-01-01

    Tobacco and Arabidopsis plants, expressing a transgene for the calcium-sensitive luminescent protein apoaequorin, revealed circadian oscillations in free cytosolic calcium that can be phase-shifted by light-dark signals. When apoaequorin was targeted to the chloroplast, circadian chloroplast calcium rhythms were likewise observed after transfer of the seedlings to constant darkness. Circadian oscillations in free calcium concentrations can be expected to control many calcium-dependent enzymes and processes accounting for circadian outputs. Regulation of calcium flux is therefore fundamental to the organization of circadian systems.

  13. A Dynamic Ubiquitous Learning Resource Model with Context and Its Effects on Ubiquitous Learning

    ERIC Educational Resources Information Center

    Chen, Min; Yu, Sheng Quan; Chiang, Feng Kuang

    2017-01-01

    Most ubiquitous learning researchers use resource recommendation and retrieving based on context to provide contextualized learning resources, but it is the kind of one-way context matching. Learners always obtain fixed digital learning resources, which present all learning contents in any context. This study proposed a dynamic ubiquitous learning…

  14. Novel cytosolic allergens of Aspergillus fumigatus identified from germinating conidia.

    PubMed

    Singh, Bharat; Sharma, Gainda L; Oellerich, Michael; Kumar, Ram; Singh, Seema; Bhadoria, Dharam P; Katyal, Anju; Reichard, Utz; Asif, Abdul R

    2010-11-05

    Aspergillus fumigatus is the common cause of allergic broncho-pulmonary aspergillosis (ABPA) and most of the allergens have been described from its secreted fraction. In the present investigation, germinating conidial cytosolic proteins of A. fumigatus were extracted from a 16 h culture. The proteome from this fraction was developed, and immuno-blots were generated using pooled ABPA patients' sera. Well separated Immunoglobulin-E (IgE) and Immunoglobulin-G (IgG) reactive spots were picked from corresponding 2DE gels and subjected to mass spectrometric analysis. As a result, 66 immuno-reactive proteins were identified from two geographically different strains (190/96 and DAYA) of A. fumigatus. Only 3 out of 66 proteins reacted with IgG, and the remaining 63 proteins were found to be IgE reactive. These 63 IgE-reactive cytosolic proteins from germinating conidia included 2 already known (Asp f12 and Asp f22) and 4 predicted allergens (Hsp88, Hsp70, malate dehydrogenase, and alcohol dehydrogenase) based on their homology with other known fungal allergens. In view of this, the panel of presently identified IgE-reactive novel proteins holds the potential of providing a basis for the wider diagnostic application in assay for allergic aspergillosis. We could demonstrate that recombinantly expressed proteins from this panel showed consistent reactivity with IgE of individual sera of ABPA patients. The recombinantly expressed proteins may also be useful in desensitization therapy of allergic disorders including ABPA.

  15. The Hepatitis B Virus X Protein Elevates Cytosolic Calcium Signals by Modulating Mitochondrial Calcium Uptake

    PubMed Central

    Yang, Bei

    2012-01-01

    Chronic hepatitis B virus (HBV) infections are associated with the development of hepatocellular carcinoma (HCC). The HBV X protein (HBx) is thought to play an important role in the development of HBV-associated HCC. One fundamental HBx function is elevation of cytosolic calcium signals; this HBx activity has been linked to HBx stimulation of cell proliferation and transcription pathways, as well as HBV replication. Exactly how HBx elevates cytosolic calcium signals is not clear. The studies described here show that HBx stimulates calcium entry into cells, resulting in an increased plateau level of inositol 1,4,5-triphosphate (IP3)-linked calcium signals. This increased calcium plateau can be inhibited by blocking mitochondrial calcium uptake and store-operated calcium entry (SOCE). Blocking SOCE also reduced HBV replication. Finally, these studies also demonstrate that there is increased mitochondrial calcium uptake in HBx-expressing cells. Cumulatively, these studies suggest that HBx can increase mitochondrial calcium uptake and promote increased SOCE to sustain higher cytosolic calcium and stimulate HBV replication. PMID:22031934

  16. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, S.M.; Habash, D.Z.

    2009-07-02

    Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulationmore » of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.« less

  17. Subcellular localization of celery mannitol dehydrogenase. A cytosolic metabolic enzyme in nuclei.

    PubMed Central

    Yamamoto, Y T; Zamski, E; Williamson, J D; Conkling, M A; Pharr, D M

    1997-01-01

    Mannitol dehydrogenase (MTD) is the first enzyme in mannitol catabolism in celery (Apium graveolens L. var dulce [Mill] Pers. cv Florida 638). Mannitol is an important photoassimilate, as well as providing plants with resistance to salt and osmotic stress. Previous work has shown that expression of the celery Mtd gene is regulated by many factors, such as hexose sugars, salt and osmotic stress, and salicylic acid. Furthermore, MTD is present in cells of sink organs, phloem cells, and mannitol-grown suspension cultures. Immunogold localization and biochemical analyses presented here demonstrate that celery MTD is localized in the cytosol and nuclei. Although the cellular density of MTD varies among different cell types, densities of nuclear and cytosolic MTD in a given cell are approximately equal. Biochemical analyses of nuclear extracts from mannitol-grown cultured cells confirmed that the nuclear-localized MTD is enzymatically active. The function(s) of nuclear-localized MTD is unknown. PMID:9414553

  18. Technologies for Achieving Field Ubiquitous Computing

    NASA Astrophysics Data System (ADS)

    Nagashima, Akira

    Although the term “ubiquitous” may sound like jargon used in information appliances, ubiquitous computing is an emerging concept in industrial automation. This paper presents the author's visions of field ubiquitous computing, which is based on the novel Internet Protocol IPv6. IPv6-based instrumentation will realize the next generation manufacturing excellence. This paper focuses on the following five key issues: 1. IPv6 standardization; 2. IPv6 interfaces embedded in field devices; 3. Compatibility with FOUNDATION fieldbus; 4. Network securities for field applications; and 5. Wireless technologies to complement IP instrumentation. Furthermore, the principles of digital plant operations and ubiquitous production to support the above key technologies to achieve field ubiquitous systems are discussed.

  19. Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide

    NASA Astrophysics Data System (ADS)

    Akishiba, Misao; Takeuchi, Toshihide; Kawaguchi, Yoshimasa; Sakamoto, Kentarou; Yu, Hao-Hsin; Nakase, Ikuhiko; Takatani-Nakase, Tomoka; Madani, Fatemeh; Gräslund, Astrid; Futaki, Shiroh

    2017-08-01

    One of the major obstacles in intracellular targeting using antibodies is their limited release from endosomes into the cytosol. Here we report an approach to deliver proteins, which include antibodies, into cells by using endosomolytic peptides derived from the cationic and membrane-lytic spider venom peptide M-lycotoxin. The delivery peptides were developed by introducing one or two glutamic acid residues into the hydrophobic face. One peptide with the substitution of leucine by glutamic acid (L17E) was shown to enable a marked cytosolic liberation of antibodies (immunoglobulins G (IgGs)) from endosomes. The predominant membrane-perturbation mechanism of this peptide is the preferential disruption of negatively charged membranes (endosomal membranes) over neutral membranes (plasma membranes), and the endosomolytic peptide promotes the uptake by inducing macropinocytosis. The fidelity of this approach was confirmed through the intracellular delivery of a ribosome-inactivation protein (saporin), Cre recombinase and IgG delivery, which resulted in a specific labelling of the cytosolic proteins and subsequent suppression of the glucocorticoid receptor-mediated transcription. We also demonstrate the L17E-mediated cytosolic delivery of exosome-encapsulated proteins.

  20. Targeting Cytosolic Nucleic Acid-Sensing Pathways for Cancer Immunotherapies.

    PubMed

    Iurescia, Sandra; Fioretti, Daniela; Rinaldi, Monica

    2018-01-01

    The innate immune system provides the first line of defense against pathogen infection though also influences pathways involved in cancer immunosurveillance. The innate immune system relies on a limited set of germ line-encoded sensors termed pattern recognition receptors (PRRs), signaling proteins and immune response factors. Cytosolic receptors mediate recognition of danger damage-associated molecular patterns (DAMPs) signals. Once activated, these sensors trigger multiple signaling cascades, converging on the production of type I interferons and proinflammatory cytokines. Recent studies revealed that PRRs respond to nucleic acids (NA) released by dying, damaged, cancer cells, as danger DAMPs signals, and presence of signaling proteins across cancer types suggests that these signaling mechanisms may be involved in cancer biology. DAMPs play important roles in shaping adaptive immune responses through the activation of innate immune cells and immunological response to danger DAMPs signals is crucial for the host response to cancer and tumor rejection. Furthermore, PRRs mediate the response to NA in several vaccination strategies, including DNA immunization. As route of double-strand DNA intracellular entry, DNA immunization leads to expression of key components of cytosolic NA-sensing pathways. The involvement of NA-sensing mechanisms in the antitumor response makes these pathways attractive drug targets. Natural and synthetic agonists of NA-sensing pathways can trigger cell death in malignant cells, recruit immune cells, such as DCs, CD8 + T cells, and NK cells, into the tumor microenvironment and are being explored as promising adjuvants in cancer immunotherapies. In this minireview, we discuss how cGAS-STING and RIG-I-MAVS pathways have been targeted for cancer treatment in preclinical translational researches. In addition, we present a targeted selection of recent clinical trials employing agonists of cytosolic NA-sensing pathways showing how these pathways

  1. A Role for Cytosolic Fumarate Hydratase in Urea Cycle Metabolism and Renal Neoplasia

    PubMed Central

    Adam, Julie; Yang, Ming; Bauerschmidt, Christina; Kitagawa, Mitsuhiro; O’Flaherty, Linda; Maheswaran, Pratheesh; Özkan, Gizem; Sahgal, Natasha; Baban, Dilair; Kato, Keiko; Saito, Kaori; Iino, Keiko; Igarashi, Kaori; Stratford, Michael; Pugh, Christopher; Tennant, Daniel A.; Ludwig, Christian; Davies, Benjamin; Ratcliffe, Peter J.; El-Bahrawy, Mona; Ashrafian, Houman; Soga, Tomoyoshi; Pollard, Patrick J.

    2013-01-01

    Summary The identification of mutated metabolic enzymes in hereditary cancer syndromes has established a direct link between metabolic dysregulation and cancer. Mutations in the Krebs cycle enzyme, fumarate hydratase (FH), predispose affected individuals to leiomyomas, renal cysts, and cancers, though the respective pathogenic roles of mitochondrial and cytosolic FH isoforms remain undefined. On the basis of comprehensive metabolomic analyses, we demonstrate that FH1-deficient cells and tissues exhibit defects in the urea cycle/arginine metabolism. Remarkably, transgenic re-expression of cytosolic FH ameliorated both renal cyst development and urea cycle defects associated with renal-specific FH1 deletion in mice. Furthermore, acute arginine depletion significantly reduced the viability of FH1-deficient cells in comparison to controls. Our findings highlight the importance of extramitochondrial metabolic pathways in FH-associated oncogenesis and the urea cycle/arginine metabolism as a potential therapeutic target. PMID:23643539

  2. Ubiquitous computing in the military environment

    NASA Astrophysics Data System (ADS)

    Scholtz, Jean

    2001-08-01

    Increasingly people work and live on the move. To support this mobile lifestyle, especially as our work becomes more intensely information-based, companies are producing various portable and embedded information devices. The late Mark Weiser coined the term, 'ubiquitous computing' to describe an environment where computers have disappeared and are integrated into physical objects. Much industry research today is concerned with ubiquitous computing in the work and home environments. A ubiquitous computing environment would facilitate mobility by allowing information users to easily access and use information anytime, anywhere. As war fighters are inherently mobile, the question is what effect a ubiquitous computing environment would have on current military operations and doctrine. And, if ubiquitous computing is viewed as beneficial for the military, what research would be necessary to achieve a military ubiquitous computing environment? What is a vision for the use of mobile information access in a battle space? Are there different requirements for civilian and military users of this technology? What are those differences? Are there opportunities for research that will support both worlds? What type of research has been supported by the military and what areas need to be investigated? Although we don't yet have all the answers to these questions, this paper discusses the issues and presents the work we are doing to address these issues.

  3. Cytosolic Proteostasis via Importing of Misfolded Proteins into Mitochondria

    PubMed Central

    Ruan, Linhao; Zhou, Chuankai; Jin, Erli; Kucharavy, Andrei; Zhang, Ying; Wen, Zhihui; Florens, Laurence; Li, Rong

    2017-01-01

    Loss of proteostasis underlies aging and neurodegeneration characterized by the accumulation of protein aggregates and mitochondrial dysfunction1–5. Although many neurodegenerative-disease proteins can be found in mitochondria4,6, it remains unclear how these disease manifestations may be related. In yeast, protein aggregates formed under stress or during aging are preferentially retained by the mother cell in part through tethering to mitochondria, while the disaggregase Hsp104 helps dissociate aggregates to enable refolding or degradation of misfolded proteins7–10. Here we show that in yeast cytosolic proteins prone to aggregation are imported into mitochondria for degradation. Protein aggregates formed under heat shock (HS) contain both cytosolic and mitochondrial proteins and interact with mitochondrial import complex. Many aggregation-prone proteins enter mitochondrial intermembrane space and matrix after HS, while some do so even without stress. Timely dissolution of cytosolic aggregates requires mitochondrial import machinery and proteases. Blocking mitochondrial import but not the proteasome activity causes a marked delay in the degradation of aggregated proteins. Defects in cytosolic Hsp70s leads to enhanced entry of misfolded proteins into mitochondria and elevated mitochondrial stress. We term this mitochondria-mediated proteostasis mechanism MAGIC (mitochondria as guardian in cytosol) and provide evidence that it may exist in human cells. PMID:28241148

  4. The Future of Ubiquitous Elearning

    ERIC Educational Resources Information Center

    Arndt, Timothy

    2014-01-01

    Post-secondary students are increasingly receiving instruction by eLearning. Many or these are part-time students or are working while taking classes. In such circumstances, students may find themselves short of time to study. One mechanism that can be exploited to make the best use of available time is ubiquitous eLearning. Ubiquitous eLearning…

  5. Genetically encoded pH-indicators reveal activity-dependent cytosolic acidification of Drosophila motor nerve termini in vivo

    PubMed Central

    Rossano, Adam J; Chouhan, Amit K; Macleod, Gregory T

    2013-01-01

    All biochemical processes, including those underlying synaptic function and plasticity, are pH sensitive. Cytosolic pH (pHcyto) shifts are known to accompany nerve activity in situ, but technological limitations have prevented characterization of such shifts in vivo. Genetically encoded pH-indicators (GEpHIs) allow for tissue-specific in vivo measurement of pH. We expressed three different GEpHIs in the cytosol of Drosophila larval motor neurons and observed substantial presynaptic acidification in nerve termini during nerve stimulation in situ. SuperEcliptic pHluorin was the most useful GEpHI for studying pHcyto shifts in this model system. We determined the resting pH of the nerve terminal cytosol to be 7.30 ± 0.02, and observed a decrease of 0.16 ± 0.01 pH units when the axon was stimulated at 40 Hz for 4 s. Realkalinization occurred upon cessation of stimulation with a time course of 20.54 ± 1.05 s (τ). The chemical pH-indicator 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein corroborated these changes in pHcyto. Bicarbonate-derived buffering did not contribute to buffering of acid loads from short (≤4 s) trains of action potentials but did buffer slow (∼60 s) acid loads. The magnitude of cytosolic acid transients correlated with cytosolic Ca2+ increase upon stimulation, and partial inhibition of the plasma membrane Ca2+-ATPase, a Ca2+/H+ exchanger, attenuated pHcyto shifts. Repeated stimulus trains mimicking motor patterns generated greater cytosolic acidification (∼0.30 pH units). Imaging through the cuticle of intact larvae revealed spontaneous pHcyto shifts in presynaptic termini in vivo, similar to those seen in situ during fictive locomotion, indicating that presynaptic pHcyto shifts cannot be dismissed as artifacts of ex vivo preparations. PMID:23401611

  6. Chromosomal instability drives metastasis through a cytosolic DNA response.

    PubMed

    Bakhoum, Samuel F; Ngo, Bryan; Laughney, Ashley M; Cavallo, Julie-Ann; Murphy, Charles J; Ly, Peter; Shah, Pragya; Sriram, Roshan K; Watkins, Thomas B K; Taunk, Neil K; Duran, Mercedes; Pauli, Chantal; Shaw, Christine; Chadalavada, Kalyani; Rajasekhar, Vinagolu K; Genovese, Giulio; Venkatesan, Subramanian; Birkbak, Nicolai J; McGranahan, Nicholas; Lundquist, Mark; LaPlant, Quincey; Healey, John H; Elemento, Olivier; Chung, Christine H; Lee, Nancy Y; Imielenski, Marcin; Nanjangud, Gouri; Pe'er, Dana; Cleveland, Don W; Powell, Simon N; Lammerding, Jan; Swanton, Charles; Cantley, Lewis C

    2018-01-25

    Chromosomal instability is a hallmark of cancer that results from ongoing errors in chromosome segregation during mitosis. Although chromosomal instability is a major driver of tumour evolution, its role in metastasis has not been established. Here we show that chromosomal instability promotes metastasis by sustaining a tumour cell-autonomous response to cytosolic DNA. Errors in chromosome segregation create a preponderance of micronuclei whose rupture spills genomic DNA into the cytosol. This leads to the activation of the cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) cytosolic DNA-sensing pathway and downstream noncanonical NF-κB signalling. Genetic suppression of chromosomal instability markedly delays metastasis even in highly aneuploid tumour models, whereas continuous chromosome segregation errors promote cellular invasion and metastasis in a STING-dependent manner. By subverting lethal epithelial responses to cytosolic DNA, chromosomally unstable tumour cells co-opt chronic activation of innate immune pathways to spread to distant organs.

  7. Silencing of cytosolic NADP+-dependent isocitrate dehydrogenase gene enhances ethanol-induced toxicity in HepG2 cells.

    PubMed

    Yang, Eun Sun; Lee, Su-Min; Park, Jeen-Woo

    2010-07-01

    It has been shown that acute and chronic alcohol administrations increase the production of reactive oxygen species, lower cellular antioxidant levels and enhance oxidative stress in many tissues. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme by supplying NADPH to the cytosol. Upon exposure to ethanol, IDPc was susceptible to the loss of its enzyme activity in HepG2 cells. Transfection of HepG2 cells with an IDPc small interfering RNA noticeably downregulated IDPc and enhanced the cells' vulnerability to ethanol-induced cytotoxicity. Our results suggest that suppressing the expression of IDPc enhances ethanol-induced toxicity in HepG2 cells by further disruption of the cellular redox status.

  8. A role for cytosolic fumarate hydratase in urea cycle metabolism and renal neoplasia.

    PubMed

    Adam, Julie; Yang, Ming; Bauerschmidt, Christina; Kitagawa, Mitsuhiro; O'Flaherty, Linda; Maheswaran, Pratheesh; Özkan, Gizem; Sahgal, Natasha; Baban, Dilair; Kato, Keiko; Saito, Kaori; Iino, Keiko; Igarashi, Kaori; Stratford, Michael; Pugh, Christopher; Tennant, Daniel A; Ludwig, Christian; Davies, Benjamin; Ratcliffe, Peter J; El-Bahrawy, Mona; Ashrafian, Houman; Soga, Tomoyoshi; Pollard, Patrick J

    2013-05-30

    The identification of mutated metabolic enzymes in hereditary cancer syndromes has established a direct link between metabolic dysregulation and cancer. Mutations in the Krebs cycle enzyme, fumarate hydratase (FH), predispose affected individuals to leiomyomas, renal cysts, and cancers, though the respective pathogenic roles of mitochondrial and cytosolic FH isoforms remain undefined. On the basis of comprehensive metabolomic analyses, we demonstrate that FH1-deficient cells and tissues exhibit defects in the urea cycle/arginine metabolism. Remarkably, transgenic re-expression of cytosolic FH ameliorated both renal cyst development and urea cycle defects associated with renal-specific FH1 deletion in mice. Furthermore, acute arginine depletion significantly reduced the viability of FH1-deficient cells in comparison to controls. Our findings highlight the importance of extramitochondrial metabolic pathways in FH-associated oncogenesis and the urea cycle/arginine metabolism as a potential therapeutic target. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits.

    PubMed

    Gutensohn, Michael; Orlova, Irina; Nguyen, Thuong T H; Davidovich-Rikanati, Rachel; Ferruzzi, Mario G; Sitrit, Yaron; Lewinsohn, Efraim; Pichersky, Eran; Dudareva, Natalia

    2013-08-01

    Geranyl diphosphate (GPP), the precursor of most monoterpenes, is synthesized in plastids from dimethylallyl diphosphate and isopentenyl diphosphate by GPP synthases (GPPSs). In heterodimeric GPPSs, a non-catalytic small subunit (GPPS-SSU) interacts with a catalytic large subunit, such as geranylgeranyl diphosphate synthase, and determines its product specificity. Here, snapdragon (Antirrhinum majus) GPPS-SSU was over-expressed in tomato fruits under the control of the fruit ripening-specific polygalacturonase promoter to divert the metabolic flux from carotenoid formation towards GPP and monoterpene biosynthesis. Transgenic tomato fruits produced monoterpenes, including geraniol, geranial, neral, citronellol and citronellal, while exhibiting reduced carotenoid content. Co-expression of the Ocimum basilicum geraniol synthase (GES) gene with snapdragon GPPS-SSU led to a more than threefold increase in monoterpene formation in tomato fruits relative to the parental GES line, indicating that the produced GPP can be used by plastidic monoterpene synthases. Co-expression of snapdragon GPPS-SSU with the O. basilicum α-zingiberene synthase (ZIS) gene encoding a cytosolic terpene synthase that has been shown to possess both sesqui- and monoterpene synthase activities resulted in increased levels of ZIS-derived monoterpene products compared to fruits expressing ZIS alone. These results suggest that re-direction of the metabolic flux towards GPP in plastids also increases the cytosolic pool of GPP available for monoterpene synthesis in this compartment via GPP export from plastids. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  10. Cytosolic localization of acetohydroxyacid synthase Ilv2 and its impact on diacetyl formation during beer fermentation.

    PubMed

    Dasari, Suvarna; Kölling, Ralf

    2011-02-01

    Diacetyl (2,3-butanedione) imparts an unpleasant "butterscotch-like" flavor to alcoholic beverages such as beer, and therefore its concentration needs to be reduced below the sensory threshold before packaging. We examined the mechanisms that lead to highly elevated diacetyl formation in petite mutants of Saccharomyces cerevisiae during beer fermentations. We present evidence that elevated diacetyl formation is tightly connected to the mitochondrial import of acetohydroxyacid synthase (Ilv2), the key enzyme in the production of diacetyl. Our data suggest that accumulation of the matrix-targeted Ilv2 preprotein in the cytosol is responsible for the observed high diacetyl levels. We could show that the Ilv2 preprotein accumulates in the cytosol of petite yeasts. Furthermore, expression of an Ilv2 variant that lacks the N-terminal mitochondrial targeting sequence and thus cannot be imported into mitochondria led to highly elevated diacetyl levels comparable to a petite strain. We further show that expression of a mutant allele of the γ-subunit of the F(1)-ATPase (ATP3-5) could be an attractive way to reduce diacetyl formation by petite strains.

  11. Inhibitor-induced oxidation of the nucleus and cytosol in Arabidopsis thaliana: implications for organelle to nucleus retrograde signalling

    PubMed Central

    Karpinska, Barbara; Alomrani, Sarah Owdah

    2017-01-01

    Concepts of organelle-to-nucleus signalling pathways are largely based on genetic screens involving inhibitors of chloroplast and mitochondrial functions such as norflurazon, lincomycin (LINC), antimycin A (ANT) and salicylhydroxamic acid. These inhibitors favour enhanced cellular oxidation, but their precise effects on the cellular redox state are unknown. Using the in vivo reduction–oxidation (redox) reporter, roGFP2, inhibitor-induced changes in the glutathione redox potentials of the nuclei and cytosol were measured in Arabidopsis thaliana root, epidermal and stomatal guard cells, together with the expression of nuclear-encoded chloroplast and mitochondrial marker genes. All the chloroplast and mitochondrial inhibitors increased the degree of oxidation in the nuclei and cytosol. However, inhibitor-induced oxidation was less marked in stomatal guard cells than in epidermal or root cells. Moreover, LINC and ANT caused a greater oxidation of guard cell nuclei than the cytosol. Chloroplast and mitochondrial inhibitors significantly decreased the abundance of LHCA1 and LHCB1 transcripts. The levels of WHY1, WHY3 and LEA5 transcripts were increased in the presence of inhibitors. Chloroplast inhibitors decreased AOXA1 mRNA levels, while mitochondrial inhibitors had the opposite effect. Inhibitors that are used to characterize retrograde signalling pathways therefore have similar general effects on cellular redox state and gene expression. This article is part of the themed issue ‘Enhancing photosynthesis in crop plants: targets for improvement’. PMID:28808105

  12. Mechanistic logic underlying the axonal transport of cytosolic proteins

    PubMed Central

    Scott, David A.; Das, Utpal; Tang, Yong; Roy, Subhojit

    2011-01-01

    Proteins vital to presynaptic function are synthesized in the neuronal perikarya and delivered into synapses via two modes of axonal transport. While membrane-anchoring proteins are conveyed in fast axonal transport via motor-driven vesicles, cytosolic proteins travel in slow axonal transport; via mechanisms that are poorly understood. We found that in cultured axons, populations of cytosolic proteins tagged to photoactivable-GFP (PA-GFP) move with a slow motor-dependent anterograde bias; distinct from vesicular-trafficking or diffusion of untagged PA-GFP. The overall bias is likely generated by an intricate particle-kinetics involving transient assembly and short-range vectorial spurts. In-vivo biochemical studies reveal that cytosolic proteins are organized into higher-order structures within axon-enriched fractions that are largely segregated from vesicles. Data-driven biophysical modeling best predicts a scenario where soluble molecules dynamically assemble into mobile supra-molecular structures. We propose a model where cytosolic proteins are transported by dynamically assembling into multi-protein complexes that are directly/indirectly conveyed by motors. PMID:21555071

  13. Differential expression of CPKs and cytosolic Ca2+ variation in resistant and susceptible apple cultivars (Malus x domestica) in response to the pathogen Erwinia amylovora and mechanical wounding.

    PubMed

    Kanchiswamy, Chidananda Nagamangala; Mohanta, Tapan Kumar; Capuzzo, Andrea; Occhipinti, Andrea; Verrillo, Francesca; Maffei, Massimo E; Malnoy, Mickael

    2013-11-05

    Plant calcium (Ca2+) signals are involved in a wide array of intracellular signalling pathways following pathogen invasion. Ca2+-binding sensory proteins such as Ca2+-dependent protein kinases (CPKs) have been predicted to mediate signalling following Ca2+ influx after pathogen infection. However, to date this prediction has remained elusive. We conducted a genome-wide identification of the Malus x domestica CPK (MdCPK) gene family and identified 30 CPK genes. Comparative phylogenetic analysis of Malus CPKs with CPKs of Arabidopsis thaliana (AtCPKs), Oryza sativa (OsCPKs), Populous trichocarpa (PtCPKs) and Zea mays (ZmCPKs) revealed four different groups. From the phylogenetic tree, we found that MdCPKs are closely related to AtCPKs and PtCPKs rather than OsCPKs and ZmCPKs, indicating their dicot-specific origin. Furthermore, comparative quantitative real time PCR and intracellular cytosolic calcium ([Ca2+]cyt) analysis were carried out on fire blight resistant and susceptible M. x domestica apple cultivars following infection with a pathogen (Erwinia amylovora) and/or mechanical damage. Calcium analysis showed an increased [Ca2+]cyt over time in resistant cultivars as compared to susceptible cultivars. Gene expression studies showed that 11 out of the 30 MdCPKs were differentially expressed following pathogen infection. We studied the genome-wide analysis of MdCPK gene family in Malus x domestica and analyzed their differential gene expression along with cytosolic calcium variation upon pathogen infection. There was a striking difference in MdCPKs gene expressions and [Ca2+]cyt variations between resistant and susceptible M. x domestica cultivars in response to E. amylovora and mechanical wounding. Our genomic and bioinformatic analysis provided an important insight about the role of MdCPKs in modulating defence responses in susceptible and resistant apple cultivars. It also provided further information on early signalling and downstream signalling cascades in

  14. Differential expression of CPKs and cytosolic Ca2+ variation in resistant and susceptible apple cultivars (Malus x domestica) in response to the pathogen Erwinia amylovora and mechanical wounding

    PubMed Central

    2013-01-01

    Background Plant calcium (Ca2+) signals are involved in a wide array of intracellular signalling pathways following pathogen invasion. Ca2+-binding sensory proteins such as Ca2+-dependent protein kinases (CPKs) have been predicted to mediate signalling following Ca2+ influx after pathogen infection. However, to date this prediction has remained elusive. Results We conducted a genome-wide identification of the Malus x domestica CPK (MdCPK) gene family and identified 30 CPK genes. Comparative phylogenetic analysis of Malus CPKs with CPKs of Arabidopsis thaliana (AtCPKs), Oryza sativa (OsCPKs), Populous trichocarpa (PtCPKs) and Zea mays (ZmCPKs) revealed four different groups. From the phylogenetic tree, we found that MdCPKs are closely related to AtCPKs and PtCPKs rather than OsCPKs and ZmCPKs, indicating their dicot-specific origin. Furthermore, comparative quantitative real time PCR and intracellular cytosolic calcium ([Ca2+]cyt) analysis were carried out on fire blight resistant and susceptible M. x domestica apple cultivars following infection with a pathogen (Erwinia amylovora) and/or mechanical damage. Calcium analysis showed an increased [Ca2+]cyt over time in resistant cultivars as compared to susceptible cultivars. Gene expression studies showed that 11 out of the 30 MdCPKs were differentially expressed following pathogen infection. Conclusions We studied the genome-wide analysis of MdCPK gene family in Malus x domestica and analyzed their differential gene expression along with cytosolic calcium variation upon pathogen infection. There was a striking difference in MdCPKs gene expressions and [Ca2+]cyt variations between resistant and susceptible M. x domestica cultivars in response to E. amylovora and mechanical wounding. Our genomic and bioinformatic analysis provided an important insight about the role of MdCPKs in modulating defence responses in susceptible and resistant apple cultivars. It also provided further information on early signalling and

  15. Assessing metal bioavailability from cytosolic metal concentrations in natural populations of aquatic insects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cain, D.J.; Luoma, S.N.; Hornberger, M.I.

    1995-12-31

    Metals occur in a variety of forms in aquatic insects. Some of these forms may be irrelevant to effects of metals on the animal, and might actually obscure links between tissue residues, metal bioavailability and toxicity (e.g. metals sorbed to external body parts, or associated with unpurged gut contents). Cytosolic metal may be a sensitive indicator of metal bioavailability and toxicity. The authors determined cytosolic metal concentrations in natural populations of the caddisfly (Trichoptera) Hydropsyche occidentalis. Cytosolic metal concentrations were compared to whole-body and sediment metal concentrations. Samples were collected along a contamination gradient over a 380 km reach ofmore » the Clark Fork River, Montana, in August of 1992 and 1993. Concentrations of cytosolic Cd, Cu, and Pb correlated with concentrations of these metals in the whole body within years. Cytosolic metals also correlated with levels of sediment contamination except at the most contaminated sites where metal concentrations in the cytosol were lower relative to sediments. The availability of Pb appeared to be low since the cytosolic Pb fraction represented less than 6% of the total Pb body burden. The cytosol contained appreciably higher proportions of the total Cd and Cu body burden than Pb. The cytosolic fraction of Cd and Cu also increased significantly between 1992 and 1993. This change reflected an increase in Cd and Cu exposure in 1993, apparently due to the mobilization of metals during higher river flows that year. The shift in cytosolic metal fractions demonstrates the dynamic nature of metal partitioning in animals in nature. These shifts can be influenced by hydrologic and geochemical conditions, as well as biological processes.« less

  16. Dashboard for Analyzing Ubiquitous Learning Log

    ERIC Educational Resources Information Center

    Lkhagvasuren, Erdenesaikhan; Matsuura, Kenji; Mouri, Kousuke; Ogata, Hiroaki

    2016-01-01

    Mobile and ubiquitous technologies have been applied to a wide range of learning fields such as science, social science, history and language learning. Many researchers have been investigating the development of ubiquitous learning environments; nevertheless, to date, there have not been enough research works related to the reflection, analysis…

  17. Effect of aniracetam on phosphatidylinositol transfer protein alpha in cytosolic and plasma membrane fractions of astrocytes subjected to simulated ischemia in vitro.

    PubMed

    Gabryel, Bozena; Chalimoniuk, Małgorzata; Małecki, Andrzej; Strosznajder, Joanna B

    2005-01-01

    Brain ischemia affects phosphoinositide metabolism and the level of lipid-derived second messengers. Phosphatidylinositol transfer proteins (PI-PTs) are responsible for the transport of phosphatidylinositol (PI) and other phospholipids through membranes. Isoform of PI-TPs (PI-TPalpha) is an essential component in ensuring substrate supply for phospholipase C (PLC). The current study was conducted to examine potential effect of aniracetam on PI-TPalpha expression and to characterize the PI-TPalpha isoform distribution between membrane and cytosol fractions of astrocytes exposed to simulated ischemia in vitro. After 8 h period of ischemia, the level of PI-TPalpha was significantly higher in cytosol (by about 28%) as well as in membrane fraction (by about 80%) in comparison with control. We have found that aniracetam treatment of astrocytes in normoxia significantly increased the level of PI-TPalpha in membrane fraction with a maximal effect at 0.1 microM concentration of aniracetam (by about 195% of control). In membrane fractions of ischemic cells, aniracetam increased PI-TPalpha expression in a concentration-dependent manner. In ischemic cells, aniracetam (10 microM) has elevated PI-TPalpha expression up to 155% and 428% in cytosolic and membrane fractions in comparison with ischemic untreated cells, respectively. The study has shown that aniracetam significantly activates PI-TPalpha in cell membrane fraction and this effect might be connected with previously described activation of MAP kinase cascade.

  18. Developmental and environmental regulation of the Nicotiana plumbaginifolia cytosolic Cu/Zn-superoxide dismutase promoter in transgenic tobacco.

    PubMed Central

    Hérouart, D; Van Montagu, M; Inzé, D

    1994-01-01

    Superoxide dismutases (SODs) play a key role in the cellular defense against reactive oxygen species. To study the transcriptional regulation at the cellular level, the promoter of the Nicotiana plumbaginifolia cytosolic gene encoding Cu/ZnSOD (SODCc) was fused to the beta-glucuronidase (GUS) reporter gene (gusA) and analyzed in transgenic tobacco plants. The promoter was highly active in vascular bundles of leaves and stems, where it is confined to phloem cells. In flowers, GUS activity was detected in ovules and pollen grains, in pigmented tissues of petals, and in vascular tissue of ovaries and anthers. In response to treatment with the superoxide-generating herbicide paraquat, very strong GUS staining was observed in photosynthetically active cells of leaves and in some epidermal root cells of seedlings. The expression of the SODCc-gusA was also induced in seedlings after heat shock and chilling and after treatment with sulfhydryl antioxidants such as reduced glutathione and cysteine. It is postulated that SODCc expression is directly linked to a cell-specific production of excess superoxide radicals in the cytosol. PMID:8165260

  19. Developmental and environmental regulation of the Nicotiana plumbaginifolia cytosolic Cu/Zn-superoxide dismutase promoter in transgenic tobacco.

    PubMed

    Hérouart, D; Van Montagu, M; Inzé, D

    1994-03-01

    Superoxide dismutases (SODs) play a key role in the cellular defense against reactive oxygen species. To study the transcriptional regulation at the cellular level, the promoter of the Nicotiana plumbaginifolia cytosolic gene encoding Cu/ZnSOD (SODCc) was fused to the beta-glucuronidase (GUS) reporter gene (gusA) and analyzed in transgenic tobacco plants. The promoter was highly active in vascular bundles of leaves and stems, where it is confined to phloem cells. In flowers, GUS activity was detected in ovules and pollen grains, in pigmented tissues of petals, and in vascular tissue of ovaries and anthers. In response to treatment with the superoxide-generating herbicide paraquat, very strong GUS staining was observed in photosynthetically active cells of leaves and in some epidermal root cells of seedlings. The expression of the SODCc-gusA was also induced in seedlings after heat shock and chilling and after treatment with sulfhydryl antioxidants such as reduced glutathione and cysteine. It is postulated that SODCc expression is directly linked to a cell-specific production of excess superoxide radicals in the cytosol.

  20. Reciprocal Efficiency of RNQ1 and Polyglutamine Detoxification in the Cytosol and Nucleus

    PubMed Central

    Douglas, Peter M.; Summers, Daniel W.; Ren, Hong-Yu

    2009-01-01

    Onset of proteotoxicity is linked to change in the subcellular location of proteins that cause misfolding diseases. Yet, factors that drive changes in disease protein localization and the impact of residence in new surroundings on proteotoxicity are not entirely clear. To address these issues, we examined aspects of proteotoxicity caused by Rnq1-green fluorescent protein (GFP) and a huntingtin's protein exon-1 fragment with an expanded polyglutamine tract (Htt-103Q), which is dependent upon the intracellular presence of [RNQ+] prions. Increasing heat-shock protein 40 chaperone activity before Rnq1-GFP expression, shifted Rnq1-GFP aggregation from the cytosol to the nucleus. Assembly of Rnq1-GFP into benign amyloid-like aggregates was more efficient in the nucleus than cytosol and nuclear accumulation of Rnq1-GFP correlated with reduced toxicity. [RNQ+] prions were found to form stable complexes with Htt-103Q, and nuclear Rnq1-GFP aggregates were capable of sequestering Htt-103Q in the nucleus. On accumulation in the nucleus, conversion of Htt-103Q into SDS-resistant aggregates was dramatically reduced and Htt-103Q toxicity was exacerbated. Alterations in activity of molecular chaperones, the localization of intracellular interaction partners, or both can impact the cellular location of disease proteins. This, in turn, impacts proteotoxicity because the assembly of proteins to a benign state occurs with different efficiencies in the cytosol and nucleus. PMID:19656852

  1. Expression and Chloroplast Targeting of Cholesterol Oxidase in Transgenic Tobacco Plants

    PubMed Central

    Corbin, David R.; Grebenok, Robert J.; Ohnmeiss, Thomas E.; Greenplate, John T.; Purcell, John P.

    2001-01-01

    Cholesterol oxidase represents a novel type of insecticidal protein with potent activity against the cotton boll weevil (Anthonomus grandis grandis Boheman). We transformed tobacco (Nicotiana tabacum) plants with the cholesterol oxidase choM gene and expressed cytosolic and chloroplast-targeted versions of the ChoM protein. Transgenic leaf tissues expressing cholesterol oxidase exerted insecticidal activity against boll weevil larvae. Our results indicate that cholesterol oxidase can metabolize phytosterols in vivo when produced cytosolically or when targeted to chloroplasts. The transgenic plants exhibiting cytosolic expression accumulated low levels of saturated sterols known as stanols, and displayed severe developmental aberrations. In contrast, the transgenic plants expressing chloroplast-targeted cholesterol oxidase maintained a greater accumulation of stanols, and appeared phenotypically and developmentally normal. These results are discussed within the context of plant sterol distribution and metabolism. PMID:11457962

  2. RNA interference targeting cytosolic NADP(+)-dependent isocitrate dehydrogenase exerts anti-obesity effect in vitro and in vivo.

    PubMed

    Nam, Woo Suk; Park, Kwon Moo; Park, Jeen-Woo

    2012-08-01

    A metabolic abnormality in lipid biosynthesis is frequently associated with obesity and hyperlipidemia. Nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) is an essential reducing equivalent for numerous enzymes required in fat and cholesterol biosynthesis. Cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) has been proposed as a key enzyme for supplying cytosolic NADPH. We report here that knockdown of IDPc expression by Ribonucleic acid (RNA) interference (RNAi) inhibited adipocyte differentiation and lipogenesis in 3T3-L1 preadipocytes and mice. Attenuated IDPc expression by IDPc small interfering RNA (siRNA) resulted in a reduction of differentiation and triglyceride level and adipogenic protein expression as well as suppression of glucose uptake in cultured adipocytes. In addition, the attenuation of Nox activity and Reactive oxygen species (ROS) generation accompanied with knockdown of IDPc was associated with inhibition of adipogenesis and lipogenesis. The loss of body weight and the reduction of triglyceride level were also observed in diet-induced obese mice transduced with IDPc short-hairpin (shRNA). Taken together, the inhibiting effect of RNAi targeting IDPc on adipogenesis and lipid biosynthesis is considered to be of therapeutic value in the treatment and prevention of obesity and obesity-associated metabolic syndrome. © 2012 Elsevier B.V. All rights reserved.

  3. An integrated "omics" approach to the characterization of maize (Zea mays L.) mutants deficient in the expression of two genes encoding cytosolic glutamine synthetase.

    PubMed

    Amiour, Nardjis; Imbaud, Sandrine; Clément, Gilles; Agier, Nicolas; Zivy, Michel; Valot, Benoît; Balliau, Thierry; Quilleré, Isabelle; Tercé-Laforgue, Thérèse; Dargel-Graffin, Céline; Hirel, Bertrand

    2014-11-20

    To identify the key elements controlling grain production in maize, it is essential to have an integrated view of the responses to alterations in the main steps of nitrogen assimilation by modification of gene expression. Two maize mutant lines (gln1.3 and gln1.4), deficient in two genes encoding cytosolic glutamine synthetase, a key enzyme involved in nitrogen assimilation, were previously characterized by a reduction of kernel size in the gln1.4 mutant and by a reduction of kernel number in the gln1.3 mutant. In this work, the differences in leaf gene transcripts, proteins and metabolite accumulation in gln1.3 and gln1.4 mutants were studied at two key stages of plant development, in order to identify putative candidate genes, proteins and metabolic pathways contributing on one hand to the control of plant development and on the other to grain production. The most interesting finding in this study is that a number of key plant processes were altered in the gln1.3 and gln1.4 mutants, including a number of major biological processes such as carbon metabolism and transport, cell wall metabolism, and several metabolic pathways and stress responsive and regulatory elements. We also found that the two mutants share common or specific characteristics across at least two or even three of the "omics" considered at the vegetative stage of plant development, or during the grain filling period. This is the first comprehensive molecular and physiological characterization of two cytosolic glutamine synthetase maize mutants using a combined transcriptomic, proteomic and metabolomic approach. We find that the integration of the three "omics" procedures is not straight forward, since developmental and mutant-specific levels of regulation seem to occur from gene expression to metabolite accumulation. However, their potential use is discussed with a view to improving our understanding of nitrogen assimilation and partitioning and its impact on grain production.

  4. Cytosolic delivery: Just passing through

    NASA Astrophysics Data System (ADS)

    Sánchez-Navarro, Macarena; Teixidó, Meritxell; Giralt, Ernest

    2017-08-01

    Intracellular protein delivery has been a major challenge in the field of cell biology for decades. Engineering such delivery is a key step in the development of protein- and antibody-based therapeutics. Now, two different approaches that enable the delivery of antibodies and antibody fragments into the cytosol have been developed.

  5. Privacy-related context information for ubiquitous health.

    PubMed

    Seppälä, Antto; Nykänen, Pirkko; Ruotsalainen, Pekka

    2014-03-11

    Ubiquitous health has been defined as a dynamic network of interconnected systems. A system is composed of one or more information systems, their stakeholders, and the environment. These systems offer health services to individuals and thus implement ubiquitous computing. Privacy is the key challenge for ubiquitous health because of autonomous processing, rich contextual metadata, lack of predefined trust among participants, and the business objectives. Additionally, regulations and policies of stakeholders may be unknown to the individual. Context-sensitive privacy policies are needed to regulate information processing. Our goal was to analyze privacy-related context information and to define the corresponding components and their properties that support privacy management in ubiquitous health. These properties should describe the privacy issues of information processing. With components and their properties, individuals can define context-aware privacy policies and set their privacy preferences that can change in different information-processing situations. Scenarios and user stories are used to analyze typical activities in ubiquitous health to identify main actors, goals, tasks, and stakeholders. Context arises from an activity and, therefore, we can determine different situations, services, and systems to identify properties for privacy-related context information in information-processing situations. Privacy-related context information components are situation, environment, individual, information technology system, service, and stakeholder. Combining our analyses and previously identified characteristics of ubiquitous health, more detailed properties for the components are defined. Properties define explicitly what context information for different components is needed to create context-aware privacy policies that can control, limit, and constrain information processing. With properties, we can define, for example, how data can be processed or how components

  6. Microcompartmentation of cytosolic aldolase by interaction with the actin cytoskeleton in Arabidopsis.

    PubMed

    Garagounis, Constantine; Kostaki, Kalliopi-Ioanna; Hawkins, Tim J; Cummins, Ian; Fricker, Mark D; Hussey, Patrick J; Hetherington, Alistair M; Sweetlove, Lee J

    2017-02-01

    Evidence is accumulating for molecular microcompartments formed when proteins interact in localized domains with the cytoskeleton, organelle surfaces, and intracellular membranes. To understand the potential functional significance of protein microcompartmentation in plants, we studied the interaction of the glycolytic enzyme fructose bisphosphate aldolase with actin in Arabidopsis thaliana. Homology modelling of a major cytosolic isozyme of aldolase, FBA8, suggested that the tetrameric holoenzyme has two actin binding sites and could therefore act as an actin-bundling protein, as was reported for animal aldolases. This was confirmed by in vitro measurements of an increase in viscosity of F-actin polymerized in the presence of recombinant FBA8. Simultaneously, interaction with F-actin caused non-competitive inhibition of aldolase activity. We did not detect co-localization of an FBA8-RFP fusion protein, expressed in an fba8-knockout background, with the actin cytoskeleton using confocal laser-scanning microscopy. However, we did find evidence for a low level of interaction using FRET-FLIM analysis of FBA8-RFP co-expressed with the actin-binding protein GFP-Lifeact. Furthermore, knockout of FBA8 caused minor alterations of guard cell actin cytoskeleton morphology and resulted in a reduced rate of stomatal closure in response to decreased humidity. We conclude that cytosolic aldolase can be microcompartmented in vivo by interaction with the actin cytoskeleton and may subtly modulate guard cell behaviour as a result. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Organization of cytoskeleton controls the changes in cytosolic calcium of cold-shocked Nicotiana plumbaginifolia protoplasts.

    PubMed

    Mazars, C; Thion, L; Thuleau, P; Graziana, A; Knight, M R; Moreau, M; Ranjeva, R

    1997-11-01

    Using Nicotiana plumbaginifolia constitutively expressing the recombinant bioluminescent calcium indicator, aequorin, it has been previously demonstrated that plant cells react to cold-shock by an immediate rise in cytosolic calcium. Such an opportune system has been exploited to address the regulatory pathway involved in the calcium response. For this purpose, we have used protoplasts derived from N. plumbaginifolia leaves that behave as the whole plant but with a better reproducibility. By both immunodetecting cytoskeletal components on membrane ghosts and measuring the relative change in cytosolic calcium, we demonstrate that the organization of the cytoskeleton has profound influences on the calcium response. The disruption of the microtubule meshwork by various active drugs, such as colchicin, oryzalin and vinblastin, leads to an important increase in the cytosolic calcium (up to 400 nM) in cold-shocked protoplasts over control. beta-Lumicolchicin, an inactive analogue of colchicin, is ineffective either on cytoplasmic calcium increase or on microtubule organization. A microfilament disrupting drug, cytochalasin D, exerts a slight stimulatory effect, whereas the simultaneous disruption of microtubule and microfilament meshworks results in a dramatic increase in the calcium response to cold-shock. The results described in the present paper illustrate the role of the intracellular organization and, more specifically, the role of cytoskeleton in controlling the intensity of calcium response to an extracellular stimulus.

  8. A wearable context aware system for ubiquitous healthcare.

    PubMed

    Kang, Dong-Oh; Lee, Hyung-Jik; Ko, Eun-Jung; Kang, Kyuchang; Lee, Jeunwoo

    2006-01-01

    Recent developments of information technologies are leading the advent of the era of ubiquitous healthcare, which means healthcare services at any time and at any places. The ubiquitous healthcare service needs a wearable system for more continual measurement of biological signals of a user, which gives information of the user from wearable sensors. In this paper, we propose a wearable context aware system for ubiquitous healthcare, and its systematic design process of a ubiquitous healthcare service. Some wearable sensor systems are introduced with Zigbee communication. We develop a context aware framework to send information from wearable sensors to healthcare service entities as a middleware to solve the interoperability problem between sensor makers and healthcare service providers. And, we propose a systematic process of design of ubiquitous healthcare services with the context aware framework. In order to show the feasibility of the proposed system, some application examples are given, which are applied to remote monitoring, and a self check service.

  9. Integrating Collaborative and Decentralized Models to Support Ubiquitous Learning

    ERIC Educational Resources Information Center

    Barbosa, Jorge Luis Victória; Barbosa, Débora Nice Ferrari; Rigo, Sandro José; de Oliveira, Jezer Machado; Rabello, Solon Andrade, Jr.

    2014-01-01

    The application of ubiquitous technologies in the improvement of education strategies is called Ubiquitous Learning. This article proposes the integration between two models dedicated to support ubiquitous learning environments, called Global and CoolEdu. CoolEdu is a generic collaboration model for decentralized environments. Global is an…

  10. Signaling in the plant cytosol: cysteine or sulfide?

    PubMed

    Gotor, Cecilia; Laureano-Marín, Ana M; Moreno, Inmaculada; Aroca, Ángeles; García, Irene; Romero, Luis C

    2015-10-01

    Cysteine (Cys) is the first organic compound containing reduced sulfur that is synthesized in the last stage of plant photosynthetic assimilation of sulfate. It is a very important metabolite not only because it is crucial for the structure, function and regulation of proteins but also because it is the precursor molecule of an enormous number of sulfur-containing metabolites essential for plant health and development. The biosynthesis of Cys is accomplished by the sequential reaction of serine acetyltransferase (SAT) and O-acetylserine(thiol)synthase (OASTL). In Arabidopsis thaliana, the analysis of specific mutants of members of the SAT and OASTL families has demonstrated that the cytosol is the compartment where the bulk of Cys synthesis takes place and that the cytosolic OASTL enzyme OAS-A1 is the responsible enzyme. Another member of the OASTL family is DES1, a novel L-cysteine desulfhydrase that catalyzes the desulfuration of Cys to produce sulfide, thus acting in a manner opposite to that of OAS-A1. Detailed studies of the oas-a1 and des1 null mutants have revealed the involvement of the DES1 and OAS-A1 proteins in coordinate regulation of Cys homeostasis and the generation of sulfide in the cytosol for signaling purposes. Thus, the levels of Cys in the cytosol strongly affect plant responses to both abiotic and biotic stress conditions, while sulfide specifically generated from the degradation of Cys negatively regulates autophagy induced in different situations. In conclusion, modulation of the levels of Cys and sulfide is likely critical for plant performance.

  11. LeftyA sensitive cytosolic pH regulation and glycolytic flux in Ishikawa human endometrial cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salker, Madhuri S.; Zhou, Yuetao; Singh, Yogesh

    2015-05-08

    Objective: LeftyA, a powerful regulator of stemness, embryonic differentiation, and reprogramming of cancer cells, counteracts cell proliferation and tumor growth. Key properties of tumor cells include enhanced glycolytic flux, which is highly sensitive to cytosolic pH and thus requires export of H{sup +} and lactate. H{sup +} extrusion is in part accomplished by Na{sup +}/H{sup +} exchangers, such as NHE1. An effect of LeftyA on transport processes has, however, never been reported. The present study thus explored whether LeftyA modifies regulation of cytosolic pH (pHi) in Ishikawa cells, a well differentiated endometrial carcinoma cell model. Methods: NHE1 transcript levels weremore » determined by qRT-PCR, NHE1 protein abundance quantified by Western blotting, pH{sub i} estimated utilizing (2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein [BCECF] fluorescence, Na{sup +}/H{sup +} exchanger activity from Na{sup +} dependent realkalinization after an ammonium pulse, and lactate concentration in the supernatant utilizing an enzymatic assay and subsequent colorimetry. Results: A 2 h treatment with LeftyA (8 ng/ml) significantly decreased NHE1 transcript levels (by 99.6%), NHE1 protein abundance (by 71%), Na{sup +}/H{sup +} exchanger activity (by 55%), pHi (from 7.22 ± 0.02 to 7.05 ± 0.02), and lactate release (by 41%). Conclusions: LeftyA markedly down-regulates NHE1 expression, Na{sup +}/H{sup +} exchanger activity, pHi, and lactate release in Ishikawa cells. Those effects presumably contribute to cellular reprogramming and growth inhibition. - Highlights: • LeftyA, an inhibitor of tumor growth, reduces Na{sup +}/H{sup +}-exchanger activity by 55%. • LeftyA decreases NHE1 transcripts by 99.6% and NHE1 protein by 71%. • LeftyA decreases cytosolic pH from 7.22 ± 0.02 to 7.05 ± 0.02. • Cytosolic acidification by Lefty A decreases glycolysis by 41%. • Cytosolic acidification by Lefty A compromises energy production of tumor cells.« less

  12. The Construction of an Ontology-Based Ubiquitous Learning Grid

    ERIC Educational Resources Information Center

    Liao, Ching-Jung; Chou, Chien-Chih; Yang, Jin-Tan David

    2009-01-01

    The purpose of this study is to incorporate adaptive ontology into ubiquitous learning grid to achieve seamless learning environment. Ubiquitous learning grid uses ubiquitous computing environment to infer and determine the most adaptive learning contents and procedures in anytime, any place and with any device. To achieve the goal, an…

  13. Privacy-Related Context Information for Ubiquitous Health

    PubMed Central

    Nykänen, Pirkko; Ruotsalainen, Pekka

    2014-01-01

    Background Ubiquitous health has been defined as a dynamic network of interconnected systems. A system is composed of one or more information systems, their stakeholders, and the environment. These systems offer health services to individuals and thus implement ubiquitous computing. Privacy is the key challenge for ubiquitous health because of autonomous processing, rich contextual metadata, lack of predefined trust among participants, and the business objectives. Additionally, regulations and policies of stakeholders may be unknown to the individual. Context-sensitive privacy policies are needed to regulate information processing. Objective Our goal was to analyze privacy-related context information and to define the corresponding components and their properties that support privacy management in ubiquitous health. These properties should describe the privacy issues of information processing. With components and their properties, individuals can define context-aware privacy policies and set their privacy preferences that can change in different information-processing situations. Methods Scenarios and user stories are used to analyze typical activities in ubiquitous health to identify main actors, goals, tasks, and stakeholders. Context arises from an activity and, therefore, we can determine different situations, services, and systems to identify properties for privacy-related context information in information-processing situations. Results Privacy-related context information components are situation, environment, individual, information technology system, service, and stakeholder. Combining our analyses and previously identified characteristics of ubiquitous health, more detailed properties for the components are defined. Properties define explicitly what context information for different components is needed to create context-aware privacy policies that can control, limit, and constrain information processing. With properties, we can define, for example, how

  14. Contributions of two cytosolic glutamine synthetase isozymes to ammonium assimilation in Arabidopsis roots

    PubMed Central

    Konishi, Noriyuki; Ishiyama, Keiki; Beier, Marcel Pascal; Inoue, Eri; Kanno, Keiichi; Yamaya, Tomoyuki; Takahashi, Hideki

    2017-01-01

    Abstract Glutamine synthetase (GS) catalyzes a reaction that incorporates ammonium into glutamate and yields glutamine in the cytosol and chloroplasts. Although the enzymatic characteristics of the GS1 isozymes are well known, their physiological functions in ammonium assimilation and regulation in roots remain unclear. In this study we show evidence that two cytosolic GS1 isozymes (GLN1;2 and GLN1;3) contribute to ammonium assimilation in Arabidopsis roots. Arabidopsis T-DNA insertion lines for GLN1;2 and GLN1;3 (i.e. gln1;2 and gln1;3 single-mutants), the gln1;2:gln1;3 double-mutant, and the wild-type accession (Col-0) were grown in hydroponic culture with variable concentrations of ammonium to compare their growth, and their content of nitrogen, carbon, ammonium, and amino acids. GLN1;2 and GLN1;3 promoter-dependent green fluorescent protein was observed under conditions with or without ammonium supply. Loss of GLN1;2 caused significant suppression of plant growth and glutamine biosynthesis under ammonium-replete conditions. In contrast, loss of GLN1;3 caused slight defects in growth and Gln biosynthesis that were only visible based on a comparison of the gln1;2 single- and gln1;2:gln1;3 double-mutants. GLN1;2, being the most abundantly expressed GS1 isozyme, markedly increased following ammonium supply and its promoter activity was localized at the cortex and epidermis, while GLN1;3 showed only low expression at the pericycle, suggesting their different physiological contributions to ammonium assimilation in roots. The GLN1;2 promoter-deletion analysis identified regulatory sequences required for controlling ammonium-responsive gene expression of GLN1;2 in Arabidopsis roots. These results shed light on GLN1 isozyme-specific regulatory mechanisms in Arabidopsis that allow adaptation to an ammonium-replete environment. PMID:28007952

  15. Cytosolic Na+ Controls an Epithelial Na+ Channel Via the Go Guanine Nucleotide-Binding Regulatory Protein

    NASA Astrophysics Data System (ADS)

    Komwatana, P.; Dinudom, A.; Young, J. A.; Cook, D. I.

    1996-07-01

    In tight Na+-absorbing epithelial cells, the rate of Na+ entry through amiloride-sensitive apical membrane Na+ channels is matched to basolateral Na+ extrusion so that cell Na+ concentration and volume remain steady. Control of this process by regulation of apical Na+ channels has been attributed to changes in cytosolic Ca2+ concentration or pH, secondary to changes in cytosolic Na+ concentration, although cytosolic Cl- seems also to be involved. Using mouse mandibular gland duct cells, we now demonstrate that increasing cytosolic Na+ concentration inhibits apical Na+ channels independent of changes in cytosolic Ca2+, pH, or Cl-, and the effect is blocked by GDP-β -S, pertussis toxin, and antibodies against the α -subunits of guanine nucleotide-binding regulatory proteins (Go). In contrast, the inhibitory effect of cytosolic anions is blocked by antibodies to inhibitory guanine nucleotide-binding regulatory proteins (Gi1/Gi2. It thus appears that apical Na+ channels are regulated by Go and Gi proteins, the activities of which are controlled, respectively, by cytosolic Na+ and Cl-.

  16. Excessive Cytosolic DNA Fragments as a Potential Trigger of Graves’ Disease: An Encrypted Message Sent by Animal Models

    PubMed Central

    Luo, Yuqian; Yoshihara, Aya; Oda, Kenzaburo; Ishido, Yuko; Suzuki, Koichi

    2016-01-01

    Graves’ hyperthyroidism is caused by autoantibodies directed against the thyroid-stimulating hormone receptor (TSHR) that mimic the action of TSH. The establishment of Graves’ hyperthyroidism in experimental animals has proven to be an important approach to dissect the mechanisms of self-tolerance breakdown that lead to the production of thyroid-stimulating TSHR autoantibodies (TSAbs). “Shimojo’s model” was the first successful Graves’ animal model, wherein immunization with fibroblasts cells expressing TSHR and a major histocompatibility complex (MHC) class II molecule, but not either alone, induced TSAb production in AKR/N (H-2k) mice. This model highlights the importance of coincident MHC class II expression on TSHR-expressing cells in the development of Graves’ hyperthyroidism. These data are also in agreement with the observation that Graves’ thyrocytes often aberrantly express MHC class II antigens via mechanisms that remain unclear. Our group demonstrated that cytosolic self-genomic DNA fragments derived from sterile injured cells can induce aberrant MHC class II expression and production of multiple inflammatory cytokines and chemokines in thyrocytes in vitro, suggesting that severe cell injury may initiate immune responses in a way that is relevant to thyroid autoimmunity mediated by cytosolic DNA signaling. Furthermore, more recent successful Graves’ animal models were primarily established by immunizing mice with TSHR-expressing plasmids or adenovirus. In these models, double-stranded DNA vaccine contents presumably exert similar immune-activating effect in cells at inoculation sites and thus might pave the way toward successful Graves’ animal models. This review focuses on evidence suggesting that cell injury-derived self-DNA fragments could act as Graves’ disease triggers. PMID:27895620

  17. CILT2000: Ubiquitous Computing--Spanning the Digital Divide.

    ERIC Educational Resources Information Center

    Tinker, Robert; Vahey, Philip

    2002-01-01

    Discusses the role of ubiquitous and handheld computers in education. Summarizes the contributions of the Center for Innovative Learning Technologies (CILT) and describes the ubiquitous computing sessions at the CILT2000 Conference. (Author/YDS)

  18. Cytosolic calcium rises and related events in ergosterol-treated Nicotiana cells.

    PubMed

    Vatsa, Parul; Chiltz, Annick; Luini, Estelle; Vandelle, Elodie; Pugin, Alain; Roblin, Gabriel

    2011-07-01

    The typical fungal membrane component ergosterol was previously shown to trigger defence responses and protect plants against pathogens. Most of the elicitors mobilize the second messenger calcium, to trigger plant defences. We checked the involvement of calcium in response to ergosterol using Nicotiana plumbaginifolia and Nicotiana tabacum cv Xanthi cells expressing apoaequorin in the cytosol. First, it was verified if ergosterol was efficient in these cells inducing modifications of proton fluxes and increased expression of defence-related genes. Then, it was shown that ergosterol induced a rapid and transient biphasic increase of free [Ca²⁺](cyt) which intensity depends on ergosterol concentration in the range 0.002-10 μM. Among sterols, this calcium mobilization was specific for ergosterol and, ergosterol-induced pH and [Ca²⁺](cyt) changes were specifically desensitized after two subsequent applications of ergosterol. Specific modulators allowed elucidating some events in the signalling pathway triggered by ergosterol. The action of BAPTA, LaCl₃, nifedipine, verapamil, neomycin, U73122 and ruthenium red suggested that the first phase was linked to calcium influx from external medium which subsequently triggered the second phase linked to calcium release from internal stores. The calcium influx and the [Ca²⁺](cyt) increase depended on upstream protein phosphorylation. The extracellular alkalinization and ROS production depended on calcium influx but, the ergosterol-induced MAPK activation was calcium-independent. ROS were not involved in cytosolic calcium rise as described in other models, indicating that ROS do not systematically participate in the amplification of calcium signalling. Interestingly, ergosterol-induced ROS production is not linked to cell death and ergosterol does not induce any calcium elevation in the nucleus. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  19. Zea mays Annexins Modulate Cytosolic Free Ca2+ and Generate a Ca2+-Permeable Conductance[W

    PubMed Central

    Laohavisit, Anuphon; Mortimer, Jennifer C.; Demidchik, Vadim; Coxon, Katy M.; Stancombe, Matthew A.; Macpherson, Neil; Brownlee, Colin; Hofmann, Andreas; Webb, Alex A.R.; Miedema, Henk; Battey, Nicholas H.; Davies, Julia M.

    2009-01-01

    Regulation of reactive oxygen species and cytosolic free calcium ([Ca2+]cyt) is central to plant function. Annexins are small proteins capable of Ca2+-dependent membrane binding or membrane insertion. They possess structural motifs that could support both peroxidase activity and calcium transport. Here, a Zea mays annexin preparation caused increases in [Ca2+]cyt when added to protoplasts of Arabidopsis thaliana roots expressing aequorin. The pharmacological profile was consistent with annexin activation (at the extracellular plasma membrane face) of Arabidopsis Ca2+-permeable nonselective cation channels. Secreted annexins could therefore modulate Ca2+ influx. As maize annexins occur in the cytosol and plasma membrane, they were incorporated at the intracellular face of lipid bilayers designed to mimic the plasma membrane. Here, they generated an instantaneously activating Ca2+-permeable conductance at mildly acidic pH that was sensitive to verapamil and Gd3+ and had a Ca2+-to-K+ permeability ratio of 0.36. These results suggest that cytosolic annexins create a Ca2+ influx pathway directly, particularly during stress responses involving acidosis. A maize annexin preparation also demonstrated in vitro peroxidase activity that appeared independent of heme association. In conclusion, this study has demonstrated that plant annexins create Ca2+-permeable transport pathways, regulate [Ca2+]cyt, and may function as peroxidases in vitro. PMID:19234085

  20. Anabolic steroid and gender-dependent modulation of cytosolic HSP70s in fast- and slow-twitch skeletal muscle.

    PubMed

    González, B; Hernando, R; Manso, R

    2000-09-01

    Besides their clinical uses, anabolic steroids (AASs) are self-administered by athletes to improve muscle mass and sports performance. The biological basis for their presumed effectiveness at suprapharmacological doses, however, remains uncertain. Since the expression of high levels of some stress proteins (HSPs) has been associated with an increased tolerance to stress and chronic exercise up-regulates HSP72 in skeletal muscle, this investigation was aimed at testing whether the administration of suprapharmacological doses of AASs, either alone or in conjunction with chronic exercise, induced changes in HSP72. Nandrolone decanoate (ND), an estrene derivative, but not stanozolol (ST), a derivative of the androstane series, up-regulated the levels of HSP72 and changed the proportions of various charge variants of the cytosolic HSP70s in sedentary and exercise-trained rats, exclusively in fast-twitch fibres. Since the expression of HSP73-levels in skeletal muscle was dependent on gender but not on muscle type, and that of HSP72-levels was muscle type specific but gender-independent, ND effects on cytosolic HSP70s could not be explained solely by a functional relationship with sex steroids. The reported results indicate that, by up-regulating the expression levels of HSP72 in fast-twitch fibres, nandrolone decanoate could contribute to improving the tolerance of skeletal muscle to high-intensity training.

  1. Lactate metabolism and cytosolic NADH reducing equivalents in ovine adipocytes.

    PubMed

    Yang, Y T; White, L S; Muir, L A

    1982-01-01

    1. Isolated ovine adipocytes, unlike rat adipose tissue, could utilize lactate at a high rate. 2. When the rate of fatty acid synthesis was attenuated with 5-(tetradecyloxy)-2-furoic acid, a fatty acid synthesis inhibitor, there was a good positive correlation between the rates of lactate oxidation to CO2 and lactate incorporation into fatty acids. 3. Addition of 2,4-dinitrophenol enhanced lactate oxidation to CO2 independent of fatty acid synthesis. Under this condition, estimated cytosolic NADH formation from lactate dehydrogenation exceeded the need of NADH for cytosolic oxaloacetate reduction and for glyceride glycerol formation. 4. Mitochondria isolated from ovine adipocytes oxidized added NADH rapidly in a reconstituted alpha-glycerophosphate shuttle system. 5. It is possible that the ability of ovine adipocytes to utilize lactate may be related to the active alpha-glycerophosphate shuttle for cytosolic NADH reoxidation.

  2. The Cytosolic pH of Individual Saccharomyces cerevisiae Cells Is a Key Factor in Acetic Acid Tolerance

    PubMed Central

    Fernández-Niño, Miguel; Marquina, Maribel; Swinnen, Steve; Rodríguez-Porrata, Boris

    2015-01-01

    It was shown recently that individual cells of an isogenic Saccharomyces cerevisiae population show variability in acetic acid tolerance, and this variability affects the quantitative manifestation of the trait at the population level. In the current study, we investigated whether cell-to-cell variability in acetic acid tolerance could be explained by the observed differences in the cytosolic pHs of individual cells immediately before exposure to the acid. Results obtained with cells of the strain CEN.PK113-7D in synthetic medium containing 96 mM acetic acid (pH 4.5) showed a direct correlation between the initial cytosolic pH and the cytosolic pH drop after exposure to the acid. Moreover, only cells with a low initial cytosolic pH, which experienced a less severe drop in cytosolic pH, were able to proliferate. A similar correlation between initial cytosolic pH and cytosolic pH drop was also observed in the more acid-tolerant strain MUCL 11987-9. Interestingly, a fraction of cells in the MUCL 11987-9 population showed initial cytosolic pH values below the minimal cytosolic pH detected in cells of the strain CEN.PK113-7D; consequently, these cells experienced less severe drops in cytosolic pH. Although this might explain in part the difference between the two strains with regard to the number of cells that resumed proliferation, it was observed that all cells from strain MUCL 11987-9 were able to proliferate, independently of their initial cytosolic pH. Therefore, other factors must also be involved in the greater ability of MUCL 11987-9 cells to endure strong drops in cytosolic pH. PMID:26341199

  3. Cotransin induces accumulation of a cytotoxic clusterin variant that cotranslationally rerouted to the cytosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Ilho; Kim, Jiyeon; Park, Joong-Yeol

    2013-05-01

    Although clusterin (CLU) was originally identified as a secreted glycoprotein that plays cytoprotective role, several intracellular CLU variants have been recently identified in the diverse pathological conditions. The mechanistic basis of these variants is now believed to be alternative splicing and retrotranslocation. Here, we uncovered, an unglycosylated and signal sequence-unprocessed, CLU variant in the cytosol. This variant proved to be a product that cotranslationally rerouted to the cytosol during translocation. Cytosolic CLU was prone to aggregation at peri-nuclear region of cells and induced cell death. Signal sequence is shown to be an important determinant for cytosolic CLU generation and aggregation.more » These results provide not only a new mechanistic insight into the cytosolic CLU generation but also an idea for therapeutic mislocalization of CLU as a strategy for cancer treatment. - Highlights: ► Intracellular CLU variants have been recently identified in the diverse pathological conditions. ► Translocation of clusterin is less efficient than that of Prl. ► We identified a new cytotoxic clusterin variant whose signal sequence was unprocessed. ► This variant proved to be a product that cotranslationally rerouted to cytosol.« less

  4. A New View of the Bacterial Cytosol Environment

    PubMed Central

    Cossins, Benjamin P.; Jacobson, Matthew P.; Guallar, Victor

    2011-01-01

    The cytosol is the major environment in all bacterial cells. The true physical and dynamical nature of the cytosol solution is not fully understood and here a modeling approach is applied. Using recent and detailed data on metabolite concentrations, we have created a molecular mechanical model of the prokaryotic cytosol environment of Escherichia coli, containing proteins, metabolites and monatomic ions. We use 200 ns molecular dynamics simulations to compute diffusion rates, the extent of contact between molecules and dielectric constants. Large metabolites spend ∼80% of their time in contact with other molecules while small metabolites vary with some only spending 20% of time in contact. Large non-covalently interacting metabolite structures mediated by hydrogen-bonds, ionic and π stacking interactions are common and often associate with proteins. Mg2+ ions were prominent in NIMS and almost absent free in solution. Κ+ is generally not involved in NIMSs and populates the solvent fairly uniformly, hence its important role as an osmolyte. In simulations containing ubiquitin, to represent a protein component, metabolite diffusion was reduced owing to long lasting protein-metabolite interactions. Hence, it is likely that with larger proteins metabolites would diffuse even more slowly. The dielectric constant of these simulations was found to differ from that of pure water only through a large contribution from ubiquitin as metabolite and monatomic ion effects cancel. These findings suggest regions of influence specific to particular proteins affecting metabolite diffusion and electrostatics. Also some proteins may have a higher propensity for associations with metabolites owing to their larger electrostatic fields. We hope that future studies may be able to accurately predict how binding interactions differ in the cytosol relative to dilute aqueous solution. PMID:21695225

  5. SH2 Ligand-Like Effects of Second Cytosolic Domain of Na/K-ATPase α1 Subunit on Src Kinase.

    PubMed

    Banerjee, Moumita; Duan, Qiming; Xie, Zijian

    2015-01-01

    Our previous studies have suggested that the α1 Na/K-ATPase interacts with Src to form a receptor complex. In vitro binding assays indicate an interaction between second cytosolic domain (CD2) of Na/K-ATPase α1 subunit and Src SH2 domain. Since SH2 domain targets Src to specific signaling complexes, we expressed CD2 as a cytosolic protein and studied whether it could act as a Src SH2 ligand in LLC-PK1 cells. Co-immunoprecipitation analyses indicated a direct binding of CD2 to Src, consistent with the in vitro binding data. Functionally, CD2 expression increased basal Src activity, suggesting a Src SH2 ligand-like property of CD2. Consistently, we found that CD2 expression attenuated several signaling pathways where Src plays an important role. For instance, although it increased surface expression of Na/K-ATPase, it decreased ouabain-induced activation of Src and ERK by blocking the formation of Na/K-ATPase/Src complex. Moreover, it also attenuated cell attachment-induced activation of Src/FAK. Consequently, CD2 delayed cell spreading, and inhibited cell proliferation. Furthermore, these effects appear to be Src-specific because CD2 expression had no effect on EGF-induced activation of EGF receptor and ERK. Hence, the new findings indicate the importance of Na/K-ATPase/Src interaction in ouabain-induced signal transduction, and support the proposition that the CD2 peptide may be utilized as a Src SH2 ligand capable of blocking Src-dependent signaling pathways via a different mechanism from a general Src kinase inhibitor.

