Sample records for ucp variants modulate

  1. UCP2 and UCP3 variants and gene-environment interaction associated with prediabetes and T2DM in a rural population: a case control study in China.

    PubMed

    Su, Meifang; Chen, Xiaoying; Chen, Yue; Wang, Congyun; Li, Songtao; Ying, Xuhua; Xiao, Tian; Wang, Na; Jiang, Qingwu; Fu, Chaowei

    2018-03-12

    There are disparities for the association between uncoupling proteins (UCP) and type 2 diabetes (T2DM). The study was to examine the associations of genetic variants of UCP2 and UCP3 with prediabetes and T2DM in a rural Chinese population. A population-based case-control study of 397 adults with T2DM, 394 with prediabetes and 409 with normal glucose tolerance (NGT) was carried out in 2014 in a rural community in eastern China. Three groups were identified through a community survey and the prediabetes and NGT groups were frequently matched by age and gender with the T2DM group and they were not relatives of T2DM subjects. With r 2  ≥ 0.8 and minor allele frequency (MAF) ≥0.05 for tag single nucleotide polymorphisms (SNPs) with potential function, three (rs660339, rs45560234 and rs643064) and six (rs7930460, rs15763, rs647126, rs1800849, rs3781907 and rs1685356) SNPs were selected respectively for UCP2 and UCP3 and genotyped in real time using the MassARRAY system (Sequenom; USA). The haplotypes, gene-environmental interaction and association between genetic variants of UCP2 and UCP3 and prediabetes or T2DM were explored. There were no significant differences in age and sex among three study groups. After the adjustment for possible covariates, the A allele of rs1800849 in UCP3 was significantly associated with prediabetes (aOR AA vs GG  = 1.68, 95% CI: 1.02-2.78), and the association was also significant under the recessive model (aOR AA vs GA + GG  = 1.64, 95% CI: 1.02-2.66). Also, rs15763 was found to be marginally significantly associated with T2DM under dominant model (OR GA + AA vs GG  = 0.73, 95% CI: 0.52-1.03, P = 0.072). No haplotype was significantly associated with prediabetes or T2DM. Multiplicative interactions for rs660339-overweight on T2DM were observed. In addition, the AA genotype of rs660339 was associated with an increased risk of T2DM in overweight subjects (OR = 1.48, 95%CI: 0.87-2.52) but with a decreased

  2. Glutathionylation acts as a control switch for uncoupling proteins UCP2 and UCP3.

    PubMed

    Mailloux, Ryan J; Seifert, Erin L; Bouillaud, Frédéric; Aguer, Céline; Collins, Sheila; Harper, Mary-Ellen

    2011-06-17

    The mitochondrial uncoupling proteins 2 and 3 (UCP2 and -3) are known to curtail oxidative stress and participate in a wide array of cellular functions, including insulin secretion and the regulation of satiety. However, the molecular control mechanism(s) governing these proteins remains elusive. Here we reveal that UCP2 and UCP3 contain reactive cysteine residues that can be conjugated to glutathione. We further demonstrate that this modification controls UCP2 and UCP3 function. Both reactive oxygen species and glutathionylation were found to activate and deactivate UCP3-dependent increases in non-phosphorylating respiration. We identified both Cys(25) and Cys(259) as the major glutathionylation sites on UCP3. Additional experiments in thymocytes from wild-type and UCP2 null mice demonstrated that glutathionylation similarly diminishes non-phosphorylating respiration. Our results illustrate that UCP2- and UCP3-mediated state 4 respiration is controlled by reversible glutathionylation. Altogether, these findings advance our understanding of the roles UCP2 and UCP3 play in modulating metabolic efficiency, cell signaling, and oxidative stress processes.

  3. Population Genetic Analysis of the Uncoupling Proteins Supports a Role for UCP3 in Human Cold Resistance

    PubMed Central

    Hancock, Angela M.; Clark, Vanessa J.; Qian, Yudong; Di Rienzo, Anna

    2011-01-01

    Production of heat via nonshivering thermogenesis (NST) is critical for temperature homeostasis in mammals. Uncoupling protein UCP1 plays a central role in NST by uncoupling the proton gradients produced in the inner membranes of mitochondria to produce heat; however, the extent to which UCP1 homologues, UCP2 and UCP3, are involved in NST is the subject of an ongoing debate. We used an evolutionary approach to test the hypotheses that variants that are associated with increased expression of these genes (UCP1 −3826A, UCP2 −866A, and UCP3 −55T) show evidence of adaptation with winter climate. To that end, we calculated correlations between allele frequencies and winter climate variables for these single-nucleotide polymorphisms (SNPs), which we genotyped in a panel of 52 worldwide populations. We found significant correlations with winter climate for UCP1 −3826G/A and UCP3 −55C/T. Further, by analyzing previously published genotype data for these SNPs, we found that the peak of the correlation for the UCP1 region occurred at the disease-associated −3826A/G variant and that the UCP3 region has a striking signal overall, with several individual SNPs showing interesting patterns, including the −55C/T variant. Resequencing of the regions in a set of three diverse population samples helped to clarify the signals that we found with the genotype data. At UCP1, the resequencing data revealed modest evidence that the haplotype carrying the −3826A variant was driven to high frequency by selection. In the UCP3 region, combining results from the climate analysis and resequencing survey suggest a more complex model in which variants on multiple haplotypes may independently be correlated with temperature. This is further supported by an excess of intermediate frequency variants in the UCP3 region in the Han Chinese population. Taken together, our results suggest that adaptation to climate influenced the global distribution of allele frequencies in UCP1 and UCP3

  4. UCP1 and UCP3 Expression Is Associated with Lipid and Carbohydrate Oxidation and Body Composition

    PubMed Central

    Oliveira, Bruno A. P.; Pinhel, Marcela A. S.; Nicoletti, Carolina F.; Oliveira, Cristiana C.; Quinhoneiro, Driele C. G.; Noronha, Natália Y.; Marchini, Júlio S.; Marchry, Ana J.; Junior, Wilson S.; Nonino, Carla B.

    2016-01-01

    Background/Objective Uncoupling proteins (UCPs) are located in the inner membrane of mitochondria. These proteins participate in thermogenesis and energy expenditure. This study aimed to evaluate how UCP1 and UCP3 expression influences substrate oxidation and elicits possible changes in body composition in patients submitted to bariatric surgery. Subjects/Methods This is a longitudinal study comprising 13 women with obesity grade III that underwent bariatric surgery and 10 healthy weight individuals (control group). Body composition was assessed by bioelectrical impedance. Carbohydrate and fat oxidation was determined by indirect calorimetry. Subcutaneous adipose tissue was collected for gene expression analysis. QPCR was used to evaluate UCP1 and UCP3 expression. Results Obese patients and the control group differed significantly in terms of lipid and carbohydrate oxidation. Six months after bariatric surgery, the differences disappeared. Lipid oxidation correlated with the percentage of fat mass in the postoperative period. Multiple linear regression analysis showed that the UCP1 and UCP3 genes contributed to lipid and carbohydrate oxidation. Additionally, UCP3 expression was associated with BMI, percentage of lean body mass, and percentage of mass in the postoperative period. Conclusions UCP1 and UCP3 expression is associated with lipid and carbohydrate oxidation in patients submitted to bariatric surgery. In addition, UCP3 participates in body composition modulation six months postoperatively. PMID:26959981

  5. Uncoupling proteins (UCP) in unicellular eukaryotes: true UCPs or UCP1-like acting proteins?

    PubMed

    Luévano-Martínez, Luis Alberto

    2012-04-05

    Uncoupling proteins belong to the superfamily of mitochondrial anion carriers. They are apparently present throughout the Eukarya domain in which only some members have an established physiological function, i.e. UCP1 from brown adipose tissue is involved in non-shivering thermogenesis. However, the proteins responsible for the phenotype observed in unicellular organisms have not been characterized. In this report we analyzed functional evidence concerning unicellular UCPs and found that true UCPs are restricted to some taxonomical groups while proteins conferring a UCP1-like phenotype to fungi and most protists are the result of a promiscuous activity exerted by other mitochondrial anion carriers. We describe a possible evolutionary route followed by these proteins by which they acquire this promiscuous mechanism. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Hexokinase II acts through UCP3 to suppress mitochondrial reactive oxygen species production and maintain aerobic respiration.

    PubMed

    Mailloux, Ryan J; Dumouchel, Tyler; Aguer, Céline; deKemp, Rob; Beanlands, Rob; Harper, Mary-Ellen

    2011-07-15

    UCP3 (uncoupling protein-3) mitigates mitochondrial ROS (reactive oxygen species) production, but the mechanisms are poorly understood. Previous studies have also examined UCP3 effects, including decreased ROS production, during metabolic states when fatty acid oxidation is high (e.g. a fasting state). However, the role of UCP3 when carbohydrate oxidation is high (e.g. fed state) has remained largely unexplored. In the present study, we show that mitochondrial-bound HK (hexokinase) II curtails oxidative stress and enhances aerobic metabolism of glucose in the fed state in a UCP3-dependent manner. Genetic knockout or inhibition of UCP3 significantly decreased mitochondrial-bound HKII. Furthermore, UCP3 was required for the HKII-mediated decrease in mitochondrial ROS emission. Intriguingly, the UCP3-mediated modulation of mitochondria-associated HKII was only observed in cells cultured under high-glucose conditions. UCP3 was required to maintain high rates of aerobic metabolism in high-glucose-treated cells and in muscle of fed mice. Deficiency in UCP3 resulted in a metabolic shift that favoured anaerobic glycolytic metabolism, increased glucose uptake and increased sensitivity to oxidative challenge. PET (positron emission tomography) of [18F]fluoro-deoxyglucose uptake confirmed these findings in UCP3-knockout and wild-type mice. Collectively, our findings link the anti-oxidative and metabolic functions of UCP3 through a surprising molecular connection with mitochondrial-bound HKII.

  7. Fiber type dependent upregulation of human skeletal muscle UCP2 and UCP3 mRNA expression by high-fat diet.

    PubMed

    Schrauwen, P; Hoppeler, H; Billeter, R; Bakker, A H; Pendergast, D R

    2001-04-01

    To test the hypothesis that consumption of a high-fat diet leads to an increase in UCP mRNA expression in human skeletal muscle. In a group of endurance athletes, with a range in fiber type distribution, we hypothesized that the effect of the high-fat diet on UCP2 and UCP3 mRNA expression is more pronounced in muscle fibers which are known to have a high capacity to shift from carbohydrate to fat oxidation (type IIA fibers). Ten healthy trained athletes (five males, five females) consumed a low-fat diet (17+/-0.9 en% of fat) and high-fat diet (41.4+/-1.4 en% fat) for 4 weeks, separated by a 4 week wash-out period. Muscle biopsies were collected at the end of both dietary periods. Using RT-PCR, levels of UCP2 and UCP3 mRNA expression were measured and the percentage of type I, IIA and IIB fibers were determined using the myofibrillar ATPase method in all subjects. UCP3L mRNA expression tended to be higher on the high-fat diet, an effect which reached significance when only males were considered (P=0.037). Furthermore, diet-induced change in mRNA expression of UCP3T (r: 0.66, P=0.037), UCP3L (r: 0.61, P=0.06) and UCP2 (r: 0.70, P=0.025), but not UCP3S, correlated significantly with percentage dietary fat on the high-fat diet. Plasma FFA levels were not different during the two diets. Finally, the percentage of type IIA fibers was positively correlated with the diet-induced change in mRNA expression for UCP2 (r: 0.7, P=0.03), UCP3L (r: 0.73, P=0.016) and UCP3T (r: 0.68, P=0.03) but not with UCP3S (r: 0.06, NS). UCP2 and UCP3 mRNAs are upregulated by a high-fat diet. This upregulation is more pronounced in humans with high proportions of type IIA fibers, suggesting a role for UCPs in lipid utilization.

  8. Studies of UCP2 transgenic and knockout mice reveal that liver UCP2 is not essential for the antiobesity effects of fish oil.

    PubMed

    Tsuboyama-Kasaoka, Nobuyo; Sano, Kayo; Shozawa, Chikako; Osaka, Toshimasa; Ezaki, Osamu

    2008-03-01

    Uncoupling protein 2 (UCP2) is a possible target molecule for energy dissipation. Many dietary fats, including safflower oil and lard, induce obesity in C57BL/6 mice, whereas fish oil does not. Fish oil increases UCP2 expression in hepatocytes and may enhance UCP2 activity by activating the UCP2 molecule or altering the lipid bilayer environment. To examine the role of liver UCP2 in obesity, we created transgenic mice that overexpressed human UCP2 in hepatocytes and examined whether UCP2 transgenic mice showed less obesity when fed a high-fat diet (safflower oil or lard). In addition, we examined whether fish oil had antiobesity effects in UCP2 knockout mice. UCP2 transgenic and wild-type mice fed a high-fat diet (safflower oil or lard) developed obesity to a similar degree. UCP2 knockout and wild-type mice fed fish oil had lower rates of obesity than mice fed safflower oil. Remarkably, safflower oil did not induce obesity in female UCP2 knockout mice, an unexpected phenotype for which we presently have no explanation. However, this unexpected effect was not observed in male UCP2 knockout mice or in UCP2 knockout mice fed a high-lard diet. These data indicate that liver UCP2 is not essential for fish oil-induced decreases in body fat.

  9. pVHL's kryptonite: E2-EPF UCP.

    PubMed

    Ohh, Michael

    2006-08-01

    E2-EPF ubiquitin carrier protein (UCP) is a member of an E2 family of enzymes that catalyzes the ligation of ubiquitin to proteins targeted for destruction by the proteasome. UCP is overexpressed in common human cancers, suggesting its involvement in oncogenesis, but a physiologic target of UCP has not been identified. In a recent report published in Nature Medicine, Jung et al. identified von Hippel-Lindau (VHL) tumor suppressor protein, which targets the alpha subunit of hypoxia-inducible factor (HIF) for ubiquitin-mediated destruction, as a bona fide substrate of UCP and demonstrated a potential pVHL-HIF pathway-dependent role for UCP in cancer development.

  10. An ancient look at UCP1.

    PubMed

    Klingenspor, Martin; Fromme, Tobias; Hughes, David A; Manzke, Lars; Polymeropoulos, Elias; Riemann, Tobias; Trzcionka, Magdalene; Hirschberg, Verena; Jastroch, Martin

    2008-01-01

    Brown adipose tissue serves as a thermogenic organ in placental mammals to defend body temperature in the cold by nonshivering thermogenesis. The thermogenic function of brown adipose tissue is enabled by several specialised features on the organ as well as on the cellular level, including dense sympathetic innervation and vascularisation, high lipolytic capacity and mitochondrial density and the unique expression of uncoupling protein 1 (UCP1). This mitochondrial carrier protein is inserted into the inner mitochondrial membrane and stimulates maximum mitochondrial respiration by dissipating proton-motive force as heat. Studies in knockout mice have clearly demonstrated that UCP1 is essential for nonshivering thermogenesis in brown adipose tissue. For a long time it had been presumed that brown adipose tissue and UCP1 emerged in placental mammals providing them with a unique advantage to survive in the cold. Our subsequent discoveries of UCP1 orthologues in ectotherm vertebrates and marsupials clearly refute this presumption. We can now initiate comparative studies on the structure-function relationships in UCP1 orthologues from different vertebrates to elucidate when during vertebrate evolution UCP1 gained the biochemical properties required for nonshivering thermogenesis.

  11. UCP2- and non-UCP2-mediated electric current in eukaryotic cells exhibits different properties.

    PubMed

    Wang, Ruihua; MoYung, K C; Zhang, M H; Poon, Karen

    2015-12-01

    Using live eukaryotic cells, including cancer cells, MCF-7 and HCT-116, normal hepatocytes and red blood cells in anode and potassium ferricyanide in cathode of MFC could generate bio-based electric current. Electrons and protons generated from the metabolic reaction in both cytosol and mitochondria contributing to the leaking would mediate the generation of electric current. Both resveratrol (RVT) and 2,4-dinitrophenol (DNP) used to induce proton leak in mitochondria were found to promote electric current production in all cells except red blood cells without mitochondria. Proton leak might be important for electric current production by bringing the charge balance in cells to enhance the further electron leak. The induced electric current by RVT can be blocked by Genipin, an inhibitor of UCP2-mediated proton leak, while that induced by DNP cannot. RVT could reduce reactive oxygen species (ROS) level in cells better than that of DNP. In addition, RVT increased mitochondrial membrane potential (MMP), while DNP decreased it. Results highly suggested the existence of at least two types of electric current that showed different properties. They included UCP2-mediated and non-UCP2-mediated electric current. UCP2-mediated electric current exhibited higher reactive oxygen species (ROS) reduction effect per unit electric current production than that of non-UCP2-mediated electric current. Higher UCP2-mediated electric current observed in cancer cells might contribute to the mechanism of drug resistence. Correlation could not be established between electric current production with either ROS and MMP without distinguishing the types of electric current.

  12. Essential role of UCP1 modulating the central effects of thyroid hormones on energy balance

    PubMed Central

    Alvarez-Crespo, Mayte; Csikasz, Robert I.; Martínez-Sánchez, Noelia; Diéguez, Carlos; Cannon, Barbara; Nedergaard, Jan; López, Miguel

    2016-01-01

    Objective Classically, metabolic effects of thyroid hormones (THs) have been considered to be peripherally mediated, i.e. different tissues in the body respond directly to thyroid hormones with an increased metabolism. An alternative view is that the metabolic effects are centrally regulated. We have examined here the degree to which prolonged, centrally infused triiodothyronine (T3) could in itself induce total body metabolic effects and the degree to which brown adipose tissue (BAT) thermogenesis was essential for such effects, by examining uncoupling protein 1 (UCP1) KO mice. Methods Wildtype and UPC1 KO mice were centrally-treated with T3 by using minipumps. Metabolic measurements were analyzed by indirect calorimetry and expression analysis by RT-PCR or western blot. BAT morphology and histology were studied by immunohistochemistry. Results We found that central T3-treatment led to reduced levels of hypothalamic AMP-activated protein kinase (AMPK) and elevated body temperature (0.7 °C). UCP1 was essential for the T3-induced increased rate of energy expenditure, which was only observable at thermoneutrality and notably only during the active phase, for the increased body weight loss, for the increased hypothalamic levels of neuropeptide Y (NPY) and agouti-related peptide (AgRP) and for the increased food intake induced by central T3-treatment. Prolonged central T3-treatment also led to recruitment of BAT and britening/beiging (“browning”) of inguinal white adipose tissue (iWAT). Conclusions We conclude that UCP1 is essential for mediation of the central effects of thyroid hormones on energy balance, and we suggest that similar UCP1-dependent effects may underlie central energy balance effects of other agents. PMID:27069867

  13. Functional characterization of the 5'-flanking and the promoter region of the human UCP3 (hUCP3) gene.

    PubMed

    Tu, N; Chen, H; Winnikes, U; Reinert, I; Pirke, K M; Lentes, K U

    2000-09-22

    Uncoupling protein-3 (UCP3) is considered as an important regulator of energy expenditure and thermogenesis in humans. To get insight into the mechanisms regulating its expression we have cloned and characterized about 5 kb of the 5'-flanking region of the human UCP3 (hUCP3) gene. 5'-RACE analysis suggested a single transcription initiation site 187 bp upstream from the translational start site. The promoter region contains both TATA and CAAT boxes as well as consensus motifs for PPRE, TRE, CRE and muscle-specific factors like MyoD and MEF2 sites. Functional characterization of a 3 kb hUCP3 promoter fragment in multiple cell lines using a CAT-ELISA identified a cis-acting negative regulatory element between -2983 and -982 while the region between -982 and -284 showed greatly increased basal promoter activity suggesting the presence of a strong enhancer element. Promoter activity was particularly enhanced in the murine skeletal muscle cell line C2C12 reflecting the tissue-selective expression pattern of UCP3.

  14. UCP2 muscle gene transfer modifies mitochondrial membrane potential.

    PubMed

    Marti, A; Larrarte, E; Novo, F J; Garcia, M; Martinez, J A

    2001-01-01

    The aim of this work was to evaluate the effect of uncoupling protein 2 (UCP2) muscle gene transfer on mitochondrial activity. Five week-old male Wistar rats received an intramuscular injection of plasmid pXU1 containing UCP2 cDNA in the right tibialis anterior muscles. Left tibialis anterior muscles were injected with vehicle as control. Ten days after DNA injection, tibialis anterior muscles were dissected and muscle mitochondria isolated and analyzed. There were two mitochondrial populations in the muscle after UCP2 gene transfer, one of low fluorescence and complexity and the other, showing high fluorescence and complexity. UCP2 gene transfer resulted in a 3.6 fold increase in muscle UCP2 protein levels compared to control muscles assessed by Western blotting. Furthermore, a significant reduction in mitochondria membrane potential assessed by spectrofluorometry and flow cytometry was observed. The mitochondria membrane potential reduction might account for a decrease in fluorescence of the low fluorescence mitochondrial subpopulation. It has been demonstrated that UCP2 muscle gene transfer in vivo is associated with a lower mitochondria membrane potential. Our results suggest the potential involvement of UCP2 in uncoupling respiration. International Journal of Obesity (2001) 25, 68-74

  15. Association of UCP1 -3826A/G and UCP3 -55C/T gene polymorphisms with obesity and its related traits among multi-ethnic Malaysians.

    PubMed

    Lee, Kah-Hui; Chai, Voon-Yun; Kanachamy, Sathia S; Say, Yee-How

    2015-01-01

    Our study investigated the association of UCP1 -3826A/G and UCP3 -55C/T single nucleotide polymorphisms (SNPs) with obesity and its related traits among multi-ethnic Malaysians. A total of 447 (225 males; 46 Malays, 339 ethnic Chinese, 62 ethnic Indians; 111 obese) participated. Demographic and anthropometric data were collected, and genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism. The minor allele frequencies (MAFs) for UCP1 according to Malay/Chinese/Indian ethnicities were .61/.55/.52 and .32/.55/.38, respectively. UCP3 genotype and allele distribution was significantly associated with ethnicity and waist-to-hip ratio (WHR), but among non-obese and Chinese participants only, respectively, after stratified analysis. Chinese participants with T allele had significantly lesser risk to be centrally obese [odds ratio =.69 (CI =.48, 1.00; P=.04)], and also had significantly lower WHR compared to those with C allele. The UCP1 or UCP3 SNPs were not associated with obesity/BMI and total body fat (TBF), but combinatory genotype analysis revealed that those having the AA and CC genotype for the former and latter SNPs had significantly highest BMI and TBF compared to other genotype combinations. UCP3 -55C/T SNP was associated with central obesity among Malaysian participants of Chinese descent. Combinatory genotype analysis showed that BMI and TBF were significantly different among UCPI -3826A/G and UCP3 -55C/T genotype combinations, suggesting the existence of a gene interaction between UCP1 and UCP3 in influencing obesity and adiposity.

  16. Single nucleotide polymorphisms linked to mitochondrial uncoupling protein genes UCP2 and UCP3 affect mitochondrial metabolism and healthy aging in female nonagenarians

    PubMed Central

    Kim, Sangkyu; Myers, Leann; Ravussin, Eric; Cherry, Katie E.; Jazwinski, S. Michal

    2016-01-01

    Energy expenditure decreases with age, but in the oldest-old, energy demand for maintenance of body functions increases with declining health. Uncoupling proteins have profound impact on mitochondrial metabolic processes; therefore, we focused attention on mitochondrial uncoupling protein genes. Alongside resting metabolic rate (RMR), two SNPs in the promoter region of UCP2 were associated with healthy aging. These SNPs mark potential binding sites for several transcription factors; thus, they may affect expression of the gene. A third SNP in the 3′-UTR of UCP3 interacted with RMR. This UCP3 SNP is known to impact UCP3 expression in tissue culture cells, and it has been associated with body weight and mitochondrial energy metabolism. The significant main effects of the UCP2 SNPs and the interaction effect of the UCP3 SNP were also observed after controlling for fat-free mass (FFM) and physical-activity related energy consumption. The association of UCP2/3 with healthy aging was not found in males. Thus, our study provides evidence that the genetic risk factors for healthy aging differ in males and females, as expected from the differences in the phenotypes associated with healthy aging between the two sexes. It also has implications for how mitochondrial function changes during aging. PMID:26965008

  17. Single nucleotide polymorphisms linked to mitochondrial uncoupling protein genes UCP2 and UCP3 affect mitochondrial metabolism and healthy aging in female nonagenarians.

    PubMed

    Kim, Sangkyu; Myers, Leann; Ravussin, Eric; Cherry, Katie E; Jazwinski, S Michal

    2016-08-01

    Energy expenditure decreases with age, but in the oldest-old, energy demand for maintenance of body functions increases with declining health. Uncoupling proteins have profound impact on mitochondrial metabolic processes; therefore, we focused attention on mitochondrial uncoupling protein genes. Alongside resting metabolic rate (RMR), two SNPs in the promoter region of UCP2 were associated with healthy aging. These SNPs mark potential binding sites for several transcription factors; thus, they may affect expression of the gene. A third SNP in the 3'-UTR of UCP3 interacted with RMR. This UCP3 SNP is known to impact UCP3 expression in tissue culture cells, and it has been associated with body weight and mitochondrial energy metabolism. The significant main effects of the UCP2 SNPs and the interaction effect of the UCP3 SNP were also observed after controlling for fat-free mass (FFM) and physical-activity related energy consumption. The association of UCP2/3 with healthy aging was not found in males. Thus, our study provides evidence that the genetic risk factors for healthy aging differ in males and females, as expected from the differences in the phenotypes associated with healthy aging between the two sexes. It also has implications for how mitochondrial function changes during aging.

  18. PTGER4 modulating variants in Crohn's disease.

    PubMed

    Prager, Matthias; Büttner, Janine; Büning, Carsten

    2014-08-01

    Variants modulating expression of the prostaglandin receptor 4 (PTGER4) have been reported to be associated with Cohn's disease (CD), but the clinical impact remains to be elucidated. We analyzed these variants in a large German inflammatory bowel disease (IBD) cohort and searched for a potential phenotype association. The variants rs4495224 and rs7720838 were studied in adult German IBD patients (CD, n = 475; ulcerative colitis (UC), n = 293) and healthy controls (HC, n = 467). Data were correlated to results from NOD2 genotyping and to clinical characteristics. We found a significant association for the rs7720838 variant with overrepresentation of the T allele to CD (p = 0.0058; OR 0.7703, 95 % CI 0.641-0.926) but not to UC. Furthermore, logistic regression analysis revealed that the presence of the T allele was associated with stricturing disease behavior in CD patients (p = 0.03; OR 1.84, 95 % CI 1.07-3.16). Interestingly, the chance for developing stricturing disease behavior was enhanced if mutant alleles in both rs7720838 and NOD2 were present (OR 2.87, 95 % CI 1.42-5.81; p = 0.003). No overall association to CD or UC was found for the rs4495224 variant. The PTGER4 modulating variant rs7720838 increases susceptibility for CD and might resemble a risk factor for stricturing disease behavior.

  19. The emerging functions of UCP2 in health, disease, and therapeutics.

    PubMed

    Mattiasson, Gustav; Sullivan, Patrick G

    2006-01-01

    The uncoupling proteins (UCPs) are attracting an increased interest as potential therapeutic targets in a number of important diseases. UCP2 is expressed in several tissues, but its physiological functions as well as potential therapeutic applications are still unclear. Unlike UCP1, UCP2 does not seem to be important to thermogenesis or weight control, but appears to have an important role in the regulation of production of reactive oxygen species, inhibition of inflammation, and inhibition of cell death. These are central features in, for example, neurodegenerative and cardiovascular disease, and experimental evidence suggests that an increased expression and activity of UCP2 in models of these diseases has a beneficial effect on disease progression, implicating a potential therapeutic role for UCP2. UCP2 has an important role in the pathogenesis of type 2 diabetes by inhibiting insulin secretion in islet beta cells. At the same time, type 2 diabetes is associated with increased risk of cardiovascular disease and atherosclerosis where an increased expression of UCP2 appears to be beneficial. This illustrates that therapeutic applications involving UCP2 likely will have to regulate expression and activity in a tissue-specific manner.

  20. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalgaard, Louise T., E-mail: ltd@ruc.dk; Department of Science, Systems and Models, Roskilde University

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer UCP2 mRNA levels are decreased in islets of Langerhans from glucokinase deficient mice. Black-Right-Pointing-Pointer UCP2 mRNA up-regulation by glucose is dependent on glucokinase. Black-Right-Pointing-Pointer Absence of UCP2 increases GSIS of glucokinase heterozygous pancreatic islets. Black-Right-Pointing-Pointer This may protect glucokinase deficient mice from hyperglycemic damages. -- Abstract: Uncoupling Protein 2 (UCP2) is expressed in the pancreatic {beta}-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for UCP2 up-regulation in response to increased glucose is unknown. The aim was tomore » examine the effects of glucokinase (GK) deficiency on UCP2 mRNA levels and to characterize the interaction between UCP2 and GK with regard to glucose-stimulated insulin secretion in pancreatic islets. UCP2 mRNA expression was reduced in GK+/- islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase mimetic, did not prevent the glucose-induced up-regulation of UCP2. Glucose-stimulated insulin secretion was increased in UCP2-/- and GK+/- islets compared with GK+/- islets and UCP2 deficiency improved glucose tolerance of GK+/- mice. Accordingly, UCP2 deficiency increased ATP-levels of GK+/- mice. Thus, the compensatory down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients.« less

  1. Fatty Acids Change the Conformation of Uncoupling Protein 1 (UCP1)*

    PubMed Central

    Divakaruni, Ajit S.; Humphrey, Dickon M.; Brand, Martin D.

    2012-01-01

    UCP1 catalyzes proton leak across the mitochondrial inner membrane to disengage substrate oxidation from ATP production. It is well established that UCP1 is activated by fatty acids and inhibited by purine nucleotides, but precisely how this regulation occurs remains unsettled. Although fatty acids can competitively overcome nucleotide inhibition in functional assays, fatty acids have little effect on purine nucleotide binding. Here, we present the first demonstration that fatty acids induce a conformational change in UCP1. Palmitate dramatically changed the binding kinetics of 2′/3′-O-(N-methylanthraniloyl)-GDP, a fluorescently labeled nucleotide analog, for UCP1. Furthermore, palmitate accelerated the rate of enzymatic proteolysis of UCP1. The altered kinetics of both processes indicate that fatty acids change the conformation of UCP1, reconciling the apparent discrepancy between existing functional and ligand binding data. Our results provide a framework for how fatty acids and nucleotides compete to regulate the activity of UCP1. PMID:22952235

  2. IRX3 Promotes the Browning of White Adipocytes and Its Rare Variants are Associated with Human Obesity Risk.

    PubMed

    Zou, Yaoyu; Lu, Peng; Shi, Juan; Liu, Wen; Yang, Minglan; Zhao, Shaoqian; Chen, Na; Chen, Maopei; Sun, Yingkai; Gao, Aibo; Chen, Qingbo; Zhang, Zhiguo; Ma, Qinyun; Ning, Tinglu; Ying, Xiayang; Jin, Jiabin; Deng, Xiaxing; Shen, Baiyong; Zhang, Yifei; Yuan, Bo; Kauderer, Sophie; Liu, Simin; Hong, Jie; Liu, Ruixin; Ning, Guang; Wang, Weiqing; Gu, Weiqiong; Wang, Jiqiu

    2017-10-01

    IRX3 was recently reported as the effector of the FTO variants. We aimed to test IRX3's roles in the browning program and to evaluate the association between the genetic variants in IRX3 and human obesity. IRX3 expression was examined in beige adipocytes in human and mouse models, and further validated in induced beige adipocytes. The browning capacity of primary preadipocytes was assessed with IRX3 knockdown. Luciferase reporter analysis and ChIP assay were applied to investigate IRX3's effects on UCP1 transcriptional activity. Moreover, genetic analysis of IRX3 was performed in 861 young obese subjects and 916 controls. IRX3 expression was induced in the browning process and was positively correlated with the browning markers. IRX3 knockdown remarkably inhibited UCP1 expression in induced mouse and human beige adipocytes, and also repressed the uncoupled oxygen consumption rate. Further, IRX3 directly bound to UCP1 promoter and increased its transcriptional activity. Moreover, 17 rare heterozygous missense/frameshift IRX3 variants were identified, with a significant enrichment in obese subjects (P=0.038, OR=2.27; 95% CI, 1.02-5.05). IRX3 deficiency repressed the browning program of white adipocytes partially by regulating UCP1 transcriptional activity. Rare variants of IRX3 were associated with human obesity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. BAIBA Does Not Regulate UCP-3 Expression in Human Skeletal Muscle as a Response to Aerobic Exercise.

    PubMed

    Morales, Flor E; Forsse, Jeffrey S; Andre, Thomas L; McKinley-Barnard, Sarah K; Hwang, Paul S; Anthony, Ian G; Tinsley, Grant M; Spillane, Mike; Grandjean, Peter W; Ramirez, Alejandro; Willoughby, Darryn S

    2017-01-01

    β-Aminoisobutyric acid (BAIBA) has shown to modulate uncoupling protein (UCP)-1 expression, which is mainly expressed in white adipose tissue; however, no studies to date have analyzed its potential effect on the main uncoupling protein of skeletal muscle, UCP-3. The main goal of this study was to assess the potential effect of acute aerobic exercise on serum BAIBA and skeletal muscle UCP-3. The secondary goal was to assess the potential involvement of the transcription factors proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and peroxisome proliferator-activated receptor alpha (PPARα), as well as free fatty acids (FFAs) in UCP-3 expression. A tertiary goal of the study was to evaluate the potential effect of consuming a preexercise meal on the outcome of the first 2 objectives. In a randomized crossover design, untrained participants performed 2 acute cycling sessions (350 kcal at 70% of their VO 2peak ) after 2 experimental conditions: (1) consumption of a multi-macronutrient shake and (2) a fasting period of 8 hours. Blood samples were taken at baseline, preexercise, postexercise, 1 hour, and 4 hours postexercise, and muscle biopsies were taken at the last 4 time points. UCP-3 protein concentration and expression, as well as the mRNA expression of PGC-1α and PPARα, were measured in muscle, and BAIBA, glucose, and FFA were measured in serum. Aerobic exercise failed to induce a significant effect on serum BAIBA, PGC-1α, and PPARα regardless on the feeding condition. Despite the lack of effect of exercise on the previous variables, UCP-3 expression and protein concentration significantly increased in the shake condition. The expression of human skeletal muscle UCP-3 as a result of exercise might be controlled by factors other than BAIBA.

  4. Glutathionylation of UCP2 sensitizes drug resistant leukemia cells to chemotherapeutics.

    PubMed

    Pfefferle, Aline; Mailloux, Ryan J; Adjeitey, Cyril Nii-Klu; Harper, Mary-Ellen

    2013-01-01

    Uncoupling protein-2 (UCP2) is used by cells to control reactive oxygen species (ROS) production by mitochondria. This ability depends on the glutathionylation state of UCP2. UCP2 is often overexpressed in drug resistant cancer cells and therein controls cell ROS levels and limits drug toxicity. With our recent observation that glutathionylation deactivates proton leak through UCP2, we decided to test if diamide, a glutathionylation catalyst, can sensitize drug resistant cells to chemotherapeutic agents. Using drug sensitive HL-60 cells and the drug resistant HL-60 subline, Mx2, we show that chemical induction of glutathionylation selectively deactivates proton leak through UCP2 in Mx2 cells. Chemical glutathionylation of UCP2 disables chemoresistance in the Mx2 cells. Exposure to 200μM diamide led to a significant increase in Mx2 cell death that was augmented when cells were exposed to either menadione or the anthracycline doxorubicin. Diamide also sensitized Mx2 cells to a number of other chemotherapeutics. Proton leak through UCP2 contributed significantly to the energetics of the Mx2 cells. Knockdown of UCP2 led to a significant decrease in both resting and state 4 (i.e., proton leak-dependent) respiration (~43% and 62%, respectively) in Mx2 cells. Similarly diamide inhibited proton leak-dependent respiration by ~64%. In contrast, diamide had very little effect on proton leak in HL-60 cells. Collectively, our observations indicate that manipulation of UCP2 glutathionylation status can serve as a therapeutic strategy for cancer treatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. The UCP2 -866G/A, Ala55Val and UCP3 -55C/T polymorphisms are associated with premature coronary artery disease and cardiovascular risk factors in Mexican population.

    PubMed

    Gamboa, Ricardo; Huesca-Gómez, Claudia; López-Pérez, Vanessa; Posadas-Sánchez, Rosalinda; Cardoso-Saldaña, Guillermo; Medina-Urrutia, Aida; Juárez-Rojas, Juan Gabriel; Soto, María Elena; Posadas-Romero, Carlos; Vargas-Alarcón, Gilberto

    2018-05-21

    We examined the role of UCP gene polymorphisms as susceptibility markers for premature coronary artery disease (pCAD). The UCP2 Ala55Val (C/T rs660339), UCP2 -866G/A (rs659366), and UCP3 -55C/T (rs1800849) polymorphisms were genotyped in 948 patients with pCAD, and 763 controls. The distribution of the UCP2 A55V (C/T rs660339) and UCP3 -55 (rs1800849) was similar in patients and controls. However, under a recessive model, the UCP2 -866 (rs659366) A allele was associated with increased risk of developing pCAD (OR = 1.43, Pc = 0.003). On the other hand, patients with pCAD and UCP2 A55V (rs660339) TT showed high levels of visceral abdominal fat (VAF) (Pc = 0.002), low levels of subcutaneous abdominal fat (SAF) (Pc = 0.001) and high VAT/SAT ratio (Pc < 0.001). Also, patients with UCP2 -866 (rs659366) AA showed increased levels of VAF (Pc = 0.003), low levels of SAF (Pc = 0.001) and a high VAT/SAT ratio (Pc = 0.002), whereas patients with the UCP3 -55 (rs1800849) TT presented high levels of VAF (Pc = 0.002). The results suggest the association of the UCP2 -866 (rs659366) polymorphism with risk of developing pCAD. Some polymorphisms were associated with abdominal fat levels and cardiovascular risk factors.

  6. Sirt1 Regulates Insulin Secretion by Repressing UCP2 in Pancreatic β Cells

    PubMed Central

    Bordone, Laura; Jhala, Ulupi S; Apfeld, Javier; McDonagh, Thomas; Lemieux, Madeleine; McBurney, Michael; Szilvasi, Akos; Easlon, Erin J; Lin, Su-Ju; Guarente, Leonard

    2006-01-01

    Sir2 and insulin/IGF-1 are the major pathways that impinge upon aging in lower organisms. In Caenorhabditis elegans a possible genetic link between Sir2 and the insulin/IGF-1 pathway has been reported. Here we investigate such a link in mammals. We show that Sirt1 positively regulates insulin secretion in pancreatic β cells. Sirt1 represses the uncoupling protein (UCP) gene UCP2 by binding directly to the UCP2 promoter. In β cell lines in which Sirt1 is reduced by SiRNA, UCP2 levels are elevated and insulin secretion is blunted. The up-regulation of UCP2 is associated with a failure of cells to increase ATP levels after glucose stimulation. Knockdown of UCP2 restores the ability to secrete insulin in cells with reduced Sirt1, showing that UCP2 causes the defect in glucose-stimulated insulin secretion. Food deprivation induces UCP2 in mouse pancreas, which may occur via a reduction in NAD (a derivative of niacin) levels in the pancreas and down-regulation of Sirt1. Sirt1 knockout mice display constitutively high UCP2 expression. Our findings show that Sirt1 regulates UCP2 in β cells to affect insulin secretion. PMID:16366736

  7. UCP2 and 3 deletion screening and distribution in 15 pig breeds.

    PubMed

    Li, Yanhua; Li, Hanjie; Zhao, Xingbo; Li, Ning; Wu, Changxin

    2007-02-01

    The uncoupling protein family is a mitochondrial anion carrier family. It plays an important role in the biological traits of animal body weight, basal metabolic rate and energy conversion. Using PCR and PCR-SSCP, we scanned the porcine uncoupling protein 2 gene (UCP2) and uncoupling protein 3 gene (UCP3) and found seven deletion sites, three in UCP2 and four in UCP3. The deletions in 15 pig breeds showed that deletion influenced weight. The genotype compounding of seven deletion sites in 15 pig breeds had significant effects on performance traits of the pig, such as body weight. We predicted the potential protein factor binding sites using the transcription factor analysis tool TFSearch version 1.3 online. Two deletions (1830 nt and 3219 nt) in UCP3 were found to change the transcriptional factor sites. The 16 bp deletion in 1830 nt added a SP1 site and a 6 bp deletion in 3219 nt removed two MZF1 sites. Seven deletion polymorphisms were covered in introns of linkage genes of UCP2 and UCP3, showing that UCPs have conservation and genetic reliability.

  8. UCP3 Ablation Exacerbates High-Salt Induced Cardiac Hypertrophy and Cardiac Dysfunction.

    PubMed

    Lang, Hongmei; Xiang, Yang; Ai, Zhihua; You, Zhiqing; Jin, Xiaolan; Wan, Yong; Yang, Yongjian

    2018-04-20

    Excessive salt intake and left ventricular hypertrophy (LVH) are both critical for the development of hypertension and heart failure. The uncoupling protein 3 (UCP3) plays a cardio-protective role in early heart failure development. However, the potential role for UCP3 in salt intake and LVH is unclear. UCP3-/- and C57BL/6 mice were placed on either a normal-salt (NS, 0.5%) or a high-salt (HS, 8%) diet for 24 weeks. The cardiac function, endurance capacity, energy expenditure, and mitochondrial functional capacity were measured in each group. Elevated blood pressure was only observed in HS-fed UCP3-/- mice. High salt induced cardiac hypertrophy and dysfunction were observed in both C57BL/6 and UCP3-/- mice. However, the cardiac lesions were more profound in HS-fed UCP3-/- mice. Furthermore, HS-fed UCP3-/-mice experienced more severe mitochondrial respiratory dysfunction compared with HS-fed C57BL/6 mice, represented by the decreased volume of oxygen consumption and heat production at the whole-body level. UCP3 protein was involved in the incidence of high-salt induced hypertension and the progression of cardiac dysfunction in the early stages of heart failure. UCP3 ablation exacerbated high-salt-induced cardiac hypertrophy and cardiac dysfunction. © 2018 The Author(s). Published by S. Karger AG, Basel.

  9. Association of telomere length with type 2 diabetes, oxidative stress and UCP2 gene variation.

    PubMed

    Salpea, Klelia D; Talmud, Philippa J; Cooper, Jackie A; Maubaret, Cecilia G; Stephens, Jeffrey W; Abelak, Kavin; Humphries, Steve E

    2010-03-01

    High oxidative stress potentially leads to accelerated telomere shortening and consequent premature cell senescence, implicated in type 2 diabetes (T2D) development. Therefore, we studied the association of leukocyte telomere length (LTL) with the presence of T2D, as well as the effect on the patients' LTL of plasma oxidative stress and of variation in UCP2, a gene involved in the mitochondrial production of reactive oxygen species. Mean LTL was determined in 569 Caucasian, 103 South Asian and 70 Afro-Caribbean T2D patients aged from 24 to 92 years, 81 healthy Caucasian male students aged from 18 to 28 years and 367 healthy Caucasian men aged from 40 to 61 years by real-time PCR. Plasma total antioxidant status (TAOS) was measured in the T2D patients by a photometric microassay. The patients were also genotyped for the UCP2 functional variants -866G>A and A55V. Afro-Carribeans had 510bp longer mean length compared to Caucasians (p<0.0001) and 500bp longer than South Asians (p=0.004). T2D subjects displayed shorter age-adjusted LTL compared to controls [6.94(6.8-7.03) vs. 7.72(7.53-7.9), p<0.001] with subjects in the middle and the lowest tertile of LTL having significantly higher odds ratios for T2D compared to those in the highest tertile [1.50(1.08-2.07) and 5.04(3.63-6.99), respectively, p<0.0001]. In the patients, LTL was correlated negatively with age (r=-0.18, p<0.0001) and positively with TAOS measures (r=0.12, p=0.01) after adjusting for age, while carriers of the UCP2 -866A allele had shorter age-adjusted LTL than common homozygotes [6.86(6.76-6.96)kb vs. 7.03(6.91-7.15)kb, p=0.04]. The present data suggest that shorter LTL is associated with the presence of T2D and this could be partially attributed to the high oxidative stress in these patients. The association of the UCP2 functional promoter variant with the LTL implies a link between mitochondrial production of reactive oxygen species and shorter telomere length in T2D.

  10. Evolution of UCP1 Transcriptional Regulatory Elements Across the Mammalian Phylogeny

    PubMed Central

    Gaudry, Michael J.; Campbell, Kevin L.

    2017-01-01

    Uncoupling protein 1 (UCP1) permits non-shivering thermogenesis (NST) when highly expressed in brown adipose tissue (BAT) mitochondria. Exclusive to placental mammals, BAT has commonly been regarded to be advantageous for thermoregulation in hibernators, small-bodied species, and the neonates of larger species. While numerous regulatory control motifs associated with UCP1 transcription have been proposed for murid rodents, it remains unclear whether these are conserved across the eutherian mammal phylogeny and hence essential for UCP1 expression. To address this shortcoming, we conducted a broad comparative survey of putative UCP1 transcriptional regulatory elements in 139 mammals (135 eutherians). We find no evidence for presence of a UCP1 enhancer in monotremes and marsupials, supporting the hypothesis that this control region evolved in a stem eutherian ancestor. We additionally reveal that several putative promoter elements (e.g., CRE-4, CCAAT) identified in murid rodents are not conserved among BAT-expressing eutherians, and together with the putative regulatory region (PRR) and CpG island do not appear to be crucial for UCP1 expression. The specificity and importance of the upTRE, dnTRE, URE1, CRE-2, RARE-2, NBRE, BRE-1, and BRE-2 enhancer elements first described from rats and mice are moreover uncertain as these motifs differ substantially—but generally remain highly conserved—in other BAT-expressing eutherians. Other UCP1 enhancer motifs (CRE-3, PPRE, and RARE-3) as well as the TATA box are also highly conserved in nearly all eutherian lineages with an intact UCP1. While these transcriptional regulatory motifs are generally also maintained in species where this gene is pseudogenized, the loss or degeneration of key basal promoter (e.g., TATA box) and enhancer elements in other UCP1-lacking lineages make it unlikely that the enhancer region is pleiotropic (i.e., co-regulates additional genes). Importantly, differential losses of (or mutations within

  11. Long-term high-fat feeding induces greater fat storage in mice lacking UCP3.

    PubMed

    Costford, Sheila R; Chaudhry, Shehla N; Crawford, Sean A; Salkhordeh, Mahmoud; Harper, Mary-Ellen

    2008-11-01

    Uncoupling protein-3 (UCP3) is a mitochondrial inner-membrane protein highly expressed in skeletal muscle. While UCP3's function is still unknown, it has been hypothesized to act as a fatty acid (FA) anion exporter, protecting mitochondria against lipid peroxidation and/or facilitating FA oxidation. The aim of this study was to determine the effects of long-term feeding of a 45% fat diet on whole body indicators of muscle metabolism in congenic C57BL/6 mice that were either lacking UCP3 (Ucp3(-/-)) or had a transgenically induced approximately twofold increase in UCP3 levels (UCP3tg). Mice were fed the high-fat (HF) diet for a period of either 4 or 8 mo immediately following weaning. After long-term HF feeding, UCP3tg mice weighed an average of 15% less than wild-type mice (P < 0.05) and were 20% less metabolically efficient than both wild-type and Ucp3(-/-) mice (P < 0.01). Additionally, wild-type mice had 21% lower, whereas UCP3tg mice had 36% lower, levels of adiposity compared with Ucp3(-/-) mice (P < 0.05 and P < 0.001, respectively), indicating a protective effect of UCP3 against fat gain. No differences in whole body oxygen consumption were detected following long-term HF feeding. Glucose and insulin tolerance tests revealed that both the UCP3tg and Ucp3(-/-) mice were more glucose tolerant and insulin sensitive compared with wild-type mice after short-term HF feeding, but this protection was not maintained in the long term. Findings indicate that UCP3 is involved in protection from fat gain induced by long-term HF feeding, but not in protection from insulin resistance.

  12. Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein.

    PubMed

    Park, Daeho; Han, Claudia Z; Elliott, Michael R; Kinchen, Jason M; Trampont, Paul C; Das, Soumita; Collins, Sheila; Lysiak, Jeffrey J; Hoehn, Kyle L; Ravichandran, Kodi S

    2011-08-21

    Rapid and efficient removal of apoptotic cells by phagocytes is important during development, tissue homeostasis and in immune responses. Efficient clearance depends on the capacity of a single phagocyte to ingest multiple apoptotic cells successively, and to process the corpse-derived cellular material. However, the factors that influence continued clearance by phagocytes are not known. Here we show that the mitochondrial membrane potential of the phagocyte critically controls engulfment capacity, with lower potential enhancing engulfment and vice versa. The mitochondrial membrane protein Ucp2, which acts to lower the mitochondrial membrane potential, was upregulated in phagocytes engulfing apoptotic cells. Loss of Ucp2 reduced phagocytic capacity, whereas Ucp2 overexpression enhanced engulfment. Mutational and pharmacological studies indicated a direct role for Ucp2-mediated mitochondrial function in phagocytosis. Macrophages from Ucp2-deficient mice were impaired in phagocytosis in vitro, and Ucp2-deficient mice showed profound in vivo defects in clearing dying cells in the thymus and testes. Collectively, these data indicate that mitochondrial membrane potential and Ucp2 are key molecular determinants of apoptotic cell clearance. As Ucp2 is linked to metabolic diseases and atherosclerosis, this newly discovered role for Ucp2 in apoptotic cell clearance has implications for the complex aetiology and pathogenesis of these diseases.

  13. Genetic variants of uncoupling proteins-2 and -3 in relation to maximal oxygen uptake in different sports.

    PubMed

    Holdys, Joanna; Gronek, Piotr; Kryściak, Jakub; Stanisławski, Daniel

    2013-01-01

    Uncoupling proteins 2 and 3 (UCP2 and UCP3) as mitochondrial electron transporters are involved in regulation of ATP production and energy dissipation as heat. Energy efficiency plays an important role in physical performance, especially in aerobic fitness. The aim of this study was to examine the association between maximal oxygen uptake and genetic variants of the UCP2 and UCP3 genes. The studies were carried out in a group of 154 men and 85 women, professional athletes representing various sports and fitness levels and students of the University of Physical Education in Poznań. Physiological and molecular procedures were used, i.e. direct measurement of maximum oxygen uptake (VO₂max) and analysis of an insertion/deletion (I/D) polymorphism in the 3'untranslated region of exon 8 of the UCP2 gene and a C>T substitution in exon 5 (Y210Y) of the UCP3 gene. No statistically significant associations were found, only certain trends. Insertion allele (I) of the I/D UCP2 and the T allele of the UCP3 gene were favourable in obtaining higher VO₂max level and might be considered as endurance-related alleles.

  14. IGF2BP2/IMP2-Deficient mice resist obesity through enhanced translation of Ucp1 mRNA and Other mRNAs encoding mitochondrial proteins.

    PubMed

    Dai, Ning; Zhao, Liping; Wrighting, Diedra; Krämer, Dana; Majithia, Amit; Wang, Yanqun; Cracan, Valentin; Borges-Rivera, Diego; Mootha, Vamsi K; Nahrendorf, Matthias; Thorburn, David R; Minichiello, Liliana; Altshuler, David; Avruch, Joseph

    2015-04-07

    Although variants in the IGF2BP2/IMP2 gene confer risk for type 2 diabetes, IMP2, an RNA binding protein, is not known to regulate metabolism. Imp2(-/-) mice gain less lean mass after weaning and have increased lifespan. Imp2(-/-) mice are highly resistant to diet-induced obesity and fatty liver and display superior glucose tolerance and insulin sensitivity, increased energy expenditure, and better defense of core temperature on cold exposure. Imp2(-/-) brown fat and Imp2(-/-) brown adipocytes differentiated in vitro contain more UCP1 polypeptide than Imp2(+/+) despite similar levels of Ucp1 mRNA; the Imp2(-/-)adipocytes also exhibit greater uncoupled oxygen consumption. IMP2 binds the mRNAs encoding Ucp1 and other mitochondrial components, and most exhibit increased translational efficiency in the absence of IMP2. In vitro IMP2 inhibits translation of mRNAs bearing the Ucp1 untranslated segments. Thus IMP2 limits longevity and regulates nutrient and energy metabolism in the mouse by controlling the translation of its client mRNAs. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1

    PubMed Central

    Chouchani, Edward T.; Kazak, Lawrence; Jedrychowski, Mark P.; Lu, Gina Z.; Erickson, Brian K.; Szpyt, John; Pierce, Kerry A.; Laznik-Bogoslavski, Dina; Vetrivelan, Ramalingam; Clish, Clary B.; Robinson, Alan J.; Gygi, Steve P.; Spiegelman, Bruce M.

    2017-01-01

    Brown adipose tissue (BAT) can dissipate chemical energy as heat through thermogenic respiration, which requires uncoupling protein 1 (UCP1)1,2. Thermogenesis from BAT and beige adipose can combat obesity and diabetes3, encouraging investigation of factors that control UCP1-dependent respiration in vivo. Herein we show that acutely activated BAT thermogenesis is defined by a substantial increase in mitochondrial reactive oxygen species (ROS) levels. Remarkably, this process supports in vivo BAT thermogenesis, as pharmacological depletion of mitochondrial ROS results in hypothermia upon cold exposure, and inhibits UCP1-dependent increases in whole body energy expenditure. We further establish that thermogenic ROS alter BAT cysteine thiol redox status to drive increased respiration, and Cys253 of UCP1 is a key target. UCP1 Cys253 is sulfenylated during thermogenesis, while mutation of this site desensitizes the purine nucleotide inhibited state of the carrier to adrenergic activation and uncoupling. These studies identify BAT mitochondrial ROS induction as a mechanism that drives UCP1-dependent thermogenesis and whole body energy expenditure, which opens the way to develop improved therapeutic strategies for combating metabolic disorders. PMID:27027295

  16. Retinoic acid has different effects on UCP1 expression in mouse and human adipocytes

    PubMed Central

    2013-01-01

    Background Increased adipose thermogenesis is being considered as a strategy aimed at preventing or reversing obesity. Thus, regulation of the uncoupling protein 1 (UCP1) gene in human adipocytes is of significant interest. Retinoic acid (RA), the carboxylic acid form of vitamin A, displays agonist activity toward several nuclear hormone receptors, including RA receptors (RARs) and peroxisome proliferator-activated receptor δ (PPARδ). Moreover, RA is a potent positive regulator of UCP1 expression in mouse adipocytes. Results The effects of all-trans RA (ATRA) on UCP1 gene expression in models of mouse and human adipocyte differentiation were investigated. ATRA induced UCP1 expression in all mouse white and brown adipocytes, but inhibited or had no effect on UCP1 expression in human adipocyte cell lines and primary human white adipocytes. Experiments with various RAR agonists and a RAR antagonist in mouse cells demonstrated that the stimulatory effect of ATRA on UCP1 gene expression was indeed mediated by RARs. Consistently, a PPARδ agonist was without effect. Moreover, the ATRA-mediated induction of UCP1 expression in mouse adipocytes was independent of PPARγ coactivator-1α. Conclusions UCP1 expression is differently affected by ATRA in mouse and human adipocytes. ATRA induces UCP1 expression in mouse adipocytes through activation of RARs, whereas expression of UCP1 in human adipocytes is not increased by exposure to ATRA. PMID:24059847

  17. Adaptive facultative diet-induced thermogenesis in wild-type but not in UCP1-ablated mice.

    PubMed

    von Essen, Gabriella; Lindsund, Erik; Cannon, Barbara; Nedergaard, Jan

    2017-11-01

    The significance of diet-induced thermogenesis (DIT) for metabolic control is still debated. Although obesogenic diets recruit UCP1 and adrenergically inducible thermogenesis, and although the absence of UCP1 may promote the development of obesity, no actual UCP1-related thermogenesis identifiable as diet-induced thermogenesis has to date been unambiguously demonstrated. Examining mice living at thermoneutrality, we have identified a process of facultative (directly elicited by acute eating), adaptive (magnitude develops over weeks on an obesogenic diet), and fully UCP1-dependent thermogenesis. We found no evidence for UCP1-independent diet-induced thermogenesis. The thermogenesis was proportional to the total amount of UCP1 protein in brown adipose tissue and was not dependent on any contribution of UCP1 in brite/beige adipose tissue, since no UCP1 protein was found there under these conditions. Total UCP1 protein amount developed proportionally to total body fat content. The physiological messenger linking obesity level and acute eating to increased thermogenesis is not known. Thus UCP1-dependent diet-induced thermogenesis limits obesity development during exposure to obesogenic diets but does not prevent obesity as such. Copyright © 2017 the American Physiological Society.

  18. Structural organization and mutational analysis of the human uncoupling protein-2 (hUCP2) gene.

    PubMed

    Tu, N; Chen, H; Winnikes, U; Reinert, I; Marmann, G; Pirke, K M; Lentes, K U

    1999-01-01

    Uncoupling proteins (UCPs) are mitochondrial membrane transporters which are involved in dissipating the proton electrochemical gradient thereby releasing stored energy as heat. This implies a major role of UCPs in energy metabolism and thermogenesis which when deregulated are key risk factors for the development of obesity and other eating disorders. From the three different human UCPs identified so far by gene cloning both UCP2 and UCP3 were mapped in close proximity (75-150 kb) to regions of human chromosome 11 (11q13) that have been linked to obesity and hyperinsulinaemia. At the amino acid level hUCP2 has about 55% identity to hUCP1 while hUCP3 is 71% identical to hUCP2. In this study we have deduced the genomic structure of the human UCP2 gene by PCR and direct sequence analysis. The hUCP2 gene spans over 8.7 kb distributed on 8 exons. The localization of the exon/intron boundaries within the coding region matches precisely that of the hUCP1 gene and is almost conserved in the recently discovered hUCP3 gene as well. The high degree of homology at the nucleotide level and the conservation of the exon /intron boundaries among the three UCP genes suggests that they may have evolved from a common ancestor or are the result from gene duplication events. Mutational analysis of the hUCP2 gene in a cohort of 172 children (aged 7 - 13) of Caucasian origin revealed a polymorphism in exon 4 (C to T transition at position 164 of the cDNA resulting in the substitution of an alanine by a valine at codon 55) and an insertion polymorphism in exon 8. The insertion polymorphism consists of a 45 bp repeat located 150 bp downstream of the stop codon in the 3'-UTR. The allele frequencies were 0.63 and 0.37 for the alanine and valine encoded alleles, respectively, and 0.71 versus 0.29 for the insertion polymorphism. The allele frequencies of both polymorphisms were not significantly elevated in a subgroup of 25 children characterized by low Resting Metabolic Rates (RMR). So far a

  19. Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein

    PubMed Central

    Park, Daeho; Han, Claudia; Elliott, Michael R.; Kinchen, Jason M.; Trampont, Paul C.; Das, Soumita; Collins, Sheila; Lysiak, Jeffrey J.; Hoehn, Kyle L.; Ravichandran, Kodi S.

    2012-01-01

    Rapid and efficient removal of apoptotic cells by phagocytes plays a key role during development, tissue homeostasis, and in controlling immune responses1–5. An important feature of efficient clearance is the capacity of a single phagocyte to ingest multiple apoptotic cells successively, and to process the increased load of corpse-derived cellular material6–9. However, factors that influence sustained phagocytic capacity or how they in turn influence continued clearance by phagocytes are not known. Here we identify that the ability of a phagocyte to control its mitochondrial membrane potential is a critical factor in the capacity of a phagocyte to engulf apoptotic cells. Changing the phagocyte mitochondrial membrane potential (genetically or pharmacologically) significantly affected phagocytosis, with lower potential enhancing engulfment and higher membrane potential inhibiting uptake. We then identified that Ucp2, a mitochondrial membrane protein that acts to lower the mitochondrial membrane potential10–12, is upregulated in phagocytes engulfing apoptotic cells (but not synthetic targets, bacteria, or yeast). Loss of Ucp2 limited the capacity of phagocytes to continually ingest apoptotic cells, while overexpression of Ucp2 increased the capacity for engulfment and the ability to engulf multiple apoptotic cells. Mutational and pharmacological inhibition of Ucp2 uncoupling activity reversed the positive effect of Ucp2 on engulfment capacity, suggesting a direct role for Ucp2-mediated mitochondrial function in phagocytosis. Macrophages from Ucp2-deficient mice13, 14 were impaired in their capacity to engulf apoptotic cells in vitro, and Ucp2-deficient mice displayed profound in vivo defects in clearing dying cells in the thymus and the testes. Collectively, these data suggest that phagocytes alter the mitochondrial membrane potential during engulfment to regulate uptake of sequential apoptotic cells, and that Ucp2 is a key molecular determinant of this step in

  20. UCP2 deficiency helps to restrict the pathogenesis of experimental cutaneous and visceral leishmaniosis in mice.

    PubMed

    Carrión, Javier; Abengozar, M Angeles; Fernández-Reyes, María; Sánchez-Martín, Carlos; Rial, Eduardo; Domínguez-Bernal, Gustavo; González-Barroso, M Mar

    2013-01-01

    Uncoupling protein 2 (UCP2) is a mitochondrial transporter that has been shown to lower the production of reactive oxygen species (ROS). Intracellular pathogens such as Leishmania upregulate UCP2 and thereby suppress ROS production in infected host tissues, allowing the multiplication of parasites within murine phagocytes. This makes host UCP2 and ROS production potential targets in the development of antileishmanial therapies. Here we explore how UCP2 affects the outcome of cutaneous leishmaniosis (CL) and visceral leishmaniosis (VL) in wild-type (WT) C57BL/6 mice and in C57BL/6 mice lacking the UCP2 gene (UCP2KO). To investigate the effects of host UCP2 deficiency on Leishmania infection, we evaluated parasite loads and cytokine production in target organs. Parasite loads were significantly lower in infected UCP2KO mice than in infected WT mice. We also found that UCP2KO mice produced significantly more interferon-γ (IFN-γ), IL-17 and IL-13 than WT mice (P<0.05), suggesting that UCP2KO mice are resistant to Leishmania infection. In this way, UCP2KO mice were better able than their WT counterparts to overcome L. major and L. infantum infections. These findings suggest that upregulating host ROS levels, perhaps by inhibiting UPC2, may be an effective approach to preventing leishmaniosis.

  1. UCP1, the mitochondrial uncoupling protein of brown adipocyte: A personal contribution and a historical perspective.

    PubMed

    Ricquier, Daniel

    2017-03-01

    The present text summarizes what was my contribution, starting in 1975, to the research on the uncoupling protein 1 (UCP1), the mitochondrial uncoupler of brown adipocytes. The research on UCP1 aimed at identifying the mechanisms of heat production by brown adipocytes that occurs in mammals either at birth or during cold exposure and arousal in hibernators. With others and in particular Dr. David Nicholls, I participated in the first experiments that contributed to the identification of UCP1. Important steps were the obtention of UCP1 antibodies followed with my main collaborator and friend Frédéric Bouillaud with the initial cloning of the UCP1 cDNA and gene from rats and humans. These molecular tools were then used not only to analyse UCP1 uncoupling activity and to investigate the effects of mutagenesis on the uncoupling function of this protein, but also to decipher the transcriptional regulation of the UCP1 gene. In addition to experiments carried out in rodents, we could identify UCP1 and thermogenic brown adipocytes in humans. A more recent outcome of our research on this uncoupling protein was the identification of a second isoform of UCP, that we named UCP2, and of several UCP homologues in mammals, chicken and plants. UCP1 is certainly a unique mitochondrial transporter able to uncouple respiration from ADP phosphorylation in mitochondria. The discovery of this protein has opened new avenues for studying energy expenditure in relation to overweight, obesity and related pathologies. Copyright © 2016. Published by Elsevier B.V.

  2. Increased Furan Tolerance in Escherichia coli Due to a Cryptic ucpA Gene

    PubMed Central

    Wang, Xuan; Miller, Elliot N.; Yomano, Lorraine P.; Shanmugam, K. T.

    2012-01-01

    Expression arrays were used to identify 4 putative oxidoreductases that were upregulated (>3-fold) by furfural (15 mM, 15 min). Plasmid expression of one (ucpA) increased furan tolerance in ethanologenic strain LY180 and wild-type strain W. Deleting ucpA decreased furfural tolerance. Although the mechanism remains unknown, the cryptic ucpA gene is now associated with a phenotype: furan resistance. PMID:22267665

  3. Native UCP1 displays simple competitive kinetics between the regulators purine nucleotides and fatty acids.

    PubMed

    Shabalina, Irina G; Jacobsson, Anders; Cannon, Barbara; Nedergaard, Jan

    2004-09-10

    Elucidation of the regulation of uncoupling protein 1 (UCP1) activity in its native environment, i.e. the inner membrane of brown-fat mitochondria, has been hampered by the presence of UCP1-independent, quantitatively unresolved effects of investigated regulators on the brown-fat mitochondria themselves. Here we have utilized the availability of UCP1-ablated mice to dissect UCP1-dependent and UCP1-independent effects of regulators. Using a complex-I-linked substrate (pyruvate), we found that UCP1 can mediate a 4-fold increase in thermogenesis when stimulated with the classical positive regulator fatty acids (oleate). After demonstrating that the fatty acids act in their free form, we found that UCP1 increased fatty acid sensitivity approximately 30-fold (as compared with the 1.5-fold increase reported earlier based on nominal fatty acid values). By identifying the UCP1-mediated fraction of the response, we could conclude that the interaction between purine nucleotides (GDP) and fatty acids (oleate) unexpectedly displayed simple competitive kinetics. In GDP-inhibited mitochondria, oleate apparently acted as an activator. However, only a model in which UCP1 is inherently active (i.e."activating" fatty acids cannot be included in the model), where GDP functions as an inhibitor with a K(m) of 0.05 mm, and where oleate functions as a competitive antagonist for the GDP effect (with a K(i) of 5 nm) can fit all of the experimental data. We conclude that, when examined in its native environment, UCP1 functions as a proton (equivalent) carrier in the absence of exogenous or endogenous fatty acids.

  4. Adenovirus-mediated E2-EPF UCP gene transfer prevents autoamputation in a mouse model of hindlimb ischemia.

    PubMed

    Lim, Jung Hwa; Shin, Hyo Jung; Park, Kyeong-Su; Lee, Chan Hee; Jung, Cho-Rok; Im, Dong-Soo

    2012-04-01

    E2-EPF ubiquitin carrier protein (UCP) stabilizes hypoxia-inducible factor-1α (HIF-1α) inducing ischemic vascular responses. Here, we investigated the effect of UCP gene transfer on therapeutic angiogenesis. Adenovirus-encoded UCP (Ad-F-UCP) increased the expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) in cells and mice. Conditioned media from UCP-overexpressing cells promoted proliferation, tubule formation, and invasion of human umbilical-vascular-endothelial cells (HUVECs), and vascularization in chorioallantoic membrane (CAM) assay. Ad-F-UCP increased the vessel density in the Martigel plug assay, and generated copious vessel-like structures in the explanted muscle. The UCP effect on angiogenesis was dependent on VEGF and FGF-2. In mouse hindlimb ischemia model (N = 30/group), autoamputation (limb loss) occurred in 87% and 68% of the mice with saline and Ad encoding β-galactosidase (Ad-LacZ), respectively, whereas only 23% of the mice injected with Ad-F-UCP showed autoamputation after 21 days of treatment. Ad-F-UCP increased protein levels of HIF-1α, platelet-endothelial cell adhesion molecule-1 (PECAM-1), smooth muscle cell actin (SMA) in the ischemic muscle, and augmented blood vessels doubly positive for PECAM-1 and SMA. Consequently, UCP gene transfer prevented muscle degeneration and autoamputation of ischemic limb. The results suggest that E2-EPF UCP may be a target for therapeutic angiogenesis.