  6. Non-Orthogonal Multiple Access for Ubiquitous Wireless Sensor Networks.

    PubMed

    Anwar, Asim; Seet, Boon-Chong; Ding, Zhiguo

    2018-02-08

    Ubiquitous wireless sensor networks (UWSNs) have become a critical technology for enabling smart cities and other ubiquitous monitoring applications. Their deployment, however, can be seriously hampered by the spectrum available to the sheer number of sensors for communication. To support the communication needs of UWSNs without requiring more spectrum resources, the power-domain non-orthogonal multiple access (NOMA) technique originally proposed for 5th Generation (5G) cellular networks is investigated for UWSNs for the first time in this paper. However, unlike 5G networks that operate in the licensed spectrum, UWSNs mostly operate in unlicensed spectrum where sensors also experience cross-technology interferences from other devices sharing the same spectrum. In this paper, we model the interferences from various sources at the sensors using stochastic geometry framework. To evaluate the performance, we derive a theorem and present new closed form expression for the outage probability of the sensors in a downlink scenario under interference limited environment. In addition, diversity analysis for the ordered NOMA users is performed. Based on the derived outage probability, we evaluate the average link throughput and energy consumption efficiency of NOMA against conventional orthogonal multiple access (OMA) technique in UWSNs. Further, the required computational complexity for the NOMA users is presented.

  7. Artificial Loading of ASC Specks with Cytosolic Antigens

    PubMed Central

    Sahillioğlu, Ali Can; Özören, Nesrin

    2015-01-01

    Inflammasome complexes form upon interaction of Nod Like Receptor (NLR) proteins with pathogen associated molecular patterns (PAPMS) inside the cytosol. Stimulation of a subset of inflammasome receptors including NLRP3, NLRC4 and AIM2 triggers formation of the micrometer-sized spherical supramolecular complex called the ASC speck. The ASC speck is thought to be the platform of inflammasome activity, but the reason why a supramolecular complex is preferred against oligomeric platforms remains elusive. We observed that a set of cytosolic proteins, including the model antigen ovalbumin, tend to co-aggregate on the ASC speck. We suggest that co-aggregation of antigenic proteins on the ASC speck during intracellular infection might be instrumental in antigen presentation. PMID:26258904

  8. Ubiquitous Learning Environments in Higher Education: A Scoping Literature Review

    ERIC Educational Resources Information Center

    Virtanen, Mari Aulikki; Haavisto, Elina; Liikanen, Eeva; Kääriäinen, Maria

    2018-01-01

    Ubiquitous learning and the use of ubiquitous learning environments heralds a new era in higher education. Ubiquitous learning environments enhance context-aware and seamless learning experiences available from any location at any time. They support smooth interaction between authentic and digital learning resources and provide personalized…

  9. The Cytosolic pH of Individual Saccharomyces cerevisiae Cells Is a Key Factor in Acetic Acid Tolerance.

    PubMed

    Fernández-Niño, Miguel; Marquina, Maribel; Swinnen, Steve; Rodríguez-Porrata, Boris; Nevoigt, Elke; Ariño, Joaquín

    2015-11-01

    It was shown recently that individual cells of an isogenic Saccharomyces cerevisiae population show variability in acetic acid tolerance, and this variability affects the quantitative manifestation of the trait at the population level. In the current study, we investigated whether cell-to-cell variability in acetic acid tolerance could be explained by the observed differences in the cytosolic pHs of individual cells immediately before exposure to the acid. Results obtained with cells of the strain CEN.PK113-7D in synthetic medium containing 96 mM acetic acid (pH 4.5) showed a direct correlation between the initial cytosolic pH and the cytosolic pH drop after exposure to the acid. Moreover, only cells with a low initial cytosolic pH, which experienced a less severe drop in cytosolic pH, were able to proliferate. A similar correlation between initial cytosolic pH and cytosolic pH drop was also observed in the more acid-tolerant strain MUCL 11987-9. Interestingly, a fraction of cells in the MUCL 11987-9 population showed initial cytosolic pH values below the minimal cytosolic pH detected in cells of the strain CEN.PK113-7D; consequently, these cells experienced less severe drops in cytosolic pH. Although this might explain in part the difference between the two strains with regard to the number of cells that resumed proliferation, it was observed that all cells from strain MUCL 11987-9 were able to proliferate, independently of their initial cytosolic pH. Therefore, other factors must also be involved in the greater ability of MUCL 11987-9 cells to endure strong drops in cytosolic pH. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. New functionalities in abundant element oxides: ubiquitous element strategy

    PubMed Central

    Hosono, Hideo; Hayashi, Katsuro; Kamiya, Toshio; Atou, Toshiyuki; Susaki, Tomofumi

    2011-01-01

    While most ceramics are composed of ubiquitous elements (the ten most abundant elements within the Earth's crust), many advanced materials are based on rare elements. A ‘rare-element crisis’ is approaching owing to the imbalance between the limited supply of rare elements and the increasing demand. Therefore, we propose a ‘ubiquitous element strategy’ for materials research, which aims to apply abundant elements in a variety of innovative applications. Creation of innovative oxide materials and devices based on conventional ceramics is one specific challenge. This review describes the concept of ubiquitous element strategy and gives some highlights of our recent research on the synthesis of electronic, thermionic and structural materials using ubiquitous elements. PMID:27877391

  11. Fibre elongation requires normal redox homeostasis modulated by cytosolic ascorbate peroxidase in cotton (Gossypium hirsutum).

    PubMed

    Guo, Kai; Du, Xueqiong; Tu, Lili; Tang, Wenxin; Wang, Pengcheng; Wang, Maojun; Liu, Zhen; Zhang, Xianlong

    2016-05-01

    High-quality cotton fibre equates to a more comfortable textile. Fibre length is an important index of fibre quality. Hydrogen peroxide (H2O2) acts as a signalling molecule in the regulation of fibre elongation. Results from in vitro ovule culture suggest that the alteration of fibre cell H2O2 levels affects fibre development. Ascorbate peroxidase (APX) is an important reactive oxygen species (ROS) scavenging enzyme, and we found that GhAPX1AT/DT encoded one member of the previously unrealized group of cytosolic APXs (cAPXs) that were preferentially expressed during the fibre elongation stage. Transgenic cottons with up- and down-regulation of GhAPX1AT/DT were generated to control fibre endogenous levels of H2O2 Suppression of all cAPX (IAO) resulted in a 3.5-fold increase in H2O2 level in fibres and oxidative stress, which significantly suppressed fibre elongation. The fibre length of transgenic lines with over-expression or specific down-regulation of GhAPX1AT/DT did not show any obvious change. However, the fibres in the over-expression lines exhibited higher tolerance to oxidative stress. Differentially expressed genes (DEGs) in fibres at 10 days post-anthesis (DPA) of IAO lines identified by RNA-seq were related to redox homeostasis, signalling pathways, stress responses and cell wall synthesis, and the DEGs that were up-regulated in IAO lines were also up-regulated in the 10 DPA and 20 DPA fibres of wild cotton compared with domesticated cotton. These results suggest that optimal H2O2 levels and redox state regulated by cytosolic APX are key mechanisms regulating fibre elongation, and dysregulation of the increase in H2O2 induces oxidative stress and results in shorter fibres by initiating secondary cell wall-related gene expression. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. The ubiquitous presence of exopolygalacturonase in maize suggests a fundamental cellular function for this enzyme.

    PubMed

    Dubald, M; Barakate, A; Mandaron, P; Mache, R

    1993-11-01

    Exopolygalacturonase (exoPG) is a pectin-degrading enzyme abundant in maize pollen. Using immunochemistry and in situ hybridization it is shown that in addition to its presence in pollen, exoPG is also present in sporophytic tissues, such as the tapetum and mesophyll cells. The enzyme is located in the cytoplasm of pollen and of some mesophyll cells. In other mesophyll cells, the tapetum and the pollen tube, exoPG is located in the cell wall. The measurement of enzyme activity shows that exoPG is ubiquitous in the vegetative organs. These results suggest a general function for exoPG in cell wall edification or degradation. ExoPG is encoded by a closely related multigene family. The regulation of the expression of one of the exoPG genes was analyzed in transgenic tobacco. Reporter GUS activity was detected in anthers, seeds and stems but not in leaves or roots of transgenic plants. This strongly suggests that the ubiquitous presence of exoPG in maize is the result of the expression of different exoPG genes.

  13. Privacy Policy Enforcement for Ambient Ubiquitous Services

    NASA Astrophysics Data System (ADS)

    Oyomno, Were; Jäppinen, Pekka; Kerttula, Esa

    Ubiquitous service providers leverage miniaturised computing terminals equipped with wireless capabilities to avail new service models. These models are pivoted on personal and inexpensive terminals to customise services to individual preferences. Portability, small sizes and compact keyboards are few features popularising mobile terminals. Features enable storing and carrying of ever increasing proportions of personal data and ability to use them in service adaptations. Ubiquitous services automate deeper soliciting of personal data transparently without the need for user interactions. Transparent solicitations, acquisitions and handling of personal data legitimises privacy concerns regarding disclosures, retention and re-use of the data. This study presents a policy enforcement for ubiquitous services that safeguards handling of users personal data and monitors adherence to stipulated privacy policies. Enforcement structures towards usability and scalability are presented.

  14. Flexible change and cooperation between mitochondrial electron transport and cytosolic glycolysis as the basis for chilling tolerance in tomato plants.

    PubMed

    Shi, Kai; Fu, Li-Jun; Zhang, Shuai; Li, Xin; Liao, Yang-Wen-Ke; Xia, Xiao-Jian; Zhou, Yan-Hong; Wang, Rong-Qing; Chen, Zhi-Xiang; Yu, Jing-Quan

    2013-02-01

    To find if cytosolic glycolysis dynamical metabolism plays a role in mediating respiration homeostasis and its relationship with mitochondrial electron transport chain (miETC) flexibility, we selected two tomato genotypes that differ in chilling tolerance and compared the responses of miETC, cytosolic glycolysis and respiratory homeostasis at 7 °C. Our results showed that the transcripts of both classical and bypass component genes for miETC and glycolysis were comparable for both genotypes when grown at 25 °C. However, there was a rapid global increase in the expression of most respiratory genes in response to chilling at 7 °C for both genotypes. When normally grown plant was set as the control for each genotype, the transcripts of most COX family members, ATP synthase, AOX1b, and UCP are highly up-regulated in chilling-tolerant Zhefen No. 208 plants in contrast to the sensitive Zhefen No. 212 plants. Both genotypes mobilized the energy-saving sucrose synthase pathway for sucrose degradation by cytosolic glycolysis, but this mechanism is evidently more effective in tolerant Zhefen No. 208 plants. Furthermore, only Zhefen No. 208 plants were able to partially switch from low-energy efficiency pathways to ATP conserving pathways to carry out fructose-6-phosphate conversion and pyruvate production. This metabolic flexibility in miETC and cytosolic glycolysis were coupled to higher ATP synthesis and lower ROS accumulation, which may be essential for sustaining the higher leaf respiration and homeostasis of chilling-tolerant plants.

  15. Cytosolic Fe-S Cluster Protein Maturation and Iron Regulation Are Independent of the Mitochondrial Erv1/Mia40 Import System.

    PubMed

    Ozer, Hatice K; Dlouhy, Adrienne C; Thornton, Jeremy D; Hu, Jingjing; Liu, Yilin; Barycki, Joseph J; Balk, Janneke; Outten, Caryn E

    2015-11-13

    The sulfhydryl oxidase Erv1 partners with the oxidoreductase Mia40 to import cysteine-rich proteins in the mitochondrial intermembrane space. In Saccharomyces cerevisiae, Erv1 has also been implicated in cytosolic Fe-S protein maturation and iron regulation. To investigate the connection between Erv1/Mia40-dependent mitochondrial protein import and cytosolic Fe-S cluster assembly, we measured Mia40 oxidation and Fe-S enzyme activities in several erv1 and mia40 mutants. Although all the erv1 and mia40 mutants exhibited defects in Mia40 oxidation, only one erv1 mutant strain (erv1-1) had significantly decreased activities of cytosolic Fe-S enzymes. Further analysis of erv1-1 revealed that it had strongly decreased glutathione (GSH) levels, caused by an additional mutation in the gene encoding the glutathione biosynthesis enzyme glutamate cysteine ligase (GSH1). To address whether Erv1 or Mia40 plays a role in iron regulation, we measured iron-dependent expression of Aft1/2-regulated genes and mitochondrial iron accumulation in erv1 and mia40 strains. The only strain to exhibit iron misregulation is the GSH-deficient erv1-1 strain, which is rescued with addition of GSH. Together, these results confirm that GSH is critical for cytosolic Fe-S protein biogenesis and iron regulation, whereas ruling out significant roles for Erv1 or Mia40 in these pathways. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Limits to anaerobic energy and cytosolic concentration in the living cell.

    PubMed

    Paglietti, A

    2015-01-01

    For many physical systems at any given temperature, the set of all states where the system's free energy reaches its largest value can be determined from the system's constitutive equations of internal energy and entropy, once a state of that set is known. Such an approach is fraught with complications when applied to a living cell, because the cell's cytosol contains thousands of solutes, and thus thousands of state variables, which makes determination of its state impractical. We show here that, when looking for the maximum energy that the cytosol can store and release, detailed information on cytosol composition is redundant. Compatibility with cell's life requires that a single variable that represents the overall concentration of cytosol solutes must fall between defined limits, which can be determined by dehydrating and overhydrating the cell to its maximum capacity. The same limits are shown to determine, in particular, the maximum amount of free energy that a cell can supply in fast anaerobic processes, starting from any given initial state. For a typical skeletal muscle in normal physiological conditions this energy, i.e., the maximum anaerobic capacity to do work, is calculated to be about 960 J per kg of muscular mass. Such energy decreases as the overall concentration of solutes in the cytosol is increased. Similar results apply to any kind of cell. They provide an essential tool to understand and control the macroscopic response of single cells and multicellular cellular tissues alike. The applications include sport physiology, cell aging, disease produced cell damage, drug absorption capacity, to mention the most obvious ones.

  17. Limits to anaerobic energy and cytosolic concentration in the living cell

    NASA Astrophysics Data System (ADS)

    Paglietti, A.

    2015-11-01

    For many physical systems at any given temperature, the set of all states where the system's free energy reaches its largest value can be determined from the system's constitutive equations of internal energy and entropy, once a state of that set is known. Such an approach is fraught with complications when applied to a living cell, because the cell's cytosol contains thousands of solutes, and thus thousands of state variables, which makes determination of its state impractical. We show here that, when looking for the maximum energy that the cytosol can store and release, detailed information on cytosol composition is redundant. Compatibility with cell's life requires that a single variable that represents the overall concentration of cytosol solutes must fall between defined limits, which can be determined by dehydrating and overhydrating the cell to its maximum capacity. The same limits are shown to determine, in particular, the maximum amount of free energy that a cell can supply in fast anaerobic processes, starting from any given initial state. For a typical skeletal muscle in normal physiological conditions this energy, i.e., the maximum anaerobic capacity to do work, is calculated to be about 960 J per kg of muscular mass. Such energy decreases as the overall concentration of solutes in the cytosol is increased. Similar results apply to any kind of cell. They provide an essential tool to understand and control the macroscopic response of single cells and multicellular cellular tissues alike. The applications include sport physiology, cell aging, disease produced cell damage, drug absorption capacity, to mention the most obvious ones.

  18. Secreted Immunodominant Mycobacterium tuberculosis Antigens Are Processed by the Cytosolic Pathway

    PubMed Central

    Grotzke, Jeff E.; Siler, Anne C.; Lewinsohn, Deborah A.; Lewinsohn, David M.

    2010-01-01

    Exposure to Mycobacterium tuberculosis can result in lifelong but asymptomatic infection in most individuals. Although CD8+ T cells are elicited at high frequencies over the course of infection in both humans and mice, how phagosomal M. tuberculosis Ags are processed and presented by MHC class I molecules is poorly understood. Broadly, both cytosolic and noncytosolic pathways have been described. We have previously characterized the presentation of three HLA-I epitopes from M. tuberculosis and shown that these Ags are processed in the cytosol, whereas others have demonstrated noncytosolic presentation of the 19-kDa lipoprotein as well as apoptotic bodies from M. tuberculosis-infected cells. In this paper, we now characterize the processing pathway in an additional six M. tuberculosis epitopes from four proteins in human dendritic cells. Addition of the endoplasmic reticulum-Golgi trafficking inhibitor, brefeldin A, resulted in complete abrogation of Ag processing consistent with cytosolic presentation. However, although addition of the proteasome inhibitor epoxomicin blocked the presentation of two epitopes, presentation of four epitopes was enhanced. To further examine the requirement for proteasomal processing of an epoxomicin-enhanced epitope, an in vitro proteasome digestion assay was established. We find that the proteasome does indeed generate the epitope and that epitope generation is enhanced in the presence of epoxomicin. To further confirm that both the epoxomicin-inhibited and epoxomicin-enhanced epitopes are processed cytosolically, we demonstrate that TAP transport and new protein synthesis are required for presentation. Taken together, these data demonstrate that immunodominant M. tuberculosis CD8+ Ags are processed and presented using a cytosolic pathway. PMID:20802151

  19. Arsenic resistance in Pteris vittata L.: identification of a cytosolic triosephosphate isomerase based on cDNA expression cloning in Escherichia coli.

    PubMed

    Rathinasabapathi, Bala; Wu, Shan; Sundaram, Sabarinath; Rivoal, Jean; Srivastava, Mrittunjai; Ma, Lena Q

    2006-12-01

    Arsenic hyperaccumulator Pteris vittata L. (Chinese brake fern) grows well in arsenic-contaminated media, with an extraordinary ability to tolerate high levels of arsenic. An expression cloning strategy was employed to identify cDNAs for the genes involved in arsenic resistance in P. vittata. Excised plasmids from the cDNA library of P. vittata fronds were introduced into Escherichia coli XL-1 Blue and plated on medium containing 4 mM of arsenate, a common form of arsenic in the environment. The deduced amino acid sequence of an arsenate-resistant clone, PV4-8, had cDNA highly homologous to plant cytosolic triosephosphate isomerases (cTPI). Cell-free extracts of PV4-8 had 3-fold higher level of triosephosphate isomerase (TPI) specific activities than that found in E. coli XL-1 Blue and had a 42 kD fusion protein immunoreactive to polyclonal antibodies raised against recombinant Solanum chacoense cTPI. The PV4-8 cDNA complemented a TPI-deficient E. coli mutant. PV4-8 expression improved arsenate resistance in E. coli WC3110, a strain deficient in arsenate reductase but not in AW3110 deficient for the whole ars operon. This is consistent with the hypothesis that PV4-8 TPI increased arsenate resistance in E. coli by directly or indirectly functioning as an arsenate reductase. When E. coli tpi gene was expressed in the same vector, bacterial arsenate resistance was not altered, indicating that arsenate tolerance was specific to P. vittata TPI. Paradoxically, P. vittata TPI activity was not more resistant to inhibition by arsenate in vitro than its bacterial counterpart suggesting that arsenate resistance of conventional TPI reaction was not the basis for the cellular arsenate resistance. P. vittata TPI activity was inhibited by incubation with reduced glutathione while bacterial TPI was unaffected. Consistent with cTPI's role in arsenate reduction, bacterial cells expressing fern TPI had significantly greater per cent of cellular arsenic as arsenite compared to cells

  20. Doxorubicin Regulates Autophagy Signals via Accumulation of Cytosolic Ca2+ in Human Cardiac Progenitor Cells.

    PubMed

    Park, Ji Hye; Choi, Sung Hyun; Kim, Hyungtae; Ji, Seung Taek; Jang, Woong Bi; Kim, Jae Ho; Baek, Sang Hong; Kwon, Sang Mo

    2016-10-09

    Doxorubicin (DOXO) is widely used to treat solid tumors. However, its clinical use is limited by side effects including serious cardiotoxicity due to cardiomyocyte damage. Resident cardiac progenitor cells (hCPCs) act as key regulators of homeostasis in myocardial cells. However, little is known about the function of hCPCs in DOXO-induced cardiotoxicity. In this study, we found that DOXO-mediated hCPC toxicity is closely related to calcium-related autophagy signaling and was significantly attenuated by blocking mTOR signaling in human hCPCs. DOXO induced hCPC apoptosis with reduction of SMP30 (regucalcin) and autophagosome marker LC3, as well as remarkable induction of the autophagy-related markers, Beclin-1, APG7, and P62/SQSTM1 and induction of calcium-related molecules, CaM (Calmodulin) and CaMKII (Calmodulin kinase II). The results of an LC3 puncta assay further indicated that DOXO reduced autophagosome formation via accumulation of cytosolic Ca 2+ . Additionally, DOXO significantly induced mTOR expression in hCPCs, and inhibition of mTOR signaling by rapamycin, a specific inhibitor, rescued DOXO-mediated autophagosome depletion in hCPCs with significant reduction of DOXO-mediated cytosolic Ca 2+ accumulation in hCPCs, and restored SMP30 and mTOR expression. Thus, DOXO-mediated hCPC toxicity is linked to Ca 2+ -related autophagy signaling, and inhibition of mTOR signaling may provide a cardio-protective effect against DOXO-mediated hCPC toxicity.

  1. Doxorubicin Regulates Autophagy Signals via Accumulation of Cytosolic Ca2+ in Human Cardiac Progenitor Cells

    PubMed Central

    Park, Ji Hye; Choi, Sung Hyun; Kim, Hyungtae; Ji, Seung Taek; Jang, Woong Bi; Kim, Jae Ho; Baek, Sang Hong; Kwon, Sang Mo

    2016-01-01

    Doxorubicin (DOXO) is widely used to treat solid tumors. However, its clinical use is limited by side effects including serious cardiotoxicity due to cardiomyocyte damage. Resident cardiac progenitor cells (hCPCs) act as key regulators of homeostasis in myocardial cells. However, little is known about the function of hCPCs in DOXO-induced cardiotoxicity. In this study, we found that DOXO-mediated hCPC toxicity is closely related to calcium-related autophagy signaling and was significantly attenuated by blocking mTOR signaling in human hCPCs. DOXO induced hCPC apoptosis with reduction of SMP30 (regucalcin) and autophagosome marker LC3, as well as remarkable induction of the autophagy-related markers, Beclin-1, APG7, and P62/SQSTM1 and induction of calcium-related molecules, CaM (Calmodulin) and CaMKII (Calmodulin kinase II). The results of an LC3 puncta assay further indicated that DOXO reduced autophagosome formation via accumulation of cytosolic Ca2+. Additionally, DOXO significantly induced mTOR expression in hCPCs, and inhibition of mTOR signaling by rapamycin, a specific inhibitor, rescued DOXO-mediated autophagosome depletion in hCPCs with significant reduction of DOXO-mediated cytosolic Ca2+ accumulation in hCPCs, and restored SMP30 and mTOR expression. Thus, DOXO-mediated hCPC toxicity is linked to Ca2+-related autophagy signaling, and inhibition of mTOR signaling may provide a cardio-protective effect against DOXO-mediated hCPC toxicity. PMID:27735842

  2. Subcellular Distribution of NAD+ between Cytosol and Mitochondria Determines the Metabolic Profile of Human Cells*

    PubMed Central

    VanLinden, Magali R.; Dölle, Christian; Pettersen, Ina K. N.; Kulikova, Veronika A.; Niere, Marc; Agrimi, Gennaro; Dyrstad, Sissel E.; Palmieri, Ferdinando; Nikiforov, Andrey A.; Tronstad, Karl Johan; Ziegler, Mathias

    2015-01-01

    The mitochondrial NAD pool is particularly important for the maintenance of vital cellular functions. Although at least in some fungi and plants, mitochondrial NAD is imported from the cytosol by carrier proteins, in mammals, the mechanism of how this organellar pool is generated has remained obscure. A transporter mediating NAD import into mammalian mitochondria has not been identified. In contrast, human recombinant NMNAT3 localizes to the mitochondrial matrix and is able to catalyze NAD+ biosynthesis in vitro. However, whether the endogenous NMNAT3 protein is functionally effective at generating NAD+ in mitochondria of intact human cells still remains to be demonstrated. To modulate mitochondrial NAD+ content, we have expressed plant and yeast mitochondrial NAD+ carriers in human cells and observed a profound increase in mitochondrial NAD+. None of the closest human homologs of these carriers had any detectable effect on mitochondrial NAD+ content. Surprisingly, constitutive redistribution of NAD+ from the cytosol to the mitochondria by stable expression of the Arabidopsis thaliana mitochondrial NAD+ transporter NDT2 in HEK293 cells resulted in dramatic growth retardation and a metabolic shift from oxidative phosphorylation to glycolysis, despite the elevated mitochondrial NAD+ levels. These results suggest that a mitochondrial NAD+ transporter, similar to the known one from A. thaliana, is likely absent and could even be harmful in human cells. We provide further support for the alternative possibility, namely intramitochondrial NAD+ synthesis, by demonstrating the presence of endogenous NMNAT3 in the mitochondria of human cells. PMID:26432643

  3. The phosphatidyl choline exchange properties in the cytosol of Aspergillus niger.

    PubMed

    Audigier-Petit, C; Letoublon, R; Fayet, Y; Got, R; Frot-Coutaz, J

    1986-01-01

    The presence of a PC-binding activity in the cytosol of Aspergillus niger van Tieghem has been established by measuring the reversible exchange of labeled DPC between an adsorbent (celite) and the cytosol. We have shown that this exchange is dependent upon the temperature and the ionic strength and it varies linearly with the protein concentration. This PC-binding activity is able to discriminate between DPC and some other phospholipids.

  4. Decoding the ubiquitous role of microRNAs in neurogenesis.

    PubMed

    Nampoothiri, Sreekala S; Rajanikant, G K

    2017-04-01

    Neurogenesis generates fledgling neurons that mature to form an intricate neuronal circuitry. The delusion on adult neurogenesis was far resolved in the past decade and became one of the largely explored domains to identify multifaceted mechanisms bridging neurodevelopment and neuropathology. Neurogenesis encompasses multiple processes including neural stem cell proliferation, neuronal differentiation, and cell fate determination. Each neurogenic process is specifically governed by manifold signaling pathways, several growth factors, coding, and non-coding RNAs. A class of small non-coding RNAs, microRNAs (miRNAs), is ubiquitously expressed in the brain and has emerged to be potent regulators of neurogenesis. It functions by fine-tuning the expression of specific neurogenic gene targets at the post-transcriptional level and modulates the development of mature neurons from neural progenitor cells. Besides the commonly discussed intrinsic factors, the neuronal morphogenesis is also under the control of several extrinsic temporal cues, which in turn are regulated by miRNAs. This review enlightens on dicer controlled switch from neurogenesis to gliogenesis, miRNA regulation of neuronal maturation and the differential expression of miRNAs in response to various extrinsic cues affecting neurogenesis.

  5. Trust information-based privacy architecture for ubiquitous health.

    PubMed

    Ruotsalainen, Pekka Sakari; Blobel, Bernd; Seppälä, Antto; Nykänen, Pirkko

    2013-10-08

    Ubiquitous health is defined as a dynamic network of interconnected systems that offers health services independent of time and location to a data subject (DS). The network takes place in open and unsecure information space. It is created and managed by the DS who sets rules that regulate the way personal health information is collected and used. Compared to health care, it is impossible in ubiquitous health to assume the existence of a priori trust between the DS and service providers and to produce privacy using static security services. In ubiquitous health features, business goals and regulations systems followed often remain unknown. Furthermore, health care-specific regulations do not rule the ways health data is processed and shared. To be successful, ubiquitous health requires novel privacy architecture. The goal of this study was to develop a privacy management architecture that helps the DS to create and dynamically manage the network and to maintain information privacy. The architecture should enable the DS to dynamically define service and system-specific rules that regulate the way subject data is processed. The architecture should provide to the DS reliable trust information about systems and assist in the formulation of privacy policies. Furthermore, the architecture should give feedback upon how systems follow the policies of DS and offer protection against privacy and trust threats existing in ubiquitous environments. A sequential method that combines methodologies used in system theory, systems engineering, requirement analysis, and system design was used in the study. In the first phase, principles, trust and privacy models, and viewpoints were selected. Thereafter, functional requirements and services were developed on the basis of a careful analysis of existing research published in journals and conference proceedings. Based on principles, models, and requirements, architectural components and their interconnections were developed using system

  6. Trust Information-Based Privacy Architecture for Ubiquitous Health

    PubMed Central

    2013-01-01

    Background Ubiquitous health is defined as a dynamic network of interconnected systems that offers health services independent of time and location to a data subject (DS). The network takes place in open and unsecure information space. It is created and managed by the DS who sets rules that regulate the way personal health information is collected and used. Compared to health care, it is impossible in ubiquitous health to assume the existence of a priori trust between the DS and service providers and to produce privacy using static security services. In ubiquitous health features, business goals and regulations systems followed often remain unknown. Furthermore, health care-specific regulations do not rule the ways health data is processed and shared. To be successful, ubiquitous health requires novel privacy architecture. Objective The goal of this study was to develop a privacy management architecture that helps the DS to create and dynamically manage the network and to maintain information privacy. The architecture should enable the DS to dynamically define service and system-specific rules that regulate the way subject data is processed. The architecture should provide to the DS reliable trust information about systems and assist in the formulation of privacy policies. Furthermore, the architecture should give feedback upon how systems follow the policies of DS and offer protection against privacy and trust threats existing in ubiquitous environments. Methods A sequential method that combines methodologies used in system theory, systems engineering, requirement analysis, and system design was used in the study. In the first phase, principles, trust and privacy models, and viewpoints were selected. Thereafter, functional requirements and services were developed on the basis of a careful analysis of existing research published in journals and conference proceedings. Based on principles, models, and requirements, architectural components and their interconnections

  7. Abscission of flowers and floral organs is closely associated with alkalization of the cytosol in abscission zone cells

    PubMed Central

    Sundaresan, Srivignesh; Philosoph-Hadas, Sonia; Riov, Joseph; Belausov, Eduard; Kochanek, Betina; Tucker, Mark L.; Meir, Shimon

    2015-01-01

    In vivo changes in the cytosolic pH of abscission zone (AZ) cells were visualized using confocal microscopic detection of the fluorescent pH-sensitive and intracellularly trapped dye, 2’,7’-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF), driven by its acetoxymethyl ester. A specific and gradual increase in the cytosolic pH of AZ cells was observed during natural abscission of flower organs in Arabidopsis thaliana and wild rocket (Diplotaxis tenuifolia), and during flower pedicel abscission induced by flower removal in tomato (Solanum lycopersicum Mill). The alkalization pattern in the first two species paralleled the acceleration or inhibition of flower organ abscission induced by ethylene or its inhibitor 1-methylcyclopropene (1-MCP), respectively. Similarly, 1-MCP pre-treatment of tomato inflorescence explants abolished the pH increase in AZ cells and pedicel abscission induced by flower removal. Examination of the pH changes in the AZ cells of Arabidopsis mutants defective in both ethylene-induced (ctr1, ein2, eto4) and ethylene-independent (ida, nev7, dab5) abscission pathways confirmed these results. The data indicate that the pH changes in the AZ cells are part of both the ethylene-sensitive and -insensitive abscission pathways, and occur concomitantly with the execution of organ abscission. pH can affect enzymatic activities and/or act as a signal for gene expression. Changes in pH during abscission could occur via regulation of transporters in AZ cells, which might affect cytosolic pH. Indeed, four genes associated with pH regulation, vacuolar H+-ATPase, putative high-affinity nitrate transporter, and two GTP-binding proteins, were specifically up-regulated in tomato flower AZ following abscission induction, and 1-MCP reduced or abolished the increased expression. PMID:25504336

  8. Abscission of flowers and floral organs is closely associated with alkalization of the cytosol in abscission zone cells.

    PubMed

    Sundaresan, Srivignesh; Philosoph-Hadas, Sonia; Riov, Joseph; Belausov, Eduard; Kochanek, Betina; Tucker, Mark L; Meir, Shimon

    2015-03-01

    In vivo changes in the cytosolic pH of abscission zone (AZ) cells were visualized using confocal microscopic detection of the fluorescent pH-sensitive and intracellularly trapped dye, 2',7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF), driven by its acetoxymethyl ester. A specific and gradual increase in the cytosolic pH of AZ cells was observed during natural abscission of flower organs in Arabidopsis thaliana and wild rocket (Diplotaxis tenuifolia), and during flower pedicel abscission induced by flower removal in tomato (Solanum lycopersicum Mill). The alkalization pattern in the first two species paralleled the acceleration or inhibition of flower organ abscission induced by ethylene or its inhibitor 1-methylcyclopropene (1-MCP), respectively. Similarly, 1-MCP pre-treatment of tomato inflorescence explants abolished the pH increase in AZ cells and pedicel abscission induced by flower removal. Examination of the pH changes in the AZ cells of Arabidopsis mutants defective in both ethylene-induced (ctr1, ein2, eto4) and ethylene-independent (ida, nev7, dab5) abscission pathways confirmed these results. The data indicate that the pH changes in the AZ cells are part of both the ethylene-sensitive and -insensitive abscission pathways, and occur concomitantly with the execution of organ abscission. pH can affect enzymatic activities and/or act as a signal for gene expression. Changes in pH during abscission could occur via regulation of transporters in AZ cells, which might affect cytosolic pH. Indeed, four genes associated with pH regulation, vacuolar H(+)-ATPase, putative high-affinity nitrate transporter, and two GTP-binding proteins, were specifically up-regulated in tomato flower AZ following abscission induction, and 1-MCP reduced or abolished the increased expression. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Mining the preferences of patients for ubiquitous clinic recommendation.

    PubMed

    Chen, Tin-Chih Toly; Chiu, Min-Chi

    2018-03-06

    A challenge facing all ubiquitous clinic recommendation systems is that patients often have difficulty articulating their requirements. To overcome this problem, a ubiquitous clinic recommendation mechanism was designed in this study by mining the clinic preferences of patients. Their preferences were defined using the weights in the ubiquitous clinic recommendation mechanism. An integer nonlinear programming problem was solved to tune the values of the weights on a rolling basis. In addition, since it may take a long time to adjust the values of weights to their asymptotic values, the back propagation network (BPN)-response surface method (RSM) method is applied to estimate the asymptotic values of weights. The proposed methodology was tested in a regional study. Experimental results indicated that the ubiquitous clinic recommendation system outperformed several existing methods in improving the successful recommendation rate.

  10. Growth factor deprivation induces cytosolic translocation of SIRT1

    NASA Astrophysics Data System (ADS)

    Meng, Chengbo; Xing, Da; Wu, Shengnan; Huang, Lei

    2010-02-01

    Sirtuin type 1 (SIRT1), a NAD+-dependent histone deacetylases, plays a critical role in cellular senescence, aging and longevity. In general, SIRT1 is localized in nucleus and is believed as a nuclear protein. Though overexpression of SIRT1 delays senescence, SIRT1-protein levels decline naturally in thymus and heart during aging. In the present studies, we investigated the subcellular localization of SIRT1 in response to growth factor deprivation in African green monkey SV40-transformed kidney fibroblast cells (COS-7). Using SIRT1-EGFP fluorescence reporter, we found that SIRT1 localized to nucleus in physiological conditions. We devised a model enabling cell senescence via growth factor deprivation, and we found that SIRT1 partially translocated to cytosol under the treatment, suggesting a reduced level of SIRT1's activity. We found PI3K/Akt pathway was involved in the inhibition of SIRT1's cytosolic translocation, because inhibition of these kinases significantly decreased the amount of SIRT1 maintained in nucleus. Taken together, we demonstrated that growth factor deprivation induces cytosolic translocation of SIRT1, which suggesting a possible connection between cytoplasm-localized SIRT1 and the aging process.

  11. Cytosolic androgen receptor in regenerating rat levator ani muscle.

    PubMed Central

    Max, S R; Mufti, S; Carlson, B M

    1981-01-01

    The development of the cytosolic androgen receptor was studied after degeneration and regeneration of the rat levator ani muscle after a crush lesion. Muscle regeneration appears to recapitulate myogenesis in many respects. It therefore provides a model tissue in sufficiently in large quantity for investigating the ontogenesis of the androgen receptor. The receptor in the cytosol of the normal levator ani muscle has binding characteristics similar to those of the cytosolic receptor in other androgen-sensitive tissues. By day 3 after a crush lesion of the levator ani muscle, androgen binding decreased to 25% of control values. This decrease was followed by a 4-5 fold increase in hormone binding, which attained control values by day 7 after crush. Androgen binding remained stable at the control value up to day 60 after crushing. These results were correlated with the morphological development of the regenerating muscle after crushing. It is concluded that there is little, if any, androgen receptor present in the early myoblastic stages of regeneration; rather, synthesis of the receptor may occur after the fusion of myoblasts and during the differentiation of myotubes into cross-striated muscle fibres. Images PLATE 1 PLATE 2 PMID:6977357

  12. Oxidative stress, microRNAs and cytosolic calcium homeostasis.

    PubMed

    Magenta, Alessandra; Dellambra, Elena; Ciarapica, Roberta; Capogrossi, Maurizio C

    2016-09-01

    Reactive oxygen species increase cytosolic [Ca(2+)], (Cai), and also modulate the expression of some microRNAs (miRNAs), however the link among oxidative stress, miRNAs and Cai is poorly characterized. In this review we have focused on three groups of miRNAs: (a) miRNAs that are modulated both by ROS and Cai: miR-181a and miR-205; (b) miRNAs that are modulated by ROS and have an effect on Cai: miR-1, miR-21, miR-24, miR-25, miR-185 and miR-214; (c) miRNAs that modulate both ROS and Cai: miR-133; miR-145, miR-495, and we have analyzed their effects on cell signaling and cell function. Finally, in the last section we have examined the role of these miRNAs in the skin, under conditions associated with enhanced oxidative stress, i.e. skin aging, the response to ultraviolet light and two important skin diseases, psoriasis and atopic dermatitis. It is apparent that although some experimental evidence is already available on (a) the role of Cai in miRNAs expression and (b) on the ability of some miRNAs to modulate Cai-dependent intracellular signaling, these research lines are still largely unexplored and represent important areas of future studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Conformational and functional studies of a cytosolic 90 kDa heat shock protein Hsp90 from sugarcane.

    PubMed

    da Silva, Viviane C H; Cagliari, Thiago C; Lima, Tatiani B; Gozzo, Fábio C; Ramos, Carlos H I

    2013-07-01

    Hsp90s are involved in several cellular processes, such as signaling, proteostasis, epigenetics, differentiation and stress defense. Although Hsp90s from different organisms are highly similar, they usually have small variations in conformation and function. Thus, the characterization of different Hsp90s is important to gain insight into the structure-function relationship that makes these chaperones key regulators in protein homeostasis. This work describes the characterization of a cytosolic Hsp90 from sugarcane and its comparison with Hsp90s from other plants. Previous expressed sequence tag (EST) studies in Saccharum spp. (sugarcane) predicted the presence of an mRNA coding for a cytosolic Hsp90. The corresponding cDNA was cloned, and the recombinant protein was purified and its conformation and function characterized. The structural conformation of Hsp90 was assessed by chemical cross-linking and hydrogen/deuterium exchange using mass spectrometry and hydrodynamic assays, which revealed regions accessible to solvent and that Hsp90 is an elongated dimer in solution. The in vivo expression of Hsp90 in sugarcane leaves was confirmed by western blot, and in vitro functional characterization indicated that sugarcane Hsp90 has strong chaperone activity. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. A Plant Phytosulfokine Peptide Initiates Auxin-Dependent Immunity through Cytosolic Ca2+ Signaling in Tomato[OPEN

    PubMed Central

    Zhang, Huan; Hu, Zhangjian; Lei, Cui; Zheng, Chenfei; Wang, Jiao; Shao, Shujun; Li, Xin; Xia, Xiaojian; Cai, Xinzhong

    2018-01-01

    Phytosulfokine (PSK) is a disulfated pentapeptide that is an important signaling molecule. Although it has recently been implicated in plant defenses to pathogen infection, the mechanisms involved remain poorly understood. Using surface plasmon resonance and gene silencing approaches, we showed that the tomato (Solanum lycopersicum) PSK receptor PSKR1, rather than PSKR2, functioned as the major PSK receptor in immune responses. Silencing of PSK signaling genes rendered tomato more susceptible to infection by the economically important necrotrophic pathogen Botrytis cinerea. Analysis of tomato mutants defective in either defense hormone biosynthesis or signaling demonstrated that PSK-induced immunity required auxin biosynthesis and associated defense pathways. Here, using aequorin-expressing tomato plants, we provide evidence that PSK perception by tomato PSKR1 elevated cytosolic [Ca2+], leading to auxin-dependent immune responses via enhanced binding activity between calmodulins and the auxin biosynthetic YUCs. Thus, our data demonstrate that PSK acts as a damage-associated molecular pattern and is perceived mainly by PSKR1, which increases cytosolic [Ca2+] and activates auxin-mediated pathways that enhance immunity of tomato plants to B. cinerea. PMID:29511053

  15. Temperature-dependent changes in erythrocytes' cytosol state during natural and artificial hypobiosis.

    PubMed

    Repina, S V; Nardid, O A; Marchenko, V S; Shilo, A V

    2004-05-01

    At present, the question of how the structural state of the erythrocyte cytosol is arranged to maintain essential permeabilities successfully both at normal temperature and during periods with a significant body temperature reduction during hypobiosis remains unanswered. In the present work, we performed comparative investigations of temperature-dependent changes in the cytosol state of erythrocytes from animals subjected to natural (winter hibernating ground squirrels) or artificial hypobiosis. The cytosol state was evaluated by the ESR method of spin probes (TEMPON) within the temperature range of 0-50 degrees C. Erythrocyte resistance to acid hemolysis, which is limited by the permeability of membranes for protons and the state of the anion channel, were determined using the method described by Terskov and Getelson [Biofizika 2 (1957) 259]. A change in cytosol microviscosity of erythrocytes was found as well as a temperature-dependent increase in acid resistance of erythrocytes. Our investigations allow us to conclude that physiological changes occurring in a mammalian organism during natural and artificial hypobiosis are accompanied by structural modifications of the erythrocyte cytosol. The temperature range where these modifications are observed (8, 15, 40 degrees C) suggests that the most probable modifying link is spectrin and/or the sites of its interaction with membrane. The interaction of cytoskeletal components with the cell membrane plays a key role in regulation of membrane permeability, suggesting an important role of this interaction in the adaptive reactions of erythrocytes.

  16. Teaching an old hormone new tricks: cytosolic Ca2+ elevation involvement in plant brassinosteroid signal transduction cascades.

    PubMed

    Zhao, Yichen; Qi, Zhi; Berkowitz, Gerald A

    2013-10-01

    Brassinosteroids (BRs) are hormones that control many aspects of plant growth and development, acting at the cell level to promote division and expansion. BR regulation of plant and plant cell function occurs through altered expression of many genes. Transcriptional reprogramming downstream from cell perception of this hormone is currently known to be mediated by a phosphorylation/dephosphorylation ("phosphorelay") cascade that alters the stability of two master transcription regulators. Here, we provide evidence that BR perception by their receptor also causes an elevation in cytosolic Ca(2+), initiating a Ca(2+) signaling cascade in Arabidopsis (Arabidopsis thaliana) cell cytosol. BR-dependent increases in the expression of some genes (INDOLE-3-ACETIC ACID-INDUCIBLE1 and PHYTOCHROME B ACTIVATION-TAGGED SUPPRESSOR1) were impaired in wild-type plants by a Ca(2+) channel blocker and also in the defense-no-death (dnd1) mutant, which lacks a functional cyclic GMP-activated cell membrane Ca(2+)-conducting channel. Alternatively, mutations that impair the BR phosphorelay cascade did not much affect the BR-dependent expression of these genes. Similar effects of the Ca(2+) channel blocker and dnd1 mutation were observed on a BR plant growth phenotype, deetiolation of the seedling hypocotyl. Further evidence presented in this report suggests that a BR-dependent elevation in cyclic GMP may be involved in the Ca(2+) signaling cascade initiated by this hormone. The work presented here leads to a new model of the molecular steps that mediate some of the cell responses to this plant hormone.

  17. Unrestrained AMPylation targets cytosolic chaperones and activates the heat shock response

    PubMed Central

    Truttmann, Matthias C.; Zheng, Xu; Hanke, Leo; Damon, Jadyn R.; Grootveld, Monique; Krakowiak, Joanna; Pincus, David; Ploegh, Hidde L.

    2017-01-01

    Protein AMPylation is a conserved posttranslational modification with emerging roles in endoplasmic reticulum homeostasis. However, the range of substrates and cell biological consequences of AMPylation remain poorly defined. We expressed human and Caenorhabditis elegans AMPylation enzymes—huntingtin yeast-interacting protein E (HYPE) and filamentation-induced by cyclic AMP (FIC)-1, respectively—in Saccharomyces cerevisiae, a eukaryote that lacks endogenous protein AMPylation. Expression of HYPE and FIC-1 in yeast induced a strong cytoplasmic Hsf1-mediated heat shock response, accompanied by attenuation of protein translation, massive protein aggregation, growth arrest, and lethality. Overexpression of Ssa2, a cytosolic heat shock protein (Hsp)70, was sufficient to partially rescue growth. In human cell lines, overexpression of active HYPE similarly induced protein aggregation and the HSF1-dependent heat shock response. Excessive AMPylation also abolished HSP70-dependent influenza virus replication. Our findings suggest a mode of Hsp70 inactivation by AMPylation and point toward a role for protein AMPylation in the regulation of cellular protein homeostasis beyond the endoplasmic reticulum. PMID:28031489

  18. Construction of Course Ubiquitous Learning Based on Network

    ERIC Educational Resources Information Center

    Wang, Xue; Zhang, Wei; Yang, Xinhui

    2017-01-01

    Ubiquitous learning has been more and more recognized, which describes a new generation of learning from a new point of view. Ubiquitous learning will bring the new teaching practice and teaching reform, which will become an essential way of learning in 21st century. Taking translation course as a case study, this research constructed a system of…

  19. Both genome and cytosol dynamics change in E. coli challenged with sublethal rifampicin

    NASA Astrophysics Data System (ADS)

    Wlodarski, Michal; Raciti, Bianca; Kotar, Jurij; Cosentino Lagomarsino, Marco; Fraser, Gillian M.; Cicuta, Pietro

    2017-02-01

    While the action of many antimicrobial drugs is well understood at the molecular level, a systems-level physiological response to antibiotics remains largely unexplored. This work considers fluctuation dynamics of both the chromosome and cytosol in Escherichia coli, and their response to sublethal treatments of a clinically important antibiotic, rifampicin. We precisely quantify the changes in dynamics of chromosomal loci and cytosolic aggregates (a rheovirus nonstructural protein known as μNS-GFP), measuring short time-scale displacements across several hours of drug exposure. To achieve this we develop an empirical method correcting for photo-bleaching and loci size effects. This procedure allows us to characterize the dynamic response to rifampicin in different growth conditions, including a customised microfluidic device. We find that sub-lethal doses of rifampicin cause a small but consistent increase in motility of both the chromosomal loci and cytosolic aggregates. Chromosomal and cytosolic responses are consistent with each other and between different growth conditions.

  20. Enhancement of UVB radiation-mediated apoptosis by knockdown of cytosolic NADP+-dependent isocitrate dehydrogenase in HaCaT cells.

    PubMed

    Lee, Su Jeong; Park, Jeen-Woo

    2014-04-01

    Ultraviolet B (UVB) radiation induces the production of reactive oxygen species (ROS) that promote apoptotic cell death. We showed that cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) plays an essential role in the control of cellular redox balance and defense against oxidative damage, by supplying NADPH for antioxidant systems. In this study, we demonstrated that knockdown of IDPc expression by RNA interference enhances UVB-induced apoptosis of immortalized human HaCaT keratinocytes. This effect manifested as DNA fragmentation, changes in cellular redox status, mitochondrial dysfunction, and modulation of apoptotic marker expression. Based on our findings, we suggest that attenuation of IDPc expression may protect skin from UVB-mediated damage, by inducing the apoptosis of UV-damaged cells.

  1. Cloning, Characterization and Expression Pattern Analysis of a Cytosolic Copper/Zinc Superoxide Dismutase (SaCSD1) in a Highly Salt Tolerant Mangrove (Sonneratia alba)

    PubMed Central

    Yang, Enze; Yi, Shanze; Bai, Fang; Niu, Dewei; Zhong, Junjie; Wu, Qiuhong; Chen, Shufang; Zhou, Renchao; Wang, Feng

    2015-01-01

    Mangroves are critical marine resources for their remarkable ability to tolerate seawater. Antioxidant enzymes play an especially significant role in eliminating reactive oxygen species and conferring abiotic stress tolerance. In this study, a cytosolic copper/zinc superoxide dismutase (SaCSD1) cDNA of Sonneratia alba, a mangrove species with high salt tolerance, was successfully cloned and then expressed in Escherichia coli Rosetta-gami (designated as SaCSD1). SaCSD1 comprised a complete open reading frame (ORF) of 459 bp which encoded a protein of 152 amino acids. Its mature protein is predicted to be 15.32 kDa and the deduced isoelectric point is 5.78. SaCSD1 has high sequence similarity (85%–90%) with the superoxide dismutase (CSD) of some other plant species. SaCSD1 was expressed with 30.6% yield regarding total protein content after being introduced into the pET-15b (Sma I) vector for expression in Rosetta-gami and being induced with IPTG. After affinity chromatography on Ni-NTA, recombinant SaCSD1 was obtained with 3.2-fold purification and a specific activity of 2200 U/mg. SaCSD1 showed good activity as well as stability in the ranges of pH between 3 and 7 and temperature between 25 and 55 °C. The activity of recombinant SaCSD1 was stable in 0.25 M NaCl, Dimethyl Sulphoxide (DMSO), glycerol, and chloroform, and was reduced to a great extent in β-mercaptoethanol, sodium dodecyl sulfate (SDS), H2O2, and phenol. Moreover, the SaCSD1 protein was very susceptive to pepsin digestion. Real-time Quantitative Polymerase Chain Reaction (PCR) assay demonstrated that SaCSD1 was expressed in leaf, stem, flower, and fruit organs, with the highest expression in fruits. Under 0.25 M and 0.5 M salt stress, the expression of SaCSD1 was down-regulated in roots, but up-regulated in leaves. PMID:26703583

  2. Ubiquitous CM and DM

    NASA Technical Reports Server (NTRS)

    Crowley, Sandra L.

    2000-01-01

    Ubiquitous is a real word. I thank a former Total Quality Coach for my first exposure some years ago to its existence. My version of Webster's dictionary defines ubiquitous as "present, or seeming to be present, everywhere at the same time; omnipresent." While I believe that God is omnipresent, I have come to discover that CM and DM are present everywhere. Oh, yes; I define CM as Configuration Management and DM as either Data or Document Management. Ten years ago, I had my first introduction to the CM world. I had an opportunity to do CM for the Space Station effort at the NASA Lewis Research Center. I learned that CM was a discipline that had four areas of focus: identification, control, status accounting, and verification. I was certified as a CMIl graduate and was indoctrinated about clear, concise, and valid. Off I went into a world of entirely new experiences. I was exposed to change requests and change boards first hand. I also learned about implementation of changes, and then of technical and CM requirements.

  3. Reversed electrogenic sodium bicarbonate cotransporter 1 is the major acid loader during recovery from cytosolic alkalosis in mouse cortical astrocytes

    PubMed Central

    Theparambil, Shefeeq M; Naoshin, Zinnia; Thyssen, Anne; Deitmer, Joachim W

    2015-01-01

    Recovery of intracellular pH from cytosolic alkalosis has been attributed primarily to Cl– coupled acid loaders/base extruders such as Cl–/HCO3– or Cl–/OH– exchangers. We have studied this process in cortical astrocytes from wild-type and transgenic mouse models with gene deletion for the electrogenic sodium bicarbonate cotransporter 1 (NBCe1) and for carbonic anhydrase (CA) isoform II. An acute cytosolic alkalosis was induced by the removal of either CO2/HCO3– or butyric acid, and the subsequent acid loading was analysed by monitoring changes in cytosolic H+ or Na+ using ion-sensitive fluorescent dyes. We have identified that NBCe1 reverses during alkalosis and contributes more than 70% to the rate of recovery from alkalosis by extruding Na+ and HCO3–. After CA inhibition or in CAII-knockout (KO) cells, the rate of recovery was reduced by 40%, and even by 70% in the nominal absence of CO2/HCO3–. Increasing the extracellular K+ concentration modulated the rate of acid loading in wild-type cells, but not in NBCe1-KO cells. Removing chloride had only a minor effect on the recovery from alkalosis. Reversal of NBCe1 by reducing pH/[HCO3–] was demonstrated in astrocytes and in Xenopus oocytes, in which human NBCe1 was heterologously expressed. The results obtained suggest that reversed NBCe1, supported by CAII activity, plays a major role in acid-loading cortical astrocytes to support recovery from cytosolic alkalosis. PMID:25990710

  4. PDE7B is involved in nandrolone decanoate hydrolysis in liver cytosol and its transcription is up-regulated by androgens in HepG2.

    PubMed

    Strahm, Emmanuel; Rane, Anders; Ekström, Lena

    2014-01-01

    Most androgenic drugs are available as esters for a prolonged depot action. However, the enzymes involved in the hydrolysis of the esters have not been identified. There is one study indicating that PDE7B may be involved in the activation of testosterone enanthate. The aims are to identify the cellular compartments where the hydrolysis of testosterone enanthate and nandrolone decanoate occurs, and to investigate the involvement of PDE7B in the activation. We also determined if testosterone and nandrolone affect the expression of the PDE7B gene. The hydrolysis studies were performed in isolated human liver cytosolic and microsomal preparations with and without specific PDE7B inhibitor. The gene expression was studied in human hepatoma cells (HepG2) exposed to testosterone and nandrolone. We show that PDE7B serves as a catalyst of the hydrolysis of testosterone enanthate and nandrolone decanoate in liver cytosol. The gene expression of PDE7B was significantly induced 3- and 5- fold after 2 h exposure to 1 μM testosterone enanthate and nandrolone decanoate, respectively. These results show that PDE7B is involved in the activation of esterified nandrolone and testosterone and that the gene expression of PDE7B is induced by supra-physiological concentrations of androgenic drugs.

  5. Internet messenger based smart virtual class learning using ubiquitous computing

    NASA Astrophysics Data System (ADS)

    Umam, K.; Mardi, S. N. S.; Hariadi, M.

    2017-06-01

    Internet messenger (IM) has become an important educational technology component in college education, IM makes it possible for students to engage in learning and collaborating at smart virtual class learning (SVCL) using ubiquitous computing. However, the model of IM-based smart virtual class learning using ubiquitous computing and empirical evidence that would favor a broad application to improve engagement and behavior are still limited. In addition, the expectation that IM based SVCL using ubiquitous computing could improve engagement and behavior on smart class cannot be confirmed because the majority of the reviewed studies followed instructions paradigms. This article aims to present the model of IM-based SVCL using ubiquitous computing and showing learners’ experiences in improved engagement and behavior for learner-learner and learner-lecturer interactions. The method applied in this paper includes design process and quantitative analysis techniques, with the purpose of identifying scenarios of ubiquitous computing and realize the impressions of learners and lecturers about engagement and behavior aspect and its contribution to learning

  6. Evolutionary conserved microRNAs are ubiquitously expressed compared to tick-specific miRNAs in the cattle tick Rhipicephalus (Boophilus) microplus

    PubMed Central

    2011-01-01

    RNAs in the R. microplus lineage not only tend to accumulate the least amount of nucleotide substitutions as compared to those recently acquired miRNAs, but also show ubiquitous expression profiles through out tick life stages and organs contrasting with the restricted expression profiles of novel tick-specific miRNAs. PMID:21699734

  7. Deciphering the Magainin Resistance Process of Escherichia coli Strains in Light of the Cytosolic Proteome

    PubMed Central

    Maria-Neto, Simone; Cândido, Elizabete de Souza; Rodrigues, Diana Ribas; de Sousa, Daniel Amaro; da Silva, Ezequiel Marcelino; de Moraes, Lidia Maria Pepe; Otero-Gonzalez, Anselmo de Jesus; Magalhães, Beatriz Simas; Dias, Simoni Campos

    2012-01-01

    Antimicrobial peptides (AMPs) are effective antibiotic agents commonly found in plants, animals, and microorganisms, and they have been suggested as the future of antimicrobial chemotherapies. It is vital to understand the molecular details that define the mechanism of action of resistance to AMPs for a rational planning of the next antibiotic generation and also to shed some light on the complex AMP mechanism of action. Here, the antibiotic resistance of Escherichia coli ATCC 8739 to magainin I was evaluated in the cytosolic subproteome. Magainin-resistant strains were selected after 10 subsequent spreads at subinhibitory concentrations of magainin I (37.5 mg · liter−1), and their cytosolic proteomes were further compared to those of magainin-susceptible strains through two-dimensional electrophoresis analysis. As a result, 41 differentially expressed proteins were detected by in silico analysis and further identified by tandem mass spectrometry de novo sequencing. Functional categorization indicated an intense metabolic response mainly in energy and nitrogen uptake, stress response, amino acid conversion, and cell wall thickness. Indeed, data reported here show that resistance to cationic antimicrobial peptides possesses a greater molecular complexity than previously supposed, resulting in cell commitment to several metabolic pathways. PMID:22290970

  8. Spatial modeling of the membrane-cytosolic interface in protein kinase signal transduction

    PubMed Central

    Schröder, Andreas

    2018-01-01

    The spatial architecture of signaling pathways and the interaction with cell size and morphology are complex, but little understood. With the advances of single cell imaging and single cell biology, it becomes crucial to understand intracellular processes in time and space. Activation of cell surface receptors often triggers a signaling cascade including the activation of membrane-attached and cytosolic signaling components, which eventually transmit the signal to the cell nucleus. Signaling proteins can form steep gradients in the cytosol, which cause strong cell size dependence. We show that the kinetics at the membrane-cytosolic interface and the ratio of cell membrane area to the enclosed cytosolic volume change the behavior of signaling cascades significantly. We suggest an estimate of average concentration for arbitrary cell shapes depending on the cell volume and cell surface area. The normalized variance, known from image analysis, is suggested as an alternative measure to quantify the deviation from the average concentration. A mathematical analysis of signal transduction in time and space is presented, providing analytical solutions for different spatial arrangements of linear signaling cascades. Quantification of signaling time scales reveals that signal propagation is faster at the membrane than at the nucleus, while this time difference decreases with the number of signaling components in the cytosol. Our investigations are complemented by numerical simulations of non-linear cascades with feedback and asymmetric cell shapes. We conclude that intracellular signal propagation is highly dependent on cell geometry and, thereby, conveys information on cell size and shape to the nucleus. PMID:29630597

  9. Methanol induces cytosolic calcium variations, membrane depolarization and ethylene production in arabidopsis and tobacco.

    PubMed

    Tran, Daniel; Dauphin, Aurélien; Meimoun, Patrice; Kadono, Takashi; Nguyen, Hieu T H; Arbelet-Bonnin, Delphine; Zhao, Tingting; Errakhi, Rafik; Lehner, Arnaud; Kawano, Tomonori; Bouteau, François

    2018-03-20

    Methanol is a volatile organic compound released from plants through the action of pectin methylesterases (PMEs), which demethylesterify cell wall pectins. Plant PMEs play a role in developmental processes but also in responses to herbivory and infection by fungal or bacterial pathogens. However, molecular mechanisms that explain how methanol could affect plant defences remain poorly understood. Using cultured cells and seedlings from Arabidopsis thaliana and tobacco BY2 expressing the apoaequorin gene, allowing quantification of cytosolic Ca2+, a reactive oxygen species (ROS) probe (CLA, Cypridina luciferin analogue) and electrophysiological techniques, we followed early plant cell responses to exogenously supplied methanol applied as a liquid or as volatile. Methanol induces cytosolic Ca2+ variations that involve Ca2+ influx through the plasma membrane and Ca2+ release from internal stores. Our data further suggest that these Ca2+ variations could interact with different ROS and support a signalling pathway leading to well known plant responses to pathogens such as plasma membrane depolarization through anion channel regulation and ethylene synthesis. Methanol is not only a by-product of PME activities, and our data suggest that [Ca2+]cyt variations could participate in signalling processes induced by methanol upstream of plant defence responses.

  10. Subcellular Distribution of NAD+ between Cytosol and Mitochondria Determines the Metabolic Profile of Human Cells.

    PubMed

    VanLinden, Magali R; Dölle, Christian; Pettersen, Ina K N; Kulikova, Veronika A; Niere, Marc; Agrimi, Gennaro; Dyrstad, Sissel E; Palmieri, Ferdinando; Nikiforov, Andrey A; Tronstad, Karl Johan; Ziegler, Mathias

    2015-11-13

    The mitochondrial NAD pool is particularly important for the maintenance of vital cellular functions. Although at least in some fungi and plants, mitochondrial NAD is imported from the cytosol by carrier proteins, in mammals, the mechanism of how this organellar pool is generated has remained obscure. A transporter mediating NAD import into mammalian mitochondria has not been identified. In contrast, human recombinant NMNAT3 localizes to the mitochondrial matrix and is able to catalyze NAD(+) biosynthesis in vitro. However, whether the endogenous NMNAT3 protein is functionally effective at generating NAD(+) in mitochondria of intact human cells still remains to be demonstrated. To modulate mitochondrial NAD(+) content, we have expressed plant and yeast mitochondrial NAD(+) carriers in human cells and observed a profound increase in mitochondrial NAD(+). None of the closest human homologs of these carriers had any detectable effect on mitochondrial NAD(+) content. Surprisingly, constitutive redistribution of NAD(+) from the cytosol to the mitochondria by stable expression of the Arabidopsis thaliana mitochondrial NAD(+) transporter NDT2 in HEK293 cells resulted in dramatic growth retardation and a metabolic shift from oxidative phosphorylation to glycolysis, despite the elevated mitochondrial NAD(+) levels. These results suggest that a mitochondrial NAD(+) transporter, similar to the known one from A. thaliana, is likely absent and could even be harmful in human cells. We provide further support for the alternative possibility, namely intramitochondrial NAD(+) synthesis, by demonstrating the presence of endogenous NMNAT3 in the mitochondria of human cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Implications of Ubiquitous Computing for the Social Studies Curriculum

    ERIC Educational Resources Information Center

    van Hover, Stephanie D.; Berson, Michael J.; Bolick, Cheryl Mason; Swan, Kathleen Owings

    2004-01-01

    In March 2002, members of the National Technology Leadership Initiative (NTLI) met in Charlottesville, Virginia to discuss the potential effects of ubiquitous computing on the field of education. Ubiquitous computing, or "on-demand availability of task-necessary computing power," involves providing every student with a handheld computer--a…

  12. Insulin Induces an Increase in Cytosolic Glucose Levels in 3T3-L1 Cells with Inhibited Glycogen Synthase Activation

    PubMed Central

    Chowdhury, Helena H.; Kreft, Marko; Jensen, Jørgen; Zorec, Robert

    2014-01-01

    Glucose is an important source of energy for mammalian cells and enters the cytosol via glucose transporters. It has been thought for a long time that glucose entering the cytosol is swiftly phosphorylated in most cell types; hence the levels of free glucose are very low, beyond the detection level. However, the introduction of new fluorescence resonance energy transfer-based glucose nanosensors has made it possible to measure intracellular glucose more accurately. Here, we used the fluorescent indicator protein (FLIPglu-600µ) to monitor cytosolic glucose dynamics in mouse 3T3-L1 cells in which glucose utilization for glycogen synthesis was inhibited. The results show that cells exhibit a low resting cytosolic glucose concentration. However, in cells with inhibited glycogen synthase activation, insulin induced a robust increase in cytosolic free glucose. The insulin-induced increase in cytosolic glucose in these cells is due to an imbalance between the glucose transported into the cytosol and the use of glucose in the cytosol. In untreated cells with sensitive glycogen synthase activation, insulin stimulation did not result in a change in the cytosolic glucose level. This is the first report of dynamic measurements of cytosolic glucose levels in cells devoid of the glycogen synthesis pathway. PMID:25279585

  13. Socio-technical Issues for Ubiquitous Information Society in 2010

    NASA Astrophysics Data System (ADS)

    Funabashi, Motohisa; Homma, Koichi; Sasaki, Toshiro; Sato, Yoshinori; Kido, Kunihiko; Fukumoto, Takashi; Yano, Koujin

    Impact of the ubiquitous information technology on our society is so significant that directing technological development and preparing institutional apparatus are quite important and urgent. The present paper elaborates, with the efforts by both humanity and engineering disciplines, to find out the socio-technical issues of ubiquitous information society in 2010 by inspecting social implications of emerging technology as well as social expectations. In order to deliberate the issues, scenarios are developed that describes possible life in ubiquitous information society. The derived issues cover integrating information technology and human body, producing smart sharable environment, protecting individual rights, fostering new service business, and forming community.

  14. Enhancement of UVB radiation-mediated apoptosis by knockdown of cytosolic NADP+-dependent isocitrate dehydrogenase in HaCaT cells

    PubMed Central

    Lee, Su Jeong; Park, Jeen-Woo

    2014-01-01

    Ultraviolet B (UVB) radiation induces the production of reactive oxygen species (ROS) that promote apoptotic cell death. We showed that cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) plays an essential role in the control of cellular redox balance and defense against oxidative damage, by supplying NADPH for antioxidant systems. In this study, we demonstrated that knockdown of IDPc expression by RNA interference enhances UVB-induced apoptosis of immortalized human HaCaT keratinocytes. This effect manifested as DNA fragmentation, changes in cellular redox status, mitochondrial dysfunction, and modulation of apoptotic marker expression. Based on our findings, we suggest that attenuation of IDPc expression may protect skin from UVB-mediated damage, by inducing the apoptosis of UV-damaged cells. [BMB Reports 2014; 47(4): 209-214] PMID:24286310

  15. Regio- and enantiofacial selectivity of epoxyeicosatrienoic acid hydration by cytosolic epoxide hydrolase.

    PubMed

    Zeldin, D C; Kobayashi, J; Falck, J R; Winder, B S; Hammock, B D; Snapper, J R; Capdevila, J H

    1993-03-25

    The hydration of cis-epoxyeicosatrienoic acids to the corresponding vic-dihydroxyeicosatrienoic acids by cytosolic epoxide hydrolase demonstrates moderate regioselectivity with rates of hydration highest for the 14,15-epoxide and lower for the 11,12- and 8,9-epoxide (4.5, 1.6, and 1.5 mumol of product/mg of protein/min, respectively). Incubations of the 8,9- and 14,15-epoxides with cytosolic epoxide hydrolase show stereoselective formation of diols (7:3 and 4:1 ratio of antipodes, respectively) and concomitant chiral enrichment of the remaining unmetabolized substrate. In contrast, hydration of the 11,12-epoxide is nonenantioselective. The Km value of the enzyme for the 14(R),15(S)-epoxide is 3 microM. Incubations of the enantiomerically pure 8,9- and 14,15-epoxides with lung or liver cytosol, followed by chiral analysis of the resulting diols demonstrate selective cleavage of the oxirane ring at C9 and C15, respectively. On the other hand, cleavage of the 11,12- oxirane ring was less selective. The stereochemical preference of the cytosolic epoxide hydrolase, together with the known chiral composition of the endogenous arachidonate epoxide pools, suggests a functional role for this enzyme in the metabolism of these important compounds.

  16. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and redox-cofactor balancing.

    PubMed

    van Rossum, Harmen M; Kozak, Barbara U; Pronk, Jack T; van Maris, Antonius J A

    2016-07-01

    Saccharomyces cerevisiae is an important industrial cell factory and an attractive experimental model for evaluating novel metabolic engineering strategies. Many current and potential products of this yeast require acetyl coenzyme A (acetyl-CoA) as a precursor and pathways towards these products are generally expressed in its cytosol. The native S. cerevisiae pathway for production of cytosolic acetyl-CoA consumes 2 ATP equivalents in the acetyl-CoA synthetase reaction. Catabolism of additional sugar substrate, which may be required to generate this ATP, negatively affects product yields. Here, we review alternative pathways that can be engineered into yeast to optimize supply of cytosolic acetyl-CoA as a precursor for product formation. Particular attention is paid to reaction stoichiometry, free-energy conservation and redox-cofactor balancing of alternative pathways for acetyl-CoA synthesis from glucose. A theoretical analysis of maximally attainable yields on glucose of four compounds (n-butanol, citric acid, palmitic acid and farnesene) showed a strong product dependency of the optimal pathway configuration for acetyl-CoA synthesis. Moreover, this analysis showed that combination of different acetyl-CoA production pathways may be required to achieve optimal product yields. This review underlines that an integral analysis of energy coupling and redox-cofactor balancing in precursor-supply and product-formation pathways is crucial for the design of efficient cell factories. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Trust models in ubiquitous computing.

    PubMed

    Krukow, Karl; Nielsen, Mogens; Sassone, Vladimiro

    2008-10-28

    We recapture some of the arguments for trust-based technologies in ubiquitous computing, followed by a brief survey of some of the models of trust that have been introduced in this respect. Based on this, we argue for the need of more formal and foundational trust models.

  18. The Status of Ubiquitous Computing.

    ERIC Educational Resources Information Center

    Brown, David G.; Petitto, Karen R.

    2003-01-01

    Explains the prevalence and rationale of ubiquitous computing on college campuses--teaching with the assumption or expectation that all faculty and students have access to the Internet--and offers lessons learned by pioneering institutions. Lessons learned involve planning, technology, implementation and management, adoption of computer-enhanced…

  19. A reaction-diffusion model of cytosolic hydrogen peroxide.

    PubMed

    Lim, Joseph B; Langford, Troy F; Huang, Beijing K; Deen, William M; Sikes, Hadley D

    2016-01-01

    As a signaling molecule in mammalian cells, hydrogen peroxide (H2O2) determines the thiol/disulfide oxidation state of several key proteins in the cytosol. Localization is a key concept in redox signaling; the concentrations of signaling molecules within the cell are expected to vary in time and in space in manner that is essential for function. However, as a simplification, all theoretical studies of intracellular hydrogen peroxide and many experimental studies to date have treated the cytosol as a well-mixed compartment. In this work, we incorporate our previously reported reduced kinetic model of the network of reactions that metabolize hydrogen peroxide in the cytosol into a model that explicitly treats diffusion along with reaction. We modeled a bolus addition experiment, solved the model analytically, and used the resulting equations to quantify the spatiotemporal variations in intracellular H2O2 that result from this kind of perturbation to the extracellular H2O2 concentration. We predict that micromolar bolus additions of H2O2 to suspensions of HeLa cells (0.8 × 10(9)cells/l) result in increases in the intracellular concentration that are localized near the membrane. These findings challenge the assumption that intracellular concentrations of H2O2 are increased uniformly throughout the cell during bolus addition experiments and provide a theoretical basis for differing phenotypic responses of cells to intracellular versus extracellular perturbations to H2O2 levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. INCREASES IN CYTOSOLIC CALCIUM ION LEVELS IN HUMAN NATURAL KILLER CELLS IN RESPONSE TO BUTYLTIN EXPOSURE

    PubMed Central

    Lane, Rhonda; Ghazi, Sabah O.; Whalen, Margaret M.

    2009-01-01

    This study investigated whether exposures to butyltins (BTs), tributylin (TBT) and dibutyltin (DBT) were able to alter cytosolic calcium levels in human natural killer (NK) cells. Additionally, the effects of cytosolic calcium ion increases on the activation state of mitogen activated protein kinases (MAPKs) in NK cells were also investigated. NK cells are an intital immune defense against the development of tumors or viral infections. TBT and DBT are widespread environmental contaminants, due to their various industrial applications. Both TBT and DBT have been shown to decrease the ability of NK cells to lyse tumor cells (lytic function). TBT has also been shown to activate MAPKs in NK cells. The results of this study indicated that TBT increased cytosolic calcium levels by as much as 100% after a 60 min exposure to 500 nM TBT while DBT increased cytosolic calcium levels to a much smaller extent (and required higher concentrations). The results also indicated that increases in cytosolic calcium could activate MAPKs but only for a short period of time (5 min), while previous studies showed that activation of MAPKs by TBT last for at least 6 hours. Thus, it appears that TBT stimulated increases in cytosolic calcium may contribute to, but are not fully responsible for, TBT-induced activation of MAPKs. PMID:19365649

  1. Micrometer-Scale Membrane Transition of Supported Lipid Bilayer Membrane Reconstituted with Cytosol of Dictyostelium discoideum.

    PubMed

    Takahashi, Kei; Toyota, Taro

    2017-03-07

    The transformation of the supported lipid bilayer (SLB) membrane by extracted cytosol from living resources, has recently drawn much attention. It enables us to address the question of whether the purified phospholipid SLB membrane, including lipids related to amoeba locomotion, which was discussed in many previous studies, exhibits membrane deformation in the presence of cytosol extracted from amoeba; Methods: In this report, a method for reconstituting a supported lipid bilayer (SLB) membrane, composed of purified phospholipids and cytosol extracted from Dictyostelium discoideum , is described. This technique is a new reconstitution method combining the artificial constitution of membranes with the reconstitution using animate cytosol (without precise purification at a molecular level), contributing to membrane deformation analysis; Results: The morphology transition of a SLB membrane composed of phosphatidylcholines, after the addition of cytosolic extract, was traced using a confocal laser scanning fluorescence microscope. As a result, pore formation in the SLB membrane was observed and phosphatidylinositides incorporated into the SLB membrane tended to suppress pore formation and expansion; Conclusions: The current findings imply that phosphatidylinositides have the potential to control cytoplasm activity and bind to a phosphoinositide-containing SLB membrane.

  2. Current Challenges in Delivery and Cytosolic Translocation of Therapeutic RNAs

    PubMed Central

    Lucchino, Marco

    2018-01-01

    RNA interference (RNAi) is a fundamental cellular process for the posttranscriptional regulation of gene expression. RNAi can exogenously be modulated by small RNA oligonucleotides, such as microRNAs (miRNAs) and small interfering RNAs (siRNAs), or by antisense oligonucleotides. These small oligonucleotides provided the scientific community with powerful and versatile tools to turn off the expression of genes of interest, and hold out the promise of new therapeutic solutions against a wide range of gene-associated pathologies. However, unmodified nucleic acids are highly instable in biological systems, and their weak interaction with plasma proteins confers an unfavorable pharmacokinetics. In this review, we first provide an overview of the most efficient chemical strategies that, over the past 30 years, have been used to significantly improve the therapeutic potential of oligonucleotides. Oligonucleotides targeting and delivery technologies are then presented, including covalent conjugates between oligonucleotides and targeting ligand, and noncovalent association with lipid or polymer nanoparticles. Finally, we specifically focus on the endosomal escape step, which represents a major stumbling block for the effective use of oligonucleotides as therapeutic agents. The need for approaches to quantitatively measure endosomal escape and cytosolic arrival of biomolecules is discussed in the context of the development of efficient oligonucleotide targeting and delivery vectors. PMID:29883296

  3. Fatty acid translocase promoted hepatitis B virus replication by upregulating the levels of hepatic cytosolic calcium.

    PubMed

    Huang, Jian; Zhao, Lei; Yang, Ping; Chen, Zhen; Ruan, Xiong Z; Huang, Ailong; Tang, Ni; Chen, Yaxi

    2017-09-15

    Hepatitis B virus (HBV) is designated a "metabolovirus" due to the intimate connection between the virus and host metabolism. The nutrition state of the host plays a relevant role in the severity of HBV infection. Metabolic syndrome (MS) is prone to increasing HBV DNA loads and accelerating the progression of liver disease in patients with chronic hepatitis B (CHB). Cluster of differentiation 36 (CD36), also named fatty acid translocase, is known to facilitate long-chain fatty acid uptake and contribute to the development of MS. We recently found that CD36 overexpression enhanced HBV replication. In this study, we further explored the mechanism by which CD36 overexpression promotes HBV replication. Our data showed that CD36 overexpression increased HBV replication, and CD36 knockdown inhibited HBV replication. RNA sequencing found some of the differentially expressed genes were involved in calcium ion homeostasis. CD36 overexpression elevated the cytosolic calcium level, and CD36 knockdown decreased the cytosolic calcium level. Calcium chelator BAPTA-AM could override the HBV replication increased by CD36 overexpression, and the calcium activator thapsigargin could improve the HBV replication reduced by CD36 knockdown. We further found that CD36 overexpression activated Src kinase, which plays an important role in the regulation of the store-operated Ca 2+ channel. An inhibitor of Src kinase (SU6656) significantly reduced the CD36-induced HBV replication. We identified a novel link between CD36 and HBV replication, which is associated with cytosolic calcium and the Src kinase pathway. CD36 may represent a potential therapeutic target for the treatment of CHB patients with MS. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Role of Passive Capturing in a Ubiquitous Learning Environment

    ERIC Educational Resources Information Center

    Ogata, Hiroaki; Hou, Bin; Li, MengMeng; Uosaki, Noriko; Mouri, Kousuke

    2013-01-01

    Ubiquitous Learning Log (ULL) is defined as a digital record of what you have learned in the daily life using ubiquitous technologies. This paper focuses on how to capture learning experiences in our daily life for vocabulary learning. In our previous works, we developed a system named SCROLL (System for Capturing and Reminding Of Learning Log) in…

  5. Ubiquitous Learning Project Using Life-Logging Technology in Japan

    ERIC Educational Resources Information Center

    Ogata, Hiroaki; Hou, Bin; Li, Mengmeng; Uosaki, Noriko; Mouri, Kosuke; Liu, Songran

    2014-01-01

    A Ubiquitous Learning Log (ULL) is defined as a digital record of what a learner has learned in daily life using ubiquitous computing technologies. In this paper, a project which developed a system called SCROLL (System for Capturing and Reusing Of Learning Log) is presented. The aim of developing SCROLL is to help learners record, organize,…

  6. To Be Cytosolic or Vacuolar: The Double Life of Listeria monocytogenes.

    PubMed

    Bierne, Hélène; Milohanic, Eliane; Kortebi, Mounia

    2018-01-01

    Intracellular bacterial pathogens are generally classified into two types: those that exploit host membrane trafficking to construct specific niches in vacuoles (i.e., "vacuolar pathogens"), and those that escape from vacuoles into the cytosol, where they proliferate and often spread to neighboring cells (i.e., "cytosolic pathogens"). However, the boundary between these distinct intracellular phenotypes is tenuous and may depend on the timing of infection and on the host cell type. Here, we discuss recent progress highlighting this phenotypic duality in Listeria monocytogenes , which has long been a model for cytosolic pathogens, but now emerges as a bacterium also capable of residing in vacuoles, in a slow/non-growing state. The ability of L. monocytogenes to enter a persistence stage in vacuoles might play a role during the asymptomatic incubation period of listeriosis and/or the carriage of this pathogen in asymptomatic hosts. Moreover, persistent vacuolar Listeria could be less susceptible to antibiotics and more difficult to detect by routine techniques of clinical biology. These hypotheses deserve to be explored in order to better manage the risks related to this food-borne pathogen.

  7. Glutathionylation regulates cytosolic NADP+-dependent isocitrate dehydrogenase activity.

    PubMed

    Shin, Seoung Woo; Oh, Chang Joo; Kil, In Sup; Park, Jeen-Woo

    2009-04-01

    Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) is susceptible to inactivation by numerous thiol-modifying reagents. This study now reports that Cys269 of IDPc is a target for S-glutathionylation and that this modification is reversed by dithiothreitol as well as enzymatically by cytosolic glutaredoxin in the presence of GSH. Glutathionylated IDPc was significantly less susceptible than native protein to peptide fragmentation by reactive oxygen species and proteolytic digestion. Glutathionylation may play a protective role in the degradation of protein through the structural alterations of IDPc. HEK293 cells treated with diamide displayed decreased IDPc activity and accumulated glutathionylated enzyme. Using immunoprecipitation with an anti-IDPc IgG and immunoblotting with an anti-GSH IgG, we purified and positively identified glutathionylated IDPc from the kidneys of mice subjected to ischemia/reperfusion injury and from the livers of ethanol-administered rats. These results suggest that IDPc activity is modulated through enzymatic glutathionylation and deglutathionylation during oxidative stress.

  8. Light induced cytosolic drug delivery from liposomes with gold nanoparticles.

    PubMed

    Lajunen, Tatu; Viitala, Lauri; Kontturi, Leena-Stiina; Laaksonen, Timo; Liang, Huamin; Vuorimaa-Laukkanen, Elina; Viitala, Tapani; Le Guével, Xavier; Yliperttula, Marjo; Murtomäki, Lasse; Urtti, Arto

    2015-04-10

    Externally triggered drug release at defined targets allows site- and time-controlled drug treatment regimens. We have developed liposomal drug carriers with encapsulated gold nanoparticles for triggered drug release. Light energy is converted to heat in the gold nanoparticles and released to the lipid bilayers. Localized temperature increase renders liposomal bilayers to be leaky and triggers drug release. The aim of this study was to develop a drug releasing system capable of releasing its cargo to cell cytosol upon triggering with visible and near infrared light signals. The liposomes were formulated using either heat-sensitive or heat- and pH-sensitive lipid compositions with star or rod shaped gold nanoparticles. Encapsulated fluorescent probe, calcein, was released from the liposomes after exposure to the light. In addition, the pH-sensitive formulations showed a faster drug release in acidic conditions than in neutral conditions. The liposomes were internalized into human retinal pigment epithelial cells (ARPE-19) and human umbilical vein endothelial cells (HUVECs) and did not show any cellular toxicity. The light induced cytosolic delivery of calcein from the gold nanoparticle containing liposomes was shown, whereas no cytosolic release was seen without light induction or without gold nanoparticles in the liposomes. The light activated liposome formulations showed a controlled content release to the cellular cytosol at a specific location and time. Triggering with visual and near infrared light allows good tissue penetration and safety, and the pH-sensitive liposomes may enable selective drug release in the intracellular acidic compartments (endosomes, lysosomes). Thus, light activated liposomes with gold nanoparticles are an attractive option for time- and site-specific drug delivery into the target cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The Fast-Paced iPad Revolution: Can Educators Stay up to Date and Relevant about These Ubiquitous Devices?

    ERIC Educational Resources Information Center

    Peluso, Deanna C. C.

    2012-01-01

    Stepping into a modern day classroom, one will find that it is filled with a ubiquitous array of multimodal and digital resources, yet a majority of these revolutionary resources are likely not school issued, rather they were brought by the young people themselves. Digital mediums for communication, expression and multimodally engaging in one's…

  10. Evolutionary Conservation and Emerging Functional Diversity of the Cytosolic Hsp70:J Protein Chaperone Network of Arabidopsis thaliana.

    PubMed

    Verma, Amit K; Diwan, Danish; Raut, Sandeep; Dobriyal, Neha; Brown, Rebecca E; Gowda, Vinita; Hines, Justin K; Sahi, Chandan

    2017-06-07

    Heat shock proteins of 70 kDa (Hsp70s) partner with structurally diverse Hsp40s (J proteins), generating distinct chaperone networks in various cellular compartments that perform myriad housekeeping and stress-associated functions in all organisms. Plants, being sessile, need to constantly maintain their cellular proteostasis in response to external environmental cues. In these situations, the Hsp70:J protein machines may play an important role in fine-tuning cellular protein quality control. Although ubiquitous, the functional specificity and complexity of the plant Hsp70:J protein network has not been studied. Here, we analyzed the J protein network in the cytosol of Arabidopsis thaliana and, using yeast genetics, show that the functional specificities of most plant J proteins in fundamental chaperone functions are conserved across long evolutionary timescales. Detailed phylogenetic and functional analysis revealed that increased number, regulatory differences, and neofunctionalization in J proteins together contribute to the emerging functional diversity and complexity in the Hsp70:J protein network in higher plants. Based on the data presented, we propose that higher plants have orchestrated their "chaperome," especially their J protein complement, according to their specialized cellular and physiological stipulations. Copyright © 2017 Verma et al.

  11. Inhibition of a ubiquitously expressed pectin methyl esterase in Solanum tuberosum L. affects plant growth, leaf growth polarity, and ion partitioning.

    PubMed

    Pilling, J; Willmitzer, L; Bücking, H; Fisahn, J

    2004-05-01

    Two pectin methyl esterases (PMEs; EC 3.1.1.11) from Solanum tuberosum were isolated and their expression characterised. One partial clone ( pest1) was expressed in leaves and fruit tissue, while pest2 was a functional full-length clone and was expressed ubiquitously, with a preference for aerial organs. Potato plants were transformed with a chimeric antisense construct that was designed to simultaneously inhibit pest1 and pest2 transcript accumulation; however, reduction of mRNA levels was confined to pest2. The decrease in pest2 transcript was accompanied by up to 50% inhibition of total PME activity, which was probably due to the reduction of only one PME isoform. PME inhibition affected plant development as reflected by smaller stem elongation rates of selected transformants when compared with control plants, leading to a reduction in height throughout the entire course of development. Expansion rates of young developing leaves were measured simultaneously by two displacement transducers in the direction of the leaf tip (proximal-distal axis) and in the perpendicular direction (medial-lateral axis). Significant differences in leaf growth patterns were detected between wild-type and transgenic plants. We suggest that these visual phenotypes could be correlated with modifications of ion accumulation and partitioning within the transgenic plants. The ion-binding capacities of cell walls from PME-inhibited plants were specifically modified as they preferentially bound more sodium, but less potassium and calcium. X-ray microanalysis also indicated an increase in the concentration of several ions within the leaf apoplast of transgenic plants. Moreover, quantification of the total content of major cations revealed differences specific for a given element between the leaves of PME-inhibited and wild-type plants. Reduced growth rates might also be due to effects of PME inhibition on pectin metabolism, predominantly illustrated by an accumulation of galacturonic acid

  12. Multimodal and ubiquitous computing systems: supporting independent-living older users.

    PubMed

    Perry, Mark; Dowdall, Alan; Lines, Lorna; Hone, Kate

    2004-09-01

    We document the rationale and design of a multimodal interface to a pervasive/ubiquitous computing system that supports independent living by older people in their own homes. The Millennium Home system involves fitting a resident's home with sensors--these sensors can be used to trigger sequences of interaction with the resident to warn them about dangerous events, or to check if they need external help. We draw lessons from the design process and conclude the paper with implications for the design of multimodal interfaces to ubiquitous systems developed for the elderly and in healthcare, as well as for more general ubiquitous computing applications.

  13. A model for ubiquitous care of noncommunicable diseases.

    PubMed

    Vianna, Henrique Damasceno; Barbosa, Jorge Luis Victória

    2014-09-01

    The ubiquitous computing, or ubicomp, is a promising technology to help chronic diseases patients managing activities, offering support to them anytime, anywhere. Hence, ubicomp can aid community and health organizations to continuously communicate with patients and to offer useful resources for their self-management activities. Communication is prioritized in works of ubiquitous health for noncommunicable diseases care, but the management of resources is not commonly employed. We propose the UDuctor, a model for ubiquitous care of noncommunicable diseases. UDuctor focuses the resources offering, without losing self-management and communication supports. We implemented a system and applied it in two practical experiments. First, ten chronic patients tried the system and filled out a questionnaire based on the technology acceptance model. After this initial evaluation, an alpha test was done. The system was used daily for one month and a half by a chronic patient. The results were encouraging and show potential for implementing UDuctor in real-life situations.

  14. Navigation studies based on the ubiquitous positioning technologies

    NASA Astrophysics Data System (ADS)

    Ye, Lei; Mi, Weijie; Wang, Defeng

    2007-11-01

    This paper summarized the nowadays positioning technologies, such as absolute positioning methods and relative positioning methods, indoor positioning and outdoor positioning, active positioning and passive positioning. Global Navigation Satellite System (GNSS) technologies were introduced as the omnipresent out-door positioning technologies, including GPS, GLONASS, Galileo and BD-1/2. After analysis of the shortcomings of GNSS, indoor positioning technologies were discussed and compared, including A-GPS, Cellular network, Infrared, Electromagnetism, Computer Vision Cognition, Embedded Pressure Sensor, Ultrasonic, RFID (Radio Frequency IDentification), Bluetooth, WLAN etc.. Then the concept and characteristics of Ubiquitous Positioning was proposed. After the ubiquitous positioning technologies contrast and selection followed by system engineering methodology, a navigation system model based on Incorporate Indoor-Outdoor Positioning Solution was proposed. And this model was simulated in the Galileo Demonstration for World Expo Shanghai project. In the conclusion, the prospects of ubiquitous positioning based navigation were shown, especially to satisfy the public location information acquiring requirement.

  15. iRAGu: A Novel Inducible and Reversible Mouse Model for Ubiquitous Recombinase Activity

    PubMed Central

    Bonnet, Marie; Sarmento, Leonor Morais; Martins, Ana C.; Sobral, Daniel; Silva, Joana; Demengeot, Jocelyne

    2017-01-01

    Developing lymphocytes express the recombination activating genes (RAGs) 1 and 2 products that form a site specific recombinase complex (RAG), introducing double strand DNA breaks (DSBs) at recombination signal sequences (RSSs) flanking the V, D, and J gene segments in the antigen receptor loci. The subsequent steps in the reaction consist in the ligation of DSBs by ubiquitous enzymes of the non-homologous end joining DNA repair pathway. This mutagenesis process is responsible for the generation of the very large clonal diversity of T and B lymphocytes, itself allowing the recognition of a virtually open-ended antigenic universe. Sequences resembling RSS are found at high frequency all over the genome, and involved in RAG mediated illegitimate recombination and translocations. Hence, natural and induced ectopic activity of RAG is a threat to the genome only recently underscored. Here, we report and characterize a novel mouse transgenic system for which ubiquitous expression of the recombinase is inducible. In this system, the RAG1 protein is constitutively expressed and functional, while the RAG2 protein, coupled to the estrogen receptor, becomes functionally active upon 4-hydroxytamoxifen (TAM) administration. We describe two transgenic lines. The first one, when introgressed into an endogenous Rag2−/− genetic background is faithfully recapitulating lymphocyte development, repertoire dynamics and cryptic rearrangements, in a TAM-dependent manner. In this model, deprivation of TAM is followed by lymphocyte development arrest, evidencing the reversibility of the system. The second transgenic line is leaky, as the transgenes promote lymphocyte differentiation in absence of TAM treatment. Upon TAM-induction defects in lymphocytes composition and global health reveals the deleterious effect of uncontrolled RAG activity. Overall, this novel transgenic model provides a tool where RAG activity can be specifically manipulated to assess the dynamics of lymphocyte

  16. Modulation of the cytosolic androgen receptor in striated muscle by sex steroids

    NASA Technical Reports Server (NTRS)

    Rance, N. E.; Max, S. E.

    1982-01-01

    The influence of orchiectomy (GDX) and steroid administration on the level of the cytosolic androgen receptor in the rat levator ani muscle and in rat skeletal muscles (tibialis anterior and extensor digitorum longus) was studied. Androgen receptor binding to muscle cytosol was measured using H-3 methyltrienolone (R1881) as ligand, 100 fold molar excess unlabeled R1881 to assess nonspecific binding, and 500 fold molar excess of triamcinolone acetonide to prevent binding to glucocorticoid and progestin receptors. Results demonstrate that modification of the levels of sex steroids can alter the content of androgen receptors of rat striated muscle. Data suggest that: (1) cytosolic androgen receptor levels increase after orchiectomy in both levator ani muscle and skeletal muscle; (2) the acute increase in receptor levels is blocked by an inhibitor of protein synthesis; and (3) administration of estradiol-17 beta to castrated animals increases receptor binding in levator ani muscle but not in skeletal muscle.

  17. G6pd Deficiency Does Not Affect the Cytosolic Glutathione or Thioredoxin Antioxidant Defense in Mouse Cochlea.

    PubMed

    White, Karessa; Kim, Mi-Jung; Ding, Dalian; Han, Chul; Park, Hyo-Jin; Meneses, Zaimary; Tanokura, Masaru; Linser, Paul; Salvi, Richard; Someya, Shinichi

    2017-06-07

    Glucose-6-phosphate dehydrogenase (G6PD) is the first and rate-limiting enzyme of the pentose phosphate pathway; it catalyzes the conversion of glucose-6-phosphate to 6-phosphogluconate and NADP + to NADPH and is thought to be the principal source of NADPH for the cytosolic glutathione and thioredoxin antioxidant defense systems. We investigated the roles of G6PD in the cytosolic antioxidant defense in the cochlea of G6pd hypomorphic mice that were backcrossed onto normal-hearing CBA/CaJ mice. Young G6pd -deficient mice displayed a significant decrease in cytosolic G6PD protein levels and activities in the inner ears. However, G6pd deficiency did not affect the cytosolic NADPH redox state, or glutathione or thioredoxin antioxidant defense in the inner ears. No histological abnormalities or oxidative damage was observed in the cochlea of G6pd hemizygous males or homozygous females. Furthermore, G6pd deficiency did not affect auditory brainstem response hearing thresholds, wave I amplitudes or wave I latencies in young males or females. In contrast, G6pd deficiency resulted in increased activities and protein levels of cytosolic isocitrate dehydrogenase 1, an enzyme that catalyzes the conversion of isocitrate to α-ketoglutarate and NADP + to NADPH, in the inner ear. In a mouse inner ear cell line, knockdown of Idh1 , but not G6pd , decreased cell growth rates, cytosolic NADPH levels, and thioredoxin reductase activities. Therefore, under normal physiological conditions, G6pd deficiency does not affect the cytosolic glutathione or thioredoxin antioxidant defense in mouse cochlea. Under G6pd deficiency conditions, isocitrate dehydrogenase 1 likely functions as the principal source of NADPH for cytosolic antioxidant defense in the cochlea. SIGNIFICANCE STATEMENT Glucose-6-phosphate dehydrogenase (G6PD) is the first and rate-limiting enzyme of the pentose phosphate pathway; it catalyzes the conversion of glucose-6-phosphate to 6-phosphogluconate and NADP + to NADPH and

  18. A Large and Intact Viral Particle Penetrates the Endoplasmic Reticulum Membrane to Reach the Cytosol

    PubMed Central

    Inoue, Takamasa; Tsai, Billy

    2011-01-01

    Non-enveloped viruses penetrate host membranes to infect cells. A cell-based assay was used to probe the endoplasmic reticulum (ER)-to-cytosol membrane transport of the non-enveloped SV40. We found that, upon ER arrival, SV40 is released into the lumen and undergoes sequential disulfide bond disruptions to reach the cytosol. However, despite these ER-dependent conformational changes, SV40 crosses the ER membrane as a large and intact particle consisting of the VP1 coat, the internal components VP2, VP3, and the genome. This large particle subsequently disassembles in the cytosol. Mutant virus and inhibitor studies demonstrate VP3 and likely the viral genome, as well as cellular proteasome, control ER-to-cytosol transport. Our results identify the sequence of events, as well as virus and host components, that regulate ER membrane penetration. They also suggest that the ER membrane supports passage of a large particle, potentially through either a sizeable protein-conducting channel or the lipid bilayer. PMID:21589906

  19. Alterations in cytosol free calcium in horseradish roots simultaneously exposed to lanthanum(III) and acid rain.

    PubMed

    Zhang, Xuanbo; Wang, Lihong; Zhou, Anhua; Zhou, Qing; Huang, Xiaohua

    2016-04-01

    The extensive use of rare earth elements (REEs) has increased their environmental levels. REE pollution concomitant with acid rain in many agricultural regions can affect crop growth. Cytosol free calcium ions (Ca(2+)) play an important role in almost all cellular activities. However, no data have been reported regarding the role of cytosol free Ca(2+) in plant roots simultaneously exposed to REE and acid rain. In this study, the effects of exposures to lanthanum(III) and acid rain, independently and in combination, on cytosol free Ca(2+) levels, root activity, metal contents, biomass, cytosol pH and La contents in horseradish roots were investigated. The simultaneous exposures to La(III) and acid rain increased or decreased the cytosol free Ca(2+) levels, depending on the concentration of La(III), and these effects were more evident than independent exposure to La(III) or acid rain. In combined exposures, cytosol free Ca(2+) played an important role in the regulation of root activity, metal contents and biomass. These roles were closely related to La(III) dose, acid rain strength and treatment mode (independent exposure or simultaneous exposure). A low concentration of La(III) (20 mg L(-1)) could alleviate the adverse effects on the roots caused by acid rain, and the combined exposures at higher concentrations of La(III) and acid rain had synergic effects on the roots. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Use of Ubiquitous Technologies in Military Logistic System in Iran

    NASA Astrophysics Data System (ADS)

    Jafari, P.; Sadeghi-Niaraki, A.

    2013-09-01

    This study is about integration and evaluation of RFID and ubiquitous technologies in military logistic system management. Firstly, supply chain management and the necessity of a revolution in logistic systems especially in military area, are explained. Secondly RFID and ubiquitous technologies and the advantages of their use in supply chain management are introduced. Lastly a system based on these technologies for controlling and increasing the speed and accuracy in military logistic system in Iran with its unique properties, is presented. The system is based on full control of military logistics (supplies) from the time of deployment to replenishment using sensor network, ubiquitous and RFID technologies.

  1. Ubiquitous Computing: The Universal Use of Computers on College Campuses.

    ERIC Educational Resources Information Center

    Brown, David G., Ed.

    This book is a collection of vignettes from 13 universities where everyone on campus has his or her own computer. These 13 institutions have instituted "ubiquitous computing" in very different ways at very different costs. The chapters are: (1) "Introduction: The Ubiquitous Computing Movement" (David G. Brown); (2) "Dartmouth College" (Malcolm…

  2. Ubiquitous Learning: Determinants Impacting Learners' Satisfaction and Performance with Smartphones

    ERIC Educational Resources Information Center

    Jung, Hee-Jung

    2014-01-01

    Although the concept of ubiquitous technologies has been introduced to many parts of society, there have been limited applications, and little is known about learners' behavior toward ubiquitous technologies, particularly in the context of English learning. This study considers a sample of Korean students to identify the key factors that influence…

  3. Hierarchical functional specificity of cytosolic heat shock protein 70 (Hsp70) nucleotide exchange factors in yeast.

    PubMed

    Abrams, Jennifer L; Verghese, Jacob; Gibney, Patrick A; Morano, Kevin A

    2014-05-09

    Heat shock protein 70 (Hsp70) molecular chaperones play critical roles in protein homeostasis. In the budding yeast Saccharomyces cerevisiae, cytosolic Hsp70 interacts with up to three types of nucleotide exchange factors (NEFs) homologous to human counterparts: Sse1/Sse2 (Heat shock protein 110 (Hsp110)), Fes1 (HspBP1), and Snl1 (Bag-1). All three NEFs stimulate ADP release; however, it is unclear why multiple distinct families have been maintained throughout eukaryotic evolution. In this study we investigate NEF roles in Hsp70 cell biology using an isogenic combinatorial collection of NEF deletion mutants. Utilizing well characterized model substrates, we find that Sse1 participates in most Hsp70-mediated processes and is of particular importance in protein biogenesis and degradation, whereas Fes1 contributes to a minimal extent. Surprisingly, disaggregation and resolubilization of thermally denatured firefly luciferase occurred independently of NEF activity. Simultaneous deletion of SSE1 and FES1 resulted in constitutive activation of heat shock protein expression mediated by the transcription factor Hsf1, suggesting that these two factors are important for modulating stress response. Fes1 was found to interact in vivo preferentially with the Ssa family of cytosolic Hsp70 and not the co-translational Ssb homolog, consistent with the lack of cold sensitivity and protein biogenesis phenotypes for fes1Δ cells. No significant consequence could be attributed to deletion of the minor Hsp110 SSE2 or the Bag homolog SNL1. Together, these lines of investigation provide a comparative analysis of NEF function in yeast that implies Hsp110 is the principal NEF for cytosolic Hsp70, making it an ideal candidate for therapeutic intervention in human protein folding disorders.

  4. Life cycle of cytosolic prions.

    PubMed

    Hofmann, Julia; Vorberg, Ina

    2013-01-01

    Prions are self-templating protein aggregates that were originally identified as the causative agent of prion diseases in mammals, but have since been discovered in other kingdoms. Mammalian prions represent a unique class of infectious agents that are composed of misfolded prion protein. Prion proteins usually exist as soluble proteins but can refold and assemble into highly ordered, self-propagating prion polymers. The prion concept is also applicable to a growing number of non-Mendelian elements of inheritance in lower eukaryotes. While prions identified in mammals are clearly pathogens, prions in lower eukaryotes can be either detrimental or beneficial to the host. Prion phenotypes in fungi are transmitted vertically from mother to daughter cells during cell division and horizontally during mating or abortive mating, but extracellular phases have not been reported. Recent findings now demonstrate that in a mammalian cell environment, protein aggregates derived from yeast prion domains exhibit a prion life cycle similar to mammalian prions propagated ex vivo. This life cycle includes a soluble state of the protein, an induction phase by exogenous prion fibrils, stable replication of prion entities, vertical transmission to progeny and natural horizontal transmission to neighboring cells. Our data reveal that mammalian cells contain all co-factors required for cytosolic prion propagation and dissemination. This has important implications for understanding prion-like properties of disease-related protein aggregates. In light of the growing number of identified functional amyloids, cell-to-cell propagation of cytosolic protein conformers might not only be relevant for the spreading of disease-associated proteins, but might also be of more general relevance under non-disease conditions.

  5. Light-Dark Changes in Cytosolic Nitrate Pools Depend on Nitrate Reductase Activity in Arabidopsis Leaf Cells1[w

    PubMed Central

    Cookson, Sarah J.; Williams, Lorraine E.; Miller, Anthony J.

    2005-01-01

    Several different cellular processes determine the size of the metabolically available nitrate pool in the cytoplasm. These processes include not only ion fluxes across the plasma membrane and tonoplast but also assimilation by the activity of nitrate reductase (NR). In roots, the maintenance of cytosolic nitrate activity during periods of nitrate starvation and resupply (M. van der Leij, S.J. Smith, A.J. Miller [1998] Planta 205: 64–72; R.-G. Zhen, H.-W. Koyro, R.A. Leigh, A.D. Tomos, A.J. Miller [1991] Planta 185: 356–361) suggests that this pool is regulated. Under nitrate-replete conditions vacuolar nitrate is a membrane-bound store that can release nitrate to the cytoplasm; after depletion of cytosolic nitrate, tonoplast transporters would serve to restore this pool. To study the role of assimilation, specifically the activity of NR in regulating the size of the cytosolic nitrate pool, we have compared wild-type and mutant plants. In leaf mesophyll cells, light-to-dark transitions increase cytosolic nitrate activity (1.5–2.8 mm), and these changes were reversed by dark-to-light transitions. Such changes were not observed in nia1nia2 NR-deficient plants indicating that this change in cytosolic nitrate activity was dependent on the presence of functional NR. Furthermore, in the dark, the steady-state cytosolic nitrate activities were not statistically different between the two types of plant, indicating that NR has little role in determining resting levels of nitrate. Epidermal cells of both wild type and NR mutants had cytosolic nitrate activities that were not significantly different from mesophyll cells in the dark and were unaltered by dark-to-light transitions. We propose that the NR-dependent changes in cytosolic nitrate provide a cellular mechanism for the diurnal changes in vacuolar nitrate storage, and the results are discussed in terms of the possible signaling role of cytosolic nitrate. PMID:15908593

  6. DNA polymerase-α regulates type I interferon activation through cytosolic RNA:DNA synthesis

    PubMed Central

    Starokadomskyy, Petro; Gemelli, Terry; Rios, Jonathan J.; Xing, Chao; Wang, Richard C.; Li, Haiying; Pokatayev, Vladislav; Dozmorov, Igor; Khan, Shaheen; Miyata, Naoteru; Fraile, Guadalupe; Raj, Prithvi; Xu, Zhe; Xu, Zigang; Ma, Lin; Lin, Zhimiao; Wang, Huijun; Yang, Yong; Ben-Amitai, Dan; Orenstein, Naama; Mussaffi, Huda; Baselga, Eulalia; Tadini, Gianluca; Grunebaum, Eyal; Sarajlija, Adrijan; Krzewski, Konrad; Wakeland, Edward K.; Yan, Nan; de la Morena, Maria Teresa; Zinn, Andrew R.; Burstein, Ezra

    2016-01-01

    Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations disrupting nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts expression of POLA1, the gene encoding the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency results in increased type I interferon production. This enzyme is necessary for RNA:DNA primer synthesis during DNA replication and strikingly, POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Altogether, this work identified POLA1 as a critical regulator of the type I interferon response. PMID:27019227

  7. [CYFRA 21.1 cytosol levels in lung adenocarcinomas. Correlation with other clinico-biological parameters].

    PubMed

    Ruibal, A; Núñez, M I; Del Río, M C; Lapeña, G; Rodríguez, J

    2002-01-01

    Cyfra 21.1 are soluble cytokeratin 19 fragments present in several biological fluids. The aim of this work was to study cyfra 21.1 cytosolic levels in lung adenocarcinomas and their possible correlation with other clinical-biological parameters. Cyfra 21.1 was determined, using an immunoradiometric assay (CIS BioInternational. France), in 58 tissue samples of lung adenocarcinomas patients. Other parameters included in the study were the following: clinical stage, histological grade, ploidy, S-phase cellular fraction, as well as cathepsin D, CA 125 and hyaluronic acid levels in cytosols. Likewise, AH, erbB2 oncoprotein, CD44s, CD44v5 and CD44v6 levels in cell surfaces were assayed. Cyfra 21.1 cytosolic levels oscillated between 24.8 and 6,774 ng/mg prot. (median 1,147.5) and were higher (p:0.00074) than those observed in 16 normal lung samples of the same patients. We did not observe any statistically significant differences in cyfra 21.1 values when clinical stage, ploidy, S-phase and histological grade were considered. When lung adenocarcinomas were classified according to cyfra 21.1 positivity, using 1,499 ng/mg prot. as cut-off, which represents the 75th percentile of the whole group, we noted that positive cases had higher levels of cathepsin D (p:0.00218), cytosolic hyaluronic acid (p:0.02947), erbB2 protein (p:0.06272) and CA 125 (p:0.07243) than negative carcinomas. These results suggest the possibility that high cytosolic cyfra 21.1 levels could be associated with a poor outcome in lung adenocarcinomas.

  8. ChaC2, an Enzyme for Slow Turnover of Cytosolic Glutathione*

    PubMed Central

    Kaur, Amandeep; Gautam, Ruchi; Srivastava, Ritika; Chandel, Avinash; Kumar, Akhilesh; Karthikeyan, Subramanian; Bachhawat, Anand Kumar

    2017-01-01

    Glutathione degradation plays an important role in glutathione and redox homeostasis, and thus it is imperative to understand the enzymes and the mechanisms involved in glutathione degradation in detail. We describe here ChaC2, a member of the ChaC family of γ-glutamylcyclotransferases, as an enzyme that degrades glutathione in the cytosol of mammalian cells. ChaC2 is distinct from the previously described ChaC1, to which ChaC2 shows ∼50% sequence identity. Human and mouse ChaC2 proteins purified in vitro show 10–20-fold lower catalytic efficiency than ChaC1, although they showed comparable Km values (Km of 3.7 ± 0.4 mm and kcat of 15.9 ± 1.0 min−1 toward glutathione for human ChaC2; Km of 2.2 ± 0.4 mm and kcat of 225.2 ± 15 min−1 toward glutathione for human ChaC1). The ChaC1 and ChaC2 proteins also shared the same specificity for reduced glutathione, with no activity against either γ-glutamyl amino acids or oxidized glutathione. The ChaC2 proteins were found to be expressed constitutively in cells, unlike the tightly regulated ChaC1. Moreover, lower eukaryotes have a single member of the ChaC family that appears to be orthologous to ChaC2. In addition, we determined the crystal structure of yeast ChaC2 homologue, GCG1, at 1.34 Å resolution, which represents the first structure of the ChaC family of proteins. The catalytic site is defined by a fortuitous benzoic acid molecule bound to the crystal structure. The mechanism for binding and catalytic activity of this new enzyme of glutathione degradation, which is involved in continuous but basal turnover of cytosolic glutathione, is proposed. PMID:27913623

  9. Ubiquitous technologies in health: new challenges of opportunity, expectation, and responsibility.

    PubMed

    Rigby, Michael

    2006-01-01

    In spite of their name, 'ubiquitous' technologies are not yet ubiquitous in the true sense of the word, but rather are 'novel', being at the research, pilot, and selective use stages. In future, the proliferation in types of application, the major increase in cases and data volumes, and above all the dependence on ubiquitous technologies will raise practical, ethical, and liability issues. Equally significantly, it will require health service redesign, including new response services. Health informaticians need to be active in stimulating consideration of all these issues, as part of both social and professional responsibility.

  10. Cytosolic Calcium, hydrogen peroxide, and related gene expression and protein modulation in Arabidopsis thaliana cell cultures respond immediately to altered gravitation: Parabolic flight data

    NASA Astrophysics Data System (ADS)

    Hampp, Ruediger; Hausmann, Niklas; Neef, Maren; Fengler, Svenja

    Callus cell cultures of Arabidopsis thaliana (cv. Columbia) were exposed to parabolic flights in order to assess molecular short-term responses to altered gravity fields. Using transgenic cell lines, hydrogen peroxide and cytosolic Ca2+ were continuously monitored. In parallel, the metabolism of samples was chemically quenched (RNAlater, Ambion, for RNA; acid/base for NADPH, NADP) at typical stages of a parabola (1g before pull up; end of pull up (1.8 g), end of microgravity (µg, 20 sec), and end of pull out (1.8 g)). Cells exhibited an increase of both Ca2+ and hydrogen peroxide with the onset of µg, and a decline thereafter. This behaviour was accompanied by a decrease of the NADPH/NADP redox ratio, indicating a Ca2+-dependent activation of a NADPH oxidase. Microarray analyses revealed concomitant expression profiles. At the end of the microgravity phase, 396 transcripts were specifically up-, while 485 were down-regulated. Up-regulation was dominated by Ca2+- and ROS(reactive oxygen species)-related gene products. The same material was also used for the analysis of phosphopeptides by 2D SDS PAGE. Relevant spots were identified by liquid chromatography-MS. With the exception of a chaperone (HSP 70-3), hypergravity (1.8 g) and microgravity modified different sets of proteins. These are partly involved in primary metabolism (glycolysis, gluconeogenesis, citrate cycle) and detoxification of reactive oxygen species. Taken together, these data show that both gene expression and protein modulation jointly respond within seconds to alterations in the gravity field, with a focus on metabolic adaptation, signalling and control of ROS.

  11. A novel cantharidin analog N-Benzylcantharidinamide reduces the expression of MMP-9 and invasive potentials of Hep3B via inhibiting cytosolic translocation of HuR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ji-Yeon; Chung, Tae-Wook; Choi, Hee-Jung

    2014-05-02

    Highlights: • We examined the inhibition of N-Benzylcantharidinamide on MMP-9-mediated invasion. • Unlike cantharidin, N-Benzylcantharidinamide has very low toxicity on Hep3B cells. • The reduced MMP-9 expression was due to HuR-mediated decrease of mRNA stability. • We suggest N-Benzylcantharidinamide as a novel inhibitor of MMP-9-related invasion. - Abstract: Invasion and metastasis are major causes of malignant tumor-associated mortality. The present study aimed to investigate the molecular events underlying inhibitory effect of N-Benzylcantharidinamide, a novel synthetic analog of cantharidin, on matrix metalloproteinase-9 (MMP-9)-mediated invasion in highly metastatic hepatocellular carcinoma Hep3B cells. In this investigation, among six analogs of cantharidin, only N-Benzylcantharidinamidemore » has the inhibitory action on MMP-9 expression at non-toxic dose. The MMP-9 expression and invasion of Hep3B cells were significantly suppressed by treatment of N-Benzylcantharidinamide in a dose-dependent manner. On the other hand, the transcriptional activity of MMP-9 promoter and nuclear levels of NF-κB and AP-1 as the main transcriptional factors inducing MMP-9 expression were not affected by it although the level of MMP-9 mRNA was reduced by treatment of N-Benzylcantharidinamide. Interestingly, the stability of MMP-9 mRNA was significantly reduced by N-Benzylcantharidinamide-treatment. In addition, the cytosolic translocation of human antigen R (HuR), which results in the increase of MMP-9 mRNA stability through interaction of HuR with 3′-untranslated region of MMP-9 mRNA, was suppressed by treatment of N-Benzylcantharidinamide, in a dose-dependent manner. Taken together, it was demonstrated, for the first time, that N-Benzylcantharidinamide suppresses MMP-9 expression by reducing HuR-mediated MMP-9 mRNA stability for the inhibition of invasive potential in highly metastatic Hep3B cells.« less

  12. An improved anonymous authentication scheme for roaming in ubiquitous networks.

    PubMed

    Lee, Hakjun; Lee, Donghoon; Moon, Jongho; Jung, Jaewook; Kang, Dongwoo; Kim, Hyoungshick; Won, Dongho

    2018-01-01

    With the evolution of communication technology and the exponential increase of mobile devices, the ubiquitous networking allows people to use our data and computing resources anytime and everywhere. However, numerous security concerns and complicated requirements arise as these ubiquitous networks are deployed throughout people's lives. To meet the challenge, the user authentication schemes in ubiquitous networks should ensure the essential security properties for the preservation of the privacy with low computational cost. In 2017, Chaudhry et al. proposed a password-based authentication scheme for the roaming in ubiquitous networks to enhance the security. Unfortunately, we found that their scheme remains insecure in its protection of the user privacy. In this paper, we prove that Chaudhry et al.'s scheme is vulnerable to the stolen-mobile device and user impersonation attacks, and its drawbacks comprise the absence of the incorrect login-input detection, the incorrectness of the password change phase, and the absence of the revocation provision. Moreover, we suggest a possible way to fix the security flaw in Chaudhry et al's scheme by using the biometric-based authentication for which the bio-hash is applied in the implementation of a three-factor authentication. We prove the security of the proposed scheme with the random oracle model and formally verify its security properties using a tool named ProVerif, and analyze it in terms of the computational and communication cost. The analysis result shows that the proposed scheme is suitable for resource-constrained ubiquitous environments.

  13. Cytosolic labile zinc: a marker for apoptosis in the developing rat brain.

    PubMed

    Lee, Joo-Yong; Hwang, Jung Jin; Park, Mi-Ha; Koh, Jae-Young

    2006-01-01

    Cytosolic zinc accumulation was thought to occur specifically in neuronal death (necrosis) following acute injury. However, a recent study demonstrated that zinc accumulation also occurs in adult rat neurons undergoing apoptosis following target ablation, and in vitro experiments have shown that zinc accumulation may play a causal role in various forms of apoptosis. Here, we examined whether intraneuronal zinc accumulation occurs in central neurons undergoing apoptosis during development. Embryonic and newborn Sprague-Dawley rat brains were double-stained for terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling (TUNEL) detection of apoptosis and immunohistochemical detection of stage-specific neuronal markers, such as nestin, proliferating cell nuclear antigen (PCNA), TuJ1 and neuronal nuclear specific protein (NeuN). The results revealed that apoptotic cell death occurred in neurons of diverse stages (neural stem cells, and dividing, young and adult neurons) throughout the brain during the embryonic and early postnatal periods. Further staining of brain sections with acid fuchsin or zinc-specific fluorescent dyes showed that all of the apoptotic neurons were acidophilic and contained labile zinc in their cell bodies. Cytosolic zinc accumulation was also observed in cultured cortical neurons undergoing staurosporine- or sodium nitroprusside (SNP)-induced apoptosis. In contrast, zinc chelation with CaEDTA or N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) reduced SNP-induced apoptosis but not staurosporine-induced apoptosis, indicating that cytosolic zinc accumulation does not play a causal role in all forms of apoptosis. Finally, the specific cytosolic zinc accumulation may have a practical application as a relatively simple marker for neurons undergoing developmental apoptosis.

  14. Context Aware Ubiquitous Learning Environments for Peer-to-Peer Collaborative Learning

    ERIC Educational Resources Information Center

    Yang, Stephen J. H.

    2006-01-01

    A ubiquitous learning environment provides an interoperable, pervasive, and seamless learning architecture to connect, integrate, and share three major dimensions of learning resources: learning collaborators, learning contents, and learning services. Ubiquitous learning is characterized by providing intuitive ways for identifying right learning…

  15. Prenatal and Postnatal Expression of Glutathione Transferase ζ 1 in Human Liver and the Roles of Haplotype and Subject Age in Determining Activity with Dichloroacetate

    PubMed Central

    Li, Wenjun; Gu, Yuan; Hines, Ronald N.; Simpson, Pippa; Langaee, Taimour; Stacpoole, Peter W.

    2012-01-01

    Glutathione transferase ζ 1 (GSTZ1), also known as maleylacetoacetate isomerase, catalyzes the penultimate step of tyrosine catabolism and metabolizes several α-halocarboxylic acids, including dichloroacetic acid (DCA), an investigational drug used for lactic acidosis and, recently, solid tumors. Age-related differences have been suggested in DCA pharmacotoxicology, but no information is available on GSTZ1 ontogeny in humans. Here, we investigated the cytosolic GSTZ1 developmental expression pattern and the influence of haplotype on GSTZ1 activity with DCA by using human livers from donors between 10 weeks gestation and 74 years. GSTZ1 expression was very low in fetal livers (<2 pmol of GSTZ1/mg cytosol). The expression began to increase after birth in an age-dependent manner until age 7 years. GSTZ1 was then sustained at stable, yet variable, levels (median, 20.0 pmol/mg cytosol; range, 4.8–47.3 pmol/mg cytosol) until age 74 years. GSTZ1 activity with DCA was strongly associated with haplotype and expression level. Samples homozygous or heterozygous for GSTZ1A exhibited ∼3-fold higher DCA dechlorinating activity than samples carrying other alleles at a given level of expression. The correlations (r2) between activity and expression were 0.90 and 0.68, respectively, for GSTZ1A carriers (n = 11) and noncarriers (n = 61). GSTZ1 is expressed in mitochondria in addition to cytosol. The GSTZ1A allele exhibited similar effects in the mitochondrial fraction by conferring a higher activity with DCA. In summary, we report a neonatal onset and an age-related increase in GSTZ1 protein expression during human liver development. Haplotype influenced GSTZ1 activity with DCA but not protein expression. PMID:22028318

  16. Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: Unravelling the role of Mg2+ in cell respiration

    PubMed Central

    Gout, Elisabeth; Rébeillé, Fabrice; Douce, Roland; Bligny, Richard

    2014-01-01

    In animal and plant cells, the ATP/ADP ratio and/or energy charge are generally considered key parameters regulating metabolism and respiration. The major alternative issue of whether the cytosolic and mitochondrial concentrations of ADP and ATP directly mediate cell respiration remains unclear, however. In addition, because only free nucleotides are exchanged by the mitochondrial ADP/ATP carrier, whereas MgADP is the substrate of ATP synthase (EC 3.6.3.14), the cytosolic and mitochondrial Mg2+ concentrations must be considered as well. Here we developed in vivo/in vitro techniques using 31P-NMR spectroscopy to simultaneously measure these key components in subcellular compartments. We show that heterotrophic sycamore (Acer pseudoplatanus L.) cells incubated in various nutrient media contain low, stable cytosolic ADP and Mg2+ concentrations, unlike ATP. ADP is mainly free in the cytosol, but complexed by Mg2+ in the mitochondrial matrix, where [Mg2+] is tenfold higher. In contrast, owing to a much higher affinity for Mg2+, ATP is mostly complexed by Mg2+ in both compartments. Mg2+ starvation used to alter cytosolic and mitochondrial [Mg2+] reversibly increases free nucleotide concentration in the cytosol and matrix, enhances ADP at the expense of ATP, decreases coupled respiration, and stops cell growth. We conclude that the cytosolic ADP concentration, and not ATP, ATP/ADP ratio, or energy charge, controls the respiration of plant cells. The Mg2+ concentration, remarkably constant and low in the cytosol and tenfold higher in the matrix, mediates ADP/ATP exchange between the cytosol and matrix, [MgADP]-dependent mitochondrial ATP synthase activity, and cytosolic free ADP homeostasis. PMID:25313036

  17. Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: unravelling the role of Mg2+ in cell respiration.

    PubMed

    Gout, Elisabeth; Rébeillé, Fabrice; Douce, Roland; Bligny, Richard

    2014-10-28

    In animal and plant cells, the ATP/ADP ratio and/or energy charge are generally considered key parameters regulating metabolism and respiration. The major alternative issue of whether the cytosolic and mitochondrial concentrations of ADP and ATP directly mediate cell respiration remains unclear, however. In addition, because only free nucleotides are exchanged by the mitochondrial ADP/ATP carrier, whereas MgADP is the substrate of ATP synthase (EC 3.6.3.14), the cytosolic and mitochondrial Mg(2+) concentrations must be considered as well. Here we developed in vivo/in vitro techniques using (31)P-NMR spectroscopy to simultaneously measure these key components in subcellular compartments. We show that heterotrophic sycamore (Acer pseudoplatanus L.) cells incubated in various nutrient media contain low, stable cytosolic ADP and Mg(2+) concentrations, unlike ATP. ADP is mainly free in the cytosol, but complexed by Mg(2+) in the mitochondrial matrix, where [Mg(2+)] is tenfold higher. In contrast, owing to a much higher affinity for Mg(2+), ATP is mostly complexed by Mg(2+) in both compartments. Mg(2+) starvation used to alter cytosolic and mitochondrial [Mg(2+)] reversibly increases free nucleotide concentration in the cytosol and matrix, enhances ADP at the expense of ATP, decreases coupled respiration, and stops cell growth. We conclude that the cytosolic ADP concentration, and not ATP, ATP/ADP ratio, or energy charge, controls the respiration of plant cells. The Mg(2+) concentration, remarkably constant and low in the cytosol and tenfold higher in the matrix, mediates ADP/ATP exchange between the cytosol and matrix, [MgADP]-dependent mitochondrial ATP synthase activity, and cytosolic free ADP homeostasis.

  18. A specific l-tri-iodothyronine-binding protein in the cytosol fraction of human breast adipose tissue

    PubMed Central

    Rao, Marie Luise; Rao, Govind S.

    1982-01-01

    1. Binding of l-tri-[125I]iodothyronine to the cytosol fraction of normal human female breast adipose tissue was investigated by the charcoal adsorption method. Equilibrium of binding was reached after 120s at 25°C. 2. The l-tri-[125I]iodothyronine-binding component is a protein; this was confirmed by experiments in which binding was totally lost after heating the cytosol fraction for 10min at 100°C and in which binding was diminished after treatment with proteolytic enzymes and with thiol-group-blocking reagents. The binding protein was stable at −38°C for several months. 3. It displayed saturability, high affinity (apparent Kd 3.28nm) and a single class of binding sites. 4. High specificity for l-tri-iodothyronine and l-3,5-di-iodo-3′-isopropylthyronine was observed, whereas other iodothyronines were less effective in displacing l-tri-[125I]-iodothyronine from its binding site. 5. The binding of the hormone by the cytosol fraction did not show a pH optimum. 6. When cytosol fractions of adipose tissue from different females were subjected to radioimmunoassay for the determination of thyroxine-binding globulin a value of 0.304±0.11μg/mg of cytosol protein (mean±s.d., n=4) was obtained; the mean concentration in plasma was 0.309±0.07μg/mg of plasma protein (mean±s.d., n=3). 7. The Ka value of 6.3×108m−1 of l-tri-[125I]iodothyronine for binding to plasma, the similar thermalinactivation profiles of binding and the reactivity to thiol-group-blocking reagents were some properties common between the binding components from the cytosol fraction and plasma. 8. These results suggest that the cytosol fraction of human female breast adipose tissue contains thyroxine-binding globulin; the protein that binds l-tri-[125I]iodothyronine with high affinity and specificity appears to be similar to thyroxine-binding globulin. PMID:6289813

  19. Mitochondrial Iron-Sulfur Cluster Activity and Cytosolic Iron Regulate Iron Traffic in Saccharomyces cerevisiae.

    PubMed

    Wofford, Joshua D; Lindahl, Paul A

    2015-11-06

    An ordinary differential equation-based mathematical model was developed to describe trafficking and regulation of iron in growing fermenting budding yeast. Accordingly, environmental iron enters the cytosol and moves into mitochondria and vacuoles. Dilution caused by increasing cell volume is included. Four sites are regulated, including those in which iron is imported into the cytosol, mitochondria, and vacuoles, and the site at which vacuolar Fe(II) is oxidized to Fe(III). The objective of this study was to determine whether cytosolic iron (Fecyt) and/or a putative sulfur-based product of iron-sulfur cluster (ISC) activity was/were being sensed in regulation. The model assumes that the matrix of healthy mitochondria is anaerobic, and that in ISC mutants, O2 diffuses into the matrix where it reacts with nonheme high spin Fe(II) ions, oxidizing them to nanoparticles and generating reactive oxygen species. This reactivity causes a further decline in ISC/heme biosynthesis, which ultimately gives rise to the diseased state. The ordinary differential equations that define this model were numerically integrated, and concentrations of each component were plotted versus the concentration of iron in the growth medium and versus the rate of ISC/heme biosynthesis. Model parameters were optimized by fitting simulations to literature data. The model variant that assumed that both Fecyt and ISC biosynthesis activity were sensed in regulation mimicked observed behavior best. Such "dual sensing" probably arises in real cells because regulation involves assembly of an ISC on a cytosolic protein using Fecyt and a sulfur species generated in mitochondria during ISC biosynthesis and exported into the cytosol. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Accumulation of Free Oligosaccharides and Tissue Damage in Cytosolic α-Mannosidase (Man2c1)-deficient Mice

    PubMed Central

    Paciotti, Silvia; Persichetti, Emanuele; Klein, Katharina; Tasegian, Anna; Duvet, Sandrine; Hartmann, Dieter; Gieselmann, Volkmar; Beccari, Tommaso

    2014-01-01

    Free Man7–9GlcNAc2 is released during the biosynthesis pathway of N-linked glycans or from misfolded glycoproteins during the endoplasmic reticulum-associated degradation process and are reduced to Man5GlcNAc in the cytosol. In this form, free oligosaccharides can be transferred into the lysosomes to be degraded completely. α-Mannosidase (MAN2C1) is the enzyme responsible for the partial demannosylation occurring in the cytosol. It has been demonstrated that the inhibition of MAN2C1 expression induces accumulation of Man8–9GlcNAc oligosaccharides and apoptosis in vitro. We investigated the consequences caused by the lack of cytosolic α-mannosidase activity in vivo by the generation of Man2c1-deficient mice. Increased amounts of Man8–9GlcNAc oligosaccharides were recognized in all analyzed KO tissues. Histological analysis of the CNS revealed neuronal and glial degeneration with formation of multiple vacuoles in deep neocortical layers and major telencephalic white matter tracts. Enterocytes of the small intestine accumulate mannose-containing saccharides and glycogen particles in their apical cytoplasm as well as large clear vacuoles in retronuclear position. Liver tissue is characterized by groups of hepatocytes with increased content of mannosyl compounds and glycogen, some of them undergoing degeneration by hydropic swelling. In addition, lectin screening showed the presence of mannose-containing saccharides in the epithelium of proximal kidney tubules, whereas scattered glomeruli appeared collapsed or featured signs of fibrosis along Bowman's capsule. Except for a moderate enrichment of mannosyl compounds and glycogen, heterozygous mice were normal, arguing against possible toxic effects of truncated Man2c1. These findings confirm the key role played by Man2c1 in the catabolism of free oligosaccharides. PMID:24550399

  1. An improved anonymous authentication scheme for roaming in ubiquitous networks

    PubMed Central

    Lee, Hakjun; Lee, Donghoon; Moon, Jongho; Jung, Jaewook; Kang, Dongwoo; Kim, Hyoungshick

    2018-01-01

    With the evolution of communication technology and the exponential increase of mobile devices, the ubiquitous networking allows people to use our data and computing resources anytime and everywhere. However, numerous security concerns and complicated requirements arise as these ubiquitous networks are deployed throughout people’s lives. To meet the challenge, the user authentication schemes in ubiquitous networks should ensure the essential security properties for the preservation of the privacy with low computational cost. In 2017, Chaudhry et al. proposed a password-based authentication scheme for the roaming in ubiquitous networks to enhance the security. Unfortunately, we found that their scheme remains insecure in its protection of the user privacy. In this paper, we prove that Chaudhry et al.’s scheme is vulnerable to the stolen-mobile device and user impersonation attacks, and its drawbacks comprise the absence of the incorrect login-input detection, the incorrectness of the password change phase, and the absence of the revocation provision. Moreover, we suggest a possible way to fix the security flaw in Chaudhry et al’s scheme by using the biometric-based authentication for which the bio-hash is applied in the implementation of a three-factor authentication. We prove the security of the proposed scheme with the random oracle model and formally verify its security properties using a tool named ProVerif, and analyze it in terms of the computational and communication cost. The analysis result shows that the proposed scheme is suitable for resource-constrained ubiquitous environments. PMID:29505575

  2. Subcellular distribution of serine acetyltransferase from Pisum sativum and characterization of an Arabidopsis thaliana putative cytosolic isoform.

    PubMed

    Ruffet, M L; Lebrun, M; Droux, M; Douce, R

    1995-01-15

    The intracellular compartmentation of serine acetyltransferase, a key enzyme in the L-cysteine biosynthesis pathway, has been investigated in pea (Pisum sativum) leaves, by isolation of organelles and fractionation of protoplasts. Enzyme activity was mainly located in mitochondria (approximately 76% of total cellular activity). Significant activity was also identified in both the cytosol (14% of total activity) and chloroplasts (10% of total activity). Three enzyme forms were separated by anion-exchange chromatography, and each form was found to be specific for a given intracellular compartment. To obtain cDNA encoding the isoforms, functional complementation experiments were performed using an Arabidopsis thaliana expression library and an Escherichia coli mutant devoid of serine acetyltransferase activity. This strategy allowed isolation of three distinct cDNAs encoding serine acetyltransferase isoforms, as confirmed by enzyme activity measurements, genomic hybridizations, and nucleotide sequencing. The cDNA and related gene for one of the three isoforms have been characterized. The predicted amino acid sequence shows that it encodes a polypeptide of M(r) 34,330 exhibiting 41% amino acid identity with the E. coli serine acetyltransferase. Since none of the general features of transit peptides could be observed in the N-terminal region of this isoform, we assume that it is a cytosolic form.

  3. Cytosolic superoxide dismutase can provide protection against Fasciola gigantica.

    PubMed

    Jaikua, Wipaphorn; Kueakhai, Pornanan; Chaithirayanon, Kulathida; Tanomrat, Rataya; Wongwairot, Sirima; Riengrojpitak, Suda; Sobhon, Prasert; Changklungmoa, Narin

    2016-10-01

    Superoxide dismutases (SOD), antioxidant metallo-enzymes, are a part of the first line of defense in the trematode parasites which act as the chief scavengers for reactive oxygen species (ROS). A recombinant Fasciola gigantica cytosolic SOD (FgSOD) was expressed in Escherichia coli BL21 (DE3) and used for immunizing rabbits to obtain polyclonal antibodies (anti-rFgSOD). This rabbit anti-rFgSOD reacted with the native FgSOD at a molecular weight of 17.5kDa. The FgSOD protein was expressed at high level in parenchyma, caecal epithelium and egg of the parasite. The rFgSOD reacted with antisera from rabbits infected with F. gigantica metacercariae collected at 2, 5, and 7 weeks after infection, and reacted with sera of infected mice. Anti-rFgSOD exhibited cross reactivity with the other parasites' antigens, including Eurytrema pancreaticum, Cotylophoron cotylophorum, Fischoederius cobboldi, Gastrothylax crumenifer, Paramphistomum cervi, and Setaria labiato papillosa. A vaccination was performed in imprinting control region (ICR) mice by subcutaneous injection with 50μg of rFgSOD combined with Freund's adjuvant. At 2 weeks after the second boost, mice were infected with 15 metacercariae by oral route. IgG1 and IgG2a in the immune sera were determined to indicate Th2 and Th1 immune responses. It was found that the parasite burden was reduced by 45%, and both IgG1 and IgG2a levels showed correlation with the numbers of worm recoveries. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Overexpression of human virus surface glycoprotein precursors induces cytosolic unfolded protein response in Saccharomyces cerevisiae

    PubMed Central

    2011-01-01

    Background The expression of human virus surface proteins, as well as other mammalian glycoproteins, is much more efficient in cells of higher eukaryotes rather than yeasts. The limitations to high-level expression of active viral surface glycoproteins in yeast are not well understood. To identify possible bottlenecks we performed a detailed study on overexpression of recombinant mumps hemagglutinin-neuraminidase (MuHN) and measles hemagglutinin (MeH) in yeast Saccharomyces cerevisiae, combining the analysis of recombinant proteins with a proteomic approach. Results Overexpressed recombinant MuHN and MeH proteins were present in large aggregates, were inactive and totally insoluble under native conditions. Moreover, the majority of recombinant protein was found in immature form of non-glycosylated precursors. Fractionation of yeast lysates revealed that the core of viral surface protein aggregates consists of MuHN or MeH disulfide-linked multimers involving eukaryotic translation elongation factor 1A (eEF1A) and is closely associated with small heat shock proteins (sHsps) that can be removed only under denaturing conditions. Complexes of large Hsps seem to be bound to aggregate core peripherally as they can be easily removed at high salt concentrations. Proteomic analysis revealed that the accumulation of unglycosylated viral protein precursors results in specific cytosolic unfolded protein response (UPR-Cyto) in yeast cells, characterized by different action and regulation of small Hsps versus large chaperones of Hsp70, Hsp90 and Hsp110 families. In contrast to most environmental stresses, in the response to synthesis of recombinant MuHN and MeH, only the large Hsps were upregulated whereas sHsps were not. Interestingly, the amount of eEF1A was also increased during this stress response. Conclusions Inefficient translocation of MuHN and MeH precursors through ER membrane is a bottleneck for high-level expression in yeast. Overexpression of these recombinant

  5. Integration of the ubiquitin-proteasome pathway with a cytosolic oligopeptidase activity

    PubMed Central

    Wang, Evelyn W.; Kessler, Benedikt M.; Borodovsky, Anna; Cravatt, Benjamin F.; Bogyo, Matthew; Ploegh, Hidde L.; Glas, Rickard

    2000-01-01

    Cytosolic proteolysis is carried out predominantly by the proteasome. We show that a large oligopeptidase, tripeptidylpeptidase II (TPPII), can compensate for compromised proteasome activity. Overexpression of TPPII is sufficient to prevent accumulation of polyubiquitinated proteins and allows survival of EL-4 cells at otherwise lethal concentrations of the covalent proteasome inhibitor NLVS (NIP-leu-leu-leu-vinylsulfone). Elevated TPPII activity also partially restores peptide loading of MHC molecules. Purified proteasomes from adapted cells lack the chymotryptic-like activity, but still degrade longer peptide substrates via residual activity of their Z subunits. However, growth of adapted cells depends on induction of other proteolytic activities. Therefore, cytosolic oligopeptidases such as TPPII normalize rates of intracellular protein breakdown required for normal cellular function and viability. PMID:10954757

  6. Leucine-rich-repeat-containing variable lymphocyte receptors as modules to target plant-expressed proteins

    DOE PAGES

    Velásquez, André C.; Nomura, Kinya; Cooper, Max D.; ...

    2017-04-19

    The ability to target and manipulate protein-based cellular processes would accelerate plant research; yet, the technology to specifically and selectively target plant-expressed proteins is still in its infancy. Leucine-rich repeats (LRRs) are ubiquitously present protein domains involved in mediating protein–protein interactions. LRRs confer the binding specificity to the highly diverse variable lymphocyte receptor (VLR) antibodies (including VLRA, VLRB and VLRC types) that jawless vertebrates make as the functional equivalents of jawed vertebrate immunoglobulin-based antibodies. Here, VLRBs targeting an effector protein from a plant pathogen, HopM1, were developed by immunizing lampreys and using yeast surface display to select for high-affinity VLRBs.more » HopM1-specific VLRBs (VLRM1) were expressed in planta in the cytosol, the trans-Golgi network, and the apoplast. Expression of VLRM1 was higher when the protein localized to an oxidizing environment that would favor disulfide bridge formation (when VLRM1 was not localized to the cytoplasm), as disulfide bonds are necessary for proper VLR folding. VLRM1 specifically interacted in planta with HopM1 but not with an unrelated bacterial effector protein while HopM1 failed to interact with a non-specific VLRB. Later, VLRs may be used as flexible modules to bind proteins or carbohydrates of interest in planta, with broad possibilities for their use by binding directly to their targets and inhibiting their action, or by creating chimeric proteins with new specificities in which endogenous LRR domains are replaced by those present in VLRs.« less

  7. Leucine-rich-repeat-containing variable lymphocyte receptors as modules to target plant-expressed proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velásquez, André C.; Nomura, Kinya; Cooper, Max D.

    The ability to target and manipulate protein-based cellular processes would accelerate plant research; yet, the technology to specifically and selectively target plant-expressed proteins is still in its infancy. Leucine-rich repeats (LRRs) are ubiquitously present protein domains involved in mediating protein–protein interactions. LRRs confer the binding specificity to the highly diverse variable lymphocyte receptor (VLR) antibodies (including VLRA, VLRB and VLRC types) that jawless vertebrates make as the functional equivalents of jawed vertebrate immunoglobulin-based antibodies. Here, VLRBs targeting an effector protein from a plant pathogen, HopM1, were developed by immunizing lampreys and using yeast surface display to select for high-affinity VLRBs.more » HopM1-specific VLRBs (VLRM1) were expressed in planta in the cytosol, the trans-Golgi network, and the apoplast. Expression of VLRM1 was higher when the protein localized to an oxidizing environment that would favor disulfide bridge formation (when VLRM1 was not localized to the cytoplasm), as disulfide bonds are necessary for proper VLR folding. VLRM1 specifically interacted in planta with HopM1 but not with an unrelated bacterial effector protein while HopM1 failed to interact with a non-specific VLRB. Later, VLRs may be used as flexible modules to bind proteins or carbohydrates of interest in planta, with broad possibilities for their use by binding directly to their targets and inhibiting their action, or by creating chimeric proteins with new specificities in which endogenous LRR domains are replaced by those present in VLRs.« less

  8. Potentiation of inositol trisphosphate-induced Ca2+ mobilization in Xenopus oocytes by cytosolic Ca2+.

    PubMed Central

    Yao, Y; Parker, I

    1992-01-01

    1. The ability of cytosolic Ca2+ ions to modulate inositol 1,4,5-trisphosphate (Insp3)-induced Ca2+ liberation from intracellular stores was studied in Xenopus oocytes using light flash photolysis of caged InsP3. Changes in cytosolic free Ca2+ level were effected by inducing Ca2+ entry through ionophore and voltage-gated plasma membrane channels and by injection of Ca2+ through a micropipette. Their effects on Ca2+ liberation were monitored by video imaging of Fluo-3 fluorescence and by voltage clamp recording of Ca(2+)-activated membrane Cl- currents. 2. Treatment of oocytes with the Ca2+ ionophores A23187 and ionomycin caused a transient elevation of cytosolic Ca2+ level when cells were bathed in Ca(2+)-free solution, which probably arose because of release of Ca2+ from intracellular stores. 3. Membrane current and Fluo-3 Ca2+ signals evoked by photoreleased InsP3 in ionophore-treated oocytes were potentiated when the intracellular Ca2+ level was elevated by raising the Ca2+ level in the bathing solution. 4. Responses to photoreleased InsP3 were similarly potentiated following activation of Ca2+ entry through voltage-gated Ca2+ channels expressed in the plasma membrane. 5. Ca(2+)-activated membrane currents evoked by depolarization developed a delayed 'hump' component during sustained photorelease of InsP3, probably because Ca2+ ions entering through the membrane channels triggered liberation of Ca2+ from intracellular stores. 6. Ba2+ and Sr2+ ions were able to substitute for Ca2+ in potentiating InsP3-mediated Ca2+ liberation. 7. Gradual photorelease of InsP3 by weak photolysis light evoked Ca2+ liberation that began at particular foci and then propagated throughout, but not beyond that area of the oocyte exposed to the light. Local elevations of intracellular Ca2+ produced by microinjection of Ca2+ acted as new foci for the initiation of Ca2+ liberation by InsP3. 8. In resting oocytes, intracellular injections of Ca2+ resulted only in localized elevation of

  9. Cytosol-dependent membrane fusion in ER, nuclear envelope and nuclear pore assembly: biological implications.

    PubMed

    Rafikova, Elvira R; Melikov, Kamran; Chernomordik, Leonid V

    2010-01-01

    Endoplasmic reticulum and nuclear envelope rearrangements after mitosis are often studied in the reconstitution system based on Xenopus egg extract. In our recent work we partially replaced the membrane vesicles in the reconstitution mix with protein-free liposomes to explore the relative contributions of cytosolic and transmembrane proteins. Here we discuss our finding that cytosolic proteins mediate fusion between membranes lacking functional transmembrane proteins and the role of membrane fusion in endoplasmic reticulum and nuclear envelope reorganization. Cytosol-dependent liposome fusion has allowed us to restore, without adding transmembrane nucleoporins, functionality of nuclear pores, their spatial distribution and chromatin decondensation in nuclei formed at insufficient amounts of membrane material and characterized by only partial decondensation of chromatin and lack of nuclear transport. Both the mechanisms and the biological implications of the discovered coupling between spatial distribution of nuclear pores, chromatin decondensation and nuclear transport are discussed.