  5. Genomic organization and mutational analysis of the human UCP2 gene, a prime candidate gene for human obesity.

    PubMed

    Lentes, K U; Tu, N; Chen, H; Winnikes, U; Reinert, I; Marmann, G; Pirke, K M

    1999-01-01

    Uncoupling proteins (UCPs) are mitochondrial membrane transporters which are involved in dissipating the proton electrochemical gradient thereby releasing stored energy as heat. This implies a major role of UCPs in energy metabolism and thermogenesis which when deregulated are key risk factors for the development of obesity and other eating disorders. Recent studies have shown that the sympathetic nervous system, via norepinephrine (beta-adrenoceptors) and cAMP, as well as thyroid hormones and PPAR gamma ligands seem to be major regulators of UCP expression. From the three different UCPs identified so far by gene cloning UCP1 is expressed exclusively in brown adipocytes while UCP2 is widely expressed. The third analogue, UCP3, is expressed predominantly in human skeletal muscle and was found to exist in a long and a short form. At the amino acid level UCP2 has about 59% homology to UCP1 while UCP3 is 73% identical to UCP2. Both UCP2 and UCP3 were mapped in close proximity (75-150 kb) to regions of human chromosome 11 (11q13) that have been linked to obesity and hyper-insulinaemia. Furthermore, there is strong evidence that UCP2, by virtue of its ubiquitous expression, may be important for determining basal metabolic rate. Based on the published full-length cDNA sequence we have deduced the genomic structure of the human UCP2 (hUCP2) gene by PCR and direct sequence analysis. The hUCP2 gene spans over 8.4 kb distributed on 8 exons. The localization of the exon/intron boundaries within the coding region matches precisely the one found in the human UCP1 gene and is almost conserved in the recently discovered UCP3 gene as well. However, the size of each of the introns in the hUCP2 gene differs from its UCP1 and UCP3 counterparts. It varies from 81 bp (intron 5) to about 3 kb (intron 2). The high degree of homology at the nucleotide level and the conservation of the exon/intron boundaries among the three UCP genes suggests that they may have evolved from a common

  6. Adenovirus-mediated E2-EPF UCP Gene Transfer Prevents Autoamputation in a Mouse Model of Hindlimb Ischemia

    PubMed Central

    Lim, Jung Hwa; Shin, Hyo Jung; Park, Kyeong-Su; Lee, Chan Hee; Jung, Cho-Rok; Im, Dong-Soo

    2012-01-01

    E2-EPF ubiquitin carrier protein (UCP) stabilizes hypoxia-inducible factor-1α (HIF-1α) inducing ischemic vascular responses. Here, we investigated the effect of UCP gene transfer on therapeutic angiogenesis. Adenovirus-encoded UCP (Ad-F-UCP) increased the expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) in cells and mice. Conditioned media from UCP-overexpressing cells promoted proliferation, tubule formation, and invasion of human umbilical-vascular-endothelial cells (HUVECs), and vascularization in chorioallantoic membrane (CAM) assay. Ad-F-UCP increased the vessel density in the Martigel plug assay, and generated copious vessel-like structures in the explanted muscle. The UCP effect on angiogenesis was dependent on VEGF and FGF-2. In mouse hindlimb ischemia model (N = 30/group), autoamputation (limb loss) occurred in 87% and 68% of the mice with saline and Ad encoding β-galactosidase (Ad-LacZ), respectively, whereas only 23% of the mice injected with Ad-F-UCP showed autoamputation after 21 days of treatment. Ad-F-UCP increased protein levels of HIF-1α, platelet-endothelial cell adhesion molecule-1 (PECAM-1), smooth muscle cell actin (SMA) in the ischemic muscle, and augmented blood vessels doubly positive for PECAM-1 and SMA. Consequently, UCP gene transfer prevented muscle degeneration and autoamputation of ischemic limb. The results suggest that E2-EPF UCP may be a target for therapeutic angiogenesis. PMID:22294149

  7. E2-EPF UCP Possesses E3 Ubiquitin Ligase Activity via Its Cysteine 118 Residue.

    PubMed

    Lim, Jung Hwa; Shin, Hee Won; Chung, Kyung-Sook; Kim, Nam-Soon; Kim, Ju Hee; Jung, Hong-Ryul; Im, Dong-Soo; Jung, Cho-Rok

    Here, we show that E2-EPF ubiquitin carrier protein (UCP) elongated E3-independent polyubiquitin chains on the lysine residues of von Hippel-Lindau protein (pVHL) and its own lysine residues both in vitro and in vivo. The initiation of the ubiquitin reaction depended on not only Lys11 linkage but also the Lys6, Lys48 and Lys63 residues of ubiquitin, which were involved in polyubiquitin chain formation on UCP itself. UCP self-association occurred through the UBC domain, which also contributed to the interaction with pVHL. The polyubiquitin chains appeared on the N-terminus of UCP in vivo, which indicated that the N-terminus of UCP contains target lysines for polyubiquitination. The Lys76 residue of UCP was the most critical site for auto-ubiquitination, whereas the polyubiquitin chain formation on pVHL occurred on all three of its lysines (Lys159, Lys171 and Lys196). A UCP mutant in which Cys118 was changed to alanine (UCPC118A) did not form a polyubiquitin chain but did strongly accumulate mono- and di-ubiquitin via auto-ubiquitination. Polyubiquitin chain formation required the coordination of Cys95 and Cys118 between two interacting molecules. The mechanism of the polyubiquitin chain reaction of UCP may involve the transfer of ubiquitin from Cys95 to Cys118 by trans-thiolation, with polyubiquitin chains forming at Cys118 by reversible thioester bonding. The polyubiquitin chains are then moved to the lysine residues of the substrate by irreversible isopeptide bonding. During the elongation of the ubiquitin chain, an active Cys118 residue is required in both parts of UCP, namely, the catalytic enzyme and the substrate. In conclusion, UCP possesses not only E2 ubiquitin conjugating enzyme activity but also E3 ubiquitin ligase activity, and Cys118 is critical for polyubiquitin chain formation.

  8. E2-EPF UCP Possesses E3 Ubiquitin Ligase Activity via Its Cysteine 118 Residue

    PubMed Central

    Lim, Jung Hwa; Shin, Hee Won; Chung, Kyung-Sook; Kim, Nam-Soon; Kim, Ju Hee; Jung, Hong-Ryul; Im, Dong-Soo; Jung, Cho-Rok

    2016-01-01

    Here, we show that E2-EPF ubiquitin carrier protein (UCP) elongated E3-independent polyubiquitin chains on the lysine residues of von Hippel-Lindau protein (pVHL) and its own lysine residues both in vitro and in vivo. The initiation of the ubiquitin reaction depended on not only Lys11 linkage but also the Lys6, Lys48 and Lys63 residues of ubiquitin, which were involved in polyubiquitin chain formation on UCP itself. UCP self-association occurred through the UBC domain, which also contributed to the interaction with pVHL. The polyubiquitin chains appeared on the N-terminus of UCP in vivo, which indicated that the N-terminus of UCP contains target lysines for polyubiquitination. The Lys76 residue of UCP was the most critical site for auto-ubiquitination, whereas the polyubiquitin chain formation on pVHL occurred on all three of its lysines (Lys159, Lys171 and Lys196). A UCP mutant in which Cys118 was changed to alanine (UCPC118A) did not form a polyubiquitin chain but did strongly accumulate mono- and di-ubiquitin via auto-ubiquitination. Polyubiquitin chain formation required the coordination of Cys95 and Cys118 between two interacting molecules. The mechanism of the polyubiquitin chain reaction of UCP may involve the transfer of ubiquitin from Cys95 to Cys118 by trans-thiolation, with polyubiquitin chains forming at Cys118 by reversible thioester bonding. The polyubiquitin chains are then moved to the lysine residues of the substrate by irreversible isopeptide bonding. During the elongation of the ubiquitin chain, an active Cys118 residue is required in both parts of UCP, namely, the catalytic enzyme and the substrate. In conclusion, UCP possesses not only E2 ubiquitin conjugating enzyme activity but also E3 ubiquitin ligase activity, and Cys118 is critical for polyubiquitin chain formation. PMID:27685940

  9. Uncoupling Lipid Metabolism from Inflammation through Fatty Acid Binding Protein-Dependent Expression of UCP2

    PubMed Central

    Xu, Hongliang; Hertzel, Ann V.; Steen, Kaylee A.; Wang, Qigui; Suttles, Jill

    2015-01-01

    Chronic inflammation in obese adipose tissue is linked to endoplasmic reticulum (ER) stress and systemic insulin resistance. Targeted deletion of the murine fatty acid binding protein (FABP4/aP2) uncouples obesity from inflammation although the mechanism underlying this finding has remained enigmatic. Here, we show that inhibition or deletion of FABP4/aP2 in macrophages results in increased intracellular free fatty acids (FFAs) and elevated expression of uncoupling protein 2 (UCP2) without concomitant increases in UCP1 or UCP3. Silencing of UCP2 mRNA in FABP4/aP2-deficient macrophages negated the protective effect of FABP loss and increased ER stress in response to palmitate or lipopolysaccharide (LPS). Pharmacologic inhibition of FABP4/aP2 with the FABP inhibitor HTS01037 also upregulated UCP2 and reduced expression of BiP, CHOP, and XBP-1s. Expression of native FABP4/aP2 (but not the non-fatty acid binding mutant R126Q) into FABP4/aP2 null cells reduced UCP2 expression, suggesting that the FABP-FFA equilibrium controls UCP2 expression. FABP4/aP2-deficient macrophages are resistant to LPS-induced mitochondrial dysfunction and exhibit decreased mitochondrial protein carbonylation and UCP2-dependent reduction in intracellular reactive oxygen species. These data demonstrate that FABP4/aP2 directly regulates intracellular FFA levels and indirectly controls macrophage inflammation and ER stress by regulating the expression of UCP2. PMID:25582199

  10. Human neuronal uncoupling proteins 4 and 5 (UCP4 and UCP5): structural properties, regulation, and physiological role in protection against oxidative stress and mitochondrial dysfunction.

    PubMed

    Ramsden, David B; Ho, Philip W-L; Ho, Jessica W-M; Liu, Hui-Fang; So, Danny H-F; Tse, Ho-Man; Chan, Koon-Ho; Ho, Shu-Leong

    2012-07-01

    Uncoupling proteins (UCPs) belong to a large family of mitochondrial solute carriers 25 (SLC25s) localized at the inner mitochondrial membrane. UCPs transport protons directly from the intermembrane space to the matrix. Of five structural homologues (UCP1 to 5), UCP4 and 5 are principally expressed in the central nervous system (CNS). Neurons derived their energy in the form of ATP that is generated through oxidative phosphorylation carried out by five multiprotein complexes (Complexes I-V) embedded in the inner mitochondrial membrane. In oxidative phosphorylation, the flow of electrons generated by the oxidation of substrates through the electron transport chain to molecular oxygen at Complex IV leads to the transport of protons from the matrix to the intermembrane space by Complex I, III, and IV. This movement of protons to the intermembrane space generates a proton gradient (mitochondrial membrane potential; MMP) across the inner membrane. Complex V (ATP synthase) uses this MMP to drive the conversion of ADP to ATP. Some electrons escape to oxygen-forming harmful reactive oxygen species (ROS). Proton leakage back to the matrix which bypasses Complex V resulting in a major reduction in ROS formation while having a minimal effect on MMP and hence, ATP synthesis; a process termed "mild uncoupling." UCPs act to promote this proton leakage as means to prevent excessive build up of MMP and ROS formation. In this review, we discuss the structure and function of mitochondrial UCPs 4 and 5 and factors influencing their expression. Hypotheses concerning the evolution of the two proteins are examined. The protective mechanisms of the two proteins against neurotoxins and their possible role in regulating intracellular calcium movement, particularly with regard to the pathogenesis of Parkinson's disease are discussed.

  11. Human neuronal uncoupling proteins 4 and 5 (UCP4 and UCP5): structural properties, regulation, and physiological role in protection against oxidative stress and mitochondrial dysfunction

    PubMed Central

    Ramsden, David B; Ho, Philip W-L; Ho, Jessica W-M; Liu, Hui-Fang; So, Danny H-F; Tse, Ho-Man; Chan, Koon-Ho; Ho, Shu-Leong

    2012-01-01

    Uncoupling proteins (UCPs) belong to a large family of mitochondrial solute carriers 25 (SLC25s) localized at the inner mitochondrial membrane. UCPs transport protons directly from the intermembrane space to the matrix. Of five structural homologues (UCP1 to 5), UCP4 and 5 are principally expressed in the central nervous system (CNS). Neurons derived their energy in the form of ATP that is generated through oxidative phosphorylation carried out by five multiprotein complexes (Complexes I–V) embedded in the inner mitochondrial membrane. In oxidative phosphorylation, the flow of electrons generated by the oxidation of substrates through the electron transport chain to molecular oxygen at Complex IV leads to the transport of protons from the matrix to the intermembrane space by Complex I, III, and IV. This movement of protons to the intermembrane space generates a proton gradient (mitochondrial membrane potential; MMP) across the inner membrane. Complex V (ATP synthase) uses this MMP to drive the conversion of ADP to ATP. Some electrons escape to oxygen-forming harmful reactive oxygen species (ROS). Proton leakage back to the matrix which bypasses Complex V resulting in a major reduction in ROS formation while having a minimal effect on MMP and hence, ATP synthesis; a process termed “mild uncoupling.” UCPs act to promote this proton leakage as means to prevent excessive build up of MMP and ROS formation. In this review, we discuss the structure and function of mitochondrial UCPs 4 and 5 and factors influencing their expression. Hypotheses concerning the evolution of the two proteins are examined. The protective mechanisms of the two proteins against neurotoxins and their possible role in regulating intracellular calcium movement, particularly with regard to the pathogenesis of Parkinson's disease are discussed. PMID:22950050

  12. Inactivation of thermogenic UCP1 as a historical contingency in multiple placental mammal clades

    PubMed Central

    Gaudry, Michael J.; Jastroch, Martin; Treberg, Jason R.; Hofreiter, Michael; Paijmans, Johanna L. A.; Starrett, James; Wales, Nathan; Signore, Anthony V.; Springer, Mark S.; Campbell, Kevin L.

    2017-01-01

    Mitochondrial uncoupling protein 1 (UCP1) is essential for nonshivering thermogenesis in brown adipose tissue and is widely accepted to have played a key thermoregulatory role in small-bodied and neonatal placental mammals that enabled the exploitation of cold environments. We map ucp1 sequences from 133 mammals onto a species tree constructed from a ~51-kb sequence alignment and show that inactivating mutations have occurred in at least 8 of the 18 traditional placental orders, thereby challenging the physiological importance of UCP1 across Placentalia. Selection and timetree analyses further reveal that ucp1 inactivations temporally correspond with strong secondary reductions in metabolic intensity in xenarthrans and pangolins, or in six other lineages coincided with a ~30 million–year episode of global cooling in the Paleogene that promoted sharp increases in body mass and cladogenesis evident in the fossil record. Our findings also demonstrate that members of various lineages (for example, cetaceans, horses, woolly mammoths, Steller’s sea cows) evolved extreme cold hardiness in the absence of UCP1-mediated thermogenesis. Finally, we identify ucp1 inactivation as a historical contingency that is linked to the current low species diversity of clades lacking functional UCP1, thus providing the first evidence for species selection related to the presence or absence of a single gene product. PMID:28706989

  13. Changes in UCP expression in tissues of Zucker rats fed diets with different protein content.

    PubMed

    Masanés, R M; Yubero, P; Rafecas, I; Remesar, X

    2002-09-01

    The effect of dietary protein content on the uncoupling proteins (UCP) 1, 2 and 3 expression in a number of tissues of Zucker lean and obese rats was studied. Thirty-day-old male Zucker lean (Fa/?) and obese (fa/fa) rats were fed on hyperproteic (HP, 30% protein), standard (RD, 17% protein) or hypoproteic (LP, 9% protein) diets ad libitum for 30 days. Although dietary protein intake affected the weights of individual muscles in lean and obese animals, these weights were similar. In contrast, huge differences were observed in brown adipose tissue (BAT) and liver weights. Lean rats fed on the LP diet generally increased UCP expression, whereas the HP group had lower values. Obese animals, HP and LP groups showed higher UCP expression in muscles, with slight differences in BAT and lower values for UCP3 in subcutaneous adipose tissue. The mean values of UCP expression in BAT of obese rats were lower than in their lean counterpart, whereas the expression in skeletal muscle was increased. Thus, expression of UCPs can be modified by dietary protein content, in lean and obese rats. A possible thermogenic function of UCP3 in muscle and WAT in obese rats must be taken into account.

  14. UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction

    PubMed Central

    Kazak, Lawrence; Chouchani, Edward T.; Stavrovskaya, Irina G.; Lu, Gina Z.; Jedrychowski, Mark P.; Egan, Daniel F.; Kumari, Manju; Kong, Xingxing; Erickson, Brian K.; Szpyt, John; Rosen, Evan D.; Murphy, Michael P.; Kristal, Bruce S.; Gygi, Steven P.; Spiegelman, Bruce M.

    2017-01-01

    Brown adipose tissue (BAT) mitochondria exhibit high oxidative capacity and abundant expression of both electron transport chain components and uncoupling protein 1 (UCP1). UCP1 dissipates the mitochondrial proton motive force (Δp) generated by the respiratory chain and increases thermogenesis. Here we find that in mice genetically lacking UCP1, cold-induced activation of metabolism triggers innate immune signaling and markers of cell death in BAT. Moreover, global proteomic analysis reveals that this cascade induced by UCP1 deletion is associated with a dramatic reduction in electron transport chain abundance. UCP1-deficient BAT mitochondria exhibit reduced mitochondrial calcium buffering capacity and are highly sensitive to mitochondrial permeability transition induced by reactive oxygen species (ROS) and calcium overload. This dysfunction depends on ROS production by reverse electron transport through mitochondrial complex I, and can be rescued by inhibition of electron transfer through complex I or pharmacologic depletion of ROS levels. Our findings indicate that the interscapular BAT of Ucp1 knockout mice exhibits mitochondrial disruptions that extend well beyond the deletion of UCP1 itself. This finding should be carefully considered when using this mouse model to examine the role of UCP1 in physiology. PMID:28630339

  15. UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction.

    PubMed

    Kazak, Lawrence; Chouchani, Edward T; Stavrovskaya, Irina G; Lu, Gina Z; Jedrychowski, Mark P; Egan, Daniel F; Kumari, Manju; Kong, Xingxing; Erickson, Brian K; Szpyt, John; Rosen, Evan D; Murphy, Michael P; Kristal, Bruce S; Gygi, Steven P; Spiegelman, Bruce M

    2017-07-25

    Brown adipose tissue (BAT) mitochondria exhibit high oxidative capacity and abundant expression of both electron transport chain components and uncoupling protein 1 (UCP1). UCP1 dissipates the mitochondrial proton motive force (Δp) generated by the respiratory chain and increases thermogenesis. Here we find that in mice genetically lacking UCP1, cold-induced activation of metabolism triggers innate immune signaling and markers of cell death in BAT. Moreover, global proteomic analysis reveals that this cascade induced by UCP1 deletion is associated with a dramatic reduction in electron transport chain abundance. UCP1-deficient BAT mitochondria exhibit reduced mitochondrial calcium buffering capacity and are highly sensitive to mitochondrial permeability transition induced by reactive oxygen species (ROS) and calcium overload. This dysfunction depends on ROS production by reverse electron transport through mitochondrial complex I, and can be rescued by inhibition of electron transfer through complex I or pharmacologic depletion of ROS levels. Our findings indicate that the interscapular BAT of Ucp1 knockout mice exhibits mitochondrial disruptions that extend well beyond the deletion of UCP1 itself. This finding should be carefully considered when using this mouse model to examine the role of UCP1 in physiology.

  16. UCP4C mediates uncoupled respiration in larvae of Drosophila melanogaster.

    PubMed

    Da-Ré, Caterina; De Pittà, Cristiano; Zordan, Mauro A; Teza, Giordano; Nestola, Fabrizio; Zeviani, Massimo; Costa, Rodolfo; Bernardi, Paolo

    2014-05-01

    Larvae of Drosophila melanogaster reared at 23°C and switched to 14°C for 1 h are 0.5°C warmer than the surrounding medium. In keeping with dissipation of energy, respiration of Drosophila melanogaster larvae cannot be decreased by the F-ATPase inhibitor oligomycin or stimulated by protonophore. Silencing of Ucp4C conferred sensitivity of respiration to oligomycin and uncoupler, and prevented larva-to-adult progression at 15°C but not 23°C. Uncoupled respiration of larval mitochondria required palmitate, was dependent on Ucp4C and was inhibited by guanosine diphosphate. UCP4C is required for development through the prepupal stages at low temperatures and may be an uncoupling protein.

  17. UCP1 in adipose tissues: two steps to full browning.

    PubMed

    Kalinovich, Anastasia V; de Jong, Jasper M A; Cannon, Barbara; Nedergaard, Jan

    2017-03-01

    The possibility that brown adipose tissue thermogenesis can be recruited in order to combat the development of obesity has led to a high interest in the identification of "browning agents", i.e. agents that increase the amount and activity of UCP1 in brown and brite/beige adipose tissues. However, functional analysis of the browning process yields confusingly different results when the analysis is performed in one of two alternative steps. Thus, in one of the steps, using cold acclimation as a potent model browning agent, we find that if the browning process is followed in mice initially housed at 21 °C (the most common procedure), there is only weak molecular evidence for increases in UCP1 gene expression or UCP1 protein abundance in classical brown adipose tissue; however, in brite/beige adipose depots, there are large increases, apparently associating functional browning with events only in the brite/beige tissues. Contrastingly, in another step, if the process is followed starting with mice initially housed at 30 °C (thermoneutrality for mice, thus similar to normal human conditions), large increases in UCP1 gene expression and UCP1 protein abundance are observed in the classical brown adipose tissue depots; there is then practically no observable UCP1 gene expression in brite/beige tissues. This apparent conundrum can be resolved when it is realized that the classical brown adipose tissue at 21 °C is already essentially fully differentiated and thus expands extensively through proliferation upon further browning induction, rather than by further enhancing cellular differentiation. When the limiting factor for thermogenesis, i.e. the total amount of UCP1 protein per depot, is analyzed, classical brown adipose tissue is by far the predominant site for the browning process, irrespective of which of the two steps is analyzed. There are to date no published data demonstrating that alternative browning agents would selectively promote brite/beige tissues

  18. Over-expression of a putative oxidoreductase (UcpA) for increasing furfural or 5-hydroxymethylfurfural tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xuan; Miller, Elliot N.; Yomano, Lorraine P.

    The subject invention pertains to overexpression of a putative oxidoreductase (ucpA) for increasing furfural tolerance in genetically modified microorganisms. Genetically modified microorganisms capable of overexpressing UcpA are also provided. Increased expression of ucpA was shown to increase furfural tolerance by 50%, and to permit the fermentation of sugars to products in the presence of 15 mM furfural.

  19. Modulation of adipocytokines response and weight loss secondary to a hypocaloric diet in obese patients by -55CT polymorphism of UCP3 gene.

    PubMed

    de Luis, D A; Aller, R; Izaola, O; Sagrado, M G; Conde, R

    2008-03-01

    Decreased expression or function of UCP3 (uncoupling protein 3) could reduce energy expenditure and increase the storage of energy as fat. Some studies have pointed to a role of UCP3 in the regulation of whole body energy homeostasis, diet induced obesity, and regulation of lipids as metabolic substrates. The C/C genotype of a polymorphism in the UCP3 promoter (-55C-->T) is associated with an increased expression of UCP3 mRNA in muscle. The aim of our study was to investigate the influence of -55CT polymorphism of UCP3 gene on adipocytokines response and weight loss secondary to a hypocaloric diet in obese patients. A population of 107 obese (body mass index >30) nondiabetic outpatients was analyzed in a prospective way. Before and after three months of a hypocaloric diet, an indirect calorimetry, tetrapolar electrical bioimpedance, blood pressure, a serial assessment of nutritional intake with 3-day written food records, and biochemical analysis were performed. The lifestyle modification program consisted of a hypocaloric diet (1520 kcal, 52% of carbohydrates, 25% of lipids and 23% of proteins). The exercise program consisted of aerobic exercise for at least 3 times per week (60 minutes each). The mean age was 49.5+/-34.5 years and the mean BMI 34.5+/-4.8, with 27 males (25.3%) and 80 females (74.7%). Ninety patients (25 males/65 females) (83.6%) had the genotype 55CC (wild group) and 17 patients (2 male/15 females) (16.4%) 55CT (mutant group). The percentage of responders (weight loss) was similar in both groups (wild group: 84.7% vs. mutant group: 81.8%). BMI, weight, fat mass, systolic blood pressure, LDL cholesterol, waist circumference, and waist-to-hip ratio decreased in the wild group and RMR and VO (2) were increased. In the mutant group, BMI and weight decreased. Leptin and IL-6 levels have a significant decrease in the wild group (9.6%: p<0.05) and (30.5%: p<0.05), respectively. Patients with -55CC genotype have a significant decrease in leptin

  20. Torpor patterns, arousal rates, and temporal organization of torpor entry in wildtype and UCP1-ablated mice.

    PubMed

    Oelkrug, R; Heldmaier, G; Meyer, C W

    2011-01-01

    In eutherian mammals, uncoupling protein 1 (UCP1) mediated non-shivering thermogenesis from brown adipose tissue (BAT) provides a mechanism through which arousal from torpor and hibernation is facilitated. In order to directly assess the magnitude by which the presence or absence of UCP1 affects torpor patterns, rewarming and arousal rates within one species we compared fasting induced torpor in wildtype (UCP1(+/+)) and UCP1-ablated mice (UCP(-/-)). Torpor was induced by depriving mice of food for up to 48 h and by a reduction of ambient temperature (T (a)) from 30 to 18°C at four different time points after 18, 24, 30 and 36 h of food deprivation. In most cases, torpor bouts occurred within 20 min after the switch in ambient temperature (30-18°C). Torpor bouts expressed during the light phase lasted 3-6 h while significantly longer bouts (up to 16 h) were observed when mice entered torpor during the dark phase. The degree of hypometabolism (5-22 ml h(-1)) and hypothermia (19.5-26.7°C) was comparable in wildtype and UCP1-ablated mice, and both genotypes were able to regain normothermia. In contrast to wildtype mice, UCP1-ablated mice did not display multiple torpor bouts per day and their peak rewarming rates from torpor were reduced by 50% (UCP1(+/+): 0.24 ± 0.08°C min(-1); UCP1(-/-): 0.12 ± 0.04°C min(-1)). UCP1-ablated mice therefore took significantly longer to rewarm from 25 to 32°C (39 vs. 70 min) and required 60% more energy for this process. Our results demonstrate the energetic benefit of functional BAT for rapid arousal from torpor. They also suggest that torpor entry and maintenance may be dependent on endogenous rhythms.

  1. HDAC6 regulates thermogenesis of brown adipocytes through activating PKA to induce UCP1 expression.

    PubMed

    Jung, Suna; Han, Miae; Korm, Sovannarith; Lee, Se-In; Noh, Solhee; Phorl, Sophors; Naskar, Rema; Lee, Kye-Sung; Kim, Geon-Hee; Choi, Yun-Jaie; Lee, Joo Yong

    2018-06-08

    Mitochondrial uncoupling protein 1 (UCP1) is responsible for nonshivering thermogenesis in brown adipose tissue (BAT). UCP1 increases the conductance of the inner mitochondrial membrane (IMM) for protons to make BAT mitochondria generate heat rather than ATP. HDAC6 is a cytosolic deacetylase for non-histone substrates to regulate various cellular processes, including mitochondrial quality control and dynamics. Here, we showed that the body temperature of HDAC6 knockout mice is slightly decreased in normal hosing condition. Interestingly, UCP1 was downregulated in BAT of HDAC6 knockout mice, which extensively linked mitochondrial thermogenesis. Mechanistically, we showed that cAMP-PKA signaling plays a key role in HDAC6-dependent UCP1 expression. Notably, the size of brown adipocytes and lipid droplets in HDAC6 knockout BAT is increased. Taken together, our findings suggested that HDAC6 contributes to mitochondrial thermogenesis in BAT by increasing UCP1 expression through cAMP-PKA signaling pathway. Copyright © 2018. Published by Elsevier Inc.

  2. Increased Energy Expenditure, Ucp1 Expression, and Resistance to Diet-induced Obesity in Mice Lacking Nuclear Factor-Erythroid-2-related Transcription Factor-2 (Nrf2).

    PubMed

    Schneider, Kevin; Valdez, Joshua; Nguyen, Janice; Vawter, Marquis; Galke, Brandi; Kurtz, Theodore W; Chan, Jefferson Y

    2016-04-01

    The NRF2 (also known as NFE2L2) transcription factor is a critical regulator of genes involved in defense against oxidative stress. Previous studies suggest thatNrf2plays a role in adipogenesisin vitro, and deletion of theNrf2gene protects against diet-induced obesity in mice. Here, we demonstrate that resistance to diet-induced obesity inNrf2(-/-)mice is associated with a 20-30% increase in energy expenditure. Analysis of bioenergetics revealed thatNrf2(-/-)white adipose tissues exhibit greater oxygen consumption. White adipose tissue showed a >2-fold increase inUcp1gene expression. Oxygen consumption is also increased nearly 2.5-fold inNrf2-deficient fibroblasts. Oxidative stress induced by glucose oxidase resulted in increasedUcp1expression. Conversely, antioxidant chemicals (such asN-acetylcysteine and Mn(III)tetrakis(4-benzoic acid)porphyrin chloride) and SB203580 (a known suppressor ofUcp1expression) decreasedUcp1and oxygen consumption inNrf2-deficient fibroblasts. These findings suggest that increasing oxidative stress by limitingNrf2function in white adipocytes may be a novel means to modulate energy balance as a treatment of obesity and related clinical disorders. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Lack of UCP3 does not affect skeletal muscle mitochondrial function under lipid-challenged conditions, but leads to sudden cardiac death.

    PubMed

    Nabben, Miranda; van Bree, Bianca W J; Lenaers, Ellen; Hoeks, Joris; Hesselink, Matthijs K C; Schaart, Gert; Gijbels, Marion J J; Glatz, Jan F C; da Silva, Gustavo J J; de Windt, Leon J; Tian, Rong; Mike, Elise; Skapura, Darlene G; Wehrens, Xander H T; Schrauwen, Patrick

    2014-01-01

    UCP3's exact physiological function in lipid handling in skeletal and cardiac muscle remains unknown. Interestingly, etomoxir, a fat oxidation inhibitor and strong inducer of UCP3, is proposed for treating both diabetes and heart failure. We hypothesize that the upregulation of UCP3 upon etomoxir serves to protect mitochondria against lipotoxicity. To evaluate UCP3's role in skeletal muscle (skm) and heart under lipid-challenged conditions, the effect of UCP3 ablation was examined in a state of dysbalance between fat availability and oxidative capacity. Wild type (WT) and UCP3(-/-) mice were subjected to high-fat feeding for 14 days. From day 6 onwards, they were given either saline or etomoxir. Etomoxir treatment induced an increase in markers of lipotoxicity in skm compared to saline. This increase upon etomoxir was similar for both, WT and UCP3(-/-) mice, suggesting that UCP3 does not play a role in protection against lipotoxicity. Interestingly, we observed 25 % mortality in UCP3(-/-)s upon etomoxir administration vs. 11 % in WTs. This increased mortality in UCP3(-/-) compared to WT mice could not be explained by differences in cardiac lipotoxicity, apoptosis, fibrosis (histology, immunohistochemistry), oxidative capacity (respirometry) or function (echocardiography). Electrophysiology demonstrated, however, prolonged QRS and QTc intervals and greater susceptibility to ventricular tachycardia upon programmed electrical stimulation in etomoxir-treated UCP3(-/-)s versus WTs. Isoproterenol administration after pacing resulted in 75 % mortality in UCP3(-/-)s vs. 14 % in WTs. Our results argue against a protective role for UCP3 on skm metabolism under lipid overload, but suggest UCP3 to be crucial in prevention of arrhythmias upon lipid-challenged conditions.

  4. Calorie restriction in mice overexpressing UCP3: evidence that prior mitochondrial uncoupling alters response.

    PubMed

    Estey, Carmen; Seifert, Erin L; Aguer, Céline; Moffat, Cynthia; Harper, Mary-Ellen

    2012-05-01

    Calorie restriction (CR) without malnutrition is the only intervention to consistently increase lifespan in all species tested, and lower age-related pathologies in mammals including humans. It has been suggested that uncoupling of mitochondrial oxidative phosphorylation, using chemical uncouplers, mimics CR, and that overlapping mechanisms underlie the phenotypic changes induced by uncoupling and CR. We aimed to critically assess this using a unique mouse model of skeletal muscle-targeted UCP3-induced uncoupling (UCP3Tg), and focused our studies mainly on skeletal muscle mitochondria. Compared to ad libitum fed Wt mice, skeletal muscle mitochondria from ad libitum fed UCP3Tg mice showed higher basal uncoupling and lower H(2)O(2) emission, with unchanged maximal oxidative phosphorylation, and mitochondrial content. UCP3Tg CR mice showed some tendency for differential adaptation to CR, with lowered H(+) leak conductance and evidence for higher H(2)O(2) emission from skeletal muscle mitochondria following 2 weeks CR, and failure to lower H(2)O(2) emission after 1 month CR. Differential adaptation was also apparent at the whole body level: while UCP3Tg CR mice lost as much weight as Wt CR mice, the proportion of muscle lost was higher in UCP3Tg mice. However, a striking outcome of our studies was the absence of change with CR in many of the parameters of mitochondrial function and content that we measured in mice of either genotype. Overall, our study raises the question of whether CR can consistently modify skeletal muscle mitochondria; alterations with CR may only be apparent under certain conditions such as during the 2 wk CR intervention in the UCP3Tg mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Calorie restriction in mice overexpressing UCP3: evidence that prior mitochondrial uncoupling alters response

    PubMed Central

    Estey, Carmen; Seifert, Erin L.; Aguer, Céline; Moffat, Cynthia; Harper, Mary-Ellen

    2012-01-01

    SUMMARY Calorie restriction (CR) without malnutrition is the only intervention to consistently increase lifespan in all species tested, and lower age-related pathologies in mammals including humans. It has been suggested that uncoupling of mitochondrial oxidative phosphorylation, using chemical uncouplers, mimics CR, and that overlapping mechanisms underlie the phenotypic changes induced by uncoupling and CR. We aimed to critically assess this using a unique mouse model of skeletal muscle-targeted UCP3-induced uncoupling (UCP3Tg), and focused our studies mainly on skeletal muscle mitochondria. Compared to ad libitum fed Wt mice, skeletal muscle mitochondria from ad libitum fed UCP3Tg mice showed higher basal uncoupling and lower H2O2 emission, with unchanged maximal oxidative phosphorylation, and mitochondrial content. UCP3Tg CR mice showed some tendency for differential adaptation to CR, with lowered H+ leak conductance and evidence for higher H2O2 emission from skeletal muscle mitochondria following 2 weeks CR, and failure to lower H2O2 emission after 1 month CR. Differential adaptation was also apparent at the whole body level: while UCP3Tg CR mice lost as much weight as Wt CR mice, the proportion of muscle lost was higher in UCP3Tg mice. However, a striking outcome of our studies was the absence of change with CR in many of the parameters of mitochondrial function and content that we measured in mice of either genotype. Overall, our study raises the question of whether CR can consistently modify skeletal muscle mitochondria; alterations with CR may only be apparent under certain conditions such as during the 2 wk CR intervention in the UCP3Tg mice. PMID:22406134

  6. Transcriptome response signatures associated with the overexpression of a mitochondrial uncoupling protein (AtUCP1) in tobacco.

    PubMed

    Laitz, Alessandra Vasconcellos Nunes; Acencio, Marcio Luis; Budzinski, Ilara G F; Labate, Mônica T V; Lemke, Ney; Ribolla, Paulo Eduardo Martins; Maia, Ivan G

    2015-01-01

    Mitochondrial inner membrane uncoupling proteins (UCP) dissipate the proton electrochemical gradient established by the respiratory chain, thus affecting the yield of ATP synthesis. UCP overexpression in plants has been correlated with oxidative stress tolerance, improved photosynthetic efficiency and increased mitochondrial biogenesis. This study reports the main transcriptomic responses associated with the overexpression of an UCP (AtUCP1) in tobacco seedlings. Compared to wild-type (WT), AtUCP1 transgenic seedlings showed unaltered ATP levels and higher accumulation of serine. By using RNA-sequencing, a total of 816 differentially expressed genes between the investigated overexpressor lines and the untransformed WT control were identified. Among them, 239 were up-regulated and 577 were down-regulated. As a general response to AtUCP1 overexpression, noticeable changes in the expression of genes involved in energy metabolism and redox homeostasis were detected. A substantial set of differentially expressed genes code for products targeted to the chloroplast and mainly involved in photosynthesis. The overall results demonstrate that the alterations in mitochondrial function provoked by AtUCP1 overexpression require important transcriptomic adjustments to maintain cell homeostasis. Moreover, the occurrence of an important cross-talk between chloroplast and mitochondria, which culminates in the transcriptional regulation of several genes involved in different pathways, was evidenced.

  7. UCP2 expression is associated with weight loss after hypocaloric diet intervention.

    PubMed

    Cortes-Oliveira, C; Nicoletti, C F; de Souza Pinhel, M A; de Oliveira, B A P; Quinhoneiro, D C G; Noronha, N Y; Marchini, J S; da Silva Júnior, W A; Júnior, W S; Nonino, C B

    2017-03-01

    Although energy restriction contributes to weight loss, it may also reduce energy expenditure, limiting the success of weight loss in the long term. Studies have described how genetics contributes to the development of obesity, and uncoupling proteins 1 and 2 (UCP1 and UCP2) and beta-3-adrenoceptor (ADRB3) have been implicated in the metabolic pathways that culminate in this condition. This study aimed to evaluate how the UCP1, UCP2 and ADRB3 genes influence weight loss in severely obese women submitted to hypocaloric dietary intervention. This longitudinal study included 21 women divided into two groups: Group 1 (Dietary intervention (G1)) consisted of 11 individuals with severe obesity (body mass index (BMI) ⩾40 kg/m 2 ), selected for dietary intervention and Group 2 (Control (G2)) consisted of 10 normal-weight women (BMI between 18.5 and 24.9 kg/m 2 ). Evaluation included weight (kg), height (m), waist circumference (cm), body composition, resting metabolic rate (RMR, kcal) and abdominal subcutaneous adipose tissue collection. The dietary intervention required that G1 patients remained hospitalized in the university hospital for 6 weeks receiving a hypocaloric diet (1200 kcal per day). The statistical analyses included t-test for paired samples, Spearman correlation and multivariate linear regressions, with the level of significance set at P<0.05. Weight (155.0±31.4-146.5±27.8 kg), BMI (58.5±10.5-55.3±9.2 kg/m 2 ), fat-free mass (65.4±8.6-63.1±7.1 kg), fat mass (89.5±23.0-83.4±21.0 kg) and RMR (2511.6±386.1-2324.0±416.4 kcal per day) decreased significantly after dietary intervention. Multiple regression analyses showed that UCP2 expression contributed to weight loss after dietary intervention (P=0.05). UCP2 expression is associated with weight loss after hypocaloric diet intervention.

  8. Mitochondrial uncoupling in skeletal muscle by UCP1 augments energy expenditure and glutathione content while mitigating ROS production.

    PubMed

    Adjeitey, Cyril Nii-Klu; Mailloux, Ryan J; Dekemp, Robert A; Harper, Mary-Ellen

    2013-08-01

    Enhancement of proton leaks in muscle tissue represents a potential target for obesity treatment. In this study, we examined the bioenergetic and physiological implications of increased proton leak in skeletal muscle. To induce muscle-specific increases in proton leak, we used mice that selectively express uncoupling protein-1 (UCP1) in skeletal muscle tissue. UCP1 expression in muscle mitochondria was ∼13% of levels in brown adipose tissue (BAT) mitochondria and caused increased GDP-sensitive proton leak. This was associated with an increase in whole body energy expenditure and a decrease in white adipose tissue content. Muscle UCP1 activity had divergent effects on mitochondrial ROS emission and glutathione levels compared with BAT. UCP1 in muscle increased total mitochondrial glutathione levels ∼7.6 fold. Intriguingly, unlike in BAT mitochondria, leak through UCP1 in muscle controlled mitochondrial ROS emission. Inhibition of UCP1 with GDP in muscle mitochondria increased ROS emission ∼2.8-fold relative to WT muscle mitochondria. GDP had no impact on ROS emission from BAT mitochondria from either genotype. Collectively, these findings indicate that selective induction of UCP1-mediated proton leak in muscle can increase whole body energy expenditure and decrease adiposity. Moreover, ectopic UCP1 expression in skeletal muscle can control mitochondrial ROS emission, while it apparently plays no such role in its endogenous tissue, brown fat.

  9. Mitochondrial uncoupling in skeletal muscle by UCP1 augments energy expenditure and glutathione content while mitigating ROS production

    PubMed Central

    Adjeitey, Cyril Nii-Klu; Mailloux, Ryan J.; deKemp, Robert A.

    2013-01-01

    Enhancement of proton leaks in muscle tissue represents a potential target for obesity treatment. In this study, we examined the bioenergetic and physiological implications of increased proton leak in skeletal muscle. To induce muscle-specific increases in proton leak, we used mice that selectively express uncoupling protein-1 (UCP1) in skeletal muscle tissue. UCP1 expression in muscle mitochondria was ∼13% of levels in brown adipose tissue (BAT) mitochondria and caused increased GDP-sensitive proton leak. This was associated with an increase in whole body energy expenditure and a decrease in white adipose tissue content. Muscle UCP1 activity had divergent effects on mitochondrial ROS emission and glutathione levels compared with BAT. UCP1 in muscle increased total mitochondrial glutathione levels ∼7.6 fold. Intriguingly, unlike in BAT mitochondria, leak through UCP1 in muscle controlled mitochondrial ROS emission. Inhibition of UCP1 with GDP in muscle mitochondria increased ROS emission ∼2.8-fold relative to WT muscle mitochondria. GDP had no impact on ROS emission from BAT mitochondria from either genotype. Collectively, these findings indicate that selective induction of UCP1-mediated proton leak in muscle can increase whole body energy expenditure and decrease adiposity. Moreover, ectopic UCP1 expression in skeletal muscle can control mitochondrial ROS emission, while it apparently plays no such role in its endogenous tissue, brown fat. PMID:23757405

  10. E2-EPF UCP targets pVHL for degradation and associates with tumor growth and metastasis.

    PubMed

    Jung, Cho-Rok; Hwang, Kyung-Sun; Yoo, Jinsang; Cho, Won-Kyung; Kim, Jin-Man; Kim, Woo Ho; Im, Dong-Soo

    2006-07-01

    The von Hippel-Lindau tumor suppressor, pVHL, forms part of an E3 ubiquitin ligase complex that targets specific substrates for degradation, including hypoxia-inducible factor-1alpha (HIF-1alpha), which is involved in tumor progression and angiogenesis. It remains unclear, however, how pVHL is destabilized. Here we show that E2-EPF ubiquitin carrier protein (UCP) associates with and targets pVHL for ubiquitin-mediated proteolysis in cells, thereby stabilizing HIF-1alpha. UCP is detected coincidently with HIF-1alpha in human primary liver, colon and breast tumors, and metastatic cholangiocarcinoma and colon cancer cells. UCP level correlates inversely with pVHL level in most tumor cell lines. In vitro and in vivo, forced expression of UCP boosts tumor-cell proliferation, invasion and metastasis through effects on the pVHL-HIF pathway. Our results suggest that UCP helps stabilize HIF-1alpha and may be a new molecular target for therapeutic intervention in human cancers.

  11. Hypoxia-induced decrease of UCP3 gene expression in rat heart parallels metabolic gene switching but fails to affect mitochondrial respiratory coupling.

    PubMed

    Essop, M Faadiel; Razeghi, Peter; McLeod, Chris; Young, Martin E; Taegtmeyer, Heinrich; Sack, Michael N

    2004-02-06

    Mitochondrial uncoupling proteins 2 and 3 (UCP2 and UCP3) are postulated to contribute to antioxidant defense, nutrient partitioning, and energy efficiency in the heart. To distinguish isotype function in response to metabolic stress we measured cardiac mitochondrial function and cardiac UCP gene expression following chronic hypobaric hypoxia. Isolated mitochondrial O(2) consumption and ATP synthesis rate were reduced but respiratory coupling was unchanged compared to normoxic groups. Concurrently, left ventricular UCP3 mRNA levels were significantly decreased with hypoxia (p<0.05) while UCP2 levels remained unchanged versus controls. Diminished UCP3 expression was associated with coordinate regulation of counter-regulatory metabolic genes. From these data, we propose a role for UCP3 in the regulation of fatty acid oxidation in the heart as opposed to uncoupling of mitochondria. Moreover, the divergent hypoxia-induced regulation of UCP2 and UCP3 supports distinct mitochondrial regulatory functions of these inner mitochondrial membrane proteins in the heart in response to metabolic stress.

  12. Hippocampal UCP2 is essential for cognition and resistance to anxiety but not required for the benefits of exercise.

    PubMed

    Wang, D; Zhai, X; Chen, P; Yang, M; Zhao, J; Dong, J; Liu, H

    2014-09-26

    Uncoupling protein-2 (UCP2) reduces oxidative stress by facilitating the influx of protons into mitochondrial matrix, thus dissociating mitochondrial oxidation from ATP synthesis. UCP2 is expressed abundantly in brain areas and plays a key role in neuroprotection. Here, we sought to determine if UCP2 deficiency produces cognitive impairment and anxiety in young mice, and to determine if hippocampal UCP2 is essential for the beneficial effects of voluntary exercise. Antisense oligonucleotide (ASO) was used to produce UCP2 knockdown in mice. Our results firstly showed that UCP2-targeted ASO significantly reduced UCP2 mRNA and protein expression in the hippocampus. ASO treatment impaired learning and memory of the mice in Y-maze, T-maze, and object recognition tests (ORT). ASO-treated mice exhibited more anxiously in OPT, light/dark box test, and elevated plus maze (EPM) than the control mice. We also found that wheel running ameliorated cognitive dysfunction and anxiety-like behaviors in ASO-treated mice. Furthermore, voluntary exercise reversed ASO-induced changes in hippocampal levels of serotonin (5-HT), dopamine (DA), and norepinephrine (NE). However, UCP2 protein in the hippocampus was not correlated with cognitive and anxiolytic benefits of exercise. These findings suggest that hippocampal UCP2 is essential for cognitive function and the resistance to anxiety of mice, but not required for the beneficial effects of exercise. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Loss of UCP1 exacerbates Western diet-induced glycemic dysregulation independent of changes in body weight in female mice

    PubMed Central

    Winn, Nathan C.; Gastecki, Michelle L.; Welly, Rebecca J.; Scroggins, Rebecca J.; Zidon, Terese M.; Gaines, T’Keaya L.; Woodford, Makenzie L.; Karasseva, Natalia G.; Kanaley, Jill A.; Sacks, Harold S.

    2017-01-01

    We tested the hypothesis that female mice null for uncoupling protein 1 (UCP1) would have increased susceptibility to Western diet-induced “whitening” of brown adipose tissue (AT) and glucose intolerance. Six-week-old C57BL/6J wild-type (WT) and UCP1 knockout (UCP1−/−) mice, housed at 25°C, were randomized to either a control diet (10% kcal from fat) or Western diet (45% kcal from fat and 1% cholesterol) for 28 wk. Loss of UCP1 had no effect on energy intake, energy expenditure, spontaneous physical activity, weight gain, or visceral white AT mass. Despite similar susceptibility to weight gain compared with WT, UCP1−/− exhibited whitening of brown AT evidenced by a striking ~500% increase in mass and appearance of large unilocular adipocytes, increased expression of genes related to inflammation, immune cell infiltration, and endoplasmic reticulum/oxidative stress (P < 0.05), and decreased mitochondrial subunit protein (COX I, II, III, and IV, P < 0.05), all of which were exacerbated by Western diet (P < 0.05). UCP1−/− mice also developed liver steatosis and glucose intolerance, which was worsened by Western diet. Collectively, these findings demonstrate that loss of UCP1 exacerbates Western diet-induced whitening of brown AT, glucose intolerance, and induces liver steatosis. Notably, the adverse metabolic manifestations of UCP1−/− were independent of changes in body weight, visceral adiposity, and energy expenditure. These novel findings uncover a previously unrecognized metabolic protective role of UCP1 that is independent of its already established role in energy homeostasis. PMID:27881400

  14. Long-term fasting decreases mitochondrial avian UCP-mediated oxygen consumption in hypometabolic king penguins

    PubMed Central

    Rey, Benjamin; Halsey, Lewis G.; Dolmazon, Virginie; Rouanet, Jean-Louis; Roussel, Damien; Handrich, Yves; Butler, Patrick J.; Duchamp, Claude

    2008-01-01

    In endotherms, regulation of the degree of mitochondrial coupling affects cell metabolic efficiency. Thus it may be a key contributor to minimizing metabolic rate during long periods of fasting. The aim of the present study was to investigate whether variation in mitochondrial avian uncoupling proteins (avUCP), as putative regulators of mitochondrial oxidative phosphorylation, may contribute to the ability of king penguins (Aptenodytes patagonicus) to withstand fasting for several weeks. After 20 days of fasting, king penguins showed a reduced rate of whole animal oxygen consumption (V̇o2; −33%) at rest, together with a reduced abundance of avUCP and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1-α) mRNA in pectoralis muscle (−54%, −36%, respectively). These parameters were restored after the birds had been refed for 3 days. Furthermore, in recently fed, but not in fasted penguins, isolated muscle mitochondria showed a guanosine diphosphate-inhibited, fatty acid plus superoxide-activated respiration, indicating the presence of a functional UCP. It was calculated that variation in mitochondrial UCP-dependent respiration in vitro may contribute to nearly 20% of the difference in resting V̇o2 between fed or refed penguins and fasted penguins measured in vivo. These results suggest that the lowering of avUCP activity during periods of long-term energetic restriction may contribute to the reduction in metabolic rate and hence the ability of king penguins to face prolonged periods of fasting. PMID:18495832

  15. Long-term fasting decreases mitochondrial avian UCP-mediated oxygen consumption in hypometabolic king penguins.

    PubMed

    Rey, Benjamin; Halsey, Lewis G; Dolmazon, Virginie; Rouanet, Jean-Louis; Roussel, Damien; Handrich, Yves; Butler, Patrick J; Duchamp, Claude

    2008-07-01

    In endotherms, regulation of the degree of mitochondrial coupling affects cell metabolic efficiency. Thus it may be a key contributor to minimizing metabolic rate during long periods of fasting. The aim of the present study was to investigate whether variation in mitochondrial avian uncoupling proteins (avUCP), as putative regulators of mitochondrial oxidative phosphorylation, may contribute to the ability of king penguins (Aptenodytes patagonicus) to withstand fasting for several weeks. After 20 days of fasting, king penguins showed a reduced rate of whole animal oxygen consumption (Vo2; -33%) at rest, together with a reduced abundance of avUCP and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC1-alpha) mRNA in pectoralis muscle (-54%, -36%, respectively). These parameters were restored after the birds had been refed for 3 days. Furthermore, in recently fed, but not in fasted penguins, isolated muscle mitochondria showed a guanosine diphosphate-inhibited, fatty acid plus superoxide-activated respiration, indicating the presence of a functional UCP. It was calculated that variation in mitochondrial UCP-dependent respiration in vitro may contribute to nearly 20% of the difference in resting Vo2 between fed or refed penguins and fasted penguins measured in vivo. These results suggest that the lowering of avUCP activity during periods of long-term energetic restriction may contribute to the reduction in metabolic rate and hence the ability of king penguins to face prolonged periods of fasting.

  16. E2-EPF UCP regulates stability and functions of missense mutant pVHL via ubiquitin mediated proteolysis.

    PubMed

    Park, Kyeong-Su; Kim, Ju Hee; Shin, Hee Won; Chung, Kyung-Sook; Im, Dong-Soo; Lim, Jung Hwa; Jung, Cho-Rok

    2015-10-26

    Missense mutation of VHL gene is frequently detected in type 2 VHL diseases and linked to a wide range of pVHL functions and stability. Certain mutant pVHLs retain ability to regulate HIFs but lose their function by instability. In this case, regulating of degradation of mutant pVHLs, can be postulated as therapeutic method. The stability and cellular function of missense mutant pVHLs were determine in HEK293T transient expressing cell and 786-O stable cell line. Ubiquitination assay of mutant VHL proteins was performed in vitro system. Anticancer effect of adenovirus mediated shUCP expressing was evaluated using ex vivo mouse xenograft assay. Three VHL missense mutants (V155A, L158Q, and Q164R) are directly ubiquitinated by E2-EPF UCP (UCP) in vitro. Mutant pVHLs are more unstable than wild type in cell. Missense mutant pVHLs interact with UCP directly in both in vitro and cellular systems. Lacking all of lysine residues of pVHL result in resistance to ubiquitination thereby increase its stability. Missense mutant pVHLs maintained the function of E3 ligase to ubiquitinate HIF-1α in vitro. In cells expressing mutant pVHLs, Glut-1 and VEGF were relatively upregulated compared to their levels in cells expressing wild-type. Depletion of UCP restored missense mutant pVHLs levels and inhibited cell growth. Adenovirus-mediated shUCP RNA delivery inhibited tumor growth in ex vivo mouse xenograft model. These data suggest that targeting of UCP can be one of therapeutic method in type 2 VHL disease caused by unstable but functional missense mutant pVHL.

  17. Impact of GNB3-C825T, ADRB3-Trp64Arg, UCP2-3′UTR 45 bp del/ins, and PPARγ-Pro12Ala Polymorphisms on Bofutsushosan Response in Obese Subjects: A Randomized, Double-Blind, Placebo-Controlled Trial

    PubMed Central

    Park, Junghyun; Bose, Shambhunath; Hong, Sun-Woo; Lee, Dong-Ki; Yoo, Jae-Wook; Lim, Chi-Yeon; Lee, Myeongjong

    2014-01-01

    Abstract Obesity is known to be influenced by a number of genes, including the β3 subunit of G protein (GNB3), β3-adrenergic receptor (ADRB3), uncoupling protein 2 (UCP2), and peroxisome proliferator activated receptor gamma (PPARγ). The single nucleotide polymorphisms (SNPs) of the above genes, such as GNB3-C825T, ADRB3-Trp64Arg, UCP2-3′UTR 45 bp del/ins, and PPARγ-Pro12Ala, are associated with obesity and body mass index. The present study evaluates the impact of Bofutsushosan, a traditional Eastern Asian herbal medicine with known anti-obesity properties, on obese subjects according to the presence of the above-mentioned SNPs. Upon randomization, the volunteers were allocated to receive Bofutsushosan (n=55) or placebo (n=56) treatments for 8 weeks. Following the treatment schedule, significant reductions in total cholesterol and significant improvement in the Korean version of obesity-related quality of life scale were seen in the Bofutsushosan-treated group, but not in placebo. Bofutsushosan exerted significant anti-obesity effects on a number of parameters in the carriers of the GNB3-825T allele, but only on waist circumference in the GNB3-C/C homozygote. Significant anti-obesity impact of Bofutsushosan was also seen on a number of obesity-indices in both ADRB3-Arg64 carriers and ADRB3-Trp64 homozygotes, as well as in UCP2-D/D carriers, but not in UCP2-D/I+I/I variants. The effect of Bofutsushosan was more pronounced in PPARγ-Pro/Pro genotype compared to PPARγ-Pro/Ala variants. Thus, the results revealed differential responses of the subjects to the anti-obesity effects of Bofutsushosan treatment according to the polymorphism of the vital obesity-related genes. Our study provides new insight into individualized clinical applications of Bofutsushosan for obesity. PMID:24827746

  18. Fluoxetine induces lean phenotype in rat by increasing the brown/white adipose tissue ratio and UCP1 expression.

    PubMed

    da Silva, A I; Braz, G R F; Pedroza, A A; Nascimento, L; Freitas, C M; Ferreira, D J S; Manhães de Castro, R; Lagranha, C J

    2015-08-01

    The serotonergic system plays a crucial role in the energy balance regulation. Energy balance is mediated by food intake and caloric expenditure. Thus, the present study investigated the mechanisms that might be associated with fluoxetine treatment-induced weight reduction. Wistar male rat pups received daily injections with subcutaneous fluoxetine (Fx-group) or vehicle solution (Ct-group) from day 1 until 21 days of age. Several analyses were conducted to verify the involvement of mitochondria in weight reduction. We found that body weight in the Fx-group was lower compared to control. In association to lower fat mass in the Fx-group (25%). Neither neonatal caloric intake nor food intake reveals significant differences. Evaluating caloric expenditure (locomotor activity and temperature after stimulus), we did not observe differences in locomotor activity. However, we observed that the Fx group had a higher capacity to maintain body temperature in a cold environment compared with the Ct-group. Since brown adipose tissue-(BAT) is specialized for heat production and the rate of heat production is related to mitochondrial function, we found that Fx-treatment increases respiration by 36%, although after addition of GDP respiration returned to Ct-levels. Examining ROS production we observe that Fx-group produced less ROS than control group. Evaluating uncoupling protein (UCP) expression we found that Fx-treatment increases the expression by 23%. Taken together, our results suggest that modulation of serotonin system results in positive modulation of UCP and mitochondrial bioenergetics in brown fat tissue.

  19. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity

    PubMed Central

    Zheng, Qiantao; Lin, Jun; Huang, Jiaojiao; Zhang, Hongyong; Zhang, Rui; Zhang, Xueying; Cao, Chunwei; Hambly, Catherine; Qin, Guosong; Yao, Jing; Song, Ruigao; Jia, Qitao; Wang, Xiao; Li, Yongshun; Zhang, Nan; Piao, Zhengyu; Ye, Rongcai; Speakman, John R.; Wang, Hongmei; Zhou, Qi; Wang, Yanfang; Jin, Wanzhu

    2017-01-01

    Uncoupling protein 1 (UCP1) is localized on the inner mitochondrial membrane and generates heat by uncoupling ATP synthesis from proton transit across the inner membrane. UCP1 is a key element of nonshivering thermogenesis and is most likely important in the regulation of body adiposity. Pigs (Artiodactyl family Suidae) lack a functional UCP1 gene, resulting in poor thermoregulation and susceptibility to cold, which is an economic and pig welfare issue owing to neonatal mortality. Pigs also have a tendency toward fat accumulation, which may be linked to their lack of UCP1, and thus influences the efficiency of pig production. Here, we report application of a CRISPR/Cas9-mediated, homologous recombination (HR)-independent approach to efficiently insert mouse adiponectin-UCP1 into the porcine endogenous UCP1 locus. The resultant UCP1 knock-in (KI) pigs showed an improved ability to maintain body temperature during acute cold exposure, but they did not have alterations in physical activity levels or total daily energy expenditure (DEE). Furthermore, ectopic UCP1 expression in white adipose tissue (WAT) dramatically decreased fat deposition by 4.89% (P < 0.01), consequently increasing carcass lean percentage (CLP; P < 0.05). Mechanism studies indicated that the loss of fat upon UCP1 activation in WAT was linked to elevated lipolysis. UCP1 KI pigs are a potentially valuable resource for agricultural production through their combination of cold adaptation, which improves pig welfare and reduces economic losses, with reduced fat deposition and increased lean meat production. PMID:29078316

  20. Superresolution microscopy reveals spatial separation of UCP4 and F0F1-ATP synthase in neuronal mitochondria

    PubMed Central

    Klotzsch, Enrico; Smorodchenko, Alina; Löfler, Lukas; Moldzio, Rudolf; Parkinson, Elena; Schütz, Gerhard J.; Pohl, Elena E.

    2015-01-01

    Because different proteins compete for the proton gradient across the inner mitochondrial membrane, an efficient mechanism is required for allocation of associated chemical potential to the distinct demands, such as ATP production, thermogenesis, regulation of reactive oxygen species (ROS), etc. Here, we used the superresolution technique dSTORM (direct stochastic optical reconstruction microscopy) to visualize several mitochondrial proteins in primary mouse neurons and test the hypothesis that uncoupling protein 4 (UCP4) and F0F1-ATP synthase are spatially separated to eliminate competition for the proton motive force. We found that UCP4, F0F1-ATP synthase, and the mitochondrial marker voltage-dependent anion channel (VDAC) have various expression levels in different mitochondria, supporting the hypothesis of mitochondrial heterogeneity. Our experimental results further revealed that UCP4 is preferentially localized in close vicinity to VDAC, presumably at the inner boundary membrane, whereas F0F1-ATP synthase is more centrally located at the cristae membrane. The data suggest that UCP4 cannot compete for protons because of its spatial separation from both the proton pumps and the ATP synthase. Thus, mitochondrial morphology precludes UCP4 from acting as an uncoupler of oxidative phosphorylation but is consistent with the view that UCP4 may dissipate the excessive proton gradient, which is usually associated with ROS production. PMID:25535394

  1. Interactions between UCP2 SNPs and telomere length exist in the absence of diabetes or pre-diabetes

    PubMed Central

    Zhou, Yuling; Simmons, David; Hambly, Brett D.; McLachlan, Craig S.

    2016-01-01

    Mitochondrial uncoupling protein 2 (UCP2) can affect oxidative stress levels. UCP2 polymorphisms are associated with leukocyte telomere length (LTL) in Type 2 Diabetes, which also induces considerable background oxidative stress. The effects of UCP2 polymorphisms on LTL in populations without diabetes have not been well described. Our aims are to evaluate the interaction between LTL and UCP2 polymorphisms in 950 subjects without diabetes. The monochrome multiplex quantitative PCR method was used to measure relative LTL. Taqman SNP genotyping assay was applied to genotypes for UCP2 rs659366 and rs660339. We found shorter LTL associated with increased age (P < 0.001) and triglyceride levels (P = 0.041). After adjustment for cardiovascular risk factors, rs659336 GG genotype carriers demonstrated a shorter LTL (1.257 ± 0.186), compared to GA carriers (1.288 ± 0.230, P = 0.022) and AA carriers (1.314 ± 0.253, P = 0.002). LTL was shorter in the CC rs660339 genotype (1.254 ± 0.187) compared to TT (1.297 ± 0.242, P = 0.007) and CT carriers (1.292 ± 0.229, P = 0.016). The T allele of rs660339 is associated with a longer LTL of approximately 0.04 compared to CC homozygotes. Thus, UCP2 rs659366 A allele and rs660339 T allele are both related to longer LTL in subjects without diabetes, independent of cardiovascular risk factors. PMID:27615599

  2. Effect of genetic polymorphism of UCP2-866 G/A on repaglinide response in Chinese patients with type 2 diabetes.

    PubMed

    Wang, Shan; Se, Yan-Mei; Liu, Zhao-Qian; Lei, Ming-Xiang; Hao-BoYang; Sun, Zhi-Xiang; Nie, Sheng-Dan; Zeng, Xiao-min; Wu, Jing

    2012-01-01

    The aim of the present study was to evaluate the impact of the UCP2-866 G/A polymorphism on the efficacy of repaglinide in treating patients with diabetes mellitus type 2 (T2DM). 370 patients with T2DM and 166 healthy volunteers were enrolled to identify UCP2-866 G/A genotypes. 16 patients with GG genotype, 14 with GA genotype and 11 with AA genotype of UCP2-866 G/A underwent an 8-week repaglinide treatment regimen. There were no differences in allele frequency of UCP2-866 G/A between T2DM patients and control subjects. The patient with AA genotype of UCP2-866 G/A had higher levels of fasting plasma glucose (FPG), 30-min and 2-h postload plasma glucose, glycated haemoglobin (HbA1c), and lower concentrations of 30-min and 2-h postload plasma insulin, homeostasis model assessment of beta cell function (HOMA-beta), deltaI30/deltaG30 compared with GG genotype. After repaglinide treatment for 8 consecutive weeks, we found that A allele carriers of UCP2 in the T2DM patients had smaller decrease in FPG (P < 0.05) and HbA1c (P < 0.05), and smaller increase in 30-min postload plasma insulin (P < 0.01) compared with GG genotypes. We demonstrated that UCP2-866 G/A polymorphism is associated with the therapeutic efficacy of repaglinide in Chinese T2DM patients.

  3. Unibody Composite Pressurized Structure (UCPS) for In-Space Propulsion

    NASA Technical Reports Server (NTRS)

    Rufer, Markus

    2015-01-01

    Microcosm, Inc., in conjunction with the Scorpius Space Launch Company, is developing a UCPS (Unibody Composite Pressurized Structure )for in-space propulsion. This innovative approach constitutes a clean break from traditional spacecraft design by combining what were traditionally separate primary and secondary support structures and metal propellant tanks into a single unit.

  4. Egr-1 and serum response factor are involved in growth factors- and serum-mediated induction of E2-EPF UCP expression that regulates the VHL-HIF pathway.

    PubMed

    Lim, Jung Hwa; Jung, Cho-Rok; Lee, Chan-Hee; Im, Dong-Soo

    2008-11-01

    E2-EPF ubiquitin carrier protein (UCP) has been shown to be highly expressed in common human cancers and target von Hippel-Lindau (VHL) for proteosomal degradation in cells, thereby stabilizing hypoxia-inducible factor (HIF)-1alpha. Here, we investigated cellular factors that regulate the expression of UCP gene. Promoter deletion assay identified binding sites for early growth response-1 (Egr-1) and serum response factor (SRF) in the UCP promoter. Hepatocyte or epidermal growth factor (EGF), or phorbol 12-myristate 13-acetate induced UCP expression following early induction of Egr-1 expression in HeLa cells. Serum increased mRNA and protein levels of SRF and UCP in the cell. By electrophoretic mobility shift and chromatin immunoprecipitation assays, sequence-specific DNA-binding of Egr-1 and SRF to the UCP promoter was detected in nuclear extracts from HeLa cells treated with EGF and serum, respectively. Overexpression of Egr-1 or SRF increased UCP expression. RNA interference-mediated depletion of endogenous Egr-1 or SRF impaired EGF- or serum-mediated induction of UCP expression, which was required for cancer cell proliferation. Systemic delivery of EGF into mice also increased UCP expression following early induction of Egr-1 expression in mouse liver. The induced UCP expression by the growth factors or serum increased HIF-1alpha protein level under non-hypoxic conditions, suggesting that the Egr-1/SRF-UCP-VHL pathway is in part responsible for the increased HIF-1alpha protein level in vitro and in vivo. Thus, growth factors and serum induce expression of Egr-1 and SRF, respectively, which in turn induces UCP expression that positively regulates cancer cell growth.

  5. Long-term hypoxia modulates expression of key genes regulating adipose function in the late-gestation ovine fetus.

    PubMed

    Myers, Dean A; Hanson, Krista; Mlynarczyk, Malgorzata; Kaushal, Kanchan M; Ducsay, Charles A

    2008-04-01

    A major function of abdominal adipose in the newborn is nonshivering thermogenesis. Uncoupling protein (UCP) UCP1 and UCP2 play major roles in thermogenesis. The present study tested the hypothesis that long-term hypoxia (LTH) modulates expression of UCP1 and UCP2, and key genes regulating expression of these genes in the late-gestation ovine fetus. Ewes were maintained at high altitude (3,820 m) from 30 to 138 days gestation (dG); perirenal adipose tissue was collected from LTH and age-matched, normoxic control fetuses at 139-141 dG. Quantitative real-time PCR was used to analyze mRNA for UCP1, UCP2, 11beta hydroxysteroid dehydrogenase type 1 (HSD11B1) and 2 (HSD11B2), glucocorticoid receptor (GR), beta3 adrenergic receptor (beta3AR), deiodinase type 1 (DIO1) and DIO2, peroxisome proliferator activated receptor (PPAR) alpha and gamma and PPARgamma coactivator 1 (PGC1alpha). Concentrations of mRNA for UCP1, HSD11B1, PPARgamma, PGC1, DIO1, and DIO2 were significantly higher in perirenal adipose of LTH compared with control fetuses, while mRNA for HSD11B2, GR, or PPARalpha in perirenal adipose did not differ between control and LTH fetuses. The increased expression of UCP1 is likely an adaptive response to LTH, assuring adequate thermogenesis in the event of birth under oxygen-limiting conditions. Because both glucocorticoids and thyroid hormone regulate UCP1 expression, the increase in HSD11B1, DIO1, and DIO2 implicate increased adipose capacity for local synthesis of these hormones. PPARgamma and its coactivator may provide an underlying mechanism via which LTH alters development of the fetal adipocyte. These findings have important implications regarding fetal/neonatal adipose tissue function in response to LTH.

  6. Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system.

    PubMed

    Kim, Minji; Goto, Tsuyoshi; Yu, Rina; Uchida, Kunitoshi; Tominaga, Makoto; Kano, Yuriko; Takahashi, Nobuyuki; Kawada, Teruo

    2015-12-17

    Brown adipose tissue (BAT) plays a central role in regulating energy homeostasis, and may provide novel strategies for the treatment of human obesity. BAT-mediated thermogenesis is regulated by mitochondrial uncoupling protein 1 (UCP1) in classical brown and ectopic beige adipocytes, and is controlled by sympathetic nervous system (SNS). Previous work indicated that fish oil intake reduces fat accumulation and induces UCP1 expression in BAT; however, the detailed mechanism of this effect remains unclear. In this study, we investigated the effect of fish oil on energy expenditure and the SNS. Fish oil intake increased oxygen consumption and rectal temperature, with concomitant upregulation of UCP1 and the β3 adrenergic receptor (β3AR), two markers of beige adipocytes, in the interscapular BAT and inguinal white adipose tissue (WAT). Additionally, fish oil intake increased the elimination of urinary catecholamines and the noradrenaline (NA) turnover rate in interscapular BAT and inguinal WAT. Furthermore, the effects of fish oil on SNS-mediated energy expenditure were abolished in transient receptor potential vanilloid 1 (TRPV1) knockout mice. In conclusion, fish oil intake can induce UCP1 expression in classical brown and beige adipocytes via the SNS, thereby attenuating fat accumulation and ameliorating lipid metabolism.

  7. Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system

    PubMed Central

    Kim, Minji; Goto, Tsuyoshi; Yu, Rina; Uchida, Kunitoshi; Tominaga, Makoto; Kano, Yuriko; Takahashi, Nobuyuki; Kawada, Teruo

    2015-01-01

    Brown adipose tissue (BAT) plays a central role in regulating energy homeostasis, and may provide novel strategies for the treatment of human obesity. BAT-mediated thermogenesis is regulated by mitochondrial uncoupling protein 1 (UCP1) in classical brown and ectopic beige adipocytes, and is controlled by sympathetic nervous system (SNS). Previous work indicated that fish oil intake reduces fat accumulation and induces UCP1 expression in BAT; however, the detailed mechanism of this effect remains unclear. In this study, we investigated the effect of fish oil on energy expenditure and the SNS. Fish oil intake increased oxygen consumption and rectal temperature, with concomitant upregulation of UCP1 and the β3 adrenergic receptor (β3AR), two markers of beige adipocytes, in the interscapular BAT and inguinal white adipose tissue (WAT). Additionally, fish oil intake increased the elimination of urinary catecholamines and the noradrenaline (NA) turnover rate in interscapular BAT and inguinal WAT. Furthermore, the effects of fish oil on SNS-mediated energy expenditure were abolished in transient receptor potential vanilloid 1 (TRPV1) knockout mice. In conclusion, fish oil intake can induce UCP1 expression in classical brown and beige adipocytes via the SNS, thereby attenuating fat accumulation and ameliorating lipid metabolism. PMID:26673120

  8. Brown adipose tissue dynamics in wild-type and UCP1-knockout mice: in vivo insights with magnetic resonance[S

    PubMed Central

    Grimpo, Kirsten; Völker, Maximilian N.; Heppe, Eva N.; Braun, Steve; Heverhagen, Johannes T.; Heldmaier, Gerhard

    2014-01-01

    We used noninvasive magnetic resonance imaging (MRI) and magnetic resonance spectroscopy to compare interscapular brown adipose tissue (iBAT) of wild-type (WT) and uncoupling protein 1 (UCP1)-knockout mice lacking UCP1-mediated nonshivering thermogenesis (NST). Mice were sequentially acclimated to an ambient temperature of 30°C, 18°C, and 5°C. We detected a remodeling of iBAT and a decrease in its lipid content in all mice during cold exposure. Ratios of energy-rich phosphates (ATP/ADP, phosphocreatine/ATP) in iBAT were maintained stable during noradrenergic stimulation of thermogenesis in cold- and warm-adapted mice and no difference between the genotypes was observed. As free fatty acids (FFAs) serve as fuel for thermogenesis and activate UCP1 for uncoupling of oxidative phosphorylation, brown adipose tissue is considered to be a main acceptor and consumer of FFAs. We measured a major loss of FFAs from iBAT during noradrenergic stimulation of thermogenesis. This mobilization of FFAs was observed in iBAT of WT mice as well as in mice lacking UCP1. The high turnover and the release of FFAs from iBAT suggests an enhancement of lipid metabolism, which in itself contributes to the sympathetically activated NST and which is independent from uncoupled respiration mediated by UCP1. Our study demonstrates that MRI, besides its potential for visualizing and quantification of fat tissue, is a valuable tool for monitoring functional in vivo processes like lipid and phosphate metabolism during NST. PMID:24343897

  9. Cavβ2 transcription start site variants modulate calcium handling in newborn rat cardiomyocytes.

    PubMed

    Moreno, Cristian; Hermosilla, Tamara; Morales, Danna; Encina, Matías; Torres-Díaz, Leandro; Díaz, Pablo; Sarmiento, Daniela; Simon, Felipe; Varela, Diego

    2015-12-01

    In the heart, the main pathway for calcium influx is mediated by L-type calcium channels, a multi-subunit complex composed of the pore-forming subunit CaV1.2 and the auxiliary subunits CaVα2δ1 and CaVβ2. To date, five distinct CaVβ2 transcriptional start site (TSS) variants (CaVβ2a-e) varying only in the composition and length of the N-terminal domain have been described, each of them granting distinct biophysical properties to the L-type current. However, the physiological role of these variants in Ca(2+) handling in the native tissue has not been explored. Our results show that four of these variants are present in neonatal rat cardiomyocytes. The contribution of those CaVβ2 TSS variants on endogenous L-type current and Ca(2+) handling was explored by adenoviral-mediated overexpression of each CaVβ2 variant in cultured newborn rat cardiomyocytes. As expected, all CaVβ2 TSS variants increased L-type current density and produced distinctive changes on L-type calcium channel (LTCC) current activation and inactivation kinetics. The characteristics of the induced calcium transients were dependent on the TSS variant overexpressed. Moreover, the amplitude of the calcium transients varied depending on the subunit involved, being higher in cardiomyocytes transduced with CaVβ2a and smaller in CaVβ2d. Interestingly, the contribution of Ca(2+) influx and Ca(2+) release on total calcium transients, as well as the sarcoplasmic calcium content, was found to be TSS-variant-dependent. Remarkably, determination of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) messenger RNA (mRNA) abundance and cell size change indicates that CaVβ2 TSS variants modulate the cardiomyocyte hypertrophic state. In summary, we demonstrate that expression of individual CaVβ2 TSS variants regulates calcium handling in cardiomyocytes and, consequently, has significant repercussion in the development of hypertrophy.