  10. RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA.

    PubMed

    Wolf, Christine; Rapp, Alexander; Berndt, Nicole; Staroske, Wolfgang; Schuster, Max; Dobrick-Mattheuer, Manuela; Kretschmer, Stefanie; König, Nadja; Kurth, Thomas; Wieczorek, Dagmar; Kast, Karin; Cardoso, M Cristina; Günther, Claudia; Lee-Kirsch, Min Ae

    2016-05-27

    Immune recognition of cytosolic DNA represents a central antiviral defence mechanism. Within the host, short single-stranded DNA (ssDNA) continuously arises during the repair of DNA damage induced by endogenous and environmental genotoxic stress. Here we show that short ssDNA traverses the nuclear membrane, but is drawn into the nucleus by binding to the DNA replication and repair factors RPA and Rad51. Knockdown of RPA and Rad51 enhances cytosolic leakage of ssDNA resulting in cGAS-dependent type I IFN activation. Mutations in the exonuclease TREX1 cause type I IFN-dependent autoinflammation and autoimmunity. We demonstrate that TREX1 is anchored within the outer nuclear membrane to ensure immediate degradation of ssDNA leaking into the cytosol. In TREX1-deficient fibroblasts, accumulating ssDNA causes exhaustion of RPA and Rad51 resulting in replication stress and activation of p53 and type I IFN. Thus, the ssDNA-binding capacity of RPA and Rad51 constitutes a cell intrinsic mechanism to protect the cytosol from self DNA.

  11. Ubiquitous Robotic Technology for Smart Manufacturing System.

    PubMed

    Wang, Wenshan; Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods.

  12. Ubiquitous Robotic Technology for Smart Manufacturing System

    PubMed Central

    Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods. PMID:27446206

  13. Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes.

    PubMed Central

    Berlin, J R; Bassani, J W; Bers, D M

    1994-01-01

    Intracellular passive Ca2+, buffering was measured in voltage-clamped rat ventricular myocytes. Cells were loaded with indo-1 (K+ salt) to an estimated cytosolic concentration of 44 +/- 5 microM (Mean +/- SEM, n = 5), and accessible cell volume was estimated to be 24.5 +/- 3.6 pl. Ca2+ transport by the sarcoplasmic reticulum (SR) Ca-ATPase and sarcolemmal Na-Ca exchange was inhibited by treatment with thapsigargin and Na-free solutions, respectively. Extracellular [Ca2+] was maintained at 10 mM and, in some experiments, the mitochondrial uncoupler "1799" was used to assess the degree of mitochondrial Ca2+ uptake. To perform single cell titrations, intracellular Ca2+ ([Ca2+]i) was increased progressively by a train of depolarizing voltage clamp pulses from -40 to +10 mV. The total Ca2+ gain with each pulse was calculated by integration of the Ca current and then analyzed as a function of the rapid change in [Ca2+]i during the pulse. In the range of [Ca2+]i from 0.1 to 2 microM, overall cell buffering was well described as a single lumped Michaelis-Menten type species with an apparent dissociation constant, KD, of of 0.63 +/- 0.07 microM (n = 5) and a binding capacity, Bmax, of 162 +/- 15 mumol/l cell H2O. Correction for buffering attributable to cytosolic indo-1 gives intrinsic cytosolic Ca2+ buffering parameters of KD = 0.96 +/- 0.18 microM and Bmax = 123 +/- 18 mumol/l cell H2O. The fast Ca2+ buffering measured in this manner agrees reasonably with the characteristics of known rapid Ca buffers (e.g., troponin C, calmodulin, and SR Ca-ATPase), but is only about half of the total Ca2+ buffering measured at equilibrium. Inclusion of slow Ca buffers such as the Ca/Mg sites on troponin C and myosin can account for the differences between fast Ca2+ buffering in phase with the Ca current measured in the present experiments and equilibrium Ca2+ buffering. The present data indicate that a rapid rise of [Ca2+]i from 0.1 to 1 microM during a contraction requires

  14. U-ALS: A Ubiquitous Learning Environment

    ERIC Educational Resources Information Center

    Piovesan, Sandra Dutra; Passerino, Liliana Maria; Medina, Roseclea Duarte

    2012-01-01

    The diffusion of the use of the learning virtual environments presents a great potential for the development of an application which meet the necessities in the education area. In view of the importance of a more dynamic application and that can adapt itself continuously to the students' necessities, the "U-ALS" (Ubiquitous Adapted Learning…

  15. Using Context-Aware Ubiquitous Learning to Support Students' Understanding of Geometry

    ERIC Educational Resources Information Center

    Crompton, Helen

    2015-01-01

    In this study, context-aware ubiquitous learning was used to support 4th grade students as they learn angle concepts. Context-aware ubiquitous learning was provided to students primarily through the use of iPads to access real-world connections and a Dynamic Geometry Environment. Gravemeijer and van Eerde's (2009), design-based research (DBR)…

  16. The translocon protein Sec61 mediates antigen transport from endosomes in the cytosol for cross-presentation to CD8(+) T cells.

    PubMed

    Zehner, Matthias; Marschall, Andrea L; Bos, Erik; Schloetel, Jan-Gero; Kreer, Christoph; Fehrenschild, Dagmar; Limmer, Andreas; Ossendorp, Ferry; Lang, Thorsten; Koster, Abraham J; Dübel, Stefan; Burgdorf, Sven

    2015-05-19

    The molecular mechanisms regulating antigen translocation into the cytosol for cross-presentation are under controversial debate, mainly because direct data is lacking. Here, we have provided direct evidence that the activity of the endoplasmic reticulum (ER) translocon protein Sec61 is essential for endosome-to-cytosol translocation. We generated a Sec61-specific intrabody, a crucial tool that trapped Sec61 in the ER and prevented its recruitment into endosomes without influencing Sec61 activity and antigen presentation in the ER. Expression of this ER intrabody inhibited antigen translocation and cross-presentation, demonstrating that endosomal Sec61 indeed mediates antigen transport across endosomal membranes. Moreover, we showed that the recruitment of Sec61 toward endosomes, and hence antigen translocation and cross-presentation, is dependent on dendritic cell activation by Toll-like receptor (TLR) ligands. These data shed light on a long-lasting question regarding antigen cross-presentation and point out a role of the ER-associated degradation machinery in compartments distinct from the ER. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Intercellular cytosolic transfer correlates with mesenchymal stromal cell rescue of umbilical cord blood cell viability during ex vivo expansion

    PubMed Central

    Chu, Pat P. Y.; Bari, Sudipto; Fan, Xiubo; Gay, Florence P. H.; Ang, Justina M. L.; Chiu, Gigi N. C.; Lim, Sai K.; Hwang, William Y. K.

    2012-01-01

    Background aims. Mesenchymal stromal cells (MSC) have been observed to participate in tissue repair and to have growth-promoting effects on ex vivo co-culture with other stem cells. Methods. In order to evaluate the mechanism of MSC support on ex vivo cultures, we performed co-culture of MSC with umbilical cord blood (UCB) mononuclear cells (MNC) (UCB-MNC). Results. Significant enhancement in cell growth correlating with cell viability was noted with MSC co-culture (defined by double-negative staining for Annexin-V and 7-AAD; P<0.01). This was associated with significant enhancement of mitochondrial membrane potential (P<0.01). We postulated that intercellular transfer of cytosolic substances between MSC and UCB-MNC could be one mechanism mediating the support. Using MSC endogenously expressing green fluorescent protein (GFP) or labeled with quantum dots (QD), we performed co-culture of UCB-MNC with these MSC. Transfer of these GFP and QD was observed from MSC to UCB-MNC as early as 24 h post co-culture. Transwell experiments revealed that direct contact between MSC and UCB-MNC was necessary for both transfer and viability support. UCB-MNC tightly adherent to the MSC layer exhibited the most optimal transfer and rescue of cell viability. DNA analysis of the viable, GFP transfer-positive UCB-MNC ruled out MSC transdifferentiation or MSC-UCB fusion. In addition, there was statistical correlation between higher levels of cytosolic transfer and enhanced UCB-MNC viability (P< 0.0001). Conclusions. Collectively, the data suggest that intercellular transfer of cytosolic materials could be one novel mechanism for preventing UCB cell death in MSC co-culture. PMID:22775077

  18. Heat shock protein 90-mediated peptide-selective presentation of cytosolic tumor antigen for direct recognition of tumors by CD4(+) T cells.

    PubMed

    Tsuji, Takemasa; Matsuzaki, Junko; Caballero, Otavia L; Jungbluth, Achim A; Ritter, Gerd; Odunsi, Kunle; Old, Lloyd J; Gnjatic, Sacha

    2012-04-15

    Tumor Ag-specific CD4(+) T cells play important functions in tumor immunosurveillance, and in certain cases they can directly recognize HLA class II-expressing tumor cells. However, the underlying mechanism of intracellular Ag presentation to CD4(+) T cells by tumor cells has not yet been well characterized. We analyzed two naturally occurring human CD4(+) T cell lines specific for different peptides from cytosolic tumor Ag NY-ESO-1. Whereas both lines had the same HLA restriction and a similar ability to recognize exogenous NY-ESO-1 protein, only one CD4(+) T cell line recognized NY-ESO-1(+) HLA class II-expressing melanoma cells. Modulation of Ag processing in melanoma cells using specific molecular inhibitors and small interfering RNA revealed a previously undescribed peptide-selective Ag-presentation pathway by HLA class II(+) melanoma cells. The presentation required both proteasome and endosomal protease-dependent processing mechanisms, as well as cytosolic heat shock protein 90-mediated chaperoning. Such tumor-specific pathway of endogenous HLA class II Ag presentation is expected to play an important role in immunosurveillance or immunosuppression mediated by various subsets of CD4(+) T cells at the tumor local site. Furthermore, targeted activation of tumor-recognizing CD4(+) T cells by vaccination or adoptive transfer could be a suitable strategy for enhancing the efficacy of tumor immunotherapy.

  19. Role of a Ubiquitously Expressed Receptor in the Vertebrate Olfactory System

    PubMed Central

    DeMaria, Shannon; Berke, Allison P.; Van Name, Eric; Heravian, Anisa; Ferreira, Todd

    2013-01-01

    Odorant cues are recognized by receptors expressed on olfactory sensory neurons, the primary sensory neurons of the olfactory epithelium. Odorant receptors typically obey the “one receptor, one neuron” rule, in which the receptive field of the olfactory neuron is determined by the singular odorant receptor that it expresses. Odor-evoked receptor activity across the population of olfactory neurons is then interpreted by the brain to identify the molecular nature of the odorant stimulus. In the present study, we characterized the properties of a C family G-protein-coupled receptor that, unlike most other odorant receptors, is expressed in a large population of microvillous sensory neurons in the zebrafish olfactory epithelium and the mouse vomeronasal organ. We found that this receptor, OlfCc1 in zebrafish and its murine ortholog Vmn2r1, is a calcium-dependent, low-sensitivity receptor specific for the hydrophobic amino acids isoleucine, leucine, and valine. Loss-of-function experiments in zebrafish embryos demonstrate that OlfCc1 is required for olfactory responses to a diverse mixture of polar, nonpolar, acidic, and basic amino acids. OlfCc1 was also found to promote localization of other OlfC receptor family members to the plasma membrane in heterologous cells. Together, these results suggest that the broadly expressed OlfCc1 is required for amino acid detection by the olfactory system and suggest that it plays a role in the function and/or intracellular trafficking of other olfactory and vomeronasal receptors with which it is coexpressed. PMID:24048853

  20. Regulation of singlet oxygen-induced apoptosis by cytosolic NADP+-dependent isocitrate dehydrogenase.

    PubMed

    Kim, Sun Yee; Lee, Su Min; Tak, Jean Kyoung; Choi, Kyeong Sook; Kwon, Taeg Kyu; Park, Jeen-Woo

    2007-08-01

    Singlet oxygen is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules and it also promotes deleterious processes such as cell death. Recently, we demonstrated that the control of redox balance and the cellular defense against oxidative damage are the primary functions of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) through supplying NADPH for antioxidant systems. In this report, we demonstrate that modulation of IDPc activity in HL-60 cells regulates singlet oxygen-induced apoptosis. When we examined the protective role of IDPc against singlet oxygen-induced apoptosis with HL-60 cells transfected with the cDNA for mouse IDPc in sense and antisense orientations, a clear inverse relationship was observed between the amount of IDPc expressed in target cells and their susceptibility to apoptosis. The results suggest that IDPc plays an important protective role in apoptosis of HL-60 cells induced by singlet oxygen.

  1. Cytosolic-free oligosaccharides are predominantly generated by the degradation of dolichol-linked oligosaccharides in mammalian cells.

    PubMed

    Harada, Yoichiro; Masahara-Negishi, Yuki; Suzuki, Tadashi

    2015-11-01

    During asparagine (N)-linked protein glycosylation, eukaryotic cells generate considerable amounts of free oligosaccharides (fOSs) in the cytosol. It is generally assumed that such fOSs are produced by the deglycosylation of misfolded N-glycoproteins that are destined for proteasomal degradation or as the result of the degradation of dolichol-linked oligosaccharides (DLOs), which serve as glycan donor substrates in N-glycosylation reactions. The findings reported herein show that the majority of cytosolic fOSs are generated by a peptide:N-glycanase (PNGase) and an endo-β-N-acetylglucosaminidase (ENGase)-independent pathway in mammalian cells. The ablation of the cytosolic deglycosylating enzymes, PNGase and ENGase, in mouse embryonic fibroblasts had little effect on the amount of cytosolic fOSs generated. Quantitative analyses of fOSs using digitonin-permeabilized cells revealed that they are generated by the degradation of fully assembled Glc3Man9GlcNAc2-pyrophosphate-dolichol (PP-Dol) in the lumen of the endoplasmic reticulum. Because the degradation of Glc3Man9GlcNAc2-PP-Dol is greatly inhibited in the presence of an N-glycosylation acceptor peptide that is recognized by the oligosaccharyltransferase (OST), the OST-mediated hydrolysis of DLO is the most likely mechanism responsible for the production of a large fraction of the cytosolic fOSs. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. BAF is a cytosolic DNA sensor that leads to exogenous DNA avoiding autophagy

    PubMed Central

    Kobayashi, Shouhei; Koujin, Takako; Kojidani, Tomoko; Osakada, Hiroko; Mori, Chie; Hiraoka, Yasushi; Haraguchi, Tokuko

    2015-01-01

    Knowledge of the mechanisms by which a cell detects exogenous DNA is important for controlling pathogen infection, because most pathogens entail the presence of exogenous DNA in the cytosol, as well as for understanding the cell’s response to artificially transfected DNA. The cellular response to pathogen invasion has been well studied. However, spatiotemporal information of the cellular response immediately after exogenous double-stranded DNA (dsDNA) appears in the cytosol is lacking, in part because of difficulties in monitoring when exogenous dsDNA enters the cytosol of the cell. We have recently developed a method to monitor endosome breakdown around exogenous materials using transfection reagent-coated polystyrene beads incorporated into living human cells as the objective for microscopic observations. In the present study, using dsDNA-coated polystyrene beads (DNA-beads) incorporated into living cells, we show that barrier-to-autointegration factor (BAF) bound to exogenous dsDNA immediately after its appearance in the cytosol at endosome breakdown. The BAF+ DNA-beads then assembled a nuclear envelope (NE)-like membrane and avoided autophagy that targeted the remnants of the endosome membranes. Knockdown of BAF caused a significant decrease in the assembly of NE-like membranes and increased the formation of autophagic membranes around the DNA-beads, suggesting that BAF-mediated assembly of NE-like membranes was required for the DNA-beads to evade autophagy. Importantly, BAF-bound beads without dsDNA also assembled NE-like membranes and avoided autophagy. We propose a new role for BAF: remodeling intracellular membranes upon detection of dsDNA in mammalian cells. PMID:25991860

  3. BAF is a cytosolic DNA sensor that leads to exogenous DNA avoiding autophagy.

    PubMed

    Kobayashi, Shouhei; Koujin, Takako; Kojidani, Tomoko; Osakada, Hiroko; Mori, Chie; Hiraoka, Yasushi; Haraguchi, Tokuko

    2015-06-02

    Knowledge of the mechanisms by which a cell detects exogenous DNA is important for controlling pathogen infection, because most pathogens entail the presence of exogenous DNA in the cytosol, as well as for understanding the cell's response to artificially transfected DNA. The cellular response to pathogen invasion has been well studied. However, spatiotemporal information of the cellular response immediately after exogenous double-stranded DNA (dsDNA) appears in the cytosol is lacking, in part because of difficulties in monitoring when exogenous dsDNA enters the cytosol of the cell. We have recently developed a method to monitor endosome breakdown around exogenous materials using transfection reagent-coated polystyrene beads incorporated into living human cells as the objective for microscopic observations. In the present study, using dsDNA-coated polystyrene beads (DNA-beads) incorporated into living cells, we show that barrier-to-autointegration factor (BAF) bound to exogenous dsDNA immediately after its appearance in the cytosol at endosome breakdown. The BAF(+) DNA-beads then assembled a nuclear envelope (NE)-like membrane and avoided autophagy that targeted the remnants of the endosome membranes. Knockdown of BAF caused a significant decrease in the assembly of NE-like membranes and increased the formation of autophagic membranes around the DNA-beads, suggesting that BAF-mediated assembly of NE-like membranes was required for the DNA-beads to evade autophagy. Importantly, BAF-bound beads without dsDNA also assembled NE-like membranes and avoided autophagy. We propose a new role for BAF: remodeling intracellular membranes upon detection of dsDNA in mammalian cells.

  4. After Installation: Ubiquitous Computing and High School Science in Three Experienced, High-Technology Schools

    ERIC Educational Resources Information Center

    Drayton, Brian; Falk, Joni K.; Stroud, Rena; Hobbs, Kathryn; Hammerman, James

    2010-01-01

    There are few studies of the impact of ubiquitous computing on high school science, and the majority of studies of ubiquitous computing report only on the early stages of implementation. The present study presents data on 3 high schools with carefully elaborated ubiquitous computing systems that have gone through at least one "obsolescence cycle"…

  5. Two-Phase Acto-Cytosolic Fluid Flow in a Moving Keratocyte: A 2D Continuum Model.

    PubMed

    Nikmaneshi, M R; Firoozabadi, B; Saidi, M S

    2015-09-01

    The F-actin network and cytosol in the lamellipodia of crawling cells flow in a centripetal pattern and spout-like form, respectively. We have numerically studied this two-phase flow in the realistic geometry of a moving keratocyte. Cytosol has been treated as a low viscosity Newtonian fluid flowing through the high viscosity porous medium of F-actin network. Other involved phenomena including myosin activity, adhesion friction, and interphase interaction are also discussed to provide an overall view of this problem. Adopting a two-phase coupled model by myosin concentration, we have found new accurate perspectives of acto-cytosolic flow and pressure fields, myosin distribution, as well as the distribution of effective forces across the lamellipodia of a keratocyte with stationary shape. The order of magnitude method is also used to determine the contribution of forces in the internal dynamics of lamellipodia.

  6. Sulfation of 6-Gingerol by the Human Cytosolic Sulfotransferases: A Systematic Analysis.

    PubMed

    Luo, Lijun; Mei, Xue; Xi, Yuecheng; Zhou, Chunyang; Hui, Ying; Kurogi, Katsuhisa; Sakakibara, Yoichi; Suiko, Masahito; Liu, Ming-Cheh

    2016-02-01

    Previous studies have demonstrated the presence of the sulfated form of 6-gingerol, a major pharmacologically active component of ginger, in plasma samples of normal human subjects who were administered 6-gingerol. The current study was designed to systematically identify the major human cytosolic sulfotransferase enzyme(s) capable of mediating the sulfation of 6-gingerol. Of the 13 known human cytosolic sulfotransferases examined, six (SULT1A1, SULT1A2, SULT1A3, SULT1B1, SULT1C4, SULT1E1) displayed significant sulfating activity toward 6-gingerol. Kinetic parameters of SULT1A1, SULT1A3, SULT1C4, and SULT1E1 that showed stronger 6-gingerol-sulfating activity were determined. Of the four human organ samples tested, small intestine and liver cytosols displayed considerably higher 6-gingerol-sulfating activity than those of the lung and kidney. Moreover, sulfation of 6-gingerol was shown to occur in HepG2 human hepatoma cells and Caco-2 human colon adenocarcinoma cells under the metabolic setting. Collectively, these results provided useful information relevant to the metabolism of 6-gingerol through sulfation both in vitro and in vivo. Georg Thieme Verlag KG Stuttgart · New York.

  7. Differential Inflammatory-Response Kinetics of Human Keratinocytes upon Cytosolic RNA- and DNA-Fragment Induction.

    PubMed

    Danis, Judit; Janovák, Luca; Gubán, Barbara; Göblös, Anikó; Szabó, Kornélia; Kemény, Lajos; Bata-Csörgő, Zsuzsanna; Széll, Márta

    2018-03-08

    Keratinocytes are non-professional immune cells contributing actively to innate immune responses partially by reacting to a wide range of molecular patterns by activating pattern recognition receptors. Cytosolic nucleotide fragments as pathogen- or self-derived trigger factors are activating inflammasomes and inducing anti-viral signal transduction pathways as well as inducing expression of inflammatory cytokines. We aimed to compare the induced inflammatory reactions in three keratinocyte cell types-normal human epidermal keratinocytes, the HaCaT cell line and the HPV-KER cell line-upon exposure to the synthetic RNA and DNA analogues poly(I:C) and poly(dA:dT) to reveal the underlying signaling events. Both agents induced the expression of interleukin-6 and tumor necrosis factor α in all cell types; however, notable kinetic and expression level differences were found. Western blot analysis revealed rapid activation of the nuclear factor κB (NF-κB), mitogen activated protein kinase and signal transducers of activator of transcription (STAT) signal transduction pathways in keratinocytes upon poly(I:C) treatment, while poly(dA:dT) induced slower activation. Inhibition of NF-κB, p38, STAT-1 and STAT-3 signaling resulted in decreased cytokine expression, whereas inhibition of mitogen-activated protein kinase kinase 1/2 (MEK1/2) signaling showed a negative feedback role in both poly(I:C)- and poly(dA:dT)-induced cytokine expression. Based on our in vitro results nucleotide fragments are able to induce inflammatory reactions in keratinocytes, but with different rate and kinetics of cytokine expression, explained by faster activation of signaling routes by poly(I:C) than poly(dA:dT).

  8. Differential Inflammatory-Response Kinetics of Human Keratinocytes upon Cytosolic RNA- and DNA-Fragment Induction

    PubMed Central

    Danis, Judit; Janovák, Luca; Gubán, Barbara; Göblös, Anikó; Szabó, Kornélia; Bata-Csörgő, Zsuzsanna; Széll, Márta

    2018-01-01

    Keratinocytes are non-professional immune cells contributing actively to innate immune responses partially by reacting to a wide range of molecular patterns by activating pattern recognition receptors. Cytosolic nucleotide fragments as pathogen- or self-derived trigger factors are activating inflammasomes and inducing anti-viral signal transduction pathways as well as inducing expression of inflammatory cytokines. We aimed to compare the induced inflammatory reactions in three keratinocyte cell types—normal human epidermal keratinocytes, the HaCaT cell line and the HPV-KER cell line—upon exposure to the synthetic RNA and DNA analogues poly(I:C) and poly(dA:dT) to reveal the underlying signaling events. Both agents induced the expression of interleukin-6 and tumor necrosis factor α in all cell types; however, notable kinetic and expression level differences were found. Western blot analysis revealed rapid activation of the nuclear factor κB (NF-κB), mitogen activated protein kinase and signal transducers of activator of transcription (STAT) signal transduction pathways in keratinocytes upon poly(I:C) treatment, while poly(dA:dT) induced slower activation. Inhibition of NF-κB, p38, STAT-1 and STAT-3 signaling resulted in decreased cytokine expression, whereas inhibition of mitogen-activated protein kinase kinase 1/2 (MEK1/2) signaling showed a negative feedback role in both poly(I:C)- and poly(dA:dT)-induced cytokine expression. Based on our in vitro results nucleotide fragments are able to induce inflammatory reactions in keratinocytes, but with different rate and kinetics of cytokine expression, explained by faster activation of signaling routes by poly(I:C) than poly(dA:dT). PMID:29518010

  9. A Genetic Screen Reveals that Synthesis of 1,4-Dihydroxy-2-Naphthoate (DHNA), but Not Full-Length Menaquinone, Is Required for Listeria monocytogenes Cytosolic Survival.

    PubMed

    Chen, Grischa Y; McDougal, Courtney E; D'Antonio, Marc A; Portman, Jonathan L; Sauer, John-Demian

    2017-03-21

    Through unknown mechanisms, the host cytosol restricts bacterial colonization; therefore, only professional cytosolic pathogens are adapted to colonize this host environment. Listeria monocytogenes is a Gram-positive intracellular pathogen that is highly adapted to colonize the cytosol of both phagocytic and nonphagocytic cells. To identify L. monocytogenes determinants of cytosolic survival, we designed and executed a novel screen to isolate L. monocytogenes mutants with cytosolic survival defects. Multiple mutants identified in the screen were defective for synthesis of menaquinone (MK), an essential molecule in the electron transport chain. Analysis of an extensive set of MK biosynthesis and respiratory chain mutants revealed that cellular respiration was not required for cytosolic survival of L. monocytogenes but that, instead, synthesis of 1,4-dihydroxy-2-naphthoate (DHNA), an MK biosynthesis intermediate, was essential. Recent discoveries showed that modulation of the central metabolism of both host and pathogen can influence the outcome of host-pathogen interactions. Our results identify a potentially novel function of the MK biosynthetic intermediate DHNA and specifically highlight how L. monocytogenes metabolic adaptations promote cytosolic survival and evasion of host immunity. IMPORTANCE Cytosolic bacterial pathogens, such as Listeria monocytogenes and Francisella tularensis , are exquisitely evolved to colonize the host cytosol in a variety of cell types. Establishing an intracellular niche shields these pathogens from effectors of humoral immunity, grants access to host nutrients, and is essential for pathogenesis. Through yet-to-be-defined mechanisms, the host cytosol restricts replication of non-cytosol-adapted bacteria, likely through a combination of cell autonomous defenses (CADs) and nutritional immunity. Utilizing a novel genetic screen, we identified determinants of L. monocytogenes cytosolic survival and virulence and identified a role

  10. UBioLab: a web-laboratory for ubiquitous in-silico experiments.

    PubMed

    Bartocci, Ezio; Cacciagrano, Diletta; Di Berardini, Maria Rita; Merelli, Emanuela; Vito, Leonardo

    2012-07-09

    The huge and dynamic amount of bioinformatic resources (e.g., data and tools) available nowadays in Internet represents a big challenge for biologists –for what concerns their management and visualization– and for bioinformaticians –for what concerns the possibility of rapidly creating and executing in-silico experiments involving resources and activities spread over the WWW hyperspace. Any framework aiming at integrating such resources as in a physical laboratory has imperatively to tackle –and possibly to handle in a transparent and uniform way– aspects concerning physical distribution, semantic heterogeneity, co-existence of different computational paradigms and, as a consequence, of different invocation interfaces (i.e., OGSA for Grid nodes, SOAP for Web Services, Java RMI for Java objects, etc.). The framework UBioLab has been just designed and developed as a prototype following the above objective. Several architectural features –as those ones of being fully Web-based and of combining domain ontologies, Semantic Web and workflow techniques– give evidence of an effort in such a direction. The integration of a semantic knowledge management system for distributed (bioinformatic) resources, a semantic-driven graphic environment for defining and monitoring ubiquitous workflows and an intelligent agent-based technology for their distributed execution allows UBioLab to be a semantic guide for bioinformaticians and biologists providing (i) a flexible environment for visualizing, organizing and inferring any (semantics and computational) "type" of domain knowledge (e.g., resources and activities, expressed in a declarative form), (ii) a powerful engine for defining and storing semantic-driven ubiquitous in-silico experiments on the domain hyperspace, as well as (iii) a transparent, automatic and distributed environment for correct experiment executions.

  11. UBioLab: a web-LABoratory for Ubiquitous in-silico experiments.

    PubMed

    Bartocci, E; Di Berardini, M R; Merelli, E; Vito, L

    2012-03-01

    The huge and dynamic amount of bioinformatic resources (e.g., data and tools) available nowadays in Internet represents a big challenge for biologists -for what concerns their management and visualization- and for bioinformaticians -for what concerns the possibility of rapidly creating and executing in-silico experiments involving resources and activities spread over the WWW hyperspace. Any framework aiming at integrating such resources as in a physical laboratory has imperatively to tackle -and possibly to handle in a transparent and uniform way- aspects concerning physical distribution, semantic heterogeneity, co-existence of different computational paradigms and, as a consequence, of different invocation interfaces (i.e., OGSA for Grid nodes, SOAP for Web Services, Java RMI for Java objects, etc.). The framework UBioLab has been just designed and developed as a prototype following the above objective. Several architectural features -as those ones of being fully Web-based and of combining domain ontologies, Semantic Web and workflow techniques- give evidence of an effort in such a direction. The integration of a semantic knowledge management system for distributed (bioinformatic) resources, a semantic-driven graphic environment for defining and monitoring ubiquitous workflows and an intelligent agent-based technology for their distributed execution allows UBioLab to be a semantic guide for bioinformaticians and biologists providing (i) a flexible environment for visualizing, organizing and inferring any (semantics and computational) "type" of domain knowledge (e.g., resources and activities, expressed in a declarative form), (ii) a powerful engine for defining and storing semantic-driven ubiquitous in-silico experiments on the domain hyperspace, as well as (iii) a transparent, automatic and distributed environment for correct experiment executions.

  12. Transfer of Free Polymannose-type Oligosaccharides from the Cytosol to Lysosomes in Cultured Human Hepatocellular Carcinoma HEPG2 Cells

    PubMed Central

    Saint-Pol, Agnès; Bauvy, Chantal; Codogno, Patrice; Moore, Stuart E.H.

    1997-01-01

    Large, free polymannose oligosaccharides generated during glycoprotein biosynthesis rapidly appear in the cytosol of HepG2 cells where they undergo processing by a cytosolic endo H–like enzyme and a mannosidase to yield the linear isomer of Man5GlcNAc (Man[α1-2]Man[α1-2]Man[α1-3][Man α1-6]Man[β14]GlcNAc). Here we have examined the fate of these partially trimmed oligosaccharides in intact HepG2 cells. Subsequent to pulse–chase incubations with d-[2- 3H]mannose followed by permeabilization of cells with streptolysin O free oligosaccharides were isolated from the resulting cytosolic and membrane-bound compartments. Control pulse–chase experiments revealed that total cellular free oligosaccharides are lost from HepG2 cells with a half-life of 3–4 h. In contrast use of the vacuolar H+/ATPase inhibitor, concanamycin A, stabilized total cellular free oligosaccharides and enabled us to demonstrate a translocation of partially trimmed oligosaccharides from the cytosol into a membrane-bound compartment. This translocation process was unaffected by inhibitors of autophagy but inhibited if cells were treated with either 100 μM swainsonine, which provokes a cytosolic accumulation of large free oligosaccharides bearing 8-9 residues of mannose, or agents known to reduce cellular ATP levels which lead to the accumulation of the linear isomer of Man5GlcNAc in the cytosol. Subcellular fractionation studies on Percoll density gradients revealed that the cytosol-generated linear isomer of Man5GlcNAc is degraded in a membrane-bound compartment that cosediments with lysosomes. PMID:9008702

  13. Interaction between Nbp35 and Cfd1 proteins of cytosolic Fe-S cluster assembly reveals a stable complex formation in Entamoeba histolytica.

    PubMed

    Anwar, Shadab; Dikhit, Manas Ranjan; Singh, Krishn Pratap; Kar, Rajiv Kumar; Zaidi, Amir; Sahoo, Ganesh Chandra; Roy, Awadh Kishore; Nozaki, Tomoyoshi; Das, Pradeep; Ali, Vahab

    2014-01-01

    Iron-Sulfur (Fe-S) proteins are involved in many biological functions such as electron transport, photosynthesis, regulation of gene expression and enzymatic activities. Biosynthesis and transfer of Fe-S clusters depend on Fe-S clusters assembly processes such as ISC, SUF, NIF, and CIA systems. Unlike other eukaryotes which possess ISC and CIA systems, amitochondriate Entamoeba histolytica has retained NIF & CIA systems for Fe-S cluster assembly in the cytosol. In the present study, we have elucidated interaction between two proteins of E. histolytica CIA system, Cytosolic Fe-S cluster deficient 1 (Cfd1) protein and Nucleotide binding protein 35 (Nbp35). In-silico analysis showed that structural regions ranging from amino acid residues (P33-K35, G131-V135 and I147-E151) of Nbp35 and (G5-V6, M34-D39 and G46-A52) of Cfd1 are involved in the formation of protein-protein complex. Furthermore, Molecular dynamic (MD) simulations study suggested that hydrophobic forces surpass over hydrophilic forces between Nbp35 and Cfd1 and Van-der-Waal interaction plays crucial role in the formation of stable complex. Both proteins were separately cloned, expressed as recombinant fusion proteins in E. coli and purified to homogeneity by affinity column chromatography. Physical interaction between Nbp35 and Cfd1 proteins was confirmed in vitro by co-purification of recombinant Nbp35 with thrombin digested Cfd1 and in vivo by pull down assay and immunoprecipitation. The insilico, in vitro as well as in vivo results prove a stable interaction between these two proteins, supporting the possibility of its involvement in Fe-S cluster transfer to target apo-proteins through CIA machinery in E. histolytica. Our study indicates that initial synthesis of a Fe-S precursor in mitochondria is not necessary for the formation of Cfd1-Nbp35 complex. Thus, Cfd1 and Nbp35 with the help of cytosolic NifS and NifU proteins can participate in the maturation of non-mitosomal Fe-S proteins without any

  14. ChaC2, an Enzyme for Slow Turnover of Cytosolic Glutathione.

    PubMed

    Kaur, Amandeep; Gautam, Ruchi; Srivastava, Ritika; Chandel, Avinash; Kumar, Akhilesh; Karthikeyan, Subramanian; Bachhawat, Anand Kumar

    2017-01-13

    Glutathione degradation plays an important role in glutathione and redox homeostasis, and thus it is imperative to understand the enzymes and the mechanisms involved in glutathione degradation in detail. We describe here ChaC2, a member of the ChaC family of γ-glutamylcyclotransferases, as an enzyme that degrades glutathione in the cytosol of mammalian cells. ChaC2 is distinct from the previously described ChaC1, to which ChaC2 shows ∼50% sequence identity. Human and mouse ChaC2 proteins purified in vitro show 10-20-fold lower catalytic efficiency than ChaC1, although they showed comparable K m values (K m of 3.7 ± 0.4 mm and k cat of 15.9 ± 1.0 min -1 toward glutathione for human ChaC2; K m of 2.2 ± 0.4 mm and k cat of 225.2 ± 15 min -1 toward glutathione for human ChaC1). The ChaC1 and ChaC2 proteins also shared the same specificity for reduced glutathione, with no activity against either γ-glutamyl amino acids or oxidized glutathione. The ChaC2 proteins were found to be expressed constitutively in cells, unlike the tightly regulated ChaC1. Moreover, lower eukaryotes have a single member of the ChaC family that appears to be orthologous to ChaC2. In addition, we determined the crystal structure of yeast ChaC2 homologue, GCG1, at 1.34 Å resolution, which represents the first structure of the ChaC family of proteins. The catalytic site is defined by a fortuitous benzoic acid molecule bound to the crystal structure. The mechanism for binding and catalytic activity of this new enzyme of glutathione degradation, which is involved in continuous but basal turnover of cytosolic glutathione, is proposed. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Glucose Acutely Reduces Cytosolic and Mitochondrial H2O2 in Rat Pancreatic Beta Cells.

    PubMed

    Deglasse, Jean-Philippe; Roma, Leticia Prates; Pastor-Flores, Daniel; Gilon, Patrick; Dick, Tobias P; Jonas, Jean-Christophe

    2018-06-14

    Whether H 2 O 2 contributes to the glucose-dependent stimulation of insulin secretion (GSIS) by pancreatic β cells is highly controversial. We used two H 2 O 2 -sensitive probes, roGFP2-Orp1 (reduction/oxidation-sensitive enhanced green fluorescent protein fused to oxidant receptor peroxidase 1) and HyPer (hydrogen peroxide sensor) with its pH-control SypHer, to test the acute effects of glucose, monomethyl succinate, leucine with glutamine, and α-ketoisocaproate on β cell cytosolic and mitochondrial H 2 O 2 concentrations. We then tested the effects of low H 2 O 2 and menadione concentrations on insulin secretion. RoGFP2-Orp1 was more sensitive than HyPer to H 2 O 2 (response at 2-5 vs. 10 μM) and less pH-sensitive. Under control conditions, stimulation with glucose reduced mitochondrial roGFP2-Orp1 oxidation without affecting cytosolic roGFP2-Orp1 and HyPer fluorescence ratios, except for the pH-dependent effects on HyPer. However, stimulation with glucose decreased the oxidation of both cytosolic probes by 15 μM exogenous H 2 O 2 . The glucose effects were not affected by overexpression of catalase, mitochondrial catalase, or superoxide dismutase 1 and 2. They followed the increase in NAD(P)H autofluorescence, were maximal at 5 mM glucose in the cytosol and 10 mM glucose in the mitochondria, and were partly mimicked by the other nutrients. Exogenous H 2 O 2 (1-15 μM) did not affect insulin secretion. By contrast, menadione (1-5 μM) did not increase basal insulin secretion but reduced the stimulation of insulin secretion by 20 mM glucose. Subcellular changes in β cell H 2 O 2 levels are better monitored with roGFP2-Orp1 than HyPer/SypHer. Nutrients acutely lower mitochondrial H 2 O 2 levels in β cells and promote degradation of exogenously supplied H 2 O 2 in both cytosolic and mitochondrial compartments. The GSIS occurs independently of a detectable increase in β cell cytosolic or mitochondrial H 2 O 2 levels. Antioxid. Redox Signal. 00

  16. From Virtual Environments to Physical Environments: Exploring Interactivity in Ubiquitous-Learning Systems

    ERIC Educational Resources Information Center

    Peng, Hsinyi; Chou, Chien; Chang, Chun-Yu

    2008-01-01

    Computing devices and applications are now used beyond the desktop, in diverse environments, and this trend toward ubiquitous computing is evolving. In this study, we re-visit the interactivity concept and its applications for interactive function design in a ubiquitous-learning system (ULS). Further, we compare interactivity dimensions and…

  17. Ubiquitous Mobile Knowledge Construction in Collaborative Learning Environments

    PubMed Central

    Baloian, Nelson; Zurita, Gustavo

    2012-01-01

    Knowledge management is a critical activity for any organization. It has been said to be a differentiating factor and an important source of competitiveness if this knowledge is constructed and shared among its members, thus creating a learning organization. Knowledge construction is critical for any collaborative organizational learning environment. Nowadays workers must perform knowledge creation tasks while in motion, not just in static physical locations; therefore it is also required that knowledge construction activities be performed in ubiquitous scenarios, and supported by mobile and pervasive computational systems. These knowledge creation systems should help people in or outside organizations convert their tacit knowledge into explicit knowledge, thus supporting the knowledge construction process. Therefore in our understanding, we consider highly relevant that undergraduate university students learn about the knowledge construction process supported by mobile and ubiquitous computing. This has been a little explored issue in this field. This paper presents the design, implementation, and an evaluation of a system called MCKC for Mobile Collaborative Knowledge Construction, supporting collaborative face-to-face tacit knowledge construction and sharing in ubiquitous scenarios. The MCKC system can be used by undergraduate students to learn how to construct knowledge, allowing them anytime and anywhere to create, make explicit and share their knowledge with their co-learners, using visual metaphors, gestures and sketches to implement the human-computer interface of mobile devices (PDAs). PMID:22969333

  18. Ubiquitous mobile knowledge construction in collaborative learning environments.

    PubMed

    Baloian, Nelson; Zurita, Gustavo

    2012-01-01

    Knowledge management is a critical activity for any organization. It has been said to be a differentiating factor and an important source of competitiveness if this knowledge is constructed and shared among its members, thus creating a learning organization. Knowledge construction is critical for any collaborative organizational learning environment. Nowadays workers must perform knowledge creation tasks while in motion, not just in static physical locations; therefore it is also required that knowledge construction activities be performed in ubiquitous scenarios, and supported by mobile and pervasive computational systems. These knowledge creation systems should help people in or outside organizations convert their tacit knowledge into explicit knowledge, thus supporting the knowledge construction process. Therefore in our understanding, we consider highly relevant that undergraduate university students learn about the knowledge construction process supported by mobile and ubiquitous computing. This has been a little explored issue in this field. This paper presents the design, implementation, and an evaluation of a system called MCKC for Mobile Collaborative Knowledge Construction, supporting collaborative face-to-face tacit knowledge construction and sharing in ubiquitous scenarios. The MCKC system can be used by undergraduate students to learn how to construct knowledge, allowing them anytime and anywhere to create, make explicit and share their knowledge with their co-learners, using visual metaphors, gestures and sketches to implement the human-computer interface of mobile devices (PDAs).

  19. TAT and HA2 Facilitate Cellular Uptake of Gold Nanoparticles but Do Not Lead to Cytosolic Localisation

    PubMed Central

    Free, Paul; Lévy, Raphaël

    2015-01-01

    The methods currently available to deliver functional labels and drugs to the cell cytosol are inefficient and this constitutes a major obstacle to cell biology (delivery of sensors and imaging probes) and therapy (drug access to the cell internal machinery). As cell membranes are impermeable to most molecular cargos, viral peptides have been used to bolster their internalisation through endocytosis and help their release to the cytosol by bursting the endosomal vesicles. However, conflicting results have been reported on the extent of the cytosolic delivery achieved. To evaluate their potential, we used gold nanoparticles as model cargos and systematically assessed how the functionalisation of their surface by either or both of the viral peptides TAT and HA2 influenced their intracellular delivery. We evaluated the number of gold nanoparticles present in cells after internalisation using photothermal microscopy and their subcellular localisation by electron microscopy. While their uptake increased when the TAT and/or HA2 viral peptides were present on their surface, we did not observe a significant cytosolic delivery of the gold nanoparticles. PMID:25836335

  20. Radiation-Induced Chromosomal Aberrations and Immunotherapy: Micronuclei, Cytosolic DNA, and Interferon-Production Pathway.

    PubMed

    Durante, Marco; Formenti, Silvia C

    2018-01-01

    Radiation-induced chromosomal aberrations represent an early marker of late effects, including cell killing and transformation. The measurement of cytogenetic damage in tissues, generally in blood lymphocytes, from patients treated with radiotherapy has been studied for many years to predict individual sensitivity and late morbidity. Acentric fragments are lost during mitosis and create micronuclei (MN), which are well correlated to cell killing. Immunotherapy is rapidly becoming a most promising new strategy for metastatic tumors, and combination with radiotherapy is explored in several pre-clinical studies and clinical trials. Recent evidence has shown that the presence of cytosolic DNA activates immune response via the cyclic GMP-AMP synthase/stimulator of interferon genes pathway, which induces type I interferon transcription. Cytosolic DNA can be found after exposure to ionizing radiation either as MN or as small fragments leaking through nuclear envelope ruptures. The study of the dependence of cytosolic DNA and MN on dose and radiation quality can guide the optimal combination of radiotherapy and immunotherapy. The role of densely ionizing charged particles is under active investigation to define their impact on the activation of the interferon pathway.

  1. Measurement of the cytosolic sodium ion concentration in rat brain synaptosomes by a fluorescence method.

    PubMed

    Kongsamut, S; Nachshen, D A

    1988-05-24

    A method for the measurement of the cytosolic Na+ concentration in intact synaptosomes is described. This method makes use of a pH sensitive dye (BCECF) that can be loaded into the cytosol and a relatively specific ionophore (monensin) that can exchange Na+ for H+ across the synaptosomal membrane. By setting conditions such that there is no electrochemical potential difference for H+ across the membrane (no membrane potential and pHi = pHo), addition of ionophore would induce a H+ flux only if there is a concentration difference for Na+. Thus, when there is no fluorescence change (no cytosolic pH change) extracellular [Na+] equals intrasynaptosomal [Na+]. The intrasynaptosomal [Na+] concentration was determined to be 7 +/- 3 mM (n = 5; mean +/- S.E.). The results obtained with this fluorescence method are compared with estimates obtained by atomic absorption spectrometry. Limitations and applications of the method are discussed.

  2. Ubiquitous computing in shared-care environments.

    PubMed

    Koch, S

    2006-07-01

    In light of future challenges, such as growing numbers of elderly, increase in chronic diseases, insufficient health care budgets and problems with staff recruitment for the health-care sector, information and communication technology (ICT) becomes a possible means to meet these challenges. Organizational changes such as the decentralization of the health-care system lead to a shift from in-hospital to both advanced and basic home health care. Advanced medical technologies provide solutions for distant home care in form of specialist consultations and home monitoring. Furthermore, the shift towards home health care will increase mobile work and the establishment of shared care teams which require ICT-based solutions that support ubiquitous information access and cooperative work. Clinical documentation and decision support systems are the main ICT-based solutions of interest in the context of ubiquitous computing for shared care environments. This paper therefore describes the prerequisites for clinical documentation and decision support at the point of care, the impact of mobility on the documentation process, and how the introduction of ICT-based solutions will influence organizations and people. Furthermore, the role of dentistry in shared-care environments is discussed and illustrated in the form of a future scenario.

  3. Transfer of free polymannose-type oligosaccharides from the cytosol to lysosomes in cultured human hepatocellular carcinoma HepG2 cells.

    PubMed

    Saint-Pol, A; Bauvy, C; Codogno, P; Moore, S E

    1997-01-13

    Large, free polymannose oligosaccharides generated during glycoprotein biosynthesis rapidly appear in the cytosol of HepG2 cells where they undergo processing by a cytosolic endo H-like enzyme and a mannosidase to yield the linear isomer of Man5GlcNAc (Man[alpha 1-2]Man[alpha 1-2]Man[alpha 1-3][Man alpha 1-6]Man[beta 1-4] GlcNAc). Here we have examined the fate of these partially trimmed oligosaccharides in intact HepG2 cells. Subsequent to pulse-chase incubations with D-[2-3H]mannose followed by permeabilization of cells with streptolysin O free oligosaccharides were isolated from the resulting cytosolic and membrane-bound compartments. Control pulse-chase experiments revealed that total cellular free oligosaccharides are lost from HepG2 cells with a half-life of 3-4 h. In contrast use of the vacuolar H+/ATPase inhibitor, concanamycin A, stabilized total cellular free oligosaccharides and enabled us to demonstrate a translocation of partially trimmed oligosaccharides from the cytosol into a membrane-bound compartment. This translocation process was unaffected by inhibitors of autophagy but inhibited if cells were treated with either 100 microM swainsonine, which provokes a cytosolic accumulation of large free oligosaccharides bearing 8-9 residues of mannose, or agents known to reduce cellular ATP levels which lead to the accumulation of the linear isomer of Man5GlcNAc in the cytosol. Subcellular fractionation studies on Percoll density gradients revealed that the cytosol-generated linear isomer of Man5GlcNAc is degraded in a membrane-bound compartment that cosediments with lysosomes.

  4. Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism.

    PubMed

    Koh, Ho-Jin; Lee, Su-Min; Son, Byung-Gap; Lee, Soh-Hyun; Ryoo, Zae Young; Chang, Kyu-Tae; Park, Jeen-Woo; Park, Dong-Chan; Song, Byoung J; Veech, Richard L; Song, Hebok; Huh, Tae-Lin

    2004-09-17

    NADPH is an essential cofactor for many enzymatic reactions including glutathione metabolism and fat and cholesterol biosynthesis. We have reported recently an important role for mitochondrial NADP(+)-dependent isocitrate dehydrogenase in cellular defense against oxidative damage by providing NADPH needed for the regeneration of reduced glutathione. However, the role of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) is still unclear. We report here for the first time that IDPc plays a critical role in fat and cholesterol biosynthesis. During differentiation of 3T3-L1 adipocytes, both IDPc enzyme activity and its protein content were increased in parallel in a time-dependent manner. Increased expression of IDPc by stable transfection of IDPc cDNA positively correlated with adipogenesis of 3T3-L1 cells, whereas decreased IDPc expression by an antisense IDPc vector retarded adipogenesis. Furthermore, transgenic mice with overexpressed IDPc exhibited fatty liver, hyperlipidemia, and obesity. In the epididymal fat pads of the transgenic mice, the expressions of adipocyte-specific genes including peroxisome proliferator-activated receptor gamma were markedly elevated. The hepatic and epididymal fat pad contents of acetyl-CoA and malonyl-CoA in the transgenic mice were significantly lower, whereas the total triglyceride and cholesterol contents were markedly higher in the liver and serum of transgenic mice compared with those measured in wild type mice, suggesting that the consumption rate of those lipogenic precursors needed for fat biosynthesis must be increased by elevated IDPc activity. Taken together, our findings strongly indicate that IDPc would be a major NADPH producer required for fat and cholesterol synthesis.

  5. The Bimodal Lifestyle of Intracellular Salmonella in Epithelial Cells: Replication in the Cytosol Obscures Defects in Vacuolar Replication

    PubMed Central

    Steele-Mortimer, Olivia

    2012-01-01

    Salmonella enterica serovar Typhimurium invades and proliferates within epithelial cells. Intracellular bacteria replicate within a membrane bound vacuole known as the Salmonella containing vacuole. However, this bacterium can also replicate efficiently in the cytosol of epithelial cells and net intracellular growth is a product of both vacuolar and cytosolic replication. Here we have used semi-quantitative single-cell analyses to investigate the contribution of each of these replicative niches to intracellular proliferation in cultured epithelial cells. We show that cytosolic replication can account for the majority of net replication even though it occurs in less than 20% of infected cells. Consequently, assays for net growth in a population of infected cells, for example by recovery of colony forming units, are not good indicators of vacuolar proliferation. We also show that the Salmonella Type III Secretion System 2, which is required for SCV biogenesis, is not required for cytosolic replication. Altogether this study illustrates the value of single cell analyses when studying intracellular pathogens. PMID:22719929

  6. Commentary: Ubiquitous Computing Revisited--A New Perspective

    ERIC Educational Resources Information Center

    Bull, Glen; Garofalo, Joe

    2006-01-01

    In 2002, representatives from the teacher educator associations representing the core content areas (science, mathematics, language arts, and social studies) and educational technology met at the National Technology Leadership Retreat (NTLR) to discuss potential implications of ubiquitous computing for K-12 schools. This paper re-examines some of…

  7. Towards ubiquitous access of computer-assisted surgery systems.

    PubMed

    Liu, Hui; Lufei, Hanping; Shi, Weishong; Chaudhary, Vipin

    2006-01-01

    Traditional stand-alone computer-assisted surgery (CAS) systems impede the ubiquitous and simultaneous access by multiple users. With advances in computing and networking technologies, ubiquitous access to CAS systems becomes possible and promising. Based on our preliminary work, CASMIL, a stand-alone CAS server developed at Wayne State University, we propose a novel mobile CAS system, UbiCAS, which allows surgeons to retrieve, review and interpret multimodal medical images, and to perform some critical neurosurgical procedures on heterogeneous devices from anywhere at anytime. Furthermore, various optimization techniques, including caching, prefetching, pseudo-streaming-model, and compression, are used to guarantee the QoS of the UbiCAS system. UbiCAS enables doctors at remote locations to actively participate remote surgeries, share patient information in real time before, during, and after the surgery.

  8. Association of cytosolic sialidase Neu2 with plasma membrane enhances Fas-mediated apoptosis by impairing PI3K-Akt/mTOR-mediated pathway in pancreatic cancer cells.

    PubMed

    Nath, Shalini; Mandal, Chhabinath; Chatterjee, Uttara; Mandal, Chitra

    2018-02-12

    Modulation of sialylation by sialyltransferases and sialidases plays essential role in carcinogenesis. There are few reports on sialyltransferase, however, the contribution of cytosolic sialidase (Neu2) remains unexplored in pancreatic ductal adenocarcinoma (PDAC). We observed lower expression of Neu2 in different PDAC cells, patient tissues, and a significant strong association with clinicopathological characteristics. Neu2 overexpression guided drug-resistant MIAPaCa2 and AsPC1 cells toward apoptosis as evidenced by decreased Bcl2/Bax ratio, activation of caspase-3/caspase-6/caspase-8, PARP reduction, reduced CDK2/CDK4/CDK6, and cyclin-B1/cyclin-E with unaffected caspase-9. Neu2-overexpressed cells exhibited higher expression of Fas/CD95-death receptor, FasL, FADD, and Bid cleavage confirming extrinsic pathway-mediated apoptosis. α2,6-linked sialylation of Fas helps cancer cells to survive, which is a substrate for Neu2. Therefore, their removal should enhance Fas-mediated apoptosis. Neu2-overexpressed cells indeed showed increased enzyme activity even on membrane. Interestingly, this membrane-bound Neu2 exhibited enhanced association with Fas causing its desialylation and activation as corroborated by decreased association of Fas with α2,6-sialic acid-binding lectin. Additionally, enhanced cytosolic Neu2 inhibited the expression of several growth factor-mediated signaling molecules involved in PI3K/Akt-mTOR pathway probably through desialylation which in turn also causes Fas activation. Furthermore, Neu2-overexpressed cells exhibited reduced cell migration, invasion with decreased VEGF, VEGFR, and MMP9 levels. To the best of our knowledge, this is the first report of cytosolic Neu2 on membrane, its association with Fas, enhanced desialylation, activation, and Fas-mediated apoptosis. Taken together, our study ascertains a novel concept by which the function of Fas/CD95 could be modulated indicating a critical role of upstream Neu2 as a promising target for

  9. From Many-to-One to One-to-Many: The Evolution of Ubiquitous Computing in Education

    ERIC Educational Resources Information Center

    Chen, Wenli; Lim, Carolyn; Tan, Ashley

    2011-01-01

    Personal, Internet-connected technologies are becoming ubiquitous in the lives of students, and ubiquitous computing initiatives are already expanding in educational contexts. Historically in the field of education, the terms one-to-one (1:1) computing and ubiquitous computing have been interpreted in a number of ways and have at times been used…

  10. Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state

    PubMed Central

    Kojer, Kerstin; Bien, Melanie; Gangel, Heike; Morgan, Bruce; Dick, Tobias P; Riemer, Jan

    2012-01-01

    Glutathione is an important mediator and regulator of cellular redox processes. Detailed knowledge of local glutathione redox potential (EGSH) dynamics is critical to understand the network of redox processes and their influence on cellular function. Using dynamic oxidant recovery assays together with EGSH-specific fluorescent reporters, we investigate the glutathione pools of the cytosol, mitochondrial matrix and intermembrane space (IMS). We demonstrate that the glutathione pools of IMS and cytosol are dynamically interconnected via porins. In contrast, no appreciable communication was observed between the glutathione pools of the IMS and matrix. By modulating redox pathways in the cytosol and IMS, we find that the cytosolic glutathione reductase system is the major determinant of EGSH in the IMS, thus explaining a steady-state EGSH in the IMS which is similar to the cytosol. Moreover, we show that the local EGSH contributes to the partially reduced redox state of the IMS oxidoreductase Mia40 in vivo. Taken together, we provide a comprehensive mechanistic picture of the IMS redox milieu and define the redox influences on Mia40 in living cells. PMID:22705944

  11. Involvement of MAPKs, NF-{kappa}B and p300 co-activator in IL-1{beta}-induced cytosolic phospholipase A{sub 2} expression in canine tracheal smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, S.-F.; Lin, C.-C.; Chen, H.-C.

    2008-11-01

    Cytosolic phospholipase A{sub 2} (cPLA{sub 2}) plays a pivotal role in mediating agonist-induced arachidonic acid release for prostaglandin (PG) synthesis during stimulation with interleukin-1{beta} (IL-1{beta}). However, the mechanisms underlying IL-1{beta}-induced cPLA{sub 2} expression and PGE{sub 2} synthesis by canine tracheal smooth muscle cells (CTSMCs) have not been defined. IL-1{beta} induced cPLA{sub 2} protein and mRNA expression, PGE{sub 2} production, and phosphorylation of p42/p44 MAPK, p38 MAPK (ATF{sub 2}), and JNK (c-Jun) in a time- and concentration-dependent manner, determined by Western blotting, RT-PCR, and ELISA, which was attenuated by the inhibitors of MEK1/2 (U0126), p38 MAPK (SB202190), and JNK (SP600125), ormore » transfection with dominant negative mutants of MEK1/2, p38, and JNK, respectively. Furthermore, IL-1{beta}-induced cPLA{sub 2} expression and PGE{sub 2} synthesis was inhibited by a selective NF-{kappa}B inhibitor (helenalin) or transfection with dominant negative mutants of NF-{kappa}B inducing kinase (NIK), I{kappa}B kinase (IKK)-{alpha}, and IKK-{beta}. Consistently, IL-1{beta} stimulated both I{kappa}B-{alpha} degradation and NF-{kappa}B translocation into nucleus in these cells. NF-{kappa}B translocation was blocked by helenalin, but not by U0126, SB202190, and SP600125. MAPKs together with NF-{kappa}B-activated p300 recruited to cPLA{sub 2} promoter thus facilitating the binding of NF-{kappa}B to cPLA{sub 2} promoter region and expression of cPLA{sub 2} mRNA. IL-1{beta}-induced cPLA{sub 2} expression and PGE{sub 2} production was inhibited by actinomycin D and cycloheximide, indicating the involvement of transcriptional and translational events in these responses. These results suggest that in CTSMCs, IL-1{beta}-induced cPLA{sub 2} expression and PGE{sub 2} synthesis was independently mediated through activation of MAPKs and NF-{kappa}B pathways and was connected to p300 recruitment and activation.« less

  12. Functional characterization and expression of a cytosolic iron-superoxide dismutase from cowpea root nodules.

    PubMed

    Moran, Jose F; James, Euan K; Rubio, Maria C; Sarath, Gautam; Klucas, Robert V; Becana, Manuel

    2003-10-01

    An iron-superoxide dismutase (FeSOD) with an unusual subcellular localization, VuFeSOD, has been purified from cowpea (Vigna unguiculata) nodules and leaves. The enzyme has two identical subunits of 27 kD that are not covalently bound. Comparison of its N-terminal sequence (NVAGINLL) with the cDNA-derived amino acid sequence showed that VuFeSOD is synthesized as a precursor with seven additional amino acids. The mature protein was overexpressed in Escherichia coli, and the recombinant enzyme was used to generate a polyclonal monospecific antibody. Phylogenetic and immunological data demonstrate that there are at least two types of FeSODs in plants. An enzyme homologous to VuFeSOD is present in soybean (Glycine max) and common bean (Phaseolus vulgaris) nodules but not in alfalfa (Medicago sativa) and pea (Pisum sativum) nodules. The latter two species also contain FeSODs in the leaves and nodules, but the enzymes are presumably localized to the chloroplasts and plastids. In contrast, immunoblots of the soluble nodule fraction and immunoelectron microscopy of cryo-processed nodule sections demonstrate that VuFeSOD is localized to the cytosol. Immunoblot analysis showed that the content of VuFeSOD protein increases in senescent nodules with active leghemoglobin degradation, suggesting a direct or indirect (free radical-mediated) role of the released Fe in enzyme induction. Therefore, contrary to the widely held view, FeSODs in plants are not restricted to the chloroplasts and may become an important defensive mechanism against the oxidative stress associated with senescence.

  13. Ubiquitous Accessibility for People with Visual Impairments: Are We There Yet?

    PubMed Central

    Billah, Syed Masum; Ashok, Vikas; Porter, Donald E.; Ramakrishnan, IV

    2017-01-01

    Ubiquitous access is an increasingly common vision of computing, wherein users can interact with any computing device or service from anywhere, at any time. In the era of personal computing, users with visual impairments required special-purpose, assistive technologies, such as screen readers, to interact with computers. This paper investigates whether technologies like screen readers have kept pace with, or have created a barrier to, the trend toward ubiquitous access, with a specific focus on desktop computing as this is still the primary way computers are used in education and employment. Towards that, the paper presents a user study with 21 visually-impaired participants, specifically involving the switching of screen readers within and across different computing platforms, and the use of screen readers in remote access scenarios. Among the findings, the study shows that, even for remote desktop access—an early forerunner of true ubiquitous access—screen readers are too limited, if not unusable. The study also identifies several accessibility needs, such as uniformity of navigational experience across devices, and recommends potential solutions. In summary, assistive technologies have not made the jump into the era of ubiquitous access, and multiple, inconsistent screen readers create new practical problems for users with visual impairments. PMID:28782061

  14. Ubiquitous Accessibility for People with Visual Impairments: Are We There Yet?

    PubMed

    Billah, Syed Masum; Ashok, Vikas; Porter, Donald E; Ramakrishnan, I V

    2017-05-01

    Ubiquitous access is an increasingly common vision of computing, wherein users can interact with any computing device or service from anywhere, at any time. In the era of personal computing, users with visual impairments required special-purpose, assistive technologies, such as screen readers, to interact with computers. This paper investigates whether technologies like screen readers have kept pace with, or have created a barrier to, the trend toward ubiquitous access, with a specific focus on desktop computing as this is still the primary way computers are used in education and employment. Towards that, the paper presents a user study with 21 visually-impaired participants, specifically involving the switching of screen readers within and across different computing platforms, and the use of screen readers in remote access scenarios. Among the findings, the study shows that, even for remote desktop access-an early forerunner of true ubiquitous access-screen readers are too limited, if not unusable. The study also identifies several accessibility needs, such as uniformity of navigational experience across devices, and recommends potential solutions. In summary, assistive technologies have not made the jump into the era of ubiquitous access, and multiple, inconsistent screen readers create new practical problems for users with visual impairments.

  15. Arabidopsis Glutamate Receptor Homolog3.5 Modulates Cytosolic Ca2+ Level to Counteract Effect of Abscisic Acid in Seed Germination1[OPEN

    PubMed Central

    Kong, Dongdong; Ju, Chuanli; Parihar, Aisha; Kim, So; Cho, Daeshik; Kwak, June M.

    2015-01-01

    Seed germination is a critical step in a plant’s life cycle that allows successful propagation and is therefore strictly controlled by endogenous and environmental signals. However, the molecular mechanisms underlying germination control remain elusive. Here, we report that the Arabidopsis (Arabidopsis thaliana) glutamate receptor homolog3.5 (AtGLR3.5) is predominantly expressed in germinating seeds and increases cytosolic Ca2+ concentration that counteracts the effect of abscisic acid (ABA) to promote germination. Repression of AtGLR3.5 impairs cytosolic Ca2+ concentration elevation, significantly delays germination, and enhances ABA sensitivity in seeds, whereas overexpression of AtGLR3.5 results in earlier germination and reduced seed sensitivity to ABA. Furthermore, we show that Ca2+ suppresses the expression of ABSCISIC ACID INSENSITIVE4 (ABI4), a key transcription factor involved in ABA response in seeds, and that ABI4 plays a fundamental role in modulation of Ca2+-dependent germination. Taken together, our results provide molecular genetic evidence that AtGLR3.5-mediated Ca2+ influx stimulates seed germination by antagonizing the inhibitory effects of ABA through suppression of ABI4. These findings establish, to our knowledge, a new and pivotal role of the plant glutamate receptor homolog and Ca2+ signaling in germination control and uncover the orchestrated modulation of the AtGLR3.5-mediated Ca2+ signal and ABA signaling via ABI4 to fine-tune the crucial developmental process, germination, in Arabidopsis. PMID:25681329

  16. Towards Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice

    PubMed Central

    Hahn, Jin-Oh; Inan, Omer T.; Mestha, Lalit K.; Kim, Chang-Sei; Töreyin, Hakan; Kyal, Survi

    2015-01-01

    Ubiquitous blood pressure (BP) monitoring is needed to improve hypertension detection and control and is becoming feasible due to recent technological advances such as in wearable sensing. Pulse transit time (PTT) represents a well-known, potential approach for ubiquitous BP monitoring. The goal of this review is to facilitate the achievement of reliable, ubiquitous BP monitoring via PTT. We explain the conventional BP measurement methods and their limitations; present models to summarize the theory of the PTT-BP relationship; outline the approach while pinpointing the key challenges; overview the previous work towards putting the theory to practice; make suggestions for best practice and future research; and discuss realistic expectations for the approach. PMID:26057530

  17. Cytosolic NADP(+)-dependent isocitrate dehydrogenase protects macrophages from LPS-induced nitric oxide and reactive oxygen species.

    PubMed

    Maeng, Oky; Kim, Yong Chan; Shin, Han-Jae; Lee, Jie-Oh; Huh, Tae-Lin; Kang, Kwang-il; Kim, Young Sang; Paik, Sang-Gi; Lee, Hayyoung

    2004-04-30

    Macrophages activated by microbial lipopolysaccharides (LPS) produce bursts of nitric oxide and reactive oxygen species (ROS). Redox protection systems are essential for the survival of the macrophages since the nitric oxide and ROS can be toxic to them as well as to pathogens. Using suppression subtractive hybridization (SSH) we found that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) is strongly upregulated by nitric oxide in macrophages. The levels of IDPc mRNA and of the corresponding enzymatic activity were markedly increased by treatment of RAW264.7 cells or peritoneal macrophages with LPS or SNAP (a nitric oxide donor). Over-expression of IDPc reduced intracellular peroxide levels and enhanced the survival of H2O2- and SNAP-treated RAW264.7 macrophages. IDPc is known to generate NADPH, a cellular reducing agent, via oxidative decarboxylation of isocitrate. The expression of enzymes implicated in redox protection, superoxide dismutase (SOD) and catalase, was relatively unaffected by LPS and SNAP. We propose that the induction of IDPc is one of the main self-protection mechanisms of macrophages against LPS-induced oxidative stress.

  18. Resveratrol-induced autophagy is dependent on IP3Rs and on cytosolic Ca2.

    PubMed

    Luyten, Tomas; Welkenhuyzen, Kirsten; Roest, Gemma; Kania, Elzbieta; Wang, Liwei; Bittremieux, Mart; Yule, David I; Parys, Jan B; Bultynck, Geert

    2017-06-01

    Previous work revealed that intracellular Ca 2+ signals and the inositol 1,4,5-trisphosphate (IP 3 ) receptors (IP 3 R) are essential to increase autophagic flux in response to mTOR inhibition, induced by either nutrient starvation or rapamycin treatment. Here, we investigated whether autophagy induced by resveratrol, a polyphenolic phytochemical reported to trigger autophagy in a non-canonical way, also requires IP 3 Rs and Ca 2+ signaling. Resveratrol augmented autophagic flux in a time-dependent manner in HeLa cells. Importantly, autophagy induced by resveratrol (80μM, 2h) was completely abolished in the presence of 10μM BAPTA-AM, an intracellular Ca 2+ -chelating agent. To elucidate the IP 3 R's role in this process, we employed the recently established HEK 3KO cells lacking all three IP 3 R isoforms. In contrast to the HEK293 wt cells and to HEK 3KO cells re-expressing IP 3 R1, autophagic responses in HEK 3KO cells exposed to resveratrol were severely impaired. These altered autophagic responses could not be attributed to alterations in the mTOR/p70S6K pathway, since resveratrol-induced inhibition of S6 phosphorylation was not abrogated by chelating cytosolic Ca 2+ or by knocking out IP 3 Rs. Finally, we investigated whether resveratrol by itself induced Ca 2+ release. In permeabilized HeLa cells, resveratrol neither affected the sarco- and endoplasmic reticulum Ca 2+ ATPase (SERCA) activity nor the IP 3 -induced Ca 2+ release nor the basal Ca 2+ leak from the ER. Also, prolonged (4 h) treatment with 100μM resveratrol did not affect subsequent IP 3 -induced Ca 2+ release. However, in intact HeLa cells, although resveratrol did not elicit cytosolic Ca 2+ signals by itself, it acutely decreased the ER Ca 2+ -store content irrespective of the presence or absence of IP 3 Rs, leading to a dampened agonist-induced Ca 2+ signaling. In conclusion, these results reveal that IP 3 Rs and cytosolic Ca 2+ signaling are fundamentally important for driving autophagic flux

  19. On the sulfation of O-desmethyltramadol by human cytosolic sulfotransferases.

    PubMed

    Rasool, Mohammed I; Bairam, Ahsan F; Kurogi, Katsuhisa; Liu, Ming-Cheh

    2017-10-01

    Previous studies have demonstrated that sulfate conjugation is involved in the metabolism of the active metabolite of tramadol, O-desmethyltramadol (O-DMT). The current study aimed to systematically identify the human cytosolic sulfotransferases (SULTs) that are capable of mediating the sulfation of O-DMT. The sulfation of O-DMT under metabolic conditions was demonstrated using HepG2 hepatoma cells and Caco-2 human colon carcinoma cells. O-DMT-sulfating activity of thirteen known human SULTs and four human organ specimens was examined using an established sulfotransferase assay. pH-Dependency and kinetic parameters were also analyzed using, respectively, buffers at different pHs and varying O-DMT concentrations in the assays. Of the thirteen human SULTs tested, only SULT1A3 and SULT1C4 were found to display O-DMT-sulfating activity, with different pH-dependency profiles. Kinetic analysis revealed that SULT1C4 was 60 times more catalytically efficient in mediating the sulfation of O-DMT than SULT1A3 at respective optimal pH. Of the four human organ specimens tested, the cytosol prepared from the small intestine showed much higher O-DMT-sulfating activity than cytosols prepared from liver, lung, and kidney. Both cultured HepG2 and Caco-2 cells were shown to be capable of sulfating O-DMT and releasing sulfated O-DMT into cultured media. SULT1A3 and SULT1C4 were the major SULTs responsible for the sulfation of O-DMT. Collectively, the results obtained provided a molecular basis underlying the sulfation of O-DMT and contributed to a better understanding about the pharmacokinetics and pharmacodynamics of tramadol in humans. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  20. The S100A8/A9 protein as a partner for the cytosolic factors of NADPH oxidase activation in neutrophils.

    PubMed

    Doussiere, Jacques; Bouzidi, Farid; Vignais, Pierre V

    2002-07-01

    In a previous study, the S100A8/A9 protein, a Ca2+- and arachidonic acid-binding protein, abundant in neutrophil cytosol, was found to potentiate the activation of the redox component of the O2- generating oxidase in neutrophils, namely the membrane-bound flavocytochrome b, by the cytosolic phox proteins p67phox, p47phox and Rac (Doussière J., Bouzidi F. and Vignais P.V. (2001) Biochem. Biophys. Res. Commun.285, 1317-1320). This led us to check by immunoprecipitation and protein fractionation whether the cytosolic phox proteins could bind to S100A8/A9. Following incubation of a cytosolic extract from nonactivated bovine neutrophil with protein A-Sepharose bound to anti-p67phox antibodies, the recovered immunoprecipitate contained the S100 protein, p47phox and p67phox. Cytosolic protein fractionation comprised two successive chromatographic steps on hydroxyapatite and DEAE cellulose, followed by isoelectric focusing. The S100A8/A9 heterodimeric protein comigrated with the cytosolic phox proteins, and more particularly with p67phox and Rac2, whereas the isolated S100A8 protein displayed a tendancy to bind to p47phox. Using a semirecombinant cell-free system of oxidase activation consisting of recombinant p67phox, p47phox and Rac2, neutrophil membranes and arachidonic acid, we found that the S100A8/A9-dependent increase in the elicited oxidase activity corresponded to an increase in the turnover of the membrane-bound flavocytochrome b, but not to a change of affinity for NADPH or O2. In the absence of S100A8/A9, oxidase activation departed from michaelian kinetics above a critical threshold concentration of cytosolic phox proteins. Addition of S100A8/A9 to the cell-free system rendered the kinetics fully michaelian. The propensity of S100A8/A9 to bind the cytosolic phox proteins, and the effects of S100A8/A9 on the kinetics of oxidase activation, suggest that S100A8/A9 might be a scaffold protein for the cytosolic phox proteins or might help to deliver arachidonic

  1. Tobacco class I cytosolic small heat shock proteins are under transcriptional and translational regulations in expression and heterocomplex prevails under the high-temperature stress condition in vitro.