  10. Variation in the uncoupling protein 2 and 3 genes and human performance.

    PubMed

    Dhamrait, Sukhbir S; Williams, Alun G; Day, Stephen H; Skipworth, James; Payne, John R; World, Michael; Humphries, Steve E; Montgomery, Hugh E

    2012-04-01

    Uncoupling proteins 2 and 3 (UCP2 and UCP3) may negatively regulate mitochondrial ATP synthesis and, through this, influence human physical performance. However, human data relating to both these issues remain sparse. Examining the association of common variants in the UCP3/2 locus with performance phenotypes offers one means of investigation. The efficiency of skeletal muscle contraction, delta efficiency (DE), was assessed by cycle ergometry in 85 young, healthy, sedentary adults both before and after a period of endurance training. Of these, 58 were successfully genotyped for the UCP3-55C>T (rs1800849) and 61 for the UCP2-866G>A (rs659366) variant. At baseline, UCP genotype was unrelated to any physical characteristic, including DE. However, the UCP2-866G>A variant was independently and strongly associated with the DE response to physical training, with UCP2-866A allele carriers exhibiting a greater increase in DE with training (absolute change in DE of -0.2 ± 3.6% vs. 1.7 ± 2.8% vs. 2.3 ± 3.7% for GG vs. GA vs. AA, respectively; P = 0.02 for A allele carriers vs. GG homozygotes). In multivariate analysis, there was a significant interaction between UCP2-866G>A and UCP3-55C>T genotypes in determining changes in DE (adjusted R(2) = 0.137; P value for interaction = 0.003), which was independent of the effect of either single polymorphism or baseline characteristics. In conclusion, common genetic variation at the UCP3/2 gene locus is associated with training-related improvements in DE, an index of skeletal muscle performance. Such effects may be mediated through differences in the coupling of mitochondrial energy transduction in human skeletal muscle, but further mechanistic studies are required to delineate this potential role.

  11. University Cooperation Platform (UCP) between Christian-Albrechts-University Kiel (Germany) and Chiang Mai University (Thailand): implementation of image-guided gynecological brachytherapy.

    PubMed

    Galalae, Razvan; Tharavichitkul, Ekkasit; Wanwilairat, Somsak; Chitapanarux, Imjai; Kimmig, Bernhard; Dunst, Jürgen; Lorvidhaya, Vicharn

    2015-02-01

    Starting in 1999, the University Cooperation Platform (UCP) implemented an exchange program of researchers and clinicians/physicists between the Christian-Albrechts-University Kiel in Germany and Chiang Mai University in Thailand, to initiate a sustainable base for long-term development of image-guided brachytherapy and in general for high-technology radiotherapy in Chiang Mai. A series of UCP protocols, based constructively on each other, were performed and evaluated at intermediate term follow-up. The first protocol, addressing computed tomography (CT)-optimized brachytherapy for advanced cervical cancer (n = 17), showed a significant reduction of D2cc for the bladder and sigmoid (p < 0.001) while maintaining a very high dose in D90 high-risk clinical target volume (HR-CTV) in comparison with standard point-based planning. In addition, after a follow-up of 19 months no tumor relapse was observed. The second UCP protocol, testing the impact of magnetic resonance imaging (MRI) guidance (n = 15) in patients with cervical cancer, proved significantly smaller D2cc doses for the bladder, rectum, and sigmoid (p = 0.003, p = 0.015, and p = 0.012), and secured highly curative mean doses in D90 HR-CTV of 99.2 Gy. The acute and late toxicity was excellent without any observed grade 3 or higher morbidity. In the third protocol, the combination of image-guided brachytherapy (IGBT) and whole pelvis intensity-modulated external beam radiotherapy (WP-IMRT) (n = 15) reaffirmed the significant reduction of D2cc doses for the bladder, rectum, and sigmoid (p = 0.001 or p < 0.001) along with high equivalent dose at 2 Gy (EQD2) in the HR-CTV, and demonstrated very low acute therapy-related toxicity in absence of grade 3 morbidity. The implementation of transabdominal ultrasound (TAUS) was the focus of the fourth UCP project aiming a more generous potential use of image-guidance on long-term, and enhancing the quality of soft tissue assessment complementary to conventionally planned

  12. University Cooperation Platform (UCP) between Christian-Albrechts-University Kiel (Germany) and Chiang Mai University (Thailand): implementation of image-guided gynecological brachytherapy

    PubMed Central

    Tharavichitkul, Ekkasit; Wanwilairat, Somsak; Chitapanarux, Imjai; Kimmig, Bernhard; Dunst, Jürgen; Lorvidhaya, Vicharn

    2015-01-01

    Starting in 1999, the University Cooperation Platform (UCP) implemented an exchange program of researchers and clinicians/physicists between the Christian-Albrechts-University Kiel in Germany and Chiang Mai University in Thailand, to initiate a sustainable base for long-term development of image-guided brachytherapy and in general for high-technology radiotherapy in Chiang Mai. A series of UCP protocols, based constructively on each other, were performed and evaluated at intermediate term follow-up. The first protocol, addressing computed tomography (CT)-optimized brachytherapy for advanced cervical cancer (n = 17), showed a significant reduction of D2cc for the bladder and sigmoid (p < 0.001) while maintaining a very high dose in D90 high-risk clinical target volume (HR-CTV) in comparison with standard point-based planning. In addition, after a follow-up of 19 months no tumor relapse was observed. The second UCP protocol, testing the impact of magnetic resonance imaging (MRI) guidance (n = 15) in patients with cervical cancer, proved significantly smaller D2cc doses for the bladder, rectum, and sigmoid (p = 0.003, p = 0.015, and p = 0.012), and secured highly curative mean doses in D90 HR-CTV of 99.2 Gy. The acute and late toxicity was excellent without any observed grade 3 or higher morbidity. In the third protocol, the combination of image-guided brachytherapy (IGBT) and whole pelvis intensity-modulated external beam radiotherapy (WP-IMRT) (n = 15) reaffirmed the significant reduction of D2cc doses for the bladder, rectum, and sigmoid (p = 0.001 or p < 0.001) along with high equivalent dose at 2 Gy (EQD2) in the HR-CTV, and demonstrated very low acute therapy-related toxicity in absence of grade 3 morbidity. The implementation of transabdominal ultrasound (TAUS) was the focus of the fourth UCP project aiming a more generous potential use of image-guidance on long-term, and enhancing the quality of soft tissue assessment complementary to conventionally planned

  13. Cycling efficiency in humans is related to low UCP3 content and to type I fibres but not to mitochondrial efficiency.

    PubMed

    Mogensen, M; Bagger, M; Pedersen, P K; Fernström, M; Sahlin, K

    2006-03-15

    The purpose of this study was to investigate the hypothesis that cycling efficiency in vivo is related to mitochondrial efficiency measured in vitro and to investigate the effect of training status on these parameters. Nine endurance trained and nine untrained male subjects (V(O2peak) = 60.4 +/- 1.4 and 37.0 +/- 2.0 ml kg(-1) min(-1), respectively) completed an incremental submaximal efficiency test for determination of cycling efficiency (gross efficiency, work efficiency (WE) and delta efficiency). Muscle biopsies were taken from m. vastus lateralis and analysed for mitochondrial respiration, mitochondrial efficiency (MEff; i.e. P/O ratio), UCP3 protein content and fibre type composition (% MHC I). MEff was determined in isolated mitochondria during maximal (state 3) and submaximal (constant rate of ADP infusion) rates of respiration with pyruvate. The rates of mitochondrial respiration and oxidative phosphorylation per muscle mass were about 40% higher in trained subjects but were not different when expressed per unit citrate synthase (CS) activity (a marker of mitochondrial density). Training status had no influence on WE (trained 28.0 +/- 0.5, untrained 27.7 +/- 0.8%, N.S.). Muscle UCP3 was 52% higher in untrained subjects, when expressed per muscle mass (P < 0.05 versus trained). WE was inversely correlated to UCP3 (r = -0.57, P < 0.05) and positively correlated to percentage MHC I (r = 0.58, P < 0.05). MEff was lower (P < 0.05) at submaximal respiration rates (2.39 +/- 0.01 at 50% V(O2max)) than at state 3 (2.48 +/- 0.01) but was neither influenced by training status nor correlated to cycling efficiency. In conclusion cycling efficiency was not influenced by training status and not correlated to MEff, but was related to type I fibres and inversely related to UCP3. The inverse correlation between WE and UCP3 indicates that extrinsic factors may influence UCP3 activity and thus MEff in vivo.

  14. FTO Obesity Risk Variants Are Linked to Adipocyte IRX3 Expression and BMI of Children - Relevance of FTO Variants to Defend Body Weight in Lean Children?

    PubMed Central

    Landgraf, Kathrin; Scholz, Markus; Kovacs, Peter; Kiess, Wieland; Körner, Antje

    2016-01-01

    Background Genome-wide association studies have identified variants within the FTO (fat mass and obesity associated) locus as the strongest predictors of obesity amongst all obesity-associated gene loci. Recent evidence suggests that variants in FTO directly affect human adipocyte function through targeting IRX3 and IRX5 and thermogenesis regulation. Aim We addressed the relevance of this proposed FTO-IRX pathway in adipose tissue (AT) of children. Results Expression of IRX3 was higher in adipocytes compared to SVF. We found increased adipocyte-specific expression of IRX3 and IRX5 with the presence of the FTO risk haplotype in lean children, whereas it was unaffected by risk variants in obese peers. We further show that IRX3 expression was elevated in isolated adipocytes and AT of lean compared to obese children, particularly in UCP1-negative adipocytes, and inversely correlated with BMI SDS. Independent of BMI, IRX3 expression in adipocytes was significantly related to adipocyte hypertrophy, and subsequent associations with AT inflammation and HOMA-IR in the children. Conclusion One interpretation of our observation of FTO risk variants linked to IRX3 expression and adipocyte size restricted to lean children, along with the decreased IRX3 expression in obese compared to lean peers, may reflect a defense mechanism for protecting body-weight, which is pertinent for lean children. PMID:27560134

  15. Activation of PPAR-γ by pioglitazone attenuates oxidative stress in aging rat cerebral arteries through upregulating UCP2.

    PubMed

    Wang, Peijian; Li, Binghu; Cai, Guocai; Huang, Mingqing; Jiang, Licheng; Pu, Jing; Li, Lu; Wu, Qi; Zuo, Li; Wang, Qiulin; Zhou, Peng

    2014-12-01

    Increasing amounts of evidence implicate oxidative stress as having a pivotal role in age-related cerebrovascular dysfunction, which is an important risk factor for the development of cerebrovascular disease. Previous studies have shown that the activation of the expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) in vascular endothelial cells results in an improvement of vascular function. Pioglitazone, a well-known PPAR-γ agonist, protects against oxidative stress in the rostral ventrolateral medulla by the upregulation of mitochondrial uncoupling protein 2 (UCP2). In this study, we sought to explore the effects and the underlying mechanisms of pioglitazone on age-related oxidative stress elevation and cerebrovascular dysfunction in aging rat cerebral arteries. A natural aging model was constructed and used in these experiments. One-month oral administration of pioglitazone (20 mg·kg·d) ameliorated the production of reactive oxygen species, promoted endothelial nitric oxide synthase phosphorylation and increased the nitric oxide available, thus improving endothelium-dependent relaxation in aging rat cerebral arteries. One-month pioglitazone administration also restored PPAR-γ expression and increased the levels of UCP2 in aging rat cerebral arteries. Using in vitro studies, we demonstrated that pioglitazone attenuated reactive oxygen species levels in aging human umbilical vein endothelial cells through PPAR-γ activation. Furthermore, we found that this occurs in an UCP2-dependent manner. Our study demonstrated that the activation of PPAR-γ by pioglitazone protected against oxidative stress damage in aging cerebral arteries by upregulating UCP2. PPAR-γ may be a new target in treating age-related cerebrovascular dysfunction.

  16. PRDM16 enhances nuclear receptor-dependent transcription of the brown fat-specific Ucp1 gene through interactions with Mediator subunit MED1.

    PubMed

    Iida, Satoshi; Chen, Wei; Nakadai, Tomoyoshi; Ohkuma, Yoshiaki; Roeder, Robert G

    2015-02-01

    PR domain-containing 16 (PRDM16) induces expression of brown fat-specific genes in brown and beige adipocytes, although the underlying transcription-related mechanisms remain largely unknown. Here, in vitro studies show that PRDM16, through its zinc finger domains, directly interacts with the MED1 subunit of the Mediator complex, is recruited to the enhancer of the brown fat-specific uncoupling protein 1 (Ucp1) gene through this interaction, and enhances thyroid hormone receptor (TR)-driven transcription in a biochemically defined system in a Mediator-dependent manner, thus providing a direct link to the general transcription machinery. Complementary cell-based studies show that upon forskolin treatment, PRDM16 induces Ucp1 expression in undifferentiated murine embryonic fibroblasts, that this induction depends on MED1 and TR, and, consistent with a direct effect, that PRDM16 is recruited to the Ucp1 enhancer. Related studies have defined MED1 and PRDM16 interaction domains important for Ucp1 versus Ppargc1a induction by PRDM16. These results reveal novel mechanisms for PRDM16 function through the Mediator complex. © 2015 Iida et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Oxidative damage mediated iNOS and UCP-2 upregulation in rat brain after sub-acute cyanide exposure: dose and time-dependent effects.

    PubMed

    Bhattacharya, Rahul; Singh, Poonam; John, Jebin Jacob; Gujar, Niranjan L

    2018-04-03

    Cyanide-induced chemical hypoxia is responsible for pronounced oxidative damage in the central nervous system. The disruption of mitochondrial oxidative metabolism has been associated with upregulation of uncoupling proteins (UCPs). The present study addresses the dose- and time-dependent effect of sub-acute cyanide exposure on various non-enzymatic and enzymatic oxidative stress markers and their correlation with inducible-nitric oxide synthase (iNOS) and uncoupling protein-2 (UCP-2) expression. Animals received (oral) triple distilled water (vehicle control), 0.25 LD50 potassium cyanide (KCN) or 0.50 LD50 KCN daily for 21 d. Animals were sacrificed on 7, 14 and 21 d post-exposure to measure serum cyanide and nitrite, and brain malondialdehyde (MDA), reduced glutathione (GSH), glutathione disulfide (GSSG), cytochrome c oxidase (CCO), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CA) levels, together with iNOS and UCP-2 expression, and DNA damage. The study revealed that a dose- and time-dependent increase in cyanide concentration was accompanied by corresponding CCO inhibition and elevated MDA levels. Decrease in GSH levels was not followed by reciprocal change in GSSG levels. Diminution of SOD, GPx, GR and CA activity was congruent with elevated nitrite levels and upregulation of iNOS and UCP-2 expression, without any DNA damage. It was concluded that long-term cyanide exposure caused oxidative stress, accompanied by upregulation of iNOS. The upregulation of UCP-2 further sensitized the cells to cyanide and accentuated the oxidative stress, which was independent of DNA damage.

  18. Impaired Expression of Uncoupling Protein 2 (UCP2) Causes Defective Post-ischemic Angiogenesis in Mice Deficient in AMP-activated Protein Kinase α Subunits

    PubMed Central

    Xu, Ming-Jiang; Song, Ping; Shirwany, Najeeb; Liang, Bin; Xing, Junjie; Viollet, Benoit; Wang, Xian; Zhu, Yi; Zou, Ming-Hui

    2011-01-01

    Objective The aim of the present study was to determine whether mitochondrial uncoupling protein (UCP)-2 is required for AMPK-dependent angiogenesis in ischemia in vivo. Methods and Results Angiogenesis was assayed by monitoring endothelial tube formation (a surrogate for angiogenesis) in human umbilical vein endothelial cells (HUVECs), isolated mouse aortic endothelial cells (MAECs), and pulmomary microvascular endothelial cells (PMECs), or in ischemic thigh adductor muscles from wild-type (WT) mice or mice deficient in either AMPKα1 or AMPKα2. AMPK inhibition with pharmacological inhibitor (compound C) or genetic means (transfection of AMPKα-specific siRNA) significantly lowered the tube formation in HUVECs. Consistently, compared with WT mice, tube formation in MAECs isolated from either AMPKα1−/− or AMPKα2−/− mice, which exhibited oxidative stress and reduced expression of UCP2, were significantly impaired. In addition, adenoviral overexpression of UCP2, but not adenoviruses encoding green florescence protein (GFP), normalized tube formation in MAECs from either AMPKα1−/− or AMPKα2−/− mice. Similarly, supplementation with sodium nitroprusside (SNP), a nitric oxide (NO) donor, restored tube formation. Furthermore, ischemia significantly increased angiogenesis, serine 1177 phosphorylation of endothelial NO synthase (eNOS), and UCP2 in ischemic thigh adductor muscles from WT mice, but not from either AMPKα1−/− or AMPKα2−/− mice. Conclusion We conclude that AMPK-dependent UCP2 expression in endothelial cells promotes angiogenesis in vivo. PMID:21597006

  19. Targeted mitochondrial uncoupling beyond UCP1 - The fine line between death and metabolic health.

    PubMed

    Ost, Mario; Keipert, Susanne; Klaus, Susanne

    2017-03-01

    In the early 1930s, the chemical uncoupling agent 2,4-dinitrophenol (DNP) was promoted for the very first time as a powerful and effective weight loss pill but quickly withdrawn from the market due to its lack of tissue-selectivity with resulting dangerous side effects, including hyperthermia and death. Today, novel mitochondria- or tissue-targeted chemical uncouplers with higher safety and therapeutic values are under investigation in order to tackle obesity, diabetes and fatty liver disease. Moreover, in the past 20 years, transgenic mouse models were generated to understand the molecular and metabolic consequences of targeted uncoupling, expressing functional uncoupling protein 1 (UCP1) ectopically in white adipose tissue or skeletal muscle. Similar to the action of chemical mitochondrial uncouplers, UCP1 protein dissipates the proton gradient across the inner mitochondrial membrane, thus allowing maximum activity of the respiratory chain and compensatory increase in oxygen consumption, uncoupled from ATP synthesis. Consequently, targeted mitochondrial uncoupling in adipose tissue and skeletal muscle of UCP1-transgenic mice increased substrate metabolism and ameliorates obesity, hypertriglyceridemia and insulin resistance. Further, muscle-specific decrease in mitochondrial efficiency promotes a cell-autonomous and cell-non-autonomous adaptive metabolic remodeling with increased oxidative stress tolerance. This review provides an overview of novel chemical uncouplers as well as the metabolic consequences and adaptive processes of targeted mitochondrial uncoupling on metabolic health and survival. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  20. Osteopontin-a splice variant is overexpressed in papillary thyroid carcinoma and modulates invasive behavior

    PubMed Central

    Ferreira, Luciana Bueno; Tavares, Catarina; Pestana, Ana; Pereira, Catarina Leite; Eloy, Catarina; Pinto, Marta Teixeira; Castro, Patricia; Batista, Rui; Rios, Elisabete; Sobrinho-Simões, Manuel; Pereira Gimba, Etel Rodrigues; Soares, Paula

    2016-01-01

    Osteopontin (OPN) is a matricellular protein overexpressed in cancer cells and modulates tumorigenesis and metastasis, including in thyroid cancer (TC). The contribution of each OPN splice variant (OPN-SV), named OPNa, OPNb and OPNc, in TC is currently unknown. This study evaluates the expression of total OPN (tOPN) and OPN-SV in TC tissues and cell lines, their correlation with clinicopathological, molecular features and their functional roles. We showed that tOPN and OPNa are overexpressed in classic papillary thyroid carcinoma (cPTC) in relation to adjacent thyroid, adenoma and follicular variant of papillary thyroid carcinoma (fvPTC) tissues. In cPTC, OPNa overexpression is associated with larger tumor size, vascular invasion, extrathyroid extension and BRAFV600E mutation. We found that TC cell lines overexpressing OPNa exhibited increased proliferation, migration, motility and in vivo invasion. Conditioned medium secreted from cells overexpressing OPNa induce MMP2 and MMP9 metalloproteinases activity. In summary, we described the expression pattern of OPN-SV in cPTC samples and the key role of OPNa expression on activating TC tumor progression features. Our findings highlight OPNa variant as TC biomarker, besides being a putative target for cPTC therapeutic approaches. PMID:27409830

  1. Osteopontin-a splice variant is overexpressed in papillary thyroid carcinoma and modulates invasive behavior.

    PubMed

    Ferreira, Luciana Bueno; Tavares, Catarina; Pestana, Ana; Pereira, Catarina Leite; Eloy, Catarina; Pinto, Marta Teixeira; Castro, Patricia; Batista, Rui; Rios, Elisabete; Sobrinho-Simões, Manuel; Gimba, Etel Rodrigues Pereira; Soares, Paula

    2016-08-09

    Osteopontin (OPN) is a matricellular protein overexpressed in cancer cells and modulates tumorigenesis and metastasis, including in thyroid cancer (TC). The contribution of each OPN splice variant (OPN-SV), named OPNa, OPNb and OPNc, in TC is currently unknown. This study evaluates the expression of total OPN (tOPN) and OPN-SV in TC tissues and cell lines, their correlation with clinicopathological, molecular features and their functional roles. We showed that tOPN and OPNa are overexpressed in classic papillary thyroid carcinoma (cPTC) in relation to adjacent thyroid, adenoma and follicular variant of papillary thyroid carcinoma (fvPTC) tissues. In cPTC, OPNa overexpression is associated with larger tumor size, vascular invasion, extrathyroid extension and BRAFV600E mutation. We found that TC cell lines overexpressing OPNa exhibited increased proliferation, migration, motility and in vivo invasion. Conditioned medium secreted from cells overexpressing OPNa induce MMP2 and MMP9 metalloproteinases activity. In summary, we described the expression pattern of OPN-SV in cPTC samples and the key role of OPNa expression on activating TC tumor progression features. Our findings highlight OPNa variant as TC biomarker, besides being a putative target for cPTC therapeutic approaches.

  2. Activation of UCPs gene expression in skeletal muscle can be independent on both circulating fatty acids and food intake. Involvement of ROS in a model of mouse cancer cachexia.

    PubMed

    Busquets, Sílvia; Almendro, Vanessa; Barreiro, Esther; Figueras, Maite; Argilés, Josep M; López-Soriano, Francisco J

    2005-01-31

    Implantation of a fast growing tumour to mice (Lewis lung carcinoma) resulted in a clear cachectic state characterized by a profound muscle wasting. This was accompanied by a significant increase in both UCP2 and UCP3 gene expression in skeletal muscle and heart. Interestingly, this increase in gene expression was not linked to a rise in circulating fatty acids or in a decrease in food intake, as previously reported in other pathophysiological states. These results question the concept that hyperlipaemia is the only factor controlling UCP gene expression in different pathophysiological conditions. In addition, the present work suggests that UCPs might participate in a counter-regulatory mechanism to lower the production of ROS.

  3. The genetic association study between polymorphisms in uncoupling protein 2 and uncoupling protein 3 and metabolic data in dogs.

    PubMed

    Udagawa, Chihiro; Tada, Naomi; Asano, Junzo; Ishioka, Katsumi; Ochiai, Kazuhiko; Bonkobara, Makoto; Tsuchida, Shuichi; Omi, Toshinori

    2014-12-11

    The uncoupling proteins (UCPs) in the mitochondrial inner membrane are members of the mitochondrial anion carrier protein family that play an important role in energy homeostasis. Genetic association studies have shown that human UCP2 and UCP3 variants (SNPs and indels) are associated with obesity, insulin resistance, type 2 diabetes mellitus, and metabolic syndrome. The aim of this study was to examine the genetic association between polymorphisms in UCP2 and UCP3 and metabolic data in dogs. We identified 10 SNPs (9 intronic and 1 exonic) and 4 indels (intronic) in UCP2, and 13 SNPs (11 intronic and 2 exonic) and one indel (exonic) in UCP3, by DNA sequence analysis of 11 different dog breeds (n=119). An association study between these UCP2 and UCP3 variants and the biochemical parameters of glucose, total cholesterol, lactate dehydrogenase and triglyceride in Labrador Retrievers (n=50) showed that none of the UCP2 polymorphisms were significantly associated with the levels of these parameters. However, four UCP3 SNPs (intron 1) were significantly associated with total cholesterol levels. In addition, the allele frequencies of two of the four SNPs associated with higher total cholesterol levels in a breed that is susceptible to hypercholesterolemia (Shetland Sheepdogs, n=30), compared with the control breed (Shiba, n=30). The results obtained from a limited number of individuals suggest that the UCP3 gene in dogs may be associated with total cholesterol levels. The examination of larger sample sizes and further analysis will lead to increased precision of these results.

  4. Functional variants of the dopamine receptor D2 gene modulate prefronto-striatal phenotypes in schizophrenia.

    PubMed

    Bertolino, Alessandro; Fazio, Leonardo; Caforio, Grazia; Blasi, Giuseppe; Rampino, Antonio; Romano, Raffaella; Di Giorgio, Annabella; Taurisano, Paolo; Papp, Audrey; Pinsonneault, Julia; Wang, Danxin; Nardini, Marcello; Popolizio, Teresa; Sadee, Wolfgang

    2009-02-01

    Dopamine D2 receptor signalling is strongly implicated in the aetiology of schizophrenia. We have recently characterized the function of three DRD2 SNPs: rs12364283 in the promoter affecting total D2 mRNA expression; rs2283265 and rs1076560, respectively in introns 5 and 6, shifting mRNA splicing to two functionally distinct isoforms, the short form of D2 (D2S) and the long form (D2L). These two isoforms differentially contribute to dopamine signalling in prefrontal cortex and in striatum. We performed a case-control study to determine association of these variants and of their main haplotypes with several schizophrenia-related phenotypes. We demonstrate that the minor allele in the intronic variants is associated with reduced expression of %D2S of total mRNA in post-mortem prefrontal cortex, and with impaired working memory behavioural performance, both in patients and controls. However, the fMRI results show opposite effects in patients compared with controls: enhanced engagement of prefronto-striatal pathways in controls and reduced activity in patients. Moreover, the promoter variant is also associated with working memory activity in prefrontal cortex and striatum of patients, and less robustly with negative symptoms scores. Main haplotypes formed by the three DRD2 variants showed significant associations with these phenotypes consistent with those of the individual SNPs. Our results indicate that the three functional DRD2 variants modulate schizophrenia phenotypes possibly by modifying D2S/D2L ratios in the context of different total D2 density.

  5. Functional variants of the dopamine receptor D2 gene modulate prefronto-striatal phenotypes in schizophrenia

    PubMed Central

    Fazio, Leonardo; Caforio, Grazia; Blasi, Giuseppe; Rampino, Antonio; Romano, Raffaella; Di Giorgio, Annabella; Taurisano, Paolo; Papp, Audrey; Pinsonneault, Julia; Wang, Danxin; Nardini, Marcello; Popolizio, Teresa; Sadee, Wolfgang

    2009-01-01

    Dopamine D2 receptor signalling is strongly implicated in the aetiology of schizophrenia. We have recently characterized the function of three DRD2 SNPs: rs12364283 in the promoter affecting total D2 mRNA expression; rs2283265 and rs1076560, respectively in introns 5 and 6, shifting mRNA splicing to two functionally distinct isoforms, the short form of D2 (D2S) and the long form (D2L). These two isoforms differentially contribute to dopamine signalling in prefrontal cortex and in striatum. We performed a case–control study to determine association of these variants and of their main haplotypes with several schizophrenia-related phenotypes. We demonstrate that the minor allele in the intronic variants is associated with reduced expression of %D2S of total mRNA in post-mortem prefrontal cortex, and with impaired working memory behavioural performance, both in patients and controls. However, the fMRI results show opposite effects in patients compared with controls: enhanced engagement of prefronto-striatal pathways in controls and reduced activity in patients. Moreover, the promoter variant is also associated with working memory activity in prefrontal cortex and striatum of patients, and less robustly with negative symptoms scores. Main haplotypes formed by the three DRD2 variants showed significant associations with these phenotypes consistent with those of the individual SNPs. Our results indicate that the three functional DRD2 variants modulate schizophrenia phenotypes possibly by modifying D2S/D2L ratios in the context of different total D2 density. PMID:18829695

  6. Influence of expression of UCP3, PLIN1 and PPARG2 on the oxidation of substrates after hypocaloric dietary intervention.

    PubMed

    Cortes de Oliveira, Cristiana; Nicoletti, Carolina Ferreira; Pinhel, Marcela Augusta de Souza; de Oliveira, Bruno Affonso Parenti; Quinhoneiro, Driele Cristina Gomes; Noronha, Natália Yumi; Fassini, Priscila Giacomo; Marchini, Júlio Sérgio; da Silva Júnior, Wilson Araújo; Salgado Júnior, Wilson; Nonino, Carla Barbosa

    2018-08-01

    In addition to environmental and psychosocial factors, it is known that genetic factors can also influence the regulation of energy metabolism, body composition and determination of excess weight. The objective of this study was to evaluate the influence of UCP3, PLIN1 and PPARG2 genes on the substrates oxidation in women with grade III obesity after hypocaloric dietary intervention. This is a longitudinal study with 21 women, divided into two groups: Intervention Group (G1): 11 obese women (Body Mass Index (BMI) ≥40 kg/m 2 ), and Control Group (G2): 10 eutrophic women (BMI between 18.5 kg/m 2 and 24.9 kg/m 2 ). Weight (kg), height (m), BMI (kg/m 2 ), substrate oxidation (by Indirect Calorimetry) and abdominal subcutaneous adipose tissue were collected before and after the intervention. For the dietary intervention, the patients were hospitalized for 6 weeks receiving 1200 kcal/day. There was a significant weight loss (8.4 ± 4.3 kg - 5.2 ± 1.8%) and reduction of UCP3 expression after hypocaloric dietary intervention. There was a positive correlation between carbohydrate oxidation and UCP3 (r = 0.609; p = 0.04), PLIN1 (r = 0.882; p = 0.00) and PPARG2 (r = 0.791; p = 0.00) expression before dietary intervention and with UCP3 (r = 0.682; p = 0.02) and PLIN1 (r = 0.745; p = 0.00) genes after 6 weeks of intervention. There was a negative correlation between lipid oxidation and PLIN1 (r = -0.755; p = 0.00) and PPARG2 (r = 0.664; p = 0.02) expression before dietary intervention and negative correlation with PLIN1 (r = 0.730; p = 0.02) expression after 6 weeks of hypocaloric diet. Hypocaloric diet reduces UCP3 expression in individuals with obesity and the UCP3, PLIN1 and PPARG2 expression correlate positively with carbohydrate oxidation and negatively with lipid oxidation. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  7. High Mobility Group N Proteins Modulate the Fidelity of the Cellular Transcriptional Profile in a Tissue- and Variant-specific Manner*

    PubMed Central

    Kugler, Jamie E.; Horsch, Marion; Huang, Di; Furusawa, Takashi; Rochman, Mark; Garrett, Lillian; Becker, Lore; Bohla, Alexander; Hölter, Sabine M.; Prehn, Cornelia; Rathkolb, Birgit; Racz, Ildikó; Aguilar-Pimentel, Juan Antonio; Adler, Thure; Adamski, Jerzy; Beckers, Johannes; Busch, Dirk H.; Eickelberg, Oliver; Klopstock, Thomas; Ollert, Markus; Stöger, Tobias; Wolf, Eckhard; Wurst, Wolfgang; Yildirim, Ali Önder; Zimmer, Andreas; Gailus-Durner, Valérie; Fuchs, Helmut; Hrabě de Angelis, Martin; Garfinkel, Benny; Orly, Joseph; Ovcharenko, Ivan; Bustin, Michael

    2013-01-01

    The nuclei of most vertebrate cells contain members of the high mobility group N (HMGN) protein family, which bind specifically to nucleosome core particles and affect chromatin structure and function, including transcription. Here, we study the biological role of this protein family by systematic analysis of phenotypes and tissue transcription profiles in mice lacking functional HMGN variants. Phenotypic analysis of Hmgn1tm1/tm1, Hmgn3tm1/tm1, and Hmgn5tm1/tm1 mice and their wild type littermates with a battery of standardized tests uncovered variant-specific abnormalities. Gene expression analysis of four different tissues in each of the Hmgntm1/tm1 lines reveals very little overlap between genes affected by specific variants in different tissues. Pathway analysis reveals that loss of an HMGN variant subtly affects expression of numerous genes in specific biological processes. We conclude that within the biological framework of an entire organism, HMGNs modulate the fidelity of the cellular transcriptional profile in a tissue- and HMGN variant-specific manner. PMID:23620591

  8. Changes in Physiological Parameters after Combined Exercise according to the I/D Polymorphism of hUCP2 Gene in Middle-Aged Obese Females

    PubMed Central

    DUK OH, Sang

    2014-01-01

    Abstract Background The purpose of this study was to determine whether a 45 bp insertion/deletion (I/D) polymorphism in human uncoupling protein 2 (hUCP2) gene was associated with changes in several cardiovascular risk and physical fitness factors in response to combined exercise during 12 weeks in Korean middle-aged women. The changes in physiological parameters after combined exercise during 12 weeks were compared between each genotype subgroups of hUCP2 gene to clarify the inter-individual differences in exercised-induced changes according to genetic predisposition. Methods A total of 185 women aged over 40 years living in Seoul, Korea were participated in this study, and analyzed before and after 12 weeks on combined exercise including aerobic exercise and strength training for body composition, hemodynamic parameters, physical fitness and metabolic variables. A 45 bp I/D polymorphism in hUCP2 gene was genotyped by polymerase chain reaction (PCR) amplification and agarose gel electrophoresis method. Results Combined exercise program during 12 weeks indicated the significant health-promoting effects for our participants on multiple body composition, hemodynamic parameters, physical fitness factors and metabolic parameters, respectively. With respect to a 45 bp I/D polymorphism in hUCP2 gene, this polymorphism was significantly associated with baseline %body fat of our participants (P <.05). Moreover, this polymorphism was significantly associated with the changes in %body fat and serum triglyceride(TG) level after combined exercise program during 12 weeks(P <.05). Conclusion Our data suggest that a 45 bp I/D polymorphism in hUCP2 gene may at least in part contribute to the inter-individual differences on the changes in some clinical and metabolic parameters following combined exercise in middle-aged women. PMID:25909061

  9. A Deletion Variant of the α2b-Adrenoceptor Modulates the Stress-Induced Shift from "Cognitive" to "Habit" Memory.

    PubMed

    Wirz, Lisa; Wacker, Jan; Felten, Andrea; Reuter, Martin; Schwabe, Lars

    2017-02-22

    Stress induces a shift from hippocampus-based "cognitive" toward dorsal striatum-based "habitual" learning and memory. This shift is thought to have important implications for stress-related psychopathologies, including post-traumatic stress disorder (PTSD). However, there is large individual variability in the stress-induced bias toward habit memory, and the factors underlying this variability are completely unknown. Here we hypothesized that a functional deletion variant of the gene encoding the α2b-adrenoceptor ( ADRA2B ), which has been linked to emotional memory processes and increased PTSD risk, modulates the stress-induced shift from cognitive toward habit memory. In two independent experimental studies, healthy humans were genotyped for the ADRA2B deletion variant. After a stress or control manipulation, participants completed a dual-solution learning task while electroencephalographic (Study I) or fMRI measurements (Study II) were taken. Carriers compared with noncarriers of the ADRA2B deletion variant exhibited a significantly reduced bias toward habit memory after stress. fMRI results indicated that, whereas noncarriers of the ADRA2B deletion variant showed increased functional connectivity between amygdala and putamen after stress, this increase in connectivity was absent in carriers of the deletion variant, who instead showed overall enhanced connectivity between amygdala and entorhinal cortex. Our results indicate that a common genetic variation of the noradrenergic system modulates the impact of stress on the balance between cognitive and habitual memory systems, most likely via altered amygdala orchestration of these systems. SIGNIFICANCE STATEMENT Stressful events have a powerful effect on human learning and memory. Specifically, accumulating evidence suggests that stress favors more rigid dorsal striatum-dependent habit memory, at the expense of flexible hippocampus-dependent cognitive memory. Although this shift may have important implications

  10. TRPV1 agonist monoacylglycerol increases UCP1 content in brown adipose tissue and suppresses accumulation of visceral fat in mice fed a high-fat and high-sucrose diet.

    PubMed

    Iwasaki, Yusaku; Tamura, Yasuko; Inayoshi, Kimiko; Narukawa, Masataka; Kobata, Kenji; Chiba, Hiroshige; Muraki, Etsuko; Tsunoda, Nobuyo; Watanabe, Tatsuo

    2011-01-01

    The administration of such a transient receptor potential vanilloid 1 (TRPV1) agonist as capsaicin, which is a pungent ingredient of red pepper, promotes energy metabolism and suppresses visceral fat accumulation. We have recently identified monoacylglycerols (MGs) having an unsaturated long-chain fatty acid as the novel TRPV1 agonist in foods. We investigated in this present study the effects of dietary MGs on uncoupling protein 1 (UCP1) expression in interscapular brown adipose tissue (IBAT) and on fat accumulation in mice fed with a high-fat, high-sucrose diet. The MG30 diet that substituted 30% of all lipids for MGs (a mixture of 1-oleoylglycerol, 1-linoleoylglycerol and 1-linolenoylglycerol) significantly increased the UCP1 content of IBAT and decreased the weight of epididymal white adipose tissue, and the serum glucose, total cholesterol and free fatty acid levels. The diet containing only 1-oleoylglycerol as MG also increased UCP1 expression in IBAT. MGs that activated TRPV1 also therefore induced the expression of UCP 1 and prevented visceral fat accumulation as well as capsaicin.

  11. Protein Kinase C δ (PKCδ) Splice Variants Modulate Apoptosis Pathway in 3T3L1 Cells during Adipogenesis

    PubMed Central

    Patel, Rekha; Apostolatos, André; Carter, Gay; Ajmo, Joanne; Gali, Meghanath; Cooper, Denise R.; You, Min; Bisht, Kirpal S.; Patel, Niketa A.

    2013-01-01

    Increased food intake and lack of physical activity results in excess energy stored in adipocytes, and this imbalance contributes to obesity. New adipocytes are required for storage of energy in the white adipose tissue. This process of adipogenesis is widely studied in differentiating 3T3L1 preadipocytes in vitro. We have identified a key signaling kinase, protein kinase C delta (PKCδ), whose alternative splice variant expression is modulated during adipogenesis. We demonstrate that PKCδII splice variant promotes survival in differentiating 3T3L1 cells through the Bcl2 pathway. Here we demonstrate that resveratrol, a naturally occurring polyphenol, increases apoptosis and inhibits adipogenesis along with disruption of PKCδ alternative splicing during 3T3L1 differentiation. Importantly, we have identified a PKCδII splice variant inhibitor. This inhibitor may be a valuable tool with therapeutic implications in obesity. PMID:23902767

  12. Increased hepatic mitochondrial FA oxidation reduces plasma and liver TG levels and is associated with regulation of UCPs and APOC-III in rats

    PubMed Central

    Lindquist, Carine; Bjørndal, Bodil; Rossmann, Christine Renate; Tusubira, Deusdedit; Svardal, Asbjørn; Røsland, Gro Vatne; Tronstad, Karl Johan; Hallström, Seth; Berge, Rolf Kristian

    2017-01-01

    Hepatic mitochondrial function, APOC-III, and LPL are potential targets for triglyceride (TG)-lowering drugs. After 3 weeks of dietary treatment with the compound 2-(tridec-12-yn-1-ylthio)acetic acid (1-triple TTA), the hepatic mitochondrial FA oxidation increased more than 5-fold in male Wistar rats. Gene expression analysis in liver showed significant downregulation of APOC-III and upregulation of LPL and the VLDL receptor. This led to lower hepatic (53%) and plasma (73%) TG levels. Concomitantly, liver-specific biomarkers related to mitochondrial biogenesis and function (mitochondrial DNA, citrate synthase activity, and cytochrome c and TFAM gene expression) were elevated. Interestingly, 1-triple TTA lowered plasma acetylcarnitine levels, whereas the concentration of β-hydroxybutyrate was increased. The hepatic energy state was reduced in 1-triple TTA-treated rats, as reflected by increased AMP/ATP and decreased ATP/ADP ratios, whereas the energy state remained unchanged in muscle and heart. The 1-triple TTA administration induced gene expression of uncoupling protein (UCP)2 and UCP3 in liver. In conclusion, the 1-triple TTA-mediated clearance of blood TG may result from lowered APOC-III production, increased hepatic LPL gene expression, mitochondrial FA oxidation, and (re)uptake of VLDL facilitating drainage of FAs to the liver for β-oxidation and production of ketone bodies as extrahepatic fuel. The possibility that UCP2 and UCP3 mediate a moderate degree of mitochondrial uncoupling should be considered. PMID:28473603

  13. A variant in ANKK1 modulates acute subjective effects of cocaine: a preliminary study

    PubMed Central

    Spellicy, Catherine J.; Harding, Mark J.; Hamon, Sara C.; Mahoney, James J.; Reyes, Jennifer A.; Kosten, Thomas R.; Newton, Thomas F.; De La Garza, Richard; Nielsen, David A.

    2014-01-01

    This study aimed to evaluate whether functional variants in the ankyrin repeat and kinase domain-containing 1 gene (ANKK1) and/or the dopamine receptor D2 gene (DRD2) modulate the subjective effects (reward or non-reward response to a stimulus) produced by cocaine administration. Cocaine-dependent participants (N = 47) were administered 40 mg of cocaine or placebo at time 0, and a subjective effects questionnaire (visual analog scale) was administered 15 minutes prior to cocaine administration, and at 5, 10,15, and 20 minutes following administration. The influence of polymorphisms in the ANKK1 and DRD2 genes on subjective experience of cocaine in the laboratory was tested. Participants with a T allele of ANKK1 rs1800497 experienced greater subjective ‘high’ (p = 0.00006), ‘any drug effect’ (p = 0.0003), and ‘like’ (p = 0.0004) relative to the CC genotype group. Although the variant in the DRD2 gene was shown to be associated with subjective effects, LD analysis revealed this association was driven by the ANKK1 rs1800497 variant. A participant’s ANKK1 genotype may identify individuals who are likely to experience greater positive subjective effects following cocaine exposure, including greater ‘high’ and ‘like’, and these individuals may have increased vulnerability to continue using cocaine or they may be at greater risk to relapse during periods of abstinence. However, these results are preliminary and replication is necessary to confirm these findings. PMID:24528631

  14. CD4+ T-cell engagement by both wild-type and variant HCV peptides modulates the conversion of viral clearing helper T cells to Tregs

    PubMed Central

    Cusick, Matthew F; Libbey, Jane E; Cox Gill, Joan; Fujinami, Robert S; Eckels, David D

    2013-01-01

    Aim To determine whether modulation of T-cell responses by naturally occurring viral variants caused an increase in numbers of Tregs in HCV-infected patients. Patients, materials & methods Human peripheral blood mononuclear cells, having proliferative responses to a wild-type HCV-specific CD4+ T-cell epitope, were used to quantify, via proliferative assays, flow cytometry and class II tetramers, the effects of naturally occurring viral variants arising in the immunodominant epitope. Results In combination, the wild-type and variant peptides led to enhanced suppression of an anti-HCV T-cell response. The variant had a lower avidity for the wild-type-specific CD4+ T cell. Variant-stimulated CD4+ T cells had increased Foxp3, compared with wild-type-stimulated cells. Conclusion A stable viral variant from a chronic HCV subject was able to induce Tregs in multiple individuals that responded to the wild-type HCV-specific CD4+ T-cell epitope. PMID:24421862

  15. The activity-dependent histone variant H2BE modulates the life span of olfactory neurons

    PubMed Central

    Santoro, Stephen W; Dulac, Catherine

    2012-01-01

    We have identified a replication-independent histone variant, Hist2h2be (referred to herein as H2be), which is expressed exclusively by olfactory chemosensory neurons. Levels of H2BE are heterogeneous among olfactory neurons, but stereotyped according to the identity of the co-expressed olfactory receptor (OR). Gain- and loss-of-function experiments demonstrate that changes in H2be expression affect olfactory function and OR representation in the adult olfactory epithelium. We show that H2BE expression is reduced by sensory activity and that it promotes neuronal cell death, such that inactive olfactory neurons display higher levels of the variant and shorter life spans. Post-translational modifications (PTMs) of H2BE differ from those of the canonical H2B, consistent with a role for H2BE in altering transcription. We propose a physiological function for H2be in modulating olfactory neuron population dynamics to adapt the OR repertoire to the environment. DOI: http://dx.doi.org/10.7554/eLife.00070.001 PMID:23240083

  16. Oxidation of dibenzothiophene (DBT) by Serratia marcescens UCP 1549 formed biphenyl as final product

    PubMed Central

    2012-01-01

    Background The desulphurization of dibenzothiophene (DBT), a recalcitrant thiophenic fossil fuel component by Serratia marcescens (UCP 1549) in order for reducing the Sulphur content was investigated. The Study was carried out establishing the growth profile using Luria Bertani medium to different concentrations of DBT during 120 hours at 28°C, and orbital Shaker at 150 rpm. Results The results indicated that concentrations of DBT 0.5, 1.0 and 2.0 mM do not affected the growth of the bacterium. The DBT showed similar Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MCB) (3.68 mM). The desulphurization of DBT by S. marcescens was used with 96 hours of growth on 2 mM of DBT, and was determined by gas chromatography (GC) and GC-mass spectrometry. In order to study the desulphurization process by S. marcescens was observed the presence of a sulfur-free product at 16 hours of cultivation. Conclusions The data suggests the use of metabolic pathway “4S” by S. marcescens (UCP 1549) and formed biphenyl. The microbial desulphurization process by Serratia can be suggest significant reducing sulphur content in DBT, and showed promising potential for reduction of the sulfur content in diesel oil. PMID:22583489

  17. FABP4/aP2 Regulates Macrophage Redox Signaling and Inflammasome Activation via Control of UCP2.

    PubMed

    Steen, Kaylee A; Xu, Hongliang; Bernlohr, David A

    2017-01-15

    Obesity-linked metabolic disease is mechanistically associated with the accumulation of proinflammatory macrophages in adipose tissue, leading to increased reactive oxygen species (ROS) production and chronic low-grade inflammation. Previous work has demonstrated that deletion of the adipocyte fatty acid-binding protein (FABP4/aP2) uncouples obesity from inflammation via upregulation of the uncoupling protein 2 (UCP2). Here, we demonstrate that ablation of FABP4/aP2 regulates systemic redox capacity and reduces cellular protein sulfhydryl oxidation and, in particular, oxidation of mitochondrial protein cysteine residues. Coincident with the loss of FABP4/aP2 is the upregulation of the antioxidants superoxide dismutase (SOD2), catalase, methionine sulfoxide reductase A, and the 20S proteasome subunits PSMB5 and αβ. Reduced mitochondrial protein oxidation in FABP4/aP2 -/- macrophages attenuates the mitochondrial unfolded-protein response (mtUPR) as measured by expression of heat shock protein 60, Clp protease, and Lon peptidase 1. Consistent with a diminished mtUPR, FABP4/aP2 -/- macrophages exhibit reduced expression of cleaved caspase-1 and NLRP3. Secretion of interleukin 1β (IL-1β), in response to inflammasome activation, is ablated in FABP4/aP2 -/- macrophages, as well as in FABP4/aP2 inhibitor-treated cells, but partially rescued in FABP4/aP2-null macrophages when UCP2 is silenced. Collectively, these data offer a novel pathway whereby FABP4/aP2 regulates macrophage redox signaling and inflammasome activation via control of UCP2 expression. Copyright © 2017 American Society for Microbiology.

  18. The Cannabinoid Receptor 2 Q63R Variant Modulates the Relationship between Childhood Obesity and Age at Menarche.

    PubMed

    Bellini, Giulia; Grandone, Anna; Torella, Marco; Miraglia del Giudice, Emanuele; Nobili, Bruno; Perrone, Laura; Maione, Sabatino; Rossi, Francesca

    2015-01-01

    The ovary is an important site where gene variants modulate pubertal timing. The cannabinoid receptor 2 (CB2) is expressed in the ovary, plays a role in folliculogenesis and ovulation, and can be modulated by estrogens. Obesity is strictly associated with early menarche and is characterized by sex hormone and endocannabinoid derangement. In this study, we investigated the role of the CB2 receptor in determining the age at menarche in obese girls. We studied a cohort of 240 obese girls (age 11.9±3 years; BMI z-score 2.8±0.8). The age at menarche (if it had already occurred) was recorded at the time of the visit or via phonecall. The CNR2 rs35761398 polymorphism, which leads to the CB2 Q63R variant, was detected by the TaqMan assay. In total, 105 patients were homozygous for the R63-coding allele (RR), 113 were QR and 22 were QQ. Variance analysis revealed a significantly earlier age of menarche in subjects carrying the Q63 allele, which was also found after adjusting for BMI z-score (11±1.2 vs. 11.6±1.2 years, p = 0.0003). Logistic regression analysis demonstrated that patients homozygous for the Q allele had a 2.2-fold higher risk (odds ratio = 2.2; CI1.1-3.4; p = 0.02) of presenting with an early menarche (age at menarche <12 years). We demonstrated for the first time the association between the CB2 Q63R functional variant and the age at menarche in a cohort of Italian obese girls.

  19. H2O2-Activated Mitochondrial Phospholipase iPLA2γ Prevents Lipotoxic Oxidative Stress in Synergy with UCP2, Amplifies Signaling via G-Protein–Coupled Receptor GPR40, and Regulates Insulin Secretion in Pancreatic β-Cells

    PubMed Central

    Ježek, Jan; Dlasková, Andrea; Zelenka, Jaroslav; Jabůrek, Martin

    2015-01-01

    Abstract Aims: Pancreatic β-cell chronic lipotoxicity evolves from acute free fatty acid (FA)–mediated oxidative stress, unprotected by antioxidant mechanisms. Since mitochondrial uncoupling protein-2 (UCP2) plays antioxidant and insulin-regulating roles in pancreatic β-cells, we tested our hypothesis, that UCP2-mediated uncoupling attenuating mitochondrial superoxide production is initiated by FA release due to a direct H2O2-induced activation of mitochondrial phospholipase iPLA2γ. Results: Pro-oxidant tert-butylhydroperoxide increased respiration, decreased membrane potential and mitochondrial matrix superoxide release rates of control but not UCP2- or iPLA2γ-silenced INS-1E cells. iPLA2γ/UCP2-mediated uncoupling was alternatively activated by an H2O2 burst, resulting from palmitic acid (PA) β-oxidation, and it was prevented by antioxidants or catalase overexpression. Exclusively, nascent FAs that cleaved off phospholipids by iPLA2γ were capable of activating UCP2, indicating that the previously reported direct redox UCP2 activation is actually indirect. Glucose-stimulated insulin release was not affected by UCP2 or iPLA2γ silencing, unless pro-oxidant activation had taken place. PA augmented insulin secretion via G-protein–coupled receptor 40 (GPR40), stimulated by iPLA2γ-cleaved FAs (absent after GPR40 silencing). Innovation and Conclusion: The iPLA2γ/UCP2 synergy provides a feedback antioxidant mechanism preventing oxidative stress by physiological FA intake in pancreatic β-cells, regulating glucose-, FA-, and redox-stimulated insulin secretion. iPLA2γ is regulated by exogenous FA via β-oxidation causing H2O2 signaling, while FAs are cleaved off phospholipids, subsequently acting as amplifying messengers for GPR40. Hence, iPLA2γ acts in eminent physiological redox signaling, the impairment of which results in the lack of antilipotoxic defense and contributes to chronic lipotoxicity. Antioxid. Redox Signal. 23, 958–972. PMID:25925080

  20. Network perturbation by recurrent regulatory variants in cancer

    PubMed Central

    Cho, Ara; Lee, Insuk; Choi, Jung Kyoon

    2017-01-01

    Cancer driving genes have been identified as recurrently affected by variants that alter protein-coding sequences. However, a majority of cancer variants arise in noncoding regions, and some of them are thought to play a critical role through transcriptional perturbation. Here we identified putative transcriptional driver genes based on combinatorial variant recurrence in cis-regulatory regions. The identified genes showed high connectivity in the cancer type-specific transcription regulatory network, with high outdegree and many downstream genes, highlighting their causative role during tumorigenesis. In the protein interactome, the identified transcriptional drivers were not as highly connected as coding driver genes but appeared to form a network module centered on the coding drivers. The coding and regulatory variants associated via these interactions between the coding and transcriptional drivers showed exclusive and complementary occurrence patterns across tumor samples. Transcriptional cancer drivers may act through an extensive perturbation of the regulatory network and by altering protein network modules through interactions with coding driver genes. PMID:28333928

  1. Ghrelin promotes and protects nigrostriatal dopamine function via an UCP2-dependent mitochondrial mechanism

    PubMed Central

    Andrews, Zane B.; Erion, Derek; Beiler, Rudolph; Liu, Zhong-Wu; Abizaid, Alfonso; Zigman, Jeffrey; Elsworth, John D.; Savitt, Joseph M.; DiMarchi, Richard; Tschoep, Matthias; Roth, Robert H.; Gao, Xiao-Bing; Horvath, Tamas L.

    2010-01-01

    Ghrelin targets the hypothalamus to regulate food intake and adiposity. Endogenous ghrelin receptors (growth hormone secretagogue receptor, GHSR) are also present in extrahypothalamic sites where they promote circuit activity associated with learning and memory, and reward seeking behavior. Here, we show that the substantia nigra pars compacta (SNpc), a brain region where dopamine (DA) cell degeneration leads to Parkinson’s disease (PD), expresses GHSR. Ghrelin binds to SNpc cells, electrically activates SNpc DA neurons, increases tyrosine hydroxylase mRNA and increases DA concentration in the dorsal striatum. Exogenous ghrelin administration decreased SNpc DA cell loss and restricted striatal dopamine loss after 1-methyl-4-phenyl-1,2,5,6 tetrahydropyridine (MPTP) treatment. Genetic ablation of ghrelin or the ghrelin receptor (GHSR) increased SNpc DA cell loss and lowered striatal dopamine levels after MPTP treatment, an effect that was reversed by selective reactivation of GHSR in catecholaminergic neurons. Ghrelin-induced neuroprotection was dependent on the mitochondrial redox state via uncoupling protein 2 (UCP2)-dependent alterations in mitochondrial respiration, ROS production and biogenesis. Taken together, our data reveals that peripheral ghrelin plays an important role in the maintenance and protection of normal nigrostriatal dopamine function by activating UCP2-dependent mitochondrial mechanisms. These studies support ghrelin as a novel therapeutic strategy to combat neurodegeneration, loss of appetite and body weight associated with PD. Finally, we discuss the potential implications of these studies on the link between obesity and neurodegeneration. PMID:19906954

  2. Analysis of defect structure in silicon. Characterization of samples from UCP ingot 5848-13C

    NASA Technical Reports Server (NTRS)

    Natesh, R.; Guyer, T.; Stringfellow, G. B.

    1982-01-01

    Statistically significant quantitative structural imperfection measurements were made on samples from ubiquitous crystalline process (UCP) Ingot 5848 - 13 C. Important trends were noticed between the measured data, cell efficiency, and diffusion length. Grain boundary substructure appears to have an important effect on the conversion efficiency of solar cells from Semix material. Quantitative microscopy measurements give statistically significant information compared to other microanalytical techniques. A surface preparation technique to obtain proper contrast of structural defects suitable for QTM analysis was perfected.

  3. Combined effects of potassium chloride and ethanol as mobile phase modulators on hydrophobic interaction and reversed-phase chromatography of three insulin variants.

    PubMed

    Johansson, Karolina; Frederiksen, Søren S; Degerman, Marcus; Breil, Martin P; Mollerup, Jørgen M; Nilsson, Bernt

    2015-02-13

    The two main chromatographic modes based on hydrophobicity, hydrophobic interaction chromatography (HIC) and reversed-phase chromatography (RPC), are widely used for both analytical and preparative chromatography of proteins in the pharmaceutical industry. Despite the extensive application of these separation methods, and the vast amount of studies performed on HIC and RPC over the decades, the underlying phenomena remain elusive. As part of a systematic study of the influence of mobile phase modulators in hydrophobicity-based chromatography, we have investigated the effects of both KCl and ethanol on the retention of three insulin variants on two HIC adsorbents and two RPC adsorbents. The focus was on the linear adsorption range, separating the modulator effects from the capacity effects, but some complementary experiments at higher load were included to further investigate observed phenomena. The results show that the modulators have the same effect on the two RPC adsorbents in the linear range, indicating that the modulator concentration only affects the activity of the solute in the mobile phase, and not that of the solute-ligand complex, or that of the ligand. Unfortunately, the HIC adsorbents did not show the same behavior. However, the insulin variants displayed a strong tendency toward self-association on both HIC adsorbents; on one in particular. Since this causes peak fronting, the retention is affected, and this could probably explain the lack of congruity. This conclusion was supported by the results from the non-linear range experiments which were indicative of double-layer adsorption on the HIC adsorbents, while the RPC adsorbents gave the anticipated increased tailing at higher load. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. OVAS: an open-source variant analysis suite with inheritance modelling.

    PubMed

    Mozere, Monika; Tekman, Mehmet; Kari, Jameela; Bockenhauer, Detlef; Kleta, Robert; Stanescu, Horia

    2018-02-08

    The advent of modern high-throughput genetics continually broadens the gap between the rising volume of sequencing data, and the tools required to process them. The need to pinpoint a small subset of functionally important variants has now shifted towards identifying the critical differences between normal variants and disease-causing ones. The ever-increasing reliance on cloud-based services for sequence analysis and the non-transparent methods they utilize has prompted the need for more in-situ services that can provide a safer and more accessible environment to process patient data, especially in circumstances where continuous internet usage is limited. To address these issues, we herein propose our standalone Open-source Variant Analysis Sequencing (OVAS) pipeline; consisting of three key stages of processing that pertain to the separate modes of annotation, filtering, and interpretation. Core annotation performs variant-mapping to gene-isoforms at the exon/intron level, append functional data pertaining the type of variant mutation, and determine hetero/homozygosity. An extensive inheritance-modelling module in conjunction with 11 other filtering components can be used in sequence ranging from single quality control to multi-file penetrance model specifics such as X-linked recessive or mosaicism. Depending on the type of interpretation required, additional annotation is performed to identify organ specificity through gene expression and protein domains. In the course of this paper we analysed an autosomal recessive case study. OVAS made effective use of the filtering modules to recapitulate the results of the study by identifying the prescribed compound-heterozygous disease pattern from exome-capture sequence input samples. OVAS is an offline open-source modular-driven analysis environment designed to annotate and extract useful variants from Variant Call Format (VCF) files, and process them under an inheritance context through a top-down filtering schema of

  5. Adaptive modulations of martensites.

    PubMed

    Kaufmann, S; Rössler, U K; Heczko, O; Wuttig, M; Buschbeck, J; Schultz, L; Fähler, S

    2010-04-09

    Modulated phases occur in numerous functional materials like giant ferroelectrics and magnetic shape-memory alloys. To understand the origin of these phases, we employ and generalize the concept of adaptive martensite. As a starting point, we investigate the coexistence of austenite, adaptive 14M phase, and tetragonal martensite in Ni-Mn-Ga magnetic shape-memory alloy epitaxial films. We show that the modulated martensite can be constructed from nanotwinned variants of the tetragonal martensite phase. By combining the concept of adaptive martensite with branching of twin variants, we can explain key features of modulated phases from a microscopic view. This includes metastability, the sequence of 6M-10M-14M-NM intermartensitic transitions, and the magnetocrystalline anisotropy.

  6. Functional genetic variants in the vesicular monoamine transporter 1 modulate emotion processing.

    PubMed

    Lohoff, F W; Hodge, R; Narasimhan, S; Nall, A; Ferraro, T N; Mickey, B J; Heitzeg, M M; Langenecker, S A; Zubieta, J-K; Bogdan, R; Nikolova, Y S; Drabant, E; Hariri, A R; Bevilacqua, L; Goldman, D; Doyle, G A

    2014-01-01

    Emotional behavior is in part heritable and often disrupted in psychopathology. Identification of specific genetic variants that drive this heritability may provide important new insight into molecular and neurobiological mechanisms involved in emotionality. Our results demonstrate that the presynaptic vesicular monoamine transporter 1 (VMAT1) Thr136Ile (rs1390938) polymorphism is functional in vitro, with the Ile allele leading to increased monoamine transport into presynaptic vesicles. Moreover, we show that the Thr136Ile variant predicts differential responses in emotional brain circuits consistent with its effects in vitro. Lastly, deep sequencing of bipolar disorder (BPD) patients and controls identified several rare novel VMAT1 variants. The variant Phe84Ser was only present in individuals with BPD and leads to marked increase monoamine transport in vitro. Taken together, our data show that VMAT1 polymorphisms influence monoamine signaling, the functional response of emotional brain circuits and risk for psychopathology.

  7. Inhaled corticosteroid treatment modulates ZNF432 gene variant's effect on bronchodilator response in asthmatics

    PubMed Central

    Wu, Ann C.; Himes, Blanca E.; Lasky-Su, Jessica; Litonjua, Augusto; Peters, Stephen P.; Lima, John; Kubo, Michiaki; Tamari, Mayumi; Nakamura, Yusuke; Qiu, Weiliang; Weiss, Scott T.; Tantisira, Kelan

    2013-01-01

    Background Single nucleotide polymorphisms (SNPs) influence a patient's response to inhaled corticosteroids and β2-agonists, and the effect of treatment with inhaled corticosteroids is synergistic with the effect of β2-agonists. We hypothesized that use of inhaled corticosteroids could influence the effect of SNPs associated with bronchodilator response. Objective To assess whether, among asthma subjects, the association of SNPs with bronchodilator response is different between those treated with inhaled corticosteroids vs. those on placebo. Methods A genome-wide association analysis was conducted using 581 white subjects from the Childhood Asthma Management Program (CAMP). Using data for 449,540 SNPs, we conducted a gene by environment analysis in PLINK with inhaled corticosteroid treatment as the environmental exposure and bronchodilator response as the outcome measure. We attempted to replicate the top 12 SNPs in the Leukotriene Modifier Or Corticosteroid or Corticosteroid-Salmeterol (LOCCS) Trial. Results The combined P-value for the CAMP and LOCCS populations was 4.81E-08 for rs3752120, which is located in the zinc finger protein gene ZNF432, and has unknown function. Conclusions Inhaled corticosteroids appear to modulate the association of bronchodilator response with variant(s) in the ZNF432 gene among adults and children with asthma. Clinical Implications Clinicians who treat asthma patients with inhaled corticosteroids should be aware that the patient's genetic makeup likely influences response as measured in lung function. Capsule Summary Our study suggests that inhaled corticosteroids could influence the effect of multiple SNPs associated with bronchodilator response across the genome. PMID:24280104

  8. UCP2 regulates mitochondrial fission and ventromedial nucleus control of glucose responsiveness

    PubMed Central

    Toda, Chitoku; Kim, Jung Dae; Impellizzeri, Daniela; Cuzzocrea, Salvatore; Liu, Zhong-Wu; Diano, Sabrina

    2016-01-01

    Summary The ventromedial nucleus of the hypothalamus (VMH) plays a critical role in regulating systemic glucose homeostasis. How neurons in this brain area adapt to the changing metabolic environment to regulate circulating glucose levels is ill-defined. Here we show that glucose load results in mitochondrial fission and reduced reactive oxygen species in VMH neurons mediated by dynamin-related peptide 1 (DRP1) under the control of uncoupling protein 2 (UCP2). Probed by genetic manipulations and chemical-genetic control of VMH neuronal circuitry, we unmasked that this mitochondrial adaptation determines the size of the pool of glucose-excited neurons in the VMH, and, that this process regulates systemic glucose homoeostasis. Thus, our data unmasked a critical cellular biological process controlled by mitochondrial dynamics in VMH regulation of systemic glucose homeostasis. PMID:26919426

  9. Analysis of association of gene variants with obesity traits in New Zealand European children at 6 years of age.

    PubMed

    Krishnan, Mohanraj; Thompson, John M D; Mitchell, Edwin A; Murphy, Rinki; McCowan, Lesley M E; Shelling, Andrew N; On Behalf Of The Children Of Scope Study Group, G

    2017-07-25

    Childhood obesity is a public health problem, which is associated with a long-term increased risk of cardiovascular disease and premature mortality. Several gene variants have previously been identified that have provided novel insights into biological factors that contribute to the development of obesity. As obesity tracks through childhood into adulthood, identification of the genetic factors for obesity in early life is important. The objective of this study was to identify putative associations between genetic variants and obesity traits in children at 6 years of age. We recruited 1208 children of mothers from the New Zealand centre of the international Screening for Pregnancy Endpoints (SCOPE) study. Eighty common genetic variants associated with obesity traits were evaluated by the Sequenom assay. Body mass index standardised scores (BMI z-scores) and percentage body fat (PBF; measured by bio-impedance assay (BIA)) were used as anthropometric measures of obesity. A positive correlation was found between BMI z-scores and PBF (p < 0.001, r = 0.756). Two subsets of gene variants were associated with BMI z-scores (HOXB5-rs9299, SH2B1-rs7498665, NPC1-rs1805081 and MSRA-rs545854) and PBF (TMEM18-rs6548238, NPY-rs17149106, ETV-rs7647305, NPY-rs16139, TIMELESS-rs4630333, FTO-rs9939609, UCP2-rs659366, MAP2K5-rs2241423 and FAIM2-rs7138803) in the genotype models. However, there was an absence of overlapping association between any of the gene variants with BMI z-scores and PBF. A further five variants were associated with BMI z-scores (TMEM18-rs6548238, FTO-rs9939609 and MC4R-rs17782313) and PBF (SH2B1-rs7498665 and FTO-rs1421085) once separated by genetic models (additive, recessive and dominant) of inheritance. This study has identified significant associations between numerous gene variants selected on the basis of prior association with obesity and obesity traits in New Zealand European children.

  10. Uncoupling proteins and the control of mitochondrial reactive oxygen species production.

    PubMed

    Mailloux, Ryan J; Harper, Mary-Ellen

    2011-09-15

    Reactive oxygen species (ROS), natural by-products of aerobic respiration, are important cell signaling molecules, which left unchecked can severely impair cellular functions and induce cell death. Hence, cells have developed a series of systems to keep ROS in the nontoxic range. Uncoupling proteins (UCPs) 1-3 are mitochondrial anion carrier proteins that are purported to play important roles in minimizing ROS emission from the electron transport chain. The function of UCP1 in this regard is highly contentious. However, UCPs 2 and 3 are generally thought to be activated by ROS or ROS by-products to induce proton leak, thus providing a negative feedback loop for mitochondrial ROS production. In our laboratory, we have not only confirmed that ROS activate UCP2 and UCP3, but also demonstrated that UCP2 and UCP3 are controlled by covalent modification by glutathione. Furthermore, the reversible glutathionylation is required to activate/inhibit UCP2 and UCP3, but not UCP1. Hence, our findings are consistent with the notion that UCPs 2 and 3 are acutely activated by ROS, which then directly modulate the glutathionylation status of the UCP to decrease ROS emission and participate in cell signaling mechanisms. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Computerized design and generation of space-variant holographic filters. II - Applications of space-variant filters to optical computing

    NASA Technical Reports Server (NTRS)

    Ambs, P.; Fainman, Y.; Esener, S.; Lee, S. H.

    1988-01-01

    Holographic optical elements (HOEs) of space-variant impulse response have been designed and generated using a computerized optical system. HOEs made of dichromated gelatin have been produced and used for spatial light modulator defect removal and optical interconnects. Experimental performance and characteristics are presented.

  12. Genetic Variants in Transcription Factors Are Associated With the Pharmacokinetics and Pharmacodynamics of Metformin

    PubMed Central

    Goswami, S; Yee, SW; Stocker, S; Mosley, JD; Kubo, M; Castro, R; Mefford, JA; Wen, C; Liang, X; Witte, J; Brett, C; Maeda, S; Simpson, MD; Hedderson, MM; Davis, RL; Roden, DM; Giacomini, KM; Savic, RM

    2014-01-01

    One-third of type 2 diabetes patients do not respond to metformin. Genetic variants in metformin transporters have been extensively studied as a likely contributor to this high failure rate. Here, we investigate, for the first time, the effect of genetic variants in transcription factors on metformin pharmacokinetics (PK) and response. Overall, 546 patients and healthy volunteers contributed their genome-wide, pharmacokinetic (235 subjects), and HbA1c data (440 patients) for this analysis. Five variants in specificity protein 1 (SP1), a transcription factor that modulates the expression of metformin transporters, were associated with changes in treatment HbA1c (P < 0.01) and metformin secretory clearance (P < 0.05). Population pharmacokinetic modeling further confirmed a 24% reduction in apparent clearance in homozygous carriers of one such variant, rs784888. Genetic variants in other transcription factors, peroxisome proliferator–activated receptor-α and hepatocyte nuclear factor 4-α, were significantly associated with HbA1c change only. Overall, our study highlights the importance of genetic variants in transcription factors as modulators of metformin PK and response. PMID:24853734

  13. A low frequency variant within the GWAS locus of MTNR1B affects fasting glucose concentrations: genetic risk is modulated by obesity.