    PubMed

    Park, Soo Min; Kim, Keun Pill; Joe, Myung Kuk; Lee, Mi Ok; Koo, Hyun Jo; Hong, Choo Bong

    2015-04-01

    Seven genomic clones of tobacco (Nicotiana tabacum W38) cytosolic class I small heat shock proteins (sHSPs), probably representing all members in the class, were isolated and found to have 66 to 92% homology between their nucleotide sequences. Even though all seven sHSP genes showed heat shock-responsive accumulation of their transcripts and proteins, each member showed discrepancies in abundance and timing of expression upon high-temperature stress. This was mainly the result of transcriptional regulation during mild stress conditions and transcriptional and translational regulation during strong stress conditions. Open reading frames (ORFs) of these genomic clones were expressed in Escherichia coli and the sHSPs were purified from E. coli. The purified tobacco sHSPs rendered citrate synthase and luciferase soluble under high temperatures. At room temperature, non-denaturing pore exclusion polyacrylamide gel electrophoresis on three sHSPs demonstrated that the sHSPs spontaneously formed homo-oligomeric complexes of 200 ∼ 240 kDa. However, under elevated temperatures, hetero-oligomeric complexes between the sHSPs gradually prevailed. Atomic force microscopy showed that the hetero-oligomer of NtHSP18.2/NtHSP18.3 formed a stable oligomeric particle similar to that of the NtHSP18.2 homo-oligomer. These hetero-oligomers positively influenced the revival of thermally inactivated luciferase. Amino acid residues mainly in the N-terminus are suggested for the exchange of the component sHSPs and the formation of dominant hetero-oligomers under high temperatures. © 2014 John Wiley & Sons Ltd.

  2. Aeromonas caviae alters the cytosolic and mitochondrial creatine kinase activities in experimentally infected silver catfish: Impairment on renal bioenergetics.

    PubMed

    Baldissera, Matheus D; Souza, Carine F; Júnior, Guerino B; Verdi, Camila Marina; Moreira, Karen L S; da Rocha, Maria Izabel U M; da Veiga, Marcelo L; Santos, Roberto C V; Vizzotto, Bruno S; Baldisserotto, Bernardo

    2017-09-01

    Cytosolic and mitochondrial creatine kinases (CK), through the creatine kinase-phosphocreatine (CK/PCr) system, provide a temporal and spatial energy buffer to maintain cellular energy homeostasis. However, the effects of bacterial infections on the kidney remain poorly understood and are limited only to histopathological analyses. Thus, the aim of this study was to investigate the involvement of cytosolic and mitochondrial CK activities in renal energetic homeostasis in silver catfish experimentally infected with Aeromonas caviae. Cytosolic CK activity decreased in infected animals, while mitochondrial CK activity increased compared to uninfected animals. Moreover, the activity of the sodium-potassium pump (Na + , K + -ATPase) decreased in infected animals compared to uninfected animals. Based on this evidence, it can be concluded that the inhibition of cytosolic CK activity by A. caviae causes an impairment on renal energy homeostasis through the depletion of adenosine triphosphate (ATP) levels. This contributes to the inhibition of Na + , K + -ATPase activity, although the mitochondrial CK activity acted in an attempt to restore the cytosolic ATP levels through a feedback mechanism. In summary, A. caviae infection causes a severe energetic imbalance in infected silver catfish, which may contribute to disease pathogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Transformation of plum plants with a cytosolic ascorbate peroxidase transgene leads to enhanced water stress tolerance

    PubMed Central

    Diaz-Vivancos, Pedro; Faize, Lydia; Nicolás, Emilio; Clemente-Moreno, Maria José; Bru-Martinez, Roque; Burgos, Lorenzo; Hernández, José Antonio

    2016-01-01

    Background and Aims Water deficit is the most serious environmental factor limiting agricultural production. In this work, the tolerance to water stress (WS) of transgenic plum lines harbouring transgenes encoding cytosolic antioxidant enzymes was studied, with the aim of achieving the durable resistance of commercial plum trees. Methods The acclimatization process was successful for two transgenic lines: line C3-1, co-expressing superoxide dismutase (two copies) and ascorbate peroxidase (one copy) transgenes simultaneously; and line J8-1, harbouring four copies of the cytosolic ascorbate peroxidase gene (cytapx). Plant water relations, chlorophyll fluorescence and the levels of antioxidant enzymes were analysed in both lines submitted to moderate (7 d) and severe (15 d) WS conditions. Additionally, in line J8-1, showing the best response in terms of stress tolerance, a proteomic analysis and determination of the relative gene expression of two stress-responsive genes were carried out. Key Results Line J8-1 exhibited an enhanced stress tolerance that correlated with better photosynthetic performance and a tighter control of water-use efficiency. Furthermore, this WS tolerance also correlated with a higher enzymatic antioxidant capacity than wild-type (WT) and line C3-1 plum plants. On the other hand, line C3-1 displayed an intermediate phenotype between WT plants and line J8-1 in terms of WS tolerance. Under severe WS, the tolerance displayed by J8-1 plants could be due to an enhanced capacity to cope with drought-induced oxidative stress. Moreover, proteomic analysis revealed differences between WT and J8-1 plants, mainly in terms of the abundance of proteins related to carbohydrate metabolism, photosynthesis, antioxidant defences and protein fate. Conclusions The transformation of plum plants with cytapx has a profound effect at the physiological, biochemical, proteomic and genetic levels, enhancing WS tolerance. Although further experiments under field

  4. Increase in the activity of fructose-1,6-bisphosphatase in cytosol affects sugar partitioning and increases the lateral shoots in tobacco plants at elevated CO2 levels.

    PubMed

    Tamoi, Masahiro; Hiramatsu, Yoshie; Nedachi, Shigeki; Otori, Kumi; Tanabe, Noriaki; Maruta, Takanori; Shigeoka, Shigeru

    2011-05-01

    We generated transgenic tobacco plants with high levels of fructose-1,6-bisphosphatase expressing cyanobacterialfructose-1,6-/sedoheptulose-1,7-bisphosphatase in the cytosol. At ambient CO(2) levels (360 ppm), growth, photosynthetic activity, and fresh weight were unchanged but the sucrose/hexose/starch ratio was slightly altered in the transgenic plants compared with wild-type plants. At elevated CO(2) levels (1200 ppm), lateral shoot, leaf number, and fresh weight were significantly increased in the transgenic plants. Photosynthetic activity was also increased. Hexose accumulated in the upper leaves in the wild-type plants, while sucrose and starch accumulated in the lower leaves and lateral shoots in the transgenic plants. These findings suggest that cytosolic fructose-1,6-bisphosphatase contributes to the efficient conversion of hexose into sucrose, and that the change in carbon partitioning affects photosynthetic capacity and morphogenesis at elevated CO(2) levels.

  5. Alternations in quantities and activities of erythrocyte cytosolic carbonic anhydrase isoenzymes in glucose-6-phosphate dehydrogenase-deficient individuals.

    PubMed

    Chiang, W L; Chu, S C; Lai, J C; Yang, S F; Chiou, H L; Hsieh, Y S

    2001-12-01

    This study was designed to evaluate the quantitative and activity alterations of cytosolic carbonic anhydrase (CA) isoenzymes in the erythrocytes of glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals. Western Blot and CA esterase activity analysis were employed to measure cytosolic erythrocyte CA isoenzymes. The total CA activities were analyzed from erythrocytes of 30 healthy and 30 G6PD-deficient individuals. The mean values with standard error (SE) were 22.9+/-1.69 U/gHb and 27.2+/-2.1 U/gHb (P<0.01), respectively. The ratio of CAI/CAII of G6PD-deficient individuals (1.28+/-0.06) was significantly lower than that of the normal subjects (3.79+/-0.18) (P<0.001). Furthermore, the concentration of CAIII in G6PD-deficient individuals was significantly lower than that of the normal subjects (P<0.001) and there were significant correlations between the concentration of CAI, CAII, CAIII, and ratio of CAI/CAII, and the activity concentration of G6PD. Different carbonic anhydrase isoenzymes may serve different roles in the G6PD-deficient erythrocyte. CAI could be used as an indicator for hemolytic anemia. CAII is able to compensate for the functions of CAI and increased expression of CAII will promote oxidative damage. CAIII can provide the G6PD-deficient persons with some extent of protection against oxidative damage.

  6. Ubiquitous Computing--Are We Crazy? Point/Counterpoint

    ERIC Educational Resources Information Center

    DeWitt, Scott W.; Horn, Patricia S.

    2005-01-01

    The push for ubiquitous computing (UC) relies on an understandable and well-intentioned belief that teaching and schooling need to be transformed. This view appears credible based on large-scale criteria, such as test scores relative to other countries, drop-out rates, and economic changes. And the use of technology to achieve this goal is…

  7. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells.

    PubMed

    Lee, Su Min; Koh, Ho-Jin; Park, Dong-Chan; Song, Byoung J; Huh, Tae-Lin; Park, Jeen-Woo

    2002-06-01

    NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose 6-phosphate dehydrogenase (G6PD), malic enzyme, and the cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc). Little information is available about the role of IDPc in antioxidant defense. In this study we investigated the role of IDPc against cytotoxicity induced by oxidative stress by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 3-4-fold higher and 35% lower, respectively, than that in the parental cells carrying the vector alone. Although the activities of other antioxidant enzymes, such as superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and G6PD, were comparable in all transformed cells, the ratio of GSSG to total glutathione was significantly higher in the cells expressing the lower level of IDPc. This finding indicates that IDPc is essential for the efficient glutathione recycling. Upon transient exposure to increasing concentrations of H(2)O(2) or menadione, an intracellular source of free radicals and reactive oxygen species, the cells with low levels of IDPc became more sensitive to oxidative damage by H(2)O(2) or menadione. Lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against oxidative stress, compared to the control cells. This study provides direct evidence correlating the activities of IDPc and the maintenance of the cellular redox state, suggesting that IDPc plays an important role in cellular defense against oxidative stress.

  8. A Ubiquitous English Vocabulary Learning System: Evidence of Active/Passive Attitudes vs. Usefulness/Ease-of-Use

    ERIC Educational Resources Information Center

    Huang, Yueh-Min; Huang, Yong-Ming; Huang, Shu-Hsien; Lin, Yen-Ting

    2012-01-01

    English vocabulary learning and ubiquitous learning have separately received considerable attention in recent years. However, research on English vocabulary learning in ubiquitous learning contexts has been less studied. In this study, we develop a ubiquitous English vocabulary learning (UEVL) system to assist students in experiencing a systematic…

  9. Functional diversification and specialization of cytosolic 70-kDa heat shock proteins.

    PubMed

    McCallister, Chelsea; Siracusa, Matthew C; Shirazi, Farzaneh; Chalkia, Dimitra; Nikolaidis, Nikolas

    2015-03-20

    A fundamental question in molecular evolution is how protein functional differentiation alters the ability of cells and organisms to cope with stress and survive. To answer this question we used two paralogous Hsp70s from mouse and explored whether these highly similar cytosolic molecular chaperones, which apart their temporal expression have been considered functionally interchangeable, are differentiated with respect to their lipid-binding function. We demonstrate that the two proteins bind to diverse lipids with different affinities and therefore are functionally specialized. The observed lipid-binding patterns may be related with the ability of both Hsp70s to induce cell death by binding to a particular plasma-membrane lipid, and the potential of only one of them to promote cell survival by binding to a specific lysosomal-membrane lipid. These observations reveal that two seemingly identical proteins differentially modulate cellular adaptation and survival by having acquired specialized functions via sequence divergence. Therefore, this study provides an evolutionary paradigm, where promiscuity, specificity, sub- and neo-functionalization orchestrate one of the most conserved systems in nature, the cellular stress-response.

  10. Nucleotide sequence of a complementary DNA encoding pea cytosolic copper/zinc superoxide dismutase. [Pisum sativum L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D.A.; Zilinskas, B.A.

    1991-08-01

    The authors now report the nucleotide sequence of the cytosolic Cu/Zn SOD cloned from a {lambda}gt11 cDNA library constructed from mRNA extracted from leaves of 7- to 10-d pea seedlings (Pisum sativum L.). The clone was isolated using a 22-base synthetic oligonucleotide complementary to the amino acid sequence CGIIGLQG. This sequence, found at the protein's carboxy terminus, is highly conserved among plant cytosolic Cu/Zn SODs but not chloroplastic Cu/Zn SODs. The 738-base pair sequence contains an open reading frame specifying 152 codons and a predicted M{sub r} of 18,024 D. The deduced amino acid sequence is highly homologous (79-82% identity)more » with the sequences of other known plant cytosolic Cu/Zn SODs but less highly conserved (63-65%) when compared with several chloroplastic Cu/Zn SODs including pea (10).« less

  11. Integrated Environment for Ubiquitous Healthcare and Mobile IPv6 Networks

    NASA Astrophysics Data System (ADS)

    Cagalaban, Giovanni; Kim, Seoksoo

    The development of Internet technologies based on the IPv6 protocol will allow real-time monitoring of people with health deficiencies and improve the independence of elderly people. This paper proposed a ubiquitous healthcare system for the personalized healthcare services with the support of mobile IPv6 networks. Specifically, this paper discusses the integration of ubiquitous healthcare and wireless networks and its functional requirements. This allow an integrated environment where heterogeneous devices such a mobile devices and body sensors can continuously monitor patient status and communicate remotely with healthcare servers, physicians, and family members to effectively deliver healthcare services.

  12. Sulphation of acetaminophen by the human cytosolic sulfotransferases: a systematic analysis

    PubMed Central

    Yamamoto, Akihiro; Liu, Ming-Yih; Kurogi, Katsuhisa; Sakakibara, Yoichi; Saeki, Yuichi; Suiko, Masahito; Liu, Ming-Cheh

    2015-01-01

    Sulphation is known to be critically involved in the metabolism of acetaminophen in vivo. This study aimed to systematically identify the major human cytosolic sulfotransferase (SULT) enzyme(s) responsible for the sulphation of acetaminophen. A systematic analysis showed that three of the twelve human SULTs, SULT1A1, SULT1A3 and SULT1C4, displayed the strongest sulphating activity towards acetaminophen. The pH dependence of the sulphation of acetaminophen by each of these three SULTs was examined. Kinetic parameters of these three SULTs in catalysing acetaminophen sulphation were determined. Moreover, sulphation of acetaminophen was shown to occur in HepG2 human hepatoma cells and Caco-2 human intestinal epithelial cells under the metabolic setting. Of the four human organ samples tested, liver and intestine cytosols displayed considerably higher acetaminophen-sulphating activity than those of lung and kidney. Collectively, these results provided useful information concerning the biochemical basis underlying the metabolism of acetaminophen in vivo previously reported. PMID:26067475

  13. The presence of a protein activator of sarcolemmal polyphosphoinositide phospholipase C in cardiac cytosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quist, E.E.; Kriewaldt, S.D.; Powell, P.B.

    1989-01-01

    To study polyphosphoinositide phospholipase (PL) C, isolated sarcolemmal membranes were preincubated with Mg({sup 32}P)-ATP to label phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-diphosphate (PIP{sub 2}). After washing, PLC activity was determined by measuring the release of {sup 32}P-labeled inositol diphosphate (IP{sub 2}) and/or inositol trisphospate (IP{sub 3}) from membrane PIP and PIP{sub 2} during incubation at 25{degree}C and pH 7.4. Increasing concentrations of Ca{sup 2+} (0-100 {mu}M) increased IP{sub 2} by 100% over the 0 Ca{sup 2+} control levels. Ca{sup 2+} dependent PLC hydrolyzed both PIP and PIP{sub 2} with apparent D{sub A}'s of approximately 0.5 and 70 {mu}M. Addition ofmore » dialyzed cytosol further increased IP{sub 2} release by 250% without affecting the K{sub A}'s for Ca{sup 2+} activation. The cytosolic activator was partially purified by DEAE Sephacel chromatography was heat labile and sensitive to trypsin pretreatment identifying it as a protein. In contrast, 10 mM NaF increased the Ca{sup 2+} affinity for PLC 2-fold. These results show that cardiac sarcolemma possess a membrane bound Ca{sup 2+} dependent PLC activity which is regulated by a cytosolic protein activator and a G protein. The cytosolic activator would potentially amplify the amount of sarcolemmal polyphosphoinositides hydrolyzed by PLC in response to muscarinic receptor activation by acetylcholine. In addition, activation of PLC by NaF or other G protein activators could result from increasing the Ca{sup 2+} affinity of PLC to physiological intracellular Ca{sup 2+} levels.« less

  14. Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes

    PubMed Central

    Hawley, Alyse K.; Brewer, Heather M.; Norbeck, Angela D.; Paša-Tolić, Ljiljana; Hallam, Steven J.

    2014-01-01

    Marine oxygen minimum zones (OMZs) are intrinsic water column features arising from respiratory oxygen demand during organic matter degradation in stratified waters. Currently OMZs are expanding due to global climate change with resulting feedback on marine ecosystem function. Here we use metaproteomics to chart spatial and temporal patterns of gene expression along defined redox gradients in a seasonally stratified fjord to better understand microbial community responses to OMZ expansion. The expression of metabolic pathway components for nitrification, anaerobic ammonium oxidation (anammox), denitrification, and inorganic carbon fixation were differentially expressed across the redoxcline and covaried with distribution patterns of ubiquitous OMZ microbes including Thaumarchaeota, Nitrospina, Nitrospira, Planctomycetes, and SUP05/ARCTIC96BD-19 Gammaproteobacteria. Nitrification and inorganic carbon fixation pathways affiliated with Thaumarchaeota dominated dysoxic waters, and denitrification, sulfur oxidation, and inorganic carbon fixation pathways affiliated with the SUP05 group of nitrate-reducing sulfur oxidizers dominated suboxic and anoxic waters. Nitrifier nitrite oxidation and anammox pathways affiliated with Nirospina, Nitrospira, and Planctomycetes, respectively, also exhibited redox partitioning between dysoxic and suboxic waters. The numerical abundance of SUP05 proteins mediating inorganic carbon fixation under anoxic conditions suggests that SUP05 will become increasingly important in global ocean carbon and nutrient cycling as OMZs expand. PMID:25053816

  15. Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes.

    PubMed

    Hawley, Alyse K; Brewer, Heather M; Norbeck, Angela D; Paša-Tolić, Ljiljana; Hallam, Steven J

    2014-08-05

    Marine oxygen minimum zones (OMZs) are intrinsic water column features arising from respiratory oxygen demand during organic matter degradation in stratified waters. Currently OMZs are expanding due to global climate change with resulting feedback on marine ecosystem function. Here we use metaproteomics to chart spatial and temporal patterns of gene expression along defined redox gradients in a seasonally stratified fjord to better understand microbial community responses to OMZ expansion. The expression of metabolic pathway components for nitrification, anaerobic ammonium oxidation (anammox), denitrification, and inorganic carbon fixation were differentially expressed across the redoxcline and covaried with distribution patterns of ubiquitous OMZ microbes including Thaumarchaeota, Nitrospina, Nitrospira, Planctomycetes, and SUP05/ARCTIC96BD-19 Gammaproteobacteria. Nitrification and inorganic carbon fixation pathways affiliated with Thaumarchaeota dominated dysoxic waters, and denitrification, sulfur oxidation, and inorganic carbon fixation pathways affiliated with the SUP05 group of nitrate-reducing sulfur oxidizers dominated suboxic and anoxic waters. Nitrifier nitrite oxidation and anammox pathways affiliated with Nirospina, Nitrospira, and Planctomycetes, respectively, also exhibited redox partitioning between dysoxic and suboxic waters. The numerical abundance of SUP05 proteins mediating inorganic carbon fixation under anoxic conditions suggests that SUP05 will become increasingly important in global ocean carbon and nutrient cycling as OMZs expand.

  16. From Learning Object to Learning Cell: A Resource Organization Model for Ubiquitous Learning

    ERIC Educational Resources Information Center

    Yu, Shengquan; Yang, Xianmin; Cheng, Gang

    2013-01-01

    The key to implementing ubiquitous learning is the construction and organization of learning resources. While current research on ubiquitous learning has primarily focused on concept models, supportive environments and small-scale empirical research, exploring ways to organize learning resources to make them available anywhere on-demand is also…

  17. Hsc70 chaperone activity is required for the cytosolic slow axonal transport of synapsin

    PubMed Central

    Ganguly, Archan; Han, Xuemei; Das, Utpal; Caillol, Ghislaine

    2017-01-01

    Soluble cytosolic proteins vital to axonal and presynaptic function are synthesized in the neuronal soma and conveyed via slow axonal transport. Our previous studies suggest that the overall slow transport of synapsin is mediated by dynamic assembly/disassembly of cargo complexes followed by short-range vectorial transit (the “dynamic recruitment” model). However, neither the composition of these complexes nor the mechanistic basis for the dynamic behavior is understood. In this study, we first examined putative cargo complexes associated with synapsin using coimmunoprecipitation and multidimensional protein identification technology mass spectrometry (MS). MS data indicate that synapsin is part of a multiprotein complex enriched in chaperones/cochaperones including Hsc70. Axonal synapsin–Hsc70 coclusters are also visualized by two-color superresolution microscopy. Inhibition of Hsc70 ATPase activity blocked the slow transport of synapsin, disrupted axonal synapsin organization, and attenuated Hsc70–synapsin associations, advocating a model where Hsc70 activity dynamically clusters cytosolic proteins into cargo complexes, allowing transport. Collectively, our study offers insight into the molecular organization of cytosolic transport complexes and identifies a novel regulator of slow transport. PMID:28559423

  18. Using Ubiquitous Games in an English Listening and Speaking Course: Impact on Learning Outcomes and Motivation

    ERIC Educational Resources Information Center

    Liu, Tsung-Yu; Chu, Yu-Ling

    2010-01-01

    This paper reports the results of a study which aimed to investigate how ubiquitous games influence English learning achievement and motivation through a context-aware ubiquitous learning environment. An English curriculum was conducted on a school campus by using a context-aware ubiquitous learning environment called the Handheld English Language…

  19. Network architecture test-beds as platforms for ubiquitous computing.

    PubMed

    Roscoe, Timothy

    2008-10-28

    Distributed systems research, and in particular ubiquitous computing, has traditionally assumed the Internet as a basic underlying communications substrate. Recently, however, the networking research community has come to question the fundamental design or 'architecture' of the Internet. This has been led by two observations: first, that the Internet as it stands is now almost impossible to evolve to support new functionality; and second, that modern applications of all kinds now use the Internet rather differently, and frequently implement their own 'overlay' networks above it to work around its perceived deficiencies. In this paper, I discuss recent academic projects to allow disruptive change to the Internet architecture, and also outline a radically different view of networking for ubiquitous computing that such proposals might facilitate.

  20. A system for ubiquitous health monitoring in the bedroom via a Bluetooth network and wireless LAN.

    PubMed

    Choi, J M; Choi, B H; Seo, J W; Sohn, R H; Ryu, M S; Yi, W; Park, K S

    2004-01-01

    Advances in information technology have enabled ubiquitous health monitoring at home, which is particularly useful for patients, who have to live alone. We have focused on the automatic and unobtrusive measurement of biomedical signals and activities of patients. We have constructed wireless communication networks in order to transfer data. The networks consist of Bluetooth and Wireless Local Area Network (WLAN). In this paper, we present the concept of a ubiquitous-Bedroom (u-Bedroom) which is a part of a ubiquitous-House (u-House) and we present our systems for ubiquitous health monitoring.

  1. A vision for ubiquitous sequencing

    PubMed Central

    Erlich, Yaniv

    2015-01-01

    Genomics has recently celebrated reaching the $1000 genome milestone, making affordable DNA sequencing a reality. With this goal successfully completed, the next goal of the sequencing revolution can be sequencing sensors—miniaturized sequencing devices that are manufactured for real-time applications and deployed in large quantities at low costs. The first part of this manuscript envisions applications that will benefit from moving the sequencers to the samples in a range of domains. In the second part, the manuscript outlines the critical barriers that need to be addressed in order to reach the goal of ubiquitous sequencing sensors. PMID:26430149

  2. Cellular defense against singlet oxygen-induced oxidative damage by cytosolic NADP+-dependent isocitrate dehydrogenase.

    PubMed

    Kim, Sun Yee; Park, Jeen-Woo

    2003-03-01

    Singlet oxygen (1O2) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. Recently, we have shown that NADP+-dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study, we investigated the role of cytosolic form of NADP+-dependent isocitrate dehydrogenase (IDPc) against singlet oxygen-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to singlet oxygen generated from photoactivated dye, the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against singlet oxygen, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against singlet oxygen-induced oxidative injury.

  3. Asymmetry in the function and dynamics of the cytosolic group II chaperonin CCT/TRiC.

    PubMed

    Yamamoto, Yohei Y; Uno, Yuko; Sha, Eiryo; Ikegami, Kentaro; Ishii, Noriyuki; Dohmae, Naoshi; Sekiguchi, Hiroshi; Sasaki, Yuji C; Yohda, Masafumi

    2017-01-01

    The eukaryotic group II chaperonin, the chaperonin-containing t-complex polypeptide 1 (CCT), plays an important role in cytosolic proteostasis. It has been estimated that as much as 10% of cytosolic proteins interact with CCT during their folding process. CCT is composed of 8 different paralogous subunits. Due to its complicated structure, molecular and biochemical investigations of CCT have been difficult. In this study, we constructed an expression system for CCT from a thermophilic fungus, Chaetomium thermophilum (CtCCT), by using E. coli as a host. As expected, we obtained recombinant CtCCT with a relatively high yield, and it exhibited fairly high thermal stability. We showed the advantages of the overproduction system by characterizing CtCCT variants containing ATPase-deficient subunits. For diffracted X-ray tracking experiment, we removed all surface exposed cysteine residues, and added cysteine residues at the tip of helical protrusions of selected two subunits. Gold nanocrystals were attached onto CtCCTs via gold-thiol bonds and applied for the analysis by diffracted X-ray tracking. Irrespective of the locations of cysteines, it was shown that ATP binding induces tilting motion followed by rotational motion in the CtCCT molecule, like the archaeal group II chaperonins. When gold nanocrystals were attached onto two subunits in the high ATPase activity hemisphere, the CtCCT complex exhibited a fairly rapid response to the motion. In contrast, the response of CtCCT, which had gold nanocrystals attached to the low-activity hemisphere, was slow. These results clearly support the possibility that ATP-dependent conformational change starts with the high-affinity hemisphere and progresses to the low-affinity hemisphere.

  4. Asymmetry in the function and dynamics of the cytosolic group II chaperonin CCT/TRiC

    PubMed Central

    Yamamoto, Yohei Y.; Uno, Yuko; Sha, Eiryo; Ikegami, Kentaro; Ishii, Noriyuki; Dohmae, Naoshi; Sekiguchi, Hiroshi; Sasaki, Yuji C.

    2017-01-01

    The eukaryotic group II chaperonin, the chaperonin-containing t-complex polypeptide 1 (CCT), plays an important role in cytosolic proteostasis. It has been estimated that as much as 10% of cytosolic proteins interact with CCT during their folding process. CCT is composed of 8 different paralogous subunits. Due to its complicated structure, molecular and biochemical investigations of CCT have been difficult. In this study, we constructed an expression system for CCT from a thermophilic fungus, Chaetomium thermophilum (CtCCT), by using E. coli as a host. As expected, we obtained recombinant CtCCT with a relatively high yield, and it exhibited fairly high thermal stability. We showed the advantages of the overproduction system by characterizing CtCCT variants containing ATPase-deficient subunits. For diffracted X-ray tracking experiment, we removed all surface exposed cysteine residues, and added cysteine residues at the tip of helical protrusions of selected two subunits. Gold nanocrystals were attached onto CtCCTs via gold-thiol bonds and applied for the analysis by diffracted X-ray tracking. Irrespective of the locations of cysteines, it was shown that ATP binding induces tilting motion followed by rotational motion in the CtCCT molecule, like the archaeal group II chaperonins. When gold nanocrystals were attached onto two subunits in the high ATPase activity hemisphere, the CtCCT complex exhibited a fairly rapid response to the motion. In contrast, the response of CtCCT, which had gold nanocrystals attached to the low-activity hemisphere, was slow. These results clearly support the possibility that ATP-dependent conformational change starts with the high-affinity hemisphere and progresses to the low-affinity hemisphere. PMID:28463997

  5. Interaction between Nbp35 and Cfd1 Proteins of Cytosolic Fe-S Cluster Assembly Reveals a Stable Complex Formation in Entamoeba histolytica

    PubMed Central

    Anwar, Shadab; Dikhit, Manas Ranjan; Singh, Krishn Pratap; Kar, Rajiv Kumar; Zaidi, Amir; Sahoo, Ganesh Chandra; Roy, Awadh Kishore; Nozaki, Tomoyoshi; Das, Pradeep; Ali, Vahab

    2014-01-01

    Iron-Sulfur (Fe-S) proteins are involved in many biological functions such as electron transport, photosynthesis, regulation of gene expression and enzymatic activities. Biosynthesis and transfer of Fe-S clusters depend on Fe-S clusters assembly processes such as ISC, SUF, NIF, and CIA systems. Unlike other eukaryotes which possess ISC and CIA systems, amitochondriate Entamoeba histolytica has retained NIF & CIA systems for Fe-S cluster assembly in the cytosol. In the present study, we have elucidated interaction between two proteins of E. histolytica CIA system, Cytosolic Fe-S cluster deficient 1 (Cfd1) protein and Nucleotide binding protein 35 (Nbp35). In-silico analysis showed that structural regions ranging from amino acid residues (P33-K35, G131-V135 and I147-E151) of Nbp35 and (G5-V6, M34-D39 and G46-A52) of Cfd1 are involved in the formation of protein-protein complex. Furthermore, Molecular dynamic (MD) simulations study suggested that hydrophobic forces surpass over hydrophilic forces between Nbp35 and Cfd1 and Van-der-Waal interaction plays crucial role in the formation of stable complex. Both proteins were separately cloned, expressed as recombinant fusion proteins in E. coli and purified to homogeneity by affinity column chromatography. Physical interaction between Nbp35 and Cfd1 proteins was confirmed in vitro by co-purification of recombinant Nbp35 with thrombin digested Cfd1 and in vivo by pull down assay and immunoprecipitation. The insilico, in vitro as well as in vivo results prove a stable interaction between these two proteins, supporting the possibility of its involvement in Fe-S cluster transfer to target apo-proteins through CIA machinery in E. histolytica. Our study indicates that initial synthesis of a Fe-S precursor in mitochondria is not necessary for the formation of Cfd1-Nbp35 complex. Thus, Cfd1 and Nbp35 with the help of cytosolic NifS and NifU proteins can participate in the maturation of non-mitosomal Fe-S proteins without any

  6. Chloride concentrations in human hepatic cytosol and mitochondria are a function of age

    PubMed Central

    Jahn, Stephan C.; Rowland-Faux, Laura; Stacpoole, Peter W.; James, Margaret O.

    2015-01-01

    We recently reported that, in a concentration-dependent manner, chloride protects hepatic glutathione transferase zeta 1 from inactivation by dichloroacetate, an investigational drug used in treating various acquired and congenital metabolic diseases. Despite the importance of chloride ions in normal physiology, and decades of study of chloride transport across membranes, the literature lacks information on chloride concentrations in animal tissues other than blood. In this study we measured chloride concentrations in human liver samples from male and female donors aged 1 day to 84 years (n = 97). Because glutathione transferase zeta 1 is present in cytosol and, to a lesser extent, in mitochondria, we measured chloride in these fractions by high-performance liquid chromatography analysis following conversion of the free chloride to pentafluorobenzylchloride. We found that chloride concentration decreased with age in hepatic cytosol but increased in liver mitochondria. In addition, chloride concentrations in cytosol, (105.2 ± 62.4 mM; range: 24.7 – 365.7 mM) were strikingly higher than those in mitochondria (4.2 ± 3.8 mM; range 0.9 – 22.2 mM). These results suggest a possible explanation for clinical observations seen in patients treated with dichloroacetate, whereby children metabolize the drug more rapidly than adults following repeated doses, and also provide information that may influence our understanding of normal liver physiology. PMID:25748576

  7. Structural Studies on Cytosolic Domain of Magnesium Transporter MgtE from Enterococcus faecalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ragumani, S.; Sauder, J; Burley, S

    2009-01-01

    Magnesium (Mg{sup 2+}) is an essential element for growth and maintenance of living cells. It acts as a cofactor for many enzymes and is also essential for stability of the plasma membrane. There are two distinct classes of magnesium transporters identified in bacteria that convey Mg{sup 2+} from periplasm to cytoplasm [ATPase-dependent (MgtA and MgtB) and constitutively active (CorA and MgtE)]. Previously published work on Mg{sup 2+} transporters yielded structures of full length MgtE from Thermus thermophilus, determined at 3.5 {angstrom} resolution, and its cytoplasmic domain with and without bond Mg{sup 2+} determined at 2.3 and 3.9 {angstrom} resolution, respectively.more » Here, they report the crystal structure of the Mg{sup 2+} bound form of the cytosolic portion of MgtE (residues 6-262) from Enterococcus faecalis at 2.2 {angstrom} resolution. The present structure and magnesium bound cytosolic domain structure from T. thermophilus (PDB ID: 2YVY) are structurally similar. Three magnesium binding sites are common to both MgtE full length and the present structure. Their work revealed an additional Mg{sup 2+} binding site in the E. faecalis structure. In this report, they discuss the functional significance of Mg{sup 2+} binding sites in the cytosolic domains of MgtE transporters.« less

  8. Chloride concentrations in human hepatic cytosol and mitochondria are a function of age.

    PubMed

    Jahn, Stephan C; Rowland-Faux, Laura; Stacpoole, Peter W; James, Margaret O

    2015-04-10

    We recently reported that, in a concentration-dependent manner, chloride protects hepatic glutathione transferase zeta 1 from inactivation by dichloroacetate, an investigational drug used in treating various acquired and congenital metabolic diseases. Despite the importance of chloride ions in normal physiology, and decades of study of chloride transport across membranes, the literature lacks information on chloride concentrations in animal tissues other than blood. In this study we measured chloride concentrations in human liver samples from male and female donors aged 1 day to 84 years (n = 97). Because glutathione transferase zeta 1 is present in cytosol and, to a lesser extent, in mitochondria, we measured chloride in these fractions by high-performance liquid chromatography analysis following conversion of the free chloride to pentafluorobenzylchloride. We found that chloride concentration decreased with age in hepatic cytosol but increased in liver mitochondria. In addition, chloride concentrations in cytosol, (105.2 ± 62.4 mM; range: 24.7-365.7 mM) were strikingly higher than those in mitochondria (4.2 ± 3.8 mM; range 0.9-22.2 mM). These results suggest a possible explanation for clinical observations seen in patients treated with dichloroacetate, whereby children metabolize the drug more rapidly than adults following repeated doses, and also provide information that may influence our understanding of normal liver physiology. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Ubiquitous Fast Propagating Intensity Disturbances in Solar Chromosphere

    NASA Technical Reports Server (NTRS)

    Kubo, M.; Katsukawa, Y.; Suematsu, Y.; Kano, R.; Bando, T.; Narukage, N.; Ishikawa, R.; Hara, H.; Giono, G.; Winebarger, A.; hide

    2016-01-01

    High cadence observations by the slit-jaw (SJ) optics system of the sounding rocket experiment "the Chromospheric Lyman Alpha SpectroPolarimeter (CLASP)" reveal ubiquitous intensity disturbances that recurrently propagate in either the chromosphere, transition region, or both at a speed much higher than the sound speed.

  10. Non-invasive In-cell Determination of Free Cytosolic [NAD+]/[NADH] Ratios Using Hyperpolarized Glucose Show Large Variations in Metabolic Phenotypes*

    PubMed Central

    Christensen, Caspar Elo; Karlsson, Magnus; Winther, Jakob R.; Jensen, Pernille Rose; Lerche, Mathilde H.

    2014-01-01

    Accumulating evidence suggest that the pyridine nucleotide NAD has far wider biological functions than its classical role in energy metabolism. NAD is used by hundreds of enzymes that catalyze substrate oxidation and, as such, it plays a key role in various biological processes such as aging, cell death, and oxidative stress. It has been suggested that changes in the ratio of free cytosolic [NAD+]/[NADH] reflects metabolic alterations leading to, or correlating with, pathological states. We have designed an isotopically labeled metabolic bioprobe of free cytosolic [NAD+]/[NADH] by combining a magnetic enhancement technique (hyperpolarization) with cellular glycolytic activity. The bioprobe reports free cytosolic [NAD+]/[NADH] ratios based on dynamically measured in-cell [pyruvate]/[lactate] ratios. We demonstrate its utility in breast and prostate cancer cells. The free cytosolic [NAD+]/[NADH] ratio determined in prostate cancer cells was 4 times higher than in breast cancer cells. This higher ratio reflects a distinct metabolic phenotype of prostate cancer cells consistent with previously reported alterations in the energy metabolism of these cells. As a reporter on free cytosolic [NAD+]/[NADH] ratio, the bioprobe will enable better understanding of the origin of diverse pathological states of the cell as well as monitor cellular consequences of diseases and/or treatments. PMID:24302737

  11. Cytosolic delivery of multi-domain cargos by the N-terminus of Pasteurella multocida toxin.

    PubMed

    Clemons, Nathan C; Bannai, Yuka; Haywood, Elizabeth E; Xu, Yiting; Buschbach, James D; Ho, Mengfei; Wilson, Brenda A

    2018-05-21

    The zoonotic pathogen Pasteurella multocida produces a 146-kDa modular toxin (PMT) that enters host cells and manipulates intracellular signaling through action on its Gα-protein targets. The N-terminus of PMT (PMT-N) mediates cellular uptake through receptor-mediated endocytosis, followed by delivery of the C-terminal catalytic domain from acidic endosomes into the cytosol. The putative native cargo of PMT consists of a 710-residue polypeptide of three distinct modular subdomains (C1-C2-C3), where C1 contains a membrane localization domain (MLD), C2 has as-of-yet undefined function, and C3 catalyzes deamidation of a specific active-site glutamine residue in Gα-protein targets. However, whether the three cargo subdomains are delivered intact or undergo further proteolytic processing during or after translocation from the late endosome is unclear. Here, we demonstrate that PMT-N mediates delivery of its native C-terminal cargo as a single polypeptide, corresponding to C1-C2-C3, including the MLD, with no evidence of cleavage between subdomains. We show that PMT-N also delivers into the cytosol non-native GFP cargo, further supporting that the receptor-binding and translocation functions reside within PMT-N. Our findings further show that PMT-N can deliver C1-C2 alone but that the presence of C1-C2 is important for cytosolic delivery of the catalytic C3 subdomain by PMT-N. In addition, we further refine the minimum C3 domain required for intracellular activity as comprising residues 1105-1278. These findings reinforce that PMT-N serves as the cytosolic delivery vehicle for C-terminal cargo and demonstrate that its native cargo is delivered intact as C1-C2-C3. Copyright © 2018 American Society for Microbiology.

  12. A Ubiquitous Blood Pressure Sensor Worn at the Ear

    NASA Astrophysics Data System (ADS)

    Koizumi, Hiroshi; Shimada, Junichi; Uenishi, Yuji; Tochikubo, Osamu

    2009-12-01

    Blood pressure (BP) measurement and BP control are important for the prevention of lifestyle diseases, especially hypertension, which can lead to more serious conditions, such as cardiac infarction and cerebral apoplexy. The purpose of our study is to develop a ubiquitous blood pressure sensor that is more comfortable and less disruptive of users' daily activities than conventional blood pressure sensors. Our developed sensor is worn at an ear orifice and measures blood pressure at the tragus. This paper describes the concept, configuration, and the optical and electronic details of the developed ear-worn blood pressure sensor and presents preliminary evaluation results. The developed sensor causes almost no discomfort and produces signals whose quality is high enough for detecting BP at an ear, making it suitable for ubiquitous usage.

  13. Copper, Zinc Superoxide Dismutase is Primarily a Cytosolic Protein in Human Cells

    NASA Astrophysics Data System (ADS)

    Crapo, James D.; Oury, Tim; Rabouille, Catherine; Slot, Jan W.; Chang, Ling-Yi

    1992-11-01

    The intracellular localization of human copper, zinc superoxide dismutase (Cu,Zn-SOD; superoxide:superoxide oxidoreductase, EC 1.15.1.1) was evaluated by using EM immunocytochemistry and both isolated human cell lines and human tissues. Eight monoclonal antibodies raised against either native or recombinant human Cu,Zn-SOD and two polyclonal antibodies raised against either native or recombinant human Cu,Zn-SOD were used. Fixation with 2% paraformaldehyde/0.2% glutaraldehyde was found necessary to preserve normal distribution of the protein. Monoclonal antibodies were less effective than polyclonal antibodies in recognizing the antigen after adequate fixation of tissue. Cu,Zn-SOD was found widely distributed in the cell cytosol and in the cell nucleus, consistent with it being a soluble cytosolic protein. Mitochondria and secretory compartments did not label for this protein. In human cells, peroxisomes showed a labeling density slightly less than that of cytoplasm.

  14. Development of HIHM (Home Integrated Health Monitor) for ubiquitous home healthcare.

    PubMed

    Kim, Jung Soo; Kim, Beom Oh; Park, Kwang Suk

    2007-01-01

    Home Integrated Health Monitor (HIHM) was developed for ubiquitous home healthcare. From quantitative analysis, we have elicited modal of chair. The HIHM could detect Electrocardiogram (ECG) and Photoplethysmography (PPG) non-intrusively. Also, it could estimate blood pressure (BP) non-intrusively, measure blood glucose and ear temperature. Detected signals and information were transmitted to home gateway and home server through Zigbee communication technology. Home server carried them to Healthcare Center, and specialists such as medical doctors could monitor by Internet. There was also feedback system. This device has a potential to study about ubiquitous home healthcare.

  15. Increasing the carbohydrate storage capacity of plants by engineering a glycogen-like polymer pool in the cytosol.

    PubMed

    Eicke, Simona; Seung, David; Egli, Barbara; Devers, Emanuel A; Streb, Sebastian

    2017-03-01

    Global demand for higher crop yields and for more efficient utilization of agricultural products will grow over the next decades. Here, we present a new concept for boosting the carbohydrate content of plants, by channeling photosynthetically fixed carbon into a newly engineered glucose polymer pool. We transiently expressed the starch/glycogen synthases from either Saccharomyces cerevisiae or Cyanidioschyzon merolae, together with the starch branching enzyme from C. merolae, in the cytosol of Nicotiana benthamiana leaves. This effectively built a UDP-glucose-dependent glycogen biosynthesis pathway. Glycogen synthesis was observed with Transmission Electron Microscopy, and the polymer structure was further analyzed. Within three days of enzyme expression, glycogen content of the leaf was 5-10 times higher than the starch levels of the control. Further, the leaves produced less starch and sucrose, which are normally the carbohydrate end-products of photosynthesis. We conclude that after enzyme expression, the newly fixed carbohydrates were routed into the new glycogen sink and trapped. Our approach allows carbohydrates to be efficiently stored in a new subcellular compartment, thus increasing the value of vegetative crop tissues for biofuel production or animal feed. The method also opens new potential for increasing the sink strength of heterotrophic tissues. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  16. Forced interaction of cell surface proteins with Derlin-1 in the endoplasmic reticulum is sufficient to induce their dislocation into the cytosol for degradation.

    PubMed

    Cho, Sunglim; Lee, Miriam; Jun, Youngsoo

    2013-01-11

    Aberrantly folded proteins in the endoplasmic reticulum (ER) are rapidly removed into the cytosol for degradation by the proteasome via an evolutionarily conserved process termed ER-associated protein degradation (ERAD). ERAD of a subset of proteins requires Derlin-1 for dislocation into the cytosol; however, the molecular function of Derlin-1 remains unclear. Human cytomegalovirus US11 exploits Derlin-1-dependent ERAD to degrade major histocompatibility complex class I (MHC-I) molecules for immune evasion. Because US11 binds to both MHC-I molecules and Derlin-1 via its luminal and transmembrane domains (TMDs), respectively, the major role of US11 has been proposed to simply be delivery of MHC-I molecules to Derlin-1. Here, we directly tested this proposal by generating a hybrid MHC-I molecule, which contains the US11 TMD, and thus can associate with Derlin-1 in the absence of US11. Intriguingly, this MHC-I hybrid was rapidly degraded in a Derlin-1- and proteasome-dependent manner. Similarly, the vesicular stomatitis virus G protein, otherwise expressed at the cell surface, was degraded via Derlin-1-dependent ERAD when its TMD was replaced with that of US11. Thus, forced interaction of cell surface proteins with Derlin-1 is sufficient to induce their degradation via ERAD. Taken together, these results suggest that the main role of US11 is to recruit MHC-I molecules to Derlin-1, which then mediates the dislocation of MHC-I molecules into the cytosol for degradation. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Diffusion of D-glucose measured in the cytosol of a single astrocyte.

    PubMed

    Kreft, Marko; Lukšič, Miha; Zorec, Tomaž M; Prebil, Mateja; Zorec, Robert

    2013-04-01

    Astrocytes interact with neurons and endothelial cells and may mediate exchange of metabolites between capillaries and nerve terminals. In the present study, we investigated intracellular glucose diffusion in purified astrocytes after local glucose uptake. We used a fluorescence resonance energy transfer (FRET)-based nano sensor to monitor the time dependence of the intracellular glucose concentration at specific positions within the cell. We observed a delay in onset and kinetics in regions away from the glucose uptake compared with the region where we locally super-fused astrocytes with the D-glucose-rich solution. We propose a mathematical model of glucose diffusion in astrocytes. The analysis showed that after gradual uptake of glucose, the locally increased intracellular glucose concentration is rapidly spread throughout the cytosol with an apparent diffusion coefficient (D app) of (2.38 ± 0.41) × 10(-10) m(2) s(-1) (at 22-24 °C). Considering that the diffusion coefficient of D-glucose in water is D = 6.7 × 10(-10) m(2) s(-1) (at 24 °C), D app determined in astrocytes indicates that the cytosolic tortuosity, which hinders glucose molecules, is approximately three times higher than in aqueous solution. We conclude that the value of D app for glucose measured in purified rat astrocytes is consistent with the view that cytosolic diffusion may allow glucose and glucose metabolites to traverse from the endothelial cells at the blood-brain barrier to neurons and neighboring astrocytes.

  18. Glutathione S-Transferase Protein Expression in Different Life Stages of Zebrafish (Danio rerio)

    PubMed Central

    Tierbach, Alena; Groh, Ksenia J; Schönenberger, René; Schirmer, Kristin

    2018-01-01

    Abstract Zebrafish is a widely used animal model in biomedical sciences and toxicology. Although evidence for the presence of phases I and II xenobiotic defense mechanisms in zebrafish exists on the transcriptional and enzyme activity level, little is known about the protein expression of xenobiotic metabolizing enzymes. Given the important role of glutathione S-transferases (GSTs) in phase II biotransformation, we analyzed cytosolic GST proteins in zebrafish early life stages and different organs of adult male and female fish, using a targeted proteomics approach. The established multiple reaction monitoring-based assays enable the measurement of the relative abundance of specific GST isoenzymes and GST classes in zebrafish through a combination of proteotypic peptides and peptides shared within the same class. GSTs of the classes alpha, mu, pi and rho are expressed in zebrafish embryo as early as 4 h postfertilization (hpf). The majority of GST enzymes are present at 72 hpf followed by a continuous increase in expression thereafter. In adult zebrafish, GST expression is organ dependent, with most of the GST classes showing the highest expression in the liver. The expression of a wide range of cytosolic GST isoenzymes and classes in zebrafish early life stages and adulthood supports the use of zebrafish as a model organism in chemical-related investigations. PMID:29361160

  19. A New Glutathione Conjugate of the Pyrrolizidine Alkaloids Produced by Human Cytosolic Enzyme Dependent Reactions in vitro.

    PubMed

    Muluneh, Fashe; Häkkinen, Merja R; El-Dairi, Rami; Pasanen, Markku; Juvonen, Risto O

    2018-05-22

    The toxic metabolites of pyrrolizidine alkaloids (PAs) are initially formed by cytochrome P450 mediated oxidation reactions and primarily eliminated as glutathione (GSH) conjugates. Although the reaction between the reactive metabolites and GSH can occur spontaneously, the role of the cytosolic enzymes in the process has not been studied. The toxic metabolites of selected PAs (retrorsine, monocrotaline, senecionine, lasiocarpine, heliotrine or senkirkine) were generated by incubating them in 100 mM phosphate buffer pH 7.4 containing liver microsomes of human, pig, rat or sheep, NADPH and reduced GSH in the absence or presence of human, pig, rat or sheep liver cytosolic fraction. The supernatants were analyzed by using liquid chromatography connected to Finnigan LTQ ion-trap, Agilent QTOF or Thermo Scientific Q Exactive Focus quadrupole-orbitrap mass spectrometers. Retrorsine, senecionine and lasiocarpine yielded three GSH conjugates producing [M-H] - ions at m/z 439 (7-GSH-DHP(CHO)), m/z 441 (7-GSH-DHP(OH)) and m/z 730 (7,9-diGSH-DHP) in the presence of human liver cytosolic fraction. 7-GSH-DHP(CHO) was a novel metabolite. Monocrotaline, heliotrine and senkirkine did not produce this novel 7-GSH-DHP(CHO) conjugate. 7-GSH-DHP(CHO) disappeared when incubated with hydroxylamine, and a new oxime derivative was formed. This metabolite was formed only by the human liver cytosolic enzymes but not in the presence of rat or sheep liver cytosolic fractions under otherwise identical reaction conditions. 7-GSH-DHP(CHO) has not been reported before and thus, it was considered as a novel metabolite of PAs. This may clarify the mechanisms involved in PA detoxification and widely observed but less understood species differences in response to PA exposure. This article is protected by copyright. All rights reserved.

  20. Phylogenetic Analysis of Nucleus-Encoded Acetyl-CoA Carboxylases Targeted at the Cytosol and Plastid of Algae

    PubMed Central

    Huerlimann, Roger; Zenger, Kyall R.; Jerry, Dean R.; Heimann, Kirsten

    2015-01-01

    The understanding of algal phylogeny is being impeded by an unknown number of events of horizontal gene transfer (HGT), and primary and secondary/tertiary endosymbiosis. Through these events, previously heterotrophic eukaryotes developed photosynthesis and acquired new biochemical pathways. Acetyl-CoA carboxylase (ACCase) is a key enzyme in the fatty acid synthesis and elongation pathways in algae, where ACCase exists in two locations (cytosol and plastid) and in two forms (homomeric and heteromeric). All algae contain nucleus-encoded homomeric ACCase in the cytosol, independent of the origin of the plastid. Nucleus-encoded homomeric ACCase is also found in plastids of algae that arose from a secondary/tertiary endosymbiotic event. In contrast, plastids of algae that arose from a primary endosymbiotic event contain heteromeric ACCase, which consists of three nucleus-encoded and one plastid-encoded subunits. These properties of ACCase provide the potential to inform on the phylogenetic relationships of hosts and their plastids, allowing different hypothesis of endosymbiotic events to be tested. Alveolata (Dinoflagellata and Apicomplexa) and Chromista (Stramenopiles, Haptophyta and Cryptophyta) have traditionally been grouped together as Chromalveolata, forming the red lineage. However, recent genetic evidence groups the Stramenopiles, Alveolata and green plastid containing Rhizaria as SAR, excluding Haptophyta and Cryptophyta. Sequences coding for plastid and cytosol targeted homomeric ACCases were isolated from Isochrysis aff. galbana (TISO), Chromera velia and Nannochloropsis oculata, representing three taxonomic groups for which sequences were lacking. Phylogenetic analyses show that cytosolic ACCase strongly supports the SAR grouping. Conversely, plastidial ACCase groups the SAR with the Haptophyta, Cryptophyta and Prasinophyceae (Chlorophyta). These two ACCase based, phylogenetic relationships suggest that the plastidial homomeric ACCase was acquired by the

  1. Single molecular image of cytosolic free Ca2+ of skeletal muscle cells in rats pre- and post-exercise-induced fatigue

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Zhang, Heming; Zhao, Yanping; Liu, Zhiming

    2009-08-01

    A growing body of literature indicated the cytosolic free Ca2+ concentration of skeletal muscle cells changes significantly during exercise-induced fatigue. But it is confusing whether cytosolic free Ca2+ concentration increase or decrease. Furthermore, current researches mainly adopt muscle tissue homogenate as experiment material, but the studies based on cellular and subcellular level is seldom. This study is aimed to establish rat skeletal muscle cell model of exercise-induced fatigue, and confirm the change of cytosolic free Ca2+ concentration of skeletal muscle cells in rats preand post- exercise-induced fatigue. In this research, six male Wistar rats were randomly divided into two groups: control group (n=3) and exercise-induced fatigue group (n=3). The former group were allowed to freely move and the latter were forced to loaded swimming to exhaustive. Three days later, all the rats were sacrificed, the muscle tissue from the same site of skeletal muscle were taken out and digested to cells. After primary culture of the two kinds of skeletal muscle cells from tissue, a fluorescent dye-Fluo-3 AM was used to label the cytosolic free Ca2+. The fluorescent of Ca2+ was recorded by confocal laser scanning microscopy. The results indicated that, the Ca2+ fluorescence intensity of cells from the rat of exercise-induced fatigue group was significantly higher than those in control group. In conclusion, cytosolic free Ca2+ concentration of skeletal muscle cells has a close relation with exercise-induced fatigue, and the increase of cytosolic free Ca2+ concentration may be one of the important factors of exercise-induced fatigue.

  2. Ubiquitous Learning Ecologies for a Critical Cyber-Citizenship

    ERIC Educational Resources Information Center

    Díez-Gutiérrez, Enrique; Díaz-Nafría, José-María

    2018-01-01

    The aim of this research is to identify and analyse the ubiquitous learning acquired through blending education settings devoted to the "lifelong training of trainers" and how these contribute to the development of a conscious, critic and engaged citizenship. Through active exploration of the learning process, the study analyses the…

  3. Ubiquitous geospatial concept in evolution of the macro and micro spatial planning

    NASA Astrophysics Data System (ADS)

    Sabri, S.; Ludin, A. N. M.; Majid, M. R.

    2014-02-01

    There are many examples of GIS application in planning such as urban land-use planning, cultural heritage conservation, coastal zone management, and the design of structure plans for sustainable economic development. All these applications are dealing with systems in which natural and human factors are interconnected. But an issue that should be addressed is to what extent the current information technology is able to connect all these parts together? Contemporary improvement in information technology made the computer so imbedded in our everyday practices that we use it without having to think about it. Thus, computing is becoming truly ubiquitous and is available anywhere anytime. Advances in the internet facilities and devices, such as high speed wireless networks, mobile middleware, and smart technologies, has pushed the concept of ubiquitous computing to the forefront of GIS research and development. There are developments in this regards, these are such as GeoWeb 2.0, voluntarily geographic Information (VGI), and Mashups, whereby the application of cloud computing was possible in visualizing urban air pollution and emergency responses to ensure the safety and security. These advancements therefore, have changed the conventional facet of macro and micro spatial planning. Every possible information system such as residential, medical, business, environmental, governmental, and the like can be linked through ubiquitous computing technologies and acts as a virtually one system which works for society. However, the journey to achieve a true ubiquitous GIS is not without challenges. Despite the current potentials there are many issues and obstacles need to be addressed before GIS can to be truly ubiquitous in planning context. Perhaps four criteria as explained by Goodchild et al (1997) can be applied to ubiquitous GIS in planning very well: the system must be distributed (data storage, processing and user interaction can occur at locations that are potentially

  4. Conjoint Analysis for Mobile Devices for Ubiquitous Learning in Higher Education: The Korean Case

    ERIC Educational Resources Information Center

    Lee, Hyeongjik

    2013-01-01

    Despite the increasing importance of mobile devices in education, the essential features of these devices for ubiquitous learning have not been empirically addressed. This study empirically investigated the necessary conditions for using mobile devices as an educational tool for ubiquitous learning in higher education by a conjoint method. The…

  5. An Expert System-based Context-Aware Ubiquitous Learning Approach for Conducting Science Learning Activities

    ERIC Educational Resources Information Center

    Wu, Po-Han; Hwang, Gwo-Jen; Tsai, Wen-Hung

    2013-01-01

    Context-aware ubiquitous learning has been recognized as being a promising approach that enables students to interact with real-world learning targets with supports from the digital world. Several researchers have indicated the importance of providing learning guidance or hints to individual students during the context-aware ubiquitous learning…

  6. Cytosolic calcium homeostasis in bovine parathyroid cells and its modulation by protein kinase C.

    PubMed Central

    Racke, F K; Nemeth, E F

    1993-01-01

    1. The effects of protein kinase C (PKC) activators and inhibitors on the mechanisms regulating cytosolic Ca2+ homeostasis in dissociated bovine parathyroid cells loaded with fura-2 were examined. 2. Stepwise increases in the concentration of extracellular Ca2+ (from 0.5 to 2 or 3 mM) elicited transient followed by sustained increases in the concentration of intracellular free Ca2+ ([Ca2+]i). Cytosolic Ca2+ transients reflected the mobilization of intracellular Ca2+ and influx of extracellular Ca2+ whereas sustained increases in [Ca2+]i resulted from the influx of extracellular Ca2+. Brief (1-2 min) pretreatment with phorbol myristate acetate (PMA) shifted the concentration-response curve for extracellular Ca(2+)-induced cytosolic Ca2+ transients to the right without affecting the maximal response. Cytosolic Ca2+ transients elicited by extracellular Mg2+ were similarly affected by PMA. 3. These effects of PMA were mimicked by various other activators of PKC with the rank order of potency PMA > phorbol dibutyrate > bryostatin , > (-)indolactam V > mezerein. Isomers or analogues of these compounds that do not alter PKC activity (4 alpha-phorbols and (+)indolactam V) did not alter [Ca2+]i. 4. PKC activators depressed evoked increases in [Ca2+]i when influx of extracellular Ca2+ was blocked with Gd3+. Cytosolic Ca2+ transients elicited by extracellular Mg2+ in the absence of extracellular Ca2+ were similarly inhibited by PKC activators. Activation of PKC thus inhibits the mobilization of intracellular Ca2+ elicited by extracellular divalent cations. 5. Increases in the concentration of extracellular Ca2+ caused corresponding increases in the formation of [3H]inositol 1,4,5-trisphosphate ([3H]InsP3). Pretreatment with PMA shifted the concentration-response curve for extracellular Ca(2+)-induced [3H]InsP3 formation to the right without affecting the maximal response. 6. PKC activators also caused some depression of steady-state increases in [Ca2+]i elicited by

  7. Ubiquitous Mobile Technologies and the Transformation of Schooling

    ERIC Educational Resources Information Center

    Bjerede, Marie; Atkins, Kristin; Dede, Chris

    2010-01-01

    This article explores how the Internet and mobile broadband technologies that are transforming the work of business professionals may be applied to the work of teachers and students in K-20 schooling, with similarly transformative outcomes. First, they discuss the ways in which ubiquitous mobile technologies are changing 21st century business.…

  8. Study on the context-aware middleware for ubiquitous greenhouses using wireless sensor networks.

    PubMed

    Hwang, Jeonghwang; Yoe, Hyun

    2011-01-01

    Wireless Sensor Network (WSN) technology is one of the important technologies to implement the ubiquitous society, and it could increase productivity of agricultural and livestock products, and secure transparency of distribution channels if such a WSN technology were successfully applied to the agricultural sector. Middleware, which can connect WSN hardware, applications, and enterprise systems, is required to construct ubiquitous agriculture environment combining WSN technology with agricultural sector applications, but there have been insufficient studies in the field of WSN middleware in the agricultural environment, compared to other industries. This paper proposes a context-aware middleware to efficiently process data collected from ubiquitous greenhouses by applying WSN technology and used to implement combined services through organic connectivity of data. The proposed middleware abstracts heterogeneous sensor nodes to integrate different forms of data, and provides intelligent context-aware, event service, and filtering functions to maximize operability and scalability of the middleware. To evaluate the performance of the middleware, an integrated management system for ubiquitous greenhouses was implemented by applying the proposed middleware to an existing greenhouse, and it was tested by measuring the level of load through CPU usage and the response time for users' requests when the system is working.

  9. Characterization of the Genes Encoding the Cytosolic and Plastidial Forms of ADP-Glucose Pyrophosphorylase in Wheat Endosperm1

    PubMed Central

    Burton, Rachel A.; Johnson, Philip E.; Beckles, Diane M.; Fincher, Geoffrey B.; Jenner, Helen L.; Naldrett, Mike J.; Denyer, Kay

    2002-01-01

    In most species, the synthesis of ADP-glucose (Glc) by the enzyme ADP-Glc pyrophosphorylase (AGPase) occurs entirely within the plastids in all tissues so far examined. However, in the endosperm of many, if not all grasses, a second form of AGPase synthesizes ADP-Glc outside the plastid, presumably in the cytosol. In this paper, we show that in the endosperm of wheat (Triticum aestivum), the cytosolic form accounts for most of the AGPase activity. Using a combination of molecular and biochemical approaches to identify the cytosolic and plastidial protein components of wheat endosperm AGPase we show that the large and small subunits of the cytosolic enzyme are encoded by genes previously thought to encode plastidial subunits, and that a gene, Ta.AGP.S.1, which encodes the small subunit of the cytosolic form of AGPase, also gives rise to a second transcript by the use of an alternate first exon. This second transcript encodes an AGPase small subunit with a transit peptide. However, we could not find a plastidial small subunit protein corresponding to this transcript. The protein sequence of the purified plastidial small subunit does not match precisely to that encoded by Ta.AGP.S.1 or to the predicted sequences of any other known gene from wheat or barley (Hordeum vulgare). Instead, the protein sequence is most similar to those of the plastidial small subunits from chickpea (Cicer arietinum) and maize (Zea mays) and rice (Oryza sativa) seeds. These data suggest that the gene encoding the major plastidial small subunit of AGPase in wheat endosperm has yet to be identified. PMID:12428011

  10. Hypothermia translocates nitric oxide synthase from cytosol to membrane in snail neurons.

    PubMed

    Rószer, Tamás; Kiss-Tóth, Eva; Rózsa, Dávid; Józsa, Tamás; Szentmiklósi, A József; Bánfalvi, Gáspár

    2010-11-01

    Neuronal nitric oxide (NO) levels are modulated through the control of catalytic activity of NO synthase (NOS). Although signals limiting excess NO synthesis are being extensively studied in the vertebrate nervous system, our knowledge is rather limited on the control of NOS in neurons of invertebrates. We have previously reported a transient inactivation of NOS in hibernating snails. In the present study, we aimed to understand the mechanism leading to blocked NO production during hypothermic periods of Helix pomatia. We have found that hypothermic challenge translocated NOS from the cytosol to the perinuclear endoplasmic reticulum, and that this cytosol to membrane trafficking was essential for inhibition of NO synthesis. Cold stress also downregulated NOS mRNA levels in snail neurons, although the amount of NOS protein remained unaffected in response to hypothermia. Our studies with cultured neurons and glia cells revealed that glia-neuron signaling may inhibit membrane binding and inactivation of NOS. We provide evidence that hypothermia keeps NO synthesis "hibernated" through subcellular redistribution of NOS.

  11. Effect of copper chloride exposure on the membrane potential and cytosolic free calcium in primary cultured chicken hepatocytes.

    PubMed

    Jia, Xuexia; Chen, Long; Li, Jingtao; Su, Rongsheng; Shi, Dayou; Tang, Zhaoxin

    2012-09-01

    This study was conducted to examine the effects of copper on membrane potential and cytosolic free calcium in isolated primary chicken hepatocytes which were exposed to different concentration of Cu(2+) (0, 10, 50, 100 μM) or a mixture of Cu(2+) and vitamin C (50 and 50 μM, respectively). Viability, membrane potential, and cytosolic free Ca(2+) of monolayer cultured hepatocytes were investigated at the indicated time point. Results showed that, among the different concentrations of Cu(2+) exposure, the viability of hepatocytes treated with 100 μM Cu(2+) was the worst at the 12th and 24th hours. The effects of Cu(2+) on viability and proliferation were time and dose dependent. Further investigation indicated that Cu(2+) exposure significantly enhanced cytosolic free Ca(2+) in hepatocytes, compared to that in control group, at the 24th hour. Meanwhile, membrane potential was noticeably reduced in hepatocytes increasing concentration of Cu(2+). Taking these results together, we have shown that Cu(2+) can cause toxicity to primary chicken hepatocytes in excessive dose and the effect of Cu(2+) exposure on membrane potential is not site specific, which is probably mediated by the changes of cytosolic free Ca(2+).

  12. Isoflurane-Induced Caspase-3 Activation Is Dependent on Cytosolic Calcium and Can Be Attenuated by Memantine

    PubMed Central

    Zhang, Guohua; Dong, Yuanlin; Zhang, Bin; Ichinose, Fumito; Wu, Xu; Culley, Deborah J.; Crosby, Gregory

    2008-01-01

    Increasing evidence indicates that caspase activation and apoptosis are associated with a variety of neurodegenerative disorders, including Alzheimer's disease. We reported that anesthetic isoflurane can induce apoptosis, alter processing of the amyloid precursor protein (APP), and increase amyloid-β protein (Aβ) generation. However, the mechanism by which isoflurane induces apoptosis is primarily unknown. We therefore set out to assess effects of extracellular calcium concentration on isoflurane-induced caspase-3 activation in H4 human neuroglioma cells stably transfected to express human full-length APP (H4-APP cells). In addition, we tested effects of RNA interference (RNAi) silencing of IP3 receptor, NMDA receptor, and endoplasmic reticulum (ER) calcium pump, sacro-/ER calcium ATPase (SERCA1). Finally, we examined the effects of the NMDA receptor partial antagonist, memantine, in H4-APP cells and brain tissue of naive mice. EDTA (10 mm), BAPTA (10 μm), and RNAi silencing of IP3 receptor, NMDA receptor, or SERCA1 attenuated capase-3 activation. Memantine (4 μm) inhibited isoflurane-induced elevations in cytosolic calcium levels and attenuated isoflurane-induced caspase-3 activation, apoptosis, and cell viability. Memantine (20 mg/kg, i.p.) reduced isoflurane-induced caspase-3 activation in brain tissue of naive mice. These results suggest that disruption of calcium homeostasis underlies isoflurane-induced caspase activation and apoptosis. We also show for the first time that the NMDA receptor partial antagonist, memantine, can prevent isoflurane-induced caspase-3 activation and apoptosis in vivo and in vitro. These findings, indicating that isoflurane-induced caspase activation and apoptosis are dependent on cytosolic calcium levels, should facilitate the provision of safer anesthesia care, especially for Alzheimer's disease and elderly patients. PMID:18434534

  13. VISA is Required for B Cell Expression of TLR7

    PubMed Central

    Xu, Liang-Guo; Jin, Lei; Zhang, Bi-Cheng; Akerlund, Janie L.; Shu, Hong-Bing; Cambier, John C.

    2011-01-01

    B cells play a critical role in the initialization and development of the Systemic Lupus Erythematosus (SLE) that is dependent on the expression of the endosomal ssRNA receptor TLR7. Previous studies have established that B cell expression of TLR7 is controlled by the Type I IFN secreted by Plasmacytoid Dendritic Cells (PDC). Here we report that VISA, also known as MAVS, IPS-1 and CardIf, essential for RIG-I/MDA5-mediated signaling following sensing of cytosolic RNA, regulate B cell expression of TLR7 and CD23. We found that B cells from VISA−/− mouse express reduced TLR7, but normal basal levels of Type I IFN. We also show that while IFNβ and TLR7 agonists synergize to promote TLR7 expression in VISA−/− B cells, they do not fully complement the defect seen in VISA−/− cells. Cell transfer experiments revealed that the observed effects of VISA−/− are B cell intrinsic. The reduced TLR7 expression in B cells is correlated with impaired TLR7 agonist-induced up-regulation of activation markers CD69 and CD86, cell proliferation, production of IFNα, TNF, IL-12 and NF-κB activation. Finally, studies indicate that genetic background may influence the observed phenotype of our VISA−/− mice, since VISA−/− B cells differ in CD23 and TLR7 expression when on C57BL/6 vs 129Sv-C57BL/6 background. Thus, our findings suggest an unexpected link between VISA-mediated cytosolic RLR signaling and autoimmunity. PMID:22105994

  14. VISA is required for B cell expression of TLR7.

    PubMed

    Xu, Liang-Guo; Jin, Lei; Zhang, Bi-Cheng; Akerlund, Linda J; Shu, Hong-Bing; Cambier, John C

    2012-01-01

    B cells play a critical role in the initialization and development of the systemic lupus erythematosus that is dependent on the expression of the endosomal ssRNA receptor TLR7. Previous studies have established that B cell expression of TLR7 is controlled by the type I IFN secreted by plasmacytoid dendritic cells. In this article, we report that VISA, also known as MAVS, IPS-1, and CardIf, essential for RIG-I/MDA5-mediated signaling following sensing of cytosolic RNA, regulate B cell expression of TLR7 and CD23. We found that B cells from a VISA(-/-) mouse express reduced TLR7 but normal basal levels of type I IFN. We also show that although IFN-β and TLR7 agonists synergize to promote TLR7 expression in VISA(-/-) B cells, they do not fully complement the defect seen in VISA(-/-) cells. Cell transfer experiments revealed that the observed effects of VISA(-/-) are B cell intrinsic. The reduced TLR7 expression in B cells is correlated with impaired TLR7 agonist-induced upregulation of activation markers CD69 and CD86, cell proliferation, production of IFN-α, TNF, and IL-12, and NF-κB activation. Finally, studies indicate that genetic background may influence the observed phenotype of our VISA(-/-) mice, because VISA(-/-) B cells differ in CD23 and TLR7 expression when on C57BL/6 versus 129Sv-C57BL/6 background. Thus, our findings suggest an unexpected link between VISA-mediated cytosolic RLR signaling and autoimmunity.

  15. MPC1-like Is a Placental Mammal-specific Mitochondrial Pyruvate Carrier Subunit Expressed in Postmeiotic Male Germ Cells.

    PubMed

    Vanderperre, Benoît; Cermakova, Kristina; Escoffier, Jessica; Kaba, Mayis; Bender, Tom; Nef, Serge; Martinou, Jean-Claude

    2016-08-05

    Selective transport of pyruvate across the inner mitochondrial membrane by the mitochondrial pyruvate carrier (MPC) is a fundamental step that couples cytosolic and mitochondrial metabolism. The recent molecular identification of the MPC complex has revealed two interacting subunits, MPC1 and MPC2. Although in yeast, an additional subunit, MPC3, can functionally replace MPC2, no alternative MPC subunits have been described in higher eukaryotes. Here, we report for the first time the existence of a novel MPC subunit termed MPC1-like (MPC1L), which is present uniquely in placental mammals. MPC1L shares high sequence, structural, and topological homology with MPC1. In addition, we provide several lines of evidence to show that MPC1L is functionally equivalent to MPC1: 1) when co-expressed with MPC2, it rescues pyruvate import in a MPC-deleted yeast strain; 2) in mammalian cells, it can associate with MPC2 to form a functional carrier as assessed by bioluminescence resonance energy transfer; 3) in MPC1 depleted mouse embryonic fibroblasts, MPC1L rescues the loss of pyruvate-driven respiration and stabilizes MPC2 expression; and 4) MPC1- and MPC1L-mediated pyruvate imports show similar efficiency. However, we show that MPC1L has a highly specific expression pattern and is localized almost exclusively in testis and more specifically in postmeiotic spermatids and sperm cells. This is in marked contrast to MPC1/MPC2, which are ubiquitously expressed throughout the organism. To date, the biological importance of this alternative MPC complex during spermatogenesis in placental mammals remains unknown. Nevertheless, these findings open up new avenues for investigating the structure-function relationship within the MPC complex. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. A Glutaredoxin·BolA Complex Serves as an Iron-Sulfur Cluster Chaperone for the Cytosolic Cluster Assembly Machinery*♦

    PubMed Central

    Frey, Avery G.; Palenchar, Daniel J.; Wildemann, Justin D.; Philpott, Caroline C.

    2016-01-01

    Cells contain hundreds of proteins that require iron cofactors for activity. Iron cofactors are synthesized in the cell, but the pathways involved in distributing heme, iron-sulfur clusters, and ferrous/ferric ions to apoproteins remain incompletely defined. In particular, cytosolic monothiol glutaredoxins and BolA-like proteins have been identified as [2Fe-2S]-coordinating complexes in vitro and iron-regulatory proteins in fungi, but it is not clear how these proteins function in mammalian systems or how this complex might affect Fe-S proteins or the cytosolic Fe-S assembly machinery. To explore these questions, we use quantitative immunoprecipitation and live cell proximity-dependent biotinylation to monitor interactions between Glrx3, BolA2, and components of the cytosolic iron-sulfur cluster assembly system. We characterize cytosolic Glrx3·BolA2 as a [2Fe-2S] chaperone complex in human cells. Unlike complexes formed by fungal orthologs, human Glrx3-BolA2 interaction required the coordination of Fe-S clusters, whereas Glrx3 homodimer formation did not. Cellular Glrx3·BolA2 complexes increased 6–8-fold in response to increasing iron, forming a rapidly expandable pool of Fe-S clusters. Fe-S coordination by Glrx3·BolA2 did not depend on Ciapin1 or Ciao1, proteins that bind Glrx3 and are involved in cytosolic Fe-S cluster assembly and distribution. Instead, Glrx3 and BolA2 bound and facilitated Fe-S incorporation into Ciapin1, a [2Fe-2S] protein functioning early in the cytosolic Fe-S assembly pathway. Thus, Glrx3·BolA is a [2Fe-2S] chaperone complex capable of transferring [2Fe-2S] clusters to apoproteins in human cells. PMID:27519415

  17. Cytosolic activation of cell death and stem rust resistance by cereal MLA-family CC-NLR proteins.

    PubMed

    Cesari, Stella; Moore, John; Chen, Chunhong; Webb, Daryl; Periyannan, Sambasivam; Mago, Rohit; Bernoux, Maud; Lagudah, Evans S; Dodds, Peter N

    2016-09-06

    Plants possess intracellular immune receptors designated "nucleotide-binding domain and leucine-rich repeat" (NLR) proteins that translate pathogen-specific recognition into disease-resistance signaling. The wheat immune receptors Sr33 and Sr50 belong to the class of coiled-coil (CC) NLRs. They confer resistance against a broad spectrum of field isolates of Puccinia graminis f. sp. tritici, including the Ug99 lineage, and are homologs of the barley powdery mildew-resistance protein MLA10. Here, we show that, similarly to MLA10, the Sr33 and Sr50 CC domains are sufficient to induce cell death in Nicotiana benthamiana Autoactive CC domains and full-length Sr33 and Sr50 proteins self-associate in planta In contrast, truncated CC domains equivalent in size to an MLA10 fragment for which a crystal structure was previously determined fail to induce cell death and do not self-associate. Mutations in the truncated region also abolish self-association and cell-death signaling. Analysis of Sr33 and Sr50 CC domains fused to YFP and either nuclear localization or nuclear export signals in N benthamiana showed that cell-death induction occurs in the cytosol. In stable transgenic wheat plants, full-length Sr33 proteins targeted to the cytosol provided rust resistance, whereas nuclear-targeted Sr33 was not functional. These data are consistent with CC-mediated induction of both cell-death signaling and stem rust resistance in the cytosolic compartment, whereas previous research had suggested that MLA10-mediated cell-death and disease resistance signaling occur independently, in the cytosol and nucleus, respectively.

  18. SCFSLF-mediated cytosolic degradation of S-RNase is required for cross-pollen compatibility in S-RNase-based self-incompatibility in Petunia hybrida

    PubMed Central

    Liu, Wei; Fan, Jiangbo; Li, Junhui; Song, Yanzhai; Li, Qun; Zhang, Yu'e; Xue, Yongbiao

    2014-01-01

    Many flowering plants adopt self-incompatibility (SI) to maintain their genetic diversity. In species of Solanaceae, Plantaginaceae, and Rosaceae, SI is genetically controlled by a single S-locus with multiple haplotypes. The S-locus has been shown to encode S-RNases expressed in pistil and multiple SLF (S-locus F-box) proteins in pollen controlling the female and male specificity of SI, respectively. S-RNases appear to function as a cytotoxin to reject self-pollen. In addition, SLFs have been shown to form SCF (SKP1/Cullin1/F-box) complexes to serve as putative E3 ubiquitin ligase to interact with S-RNases. Previously, two different mechanisms, the S-RNase degradation and the S-RNase compartmentalization, have been proposed as the restriction mechanisms of S-RNase cytotoxicity allowing compatible pollination. In this study, we have provided several lines of evidence in support of the S-RNase degradation mechanism by a combination of cellular, biochemical and molecular biology approaches. First, both immunogold labeling and subcellular fractionation assays showed that two key pollen SI factors, PhS3L-SLF1 and PhSSK1 (SLF-interacting SKP1-like1) from Petunia hybrida, a Solanaceous species, are co-localized in cytosols of both pollen grains and tubes. Second, PhS3L-RNases are mainly detected in the cytosols of both self and non-self-pollen tubes after pollination. Third, we found that PhS-RNases selectively interact with PhSLFs by yeast two-hybrid and co-immunoprecipitation assays. Fourth, S-RNases are specifically degraded in compatible pollen tubes by non-self SLF action. Taken together, our results demonstrate that SCFSLF-mediated non-self S-RNase degradation occurs in the cytosol of pollen tube through the ubiquitin/26S proteasome system serving as the major mechanism to neutralize S-RNase cytotoxicity during compatible pollination in P. hybrida. PMID:25101113

  19. Ubiquitous Computing Services Discovery and Execution Using a Novel Intelligent Web Services Algorithm

    PubMed Central

    Choi, Okkyung; Han, SangYong

    2007-01-01

    Ubiquitous Computing makes it possible to determine in real time the location and situations of service requesters in a web service environment as it enables access to computers at any time and in any place. Though research on various aspects of ubiquitous commerce is progressing at enterprises and research centers, both domestically and overseas, analysis of a customer's personal preferences based on semantic web and rule based services using semantics is not currently being conducted. This paper proposes a Ubiquitous Computing Services System that enables a rule based search as well as semantics based search to support the fact that the electronic space and the physical space can be combined into one and the real time search for web services and the construction of efficient web services thus become possible.

  20. Distributed user interfaces for clinical ubiquitous computing applications.

    PubMed

    Bång, Magnus; Larsson, Anders; Berglund, Erik; Eriksson, Henrik

    2005-08-01

    Ubiquitous computing with multiple interaction devices requires new interface models that support user-specific modifications to applications and facilitate the fast development of active workspaces. We have developed NOSTOS, a computer-augmented work environment for clinical personnel to explore new user interface paradigms for ubiquitous computing. NOSTOS uses several devices such as digital pens, an active desk, and walk-up displays that allow the system to track documents and activities in the workplace. We present the distributed user interface (DUI) model that allows standalone applications to distribute their user interface components to several devices dynamically at run-time. This mechanism permit clinicians to develop their own user interfaces and forms to clinical information systems to match their specific needs. We discuss the underlying technical concepts of DUIs and show how service discovery, component distribution, events and layout management are dealt with in the NOSTOS system. Our results suggest that DUIs--and similar network-based user interfaces--will be a prerequisite of future mobile user interfaces and essential to develop clinical multi-device environments.

  1. Development of a Ubiquitous Learning Platform Based on a Real-Time Help-Seeking Mechanism

    ERIC Educational Resources Information Center

    Hwang, Gwo-Jen; Wu, Chih-Hsiang; Tseng, Judy C. R.; Huang, Iwen

    2011-01-01

    The popularity of mobile devices has encouraged the advance of ubiquitous learning, in which students are situated in a real-world learning environment with support from the digital world via the use of mobile, wireless communications, or even sensing technologies. Most of the ubiquitous learning systems are implemented with high-cost sensing…

  2. Logic-centered architecture for ubiquitous health monitoring.

    PubMed

    Lewandowski, Jacek; Arochena, Hisbel E; Naguib, Raouf N G; Chao, Kuo-Ming; Garcia-Perez, Alexeis

    2014-09-01

    One of the key points to maintain and boost research and development in the area of smart wearable systems (SWS) is the development of integrated architectures for intelligent services, as well as wearable systems and devices for health and wellness management. This paper presents such a generic architecture for multiparametric, intelligent and ubiquitous wireless sensing platforms. It is a transparent, smartphone-based sensing framework with customizable wireless interfaces and plug'n'play capability to easily interconnect third party sensor devices. It caters to wireless body, personal, and near-me area networks. A pivotal part of the platform is the integrated inference engine/runtime environment that allows the mobile device to serve as a user-adaptable personal health assistant. The novelty of this system lays in a rapid visual development and remote deployment model. The complementary visual Inference Engine Editor that comes with the package enables artificial intelligence specialists, alongside with medical experts, to build data processing models by assembling different components and instantly deploying them (remotely) on patient mobile devices. In this paper, the new logic-centered software architecture for ubiquitous health monitoring applications is described, followed by a discussion as to how it helps to shift focus from software and hardware development, to medical and health process-centered design of new SWS applications.

  3. Transformation of plum plants with a cytosolic ascorbate peroxidase transgene leads to enhanced water stress tolerance.

    PubMed

    Diaz-Vivancos, Pedro; Faize, Lydia; Nicolás, Emilio; Clemente-Moreno, Maria José; Bru-Martinez, Roque; Burgos, Lorenzo; Hernández, José Antonio

    2016-06-01

    Water deficit is the most serious environmental factor limiting agricultural production. In this work, the tolerance to water stress (WS) of transgenic plum lines harbouring transgenes encoding cytosolic antioxidant enzymes was studied, with the aim of achieving the durable resistance of commercial plum trees. The acclimatization process was successful for two transgenic lines: line C3-1, co-expressing superoxide dismutase (two copies) and ascorbate peroxidase (one copy) transgenes simultaneously; and line J8-1, harbouring four copies of the cytosolic ascorbate peroxidase gene (cytapx). Plant water relations, chlorophyll fluorescence and the levels of antioxidant enzymes were analysed in both lines submitted to moderate (7 d) and severe (15 d) WS conditions. Additionally, in line J8-1, showing the best response in terms of stress tolerance, a proteomic analysis and determination of the relative gene expression of two stress-responsive genes were carried out. Line J8-1 exhibited an enhanced stress tolerance that correlated with better photosynthetic performance and a tighter control of water-use efficiency. Furthermore, this WS tolerance also correlated with a higher enzymatic antioxidant capacity than wild-type (WT) and line C3-1 plum plants. On the other hand, line C3-1 displayed an intermediate phenotype between WT plants and line J8-1 in terms of WS tolerance. Under severe WS, the tolerance displayed by J8-1 plants could be due to an enhanced capacity to cope with drought-induced oxidative stress. Moreover, proteomic analysis revealed differences between WT and J8-1 plants, mainly in terms of the abundance of proteins related to carbohydrate metabolism, photosynthesis, antioxidant defences and protein fate. The transformation of plum plants with cytapx has a profound effect at the physiological, biochemical, proteomic and genetic levels, enhancing WS tolerance. Although further experiments under field conditions will be required, it is proposed that J8

  4. Mobile Computing and Ubiquitous Networking: Concepts, Technologies and Challenges.

    ERIC Educational Resources Information Center

    Pierre, Samuel

    2001-01-01

    Analyzes concepts, technologies and challenges related to mobile computing and networking. Defines basic concepts of cellular systems. Describes the evolution of wireless technologies that constitute the foundations of mobile computing and ubiquitous networking. Presents characterization and issues of mobile computing. Analyzes economical and…

  5. OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids.

    PubMed

    Hornung, Veit; Hartmann, Rune; Ablasser, Andrea; Hopfner, Karl-Peter

    2014-08-01

    Recent discoveries in the field of innate immunity have highlighted the existence of a family of nucleic acid-sensing proteins that have similar structural and functional properties. These include the well-known oligoadenylate synthase (OAS) family proteins and the recently identified OAS homologue cyclic GMP-AMP (cGAMP) synthase (cGAS). The OAS proteins and cGAS are template-independent nucleotidyltransferases that, once activated by double-stranded nucleic acids in the cytosol, produce unique classes of 2'-5'-linked second messenger molecules, which - through distinct mechanisms - have crucial antiviral functions. 2'-5'-linked oligoadenylates limit viral propagation through the activation of the enzyme RNase L, which degrades host and viral RNA, and 2'-5'-linked cGAMP activates downstream signalling pathways to induce de novo antiviral gene expression. In this Progress article, we describe the striking functional and structural similarities between OAS proteins and cGAS, and highlight their roles in antiviral immunity.

  6. Cytosolic Proteome Profiling of Aminoglycosides Resistant Mycobacterium tuberculosis Clinical Isolates Using MALDI-TOF/MS.

    PubMed

    Sharma, Divakar; Lata, Manju; Singh, Rananjay; Deo, Nirmala; Venkatesan, Krishnamurthy; Bisht, Deepa

    2016-01-01

    Emergence of extensively drug resistant tuberculosis (XDR-TB) is the consequence of the failure of second line TB treatment. Aminoglycosides are the important second line anti-TB drugs used to treat the multi drug resistant tuberculosis (MDR-TB). Main known mechanism of action of aminoglycosides is to inhibit the protein synthesis by inhibiting the normal functioning of ribosome. Primary target of aminoglycosides are the ribosomal RNA and its associated proteins. Various mechanisms have been proposed for aminoglycosides resistance but still some are unsolved. As proteins are involved in most of the biological processes, these act as a potential diagnostic markers and drug targets. In the present study we analyzed the purely cytosolic proteome of amikacin (AK) and kanamycin (KM) resistant Mycobacterium tuberculosis isolates by proteomic and bioinformatic approaches. Twenty protein spots were found to have over expressed in resistant isolates and were identified. Among these Rv3208A, Rv2623, Rv1360, Rv2140c, Rv1636, and Rv2185c are six proteins with unknown functions or undefined role. Docking results showed that AK and KM binds to the conserved domain (DUF, USP-A, Luciferase, PEBP and Polyketidecyclase/dehydrase domain) of these hypothetical proteins and over expression of these proteins might neutralize/modulate the effect of drug molecules. TBPred and GPS-PUP predicted cytoplasmic nature and potential pupylation sites within these identified proteins, respectively. String analysis also suggested that over expressed proteins along with their interactive partners might be involved in aminoglycosides resistance. Cumulative effect of these over expressed proteins could be involved in AK and KM resistance by mitigating the toxicity, repression of drug target and neutralizing affect. These findings need further exploitation for the expansion of newer therapeutics or diagnostic markers against AK and KM resistance so that an extreme condition like XDR-TB can be prevented.

  7. Perturbation of cytosolic calcium by 2-aminoethoxydiphenyl borate and caffeine affects zebrafish myofibril alignment.

    PubMed

    Wu, Hsin-Ju; Fong, Tsorng-Harn; Chen, Shen-Liang; Wei, Jen-Cheng; Wang, I-Jong; Wen, Chi-Chung; Chang, Chao-Yuan; Chen, Xing-Guang; Chen, Wei-Yu; Chen, Hui-Min; Horng, Juin-Lin; Wang, Yun-Hsin; Chen, Yau-Hung

    2015-03-01

    The objective of the current study was to investigate the effects of Ca(2+) levels on myofibril alignment during zebrafish embryogenesis. To investigate how altered cytoplasmic Ca(2+) levels affect myofibril alignment, we exposed zebrafish embryos to 2-aminothoxyldiphenyl borate (2-APB; an inositol 1,4,5-trisphosphate receptor inhibitor that reduces cytosolic Ca(2+) levels) and caffeine (a ryanodine receptor activator that enhances cytosolic Ca(2+) levels). The results demonstrated that the most evident changes in zebrafish embryos treated with 2-APB were shorter body length, curved trunk and malformed somite boundary. In contrast, such malformed phenotypes were evident neither in untreated controls nor in caffeine-treated embryos. Subtle morphological changes, including changes in muscle fibers, F-actin and ultrastructures were easily observed by staining with specific monoclonal antibodies (F59 and α-laminin), fluorescent probes (phalloidin) and by transmission electron microscopy. Our data suggested that: (1) the exposure to 2-APB and/or caffeine led to myofibril misalignment; (2) 2-APB-treated embryos displayed split and short myofibril phenotypes, whereas muscle fibers from caffeine-treated embryos were twisted and wavy; and (3) zebrafish embryos co-exposed to 2-APB and caffeine resulted in normal myofibril alignment. In conclusion, we proposed that cytosolic Ca(2+) is important for myogenesis, particularly for myofibril alignment. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Cytosolic glyceraldehyde-3-phosphate dehydrogenases play crucial roles in controlling cold-induced sweetening and apical dominance of potato (Solanum tuberosum L.) tubers.

    PubMed

    Liu, Tengfei; Fang, Hui; Liu, Jun; Reid, Stephen; Hou, Juan; Zhou, Tingting; Tian, Zhendong; Song, Botao; Xie, Conghua

    2017-12-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an important enzyme that functions in producing energy and supplying intermediates for cellular metabolism. Recent researches indicate that GAPDHs have multiple functions beside glycolysis. However, little information is available for functions of GAPDHs in potato. Here, we identified 4 putative cytosolic GAPDH genes in potato genome and demonstrated that the StGAPC1, StGAPC2, and StGAPC3, which are constitutively expressed in potato tissues and cold inducible in tubers, encode active cytosolic GAPDHs. Cosuppression of these 3 GAPC genes resulted in low tuber GAPDH activity, consequently the accumulation of reducing sugars in cold stored tubers by altering the tuber metabolite pool sizes favoring the sucrose pathway. Furthermore, GAPCs-silenced tubers exhibited a loss of apical dominance dependent on cell death of tuber apical bud meristem (TAB-meristem). It was also confirmed that StGAPC1, StGAPC2, and StGAPC3 interacted with the autophagy-related protein 3 (ATG3), implying that the occurrence of cell death in TAB-meristem could be induced by ATG3 associated events. Collectively, the present research evidences first that the GAPC genes play crucial roles in diverse physiological and developmental processes in potato tubers. © 2017 John Wiley & Sons Ltd.

  9. High effective cytosolic H+ buffering in mouse cortical astrocytes attributable to fast bicarbonate transport.

    PubMed

    Theparambil, Shefeeq M; Deitmer, Joachim W

    2015-09-01

    Cytosolic H(+) buffering plays a major role for shaping intracellular H(+) shifts and hence for the availability of H(+) for biochemical reactions and acid/base-coupled transport processes. H(+) buffering is one of the prime means to protect the cell from large acid/base shifts. We have used the H(+) indicator dye BCECF and confocal microscopy to monitor the cytosolic H(+) concentration, [H(+)]i, in cultured cortical astrocytes of wild-type mice and of mice deficient in sodium/bicarbonate cotransporter NBCe1 (NBCe1-KO) or in carbonic anhydrase isoform II (CAII-KO). The steady-state buffer strength was calculated from the amplitude of [H(+)]i transients as evoked by CO2/HCO3(-) and by butyric acid in the presence and absence of CO2/HCO3(-). We tested the hypotheses if, in addition to instantaneous physicochemical H(+) buffering, rapid acid/base transport across the cell membrane contributes to the total, "effective" cytosolic H(+) buffering. In the presence of 5% CO2/26 mM HCO3(-), H(+) buffer strength in astrocytes was increased 4-6 fold, as compared with that in non-bicarbonate, HEPES-buffered solution, which was largely attributable to fast HCO3 (-) transport into the cells via NBCe1, supported by CAII activity. Our results show that within the time frame of determining physiological H(+) buffering in cells, fast transport and equilibration of CO2/H(+)/HCO3(-) can make a major contribution to the total "effective" H(+) buffer strength. Thus, "effective" cellular H(+) buffering is, to a large extent, attributable to membrane transport of base equivalents rather than a purely passive physicochemical process, and can be much larger than reported so far. Not only physicochemical H(+) buffering, but also rapid import of HCO3(-) via the electrogenic sodium-bicarbonate cotransporter NBCe1, supported by carbonic anhydrase II (CA II), was identified to enhance cytosolic H(+) buffer strength substantially. © 2015 Wiley Periodicals, Inc.

  10. [Facing the challenges of ubiquitous computing in the health care sector].

    PubMed

    Georgieff, Peter; Friedewald, Michael

    2010-01-01

    The steady progress of microelectronics, communications and information technology will enable the realisation of the vision for "ubiquitous computing" where the Internet extends into the real world embracing everyday objects. The necessary technical basis is already in place. Due to their diminishing size, constantly falling price and declining energy consumption, processors, communications modules and sensors are being increasingly integrated into everyday objects today. This development is opening up huge opportunities for both the economy and individuals. In the present paper we discuss possible applications, but also technical, social and economic barriers to a wide-spread use of ubiquitous computing in the health care sector. .

  11. Mst1 shuts off cytosolic antiviral defense through IRF3 phosphorylation

    PubMed Central

    Meng, Fansen; Zhou, Ruyuan; Wu, Shiying; Zhang, Qian; Jin, Qiuheng; Zhou, Yao; Plouffe, Steven W.; Liu, Shengduo; Song, Hai; Xia, Zongping; Zhao, Bin; Ye, Sheng; Feng, Xin-Hua; Guan, Kun-Liang; Zou, Jian

    2016-01-01

    Cytosolic RNA/DNA sensing elicits primary defense against viral pathogens. Interferon regulatory factor 3 (IRF3), a key signal mediator/transcriptional factor of the antiviral-sensing pathway, is indispensible for interferon production and antiviral defense. However, how the status of IRF3 activation is controlled remains elusive. Through a functional screen of the human kinome, we found that mammalian sterile 20-like kinase 1 (Mst1), but not Mst2, profoundly inhibited cytosolic nucleic acid sensing. Mst1 associated with IRF3 and directly phosphorylated IRF3 at Thr75 and Thr253. This Mst1-mediated phosphorylation abolished activated IRF3 homodimerization, its occupancy on chromatin, and subsequent IRF3-mediated transcriptional responses. In addition, Mst1 also impeded virus-induced activation of TANK-binding kinase 1 (TBK1), further attenuating IRF3 activation. As a result, Mst1 depletion or ablation enabled an enhanced antiviral response and defense in cells and mice. Therefore, the identification of Mst1 as a novel physiological negative regulator of IRF3 activation provides mechanistic insights into innate antiviral defense and potential antiviral prevention strategies. PMID:27125670

  12. Denatured protein-coated docetaxel nanoparticles: Alterable drug state and cytosolic delivery.

    PubMed

    Zhang, Li; Xiao, Qingqing; Wang, Yiran; Zhang, Chenshuang; He, Wei; Yin, Lifang

    2017-05-15

    Many lead compounds have a low solubility in water, which substantially hinders their clinical application. Nanosuspensions have been considered a promising strategy for the delivery of water-insoluble drugs. Here, denatured soy protein isolate (SPI)-coated docetaxel nanosuspensions (DTX-NS) were developed using an anti-solvent precipitation-ultrasonication method to improve the water-solubility of DTX, thus improving its intracellular delivery. DTX-NS, with a diameter of 150-250nm and drug-loading up to 18.18%, were successfully prepared by coating drug particles with SPI. Interestingly, the drug state of DTX-NS was alterable. Amorphous drug nanoparticles were obtained at low drug-loading, whereas at a high drug-loading, the DTX-NS drug was mainly present in the crystalline state. Moreover, DTX-NS could be internalized at high levels by cancer cells and enter the cytosol by lysosomal escape, enhancing cell cytotoxicity and apoptosis compared with free DTX. Taken together, denatured SPI has a strong stabilization effect on nanosuspensions, and the drug state in SPI-coated nanosuspensions is alterable by changing the drug-loading. Moreover, DTX-NS could achieve cytosolic delivery, generating enhanced cell cytotoxicity against cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Cytosolic Nucleotides Block and Regulate the Arabidopsis Vacuolar Anion Channel AtALMT9*

    PubMed Central

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-01-01

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al3+ to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. PMID:25028514

  14. Cytosolic nucleotides block and regulate the Arabidopsis vacuolar anion channel AtALMT9.

    PubMed

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-09-12

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al(3+) to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Liver cytosolic 1 antigen-antibody system in type 2 autoimmune hepatitis and hepatitis C virus infection.

    PubMed Central

    Lenzi, M; Manotti, P; Muratori, L; Cataleta, M; Ballardini, G; Cassani, F; Bianchi, F B

    1995-01-01

    Within the multiform liver/kidney microsomal (LKM) family, a subgroup of sera that reacts with a liver cytosolic (LC) protein has been isolated and the new antigen-antibody system is called LC1. Unlike LKM antibody type 1 (anti-LKM1), anti-LC1 is said to be unrelated to hepatitis C virus (HCV) infection and has therefore been proposed as a marker of 'true' autoimmune hepatitis type 2. Altogether 100 LKM1 positive sera were tested by immunodiffusion (ID). Twenty five gave a precipitation line with human liver cytosol; 17 of the 25 also reacted with rat liver cytosol. Thirteen of the 25 sera were anti-HCV positive by second generation ELISA: anti-HCV positive patients were significantly older (p < 0.001) and tended to have less active disease. No difference in anti-LC1 titre or ID immunoreactivity was found between anti-LC1/anti-HCV positive and anti-LC1/anti-HCV negative cases. In Western blotting experiments, 14 of 24 ID positive sera recognised a 58 kD protein of the human cytosolic fraction and 11 gave a similar reactivity when tested with human microsomes, suggesting the presence of the LC1 target antigen also in the microsomal preparation. Western blotting reactivity was similar for both anti-HCV positive and negative sera. These data confirm the existence of the LC1 antigen-antibody system that partially overlaps with LKM1, and that it is an additional marker of juvenile autoimmune hepatitis type 2. It does not, however, discriminate between patients with and without HCV infection. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7797126

  16. Metformin and phenformin activate AMP-activated protein kinase in the heart by increasing cytosolic AMP concentration.

    PubMed

    Zhang, Li; He, Huamei; Balschi, James A

    2007-07-01

    AMP-activated protein kinase (AMPK) acts as a cellular energy sensor: it responds to an increase in AMP concentration ([AMP]) or the AMP-to-ATP ratio (AMP/ATP). Metformin and phenformin, which are biguanides, have been reported to increase AMPK activity without increasing AMP/ATP. This study tests the hypothesis that these biguanides increase AMPK activity in the heart by increasing cytosolic [AMP]. Groups of isolated rat hearts (n = 5-7 each) were perfused with Krebs-Henseleit buffer with or without 0.2 mM phenformin or 10 mM metformin, and (31)P-NMR-measured phosphocreatine, ATP, and intracellular pH were used to calculate cytosolic [AMP]. At various times, hearts were freeze-clamped and assayed for AMPK activity, phosphorylation of Thr(172) on AMPK-alpha, and phosphorylation of Ser(79) on acetyl-CoA carboxylase, an AMPK target. In hearts treated with phenformin for 18 min and then perfused for 20 min with Krebs-Henseleit buffer, [AMP] began to increase at 26 min and AMPK activity was elevated at 36 min. In hearts treated with metformin, [AMP] was increased at 50 min and AMPK activity, phosphorylated AMPK, and phosphorylated acetyl-CoA carboxylase were elevated at 61 min. In metformin-treated hearts, HPLC-measured total AMP content and total AMP/ATP did not increase. In summary, phenformin and metformin increase AMPK activity and phosphorylation in the isolated heart. The increase in AMPK activity was always preceded by and correlated with increased cytosolic [AMP]. Total AMP content and total AMP/ATP did not change. Cytosolic [AMP] reported metabolically active AMP, which triggered increased AMPK activity, but measures of total AMP did not.

  17. Ubiquitous Complete in a Web 2.0 World

    ERIC Educational Resources Information Center

    Bull, Glen; Ferster, Bill

    2006-01-01

    In the third wave of computing, people will interact with multiple computers in multiple ways in every setting. The value of ubiquitous computing is enhanced and reinforced by another trend: the transition to a Web 2.0 world. In a Web 2.0 world, applications and data reside on the Web itself. Schools are not yet approaching a ratio of one…

  18. A Cytosolic Amphiphilic α-Helix Controls the Activity of the Bile Acid-sensitive Ion Channel (BASIC)*

    PubMed Central

    Schmidt, Axel; Löhrer, Daniel; Alsop, Richard J.; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Wirtz, Monika; Rheinstädter, Maikel C.; Gründer, Stefan; Wiemuth, Dominik

    2016-01-01

    The bile acid-sensitive ion channel (BASIC) is a member of the degenerin/epithelial Na+ channel (Deg/ENaC) family of ion channels. It is mainly found in bile duct epithelial cells, the intestinal tract, and the cerebellum and is activated by alterations of its membrane environment. Bile acids, one class of putative physiological activators, exert their effect by changing membrane properties, leading to an opening of the channel. The physiological function of BASIC, however, is unknown. Deg/ENaC channels are characterized by a trimeric subunit composition. Each subunit is composed of two transmembrane segments, which are linked by a large extracellular domain. The termini of the channels protrude into the cytosol. Many Deg/ENaC channels contain regulatory domains and sequence motifs within their cytosolic domains. In this study, we show that BASIC contains an amphiphilic α-helical structure within its N-terminal domain. This α-helix binds to the cytosolic face of the plasma membrane and stabilizes a closed state. Truncation of this domain renders the channel hyperactive. Collectively, we identify a cytoplasmic domain, unique to BASIC, that controls channel activity via membrane interaction. PMID:27679529

  19. A Cytosolic Amphiphilic α-Helix Controls the Activity of the Bile Acid-sensitive Ion Channel (BASIC).

    PubMed

    Schmidt, Axel; Löhrer, Daniel; Alsop, Richard J; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Wirtz, Monika; Rheinstädter, Maikel C; Gründer, Stefan; Wiemuth, Dominik

    2016-11-18

    The bile acid-sensitive ion channel (BASIC) is a member of the degenerin/epithelial Na + channel (Deg/ENaC) family of ion channels. It is mainly found in bile duct epithelial cells, the intestinal tract, and the cerebellum and is activated by alterations of its membrane environment. Bile acids, one class of putative physiological activators, exert their effect by changing membrane properties, leading to an opening of the channel. The physiological function of BASIC, however, is unknown. Deg/ENaC channels are characterized by a trimeric subunit composition. Each subunit is composed of two transmembrane segments, which are linked by a large extracellular domain. The termini of the channels protrude into the cytosol. Many Deg/ENaC channels contain regulatory domains and sequence motifs within their cytosolic domains. In this study, we show that BASIC contains an amphiphilic α-helical structure within its N-terminal domain. This α-helix binds to the cytosolic face of the plasma membrane and stabilizes a closed state. Truncation of this domain renders the channel hyperactive. Collectively, we identify a cytoplasmic domain, unique to BASIC, that controls channel activity via membrane interaction. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Design requirements for ubiquitous computing environments for healthcare professionals.

    PubMed

    Bång, Magnus; Larsson, Anders; Eriksson, Henrik

    2004-01-01

    Ubiquitous computing environments can support clinical administrative routines in new ways. The aim of such computing approaches is to enhance routine physical work, thus it is important to identify specific design requirements. We studied healthcare professionals in an emergency room and developed the computer-augmented environment NOSTOS to support teamwork in that setting. NOSTOS uses digital pens and paper-based media as the primary input interface for data capture and as a means of controlling the system. NOSTOS also includes a digital desk, walk-up displays, and sensor technology that allow the system to track documents and activities in the workplace. We propose a set of requirements and discuss the value of tangible user interfaces for healthcare personnel. Our results suggest that the key requirements are flexibility in terms of system usage and seamless integration between digital and physical components. We also discuss how ubiquitous computing approaches like NOSTOS can be beneficial in the medical workplace.

  1. Cytosolic and mitochondrial [Ca2+] in whole hearts using indo-1 acetoxymethyl ester: effects of high extracellular Ca2+.

    PubMed Central

    Schreur, J H; Figueredo, V M; Miyamae, M; Shames, D M; Baker, A J; Camacho, S A

    1996-01-01

    Assessment of free cytosolic [Ca2+] ([Ca2+]c) using the acetoxymethyl ester (AM) form of indo-1 may be compromised by loading of indo-1 into noncytosolic compartments, primarily mitochondria. To determine the fraction of noncytosolic fluorescence in whole hearts loaded with indo-1 AM, Mn2+ was used to quench cytosolic fluorescence. Residual (i.e., noncytosolic) fluorescence was subtracted from the total fluorescence before calculating [Ca2+]c. Noncytosolic fluorescence was used to estimate mitochondrial [Ca2+]. In hearts paced at 5 Hz (N = 17), noncytosolic fluorescence was 0.61 +/- 0.06 and 0.56 +/- 0.07 of total fluorescence at lambda 385 and lambda 456, respectively. After taking into account noncytosolic fluorescence, systolic and diastolic [Ca2+]c was 673 +/- 72 and 132 +/- 9 nM, respectively, noncytosolic [Ca2+] was 183 +/- 36 nM and increased to 272 +/- 12 when extracellular Ca2+ was increased from 2 to 6 mM. This increase in noncytosolic [Ca2+] was inhibited by ruthenium red, a blocker of Ca2+ uptake by mitochondria. We conclude that cytosolic and mitochondrial [Ca2+] can be determined in whole hearts loaded with indo-1 AM by using Mn2+ to quench cytosolic fluorescence. PMID:8744296

  2. Effects of calcium and magnesium ions on the interaction of corticosterone with rat brain cytosol receptor(s).

    PubMed

    Nakai, T; Ueda, M; Takeda, R

    1978-01-01

    The apparent maximum corticosterone binding (B max) with rat brain cytosol and the apparent dissociation constant of this steroid-receptor binding (Kd) estimated with a Scatchard plot was 2.9 X 10(-13) moles/mg cytosol protein and 4.0 X 10(-9) M, respectively. When increasing amounts of CaCl2 or MgCl2 up to 5.0 mM were added, a specific [3H] corticosterone binding increased 4-fold by CaCl2 at concentrations of 1.0-2.0 mM and 1.5-fold by MgCl2 at concentrations of 0.5-5.0 mM. The addition of MnCl2 and KCl did not affect this binding. Binding of corticosterone with rat brain cytosol receptor(s) were decreased by increasing amounts of EGTA and complete inhibition was observed at concentrations equal to and greater than 2.5 mM. Inhibition of this binding by EDTA was less than by EGTA. Either theophylline or dibutyryl cyclic AMP had no effect on this binding.

  3. Hsp70 facilitates trans-membrane transport of bacterial ADP-ribosylating toxins into the cytosol of mammalian cells.

    PubMed

    Ernst, Katharina; Schmid, Johannes; Beck, Matthias; Hägele, Marlen; Hohwieler, Meike; Hauff, Patricia; Ückert, Anna Katharina; Anastasia, Anna; Fauler, Michael; Jank, Thomas; Aktories, Klaus; Popoff, Michel R; Schiene-Fischer, Cordelia; Kleger, Alexander; Müller, Martin; Frick, Manfred; Barth, Holger

    2017-06-02

    Binary enterotoxins Clostridium (C.) botulinum C2 toxin, C. perfringens iota toxin and C. difficile toxin CDT are composed of a transport (B) and a separate non-linked enzyme (A) component. Their B-components mediate endocytic uptake into mammalian cells and subsequently transport of the A-components from acidic endosomes into the cytosol, where the latter ADP-ribosylate G-actin resulting in cell rounding and cell death causing clinical symptoms. Protein folding enzymes, including Hsp90 and peptidyl-prolyl cis/trans isomerases facilitate transport of the A-components across endosomal membranes. Here, we identified Hsp70 as a novel host cell factor specifically interacting with A-components of C2, iota and CDT toxins to facilitate their transport into the cell cytosol. Pharmacological Hsp70-inhibition specifically prevented pH-dependent trans-membrane transport of A-components into the cytosol thereby protecting living cells and stem cell-derived human miniguts from intoxication. Thus, Hsp70-inhibition might lead to development of novel therapeutic strategies to treat diseases associated with bacterial ADP-ribosylating toxins.

  4. Transgene expression of green fluorescent protein and germ line transmission in cloned pigs derived from in vitro transfected adult fibroblasts.

    PubMed

    Brunetti, Dario; Perota, Andrea; Lagutina, Irina; Colleoni, Silvia; Duchi, Roberto; Calabrese, Fiorella; Seveso, Michela; Cozzi, Emanuele; Lazzari, Giovanna; Lucchini, Franco; Galli, Cesare

    2008-12-01

    The pig represents the xenogeneic donor of choice for future organ transplantation in humans for anatomical and physiological reasons. However, to bypass several immunological barriers, strong and stable human genes expression must occur in the pig's organs. In this study we created transgenic pigs using in vitro transfection of cultured cells combined with somatic cell nuclear transfer (SCNT) to evaluate the ubiquitous transgene expression driven by pCAGGS vector in presence of different selectors. pCAGGS confirmed to be a very effective vector for ubiquitous transgene expression, irrespective of the selector that was used. Green fluorescent protein (GFP) expression observed in transfected fibroblasts was also maintained after nuclear transfer, through pre- and postimplantation development, at birth and during adulthood. Germ line transmission without silencing of the transgene was demonstrated. The ubiquitous expression of GFP was clearly confirmed in several tissues including endothelial cells, thus making it a suitable vector for the expression of multiple genes relevant to xenotransplantation where tissue specificity is not required. Finally cotransfection of green and red fluorescence protein transgenes was performed in fibroblasts and after nuclear transfer blastocysts expressing both fluorescent proteins were obtained.

  5. Nociceptive DRG neurons express muscle lim protein upon axonal injury.

    PubMed

    Levin, Evgeny; Andreadaki, Anastasia; Gobrecht, Philipp; Bosse, Frank; Fischer, Dietmar

    2017-04-04

    Muscle lim protein (MLP) has long been regarded as a cytosolic and nuclear muscular protein. Here, we show that MLP is also expressed in a subpopulation of adult rat dorsal root ganglia (DRG) neurons in response to axonal injury, while the protein was not detectable in naïve cells. Detailed immunohistochemical analysis of L4/L5 DRG revealed ~3% of MLP-positive neurons 2 days after complete sciatic nerve crush and maximum ~10% after 4-14 days. Similarly, in mixed cultures from cervical, thoracic, lumbar and sacral DRG ~6% of neurons were MLP-positive after 2 days and maximal 17% after 3 days. In both, histological sections and cell cultures, the protein was detected in the cytosol and axons of small diameter cells, while the nucleus remained devoid. Moreover, the vast majority could not be assigned to any of the well characterized canonical DRG subpopulations at 7 days after nerve injury. However, further analysis in cell culture revealed that the largest population of MLP expressing cells originated from non-peptidergic IB4-positive nociceptive neurons, which lose their ability to bind the lectin upon axotomy. Thus, MLP is mostly expressed in a subset of axotomized nociceptive neurons and can be used as a novel marker for this population of cells.

  6. Empowering Pre-Service Teachers to Produce Ubiquitous Flipped Classes

    ERIC Educational Resources Information Center

    García-Sánchez, Soraya; Santos-Espino, Jose Miguel

    2017-01-01

    This work focuses on technological and educational outcomes that resulted from the production of foreign language educational videos by 90 pre-service instructors enrolled in an official Master's Degree in Secondary Education programme. This teaching practice, conducted during two consecutive years, was set in a ubiquitous learning environment…

  7. Interplay Between Cytosolic Free Zn2+ and Mitochondrion Morphological Changes in Rat Ventricular Cardiomyocytes.

    PubMed

    Billur, Deniz; Tuncay, Erkan; Okatan, Esma Nur; Olgar, Yusuf; Durak, Aysegul Toy; Degirmenci, Sinan; Can, Belgin; Turan, Belma

    2016-11-01

    The Zn 2+ in cardiomyocytes is buffered by structures near T-tubulus and/or sarcoplasmic/endoplasmic reticulum (S(E)R) while playing roles as either an antioxidant or a toxic agent, depending on the concentration. Therefore, we aimed first to examine a direct effect of ZnPO 4 (extracellular exposure) or Zn 2+ pyrithione (ZnPT) (intracellular exposure) application on the structure of the mitochondrion in ventricular cardiomyocytes by using histological investigations. The light microscopy data demonstrated that Zn 2+ exposure induced marked increases on cellular surface area, an indication of hypertrophy, in a concentration-dependent manner. Furthermore, a whole-cell patch-clamp measurement of cell capacitance also supported the hypertrophy in the cells. We observed marked increases in mitochondrial matrix/cristae area and matrix volume together with increased lysosome numbers in ZnPO 4 - or ZnPT-incubated cells by using transmission electron microscopy, again in a concentration-dependent manner. Furthermore, we observed notable clustering and vacuolated mitochondrion, markedly disrupted and damaged myofibrils, and electron-dense small granules in Zn 2+ -exposed cells together with some implications of fission-fusion defects in the mitochondria. Moreover, we observed marked depolarization in mitochondrial membrane potential during 1-μM ZnPT minute applications by using confocal microscopy. We also showed that 1-μM ZnPT incubation induced significant increases in the phosphorylation levels of GSK3β (Ser21 and Ser9), Akt (Ser473), and NFκB (Ser276 and Thr254) together with increased expression levels in ER stress proteins such as GRP78 and calregulin. Furthermore, a new key player at ER-mitochondria sites, promyelocytic leukemia protein (PML) level, was markedly increased in ZnPT-incubated cells. As a summary, our present data suggest that increased cytosolic free Zn 2+ can induce marked alterations in mitochondrion morphology as well as depolarization in

  8. Expression of ribosomopathy genes during Xenopus tropicalis embryogenesis.

    PubMed

    Robson, Andrew; Owens, Nick D L; Baserga, Susan J; Khokha, Mustafa K; Griffin, John N

    2016-10-26

    Because ribosomes are ubiquitously required for protein production, it was long assumed that any inherited defect in ribosome manufacture would be embryonically lethal. However, several human congenital diseases have been found to be associated with mutations in ribosome biogenesis factors. Surprisingly, despite the global requirement for ribosomes, these "ribosomopathies" are characterized by distinct and tissue specific phenotypes. The reasons for such tissue proclivity in ribosomopathies remain mysterious but may include differential expression of ribosome biogenesis factors in distinct tissues. Here we use in situ hybridization of labeled antisense mRNA probes and ultra high temporal resolution RNA-Seq data to examine and compare expression of 13 disease associated ribosome biogenesis factors at six key stages in Xenopus tropicalis development. Rather than being ubiquitously expressed during development, mRNAs of all examined ribosome biogenesis factors were highly enriched in specific tissues, including the cranial neural crest and ventral blood islands. Interestingly, expression of ribosome biogenesis factors demonstrates clear differences in timing, transcript number and tissue localization. Ribosome biogenesis factor expression is more spatiotemporally regulated during embryonic development than previously expected and correlates closely with many of the common ribosomopathy phenotypes. Our findings provide information on the dynamic use of ribosome production machinery components during development and advance our understanding of their roles in disease.

  9. A comprehensive Reputation mechanism for ubiquitous healthcare environment exploiting cloud model.

    PubMed

    Athanasiou, Georgia; Lymberopoulos, Dimitrios

    2016-08-01

    Absence of trust foundations may outweigh benefits of ubiquitous and personalized mental healthcare supervision provided within a Ubiquitous Healthcare environment (UH). Trust is composed by patient's Personal Interaction Experience (PIE) and social entourage accumulated PIE, i.e. Reputation (R). In this paper, a cloud-based Reputation mechanism is proposed. Since PIE is the elementary trust information source, also an Updating mechanism of PIE, is introduced, in this paper. Cloud materialization of combined mechanisms provides adaptability to UH Providers' dynamic behavior, facilitates detection of milking behaviors and complex malicious attacks while meets the challenge of limited accuracy in case of data sparseness. The effectiveness of the proposed mechanisms is verified via simulation in MATLAB.

  10. Initial biochemical and functional characterization of a 5'-nucleotidase from Xylella fastidiosa related to the human cytosolic 5'-nucleotidase I.

    PubMed

    Santos, Clelton A; Saraiva, Antonio M; Toledo, Marcelo A S; Beloti, Lilian L; Crucello, Aline; Favaro, Marianna T P; Horta, Maria A C; Santiago, André S; Mendes, Juliano S; Souza, Alessandra A; Souza, Anete P

    2013-01-01

    The 5'-nucleotidases constitute a ubiquitous family of enzymes that catalyze either the hydrolysis or the transfer of esterified phosphate at the 5' position of nucleoside monophosphates. These enzymes are responsible for the regulation of nucleotide and nucleoside levels in the cell and can interfere with the phosphorylation-dependent activation of nucleoside analogs used in therapies targeting solid tumors and viral infections. In the present study, we report the initial biochemical and functional characterization of a 5'-nucleotidase from Xylella fastidiosa that is related to the human cytosolic 5'-nucleotidase I. X. fastidiosa is a plant pathogenic bacterium that is responsible for numerous economically important crop diseases. Biochemical assays confirmed the phosphatase activity of the recombinant purified enzyme and revealed metal ion dependence for full enzyme activity. In addition, we investigated the involvement of Xf5'-Nt in the formation of X. fastidiosa biofilms, which are structures that occlude the xylem vessels of susceptible plants and are strictly associated with bacterial pathogenesis. Using polyclonal antibodies against Xf5'-Nt, we observed an overexpression of Xf5'-Nt during the initial phases of X. fastidiosa biofilm formation that was not observed during X. fastidiosa planktonic growth. Our results demonstrate that the de/phosphorylation network catalyzed by 5'-nucleotidases may play an important role in bacterial biofilm formation, thereby contributing novel insights into bacterial nucleotide metabolism and pathogenicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Dynamin-Related Protein 1 Translocates from the Cytosol to Mitochondria during UV-Induced Apoptosis

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenzhen; Wu, Shengnan; Feng, Jie

    2011-01-01

    Mitochondria are dynamic structures that frequently divide and fuse with one another to form interconnecting network. This network disintegrates into punctiform organelles during apoptosis. However, the mechanisms involved in these processes are still not well characterized. In this study, we investigate the role of dynamin-related protein 1 (Drp1), a large GTPase that mediates outer mitochondrial membrane fission, in mitochondrial dynamics in response to UV irradiation in human lung adenocarcinoma cells (ASTC-α-1) and HeLa cells. Using time-lapse fluorescent imaging, we find that Drp1 primarily distributes in cytosol under physiological conditions. After UV treatment, Drp1 translocates from cytosol to mitochondria, indicating the enhancement of Drp1 mitochondrial accumulation. Our results suggest that Drp1 is involved in the regulation of transition from an interconnecting network to a punctiform mitochondrial phenotype during UV-induced apoptosis.

  12. Ubiquitous overexpression of Hey1 transcription factor leads to osteopenia and chondrocyte hypertrophy in bone.

    PubMed

    Salie, Rishard; Kneissel, Michaela; Vukevic, Mirko; Zamurovic, Natasa; Kramer, Ina; Evans, Glenda; Gerwin, Nicole; Mueller, Matthias; Kinzel, Bernd; Susa, Mira

    2010-03-01

    The transcription factor Hey1, a known Notch target gene of the HES family, has recently been described as a target gene of bone morphogenetic protein-2 (BMP-2) during osteoblastic differentiation in vitro. As the role of Hey1 in skeletal physiology is unknown, we analyzed bones of mice ubiquitously lacking or overexpressing Hey1. This strategy enabled us to evaluate whether Hey1 modulation in the whole organism could serve as a drug or antibody target for therapy of diseases associated with bone loss. Hey1 deficiency resulted in modest osteopenia in vivo and increased number and activity of osteoclasts generated ex vivo. Hey1 overexpression resulted in distinct progressive osteopenia and inhibition of osteoblasts ex vivo, an effect apparently dominant to a mild inhibition of osteoclasts. In both Hey1 deficient and overexpressing mice, males were less affected than females and skeleton was not affected during development. Bone histomorphometry did not reveal major changes in animals at 20 weeks, suggesting that modulation had occurred before. Adult Hey1 transgenics also displayed increased type X collagen expression and an enlarged hypertrophic zone in the growth plate. Taken together, our data suggest that ubiquitous in vivo Hey1 regulation affects osteoblasts, osteoclasts and chondrocytes. Due to the complex role of Hey1 in bone, inhibition of Hey1 does not appear to be a straightforward therapeutic strategy to increase the bone mass.

  13. Not changes in membrane fluidity but proteotoxic stress triggers heat shock protein expression in Chlamydomonas reinhardtii.

    PubMed

    Rütgers, Mark; Muranaka, Ligia Segatto; Schulz-Raffelt, Miriam; Thoms, Sylvia; Schurig, Juliane; Willmund, Felix; Schroda, Michael

    2017-12-01

    A conserved reaction of all organisms exposed to heat stress is an increased expression of heat shock proteins (HSPs). Several studies have proposed that HSP expression in heat-stressed plant cells is triggered by an increased fluidity of the plasma membrane. Among the main lines of evidence in support of this model are as follows: (a) the degree of membrane lipid saturation was higher in cells grown at elevated temperatures and correlated with a lower amplitude of HSP expression upon a temperature upshift, (b) membrane fluidizers induce HSP expression at physiological temperatures, and (c) membrane rigidifier dimethylsulfoxide dampens heat-induced HSP expression. Here, we tested whether this holds also for Chlamydomonas reinhardtii. We show that heat-induced HSP expression in cells grown at elevated temperatures was reduced because they already contained elevated levels of cytosolic HSP70A/90A that apparently act as negative regulators of heat shock factor 1. We find that membrane rigidifier dimethylsulfoxide impaired translation under heat stress conditions and that membrane fluidizer benzyl alcohol not only induced HSP expression but also caused protein aggregation. These findings support the classical model for the cytosolic unfolded protein response, according to which HSP expression is induced by the accumulation of unfolded proteins. Hence, the membrane fluidity model should be reconsidered. © 2017 John Wiley & Sons Ltd.

  14. A NOVEL S-ADENOSYL-L-METHIONINE: ARSENIC (III) METHYLTRANSFERASE FROM RAT LIVER CYTOSOL

    EPA Science Inventory

    A Novel S-Adenosyl-L-methionine: Arsenic(III) Methyltransferase from Rat Liver Cytosol
    Shan Lin, Qing Shi, F. Brent Nix, Miroslav Styblo, Melinda A. Beck, Karen M. Herbin-Davis, Larry L. Hall, Josef B. Simeonsson, and David J. Thomas
    S-adenosyl-L-methionine (AdoMet): ar...

  15. Potassium extrusion by the moderately halophilic and alkaliphilic methanogen methanolobus taylorii GS-16 and homeostasis of cytosolic pH.

    PubMed Central

    Ni, S; Boone, J E; Boone, D R

    1994-01-01

    Methanolobus taylorii GS-16, a moderately halophilic and alkaliphilic methanogen, grows over a wide pH range, from 6.8 to 9.0. Cells suspended in medium with a pH above 8.2 reversed their transmembrane pH gradient (delta pH), making their cytosol more acidic than the medium. The decreased energy in the proton motive force due to the reversed delta pH was partly compensated by an increased electric membrane potential (delta psi). The cytosolic acidification by M. taylorii at alkaline pH values was accompanied by K+ extrusion. The cytosolic K+ concentration was 110 mM in cells suspended at pH 8.7, but it was 320 mM in cells suspended at neutral pH values. High external K+ concentrations (210 mM or higher) inhibited the growth of M. taylorii at alkaline pH values, perhaps by preventing K+ extrusion. Cells suspended at pH 8.5 and 300 mM external K+ failed to acidify their cytosol. The key observation indicative of the involvement of K+ transport in cytosolic acidification was that valinomycin (0.8 microM), a K+ uniporter, inhibited the growth of M. taylorii only at alkaline pH values. Experiments with resting cells indicated that at alkaline pH values valinomycin uncoupled catabolic reactions from ATP synthesis. Thus, K+/H+ antiport activity was proposed to account for the K+ extrusion and the uncoupling effect of valinomycin at alkaline pH values. Such antiport activity was demonstrated by the sharp drop in pH of the bulk medium of the cell suspension upon the addition of 0.1 M KCl. The antiporter appeared to be active only at alkaline pH values, which was in accordance with a possible role in pH homeostasis by M. taylorii growing at alkaline pH values. PMID:7961499

  16. Cytosolic phosphoenolpyruvate carboxykinase is a response gene involved in porcine adipocyte adaptation to heat stress.

    PubMed

    Qu, Huan; Ajuwon, Kolapo M

    2018-05-04

    Heat stress (HS) leads to increased lipid storage and expression of cytosolic phosphoenolpyruvate carboxykinase (PCK1) in pig adipocytes. However, the importance of PCK1 activation and lipid storage in the adaptive response to HS is unknown. Therefore, in vitro experiments were conducted to investigate the effect of PCK1 inhibition with 3-mercaptopicolinic acid (3MPA) on lipid storage and adipocyte response during HS. In vitro culture of adipocytes under HS (41.0 °C) increased (P < 0.05) triacylglycerol accumulation compared with control (37.0 °C). HS increased (P < 0.05) reactive oxygen species level and 3MPA further upregulated (P < 0.05) its level. Heat shock protein 70 (HSP70) gene expression was induced (P < 0.05) by HS compared to control, and PCK1 inhibition with 3MPA attenuated (P < 0.05) its induction by HS. The endoplasmic reticulum (ER) stress markers, C/EBP homologous protein (CHOP) was also upregulated by HS and 3MPA further upregulated (P < 0.05) CHOP mRNA level. These results suggest that with inhibition of PCK1 during HS, in vitro cultured adipocytes were less able to induce adaptive responses such as upregulation of HSP70 and triglycerides, and this exacerbated ER stress during HS. Thus, PCK1 may function to alleviate ER stress that occurs during HS.

  17. A cytosolic copper storage protein provides a second level of copper tolerance in Streptomyces lividans.

    PubMed

    Straw, Megan L; Chaplin, Amanda K; Hough, Michael A; Paps, Jordi; Bavro, Vassiliy N; Wilson, Michael T; Vijgenboom, Erik; Worrall, Jonathan A R

    2018-01-24

    Streptomyces lividans has a distinct dependence on the bioavailability of copper for its morphological development. A cytosolic copper resistance system is operative in S. lividans that serves to preclude deleterious copper levels. This system comprises of several CopZ-like copper chaperones and P 1 -type ATPases, predominantly under the transcriptional control of a metalloregulator from the copper sensitive operon repressor (CsoR) family. In the present study, we discover a new layer of cytosolic copper resistance in S. lividans that involves a protein belonging to the newly discovered family of copper storage proteins, which we have named Ccsp (cytosolic copper storage protein). From an evolutionary perspective, we find Ccsp homologues to be widespread in Bacteria and extend through into Archaea and Eukaryota. Under copper stress Ccsp is upregulated and consists of a homotetramer assembly capable of binding up to 80 cuprous ions (20 per protomer). X-ray crystallography reveals 18 cysteines, 3 histidines and 1 aspartate are involved in cuprous ion coordination. Loading of cuprous ions to Ccsp is a cooperative process with a Hill coefficient of 1.9 and a CopZ-like copper chaperone can transfer copper to Ccsp. A Δccsp mutant strain indicates that Ccsp is not required under initial copper stress in S. lividans, but as the CsoR/CopZ/ATPase efflux system becomes saturated, Ccsp facilitates a second level of copper tolerance.

  18. Ubiquitous learning model using interactive internet messenger group (IIMG) to improve engagement and behavior for smart campus

    NASA Astrophysics Data System (ADS)

    Umam, K.; Mardi, S. N. S.; Hariadi, M.

    2017-01-01

    The recent popularity of internet messenger based smartphone technologies has motivated some university lecturers to use them for educational activities. These technologies have enormous potential to enhance the teaching and ubiquitous learning experience for smart campus development. However, the design ubiquitous learning model using interactive internet messenger group (IIMG) and empirical evidence that would favor a broad application of mobile and ubiquitous learning in smart campus settings to improve engagement and behavior is still limited. In addition, the expectation that mobile learning could improve engagement and behavior on smart campus cannot be confirmed because the majority of the reviewed studies followed instructions paradigms. This article aims to present ubiquitous learning model design and showing learners’ experiences in improved engagement and behavior using IIMG for learner-learner and learner-lecturer interactions. The method applied in this paper includes design process and quantitative analysis techniques, with the purpose of identifying scenarios of ubiquitous learning and realize the impressions of learners and lecturers about engagement and behavior aspect, and its contribution to learning.

  19. Cellular defense against UVB-induced phototoxicity by cytosolic NADP(+)-dependent isocitrate dehydrogenase.

    PubMed

    Jo, Seung-Hee; Lee, So-Hyun; Chun, Hang Suk; Lee, Su Min; Koh, Ho-Jin; Lee, Sung-Eun; Chun, Jang-Soo; Park, Jeen-Woo; Huh, Tae-Lin

    2002-03-29

    Ultraviolet (UV) radiation is known as a major cause of skin photoaging and photocarcinogenesis. Many harmful effects of UV radiation are associated with the generation of reactive oxygen species. Recently, we have shown that NADP(+)-dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study we investigated the role of cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc) against UV radiation-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to UVB (312 nm), the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly overexpressed IDPc exhibited enhanced resistance against UV radiation, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against UV radiation-induced oxidative injury. (c)2002 Elsevier Science (USA).

  20. BLZF1 expression is of prognostic significance in hepatocellular carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Run-Yue, E-mail: ry_huang@hotmail.com; Su, Shu-Guang; Wu, Dan-Chun

    2015-11-20

    BLZF1, a member of b-ZIP family, has been implicated in epigenetic regulation and Wnt/β-catenin signaling. Its expression and clinical significance in human cancers remain largely unknown. In this study, we showed that BLZF1 expression was reduced in hepatocellular carcinoma (HCC) tissues, compared to the paracarcinoma tissues, at both mRNA and protein levels. Results of immunohistochemistry revealed that BLZF1 was presented in both nuclear and cytoplasm. Decreased expression of nuclear and cytosolic BLZF1 in HCC was depicted in 68.2% and 79.2% of the 634 cases. Nuclear BLZF1 expression was significantly associated with tumor multiplicity (P = 0.048) and tumor capsule (P = 0.028), while cytosolicmore » BLZF1 expression was correlated with serum AFP level (P = 0.017), tumor differentiation (P = 0.001) and tumor capsule (P = 0.003). Kaplan–Meier analysis indicated both nuclear and cytosolic BLZF1 expression was associated with poor overall survival. Low nuclear BLZF1 also indicated unfavorable disease-free survival and high tendency of tumor recurrence. Furthermore, multiple Cox regression analysis revealed nuclear BLZF1 as an independent factor for overall survival (Hazard Ratio (HR) = 0.827, 95% confident interval (95%CI): 0.697–0.980, P = 0.029). The prognostic value of BLZF1 was further confirmed by stratified analyses. Collectively, our data suggest BLZF1 is a novel unfavorable biomarker for prognosis of patients with HCC. - Highlights: • BLZF1 expression was much lower in HCC tissues. • Low BLZF1 expression was associated with poor outcomes in a cohort of 634 HCC patients. • Multiple Cox regression analysis indicated nuclear BLZF1 as an independent predictor for overall survival.« less

  1. Retargeting the Clostridium botulinum C2 toxin to the neuronal cytosol.

    PubMed

    Pavlik, Benjamin J; Hruska, Elizabeth J; Van Cott, Kevin E; Blum, Paul H

    2016-03-30

    Many biological toxins are known to attack specific cell types, delivering their enzymatic payloads to the cytosol. This process can be manipulated by molecular engineering of chimeric toxins. Using toxins with naturally unlinked components as a starting point is advantageous because it allows for the development of payloads separately from the binding/translocation components. Here the Clostridium botulinum C2 binding/translocation domain was retargeted to neural cell populations by deleting its non-specific binding domain and replacing it with a C. botulinum neurotoxin binding domain. This fusion protein was used to deliver fluorescently labeled payloads to Neuro-2a cells. Intracellular delivery was quantified by flow cytometry and found to be dependent on artificial enrichment of cells with the polysialoganglioside receptor GT1b. Visualization by confocal microscopy showed a dissociation of payloads from the early endosome indicating translocation of the chimeric toxin. The natural Clostridium botulinum C2 toxin was then delivered to human glioblastoma A172 and synchronized HeLa cells. In the presence of the fusion protein, native cytosolic enzymatic activity of the enzyme was observed and found to be GT1b-dependent. This retargeted toxin may enable delivery of therapeutics to peripheral neurons and be of use in addressing experimental questions about neural physiology.

  2. Retargeting the Clostridium botulinum C2 toxin to the neuronal cytosol

    PubMed Central

    Pavlik, Benjamin J.; Hruska, Elizabeth J.; Van Cott, Kevin E.; Blum, Paul H.

    2016-01-01

    Many biological toxins are known to attack specific cell types, delivering their enzymatic payloads to the cytosol. This process can be manipulated by molecular engineering of chimeric toxins. Using toxins with naturally unlinked components as a starting point is advantageous because it allows for the development of payloads separately from the binding/translocation components. Here the Clostridium botulinum C2 binding/translocation domain was retargeted to neural cell populations by deleting its non-specific binding domain and replacing it with a C. botulinum neurotoxin binding domain. This fusion protein was used to deliver fluorescently labeled payloads to Neuro-2a cells. Intracellular delivery was quantified by flow cytometry and found to be dependent on artificial enrichment of cells with the polysialoganglioside receptor GT1b. Visualization by confocal microscopy showed a dissociation of payloads from the early endosome indicating translocation of the chimeric toxin. The natural Clostridium botulinum C2 toxin was then delivered to human glioblastoma A172 and synchronized HeLa cells. In the presence of the fusion protein, native cytosolic enzymatic activity of the enzyme was observed and found to be GT1b-dependent. This retargeted toxin may enable delivery of therapeutics to peripheral neurons and be of use in addressing experimental questions about neural physiology. PMID:27025362

  3. Faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart related to cytosolic inorganic phosphate (Pi) accumulation

    PubMed Central

    2016-01-01

    A model of the cell bioenergetic system was used to compare the effect of oxidative phosphorylation (OXPHOS) deficiencies in a broad range of moderate ATP demand in skeletal muscle and heart. Computer simulations revealed that kinetic properties of the system are similar in both cases despite the much higher mitochondria content and “basic” OXPHOS activity in heart than in skeletal muscle, because of a much higher each-step activation (ESA) of OXPHOS in skeletal muscle than in heart. Large OXPHOS deficiencies lead in both tissues to a significant decrease in oxygen consumption (V̇o2) and phosphocreatine (PCr) and increase in cytosolic ADP, Pi, and H+. The main difference between skeletal muscle and heart is a much higher cytosolic Pi concentration in healthy tissue and much higher cytosolic Pi accumulation (level) at low OXPHOS activities in the former, caused by a higher PCr level in healthy tissue (and higher total phosphate pool) and smaller Pi redistribution between cytosol and mitochondria at OXPHOS deficiency. This difference does not depend on ATP demand in a broad range. A much greater Pi increase and PCr decrease during rest-to-moderate work transition in skeletal muscle at OXPHOS deficiencies than at normal OXPHOS activity significantly slows down the V̇o2 on-kinetics. Because high cytosolic Pi concentrations cause fatigue in skeletal muscle and can compromise force generation in skeletal muscle and heart, this system property can contribute to the faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart. Shortly, skeletal muscle with large OXPHOS deficiencies becomes fatigued already during low/moderate exercise. PMID:27283913

  4. Faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart related to cytosolic inorganic phosphate (Pi) accumulation.

    PubMed

    Korzeniewski, Bernard

    2016-08-01

    A model of the cell bioenergetic system was used to compare the effect of oxidative phosphorylation (OXPHOS) deficiencies in a broad range of moderate ATP demand in skeletal muscle and heart. Computer simulations revealed that kinetic properties of the system are similar in both cases despite the much higher mitochondria content and "basic" OXPHOS activity in heart than in skeletal muscle, because of a much higher each-step activation (ESA) of OXPHOS in skeletal muscle than in heart. Large OXPHOS deficiencies lead in both tissues to a significant decrease in oxygen consumption (V̇o2) and phosphocreatine (PCr) and increase in cytosolic ADP, Pi, and H(+) The main difference between skeletal muscle and heart is a much higher cytosolic Pi concentration in healthy tissue and much higher cytosolic Pi accumulation (level) at low OXPHOS activities in the former, caused by a higher PCr level in healthy tissue (and higher total phosphate pool) and smaller Pi redistribution between cytosol and mitochondria at OXPHOS deficiency. This difference does not depend on ATP demand in a broad range. A much greater Pi increase and PCr decrease during rest-to-moderate work transition in skeletal muscle at OXPHOS deficiencies than at normal OXPHOS activity significantly slows down the V̇o2 on-kinetics. Because high cytosolic Pi concentrations cause fatigue in skeletal muscle and can compromise force generation in skeletal muscle and heart, this system property can contribute to the faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart. Shortly, skeletal muscle with large OXPHOS deficiencies becomes fatigued already during low/moderate exercise. Copyright © 2016 the American Physiological Society.

  5. From Online to Ubiquitous Cities: The Technical Transformation of Virtual Communities

    NASA Astrophysics Data System (ADS)

    Anthopoulos, Leonidas; Fitsilis, Panos

    Various digital city projects, from the online cases (e.g. the America on Line) to the ubiquitous cities of South Korea, have achieved in creating technically 'physical' areas for the virtual communities, which share knowledge of common interest. Moreover, digital cities can succeed in simplifying citizen access to public information and services. Early digital cities deliver 'smart' and social services to citizens even with no digital skills, closing digital divide and establishing digital areas of trust in local communities. This paper presents the evolution of the digital cities, from the web to the ubiquitous architecture. It uses the latest digital city architecture and the current conditions of the digital city of Trikala (Greece), in order to present the evolution procedure of a digital city.

  6. Twenty-First Century Learning: Communities, Interaction and Ubiquitous Computing

    ERIC Educational Resources Information Center

    Leh, Amy S.C.; Kouba, Barbara; Davis, Dirk

    2005-01-01

    Advanced technology makes 21st century learning, communities and interactions unique and leads people to an era of ubiquitous computing. The purpose of this article is to contribute to the discussion of learning in the 21st century. The paper will review literature on learning community, community learning, interaction, 21st century learning and…

  7. A distinct class of dominant negative Ras mutants: cytosolic GTP-bound Ras effector domain mutants that inhibit Ras signaling and transformation and enhance cell adhesion.

    PubMed

    Fiordalisi, James J; Holly, Stephen P; Johnson, Ronald L; Parise, Leslie V; Cox, Adrienne D

    2002-03-29

    Cytosolic GTP-bound Ras has been shown to act as a dominant negative (DN) inhibitor of Ras by sequestering Raf in non-productive cytosolic complexes. Nevertheless, this distinct class of DN mutants has been neither well characterized nor extensively used to analyze Ras signaling. In contrast, DN Ras17N, which functions by blocking Ras guanine nucleotide exchange factors, has been well characterized and is widely used. Cytosolic GTP-bound Ras mutants could be used to inhibit particular Ras effectors by introducing additional mutations (T35S, E37G or Y40C) that permit them to associate selectively with and inhibit Raf, RalGDS, or phosphoinositide 3-kinase, respectively. When the wild-type Ras effector binding region is used, cytosolic Ras should associate with all Ras effectors, even those that are not yet identified, making these DN Ras mutants effective inhibitors of multiple Ras functions. We generated cytosolic GTP-bound H-, N-, and K-Ras, and we assessed their ability to inhibit Ras-induced phenotypes. In fibroblasts, cytosolic H-, N-, and K-Ras inhibited Ras-induced Elk-1 activation and focus formation, induced a flattened cell morphology, and increased adhesion to fibronectin through modulation of a beta(1)-subunit-containing integrin, thereby demonstrating that DN activity is not limited to a subset of Ras isoforms. We also generated cytosolic GTP-bound Ras effector domain mutants (EDMs), each of which reduced the ability of cytosolic GTP-bound Ras proteins to inhibit Elk-1 activation and to induce cell flattening, implicating multiple pathways in these phenotypes. In contrast, Ras-induced focus formation, platelet-derived growth factor (PDGF)-, or Ras-induced phospho-Akt levels and cell adhesion to fibronectin were affected by T35S and Y40C EDMs, whereas PDGF- or Ras-induced phospho-Erk levels were affected only by the T35S EDM, implying that a more limited set of Ras-mediated pathways participate in these phenotypes. These data constitute the first

  8. Ubiquitous testing using tablets: its impact on medical student perceptions of and engagement in learning.

    PubMed

    Kim, Kyong-Jee; Hwang, Jee-Young

    2016-03-01

    Ubiquitous testing has the potential to affect medical education by enhancing the authenticity of the assessment using multimedia items. This study explored medical students' experience with ubiquitous testing and its impact on student learning. A cohort (n=48) of third-year students at a medical school in South Korea participated in this study. The students were divided into two groups and were given different versions of 10 content-matched items: one in text version (the text group) and the other in multimedia version (the multimedia group). Multimedia items were delivered using tablets. Item response analyses were performed to compare item characteristics between the two versions. Additionally, focus group interviews were held to investigate the students' experiences of ubiquitous testing. The mean test score was significantly higher in the text group. Item difficulty and discrimination did not differ between text and multimedia items. The participants generally showed positive responses on ubiquitous testing. Still, they felt that the lectures that they had taken in preclinical years did not prepare them enough for this type of assessment and clinical encounters during clerkships were more helpful. To be better prepared, the participants felt that they needed to engage more actively in learning in clinical clerkships and have more access to multimedia learning resources. Ubiquitous testing can positively affect student learning by reinforcing the importance of being able to understand and apply knowledge in clinical contexts, which drives students to engage more actively in learning in clinical settings.

  9. Type three secretion system-mediated escape of Burkholderia pseudomallei into the host cytosol is critical for the activation of NFκB.