    PubMed

    Been, L F; Hatfield, J L; Shankar, A; Aston, C E; Ralhan, S; Wander, G S; Mehra, N K; Singh, J R; Mulvihill, J J; Sanghera, D K

    2012-11-01

    Two common variants (rs1387153, rs10830963) in MTNR1B have been reported to have independent effects on fasting blood glucose (FBG) levels with increased risk to type 2 diabetes (T2D) in recent genome-wide association studies (GWAS). In this investigation, we report the association of these two variants, and an additional variant (rs1374645) within the GWAS locus of MTNR1B with FBG, 2h glucose, insulin resistance (HOMA IR), β-cell function (HOMA B), and T2D in our sample of Asian Sikhs from India. Our cohort comprised 2222 subjects [1201 T2D, 1021 controls]. None of these SNPs was associated with T2D in this cohort. Our data also could not confirm association of rs1387153 and rs10830963 with FBG phenotype. However, upon stratifying data according to body mass index (BMI) (low ≤ 25 kg/m(2) and high > 25 kg/m(2)) in normoglycemic subjects (n = 1021), the rs1374645 revealed a strong association with low FBG levels in low BMI group (β = -0.073, p = 0.002, Bonferroni p = 0.01) compared to the high BMI group (β = 0.015, p = 0.50). We also detected a strong evidence of interaction between rs1374645 and BMI with respect to FBG levels (p = 0.002). Our data provide new information about the significant impact of another MTNR1B variant on FBG levels that appears to be modulated by BMI. Future confirmation on independent datasets and functional studies will be required to define the role of this variant in fasting glucose variation. Published by Elsevier B.V.

  14. UCP2 Regulates Mitochondrial Fission and Ventromedial Nucleus Control of Glucose Responsiveness.

    PubMed

    Toda, Chitoku; Kim, Jung Dae; Impellizzeri, Daniela; Cuzzocrea, Salvatore; Liu, Zhong-Wu; Diano, Sabrina

    2016-02-25

    The ventromedial nucleus of the hypothalamus (VMH) plays a critical role in regulating systemic glucose homeostasis. How neurons in this brain area adapt to the changing metabolic environment to regulate circulating glucose levels is ill defined. Here, we show that glucose load results in mitochondrial fission and reduced reactive oxygen species in VMH neurons mediated by dynamin-related peptide 1 (DRP1) under the control of uncoupling protein 2 (UCP2). Probed by genetic manipulations and chemical-genetic control of VMH neuronal circuitry, we unmasked that this mitochondrial adaptation determines the size of the pool of glucose-excited neurons in the VMH and that this process regulates systemic glucose homeostasis. Thus, our data unmasked a critical cellular biological process controlled by mitochondrial dynamics in VMH regulation of systemic glucose homeostasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The conserved regulation of mitochondrial uncoupling proteins: From unicellular eukaryotes to mammals.

    PubMed

    Woyda-Ploszczyca, Andrzej M; Jarmuszkiewicz, Wieslawa

    2017-01-01

    Uncoupling proteins (UCPs) belong to the mitochondrial anion carrier protein family and mediate regulated proton leak across the inner mitochondrial membrane. Free fatty acids, aldehydes such as hydroxynonenal, and retinoids activate UCPs. However, there are some controversies about the effective action of retinoids and aldehydes alone; thus, only free fatty acids are commonly accepted positive effectors of UCPs. Purine nucleotides such as GTP inhibit UCP-mediated mitochondrial proton leak. In turn, membranous coenzyme Q may play a role as a redox state-dependent metabolic sensor that modulates the complete activation/inhibition of UCPs. Such regulation has been observed for UCPs in microorganisms, plant and animal UCP1 homologues, and UCP1 in mammalian brown adipose tissue. The origin of UCPs is still under debate, but UCP homologues have been identified in all systematic groups of eukaryotes. Despite the differing levels of amino acid/DNA sequence similarities, functional studies in unicellular and multicellular organisms, from amoebae to mammals, suggest that the mechanistic regulation of UCP activity is evolutionarily well conserved. This review focuses on the regulatory feedback loops of UCPs involving free fatty acids, aldehydes, retinoids, purine nucleotides, and coenzyme Q (particularly its reduction level), which may derive from the early stages of evolution as UCP first emerged. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. CEACAM6 Gene Variants in Inflammatory Bowel Disease

    PubMed Central

    Fries, Christoph; Tillack, Cornelia; Pfennig, Simone; Weidinger, Maria; Beigel, Florian; Olszak, Torsten; Lass, Ulrich; Göke, Burkhard; Ochsenkühn, Thomas; Wolf, Christiane; Lohse, Peter; Müller-Myhsok, Bertram; Diegelmann, Julia; Czamara, Darina; Brand, Stephan

    2011-01-01

    Background The carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) acts as a receptor for adherent-invasive E. coli (AIEC) and its ileal expression is increased in patients with Crohn's disease (CD). Given its contribution to the pathogenesis of CD, we aimed to investigate the role of genetic variants in the CEACAM6 region in patients with inflammatory bowel diseases (IBD). Methodology In this study, a total of 2,683 genomic DNA samples (including DNA from 858 CD patients, 475 patients with ulcerative colitis (UC), and 1,350 healthy, unrelated controls) was analyzed for eight CEACAM6 SNPs (rs10415946, rs1805223 = p.Pro42Pro, rs4803507, rs4803508, rs11548735 = p.Gly239Val, rs7246116 = pHis260His, rs2701, rs10416839). In addition, a detailed haplotype analysis and genotype-phenotype analysis were performed. Overall, our genotype analysis did not reveal any significant association of the investigated CEACAM6 SNPs and haplotypes with CD or UC susceptibility, although certain CEACAM6 SNPs modulated CEACAM6 expression in intestinal epithelial cell lines. Despite its function as receptor of AIEC in ileal CD, we found no association of the CEACAM6 SNPs with ileal or ileocolonic CD. Moreover, there was no evidence of epistasis between the analyzed CEACAM6 variants and the main CD-associated NOD2, IL23R and ATG16L1 variants. Conclusions This study represents the first detailed analysis of CEACAM6 variants in IBD patients. Despite its important role in bacterial attachment in ileal CD, we could not demonstrate a role for CEACAM6 variants in IBD susceptibility or regarding an ileal CD phenotype. Further functional studies are required to analyze if these gene variants modulate ileal bacterial attachment. PMID:21559399

  17. BDNF Variants May Modulate Long-Term Visual Memory Performance in a Healthy Cohort

    PubMed Central

    Avgan, Nesli; Sutherland, Heidi G.; Spriggens, Lauren K.; Yu, Chieh; Ibrahim, Omar; Bellis, Claire; Haupt, Larisa M.; Shum, David H. K.; Griffiths, Lyn R.

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) is involved in numerous cognitive functions including learning and memory. BDNF plays an important role in synaptic plasticity in humans and rats with BDNF shown to be essential for the formation of long-term memories. We previously identified a significant association between the BDNF Val66Met polymorphism (rs6265) and long-term visual memory (p-value = 0.003) in a small cohort (n = 181) comprised of healthy individuals who had been phenotyped for various aspects of memory function. In this study, we have extended the cohort to 597 individuals and examined multiple genetic variants across both the BDNF and BDNF-AS genes for association with visual memory performance as assessed by the Wechsler Memory Scale—Fourth Edition subtests Visual Reproduction I and II (VR I and II). VR I assesses immediate visual memory, whereas VR II assesses long-term visual memory. Genetic association analyses were performed for 34 single nucleotide polymorphisms genotyped on Illumina OmniExpress BeadChip arrays with the immediate and long-term visual memory phenotypes. While none of the BDNF and BDNF-AS variants were shown to be significant for immediate visual memory, we found 10 variants (including the Val66Met polymorphism (p-value = 0.006)) that were nominally associated, and three variants (two variants in BDNF and one variant in the BDNF-AS locus) that were significantly associated with long-term visual memory. Our data therefore suggests a potential role for BDNF, and its anti-sense transcript BDNF-AS, in long-term visual memory performance. PMID:28304362

  18. BDNF Variants May Modulate Long-Term Visual Memory Performance in a Healthy Cohort.

    PubMed

    Avgan, Nesli; Sutherland, Heidi G; Spriggens, Lauren K; Yu, Chieh; Ibrahim, Omar; Bellis, Claire; Haupt, Larisa M; Shum, David H K; Griffiths, Lyn R

    2017-03-17

    Brain-derived neurotrophic factor (BDNF) is involved in numerous cognitive functions including learning and memory. BDNF plays an important role in synaptic plasticity in humans and rats with BDNF shown to be essential for the formation of long-term memories. We previously identified a significant association between the BDNF Val66Met polymorphism (rs6265) and long-term visual memory ( p -value = 0.003) in a small cohort ( n = 181) comprised of healthy individuals who had been phenotyped for various aspects of memory function. In this study, we have extended the cohort to 597 individuals and examined multiple genetic variants across both the BDNF and BDNF-AS genes for association with visual memory performance as assessed by the Wechsler Memory Scale-Fourth Edition subtests Visual Reproduction I and II (VR I and II). VR I assesses immediate visual memory, whereas VR II assesses long-term visual memory. Genetic association analyses were performed for 34 single nucleotide polymorphisms genotyped on Illumina OmniExpress BeadChip arrays with the immediate and long-term visual memory phenotypes. While none of the BDNF and BDNF-AS variants were shown to be significant for immediate visual memory, we found 10 variants (including the Val66Met polymorphism ( p -value = 0.006)) that were nominally associated, and three variants (two variants in BDNF and one variant in the BDNF-AS locus) that were significantly associated with long-term visual memory. Our data therefore suggests a potential role for BDNF , and its anti-sense transcript BDNF-AS , in long-term visual memory performance.

  19. In the Early Stages of Diabetes, Rat Retinal Mitochondria Undergo Mild Uncoupling due to UCP2 Activity

    PubMed Central

    Osorio-Paz, Ixchel; Uribe-Carvajal, Salvador; Salceda, Rocío

    2015-01-01

    In order to maintain high transmembrane ionic gradients, retinal tissues require a large amount of energy probably provided by a high rate of both, glycolysis and oxidative phosphorylation. However, little information exists on retinal mitochondrial efficiency. We analyzed the retinal mitochondrial activity in ex vivo retinas and in isolated mitochondria from normal rat retina and from short-term streptozotocin-diabetic rats. In normal ex vivo retinas, increasing glucose concentrations from 5.6mM to 30mM caused a four-fold increase in glucose accumulation and CO2 production. Retina from diabetic rats accumulated similar amounts of glucose. However, CO2 production was not as high. Isolated mitochondria from normal rat retina exhibited a resting rate of oxygen consumption of 14.6 ± 1.1 natgO (min.mg prot)-1 and a respiratory control of 4.0. Mitochondria from 7, 20 and 45 days diabetic rats increased the resting rate of oxygen consumption and the activity of the electron transport complexes; under these conditions the mitochondrial transmembrane potential decreased. In spite of this, the ATP synthesis was not modified. GDP, an UCP2 inhibitor, increased mitochondrial membrane potential and superoxide production in controls and at 45 days of diabetes. The role of UCP2 is discussed. The results suggest that at the early stage of diabetes we studied, retinal mitochondria undergo adaptations leading to maintain energetic requirements and prevent oxidative stress. PMID:25951172

  20. In the Early Stages of Diabetes, Rat Retinal Mitochondria Undergo Mild Uncoupling due to UCP2 Activity.

    PubMed

    Osorio-Paz, Ixchel; Uribe-Carvajal, Salvador; Salceda, Rocío

    2015-01-01

    In order to maintain high transmembrane ionic gradients, retinal tissues require a large amount of energy probably provided by a high rate of both, glycolysis and oxidative phosphorylation. However, little information exists on retinal mitochondrial efficiency. We analyzed the retinal mitochondrial activity in ex vivo retinas and in isolated mitochondria from normal rat retina and from short-term streptozotocin-diabetic rats. In normal ex vivo retinas, increasing glucose concentrations from 5.6 mM to 30 mM caused a four-fold increase in glucose accumulation and CO2 production. Retina from diabetic rats accumulated similar amounts of glucose. However, CO2 production was not as high. Isolated mitochondria from normal rat retina exhibited a resting rate of oxygen consumption of 14.6 ± 1.1 natgO (min.mg prot)(-1) and a respiratory control of 4.0. Mitochondria from 7, 20 and 45 days diabetic rats increased the resting rate of oxygen consumption and the activity of the electron transport complexes; under these conditions the mitochondrial transmembrane potential decreased. In spite of this, the ATP synthesis was not modified. GDP, an UCP2 inhibitor, increased mitochondrial membrane potential and superoxide production in controls and at 45 days of diabetes. The role of UCP2 is discussed. The results suggest that at the early stage of diabetes we studied, retinal mitochondria undergo adaptations leading to maintain energetic requirements and prevent oxidative stress.

  1. Genetic variation in the ovine uncoupling protein 1 gene: association with carcass traits in New Zealand (NZ) Romney sheep, but no association with growth traits in either NZ Romney or NZ Suffolk sheep.

    PubMed

    Yang, G; Forrest, R; Zhou, H; Hodge, S; Hickford, J

    2014-12-01

    The uncoupling protein 1 (UCP1) plays an important role in the regulation of lipolysis and thermogenesis in adipose tissues. Genetic variation within three regions (the promoter, intron 2 and exon 5) of the ovine UCP1 gene (UCP1) was investigated using polymerase chain reaction-single-strand conformational polymorphism (PCR-SSCP) analyses. These revealed three promoter variants (designated A, B and C) and two intron 2 variants (a and b). The association of this genetic variation with variation in lamb carcass traits and postweaning growth was investigated in New Zealand (NZ) Romney and Suffolk sheep. The presence of B in a lamb's genotype was associated with decreased subcutaneous carcass fat depth (V-GR) (p = 0.004) and proportion of total lean meat yield of loin meat (p = 0.005), and an increased proportion of total lean meat yield of hind-leg meat (p = 0.018). In contrast, having two copies of C was associated with increased V-GR (p < 0.001) and proportion of total lean meat yield of shoulder meat (p = 0.009), and a decreased hind-leg yield (p = 0.032). No associations were found with postweaning growth. These results suggest that ovine UCP1 is a potential gene marker for carcass traits. © 2014 Blackwell Verlag GmbH.

  2. Role of the Polymorphisms of Uncoupling Protein Genes in Childhood Obesity and Their Association with Obesity-Related Disturbances.

    PubMed

    Gul, Ali; Ateş, Ömer; Özer, Samet; Kasap, Tuba; Ensari, Emel; Demir, Osman; Sönmezgöz, Ergün

    2017-09-01

    Obesity, one of the most common disorders observed in clinical practice, has been associated with energy metabolism-related protein genes such as uncoupling proteins (UCPs). Herein, we evaluated UCPs as candidate genes for obesity and its morbidities. A total of 268 obese and 185 nonobese children and adolescents were enrolled in this study. To determine dyslipidemia, hypertension, and insulin resistance, laboratory tests were derived from fasting blood samples. UCP1-3826 A/G, UCP2 exon 8 deletion/insertion (del/ins), and UCP3-55C/T variants were also genotyped, and the relationships among the polymorphisms of these UCPs and obesity morbidities were investigated. The mean ages of the obese and control groups were 11.61 ± 2.83 and 10.74 ± 3.36 years, respectively. The respective genotypic frequencies of the AA, AG, and GG genotypes of UCP1 were 46.3%, 33.2%, and 20.5% in obese subjects and 46.5%, 42.2%, and 11.4% in the controls (p = 0.020). G alleles were more frequent in obese subjects with hypertriglyceridemia (42.9%; p = 0.048) than in those without, and the GG genotype presented an odds ratio for obesity of 2.02 (1.17-3.47; p = 0.010). The polymorphisms of UCP2 exon 8 del/ins and UCP3-55C/T did not influence obesity risk (p > 0.05). The I (ins) allele was associated with low HDL cholesterolemia (p = 0.023). The GG genotype of the UCP1-3826 A/G polymorphism appears to contribute to the onset of childhood obesity in Turkish children. The GG genotype of UCP1, together with the del/del genotype of the UCP2 polymorphism, may increase the risk of obesity with synergistic effects. The ins allele of the UCP2 exon 8 del/ins polymorphism may contribute to low HDL cholesterolemia.

  3. Improved Thermal Modulator for Gas Chromatography

    NASA Technical Reports Server (NTRS)

    Hasselbrink, Ernest Frederick, Jr.; Hunt, Patrick J.; Sacks, Richard D.

    2008-01-01

    An improved thermal modulator has been invented for use in a variant of gas chromatography (GC). The variant in question denoted as two-dimensional gas chromatography (2DGC) or GC-GC involves the use of three series-connected chromatographic columns, in the form of capillary tubes coated interiorly with suitable stationary phases (compounds for which different analytes exhibit different degrees of affinity). The two end columns are relatively long and are used as standard GC columns. The thermal modulator includes the middle column, which is relatively short and is not used as a standard GC column: instead, its temperature is modulated to affect timed adsorption and desorption of analyte gases between the two end columns in accordance with a 2DGC protocol.

  4. Expression profiling analysis: Uncoupling protein 2 deficiency improves hepatic glucose, lipid profiles and insulin sensitivity in high-fat diet-fed mice by modulating expression of genes in peroxisome proliferator-activated receptor signaling pathway.

    PubMed

    Zhou, Mei-Cen; Yu, Ping; Sun, Qi; Li, Yu-Xiu

    2016-03-01

    Uncoupling protein 2 (UCP2), which was an important mitochondrial inner membrane protein associated with glucose and lipid metabolism, widely expresses in all kinds of tissues including hepatocytes. The present study aimed to explore the impact of UCP2 deficiency on glucose and lipid metabolism, insulin sensitivity and its effect on the liver-associated signaling pathway by expression profiling analysis. Four-week-old male UCP2-/- mice and UCP2+/+ mice were randomly assigned to four groups: UCP2-/- on a high-fat diet, UCP2-/- on a normal chow diet, UCP2+/+ on a high-fat diet and UCP2+/+ on a normal chow diet. The differentially expressed genes in the four groups on the 16th week were identified by Affymetrix gene array. The results of intraperitoneal glucose tolerance test and insulin tolerance showed that blood glucose and β-cell function were improved in the UCP2-/- group on high-fat diet. Enhanced insulin sensitivity was observed in the UCP2-/- group. The differentially expressed genes were mapped to 23 pathways (P < 0.05). We concentrated on the 'peroxisome proliferator-activated receptor (PPAR) signaling pathway' (P = 3.19 × 10(-11)), because it is closely associated with the regulation of glucose and lipid profiles. In the PPAR signaling pathway, seven genes (PPARγ, Dbi, Acsl3, Lpl, Me1, Scd1, Fads2) in the UCP2-/- mice were significantly upregulated. The present study used gene arrays to show that activity of the PPAR signaling pathway involved in the improvement of glucose and lipid metabolism in the liver of UCP2-deficient mice on a long-term high-fat diet. The upregulation of genes in the PPAR signaling pathway could explain our finding that UCP2 deficiency ameliorated insulin sensitivity. The manipulation of UCP2 protein expression could represent a new strategy for the prevention and treatment of diabetes.

  5. Intra-variant substructure in Ni–Mn–Ga martensite: Conjugation boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muntifering, B.; Pond, R. C.; Kovarik, L.

    2014-06-01

    The microstructure of a Ni–Mn–Ga alloy in the martensitic phase was investigated using transmission electron microscopy. Inter-variant twin boundaries were observed separating non-modulated tetragonal martensite variants. In addition, intra-variant boundary structures, referred to here as “conjugation boundaries”, were also observed. We propose that conjugation boundaries originate at the transformation interface between austenite and a nascent martensite variant. In the alloy studied, deformation twinning was observed, consistent with being the mode of lattice-invariant deformation, and this can occur on either of two crystallographically equivalent conjugate View the MathML source{101}(101⁻) twinning systems: conjugation boundaries separate regions within a single variant in whichmore » the active modes were distinct. The defect structure of conjugation boundaries and the low-angle of misorientation across them are revealed in detail using high-resolution microscopy. Finally, we anticipate that the mobility of such boundaries is lower than that of inter-variant boundaries, and is therefore likely to significantly affect the kinetics of deformation in the martensitic phase.« less

  6. Effects of physical activity on the link between PGC-1a and FNDC5 in muscle, circulating Ιrisin and UCP1 of white adipocytes in humans: A systematic review

    PubMed Central

    Dinas, Petros C.; Lahart, Ian M.; Timmons, James A.; Svensson, Per-Arne; Koutedakis, Yiannis; Flouris, Andreas D.; Metsios, George S.

    2017-01-01

    Background: Exercise may activate a brown adipose-like phenotype in white adipose tissue. The aim of this systematic review was to identify the effects of physical activity on the link between peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1a) and fibronectin type III domain-containing protein 5 (FNDC5) in muscle, circulating Irisin and uncoupling protein one (UCP1) of white adipocytes in humans. Methods: Two databases (PubMed 1966 to 08/2016 and EMBASE 1974 to 08/2016) were searched using an appropriate algorithm. We included articles that examined physical activity and/or exercise in humans that met the following criteria: a) PGC-1a in conjunction with FNDC5 measurements, and b) FNDC5 and/or circulating Irisin and/or UCP1 levels in white adipocytes. Results: We included 51 studies (12 randomised controlled trials) with 2474 participants. Out of the 51 studies, 16 examined PGC-1a and FNDC5 in response to exercise, and only four found increases in both PGC-1a and FNDC5 mRNA and one showed increased FNDC5 mRNA. In total, 22 out of 45 studies that examined circulating Irisin in response to exercise showed increased concentrations when ELISA techniques were used; two studies also revealed increased Irisin levels measured via mass spectrometry. Three studies showed a positive association of circulating Irisin with physical activity levels. One study found no exercise effects on UCP1 mRNA in white adipocytes. Conclusions: The effects of physical activity on the link between PGC-1a, FNDC5 mRNA in muscle and UCP1 in white human adipocytes has attracted little scientific attention. Current methods for Irisin identification lack precision and, therefore, the existing evidence does not allow for conclusions to be made regarding Irisin responses to physical activity. We found a contrast between standardised review methods and accuracy of the measurements used. This should be considered in future systematic reviews. PMID:28620456

  7. Genotype and phenotype spectrum of NRAS germline variants.

    PubMed

    Altmüller, Franziska; Lissewski, Christina; Bertola, Debora; Flex, Elisabetta; Stark, Zornitza; Spranger, Stephanie; Baynam, Gareth; Buscarilli, Michelle; Dyack, Sarah; Gillis, Jane; Yntema, Helger G; Pantaleoni, Francesca; van Loon, Rosa LE; MacKay, Sara; Mina, Kym; Schanze, Ina; Tan, Tiong Yang; Walsh, Maie; White, Susan M; Niewisch, Marena R; García-Miñaúr, Sixto; Plaza, Diego; Ahmadian, Mohammad Reza; Cavé, Hélène; Tartaglia, Marco; Zenker, Martin

    2017-06-01

    RASopathies comprise a group of disorders clinically characterized by short stature, heart defects, facial dysmorphism, and varying degrees of intellectual disability and cancer predisposition. They are caused by germline variants in genes encoding key components or modulators of the highly conserved RAS-MAPK signalling pathway that lead to dysregulation of cell signal transmission. Germline changes in the genes encoding members of the RAS subfamily of GTPases are rare and associated with variable phenotypes of the RASopathy spectrum, ranging from Costello syndrome (HRAS variants) to Noonan and Cardiofaciocutaneous syndromes (KRAS variants). A small number of RASopathy cases with disease-causing germline NRAS alterations have been reported. Affected individuals exhibited features fitting Noonan syndrome, and the observed germline variants differed from the typical oncogenic NRAS changes occurring as somatic events in tumours. Here we describe 19 new cases with RASopathy due to disease-causing variants in NRAS. Importantly, four of them harbored missense changes affecting Gly12, which was previously described to occur exclusively in cancer. The phenotype in our cohort was variable but well within the RASopathy spectrum. Further, one of the patients (c.35G>A; p.(Gly12Asp)) had a myeloproliferative disorder, and one subject (c.34G>C; p.(Gly12Arg)) exhibited an uncharacterized brain tumour. With this report, we expand the genotype and phenotype spectrum of RASopathy-associated germline NRAS variants and provide evidence that NRAS variants do not spare the cancer-associated mutation hotspots.

  8. HBS1L-MYB intergenic variants modulate fetal hemoglobin via long-range MYB enhancers

    PubMed Central

    Stadhouders, Ralph; Aktuna, Suleyman; Thongjuea, Supat; Aghajanirefah, Ali; Pourfarzad, Farzin; van IJcken, Wilfred; Lenhard, Boris; Rooks, Helen; Best, Steve; Menzel, Stephan; Grosveld, Frank; Thein, Swee Lay; Soler, Eric

    2014-01-01

    Genetic studies have identified common variants within the intergenic region (HBS1L-MYB) between GTP-binding elongation factor HBS1L and myeloblastosis oncogene MYB on chromosome 6q that are associated with elevated fetal hemoglobin (HbF) levels and alterations of other clinically important human erythroid traits. It is unclear how these noncoding sequence variants affect multiple erythrocyte characteristics. Here, we determined that several HBS1L-MYB intergenic variants affect regulatory elements that are occupied by key erythroid transcription factors within this region. These elements interact with MYB, a critical regulator of erythroid development and HbF levels. We found that several HBS1L-MYB intergenic variants reduce transcription factor binding, affecting long-range interactions with MYB and MYB expression levels. These data provide a functional explanation for the genetic association of HBS1L-MYB intergenic polymorphisms with human erythroid traits and HbF levels. Our results further designate MYB as a target for therapeutic induction of HbF to ameliorate sickle cell and β-thalassemia disease severity. PMID:24614105

  9. Endurance training blocks uncoupling protein 1 up-regulation in brown adipose tissue while increasing uncoupling protein 3 in the muscle tissue of rats fed with a high-sugar diet.

    PubMed

    de Queiroz, Karina Barbosa; Rodovalho, Gisele Vieira; Guimarães, Juliana Bohnen; de Lima, Daniel Carvalho; Coimbra, Cândido Celso; Evangelista, Elísio Alberto; Guerra-Sá, Renata

    2012-09-01

    The mitochondrial uncoupling proteins (UCPs) of interscapular brown adipose tissue (iBAT) and of muscles play important roles in energy balance. For instance, the expression of UCP1 and UCP3 are modulated by free fatty acid gradients induced by high-sugar diets and acute exercise that is dependent on sympathetic stimulation. However, the effects of endurance training in animals fed with high-sugar diets are unknown. This study aims to evaluate the long-term effects of diet and exercise on UCP1 and UCP3 levels and energy balance efficiency. Rats fed with standard or high-sugar (HSD) diets were simultaneously subjected to running training over an 8-week period. After the training period, the rats were decapitated, and the iBAT and gastrocnemius muscle tissues were removed for evaluation of the β₃-receptor, Ucp1, and Ucp3 mRNA and protein expression, which were analyzed by quantitative reverse transcriptase polymerase chain reaction and Western blot, respectively. Groups fed with an HSD displayed a higher adiposity index and iBAT weight (P < .05), whereas exhibited an up-regulation of Ucp1 mRNA and protein levels (P < .05). Training increased β₃-receptor mRNA in iBAT and reduced the Ucp3 mRNA in muscle tissues. In association with an HSD, training restored the increasing β₃-receptor mRNA and greatly up-regulated the levels of Ucp3 mRNA. Therefore, training blocked the HSD-induced up-regulation of UCP1 expression in iBAT, whereas it up-regulated the expression of Ucp3 mRNA in muscle. These results suggest that training enhances the relationship between Ucp1/Ucp3 mRNA levels, which could result in higher energy efficiency, but not when HSD-induced elevated sympathetic activity is maintained. Copyright © 2012. Published by Elsevier Inc.

  10. Glutaredoxin-2 is required to control proton leak through uncoupling protein-3.

    PubMed

    Mailloux, Ryan J; Xuan, Jian Ying; Beauchamp, Brittany; Jui, Linda; Lou, Marjorie; Harper, Mary-Ellen

    2013-03-22

    Glutathionylation has emerged as a key modification required for controlling protein function in response to changes in cell redox status. Recently, we showed that the glutathionylation state of uncoupling protein-3 (UCP3) modulates the leak of protons back into the mitochondrial matrix, thus controlling reactive oxygen species production. However, whether or not UCP3 glutathionylation is mediated enzymatically has remained unknown because previous work relied on the use of pharmacological agents, such as diamide, to alter the UCP3 glutathionylation state. Here, we demonstrate that glutaredoxin-2 (Grx2), a matrix oxidoreductase, is required to glutathionylate and inhibit UCP3. Analysis of bioenergetics in skeletal muscle mitochondria revealed that knock-out of Grx2 (Grx2(-/-)) increased proton leak in a UCP3-dependent manner. These effects were reversed using diamide, a glutathionylation catalyst. Importantly, the increased leak did not compromise coupled respiration. Knockdown of Grx2 augmented proton leak-dependent respiration in primary myotubes from wild type mice, an effect that was absent in UCP3(-/-) cells. These results confirm that Grx2 deactivates UCP3 by glutathionylation. To our knowledge, this is the first enzyme identified to regulate UCP3 by glutathionylation and is the first study on the role of Grx2 in the regulation of energy metabolism.

  11. Time-variant fMRI activity in the brainstem and higher structures in response to acupuncture.

    PubMed

    Napadow, Vitaly; Dhond, Rupali; Park, Kyungmo; Kim, Jieun; Makris, Nikos; Kwong, Kenneth K; Harris, Richard E; Purdon, Patrick L; Kettner, Norman; Hui, Kathleen K S

    2009-08-01

    Acupuncture modulation of activity in the human brainstem is not well known. This structure is plagued by physiological artifact in neuroimaging experiments. In addition, most studies have used short (<15 min) block designs, which miss delayed responses following longer duration stimulation. We used brainstem-focused cardiac-gated fMRI and evaluated time-variant brain response to longer duration (>30 min) stimulation with verum (VA, electro-stimulation at acupoint ST-36) or sham point (SPA, non-acupoint electro-stimulation) acupuncture. Our results provide evidence that acupuncture modulates brainstem nuclei important to endogenous monoaminergic and opioidergic systems. Specifically, VA modulated activity in the substantia nigra (SN), nucleus raphe magnus, locus ceruleus, nucleus cuneiformis, and periaqueductal gray (PAG). Activation in the ventrolateral PAG was greater for VA compared to SPA. Linearly decreasing time-variant activation, suggesting classical habituation, was found in response to both VA and SPA in sensorimotor (SII, posterior insula, premotor cortex) brain regions. However, VA also produced linearly time-variant activity in limbic regions (amygdala, hippocampus, and SN), which was bimodal and not likely habituation--consisting of activation in early blocks, and deactivation by the end of the run. Thus, acupuncture induces different brain response early, compared to 20-30 min after stimulation. We attribute the fMRI differences between VA and SPA to more varied and stronger psychophysical response induced by VA. Our study demonstrates that acupuncture modulation of brainstem structures can be studied non-invasively in humans, allowing for comparison to animal studies. Our protocol also demonstrates a fMRI approach to study habituation and other time-variant phenomena over longer time durations.

  12. Biphasic patterns of diversification and the emergence of modules

    PubMed Central

    Mittenthal, Jay; Caetano-Anollés, Derek; Caetano-Anollés, Gustavo

    2012-01-01

    The intricate molecular and cellular structure of organisms converts energy to work, which builds and maintains structure. Evolving structure implements modules, in which parts are tightly linked. Each module performs characteristic functions. In this work we propose that a module can emerge through two phases of diversification of parts. Early in the first phase of this biphasic pattern, the parts have weak linkage—they interact weakly and associate variously. The parts diversify and compete. Under selection for performance, interactions among the parts increasingly constrain their structure and associations. As many variants are eliminated, parts self-organize into modules with tight linkage. Linkage may increase in response to exogenous stresses as well as endogenous processes. In the second phase of diversification, variants of the module and its functions evolve and become new parts for a new cycle of generation of higher-level modules. This linkage hypothesis can interpret biphasic patterns in the diversification of protein domain structure, RNA and protein shapes, and networks in metabolism, codes, and embryos, and can explain hierarchical levels of structural organization that are widespread in biology. PMID:22891076

  13. Liver X Receptor Genes Variants Modulate ALS Phenotype.

    PubMed

    Mouzat, Kevin; Molinari, Nicolas; Kantar, Jovana; Polge, Anne; Corcia, Philippe; Couratier, Philippe; Clavelou, Pierre; Juntas-Morales, Raul; Pageot, Nicolas; Lobaccaro, Jean -Marc A; Raoul, Cedric; Lumbroso, Serge; Camu, William

    2018-03-01

    Amyotrophic lateral sclerosis (ALS) is one of the most severe motor neuron (MN) disorders in adults. Phenotype of ALS patients is highly variable and may be influenced by modulators of energy metabolism. Recent works have implicated the liver X receptors α and β (LXRs), either in the propagation process of ALS or in the maintenance of MN survival. LXRs are nuclear receptors activated by oxysterols, modulating cholesterol levels, a suspected modulator of ALS severity. In a cohort of 438 ALS patients and 330 healthy controls, the influence of LXR genes on ALS risk and phenotype was studied using single nucleotide polymorphisms (SNPs). The two LXRα SNPs rs2279238 and rs7120118 were shown to be associated with age at onset in ALS patients. Consistently, homozygotes were twice more correlated than were heterozygotes to delayed onset. The onset was thus delayed by 3.9 years for rs2279238 C/T carriers and 7.8 years for T/T carriers. Similar results were obtained for rs7120118 (+2.1 years and +6.7 years for T/C and C/C genotypes, respectively). The LXRβ SNP rs2695121 was also shown to be associated with a 30% increase of ALS duration (p = 0.0055, FDR = 0.044). The tested genotypes were not associated with ALS risk. These findings add further evidence to the suspected implication of LXR genes in the disease process of ALS and might open new perspectives in ALS therapeutics.

  14. Ethanol modulates the VR-1 variant amiloride-insensitive salt taste receptor. I. Effect on TRC volume and Na+ flux.

    PubMed

    Lyall, Vijay; Heck, Gerard L; Phan, Tam-Hao T; Mummalaneni, Shobha; Malik, Shahbaz A; Vinnikova, Anna K; DeSimone, John A

    2005-06-01

    The effect of ethanol on the amiloride- and benzamil (Bz)-insensitive salt taste receptor was investigated by the measurement of intracellular Na(+) activity ([Na(+)](i)) in polarized rat fungiform taste receptor cells (TRCs) using fluorescence imaging and by chorda tympani (CT) taste nerve recordings. CT responses were monitored during lingual stimulation with ethanol solutions containing NaCl or KCl. CT responses were recorded in the presence of Bz (a specific blocker of the epithelial Na(+) channel [ENaC]) or the vanilloid receptor-1 (VR-1) antagonists capsazepine or SB-366791, which also block the Bz-insensitive salt taste receptor, a VR-1 variant. CT responses were recorded at 23 degrees C or 42 degrees C (a temperature at which the VR-1 variant salt taste receptor activity is maximally enhanced). In the absence of permeable cations, ethanol induced a transient decrease in TRC volume, and stimulating the tongue with ethanol solutions without added salt elicited only transient phasic CT responses that were insensitive to elevated temperature or SB-366791. Preshrinking TRCs in vivo with hypertonic mannitol (0.5 M) attenuated the magnitude of the phasic CT response, indicating that in the absence of mineral salts, transient phasic CT responses are related to the ethanol-induced osmotic shrinkage of TRCs. In the presence of mineral salts, ethanol increased the Bz-insensitive apical cation flux in TRCs without a change in cell volume, increased transepithelial electrical resistance across the tongue, and elicited CT responses that were similar to salt responses, consisting of both a transient phasic component and a sustained tonic component. Ethanol increased the Bz-insensitive NaCl CT response. This effect was further enhanced by elevating the temperature from 23 degrees C to 42 degrees C, and was blocked by SB-366791. We conclude that in the presence of mineral salts, ethanol modulates the Bz-insensitive VR-1 variant salt taste receptor.

  15. Comparative transcriptome analysis of three color variants of the sea cucumber Apostichopus japonicus.

    PubMed

    Jo, Jihoon; Park, Jongsun; Lee, Hyun-Gwan; Kern, Elizabeth M A; Cheon, Seongmin; Jin, Soyeong; Park, Joong-Ki; Cho, Sung-Jin; Park, Chungoo

    2016-08-01

    The sea cucumber Apostichopus japonicus Selenka 1867 represents an important resource in biomedical research, traditional medicine, and the seafood industry. Much of the commercial value of A. japonicus is determined by dorsal/ventral color variation (red, green, and black), yet the taxonomic relationships between these color variants are not clearly understood. We performed the first comparative analysis of de novo assembled transcriptome data from three color variants of A. japonicus. Using the Illumina platform, we sequenced nearly 177,596,774 clean reads representing a total of 18.2Gbp of sea cucumber transcriptome. A comparison of over 0.3 million transcript scaffolds against the Uniprot/Swiss-Prot database yielded 8513, 8602, and 8588 positive matches for green, red, and black body color transcriptomes, respectively. Using the Panther gene classification system, we assessed an extensive and diverse set of expressed genes in three color variants and found that (1) among the three color variants of A. japonicus, genes associated with RNA binding protein, oxidoreductase, nucleic acid binding, transferase, and KRAB box transcription factor were most commonly expressed; and (2) the main protein functional classes are differently regulated in all three color variants (extracellular matrix protein and phosphatase for green color, transporter and potassium channel for red color, and G-protein modulator and enzyme modulator for black color). This work will assist in the discovery and annotation of novel genes that play significant morphological and physiological roles in color variants of A. japonicus, and these sequence data will provide a useful set of resources for the rapidly growing sea cucumber aquaculture industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The influence of ethnicity in the association of WC, WHR, hypertension and PGC-1α (Gly482Ser), UCP2 -866 G/A and SIRT1 -1400 T/C polymorphisms with T2D in the population of Punjab.

    PubMed

    Kaul, Nabodita; Singh, Yoginder P; Bhanwer, A J S

    2015-06-01

    To assess the effect of ethnicity, the association of WC, WHR and hypertension along with PGC-1α (Gly482Ser), UCP2 -866 G/A and SIRT1 -1400 T/C polymorphisms in seven endogamous caste groups and pooled population of Punjab. Study was conducted on 1813 individuals (859 T2D patients and 954 healthy controls) belonging to seven endogamous groups. Waist and hip circumference, height, weight and blood pressure were recorded following standard protocol using designed performa. PGC-1α (Gly482Ser) and UCP2 -866 G/A polymorphisms were genotyped using PCR RFLP and SIRT1 -1400 T/C was genotyped by direct DNA sequencing. WHR conferred risk in Brahmins (p=0.00003), Khtaris (p=0.001) and SCs (p=0.02). Similarly, we detected that WC conferred risk in BCs (p=0.012), Brahmins (p=0.016), Jat Sikhs (0.00025), Khatris (0.005) and SCs (p=0.015). In pooled population, all three factors imparted risk (WHR (p=0.00001), hypertension (p=0.003) and WC (p=0.0000016)). With respect to gene polymorphism, PGC-1α (Gly482Ser) was associated in Banias (p=0.0003), Jat Sikhs (p=0.003) and Khatris (p=0.03). Similarly, UCP2 -866 G>A showed risk in Banias (p=0.000004), BCs (p=0.01) and SCs (p=0.01). However, SIRT1 -1400 T>C showed risk only in Khatris (p=0.004). In the pooled population of Punjab, both PGC-1α (Gly482Ser) [p=0.001] and UCP2 -866 G>A (p=0.0001) polymorphisms provided risk. Interaction analysis showed 72% of the patients had risk combination of PGC-1α XA and UCP2-866 XA genotypes. Based on the data, Khatris were found to be showing the highest susceptibility to T2D followed by SCs. Different combinations of factors provided risk in each caste group and in pooled population. Therefore, to curve the menace of T2D, detailed information about the ethnic background of the individual will be very useful for proper medical intervention. Copyright © 2015. Published by Elsevier B.V.

  17. Association of filaggrin variants with asthma and rhinitis: is eczema or allergic sensitization status an effect modifier?

    PubMed Central

    Ziyab, Ali H.; Karmaus, Wilfried; Zhang, Hongmei; Holloway, John W.; Steck, Susan E.; Ewart, Susan; Arshad, Syed Hasan

    2014-01-01

    Background Associations of filaggrin (FLG) variants with asthma and rhinitis have been shown to be modulated by eczema status. However, it is unknown whether allergic sensitization status modifies this association. The aim of this study was to determine whether FLG variants need eczema and/or allergic sensitization as a necessary component to execute its adverse effect on coexisting and subsequent asthma and rhinitis. Methods Repeated measurements of asthma, rhinitis, eczema, and allergic sensitization (documented by skin prick tests) at ages 1, 2, 4, 10, and 18 years were ascertained in the Isle of Wight birth cohort (n = 1,456). FLG haploinsufficiency was defined as having at least the minor allele of R501X, 2282del4, or S3247X variants. Log binomial regression models were used to test associations and statistical interactions. Results FLG variants increased the risk of asthma (RR = 1.39, 95% CI: 1.06 – 1.80) and rhinitis (RR = 1.37, 95% CI: 1.16 – 1.63). In delayed effect models, ‘FLG variants plus allergic sensitization’ and ‘FLG variants plus eczema’ increased the risk of subsequent asthma by 4.93-fold (95% CI: 3.61 – 6.71) and 3.33-fold (95% CI: 2.45 – 4.51), respectively, during the first 18 years of life. In contrast, neither eczema nor allergic sensitization in combination with FLG variants increased the risk of later rhinitis. Conclusions Allergic sensitization and eczema modulated the association between FLG variants and asthma, but not rhinitis. Results of our study imply that the mechanisms and pathways through which FLG variants predispose to increased risk of asthma and rhinitis may be different. PMID:25277085

  18. Interrater reliability of the new criteria for behavioral variant frontotemporal dementia.

    PubMed

    Lamarre, Amanda K; Rascovsky, Katya; Bostrom, Alan; Toofanian, Parnian; Wilkins, Sarah; Sha, Sharon J; Perry, David C; Miller, Zachary A; Naasan, Georges; Laforce, Robert; Hagen, Jayne; Takada, Leonel T; Tartaglia, Maria Carmela; Kang, Gail; Galasko, Douglas; Salmon, David P; Farias, Sarah Tomaszewski; Kaur, Berneet; Olichney, John M; Quitania Park, Lovingly; Mendez, Mario F; Tsai, Po-Heng; Teng, Edmond; Dickerson, Bradford Clark; Domoto-Reilly, Kimiko; McGinnis, Scott; Miller, Bruce L; Kramer, Joel H

    2013-05-21

    To evaluate the interrater reliability of the new International Behavioural Variant FTD Criteria Consortium (FTDC) criteria for behavioral variant frontotemporal dementia (bvFTD). Twenty standardized clinical case modules were developed for patients with a range of neurodegenerative diagnoses, including bvFTD, primary progressive aphasia (nonfluent, semantic, and logopenic variant), Alzheimer disease, and Lewy body dementia. Eighteen blinded raters reviewed the modules and 1) rated the presence or absence of core diagnostic features for the FTDC criteria, and 2) provided an overall diagnostic rating. Interrater reliability was determined by κ statistics for multiple raters with categorical ratings. The mean κ value for diagnostic agreement was 0.81 for possible bvFTD and 0.82 for probable bvFTD ("almost perfect agreement"). Interrater reliability for 4 of the 6 core features had "substantial" agreement (behavioral disinhibition, perseverative/compulsive, sympathy/empathy, hyperorality; κ = 0.61-0.80), whereas 2 had "moderate" agreement (apathy/inertia, neuropsychological; κ = 0.41-0.6). Clinician years of experience did not significantly influence rater accuracy. The FTDC criteria show promise for improving the diagnostic accuracy and reliability of clinicians and researchers. As disease-altering therapies are developed, accurate differential diagnosis between bvFTD and other neurodegenerative diseases will become increasingly important.

  19. FTO gene variant modulates the neural correlates of visual food perception.

    PubMed

    Kühn, Anne B; Feis, Delia-Lisa; Schilbach, Leonhard; Kracht, Lutz; Hess, Martin E; Mauer, Jan; Brüning, Jens C; Tittgemeyer, Marc

    2016-03-01

    Variations in the fat mass and obesity associated (FTO) gene are currently the strongest known genetic factor predisposing humans to non-monogenic obesity. Recent experiments have linked these variants to a broad spectrum of behavioural alterations, including food choice and substance abuse. Yet, the underlying neurobiological mechanisms by which these genetic variations influence body weight remain elusive. Here, we explore the brain structural substrate of the obesity-predisposing rs9939609 T/A variant of the FTO gene in non-obese subjects by means of multivariate classification and use fMRI to investigate genotype-specific differences in neural food-cue reactivity by analysing correlates of a visual food perception task. Our findings demonstrate that MRI-derived measures of morphology along middle and posterior fusiform gyrus (FFG) are highly predictive for FTO at-risk allele carriers, who also show enhanced neural responses elicited by food cues in the same posterior FFG area. In brief, these findings provide first-time evidence for FTO-specific differences in both brain structure and function already in non-obese individuals, thereby contributing to a mechanistic understanding of why FTO is a predisposing factor for obesity. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Examination of orbital tissues in murine models of Graves' disease reveals expression of UCP-1 and the TSHR in retrobulbar adipose tissues.

    PubMed

    Johnson, K T M; Wiesweg, B; Schott, M; Ehlers, M; Müller, M; Minich, W B; Nagayama, Y; Gulbins, E; Eckstein, A K; Berchner-Pfannschmidt, U

    2013-06-01

    Over the past decade a number of murine models of Graves' disease (GD) have been described. The full symptom complex, including typical orbital changes, however, could not yet be induced. In this report, we examined the influence of modified immunization protocols on orbital pathology. C57BL/6 and BALB/c mice were immunized against the human TSH receptor (TSHR), using either a TSHR encoding plasmid or a TSHR A-subunit adenovirus. Prior to immunization with the TSHR plasmid, regulatory T cells were depleted in one group of each strain. TSHR-stimulating antibodies (TSAbs) were evaluated and orbits were stained immunohistochemically for F4/80, uncoupling protein-1 (UCP-1) and the TSHR. We found that after depletion of regulatory T cells, incidence of TSAb was increased in TSHR plasmid immunized C57BL/6 mice. Examination of early immunized mice showed no antibody production. However, a TSHR epitope-specific cellular immune response could be detected by tetramer-analyses. Adenoviral immunization lead to TSAb production in all but one animal. Analysis of F4/80 positive cells in retrobulbar fat revealed no significant macrophage infiltration in the orbits of immunized mice. Immunohistochemical staining shows co-localization of F4/80 positive cells, UCP-1 and the TSHR in retrobulbar fat. Though targets for TSHR autoimmunity could clearly be shown, immunization methods were not efficient enough to cause clear signs of orbital inflammation. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Investigation of four porcine candidate genes (H-FABP, MYOD1, UCP3 and MASTR) for meat quality traits in Large White pigs.

    PubMed

    Han, Xuelei; Jiang, Tengfei; Yang, Huawei; Zhang, Qingde; Wang, Weimin; Fan, Bin; Liu, Bang

    2012-06-01

    Meat quality traits are economically important traits of swine, and are controlled by multiple genes as complex quantitative traits. In the present study four genes, H-FABP (heart fatty acid-binding protein), MASTR (MEF2 activating motif and SAP domain containing transcriptional regulator), UCP3 (uncoupling protein 3) and MYOD1 (myogenic differentiation 1) were researched in Large White pigs. The polymorphisms H-FABP T/C of 5'UTR, MYOD1 g.257 A>C, UCP3 g.1406 G>A in exon 3 and MASTR c.187 C>T have been reported to be associated with meat quality traits in pigs. The aim of this study was to analyze the effect of single and multiple markers for single traits in Large White pigs. The single marker association analysis showed that the H-FABP and MASTR genes were associated with IMF (intramuscular fat content) (P < 0.05), and that the g.257 A>C of MYOD1 gene was most significantly related to muscle pH value (P < 0.01). The multiple markers for IMF were analyzed by combining the markers and quantitative trait modes into the linear regression. The results revealed that H-FABP and MASTR integrate gene networks for IMF. Thus, our study results suggested that H-FABP and MASTR polymorphisms could be used as genetic markers in the marker-assisted selection towards the improvement of IMF in Large White pigs.

  2. Intestinal DMBT1 expression is modulated by Crohn's disease-associated IL23R variants and by a DMBT1 variant which influences binding of the transcription factors CREB1 and ATF-2.

    PubMed

    Diegelmann, Julia; Czamara, Darina; Le Bras, Emmanuelle; Zimmermann, Eva; Olszak, Torsten; Bedynek, Andrea; Göke, Burkhard; Franke, Andre; Glas, Jürgen; Brand, Stephan

    2013-01-01

    DMBT is an antibacterial pattern recognition and scavenger receptor. In this study, we analyzed the role of DMBT1 single nucleotide polymorphisms (SNPs) regarding inflammatory bowel disease (IBD) susceptibility and examined their functional impact on transcription factor binding and downstream gene expression. Seven SNPs in the DMBT1 gene region were analyzed in 2073 individuals including 818 Crohn's disease (CD) patients and 972 healthy controls in two independent case-control panels. Comprehensive epistasis analyses for the known CD susceptibility genes NOD2, IL23R and IL27 were performed. The influence of IL23R variants on DMBT1 expression was analyzed. Functional analysis included siRNA transfection, quantitative PCR, western blot, electrophoretic mobility shift and luciferase assays. IL-22 induces DMBT1 protein expression in intestinal epithelial cells dependent on STAT3, ATF-2 and CREB1. IL-22 expression-modulating, CD risk-associated IL23R variants influence DMBT1 expression in CD patients and DMBT1 levels are increased in the inflamed intestinal mucosa of CD patients. Several DMBT1 SNPs were associated with CD susceptibility. SNP rs2981804 was most strongly associated with CD in the combined panel (p = 3.0 × 10(-7), OR 1.42; 95% CI 1.24-1.63). All haplotype groups tested showed highly significant associations with CD (including omnibus P-values as low as 6.1 × 10(-18)). The most strongly CD risk-associated, non-coding DMBT1 SNP rs2981804 modifies the DNA binding sites for the transcription factors CREB1 and ATF-2 and the respective genomic region comprising rs2981804 is able to act as a transcriptional regulator in vitro. Intestinal DMBT1 expression is decreased in CD patients carrying the rs2981804 CD risk allele. We identified novel associations of DMBT1 variants with CD susceptibility and discovered a novel functional role of rs2981804 in regulating DMBT1 expression. Our data suggest an important role of DMBT1 in CD pathogenesis.

  3. Loss of histaminergic modulation of thermoregulation and energy homeostasis in obese mice.

    PubMed

    Sethi, J; Sanchez-Alavez, M; Tabarean, I V

    2012-08-16

    Histamine acts centrally to increase energy expenditure and reduce body weight by mechanisms not fully understood. It has been suggested that in the obese state hypothalamic histamine signaling is altered. Previous studies have also shown that histamine acting in the preoptic area controls thermoregulation. We aimed to study the influence of preoptic histamine on body temperature and energy homeostasis in control and obese mice. Activating histamine receptors in the preoptic area by increasing the concentration of endogenous histamine or by local injection of specific agonists induced an elevation of core body temperature and decreased respiratory exchange ratio (RER). In addition, the food intake was significantly decreased. The hyperthermic effect was associated with a rapid increase in mRNA expression of uncoupling proteins in thermogenic tissues, the most pronounced being that of uncoupling protein (UCP) 1 in brown adipose tissue and of UCP2 in white adipose tissue. In diet-induced obese mice histamine had much diminished hyperthermic effects as well as reduced effect on RER. Similarly, the ability of preoptic histamine signaling to increase the expression of uncoupling proteins was abolished. We also found that the expression of mRNA encoding the H1 receptor subtype in the preoptic area was significantly lower in obese animals. These results indicate that histamine signaling in the preoptic area modulates energy homeostasis by regulating body temperature, metabolic parameters and food intake and that the obese state is associated with a decrease in neurotransmitter's influence. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Glutathionylation state of uncoupling protein-2 and the control of glucose-stimulated insulin secretion.

    PubMed

    Mailloux, Ryan J; Fu, Accalia; Robson-Doucette, Christine; Allister, Emma M; Wheeler, Michael B; Screaton, Robert; Harper, Mary-Ellen

    2012-11-16

    The role of reactive oxygen species (ROS) in glucose-stimulated insulin release remains controversial because ROS have been shown to both amplify and impede insulin release. In regard to preventing insulin release, ROS activates uncoupling protein-2 (UCP2), a mitochondrial inner membrane protein that negatively regulates glucose-stimulated insulin secretion (GSIS) by uncoupling oxidative phosphorylation. With our recent discovery that the UCP2-mediated proton leak is modulated by reversible glutathionylation, a process responsive to small changes in ROS levels, we resolved to determine whether glutathionylation is required for UCP2 regulation of GSIS. Using Min6 cells and pancreatic islets, we demonstrate that induction of glutathionylation not only deactivates UCP2-mediated proton leak but also enhances GSIS. Conversely, an increase in mitochondrial matrix ROS was found to deglutathionylate and activate UCP2 leak and impede GSIS. Glucose metabolism also decreased the total amount of cellular glutathionylated proteins and increased the cellular glutathione redox ratio (GSH/GSSG). Intriguingly, the provision of extracellular ROS (H(2)O(2), 10 μM) amplified GSIS and also activated UCP2. Collectively, our findings indicate that the glutathionylation status of UCP2 contributes to the regulation of GSIS, and different cellular sites and inducers of ROS can have opposing effects on GSIS, perhaps explaining some of the controversy surrounding the role of ROS in GSIS.

  5. Glutathionylation State of Uncoupling Protein-2 and the Control of Glucose-stimulated Insulin Secretion*

    PubMed Central

    Mailloux, Ryan J.; Fu, Accalia; Robson-Doucette, Christine; Allister, Emma M.; Wheeler, Michael B.; Screaton, Robert; Harper, Mary-Ellen

    2012-01-01

    The role of reactive oxygen species (ROS) in glucose-stimulated insulin release remains controversial because ROS have been shown to both amplify and impede insulin release. In regard to preventing insulin release, ROS activates uncoupling protein-2 (UCP2), a mitochondrial inner membrane protein that negatively regulates glucose-stimulated insulin secretion (GSIS) by uncoupling oxidative phosphorylation. With our recent discovery that the UCP2-mediated proton leak is modulated by reversible glutathionylation, a process responsive to small changes in ROS levels, we resolved to determine whether glutathionylation is required for UCP2 regulation of GSIS. Using Min6 cells and pancreatic islets, we demonstrate that induction of glutathionylation not only deactivates UCP2-mediated proton leak but also enhances GSIS. Conversely, an increase in mitochondrial matrix ROS was found to deglutathionylate and activate UCP2 leak and impede GSIS. Glucose metabolism also decreased the total amount of cellular glutathionylated proteins and increased the cellular glutathione redox ratio (GSH/GSSG). Intriguingly, the provision of extracellular ROS (H2O2, 10 μm) amplified GSIS and also activated UCP2. Collectively, our findings indicate that the glutathionylation status of UCP2 contributes to the regulation of GSIS, and different cellular sites and inducers of ROS can have opposing effects on GSIS, perhaps explaining some of the controversy surrounding the role of ROS in GSIS. PMID:23035124

  6. The Plasmodium berghei RC strain is highly diverged and harbors putatively novel drug resistance variants

    PubMed Central

    Kulawonganunchai, Supasak; Wilantho, Alisa; Koonyosying, Pongpisid; Uthaipibull, Chairat

    2017-01-01

    Background The current first line drugs for treating uncomplicated malaria are artemisinin (ART) combination therapies. However, Plasmodium falciparum parasites resistant to ART and partner drugs are spreading, which threatens malaria control efforts. Rodent malaria species are useful models for understanding antimalarial resistance, in particular genetic variants responsible for cross resistance to different compounds. Methods The Plasmodium berghei RC strain (PbRC) is described as resistant to different antimalarials, including chloroquine (CQ) and ART. In an attempt to identify the genetic basis for the antimalarial resistance trait in PbRC, its genome was sequenced and compared with five other previously sequenced P. berghei strains. Results We found that PbRC is eight-fold less sensitive to the ART derivative artesunate than the reference strain PbANKA. The genome of PbRC is markedly different from other strains, and 6,974 single nucleotide variants private to PbRC were identified. Among these PbRC private variants, non-synonymous changes were identified in genes known to modulate antimalarial sensitivity in rodent malaria species, including notably the ubiquitin carboxyl-terminal hydrolase 1 gene. However, no variants were found in some genes with strong evidence of association with ART resistance in P. falciparum such as K13 propeller protein. Discussion The variants identified in PbRC provide insight into P. berghei genome diversity and genetic factors that could modulate CQ and ART resistance in Plasmodium spp. PMID:29018598

  7. Mitophagy controls beige adipocyte maintenance through a Parkin-dependent and UCP1-independent mechanism.

    PubMed

    Lu, Xiaodan; Altshuler-Keylin, Svetlana; Wang, Qiang; Chen, Yong; Henrique Sponton, Carlos; Ikeda, Kenji; Maretich, Pema; Yoneshiro, Takeshi; Kajimura, Shingo

    2018-04-24

    Beige adipocytes are an inducible form of mitochondria-enriched thermogenic adipocytes that emerge in response to external stimuli, such as chronic cold exposure. We have previously shown that after the withdrawal of external stimuli, beige adipocytes directly acquire a white fat-like phenotype through autophagy-mediated mitochondrial degradation. We investigated the upstream pathway that mediates mitochondrial clearance and report that Parkin-mediated mitophagy plays a key role in the beige-to-white adipocyte transition. Mice genetically deficient in Park2 showed reduced mitochondrial degradation and retained thermogenic beige adipocytes even after the withdrawal of external stimuli. Norepinephrine signaling through the PKA pathway inhibited the recruitment of Parkin protein to mitochondria in beige adipocytes. However, mitochondrial proton uncoupling by uncoupling protein 1 (UCP1) was dispensable for Parkin recruitment and beige adipocyte maintenance. These results suggest a physiological mechanism by which external cues control mitochondrial homeostasis in thermogenic fat cells through mitophagy. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  8. Intestinal DMBT1 Expression Is Modulated by Crohn’s Disease-Associated IL23R Variants and by a DMBT1 Variant Which Influences Binding of the Transcription Factors CREB1 and ATF-2

    PubMed Central

    Le Bras, Emmanuelle; Zimmermann, Eva; Olszak, Torsten; Bedynek, Andrea; Göke, Burkhard; Franke, Andre

    2013-01-01

    Objectives DMBT is an antibacterial pattern recognition and scavenger receptor. In this study, we analyzed the role of DMBT1 single nucleotide polymorphisms (SNPs) regarding inflammatory bowel disease (IBD) susceptibility and examined their functional impact on transcription factor binding and downstream gene expression. Methods Seven SNPs in the DMBT1 gene region were analyzed in 2073 individuals including 818 Crohn’s disease (CD) patients and 972 healthy controls in two independent case-control panels. Comprehensive epistasis analyses for the known CD susceptibility genes NOD2, IL23R and IL27 were performed. The influence of IL23R variants on DMBT1 expression was analyzed. Functional analysis included siRNA transfection, quantitative PCR, western blot, electrophoretic mobility shift and luciferase assays. Results IL-22 induces DMBT1 protein expression in intestinal epithelial cells dependent on STAT3, ATF-2 and CREB1. IL-22 expression-modulating, CD risk-associated IL23R variants influence DMBT1 expression in CD patients and DMBT1 levels are increased in the inflamed intestinal mucosa of CD patients. Several DMBT1 SNPs were associated with CD susceptibility. SNP rs2981804 was most strongly associated with CD in the combined panel (p = 3.0×10−7, OR 1.42; 95% CI 1.24–1.63). All haplotype groups tested showed highly significant associations with CD (including omnibus P-values as low as 6.1×10−18). The most strongly CD risk-associated, non-coding DMBT1 SNP rs2981804 modifies the DNA binding sites for the transcription factors CREB1 and ATF-2 and the respective genomic region comprising rs2981804 is able to act as a transcriptional regulator in vitro. Intestinal DMBT1 expression is decreased in CD patients carrying the rs2981804 CD risk allele. Conclusion We identified novel associations of DMBT1 variants with CD susceptibility and discovered a novel functional role of rs2981804 in regulating DMBT1 expression. Our data suggest an important role of DMBT1

  9. Ethanol modulates the VR-1 variant amiloride-insensitive salt taste receptor. II. Effect on chorda tympani salt responses.

    PubMed

    Lyall, Vijay; Heck, Gerard L; Phan, Tam-Hao T; Mummalaneni, Shobha; Malik, Shahbaz A; Vinnikova, Anna K; Desimone, John A

    2005-06-01

    The effect of ethanol on the amiloride- and benzamil (Bz)-insensitive salt taste receptor was investigated by direct measurement of intracellular Na(+) activity ([Na(+)](i)) using fluorescence imaging in polarized fungiform taste receptor cells (TRCs) and by chorda tympani (CT) taste nerve recordings. CT responses to KCl and NaCl were recorded in Sprague-Dawley rats, and in wild-type (WT) and vanilloid receptor-1 (VR-1) knockout mice (KO). CT responses were monitored in the presence of Bz, a specific blocker of the epithelial Na(+) channel (ENaC). CT responses were also recorded in the presence of agonists (resiniferatoxin and elevated temperature) and antagonists (capsazepine and SB-366791) of VR-1 that similarly modulate the Bz-insensitive VR-1 variant salt taste receptor. In the absence of mineral salts, ethanol induced a transient decrease in TRC volume and elicited only transient phasic CT responses. In the presence of mineral salts, ethanol increased the apical cation flux in TRCs without a change in volume, increased transepithelial electrical resistance across the tongue, and elicited CT responses that were similar to salt responses, consisting of both a phasic component and a sustained tonic component. At concentrations <50%, ethanol enhanced responses to KCl and NaCl, while at ethanol concentrations >50%, those CT responses were inhibited. Resiniferatoxin and elevated temperature increased the sensitivity of the CT response to ethanol in salt-containing media, and SB-366791 inhibited the effect of ethanol, resiniferatoxin, and elevated temperature on the CT responses to mineral salts. VR-1 KO mice demonstrated no Bz-insensitive CT response to NaCl and no sensitivity to ethanol. We conclude that ethanol increases salt taste sensitivity by its direct action on the Bz-insensitive VR-1 variant salt taste receptor.

  10. Optical cage generated by azimuthal- and radial-variant vector beams.

    PubMed

    Man, Zhongsheng; Bai, Zhidong; Li, Jinjian; Zhang, Shuoshuo; Li, Xiaoyu; Zhang, Yuquan; Ge, Xiaolu; Fu, Shenggui

    2018-05-01

    We propose a method to generate an optical cage using azimuthal- and radial-variant vector beams in a high numerical aperture optical system. A new kind of vector beam that has azimuthal- and radial-variant polarization states is proposed and demonstrated theoretically. Then, an integrated analytical model to calculate the electromagnetic field and Poynting vector distributions of the input azimuthal- and radial-variant vector beams is derived and built based on the vector diffraction theory of Richards and Wolf. From calculations, a full polarization-controlled optical cage is obtained by simply tailoring the radial index of the polarization, the uniformity U of which is up to 0.7748, and the cleanness C is zero. Additionally, a perfect optical cage can be achieved with U=1, and C=0 by introducing an amplitude modulation; its magnetic field and energy flow are also demonstrated in detail. Such optical cages may be helpful in applications such as optical trapping and high-resolution imaging.

  11. Germline prokineticin receptor 2 (PROKR2) variants associated with central hypogonadism cause differental modulation of distinct intracellular pathways.

    PubMed

    Libri, Domenico Vladimiro; Kleinau, Gunnar; Vezzoli, Valeria; Busnelli, Marta; Guizzardi, Fabiana; Sinisi, Antonio Agostino; Pincelli, Angela Ida; Mancini, Antonio; Russo, Gianni; Beck-Peccoz, Paolo; Loche, Sandro; Crivellaro, Claudio; Maghnie, Mohamad; Krausz, Csilla; Persani, Luca; Bonomi, Marco

    2014-03-01

    Defects of prokineticin pathway affect the neuroendocrine control of reproduction, but their role in the pathogenesis of central hypogonadism remains undefined, and the functional impact of the missense PROKR2 variants has been incompletely characterized. In a series of 246 idiopathic central hypogonadism patients, we found three novel (p.V158I, p.V334M, and p.N15TfsX30) and six already known (p.L173R, p.T260M, p.R268C, p.V274D, p.V331M, and p.H20MfsX23) germline variants in the PROKR2 gene. We evaluated the effects of seven missense alterations on two different prokineticin receptor 2 (PROKR2)-dependent pathways: inositol phosphate-Ca(2+) (Gq coupling) and cAMP (Gs coupling). PROKR2 variants were found in 16 patients (6.5%). Expression levels of variants p.V158I and p.V331M were moderately reduced, whereas they were markedly impaired in the remaining cases, except p.V334M, which was significantly overexpressed. The variants p.T260M, p.R268C, and p.V331M showed no remarkable changes in cAMP response (EC50) whereas the IP signaling appeared more profoundly affected. In contrast, cAMP accumulation cannot be stimulated through the p.L173R and p.V274D, but IP EC50 was similar to wt inp.L173R and increased by 10-fold in p.V274D. The variant p.V334M led to a 3-fold increase of EC50 for both cAMP and IP. Our study shows that single PROKR2 missense allelic variants can either affect both signaling pathways differently or selectively. Thus, the integrity of both PROKR2-dependent cAMP and IP signals should be evaluated for a complete functional testing of novel identified allelic variants.

  12. Potential roles for uncoupling proteins in HIV lipodystrophy.

    PubMed

    Nolan, David; Pace, Craig

    2004-07-01

    The 'HIV lipodystrophy syndrome' consists of several distinct components, including lipoatrophy (pathological subcutaneous fat loss), lipohypertrophy (abdominal/visceral adiposity), and metabolic complications including insulin resistance and dyslipidemia. Lipoatrophy appears to represent an adipose tissue-specific form of mitochondrial toxicity associated strongly with stavudine NRTI therapy, whilst the 'metabolic syndrome' phenotype is associated with HIV protease inhibitor therapy. In this context, the role of uncoupling proteins (UCPs) in modulating resting energy expenditure in response to elevated fatty acid flux associated with the 'metabolic syndrome' is supported by clinical data as well as findings of elevated adipose tissue UCP expression. The role of UCPs in this syndrome therefore exemplifies the multifactorial nature of these antiretroviral therapy complications.

  13. Er{sub 1.33}Pt{sub 3}Ga{sub 8}: A modulated variant of the Er{sub 4}Pt{sub 9}Al{sub 24}-structure type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oswald, Iain W.H.; Gourdon, Olivier; Bekins, Amy

    Single crystals of Er{sub 1.33}Pt{sub 3}Ga{sub 8} were synthesized in a molten Ga flux. Er{sub 1.33}Pt{sub 3}Ga{sub 8} can be considered to be a modulated variant of the Er{sub 4}Pt{sub 9}Al{sub 24}-structure type, where the partial occupancies are ordered. Indeed, the presence of weak satellite reflections indicates a complex organization and distribution of the Er and Ga atoms within the [ErGa] slabs. The structure has been solved based on single crystal X-ray diffraction data in the monoclinic superspace group X2/m(0β0)00 with a commensurate modulated vector q=1/3b*. Precession images also indicate diffusion in the perpendicular direction indicating a partial disorder ofmore » this arrangement from layer to layer. In addition, Er{sub 1.33}Pt{sub 3}Ga{sub 8} shows antiferromagnetic ordering at T{sub N}~5 K. - Graphical abstract: A precession image of the hk0 zone showing weak, periodic, unindexed reflections indicating modulation and representation of the commensurate [ErGa] layer showing the waving modulated occupation. - Highlights: • Single crystals of Er{sub 1.33}Pt{sub 3}Ga{sub 8} were grown from gallium flux. • The structure of Er{sub 1.33}Pt{sub 3}Ga{sub 8} is compared to Er{sub 4}Pt{sub 9}Al{sub 24}. • Structure has been solved in the monoclinic superspace group X2/m(0β0)00 with a commensurate modulated vector q=1/3b*.« less

  14. Possible role of rare variants in Trace amine associated receptor 1 in schizophrenia.

    PubMed

    John, Jibin; Kukshal, Prachi; Bhatia, Triptish; Chowdari, K V; Nimgaonkar, V L; Deshpande, S N; Thelma, B K

    2017-11-01

    Schizophrenia (SZ) is a chronic mental illness with behavioral abnormalities. Recent common variant based genome wide association studies and rare variant detection using next generation sequencing approaches have identified numerous variants that confer risk for SZ, but etiology remains unclear propelling continuing investigations. Using whole exome sequencing, we identified a rare heterozygous variant (c.545G>T; p.Cys182Phe) in Trace amine associated receptor 1 gene (TAAR1 6q23.2) in three affected members in a small SZ family. The variant predicted to be damaging by 15 prediction tools, causes breakage of a conserved disulfide bond in this G-protein-coupled receptor. On screening this intronless gene for additional variant(s) in ~800 sporadic SZ patients, we identified six rare protein altering variants (MAF<0.001) namely p.Ser47Cys, p.Phe51Leu, p.Tyr294Ter, p.Leu295Ser in four unrelated north Indian cases (n=475); p.Ala109Thr and p.Val250Ala in two independent Caucasian/African-American patients (n=310). Five of these variants were also predicted to be damaging. Besides, a rare synonymous variant was observed in SZ patients. These rare variants were absent in north Indian healthy controls (n=410) but significantly enriched in patients (p=0.036). Conversely, three common coding SNPs (rs8192621, rs8192620 and rs8192619) and a promoter SNP (rs60266355) tested for association with SZ in the north Indian cohort were not significant (P>0.05). TAAR1 is a modulator of monoaminergic pathways and interacts with AKT signaling pathways. Substantial animal model based pharmacological and functional data implying its relevance in SZ are also available. However, this is the first report suggestive of the likely contribution of rare variants in this gene to SZ. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cellulase variants

    DOEpatents

    Blazej, Robert; Toriello, Nicholas; Emrich, Charles; Cohen, Richard N.; Koppel, Nitzan

    2015-07-14

    This invention provides novel variant cellulolytic enzymes having improved activity and/or stability. In certain embodiments the variant cellulotyic enzymes comprise a glycoside hydrolase with or comprising a substitution at one or more positions corresponding to one or more of residues F64, A226, and/or E246 in Thermobifida fusca Cel9A enzyme. In certain embodiments the glycoside hydrolase is a variant of a family 9 glycoside hydrolase. In certain embodiments the glycoside hydrolase is a variant of a theme B family 9 glycoside hydrolase.

  16. Differential agonist sensitivity of glycine receptor α2 subunit splice variants

    PubMed Central

    Miller, Paul S; Harvey, Robert J; Smart, Trevor G

    2004-01-01

    The glycine receptor (GlyR) α2A and α2B splice variants differ by a dual, adjacent amino acid substitution from α2AV58,T59 to α2BI58,A59 in the N-terminal extracellular domain. Comparing the effects of the GlyR agonists, glycine, β-alanine and taurine, on the GlyR α2 isoforms, revealed a significant increase in potency for all three agonists at the α2B variant. The sensitivities of the splice variants to the competitive antagonist, strychnine, and to the biphasic modulator Zn2+, were comparable. In contrast, the allosteric inhibitor picrotoxin was more potent on GlyR α2A compared to GlyR α2B receptors. Coexpression of α2A or α2B subunits with the GlyR β subunit revealed that the higher agonist potencies observed with the α2B homomer were retained for the α2Bβ heteromer. The identical sensitivity to strychnine combined with a reduction in the maximum current induced by the partial agonist taurine at the GlyR α2A homomer, suggested that the changed sensitivity to agonists is in accordance with a modulation of agonist efficacy rather than agonist affinity. An effect on agonist efficacy was also supported by using a structural model of the GlyR, localising the region of splice variation to the proposed docking region between GlyR loop 2 and the TM2-3 loop, an area associated with channel activation. The existence of a spasmodic mouse phenotype linked to a GlyR α1A52S mutation, the equivalent position to the source of the α2 splice variation, raises the possibility that the GlyR α2 splice variants may be responsible for distinct roles in neuronal function. PMID:15302677

  17. DNA methylation of the filaggrin gene adds to the risk of eczema associated with loss-of-function variants

    PubMed Central

    Ziyab, A. H.; Karmaus, W.; Holloway, J. W.; Zhang, H.; Ewart, S.; Arshad, S. H.

    2012-01-01

    Background Loss-of-function variants within the filaggrin gene (FLG) are associated with a dysfunctional skin barrier that contributes to the development of eczema. Epigenetic modifications, such as DNA methylation, are genetic regulatory mechanisms that modulate gene expression without changing the DAN sequence. Objectives To investigate whether genetic variants and adjacent differential DNA methylation within the FLG gene synergistically act on the development of eczema. Methods A subsample (n = 245, only females aged 18 years) of the Isle of Wight birth cohort participants (n = 1,456) had available information for FLG variants R501X, 2282del4, and S3247X and DNA methylation levels for 10 CpG sites within the FLG gene. Log-binomial regression was used to estimate the risk ratios (RRs) of eczema associated with FLG variants at different methylation levels. Results The period prevalence of eczema was 15.2% at age 18 years and 9.0% of participants were carriers (heterozygous) of FLG variants. Of the 10 CpG sites spanning the genomic region of FLG, methylation levels of CpG site ‘cg07548383’ showed a significant interaction with FLG sequence variants on the risk for eczema. At 86% methylation level, filaggrin haploinsufficient individuals had 5.48-fold increased risk of eczema when compared to those with wild type FLG genotype (p-value = 0.0008). Conclusions Our novel results indicated that the association between FLG loss-of-function variants and eczema is modulated by DNA methylation. Simultaneously assessing the joint effect of genetic and epigenetic factors within the FLG gene further highlights the importance of this genomic region for eczema manifestation. PMID:23003573

  18. Inactive DNMT3B Splice Variants Modulate De Novo DNA Methylation

    PubMed Central

    Gordon, Catherine A.; Hartono, Stella R.; Chédin, Frédéric

    2013-01-01

    Inactive DNA methyltransferase (DNMT) 3B splice isoforms are associated with changes in DNA methylation, yet the mechanisms by which they act remain largely unknown. Using biochemical and cell culture assays, we show here that the inactive DNMT3B3 and DNMT3B4 isoforms bind to and regulate the activity of catalytically competent DNMT3A or DNMT3B molecules. DNMT3B3 modestly stimulated the de novo methylation activity of DNMT3A and also counteracted the stimulatory effects of DNMT3L, therefore leading to subtle and contrasting effects on activity. DNMT3B4, by contrast, significantly inhibited de novo DNA methylation by active DNMT3 molecules, most likely due to its ability to reduce the DNA binding affinity of co-complexes, thereby sequestering them away from their substrate. Immunocytochemistry experiments revealed that in addition to their effects on the intrinsic catalytic function of active DNMT3 enzymes, DNMT3B3 and DNMT34 drive distinct types of chromatin compaction and patterns of histone 3 lysine 9 tri-methylation (H3K9me3) deposition. Our findings suggest that regulation of active DNMT3 members through the formation of co-complexes with inactive DNMT3 variants is a general mechanism by which DNMT3 variants function. This may account for some of the changes in DNA methylation patterns observed during development and disease. PMID:23894490

  19. IGF2R Genetic Variants, Circulating IGF2 Concentrations and Colon Cancer Risk in African Americans and Whites

    PubMed Central

    Hoyo, Cathrine; Murphy, Susan K.; Schildkraut, Joellen M.; Vidal, Adriana C.; Skaar, David; Millikan, Robert C.; Galanko, Joseph; Sandler, Robert S.; Jirtle, Randy; Keku, Temitope

    2012-01-01

    The Mannose 6 Phosphate/Insulin-like Growth Factor Receptor-2 (IGF2R) encodes a type-1 membrane protein that modulates availability of the potent mitogen, IGF2. We evaluated the associations between IGF2R non-synonymous genetic variants (c.5002G>A, Gly1619Arg(rs629849), and c.901C>G, Leu252Val(rs8191754)), circulating IGF2 levels, and colon cancer (CC) risk among African American and White participants enrolled in the North Carolina Colon Cancer Study (NCCCS). Generalized linear models were used to compare circulating levels of IGF2 among 298 African American and 518 White controls. Logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association of IGF2R genetic variants and CC risk. Women homozygous for the IGF2R c.5002 G>A allele, had higher mean levels of circulating IGF2, 828 (SD=321) ng/ml compared to non-carriers, 595 (SD=217) ng/ml (p-value=0.01). This pattern was not apparent in individuals homozygous for the IGF2R c.901 C>G variant. Whites homozygous for the IGF2R c.901 C>G variant trended towards a higher risk of CC, OR=2.2 [95% CI(0.9–5.4)], whereas carrying the IGF2R c.5002 G>A variant was not associated with CC risk. Our findings support the hypothesis that being homozygous for the IGF2R c.5002 G>A modulates IGF2 circulating levels in a sex-specific manner, and while carrying the IGF2R c.901 C>G may increase cancer risk, the mechanism may not involve modulation of circulating IGF2. PMID:22377707

  20. IGF2R genetic variants, circulating IGF2 concentrations and colon cancer risk in African Americans and Whites.

    PubMed

    Hoyo, Cathrine; Murphy, Susan K; Schildkraut, Joellen M; Vidal, Adriana C; Skaar, David; Millikan, Robert C; Galanko, Joseph; Sandler, Robert S; Jirtle, Randy; Keku, Temitope

    2012-01-01

    The Mannose 6 Phosphate/Insulin-like Growth Factor Receptor-2 (IGF2R) encodes a type-1 membrane protein that modulates availability of the potent mitogen, IGF2. We evaluated the associations between IGF2R non-synonymous genetic variants (c.5002G>A, Gly1619Arg(rs629849), and c.901C>G, Leu252Val(rs8191754)), circulating IGF2 levels, and colon cancer (CC) risk among African American and White participants enrolled in the North Carolina Colon Cancer Study (NCCCS). Generalized linear models were used to compare circulating levels of IGF2 among 298 African American and 518 White controls. Logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association of IGF2R genetic variants and CC risk. Women homozygous for the IGF2R c.5002 G>A allele, had higher mean levels of circulating IGF2, 828 (SD=321) ng/ml compared to non-carriers, 595 (SD=217) ng/ml (p-value=0.01). This pattern was not apparent in individuals homozygous for the IGF2R c.901 C>G variant. Whites homozygous for the IGF2R c.901 C>G variant trended towards a higher risk of CC, OR=2.2 [95% CI(0.9-5.4)], whereas carrying the IGF2R c.5002 G>A variant was not associated with CC risk. Our findings support the hypothesis that being homozygous for the IGF2R c.5002 G>A modulates IGF2 circulating levels in a sex-specific manner, and while carrying the IGF2R c.901 C>G may increase cancer risk, the mechanism may not involve modulation of circulating IGF2.

  1. Purification, biochemical, and structural characterization of a novel fibrinolytic enzyme from Mucor subtilissimus UCP 1262.

    PubMed

    Nascimento, Thiago Pajeú; Sales, Amanda Emmanuelle; Porto, Tatiana Souza; Costa, Romero Marcos Pedrosa Brandão; Breydo, Leonid; Uversky, Vladimir N; Porto, Ana Lúcia Figueiredo; Converti, Attilio

    2017-08-01

    Fibrinolytic proteases are enzymes that degrade fibrin. They provide a promising alternative to existing drugs for thrombolytic therapy. A protease isolated from the filamentous fungus Mucor subtilissimus UCP 1262 was purified in three steps by ammonium sulfate fractionation, ion exchange, and molecular exclusion chromatographies, and characterized biochemically and structurally. The purified protease exhibited a molecular mass of 20 kDa, an apparent isoelectric point of 4.94 and a secondary structure composed mainly of α-helices. Selectivity for N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide as substrate suggests that this enzyme is a chymotrypsin-like serine protease, whose activity was enhanced by the addition of Cu 2+ , Mg 2+ , and Fe 2+ . The enzyme showed a fibrinolytic activity of 22.53 U/mL at 40 °C and its contact with polyethylene glycol did not lead to any significant alteration of its secondary structure. This protein represents an important example of a novel fibrinolytic enzyme with potential use in the treatment of thromboembolic disorders such as strokes, pulmonary emboli, and deep vein thrombosis.

  2. Enhanced activity of human serotonin transporter variants associated with autism.

    PubMed

    Prasad, Harish C; Steiner, Jennifer A; Sutcliffe, James S; Blakely, Randy D

    2009-01-27

    Rare, functional, non-synonymous variants in the human serotonin (5-hydroxytryptamine, 5-HT) transporter (hSERT) gene (SLC6A4) have been identified in both autism and obsessive-compulsive disorder (OCD). Within autism, rare hSERT coding variants associate with rigid-compulsive traits, suggesting both phenotypic overlap with OCD and a shared relationship with disrupted 5-HT signalling. Here, we document functional perturbations of three of these variants: Ile425Leu; Phe465Leu; and Leu550Val. In transiently transfected HeLa cells, the three variants confer a gain of 5-HT transport phenotype. Specifically, enhanced SERT activity was also observed in lymphoblastoid lines derived from mutation carriers. In contrast to previously characterized Gly56Ala, where increased transport activity derives from catalytic activation, the three novel variants exhibit elevated surface density as revealed through both surface antagonist-binding and biotinylation studies. Unlike Gly56Ala, mutants Ile425Leu, Phe465Leu and Leu550Val retain a capacity for acute PKG and p38 MAPK regulation. However, both Gly56Ala and Ile425Leu demonstrate markedly reduced sensitivity to PP2A antagonists, suggesting that deficits in trafficking and catalytic modulation may derive from a common basis in perturbed phosphatase regulation. When expressed stably from the same genomic locus in CHO cells, both Gly56Ala and Ile425Leu display catalytic activation, accompanied by a striking loss of SERT protein.

  3. UCP1 -3826 A>G polymorphism affects weight, fat mass, and risk of type 2 diabetes mellitus in grade III obese patients.

    PubMed

    Nicoletti, Carolina Ferreira; de Oliveira, Ana Paula Rus Perez; Brochado, Maria Jose Franco; de Oliveira, Bruno Parenti; Pinhel, Marcela Augusta de Souza; Marchini, Julio Sergio; dos Santos, Jose Ernesto; Salgado Junior, Wilson; Silva Junior, Wilson Araujo; Nonino, Carla Barbosa

    2016-01-01

    We investigated whether or not the UCP1 -3826 A>G polymorphism is associated with obesity and related metabolic disorders in grade III obese patients. 150 obese patients (body mass index ≥35 kg/m(2)) who were candidates for bariatric surgery were studied. Weight (kg), body mass index (kg/m(2)); fat free mass (kg), fat mass (kg), energy intake (kcal), level of physical activity, plasma levels of glucose, total cholesterol, low-density lipoprotein, high-density lipoprotein (HDL), triacylglycerols, and the prevalence of comorbidities associated with obesity were collected from medical records. Polymorphism rs1800592 genotyping was performed through allelic discrimination method in real time polymerase chain reaction using the TaqMan predesigned SNP Genotyping Assays kits. The t test was done to determine if genotypes of each polymorphism are associated with anthropometric and body composition variables. Linear regression models were used for age, sex, height, physical activity, and energy intake in weight and body composition variations (P < 0.05). Among these 150 individuals (47.2 ± 10.5 y, 80% women) the distribution of AA, AG, and GG was 41.3%, 45.3%, and 13.4%, respectively. Weight and body fat were lower in individuals who were carriers of a mutated allele G. It was observed that mutated homozygotes (GG) had a lower frequency of type 2 diabetes mellitus compared with those of wild allele (AA+AG). UCP1 -3826 A>G polymorphism is associated with weight, body fat mass, and risk of type 2 diabetes mellitus in obese individuals candidates for bariatric surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Systematic comparison of variant calling pipelines using gold standard personal exome variants

    PubMed Central

    Hwang, Sohyun; Kim, Eiru; Lee, Insuk; Marcotte, Edward M.

    2015-01-01

    The success of clinical genomics using next generation sequencing (NGS) requires the accurate and consistent identification of personal genome variants. Assorted variant calling methods have been developed, which show low concordance between their calls. Hence, a systematic comparison of the variant callers could give important guidance to NGS-based clinical genomics. Recently, a set of high-confident variant calls for one individual (NA12878) has been published by the Genome in a Bottle (GIAB) consortium, enabling performance benchmarking of different variant calling pipelines. Based on the gold standard reference variant calls from GIAB, we compared the performance of thirteen variant calling pipelines, testing combinations of three read aligners—BWA-MEM, Bowtie2, and Novoalign—and four variant callers—Genome Analysis Tool Kit HaplotypeCaller (GATK-HC), Samtools mpileup, Freebayes and Ion Proton Variant Caller (TVC), for twelve data sets for the NA12878 genome sequenced by different platforms including Illumina2000, Illumina2500, and Ion Proton, with various exome capture systems and exome coverage. We observed different biases toward specific types of SNP genotyping errors by the different variant callers. The results of our study provide useful guidelines for reliable variant identification from deep sequencing of personal genomes. PMID:26639839

  5. MicroRNA-410 regulated lipoprotein lipase variant rs13702 is associated with stroke incidence and modulated by diet in the randomized controlled PREDIMED trial.

    PubMed

    Corella, Dolores; Sorlí, Jose V; Estruch, Ramon; Coltell, Oscar; Ortega-Azorín, Carolina; Portolés, Olga; Martínez-González, Miguel Ángel; Bulló, Mónica; Fitó, Montserrat; Arós, Fernando; Lapetra, José; Asensio, Eva M; Sáez, Guillermo T; Serra-Majem, Lluís; Muñoz-Bravo, Carlos; Ruiz-Gutiérrez, Valentina; Fiol, Miquel; Vinyoles, Ernest; Pintó, Xavier; Richardson, Kris; Ros, Emilio; Ordovás, Jose M

    2014-08-01

    MicroRNAs have emerged as important epigenetic regulators in cardiovascular diseases (CVDs). Using an observational meta-analysis design, we previously characterized a gain-of-function microRNA-410 target site polymorphism (rs13702T>C) in the 3'untranslated region of the lipoprotein lipase (LPL) gene. The C allele was associated with lower triglycerides, and this association was modulated by fat intake. We aimed to extend our findings by assessing the interaction between the rs13702 polymorphism and fat intake on triglycerides at baseline and longitudinally by using a dietary intervention design. We also examined as a primary outcome the association of this variant with CVD incidence and its modulation by the Mediterranean diet (MedDiet). We studied 7187 participants in the PREDIMED (Prevención con Dieta Mediterránea) randomized trial that tested a MedDiet intervention compared with a control diet, with a median 4.8-y follow-up. LPL polymorphisms and triglycerides were determined and CVD assessed. Gene-diet interactions for triglycerides were analyzed at baseline (n = 6880) and after a 3-y intervention (n = 4131). Oxidative stress parameters were investigated in a subsample. The rs13702T>C polymorphism was strongly associated with lower triglycerides in C allele carriers and interacted synergistically with dietary monounsaturated (P = 0.038) and unsaturated fat intake (P = 0.037), decreasing triglycerides at baseline. By 3 y, we observed a gene-diet interaction (P = 0.025) in which the C allele was associated with a greater reduction in triglycerides after intervention with MedDiet, high in unsaturated fat. Although the polymorphism was associated with lower stroke risk (HR: 0.74; 95% CI: 0.57, 0.97; P = 0.029 per C allele), this association reached statistical significance only in the MedDiet intervention (HR: 0.58; 95% CI: 0.37, 0.91; P = 0.019 in C compared with TT carriers), not in the control group (HR: 0.94; 95% CI: 0.55, 1.59; P = 0.805). We report a novel

  6. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression.

    PubMed

    Fairfax, Benjamin P; Humburg, Peter; Makino, Seiko; Naranbhai, Vivek; Wong, Daniel; Lau, Evelyn; Jostins, Luke; Plant, Katharine; Andrews, Robert; McGee, Chris; Knight, Julian C

    2014-03-07

    To systematically investigate the impact of immune stimulation upon regulatory variant activity, we exposed primary monocytes from 432 healthy Europeans to interferon-γ (IFN-γ) or differing durations of lipopolysaccharide and mapped expression quantitative trait loci (eQTLs). More than half of cis-eQTLs identified, involving hundreds of genes and associated pathways, are detected specifically in stimulated monocytes. Induced innate immune activity reveals multiple master regulatory trans-eQTLs including the major histocompatibility complex (MHC), coding variants altering enzyme and receptor function, an IFN-β cytokine network showing temporal specificity, and an interferon regulatory factor 2 (IRF2) transcription factor-modulated network. Induced eQTL are significantly enriched for genome-wide association study loci, identifying context-specific associations to putative causal genes including CARD9, ATM, and IRF8. Thus, applying pathophysiologically relevant immune stimuli assists resolution of functional genetic variants.

  7. CDKL5 variants

    PubMed Central

    Kalscheuer, Vera M.; Hennig, Friederike; Leonard, Helen; Downs, Jenny; Clarke, Angus; Benke, Tim A.; Armstrong, Judith; Pineda, Mercedes; Bailey, Mark E.S.; Cobb, Stuart R.

    2017-01-01

    Objective: To provide new insights into the interpretation of genetic variants in a rare neurologic disorder, CDKL5 deficiency, in the contexts of population sequencing data and an updated characterization of the CDKL5 gene. Methods: We analyzed all known potentially pathogenic CDKL5 variants by combining data from large-scale population sequencing studies with CDKL5 variants from new and all available clinical cohorts and combined this with computational methods to predict pathogenicity. Results: The study has identified several variants that can be reclassified as benign or likely benign. With the addition of novel CDKL5 variants, we confirm that pathogenic missense variants cluster in the catalytic domain of CDKL5 and reclassify a purported missense variant as having a splicing consequence. We provide further evidence that missense variants in the final 3 exons are likely to be benign and not important to disease pathology. We also describe benign splicing and nonsense variants within these exons, suggesting that isoform hCDKL5_5 is likely to have little or no neurologic significance. We also use the available data to make a preliminary estimate of minimum incidence of CDKL5 deficiency. Conclusions: These findings have implications for genetic diagnosis, providing evidence for the reclassification of specific variants previously thought to result in CDKL5 deficiency. Together, these analyses support the view that the predominant brain isoform in humans (hCDKL5_1) is crucial for normal neurodevelopment and that the catalytic domain is the primary functional domain. PMID:29264392

  8. Circulating 25-hydroxyvitamin D, IRS1 variant rs2943641 and insulin resistance: replication of a gene-nutrient interaction in four populations of different ancestries

    USDA-ARS?s Scientific Manuscript database

    Associations of either insulin receptor substrate 1 (IRS1) variants or circulating 25-hydroxyvitamin D (25(OH)D) with type 2 diabetes and insulin resistance are inconsistent. This study sought to determine whether circulating 25(OH)D modulates the association of a potentially functional variant at I...

  9. Gelidium elegans Regulates the AMPK-PRDM16-UCP-1 Pathway and Has a Synergistic Effect with Orlistat on Obesity-Associated Features in Mice Fed a High-Fat Diet.

    PubMed

    Choi, Jia; Kim, Kui-Jin; Koh, Eun-Jeong; Lee, Boo-Yong

    2017-03-30

    The incidence of obesity is rising at an alarming rate throughout the world and is becoming a major public health concern with incalculable social and economic costs. Gelidium elegans (GENS), also previously known as Gelidium amansii , has been shown to exhibit anti-obesity effects. Nevertheless, the mechanism by which GENS is able to do this remains unclear. In the present study, our results showed that GENS prevents high-fat diet (HFD)-induced weight gain through modulation of the adenosine monophosphate-activated protein kinase (AMPK)-PR domain-containing16 (PRDM16)-uncoupling protein-1 (UCP-1) pathway in a mice model. We also found that GENS decreased hyperglycemia in mice that had been fed a HFD compared to corresponding controls. We also assessed the beneficial effect of the combined treatment with GENS and orlistat (a Food and Drug Administration-approved obesity drug) on obesity characteristics in HFD-fed mice. We found that in HFD-fed mice, the combination of GENS and orlistat is associated with more significant weight loss than orlistat treatment alone. Moreover, our results demonstrated a positive synergistic effect of GENS and orlistat on hyperglycemia and plasma triglyceride level in these animals. Thus, we suggest that a combination therapy of GENS and orlistat may positively influence obesity-related health outcomes in a diet-induced obese population.

  10. Gelidium elegans Regulates the AMPK-PRDM16-UCP-1 Pathway and Has a Synergistic Effect with Orlistat on Obesity-Associated Features in Mice Fed a High-Fat Diet

    PubMed Central

    Choi, Jia; Kim, Kui-Jin; Koh, Eun-Jeong; Lee, Boo-Yong

    2017-01-01

    The incidence of obesity is rising at an alarming rate throughout the world and is becoming a major public health concern with incalculable social and economic costs. Gelidium elegans (GENS), also previously known as Gelidium amansii, has been shown to exhibit anti-obesity effects. Nevertheless, the mechanism by which GENS is able to do this remains unclear. In the present study, our results showed that GENS prevents high-fat diet (HFD)-induced weight gain through modulation of the adenosine monophosphate-activated protein kinase (AMPK)-PR domain-containing16 (PRDM16)-uncoupling protein-1 (UCP-1) pathway in a mice model. We also found that GENS decreased hyperglycemia in mice that had been fed a HFD compared to corresponding controls. We also assessed the beneficial effect of the combined treatment with GENS and orlistat (a Food and Drug Administration-approved obesity drug) on obesity characteristics in HFD-fed mice. We found that in HFD-fed mice, the combination of GENS and orlistat is associated with more significant weight loss than orlistat treatment alone. Moreover, our results demonstrated a positive synergistic effect of GENS and orlistat on hyperglycemia and plasma triglyceride level in these animals. Thus, we suggest that a combination therapy of GENS and orlistat may positively influence obesity-related health outcomes in a diet-induced obese population. PMID:28358328

  11. Influence of GRIK4 genetic variants on the electroconvulsive therapy response.

    PubMed

    Minelli, Alessandra; Congiu, Chiara; Ventriglia, Mariacarla; Bortolomasi, Marco; Bonvicini, Cristian; Abate, Maria; Sartori, Riccardo; Gainelli, Giulio; Gennarelli, Massimo

    2016-07-28

    Several lines of evidence have shown the involvement of the glutamatergic system in the function of electroconvulsive therapy (ECT). In particular, patients with treatment resistant depression (TRD) and chronic depression have lower levels of glutamate/glutamine than controls, and ECT can reverse this deficit. Genetic factors might contribute to modulating the mechanisms underlying ECT. This study aimed to evaluate the relationship between three polymorphisms (rs1954787, rs4936554 and rs11218030) of the glutamate receptor ionotropic kainate 4 (GRIK4) gene and responsiveness to ECT treatment in a sample of one hundred individuals, TRD or depressive Bipolar Disorder patients resistant to pharmacological treatments. The results revealed that GRIK4 variants were significantly associated with the response to ECT. In particular, we found that patients carrying the G allele of the GRIK4 rs11218030 had a significantly poorer response to ECT (p=2.71×10(-4)), showing five times the risk of relapse after ECT compared to the AA homozygotes. Analogously, patients carrying the GG rs1954787 genotype and rs4936554A allele carriers presented a double risk of lack of response after ECT (p=0.013 and p=0.040, respectively). In conclusion, the current study provides new evidence, indicating that some GRIK4 variants modulate the response to ECT in patients with depression resistant to treatment, suggesting a role for kainate receptor modulation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. GENETIC VARIANTS, IMMUNE FUNCTION AND RISK OF PRE-ECLAMPSIA AMONG AMERICAN INDIANS

    PubMed Central

    Best, Lyle G.; Nadeau, Melanie; Davis, Kylie; Lamb, Felicia; Bercier, Shellee; Anderson, Cindy M.

    2011-01-01

    Objective To determine the prevalence in an American Indian population of genetic variants with putative effects on immune function and determine if they are associated with pre-eclampsia. Methods In a study of 66 cases and 130 matched controls, six single nucleotide polymorphisms (SNP) with either previously demonstrated or postulated modulating effects on the immune system were genotyped. Allele frequencies and various genetic models were evaluated by conditional logistic regression in both univariate and multiply adjusted models. Results Although most genetic variants lacked evidence of association with pre-eclampsia, the minor allele of the CRP related, rs1205 SNP in a dominant model with adjustment for age at delivery, nulliparity and body mass index, exhibited an odds ratio of 0.259 (95% CI of 0.08 – 0.81, p=0.020) in relation to severe pre-eclampsia (48 cases). The allelic prevalence of this variant was 46.1% in this population. Conclusion Of the six SNPs related to immune function in this study, a functional variant in the 3'UTR of the CRP gene was shown to be associated with severe pre-eclampsia in an American Indian population. PMID:22004660

  13. MicroRNA-3148 modulates allelic expression of toll-like receptor 7 variant associated with systemic lupus erythematosus.

    PubMed

    Deng, Yun; Zhao, Jian; Sakurai, Daisuke; Kaufman, Kenneth M; Edberg, Jeffrey C; Kimberly, Robert P; Kamen, Diane L; Gilkeson, Gary S; Jacob, Chaim O; Scofield, R Hal; Langefeld, Carl D; Kelly, Jennifer A; Ramsey-Goldman, Rosalind; Petri, Michelle A; Reveille, John D; Vilá, Luis M; Alarcón, Graciela S; Vyse, Timothy J; Pons-Estel, Bernardo A; Freedman, Barry I; Gaffney, Patrick M; Sivils, Kathy Moser; James, Judith A; Gregersen, Peter K; Anaya, Juan-Manuel; Niewold, Timothy B; Merrill, Joan T; Criswell, Lindsey A; Stevens, Anne M; Boackle, Susan A; Cantor, Rita M; Chen, Weiling; Grossman, Jeniffer M; Hahn, Bevra H; Harley, John B; Alarcόn-Riquelme, Marta E; Brown, Elizabeth E; Tsao, Betty P

    2013-01-01

    We previously reported that the G allele of rs3853839 at 3'untranslated region (UTR) of Toll-like receptor 7 (TLR7) was associated with elevated transcript expression and increased risk for systemic lupus erythematosus (SLE) in 9,274 Eastern Asians [P = 6.5×10(-10), odds ratio (OR) (95%CI) = 1.27 (1.17-1.36)]. Here, we conducted trans-ancestral fine-mapping in 13,339 subjects including European Americans, African Americans, and Amerindian/Hispanics and confirmed rs3853839 as the only variant within the TLR7-TLR8 region exhibiting consistent and independent association with SLE (Pmeta = 7.5×10(-11), OR = 1.24 [1.18-1.34]). The risk G allele was associated with significantly increased levels of TLR7 mRNA and protein in peripheral blood mononuclear cells (PBMCs) and elevated luciferase activity of reporter gene in transfected cells. TLR7 3'UTR sequence bearing the non-risk C allele of rs3853839 matches a predicted binding site of microRNA-3148 (miR-3148), suggesting that this microRNA may regulate TLR7 expression. Indeed, miR-3148 levels were inversely correlated with TLR7 transcript levels in PBMCs from SLE patients and controls (R(2) = 0.255, P = 0.001). Overexpression of miR-3148 in HEK-293 cells led to significant dose-dependent decrease in luciferase activity for construct driven by TLR7 3'UTR segment bearing the C allele (P = 0.0003). Compared with the G-allele construct, the C-allele construct showed greater than two-fold reduction of luciferase activity in the presence of miR-3148. Reduced modulation by miR-3148 conferred slower degradation of the risk G-allele containing TLR7 transcripts, resulting in elevated levels of gene products. These data establish rs3853839 of TLR7 as a shared risk variant of SLE in 22,613 subjects of Asian, EA, AA, and Amerindian/Hispanic ancestries (Pmeta  = 2.0×10(-19), OR = 1.25 [1.20-1.32]), which confers allelic effect on transcript turnover via differential binding to the epigenetic factor

  14. Lack of association between uncoupling protein-2 Ala55Val polymorphism and incident diabetes in the atherosclerosis risk in communities study.

    PubMed

    Bielinski, Suzette J; Pankow, James S; Boerwinkle, Eric; Bray, Molly S; Kao, W H Linda; Folsom, Aaron R

    2008-09-01

    Type 2 diabetes mellitus (T2DM) is characterized by impaired insulin secretion, peripheral insulin resistance, and increased hepatic glucose production. Genes that contribute to genetic susceptibility to T2DM function in numerous biochemical pathways. Uncoupling protein-2 (UCP2) functions as a negative regulator of insulin secretion. Animal studies show induction of UCP2 plays a pathogenic role in the progression of obesity-induced T2DM and some human studies have shown an association between a common UCP2 polymorphism, Ala55Val (rs660339), and T2DM, obesity, and resting metabolic rate with the Val/Val genotype conferring increased risk. We investigated the relationship between the Ala55Val variant and incidence of T2DM among 12,056 participants in the Atherosclerosis Risk in Communities (ARIC) Study aged 45-64 years at baseline. Incident T2DM (n = 1,406) cases were identified over 9 years of follow-up. The Val55 allele frequency was 44% in blacks and 41% in whites. The rate of T2DM per 1,000 person was 15.0, 15.6, and 15.6 yearsfor Ala/Ala, Ala/Val, and Val/Val genotypes, respectively. We found no significant association between UCP2 genotypes and incident T2DM in the whole cohort, in race-gender subgroups, or in categories of body mass index (normal, overweight and obese). The Ala55Val polymorphism of UCP2 was not associated with incident T2DM in the ARIC cohort.

  15. Dandy Walker Variant and Bipolar I Disorder with Graphomania

    PubMed Central

    Karakaş Uğurlu, Görkem; Çakmak, Selcen

    2014-01-01

    Cerebellum is known to play an important role in coordination and motor functions. In some resent studies it is also considered to be involved in modulation of mood, cognition and psychiatric disorders. Dandy Walker Malformation is a congenital malformation that is characterized by hypoplasia or aplasia of the cerebellar vermis, cystic dilatation of the fourth ventricle and enlargement of the posterior fossa. When the volume of posterior fossa is normal, the malformation is called Dandy Walker Variant. Case is a 32 year old male with a 12 year history of Bipolar I Disorder presented with manic and depresive symptoms, including dysphoric and depressive affect, anhedonia, suicidal thoughts and behaviours, thoughts of fear about future, overtalkativeness and graphomania, increased energy, irregular sleep, loss of appetite, increased immersion in projects, irritability, agressive behavior, impulsivity. Cranial Magnetic Resonance Imaging was compatible to the morphological features of Dandy Walker Variant. PMID:25110509

  16. Hepatitis B Virus Capsid Assembly Modulators, but Not Nucleoside Analogs, Inhibit the Production of Extracellular Pregenomic RNA and Spliced RNA Variants

    PubMed Central

    Ren, Suping; Espiritu, Christine; Kelly, Mollie; Lau, Vincent; Zheng, Lingjie; Hartman, George D.; Flores, Osvaldo A.; Klumpp, Klaus

    2017-01-01

    ABSTRACT The hepatitis B virus (HBV) core protein serves multiple essential functions in the viral life cycle, and antiviral agents that target the core protein are being developed. Capsid assembly modulators (CAMs) are compounds that target core and misdirect capsid assembly, resulting in the suppression of HBV replication and virion production. Besides HBV DNA, circulating HBV RNA has been detected in patient serum and can be associated with the treatment response. Here we studied the effect of HBV CAMs on the production of extracellular HBV RNA using infected HepaRG cells and primary human hepatocytes. Representative compounds from the sulfonamide carboxamide and heteroaryldihydropyrimidine series of CAMs were evaluated and compared to nucleos(t)ide analogs as inhibitors of the viral polymerase. The results showed that CAMs blocked extracellular HBV RNA with efficiencies similar to those with which they blocked pregenomic RNA (pgRNA) encapsidation, HBV DNA replication, and Dane particle production. Nucleos(t)ide analogs inhibited viral replication and virion production but not encapsidation or production of extracellular HBV RNA. Profiling of HBV RNA from both culture supernatants and patient serum showed that extracellular viral RNA consisted of pgRNA and spliced pgRNA variants with an internal deletion(s) but still retained the sequences at both the 5′ and 3′ ends. Similar variants were detected in the supernatants of infected cells with and without nucleos(t)ide analog treatment. Overall, our data demonstrate that HBV CAMs represent direct antiviral agents with a profile differentiated from that of nucleos(t)ide analogs, including the inhibition of extracellular pgRNA and spliced pgRNA. PMID:28559265

  17. [Influence of the -866G/A polymorphism of the UCP2 gene on an obese pediatric population].

    PubMed

    Zurbano, R; Ochoa, M C; Moreno-Aliaga, M J; Martínez, J A; Marti, A

    2006-01-01

    In the present study, our objectives were to evaluate the prevalence of -866G/A mutation of UCP2 gene and to study its influence on the phenotype of obese children (11-12 years old) from Navarra. BACKGROUND AND STUDY SETTING: Obesity is a disease with a multifactorial origin that may related be to the presence of mutations and polymorphisms in several candidate genes. The gene of the uncoupling protein UCP2 is one of the most studied ones in relation to obesity because it seems to participate in body composition and several metabolic processes control. Three polymorphisms have been described for this gene: an insertion/deletion of 45 nucleotides, a nucleotide change of guanine for adenine in -866 position, an another change that replaces alanine for valine at amino acid position 55. According to several studies, the -866G allele is related to an increased risk of developing obesity, although the results are contradictory about this association in the literature. The study was carried out on 125 obese children (52% male), aged 11-12 years, selected through the Pediatric Endocrinology Departments of Clínica Universitaria and Hospital Virgen del Camino of Pamplona (Spain), the reported results on this association are contradictory. After checking the inclusion criteria, anthropometrical data (weight, height, BMI, tricipital and subscapular skinfolds) were taken, and the percentage of fat mass was measured by bioelectrical impedance. Besides, plasma levels of total cholesterol, glucose, insulin, and leptin were measured. DNA was extracted from white blood cells to determine the genotype by PCR technique followed by BstUI digestion and further visualization in agarose gel with 2% ethidium bromide. The genetic analysis revealed a 0.404 frequency of the allele A, with a percentage of individuals G/G, G/A, and A/A of 40.0%, 39.2%, and 20.8%, respectively. Carriers of the A allele had a significantly higher sum of tricipital and subscapular folds (p = 0.034). No

  18. Orbital component extraction by time-variant sinusoidal modeling.

    NASA Astrophysics Data System (ADS)

    Sinnesael, Matthias; Zivanovic, Miroslav; De Vleeschouwer, David; Claeys, Philippe; Schoukens, Johan

    2016-04-01

    Accurately deciphering periodic variations in paleoclimate proxy signals is essential for cyclostratigraphy. Classical spectral analysis often relies on methods based on the (Fast) Fourier Transformation. This technique has no unique solution separating variations in amplitude and frequency. This characteristic makes it difficult to correctly interpret a proxy's power spectrum or to accurately evaluate simultaneous changes in amplitude and frequency in evolutionary analyses. Here, we circumvent this drawback by using a polynomial approach to estimate instantaneous amplitude and frequency in orbital components. This approach has been proven useful to characterize audio signals (music and speech), which are non-stationary in nature (Zivanovic and Schoukens, 2010, 2012). Paleoclimate proxy signals and audio signals have in nature similar dynamics; the only difference is the frequency relationship between the different components. A harmonic frequency relationship exists in audio signals, whereas this relation is non-harmonic in paleoclimate signals. However, the latter difference is irrelevant for the problem at hand. Using a sliding window approach, the model captures time variations of an orbital component by modulating a stationary sinusoid centered at its mean frequency, with a single polynomial. Hence, the parameters that determine the model are the mean frequency of the orbital component and the polynomial coefficients. The first parameter depends on geologic interpretation, whereas the latter are estimated by means of linear least-squares. As an output, the model provides the orbital component waveform, either in the depth or time domain. Furthermore, it allows for a unique decomposition of the signal into its instantaneous amplitude and frequency. Frequency modulation patterns can be used to reconstruct changes in accumulation rate, whereas amplitude modulation can be used to reconstruct e.g. eccentricity-modulated precession. The time-variant sinusoidal model

  19. Brown adipose tissue and its modulation by a mitochondria-targeted peptide in rat burn injury-induced hypermetabolism.

    PubMed

    Yo, Kikuo; Yu, Yong-Ming; Zhao, Gaofeng; Bonab, Ali A; Aikawa, Naoki; Tompkins, Ronald G; Fischman, Alan J

    2013-02-15

    Hypermetabolism is a prominent feature of burn injury, and altered mitochondria function is presumed to contribute to this state. Recently, brown adipose tissue (BAT) was found to be present not only in rodents but also in humans, and its activity is associated with resting metabolic rate. In this report, we elucidate the relationship between burn injury-induced hypermetabolism and BAT activity and the possible role of the mitochondria-targeted peptide SS31 in attenuating burn injury-induced hypermetabolism by using a rat burn injury model. We demonstrate that burn injury induces morphological changes in interscapular BAT (iBAT). Burn injury was associated with iBAT activation, and this effect was positively correlated with increased energy expenditure. BAT activation was associated with augmentation of mitochondria biogenesis, and UCP1 expression in the isolated iBAT mitochondria. In addition, the mitochondria-targeted peptide SS31 attenuated burn injury-induced hypermetabolism, which was accompanied by suppression of UCP1 expression in isolated mitochondria. Our results suggest that BAT plays an important role in burn injury-induced hypermetabolism through its morphological changes and expression of UCP1.

  20. Alternative splicing modulates Kv channel clustering through a molecular ball and chain mechanism

    NASA Astrophysics Data System (ADS)

    Zandany, Nitzan; Marciano, Shir; Magidovich, Elhanan; Frimerman, Teddy; Yehezkel, Rinat; Shem-Ad, Tzilhav; Lewin, Limor; Abdu, Uri; Orr, Irit; Yifrach, Ofer

    2015-03-01

    Ion channel clustering at the post-synaptic density serves a fundamental role in action potential generation and transmission. Here, we show that interaction between the Shaker Kv channel and the PSD-95 scaffold protein underlying channel clustering is modulated by the length of the intrinsically disordered C terminal channel tail. We further show that this tail functions as an entropic clock that times PSD-95 binding. We thus propose a ‘ball and chain’ mechanism to explain Kv channel binding to scaffold proteins, analogous to the mechanism describing channel fast inactivation. The physiological relevance of this mechanism is demonstrated in that alternative splicing of the Shaker channel gene to produce variants of distinct tail lengths resulted in differential channel cell surface expression levels and clustering metrics that correlate with differences in affinity of the variants for PSD-95. We suggest that modulating channel clustering by specific spatial-temporal spliced variant targeting serves a fundamental role in nervous system development and tuning.

  1. The C2238/αANP variant is a negative modulator of both viability and function of coronary artery smooth muscle cells.

    PubMed

    Rubattu, Speranza; Marchitti, Simona; Bianchi, Franca; Di Castro, Sara; Stanzione, Rosita; Cotugno, Maria; Bozzao, Cristina; Sciarretta, Sebastiano; Volpe, Massimo

    2014-01-01

    Abnormalities of vascular smooth muscle cells (VSMCs) contribute to development of vascular disease. Atrial natriuretic peptide (ANP) exerts important effects on VSMCs. A common ANP molecular variant (T2238C/αANP) has recently emerged as a novel vascular risk factor. We aimed at identifying effects of CC2238/αANP on viability, migration and motility in coronary artery SMCs, and the underlying signaling pathways. Cells were exposed to either TT2238/αANP or CC2238/αANP. At the end of treatment, cell viability, migration and motility were evaluated, along with changes in oxidative stress pathway (ROS levels, NADPH and eNOS expression), on Akt phosphorylation and miR21 expression levels. CC2238/αANP reduced cell vitality, increased apoptosis and necrosis, increased oxidative stress levels, suppressed miR21 expression along with consistent changes of its molecular targets (PDCD4, PTEN, Bcl2) and of phosphorylated Akt levels. As a result of increased oxidative stress, CC2238/αANP markedly stimulated cell migration and increased cell contraction. NPR-C gene silencing with specific siRNAs restored cell viability, miR21 expression, and reduced oxidative stress induced by CC2238/αANP. The cAMP/PKA/CREB pathway, driven by NPR-C activation, significantly contributed to both miR21 and phosphoAkt reduction upon CC2238/αANP. miR21 overexpression by mimic-hsa-miR21 rescued the cellular damage dependent on CC2238/αANP. CC2238/αANP negatively modulates viability through NPR-C/cAMP/PKA/CREB/miR21 signaling pathway, and it augments oxidative stress leading to increased migratory and vasoconstrictor effects in coronary artery SMCs. These novel findings further support a damaging role of this common αANP variant on vessel wall and its potential contribution to acute coronary events.

  2. Evaluation of NFKB1A variants in patients with knee osteoarthritis.

    PubMed

    Hulin-Curtis, S L; Sharif, M; Bidwell, J L; Perry, M J

    2013-08-01

    A key feature of osteoarthritis (OA) is articular cartilage loss mediated by numerous catabolic factors including pro-inflammatory cytokines. Cytokine expression is modulated by the nuclear factor κB (NF-κB) family of transcription factors that are in turn, regulated by the inhibitor of NF-κB IκBα encoded by NFKB1A. We examined eight, previously reported common germline polymorphisms to determine whether NFKB1A variants are associated with knee OA. Eight common single-nucleotide polymorphisms (SNPs) across the NFKB1A gene were genotyped in 189 cases with knee OA and 197 healthy controls. Allele, genotype and haplotype frequencies were compared between case and control groups and stratified according to gender due to the increased prevalence of female OA. Serum concentrations of four biochemical markers elevated in OA were compared with genotype for each knee OA case. None of the SNPs showed an association with knee OA; however, stratification of the data for gender showed an increased frequency of the rs8904 variant allele in the female knee OA case group (P = 0.02). Six common haplotypes were identified (H1-H6). H6 was marginally more prevalent in the knee OA group (P = 0.05). The rs8904 variant was associated with increased levels of hyaluronan (HA), a marker of synovial inflammation at 12 and 24 months compared to baseline levels. The nearby rs696 variant demonstrated increased levels of C-reactive protein (CRP) at 12 months and HA at 12 and 24 months. A reduction in CRP levels at 12 months was observed for the rs2233419 variant. These findings provide evidence for the association of NFKB1A variants and knee OA. © 2012 John Wiley & Sons Ltd.

  3. Stabilization of the μ-opioid receptor by truncated single transmembrane splice variants through a chaperone-like action.

    PubMed

    Xu, Jin; Xu, Ming; Brown, Taylor; Rossi, Grace C; Hurd, Yasmin L; Inturrisi, Charles E; Pasternak, Gavril W; Pan, Ying-Xian

    2013-07-19

    The μ-opioid receptor gene, OPRM1, undergoes extensive alternative pre-mRNA splicing, as illustrated by the identification of an array of splice variants generated by both 5' and 3' alternative splicing. The current study reports the identification of another set of splice variants conserved across species that are generated through exon skipping or insertion that encodes proteins containing only a single transmembrane (TM) domain. Using a Tet-Off system, we demonstrated that the truncated single TM variants can dimerize with the full-length 7-TM μ-opioid receptor (MOR-1) in the endoplasmic reticulum, leading to increased expression of MOR-1 at the protein level by a chaperone-like function that minimizes endoplasmic reticulum-associated degradation. In vivo antisense studies suggested that the single TM variants play an important role in morphine analgesia, presumably through modulation of receptor expression levels. Our studies suggest the functional roles of truncated receptors in other G protein-coupled receptor families.

  4. The origin of human complex diversity: Stochastic epistatic modules and the intrinsic compatibility between distributional robustness and phenotypic changeability.

    PubMed

    Ijichi, Shinji; Ijichi, Naomi; Ijichi, Yukina; Imamura, Chikako; Sameshima, Hisami; Kawaike, Yoichi; Morioka, Hirofumi

    2018-01-01

    The continuing prevalence of a highly heritable and hypo-reproductive extreme tail of a human neurobehavioral quantitative diversity suggests the possibility that the reproductive majority retains the genetic mechanism for the extremes. From the perspective of stochastic epistasis, the effect of an epistatic modifier variant can randomly vary in both phenotypic value and effect direction among the careers depending on the genetic individuality, and the modifier careers are ubiquitous in the population distribution. The neutrality of the mean genetic effect in the careers warrants the survival of the variant under selection pressures. Functionally or metabolically related modifier variants make an epistatic network module and dozens of modules may be involved in the phenotype. To assess the significance of stochastic epistasis, a simplified module-based model was employed. The individual repertoire of the modifier variants in a module also participates in the genetic individuality which determines the genetic contribution of each modifier in the career. Because the entire contribution of a module to the phenotypic outcome is consequently unpredictable in the model, the module effect represents the total contribution of the related modifiers as a stochastic unit in the simulations. As a result, the intrinsic compatibility between distributional robustness and quantitative changeability could mathematically be simulated using the model. The artificial normal distribution shape in large-sized simulations was preserved in each generation even if the lowest fitness tail was un-reproductive. The robustness of normality beyond generations is analogous to the real situations of human complex diversity including neurodevelopmental conditions. The repeated regeneration of the un-reproductive extreme tail may be inevitable for the reproductive majority's competence to survive and change, suggesting implications of the extremes for others. Further model-simulations to

  5. Tryptophan hydroxylase type 2 variants modulate severity and outcome of addictive behaviors in Parkinson's disease.

    PubMed

    Cilia, Roberto; Benfante, Roberta; Asselta, Rosanna; Marabini, Laura; Cereda, Emanuele; Siri, Chiara; Pezzoli, Gianni; Goldwurm, Stefano; Fornasari, Diego

    2016-08-01

    Impulse control disorders and compulsive medication intake may occur in a minority of patients with Parkinson's disease (PD). We hypothesize that genetic polymorphisms associated with addiction in the general population may increase the risk for addictive behaviors also in PD. Sixteen polymorphisms in candidate genes belonging to five neurotransmitter systems (dopaminergic, catecholaminergic, serotonergic, glutamatergic, opioidergic) and the BDNF were screened in 154 PD patients with addictive behaviors and 288 PD control subjects. Multivariate analysis investigated clinical and genetic predictors of outcome (remission vs. persistence/relapse) after 1 year and at the last follow-up (5.1 ± 2.5 years). Addictive behaviors were associated with tryptophan hydroxylase type 2 (TPH2) and dopamine transporter gene variants. A subsequent analysis within the group of cases showed a robust association between TPH2 genotype and the severity of addictive behaviors, which survived Bonferroni correction for multiple testing. At multivariate analysis, TPH2 genotype resulted the strongest predictor of no remission at the last follow-up (OR[95%CI], 7.4[3.27-16.78] and 13.2[3.89-44.98] in heterozygous and homozygous carriers, respectively, p < 0.001). The extent of medication dose reduction was not a predictor. TPH2 haplotype analysis confirmed the association with more severe symptoms and lower remission rates in the short- and the long-term (p < 0.005 for all analyses). The serotonergic system is likely to be involved in the pathophysiology of addictive behaviors in PD, modulating the severity of symptoms and the rate of remission at follow-up. If confirmed in larger independent cohorts, TPH2 genotype may become a useful biomarker for the identification of at-risk individuals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Attentional Modulation of Perceptual Comparison for Feature Binding

    ERIC Educational Resources Information Center

    Kuo, Bo-Cheng; Rotshtein, Pia; Yeh, Yei-Yu

    2011-01-01

    We investigated the neural correlates of attentional modulation in the perceptual comparison process for detecting feature-binding changes in an event-related functional magnetic resonance imaging (fMRI) experiment. Participants performed a variant of a cued change detection task. They viewed a memory array, a spatial retro-cue, and later a probe…

  7. Variant pathogenicity evaluation in the community-driven Inherited Neuropathy Variant Browser.

    PubMed

    Saghira, Cima; Bis, Dana M; Stanek, David; Strickland, Alleene; Herrmann, David N; Reilly, Mary M; Scherer, Steven S; Shy, Michael E; Züchner, Stephan

    2018-05-01

    Charcot-Marie-Tooth disease (CMT) is an umbrella term for inherited neuropathies affecting an estimated one in 2,500 people. Over 120 CMT and related genes have been identified and clinical gene panels often contain more than 100 genes. Such a large genomic space will invariantly yield variants of uncertain clinical significance (VUS) in nearly any person tested. This rise in number of VUS creates major challenges for genetic counseling. Additionally, fewer individual variants in known genes are being published as the academic merit is decreasing, and most testing now happens in clinical laboratories, which typically do not correlate their variants with clinical phenotypes. For CMT, we aim to encourage and facilitate the global capture of variant data to gain a large collection of alleles in CMT genes, ideally in conjunction with phenotypic information. The Inherited Neuropathy Variant Browser provides user-friendly open access to currently reported variation in CMT genes. Geneticists, physicians, and genetic counselors can enter variants detected by clinical tests or in research studies in addition to genetic variation gathered from published literature, which are then submitted to ClinVar biannually. Active participation of the broader CMT community will provide an advance over existing resources for interpretation of CMT genetic variation. © 2018 Wiley Periodicals, Inc.

  8. Public variant databases: liability?

    PubMed

    Thorogood, Adrian; Cook-Deegan, Robert; Knoppers, Bartha Maria

    2017-07-01

    Public variant databases support the curation, clinical interpretation, and sharing of genomic data, thus reducing harmful errors or delays in diagnosis. As variant databases are increasingly relied on in the clinical context, there is concern that negligent variant interpretation will harm patients and attract liability. This article explores the evolving legal duties of laboratories, public variant databases, and physicians in clinical genomics and recommends a governance framework for databases to promote responsible data sharing.Genet Med advance online publication 15 December 2016.

  9. Modulation selection for visible light communications using lighting LEDs

    NASA Astrophysics Data System (ADS)

    Siuzdak, Jerzy

    2015-09-01

    The paper analyzes suitability of various spectrally efficient modulations (PAM, CAP, OFDM/DMT) in a VLC system using lighting LEDs as a transmitter. Although under ideal conditions all modulation have similar efficiency i.e. they produce similar throughputs with a given BER, their practical performances are different. For example, the level of nonlinear distortions generated by each modulation is the least for PAM and by far the greatest for OFDM/DMT locating CAP in the middle. The suitability of various OFDM/DMT variants in a VLC LED link was also analyzed proving that the asymmetrically clipped (ACO) OFDM has a worse performance as compared with DC biased (DCO) OFDM.

  10. A common genetic variant in FOXP2 is associated with language-based learning (dis)abilities: Evidence from two Italian independent samples.

    PubMed

    Mozzi, Alessandra; Riva, Valentina; Forni, Diego; Sironi, Manuela; Marino, Cecilia; Molteni, Massimo; Riva, Stefania; Guerini, Franca R; Clerici, Mario; Cagliani, Rachele; Mascheretti, Sara

    2017-04-24

    Language-based Learning Disabilities (LLDs) encompass a group of complex, comorbid, and developmentally associated deficits in communication. Language impairment and developmental dyslexia (DD) represent the most recognized forms of LLDs. Substantial genetic correlations exist between language and reading (dis)abilities. Common variants in the FOXP2 gene were consistently associated with language- and reading-related neuropsychological and neuroanatomical phenotypes. We tested the effect of a FOXP2 common variant, that is, rs6980093 (A/G), on quantitative measures of language and reading in two independent Italian samples: a population-based cohort of 699 subjects (3-11 years old) and a sample of 572 children with DD (6-18 years old). rs6980093 modulates expressive language in the general population sample, with an effect on fluency scores. In the DD sample, the variant showed an association with the accuracy in the single word reading task. rs6980093 shows distinct genetic models of association in the two cohorts, with a dominant effect of the G allele in the general population sample and heterozygote advantage in the DD cohort. We provide preliminary evidence that rs6980093 associates with language and reading (dis)abilities in two independent Italian cohorts. rs6980093 is an intronic SNP, suggesting that it (or a linked variant) modulates phenotypic association via regulation of FOXP2 expression. Because FOXP2 brain expression is finely regulated, both temporally and spatially, it is possible that the two alleles at rs6980093 differentially modulate expression levels in a developmental stage- or brain area-specific manner. This might help explaining the heterozygote advantage effect and the different genetic models in the two cohorts. © 2017 Wiley Periodicals, Inc.

  11. Brown adipose tissue and its modulation by a mitochondria-targeted peptide in rat burn injury-induced hypermetabolism

    PubMed Central

    Yo, Kikuo; Yu, Yong-Ming; Zhao, Gaofeng; Bonab, Ali A.; Aikawa, Naoki; Tompkins, Ronald G.

    2013-01-01

    Hypermetabolism is a prominent feature of burn injury, and altered mitochondria function is presumed to contribute to this state. Recently, brown adipose tissue (BAT) was found to be present not only in rodents but also in humans, and its activity is associated with resting metabolic rate. In this report, we elucidate the relationship between burn injury-induced hypermetabolism and BAT activity and the possible role of the mitochondria-targeted peptide SS31 in attenuating burn injury-induced hypermetabolism by using a rat burn injury model. We demonstrate that burn injury induces morphological changes in interscapular BAT (iBAT). Burn injury was associated with iBAT activation, and this effect was positively correlated with increased energy expenditure. BAT activation was associated with augmentation of mitochondria biogenesis, and UCP1 expression in the isolated iBAT mitochondria. In addition, the mitochondria-targeted peptide SS31 attenuated burn injury-induced hypermetabolism, which was accompanied by suppression of UCP1 expression in isolated mitochondria. Our results suggest that BAT plays an important role in burn injury-induced hypermetabolism through its morphological changes and expression of UCP1. PMID:23169784

  12. dNTP pool levels modulate mutator phenotypes of error-prone DNA polymerase ε variants.

    PubMed

    Williams, Lindsey N; Marjavaara, Lisette; Knowels, Gary M; Schultz, Eric M; Fox, Edward J; Chabes, Andrei; Herr, Alan J

    2015-05-12

    Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 (dun1Δ) suppresses the mutator phenotype of pol2-4 (encoding Pol ε proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ε base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint (MRC) 1 (mrc1Δ) and radiation sensitive (Rad) 9 (rad9Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1Δ but not rad9Δ; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1Δ pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1Δ cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy.

  13. Public variant databases: liability?

    PubMed Central

    Thorogood, Adrian; Cook-Deegan, Robert; Knoppers, Bartha Maria

    2017-01-01

    Public variant databases support the curation, clinical interpretation, and sharing of genomic data, thus reducing harmful errors or delays in diagnosis. As variant databases are increasingly relied on in the clinical context, there is concern that negligent variant interpretation will harm patients and attract liability. This article explores the evolving legal duties of laboratories, public variant databases, and physicians in clinical genomics and recommends a governance framework for databases to promote responsible data sharing. Genet Med advance online publication 15 December 2016 PMID:27977006

  14. Penicillinase Studies on L-Phase Variants, G-Phase Variants, and Reverted Strains of Staphylococcus aureus

    PubMed Central

    Simon, Harold J.; Yin, Elaine Jong

    1970-01-01

    L-phase variants and small colony (G-phase) variants derived from penicillinase-producing Staphylococcus aureus strains were tested for penicillinase (beta lactamase) production. A refined variation of the modified Gots test for penicillinase was used to demonstrate penicillinase synthesis. Penicillinase synthesis was reduced in L-phase variants and G-phase variants when compared to parental strains. After reversion of variants to vegetative stages had been induced, revertants were tested for production of penicillinase, coagulase, and alpha hemolysin, mannitol fermentation, and pigment production, and comparisons were made between parent and reverted vegetative forms. All revertants of G-phase variants retained penicillinase activity. Most revertants of L-phase variants showed reduction or loss of penicillinase activity. Retention of coagulase activity, alpha hemolysin production, mannitol fermentation, pigmentation, and phage type varied among revertants. Images PMID:16557890

  15. Variants at serotonin transporter and 2A receptor genes predict cooperative behavior differentially according to presence of punishment.

    PubMed

    Schroeder, Kari B; McElreath, Richard; Nettle, Daniel

    2013-03-05

    Punishment of free-riding has been implicated in the evolution of cooperation in humans, and yet mechanisms for punishment avoidance remain largely uninvestigated. Individual variation in these mechanisms may stem from variation in the serotonergic system, which modulates processing of aversive stimuli. Functional serotonin gene variants have been associated with variation in the processing of aversive stimuli and widely studied as risk factors for psychiatric disorders. We show that variants at the serotonin transporter gene (SLC6A4) and serotonin 2A receptor gene (HTR2A) predict contributions to the public good in economic games, dependent upon whether contribution behavior can be punished. Participants with a variant at the serotonin transporter gene contribute more, leading to group-level differences in cooperation, but this effect dissipates in the presence of punishment. When contribution behavior can be punished, those with a variant at the serotonin 2A receptor gene contribute more than those without it. This variant also predicts a more stressful experience of the games. The diversity of institutions (including norms) that govern cooperation and punishment may create selective pressures for punishment avoidance that change rapidly across time and space. Variant-specific epigenetic regulation of these genes, as well as population-level variation in the frequencies of these variants, may facilitate adaptation to local norms of cooperation and punishment.

  16. Variants at serotonin transporter and 2A receptor genes predict cooperative behavior differentially according to presence of punishment

    PubMed Central

    Schroeder, Kari B.; McElreath, Richard; Nettle, Daniel

    2013-01-01

    Punishment of free-riding has been implicated in the evolution of cooperation in humans, and yet mechanisms for punishment avoidance remain largely uninvestigated. Individual variation in these mechanisms may stem from variation in the serotonergic system, which modulates processing of aversive stimuli. Functional serotonin gene variants have been associated with variation in the processing of aversive stimuli and widely studied as risk factors for psychiatric disorders. We show that variants at the serotonin transporter gene (SLC6A4) and serotonin 2A receptor gene (HTR2A) predict contributions to the public good in economic games, dependent upon whether contribution behavior can be punished. Participants with a variant at the serotonin transporter gene contribute more, leading to group-level differences in cooperation, but this effect dissipates in the presence of punishment. When contribution behavior can be punished, those with a variant at the serotonin 2A receptor gene contribute more than those without it. This variant also predicts a more stressful experience of the games. The diversity of institutions (including norms) that govern cooperation and punishment may create selective pressures for punishment avoidance that change rapidly across time and space. Variant-specific epigenetic regulation of these genes, as well as population-level variation in the frequencies of these variants, may facilitate adaptation to local norms of cooperation and punishment. PMID:23431136

  17. Identification of low-frequency TRAF3IP2 coding variants in psoriatic arthritis patients and functional characterization

    PubMed Central

    2012-01-01

    Introduction In recent genome-wide association studies for psoriatic arthritis (PsA) and psoriasis vulgaris, common coding variants in the TRAF3IP2 gene were identified to contribute to susceptibility to both disease entities. The risk allele of p.Asp10Asn (rs33980500) proved to be most significantly associated and to encode a mutant protein with an almost completely disrupted binding property to TRAF6, supporting its impact as a main disease-causing variant and modulator of IL-17 signaling. Methods To identify further variants, exons 2-4 encoding both known TNF-receptor-associated factor (TRAF) binding domains were sequenced in 871 PsA patients. Seven missense variants and one three-base-pair insertion were identified in 0.06% to 1.02% of alleles. Five of these variants were also present in 931 control individuals at comparable frequency. Constructs containing full-length wild-type or mutant TRAF3IP2 were generated and used to analyze functionally all variants for TRAF6-binding in a mammalian two-hybrid assay. Results None of the newly found alleles, though, encoded proteins with different binding properties to TRAF6, or to the cytoplasmic tail of the IL-17-receptor α-chain, suggesting that they do not contribute to susceptibility. Conclusions Thus, the TRAF3IP2-variant p.Asp10Asn is the only susceptibility allele with functional impact on TRAF6 binding, at least in the German population. PMID:22513239

  18. Association analysis of calpain 10 gene variants/haplotypes with gestational diabetes mellitus among Mexican women.

    PubMed

    Castro-Martínez, Anna Gabriela; Sánchez-Corona, José; Vázquez-Vargas, Adriana Patricia; García-Zapién, Alejandra Guadalupe; López-Quintero, Andres; Villalpando-Velazco, Héctor Javier; Flores-Martínez, Silvia Esperanza

    2018-02-28

    Gestational diabetes mellitus (GDM) is a metabolically complex disease with major genetic determinants. GDM has been associated with insulin resistance and dysfunction of pancreatic beta cells, so the GDM candidate genes are those that encode proteins modulating the function and secretion of insulin, such as that for calpain 10 (CAPN10). This study aimed to assess whether single nucleotide polymorphism (SNP)-43, SNP-44, SNP-63, and the indel-19 variant, and specific haplotypes of the CAPN10 gene were associated with gestational diabetes mellitus. We studied 116 patients with gestational diabetes mellitus and 83 women with normal glucose tolerance. Measurements of anthropometric and biochemical parameters were performed. SNP-43, SNP-44, and SNP-63 were identified by polymerase chain reaction (PCR)-restriction fragment length polymorphisms, while the indel-19 variant was detected by TaqMan qPCR assays.  The allele, genotype, and haplotype frequencies of the four variants did not differ significantly between women with gestational diabetes mellitus and controls. However, in women with gestational diabetes mellitus, glucose levels were significantly higher bearing the 3R/3R genotype than in carriers of the 3R/2R genotype of the indel-19 variant (p = 0.006). In conclusion, the 3R/3R genotype of the indel-19 variant of the CAPN-10 gene influenced increased glucose levels in these Mexican women with gestational diabetes mellitus.

  19. Viral and bacterial septicaemic infections modulate the expression of PACAP splicing variants and VIP/PACAP receptors in brown trout immune organs.

    PubMed

    Gorgoglione, Bartolomeo; Carpio, Yamila; Secombes, Christopher J; Taylor, Nick G H; Lugo, Juana María; Estrada, Mario Pablo

    2015-12-01

    Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and PACAP-Related Peptide (PRP) are structurally similar peptides encoded in the same transcripts. Their transcription has been detected not only in the brain but also in a wide range of peripheral tissues, even including organs of the immune system. PACAP exerts pleiotropic activities through G-protein coupled membrane receptors: the PACAP-specific PAC-1 and the VPAC-1 and VPAC-2 receptors that exhibit similar affinities for the Vasoactive Intestinal Peptide (VIP) and PACAP. Recent findings added PACAP and its receptors to the growing list of mediators that allow cross-talk between the nervous, endocrine and immune systems in fish. In this study the expression of genes encoding for PACAP and PRP, as well as VIP/PACAP receptors was studied in laboratory-reared brown trout (Salmo trutta) after septicaemic infections. Respectively Viral Haemorrhagic Septicaemia Virus (VHSV-Ia) or the Gram-negative bacterium Yersinia ruckeri (ser. O1 - biot. 2) were used in infection challenges. Kidney and spleen, the teleost main lymphopoietic organs, were sampled during the first two weeks post-infection. RT-qPCR analysis assessed specific pathogens burden and gene expression levels. PACAP and PRP transcription in each organ was positively correlated to the respective pathogen burden, assessed targeting the VHSV-glycoprotein or Y. ruckeri 16S rRNA. Results showed as the transcription of PACAP splicing variants and VIP/PACAP receptors is modulated in these organs during an acute viral and bacterial septicaemic infections in brown trout. These gene expression results provide clues as to how the PACAP system is modulated in fish, confirming an involvement during active immune responses elicited by both viral and bacterial aetiological agents. However, further experimental evidence is still required to fully elucidate and characterize the role of PACAP and PRP for an efficient immune response against pathogens. Copyright © 2015

  20. Paenibacillus polymyxa PKB1 produces variants of polymyxin B-type antibiotics.

    PubMed

    Shaheen, Mohamed; Li, Jingru; Ross, Avena C; Vederas, John C; Jensen, Susan E

    2011-12-23

    Polymyxins are cationic lipopeptide antibiotics active against many species of Gram-negative bacteria. We sequenced the gene cluster for polymyxin biosynthesis from Paenibacillus polymyxa PKB1. The 40.8 kb gene cluster comprises three nonribosomal peptide synthetase-encoding genes and two ABC transporter-like genes. Disruption of a peptide synthetase gene abolished all antibiotic production, whereas deletion of one or both transporter genes only reduced antibiotic production. Computational analysis of the peptide synthetase modules suggested that the enzyme system produces variant forms of polymyxin B (1 and 2), with D-2,4-diaminobutyrate instead of L-2,4-diaminobutyrate in amino acid position 3. Two antibacterial metabolites were resolved by HPLC and identified by high-resolution mass spectrometry and MS/MS sequencing as the expected variants 3 and 4 of polymyxin B(1) (1) and B(2) (2). Stereochemical analysis confirmed the presence of both D-2,4-diaminobutyrate and L-2,4-diaminobutyrate residues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. OPRM1 gene variants modulate amphetamine-induced euphoria in humans

    PubMed Central

    Dlugos, Andrea M.; Hamidovic, Ajna; Hodgkinson, Colin; Pei-Hong, Shen; Goldman, David; Palmer, Abraham A.; de Wit, Harriet

    2012-01-01

    The μ-opioid receptor is involved in the rewarding effects of not only opioids like morphine but also psychostimulants like amphetamine. This study aimed to investigate associations between subjective response to amphetamine and genetic polymorphisms and haplotypes in the μ-opioid receptor including the exonic variant rs1799971 (Asp40Asn). 162 Caucasian volunteers participated in three sessions receiving either placebo or d-amphetamine (10 and 20 mg). Associations between levels of self-reported Euphoria, Energy and Stimulation (ARCI-49) after d-amphetamine ingestion and polymorphisms in OPRM1 were investigated. The intronic SNPs rs510769 and rs2281617 were associated with significantly higher ratings of Euphoria, Energy and Stimulation after 10 mg amphetamine. Feelings of Euphoria, Energy and Stimulation were also found to be associated with a 2-SNP haplotype formed with rs1799971 and rs510769 and a 3-SNP haplotype formed with rs1918760, rs2281617 and rs1998220. These results support the hypothesis that genetic variability in the μ-opioid receptor gene influences the subjective effects of amphetamine and may suggest new strategies for prevention and treatment of psychostimulant abuse. PMID:21029375

  2. Different outcome of six homozygotes for prothrombin A20210A gene variant

    PubMed Central

    Di Micco, Pierpaolo; Di Fiore, Rosanna; Niglio, Alferio; Quaranta, Sandro; Angiolillo, Antonella; Cardillo, Giuseppe; Castaldo, Giuseppe

    2008-01-01

    Prothrombin G20210A gene variant (FII G20210A) is a risk factor for venous thrombotic disease while conflicting results have been reported for the risk of arterial thrombotic events. However, vascular episodes were absent in up to 40% of the 67 homozygotes for the G20210A described so far, which indicates that the clinical expression depends on additional risk/trigger factors. We describe six homozygotes for the G20210A variant, among which the first pair of siblings (cases n. 3 and 4) reported so far that displayed a strongly heterogeneous clinical outcome. Case 1, a female of 27 years, developed a full thrombosis of common femoral, superficial and popliteal veins. She assumed oral contraceptives in the last two years. Case n. 2, 34 years old, suffered of recurrent pregnancy loss in absence of any causative alteration. Cases n. 3 and n. 5 experienced arterial thrombotic disease, i.e., juvenile myocardial infarction (40 years old) and stroke (48 years old), respectively, in absence of other risk factors. Finally, cases n. 4 and 6 identified as homozygotes for the FII G20210A variant being consanguineous of symptomatic subjects bearing the variant, did not experience any episode of venous nor arterial disease. Both of them have chronic liver disease with an impairement of the prothrombin time INR. Thus, homozygotes for the G20210A are at risk for arterial (in addition to venous) thromobotic events; chronic liver disease might modulate this risk. PMID:18627609

  3. Spectrum and Prevalence of CALM1-, CALM2-, and CALM3-Encoded Calmodulin (CaM) Variants in Long QT Syndrome (LQTS) and Functional Characterization of a Novel LQTS-Associated CaM Missense Variant, E141G

    PubMed Central

    Calvert, Melissa L.; Tester, David J.; Kryshtal, Dmytro; Hwang, Hyun Seok; Johnson, Christopher N.; Chazin, Walter J.; Loporcaro, Christina G.; Shah, Maully; Papez, Andrew L.; Lau, Yung R.; Kanter, Ronald; Knollmann, Bjorn C.; Ackerman, Michael J.