    PubMed

    Teh, Boon Eng; French, Christopher Todd; Chen, Yahua; Chen, Isabelle Gek Joo; Wu, Ting-Hsiang; Sagullo, Enrico; Chiou, Pei-Yu; Teitell, Michael A; Miller, Jeff F; Gan, Yunn-Hwen

    2014-05-06

    Burkholderia pseudomallei is the causative agent of melioidosis, a potentially fatal disease endemic in Southeast Asia and Northern Australia. This Gram-negative pathogen possesses numerous virulence factors including three "injection type" type three secretion systems (T3SSs). B. pseudomallei has been shown to activate NFκB in HEK293T cells in a Toll-like receptor and MyD88 independent manner that requires T3SS gene cluster 3 (T3SS3 or T3SSBsa). However, the mechanism of how T3SS3 contributes to NFκB activation is unknown. Known T3SS3 effectors are not responsible for NFκB activation. Furthermore, T3SS3-null mutants are able to activate NFκB almost to the same extent as wildtype bacteria at late time points of infection, corresponding to delayed escape into the cytosol. NFκB activation also occurs when bacteria are delivered directly into the cytosol by photothermal nanoblade injection. T3SS3 does not directly activate NFκB but facilitates bacterial escape into the cytosol where the host is able to sense the presence of the pathogen through cytosolic sensors leading to NFκB activation.

  10. Characterization of the methotrexate transport pathway in murine L1210 leukemia cells: Involvement of a membrane receptor and a cytosolic protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, E.M.; Ratnam, M.; Rodeman, K.M.

    1988-10-04

    A radioiodinated photoaffinity analogue of methotrexate, N{sup {alpha}}-(4-amino-4-deoxy-10-methyl-pteroyl)-N{sup {epsilon}}-(4-azidosalicylyl)-L-lysine (APA-ASA-Lys), was recently used to identify the plasma membrane derived binding protein involved in the transport of this folate antagonist into murine L1210 cells. The labeled protein has an apparent molecular weight of 46K-48K when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but no such labeling occurs in a methotrexate transport-defective cell line (L1210/R81). Labeling of the total cytosolic protein from disrupted cells, followed by electrophoresis and autoradiography, showed, among other proteins, a 21K band, corresponding to dihydrofolate reductase (DHFR), in both the parent and R81 cells and a 38K bandmore » only in the parent cells. However, when whole cells were UV irradiated at various times at 37{degree}C following addition of radiolabeled APA-ASA-Lys, the 38K protein and DHFR were the only cytosolic proteins labeled in the parent cells, while the intact R81 cells showed no labeled cytosolic protein, since the photoprobe is not transported. Further, when the parent cells were treated with a pulse of radiolabeled photoprobe, followed by UV irradiation at different times at 37{degree}C, the probe appeared sequentially on the 48K membrane protein and both the 38K cytosolic protein and dihydrofolate reductase. A 48K protein could be detected in both parent L1210 cells and the R81 cells on Western blots using antisera to a membrane folate binding protein from human placenta. These results suggest a vectorial transport of APA-ASA-Lys or methotrexate and reduced folate coenzymes into murine L1210 cells mediated by a 48K integral membrane protein and a 38K cytosolic or peripheral membrane protein. The 38K protein may help in the trafficking of reduced folate coenzymes, shuttling them to various cytosolic targets.« less

  11. Ubiquitous Performance-Support System as Mindtool: A Case Study of Instructional Decision Making and Learning Assistant

    ERIC Educational Resources Information Center

    Peng, Hsinyi; Chuang, Po-Ya; Hwang, Gwo-Jen; Chu, Hui-Chun; Wu, Ting-Ting; Huang, Shu-Xian

    2009-01-01

    Researchers have conducted various studies on applying wireless communication and ubiquitous computing technologies to education, so that the technologies can provide learners and educators with more active and adaptive support. This study proposes a Ubiquitous Performance-support System (UPSS) that can facilitate the seamless use of powerful new…

  12. [Ca2+]i Elevation and Oxidative Stress Induce KCNQ1 Protein Translocation from the Cytosol to the Cell Surface and Increase Slow Delayed Rectifier (IKs) in Cardiac Myocytes*

    PubMed Central

    Wang, Yuhong; Zankov, Dimitar P.; Jiang, Min; Zhang, Mei; Henderson, Scott C.; Tseng, Gea-Ny

    2013-01-01

    Our goals are to simultaneously determine the three-dimensional distribution patterns of KCNQ1 and KCNE1 in cardiac myocytes and to study the mechanism and functional implications for variations in KCNQ1/KCNE1 colocalization in myocytes. We monitored the distribution patterns of KCNQ1, KCNE1, and markers for subcellular compartments/organelles using immunofluorescence/confocal microscopy and confirmed the findings in ventricular myocytes by directly observing fluorescently tagged KCNQ1-GFP and KCNE1-dsRed expressed in these cells. We also monitored the effects of stress on KCNQ1-GFP and endoplasmic reticulum (ER) remodeling during live cell imaging. The data showed that 1) KCNE1 maintained a stable cell surface localization, whereas KCNQ1 exhibited variations in the cytosolic compartment (striations versus vesicles) and the degree of presence on the cell surface; 2) the degree of cell surface KCNQ1/KCNE1 colocalization was positively correlated with slow delayed rectifier (IKs) current density; 3) KCNQ1 and calnexin (an ER marker) shared a cytosolic compartment; and 4) in response to stress ([Ca2+]i elevation, oxidative overload, or AT1R stimulation), KCNQ1 exited the cytosolic compartment and trafficked to the cell periphery in vesicles. This was accompanied by partial ER fragmentation. We conclude that the cellular milieu regulates KCNQ1 distribution in cardiac myocytes and that stressful conditions can increase IKs by inducing KCNQ1 movement to the cell surface. This represents a hitherto unrecognized mechanism by which IKs fulfills its function as a repolarization reserve in ventricular myocytes. PMID:24142691

  13. Activated release of membrane-anchored TGF-alpha in the absence of cytosol

    PubMed Central

    1993-01-01

    The ectodomain of proTGF-alpha, a membrane-anchored growth factor, is converted into soluble TGF-alpha by a regulated cellular proteolytic system that recognizes proTGF-alpha via the C-terminal valine of its cytoplasmic tail. In order to define the biochemical components involved in proTGF-alpha cleavage, we have used cells permeabilized with streptolysin O (SLO) that have been extensively washed to remove cytosol. PMA, acting through a Ca(2+)-independent protein kinase C, activates cleavage as efficiently in permeabilized cells as it does in intact cells. ProTGF-alpha cleavage is also stimulated by GTP gamma S through a mechanism whose pharmacological properties suggest the involvement of a heterotrimeric G protein acting upstream of the PMA- sensitive Ca(2+)-independent protein kinase C. Activated proTGF-alpha cleavage is dependent on ATP hydrolysis, appears not to require vesicular traffic, and acts specifically on proTGF-alpha that has reached the cell surface. These results indicate that proTGF-alpha is cleaved from the cell surface by a regulated system whose signaling, recognition, and proteolytic components are retained in cells devoid of cytosol. PMID:8314849

  14. Cytosolic glucocorticoid receptor in the testis of Bufo arenarum: seasonal changes in its binding parameters.

    PubMed

    Denari, Daniela; Ceballos, Nora R

    2006-07-01

    Glucocorticoids (GC) are the hormonal mediators of stress. In mammals, high levels of GC have negative effects on reproductive physiology. For instance, GC can inhibit testicular testosterone synthesis by acting via glucocorticoid receptors (GR), the extent of the inhibition being dependent on GC levels. However, the effect of GC on testicular function and even the presence of GR in amphibians are still unclear. The purpose of this work was to characterise testicular cytosolic GR in Bufo arenarum, determining the seasonal changes in its binding parameters as well as the intratesticular localisation. The binding assays were performed in testis cytosol with [3H]dexamethasone (DEX) and [3H]corticosterone (CORT). Binding kinetics of DEX and CORT fitted to a one-site model. Results were expressed as means +/- standard error. Apparent number of binding sites (Bapp) was similar for both steroids (Bapp DEX = 352.53 +/- 72.08 fmol/mg protein; Bapp CORT = 454.24 +/- 134.97 fmol/mg protein) suggesting that both hormones bind to the same site. Competition studies with different steroids showed that the order of displacement of [3H]DEX and [3H]CORT specific binding is: DEX approximately RU486 approximately deoxycorticosterone (DOC) > CORT > aldosterone > RU28362 > progesterone > 11-dehydroCORT. The affinity of GR for DEX (Kd = 11.2 +/- 1.5 nM) remained constant throughout the year while circulating CORT clearly increased during the reproductive season. Therefore, testis sensitivity to GC action would depend mainly on inactivating mechanisms (11beta-hydroxysteroid dehydrogenase type 2) and CORT plasma levels. Since total and free CORT are higher in the reproductive than in the non-reproductive period, the magnitude of GC actions could be higher during the breeding season. The intratesticular localisation of the GR was determined after separation of cells by a Percoll density gradient followed by binding assays in each fraction. DEX binds to two different fractions corresponding

  15. Identification of cytosolic phosphodiesterases in the erythrocyte: A possible role for PDE5

    PubMed Central

    Adderley, Shaquria P.; Thuet, Kelly M.; Sridharan, Meera; Bowles, Elizabeth A.; Stephenson, Alan H.; Ellsworth, Mary L.; Sprague, Randy S.

    2011-01-01

    Summary Background Within erythrocytes (RBCs), cAMP levels are regulated by phosphodiesterases (PDEs). Increases in cAMP and ATP release associated with activation of β-adrenergic receptors (βARs) and prostacyclin receptors (IPRs) are regulated by PDEs 2, 4 and PDE 3, respectively. Here we establish the presence of cytosolic PDEs in RBCs and determine a role for PDE5 in regulating levels of cGMP. Material/Methods Purified cytosolic proteins were obtained from isolated human RBCs and western analysis was performed using antibodies against PDEs 3A, 4 and 5. Rabbit RBCs were incubated with dbcGMP, a cGMP analog, to determine the effect of cGMP on cAMP levels. To determine if cGMP affects receptor-mediated increases in cAMP, rabbit RBCs were incubated with dbcGMP prior to addition of isoproterenol (ISO), a βAR receptor agonist. To demonstrate that endogenous cGMP produces the same effect, rabbit and human RBCs were incubated with SpNONOate (SpNO), a nitric oxide donor, and YC1, a direct activator of soluble guanylyl cyclase (sGC), in the absence and presence of a selective PDE5 inhibitor, zaprinast (ZAP). Results Western analysis identified PDEs 3A, 4D and 5A. dbcGMP produced a concentration dependent increase in cAMP and ISO-induced increases in cAMP were potentiated by dbcGMP. In addition, incubation with YC1 and SpNO in the presence of ZAP potentiated βAR-induced increases in cAMP. Conclusions PDEs 2, 3A and 5 are present in the cytosol of human RBCs. PDE5 activity in RBCs regulates cGMP levels. Increases in intracellular cGMP augment cAMP levels. These studies suggest a novel role for PDE5 in erythrocytes. PMID:21525805

  16. Multifunctional Cationic Lipid-Based Nanoparticles Facilitate Endosomal Escape and Reduction-Triggered Cytosolic siRNA Release

    PubMed Central

    Gujrati, Maneesh; Malamas, Anthony; Shin, Tesia; Jin, Erlei; Sun, Lulu; Lu, Zheng-Rong

    2015-01-01

    Small interfering RNA (siRNA) has garnered much attention in recent years as a promising avenue for cancer gene therapy due to its ability to silence disease-related genes. Effective gene silencing is contingent upon the delivery of siRNA into the cytosol of target cells and requires the implementation of delivery systems possessing multiple functionalities to overcome delivery barriers. The present work explores the multifunctional properties and biological activity of a recently developed cationic lipid carrier, (1-aminoethyl)iminobis[N-(oleicylcysteinyl-1-amino-ethyl)propionamide]) (ECO). The physicochemical properties and biological activity of ECO/siRNA nanoparticles were assessed over a range of N/P ratios to optimize the formulation. Potent and sustained luciferase silencing in a U87 glioblastoma cell line was observed, even in the presence of serum proteins. ECO/siRNA nanoparticles exhibited pH-dependent membrane disruption at pH levels corresponding to various stages of the intracellular trafficking pathway. It was found that disulfide linkages created during nanoparticle formation enhanced the protection of siRNA from degradation and facilitated site-specific siRNA release in the cytosol by glutathione-mediated reduction. Confocal microscopy confirmed that ECO/siRNA nanoparticles readily escaped from late endosomes prior to cytosolic release of the siRNA cargo. These results demonstrate that the rationally designed multifunctionality of ECO/siRNA nanoparticles is critical for intracellular siRNA delivery and the continuing development of safe and effective delivery systems. PMID:25020033

  17. Ubiquitous testing using tablets: its impact on medical student perceptions of and engagement in learning

    PubMed Central

    Kim, Kyong-Jee; Hwang, Jee-Young

    2016-01-01

    Purpose: Ubiquitous testing has the potential to affect medical education by enhancing the authenticity of the assessment using multimedia items. This study explored medical students’ experience with ubiquitous testing and its impact on student learning. Methods: A cohort (n=48) of third-year students at a medical school in South Korea participated in this study. The students were divided into two groups and were given different versions of 10 content-matched items: one in text version (the text group) and the other in multimedia version (the multimedia group). Multimedia items were delivered using tablets. Item response analyses were performed to compare item characteristics between the two versions. Additionally, focus group interviews were held to investigate the students’ experiences of ubiquitous testing. Results: The mean test score was significantly higher in the text group. Item difficulty and discrimination did not differ between text and multimedia items. The participants generally showed positive responses on ubiquitous testing. Still, they felt that the lectures that they had taken in preclinical years did not prepare them enough for this type of assessment and clinical encounters during clerkships were more helpful. To be better prepared, the participants felt that they needed to engage more actively in learning in clinical clerkships and have more access to multimedia learning resources. Conclusion: Ubiquitous testing can positively affect student learning by reinforcing the importance of being able to understand and apply knowledge in clinical contexts, which drives students to engage more actively in learning in clinical settings. PMID:26838569

  18. PERKAM: Personalized Knowledge Awareness Map for Computer Supported Ubiquitous Learning

    ERIC Educational Resources Information Center

    El-Bishouty, Moushir M.; Ogata, Hiroaki; Yano, Yoneo

    2007-01-01

    This paper introduces a ubiquitous computing environment in order to support the learners while doing tasks; this environment is called PERKAM (PERsonalized Knowledge Awareness Map). PERKAM allows the learners to share knowledge, interact, collaborate, and exchange individual experiences. It utilizes the RFID ubiquities technology to detect the…

  19. Retinoic acid induction of calcium channel expression in human NT2N neurons.

    PubMed

    Gao, Z Y; Xu, G; Stwora-Wojczyk, M M; Matschinsky, F M; Lee, V M; Wolf, B A

    1998-06-18

    Ca2+ channel expression and regulation of intracellular Ca2+ homeostasis were studied during retinoic acid (RA)-induced differentiation of the human teratocarcinoma cell line Ntera 2/C1.D1 (NT2- cells) into NT2N neurons, a unique model of human neurons in culture. The cytosolic Ca2+ level of undifferentiated NT2- cells was low (75 +/- 5 nM) and stable under basal conditions, and it was only marginally decreased (by 9%) upon removal of extracellular Ca2+. After 10 microM RA treatment, NT2- cells were irreversibly differentiated into a phenotype of neuron-like NT2N cells. Cytosolic Ca2+ level of NT2N neurons was higher (106 +/- 14 nM) than that of NT2- cells and spontaneously fluctuated (0.208 +/- 0.038 transients/min) under basal conditions. Although K+ increased 86Rb fluxes in both NT2- cells and NT2N neurons, it only increased cytosolic Ca2+ level in NT2N neurons. The K+-induced increase in cytosolic Ca2+ in NT2N neurons was antagonized by 0.1-10 microM nifedipine or verapamil, 5 microM omega-CgTx GVIA, but not by 1 microM omega-agatoxin IVA, 1 microM omega-agatoxin TK, 1 microM FTX-3.3, or 100 microM Ni+ implicating L- and N-type voltage-dependent Ca2+ channels. In L- and N-type channels, but not in P- and Q-types, mRNAs were expressed in NT2N neurons as well as NT2- cells. Quantitative analysis of L- and N-type Ca2+ protein levels showed major differences between NT2- cells and NT2N neurons. In NT2- cells, N-type Ca2+ channels were undetectable while L-type channels levels were fivefold lower compared to NT2N neurons. Our findings show that L- and N-type channels are expressed during differentiation of NT2- cells into neurons, and that these voltage-dependent Ca2+ channels have a major role in regulating intracellular Ca2+ homeostasis and neuronal excitability. Copyright 1998 Academic Press.

  20. Development and Evaluation of a Web 2.0-Based Ubiquitous Learning Platform for Schoolyard Plant Identification

    ERIC Educational Resources Information Center

    Hwang, Gwo-Haur; Chu, Hui-Chun; Chen, Beyin; Cheng, Zheng Shan

    2014-01-01

    The rapid progress of wireless communication, sensing, and mobile technologies has enabled students to learn in an environment that combines learning resources from both the real world and the digital world. It can be viewed as a new learning style which has been called context-aware ubiquitous learning. Most context-aware ubiquitous learning…

  1. Towards a Ubiquitous User Model for Profile Sharing and Reuse

    PubMed Central

    de Lourdes Martinez-Villaseñor, Maria; Gonzalez-Mendoza, Miguel; Hernandez-Gress, Neil

    2012-01-01

    People interact with systems and applications through several devices and are willing to share information about preferences, interests and characteristics. Social networking profiles, data from advanced sensors attached to personal gadgets, and semantic web technologies such as FOAF and microformats are valuable sources of personal information that could provide a fair understanding of the user, but profile information is scattered over different user models. Some researchers in the ubiquitous user modeling community envision the need to share user model's information from heterogeneous sources. In this paper, we address the syntactic and semantic heterogeneity of user models in order to enable user modeling interoperability. We present a dynamic user profile structure based in Simple Knowledge Organization for the Web (SKOS) to provide knowledge representation for ubiquitous user model. We propose a two-tier matching strategy for concept schemas alignment to enable user modeling interoperability. Our proposal is proved in the application scenario of sharing and reusing data in order to deal with overweight and obesity. PMID:23201995

  2. Toward ubiquitous healthcare services with a novel efficient cloud platform.

    PubMed

    He, Chenguang; Fan, Xiaomao; Li, Ye

    2013-01-01

    Ubiquitous healthcare services are becoming more and more popular, especially under the urgent demand of the global aging issue. Cloud computing owns the pervasive and on-demand service-oriented natures, which can fit the characteristics of healthcare services very well. However, the abilities in dealing with multimodal, heterogeneous, and nonstationary physiological signals to provide persistent personalized services, meanwhile keeping high concurrent online analysis for public, are challenges to the general cloud. In this paper, we proposed a private cloud platform architecture which includes six layers according to the specific requirements. This platform utilizes message queue as a cloud engine, and each layer thereby achieves relative independence by this loosely coupled means of communications with publish/subscribe mechanism. Furthermore, a plug-in algorithm framework is also presented, and massive semistructure or unstructured medical data are accessed adaptively by this cloud architecture. As the testing results showing, this proposed cloud platform, with robust, stable, and efficient features, can satisfy high concurrent requests from ubiquitous healthcare services.

  3. A Wireless Sensor Network-Based Ubiquitous Paprika Growth Management System

    PubMed Central

    Hwang, Jeonghwan; Shin, Changsun; Yoe, Hyun

    2010-01-01

    Wireless Sensor Network (WSN) technology can facilitate advances in productivity, safety and human quality of life through its applications in various industries. In particular, the application of WSN technology to the agricultural area, which is labor-intensive compared to other industries, and in addition is typically lacking in IT technology applications, adds value and can increase the agricultural productivity. This study attempts to establish a ubiquitous agricultural environment and improve the productivity of farms that grow paprika by suggesting a ‘Ubiquitous Paprika Greenhouse Management System’ using WSN technology. The proposed system can collect and monitor information related to the growth environment of crops outside and inside paprika greenhouses by installing WSN sensors and monitoring images captured by CCTV cameras. In addition, the system provides a paprika greenhouse environment control facility for manual and automatic control from a distance, improves the convenience and productivity of users, and facilitates an optimized environment to grow paprika based on the growth environment data acquired by operating the system. PMID:22163543

  4. Human caspase-4 detects tetra-acylated LPS and cytosolic Francisella and functions differently from murine caspase-11.

    PubMed

    Lagrange, Brice; Benaoudia, Sacha; Wallet, Pierre; Magnotti, Flora; Provost, Angelina; Michal, Fanny; Martin, Amandine; Di Lorenzo, Flaviana; Py, Bénédicte F; Molinaro, Antonio; Henry, Thomas

    2018-01-16

    Caspase-4/5 in humans and caspase-11 in mice bind hexa-acylated lipid A, the lipid moeity of lipopolysaccharide (LPS), to induce the activation of non-canonical inflammasome. Pathogens such as Francisella novicida express an under-acylated lipid A and escape caspase-11 recognition in mice. Here, we show that caspase-4 drives inflammasome responses to F. novicida infection in human macrophages. Caspase-4 triggers F. novicida-mediated, gasdermin D-dependent pyroptosis and activates the NLRP3 inflammasome. Inflammasome activation could be recapitulated by transfection of under-acylated LPS from different bacterial species or synthetic tetra-acylated lipid A into cytosol of human macrophage. Our results indicate functional differences between human caspase-4 and murine caspase-11. We further establish that human Guanylate-binding proteins promote inflammasome responses to under-acylated LPS. Altogether, our data demonstrate a broader reactivity of caspase-4 to under-acylated LPS than caspase-11, which may have important clinical implications for management of sepsis.

  5. Facilitation of cytosolic calcium wave propagation by local calcium uptake into the sarcoplasmic reticulum in cardiac myocytes.

    PubMed

    Maxwell, Joshua T; Blatter, Lothar A

    2012-12-01

    The widely accepted paradigm for cytosolic Ca(2+) wave propagation postulates a 'fire-diffuse-fire' mechanism where local Ca(2+)-induced Ca(2+) release (CICR) from the sarcoplasmic reticulum (SR) via ryanodine receptor (RyR) Ca(2+) release channels diffuses towards and activates neighbouring release sites, resulting in a propagating Ca(2+) wave. A recent challenge to this paradigm proposed the requirement for an intra-SR 'sensitization' Ca(2+) wave that precedes the cytosolic Ca(2+) wave and primes RyRs from the luminal side to CICR. Here, we tested this hypothesis experimentally with direct simultaneous measurements of cytosolic ([Ca(2+)](i); rhod-2) and intra-SR ([Ca(2+)](SR); fluo-5N) calcium signals during wave propagation in rabbit ventricular myocytes, using high resolution fluorescence confocal imaging. The increase in [Ca(2+)](i) at the wave front preceded depletion of the SR at each point along the calcium wave front, while during this latency period a transient increase of [Ca(2+)](SR) was observed. This transient elevation of [Ca(2+)](SR) could be identified at individual release junctions and depended on the activity of the sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA). Increased SERCA activity (β-adrenergic stimulation with 1 μM isoproterenol (isoprenaline)) decreased the latency period and increased the amplitude of the transient elevation of [Ca(2+)](SR), whereas inhibition of SERCA (3 μM cyclopiazonic acid) had the opposite effect. In conclusion, the data provide experimental evidence that local Ca(2+) uptake by SERCA into the SR facilitates the propagation of cytosolic Ca(2+) waves via luminal sensitization of the RyR, and supports a novel paradigm of a 'fire-diffuse-uptake-fire' mechanism for Ca(2+) wave propagation in cardiac myocytes.

  6. Facilitation of cytosolic calcium wave propagation by local calcium uptake into the sarcoplasmic reticulum in cardiac myocytes

    PubMed Central

    Maxwell, Joshua T; Blatter, Lothar A

    2012-01-01

    The widely accepted paradigm for cytosolic Ca2+ wave propagation postulates a ‘fire-diffuse-fire’ mechanism where local Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) via ryanodine receptor (RyR) Ca2+ release channels diffuses towards and activates neighbouring release sites, resulting in a propagating Ca2+ wave. A recent challenge to this paradigm proposed the requirement for an intra-SR ‘sensitization’ Ca2+ wave that precedes the cytosolic Ca2+ wave and primes RyRs from the luminal side to CICR. Here, we tested this hypothesis experimentally with direct simultaneous measurements of cytosolic ([Ca2+]i; rhod-2) and intra-SR ([Ca2+]SR; fluo-5N) calcium signals during wave propagation in rabbit ventricular myocytes, using high resolution fluorescence confocal imaging. The increase in [Ca2+]i at the wave front preceded depletion of the SR at each point along the calcium wave front, while during this latency period a transient increase of [Ca2+]SR was observed. This transient elevation of [Ca2+]SR could be identified at individual release junctions and depended on the activity of the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA). Increased SERCA activity (β-adrenergic stimulation with 1 μm isoproterenol (isoprenaline)) decreased the latency period and increased the amplitude of the transient elevation of [Ca2+]SR, whereas inhibition of SERCA (3 μm cyclopiazonic acid) had the opposite effect. In conclusion, the data provide experimental evidence that local Ca2+ uptake by SERCA into the SR facilitates the propagation of cytosolic Ca2+ waves via luminal sensitization of the RyR, and supports a novel paradigm of a ‘fire-diffuse-uptake-fire’ mechanism for Ca2+ wave propagation in cardiac myocytes. PMID:22988145

  7. Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors.

    PubMed

    Gray, Steven J; Foti, Stacey B; Schwartz, Joel W; Bachaboina, Lavanya; Taylor-Blake, Bonnie; Coleman, Jennifer; Ehlers, Michael D; Zylka, Mark J; McCown, Thomas J; Samulski, R Jude

    2011-09-01

    With the increased use of small self-complementary adeno-associated viral (AAV) vectors, the design of compact promoters becomes critical for packaging and expressing larger transgenes under ubiquitous or cell-specific control. In a comparative study of commonly used 800-bp cytomegalovirus (CMV) and chicken β-actin (CBA) promoters, we report significant differences in the patterns of cell-specific gene expression in the central and peripheral nervous systems. The CMV promoter provides high initial neural expression that diminishes over time. The CBA promoter displayed mostly ubiquitous and high neural expression, but substantially lower expression in motor neurons (MNs). We report the creation of a novel hybrid form of the CBA promoter (CBh) that provides robust long-term expression in all cells observed with CMV or CBA, including MNs. To develop a short neuronal promoter to package larger transgenes into AAV vectors, we also found that a 229-bp fragment of the mouse methyl-CpG-binding protein-2 (MeCP2) promoter was able to drive neuron-specific expression within the CNS. Thus the 800-bp CBh promoter provides strong, long-term, and ubiquitous CNS expression whereas the MeCP2 promoter allows an extra 570-bp packaging capacity, with low and mostly neuronal expression within the CNS, similar to the MeCP2 transcription factor.

  8. Overexpression of a cytosolic NADP+-isocitrate dehydrogenase causes alterations in the vascular development of hybrid poplars.

    PubMed

    Pascual, María Belén; Molina-Rueda, Juan Jesús; Cánovas, Francisco M; Gallardo, Fernando

    2018-06-15

    Cytosolic NADP+-isocitrate dehydrogenase (ICDH) is one of the major enzymes involved in the production of 2-oxoglutarate for amino acid biosynthesis in plants. In most plants studied, ICDH is encoded by either one gene or a small gene family, and the protein sequence has been highly conserved during evolution, suggesting it plays different and essential roles in metabolism and differentiation. To elucidate the role of ICDH in hybrid poplar (Populus tremula x P. alba), transgenic plants overexpressing the Pinus pinaster gene were generated. Overexpression of ICDH resulted in hybrid poplar (Populus tremula × P. alba) trees with higher expression levels of the endogenous ICDH gene and higher enzyme content than control untransformed plants. Transgenic poplars also showed an increased expression of glutamine synthetase (GS1.3), glutamate decarboxylase (GAD) and other genes associated with vascular differentiation. Furthermore, these plants exhibited increased growth in height, longer internodes and enhanced vascular development in young leaves and the apical region of stem. Modifications in amino acid and organic acid content were observed in young leaves of the transgenic lines, suggesting an increased biosynthesis of amino acids for building new structures and also for transport to other sink organs, as expanding leaves or young stems. Taken together, these results support an important role of ICDH in plant growth and vascular development.

  9. Tumors acquire inhibitor of apoptosis protein (IAP)-mediated apoptosis resistance through altered specificity of cytosolic proteolysis.

    PubMed

    Hong, Xu; Lei, Lu; Glas, Rickard

    2003-06-16

    Many tumors overexpress members of the inhibitor of apoptosis protein (IAP) family. IAPs contribute to tumor cell apoptosis resistance by the inhibition of caspases, and are degraded by the proteasome to allow further progression of apoptosis. Here we show that tumor cells can alter the specificity of cytosolic proteolysis in order to acquire apoptosis resistance, which promotes formation of rapidly growing tumors. Survival of tumor cells with low proteasomal activity can occur in the presence of high expression of Tri-peptidyl-peptidase II (TPP II), a large subtilisin-like peptidase that complements proteasomal activity. We find that this state leaves tumor cells unable of effectively degrading IAPs, and that cells in this state form rapidly growing tumors in vivo. We also find, in studies of apoptosis resistant cells derived from large in vivo tumors, that these have acquired an altered peptidase activity, with up-regulation of TPP II activity and decreased proteasomal activity. Importantly, we find that growth of subcutaneous tumors is limited by maintenance of the apoptosis resistant phenotype. The apoptosis resistant phenotype was reversed by increased expression of Smac/DIABLO, an antagonist of IAP molecules. Our data suggest a reversible mechanism in regulation of apoptosis resistance that drives tumor progression in vivo. These data are relevant in relation to the multitude of therapy-resistant clinical tumors that have increased levels of IAP molecules.

  10. AM fungal exudates activate MAP kinases in plant cells in dependence from cytosolic Ca(2+) increase.

    PubMed

    Francia, Doriana; Chiltz, Annick; Lo Schiavo, Fiorella; Pugin, Alain; Bonfante, Paola; Cardinale, Francesca

    2011-09-01

    The molecular dialogue occurring prior to direct contact between the fungal and plant partners of arbuscular-mycorrhizal (AM) symbioses begins with the release of fungal elicitors, so far only partially identified chemically, which can activate specific signaling pathways in the host plant. We show here that the activation of MAPK is also induced by exudates of germinating spores of Gigaspora margarita in cultured cells of the non-leguminous species tobacco (Nicotiana tabacum), as well as in those of the model legume Lotus japonicus. MAPK activity peaked about 15 min after the exposure of the host cells to the fungal exudates (FE). FE were also responsible for a rapid and transient increase in free cytosolic Ca(2+) in Nicotiana plumbaginifolia and tobacco cells, and pre-treatment with a Ca(2+)-channel blocker (La(3+)) showed that in these cells, MAPK activation was dependent on the cytosolic Ca(2+) increase. A partial dependence of MAPK activity on the common Sym pathway could be demonstrated for a cell line of L. japonicus defective for LjSym4 and hence unable to establish an AM symbiosis. Our results show that MAPK activation is triggered by an FE-induced cytosolic Ca(2+) transient, and that a Sym genetic determinant acts to modulate the intensity and duration of this activity. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  11. Social Knowledge Awareness Map for Computer Supported Ubiquitous Learning Environment

    ERIC Educational Resources Information Center

    El-Bishouty, Moushir M.; Ogata, Hiroaki; Rahman, Samia; Yano, Yoneo

    2010-01-01

    Social networks are helpful for people to solve problems by providing useful information. Therefore, the importance of mobile social software for learning has been supported by many researches. In this research, a model of personalized collaborative ubiquitous learning environment is designed and implemented in order to support learners doing…

  12. Criteria, Strategies and Research Issues of Context-Aware Ubiquitous Learning

    ERIC Educational Resources Information Center

    Hwang, Gwo-Jen; Tsai, Chin-Chung; Yang, Stephen J. H.

    2008-01-01

    Recent progress in wireless and sensor technologies has lead to a new development of learning environments, called context-aware ubiquitous learning environment, which is able to sense the situation of learners and provide adaptive supports. Many researchers have been investigating the development of such new learning environments; nevertheless,…

  13. Diffusion Coefficients of Endogenous Cytosolic Proteins from Rabbit Skinned Muscle Fibers

    PubMed Central

    Carlson, Brian E.; Vigoreaux, Jim O.; Maughan, David W.

    2014-01-01

    Efflux time courses of endogenous cytosolic proteins were obtained from rabbit psoas muscle fibers skinned in oil and transferred to physiological salt solution. Proteins were separated by gel electrophoresis and compared to load-matched standards for quantitative analysis. A radial diffusion model incorporating the dissociation and dissipation of supramolecular complexes accounts for an initial lag and subsequent efflux of glycolytic and glycogenolytic enzymes. The model includes terms representing protein crowding, myofilament lattice hindrance, and binding to the cytomatrix. Optimization algorithms returned estimates of the apparent diffusion coefficients, D(r,t), that were very low at the onset of diffusion (∼10−10 cm2 s−1) but increased with time as cytosolic protein density, which was initially high, decreased. D(r,t) at later times ranged from 2.11 × 10−7 cm2 s−1 (parvalbumin) to 0.20 × 10−7 cm2 s−1 (phosphofructose kinase), values that are 3.6- to 12.3-fold lower than those predicted in bulk water. The low initial values are consistent with the presence of complexes in situ; the higher later values are consistent with molecular sieving and transient binding of dissociated proteins. Channeling of metabolic intermediates via enzyme complexes may enhance production of adenosine triphosphate at rates beyond that possible with randomly and/or sparsely distributed enzymes, thereby matching supply with demand. PMID:24559981

  14. Enhanced Reactive Oxygen Species Production, Acidic Cytosolic pH and Upregulated Na+/H+ Exchanger (NHE) in Dicer Deficient CD4+ T Cells.

    PubMed

    Singh, Yogesh; Zhou, Yuetao; Zhang, Shaqiu; Abdelazeem, Khalid N M; Elvira, Bernat; Salker, Madhuri S; Lang, Florian

    2017-01-01

    MicroRNAs (miRNAs) negatively regulate gene expression at a post-transcriptional level. Dicer, a cytoplasmic RNase III enzyme, is required for the maturation of miRNAs from precursor miRNAs. Dicer, therefore, is a critical enzyme involved in the biogenesis and processing of miRNAs. Several biological processes are controlled by miRNAs, including the regulation of T cell development and function. T cells generate reactive oxygen species (ROS) with parallel H+ extrusion accomplished by the Na+/H+-exchanger 1 (NHE1). The present study explored whether ROS production, as well as NHE1 expression and function are sensitive to the lack of Dicer (miRNAs deficient) and could be modified by individual miRNAs. CD4+ T cells were isolated from CD4 specific Dicer deficient (DicerΔ/Δ) mice and the respective control mice (Dicerfl/fl). Transcript and protein levels were quantified with RT-PCR and Western blotting, respectively. For determination of intracellular pH (pHi) cells were incubated with the pH sensitive dye bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) and Na+/H+ exchanger (NHE) activity was calculated from re-alkalinization after an ammonium pulse. Changes in cell volume were measured using the forward scatter in flow cytometry, and ROS production utilizing 2',7' -dichlorofluorescin diacetate (DCFDA) fluorescence. Transfection of miRNA-control and mimics in T cells was performed using DharmaFECT3 reagent. ROS production, cytosolic H+ concentration, NHE1 transcript and protein levels, NHE activity, and cell volume were all significantly higher in CD4+ T cells from DicerΔ/Δ mice than in CD4+ T cells from Dicerfl/fl mice. Furthermore, individual miR-200b and miR-15b modify pHi and NHE activity in Dicerfl/fl and DicerΔ/Δ CD4+ T cells, respectively. Lack of Dicer leads to oxidative stress, cytosolic acidification, upregulated NHE1 expression and activity as well as swelling of CD4+ T cells, functions all reversed by miR-15b or miR-200b. © 2017 The Author

  15. Characterization and SNP variation analysis of a HSP70 gene from miiuy croaker and its expression as related to bacterial challenge and heat shock.

    PubMed

    Wei, Tao; Sun, Yuena; Shi, Ge; Wang, Rixin; Xu, Tianjun

    2012-09-01

    Heat shock proteins (HSPs) play crucial roles in the immune response of vertebrates. In order to study immune defense mechanism of heat shock protein gene in miiuy croaker (Miichthys miiuy), a cDNA encoding heat shock protein 70 (designated Mimi-HSP70) gene was cloned from miiuy croaker. The cDNA was 2195 bp in length, consisting of an open reading frame (ORF) of 1917 bp encoding a polypeptide of 638 amino acids with estimated molecular mass of 70.3 kDa and theoretical isoelectric point of 5.55. Genomic DNA structure analysis revealed that the Mimi-HSP70 gene contain no introns in coding region and four SNPs with 373 C/T, 789 G/A, 1005 C/T, and 1185 G/A were detected by direct sequencing of 20 samples from six different populations. BLAST analysis, structure comparison and phylogenetic analysis indicated that Mimi-HSP70 should be an inducible cytosolic member of the HSP70 family. The deduced amino acid sequence of Mimi-HSP70 had 82.4%-92.2% identity with those of vertebrate. A real-time quantitative RT-PCR demonstrated that the HSP70 gene was ubiquitously expressed in ten normal tissues. Under different temperature shock stress, the expression of Mimi-HSP70 gene in miiuy croaker increased at first and then decreased with the rise of temperature, finally, reached a maximum level in liver, spleen and kidney tissues. Infection of miiuy croaker with Vibrio anguillarum resulted in significant changes expression of Mimi-HSP70 gene in the immune-related tissues. These results indicated that expression analysis of Mimi-HSP70 gene provide theoretical basis to further study the mechanism of anti-adverseness in the miiuy croaker. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. CyberPsychological Computation on Social Community of Ubiquitous Learning

    PubMed Central

    Zhou, Xuan; Dai, Genghui; Huang, Shuang; Sun, Xuemin; Hu, Feng; Hu, Hongzhi; Ivanović, Mirjana

    2015-01-01

    Under the modern network environment, ubiquitous learning has been a popular way for people to study knowledge, exchange ideas, and share skills in the cyberspace. Existing research findings indicate that the learners' initiative and community cohesion play vital roles in the social communities of ubiquitous learning, and therefore how to stimulate the learners' interest and participation willingness so as to improve their enjoyable experiences in the learning process should be the primary consideration on this issue. This paper aims to explore an effective method to monitor the learners' psychological reactions based on their behavioral features in cyberspace and therefore provide useful references for adjusting the strategies in the learning process. In doing so, this paper firstly analyzes the psychological assessment of the learners' situations as well as their typical behavioral patterns and then discusses the relationship between the learners' psychological reactions and their observable features in cyberspace. Finally, this paper puts forward a CyberPsychological computation method to estimate the learners' psychological states online. Considering the diversity of learners' habitual behaviors in the reactions to their psychological changes, a BP-GA neural network is proposed for the computation based on their personalized behavioral patterns. PMID:26557846

  17. CyberPsychological Computation on Social Community of Ubiquitous Learning.

    PubMed

    Zhou, Xuan; Dai, Genghui; Huang, Shuang; Sun, Xuemin; Hu, Feng; Hu, Hongzhi; Ivanović, Mirjana

    2015-01-01

    Under the modern network environment, ubiquitous learning has been a popular way for people to study knowledge, exchange ideas, and share skills in the cyberspace. Existing research findings indicate that the learners' initiative and community cohesion play vital roles in the social communities of ubiquitous learning, and therefore how to stimulate the learners' interest and participation willingness so as to improve their enjoyable experiences in the learning process should be the primary consideration on this issue. This paper aims to explore an effective method to monitor the learners' psychological reactions based on their behavioral features in cyberspace and therefore provide useful references for adjusting the strategies in the learning process. In doing so, this paper firstly analyzes the psychological assessment of the learners' situations as well as their typical behavioral patterns and then discusses the relationship between the learners' psychological reactions and their observable features in cyberspace. Finally, this paper puts forward a CyberPsychological computation method to estimate the learners' psychological states online. Considering the diversity of learners' habitual behaviors in the reactions to their psychological changes, a BP-GA neural network is proposed for the computation based on their personalized behavioral patterns.

  18. Composition, formation, and regulation of the cytosolic c-ring, a dynamic component of the type III secretion injectisome.

    PubMed

    Diepold, Andreas; Kudryashev, Mikhail; Delalez, Nicolas J; Berry, Richard M; Armitage, Judith P

    2015-01-01

    Many gram-negative pathogens employ a type III secretion injectisome to translocate effector proteins into eukaryotic host cells. While the structure of the distal "needle complex" is well documented, the composition and role of the functionally important cytosolic complex remain less well understood. Using functional fluorescent fusions, we found that the C-ring, an essential and conserved cytosolic component of the system, is composed of ~22 copies of SctQ (YscQ in Yersinia enterocolitica), which require the presence of YscQC, the product of an internal translation initiation site in yscQ, for their cooperative assembly. Photoactivated localization microscopy (PALM) reveals that in vivo, YscQ is present in both a free-moving cytosolic and a stable injectisome-bound state. Notably, fluorescence recovery after photobleaching (FRAP) shows that YscQ exchanges between the injectisome and the cytosol, with a t½ of 68 ± 8 seconds when injectisomes are secreting. In contrast, the secretin SctC (YscC) and the major export apparatus component SctV (YscV) display minimal exchange. Under non-secreting conditions, the exchange rate of YscQ is reduced to t½ = 134 ± 16 seconds, revealing a correlation between C-ring exchange and injectisome activity, which indicates a possible role for C-ring stability in regulation of type III secretion. The stabilization of the C-ring depends on the presence of the functional ATPase SctN (YscN). These data provide new insights into the formation and composition of the injectisome and present a novel aspect of type III secretion, the exchange of C-ring subunits, which is regulated with respect to secretion.

  19. Combined Biochemical, Biophysical, and Cellular Methods to Study Fe-S Cluster Transfer and Cytosolic Aconitase Repair by MitoNEET.

    PubMed

    Mons, Cécile; Ferecatu, Ioana; Riquier, Sylvie; Lescop, Ewen; Bouton, Cécile; Golinelli-Cohen, Marie-Pierre

    2017-01-01

    MitoNEET is the first identified Fe-S protein anchored to mammalian outer mitochondrial membranes with the vast majority of the protein polypeptide located in the cytosol, including its [2Fe-2S] cluster-binding domain. The coordination of the cluster is unusual and involves three cysteines and one histidine. MitoNEET is capable of transferring its redox-active Fe-S cluster to a bacterial apo-ferredoxin in vitro even under aerobic conditions, unlike other Fe-S transfer proteins such as ISCU. This specificity suggests its possible involvement in Fe-S repair after oxidative and/or nitrosative stress. Recently, we identified cytosolic aconitase/iron regulatory protein 1 (IRP1) as the first physiological protein acceptor of the mitoNEET Fe-S cluster in an Fe-S repair process. This chapter describes methods to study in vitro mitoNEET Fe-S cluster transfer/repair to a bacterial ferredoxin used as a model aporeceptor and in a more comprehensive manner to cytosolic aconitase/IRP1 after a nitrosative stress using in vitro, in cellulo, and in vivo methods. © 2017 Elsevier Inc. All rights reserved.

  20. Automation of metabolic stability studies in microsomes, cytosol and plasma using a 215 Gilson liquid handler.

    PubMed

    Linget, J M; du Vignaud, P

    1999-05-01

    A 215 Gilson liquid handler was used to automate enzymatic incubations using microsomes, cytosol and plasma. The design of automated protocols are described. They were based on the use of 96 deep well plates and on HPLC-based methods for assaying the substrate. The assessment of those protocols was made with comparison between manual and automated incubations, reliability and reproducibility of automated incubations in microsomes and cytosol. Examples of the use of those programs in metabolic studies in drug research, i.e. metabolic screening in microsomes and plasma were shown. Even rapid processes (with disappearance half lives as low as 1 min) can be analysed. This work demonstrates how stability studies can be automated to save time, render experiments involving human biological media less hazardous and may be improve inter-laboratory reproducibility.

  1. Cotransduction with MGMT and Ubiquitous or Erythroid-Specific GFP Lentiviruses Allows Enrichment of Dual-Positive Hematopoietic Progenitor Cells In Vivo

    PubMed Central

    Roth, Justin C.; Ismail, Mourad; Reese, Jane S.; Lingas, Karen T.; Ferrari, Giuliana; Gerson, Stanton L.

    2012-01-01

    The P140K point mutant of MGMT allows robust hematopoietic stem cell (HSC) enrichment in vivo. Thus, dual-gene vectors that couple MGMT and therapeutic gene expression have allowed enrichment of gene-corrected HSCs in animal models. However, expression levels from dual-gene vectors are often reduced for one or both genes. Further, it may be desirable to express selection and therapeutic genes at distinct stages of cell differentiation. In this regard, we evaluated whether hematopoietic cells could be efficiently cotransduced using low MOIs of two separate single-gene lentiviruses, including MGMT for dual-positive cell enrichment. Cotransduction efficiencies were evaluated using a range of MGMT : GFP virus ratios, MOIs, and selection stringencies in vitro. Cotransduction was optimal when equal proportions of each virus were used, but low MGMT : GFP virus ratios resulted in the highest proportion of dual-positive cells after selection. This strategy was then evaluated in murine models for in vivo selection of HSCs cotransduced with a ubiquitous MGMT expression vector and an erythroid-specific GFP vector. Although the MGMT and GFP expression percentages were variable among engrafted recipients, drug selection enriched MGMT-positive leukocyte and GFP-positive erythroid cell populations. These data demonstrate cotransduction as a mean to rapidly enrich and evaluate therapeutic lentivectors in vivo. PMID:22888445

  2. Noise and Vibration Risk Prevention Virtual Web for Ubiquitous Training

    ERIC Educational Resources Information Center

    Redel-Macías, María Dolores; Cubero-Atienza, Antonio J.; Martínez-Valle, José Miguel; Pedrós-Pérez, Gerardo; del Pilar Martínez-Jiménez, María

    2015-01-01

    This paper describes a new Web portal offering experimental labs for ubiquitous training of university engineering students in work-related risk prevention. The Web-accessible computer program simulates the noise and machine vibrations met in the work environment, in a series of virtual laboratories that mimic an actual laboratory and provide the…

  3. Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells.

    PubMed

    Lecourieux, David; Mazars, Christian; Pauly, Nicolas; Ranjeva, Raoul; Pugin, Alain

    2002-10-01

    Cell suspensions obtained from Nicotiana plumbaginifolia plants stably expressing the apoaequorin gene were used to analyze changes in cytosolic free calcium concentrations ([Ca(2+)](cyt)) in response to elicitors of plant defenses, particularly cryptogein and oligogalacturonides. The calcium signatures differ in lag time, peak time, intensity, and duration. The intensities of both signatures depend on elicitor concentration and extracellular calcium concentration. Cryptogein signature is characterized by a long-sustained [Ca(2+)](cyt) increase that should be responsible for sustained mitogen-activated protein kinase activation, microtubule depolymerization, defense gene activation, and cell death. The [Ca(2+)](cyt) increase in elicitor-treated cells first results from a calcium influx, which in turns leads to calcium release from internal stores and additional Ca(2+) influx. H(2)O(2) resulting from the calcium-dependent activation of the NADPH oxidase also participates in [Ca(2+)](cyt) increase and may activate calcium channels from the plasma membrane. Competition assays with different elicitins demonstrate that [Ca(2+)](cyt) increase is mediated by cryptogein-receptor interaction.

  4. Analysis and Effects of Cytosolic Free Calcium Increases in Response to Elicitors in Nicotiana plumbaginifolia Cells

    PubMed Central

    Lecourieux, David; Mazars, Christian; Pauly, Nicolas; Ranjeva, Raoul; Pugin, Alain

    2002-01-01

    Cell suspensions obtained from Nicotiana plumbaginifolia plants stably expressing the apoaequorin gene were used to analyze changes in cytosolic free calcium concentrations ([Ca2+]cyt) in response to elicitors of plant defenses, particularly cryptogein and oligogalacturonides. The calcium signatures differ in lag time, peak time, intensity, and duration. The intensities of both signatures depend on elicitor concentration and extracellular calcium concentration. Cryptogein signature is characterized by a long-sustained [Ca2+]cyt increase that should be responsible for sustained mitogen-activated protein kinase activation, microtubule depolymerization, defense gene activation, and cell death. The [Ca2+]cyt increase in elicitor-treated cells first results from a calcium influx, which in turns leads to calcium release from internal stores and additional Ca2+ influx. H2O2 resulting from the calcium-dependent activation of the NADPH oxidase also participates in [Ca2+]cyt increase and may activate calcium channels from the plasma membrane. Competition assays with different elicitins demonstrate that [Ca2+]cyt increase is mediated by cryptogein–receptor interaction. PMID:12368509

  5. Transcription start site associated RNAs (TSSaRNAs) are ubiquitous in all domains of life.

    PubMed

    Zaramela, Livia S; Vêncio, Ricardo Z N; ten-Caten, Felipe; Baliga, Nitin S; Koide, Tie

    2014-01-01

    A plethora of non-coding RNAs has been discovered using high-resolution transcriptomics tools, indicating that transcriptional and post-transcriptional regulation is much more complex than previously appreciated. Small RNAs associated with transcription start sites of annotated coding regions (TSSaRNAs) are pervasive in both eukaryotes and bacteria. Here, we provide evidence for existence of TSSaRNAs in several archaeal transcriptomes including: Halobacterium salinarum, Pyrococcus furiosus, Methanococcus maripaludis, and Sulfolobus solfataricus. We validated TSSaRNAs from the model archaeon Halobacterium salinarum NRC-1 by deep sequencing two independent small-RNA enriched (RNA-seq) and a primary-transcript enriched (dRNA-seq) strand-specific libraries. We identified 652 transcripts, of which 179 were shown to be primary transcripts (∼7% of the annotated genome). Distinct growth-associated expression patterns between TSSaRNAs and their cognate genes were observed, indicating a possible role in environmental responses that may result from RNA polymerase with varying pausing rhythms. This work shows that TSSaRNAs are ubiquitous across all domains of life.

  6. Deletion and anergy of polyclonal B cells specific for ubiquitous membrane-bound self-antigen

    PubMed Central

    Taylor, Justin J.; Martinez, Ryan J.; Titcombe, Philip J.; Barsness, Laura O.; Thomas, Stephanie R.; Zhang, Na; Katzman, Shoshana D.; Jenkins, Marc K.

    2012-01-01

    B cell tolerance to self-antigen is critical to preventing antibody-mediated autoimmunity. Previous work using B cell antigen receptor transgenic animals suggested that self-antigen–specific B cells are either deleted from the repertoire, enter a state of diminished function termed anergy, or are ignorant to the presence of self-antigen. These mechanisms have not been assessed in a normal polyclonal repertoire because of an inability to detect rare antigen-specific B cells. Using a novel detection and enrichment strategy to assess polyclonal self-antigen–specific B cells, we find no evidence of deletion or anergy of cells specific for antigen not bound to membrane, and tolerance to these types of antigens appears to be largely maintained by the absence of T cell help. In contrast, a combination of deleting cells expressing receptors with high affinity for antigen with anergy of the undeleted lower affinity cells maintains tolerance to ubiquitous membrane-bound self-antigens. PMID:23071255

  7. Modification of N6-methyladenosine RNA methylation on heat shock protein expression.

    PubMed

    Yu, Jiayao; Li, Yi; Wang, Tian; Zhong, Xiang

    2018-01-01

    This study was conducted to investigate effect of N6-methyladenosine (m6A) RNA methylation on Heat shock proteins (HSPs) and dissect the profile of HSP RNA methylation. The results showed that m6A methyltransferases METTL3 mRNA was decreased in responses to heat shock stress in HepG2 cells, but m6A-specific binding protein YTHDF2 mRNA was upregulated in a manner similar to HSP70 induction. Immunofluorescence staining showed that the majority of YTHDF2 was present in the cytosol, however, nearly all YTHDF2 translocated from the cytosol into the nucleus after heat shock. METTL3 knockdown significantly changed HSP70, HSP60, and HSP27 mRNA expression in HepG2 cells using siRNA, however, mRNA lifetime was not impacted. Silence of YTHDF2 using siRNA did not change expression of HSP70, but significantly increased HSP90, HSP60, and HSPB1 mRNA expression. In addition, m6A-seq revealed that HSP m6A methylation peaks are mainly enriched on exons and around stop codons, and shows a unique distribution profile in the 5'UTR and 3'UTR. Knockdown of METTL3 changed the methylation patterns of HSPs transcript. In conclusion, m6A RNA methylation regulates HSP gene expression. Differential expression of HSPs modulated by m6A may depend on the m6A site and abundance of the target gene. This finding provides insights into new regulatory mechanisms of HSPs in normal and stress situations.

  8. Ralstonia solanacearum Type III Effector RipAY Is a Glutathione-Degrading Enzyme That Is Activated by Plant Cytosolic Thioredoxins and Suppresses Plant Immunity.

    PubMed

    Mukaihara, Takafumi; Hatanaka, Tadashi; Nakano, Masahito; Oda, Kenji

    2016-04-12

    The plant pathogen Ralstonia solanacearum uses a large repertoire of type III effector proteins to succeed in infection. To clarify the function of effector proteins in host eukaryote cells, we expressed effectors in yeast cells and identified seven effector proteins that interfere with yeast growth. One of the effector proteins, RipAY, was found to share homology with the ChaC family proteins that function as γ-glutamyl cyclotransferases, which degrade glutathione (GSH), a tripeptide that plays important roles in the plant immune system. RipAY significantly inhibited yeast growth and simultaneously induced rapid GSH depletion when expressed in yeast cells. The in vitro GSH degradation activity of RipAY is specifically activated by eukaryotic factors in the yeast and plant extracts. Biochemical purification of the yeast protein identified that RipAY is activated by thioredoxin TRX2. On the other hand, RipAY was not activated by bacterial thioredoxins. Interestingly, RipAY was activated by plant h-type thioredoxins that exist in large amounts in the plant cytosol, but not by chloroplastic m-, f-, x-, y- and z-type thioredoxins, in a thiol-independent manner. The transient expression of RipAY decreased the GSH level in plant cells and affected the flg22-triggered production of reactive oxygen species (ROS) and expression of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) marker genes in Nicotiana benthamiana leaves. These results indicate that RipAY is activated by host cytosolic thioredoxins and degrades GSH specifically in plant cells to suppress plant immunity. Ralstonia solanacearum is the causal agent of bacterial wilt disease of plants. This pathogen injects virulence effector proteins into host cells to suppress disease resistance responses of plants. In this article, we report a biochemical activity of R. solanacearum effector protein RipAY. RipAY can degrade GSH, a tripeptide that plays important roles in the plant immune system, with

  9. Mutations in MARS identified in a specific type of pulmonary alveolar proteinosis alter methionyl-tRNA synthetase activity.

    PubMed

    Comisso, Martine; Hadchouel, Alice; de Blic, Jacques; Mirande, Marc

    2018-05-18

    Biallelic missense mutations in MARS are responsible for rare but severe cases of pulmonary alveolar proteinosis (PAP) prevalent on the island of La Réunion. MARS encodes cytosolic methionyl-tRNA synthetase (MetRS), an essential translation factor. The multisystemic effects observed in patients with this form of PAP are consistent with a loss-of-function defect in an ubiquitously expressed enzyme. The pathophysiological mechanisms involved in MARS-related PAP are currently unknown. In this work, we analyzed the effect of the PAP-related mutations in MARS on the thermal stability and on the catalytic parameters of the MetRS mutants, relative to wild-type. The effect of these mutations on the structural integrity of the enzyme as a member of the cytosolic multisynthetase complex was also investigated. Our results establish that the PAP-related substitutions in MetRS impact the tRNA Met -aminoacylation reaction especially at the level of methionine recognition, and suggest a direct link between the loss of activity of the enzyme and the pathological disorders in PAP. © 2018 Federation of European Biochemical Societies.

  10. Cytosolic thioredoxin reductase 1 is required for correct disulfide formation in the ER.

    PubMed

    Poet, Greg J; Oka, Ojore Bv; van Lith, Marcel; Cao, Zhenbo; Robinson, Philip J; Pringle, Marie Anne; Arnér, Elias Sj; Bulleid, Neil J

    2017-03-01

    Folding of proteins entering the secretory pathway in mammalian cells frequently requires the insertion of disulfide bonds. Disulfide insertion can result in covalent linkages found in the native structure as well as those that are not, so-called non-native disulfides. The pathways for disulfide formation are well characterized, but our understanding of how non-native disulfides are reduced so that the correct or native disulfides can form is poor. Here, we use a novel assay to demonstrate that the reduction in non-native disulfides requires NADPH as the ultimate electron donor, and a robust cytosolic thioredoxin system, driven by thioredoxin reductase 1 (TrxR1 or TXNRD1). Inhibition of this reductive pathway prevents the correct folding and secretion of proteins that are known to form non-native disulfides during their folding. Hence, we have shown for the first time that mammalian cells have a pathway for transferring reducing equivalents from the cytosol to the ER, which is required to ensure correct disulfide formation in proteins entering the secretory pathway. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  11. A Mobile Multi-Agent Information System for Ubiquitous Fetal Monitoring

    PubMed Central

    Su, Chuan-Jun; Chu, Ta-Wei

    2014-01-01

    Electronic fetal monitoring (EFM) systems integrate many previously separate clinical activities related to fetal monitoring. Promoting the use of ubiquitous fetal monitoring services with real time status assessments requires a robust information platform equipped with an automatic diagnosis engine. This paper presents the design and development of a mobile multi-agent platform-based open information systems (IMAIS) with an automated diagnosis engine to support intensive and distributed ubiquitous fetal monitoring. The automatic diagnosis engine that we developed is capable of analyzing data in both traditional paper-based and digital formats. Issues related to interoperability, scalability, and openness in heterogeneous e-health environments are addressed through the adoption of a FIPA2000 standard compliant agent development platform—the Java Agent Development Environment (JADE). Integrating the IMAIS with light-weight, portable fetal monitor devices allows for continuous long-term monitoring without interfering with a patient’s everyday activities and without restricting her mobility. The system architecture can be also applied to vast monitoring scenarios such as elder care and vital sign monitoring. PMID:24452256

  12. Ubiquitous Indoor Geolocation: a Case Study of Jewellery Management System

    NASA Astrophysics Data System (ADS)

    Nikparvar, B.; Sadeghi-Niaraki, A.; Azari, P.

    2014-10-01

    Addressing and geolocation for indoor environments are important fields of research in the recent years. The problem of finding location of objects in indoor spaces is proposed to solve in two ways. The first, is to assign coordinates to objects and second is to divide space into cells and detect the presence or absence of objects in each cell to track them. In this paper the second approach is discussed by using Radio Frequency Identification technology to identify and track high value objects in jewellery retail industry. In Ubiquitous Sensor Networks, the reactivity or proactivity of the environment are important issues. Reactive environments wait for a request to response to it. Instead, in proactive spaces, the environment acts in advance to deal with an expected action. In this research, a geo-sensor network containing RFID readers, tags, and antennas which continuously exchange radio frequency signal streams is proposed to manage and monitor jewellery galleries ubiquitously. The system is also equipped with a GIS representation which provides a more user-friendly system to manage a jewellery gallery.

  13. Global Dosage Compensation Is Ubiquitous in Lepidoptera, but Counteracted by the Masculinization of the Z Chromosome

    PubMed Central

    Huylmans, Ann Kathrin; Macon, Ariana; Vicoso, Beatriz

    2017-01-01

    Abstract While chromosome-wide dosage compensation of the X chromosome has been found in many species, studies in ZW clades have indicated that compensation of the Z is more localized and/or incomplete. In the ZW Lepidoptera, some species show complete compensation of the Z chromosome, while others lack full equalization, but what drives these inconsistencies is unclear. Here, we compare patterns of male and female gene expression on the Z chromosome of two closely related butterfly species, Papilio xuthus and Papilio machaon, and in multiple tissues of two moths species, Plodia interpunctella and Bombyx mori, which were previously found to differ in the extent to which they equalize Z-linked gene expression between the sexes. We find that, while some species and tissues seem to have incomplete dosage compensation, this is in fact due to the accumulation of male-biased genes and the depletion of female-biased genes on the Z chromosome. Once this is accounted for, the Z chromosome is fully compensated in all four species, through the up-regulation of Z expression in females and in some cases additional down-regulation in males. We further find that both sex-biased genes and Z-linked genes have increased rates of expression divergence in this clade, and that this can lead to fast shifts in patterns of gene expression even between closely related species. Taken together, these results show that the uneven distribution of sex-biased genes on sex chromosomes can confound conclusions about dosage compensation and that Z chromosome-wide dosage compensation is not only possible but ubiquitous among Lepidoptera. PMID:28957502

  14. Ubiquitous Total Station Development using Smartphone, RSSI and Laser Sensor providing service to Ubi-GIS

    NASA Astrophysics Data System (ADS)

    Shoushtari, M. A.; Sadeghi-Niaraki, H.

    2014-10-01

    The growing trend in technological advances and Micro Electro Mechanical Systems (MEMS) has targeted for intelligent human lives. Accordingly, Ubiquitous Computing Approach was proposed by Mark Weiser. This paper proposes an ubiquitous surveying solution in Geometrics and surveying field. Ubiquitous Surveying provides cost-effective, smart and available surveying techniques while traditional surveying equipment are so expensive and have small availability specially in indoor and daily surveying jobs. In order to have a smart surveying instrument, different information technology methods and tools like Triangle method, Received Signal Strength Indicator (RSSI) method and laser sensor are used. These new ways in combine with surveying equations introduces a modern surveying equipment called Ubi-Total Station that also employed different sensors embedded in smartphone and mobile stand. RSSI-based localization and Triangle method technique are easy and well known methods to predict the position of an unknown node in indoor environments whereas additional measures are required for a sufficient accuracy. In this paper the main goal is to introduce the Ubiquitous Total Station as a development in smart and ubiquitous GIS. In order to public use of the surveying equipment, design and implementation of this instrument has been done. Conceptual model of Smartphone-based system is designed for this study and based on this model, an Android application as a first sample is developed. Finally the evaluations shows that absolute errors in X and Y calculation are 0.028 and 0.057 meter respectively. Also RMSE of 0.26 was calculated in RSSI method for distance measurement. The high price of traditional equipment and their requirement for professional surveyors has given way to intelligent surveying. In the suggested system, smartphones can be used as tools for positioning and coordinating geometric information of objects.

  15. Expression and immunogenicity of an Escherichia coli K99 fimbriae subunit antigen in soybean.

    PubMed

    Piller, Kenneth J; Clemente, Thomas E; Jun, Sang Mu; Petty, Cynthia C; Sato, Shirley; Pascual, David W; Bost, Kenneth L

    2005-09-01

    Enterotoxigenic Escherichia coli (ETEC) cause acute diarrhea in humans and farm animals, and can be fatal if the host is left untreated. As a potential alternative to traditional needle vaccination of cattle, we investigated the feasibility of expressing the major K99 fimbrial subunit, FanC, in soybean (Glycine max) for use as an edible subunit vaccine. As a first step in this developmental process, a synthetic version of fanC was optimized for expression in the cytosol and transferred to soybean via Agrobacterium-mediated transformation. Western analysis of T(0) events revealed the presence of a peptide with the expected mobility for FanC in transgenic protein extracts, and immunofluorescense confirmed localization to the cytosol. Two T(0) lines, which accumulated FanC to levels near 0.5% of total soluble protein, were chosen for further molecular characterization in the T(1) and T(2) generations. Mice immunized intraperitoneally with protein extract derived from transgenic leaves expressing synthetic FanC developed significant antibody titers against bacterially derived FanC and produced antigen-specific CD4(+) T lymphocytes, demonstrating the ability of transgenic FanC to function as an immunogen. These experiments are the first to demonstrate the expression and immunogenicity of a model subunit antigen in the soybean system, and mark the first steps toward the development of a K99 edible vaccine to protect against ETEC.

  16. Formulation and characterization of poly(propylacrylic acid)/poly(lactic-co-glycolic acid) blend microparticles for pH-dependent membrane disruption and cytosolic delivery.

    PubMed

    Fernando, Lawrence P; Lewis, Jamal S; Evans, Brian C; Duvall, Craig L; Keselowsky, Benjamin G

    2018-04-01

    Poly(lactic-co-glycolic acid) (PLGA) is widely used as a vehicle for delivery of pharmaceutically relevant payloads. PLGA is readily fabricated as a nano- or microparticle (MP) matrix to load both hydrophobic and hydrophilic small molecular drugs as well as biomacromolecules such as nucleic acids and proteins. However, targeting such payloads to the cell cytosol is often limited by MP entrapment and degradation within acidic endolysosomes. Poly(propylacrylic acid) (PPAA) is a polyelectrolyte polymer with the membrane disruptive capability triggered at low pH. PPAA has been previously formulated in various carrier configurations to enable cytosolic payload delivery, but requires sophisticated carrier design. Taking advantage of PPAA functionality, we have incorporated PPAA into PLGA MPs as a simple polymer mixture to enhance cytosolic delivery of PLGA-encapsulated payloads. Rhodamine loaded PLGA and PPAA/PLGA blend MPs were prepared by a modified nanoprecipitation method. Incorporation of PPAA into PLGA MPs had little to no effect on the size, shape, or loading efficiency, and evidenced no toxicity in Chinese hamster ovary epithelial cells. Notably, incorporation of PPAA into PLGA MPs enabled pH-dependent membrane disruption in a hemolysis assay, and a three-fold increased endosomal escape and cytosolic delivery in dendritic cells after 2 h of MP uptake. These results demonstrate that a simple PLGA/PPAA polymer blend is readily fabricated into composite MPs, enabling cytosolic delivery of an encapsulated payload. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1022-1033, 2018. © 2017 Wiley Periodicals, Inc.

  17. The cytosolic carboxypeptidases CCP2 and CCP3 catalyze posttranslational removal of acidic amino acids

    PubMed Central

    Tort, Olivia; Tanco, Sebastián; Rocha, Cecilia; Bièche, Ivan; Seixas, Cecilia; Bosc, Christophe; Andrieux, Annie; Moutin, Marie-Jo; Avilés, Francesc Xavier; Lorenzo, Julia; Janke, Carsten

    2014-01-01

    The posttranslational modification of carboxy-terminal tails of tubulin plays an important role in the regulation of the microtubule cytoskeleton. Enzymes responsible for deglutamylating tubulin have been discovered within a novel family of mammalian cytosolic carboxypeptidases. The discovery of these enzymes also revealed the existence of a range of other substrates that are enzymatically deglutamylated. Only four of six mammalian cytosolic carboxypeptidases had been enzymatically characterized. Here we complete the functional characterization of this protein family by demonstrating that CCP2 and CCP3 are deglutamylases, with CCP3 being able to hydrolyze aspartic acids with similar efficiency. Deaspartylation is a novel posttranslational modification that could, in conjunction with deglutamylation, broaden the range of potential substrates that undergo carboxy-terminal processing. In addition, we show that CCP2 and CCP3 are highly regulated proteins confined to ciliated tissues. The characterization of two novel enzymes for carboxy-terminal protein modification provides novel insights into the broadness of this barely studied process. PMID:25103237

  18. Cellular Localization and Characterization of Cytosolic Binding Partners for Gla Domain-containing Proteins PRRG4 and PRRG2*

    PubMed Central

    Yazicioglu, Mustafa N.; Monaldini, Luca; Chu, Kirk; Khazi, Fayaz R.; Murphy, Samuel L.; Huang, Heshu; Margaritis, Paris; High, Katherine A.

    2013-01-01

    The genes encoding a family of proteins termed proline-rich γ-carboxyglutamic acid (PRRG) proteins were identified and characterized more than a decade ago, but their functions remain unknown. These novel membrane proteins have an extracellular γ-carboxyglutamic acid (Gla) protein domain and cytosolic WW binding motifs. We screened WW domain arrays for cytosolic binding partners for PRRG4 and identified novel protein-protein interactions for the protein. We also uncovered a new WW binding motif in PRRG4 that is essential for these newly found protein-protein interactions. Several of the PRRG-interacting proteins we identified are essential for a variety of physiologic processes. Our findings indicate possible novel and previously unidentified functions for PRRG proteins. PMID:23873930

  19. Context-awareness in ubiquitous computing and the mobile devices

    NASA Astrophysics Data System (ADS)

    Akçit, Nuhcan; Tomur, Emrah; Karslıoǧlu, Mahmut Onur

    2015-06-01

    Mobile device use has vastly increased in the last few years. Many people use many mobile devices in their daily lives. Context-aware computing is the main feature of pervasive and ubiquitous computing. Context awareness is also an important topic that becomes more available with ubiquitous computing. As the sensors increase, the data collected via mobile device sensors and sensor networks do not have much value because of the difficulty in analysis and understanding the data. Context-aware computing helps us store contextual information and use or search it by mobile devices when we want to see or analyze it. Contextual data can be made more meaningful by context-aware processing. There are different types of data and context information that must be considered. By combining spatial and contextual data, we obtain more meaningful data based on the entities. Contextual data is any information that can be used to characterize the situation of the entity. The entity is a person, place, or object considered relevant to the interaction between the user and an application, including the users and the applications. Using contextual data and good integration to mobile devices adds great value to this data, and combining these with our other data sets will allow us to obtain more useful information and analysis.

  20. Applying emergent ubiquitous technologies in health: the need to respond to new challenges of opportunity, expectation, and responsibility.

    PubMed

    Rigby, Michael

    2007-12-01

    In spite of their name, 'ubiquitous' technologies are not yet ubiquitous in the true sense of the word, but rather are 'novel', being at the research, pilot, and selective use stages. In future, the proliferation in types of application, the major increase in cases and data volumes, and above all the dependence on ubiquitous technologies to monitor persons at risk, will raise practical, ethical, and liability issues. Equally significantly, it will require health service redesign, including new response services. Health informaticians need to be active in stimulating consideration of all these issues, as part of both social and professional responsibility.

  1. A novel mechanism of tandem activation of ryanodine receptors by cytosolic and SR luminal Ca2+ during excitation-contraction coupling in atrial myocytes.

    PubMed

    Maxwell, Joshua T; Blatter, Lothar A

    2017-06-15

    In atrial myocytes excitation-contraction coupling is strikingly different from ventricle because atrial myocytes lack a transverse tubule membrane system: Ca 2+ release starts in the cell periphery and propagates towards the cell centre by Ca 2+ -induced Ca 2+ release from the sarcoplasmic reticulum (SR) Ca 2+ store. The cytosolic Ca 2+ sensitivity of the ryanodine receptor (RyRs) Ca 2+ release channel is low and it is unclear how Ca 2+ release can be activated in the interior of atrial cells. Simultaneous confocal imaging of cytosolic and intra-SR calcium revealed a transient elevation of store Ca 2+ that we termed 'Ca 2+ sensitization signal'. We propose a novel paradigm of atrial ECC that is based on tandem activation of the RyRs by cytosolic and luminal Ca 2+ through a 'fire-diffuse-uptake-fire' (or FDUF) mechanism: Ca 2+ uptake by SR Ca 2+ pumps at the propagation front elevates Ca 2+ inside the SR locally, leading to luminal RyR sensitization and lowering of the cytosolic Ca 2+ activation threshold. In atrial myocytes Ca 2+ release during excitation-contraction coupling (ECC) is strikingly different from ventricular myocytes. In many species atrial myocytes lack a transverse tubule system, dividing the sarcoplasmic reticulum (SR) Ca 2+ store into the peripheral subsarcolemmnal junctional (j-SR) and the much more abundant central non-junctional (nj-SR) SR. Action potential (AP)-induced Ca 2+ entry activates Ca 2+ -induced Ca 2+ release (CICR) from j-SR ryanodine receptor (RyR) Ca 2+ release channels. Peripheral elevation of [Ca 2+ ] i initiates CICR from nj-SR and sustains propagation of CICR to the cell centre. Simultaneous confocal measurements of cytosolic ([Ca 2+ ] i ; with the fluorescent Ca 2+ indicator rhod-2) and intra-SR ([Ca 2+ ] SR ; fluo-5N) Ca 2+ in rabbit atrial myocytes revealed that Ca 2+ release from j-SR resulted in a cytosolic Ca 2+ transient of higher amplitude compared to release from nj-SR; however, the degree of depletion of j-SR [Ca 2

  2. Increasing the starch content and grain weight of common wheat by overexpression of the cytosolic AGPase large subunit gene.

    PubMed

    Kang, Guozhang; Liu, Guoqin; Peng, Xiaoqi; Wei, Liting; Wang, Chenyang; Zhu, YunJi; Ma, Ying; Jiang, Yumei; Guo, Tiancai

    2013-12-01

    ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed step of starch synthesis. AGPase is a heterotetramer composed of two large subunits and two small subunits, has cytosolic and plastidial isoforms, and is detected mainly in the cytosol of endosperm in cereal crops. To investigate the effects of AGPase cytosolic large subunit gene (LSU I) on starch biosynthesis in higher plant, in this study, a TaLSU I gene from wheat was overexpressed under the control of an endosperm-specific promoter in a wheat cultivar (Yumai 34). PCR, Southern blot, and real-time RT-PCR analyses indicated that the transgene was integrated into the genome of transgenic plants and was overexpressed in their progeny. The overexpression of the TaLSU I gene remarkably enhanced AGPase activity, endosperm starch weight, grain number per spike, and single grain weight. Therefore, we conclude that overexpression of the TaLSU I gene enhances the starch biosynthesis in endosperm of wheat grains, having potential applications in wheat breeding to develop a high-yield wheat cultivar with high starch weight and kernel weight. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  3. Metabolism of deltamethrin and cis- and trans-permethrin by rat and human liver microsomes, liver cytosol and plasma preparations.

    PubMed

    Hedges, Laura; Brown, Susan; Vardy, Audrey; Doyle, Edward; Yoon, Miyoung; Osimitz, Thomas G; Lake, Brian G

    2018-04-19

    The metabolism of deltamethrin (DLM), cis-permethrin (CPM) and trans-permethrin (TPM) was studied in liver microsomes, liver cytosol and plasma from male Sprague-Dawley rats aged 15, 21 and 90 days and from adult humans. DLM and CPM were metabolised by rat hepatic microsomal cytochrome P450 (CYP) enzymes and to a lesser extent by microsomal and cytosolic carboxylesterase (CES) enzymes, whereas TPM was metabolised to a greater extent by CES enzymes. In human liver, DLM and TPM were mainly metabolised by CES enzymes, whereas CPM was metabolised by CYP and CES enzymes. The metabolism of pyrethroids by cytosolic CES enzymes contributes to the overall hepatic clearance of these compounds. DLM, CPM and TPM were metabolised by rat, but not human, plasma CES enzymes. This study demonstrates that the ability of male rats to metabolise DLM, CPM and TPM by hepatic CYP and CES enzymes and plasma CES enzymes increases with age. In all instances, apparent intrinsic clearance values were lower in 15 than in 90 day old rats. As pyrethroid-induced neurotoxicity is due to the parent compound, these results suggest that DLM, CPM and TPM may be more neurotoxic to juvenile than to adult rats.

  4. Phosphoglycerate Kinases Are Co-Regulated to Adjust Metabolism and to Optimize Growth.

    PubMed

    Rosa-Téllez, Sara; Anoman, Armand Djoro; Flores-Tornero, María; Toujani, Walid; Alseek, Saleh; Fernie, Alisdair R; Nebauer, Sergio G; Muñoz-Bertomeu, Jesús; Segura, Juan; Ros, Roc

    2018-02-01

    In plants, phosphoglycerate kinase (PGK) converts 1,3-bisphosphoglycerate into 3-phosphoglycerate in glycolysis but also participates in the reverse reaction in gluconeogenesis and the Calvin-Benson cycle. In the databases, we found three genes that encode putative PGKs. Arabidopsis ( Arabidopsis thaliana ) PGK1 was localized exclusively in the chloroplasts of photosynthetic tissues, while PGK2 was expressed in the chloroplast/plastid of photosynthetic and nonphotosynthetic cells. PGK3 was expressed ubiquitously in the cytosol of all studied cell types. Measurements of carbohydrate content and photosynthetic activities in PGK mutants and silenced lines corroborated that PGK1 was the photosynthetic isoform, while PGK2 and PGK3 were the plastidial and cytosolic glycolytic isoforms, respectively. The pgk1.1 knockdown mutant displayed reduced growth, lower photosynthetic capacity, and starch content. The pgk3.2 knockout mutant was characterized by reduced growth but higher starch levels than the wild type. The pgk1.1 pgk3.2 double mutant was bigger than pgk3.2 and displayed an intermediate phenotype between the two single mutants in all measured biochemical and physiological parameters. Expression studies in PGK mutants showed that PGK1 and PGK3 were down-regulated in pgk3.2 and pgk1.1 , respectively. These results indicate that the down-regulation of photosynthetic activity could be a plant strategy when glycolysis is impaired to achieve metabolic adjustment and optimize growth. The double mutants of PGK3 and the triose-phosphate transporter ( pgk3.2 tpt3) displayed a drastic growth phenotype, but they were viable. This implies that other enzymes or nonspecific chloroplast transporters could provide 3-phosphoglycerate to the cytosol. Our results highlight both the complexity and the plasticity of the plant primary metabolic network. © 2018 American Society of Plant Biologists. All Rights Reserved.

  5. A Context-Aware Ubiquitous Learning Environment for Language Listening and Speaking

    ERIC Educational Resources Information Center

    Liu, T.-Y.

    2009-01-01

    This paper reported the results of a study that aimed to construct a sensor and handheld augmented reality (AR)-supported ubiquitous learning (u-learning) environment called the Handheld English Language Learning Organization (HELLO), which is geared towards enhancing students' language learning. The HELLO integrates sensors, AR, ubiquitous…

  6. Quantal amplitude at the cone ribbon synapse can be adjusted by changes in cytosolic glutamate

    PubMed Central

    Bartoletti, Theodore M.

    2011-01-01

    Purpose Vision is encoded at photoreceptor synapses by the number of released vesicles and size of the post-synaptic response. We hypothesized that elevating cytosolic glutamate could enhance quantal size by increasing glutamate in vesicles. Methods We introduced glutamate (10–40 mM) into cone terminals through a patch pipette and recorded excitatory post-synaptic currents (EPSCs) from horizontal or OFF bipolar cells in the Ambystoma tigrinum retinal slice preparation. Results Elevating cytosolic glutamate in cone terminals enhanced EPSCs as well as quantal miniature EPSCs (mEPSCs). Enhancement was prevented by inhibiting vesicular glutamate transport with 1S,3R-1-aminocyclopentane-1,3-dicarboxylate in the patch pipette. A low affinity glutamate receptor antagonist, γD-glutamylglycine (1 mM), less effectively inhibited EPSCs evoked from cones loaded with glutamate than control cones indicating that release from cones with supplemental glutamate produced higher glutamate levels in the synaptic cleft. Raising presynaptic glutamate did not alter exocytotic capacitance responses and exocytosis was observed after inhibiting glutamate loading with the vesicular ATPase inhibitor, concanamycin A, suggesting that release capability is not restricted by low vesicular glutamate levels. Variance-mean analysis of currents evoked by flash photolysis of caged glutamate indicated that horizontal cell AMPA receptors have a single channel conductance of 10.1 pS suggesting that ~8.7 GluRs contribute to each mEPSC. Conclusions Quantal amplitude at the cone ribbon synapse is capable of adjustment by changes in cytosolic glutamate levels. The small number of channels contributing to each mEPSC suggests that stochastic variability in channel opening could be an important source of quantal variability. PMID:21541265

  7. Biodynamic study of americium-241 accumulation in the cytosol of the hepatopancreas of the lobster Homarus gammarus.

    PubMed

    Goudard, F; Paquet, F; Durand, J P; Milcent, M C; Germain, P; Pieri, J

    1994-08-01

    In the lobster, most of the radionuclides ingested with contaminated food are concentrated in the digestive gland. Americium-241 accumulation in the hepatopancreas of the lobster was studied during the digestive cycle. Fractionations of cytosols at different times after ingestion of radioactive preys were performed by gel permeation chromatography to determine the distribution of 241Am in the different macromolecular components. 241Am was associated with ferritin during the whole digestive cycle. This observation suggests a correlation between 241Am distribution pathways and iron metabolism. The distribution of 241Am present in the other cytosolic proteins followed two major steps of accumulation which may be correlated to the evolution of the two main cellular types playing an important role in the digestive cycle (B and R type cells).

  8. Developing Ubiquitous Sensor Network Platform Using Internet of Things: Application in Precision Agriculture.

    PubMed

    Ferrández-Pastor, Francisco Javier; García-Chamizo, Juan Manuel; Nieto-Hidalgo, Mario; Mora-Pascual, Jerónimo; Mora-Martínez, José

    2016-07-22

    The application of Information Technologies into Precision Agriculture methods has clear benefits. Precision Agriculture optimises production efficiency, increases quality, minimises environmental impact and reduces the use of resources (energy, water); however, there are different barriers that have delayed its wide development. Some of these main barriers are expensive equipment, the difficulty to operate and maintain and the standard for sensor networks are still under development. Nowadays, new technological development in embedded devices (hardware and communication protocols), the evolution of Internet technologies (Internet of Things) and ubiquitous computing (Ubiquitous Sensor Networks) allow developing less expensive systems, easier to control, install and maintain, using standard protocols with low-power consumption. This work develops and test a low-cost sensor/actuator network platform, based in Internet of Things, integrating machine-to-machine and human-machine-interface protocols. Edge computing uses this multi-protocol approach to develop control processes on Precision Agriculture scenarios. A greenhouse with hydroponic crop production was developed and tested using Ubiquitous Sensor Network monitoring and edge control on Internet of Things paradigm. The experimental results showed that the Internet technologies and Smart Object Communication Patterns can be combined to encourage development of Precision Agriculture. They demonstrated added benefits (cost, energy, smart developing, acceptance by agricultural specialists) when a project is launched.

  9. Developing Ubiquitous Sensor Network Platform Using Internet of Things: Application in Precision Agriculture

    PubMed Central

    Ferrández-Pastor, Francisco Javier; García-Chamizo, Juan Manuel; Nieto-Hidalgo, Mario; Mora-Pascual, Jerónimo; Mora-Martínez, José

    2016-01-01

    The application of Information Technologies into Precision Agriculture methods has clear benefits. Precision Agriculture optimises production efficiency, increases quality, minimises environmental impact and reduces the use of resources (energy, water); however, there are different barriers that have delayed its wide development. Some of these main barriers are expensive equipment, the difficulty to operate and maintain and the standard for sensor networks are still under development. Nowadays, new technological development in embedded devices (hardware and communication protocols), the evolution of Internet technologies (Internet of Things) and ubiquitous computing (Ubiquitous Sensor Networks) allow developing less expensive systems, easier to control, install and maintain, using standard protocols with low-power consumption. This work develops and test a low-cost sensor/actuator network platform, based in Internet of Things, integrating machine-to-machine and human-machine-interface protocols. Edge computing uses this multi-protocol approach to develop control processes on Precision Agriculture scenarios. A greenhouse with hydroponic crop production was developed and tested using Ubiquitous Sensor Network monitoring and edge control on Internet of Things paradigm. The experimental results showed that the Internet technologies and Smart Object Communication Patterns can be combined to encourage development of Precision Agriculture. They demonstrated added benefits (cost, energy, smart developing, acceptance by agricultural specialists) when a project is launched. PMID:27455265

  10. Surface-enhanced Raman spectroscopy (SERS) tracking of chelerythrine, a Na(+)/K(+) pump inhibitor, into cytosol and plasma membrane fractions of human lens epithelial cell cultures.

    PubMed

    Dorney, Kevin M; Sizemore, Ioana E P; Alqahtani, Tariq; Adragna, Norma C; Lauf, Peter K

    2013-01-01

    The quaternary benzo-phenanthridine alkaloid (QBA) chelerythrine (CET) is a pro-apoptotic drug and Na(+)/K(+) pump (NKP) inhibitor in human lens epithelial cells (HLECs). In order to obtain further insight into the mechanism of NKP inhibition by CET, its sub-cellular distribution was quantified in cytosolic and membrane fractions of HLEC cultures by surface-enhanced Raman spectroscopy (SERS). Silver nanoparticles (AgNPs) prepared by the Creighton method were concentrated, and size-selected using a one-step tangential flow filtration approach. HLECs cultures were exposed to 50 μM CET in 300 mOsM phosphate-buffered NaCl for 30 min. A variety of cytosolic extracts, crude and purified membranes, prepared in lysing solutions in the presence and absence of a non-ionic detergent, were incubated with AgNPs and subjected to SERS analysis. Determinations of CET were based on a linear calibration plot of the integrated CET SERS intensity at its 659 cm(-1) marker band as a function of CET concentration. SERS detected chemically unaltered CET in both cytosol and plasma membrane fractions. Normalized for protein, the CET content was some 100 fold higher in the crude and purified plasma membrane fraction than in the soluble cytosolic extract. The total free CET concentration in the cytosol, free of membranes or containing detergent-solubilized membrane material, approached that of the incubation medium of HLECs. Given a negative membrane potential of HLECs the data suggest, but do not prove, that CET may traverse the plasma membrane as a positively charged monomer (CET(+)) accumulating near or above passive equilibrium distribution. These findings may contribute to a recently proposed hypothesis that CET binds to and inhibits the NKP through its cytosolic aspect. © 2014 S. Karger AG, Basel.

  11. Expression pattern of a nuclear encoded mitochondrial arginine-ornithine translocator gene from Arabidopsis

    PubMed Central

    Catoni, Elisabetta; Desimone, Marcelo; Hilpert, Melanie; Wipf, Daniel; Kunze, Reinhard; Schneider, Anja; Flügge, Ulf-Ingo; Schumacher, Karin; Frommer, Wolf B

    2003-01-01

    Background Arginine and citrulline serve as nitrogen storage forms, but are also involved in biosynthetic and catabolic pathways. Metabolism of arginine, citrulline and ornithine is distributed between mitochondria and cytosol. For the shuttle of intermediates between cytosol and mitochondria transporters present on the inner mitochondrial membrane are required. Yeast contains a mitochondrial translocator for ornithine and arginine, Ort1p/Arg11p. Ort1p/Arg11p is a member of the mitochondrial carrier family (MCF) essential for ornithine export from mitochondria. The yeast arg11 mutant, which is deficient in Ort1p/Arg11p grows poorly on media lacking arginine. Results High-level expression of a nuclear encoded Arabidopsis thaliana homolog (AtmBAC2) of Ort1p/Arg11p was able to suppress the growth deficiency of arg11. RT-PCR analysis demonstrated expression of AtmBAC2 in all tissues with highest levels in flowers. Promoter-GUS fusions showed preferential expression in flowers, i.e. pollen, in the vasculature of siliques and in aborted seeds. Variable expression was observed in leaf vasculature. Induction of the promoter was not observed during the first two weeks in seedlings grown on media containing NH4NO3, arginine or ornithine as sole nitrogen sources. Conclusion AtmBAC2 was isolated as a mitochondrial transporter for arginine in Arabidopsis. The absence of expression in developing seeds and in cotyledons of seedlings indicates that other transporters are responsible for storage and mobilization of arginine in seeds. PMID:12517306

  12. Purification and characterization of a novel cytosolic NADP(H)-dependent retinol oxidoreductase from rabbit liver.

    PubMed

    Huang, D Y; Ichikawa, Y

    1997-03-07

    Rabbit liver cytosol exhibits very high retinol dehydrogenase activity. At least two retinol dehydrogenases were demonstrated to exist in rabbit liver cytosol, and the major one, a cytosolic NADP(H)-dependent retinol dehydrogenase (systematic name: retinol oxidoreductase) was purified about 1795-fold to electrophoretic and column chromatographic homogeneity by a procedure involving column chromatography on AF-Red Toyopearl twice and then hydroxyapatite. Its molecular mass was estimated to be 34 kDa by SDS-PAGE, and 144 kDa by HPLC gel filtration, suggesting that it is a homo-tetramer. The enzyme uses free retinol and retinal, and their complexes with CRBP as substrates in vitro. The optimum pH values for retinol oxidation of free retinol and CRBP-retinol were 8.8-9.2 and 8.0-9.0, respectively, and those for retinal reduction of free retinal and retinal-CRBP were the same, 7.0-7.6. Km for free retinol and Vmax for retinal formation were 2.8 microM and 2893 nmol/min per mg protein at 37 degrees C (pH 9.0) and the corresponding values with retinol-CRBP as a substrate were 2.5 microM and 2428 nmol/min per mg protein at 37 degrees C (pH 8.6); Km for free retinal and Vmax for retinol formation were 6.5 microM and 4108 nmol/min per mg protein, and the corresponding values with retinal-CRBP as a substrate were 5.1 microM and 3067 nmol/min per mg protein at 37 degrees C, pH 7.4. NAD(H) was not effective as a cofactor. 4-Methylpyrazole was a weak inhibitor (IC50 = 28 mM) of the enzyme, and ethanol was neither a substrate nor an inhibitor of the enzyme. This enzyme exhibits relatively broad aldehyde reductase activity and some ketone reductase activity, the activity for aromatic substitutive aldehydes being especially high and effective. Whereas, except in the case of retinol, oxidative activity toward the corresponding alcohols was not detected. This novel cytosolic enzyme may play an important role in vivo in maintaining the homeostasis of retinal, the substrate of retinoic

  13. Modulation of the cytosolic androgen receptor in striated muscle by sex steroids

    NASA Technical Reports Server (NTRS)

    Rance, N. E.; Max, S. R.

    1984-01-01

    The effects of orchiectomy (GDX) and of subsequent administration of testosterone propionate (TP) or 17(beta)-estradiol (E2) on the maximum binding (Bmax) and apparent Kd of the cytosolic androgen receptor in levator ani (LA) and skeletal muscles of adult male Sprague-Dawley rats are investigated experimentally. The results are presented in graphs and discussed. In LA, BMAX is found to rise from a control level of 2.5 fmol/mg protein to 280, 600, 478, and 133 percent of control at 12 h, 14 d, 30 d, and 44 d after GDX, respectively, while Kd increased only insignificantly (from 680 to 960 fM); Bmax is held at control levels for 6 h by cycloheximide given at GDX, is unaffected by TP given at 30 d, and is further increased (by 480 percent at 44 d) by administration of E2 at 30 d. Bmax in skeletal muscles is found to increase to 139, 212, 220, and 158 percent of control at 12 h, 14 d, 30 d, and 44 d, respectively; Bmax is returned to control at 44 d by TP at 30 d but is not affected by E2. The effect of E2 in LA is attributed to either induction of the cytosolic receptor or a decreased rate of receptor degradation.

  14. Replacement of soybean oil by fish oil increases cytosolic lipases activities in liver and adipose tissue from rats fed a high-carbohydrate diets.

    PubMed

    Rodrigues, Angélica Heringer; Moreira, Carolina Campos Lima; Neves, Maria José; Botion, Leida Maria; Chaves, Valéria Ernestânia

    2018-06-01

    Several studies have demonstrated that fish oil consumption improves metabolic syndrome and comorbidities, as insulin resistance, nonalcoholic fatty liver disease, dyslipidaemia and hypertension induced by high-fat diet ingestion. Previously, we demonstrated that administration of a fructose-rich diet to rats induces liver lipid accumulation, accompanied by a decrease in liver cytosolic lipases activities. In this study, the effect of replacement of soybean oil by fish oil in a high-fructose diet (FRUC, 60% fructose) for 8 weeks on lipid metabolism in liver and epididymal adipose tissue from rats was investigated. The interaction between fish oil and FRUC diet increased glucose tolerance and decreased serum levels of triacylglycerol (TAG), VLDL-TAG secretion and lipid droplet volume of hepatocytes. In addition, the fish oil supplementation increased the liver cytosolic lipases activities, independently of the type of carbohydrate ingested. Our results firmly establish the physiological regulation of liver cytosolic lipases to maintain lipid homeostasis in hepatocytes. In epididymal adipose tissue, the replacement of soybean oil by fish oil in FRUC diet did not change the tissue weight and lipoprotein lipase activity; however, there was increased basal and insulin-stimulated de novo lipogenesis and glucose uptake. Increased cytosolic lipases activities were observed, despite the decreased basal and isoproterenol-stimulated glycerol release to the incubation medium. These findings suggest that fish oil increases the glycerokinase activity and glycerol phosphorylation from endogenous TAG hydrolysis. Our findings are the first to show that the fish oil ingestion increases cytosolic lipases activities in liver and adipose tissue from rats treated with high-carbohydrate diets. Copyright © 2018. Published by Elsevier Inc.

  15. Antibody to liver cytosol (anti-LC1) in patients with autoimmune chronic active hepatitis type 2.

    PubMed

    Martini, E; Abuaf, N; Cavalli, F; Durand, V; Johanet, C; Homberg, J C

    1988-01-01

    A new autoantibody was detected by immunoprecipitation in the serum of 21 patients with chronic active hepatitis. The antibody reacted against a soluble cytosolic antigen in liver. The antibody was organ specific but not species specific and was therefore called anti-liver cytosol antibody Type 1 (anti-LC1). In seven of 21 cases, no other autoantibody was found; the remaining 14 cases had anti-liver/kidney microsome antibody Type 1 (anti-LKM1). With indirect immunofluorescence, a distinctive staining pattern was observed with the seven sera with anti-LC1 and without anti-LKM1. The antibody stained the cytoplasm of hepatocytes from four different animal species and spared the cellular layer around the central veins of mouse and rat liver that we have called juxtavenous hepatocytes. The immunofluorescence pattern disappeared after absorption of sera by a liver cytosol fraction. The 14 sera with both antibodies displayed anti-LC1 immunofluorescent pattern after absorption of anti-LKM1 by the liver microsomal fraction. The anti-LC1 was found in the serum only in patients with chronic active hepatitis of unknown cause. Anti-LC1 antibody was not found in sera from 100 patients with chronic active hepatitis associated with anti-actin antibody classic chronic active hepatitis Type 1, 100 patients with primary biliary cirrhosis, 157 patients with drug-induced hepatitis and a large number of patients with liver and nonliver diseases. This new antibody was considered a second marker of chronic active hepatitis associated with anti-LKM1 (anti-LKM1 chronic active hepatitis) or autoimmune chronic active hepatitis Type 2.

  16. Ubiquitous health in practice: the interreality paradigm.

    PubMed

    Gaggioli, Andrea; Raspelli, Simona; Grassi, Alessandra; Pallavicini, Federica; Cipresso, Pietro; Wiederhold, Brenda K; Riva, Giuseppe

    2011-01-01

    In this paper we introduce a new ubiquitous computing paradigm for behavioral health care: "Interreality". Interreality integrates assessment and treatment within a hybrid environment, that creates a bridge between the physical and virtual worlds. Our claim is that bridging virtual experiences (fully controlled by the therapist, used to learn coping skills and emotional regulation) with real experiences (allowing both the identification of any critical stressors and the assessment of what has been learned) using advanced technologies (virtual worlds, advanced sensors and PDA/mobile phones) may improve existing psychological treatment. To illustrate the proposed concept, a clinical scenario is also presented and discussed: Daniela, a 40 years old teacher, with a mother affected by Alzheimer's disease.

  17. Researching the Ethical Dimensions of Mobile, Ubiquitous and Immersive Technology Enhanced Learning (MUITEL): A Thematic Review and Dialogue

    ERIC Educational Resources Information Center

    Lally, Vic; Sharples, Mike; Tracy, Frances; Bertram, Neil; Masters, Sherriden

    2012-01-01

    In this article, we examine the ethical dimensions of researching the mobile, ubiquitous and immersive technology enhanced learning (MUITEL), with a particular focus on learning in informal settings. We begin with an analysis of the interactions between mobile, ubiquitous and immersive technologies and the wider context of the digital economy. In…

  18. Sorbitol dehydrogenase is a cytosolic protein required for sorbitol metabolism in Arabidopsis thaliana.

    PubMed

    Aguayo, María Francisca; Ampuero, Diego; Mandujano, Patricio; Parada, Roberto; Muñoz, Rodrigo; Gallart, Marta; Altabella, Teresa; Cabrera, Ricardo; Stange, Claudia; Handford, Michael

    2013-05-01

    Sorbitol is converted to fructose in Rosaceae species by SORBITOL DEHYDROGENASE (SDH, EC 1.1.1.14), especially in sink organs. SDH has also been found in non-Rosaceae species and here we show that the protein encoded by At5g51970 in Arabidopsis thaliana (L.) Heynh. possesses the molecular characteristics of an SDH. Using a green fluorescent protein-tagged version and anti-SDH antisera, we determined that SDH is cytosolically localized, consistent with bioinformatic predictions. We also show that SDH is widely expressed, and that SDH protein accumulates in both source and sink organs. In the presence of NAD+, recombinant SDH exhibited greatest oxidative activity with sorbitol, ribitol and xylitol as substrates; other sugar alcohols were oxidized to a lesser extent. Under standard growth conditions, three independent sdh- mutants developed as wild-type. Nevertheless, all three exhibited reduced dry weight and primary root length compared to wild-type when grown in the presence of sorbitol. Additionally, under short-day conditions, the mutants were more resistant to dehydration stress, as shown by a reduced loss of leaf water content when watering was withheld, and a greater survival rate on re-watering. This evidence suggests that limitations in the metabolism of sugar alcohols alter the growth of Arabidopsis and its response to drought. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Application of ubiquitous computing in personal health monitoring systems.

    PubMed

    Kunze, C; Grossmann, U; Stork, W; Müller-Glaser, K D

    2002-01-01

    A possibility to significantly reduce the costs of public health systems is to increasingly use information technology. The Laboratory for Information Processing Technology (ITIV) at the University of Karlsruhe is developing a personal health monitoring system, which should improve health care and at the same time reduce costs by combining micro-technological smart sensors with personalized, mobile computing systems. In this paper we present how ubiquitous computing theory can be applied in the health-care domain.

  20. Immunohistochemical evidence for ubiquitous distribution of metalloendoprotease insulin-degrading enzyme (IDE; insulysin) in human non-malignant tissues and tumor cell lines

    PubMed Central

    Weirich, Gregor; Mengele, Karin; Yfanti, Christina; Gkazepis, Apostolos; Hellmann, Daniela; Welk, Anita; Giersig, Cecylia; Kuo, Wen-Liang; Rosner, Marsha Rich; Tang, Wei-Jen; Schmitt, Manfred

    2013-01-01

    Immunohistochemical evidence for ubiquitous distribution of metalloprotease insulin-degrading enzyme (IDE; insulysin) in human non-malignant tissues and tumor cells is presented. Immunohistochemical staining was performed on a multi-organ tissue microarray (pancreas, lung, kidney, central/peripheral nervous system, liver, breast, placenta, myocardium, striated muscle, bone marrow, thymus, spleen) and on a cell microarray encompassing 31 tumor cell lines of different origin plus trophoblast cells, and normal blood lymphocytes and granulocytes. IDE protein is expressed by all of the tissues assessed and in all of the tumor cell lines except Raji and HL-60; trophoblast cells and granulocytes but not normal lymphocytes are also IDE-positive. PMID:18783335

  1. Ubiquitous Knowledge Construction: Mobile Learning Re-Defined and a Conceptual Framework

    ERIC Educational Resources Information Center

    Peng, Hsinyi; Su, Yi-Ju; Chou, Chien; Tsai, Chin-Chung

    2009-01-01

    Emerging from recent mobile technologies, mobile learning, or m-learning, is beginning to offer "stunning new technical capabilities" in education (DiGiano et al., 2003). This new genre of learning is viewed as a revolutionary stage in educational technology. However, ubiquitous computing technologies have given rise to several issues. This…

  2. Ubiquitous and Ambient Intelligence Assisted Learning Environment Infrastructures Development--A Review

    ERIC Educational Resources Information Center

    Kanagarajan, Sujith; Ramakrishnan, Sivakumar

    2018-01-01

    Ubiquitous Learning Environment (ULE) has been becoming a mobile and sensor based technology equipped environment that suits the modern world education discipline requirements for the past few years. Ambient Intelligence (AmI) makes much smarter the ULE by the support of optimization and intelligent techniques. Various efforts have been so far…

  3. A Context-Adaptive Teacher Training Model in a Ubiquitous Learning Environment

    ERIC Educational Resources Information Center

    Chen, Min; Chiang, Feng Kuang; Jiang, Ya Na; Yu, Sheng Quan

    2017-01-01

    In view of the discrepancies in teacher training and teaching practice, this paper put forward a context-adaptive teacher training model in a ubiquitous learning (u-learning) environment. The innovative model provides teachers of different subjects with adaptive and personalized learning content in a u-learning environment, implements intra- and…

  4. Na+ extrusion from the cytosol and tissue-specific Na+ sequestration in roots confer differential salt stress tolerance between durum and bread wheat.

    PubMed

    Wu, Honghong; Shabala, Lana; Azzarello, Elisa; Huang, Yuqing; Pandolfi, Camilla; Su, Nana; Wu, Qi; Cai, Shengguan; Bazihizina, Nadia; Wang, Lu; Zhou, Meixue; Mancuso, Stefano; Chen, Zhonghua; Shabala, Sergey

    2018-06-11

    The progress in plant breeding for salinity stress tolerance is handicapped by the lack of understanding of the specificity of salt stress signalling and adaptation at the cellular and tissue levels. In this study, we used electrophysiological, fluorescence imaging, and real-time quantitative PCR tools to elucidate the essentiality of the cytosolic Na+ extrusion in functionally different root zones (elongation, meristem, and mature) in a large number of bread and durum wheat accessions. We show that the difference in the root's ability for vacuolar Na+ sequestration in the mature zone may explain differential salinity stress tolerance between salt-sensitive durum and salt-tolerant bread wheat species. Bread wheat genotypes also had on average 30% higher capacity for net Na+ efflux from the root elongation zone, providing the first direct evidence for the essentiality of the root salt exclusion trait at the cellular level. At the same time, cytosolic Na+ accumulation in the root meristem was significantly higher in bread wheat, leading to the suggestion that this tissue may harbour a putative salt sensor. This hypothesis was then tested by investigating patterns of Na+ distribution and the relative expression level of several key genes related to Na+ transport in leaves in plants with intact roots and in those in which the root meristems were removed. We show that tampering with this sensing mechanism has resulted in a salt-sensitive phenotype, largely due to compromising the plant's ability to sequester Na+ in mesophyll cell vacuoles. The implications of these findings for plant breeding for salinity stress tolerance are discussed.

  5. Ubiquitous Multicriteria Clinic Recommendation System.

    PubMed

    Chen, Toly

    2016-05-01

    Advancements in information, communication, and sensor technologies have led to new opportunities in medical care and education. Patients in general prefer visiting the nearest clinic, attempt to avoid waiting for treatment, and have unequal preferences for different clinics and doctors. Therefore, to enable patients to compare multiple clinics, this study proposes a ubiquitous multicriteria clinic recommendation system. In this system, patients can send requests through their cell phones to the system server to obtain a clinic recommendation. Once the patient sends this information to the system, the system server first estimates the patient's speed according to the detection results of a global positioning system. It then applies a fuzzy integer nonlinear programming-ordered weighted average approach to assess four criteria and finally recommends a clinic with maximal utility to the patient. The proposed methodology was tested in a field experiment, and the experimental results showed that it is advantageous over two existing methods in elevating the utilities of recommendations. In addition, such an advantage was shown to be statistically significant.

  6. Endosomolytic Nano-Polyplex Platform Technology for Cytosolic Peptide Delivery To Inhibit Pathological Vasoconstriction.

    PubMed

    Evans, Brian C; Hocking, Kyle M; Kilchrist, Kameron V; Wise, Eric S; Brophy, Colleen M; Duvall, Craig L

    2015-06-23

    A platform technology has been developed and tested for delivery of intracellular-acting peptides through electrostatically complexed nanoparticles, or nano-polyplexes, formulated from an anionic endosomolytic polymer and cationic therapeutic peptides. This delivery platform has been initially tested and optimized for delivery of two unique vasoactive peptides, a phosphomimetic of heat shock protein 20 and an inhibitor of MAPKAP kinase II, to prevent pathological vasoconstriction (i.e., vasospasm) in human vascular tissue. These peptides inhibit vasoconstriction and promote vasorelaxation by modulating actin dynamics in vascular smooth muscle cells. Formulating these peptides into nano-polyplexes significantly enhances peptide uptake and retention, facilitates cytosolic delivery through a pH-dependent endosomal escape mechanism, and enhances peptide bioactivity in vitro as measured by inhibition of F-actin stress fiber formation. In comparison to treatment with the free peptides, which were endowed with cell-penetrating sequences, the nano-polyplexes significantly increased vasorelaxation, inhibited vasoconstriction, and decreased F-actin formation in the human saphenous vein ex vivo. These results suggest that these formulations have significant potential for treatment of conditions such as cerebral vasospasm following subarachnoid hemorrhage. Furthermore, because many therapeutic peptides include cationic cell-penetrating segments, this simple and modular platform technology may have broad applicability as a cost-effective approach for enhancing the efficacy of cytosolically active peptides.

  7. Ubiquitous and temperature-dependent neural plasticity in hibernators.

    PubMed

    von der Ohe, Christina G; Darian-Smith, Corinna; Garner, Craig C; Heller, H Craig

    2006-10-11

    Hibernating mammals are remarkable for surviving near-freezing brain temperatures and near cessation of neural activity for a week or more at a time. This extreme physiological state is associated with dendritic and synaptic changes in hippocampal neurons. Here, we investigate whether these changes are a ubiquitous phenomenon throughout the brain that is driven by temperature. We iontophoretically injected Lucifer yellow into several types of neurons in fixed slices from hibernating ground squirrels. We analyzed neuronal microstructure from animals at several stages of torpor at two different ambient temperatures, and during the summer. We show that neuronal cell bodies, dendrites, and spines from several cell types in hibernating ground squirrels retract on entry into torpor, change little over the course of several days, and then regrow during the 2 h return to euthermia. Similar structural changes take place in neurons from the hippocampus, cortex, and thalamus, suggesting a global phenomenon. Investigation of neural microstructure from groups of animals hibernating at different ambient temperatures revealed that there is a linear relationship between neural retraction and minimum body temperature. Despite significant temperature-dependent differences in extent of retraction during torpor, recovery reaches the same final values of cell body area, dendritic arbor complexity, and spine density. This study demonstrates large-scale and seemingly ubiquitous neural plasticity in the ground squirrel brain during torpor. It also defines a temperature-driven model of dramatic neural plasticity, which provides a unique opportunity to explore mechanisms of large-scale regrowth in adult mammals, and the effects of remodeling on learning and memory.

  8. Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments.

    PubMed

    Dyksma, Stefan; Bischof, Kerstin; Fuchs, Bernhard M; Hoffmann, Katy; Meier, Dimitri; Meyerdierks, Anke; Pjevac, Petra; Probandt, David; Richter, Michael; Stepanauskas, Ramunas; Mußmann, Marc

    2016-08-01

    Marine sediments are the largest carbon sink on earth. Nearly half of dark carbon fixation in the oceans occurs in coastal sediments, but the microorganisms responsible are largely unknown. By integrating the 16S rRNA approach, single-cell genomics, metagenomics and transcriptomics with (14)C-carbon assimilation experiments, we show that uncultured Gammaproteobacteria account for 70-86% of dark carbon fixation in coastal sediments. First, we surveyed the bacterial 16S rRNA gene diversity of 13 tidal and sublittoral sediments across Europe and Australia to identify ubiquitous core groups of Gammaproteobacteria mainly affiliating with sulfur-oxidizing bacteria. These also accounted for a substantial fraction of the microbial community in anoxic, 490-cm-deep subsurface sediments. We then quantified dark carbon fixation by scintillography of specific microbial populations extracted and flow-sorted from sediments that were short-term incubated with (14)C-bicarbonate. We identified three distinct gammaproteobacterial clades covering diversity ranges on family to order level (the Acidiferrobacter, JTB255 and SSr clades) that made up >50% of dark carbon fixation in a tidal sediment. Consistent with these activity measurements, environmental transcripts of sulfur oxidation and carbon fixation genes mainly affiliated with those of sulfur-oxidizing Gammaproteobacteria. The co-localization of key genes of sulfur and hydrogen oxidation pathways and their expression in genomes of uncultured Gammaproteobacteria illustrates an unknown metabolic plasticity for sulfur oxidizers in marine sediments. Given their global distribution and high abundance, we propose that a stable assemblage of metabolically flexible Gammaproteobacteria drives important parts of marine carbon and sulfur cycles.

  9. Dynamic movement of cytochrome c from mitochondria into cytosol and peripheral circulation in massive hepatic cell injury.

    PubMed

    Kobayashi, Yoshinori; Mori, Masaaki; Naruto, Takuya; Kobayashi, Naoki; Sugai, Toshiyuki; Imagawa, Tomoyuki; Yokota, Shumpei

    2004-12-01

    In the process of apoptosis, it is known that the transition of cytochrome c from mitochondria into the cytosol occurs, and tumor necrosis factor (TNF)-alpha is one of the molecules responsible for this event. But in the state of hypercytokine induced by D-galactosamine (D-GaIN)/Lipopolysaccharide (LPS), the localization of cytochrome c is little known. Rats were administrated with D-GaIN(700 mg/kg)/LPS(200 microg/kg). Blood and tissue samples were collected and examined for levels of pro-inflammatory cytokines, the apoptosis of liver cells, and the localization of cytochrome c. Before administration of D-GaIN/LPS, cytochrome c was definitely localized in the mitochondria. At 2 h after simultaneous administration of D-GaIN/LPS, cytochrome c had accumulated in the cytosol following abrupt increases of plasma TNF-alpha. Massive cell destruction due to apoptosis proved by Terminal deoxynucleo-tidyl transferase-mediated dUTP nick end labeling staining was observed in liver tissue 4 h later and markedly increased levels of cytochrome c were detected in the plasma 12 h after D-GaIN/LPS administration. Liver injury induced by simultaneous administration of D-GaIN/LPS was closely associated with the production of TNF-alpha, and also with the dynamic movement of cytochrome c from the mitochondria into the cytosol, and then into the systemic circulation. The detection of plasma cytochrome c levels may be a useful clinical tool for the detection of apoptosis in vivo.

  10. Toward Ubiquitous Communication Platform for Emergency Medical Care

    NASA Astrophysics Data System (ADS)

    Ishibashi, Kenichi; Morishima, Naoto; Kanbara, Masayuki; Sunahara, Hideki; Imanishi, Masami

    Interaction between emergency medical technicians (EMTs) and doctors is essential in emergency medical care. Doctors require diverse information related to a patient to provide efficient aid. In 2005, we started the Ikoma119 project and have developed a ubiquitous communication platform for emergency medical care called Mobile ER. Our platform, which is based on wireless internet technology, has such desirable properties as low-cost, location-independent service, and ease of service introduction. We provide an overview of our platform and describe the services that we have developed. We also discuss the remaining issues to realize our platform's actual operation.

  11. Calcium-pH crosstalks in rat mast cells: cytosolic alkalinization, but not intracellular calcium release, is a sufficient signal for degranulation

    PubMed Central

    Alfonso, A; Cabado, A G; Vieytes, M R; Botana, L M

    2000-01-01

    The aim of this work was to study the relationship between intracellular alkalinization, calcium fluxes and histamine release in rat mast cells. Intracellular alkalinization was induced by nigericin, a monovalent cation ionophore, and by NH4Cl (ammonium chloride). Calcium cytosolic and intracellular pH were measured by fluorescence digital imaging using Fura-2-AM and BCECF-AM.In rat mast cells, nigericin and NH4Cl induce a dose-dependent intracellular alkalinization, a dose-dependent increase in intracellular calcium levels by releasing calcium from intracellular pools, and an activation of capacitative calcium influx.The increase in both intracellular calcium and pH activates exocytosis (histamine release) in the absence of external calcium. Under the same conditions, thapsigargin does not activate exocytosis, the main difference being that thapsigargin does not alkalinize the cytosol.After alkalinization, histamine release is intracellular-calcium dependent. With 2.5 mM EGTA and thapsigargin the cell response decreases by 62%.The cytosolic alkalinization, in addition to the calcium increase it is enough signal to elicit the exocytotic process in rat mast cells. PMID:10952669

  12. In vivo functional mapping of the conserved protein domains within murine Themis1.

    PubMed

    Zvezdova, Ekaterina; Lee, Jan; El-Khoury, Dalal; Barr, Valarie; Akpan, Itoro; Samelson, Lawrence; Love, Paul E

    2014-09-01

    Thymocyte development requires the coordinated input of signals that originate from numerous cell surface molecules. Although the majority of thymocyte signal-initiating receptors are lineage-specific, most trigger 'ubiquitous' downstream signaling pathways. T-lineage-specific receptors are coupled to these signaling pathways by lymphocyte-restricted adapter molecules. We and others recently identified a new putative adapter protein, Themis1, whose expression is largely restricted to the T lineage. Mice lacking Themis1 exhibit a severe block in thymocyte development and a striking paucity of mature T cells revealing a critical role for Themis1 in T-cell maturation. Themis1 orthologs contain three conserved domains: a proline-rich region (PRR) that binds to the ubiquitous cytosolic adapter Grb2, a nuclear localization sequence (NLS), and two copies of a novel cysteine-containing globular (CABIT) domain. In the present study, we evaluated the functional importance of each of these motifs by retroviral reconstitution of Themis1(-/-) progenitor cells. The results demonstrate an essential requirement for the PRR and NLS motifs but not the conserved CABIT cysteines for Themis1 function.

  13. Cellular processing of gold nanoparticles: CE-ICP-MS evidence for the speciation changes in human cytosol.

    PubMed

    Legat, Joanna; Matczuk, Magdalena; Timerbaev, Andrei R; Jarosz, Maciej

    2018-01-01

    The cellular uptake of gold nanoparticles (AuNPs) may (or may not) affect their speciation, but information on the chemical forms in which the particles exist in the cell remains obscure. An analytical method based on the use of capillary electrophoresis hyphenated with inductively coupled plasma mass spectrometry (ICP-MS) has been proposed to shed light on the intracellular processing of AuNPs. It was observed that when being introduced into normal cytosol, the conjugates of 10-50 nm AuNPs with albumin evolved in human serum stayed intact. On the contrary, under simulated cancer cytosol conditions, the nanoconjugates underwent decomposition, the rate of which and the resulting metal speciation patterns were strongly influenced by particle size. The new peaks that appeared in ICP-MS electropherograms could be ascribed to nanosized species, as upon ultracentrifugation, they quantitatively precipitated whereas the supernatant showed only trace Au signals. Our present study is the first step to unravel a mystery of the cellular chemistry for metal-based nanomedicines.

  14. Optimized Design and Synthesis of Cell Permeable Biarsenical Cyanine Probe for Imaging Tagged Cytosolic Bacterial Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Na; Xiong, Yijia; Squier, Thomas C.

    2013-01-21

    To optimize cellular delivery and specific labeling of tagged cytosolic proteins by biarsenical fluorescent probes build around a cyanine dye scaffold, we have systematically varied the polarity of the hydrophobic tails (i.e., 4-5 methylene groups appended by a sulfonate or methoxy ester moiety) and arsenic capping reagent (ethanedithiol versus benzenedithiol). Targeted labeling of the cytosolic proteins SlyD and the alpha subunit of RNA polymerase engineered with a tetracysteine tagging sequences demonstrate the utility of the newly synthesized probes for live-cell visualization, albeit with varying efficiencies and background intensities. Optimal routine labeling and visualization is apparent using the ethanedithiol capping reagentmore » with the uncharged methoxy ester functionalized acyl chains. These measurements demonstrate the general utility of this class of photostable and highly fluorescent biarsenical reagents based on the cyanine scaffold for in vivo targeting of tagged cellular proteins for live cell measurements of protein dynamics.« less

  15. Malate-aspartate shuttle and exogenous NADH/cytochrome c electron transport pathway as two independent cytosolic reducing equivalent transfer systems.

    PubMed

    Abbrescia, Daniela Isabel; La Piana, Gianluigi; Lofrumento, Nicola Elio

    2012-02-15

    In mammalian cells aerobic oxidation of glucose requires reducing equivalents produced in glycolytic phase to be channelled into the phosphorylating respiratory chain for the reduction of molecular oxygen. Data never presented before show that the oxidation rate of exogenous NADH supported by the malate-aspartate shuttle system (reconstituted in vitro with isolated liver mitochondria) is comparable to the rate obtained on activation of the cytosolic NADH/cytochrome c electron transport pathway. The activities of these two reducing equivalent transport systems are independent of each other and additive. NADH oxidation induced by the malate-aspartate shuttle is inhibited by aminooxyacetate and by rotenone and/or antimycin A, two inhibitors of the respiratory chain, while the NADH/cytochrome c system remains insensitive to all of them. The two systems may simultaneously or mutually operate in the transfer of reducing equivalents from the cytosol to inside the mitochondria. In previous reports we suggested that the NADH/cytochrome c system is expected to be functioning in apoptotic cells characterized by the presence of cytochrome c in the cytosol. As additional new finding the activity of reconstituted shuttle system is linked to the amount of α-ketoglutarate generated inside the mitochondria by glutamate dehydrogenase rather than by aspartate aminotransferase. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Role of smooth muscle cells on endothelial cell cytosolic free calcium in porcine coronary arteries.

    PubMed

    Budel, S; Schuster, A; Stergiopoulos, N; Meister, J J; Bény, J L

    2001-09-01

    We tested the hypothesis that the cytosolic free calcium concentration in endothelial cells is under the influence of the smooth muscle cells in the coronary circulation. In the left descending branch of porcine coronary arteries, cytosolic free calcium concentration ([Ca(2+)](i)) was estimated by determining the fluorescence ratio of two calcium probes, fluo 4 and fura red, in smooth muscle and endothelial cells using confocal microscopy. Acetylcholine and potassium, which act directly on smooth muscle cells to increase [Ca(2+)](i), were found to indirectly elevate [Ca(2+)](i) in endothelial cells; in primary cultures of endothelial cells, neither stimulus affected [Ca(2+)](i), yet substance P increased the fluorescence ratio twofold. In response to acetylcholine and potassium, isometric tension developed by arterial strips with intact endothelium was attenuated by up to 22% (P < 0.05) compared with strips without endothelium. These findings suggest that stimuli that increase smooth muscle [Ca(2+)](i) can indirectly influence endothelial cell function in porcine coronary arteries. Such a pathway for negative feedback can moderate vasoconstriction and diminish the potential for vasospasm in the coronary circulation.

  17. Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin.

    PubMed

    Vainberg, I E; Lewis, S A; Rommelaere, H; Ampe, C; Vandekerckhove, J; Klein, H L; Cowan, N J

    1998-05-29

    We describe the discovery of a heterohexameric chaperone protein, prefoldin, based on its ability to capture unfolded actin. Prefoldin binds specifically to cytosolic chaperonin (c-cpn) and transfers target proteins to it. Deletion of the gene encoding a prefoldin subunit in S. cerevisiae results in a phenotype similar to those found when c-cpn is mutated, namely impaired functions of the actin and tubulin-based cytoskeleton. Consistent with prefoldin having a general role in chaperonin-mediated folding, we identify homologs in archaea, which have a class II chaperonin but contain neither actin nor tubulin. We show that by directing target proteins to chaperonin, prefoldin promotes folding in an environment in which there are many competing pathways for nonnative proteins.

  18. Computational model for amoeboid motion: Coupling membrane and cytosol dynamics

    NASA Astrophysics Data System (ADS)

    Moure, Adrian; Gomez, Hector

    2016-10-01

    A distinguishing feature of amoeboid motion is that the migrating cell undergoes large deformations, caused by the emergence and retraction of actin-rich protrusions, called pseudopods. Here, we propose a cell motility model that represents pseudopod dynamics, as well as its interaction with membrane signaling molecules. The model accounts for internal and external forces, such as protrusion, contraction, adhesion, surface tension, or those arising from cell-obstacle contacts. By coupling the membrane and cytosol interactions we are able to reproduce a realistic picture of amoeboid motion. The model results are in quantitative agreement with experiments and show how cells may take advantage of the geometry of their microenvironment to migrate more efficiently.

  19. Feminist Articulations, Social Literacies, and Ubiquitous Mobile Technology Use in Kenya

    ERIC Educational Resources Information Center

    Sanya, Brenda N.; Odero, Phantus W.

    2017-01-01

    This article examines the changes occurring in learning and literacy in the age of ubiquitous mobile phone use. Focusing on rural Kenyan women's use of mobile phone technologies in civic education programs, mobile banking, and to contact family members, the article explores how these women's use of mobile phones, based on their everyday needs, has…

  20. Four Stages of Research on the Educational Use of Ubiquitous Computing

    ERIC Educational Resources Information Center

    Laru, Jari; Naykki, Piia; Järvelä, Sanna

    2015-01-01

    In this paper, the Gartner Group's hype cycle is used as the basis for categorizing and analyzing research on the educational use of ubiquitous computing. There are five phases of the hype cycle: the technology trigger, the peak of inflated expectations, the trough of disillusionment, the slope of enlightenment, and the plateau of productivity.…

  1. College Students' Conceptions of Context-Aware Ubiquitous Learning: A Phenomenographic Analysis

    ERIC Educational Resources Information Center

    Tsai, Pei-Shan; Tsai, Chin-Chung; Hwang, Gwo-Haur

    2011-01-01

    The purpose of this study was to explore students' conceptions of context-aware ubiquitous learning (u-learning). The students participated in a u-learning exercise using PDAs equipped with RFID readers. The data were collected from individual interviews with each of the students by a trained researcher, and the responses of the interviewees were…

  2. Web Video Event Recognition by Semantic Analysis From Ubiquitous Documents.

    PubMed

    Yu, Litao; Yang, Yang; Huang, Zi; Wang, Peng; Song, Jingkuan; Shen, Heng Tao

    2016-12-01

    In recent years, the task of event recognition from videos has attracted increasing interest in multimedia area. While most of the existing research was mainly focused on exploring visual cues to handle relatively small-granular events, it is difficult to directly analyze video content without any prior knowledge. Therefore, synthesizing both the visual and semantic analysis is a natural way for video event understanding. In this paper, we study the problem of Web video event recognition, where Web videos often describe large-granular events and carry limited textual information. Key challenges include how to accurately represent event semantics from incomplete textual information and how to effectively explore the correlation between visual and textual cues for video event understanding. We propose a novel framework to perform complex event recognition from Web videos. In order to compensate the insufficient expressive power of visual cues, we construct an event knowledge base by deeply mining semantic information from ubiquitous Web documents. This event knowledge base is capable of describing each event with comprehensive semantics. By utilizing this base, the textual cues for a video can be significantly enriched. Furthermore, we introduce a two-view adaptive regression model, which explores the intrinsic correlation between the visual and textual cues of the videos to learn reliable classifiers. Extensive experiments on two real-world video data sets show the effectiveness of our proposed framework and prove that the event knowledge base indeed helps improve the performance of Web video event recognition.

  3. P2Y2 receptor activation inhibits the expression of the sodium-chloride cotransporter NCC in distal convoluted tubule cells.

    PubMed

    Gailly, P; Szutkowska, M; Olinger, E; Debaix, H; Seghers, F; Janas, S; Vallon, V; Devuyst, O

    2014-11-01

    Luminal nucleotide stimulation is known to reduce Na(+) transport in the distal nephron. Previous studies suggest that this mechanism may involve the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC), which plays an essential role in NaCl reabsorption in the cells lining the distal convoluted tubule (DCT). Here we show that stimulation of mouse DCT (mDCT) cells with ATP or UTP promoted Ca(2+) transients and decreased the expression of NCC at both mRNA and protein levels. Specific siRNA-mediated silencing of P2Y2 receptors almost completely abolished ATP/UTP-induced Ca(2+) transients and significantly reduced ATP/UTP-induced decrease of NCC expression. To test whether local variations in the intracellular Ca(2+) concentration ([Ca(2+)]i) may control NCC transcription, we overexpressed the Ca(2+)-binding protein parvalbumin selectively in the cytosol or in the nucleus of mDCT cells. The decrease in NCC mRNA upon nucleotide stimulation was abolished in cells overexpressing cytosolic PV but not in cells overexpressing either a nuclear-targeted PV or a mutated PV unable to bind Ca(2+). Using a firefly luciferase reporter gene strategy, we observed that the activity of NCC promoter region from -1 to -2,200 bp was not regulated by changes in [Ca(2+)]i. In contrast, high cytosolic calcium level induced instability of NCC mRNA. We conclude that in mDCT cells: (1) P2Y2 receptor is essential for the intracellular Ca(2+) signaling induced by ATP/UTP stimulation; (2) P2Y2-mediated increase of cytoplasmic Ca(2+) concentration down-regulates the expression of NCC; (3) the decrease of NCC expression occurs, at least in part, via destabilization of its mRNA.

  4. Programmable ubiquitous telerobotic devices

    NASA Astrophysics Data System (ADS)

    Doherty, Michael; Greene, Matthew; Keaton, David; Och, Christian; Seidl, Matthew L.; Waite, William; Zorn, Benjamin G.

    1997-12-01

    We are investigating a field of research that we call ubiquitous telepresence, which involves the design and implementation of low-cost robotic devices that can be programmed and operated from anywhere on the Internet. These devices, which we call ubots, can be used for academic purposes (e.g., a biologist could remote conduct a population survey), commercial purposes (e.g., a house could be shown remotely by a real-estate agent), and for recreation and education (e.g., someone could tour a museum remotely). We anticipate that such devices will become increasingly common due to recent changes in hardware and software technology. In particular, current hardware technology enables such devices to be constructed very cheaply (less than $500), and current software and network technology allows highly portable code to be written and downloaded across the Internet. In this paper, we present our prototype system architecture, and the ubot implementation we have constructed based on it. The hardware technology we use is the handy board, a 6811-based controller board with digital and analog inputs and outputs. Our software includes a network layer based on TCP/IP and software layers written in Java. Our software enables users across the Internet to program the behavior of the vehicle and to receive image feedback from a camera mounted on it.

  5. PHARMACEUTICALS AS UBIQUITOUS POLLUTANTS ...

    EPA Pesticide Factsheets

    Those chemical pollutants that are regulated under various international, federal, and state programs represent but a small fraction of the universe of chemicals that occur in the environment as a result of both natural processes and human influence. Although this galaxy of targeted chemicals might be minuscule compared with the universe of both known and yet-to-be identified chemicals, an implicit assumption is that these selective lists of chemicals are responsible for the most significant share of risk with respect to environmental or economic impairment or to human health. Pharmaceuticals and personal care products (PPCPs) comprise a particularly large and diverse array of unregulated pollutants that occur in the environment from the combined activities and actions of multitudes of individuals as well as from veterinary and agricultural use. Although the concentration of any individual PPCP rarely ever exceeds the sub-ppm level (if present in drinking water, concentrations of individual PPCPs are generally less than the ppt-ppb level), evidence is accumulating that these trace-Ievel pollutants are ubiquitous, they can have a continuous presence regardless of environmental half-lives ( e.g., where sanitary wastewaters enter the environment), and the numbers of distinct and varied chemical entities could be extremely large (given that thousands are in commercial use). The research focused on in the subtasks is the development and application of state-of the-ar

  6. Intracellular click reaction with a fluorescent chemical Ca2+ indicator to prolong its cytosolic retention.

    PubMed

    Takei, Yoshiaki; Murata, Atsushi; Yamagishi, Kento; Arai, Satoshi; Nakamura, Hideki; Inoue, Takafumi; Takeoka, Shinji

    2013-08-25

    The powerful strategy of "intracellular click reaction" was used to retain a chemical Ca(2+) indicator in the cytosol. Specifically, a novel clickable Ca(2+) indicator "N3-fura-2 AM" was coupled with dibenzylcyclooctyl-modified biomacromolecules via copper-free click reaction in living cells and Ca(2+) oscillation was observed for an extended period of time.

  7. Ca2+-induced changes in the secondary structure of a 60 kDa phosphoinositide-specific phospholipase C from bovine brain cytosol.

    PubMed Central

    Herrero, C; Cornet, M E; Lopez, C; Barreno, P G; Municio, A M; Moscat, J

    1988-01-01

    The purification to homogeneity of a 60 kDa phosphoinositide-specific phospholipase C from bovine brain cytosol is reported here. This enzyme exhibits the same properties, in terms of response to Ca2+, as does the cytosolic activity in a variety of cell types. We show here that Ca2+ does not appear to modulate the binding of the enzyme to the substrate, but induces dramatic changes in its secondary structure. Therefore we suggest that a decrease in the alpha-helix content of this enzyme correlates with its ability to be activated by Ca2+. Images Fig. 1. PMID:2850798

  8. Supporting Teacher Orchestration in Ubiquitous Learning Environments: A Study in Primary Education

    ERIC Educational Resources Information Center

    Muñoz-Cristóbal, Juan A.; Jorrín-Abellán, Iván M.; Asensio-Pérez, Juan I.; Martínez-Monés, Alejandra; Prieto, Luis P.; Dimitriadis, Yannis

    2015-01-01

    During the last decades, educational contexts have transformed into complex technological and social ecologies, with mobile devices expanding the scope of education beyond the traditional classroom, creating so-called Ubiquitous Learning Environments (ULEs). However, these new technological opportunities entail an additional burden for teachers,…

  9. A communication model to integrate the Request-Response and the Publish-Subscribe paradigms into ubiquitous systems.

    PubMed

    Rodríguez-Domínguez, Carlos; Benghazi, Kawtar; Noguera, Manuel; Garrido, José Luis; Rodríguez, María Luisa; Ruiz-López, Tomás

    2012-01-01

    The Request-Response (RR) paradigm is widely used in ubiquitous systems to exchange information in a secure, reliable and timely manner. Nonetheless, there is also an emerging need for adopting the Publish-Subscribe (PubSub) paradigm in this kind of systems, due to the advantages that this paradigm offers in supporting mobility by means of asynchronous, non-blocking and one-to-many message distribution semantics for event notification. This paper analyzes the strengths and weaknesses of both the RR and PubSub paradigms to support communications in ubiquitous systems and proposes an abstract communication model in order to enable their seamless integration. Thus, developers will be focused on communication semantics and the required quality properties, rather than be concerned about specific communication mechanisms. The aim is to provide developers with abstractions intended to decrease the complexity of integrating different communication paradigms commonly needed in ubiquitous systems. The proposal has been applied to implement a middleware and a real home automation system to show its applicability and benefits.

  10. Enhanced Fluorescence Imaging of Live Cells by Effective Cytosolic Delivery of Probes

    PubMed Central

    Massignani, Marzia; Canton, Irene; Sun, Tao; Hearnden, Vanessa; MacNeil, Sheila; Blanazs, Adam; Armes, Steven P.; Lewis, Andrew; Battaglia, Giuseppe

    2010-01-01

    Background Microscopic techniques enable real-space imaging of complex biological events and processes. They have become an essential tool to confirm and complement hypotheses made by biomedical scientists and also allow the re-examination of existing models, hence influencing future investigations. Particularly imaging live cells is crucial for an improved understanding of dynamic biological processes, however hitherto live cell imaging has been limited by the necessity to introduce probes within a cell without altering its physiological and structural integrity. We demonstrate herein that this hurdle can be overcome by effective cytosolic delivery. Principal Findings We show the delivery within several types of mammalian cells using nanometre-sized biomimetic polymer vesicles (a.k.a. polymersomes) that offer both highly efficient cellular uptake and endolysomal escape capability without any effect on the cellular metabolic activity. Such biocompatible polymersomes can encapsulate various types of probes including cell membrane probes and nucleic acid probes as well as labelled nucleic acids, antibodies and quantum dots. Significance We show the delivery of sufficient quantities of probes to the cytosol, allowing sustained functional imaging of live cells over time periods of days to weeks. Finally the combination of such effective staining with three-dimensional imaging by confocal laser scanning microscopy allows cell imaging in complex three-dimensional environments under both mono-culture and co-culture conditions. Thus cell migration and proliferation can be studied in models that are much closer to the in vivo situation. PMID:20454666

  11. Reflection Paper on a Ubiquitous English Vocabulary Learning System: Evidence of Active/Passive Attitude vs. Usefulness/Ease-of-Use

    ERIC Educational Resources Information Center

    Lim, Jeff

    2013-01-01

    "A ubiquitous English vocabulary learning system: evidence of active/passive attitudes vs. usefulness/ease-of-use" introduces and develops "Ubiquitous English Vocabulary Learning" (UEFL) system. It introduces to the memorization using the video clips. According to their paper the video clip gives a better chance for students to…

  12. Cytosolic nucleic acid sensors and innate immune regulation.

    PubMed

    Ori, Daisuke; Murase, Motoya; Kawai, Taro

    2017-03-04

    During viral and bacterial infections, pathogen-derived cytosolic nucleic acids are recognized by the intracellular RNA sensors retinoic acid-inducible gene I and melanoma-differentiated gene 5 and intracellular DNA sensors, including cyclic-di-GMP-AMP synthase, absent in melanoma 2, interferon (IFN)-gamma inducible protein 16, polymerase III, and so on. Binding of intracellular nucleic acids to these sensors activates downstream signaling cascades, resulting in the production of type I IFNs and pro-inflammatory cytokines to induce appropriate systematic immune responses. While these sensors also recognize endogenous nucleic acids and activate immune responses, they can discriminate between self- and non-self-nucleic acids. However, dysfunction of these sensors or failure of regulatory mechanisms causes aberrant activation of immune response and autoimmune disorders. In this review, we focus on how intracellular immune sensors recognize exogenous nucleic acids and activate the innate immune system, and furthermore, how autoimmune diseases result from dysfunction of these sensors.

  13. Isolation of Metarhizium anisopliae carboxypeptidase A with native disulfide bonds from the cytosol of Escherichia coli BL21(DE3)

    PubMed Central

    Austin, Brian P.; Waugh, David S.

    2011-01-01

    The carboxypeptidase A enzyme from Metarhizium anisopliae (MeCPA) has broader specificity than the mammalian A-type carboxypeptidases, making it a more useful reagent for the removal of short affinity tags and disordered residues from the C-termini of recombinant proteins. When secreted from baculovirus-infected insect cells, the yield of pure MeCPA was 0.25 mg per liter of conditioned medium. Here, we describe a procedure for the production of MeCPA in the cytosol of Escherichia coli that yields approximately 0.5 mg of pure enzyme per liter of cell culture. The bacterial system is much easier to scale up and far less expensive than the insect cell system. The expression strategy entails maintaining the proMeCPA zymogen in a soluble state by fusing it to the C-terminus of maltose-binding protein (MBP) while simultaneously overproducing the protein disulfide isomerase DsbC in the cytosol from a separate plasmid. Unexpectedly, we found that the yield of active and properly oxidized MeCPA was highest when coexpressed with DsbC in BL21(DE3) cells that do not also contain mutations in the trxB and gor genes. Moreover, the formation of active MeCPA was only partially dependent on the disulfide-isomerase activity of DsbC. Intriguingly, we observed that most of the active MeCPA was generated after cell lysis and amylose affinity purification of the MBP-proMeCPA fusion protein, during the time that the partially purified protein was held overnight at 4 °C prior to activation with thermolysin. Following removal of the MBP-propeptide by thermolysin digestion, active MeCPA (with a C-terminal polyhistidine tag) was purified to homogeneity by immobilized metal affinity chromatography (IMAC), ion exchange chromatography and gel filtration. PMID:22197595

  14. Differential expression of two scribble isoforms during Drosophila embryogenesis.

    PubMed

    Li, M; Marhold, J; Gatos, A; Török, I; Mechler, B M

    2001-10-01

    The tumour suppressor gene scribble (scrib) is required for epithelial polarity and growth control in Drosophila. Here, we report the identification and embryonic expression pattern of two Scrib protein isoforms resulting from alternative splicing during scrib transcription. Both proteins are first ubiquitously expressed during early embryogenesis. Then, during morphogenesis each Scrib protein displays a specific pattern of expression in the central and peripheral nervous systems, CNS and PNS, respectively. During germ band extension, the expression of the longer form Scrib1 occurs predominantly in the neuroblasts derived from the neuro-ectoderm and becomes later restricted to CNS neurones as well as to the pole cells in the gonads. By contrast, the shorter form Scrib2 is strongly expressed in the PNS and a subset of CNS neurones.

  15. Immunohistochemical evidence of ubiquitous distribution of the metalloendoprotease insulin-degrading enzyme (IDE; insulysin) in human non-malignant tissues and tumor cell lines.

    PubMed

    Weirich, Gregor; Mengele, Karin; Yfanti, Christina; Gkazepis, Apostolos; Hellmann, Daniela; Welk, Anita; Giersig, Cecylia; Kuo, Wen-Liang; Rosner, Marsha Rich; Tang, Wei-Jen; Schmitt, Manfred

    2008-11-01

    Immunohistochemical evidence of ubiquitous distribution of the metalloprotease insulin-degrading enzyme (IDE; insulysin) in human non-malignant tissues and tumor cells is presented. Immunohistochemical staining was performed on a multi-organ tissue microarray (pancreas, lung, kidney, central/peripheral nervous system, liver, breast, placenta, myocardium, striated muscle, bone marrow, thymus, and spleen) and on a cell microarray of 31 tumor cell lines of different origin, as well as trophoblast cells and normal blood lymphocytes and granulocytes. IDE protein was expressed in all the tissues assessed and all the tumor cell lines except for Raji and HL-60. Trophoblast cells and granulocytes, but not normal lymphocytes, were also IDE-positive.

  16. Dual regulation of Ca2+-dependent glutamate release from astrocytes: vesicular glutamate transporters and cytosolic glutamate levels.

    PubMed

    Ni, Yingchun; Parpura, Vladimir

    2009-09-01

    Vesicular glutamate transporters (VGLUTs) are responsible for vesicular glutamate storage and exocytotic glutamate release in neurons and astrocytes. Here, we selectively and efficiently overexpressed individual VGLUT proteins (VGLUT1, 2, or 3) in solitary astrocytes and studied their effects on mechanical stimulation-induced Ca2+-dependent glutamate release. Neither VGLUT1 nor VGLUT2 overexpression changed the amount of glutamate release, whereas overexpression of VGLUT3 significantly enhanced Ca2+-dependent glutamate release from astrocytes. None of the VGLUT overexpression affected mechanically induced intracellular Ca2+ increase. Inhibition of glutamine synthetase activity by L-methionine sulfoximine in astrocytes, which leads to increased cytosolic glutamate concentration, greatly increased their mechanically induced Ca2+-dependent glutamate release, without affecting intracellular Ca2+ dynamics. Taken together, these data indicate that both VGLUT3 and the cytosolic concentration of glutamate are key limiting factors in regulating the Ca2+-dependent release of glutamate from astrocytes.

  17. Nuclear translocation of p21{sup WAF1/CIP1} protein prior to its cytosolic degradation by UV enhances DNA repair and survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ji Young; Kim, Hee Suk; Kim, Joo Young

    2009-12-25

    We previously reported that UV induced rapid proteasomal degradation of p21 protein in an ubiquitination-independent manner. Here, UV-induced p21 proteolysis was found to occur in the cytosol. Before cytosolic degradation, however, p21 protein translocated to and transiently accumulated in the nucleus. Nuclear translocation of p21 was not required for its degradation, but rather promoted DNA repair and cell survival. Overexpression of the wild type p21, but not the one with defective nuclear localization signal (NLS), reduced UV-induced DNA damage and cell death. Some of p21 protein translocated to the nucleus were associated with chromatin-bound PCNA and saved from UV-induced proteolysis.more » These data together show that p21 translocates to the nucleus to participate in DNA repair, while the rest is rapidly degraded in the cytosol. We propose that our findings reflect a mechanism to facilitate removal of damaged cells, enhancing DNA repair at the same time.« less

  18. Silencing of cytosolic NADP(+)-dependent isocitrate dehydrogenase by small interfering RNA enhances the sensitivity of HeLa cells toward staurosporine.

    PubMed

    Lee, Su-Min; Park, Sin Young; Shin, Seoung Woo; Kil, In Sup; Yang, Eun Sun; Park, Jeen-Woo

    2009-02-01

    Staurosporine induces the production of reactive oxygen species, which play an important causative role in apoptotic cell death. Recently, it was demonstrated that the control of cellular redox balance and the defense against oxidative damage is one of the primary functions of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) by supplying NADPH for antioxidant systems. The present report shows that silencing of IDPc expression in HeLa cells greatly enhances apoptosis induced by staurosporine. Transfection of HeLa cells with an IDPc small interfering RNA (siRNA) markedly decreased activity of IDPc, enhancing the susceptibility of staurosporine-induced apoptosis reflected by DNA fragmentation, cellular redox status and the modulation of apoptotic marker proteins. These results indicate that IDPc may play an important role in regulating the apoptosis induced by staurosporine and the sensitizing effect of IDPc siRNA on the apoptotic cell death of HeLa cells offers the possibility of developing a modifier of cancer chemotherapy.

  19. Ubiquitous equatorial accretion disc winds in black hole soft states

    NASA Astrophysics Data System (ADS)

    Ponti, G.; Fender, R. P.; Begelman, M. C.; Dunn, R. J. H.; Neilsen, J.; Coriat, M.

    2012-05-01

    High-resolution spectra of Galactic black holes (GBHs) reveal the presence of highly ionized absorbers. In one GBH, accreting close to the Eddington limit for more than a decade, a powerful accretion disc wind is observed to be present in softer X-ray states and it has been suggested that it can carry away enough mass and energy to quench the radio jet. Here we report that these winds, which may have mass outflow rates of the order of the inner accretion rate or higher, are a ubiquitous component of the jet-free soft states of all GBHs. We furthermore demonstrate that these winds have an equatorial geometry with opening angles of few tens of degrees, and so are only observed in sources in which the disc is inclined at a large angle to the line of sight. The decrease in Fe XXV/Fe XXVI line ratio with Compton temperature, observed in the soft state, suggests a link between higher wind ionization and harder spectral shapes. Although the physical interaction between the wind, accretion flow and jet is still not fully understood, the mass flux and power of these winds and their presence ubiquitously during the soft X-ray states suggest they are fundamental components of the accretion phenomenon.

  20. HSDPA (3.5G)-based ubiquitous integrated biotelemetry system for emergency care.

    PubMed

    Kang, Jaemin; Shin, Il Hyung; Koo, Yoonseo; Jung, Min Yang; Suh, Gil Joon; Kim, Hee Chan

    2007-01-01

    We have developed the second prototype system of Ubiquitous Integrated Biotelemetry System for Emergency Care(UIBSEC) using a HSDPA(High Speed Downlink Packet Access) modem to be used by emergency rescuers to get directions from medical doctors in providing emergency medical services for patients in ambulance. Five vital bio-signal instrumentation modules have been implemented, which include noninvasive arterial blood pressure (NIBP), arterial oxygen saturation (SaO2), 6-channel electro-cardiogram(ECG), blood glucose level, and body temperature and real-time motion picture of the patient and GPS information are also taken. Measured patient data, captured motion picture and GPS information are then transferred to a doctor's PC through the HSDPA and TCP/IP networks using stand-alone HSDPA modem. Most prominent feature of the developed system is that it is based on the HSDPA backbone networks available in Korea now, through which we will be able to establish a ubiquitous emergency healthcare service system.