    2016-01-01

    Background Calmodulin (CaM) is encoded by three genes, CALM1, CALM2, and CALM3, all of which harbor pathogenic variants linked to long QT syndrome (LQTS) with early and severe expressivity. These LQTS-causative variants reduce CaM affinity to Ca2+ and alter the properties of the cardiac L-type calcium channel (CaV1.2). CaM also modulates NaV1.5 and the ryanodine receptor, RyR2. All of these interactions may play a role in disease pathogenesis. Here, we determine the spectrum and prevalence of pathogenic CaM variants in a cohort of genetically elusive LQTS, and functionally characterize the novel variants. Methods and Results Thirty-nine genetically elusive LQTS cases underwent whole exome sequencing to identify CaM variants. Non-synonymous CaM variants were overrepresented significantly in this heretofore LQTS cohort (15.4%) compared to exome aggregation consortium (0.04%; p<0.0001). When the clinical sequelae of these 6 CaM-positive cases was compared to the 33 CaM-negative cases, CaM-positive cases had a more severe phenotype with an average age of onset of 8 months, an average QTc of 679 ms, and a high prevalence of cardiac arrest. Functional characterization of one novel variant, E141G-CaM, revealed an 11-fold reduction in Ca2+ binding affinity and a functionally-dominant loss of inactivation in CaV1.2, mild accentuation in NaV1.5 late current, but no effect on intracellular RyR2-mediated calcium release. Conclusions Overall, 15% of our genetically elusive LQTS cohort harbored non-synonymous variants in CaM. Genetic testing of CALM1-3 should be pursued for individuals with LQTS, especially those with early childhood cardiac arrest, extreme QT prolongation, and a negative family history. PMID:26969752

  4. GREGOR: evaluating global enrichment of trait-associated variants in epigenomic features using a systematic, data-driven approach.

    PubMed

    Schmidt, Ellen M; Zhang, Ji; Zhou, Wei; Chen, Jin; Mohlke, Karen L; Chen, Y Eugene; Willer, Cristen J

    2015-08-15

    The majority of variation identified by genome wide association studies falls in non-coding genomic regions and is hypothesized to impact regulatory elements that modulate gene expression. Here we present a statistically rigorous software tool GREGOR (Genomic Regulatory Elements and Gwas Overlap algoRithm) for evaluating enrichment of any set of genetic variants with any set of regulatory features. Using variants from five phenotypes, we describe a data-driven approach to determine the tissue and cell types most relevant to a trait of interest and to identify the subset of regulatory features likely impacted by these variants. Last, we experimentally evaluate six predicted functional variants at six lipid-associated loci and demonstrate significant evidence for allele-specific impact on expression levels. GREGOR systematically evaluates enrichment of genetic variation with the vast collection of regulatory data available to explore novel biological mechanisms of disease and guide us toward the functional variant at trait-associated loci. GREGOR, including source code, documentation, examples, and executables, is available at http://genome.sph.umich.edu/wiki/GREGOR. cristen@umich.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. A Transposon in Comt Generates mRNA Variants and Causes Widespread Expression and Behavioral Differences among Mice

    PubMed Central

    Wang, Xusheng; Miles, Michael F.; Lu, Lu; Williams, Robert W.

    2010-01-01

    Background Catechol-O-methyltransferase (COMT) is a key enzyme responsible for the degradation of dopamine and norepinephrine. COMT activity influences cognitive and emotional states in humans and aggression and drug responses in mice. This study identifies the key sequence variant that leads to differences in Comt mRNA and protein levels among mice, and that modulates synaptic function and pharmacological and behavioral traits. Methodology/Principal Findings We examined Comt expression in multiple tissues in over 100 diverse strains and several genetic crosses. Differences in expression map back to Comt and are generated by a 230 nt insertion of a B2 short interspersed element (B2 SINE) in the proximal 3′ UTR of Comt in C57BL/6J. This transposon introduces a premature polyadenylation signal and creates a short 3′ UTR isoform. The B2 SINE is shared by a subset of strains, including C57BL/6J, A/J, BALB/cByJ, and AKR/J, but is absent in others, including DBA/2J, FVB/NJ, SJL/J, and wild subspecies. The short isoform is associated with increased protein expression in prefrontal cortex and hippocampus relative to the longer ancestral isoform. The Comt variant causes downstream differences in the expression of genes involved in synaptic function, and also modulates phenotypes such as dopamine D1 and D2 receptor binding and pharmacological responses to haloperidol. Conclusions/Significance We have precisely defined the B2 SINE as the source of variation in Comt and demonstrated that a transposon in a 3′ UTR can alter mRNA isoform use and modulate behavior. The recent fixation of the variant in a subset of strains may have contributed to the rapid divergence of inbred strains. PMID:20808911

  6. Effect of -55CT Polymorphism of UCP3 on Insulin Resistance and Cardiovascular Risk Factors after a High Protein/Low Carbohydrate versus a Standard Hypocaloric Diet.

    PubMed

    de Luis, Daniel Antonio; Aller, Rocío; Izaola, Olatz; Romero, Enrique

    2016-01-01

    The C/C genotype of a polymorphism in the uncoupling protein3 (UCP3) promoter (-55C->T) (rs1800849) is associated with an increased body mass index. The aim of our study was to investigate the effect of polymorphism on the UCP3 promoter (-55C->T) on insulin resistance and cardiovascular risk factors secondary to a high protein/low carbohydrate vs. a standard hypocaloric diets (1,000 kcal/day). A population of 283 obese subjects was analyzed in a randomized trial. A nutritional evaluation was performed at the beginning and at the end of a 9-month period in which subjects received 1 of 2 diets (diet HP: high protein/low carbohydrate vs. diet S: standard diet). Weight improvement was higher in non-T carriers. With both diets and only in wild genotype (diet HP vs. diet S), total cholesterol (-9.7 ± 4.0 vs. -11.1 ± 2.0 mg/dl; p > 0.05) and low density lipoprotein (LDL) cholesterol (-8.3 ± 3.0 vs. -5.5 ± 2.7 mg/dl; p > 0.05) decreased. The improvement in these parameters was similar in subjects with diet HP than HS. With diet HP and only in wild genotype, glucose (-5.2 ± 2.2 mg/dl; p < 0.05), triglycerides (-15.5 ± 3.9 mg/dl; p < 0.05), insulin levels (-3.9 ± 3.1 UI/l; p < 0.05) and homeostasis model assessment (HOMA-R; -0.6 ± 0.1 units; p < 0.05) decreased. Carriers of T allele have a different response than non-carrier subjects, with a lack of decrease of LDL cholesterol, glucose, insulin levels and HOMA-R. The weight loss was lower in T carriers. HP diet showed a better metabolic response than S diet in 55CC homozygous. © 2016 S. Karger AG, Basel.

  7. Analysis of predicted loss-of-function variants in UK Biobank identifies variants protective for disease.

    PubMed

    Emdin, Connor A; Khera, Amit V; Chaffin, Mark; Klarin, Derek; Natarajan, Pradeep; Aragam, Krishna; Haas, Mary; Bick, Alexander; Zekavat, Seyedeh M; Nomura, Akihiro; Ardissino, Diego; Wilson, James G; Schunkert, Heribert; McPherson, Ruth; Watkins, Hugh; Elosua, Roberto; Bown, Matthew J; Samani, Nilesh J; Baber, Usman; Erdmann, Jeanette; Gupta, Namrata; Danesh, John; Chasman, Daniel; Ridker, Paul; Denny, Joshua; Bastarache, Lisa; Lichtman, Judith H; D'Onofrio, Gail; Mattera, Jennifer; Spertus, John A; Sheu, Wayne H-H; Taylor, Kent D; Psaty, Bruce M; Rich, Stephen S; Post, Wendy; Rotter, Jerome I; Chen, Yii-Der Ida; Krumholz, Harlan; Saleheen, Danish; Gabriel, Stacey; Kathiresan, Sekar

    2018-04-24

    Less than 3% of protein-coding genetic variants are predicted to result in loss of protein function through the introduction of a stop codon, frameshift, or the disruption of an essential splice site; however, such predicted loss-of-function (pLOF) variants provide insight into effector transcript and direction of biological effect. In >400,000 UK Biobank participants, we conduct association analyses of 3759 pLOF variants with six metabolic traits, six cardiometabolic diseases, and twelve additional diseases. We identified 18 new low-frequency or rare (allele frequency < 5%) pLOF variant-phenotype associations. pLOF variants in the gene GPR151 protect against obesity and type 2 diabetes, in the gene IL33 against asthma and allergic disease, and in the gene IFIH1 against hypothyroidism. In the gene PDE3B, pLOF variants associate with elevated height, improved body fat distribution and protection from coronary artery disease. Our findings prioritize genes for which pharmacologic mimics of pLOF variants may lower risk for disease.

  8. A Functional ATG16L1 (T300A) Variant is Associated with Necrotizing Enterocolitis in Premature Infants

    PubMed Central

    Sampath, Venkatesh; Bhandari, Vineet; Berger, Jessica; Merchant, Daniel; Zhang, Liyun; Ladd, Mihoko; Menden, Heather; Garland, Jeffery; Ambalavanan, Namasivayam; Mulrooney, Neil; Quasney, Michael; Dagle, John; Lavoie, Pascal M; Simpson, Pippa; Dahmer, Mary

    2017-01-01

    Background The genetic basis of dysfunctional immune responses in necrotizing enterocolitis (NEC) remains unknown. We hypothesized that variants in Nucleotide binding and Oligomerization Domain (NOD)-Like Receptors (NLRs) and Autophagy (ATG) genes modulate vulnerability to NEC. Methods We genotyped a multi-center cohort of premature infants with and without NEC for NOD1, NOD2, ATG16L1, CARD8 and NLRP3 variants. Chi-square tests and logistic regression were used for statistical analysis. Results In our primary cohort (n=1015), 86 (8.5%) infants developed NEC. The A allele of the ATG16L1 (Thr300Ala) variant was associated with increased NEC (AA vs. AG vs. GG; 11.3% vs. 8.4% vs. 4.8%, p=0.009). In regression models for NEC that adjusted for epidemiological confounders, GA (p=0.033) and the AA genotype (p=0.038) of ATG16L1 variant were associated with NEC. The association between the A allele of the ATG16L1 variant and NEC remained significant among Caucasian infants (p=0.02). In a replication cohort (n=259), NEC rates were highest among infants with the AA genotype but did not reach statistical significance. Conclusion We report a novel association between a hypomorphic variant in an autophagy gene (ATG16L1) and NEC in premature infants. Our data suggest that decreased autophagy arising from genetic variants may confer protection against NEC. PMID:27893720

  9. The PNPLA3 I148M variant modulates the fibrogenic phenotype of human hepatic stellate cells.

    PubMed

    Bruschi, Francesca Virginia; Claudel, Thierry; Tardelli, Matteo; Caligiuri, Alessandra; Stulnig, Thomas M; Marra, Fabio; Trauner, Michael

    2017-06-01

    The genetic polymorphism I148M of patatin-like phospholipase domain-containing 3 (PNPLA3) is robustly associated with hepatic steatosis and its progression to steatohepatitis, fibrosis, and cancer. Hepatic stellate cells (HSCs) are key players in the development of liver fibrosis, but the role of PNPLA3 and its variant I148M in this process is poorly understood. Here we analyzed the expression of PNPLA3 during human HSC activation and thereby explored how a PNPLA3 variant impacts hepatic fibrogenesis. We show that expression of PNPLA3 gene and protein increases during the early phases of activation and remains elevated in fully activated HSCs (P < 0.01). Knockdown of PNPLA3 significantly decreases the profibrogenic protein alpha-smooth muscle actin (P < 0.05). Primary human I148M HSCs displayed significantly higher expression and release of proinflammatory cytokines, such as chemokine (C-C motif) ligand 5 (P < 0.01) and granulocyte-macrophage colony-stimulating factor (P < 0.001), thus contributing to migration of immune cells (P < 0.05). Primary I148M HSCs showed reduced retinol (P < 0.001) but higher lipid droplet content (P < 0.001). In line with this, LX-2 cells stably overexpressing I148M showed augmented proliferation and migration, lower retinol, and abolished retinoid X receptor/retinoid A receptor transcriptional activities but more lipid droplets. Knockdown of I148M PNPLA3 (P < 0.001) also reduces chemokine (C-C motif) ligand 5 and collagen1α1 expression (P < 0.05). Notably, I148M cells display reduced peroxisome proliferator-activated receptor gamma transcriptional activity, and this effect was attributed to increased c-Jun N-terminal kinase, thereby inhibiting peroxisome proliferator-activated receptor gamma through serine 84 phosphorylation and promoting activator protein 1 transcription. Conversely, the c-Jun N-terminal kinase inhibitor SP600125 and the peroxisome proliferator-activated receptor gamma agonist rosiglitazone decreased activator protein

  10. Meta-analysis of gene-level associations for rare variants based on single-variant statistics.

    PubMed

    Hu, Yi-Juan; Berndt, Sonja I; Gustafsson, Stefan; Ganna, Andrea; Hirschhorn, Joel; North, Kari E; Ingelsson, Erik; Lin, Dan-Yu

    2013-08-08

    Meta-analysis of genome-wide association studies (GWASs) has led to the discoveries of many common variants associated with complex human diseases. There is a growing recognition that identifying "causal" rare variants also requires large-scale meta-analysis. The fact that association tests with rare variants are performed at the gene level rather than at the variant level poses unprecedented challenges in the meta-analysis. First, different studies may adopt different gene-level tests, so the results are not compatible. Second, gene-level tests require multivariate statistics (i.e., components of the test statistic and their covariance matrix), which are difficult to obtain. To overcome these challenges, we propose to perform gene-level tests for rare variants by combining the results of single-variant analysis (i.e., p values of association tests and effect estimates) from participating studies. This simple strategy is possible because of an insight that multivariate statistics can be recovered from single-variant statistics, together with the correlation matrix of the single-variant test statistics, which can be estimated from one of the participating studies or from a publicly available database. We show both theoretically and numerically that the proposed meta-analysis approach provides accurate control of the type I error and is as powerful as joint analysis of individual participant data. This approach accommodates any disease phenotype and any study design and produces all commonly used gene-level tests. An application to the GWAS summary results of the Genetic Investigation of ANthropometric Traits (GIANT) consortium reveals rare and low-frequency variants associated with human height. The relevant software is freely available. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  11. Expanding the Interactome of TES by Exploiting TES Modules with Different Subcellular Localizations.

    PubMed

    Sala, Stefano; Van Troys, Marleen; Medves, Sandrine; Catillon, Marie; Timmerman, Evy; Staes, An; Schaffner-Reckinger, Elisabeth; Gevaert, Kris; Ampe, Christophe

    2017-05-05

    The multimodular nature of many eukaryotic proteins underlies their temporal or spatial engagement in a range of protein cocomplexes. Using the multimodule protein testin (TES), we here report a proteomics approach to increase insight in cocomplex diversity. The LIM-domain containing and tumor suppressor protein TES is present at different actin cytoskeleton adhesion structures in cells and influences cell migration, adhesion and spreading. TES module accessibility has been proposed to vary due to conformational switching and variants of TES lacking specific domains target to different subcellular locations. By applying iMixPro AP-MS ("intelligent Mixing of Proteomes"-affinity purification-mass spectrometry) to a set of tagged-TES modular variants, we identified proteins residing in module-specific cocomplexes. The obtained distinct module-specific interactomes combine to a global TES interactome that becomes more extensive and richer in information. Applying pathway analysis to the module interactomes revealed expected actin-related canonical pathways and also less expected pathways. We validated two new TES cocomplex partners: TGFB1I1 and a short form of the glucocorticoid receptor. TES and TGFB1I1 are shown to oppositely affect cell spreading providing biological validity for their copresence in complexes since they act in similar processes.

  12. Rare high-impact disease variants: properties and identifications.

    PubMed

    Park, Leeyoung; Kim, Ju Han

    2016-03-21

    Although many genome-wide association studies have been performed, the identification of disease polymorphisms remains important. It is now suspected that many rare disease variants induce the association signal of common variants in linkage disequilibrium (LD). Based on recent development of genetic models, the current study provides explanations of the existence of rare variants with high impacts and common variants with low impacts. Disease variants are neither necessary nor sufficient due to gene-gene or gene-environment interactions. A new method was developed based on theoretical aspects to identify both rare and common disease variants by their genotypes. Common disease variants were identified with relatively small odds ratios and relatively small sample sizes, except for specific situations in which the disease variants were in strong LD with a variant with a higher frequency. Rare disease variants with small impacts were difficult to identify without increasing sample sizes; however, the method was reasonably accurate for rare disease variants with high impacts. For rare variants, dominant variants generally showed better Type II error rates than recessive variants; however, the trend was reversed for common variants. Type II error rates increased in gene regions containing more than two disease variants because the more common variant, rather than both disease variants, was usually identified. The proposed method would be useful for identifying common disease variants with small impacts and rare disease variants with large impacts when disease variants have the same effects on disease presentation.

  13. Beta-glucosidase I variants with improved properties

    DOEpatents

    Bott, Richard R.; Kaper, Thijs; Kelemen, Bradley; Goedegebuur, Frits; Hommes, Ronaldus Wilhelmus; Kralj, Slavko; Kruithof, Paulien; Nikolaev, Igor; Van Der Kley, Wilhelmus Antonious Hendricus; Van Lieshout, Johannes Franciscus Thomas; Van Stigt Thans, Sander

    2016-09-20

    The present disclosure is generally directed to enzymes and in particular beta-glucosidase variants. Also described are nucleic acids encoding beta-glucosidase variants, compositions comprising beta-glucosidase variants, methods of using beta-glucosidase variants, and methods of identifying additional useful beta-glucosidase variants.

  14. 11β-HSD1 Modulates the Set Point of Brown Adipose Tissue Response to Glucocorticoids in Male Mice

    PubMed Central

    Doig, Craig L.; Fletcher, Rachel S.; Morgan, Stuart A.; McCabe, Emma L.; Larner, Dean P.; Tomlinson, Jeremy W.; Stewart, Paul M.; Philp, Andrew

    2017-01-01

    Glucocorticoids (GCs) are potent regulators of energy metabolism. Chronic GC exposure suppresses brown adipose tissue (BAT) thermogenic capacity in mice, with evidence for a similar effect in humans. Intracellular GC levels are regulated by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activity, which can amplify circulating GC concentrations. Therefore, 11β-HSD1 could modulate the impact of GCs on BAT function. This study investigated how 11β-HSD1 regulates the molecular architecture of BAT in the context of GC excess and aging. Circulating GC excess was induced in 11β-HSD1 knockout (KO) and wild-type mice by supplementing drinking water with 100 μg/mL corticosterone, and the effects on molecular markers of BAT function and mitochondrial activity were assessed. Brown adipocyte primary cultures were used to examine cell autonomous consequences of 11β-HSD1 deficiency. Molecular markers of BAT function were also examined in aged 11β-HSD1 KO mice to model lifetime GC exposure. BAT 11β-HSD1 expression and activity were elevated in response to GC excess and with aging. 11β-HSD1 KO BAT resisted the suppression of uncoupling protein 1 (UCP1) and mitochondrial respiratory chain subunit proteins normally imposed by GC excess. Furthermore, brown adipocytes from 11β-HSD1 KO mice had elevated basal mitochondrial function and were able to resist GC-mediated repression of activity. BAT from aged 11β-HSD1 KO mice showed elevated UCP1 protein and mitochondrial content, and a favorable profile of BAT function. These data reveal a novel mechanism in which increased 11β-HSD1 expression, in the context of GC excess and aging, impairs the molecular and metabolic function of BAT. PMID:28368470

  15. Isolation and characterization of novel RECK tumor suppressor gene splice variants

    PubMed Central

    Trombetta-Lima, Marina; Winnischofer, Sheila Maria Brochado; Demasi, Marcos Angelo Almeida; Filho, Renato Astorino; Carreira, Ana Claudia Oliveira; Wei, Beiyang; de Assis Ribas, Thais; Konig, Michelle Silberspitz; Bowman-Colin, Christian; Oba-Shinjo, Sueli Mieko; Marie, Suely Kazue Nagahashi; Stetler-Stevenson, William; Sogayar, Mari Cleide

    2015-01-01

    Glioblastoma multiforme is the most common and lethal of the central nervous system glial-derived tumors. RECK suppresses tumor invasion by negatively regulating at least three members of the matrix metalloproteinase family: MMP-9, MMP-2, and MT1-MMP. A positive correlation has been observed between the abundance of RECK expression in tumor samples and a more favorable prognosis for patients with several types of tumors. In the present study, novel alternatively spliced variants of the RECK gene: RECK-B and RECK-I were isolated by RT-PCR and sequenced. The expression levels and profiles of these alternative RECK transcripts, as well as canonical RECK were determined in tissue samples of malignant astrocytomas of different grades and in a normal tissue RNA panel by qRT-PCR. Our results show that higher canonical RECK expression, accompanied by a higher canonical to alternative transcript expression ratio, positively correlates with higher overall survival rate after chemotherapeutic treatment of GBM patients. U87MG and T98G cells over-expressing the RECK-B alternative variant display higher anchorage-independent clonal growth and do not display modulation of, respectively, MMP-2 and MMP-9 expression. Our findings suggest that RECK transcript variants might have opposite roles in GBM biology and the ratio of their expression levels may be informative for the prognostic outcome of GBM patients. PMID:26431549

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kun; Sun, Guoxun; Lv, Zhiyuan

    Research highlights: {yields} Invertebrates, for example amphioxus, do express uncoupling proteins. {yields} Both the sequence and the uncoupling activity of amphioxus UCP resemble UCP2. {yields} UCP1 is the only UCP that can form dimer on yeast mitochondria. -- Abstract: The present study describes the molecular cloning of a novel cDNA fragment from amphioxus (Branchiostoma belcheri) encoding a 343-amino acid protein that is highly homologous to human uncoupling proteins (UCP), this protein is therefore named amphioxus UCP. This amphioxus UCP shares more homology with and is phylogenetically more related to mammalian UCP2 as compared with UCP1. To further assess the functionalmore » similarity of amphioxus UCP to mammalian UCP1 and -2, the amphioxus UCP, rat UCP1, and human UCP2 were separately expressed in Saccharomyces cerevisiae, and the recombinant yeast mitochondria were isolated and assayed for the state 4 respiration rate and proton leak, using pYES2 empty vector as the control. UCP1 increased the state 4 respiration rate by 2.8-fold, and the uncoupling activity was strongly inhibited by GDP, while UCP2 and amphioxus UCP only increased the state 4 respiration rate by 1.5-fold and 1.7-fold in a GDP-insensitive manner, moreover, the proton leak kinetics of amphioxus UCP was very similar to UCP2, but much different from UCP1. In conclusion, the amphioxus UCP has a mild, unregulated uncoupling activity in the yeast system, which resembles mammalian UCP2, but not UCP1.« less

  17. The complementary and divergent roles of uncoupling proteins 1 and 3 in thermoregulation

    PubMed Central

    Riley, Christopher L.; Dao, Christine; Kenaston, M. Alexander; Muto, Luigina; Kohno, Shohei; Nowinski, Sara M.; Solmonson, Ashley D.; Pfeiffer, Matthew; Sack, Michael N.; Lu, Zhongping; Fiermonte, Giuseppe; Sprague, Jon E.

    2016-01-01

    Key points Both uncoupling protein 1 (UCP1) and UCP3 are important for mammalian thermoregulation.UCP1 and UCP3 in brown adipose tissue mediate early and late phases of sympathomimetic thermogenesis, respectively.Lipopolysaccharide thermogenesis requires skeletal muscle UCP3 but not UCP1.Acute noradrenaline‐induced hyperthermia requires UCP1 but not UCP3.Loss of both UCP1 and UCP3 accelerate the loss of body temperature compared to UCP1KO alone during acute cold exposure. Abstract Uncoupling protein 1 (UCP1) is the established mediator of brown adipose tissue‐dependent thermogenesis. In contrast, the role of UCP3, expressed in both skeletal muscle and brown adipose tissue, in thermoregulatory physiology is less well understood. Here, we show that mice lacking UCP3 (UCP3KO) have impaired sympathomimetic (methamphetamine) and completely abrogated lipopolysaccharide (LPS) thermogenesis, but a normal response to noradrenaline. By comparison, UCP1 knockout (UCP1KO) mice exhibit blunted methamphetamine and fully inhibited noradrenaline thermogenesis, but an increased febrile response to LPS. We further establish that mice lacking both UCP1 and 3 (UCPDK) fail to show methamphetamine‐induced hyperthermia, and have a markedly accelerated loss of body temperature and survival after cold exposure compared to UCP1KO mice. Finally, we show that skeletal muscle‐specific human UCP3 expression is able to significantly rescue LPS, but not sympathomimetic thermogenesis blunted in UCP3KO mice. These studies identify UCP3 as an important mediator of physiological thermogenesis and support a renewed focus on targeting UCP3 in metabolic physiology. PMID:27647490

  18. Variants of cellobiohydrolases

    DOEpatents

    Bott, Richard R.; Foukaraki, Maria; Hommes, Ronaldus Wilhelmus; Kaper, Thijs; Kelemen, Bradley R.; Kralj, Slavko; Nikolaev, Igor; Sandgren, Mats; Van Lieshout, Johannes Franciscus Thomas; Van Stigt Thans, Sander

    2018-04-10

    Disclosed are a number of homologs and variants of Hypocrea jecorina Ce17A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.

  19. Comparability of Essay Question Variants

    ERIC Educational Resources Information Center

    Bridgeman, Brent; Trapani, Catherine; Bivens-Tatum, Jennifer

    2011-01-01

    Writing task variants can increase test security in high-stakes essay assessments by substantially increasing the pool of available writing stimuli and by making the specific writing task less predictable. A given prompt (parent) may be used as the basis for one or more different variants. Six variant types based on argument essay prompts from a…

  20. Variants of beta-glucosidase

    DOEpatents

    Fidantsef, Ana; Lamsa, Michael; Gorre-Clancy, Brian

    2015-07-14

    The present invention relates to variants of a parent beta-glucosidase, comprising a substitution at one or more positions corresponding to positions 142, 183, 266, and 703 of amino acids 1 to 842 of SEQ ID NO: 2 or corresponding to positions 142, 183, 266, and 705 of amino acids 1 to 844 of SEQ ID NO: 70, wherein the variant has beta-glucosidase activity. The present invention also relates to nucleotide sequences encoding the variant beta-glucosidases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  1. Variants of beta-glucosidases

    DOEpatents

    Fidantsef, Ana; Lamsa, Michael; Gorre-Clancy, Brian

    2014-10-07

    The present invention relates to variants of a parent beta-glucosidase, comprising a substitution at one or more positions corresponding to positions 142, 183, 266, and 703 of amino acids 1 to 842 of SEQ ID NO: 2 or corresponding to positions 142, 183, 266, and 705 of amino acids 1 to 844 of SEQ ID NO: 70, wherein the variant has beta-glucosidase activity. The present invention also relates to nucleotide sequences encoding the variant beta-glucosidases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  2. Variants of beta-glucosidase

    DOEpatents

    Fidantsef, Ana [Davis, CA; Lamsa, Michael [Davis, CA; Gorre-Clancy, Brian [Elk Grove, CA

    2009-12-29

    The present invention relates to variants of a parent beta-glucosidase, comprising a substitution at one or more positions corresponding to positions 142, 183, 266, and 703 of amino acids 1 to 842 of SEQ ID NO: 2 or corresponding to positions 142, 183, 266, and 705 of amino acids 1 to 844 of SEQ ID NO: 70, wherein the variant has beta-glucosidase activity. The present invention also relates to nucleotide sequences encoding the variant beta-glucosidases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  3. Selective Glucocorticoid Receptor modulators.

    PubMed

    De Bosscher, Karolien

    2010-05-31

    The ancient two-faced Roman god Janus is often used as a metaphor to describe the characteristics of the Glucocorticoid Receptor (NR3C1), which exhibits both a beneficial side, that serves to halt inflammation, and a detrimental side responsible for undesirable effects. However, recent developments suggest that the Glucocorticoid Receptor has many more faces with the potential to express a range of different functionalities, depending on factors that include the tissue type, ligand type, receptor variants, cofactor surroundings and target gene promoters. This behavior of the receptor has made the development of safer ligands, that trigger the expression program of only a desirable subset of genes, a real challenge. Thus more knowledge-based fundamental research is needed to ensure the design and development of selective Glucocorticoid Receptor modulators capable of reaching the clinic. Recent advances in the characterization of novel selective Glucocorticoid Receptor modulators, specifically in the context of anti-inflammatory strategies, will be described in this review. 2010 Elsevier Ltd. All rights reserved.

  4. Changes in global gene expression profiles induced by HPV 16 E6 oncoprotein variants in cervical carcinoma C33-A cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacapala-Gómez, Ana Elvira, E-mail: zak_ana@yahoo.com.mx; Del Moral-Hernández, Oscar, E-mail: odelmoralh@gmail.com; Villegas-Sepúlveda, Nicolás, E-mail: nvillega@cinvestav.mx

    We analyzed the effects of the expression of HPV 16 E6 oncoprotein variants (AA-a, AA-c, E-A176/G350, E-C188/G350, E-G350), and the E-Prototype in global gene expression profiles in an in vitro model. E6 gene was cloned into an expression vector fused to GFP and was transfected in C33-A cells. Affymetrix GeneChip Human Transcriptome Array 2.0 platform was used to analyze the expression of over 245,000 coding transcripts. We found that HPV16 E6 variants altered the expression of 387 different genes in comparison with E-Prototype. The altered genes are involved in cellular processes related to the development of cervical carcinoma, such asmore » adhesion, angiogenesis, apoptosis, differentiation, cell cycle, proliferation, transcription and protein translation. Our results show that polymorphic changes in HPV16 E6 natural variants are sufficient to alter the overall gene expression profile in C33-A cells, explaining in part the observed differences in oncogenic potential of HPV16 variants. - Highlights: • Amino acid changes in HPV16 E6 variants modulate the transciption of specific genes. • This is the first comparison of global gene expression profile of HPV 16 E6 variants. • Each HPV 16 E6 variant appears to have its own molecular signature.« less

  5. Mitochondrial uncoupling, ROS generation and cardioprotection.

    PubMed

    Cadenas, Susana

    2018-05-31

    Mitochondrial oxidative phosphorylation is incompletely coupled, since protons translocated to the intermembrane space by specific respiratory complexes of the electron transport chain can return to the mitochondrial matrix independently of the ATP synthase -a process known as proton leak- generating heat instead of ATP. Proton leak across the inner mitochondrial membrane increases the respiration rate and decreases the electrochemical proton gradient (Δp), and is an important mechanism for energy dissipation that accounts for up to 25% of the basal metabolic rate. It is well established that mitochondrial superoxide production is steeply dependent on Δp in isolated mitochondria and, correspondingly, mitochondrial uncoupling has been identified as a cytoprotective strategy under conditions of oxidative stress, including diabetes, drug-resistance in tumor cells, ischemia-reperfusion (IR) injury or aging. Mitochondrial uncoupling proteins (UCPs) are able to lower the efficiency of oxidative phosphorylation and are involved in the control of mitochondrial reactive oxygen species (ROS) production. There is strong evidence that UCP2 and UCP3, the UCP1 homologues expressed in the heart, protect against mitochondrial oxidative damage by reducing the production of ROS. This review first analyzes the relationship between mitochondrial proton leak and ROS generation, and then focuses on the cardioprotective role of chemical uncoupling and uncoupling mediated by UCPs. This includes their protective effects against cardiac IR, a condition known to increase ROS production, and their roles in modulating cardiovascular risk factors such as obesity, diabetes and atherosclerosis. Copyright © 2018. Published by Elsevier B.V.

  6. Genetic variants in LEKR1 and GALNT10 modulate sex-difference in carotid intima-media thickness: a genome-wide interaction study.

    PubMed

    Dong, Chuanhui; Della-Morte, David; Beecham, Ashley; Wang, Liyong; Cabral, Digna; Blanton, Susan H; Sacco, Ralph L; Rundek, Tatjana

    2015-06-01

    There is an established sex-difference in carotid artery intima-media thickness (cIMT), a recognized marker of subclinical atherosclerosis. However, the genetic underpinnings of sex-differences in gene-IMT associations are largely unknown. With a multistage design using 731,037 single nucleotide polymorphisms (SNP), a genome wide interaction study was performed in a discovery sample of 931 unrelated Hispanics, followed by replication in 153 non-Hispanic whites and 257 non-Hispanic blacks. Assuming an additive genetic model, we tested for sex-SNP interactions on cIMT using regression analysis. We did not identify any genome-wide significant SNPs but identified 14 loci with suggestive significance. Specifically, SNP-by-sex interaction was found for rs7616559 within LEKR1 gene (P = 3.5E-06 in Hispanic discovery sample, P = 0.018 in White, and P = 1.3E-06 in combined analysis) and for rs2081015 located within GALNT10 gene (P = 4.5E-06 in Hispanic discovery sample, P = 0.042 in Blacks, and P = 5.3E-07 in combined analysis). For rs7616559 within LEKR1, men had greater cIMT than women in G allele carriers (beta ± SE: 0.044 ± 0.007, P = 4.2E-09 in AG carriers; beta ± SE: 0.064 ± 0.007, P = 6.2E-05 in GG carriers). For rs2081015 within GALNT10, men had greater cIMT than women in C allele carriers (beta ± SE: 0.022 ± 0.007, P = 0.002 in CT carriers; beta ± SE: 0.051 ± 0.008, P = 3.1E-10 in CC carriers). Our genome-wide interaction analysis reveals multiple loci that may modulate sex difference in cIMT. Of them, genetic variants on LEKR1 and GALNT10 genes have been associated with control of adiposity and weight. Given the consistent findings across different-ethnic groups, further studies are warranted to perform investigations of functional genetic variants in these regions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Cellobiohydrolase variants and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wogulis, Mark

    The present invention relates to variants of a parent cellobiohydrolase II. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.

  8. Interactions between collagen gene variants and risk of anterior cruciate ligament rupture.

    PubMed

    O'Connell, Kevin; Knight, Hayley; Ficek, Krzysztof; Leonska-Duniec, Agata; Maciejewska-Karlowska, Agnieszka; Sawczuk, Marek; Stepien-Slodkowska, Marta; O'Cuinneagain, Dion; van der Merwe, Willem; Posthumus, Michael; Cieszczyk, Pawel; Collins, Malcolm

    2015-01-01

    The COL5A1 and COL12A1 variants are independently associated with modulating the risk of anterior cruciate ligament (ACL) rupture in females. The objective of this study was to further investigate if COL3A1 and COL6A1 variants independently, as well as, collagen gene-gene interactions, modulate ACL rupture risk. Three hundred and thirty-three South African (SA, n = 242) and Polish (PL, n = 91) participants with diagnosed ACL ruptures and 378 controls (235 SA and 143 PL) were recruited. Participants were genotyped for COL3A1 rs1800255 G/A, COL5A1 rs12722 (T/C), COL6A1 rs35796750 (T/C) and COL12A1 rs970547 (A/G). No significant associations were identified between COL6A1 rs35796750 and COL3A1 rs1800255 genotypes and risk of ACL rupture in the SA cohort. The COL3A1 AA genotype was, however, significantly (p = 0.036) over-represented in the PL ACL group (9.9%, n = 9) when compared to the PL control (CON) group (2.8%, n = 4). Although there were genotype distribution differences between the SA and PL cohorts, the T+A-inferred pseudo-haplotype constructed from COL5A1 and COL12A1 was significantly over-represented in the female ACL group when compared to the female CON group within the SA (T+A ACL 50.5%, T+A CON 38.1%, p = 0.022), PL (T+A ACL 56.3%, T+A CON 36.3%, p = 0.029) and combined (T+A ACL 51.8%, T+A CON 37.5%, p = 0.004) cohorts. In conclusion, the novel main finding of this study was a significant interaction between the COL5A1 rs12722 T/C and COL12A1 rs970547 A/G variants and risk of ACL injury. These results highlight the importance of investigating gene-gene interactions in the aetiology of ACL ruptures in multiple independent cohorts.

  9. Epstein-Barr virus BZLF1 gene promoter variants in pediatric patients with acute infectious mononucleosis: its comparison with pediatric lymphomas.

    PubMed

    Lorenzetti, Mario Alejandro; Gutiérrez, Marina Inés; Altcheh, Jaime; Moscatelli, Guillermo; Moroni, Samanta; Chabay, Paola Andrea; Preciado, María Victoria

    2009-11-01

    Epstein-Barr virus genotypes can be distinguished by polymorphic variations in the genes encoding EBNA2, 3A, 3B, and 3C. The immediate early gene BZLF1 plays a key role in modulating the switch from latency to lytic replication and therefore enabling viral propagation. The aim of this study was to investigate and compare BZLF1 promoter sequence (Zp) variation in pediatric infectious mononucleosis (IM) and in pediatric EBV positive lymphoma biopsies. Zp was sequenced from peripheral blood mononuclear cells (PBMC) and throat swabs from 10 patients with IM at the time of diagnosis (D0) and during convalescence; and from 13 lymphoma biopsies. Zp - P and Zp - V3 variants were found in eight and one IM patients, as well as in five and six tumor biopsies, respectively. A correlation between viral genotype and Zp variant was found significant for Zp - V3 and EBV2 (P = 0.0002). One IM patient harbored two concomitant Zp variants. Regardless of anatomical compartment or stage of disease all IM patients displayed the same Zp variant along the course of the study. No new infections or adaptative selection of different variants was evidenced. A new Zp variant (Zp - V3 + 49) was described in two Hodgkin lymphomas, but not in IM. This is the first study to describe Zp variants compartmentalization in children with acute EBV infection and convalescence in a developing country; and comparing them with Zp variants in pediatric lymphomas from the same geographic area.

  10. Characterization of form variants of Xenorhabdus luminescens.

    PubMed Central

    Gerritsen, L J; de Raay, G; Smits, P H

    1992-01-01

    From Xenorhabdus luminescens XE-87.3 four variants were isolated. One, which produced a red pigment and antibiotics, was luminescent, and could take up dye from culture media, was considered the primary form (XE-red). A pink-pigmented variant (XE-pink) differed from the primary form only in pigmentation and uptake of dye. Of the two other variants, one produced a yellow pigment and fewer antibiotics (XE-yellow), while the other did not produce a pigment or antibiotics (XE-white). Both were less luminescent, did not take up dye, and had small cell and colony sizes. These two variants were very unstable and shifted to the primary form after 3 to 5 days. It was not possible to separate the primary form and the white variant completely; subcultures of one colony always contained a few colonies of the other variant. The white variant was also found in several other X. luminescens strains. DNA fingerprints showed that all four variants are genetically identical and are therefore derivatives of the same parent. Protein patterns revealed a few differences among the four variants. None of the variants could be considered the secondary form. The pathogenicity of the variants decreased in the following order: XE-red, XE-pink, XE-yellow, and XE-white. The mechanism and function of this variability are discussed. Images PMID:1622273

  11. Functional Properties of a Newly Identified C-terminal Splice Variant of Cav1.3 L-type Ca2+ Channels*

    PubMed Central

    Bock, Gabriella; Gebhart, Mathias; Scharinger, Anja; Jangsangthong, Wanchana; Busquet, Perrine; Poggiani, Chiara; Sartori, Simone; Mangoni, Matteo E.; Sinnegger-Brauns, Martina J.; Herzig, Stefan; Striessnig, Jörg; Koschak, Alexandra

    2011-01-01

    An intramolecular interaction between a distal (DCRD) and a proximal regulatory domain (PCRD) within the C terminus of long Cav1.3 L-type Ca2+ channels (Cav1.3L) is a major determinant of their voltage- and Ca2+-dependent gating kinetics. Removal of these regulatory domains by alternative splicing generates Cav1.342A channels that activate at a more negative voltage range and exhibit more pronounced Ca2+-dependent inactivation. Here we describe the discovery of a novel short splice variant (Cav1.343S) that is expressed at high levels in the brain but not in the heart. It lacks the DCRD but, in contrast to Cav1.342A, still contains PCRD. When expressed together with α2δ1 and β3 subunits in tsA-201 cells, Cav1.343S also activated at more negative voltages like Cav1.342A but Ca2+-dependent inactivation was less pronounced. Single channel recordings revealed much higher channel open probabilities for both short splice variants as compared with Cav1.3L. The presence of the proximal C terminus in Cav1.343S channels preserved their modulation by distal C terminus-containing Cav1.3- and Cav1.2-derived C-terminal peptides. Removal of the C-terminal modulation by alternative splicing also induced a faster decay of Ca2+ influx during electrical activities mimicking trains of neuronal action potentials. Our findings extend the spectrum of functionally diverse Cav1.3 L-type channels produced by tissue-specific alternative splicing. This diversity may help to fine tune Ca2+ channel signaling and, in the case of short variants lacking a functional C-terminal modulation, prevent excessive Ca2+ accumulation during burst firing in neurons. This may be especially important in neurons that are affected by Ca2+-induced neurodegenerative processes. PMID:21998310

  12. Soluble γ-secretase modulators selectively inhibit the production of the 42-amino acid amyloid β peptide variant and augment the production of multiple carboxy-truncated amyloid β species.

    PubMed

    Wagner, Steven L; Zhang, Can; Cheng, Soan; Nguyen, Phuong; Zhang, Xulun; Rynearson, Kevin D; Wang, Rong; Li, Yueming; Sisodia, Sangram S; Mobley, William C; Tanzi, Rudolph E

    2014-02-04

    Alzheimer's disease (AD) is characterized pathologically by an abundance of extracellular neuritic plaques composed primarily of the 42-amino acid amyloid β peptide variant (Aβ42). In the majority of familial AD (FAD) cases, e.g., those harboring mutations in presenilin 1 (PS1), there is a relative increase in the levels of Aβ42 compared to the levels of Aβ40. We previously reported the characterization of a series of aminothiazole-bridged aromates termed aryl aminothiazole γ-secretase modulators or AGSMs [Kounnas, M. Z., et al. (2010) Neuron 67, 769-780] and showed their potential for use in the treatment of FAD [Wagner, S. L., et al. (2012) Arch. Neurol. 69, 1255-1258]. Here we describe a series of GSMs with physicochemical properties improved compared to those of AGSMs. Specific heterocycle replacements of the phenyl rings in AGSMs provided potent molecules with improved aqueous solubilities. A number of these soluble γ-secretase modulators (SGSMs) potently lowered Aβ42 levels without inhibiting proteolysis of Notch or causing accumulation of amyloid precursor protein carboxy-terminal fragments, even at concentrations approximately 1000-fold greater than their IC50 values for reducing Aβ42 levels. The effects of one potent SGSM on Aβ peptide production were verified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, showing enhanced production of a number of carboxy-truncated Aβ species. This SGSM also inhibited Aβ42 peptide production in a highly purified reconstituted γ-secretase in vitro assay system and retained the ability to modulate γ-secretase-mediated proteolysis in a stably transfected cell culture model overexpressing a human PS1 mutation validating the potential for use in FAD.

  13. [Obesity studies in candidate genes].

    PubMed

    Ochoa, María del Carmen; Martí, Amelia; Martínez, J Alfredo

    2004-04-17

    There are more than 430 chromosomic regions with gene variants involved in body weight regulation and obesity development. Polymorphisms in genes related to energy expenditure--uncoupling proteins (UCPs), related to adipogenesis and insulin resistance--hormone-sensitive lipase (HLS), peroxisome proliferator-activated receptor gamma (PPAR gamma), beta adrenergic receptors (ADRB2,3), and alfa tumor necrosis factor (TNF-alpha), and related to food intake--ghrelin (GHRL)--appear to be associated with obesity phenotypes. Obesity risk depends on two factors: a) genetic variants in candidate genes, and b) biographical exposure to environmental risk factors. It is necessary to perform new studies, with appropriate control groups and designs, in order to reach relevant conclusions with regard to gene/environmental (diet, lifestyle) interactions.

  14. Random Plant Viral Variants Attain Temporal Advantages During Systemic Infections and in Turn Resist other Variants of the Same Virus.

    PubMed

    Zhang, Xiao-Feng; Guo, Jiangbo; Zhang, Xiuchun; Meulia, Tea; Paul, Pierce; Madden, Laurence V; Li, Dawei; Qu, Feng

    2015-10-20

    Infection of plants with viruses containing multiple variants frequently leads to dominance by a few random variants in the systemically infected leaves (SLs), for which a plausible explanation is lacking. We show here that SL dominance by a given viral variant is adequately explained by its fortuitous lead in systemic spread, coupled with its resistance to superinfection by other variants. We analyzed the fate of a multi-variant turnip crinkle virus (TCV) population in Arabidopsis and N. benthamiana plants. Both wild-type and RNA silencing-defective plants displayed a similar pattern of random dominance by a few variant genotypes, thus discounting a prominent role for RNA silencing. When introduced to plants sequentially as two subpopulations, a twelve-hour head-start was sufficient for the first set to dominate. Finally, SLs of TCV-infected plants became highly resistant to secondary invasions of another TCV variant. We propose that random distribution of variant foci on inoculated leaves allows different variants to lead systemic movement in different plants. The leading variants then colonize large areas of SLs, and resist the superinfection of lagging variants in the same areas. In conclusion, superinfection resistance is the primary driver of random enrichment of viral variants in systemically infected plants.

  15. Purification and characterization of a collagenase from Penicillium sp. UCP 1286 by polyethylene glycol-phosphate aqueous two-phase system.

    PubMed

    de Albuquerque Wanderley, Maria Carolina; Wanderley Duarte Neto, José Manoel; Campos Albuquerque, Wendell Wagner; de Araújo Viana Marques, Daniela; de Albuquerque Lima, Carolina; da Cruz Silvério, Sara Isabel; de Lima Filho, José Luiz; Couto Teixeira, José António; Porto, Ana Lúcia Figueiredo

    2017-05-01

    Collagenases are proteolytic enzymes capable of degrading both native and denatured collagen, reported to be applied in industrial, medical and biotechnological sectors. Liquid-liquid extraction using aqueous two-phase system (ATPS) is one of the most promising bioseparation techniques, which can substitute difficult solid-liquid separation processes, offering many advantages over conventional methods including low-processing time, low-cost material and low-energy consumption. The collagenase produced by Penicillium sp. UCP 1286 showed a stronger affinity for the bottom salt-rich phase, where the highest levels of collagenolytic activity were observed at the center point runs, using 15.0% (w/w) PEG 3350 g/mol and 12.5% (w/w) phosphate salt at pH 7.0 and concentration. The enzyme was characterized by thermal stability, pH tolerance and effect of inhibitors, showing optimal collagenolytic activity at 37 °C and pH 9.0 and proved to be a serine protease. ATPS showed high efficiency in the collagenase purification, confirmed by a single band in SDS/PAGE, and can in fact be applied as a quick and inexpensive alternative method. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. IgG Fc variant cross-reactivity between human and rhesus macaque FcγRs

    PubMed Central

    Boesch, Austin W.; Miles, Adam R.; Chan, Ying N.; Osei-Owusu, Nana Y.; Ackerman, Margaret E.

    2017-01-01

    ABSTRACT Non-human primate (NHP) studies are often an essential component of antibody development efforts before human trials. Because the efficacy or toxicity of candidate antibodies may depend on their interactions with Fcγ receptors (FcγR) and their resulting ability to induce FcγR-mediated effector functions such as antibody-dependent cell-meditated cytotoxicity and phagocytosis (ADCP), the evaluation of human IgG variants with modulated affinity toward human FcγR is becoming more prevalent in both infectious disease and oncology studies in NHP. Reliable translation of these results necessitates analysis of the cross-reactivity of these human Fc variants with NHP FcγR. We report evaluation of the binding affinities of a panel of human IgG subclasses, Fc amino acid point mutants and Fc glycosylation variants against the common allotypes of human and rhesus macaque FcγR by applying a high-throughput array-based surface plasmon resonance platform. The resulting data indicate that amino acid variation present in rhesus FcγRs can result in disrupted, matched, or even increased affinity of IgG Fc variants compared with human FcγR orthologs. These observations emphasize the importance of evaluating species cross-reactivity and developing an understanding of the potential limitations or suitability of representative in vitro and in vivo models before human clinical studies when either efficacy or toxicity may be associated with FcγR engagement. PMID:28055295

  17. A Variant of the Mukai Pairing via Deformation Quantization

    NASA Astrophysics Data System (ADS)

    Ramadoss, Ajay C.

    2012-06-01

    Let X be a smooth projective complex variety. The Hochschild homology HH•( X) of X is an important invariant of X, which is isomorphic to the Hodge cohomology of X via the Hochschild-Kostant-Rosenberg isomorphism. On HH•( X), one has the Mukai pairing constructed by Caldararu. An explicit formula for the Mukai pairing at the level of Hodge cohomology was proven by the author in an earlier work (following ideas of Markarian). This formula implies a similar explicit formula for a closely related variant of the Mukai pairing on HH•( X). The latter pairing on HH•( X) is intimately linked to the study of Fourier-Mukai transforms of complex projective varieties. We give a new method to prove a formula computing the aforementioned variant of Caldararu's Mukai pairing. Our method is based on some important results in the area of deformation quantization. In particular, we use part of the work of Kashiwara and Schapira on Deformation Quantization modules together with an algebraic index theorem of Bressler, Nest and Tsygan. Our new method explicitly shows that the "Noncommutative Riemann-Roch" implies the classical Riemann-Roch. Further, it is hoped that our method would be useful for generalization to settings involving certain singular varieties.

  18. Common coding variant in SERPINA1 increases the risk for large artery stroke

    PubMed Central

    Malik, Rainer; Dau, Therese; Gonik, Maria; Sivakumar, Anirudh; Deredge, Daniel J.; Edeleva, Evgeniia V.; Götzfried, Jessica; Pasterkamp, Gerard; Beaufort, Nathalie; Seixas, Susana; Bevan, Steve; Lincz, Lisa F.; Holliday, Elizabeth G.; Burgess, Annette I.; Rannikmäe, Kristiina; Minnerup, Jens; Kriebel, Jennifer; Waldenberger, Melanie; Müller-Nurasyid, Martina; Lichtner, Peter; Saleheen, Danish; Rothwell, Peter M.; Levi, Christopher; Attia, John; Sudlow, Cathie L. M.; Braun, Dieter; Markus, Hugh S.; Wintrode, Patrick L.; Berger, Klaus; Jenne, Dieter E.; Dichgans, Martin

    2017-01-01

    Large artery atherosclerotic stroke (LAS) shows substantial heritability not explained by previous genome-wide association studies. Here, we explore the role of coding variation in LAS by analyzing variants on the HumanExome BeadChip in a total of 3,127 cases and 9,778 controls from Europe, Australia, and South Asia. We report on a nonsynonymous single-nucleotide variant in serpin family A member 1 (SERPINA1) encoding alpha-1 antitrypsin [AAT; p.V213A; P = 5.99E-9, odds ratio (OR) = 1.22] and confirm histone deacetylase 9 (HDAC9) as a major risk gene for LAS with an association in the 3′-UTR (rs2023938; P = 7.76E-7, OR = 1.28). Using quantitative microscale thermophoresis, we show that M1 (A213) exhibits an almost twofold lower dissociation constant with its primary target human neutrophil elastase (NE) in lipoprotein-containing plasma, but not in lipid-free plasma. Hydrogen/deuterium exchange combined with mass spectrometry further revealed a significant difference in the global flexibility of the two variants. The observed stronger interaction with lipoproteins in plasma and reduced global flexibility of the Val-213 variant most likely improve its local availability and reduce the extent of proteolytic inactivation by other proteases in atherosclerotic plaques. Our results indicate that the interplay between AAT, NE, and lipoprotein particles is modulated by the gate region around position 213 in AAT, far away from the unaltered reactive center loop (357–360). Collectively, our findings point to a functionally relevant balance between lipoproteins, proteases, and AAT in atherosclerosis. PMID:28265093

  19. Paraxial diffractive elements for space-variant linear transforms

    NASA Astrophysics Data System (ADS)

    Teiwes, Stephan; Schwarzer, Heiko; Gu, Ben-Yuan

    1998-06-01

    Optical linear transform architectures bear good potential for future developments of very powerful hybrid vision systems and neural network classifiers. The optical modules of such systems could be used as pre-processors to solve complex linear operations at very high speed in order to simplify an electronic data post-processing. However, the applicability of linear optical architectures is strongly connected with the fundamental question of how to implement a specific linear transform by optical means and physical imitations. The large majority of publications on this topic focusses on the optical implementation of space-invariant transforms by the well-known 4f-setup. Only few papers deal with approaches to implement selected space-variant transforms. In this paper, we propose a simple algebraic method to design diffractive elements for an optical architecture in order to realize arbitrary space-variant transforms. The design procedure is based on a digital model of scalar, paraxial wave theory and leads to optimal element transmission functions within the model. Its computational and physical limitations are discussed in terms of complexity measures. Finally, the design procedure is demonstrated by some examples. Firstly, diffractive elements for the realization of different rotation operations are computed and, secondly, a Hough transform element is presented. The correct optical functions of the elements are proved in computer simulation experiments.

  20. Fair play: social norm compliance failures in behavioural variant frontotemporal dementia.

    PubMed

    O'Callaghan, Claire; Bertoux, Maxime; Irish, Muireann; Shine, James M; Wong, Stephanie; Spiliopoulos, Leonidas; Hodges, John R; Hornberger, Michael

    2016-01-01

    Adherence to social norms is compromised in a variety of neuropsychiatric conditions. Functional neuroimaging studies have investigated social norm compliance in healthy individuals, leading to the identification of a network of fronto-subcortical regions that underpins this ability. However, there is a lack of corroborative evidence from human lesion models investigating the structural anatomy of norm compliance across this fronto-subcortical network. To address this, we developed a neuroeconomic task to investigate social norm compliance in a neurodegenerative lesion model: behavioural variant frontotemporal dementia, a condition characterized by gross social dysfunction. The task assessed norm compliance across three behaviours that are well-studied in the neuroeconomics literature: fairness, prosocial and punishing behaviours. We administered our novel version of the Ultimatum Game in 22 patients with behavioural variant frontotemporal dementia and 22 age-matched controls, to assess how decision-making behaviour was modulated in response to (i) fairness of monetary offers; and (ii) social context of monetary offers designed to produce either prosocial or punishing behaviours. Voxel-based morphometry was used to characterize patterns of grey matter atrophy associated with task performance. Acceptance rates between patients and controls were equivalent when only fairness was manipulated. However, patients were impaired in modulating their decisions in response to social contextual information. Patients' performance in the punishment condition was consistent with a reduced tendency to engage in punishment; this was associated with decreased grey matter volume in the anterior cingulate, orbitofrontal cortex, left dorsolateral prefrontal cortex and right inferior frontal gyrus. In the prosocial condition, patients' performance suggested a reduced expression of prosocial behaviour, associated with decreased grey matter in the anterior insula, lateral orbitofrontal

  1. αIIbβ3 variants defined by next-generation sequencing: Predicting variants likely to cause Glanzmann thrombasthenia

    PubMed Central

    Buitrago, Lorena; Rendon, Augusto; Liang, Yupu; Simeoni, Ilenia; Negri, Ana; Filizola, Marta; Ouwehand, Willem H.; Coller, Barry S.; Alessi, Marie-Christine; Ballmaier, Matthias; Bariana, Tadbir; Bellissimo, Daniel; Bertoli, Marta; Bray, Paul; Bury, Loredana; Carrell, Robin; Cattaneo, Marco; Collins, Peter; French, Deborah; Favier, Remi; Freson, Kathleen; Furie, Bruce; Germeshausen, Manuela; Ghevaert, Cedric; Gomez, Keith; Goodeve, Anne; Gresele, Paolo; Guerrero, Jose; Hampshire, Dan J.; Hadinnapola, Charaka; Heemskerk, Johan; Henskens, Yvonne; Hill, Marian; Hogg, Nancy; Johnsen, Jill; Kahr, Walter; Kerr, Ron; Kunishima, Shinji; Laffan, Michael; Natwani, Amit; Neerman-Arbez, Marguerite; Nurden, Paquita; Nurden, Alan; Ormiston, Mark; Othman, Maha; Ouwehand, Willem; Perry, David; Vilk, Shoshana Ravel; Reitsma, Pieter; Rondina, Matthew; Simeoni, Ilenia; Smethurst, Peter; Stephens, Jonathan; Stevenson, William; Szkotak, Artur; Turro, Ernest; Van Geet, Christel; Vries, Minka; Ward, June; Waye, John; Westbury, Sarah; Whiteheart, Sidney; Wilcox, David; Zhang, Bi

    2015-01-01

    Next-generation sequencing is transforming our understanding of human genetic variation but assessing the functional impact of novel variants presents challenges. We analyzed missense variants in the integrin αIIbβ3 receptor subunit genes ITGA2B and ITGB3 identified by whole-exome or -genome sequencing in the ThromboGenomics project, comprising ∼32,000 alleles from 16,108 individuals. We analyzed the results in comparison with 111 missense variants in these genes previously reported as being associated with Glanzmann thrombasthenia (GT), 20 associated with alloimmune thrombocytopenia, and 5 associated with aniso/macrothrombocytopenia. We identified 114 novel missense variants in ITGA2B (affecting ∼11% of the amino acids) and 68 novel missense variants in ITGB3 (affecting ∼9% of the amino acids). Of the variants, 96% had minor allele frequencies (MAF) < 0.1%, indicating their rarity. Based on sequence conservation, MAF, and location on a complete model of αIIbβ3, we selected three novel variants that affect amino acids previously associated with GT for expression in HEK293 cells. αIIb P176H and β3 C547G severely reduced αIIbβ3 expression, whereas αIIb P943A partially reduced αIIbβ3 expression and had no effect on fibrinogen binding. We used receiver operating characteristic curves of combined annotation-dependent depletion, Polyphen 2-HDIV, and sorting intolerant from tolerant to estimate the percentage of novel variants likely to be deleterious. At optimal cut-off values, which had 69–98% sensitivity in detecting GT mutations, between 27% and 71% of the novel αIIb or β3 missense variants were predicted to be deleterious. Our data have implications for understanding the evolutionary pressure on αIIbβ3 and highlight the challenges in predicting the clinical significance of novel missense variants. PMID:25827233

  2. The natural compound, formononetin, extracted from Astragalus membranaceus increases adipocyte thermogenesis by modulating PPARγ activity.

    PubMed

    Nie, Tao; Zhao, Shiting; Mao, Liufeng; Yang, Yiting; Sun, Wei; Lin, Xiaoliang; Liu, Shuo; Li, Kuai; Sun, Yirong; Li, Peng; Zhou, Zhiguang; Lin, Shaoqiang; Hui, Xiaoyan; Xu, Aimin; Ma, Chung Wah; Xu, Yong; Wang, Cunchuan; Dunbar, P Rod; Wu, Donghai

    2018-05-01

    Increasing energy expenditure through adipocyte thermogenesis is generally accepted as a promising strategy to mitigate obesity and its related diseases. However, few clinically effective and safe agents are known to promote adipocyte thermogenesis. In this study, 20 traditional Chinese herbal medicines were screened to examine whether they induced adipocyte thermogenesis. The effects of Chinese herbal medicines or components isolated from extracts of A. membranaceus, on adipocyte thermogenesis were analysed by assessing expression of uncoupling protein 1 (UCP1) by qPCR. Eight-week-old C57BL6/J male mice were fed a high-fat diet for 8 weeks and then randomized to two groups treated with vehicle or formononetin for another 8 weeks. Glucose tolerance tests and staining of adipose tissue with haematoxylin and eosin were carried out. Whole-body oxygen consumption was measured with an open-circuit indirect calorimetry system. Extracts of A. membranaceus increased expression of Ucp1 in primary cultures of mouse adipocytes. Formononetin was the only known component of A. membranaceus extracts to increase adipocyte Ucp1 expression. Diet-induced obese mice treated with formononetin gained less weight and showed higher energy expenditure than untreated mice. In addition, formononetin binds directly with PPARγ. Taken together, our study demonstrates that the Chinese herbal medicine from A. membranaceus and its constituent formononetin have the potential to reduce obesity and associated metabolic disorders. Our results suggest that formononetin regulates adipocyte thermogenesis as a non-classical PPARγ agonist. © 2018 The British Pharmacological Society.

  3. In-situ neutron diffraction study of martensitic variant redistribution in polycrystalline Ni-Mn-Ga alloy under cyclic thermo-mechanical treatment

    NASA Astrophysics Data System (ADS)

    Li, Zongbin; Zhang, Yudong; Esling, Claude; Gan, Weimin; Zou, Naifu; Zhao, Xiang; Zuo, Liang

    2014-07-01

    The influences of uniaxial compressive stress on martensitic transformation were studied on a polycrystalline Ni-Mn-Ga bulk alloy prepared by directional solidification. Based upon the integrated in-situ neutron diffraction measurements, direct experimental evidence was obtained on the variant redistribution of seven-layered modulated (7M) martensite, triggered by external uniaxial compression during martensitic transformation. Large anisotropic lattice strain, induced by the cyclic thermo-mechanical treatment, has led to the microstructure modification by forming martensitic variants with a strong ⟨0 1 0⟩7M preferential orientation along the loading axis. As a result, the saturation of magnetization became easier to be reached.

  4. In-situ neutron diffraction study of martensitic variant redistribution in polycrystalline Ni-Mn-Ga alloy under cyclic thermo-mechanical treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zongbin; Zou, Naifu; Zhao, Xiang

    2014-07-14

    The influences of uniaxial compressive stress on martensitic transformation were studied on a polycrystalline Ni-Mn-Ga bulk alloy prepared by directional solidification. Based upon the integrated in-situ neutron diffraction measurements, direct experimental evidence was obtained on the variant redistribution of seven-layered modulated (7M) martensite, triggered by external uniaxial compression during martensitic transformation. Large anisotropic lattice strain, induced by the cyclic thermo-mechanical treatment, has led to the microstructure modification by forming martensitic variants with a strong 〈0 1 0〉{sub 7M} preferential orientation along the loading axis. As a result, the saturation of magnetization became easier to be reached.

  5. Replication of 6 obesity genes in a meta-analysis of genome-wide association studies from diverse ancestries.

    PubMed

    Tan, Li-Jun; Zhu, Hu; He, Hao; Wu, Ke-Hao; Li, Jian; Chen, Xiang-Ding; Zhang, Ji-Gang; Shen, Hui; Tian, Qing; Krousel-Wood, Marie; Papasian, Christopher J; Bouchard, Claude; Pérusse, Louis; Deng, Hong-Wen

    2014-01-01

    Obesity is a major public health problem with a significant genetic component. Multiple DNA polymorphisms/genes have been shown to be strongly associated with obesity, typically in populations of European descent. The aim of this study was to verify the extent to which 6 confirmed obesity genes (FTO, CTNNBL1, ADRB2, LEPR, PPARG and UCP2 genes) could be replicated in 8 different samples (n = 11,161) and to explore whether the same genes contribute to obesity-susceptibility in populations of different ancestries (five Caucasian, one Chinese, one African-American and one Hispanic population). GWAS-based data sets with 1000 G imputed variants were tested for association with obesity phenotypes individually in each population, and subsequently combined in a meta-analysis. Multiple variants at the FTO locus showed significant associations with BMI, fat mass (FM) and percentage of body fat (PBF) in meta-analysis. The strongest association was detected at rs7185735 (P-value = 1.01×10(-7) for BMI, 1.80×10(-6) for FM, and 5.29×10(-4) for PBF). Variants at the CTNNBL1, LEPR and PPARG loci demonstrated nominal association with obesity phenotypes (meta-analysis P-values ranging from 1.15×10(-3) to 4.94×10(-2)). There was no evidence of association with variants at ADRB2 and UCP2 genes. When stratified by sex and ethnicity, FTO variants showed sex-specific and ethnic-specific effects on obesity traits. Thus, it is likely that FTO has an important role in the sex- and ethnic-specific risk of obesity. Our data confirmed the role of FTO, CTNNBL1, LEPR and PPARG in obesity predisposition. These findings enhanced our knowledge of genetic associations between these genes and obesity-related phenotypes, and provided further justification for pursuing functional studies of these genes in the pathophysiology of obesity. Sex and ethnic differences in genetic susceptibility across populations of diverse ancestries may contribute to a more targeted prevention and customized

  6. Innate immunity glycoprotein gp-340 variants may modulate human susceptibility to dental caries

    PubMed Central

    Jonasson, Anette; Eriksson, Christer; Jenkinson, Howard F; Källestål, Carina; Johansson, Ingegerd; Strömberg, Nicklas

    2007-01-01

    Background Bacterial adhesion is an important determinant of colonization and infection, including dental caries. The salivary scavenger receptor cysteine-rich glycoprotein gp-340, which mediates adhesion of Streptococcus mutans (implicated in caries), harbours three major size variants, designated gp-340 I to III, each specific to an individual saliva. Here we have examined the association of the gp-340 I to III polymorphisms with caries experience and adhesion of S. mutans. Methods A case-referent study was performed in 12-year-old Swedish children with high (n = 19) or low (n = 19) caries experiences. We measured the gp-340 I to III saliva phenotypes and correlated those with multiple outcome measures for caries experience and saliva adhesion of S. mutans using the partial least squares (PLS) multivariate projection technique. In addition, we used traditional statistics and 2-year caries increment to verify the established PLS associations, and bacterial adhesion to purified gp-340 I to III proteins to support possible mechanisms. Results All except one subject were typed as gp-340 I to III (10, 23 and 4, respectively). The gp-340 I phenotype correlated positively with caries experience (VIP = 1.37) and saliva adhesion of S. mutans Ingbritt (VIP = 1.47). The gp-340 II and III phenotypes tended to behave in the opposite way. Moreover, the gp-340 I phenotype tended to show an increased 2-year caries increment compared to phenotypes II/III. Purified gp-340 I protein mediated markedly higher adhesion of S. mutans strains Ingbritt and NG8 and Lactococcus lactis expressing AgI/II adhesins (SpaP or PAc) compared to gp-340 II and III proteins. In addition, the gp-340 I protein appeared over represented in subjects positive for Db, an allelic acidic PRP variant associated with caries, and subjects positive for both gp-340 I and Db tended to experience more caries than those negative for both proteins. Conclusion Gp-340 I behaves as a caries susceptibility protein. PMID

  7. Variant Interpretation: Functional Assays to the Rescue.

    PubMed

    Starita, Lea M; Ahituv, Nadav; Dunham, Maitreya J; Kitzman, Jacob O; Roth, Frederick P; Seelig, Georg; Shendure, Jay; Fowler, Douglas M

    2017-09-07

    Classical genetic approaches for interpreting variants, such as case-control or co-segregation studies, require finding many individuals with each variant. Because the overwhelming majority of variants are present in only a few living humans, this strategy has clear limits. Fully realizing the clinical potential of genetics requires that we accurately infer pathogenicity even for rare or private variation. Many computational approaches to predicting variant effects have been developed, but they can identify only a small fraction of pathogenic variants with the high confidence that is required in the clinic. Experimentally measuring a variant's functional consequences can provide clearer guidance, but individual assays performed only after the discovery of the variant are both time and resource intensive. Here, we discuss how multiplex assays of variant effect (MAVEs) can be used to measure the functional consequences of all possible variants in disease-relevant loci for a variety of molecular and cellular phenotypes. The resulting large-scale functional data can be combined with machine learning and clinical knowledge for the development of "lookup tables" of accurate pathogenicity predictions. A coordinated effort to produce, analyze, and disseminate large-scale functional data generated by multiplex assays could be essential to addressing the variant-interpretation crisis. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  8. RareVariantVis: new tool for visualization of causative variants in rare monogenic disorders using whole genome sequencing data.

    PubMed

    Stokowy, Tomasz; Garbulowski, Mateusz; Fiskerstrand, Torunn; Holdhus, Rita; Labun, Kornel; Sztromwasser, Pawel; Gilissen, Christian; Hoischen, Alexander; Houge, Gunnar; Petersen, Kjell; Jonassen, Inge; Steen, Vidar M

    2016-10-01

    The search for causative genetic variants in rare diseases of presumed monogenic inheritance has been boosted by the implementation of whole exome (WES) and whole genome (WGS) sequencing. In many cases, WGS seems to be superior to WES, but the analysis and visualization of the vast amounts of data is demanding. To aid this challenge, we have developed a new tool-RareVariantVis-for analysis of genome sequence data (including non-coding regions) for both germ line and somatic variants. It visualizes variants along their respective chromosomes, providing information about exact chromosomal position, zygosity and frequency, with point-and-click information regarding dbSNP IDs, gene association and variant inheritance. Rare variants as well as de novo variants can be flagged in different colors. We show the performance of the RareVariantVis tool in the Genome in a Bottle WGS data set. https://www.bioconductor.org/packages/3.3/bioc/html/RareVariantVis.html tomasz.stokowy@k2.uib.no Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Swine Influenza/Variant Influenza Viruses

    MedlinePlus

    ... Address What's this? Submit What's this? Submit Button Influenza Types Seasonal Avian Swine Variant Pandemic Other Information on Swine Influenza/Variant Influenza Virus Language: English (US) Español Recommend ...

  10. Beta-glucosidase variants and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wogulis, Mark; Harris, Paul; Osborn, David

    The present invention relates to beta-glucosidase variants, e.g. beta-glucosidase variants of a parent Family GH3A beta-glucosidase from Aspergillus fumigatus. The present invention also relates to polynucleotides encoding the beta-glucosidase variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the beta-glucosidase variants.

  11. The effect of time-variant acoustical properties on orchestral instrument timbres

    NASA Astrophysics Data System (ADS)

    Hajda, John Michael

    1999-06-01

    envelope and spectral frequencies. Both amplitude phase relationships and time- variant spectral centroid were affected by the control of relative spectral amplitudes. Further experimentation is required to determine the salience of these features. The finding that instrumental vibrato is a manifestation of spectral amplitude time variance contradicts the common belief that vibrato is due to frequency (pitch) and intensity (loudness) modulation. This study suggests that vibrato is due to a periodic modulation in timbre. Future research should employ musical contexts.

  12. Potential of chitosan from Mucor rouxxi UCP064 as alternative natural compound to inhibit Listeria monocytogenes.

    PubMed

    Bento, Roberta A; Stamford, Tânia L M; de Campos-Takaki, Galba M; Stamford, Thayza C M; de Souza, Evandro L

    2009-07-01

    Listeria monocytogenes is widely distributed in nature and the infection listeriosis is recognized as a potential threat for human health because of its mortality rate. The objective of this study was to evaluate the growth profile and chitosan production by Mucor rouxxi UCP 064 grown in yam bean (Pachyrhizus erosus L. Urban) medium. It was also to assess the anti-L. monocytogenes efficacy of the obtained chitosan. Higher values of biomass of M. rouxxi (16.9 g.L(-1)) and best yield of chitosan (62 mg.g(-1)) were found after 48 h of cultivation. Residual glucose and nitrogen in the growth media were 4.1 and 0.02 g.L(-1) after 96 h, respectively. Obtained chitosan presented 85 % of degree of deacetylation and 2.60 x 10(4) g.mol(-1) of viscosimetric molecular weight. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values of chitosan against L. monocytogenes ATCC 7644 were, respectively, 2.5 and 5.0 mg.mL(-1). At 2.5 and 5.0 mg.mL(-1) chitosan caused cidal effect in a maximum time of 4 h. Bacterial count below 2 log cfu.mL(-1) were found from 2 h onwards and no recovery in bacterial growth was noted in the remainder period. These results show the biotechnological potential of yam bean medium for chitosan production by Mucor rouxxi and support the possible rational use of chitosan from fungi as natural antimicrobial to control L. monocytogenes.

  13. Potential of chitosan from Mucor rouxxi UCP064 as alternative natural compound to inhibit Listeria monocytogenes

    PubMed Central

    Bento, Roberta A.; Stamford, Tânia L.M.; de Campos-Takaki, Galba M.; Stamford, Thayza C.M.; de Souza, Evandro L.

    2009-01-01

    Listeria monocytogenes is widely distributed in nature and the infection listeriosis is recognized as a potential threat for human health because of its mortality rate. The objective of this study was to evaluate the growth profile and chitosan production by Mucor rouxxi UCP 064 grown in yam bean (Pachyrhizus erosus L. Urban) medium. It was also to assess the anti-L. monocytogenes efficacy of the obtained chitosan. Higher values of biomass of M. rouxxi (16.9 g.L-1) and best yield of chitosan (62 mg.g-1) were found after 48 h of cultivation. Residual glucose and nitrogen in the growth media were 4.1 and 0.02 g.L-1 after 96 h, respectively. Obtained chitosan presented 85 % of degree of deacetylation and 2.60 x 104 g.mol-1 of viscosimetric molecular weight. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values of chitosan against L. monocytogenes ATCC 7644 were, respectively, 2.5 and 5.0 mg.mL-1. At 2.5 and 5.0 mg.mL-1 chitosan caused cidal effect in a maximum time of 4 h. Bacterial count below 2 log cfu.mL-1 were found from 2 h onwards and no recovery in bacterial growth was noted in the remainder period. These results show the biotechnological potential of yam bean medium for chitosan production by Mucor rouxxi and support the possible rational use of chitosan from fungi as natural antimicrobial to control L. monocytogenes. PMID:24031403

  14. Molecular identification and functional characterisation of uncoupling protein 4 in larva and pupa fat body mitochondria from the beetle Zophobas atratus.

    PubMed

    Slocinska, Malgorzata; Antos-Krzeminska, Nina; Rosinski, Grzegorz; Jarmuszkiewicz, Wieslawa

    2012-08-01

    Uncoupling protein 4 (UCP4) is a member of the UCP subfamily that mediates mitochondrial uncoupling, and sequence alignment predicts the existence of UCP4 in several insects. The present study demonstrates the first molecular identification of a partial Zophobas atratus UCP4-coding sequence and the functional characterisation of ZaUCP4 in the mitochondria of larval and pupal fat bodies of the beetle. ZaUCP4 shows a high similarity to predicted insect UCP4 isoforms and known mammalian UCP4s, both at the nucleotide and amino acid sequence levels. Bioenergetic studies clearly demonstrate UCP function in mitochondria from larval and pupal fat bodies. In non-phosphorylating mitochondria, ZaUCP activity was stimulated by palmitic acid and inhibited by the purine nucleotide GTP. In phosphorylating mitochondria, ZaUCP4 activity decreased the yield of oxidative phosphorylation. ZaUCP4 was immunodetected with antibodies raised against human UCP4 as a single 36-kDa band. A lower expression of ZaUCP4 at the level of mRNA and protein and a decreased ZaUCP4 activity were observed in the Z. atratus pupal fat body compared with the larval fat body. The different expression patterns and activity of ZaUCP4 during the larval-pupal transformation indicates an important physiological role for UCP4 in insect fat body development and function during insect metamorphosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Temporal Expression Profiling Identifies Pathways Mediating Effect of Causal Variant on Phenotype

    PubMed Central

    Gupta, Saumya; Radhakrishnan, Aparna; Raharja-Liu, Pandu; Lin, Gen; Steinmetz, Lars M.; Gagneur, Julien; Sinha, Himanshu

    2015-01-01

    Even with identification of multiple causal genetic variants for common human diseases, understanding the molecular processes mediating the causal variants’ effect on the disease remains a challenge. This understanding is crucial for the development of therapeutic strategies to prevent and treat disease. While static profiling of gene expression is primarily used to get insights into the biological bases of diseases, it makes differentiating the causative from the correlative effects difficult, as the dynamics of the underlying biological processes are not monitored. Using yeast as a model, we studied genome-wide gene expression dynamics in the presence of a causal variant as the sole genetic determinant, and performed allele-specific functional validation to delineate the causal effects of the genetic variant on the phenotype. Here, we characterized the precise genetic effects of a functional MKT1 allelic variant in sporulation efficiency variation. A mathematical model describing meiotic landmark events and conditional activation of MKT1 expression during sporulation specified an early meiotic role of this variant. By analyzing the early meiotic genome-wide transcriptional response, we demonstrate an MKT1-dependent role of novel modulators, namely, RTG1/3, regulators of mitochondrial retrograde signaling, and DAL82, regulator of nitrogen starvation, in additively effecting sporulation efficiency. In the presence of functional MKT1 allele, better respiration during early sporulation was observed, which was dependent on the mitochondrial retrograde regulator, RTG3. Furthermore, our approach showed that MKT1 contributes to sporulation independent of Puf3, an RNA-binding protein that steady-state transcription profiling studies have suggested to mediate MKT1-pleiotropic effects during mitotic growth. These results uncover interesting regulatory links between meiosis and mitochondrial retrograde signaling. In this study, we highlight the advantage of analyzing

  16. A functional promoter variant of the human formimidoyltransferase cyclodeaminase (FTCD) gene is associated with working memory performance in young but not older adults.

    PubMed

    Greenwood, Pamela M; Schmidt, Kevin; Lin, Ming-Kuan; Lipsky, Robert; Parasuraman, Raja; Jankord, Ryan

    2018-06-21

    The central role of working memory in IQ and the high heritability of working memory performance motivated interest in identifying the specific genes underlying this heritability. The FTCD (formimidoyltransferase cyclodeaminase) gene was identified as a candidate gene for allelic association with working memory in part from genetic mapping studies of mouse Morris water maze performance. The present study tested variants of this gene for effects on a delayed match-to-sample task of a large sample of younger and older participants. The rs914246 variant, but not the rs914245 variant, of the FTCD gene modulated accuracy in the task for younger, but not older, people under high working memory load. The interaction of haplotype × distance × load had a partial eta squared effect size of 0.015. Analysis of simple main effects had partial eta squared effect sizes ranging from 0.012 to 0.040. A reporter gene assay revealed that the C allele of the rs914246 genotype is functional and a main factor regulating FTCD gene expression. This study extends previous work on the genetics of working memory by revealing that a gene in the glutamatergic pathway modulates working memory in young people but not in older people. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  17. Fine-Mapping of Common Genetic Variants Associated with Colorectal Tumor Risk Identified Potential Functional Variants

    PubMed Central

    Gala, Manish; Abecasis, Goncalo; Bezieau, Stephane; Brenner, Hermann; Butterbach, Katja; Caan, Bette J.; Carlson, Christopher S.; Casey, Graham; Chang-Claude, Jenny; Conti, David V.; Curtis, Keith R.; Duggan, David; Gallinger, Steven; Haile, Robert W.; Harrison, Tabitha A.; Hayes, Richard B.; Hoffmeister, Michael; Hopper, John L.; Hudson, Thomas J.; Jenkins, Mark A.; Küry, Sébastien; Le Marchand, Loic; Leal, Suzanne M.; Newcomb, Polly A.; Nickerson, Deborah A.; Potter, John D.; Schoen, Robert E.; Schumacher, Fredrick R.; Seminara, Daniela; Slattery, Martha L.; Hsu, Li; Chan, Andrew T.; White, Emily; Berndt, Sonja I.; Peters, Ulrike

    2016-01-01

    Genome-wide association studies (GWAS) have identified many common single nucleotide polymorphisms (SNPs) associated with colorectal cancer risk. These SNPs may tag correlated variants with biological importance. Fine-mapping around GWAS loci can facilitate detection of functional candidates and additional independent risk variants. We analyzed 11,900 cases and 14,311 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium and the Colon Cancer Family Registry. To fine-map genomic regions containing all known common risk variants, we imputed high-density genetic data from the 1000 Genomes Project. We tested single-variant associations with colorectal tumor risk for all variants spanning genomic regions 250-kb upstream or downstream of 31 GWAS-identified SNPs (index SNPs). We queried the University of California, Santa Cruz Genome Browser to examine evidence for biological function. Index SNPs did not show the strongest association signals with colorectal tumor risk in their respective genomic regions. Bioinformatics analysis of SNPs showing smaller P-values in each region revealed 21 functional candidates in 12 loci (5q31.1, 8q24, 11q13.4, 11q23, 12p13.32, 12q24.21, 14q22.2, 15q13, 18q21, 19q13.1, 20p12.3, and 20q13.33). We did not observe evidence of additional independent association signals in GWAS-identified regions. Our results support the utility of integrating data from comprehensive fine-mapping with expanding publicly available genomic databases to help clarify GWAS associations and identify functional candidates that warrant more onerous laboratory follow-up. Such efforts may aid the eventual discovery of disease-causing variant(s). PMID:27379672

  18. Variant Humicola grisea CBH1.1

    DOEpatents

    Goedegeburr, Frits; Gualfetti, Peter; Mitchinson, Colin; Larenas, Edmund

    2013-02-19

    Disclosed are variants of Humicola grisea Cel7A (CBH1.1), H. jecorina CBH1 variant or S. thermophilium CBH1, nucleic acids encoding the same and methods for producing the same. The variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted.

  19. Variant Humicola grisea CBH1.1

    DOEpatents

    Goedegebuur, Frits [Vlaardingen, NL; Gualfetti, Peter [San Francisco, CA; Mitchinson, Colin [Half Moon Bay, CA; Larenas, Edmund [Moss Beach, CA

    2011-05-31

    Disclosed are variants of Humicola grisea Cel7A (CBH1.1), H. jecorina CBH1 variant or S. thermophilium CBH1, nucleic acids encoding the same and methods for producing the same. The variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted.

  20. Variant humicola grisea CBH1.1

    DOEpatents

    Goedegebuur, Frits; Gualfetti, Peter; Mitchinson, Colin; Edmund, Larenas

    2014-09-09

    Disclosed are variants of Humicola grisea Cel7A (CBH1.1), H. jecorina CBH1 variant or S. thermophilium CBH1, nucleic acids encoding the same and methods for producing the same. The variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted.

  1. Variant Humicola grisea CBH1.1

    DOEpatents

    Goedegebuur, Frits; Gualfetti, Peter; Mitchinson, Colin; Larenas, Edmund

    2014-03-18

    Disclosed are variants of Humicola grisea Cel7A (CBH1.1), H. jecorina CBH1 variant or S. thermophilium CBH1, nucleic acids encoding the same and methods for producing the same. The variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted.

  2. Variant Humicola grisea CBH1.1

    DOEpatents

    Goedegebuur, Frits; Gualfetti, Peter; Mitchinson, Colin; Larenas, Edmund

    2017-05-09

    Disclosed are variants of Humicola grisea CeI7A (CBH1.1), H. jecorina CBH1 variant or S. thermophilium CBH1, nucleic acids encoding the same and methods for producing the same. The variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted.

  3. Variant Humicola grisea CBH1.1

    DOEpatents

    Goedegebuur, Frits [Vlaardingen, NL; Gualfetti, Peter [San Francisco, CA; Mitchinson, Colin [Half Moon Bay, CA; Larenas, Edmund [Moss Beach, CA

    2011-08-16

    Disclosed are variants of Humicola grisea Cel7A (CBH1.1), H. jecorina CBH1 variant or S. thermophilium CBH1, nucleic acids encoding the same and methods for producing the same. The variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted.

  4. Variant Humicola grisea CBH1.1

    DOEpatents

    Goedegebuur, Frits [Vlaardingen, NL; Gualfetti, Peter [San Francisco, CA; Mitchinson, Colin [Half Moon Bay, CA; Larenas, Edmund [Moss Beach, CA

    2012-08-07

    Disclosed are variants of Humicola grisea Cel7A (CBH1.1), H. jecorina CBH1 variant or S. thermophilium CBH1, nucleic acids encoding the same and methods for producing the same. The variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted.

  5. Variant Humicola grisea CBH1.1

    DOEpatents

    Goedegebuur, Frits [Vlaardingen, NL; Gualfetti, Peter [San Francisco, CA; Mitchinson, Colin [Half Moon Bay, CA; Larenas, Edmund [Moss Beach, CA

    2008-12-02

    Disclosed are variants of Humicola grisea Cel7A (CBH1.1), H. jecorina CBH1 variant or S. thermophilium CBH1, nucleic acids encoding the same and methods for producing the same. The variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted.

  6. DNA methylation as a mediator of HLA-DRB1*15:01 and a protective variant in multiple sclerosis.

    PubMed

    Kular, Lara; Liu, Yun; Ruhrmann, Sabrina; Zheleznyakova, Galina; Marabita, Francesco; Gomez-Cabrero, David; James, Tojo; Ewing, Ewoud; Lindén, Magdalena; Górnikiewicz, Bartosz; Aeinehband, Shahin; Stridh, Pernilla; Link, Jenny; Andlauer, Till F M; Gasperi, Christiane; Wiendl, Heinz; Zipp, Frauke; Gold, Ralf; Tackenberg, Björn; Weber, Frank; Hemmer, Bernhard; Strauch, Konstantin; Heilmann-Heimbach, Stefanie; Rawal, Rajesh; Schminke, Ulf; Schmidt, Carsten O; Kacprowski, Tim; Franke, Andre; Laudes, Matthias; Dilthey, Alexander T; Celius, Elisabeth G; Søndergaard, Helle B; Tegnér, Jesper; Harbo, Hanne F; Oturai, Annette B; Olafsson, Sigurgeir; Eggertsson, Hannes P; Halldorsson, Bjarni V; Hjaltason, Haukur; Olafsson, Elias; Jonsdottir, Ingileif; Stefansson, Kari; Olsson, Tomas; Piehl, Fredrik; Ekström, Tomas J; Kockum, Ingrid; Feinberg, Andrew P; Jagodic, Maja

    2018-06-19

    The human leukocyte antigen (HLA) haplotype DRB1*15:01 is the major risk factor for multiple sclerosis (MS). Here, we find that DRB1*15:01 is hypomethylated and predominantly expressed in monocytes among carriers of DRB1*15:01. A differentially methylated region (DMR) encompassing HLA-DRB1 exon 2 is particularly affected and displays methylation-sensitive regulatory properties in vitro. Causal inference and Mendelian randomization provide evidence that HLA variants mediate risk for MS via changes in the HLA-DRB1 DMR that modify HLA-DRB1 expression. Meta-analysis of 14,259 cases and 171,347 controls confirms that these variants confer risk from DRB1*15:01 and also identifies a protective variant (rs9267649, p < 3.32 × 10 -8 , odds ratio = 0.86) after conditioning for all MS-associated variants in the region. rs9267649 is associated with increased DNA methylation at the HLA-DRB1 DMR and reduced expression of HLA-DRB1, suggesting a modulation of the DRB1*15:01 effect. Our integrative approach provides insights into the molecular mechanisms of MS susceptibility and suggests putative therapeutic strategies targeting a methylation-mediated regulation of the major risk gene.

  7. Pharmacological profile of brain-derived neurotrophic factor (BDNF) splice variant translation using a novel drug screening assay: a "quantitative code".

    PubMed

    Vaghi, Valentina; Polacchini, Alessio; Baj, Gabriele; Pinheiro, Vera L M; Vicario, Annalisa; Tongiorgi, Enrico

    2014-10-03

    The neurotrophin brain-derived neurotrophic factor (BDNF) is a key regulator of neuronal development and plasticity. BDNF is a major pharmaceutical target in neurodevelopmental and psychiatric disorders. However, pharmacological modulation of this neurotrophin is challenging because BDNF is generated by multiple, alternatively spliced transcripts with different 5'- and 3'UTRs. Each BDNF mRNA variant is transcribed independently, but translation regulation is unknown. To evaluate the translatability of BDNF transcripts, we developed an in vitro luciferase assay in human neuroblastoma cells. In unstimulated cells, each BDNF 5'- and 3'UTR determined a different basal translation level of the luciferase reporter gene. However, constructs with either a 5'UTR or a 3'UTR alone showed poor translation modulation by BDNF, KCl, dihydroxyphenylglycine, AMPA, NMDA, dopamine, acetylcholine, norepinephrine, or serotonin. Constructs consisting of the luciferase reporter gene flanked by the 5'UTR of one of the most abundant BDNF transcripts in the brain (exons 1, 2c, 4, and 6) and the long 3'UTR responded selectively to stimulation with the different receptor agonists, and only transcripts 2c and 6 were increased by the antidepressants desipramine and mirtazapine. We propose that BDNF mRNA variants represent "a quantitative code" for regulated expression of the protein. Thus, to discriminate the efficacy of drugs in stimulating BDNF synthesis, it is appropriate to use variant-specific in vitro screening tests. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Loss aversion and 5HTT gene variants in adolescent anxiety.

    PubMed

    Ernst, Monique; Plate, Rista C; Carlisi, Christina O; Gorodetsky, Elena; Goldman, David; Pine, Daniel S

    2014-04-01

    Loss aversion, a well-documented behavioral phenomenon, characterizes decisions under risk in adult populations. As such, loss aversion may provide a reliable measure of risky behavior. Surprisingly, little is known about loss aversion in adolescents, a group who manifests risk-taking behavior, or in anxiety disorders, which are associated with risk-avoidance. Finally, loss aversion is expected to be modulated by genotype, particularly the serotonin transporter (SERT) gene variant, based on its role in anxiety and impulsivity. This genetic modulation may also differ between anxious and healthy adolescents, given their distinct propensities for risk taking. The present work examines the modulation of loss aversion, an index of risk-taking, and reaction-time to decision, an index of impulsivity, by the serotonin-transporter-gene-linked polymorphisms (5HTTLPR) in healthy and clinically anxious adolescents. Findings show that loss aversion (1) does manifest in adolescents, (2) does not differ between healthy and clinically anxious participants, and (3), when stratified by SERT genotype, identifies a subset of anxious adolescents who are high SERT-expressers, and show excessively low loss-aversion and high impulsivity. This last finding may serve as preliminary evidence for 5HTTLPR as a risk factor for the development of comorbid disorders associated with risk-taking and impulsivity in clinically anxious adolescents. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. DHAD variants and methods of screening

    DOEpatents

    Kelly, Kristen J.; Ye, Rick W.

    2017-02-28

    Methods of screening for dihydroxy-acid dehydratase (DHAD) variants that display increased DHAD activity are disclosed, along with DHAD variants identified by these methods. Such enzymes can result in increased production of compounds from DHAD requiring biosynthetic pathways. Also disclosed are isolated nucleic acids encoding the DHAD variants, recombinant host cells comprising the isolated nucleic acid molecules, and methods of producing butanol.

  10. Impact of inflammation, gene variants, and cigarette smoking on coronary artery disease risk.

    PubMed

    Merhi, Mahmoud; Demirdjian, Sally; Hariri, Essa; Sabbah, Nada; Youhanna, Sonia; Ghassibe-Sabbagh, Michella; Naoum, Joseph; Haber, Marc; Othman, Raed; Kibbani, Samer; Chammas, Elie; Kanbar, Roy; Bayeh, Hamid El; Chami, Youssef; Abchee, Antoine; Platt, Daniel E; Zalloua, Pierre; Khazen, Georges

    2015-06-01

    The role of inflammation in coronary artery disease (CAD) pathogenesis is well recognized. Moreover, smoking inhalation increases the activity of inflammatory mediators through an increase in leukotriene synthesis essential in atherosclerosis pathogenesis. The aim of this study is to investigate the effect of "selected" genetic variants within the leukotriene (LT) pathway and other variants on the development of CAD. CAD was detected by cardiac catheterization. Logistic regression was performed to investigate the association of smoking and selected susceptibility variants in the LT pathway including ALOX5AP, LTA4H, LTC4S, PON1, and LTA as well as CYP1A1 on CAD risk while controlling for age, gender, BMI, family history, diabetes, hyperlipidemia, and hypertension. rs4769874 (ALOX5AP), rs854560 (PON1), and rs4646903 (CYP1A1 MspI polymorphism) are significantly associated with an increased risk of CAD with respective odds ratios of 1.53703, 1.67710, and 1.35520; the genetic variant rs9579646 (ALOX5AP) is significantly associated with a decreased risk of CAD (OR 0.76163). Moreover, a significant smoking-gene interaction is determined with CYP1A1 MspI polymorphism rs4646903 and is associated with a decreased risk of CAD in current smokers (OR 0.52137). This study provides further evidence that genetic variation of the LT pathway, PON1, and CYP1A1 can modulate the atherogenic processes and eventually increase the risk of CAD in our study population. Moreover, it also shows the effect of smoking-gene interaction on CAD risk, where the CYP1A1 MspI polymorphism revealed a decreased risk in current smokers.

  11. Reactive oxygen species drive evolution of pro-biofilm variants in pathogens by modulating cyclic-di-GMP levels.

    PubMed

    Chua, Song Lin; Ding, Yichen; Liu, Yang; Cai, Zhao; Zhou, Jianuan; Swarup, Sanjay; Drautz-Moses, Daniela I; Schuster, Stephan Christoph; Kjelleberg, Staffan; Givskov, Michael; Yang, Liang

    2016-11-01

    The host immune system offers a hostile environment with antimicrobials and reactive oxygen species (ROS) that are detrimental to bacterial pathogens, forcing them to adapt and evolve for survival. However, the contribution of oxidative stress to pathogen evolution remains elusive. Using an experimental evolution strategy, we show that exposure of the opportunistic pathogen Pseudomonas aeruginosa to sub-lethal hydrogen peroxide (H 2 O 2 ) levels over 120 generations led to the emergence of pro-biofilm rough small colony variants (RSCVs), which could be abrogated by l-glutathione antioxidants. Comparative genomic analysis of the RSCVs revealed that mutations in the wspF gene, which encodes for a repressor of WspR diguanylate cyclase (DGC), were responsible for increased intracellular cyclic-di-GMP content and production of Psl exopolysaccharide. Psl provides the first line of defence against ROS and macrophages, ensuring the survival fitness of RSCVs over wild-type P. aeruginosa Our study demonstrated that ROS is an essential driving force for the selection of pro-biofilm forming pathogenic variants. Understanding the fundamental mechanism of these genotypic and phenotypic adaptations will improve treatment strategies for combating chronic infections. © 2016 The Authors.

  12. Cellobiohydrolase variants and polynucleotides encoding the same

    DOEpatents

    Wogulis, Mark

    2014-09-09

    The present invention relates to variants of a parent cellobiohydrolase. The present invention also relates to polynucleotides encoding the cellobiohydrolase variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the cellobiohydrolase variants.

  13. Lessons from the canine Oxtr gene: populations, variants and functional aspects.

    PubMed

    Bence, M; Marx, P; Szantai, E; Kubinyi, E; Ronai, Z; Banlaki, Z

    2017-04-01

    Oxytocin receptor (OXTR) acts as a key behavioral modulator of the central nervous system, affecting social behavior, stress, affiliation and cognitive functions. Variants of the Oxtr gene are known to influence behavior both in animals and humans; however, canine Oxtr polymorphisms are less characterized in terms of possible relevance to function, selection criteria in breeding and domestication. In this report, we provide a detailed characterization of common variants of the canine Oxtr gene. In particular (1) novel polymorphisms were identified by direct sequencing of wolf and dog samples, (2) allelic distributions and pairwise linkage disequilibrium patterns of several canine populations were compared, (3) neighbor joining (NJ) tree based on common single nucleotide polymorphisms (SNPs) was constructed, (4) mRNA expression features were assessed, (5) a novel splice variant was detected and (6) in vitro functional assays were performed. Results indicate marked differences regarding Oxtr variations between purebred dogs of different breeds, free-ranging dog populations, wolf subspecies and golden jackals. This, together with existence of explicitly dog-specific alleles and data obtained from the NJ tree implies that Oxtr could indeed have been a target gene during domestication and selection for human preferred aspects of temperament and social behavior. This assumption is further supported by the present observations on gene expression patterns within the brain and luciferase reporter experiments, providing a molecular level link between certain canine Oxtr polymorphisms and differences in nervous system function and behavior. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  14. Brain calcifications and PCDH12 variants

    PubMed Central

    Nicolas, Gaël; Sanchez-Contreras, Monica; Ramos, Eliana Marisa; Lemos, Roberta R.; Ferreira, Joana; Moura, Denis; Sobrido, Maria J.; Richard, Anne-Claire; Lopez, Alma Rosa; Legati, Andrea; Deleuze, Jean-François; Boland, Anne; Quenez, Olivier; Krystkowiak, Pierre; Favrole, Pascal; Geschwind, Daniel H.; Aran, Adi; Segel, Reeval; Levy-Lahad, Ephrat; Dickson, Dennis W.; Coppola, Giovanni; Rademakers, Rosa

    2017-01-01

    Objective: To assess the potential connection between PCDH12 and brain calcifications in a patient carrying a homozygous nonsense variant in PCDH12 and in adult patients with brain calcifications. Methods: We performed a CT scan in 1 child with a homozygous PCDH12 nonsense variant. We screened DNA samples from 53 patients with primary familial brain calcification (PFBC) and 26 patients with brain calcification of unknown cause (BCUC). Results: We identified brain calcifications in subcortical and perithalamic regions in the patient with a homozygous PCDH12 nonsense variant. The calcification pattern was different from what has been observed in PFBC and more similar to what is described in in utero infections. In patients with PFBC or BCUC, we found no protein-truncating variant and 3 rare (minor allele frequency <0.001) PCDH12 predicted damaging missense heterozygous variants in 3 unrelated patients, albeit with no segregation data available. Conclusions: Brain calcifications should be added to the phenotypic spectrum associated with PCDH12 biallelic loss of function, in the context of severe cerebral developmental abnormalities. A putative role for PCDH12 variants remains to be determined in PFBC. PMID:28804758

  15. Rare genetic variants and the risk of cancer.

    PubMed

    Bodmer, Walter; Tomlinson, Ian

    2010-06-01

    There are good reasons to expect that common genetic variants do not explain all of the inherited risk of the common cancers, not least of these being the relatively low proportion of familial relative risk that common cancer SNPs currently explain. One promising source of the unexplained risk is rare, low-penetrance genetic variants, a class that ranges from low-frequency polymorphisms (allele frequency < 5%) through subpolymorphic variants (frequency 0.1-1.0%) to very low frequency or 'private' variants with frequencies of 0.1% or less. Examples of rare cancer variants include breast cancer susceptibility loci CHEK2, BRIP1 and PALB2. There are considerable challenges associated with the discovery and testing of rare predisposition alleles, many of which are illustrated by the issues associated with variants of unknown significance in the Mendelian cancer predisposition genes. However, whilst cost constraints remain, the technological barriers to rare variant discovery and large-scale genotyping no longer exist. If each individual carries many disease-causing rare variants, the so-called missing heritability of cancer might largely be explained. Whether or not rare variants do end up filling the heritability gap, it is imperative to look for them along side common variants.

  16. OVA: integrating molecular and physical phenotype data from multiple biomedical domain ontologies with variant filtering for enhanced variant prioritization.

    PubMed

    Antanaviciute, Agne; Watson, Christopher M; Harrison, Sally M; Lascelles, Carolina; Crinnion, Laura; Markham, Alexander F; Bonthron, David T; Carr, Ian M

    2015-12-01

    Exome sequencing has become a de facto standard method for Mendelian disease gene discovery in recent years, yet identifying disease-causing mutations among thousands of candidate variants remains a non-trivial task. Here we describe a new variant prioritization tool, OVA (ontology variant analysis), in which user-provided phenotypic information is exploited to infer deeper biological context. OVA combines a knowledge-based approach with a variant-filtering framework. It reduces the number of candidate variants by considering genotype and predicted effect on protein sequence, and scores the remainder on biological relevance to the query phenotype.We take advantage of several ontologies in order to bridge knowledge across multiple biomedical domains and facilitate computational analysis of annotations pertaining to genes, diseases, phenotypes, tissues and pathways. In this way, OVA combines information regarding molecular and physical phenotypes and integrates both human and model organism data to effectively prioritize variants. By assessing performance on both known and novel disease mutations, we show that OVA performs biologically meaningful candidate variant prioritization and can be more accurate than another recently published candidate variant prioritization tool. OVA is freely accessible at http://dna2.leeds.ac.uk:8080/OVA/index.jsp. Supplementary data are available at Bioinformatics online. umaan@leeds.ac.uk. © The Author 2015. Published by Oxford University Press.

  17. Combined effects of the PNPLA3 rs738409, TM6SF2 rs58542926, and MBOAT7 rs641738 variants on NAFLD severity: a multicenter biopsy-based study1[S

    PubMed Central

    Krawczyk, Marcin; Rau, Monika; Schattenberg, Jörn M.; Bantel, Heike; Pathil, Anita; Demir, Münevver; Kluwe, Johannes; Boettler, Tobias; Lammert, Frank; Geier, Andreas

    2017-01-01

    The PNPLA3 p.I148M, TM6SF2 p.E167K, and MBOAT7 rs641738 variants represent genetic risk factors for nonalcoholic fatty liver disease (NAFLD). Here we investigate if these polymorphisms modulate both steatosis and fibrosis in patients with NAFLD. We recruited 515 patients with NAFLD (age 16–88 years, 280 female patients). Liver biopsies were performed in 320 patients. PCR-based assays were used to genotype the PNPLA3, TM6SF2, and MBOAT7 variants. Carriers of the PNPLA3 and TM6SF2 risk alleles showed increased serum aspartate aminotransferase and alanine transaminase activities (P < 0.05). The PNPLA3 genotype was associated with steatosis grades S2–S3 (P < 0.001) and fibrosis stages F2–F4 (P < 0.001). The TM6SF2 genotype was associated with steatosis (P = 0.003) but not with fibrosis (P > 0.05). The MBOAT7 variant was solely associated with increased fibrosis (P = 0.046). In the multivariate model, variants PNPLA3 (P = 0.004) and TM6SF2 (P = 0.038) were associated with steatosis. Fibrosis stages were affected by the PNPLA3 (P = 0.042) and MBOAT7 (P = 0.021) but not by the TM6SF2 polymorphism (P > 0.05). The PNPLA3, TM6SF2, and MBOAT7 variants are associated with increased liver injury. The TM6SF2 variant seems to modulate predominantly hepatic fat accumulation, whereas the MBOAT7 polymorphism is linked to fibrosis. The PNPLA3 polymorphism confers risk of both increased steatosis and fibrosis. PMID:27836992

  18. Combined effects of the PNPLA3 rs738409, TM6SF2 rs58542926, and MBOAT7 rs641738 variants on NAFLD severity: a multicenter biopsy-based study.

    PubMed

    Krawczyk, Marcin; Rau, Monika; Schattenberg, Jörn M; Bantel, Heike; Pathil, Anita; Demir, Münevver; Kluwe, Johannes; Boettler, Tobias; Lammert, Frank; Geier, Andreas

    2017-01-01

    The PNPLA3 p.I148M, TM6SF2 p.E167K, and MBOAT7 rs641738 variants represent genetic risk factors for nonalcoholic fatty liver disease (NAFLD). Here we investigate if these polymorphisms modulate both steatosis and fibrosis in patients with NAFLD. We recruited 515 patients with NAFLD (age 16-88 years, 280 female patients). Liver biopsies were performed in 320 patients. PCR-based assays were used to genotype the PNPLA3, TM6SF2, and MBOAT7 variants. Carriers of the PNPLA3 and TM6SF2 risk alleles showed increased serum aspartate aminotransferase and alanine transaminase activities (P < 0.05). The PNPLA3 genotype was associated with steatosis grades S2-S3 (P < 0.001) and fibrosis stages F2-F4 (P < 0.001). The TM6SF2 genotype was associated with steatosis (P = 0.003) but not with fibrosis (P > 0.05). The MBOAT7 variant was solely associated with increased fibrosis (P = 0.046). In the multivariate model, variants PNPLA3 (P = 0.004) and TM6SF2 (P = 0.038) were associated with steatosis. Fibrosis stages were affected by the PNPLA3 (P = 0.042) and MBOAT7 (P = 0.021) but not by the TM6SF2 polymorphism (P > 0.05). The PNPLA3, TM6SF2, and MBOAT7 variants are associated with increased liver injury. The TM6SF2 variant seems to modulate predominantly hepatic fat accumulation, whereas the MBOAT7 polymorphism is linked to fibrosis. The PNPLA3 polymorphism confers risk of both increased steatosis and fibrosis. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  19. The curation of genetic variants: difficulties and possible solutions.

    PubMed

    Pandey, Kapil Raj; Maden, Narendra; Poudel, Barsha; Pradhananga, Sailendra; Sharma, Amit Kumar

    2012-12-01

    The curation of genetic variants from biomedical articles is required for various clinical and research purposes. Nowadays, establishment of variant databases that include overall information about variants is becoming quite popular. These databases have immense utility, serving as a user-friendly information storehouse of variants for information seekers. While manual curation is the gold standard method for curation of variants, it can turn out to be time-consuming on a large scale thus necessitating the need for automation. Curation of variants described in biomedical literature may not be straightforward mainly due to various nomenclature and expression issues. Though current trends in paper writing on variants is inclined to the standard nomenclature such that variants can easily be retrieved, we have a massive store of variants in the literature that are present as non-standard names and the online search engines that are predominantly used may not be capable of finding them. For effective curation of variants, knowledge about the overall process of curation, nature and types of difficulties in curation, and ways to tackle the difficulties during the task are crucial. Only by effective curation, can variants be correctly interpreted. This paper presents the process and difficulties of curation of genetic variants with possible solutions and suggestions from our work experience in the field including literature support. The paper also highlights aspects of interpretation of genetic variants and the importance of writing papers on variants following standard and retrievable methods. Copyright © 2012. Published by Elsevier Ltd.

  20. The Curation of Genetic Variants: Difficulties and Possible Solutions

    PubMed Central

    Pandey, Kapil Raj; Maden, Narendra; Poudel, Barsha; Pradhananga, Sailendra; Sharma, Amit Kumar

    2012-01-01

    The curation of genetic variants from biomedical articles is required for various clinical and research purposes. Nowadays, establishment of variant databases that include overall information about variants is becoming quite popular. These databases have immense utility, serving as a user-friendly information storehouse of variants for information seekers. While manual curation is the gold standard method for curation of variants, it can turn out to be time-consuming on a large scale thus necessitating the need for automation. Curation of variants described in biomedical literature may not be straightforward mainly due to various nomenclature and expression issues. Though current trends in paper writing on variants is inclined to the standard nomenclature such that variants can easily be retrieved, we have a massive store of variants in the literature that are present as non-standard names and the online search engines that are predominantly used may not be capable of finding them. For effective curation of variants, knowledge about the overall process of curation, nature and types of difficulties in curation, and ways to tackle the difficulties during the task are crucial. Only by effective curation, can variants be correctly interpreted. This paper presents the process and difficulties of curation of genetic variants with possible solutions and suggestions from our work experience in the field including literature support. The paper also highlights aspects of interpretation of genetic variants and the importance of writing papers on variants following standard and retrievable methods. PMID:23317699

  1. Rare Variant Association Test with Multiple Phenotypes

    PubMed Central

    Lee, Selyeong; Won, Sungho; Kim, Young Jin; Kim, Yongkang; Kim, Bong-Jo; Park, Taesung

    2016-01-01

    Although genome-wide association studies (GWAS) have now discovered thousands of genetic variants associated with common traits, such variants cannot explain the large degree of “missing heritability,” likely due to rare variants. The advent of next generation sequencing technology has allowed rare variant detection and association with common traits, often by investigating specific genomic regions for rare variant effects on a trait. Although multiply correlated phenotypes are often concurrently observed in GWAS, most studies analyze only single phenotypes, which may lessen statistical power. To increase power, multivariate analyses, which consider correlations between multiple phenotypes, can be used. However, few existing multi-variant analyses can identify rare variants for assessing multiple phenotypes. Here, we propose Multivariate Association Analysis using Score Statistics (MAAUSS), to identify rare variants associated with multiple phenotypes, based on the widely used Sequence Kernel Association Test (SKAT) for a single phenotype. We applied MAAUSS to Whole Exome Sequencing (WES) data from a Korean population of 1,058 subjects, to discover genes associated with multiple traits of liver function. We then assessed validation of those genes by a replication study, using an independent dataset of 3,445 individuals. Notably, we detected the gene ZNF620 among five significant genes. We then performed a simulation study to compare MAAUSS's performance with existing methods. Overall, MAAUSS successfully conserved type 1 error rates and in many cases, had a higher power than the existing methods. This study illustrates a feasible and straightforward approach for identifying rare variants correlated with multiple phenotypes, with likely relevance to missing heritability. PMID:28039885

  2. Rare variants and cardiovascular disease.

    PubMed

    Wain, Louise V

    2014-09-01

    Cardiovascular disease (CVD) is a leading cause of mortality and morbidity in the Western world. Large genome-wide association studies (GWASs) of coronary artery disease, myocardial infarction, stroke and dilated cardiomyopathy have identified a number of common genetic variants with modest effects on disease risk. Similarly, studies of important modifiable risk factors of CVD have identified a large number of predominantly common variant associations, for example, with blood pressure and blood lipid levels. In each case, despite the often large numbers of loci identified, only a small proportion of the phenotypic variance is explained. It has been hypothesised that rare variants with large effects may account for some of the missing variance but large-scale studies of rare variation are in their infancy for cardiovascular traits and have yet to produce fruitful results. Studies of monogenic CVDs, inherited disorders believed to be entirely driven by individual rare mutations, have highlighted genes that play a key role in disease aetiology. In this review, we discuss how findings from studies of rare variants in monogenic disease and GWAS of predominantly common variants are converging to provide further insight into biological disease mechanisms. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. TREM2 Variants in Alzheimer's Disease

    PubMed Central

    Guerreiro, Rita; Wojtas, Aleksandra; Bras, Jose; Carrasquillo, Minerva; Rogaeva, Ekaterina; Majounie, Elisa; Cruchaga, Carlos; Sassi, Celeste; Kauwe, John S.K.; Younkin, Steven; Hazrati, Lilinaz; Collinge, John; Pocock, Jennifer; Lashley, Tammaryn; Williams, Julie; Lambert, Jean-Charles; Amouyel, Philippe; Goate, Alison; Rademakers, Rosa; Morgan, Kevin; Powell, John; St. George-Hyslop, Peter; Singleton, Andrew; Hardy, John

    2013-01-01

    BACKGROUND Homozygous loss-of-function mutations in TREM2, encoding the triggering receptor expressed on myeloid cells 2 protein, have previously been associated with an autosomal recessive form of early-onset dementia. METHODS We used genome, exome, and Sanger sequencing to analyze the genetic variability in TREM2 in a series of 1092 patients with Alzheimer's disease and 1107 controls (the discovery set). We then performed a meta-analysis on imputed data for the TREM2 variant rs75932628 (predicted to cause a R47H substitution) from three genomewide association studies of Alzheimer's disease and tested for the association of the variant with disease. We genotyped the R47H variant in an additional 1887 cases and 4061 controls. We then assayed the expression of TREM2 across different regions of the human brain and identified genes that are differentially expressed in a mouse model of Alzheimer's disease and in control mice. RESULTS We found significantly more variants in exon 2 of TREM2 in patients with Alzheimer's disease than in controls in the discovery set (P = 0.02). There were 22 variant alleles in 1092 patients with Alzheimer's disease and 5 variant alleles in 1107 controls (P<0.001). The most commonly associated variant, rs75932628 (encoding R47H), showed highly significant association with Alzheimer's disease (P<0.001). Meta-analysis of rs75932628 genotypes imputed from genomewide association studies confirmed this association (P = 0.002), as did direct genotyping of an additional series of 1887 patients with Alzheimer's disease and 4061 controls (P<0.001). Trem2 expression differed between control mice and a mouse model of Alzheimer's disease. CONCLUSIONS Heterozygous rare variants in TREM2 are associated with a significant increase in the risk of Alzheimer's disease. (Funded by Alzheimer's Research UK and others.) PMID:23150934

  4. Comparison of locus-specific databases for BRCA1 and BRCA2 variants reveals disparity in variant classification within and among databases.

    PubMed

    Vail, Paris J; Morris, Brian; van Kan, Aric; Burdett, Brianna C; Moyes, Kelsey; Theisen, Aaron; Kerr, Iain D; Wenstrup, Richard J; Eggington, Julie M

    2015-10-01

    Genetic variants of uncertain clinical significance (VUSs) are a common outcome of clinical genetic testing. Locus-specific variant databases (LSDBs) have been established for numerous disease-associated genes as a research tool for the interpretation of genetic sequence variants to facilitate variant interpretation via aggregated data. If LSDBs are to be used for clinical practice, consistent and transparent criteria regarding the deposition and interpretation of variants are vital, as variant classifications are often used to make important and irreversible clinical decisions. In this study, we performed a retrospective analysis of 2017 consecutive BRCA1 and BRCA2 genetic variants identified from 24,650 consecutive patient samples referred to our laboratory to establish an unbiased dataset representative of the types of variants seen in the US patient population, submitted by clinicians and researchers for BRCA1 and BRCA2 testing. We compared the clinical classifications of these variants among five publicly accessible BRCA1 and BRCA2 variant databases: BIC, ClinVar, HGMD (paid version), LOVD, and the UMD databases. Our results show substantial disparity of variant classifications among publicly accessible databases. Furthermore, it appears that discrepant classifications are not the result of a single outlier but widespread disagreement among databases. This study also shows that databases sometimes favor a clinical classification when current best practice guidelines (ACMG/AMP/CAP) would suggest an uncertain classification. Although LSDBs have been well established for research applications, our results suggest several challenges preclude their wider use in clinical practice.

  5. Dynamics and unfolding pathway of chimeric azurin variants: insights from molecular dynamics simulation.

    PubMed

    Evoli, Stefania; Guzzi, Rita; Rizzuti, Bruno

    2013-10-01

    The spectroscopic, thermal, and functional properties of blue copper proteins can be modulated by mutations in the metal binding loop. Molecular dynamics simulation was used to compare the conformational properties of azurin and two chimeric variants, which were obtained by inserting into the azurin scaffold the copper binding loop of amicyanin and plastocyanin, respectively. Simulations at room temperature show that the proteins retain their overall structure and exhibit concerted motions among specific inner regions, as revealed by principal component analysis. Molecular dynamics at high temperature indicates that the first events in the unfolding pathway are structurally similar in the three proteins and unfolding starts from the region of the α-helix that is far from the metal binding loop. The results provide details of the denaturation process that are consistent with experimental data and in close agreement with other computational approaches, suggesting a distinct mechanism of unfolding of azurin and its chimeric variants. Moreover, differences observed in the dynamics of specific regions in the three proteins correlate with their thermal behavior, contributing to the determination of the basic factors that influence the stability.

  6. Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytes

    PubMed Central

    Sun, Xiaocun; Zemel, Michael B

    2009-01-01

    Background The effects of dairy on energy metabolism appear to be mediated, in part, by leucine and calcium which regulate both adipocyte and skeletal muscle energy metabolism. We recently demonstrated that leucine and calcitriol regulate fatty acid oxidation in skeletal muscle cells in vitro, with leucine promoting and calcitriol suppressing fatty acid oxidation. Moreover, leucine coordinately regulated adipocyte lipid metabolism to promote flux of lipid to skeletal muscle and regulate metabolic flexibility. We have now investigated the role of mitochondrial biogenesis in mediating these effects. Methods We tested the effect of leucine, calcitriol and calcium in regulation of mitochondrial mass using a fluorescence method and tested mitochondrial biogenesis regulatory genes as well mitochondrial component genes using real-time PCR. We also evaluated the effect of leucine on oxygen consumption with a modified perfusion system. Results Leucine (0.5 mM) increased mitochondrial mass by 30% and 53% in C2C12 myocytes and 3T3-L1 adipocytes, respectively, while calcitriol (10 nM) decreased mitochondrial abundance by 37% and 27% (p < 0.02). Leucine also stimulated mitochondrial biogenesis genes SIRT-1, PGC-1α and NRF-1 as well as mitochondrial component genes UCP3, COX, and NADH expression by 3–5 fold in C2C12 cells (p < 0.003). Adipocyte-conditioned medium reduced mitochondrial abundance (p < 0.001) and decreased UCP3 but increased PGC-1α expression in myocytes, suggesting a feedback stimulation of mitochondrial biogenesis. Similar data were observed in C2C12 myocytes co-cultured with adipocytes, with co-culture markedly suppressing mitochondrial abundance (p < 0.02). Leucine stimulated oxygen consumption in both C2C12 cells and adipocytes compared with either control or valine-treated cells. Transfection of C2C12 myocytes with SIRT-1 siRNA resulted in parallel suppression of SIRT-1 expression and leucine-induced stimulation of PGC-1α and NRF-1, indicating that SIRT

  7. Functional properties of a newly identified C-terminal splice variant of Cav1.3 L-type Ca2+ channels.

    PubMed

    Bock, Gabriella; Gebhart, Mathias; Scharinger, Anja; Jangsangthong, Wanchana; Busquet, Perrine; Poggiani, Chiara; Sartori, Simone; Mangoni, Matteo E; Sinnegger-Brauns, Martina J; Herzig, Stefan; Striessnig, Jörg; Koschak, Alexandra

    2011-12-09

    An intramolecular interaction between a distal (DCRD) and a proximal regulatory domain (PCRD) within the C terminus of long Ca(v)1.3 L-type Ca(2+) channels (Ca(v)1.3(L)) is a major determinant of their voltage- and Ca(2+)-dependent gating kinetics. Removal of these regulatory domains by alternative splicing generates Ca(v)1.3(42A) channels that activate at a more negative voltage range and exhibit more pronounced Ca(2+)-dependent inactivation. Here we describe the discovery of a novel short splice variant (Ca(v)1.3(43S)) that is expressed at high levels in the brain but not in the heart. It lacks the DCRD but, in contrast to Ca(v)1.3(42A), still contains PCRD. When expressed together with α2δ1 and β3 subunits in tsA-201 cells, Ca(v)1.3(43S) also activated at more negative voltages like Ca(v)1.3(42A) but Ca(2+)-dependent inactivation was less pronounced. Single channel recordings revealed much higher channel open probabilities for both short splice variants as compared with Ca(v)1.3(L). The presence of the proximal C terminus in Ca(v)1.3(43S) channels preserved their modulation by distal C terminus-containing Ca(v)1.3- and Ca(v)1.2-derived C-terminal peptides. Removal of the C-terminal modulation by alternative splicing also induced a faster decay of Ca(2+) influx during electrical activities mimicking trains of neuronal action potentials. Our findings extend the spectrum of functionally diverse Ca(v)1.3 L-type channels produced by tissue-specific alternative splicing. This diversity may help to fine tune Ca(2+) channel signaling and, in the case of short variants lacking a functional C-terminal modulation, prevent excessive Ca(2+) accumulation during burst firing in neurons. This may be especially important in neurons that are affected by Ca(2+)-induced neurodegenerative processes.

  8. BAIAP2 is related to emotional modulation of human memory strength.

    PubMed

    Luksys, Gediminas; Ackermann, Sandra; Coynel, David; Fastenrath, Matthias; Gschwind, Leo; Heck, Angela; Rasch, Bjoern; Spalek, Klara; Vogler, Christian; Papassotiropoulos, Andreas; de Quervain, Dominique

    2014-01-01

    Memory performance is the result of many distinct mental processes, such as memory encoding, forgetting, and modulation of memory strength by emotional arousal. These processes, which are subserved by partly distinct molecular profiles, are not always amenable to direct observation. Therefore, computational models can be used to make inferences about specific mental processes and to study their genetic underpinnings. Here we combined a computational model-based analysis of memory-related processes with high density genetic information derived from a genome-wide study in healthy young adults. After identifying the best-fitting model for a verbal memory task and estimating the best-fitting individual cognitive parameters, we found a common variant in the gene encoding the brain-specific angiogenesis inhibitor 1-associated protein 2 (BAIAP2) that was related to the model parameter reflecting modulation of verbal memory strength by negative valence. We also observed an association between the same genetic variant and a similar emotional modulation phenotype in a different population performing a picture memory task. Furthermore, using functional neuroimaging we found robust genotype-dependent differences in activity of the parahippocampal cortex that were specifically related to successful memory encoding of negative versus neutral information. Finally, we analyzed cortical gene expression data of 193 deceased subjects and detected significant BAIAP2 genotype-dependent differences in BAIAP2 mRNA levels. Our findings suggest that model-based dissociation of specific cognitive parameters can improve the understanding of genetic underpinnings of human learning and memory.

  9. ANTIGENIC VARIANTS OF INFLUENZA A VIRUS (PR8 STRAIN)

    PubMed Central

    Hamre, Dorothy; Loosli, Clayton G.; Gerber, Paul

    1958-01-01

    Seven variant strains of influenza A PR8-S virus, each derived from the previous one by serial passage in the lungs of mice immunized with the homologous agent have been produced. With the H.I. and neutralization procedures these variants showed a progressive serological deviation from the parent PR8-S virus. The seven variants provoked antibodies in varying titers to the preceding variants and the parent virus but not in relation to their position in the series. Thus, the seventh variant provoked significantly more antibody to the PR8-S virus than did the fifth variant. A possible explanation for this is presented. The first four variant viruses showed progressively less ability to react with antisera of the preceding variants and the PR8-S virus, and the three most recently derived variants showed essentially no ability to react with PR8-S and first variant antisera. The variant viruses remained antigenically stable through numerous lung passages in normal mice. Cross absorption tests revealed common antigenic components among the variant viruses and also individual characteristics which classify them as being different from one another. The implications of these findings in relation to studies by others have been discussed. PMID:13539308

  10. Characteristics of MUTYH variants in Japanese colorectal polyposis patients.

    PubMed

    Takao, Misato; Yamaguchi, Tatsuro; Eguchi, Hidetaka; Tada, Yuhki; Kohda, Masakazu; Koizumi, Koichi; Horiguchi, Shin-Ichiro; Okazaki, Yasushi; Ishida, Hideyuki

    2018-06-01

    The base excision repair gene MUTYH is the causative gene of colorectal polyposis syndrome, which is an autosomal recessive disorder associated with a high risk of colorectal cancer. Since few studies have investigated the genotype-phenotype association in Japanese patients with MUTYH variants, the aim of this study was to clarify the clinicopathological findings in Japanese patients with MUTYH gene variants who were detected by screening causative genes associated with hereditary colorectal polyposis. After obtaining informed consent, genetic testing was performed using target enrichment sequencing of 26 genes, including MUTYH. Of the 31 Japanese patients with suspected hereditary colorectal polyposis, eight MUTYH variants were detected in five patients. MUTYH hotspot variants known for Caucasians, namely p.G396D and p.Y179D, were not among the detected variants.Of five patients, two with biallelic MUTYH variants were diagnosed with MUTYH-associated polyposis, while two others had monoallelic MUTYH variants. One patient had the p.P18L and p.G25D variants on the same allele; however, supportive data for considering these two variants 'pathogenic' were lacking. Two patients with biallelic MUTYH variants and two others with monoallelic MUTYH variants were identified among Japanese colorectal polyposis patients. Hotspot variants of the MUTYH gene for Caucasians were not hotspots for Japanese patients.

  11. Genotype-phenotype associations in obesity dependent on definition of the obesity phenotype.

    PubMed

    Kring, Sofia Inez Iqbal; Larsen, Lesli Hingstrup; Holst, Claus; Toubro, Søren; Hansen, Torben; Astrup, Arne; Pedersen, Oluf; Sørensen, Thorkild I A

    2008-01-01

    In previous studies of associations of variants in the genes UCP2, UCP3, PPARG2, CART, GRL, MC4R, MKKS, SHP, GHRL, and MCHR1 with obesity, we have used a case-control approach with cases defined by a threshold for BMI. In the present study, we assess the association of seven abdominal, peripheral, and overall obesity phenotypes, which were analyzed quantitatively, and thirteen candidate gene polymorphisms in these ten genes in the same cohort. Obese Caucasian men (n = 234, BMI >or= 31.0 kg/m(2)) and a randomly sampled non-obese group (n = 323), originally identified at the draft board examinations, were re-examined at median ages of 47.0 or 49.0 years by anthropometry and DEXA scanning. Obesity phenotypes included BMI, fat body mass index, waist circumference, waist for given BMI, intra-abdominal adipose tissue, hip circumference and lower body fat mass (%). Using logistic regression models, we estimated the odds for defined genotypes (dominant or recessive genetic transmission) in relation to z-scores of the phenotypes. The minor (rare) allele for SHP 512G>C (rs6659176) was associated with increased hip circumference. The minor allele for UCP2 Ins45bp was associated with increased BMI, increased abdominal obesity, and increased hip circumference. The minor allele for UCP2 -866G>A (rs6593669) was associated with borderline increased fat body mass index. The minor allele for MCHR1 100213G>A (rs133072) was associated with reduced abdominal obesity. None of the other genotype-phenotype combinations showed appreciable associations. If replicated in independent studies with focus on the specific phenotypes, our explorative studies suggest significant associations between some candidate gene polymorphisms and distinct obesity phenotypes, predicting beneficial and detrimental effects, depending on compartments for body fat accumulation. Copyright 2008 S. Karger AG, Basel.

  12. Effect of the common -866G/A polymorphism of the uncoupling protein 2 gene on weight loss and body composition under sibutramine therapy in an obese Taiwanese population.

    PubMed

    Hsiao, Tun-Jen; Wu, Lawrence Shih-Hsin; Hwang, Yuchi; Huang, Shih-Yi; Lin, Eugene

    2010-04-01

    Sibutramine, a serotonin and norepinephrine reuptake inhibitor, is used as an anti-obesity drug. Several pharmacogenetic studies have shown correlations between sibutramine effects and genetic variants, such as the 825C/T (rs5443) single nucleotide polymorphism (SNP) in the guanine nucleotide binding protein beta polypeptide 3 (GNB3) gene. In this study, our goal was to investigate whether a common SNP, -866G/A (rs659366), in the uncoupling protein 2 (UCP2) gene could influence weight reduction and body composition under sibutramine therapy in an obese Taiwanese population. The study included 131 obese patients, 44 in the placebo group and 87 in the sibutramine group. We assessed the measures of weight loss and body fat reduction at the end of a 12-week treatment period by analysis of covariance (ANCOVA) models using gender, baseline weight, and body fat percentage at baseline as covariates. By comparing the placebo and sibutramine groups with ANCOVA, our data showed a strong effect of sibutramine on weight loss in the combined UCP2 -866 AA + GA genotype groups (p < 0.001). Similarly, a strong effect of sibutramine on body fat percentage loss was found for individuals with the AA or GA genotypes (p < 0.001). In contrast, sibutramine had no significant effect on weight loss (p = 0.063) or body fat percentage loss (p = 0.194) for individuals with the wild-type GG genotype, compared with the placebo group of the same genotype. Moreover, a potential gene-gene interaction between UCP2 and GNB3 was identified by multiple linear regression models for the weight loss (p < 0.001) and for the percent fat loss (p = 0.031) in response to sibutramine. The results suggest that the UCP2 gene may contribute to weight loss and fat change in response to sibutramine therapy in obese Taiwanese patients.

  13. Gain-of-function glutamate receptor interacting protein 1 variants alter GluA2 recycling and surface distribution in patients with autism

    PubMed Central

    Mejias, Rebeca; Adamczyk, Abby; Anggono, Victor; Niranjan, Tejasvi; Thomas, Gareth M.; Sharma, Kamal; Skinner, Cindy; Schwartz, Charles E.; Stevenson, Roger E.; Fallin, M. Daniele; Kaufmann, Walter; Pletnikov, Mikhail; Valle, David; Huganir, Richard L.; Wang, Tao

    2011-01-01

    Glutamate receptor interacting protein 1 (GRIP1) is a neuronal scaffolding protein that interacts directly with the C termini of glutamate receptors 2/3 (GluA2/3) via its PDZ domains 4 to 6 (PDZ4–6). We found an association (P < 0.05) of a SNP within the PDZ4-6 genomic region with autism by genotyping autistic patients (n = 480) and matched controls (n = 480). Parallel sequencing identified five rare missense variants within or near PDZ4–6 only in the autism cohort, resulting in a higher cumulative mutation load (P = 0.032). Two variants correlated with a more severe deficit in reciprocal social interaction in affected sibling pairs from proband families. These variants were associated with altered interactions with GluA2/3 and faster recycling and increased surface distribution of GluA2 in neurons, suggesting gain-of-function because GRIP1/2 deficiency showed opposite phenotypes. Grip1/2 knockout mice exhibited increased sociability and impaired prepulse inhibition. These results support a role for GRIP in social behavior and implicate GRIP1 variants in modulating autistic phenotype. PMID:21383172

  14. Knowledge-driven binning approach for rare variant association analysis: application to neuroimaging biomarkers in Alzheimer's disease.

    PubMed

    Kim, Dokyoon; Basile, Anna O; Bang, Lisa; Horgusluoglu, Emrin; Lee, Seunggeun; Ritchie, Marylyn D; Saykin, Andrew J; Nho, Kwangsik

    2017-05-18

    with entorhinal cortex thickness (FDR-corrected p-value < 0.05). In further analysis, the functional exonic rare variants in FANCC were also significantly associated with hippocampal volume and cerebrospinal fluid (CSF) Aβ 1-42 (p-value < 0.05). Our novel binning approach identified rare variants in FANCC as well as 7 evolutionary conserved regions significantly associated with a LOAD-related neuroimaging endophenotype. FANCC (fanconi anemia complementation group C) has been shown to modulate TLR and p38 MAPK-dependent expression of IL-1β in macrophages. Our results warrant further investigation in a larger independent cohort and demonstrate that the biological knowledge-driven binning approach is a powerful strategy to identify rare variants associated with AD and other complex disease.

  15. Relationship between expression of muscle-specific uncoupling protein 2 messenger RNA and genetic selection toward growth in channel catfish.

    PubMed

    Kobayashi, Y; Peterson, B C; Waldbieser, G C

    2015-04-01

    This study tested the hypothesis that increased growth in channel catfish is associated with expression of the genes that code for uncoupling proteins (UCP) 2 and 3, members of the mitochondrial channel proteins involved in nutrient sensing and metabolism. The specific objective was to contrast the levels of UCP2 messenger RNA (mRNA) in fast vs slow growing catfish as well as in fed vs fasted catfish. Two distinct UCP2 transcripts were identified and named UCP2a and UCP2b, respectively. Nucleotide and amino acid sequence of catfish UCP2s were highly similar to UCP2 and other UCPs from other fish and mammals (>75%). Expression of UCP2a mRNA was detectable at very low levels in various metabolically active tissues, whereas the expression of UCP2b mRNA was readily detectable in the muscle and heart. In a 21-wk feeding study, fish that grew faster had a greater percent body fat at the end of the study (P < 0.01). Expression of UCP2b mRNA tended to be lower (P < 0.10) in fast growing fish in the middle of the study although levels were similar at the beginning and the end of the study. In the fed vs fasted study, expression of UCP2b mRNA in muscle was increased (P < 0.05) in fish assigned to 30 d of fasting. Our results suggest that, based on the nucleotide and amino acid sequence similarities and tissue mRNA distribution, catfish UCP2b may be the analog to UCP3. Moreover, our results suggest selection toward growth and associated fat accumulation appears to be independent of muscle UCP2b mRNA expression and UCP2b-mediated mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Dietary fatty acids modulate associations between genetic variants and circulating fatty acids in plasma and erythrocyte membranes: meta-analysis of nine studies in the CHARGE consortium

    USDA-ARS?s Scientific Manuscript database

    Scope: Tissue concentrations of omega-3 fatty acids may reduce cardiovascular disease risk, and genetic variants are associated with circulating fatty acids concentrations. Whether dietary fatty acids interact with genetic variants to modify circulating omega-3 fatty acids is unclear. We evaluated i...

  17. Identification of missing variants by combining multiple analytic pipelines.

    PubMed

    Ren, Yingxue; Reddy, Joseph S; Pottier, Cyril; Sarangi, Vivekananda; Tian, Shulan; Sinnwell, Jason P; McDonnell, Shannon K; Biernacka, Joanna M; Carrasquillo, Minerva M; Ross, Owen A; Ertekin-Taner, Nilüfer; Rademakers, Rosa; Hudson, Matthew; Mainzer, Liudmila Sergeevna; Asmann, Yan W

    2018-04-16

    After decades of identifying risk factors using array-based genome-wide association studies (GWAS), genetic research of complex diseases has shifted to sequencing-based rare variants discovery. This requires large sample sizes for statistical power and has brought up questions about whether the current variant calling practices are adequate for large cohorts. It is well-known that there are discrepancies between variants called by different pipelines, and that using a single pipeline always misses true variants exclusively identifiable by other pipelines. Nonetheless, it is common practice today to call variants by one pipeline due to computational cost and assume that false negative calls are a small percent of total. We analyzed 10,000 exomes from the Alzheimer's Disease Sequencing Project (ADSP) using multiple analytic pipelines consisting of different read aligners and variant calling strategies. We compared variants identified by using two aligners in 50,100, 200, 500, 1000, and 1952 samples; and compared variants identified by adding single-sample genotyping to the default multi-sample joint genotyping in 50,100, 500, 2000, 5000 and 10,000 samples. We found that using a single pipeline missed increasing numbers of high-quality variants correlated with sample sizes. By combining two read aligners and two variant calling strategies, we rescued 30% of pass-QC variants at sample size of 2000, and 56% at 10,000 samples. The rescued variants had higher proportions of low frequency (minor allele frequency [MAF] 1-5%) and rare (MAF < 1%) variants, which are the very type of variants of interest. In 660 Alzheimer's disease cases with earlier onset ages of ≤65, 4 out of 13 (31%) previously-published rare pathogenic and protective mutations in APP, PSEN1, and PSEN2 genes were undetected by the default one-pipeline approach but recovered by the multi-pipeline approach. Identification of the complete variant set from sequencing data is the prerequisite of genetic

  18. Extreme Entropy-Enthalpy Compensation in a Drug Resistant Variant of HIV-1 Protease

    PubMed Central

    King, Nancy M.; Prabu-Jeyabalan, Moses; Bandaranayake, Rajintha M.; Nalam, Madhavi N. L.; Nalivaika, Ellen A.; Özen, Ayşegül; Haliloglu, Türkan; Yılmaz, Neşe Kurt; Schiffer, Celia A.

    2012-01-01

    The development of HIV-1 protease inhibitors has been the historic paradigm of rational structure-based drug design, where structural and thermodynamic analyses have assisted in the discovery of novel inhibitors. While the total enthalpy and entropy change upon binding determine the affinity, often the thermodynamics are considered in terms of inhibitor properties only. In the current study, profound changes are observed in the binding thermodynamics of a drug resistant variant compared to wild-type HIV-1 protease, irrespective of the inhibitor bound. This variant (Flap+) has a combination of flap and active site mutations and exhibits extremely large entropy-enthalpy compensation compared to wild-type protease, 5–15 kcal/mol, while losing only 1–3 kcal/mol in total binding free energy for any of six FDA approved inhibitors. Although entropy-enthalpy compensation has been previously observed for a variety of systems, never have changes of this magnitude been reported. The co-crystal structures of Flap+ protease with four of the inhibitors were determined and compared with complexes of both the wildtype protease and another drug resistant variant that does not exhibit this energetic compensation. Structural changes conserved across the Flap+ complexes, which are more pronounced for the flaps covering the active site, likely contribute to the thermodynamic compensation. The finding that drug resistant mutations can profoundly modulate the relative thermodynamic properties of a therapeutic target independent of the inhibitor presents a new challenge for rational drug design. PMID:22712830

  19. Novel reptilian uncoupling proteins: molecular evolution and gene expression during cold acclimation.

    PubMed

    Schwartz, Tonia S; Murray, Shauna; Seebacher, Frank

    2008-04-22

    Many animals upregulate metabolism in response to cold. Uncoupling proteins (UCPs) increase proton conductance across the mitochondrial membrane and can thereby alleviate damage from reactive oxygen species that may form as a result of metabolic upregulation. Our aim in this study was to determine whether reptiles (Crocodylus porosus) possess UCP genes. If so, we aimed to place reptilian UCP genes within a phylogenetic context and to determine whether the expression of UCP genes is increased during cold acclimation. We provide the first evidence that UCP2 and UCP3 genes are present in reptiles. Unlike in other vertebrates, UCP2 and UPC3 are expressed in liver and skeletal muscle of the crocodile, and both are upregulated in liver during cold acclimation but not in muscle. We identified two transcripts of UCP3, one of which produces a truncated protein similar to the UCP3S transcript in humans, and the resulting protein lacks the predicted nucleotide-binding regulatory domain. Our molecular phylogeny suggests that uncoupling protein 1 (UCP1) is ancestral and has been lost in archosaurs. In birds, UCP3 may have assumed a similar function as UCP1 in mammals, which has important ramifications for understanding endothermic heat production.

  20. Histone H3 Variants in Trichomonas vaginalis

    PubMed Central

    Zubáčová, Zuzana; Hostomská, Jitka

    2012-01-01

    The parabasalid protist Trichomonas vaginalis is a widespread parasite that affects humans, frequently causing vaginitis in infected women. Trichomonad mitosis is marked by the persistence of the nuclear membrane and the presence of an asymmetric extranuclear spindle with no obvious direct connection to the chromosomes. No centromeric markers have been described in T. vaginalis, which has prevented a detailed analysis of mitotic events in this organism. In other eukaryotes, nucleosomes of centromeric chromatin contain the histone H3 variant CenH3. The principal aim of this work was to identify a CenH3 homolog in T. vaginalis. We performed a screen of the T. vaginalis genome to retrieve sequences of canonical and variant H3 histones. Three variant histone H3 proteins were identified, and the subcellular localization of their epitope-tagged variants was determined. The localization of the variant TVAG_185390 could not be distinguished from that of the canonical H3 histone. The sequence of the variant TVAG_087830 closely resembled that of histone H3. The tagged protein colocalized with sites of active transcription, indicating that the variant TVAG_087830 represented H3.3 in T. vaginalis. The third H3 variant (TVAG_224460) was localized to 6 or 12 distinct spots at the periphery of the nucleus, corresponding to the number of chromosomes in G1 phase and G2 phase, respectively. We propose that this variant represents the centromeric marker CenH3 and thus can be employed as a tool to study mitosis in T. vaginalis. Furthermore, we suggest that the peripheral distribution of CenH3 within the nucleus results from the association of centromeres with the nuclear envelope throughout the cell cycle. PMID:22408228

  1. Analyses of germline variants associated with ovarian cancer survival identify functional candidates at the 1q22 and 19p12 outcome loci

    PubMed Central

    Glubb, Dylan M.; Johnatty, Sharon E.; Quinn, Michael C.J.; O’Mara, Tracy A.; Tyrer, Jonathan P.; Gao, Bo; Fasching, Peter A.; Beckmann, Matthias W.; Lambrechts, Diether; Vergote, Ignace; Velez Edwards, Digna R.; Beeghly-Fadiel, Alicia; Benitez, Javier; Garcia, Maria J.; Goodman, Marc T.; Thompson, Pamela J.; Dörk, Thilo; Dürst, Matthias; Modungo, Francesmary; Moysich, Kirsten; Heitz, Florian; du Bois, Andreas; Pfisterer, Jacobus; Hillemanns, Peter; Karlan, Beth Y.; Lester, Jenny; Goode, Ellen L.; Cunningham, Julie M.; Winham, Stacey J.; Larson, Melissa C.; McCauley, Bryan M.; Kjær, Susanne Krüger; Jensen, Allan; Schildkraut, Joellen M.; Berchuck, Andrew; Cramer, Daniel W.; Terry, Kathryn L.; Salvesen, Helga B.; Bjorge, Line; Webb, Penny M.; Grant, Peter; Pejovic, Tanja; Moffitt, Melissa; Hogdall, Claus K.; Hogdall, Estrid; Paul, James; Glasspool, Rosalind; Bernardini, Marcus; Tone, Alicia; Huntsman, David; Woo, Michelle; Group, AOCS; deFazio, Anna; Kennedy, Catherine J.; Pharoah, Paul D.P.; MacGregor, Stuart; Chenevix-Trench, Georgia

    2017-01-01

    We previously identified associations with ovarian cancer outcome at five genetic loci. To identify putatively causal genetic variants and target genes, we prioritized two ovarian outcome loci (1q22 and 19p12) for further study. Bioinformatic and functional genetic analyses indicated that MEF2D and ZNF100 are targets of candidate outcome variants at 1q22 and 19p12, respectively. At 19p12, the chromatin interaction of a putative regulatory element with the ZNF100 promoter region correlated with candidate outcome variants. At 1q22, putative regulatory elements enhanced MEF2D promoter activity and haplotypes containing candidate outcome variants modulated these effects. In a public dataset, MEF2D and ZNF100 expression were both associated with ovarian cancer progression-free or overall survival time. In an extended set of 6,162 epithelial ovarian cancer patients, we found that functional candidates at the 1q22 and 19p12 loci, as well as other regional variants, were nominally associated with patient outcome; however, no associations reached our threshold for statistical significance (p<1×10-5). Larger patient numbers will be needed to convincingly identify any true associations at these loci. PMID:29029385

  2. Circadian Gene Variants Influence Sleep and the Sleep Electroencephalogram in Humans

    PubMed Central

    Chang, Anne-Marie; Bjonnes, Andrew; Aeschbach, Daniel; Buxton, Orfeu M.; Gooley, Joshua J.; Anderson, Clare; Van Reen, Eliza; Cain, Sean W.; Czeisler, Charles A.; Duffy, Jeanne F.; Lockley, Steven W.; Shea, Steven; Scheer, Frank A.J.L.; Saxena, Richa

    2017-01-01

    The sleep electroencephalogram is highly heritable in humans and yet little is known about the genetic basis of inter-individual differences in sleep architecture. The aim of this study was to identify associations between candidate circadian gene variants and the polysomnogram, recorded under highly controlled laboratory conditions during a baseline, overnight, 8-h sleep opportunity. A candidate gene approach was employed to analyze single nucleotide polymorphisms from five circadian-related genes in a two-phase analysis of 84 healthy young adults (28 F; 23.21 ± 2.97 years) of European ancestry. A common variant in Period2 (PER2) was associated with 20 minutes less slow wave sleep (SWS) in carriers of the minor allele than in non-carriers, representing a 22% difference in SWS duration. Moreover, spectral analysis in a subset of samples (n=37), showed the same PER2 polymorphism was associated with reduced EEG power density in the low delta range (0.25–1.0 Hz) during non-REM sleep and lower slow-wave activity (0.75–4.5 Hz) in the early part of the sleep episode. These results indicate the involvement of PER2 in the homeostatic process of sleep. Additionally, a rare variant in Melatonin Receptor 1B was associated with longer REM sleep latency, with minor allele carriers exhibiting an average of 65 minutes (87%) longer latency from sleep onset to REM sleep, compared to non-carriers. These findings suggest that circadian-related genes may modulate sleep architecture and the sleep EEG, including specific parameters previously implicated in the homeostatic regulation of sleep. PMID:27089043

  3. Pig has no uncoupling protein 1.

    PubMed

    Hou, Lianjie; Shi, Jia; Cao, Lingbo; Xu, Guli; Hu, Chingyuan; Wang, Chong

    2017-06-10

    Brown adipose tissue (BAT) is critical for mammal's survival in the cold environment. Uncoupling protein 1 (UCP1) is responsible for the non-shivering thermogenesis in the BAT. Pig is important economically as a meat-producing livestock. However, whether BAT or more precisely UCP1 protein exists in pig remains a controversy. The objective of this study was to ascertain whether pig has UCP1 protein. In this study, we used rapid amplification of cDNA ends (RACE) technique to obtain the UCP1 mRNA 3' end sequence, confirmed only exons 1 and 2 of the UCP1 gene are transcribed in the pig. Then we cloned the pig UCP1 gene exons 1 and 2, and expressed the UCP1 protein from the truncated pig gene using E. coli BL21. We used the expressed pig UCP1 protein as antigen for antibody production in a rabbit. We could not detect any UCP1 protein expression in different pig adipose tissues by the specific pig UCP1 antibody, while our antibody can detect the cloned pig UCP1 as well as the mice adipose UCP1 protein. This result shows although exons 1 and 2 of the pig UCP1 gene were transcribed but not translated in the pig adipose tissue. Furthermore, we detected no uncoupled respiration in the isolated pig adipocytes. Thus, these results unequivocally demonstrate that pig has no UCP1 protein. Our results have resolved the controversy of whether pigs have the brown adipose tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Variant adrenal venous anatomy in 546 laparoscopic adrenalectomies.

    PubMed

    Scholten, Anouk; Cisco, Robin M; Vriens, Menno R; Shen, Wen T; Duh, Quan-Yang

    2013-04-01

    Knowing the types and frequency of adrenal vein variants would help surgeons identify and control the adrenal vein during laparoscopic adrenalectomy. To establish the surgical anatomy of the main vein and its variants for laparoscopic adrenalectomy and to analyze the relationship between variant adrenal venous anatomy and tumor size, pathologic diagnosis, and operative outcomes. In a retrospective review of patients at a tertiary referral hospital, 506 patients underwent 546 consecutive laparoscopic adrenalectomies between April 22, 1993, and October 21, 2011. Patients with variant adrenal venous anatomy were compared with patients with normal adrenal venous anatomy regarding preoperative variables (patient and tumor characteristics [size and location] and clinical diagnosis), intraoperative variables (details on the main adrenal venous drainage, any variant venous anatomy, duration of operation, rate of conversion to hand-assisted or open procedure, and estimated blood loss), and postoperative variables (transfusion requirement, reoperation for bleeding, duration of hospital stay, and histologic diagnosis). Laparoscopic adrenalectomy. Prevalence of variant adrenal venous anatomy and its relationship to tumor characteristics, pathologic diagnosis, and operative outcomes. Variant venous anatomy was encountered in 70 of 546 adrenalectomies (13%). Variants included no main adrenal vein identifiable (n = 18), 1 main adrenal vein with additional small veins (n = 11), 2 adrenal veins (n = 20), more than 2 adrenal veins (n = 14), and variants of the adrenal vein drainage to the inferior vena cava and hepatic vein or of the inferior phrenic vein (n = 7). Variants occurred more often on the right side than on the left side (42 of 250 glands [17%] vs. 28 of 296 glands [9%], respectively; P = .02). Patients with variant anatomy compared with those with normal anatomy had larger tumors (mean, 5.1 vs 3.3 cm, respectively; P < .001), more pheochromocytomas (24 of 70 [35%] vs

  5. ZNF804A variants confer risk for heroin addiction and affect decision making and gray matter volume in heroin abusers.

    PubMed

    Sun, Yan; Zhao, Li-Yan; Wang, Gui-Bin; Yue, Wei-Hua; He, Yong; Shu, Ni; Lin, Qi-Xiang; Wang, Fan; Li, Jia-Li; Chen, Na; Wang, Hui-Min; Kosten, Thomas R; Feng, Jia-Jia; Wang, Jun; Tang, Yu-De; Liu, Shu-Xue; Deng, Gui-Fa; Diao, Gan-Huan; Tan, Yun-Long; Han, Hong-Bin; Lin, Lu; Shi, Jie

    2016-05-01

    Drug addiction shares common neurobiological pathways and risk genes with other psychiatric diseases, including psychosis. One of the commonly identified risk genes associated with broad psychosis has been ZNF804A. We sought to test whether psychosis risk variants in ZNF804A increase the risk of heroin addiction by modulating neurocognitive performance and gray matter volume (GMV) in heroin addiction. Using case-control genetic analysis, we compared the distribution of ZNF804A variants (genotype and haplotype) in 1035 heroin abusers and 2887 healthy subjects. We also compared neurocognitive performance (impulsivity, global cognitive ability and decision-making ability) in 224 subjects and GMV in 154 subjects based on the ZNF804A variants. We found significant differences in the distribution of ZNF804A intronic variants (rs1344706 and rs7597593) allele and haplotype frequencies between the heroin and control groups. Decision-making impairment was worse in heroin abusers who carried the ZNF804A risk allele and haplotype. Subjects who carried more risk alleles and haplotypes of ZNF804A had greater GMV in the bilateral insular cortex, right temporal cortex and superior parietal cortex. The interaction between heroin addiction and ZNF804A variants affected GMV in the left sensorimotor cortex. Our findings revealed several ZNF804A variants that were significantly associated with the risk of heroin addiction, and these variants affected decision making and GMV in heroin abusers compared with controls. The precise neural mechanisms that underlie these associations are unknown, which requires future investigations of the effects of ZNF804A on both dopamine neurotransmission and the relative increases in the volume of various brain areas. © 2015 Society for the Study of Addiction.

  6. Rare variants and autoimmune disease.

    PubMed

    Massey, Jonathan; Eyre, Steve

    2014-09-01

    The study of rare variants in monogenic forms of autoimmune disease has offered insight into the aetiology of more complex pathologies. Research in complex autoimmune disease initially focused on sequencing candidate genes, with some early successes, notably in uncovering low-frequency variation associated with Type 1 diabetes mellitus. However, other early examples have proved difficult to replicate, and a recent study across six autoimmune diseases, re-sequencing 25 autoimmune disease-associated genes in large sample sizes, failed to find any associated rare variants. The study of rare and low-frequency variation in autoimmune diseases has been made accessible by the inclusion of such variants on custom genotyping arrays (e.g. Immunochip and Exome arrays). Whole-exome sequencing approaches are now also being utilised to uncover the contribution of rare coding variants to disease susceptibility, severity and treatment response. Other sequencing strategies are starting to uncover the role of regulatory rare variation. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. A novel network module for medical devices.

    PubMed

    Chen, Ping-Yu

    2008-01-01

    In order to allow medical devices to upload the vital signs to a server on a network without manually configuring for end-users, a new network module is proposed. The proposed network module, called Medical Hub (MH), functions as a bridge to fetch the data from all connecting medical devices, and then upload these data to the server. When powering on, the MH can immediately establish network configuration automatically. Network Address Translation (NAT) traversal is also supported by the MH with the UPnP Internet Gateway Device (IGD) methodology. Besides the network configuration, other configuration in the MH is automatically established by using the remote management protocol TR-069. On the other hand, a mechanism for updating software automatically according to the variant connected medical device is proposed. With this mechanism, newcome medical devices can be detected and supported by the MH without manual operation.

  8. Variant Review with the Integrative Genomics Viewer.

    PubMed

    Robinson, James T; Thorvaldsdóttir, Helga; Wenger, Aaron M; Zehir, Ahmet; Mesirov, Jill P

    2017-11-01

    Manual review of aligned reads for confirmation and interpretation of variant calls is an important step in many variant calling pipelines for next-generation sequencing (NGS) data. Visual inspection can greatly increase the confidence in calls, reduce the risk of false positives, and help characterize complex events. The Integrative Genomics Viewer (IGV) was one of the first tools to provide NGS data visualization, and it currently provides a rich set of tools for inspection, validation, and interpretation of NGS datasets, as well as other types of genomic data. Here, we present a short overview of IGV's variant review features for both single-nucleotide variants and structural variants, with examples from both cancer and germline datasets. IGV is freely available at https://www.igv.org Cancer Res; 77(21); e31-34. ©2017 AACR . ©2017 American Association for Cancer Research.

  9. Nutritional Regulation of Bile Acid Metabolism Is Associated with Improved Pathological Characteristics of the Metabolic Syndrome*

    PubMed Central

    Liaset, Bjørn; Hao, Qin; Jørgensen, Henry; Hallenborg, Philip; Du, Zhen-Yu; Ma, Tao; Marschall, Hanns-Ulrich; Kruhøffer, Mogens; Li, Ruiqiang; Li, Qibin; Yde, Christian Clement; Criales, Gabriel; Bertram, Hanne C.; Mellgren, Gunnar; Øfjord, Erik Snorre; Lock, Erik-Jan; Espe, Marit; Frøyland, Livar; Madsen, Lise; Kristiansen, Karsten

    2011-01-01

    Bile acids (BAs) are powerful regulators of metabolism, and mice treated orally with cholic acid are protected from diet-induced obesity, hepatic lipid accumulation, and increased plasma triacylglycerol (TAG) and glucose levels. Here, we show that plasma BA concentration in rats was elevated by exchanging the dietary protein source from casein to salmon protein hydrolysate (SPH). Importantly, the SPH-treated rats were resistant to diet-induced obesity. SPH-treated rats had reduced fed state plasma glucose and TAG levels and lower TAG in liver. The elevated plasma BA concentration was associated with induction of genes involved in energy metabolism and uncoupling, Dio2, Pgc-1α, and Ucp1, in interscapular brown adipose tissue. Interestingly, the same transcriptional pattern was found in white adipose tissue depots of both abdominal and subcutaneous origin. Accordingly, rats fed SPH-based diet exhibited increased whole body energy expenditure and heat dissipation. In skeletal muscle, expressions of the peroxisome proliferator-activated receptor β/δ target genes (Cpt-1b, Angptl4, Adrp, and Ucp3) were induced. Pharmacological removal of BAs by inclusion of 0.5 weight % cholestyramine to the high fat SPH diet attenuated the reduction in abdominal obesity, the reduction in liver TAG, and the decrease in nonfasted plasma TAG and glucose levels. Induction of Ucp3 gene expression in muscle by SPH treatment was completely abolished by cholestyramine inclusion. Taken together, our data provide evidence that bile acid metabolism can be modulated by diet and that such modulation may prevent/ameliorate the characteristic features of the metabolic syndrome. PMID:21680746

  10. Histological variants of cutaneous Kaposi sarcoma

    PubMed Central

    Grayson, Wayne; Pantanowitz, Liron

    2008-01-01

    This review provides a comprehensive overview of the broad clinicopathologic spectrum of cutaneous Kaposi sarcoma (KS) lesions. Variants discussed include: usual KS lesions associated with disease progression (i.e. patch, plaque and nodular stage); morphologic subtypes alluded to in the older literature such as anaplastic and telangiectatic KS, as well as several lymphedematous variants; and numerous recently described variants including hyperkeratotic, keloidal, micronodular, pyogenic granuloma-like, ecchymotic, and intravascular KS. Involuting lesions as a result of treatment related regression are also presented. PMID:18655700

  11. SCN5A (NaV1.5) Variant Functional Perturbation and Clinical Presentation: Variants of a Certain Significance.

    PubMed

    Kroncke, Brett M; Glazer, Andrew M; Smith, Derek K; Blume, Jeffrey D; Roden, Dan M

    2018-05-01

    Accurately predicting the impact of rare nonsynonymous variants on disease risk is an important goal in precision medicine. Variants in the cardiac sodium channel SCN5A (protein Na V 1.5; voltage-dependent cardiac Na+ channel) are associated with multiple arrhythmia disorders, including Brugada syndrome and long QT syndrome. Rare SCN5A variants also occur in ≈1% of unaffected individuals. We hypothesized that in vitro electrophysiological functional parameters explain a statistically significant portion of the variability in disease penetrance. From a comprehensive literature review, we quantified the number of carriers presenting with and without disease for 1712 reported SCN5A variants. For 356 variants, data were also available for 5 Na V 1.5 electrophysiological parameters: peak current, late/persistent current, steady-state V1/2 of activation and inactivation, and recovery from inactivation. We found that peak and late current significantly associate with Brugada syndrome ( P <0.001; ρ=-0.44; Spearman rank test) and long QT syndrome disease penetrance ( P <0.001; ρ=0.37). Steady-state V1/2 activation and recovery from inactivation associate significantly with Brugada syndrome and long QT syndrome penetrance, respectively. Continuous estimates of disease penetrance align with the current American College of Medical Genetics classification paradigm. Na V 1.5 in vitro electrophysiological parameters are correlated with Brugada syndrome and long QT syndrome disease risk. Our data emphasize the value of in vitro electrophysiological characterization and incorporating counts of affected and unaffected carriers to aid variant classification. This quantitative analysis of the electrophysiological literature should aid the interpretation of Na V 1.5 variant electrophysiological abnormalities and help improve Na V 1.5 variant classification. © 2018 American Heart Association, Inc.

  12. Genetic variants on apolipoprotein gene cluster influence triglycerides with a risk of coronary artery disease among Indians.

    PubMed

    AshokKumar, Manickaraj; Subhashini, Navaneethan Gnana Veera; SaiBabu, Ramineni; Ramesh, Arabandi; Cherian, Kotturathu Mammen; Emmanuel, Cyril

    2010-01-01

    Apolipoprotein C3 and apolipoprotien A5 are proteins coded from the APOA1/C3/A4/A5 gene cluster. Sst I polymorphism on apolipoprotein C3 and -1131C polymorphism of apolipoprotien A5 are key variants involved in triglyceride metabolism and cause a significant cardio-metabolic risk. Here, we have evaluated these two variants for their roles in coronary artery disease in patients of the Indian population. The apolipoprotein gene cluster variants were analysed in 416 angiographically determined coronary artery disease patients and matched 416 controls using polymerase chain reaction-restriction fragment length polymorphism. The characteristics of the study subjects were analyzed statistically for their association with the polymorphisms. The alleles were combined as haplotypes and their combined risks were evaluated. The minor allele genotypes of both apolipoprotein C3 (S2) and apolipoprotien A5 (C) had a significant risk for coronary artery disease. The S2 allele genotyped patients had a significantly increased triglyceride level (P < 0.001) and increased triglycerides were observed among both patient and control CC genotype carriers. We identified the haplotype S2/C with a significant increased risk (P < 0.001) to coronary artery disease with increased levels of circulating triglycerides compared to other haplotypes in patients. We conclude that the variants on apolipoprotein C3 and apolipoprotien A5 modulate serum triglyceride levels and increase the risk of coronary artery disease.

  13. Novel factor VIII variants with a modified furin cleavage site improve the efficacy of gene therapy for hemophilia A.

    PubMed

    Nguyen, G N; George, L A; Siner, J I; Davidson, R J; Zander, C B; Zheng, X L; Arruda, V R; Camire, R M; Sabatino, D E

    2017-01-01

    Essentials Factor (F) VIII is an inefficiently expressed protein. Furin deletion FVIII variants were purified and characterized using in vitro and in vivo assays. These minimally modified novel FVIII variants have enhanced function. These variants provide a strategy for increasing FVIII expression in hemophilia A gene therapy. Background The major challenge for developing gene-based therapies for hemophilia A is that human factor VIII (hFVIII) has intrinsic properties that result in inefficient biosynthesis. During intracellular processing, hFVIII is predominantly cleaved at a paired basic amino acid cleaving enzyme (PACE) or furin cleavage site to yield a heterodimer that is the major form of secreted protein. Previous studies with B-domain-deleted (BDD) canine FVIII and hFVIII-R1645H, both differing from hFVIII by a single amino acid at this site, suggested that these proteins are secreted mainly in a single polypeptide chain (SC) form and exhibit enhanced function. Objective We hypothesized that deletion(s) of the furin site modulates FVIII biology and may enhance its function. Methods A series of recombinant hFVIII-furin deletion variants were introduced into hFVIII-BDD [Δ1645, 1645-46(Δ2), 1645-47(Δ3), 1645-48(Δ4), or Δ1648] and characterized. Results In vitro, recombinant purified Δ3 and Δ4 were primarily SC and, interestingly, had 2-fold higher procoagulant activity compared with FVIII-BDD. In vivo, the variants also have improved hemostatic function. After adeno-associated viral (AAV) vector delivery, the expression of these variants is 2-4-fold higher than hFVIII-BDD. Protein challenges of each variant in mice tolerant to hFVIII-BDD showed no anti-FVIII immune response. Conclusions These data suggest that the furin deletion hFVIII variants are superior to hFVIII-BDD without increased immunogenicity. In the setting of gene-based therapeutics, these novel variants provide a unique strategy to increase FVIII expression, thus lowering the vector dose, a

  14. Pathogenic Germline Variants in 10,389 Adult Cancers.

    PubMed

    Huang, Kuan-Lin; Mashl, R Jay; Wu, Yige; Ritter, Deborah I; Wang, Jiayin; Oh, Clara; Paczkowska, Marta; Reynolds, Sheila; Wyczalkowski, Matthew A; Oak, Ninad; Scott, Adam D; Krassowski, Michal; Cherniack, Andrew D; Houlahan, Kathleen E; Jayasinghe, Reyka; Wang, Liang-Bo; Zhou, Daniel Cui; Liu, Di; Cao, Song; Kim, Young Won; Koire, Amanda; McMichael, Joshua F; Hucthagowder, Vishwanathan; Kim, Tae-Beom; Hahn, Abigail; Wang, Chen; McLellan, Michael D; Al-Mulla, Fahd; Johnson, Kimberly J; Lichtarge, Olivier; Boutros, Paul C; Raphael, Benjamin; Lazar, Alexander J; Zhang, Wei; Wendl, Michael C; Govindan, Ramaswamy; Jain, Sanjay; Wheeler, David; Kulkarni, Shashikant; Dipersio, John F; Reimand, Jüri; Meric-Bernstam, Funda; Chen, Ken; Shmulevich, Ilya; Plon, Sharon E; Chen, Feng; Ding, Li

    2018-04-05

    We conducted the largest investigation of predisposition variants in cancer to date, discovering 853 pathogenic or likely pathogenic variants in 8% of 10,389 cases from 33 cancer types. Twenty-one genes showed single or cross-cancer associations, including novel associations of SDHA in melanoma and PALB2 in stomach adenocarcinoma. The 659 predisposition variants and 18 additional large deletions in tumor suppressors, including ATM, BRCA1, and NF1, showed low gene expression and frequent (43%) loss of heterozygosity or biallelic two-hit events. We also discovered 33 such variants in oncogenes, including missenses in MET, RET, and PTPN11 associated with high gene expression. We nominated 47 additional predisposition variants from prioritized VUSs supported by multiple evidences involving case-control frequency, loss of heterozygosity, expression effect, and co-localization with mutations and modified residues. Our integrative approach links rare predisposition variants to functional consequences, informing future guidelines of variant classification and germline genetic testing in cancer. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Visualizing the geography of genetic variants.

    PubMed

    Marcus, Joseph H; Novembre, John

    2017-02-15

    One of the key characteristics of any genetic variant is its geographic distribution. The geographic distribution can shed light on where an allele first arose, what populations it has spread to, and in turn on how migration, genetic drift, and natural selection have acted. The geographic distribution of a genetic variant can also be of great utility for medical/clinical geneticists and collectively many genetic variants can reveal population structure. Here we develop an interactive visualization tool for rapidly displaying the geographic distribution of genetic variants. Through a REST API and dynamic front-end, the Geography of Genetic Variants (GGV) browser ( http://popgen.uchicago.edu/ggv/ ) provides maps of allele frequencies in populations distributed across the globe. GGV is implemented as a website ( http://popgen.uchicago.edu/ggv/ ) which employs an API to access frequency data ( http://popgen.uchicago.edu/freq_api/ ). Python and javascript source code for the website and the API are available at: http://github.com/NovembreLab/ggv/ and http://github.com/NovembreLab/ggv-api/ . jnovembre@uchicago.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  16. Variants of glycoside hydrolases

    DOEpatents

    Teter, Sarah; Ward, Connie; Cherry, Joel; Jones, Aubrey; Harris, Paul; Yi, Jung

    2013-02-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  17. Variants of glycoside hydrolases

    DOEpatents

    Teter, Sarah [Davis, CA; Ward, Connie [Hamilton, MT; Cherry, Joel [Davis, CA; Jones, Aubrey [Davis, CA; Harris, Paul [Carnation, WA; Yi, Jung [Sacramento, CA

    2011-04-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  18. Variants of glycoside hydrolases

    DOEpatents

    Teter, Sarah; Ward, Connie; Cherry, Joel; Jones, Aubrey; Harris, Paul; Yi, Jung

    2017-07-11

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  19. Rare disruptive variants in the DISC1 Interactome and Regulome: association with cognitive ability and schizophrenia.

    PubMed

    Teng, S; Thomson, P A; McCarthy, S; Kramer, M; Muller, S; Lihm, J; Morris, S; Soares, D C; Hennah, W; Harris, S; Camargo, L M; Malkov, V; McIntosh, A M; Millar, J K; Blackwood, D H; Evans, K L; Deary, I J; Porteous, D J; McCombie, W R

    2018-05-01

    Schizophrenia (SCZ), bipolar disorder (BD) and recurrent major depressive disorder (rMDD) are common psychiatric illnesses. All have been associated with lower cognitive ability, and show evidence of genetic overlap and substantial evidence of pleiotropy with cognitive function and neuroticism. Disrupted in schizophrenia 1 (DISC1) protein directly interacts with a large set of proteins (DISC1 Interactome) that are involved in brain development and signaling. Modulation of DISC1 expression alters the expression of a circumscribed set of genes (DISC1 Regulome) that are also implicated in brain biology and disorder. Here we report targeted sequencing of 59 DISC1 Interactome genes and 154 Regulome genes in 654 psychiatric patients and 889 cognitively-phenotyped control subjects, on whom we previously reported evidence for trait association from complete sequencing of the DISC1 locus. Burden analyses of rare and singleton variants predicted to be damaging were performed for psychiatric disorders, cognitive variables and personality traits. The DISC1 Interactome and Regulome showed differential association across the phenotypes tested. After family-wise error correction across all traits (FWER across ), an increased burden of singleton disruptive variants in the Regulome was associated with SCZ (FWER across P=0.0339). The burden of singleton disruptive variants in the DISC1 Interactome was associated with low cognitive ability at age 11 (FWER across P=0.0043). These results identify altered regulation of schizophrenia candidate genes by DISC1 and its core Interactome as an alternate pathway for schizophrenia risk, consistent with the emerging effects of rare copy number variants associated with intellectual disability.

  20. Genetic Variants in the Wnt/β-Catenin Signaling Pathway as Indicators of Bladder Cancer Risk.

    PubMed

    Pierzynski, Jeanne A; Hildebrandt, Michelle A; Kamat, Ashish M; Lin, Jie; Ye, Yuanqing; Dinney, Colin P N; Wu, Xifeng

    2015-12-01

    Genetic factors that influence bladder cancer risk remain largely unknown. Previous research has suggested that there is a strong genetic component underlying the risk of bladder cancer. The Wnt/β-catenin signaling pathway is a key modulator of cellular proliferation through its regulation of stem cell homeostasis. Furthermore, variants in the Wnt/β-catenin signaling pathway have been implicated in the development of other cancers, leading us to believe that this pathway may have a vital role in bladder cancer development. A total of 230 single nucleotide polymorphisms in 40 genes in the Wnt/β-catenin signaling pathway were genotyped in 803 bladder cancer cases and 803 healthy controls. A total of 20 single nucleotide polymorphisms were nominally significant for risk. Individuals with 2 variants of LRP6: rs10743980 were associated with a decreased risk of bladder cancer in the recessive model in the initial analysis (OR 0.76, 95% CI 0.58-0.99, p=0.039). This was validated using the bladder genome-wide association study chip (OR 0.51, 95% CI 0.27-1.00, p=0.049 and for combined analysis p=0.007). Together these findings implicate variants in the Wnt/β-catenin stem cell pathway as having a role in bladder cancer etiology. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  1. Variability extraction and modeling for product variants.

    PubMed

    Linsbauer, Lukas; Lopez-Herrejon, Roberto Erick; Egyed, Alexander

    2017-01-01

    Fast-changing hardware and software technologies in addition to larger and more specialized customer bases demand software tailored to meet very diverse requirements. Software development approaches that aim at capturing this diversity on a single consolidated platform often require large upfront investments, e.g., time or budget. Alternatively, companies resort to developing one variant of a software product at a time by reusing as much as possible from already-existing product variants. However, identifying and extracting the parts to reuse is an error-prone and inefficient task compounded by the typically large number of product variants. Hence, more disciplined and systematic approaches are needed to cope with the complexity of developing and maintaining sets of product variants. Such approaches require detailed information about the product variants, the features they provide and their relations. In this paper, we present an approach to extract such variability information from product variants. It identifies traces from features and feature interactions to their implementation artifacts, and computes their dependencies. This work can be useful in many scenarios ranging from ad hoc development approaches such as clone-and-own to systematic reuse approaches such as software product lines. We applied our variability extraction approach to six case studies and provide a detailed evaluation. The results show that the extracted variability information is consistent with the variability in our six case study systems given by their variability models and available product variants.

  2. Improving coeliac disease risk prediction by testing non-HLA variants additional to HLA variants.

    PubMed

    Romanos, Jihane; Rosén, Anna; Kumar, Vinod; Trynka, Gosia; Franke, Lude; Szperl, Agata; Gutierrez-Achury, Javier; van Diemen, Cleo C; Kanninga, Roan; Jankipersadsing, Soesma A; Steck, Andrea; Eisenbarth, Georges; van Heel, David A; Cukrowska, Bozena; Bruno, Valentina; Mazzilli, Maria Cristina; Núñez, Concepcion; Bilbao, Jose Ramon; Mearin, M Luisa; Barisani, Donatella; Rewers, Marian; Norris, Jill M; Ivarsson, Anneli; Boezen, H Marieke; Liu, Edwin; Wijmenga, Cisca

    2014-03-01

    The majority of coeliac disease (CD) patients are not being properly diagnosed and therefore remain untreated, leading to a greater risk of developing CD-associated complications. The major genetic risk heterodimer, HLA-DQ2 and DQ8, is already used clinically to help exclude disease. However, approximately 40% of the population carry these alleles and the majority never develop CD. We explored whether CD risk prediction can be improved by adding non-HLA-susceptible variants to common HLA testing. We developed an average weighted genetic risk score with 10, 26 and 57 single nucleotide polymorphisms (SNP) in 2675 cases and 2815 controls and assessed the improvement in risk prediction provided by the non-HLA SNP. Moreover, we assessed the transferability of the genetic risk model with 26 non-HLA variants to a nested case-control population (n=1709) and a prospective cohort (n=1245) and then tested how well this model predicted CD outcome for 985 independent individuals. Adding 57 non-HLA variants to HLA testing showed a statistically significant improvement compared to scores from models based on HLA only, HLA plus 10 SNP and HLA plus 26 SNP. With 57 non-HLA variants, the area under the receiver operator characteristic curve reached 0.854 compared to 0.823 for HLA only, and 11.1% of individuals were reclassified to a more accurate risk group. We show that the risk model with HLA plus 26 SNP is useful in independent populations. Predicting risk with 57 additional non-HLA variants improved the identification of potential CD patients. This demonstrates a possible role for combined HLA and non-HLA genetic testing in diagnostic work for CD.

  3. Three-dimensional spatial analysis of missense variants in RTEL1 identifies pathogenic variants in patients with Familial Interstitial Pneumonia.

    PubMed

    Sivley, R Michael; Sheehan, Jonathan H; Kropski, Jonathan A; Cogan, Joy; Blackwell, Timothy S; Phillips, John A; Bush, William S; Meiler, Jens; Capra, John A

    2018-01-23

    Next-generation sequencing of individuals with genetic diseases often detects candidate rare variants in numerous genes, but determining which are causal remains challenging. We hypothesized that the spatial distribution of missense variants in protein structures contains information about function and pathogenicity that can help prioritize variants of unknown significance (VUS) and elucidate the structural mechanisms leading to disease. To illustrate this approach in a clinical application, we analyzed 13 candidate missense variants in regulator of telomere elongation helicase 1 (RTEL1) identified in patients with Familial Interstitial Pneumonia (FIP). We curated pathogenic and neutral RTEL1 variants from the literature and public databases. We then used homology modeling to construct a 3D structural model of RTEL1 and mapped known variants into this structure. We next developed a pathogenicity prediction algorithm based on proximity to known disease causing and neutral variants and evaluated its performance with leave-one-out cross-validation. We further validated our predictions with segregation analyses, telomere lengths, and mutagenesis data from the homologous XPD protein. Our algorithm for classifying RTEL1 VUS based on spatial proximity to pathogenic and neutral variation accurately distinguished 7 known pathogenic from 29 neutral variants (ROC AUC = 0.85) in the N-terminal domains of RTEL1. Pathogenic proximity scores were also significantly correlated with effects on ATPase activity (Pearson r = -0.65, p = 0.0004) in XPD, a related helicase. Applying the algorithm to 13 VUS identified from sequencing of RTEL1 from patients predicted five out of six disease-segregating VUS to be pathogenic. We provide structural hypotheses regarding how these mutations may disrupt RTEL1 ATPase and helicase function. Spatial analysis of missense variation accurately classified candidate VUS in RTEL1 and suggests how such variants cause disease. Incorporating

  4. Automated identification of RNA 3D modules with discriminative power in RNA structural alignments.

    PubMed

    Theis, Corinna; Höner Zu Siederdissen, Christian; Hofacker, Ivo L; Gorodkin, Jan

    2013-12-01

    Recent progress in predicting RNA structure is moving towards filling the 'gap' in 2D RNA structure prediction where, for example, predicted internal loops often form non-canonical base pairs. This is increasingly recognized with the steady increase of known RNA 3D modules. There is a general interest in matching structural modules known from one molecule to other molecules for which the 3D structure is not known yet. We have created a pipeline, metaRNAmodules, which completely automates extracting putative modules from the FR3D database and mapping of such modules to Rfam alignments to obtain comparative evidence. Subsequently, the modules, initially represented by a graph, are turned into models for the RMDetect program, which allows to test their discriminative power using real and randomized Rfam alignments. An initial extraction of 22 495 3D modules in all PDB files results in 977 internal loop and 17 hairpin modules with clear discriminatory power. Many of these modules describe only minor variants of each other. Indeed, mapping of the modules onto Rfam families results in 35 unique locations in 11 different families. The metaRNAmodules pipeline source for the internal loop modules is available at http://rth.dk/resources/mrm.

  5. Decreased cyclooxygenase inhibition by aspirin in polymorphic variants of human prostaglandin H synthase-1

    PubMed Central

    Liu, Wen; Poole, Elizabeth M.; Ulrich, Cornelia M.; Kulmacz, Richard J.

    2012-01-01

    Q has the largest functional effects, with evidence for impaired interactions with cyclooxygenase substrate and inhibitors. As Arg108 is located on the protein surface and not in the active site, the effects of R108Q suggest a novel, unsuspected mechanism for modulation of the PGHS-1 active site structure. The lower intrinsic aspirin reactivity of R108Q, V481I and L237M, combined with the rapid hydrolysis of aspirin in the blood, suggests that these variants decrease the anti-platelet effectiveness of the drug. These PGHS-1 variants are uncommon but aspirin is very widely used, so a considerable number of individuals could b e affected. Further examination of these and other PGHS-1 variants will be needed to determine whether PGHS-1 genotyping can be used to personalize anti-cyclooxygenase therapy. PMID:22513397

  6. The influence of monoamine oxidase variants on the risk of betel quid-associated oral and pharyngeal cancer.

    PubMed

    Chen, Ping-Ho; Huang, Bin; Shieh, Tien-Yu; Wang, Yan-Hsiung; Chen, Yuk-Kwan; Wu, Ju-Hui; Huang, Jhen-Hao; Chen, Chun-Chia; Lee, Ka-Wo

    2014-01-01

    Betel quid (BQ) and areca nut (AN) (major BQ ingredient) are group I human carcinogens illustrated by International Agency for Research on Cancer and are closely associated with an elevated risk of oral potentially malignant disorders (OPMDs) and cancers of the oral cavity and pharynx. The primary alkaloid of AN, arecoline, can be metabolized via the monoamine oxidase (MAO) gene by inducing reactive oxygen species (ROS). The aim of this study was to investigate whether the variants of the susceptible candidate MAO genes are associated with OPMDs and oral and pharyngeal cancer. A significant trend of MAO-A mRNA expression was found in in vitro studies. Using paired human tissues, we confirmed the significantly decreased expression of MAO-A and MAO-B in cancerous tissues when compared with adjacent noncancerous tissues. Moreover, we determined that MAO-A single nucleotide polymorphism variants are significantly linked with oral and pharyngeal cancer patients in comparison to OPMDs patients [rs5953210 risk G-allele, odds ratio = 1.76; 95% confidence interval = 1.02-3.01]. In conclusion, we suggested that susceptible MAO family variants associated with oral and pharyngeal cancer may be implicated in the modulation of MAO gene activity associated with ROS.

  7. The Influence of Monoamine Oxidase Variants on the Risk of Betel Quid-Associated Oral and Pharyngeal Cancer

    PubMed Central

    Huang, Bin; Shieh, Tien-Yu; Wang, Yan-Hsiung; Chen, Yuk-Kwan; Wu, Ju-Hui; Huang, Jhen-Hao; Chen, Chun-Chia; Lee, Ka-Wo

    2014-01-01

    Betel quid (BQ) and areca nut (AN) (major BQ ingredient) are group I human carcinogens illustrated by International Agency for Research on Cancer and are closely associated with an elevated risk of oral potentially malignant disorders (OPMDs) and cancers of the oral cavity and pharynx. The primary alkaloid of AN, arecoline, can be metabolized via the monoamine oxidase (MAO) gene by inducing reactive oxygen species (ROS). The aim of this study was to investigate whether the variants of the susceptible candidate MAO genes are associated with OPMDs and oral and pharyngeal cancer. A significant trend of MAO-A mRNA expression was found in in vitro studies. Using paired human tissues, we confirmed the significantly decreased expression of MAO-A and MAO-B in cancerous tissues when compared with adjacent noncancerous tissues. Moreover, we determined that MAO-A single nucleotide polymorphism variants are significantly linked with oral and pharyngeal cancer patients in comparison to OPMDs patients [rs5953210 risk G-allele, odds ratio = 1.76; 95% confidence interval = 1.02-3.01]. In conclusion, we suggested that susceptible MAO family variants associated with oral and pharyngeal cancer may be implicated in the modulation of MAO gene activity associated with ROS. PMID:25389533

  8. Identification of lung cancer histology-specific variants applying Bayesian framework variant prioritization approaches within the TRICL and ILCCO consortia

    PubMed Central

    Brenner, Darren R.; Amos, Christopher I.; Brhane, Yonathan; Timofeeva, Maria N.; Caporaso, Neil; Wang, Yufei; Christiani, David C.; Bickeböller, Heike; Yang, Ping; Albanes, Demetrius; Stevens, Victoria L.; Gapstur, Susan; McKay, James; Boffetta, Paolo; Zaridze, David; Szeszenia-Dabrowska, Neonilia; Lissowska, Jolanta; Rudnai, Peter; Fabianova, Eleonora; Mates, Dana; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Krokan, Hans E.; Skorpen, Frank; Gabrielsen, Maiken E.; Vatten, Lars; Njølstad, Inger; Chen, Chu; Goodman, Gary; Lathrop, Mark; Vooder, Tõnu; Välk, Kristjan; Nelis, Mari; Metspalu, Andres; Broderick, Peter; Eisen, Timothy; Wu, Xifeng; Zhang, Di; Chen, Wei; Spitz, Margaret R.; Wei, Yongyue; Su, Li; Xie, Dong; She, Jun; Matsuo, Keitaro; Matsuda, Fumihiko; Ito, Hidemi; Risch, Angela; Heinrich, Joachim; Rosenberger, Albert; Muley, Thomas; Dienemann, Hendrik; Field, John K.; Raji, Olaide; Chen, Ying; Gosney, John; Liloglou, Triantafillos; Davies, Michael P.A.; Marcus, Michael; McLaughlin, John; Orlow, Irene; Han, Younghun; Li, Yafang; Zong, Xuchen; Johansson, Mattias; Liu, Geoffrey; Tworoger, Shelley S.; Le Marchand, Loic; Henderson, Brian E.; Wilkens, Lynne R.; Dai, Juncheng; Shen, Hongbing; Houlston, Richard S.; Landi, Maria T.; Brennan, Paul; Hung, Rayjean J.

    2015-01-01

    Large-scale genome-wide association studies (GWAS) have likely uncovered all common variants at the GWAS significance level. Additional variants within the suggestive range (0.0001> P > 5×10−8) are, however, still of interest for identifying causal associations. This analysis aimed to apply novel variant prioritization approaches to identify additional lung cancer variants that may not reach the GWAS level. Effects were combined across studies with a total of 33456 controls and 6756 adenocarcinoma (AC; 13 studies), 5061 squamous cell carcinoma (SCC; 12 studies) and 2216 small cell lung cancer cases (9 studies). Based on prior information such as variant physical properties and functional significance, we applied stratified false discovery rates, hierarchical modeling and Bayesian false discovery probabilities for variant prioritization. We conducted a fine mapping analysis as validation of our methods by examining top-ranking novel variants in six independent populations with a total of 3128 cases and 2966 controls. Three novel loci in the suggestive range were identified based on our Bayesian framework analyses: KCNIP4 at 4p15.2 (rs6448050, P = 4.6×10−7) and MTMR2 at 11q21 (rs10501831, P = 3.1×10−6) with SCC, as well as GAREM at 18q12.1 (rs11662168, P = 3.4×10−7) with AC. Use of our prioritization methods validated two of the top three loci associated with SCC (P = 1.05×10−4 for KCNIP4, represented by rs9799795) and AC (P = 2.16×10−4 for GAREM, represented by rs3786309) in the independent fine mapping populations. This study highlights the utility of using prior functional data for sequence variants in prioritization analyses to search for robust signals in the suggestive range. PMID:26363033

  9. Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants

    PubMed Central

    De Rosa, Veronica; Galgani, Mario; Porcellini, Antonio; Colamatteo, Alessandra; Santopaolo, Marianna; Zuchegna, Candida; Romano, Antonella; De Simone, Salvatore; Procaccini, Claudio; La Rocca, Claudia; Carrieri, Pietro Biagio; Maniscalco, Giorgia Teresa; Salvetti, Marco; Buscarinu, Maria Chiara; Franzese, Adriana; Mozzillo, Enza; La Cava, Antonio; Matarese, Giuseppe

    2016-01-01

    Human regulatory T cells (Treg cells) that develop from conventional T cells (Tconv cells) following suboptimal stimulation via the T cell antigen receptor (TCR) (induced Treg cells (iTreg cells)) express the transcription factor Foxp3, are suppressive, and display an active proliferative and metabolic state. Here we found that the induction and suppressive function of iTreg cells tightly depended on glycolysis, which controlled Foxp3 splicing variants containing exon 2 (Foxp3-E2) through the glycolytic enzyme enolase-1. The Foxp3-E2–related suppressive activity of iTreg cells was altered in human autoimmune diseases, including multiple sclerosis and type 1 diabetes, and was associated with impaired glycolysis and signaling via interleukin 2. This link between glycolysis and Foxp3-E2 variants via enolase-1 shows a previously unknown mechanism for controlling the induction and function of Treg cells in health and in autoimmunity. PMID:26414764

  10. The UCP is placed in payload canister in SSPF

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Integrated Cargo Carrier (ICC), with equipment on top, sits in a workstand in the Space Station Processing Facility. It will be moved into the payload canister for transport to Launch Pad 39B in preparation for mission STS-106, scheduled to launch Sept. 8 at 8:31 a.m. EDT. During the mission to the International Space Station, the crew will complete service module support tasks on orbit, transfer supplies and outfit the Space Station for the first long-duration crew

  11. Guillain-Barré Syndrome and Variants

    PubMed Central

    Barohn, Richard J.

    2014-01-01

    Synopsis Guillain-Barré syndrome (GBS) is characterized by rapidly evolving ascending weakness, mild sensory loss and hypo- or areflexia, progressing to a nadir over up to four weeks. Cerebrospinal fluid evaluation demonstrates albuminocytologic dissociation in 90% of cases. Acute inflammatory demyelinating polyneuropathy (AIDP) was the first to be recognized over a century ago and is the most common form of GBS. In AIDP, the immune attack is directed at peripheral nerve myelin with secondary by-stander axon loss. Axonal motor and sensorimotor variants have been described in the last 3 decades and are mediated by molecular mimicry targeting peripheral nerve motor axons. Besides the Miller-Fisher syndrome (MFS) and descending weakness, other rare phenotypic variants have been recently described with pure sensory variant, restricted autonomic manifestations and the pharyngeal-cervical-brachial pattern. It is important to recognize GBS and its variants due to the availability of equally effective therapies in the form of plasmapheresis and intravenous immunoglobulins. PMID:23642721

  12. Processing of No-Release Variants in Connected Speech

    ERIC Educational Resources Information Center

    LoCasto, Paul C.; Connine, Cynthia M.

    2011-01-01

    The cross modal repetition priming paradigm was used to investigate how potential lexically ambiguous no-release variants are processed. In particular we focus on segmental regularities that affect the variant's frequency of occurrence (voicing of the critical segment) and phonological context in which the variant occurs (status of the following…

  13. Impact of constitutional copy number variants on biological pathway evolution.

    PubMed

    Poptsova, Maria; Banerjee, Samprit; Gokcumen, Omer; Rubin, Mark A; Demichelis, Francesca

    2013-01-23

    Inherited Copy Number Variants (CNVs) can modulate the expression levels of individual genes. However, little is known about how CNVs alter biological pathways and how this varies across different populations. To trace potential evolutionary changes of well-described biological pathways, we jointly queried the genomes and the transcriptomes of a collection of individuals with Caucasian, Asian or Yoruban descent combining high-resolution array and sequencing data. We implemented an enrichment analysis of pathways accounting for CNVs and genes sizes and detected significant enrichment not only in signal transduction and extracellular biological processes, but also in metabolism pathways. Upon the estimation of CNV population differentiation (CNVs with different polymorphism frequencies across populations), we evaluated that 22% of the pathways contain at least one gene that is proximal to a CNV (CNV-gene pair) that shows significant population differentiation. The majority of these CNV-gene pairs belong to signal transduction pathways and 6% of the CNV-gene pairs show statistical association between the copy number states and the transcript levels. The analysis suggested possible examples of positive selection within individual populations including NF-kB, MAPK signaling pathways, and Alu/L1 retrotransposition factors. Altogether, our results suggest that constitutional CNVs may modulate subtle pathway changes through specific pathway enzymes, which may become fixed in some populations.

  14. NMNAT1 variants cause cone and cone-rod dystrophy.

    PubMed

    Nash, Benjamin M; Symes, Richard; Goel, Himanshu; Dinger, Marcel E; Bennetts, Bruce; Grigg, John R; Jamieson, Robyn V

    2018-03-01

    Cone and cone-rod dystrophies (CD and CRD, respectively) are degenerative retinal diseases that predominantly affect the cone photoreceptors. The underlying disease gene is not known in approximately 75% of autosomal recessive cases. Variants in NMNAT1 cause a severe, early-onset retinal dystrophy called Leber congenital amaurosis (LCA). We report two patients where clinical phenotyping indicated diagnoses of CD and CRD, respectively. NMNAT1 variants were identified, with Case 1 showing an extremely rare homozygous variant c.[271G > A] p.(Glu91Lys) and Case 2 compound heterozygous variants c.[53 A > G];[769G > A] p.(Asn18Ser);(Glu257Lys). The detailed variant analysis, in combination with the observation of an associated macular atrophy phenotype, indicated that these variants were disease-causing. This report demonstrates that the variants in NMNAT1 may cause CD or CRD associated with macular atrophy. Genetic investigations of the patients with CD or CRD should include NMNAT1 in the genes examined.

  15. Identifying Causal Variants at Loci with Multiple Signals of Association

    PubMed Central

    Hormozdiari, Farhad; Kostem, Emrah; Kang, Eun Yong; Pasaniuc, Bogdan; Eskin, Eleazar

    2014-01-01

    Although genome-wide association studies have successfully identified thousands of risk loci for complex traits, only a handful of the biologically causal variants, responsible for association at these loci, have been successfully identified. Current statistical methods for identifying causal variants at risk loci either use the strength of the association signal in an iterative conditioning framework or estimate probabilities for variants to be causal. A main drawback of existing methods is that they rely on the simplifying assumption of a single causal variant at each risk locus, which is typically invalid at many risk loci. In this work, we propose a new statistical framework that allows for the possibility of an arbitrary number of causal variants when estimating the posterior probability of a variant being causal. A direct benefit of our approach is that we predict a set of variants for each locus that under reasonable assumptions will contain all of the true causal variants with a high confidence level (e.g., 95%) even when the locus contains multiple causal variants. We use simulations to show that our approach provides 20–50% improvement in our ability to identify the causal variants compared to the existing methods at loci harboring multiple causal variants. We validate our approach using empirical data from an expression QTL study of CHI3L2 to identify new causal variants that affect gene expression at this locus. CAVIAR is publicly available online at http://genetics.cs.ucla.edu/caviar/. PMID:25104515

  16. Re-analysis of public genetic data reveals a rare X-chromosomal variant associated with type 2 diabetes.

    PubMed

    Bonàs-Guarch, Sílvia; Guindo-Martínez, Marta; Miguel-Escalada, Irene; Grarup, Niels; Sebastian, David; Rodriguez-Fos, Elias; Sánchez, Friman; Planas-Fèlix, Mercè; Cortes-Sánchez, Paula; González, Santi; Timshel, Pascal; Pers, Tune H; Morgan, Claire C; Moran, Ignasi; Atla, Goutham; González, Juan R; Puiggros, Montserrat; Martí, Jonathan; Andersson, Ehm A; Díaz, Carlos; Badia, Rosa M; Udler, Miriam; Leong, Aaron; Kaur, Varindepal; Flannick, Jason; Jørgensen, Torben; Linneberg, Allan; Jørgensen, Marit E; Witte, Daniel R; Christensen, Cramer; Brandslund, Ivan; Appel, Emil V; Scott, Robert A; Luan, Jian'an; Langenberg, Claudia; Wareham, Nicholas J; Pedersen, Oluf; Zorzano, Antonio; Florez, Jose C; Hansen, Torben; Ferrer, Jorge; Mercader, Josep Maria; Torrents, David

    2018-01-22

    The reanalysis of existing GWAS data represents a powerful and cost-effective opportunity to gain insights into the genetics of complex diseases. By reanalyzing publicly available type 2 diabetes (T2D) genome-wide association studies (GWAS) data for 70,127 subjects, we identify seven novel associated regions, five driven by common variants (LYPLAL1, NEUROG3, CAMKK2, ABO, and GIP genes), one by a low-frequency (EHMT2), and one driven by a rare variant in chromosome Xq23, rs146662057, associated with a twofold increased risk for T2D in males. rs146662057 is located within an active enhancer associated with the expression of Angiotensin II Receptor type 2 gene (AGTR2), a modulator of insulin sensitivity, and exhibits allelic specific activity in muscle cells. Beyond providing insights into the genetics and pathophysiology of T2D, these results also underscore the value of reanalyzing publicly available data using novel genetic resources and analytical approaches.

  17. Amino acid changes in disease-associated variants differ radically from variants observed in the 1000 genomes project dataset.

    PubMed

    de Beer, Tjaart A P; Laskowski, Roman A; Parks, Sarah L; Sipos, Botond; Goldman, Nick; Thornton, Janet M

    2013-01-01

    The 1000 Genomes Project data provides a natural background dataset for amino acid germline mutations in humans. Since the direction of mutation is known, the amino acid exchange matrix generated from the observed nucleotide variants is asymmetric and the mutabilities of the different amino acids are very different. These differences predominantly reflect preferences for nucleotide mutations in the DNA (especially the high mutation rate of the CpG dinucleotide, which makes arginine mutability very much higher than other amino acids) rather than selection imposed by protein structure constraints, although there is evidence for the latter as well. The variants occur predominantly on the surface of proteins (82%), with a slight preference for sites which are more exposed and less well conserved than random. Mutations to functional residues occur about half as often as expected by chance. The disease-associated amino acid variant distributions in OMIM are radically different from those expected on the basis of the 1000 Genomes dataset. The disease-associated variants preferentially occur in more conserved sites, compared to 1000 Genomes mutations. Many of the amino acid exchange profiles appear to exhibit an anti-correlation, with common exchanges in one dataset being rare in the other. Disease-associated variants exhibit more extreme differences in amino acid size and hydrophobicity. More modelling of the mutational processes at the nucleotide level is needed, but these observations should contribute to an improved prediction of the effects of specific variants in humans.

  18. The variant call format and VCFtools.

    PubMed

    Danecek, Petr; Auton, Adam; Abecasis, Goncalo; Albers, Cornelis A; Banks, Eric; DePristo, Mark A; Handsaker, Robert E; Lunter, Gerton; Marth, Gabor T; Sherry, Stephen T; McVean, Gilean; Durbin, Richard

    2011-08-01

    The variant call format (VCF) is a generic format for storing DNA polymorphism data such as SNPs, insertions, deletions and structural variants, together with rich annotations. VCF is usually stored in a compressed manner and can be indexed for fast data retrieval of variants from a range of positions on the reference genome. The format was developed for the 1000 Genomes Project, and has also been adopted by other projects such as UK10K, dbSNP and the NHLBI Exome Project. VCFtools is a software suite that implements various utilities for processing VCF files, including validation, merging, comparing and also provides a general Perl API. http://vcftools.sourceforge.net

  19. Early-life nutrition modulates the epigenetic state of specific rDNA genetic variants in mice.

    PubMed

    Holland, Michelle L; Lowe, Robert; Caton, Paul W; Gemma, Carolina; Carbajosa, Guillermo; Danson, Amy F; Carpenter, Asha A M; Loche, Elena; Ozanne, Susan E; Rakyan, Vardhman K

    2016-07-29

    A suboptimal early-life environment, due to poor nutrition or stress during pregnancy, can influence lifelong phenotypes in the progeny. Epigenetic factors are thought to be key mediators of these effects. We show that protein restriction in mice from conception until weaning induces a linear correlation between growth restriction and DNA methylation at ribosomal DNA (rDNA). This epigenetic response remains into adulthood and is restricted to rDNA copies associated with a specific genetic variant within the promoter. Related effects are also found in models of maternal high-fat or obesogenic diets. Our work identifies environmentally induced epigenetic dynamics that are dependent on underlying genetic variation and establishes rDNA as a genomic target of nutritional insults. Copyright © 2016, American Association for the Advancement of Science.

  20. Mitochondrial uncoupling proteins in unicellular eukaryotes.

    PubMed

    Jarmuszkiewicz, Wieslawa; Woyda-Ploszczyca, Andrzej; Antos-Krzeminska, Nina; Sluse, Francis E

    2010-01-01

    Uncoupling proteins (UCPs) are members of the mitochondrial anion carrier protein family that are present in the mitochondrial inner membrane and mediate free fatty acid (FFA)-activated, purine nucleotide (PN)-inhibited proton conductance. Since 1999, the presence of UCPs has been demonstrated in some non-photosynthesising unicellular eukaryotes, including amoeboid and parasite protists, as well as in non-fermentative yeast and filamentous fungi. In the mitochondria of these organisms, UCP activity is revealed upon FFA-induced, PN-inhibited stimulation of resting respiration and a decrease in membrane potential, which are accompanied by a decrease in membranous ubiquinone (Q) reduction level. UCPs in unicellular eukaryotes are able to divert energy from oxidative phosphorylation and thus compete for a proton electrochemical gradient with ATP synthase. Our recent work indicates that membranous Q is a metabolic sensor that might utilise its redox state to release the PN inhibition of UCP-mediated mitochondrial uncoupling under conditions of phosphorylation and resting respiration. The action of reduced Q (QH2) could allow higher or complete activation of UCP. As this regulatory feature was demonstrated for microorganism UCPs (A. castellanii UCP), plant and mammalian UCP1 analogues, and UCP1 in brown adipose tissue, the process could involve all UCPs. Here, we discuss the functional connection and physiological role of UCP and alternative oxidase, two main energy-dissipating systems in the plant-type mitochondrial respiratory chain of unicellular eukaryotes, including the control of cellular energy balance as well as preventive action against the production of reactive oxygen species. Copyright © 2009 Elsevier B.V. All rights reserved.

  1. Uncoupling protein homologs may provide a link between mitochondria, metabolism and lifespan

    PubMed Central

    Wolkow, Catherine A.; Iser, Wendy B.

    2008-01-01

    Uncoupling proteins (UCPs), which dissipate the mitochondrial proton gradient, have the ability to decouple mitochodrial respiration from ATP production. Since mitochondrial electron transport is a major source of free radical production, it is possible that UCP activity might impact free radical production. Free radicals can react with and damage cellular proteins, DNA and lipids. Accumulated damage from oxidative stress is believed to be a major contributor to cellular decline during aging. If UCP function were to impact mitochondrial free radical production, then one would expect to find a link between UCP activity and aging. This theory has recently been tested in a handful of organisms whose genomes contain UCP1 homologs. Interestingly, these experiments indicate that UCP homologs can affect lifespan, although they do not support a simple relationship between UCP activity and aging. Instead, UCP-like proteins appear to have a variety of effects on lifespan, and on pathways implicated in lifespan regulation. One possible explanation for this complex picture is that UCP homologs may have tissue-specific effects that complicate their effects on aging. Furthermore, the functional analysis of UCP1 homologs is incomplete. Thus, these proteins may perform functions in addition to, or instead of, mitochondrial uncoupling. Although these studies have not revealed a clear picture of UCP effects on aging, they have contributed to the growing knowledge base for these interesting proteins. Future biochemical and genetic investigation of UCP-like proteins will do much to clarify their functions and to identify the regulatory networks in which they are involved. PMID:16707280

  2. Muscle uncoupling protein 3 overexpression mimics endurance training and reduces circulating biomarkers of incomplete β-oxidation.

    PubMed

    Aguer, Céline; Fiehn, Oliver; Seifert, Erin L; Bézaire, Véronic; Meissen, John K; Daniels, Amanda; Scott, Kyle; Renaud, Jean-Marc; Padilla, Marta; Bickel, David R; Dysart, Michael; Adams, Sean H; Harper, Mary-Ellen

    2013-10-01

    Exercise substantially improves metabolic health, making the elicited mechanisms important targets for novel therapeutic strategies. Uncoupling protein 3 (UCP3) is a mitochondrial inner membrane protein highly selectively expressed in skeletal muscle. Here we report that moderate UCP3 overexpression (roughly 3-fold) in muscles of UCP3 transgenic (UCP3 Tg) mice acts as an exercise mimetic in many ways. UCP3 overexpression increased spontaneous activity (∼40%) and energy expenditure (∼5-10%) and decreased oxidative stress (∼15-20%), similar to exercise training in wild-type (WT) mice. The increase in complete fatty acid oxidation (FAO; ∼30% for WT and ∼70% for UCP3 Tg) and energy expenditure (∼8% for WT and 15% for UCP3 Tg) in response to endurance training was higher in UCP3 Tg than in WT mice, showing an additive effect of UCP3 and endurance training on these two parameters. Moreover, increases in circulating short-chain acylcarnitines in response to acute exercise in untrained WT mice were absent with training or in UCP3 Tg mice. UCP3 overexpression had the same effect as training in decreasing long-chain acylcarnitines. Outcomes coincided with a reduction in muscle carnitine acetyltransferase activity that catalyzes the formation of acylcarnitines. Overall, results are consistent with the conclusions that circulating acylcarnitines could be used as a marker of incomplete muscle FAO and that UCP3 is a potential target for the treatment of prevalent metabolic diseases in which muscle FAO is affected.

  3. Role of positively charged residues of the second transmembrane domain in the ion transport activity and conformation of human uncoupling protein-2.

    PubMed

    Hoang, Tuan; Matovic, Tijana; Parker, James; Smith, Matthew D; Jelokhani-Niaraki, Masoud

    2015-04-14

    Residing at the inner mitochondrial membrane, uncoupling protein-2 (UCP2) mediates proton transport from the intermembrane space (IMS) to the mitochondrial matrix and consequently reduces the rate of ATP synthesis in the mitochondria. The ubiquitous expression of UCP2 in humans can be attributed to the protein's multiple physiological roles in tissues, including its involvement in protective mechanisms against oxidative stress, as well as glucose and lipid metabolisms. Currently, the structural properties and ion transport mechanism of UCP2 and other UCP homologues remain poorly understood. UCP2-mediated proton transport is activated by fatty acids and inhibited by di- and triphosphate purine nucleotides. UCP2 also transports chloride and some other small anions. Identification of key amino acid residues of UCP2 in its ion transport pathway can shed light on the protein's ion transport function. On the basis of our previous studies, the second transmembrane helix segment (TM2) of UCP2 exhibited chloride channel activity. In addition, it was suggested that the positively charged residues on TM2 domains of UCPs 1 and 2 were important for their chloride transport activity. On this basis, to further understand the role of these positively charged residues on the ion transport activity of UCP2, we recombinantly expressed four TM2 mutants: R76Q, R88Q, R96Q, and K104Q. The wild type UCP2 and its mutants were purified and reconstituted into liposomes, and their conformation and ion (proton and chloride) transport activity were studied. TM2 Arg residues at the matrix interface of UCP2 proved to be crucial for the protein's anion transport function, and their absence resulted in highly diminished Cl(-) transport rates. On the other hand, the two other positively charged residues of TM2, located at the UCP2-IMS interface, could participate in the salt-bridge formation in the protein and promote the interhelical tight packing in the UCP2. Absence of these residues did not

  4. Lack of evidence for a liver or intestinal miRNA regulation involved in the hypertriglyceridemic effect of APOC3 3'UTR variant SstI.

    PubMed

    Dancer, Marine; Caussy, Cyrielle; Di Filippo, Mathilde; Moulin, Philippe; Marçais, Christophe; Charrière, Sybil

    2016-12-01

    APOC3 is a major regulator of triglycerides metabolism. Several APOC3 variants are associated with hypertriglyceridemia (HTG). Our aim was to establish the potential regulation of APOC3 3'UTR variants associated with HTG by liver or intestinal miRNAs. We sequenced APOC3 3'UTR in 100 type 2 diabetic (TD2) patients with severe HTG (TG > 15 mmol/L) (HTG group) compared to 100 normotriglyceridemic patients (NTG group). We performed in silico studies to identify potential loss of miRNA binding induced by APOC3 3'UTR variants. We also performed in vitro studies to test the functionality of miRNA/APOC3 variants interactions: APOC3 3'UTR plasmids coupled with a firefly luciferase reporter were transfected in HepG2, HuH-7 and Caco-2 cells. We identified only two variants: SstI (rs5128) and BbvI (rs5225) in APOC3 3'UTR in the 2 groups of patients. Only the SstI-S2 rare allele was significantly associated with HTG (allele frequency 19,5% in HTG group vs. 9,5% in NTG group, p = 0.0045). In silico studies predicted a potential loss in the binding of 5 miRNAs induced by the S2 variant. These 5 miRNAs are all endogenously expressed in human liver and intestine, as well as in the cell models studied. However, in vitro, the S2 variant did not modulate APOC3 3'UTR reporter gene expression in HepG2, HuH-7 and Caco-2 cells. Our results do not confirm the hypothesis of a direct regulation of the APOC3 SstI variant by hepatic or intestinal miRNAs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Identifying causal variants at loci with multiple signals of association.

    PubMed

    Hormozdiari, Farhad; Kostem, Emrah; Kang, Eun Yong; Pasaniuc, Bogdan; Eskin, Eleazar

    2014-10-01

    Although genome-wide association studies have successfully identified thousands of risk loci for complex traits, only a handful of the biologically causal variants, responsible for association at these loci, have been successfully identified. Current statistical methods for identifying causal variants at risk loci either use the strength of the association signal in an iterative conditioning framework or estimate probabilities for variants to be causal. A main drawback of existing methods is that they rely on the simplifying assumption of a single causal variant at each risk locus, which is typically invalid at many risk loci. In this work, we propose a new statistical framework that allows for the possibility of an arbitrary number of causal variants when estimating the posterior probability of a variant being causal. A direct benefit of our approach is that we predict a set of variants for each locus that under reasonable assumptions will contain all of the true causal variants with a high confidence level (e.g., 95%) even when the locus contains multiple causal variants. We use simulations to show that our approach provides 20-50% improvement in our ability to identify the causal variants compared to the existing methods at loci harboring multiple causal variants. We validate our approach using empirical data from an expression QTL study of CHI3L2 to identify new causal variants that affect gene expression at this locus. CAVIAR is publicly available online at http://genetics.cs.ucla.edu/caviar/. Copyright © 2014 by the Genetics Society of America.

  6. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies.

    PubMed

    Dhamrait, Sukhbir S; Maubaret, Cecilia; Pedersen-Bjergaard, Ulrik; Brull, David J; Gohlke, Peter; Payne, John R; World, Michael; Thorsteinsson, Birger; Humphries, Steve E; Montgomery, Hugh E

    2016-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations ( healthy young UK men and Scandinavian diabetic patients ) serum ACE (sACE) activity was significantly higher amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold ( P  < 0·01) whilst increasing ACE expression within a physiological range (<1·8-fold at 48 h; P  < 0·01). Our findings suggest novel hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role.

  7. Uncoupling protein-3 lowers reactive oxygen species production in isolated mitochondria

    PubMed Central

    Toime, Laurence J.; Brand, Martin D.

    2010-01-01

    Mitochondria are the major cellular producers of reactive oxygen species (ROS), and mitochondrial ROS production increases steeply with increased protonmotive force. The uncoupling proteins (UCP1, UCP2 and UCP3) and adenine nucleotide translocase induce proton leak in response to exogenously added fatty acids, superoxide or lipid peroxidation products. “Mild uncoupling” by these proteins may provide a negative feedback loop to decrease protonmotive force and attenuate ROS production. Using wild type and Ucp3−/− mice, we found that native UCP3 actively lowers the rate of ROS production in isolated energized skeletal muscle mitochondria, in the absence of exogenous activators. The estimated specific activity of UCP3 in lowering ROS production was 90 to 500 times higher than that of the adenine nucleotide translocase. The mild uncoupling hypothesis was tested by measuring whether the effect of UCP3 on ROS production could be mimicked by chemical uncoupling. A chemical uncoupler mimicked the effect of UCP3 at early time points after mitochondrial energization, in support of the mild uncoupling hypothesis. However, at later time points the uncoupler did not mimic UCP3, suggesting that UCP3 can also affect on ROS production through a membrane potential-independent mechanism. PMID:20493945

  8. Association of genetic variants of GRIN2B with autism.

    PubMed

    Pan, Yongcheng; Chen, Jingjing; Guo, Hui; Ou, Jianjun; Peng, Yu; Liu, Qiong; Shen, Yidong; Shi, Lijuan; Liu, Yalan; Xiong, Zhimin; Zhu, Tengfei; Luo, Sanchuan; Hu, Zhengmao; Zhao, Jingping; Xia, Kun

    2015-02-06

    Autism (MIM 209850) is a complex neurodevelopmental disorder characterized by social communication impairments and restricted repetitive behaviors. It has a high heritability, although much remains unclear. To evaluate genetic variants of GRIN2B in autism etiology, we performed a system association study of common and rare variants of GRIN2B and autism in cohorts from a Chinese population, involving a total sample of 1,945 subjects. Meta-analysis of a triad family cohort and a case-control cohort identified significant associations of multiple common variants and autism risk (Pmin = 1.73 × 10(-4)). Significantly, the haplotype involved with the top common variants also showed significant association (P = 1.78 × 10(-6)). Sanger sequencing of 275 probands from a triad cohort identified several variants in coding regions, including four common variants and seven rare variants. Two of the common coding variants were located in the autism-related linkage disequilibrium (LD) block, and both were significantly associated with autism (P < 9 × 10(-3)) using an independent control cohort. Burden analysis and case-only analysis of rare coding variants identified by Sanger sequencing did not find this association. Our study for the first time reveals that common variants and related haplotypes of GRIN2B are associated with autism risk.

  9. BlackOPs: increasing confidence in variant detection through mappability filtering.

    PubMed

    Cabanski, Christopher R; Wilkerson, Matthew D; Soloway, Matthew; Parker, Joel S; Liu, Jinze; Prins, Jan F; Marron, J S; Perou, Charles M; Hayes, D Neil

    2013-10-01

    Identifying variants using high-throughput sequencing data is currently a challenge because true biological variants can be indistinguishable from technical artifacts. One source of technical artifact results from incorrectly aligning experimentally observed sequences to their true genomic origin ('mismapping') and inferring differences in mismapped sequences to be true variants. We developed BlackOPs, an open-source tool that simulates experimental RNA-seq and DNA whole exome sequences derived from the reference genome, aligns these sequences by custom parameters, detects variants and outputs a blacklist of positions and alleles caused by mismapping. Blacklists contain thousands of artifact variants that are indistinguishable from true variants and, for a given sample, are expected to be almost completely false positives. We show that these blacklist positions are specific to the alignment algorithm and read length used, and BlackOPs allows users to generate a blacklist specific to their experimental setup. We queried the dbSNP and COSMIC variant databases and found numerous variants indistinguishable from mapping errors. We demonstrate how filtering against blacklist positions reduces the number of potential false variants using an RNA-seq glioblastoma cell line data set. In summary, accounting for mapping-caused variants tuned to experimental setups reduces false positives and, therefore, improves genome characterization by high-throughput sequencing.

  10. Effect of Overproduction of Mitochondrial Uncoupling Protein 2 on Cos7 Cells: Induction of Senescent-like Morphology and Oncotic Cell Death.

    PubMed

    Nishio, Koji; Ma, Qian

    2016-01-01

    The maintenance of mitochondrial membrane potential is essential for cell growth and survival. Mitochondrial uncoupling protein 2 plays the most important roles in uncoupling oxidative phosphorylation and decreasing mitochondrial O2- production by regulating the mitochondrial membrane potential. We propose that mouse UCP2 has two glycine-rich motifs, motif 1: EGIRGLWKG (170-178) and a known Walker A-like motif 2: EGPRAFYKG (264-272). These motifs seem to be important for the function of UCP2. We investigated the biological effects of overproduced-UCP2 and its physiological consequence in Cos7 cells. We introduced several amino acid changes in the motif 1. The expression vectors of the green fluorescent protein (GFP)-fused UCP2 and mutant UCP2 were constructed and expressed in Cos7 cells. The UCP2-GFP-expressed cells significantly down-regulated the mitochondrial membrane potentials and induced the enlarged cell shapes. Next we generated the stably UCP2-GFP-expressed Cos7 cells by selection with the antibiotic Genecitin (G418). Within the first few weeks following G418-selection, the stably UCP2-GFP-expressed cells could not divide well and gradually manifested the irregular and enlarged senescent-like cell morphology. The UCP2/K177E- or UCP2/G174L-expressed cells did not induce the enlarged cell shapes. Hence, UCP2/K177E and UCP2/G174L produced the functional incompetence of the glycine-rich motif 1. The senescent-like cells significantly decreased the mitochondrial membrane potentials and finally died nearly one month. Overproduction of UCP2 irreversibly reduces the mitochondrial membrane potentials and induces the senescent-like morphology and finally oncotic cell death in Cos7 cells. These changes seem to occur from the irreversible metabolic changes following total loss of cellular ATP.

  11. Adipose tissue uncoupling protein 1 levels and function are increased in a mouse model of developmental obesity induced by maternal exposure to high-fat diet.

    PubMed

    Bytautiene Prewit, E; Porter, C; La Rosa, M; Bhattarai, N; Yin, H; Gamble, P; Kechichian, T; Sidossis, L S

    2018-05-17

    With brown adipose tissue (BAT) becoming a possible therapeutic target to counteract obesity, the prenatal environment could represent a critical window to modify BAT function and browning of white AT. We investigated if levels of uncoupling protein 1 (UCP1) and UCP1-mediated thermogenesis are altered in offspring exposed to prenatal obesity. Female CD-1 mice were fed a high-fat (HF) or standard-fat (SF) diet for 3 months before breeding. After weaning, all pups were placed on SF. UCP1 mRNA and protein levels were quantified using quantitative real-time PCR and Western blot analysis, respectively, in brown (BAT), subcutaneous (SAT) and visceral (VAT) adipose tissues at 6 months of age. Total and UCP1-dependent mitochondrial respiration were determined by high-resolution respirometry. A Student's t-test and Mann-Whitney test were used (significance: P<0.05). UCP1 mRNA levels were not different between the HF and SF offspring. UCP1 protein levels, total mitochondrial respiration and UCP1-dependent respiration were significantly higher in BAT from HF males (P=0.02, P=0.04, P=0.005, respectively) and females (P=0.01, P=0.04, P=0.02, respectively). In SAT, the UCP1 protein was significantly lower in HF females (P=0.03), and the UCP1-dependent thermogenesis was significantly lower from HF males (P=0.04). In VAT, UCP1 protein levels and UCP1-dependent respiration were significantly lower only in HF females (P=0.03, P=0.04, respectively). There were no differences in total respiration in SAT and VAT. Prenatal exposure to maternal obesity leads to significant increases in UCP1 levels and function in BAT in offspring with little impact on UCP1 levels and function in SAT and VAT.

  12. Identification of lung cancer histology-specific variants applying Bayesian framework variant prioritization approaches within the TRICL and ILCCO consortia.

    PubMed

    Brenner, Darren R; Amos, Christopher I; Brhane, Yonathan; Timofeeva, Maria N; Caporaso, Neil; Wang, Yufei; Christiani, David C; Bickeböller, Heike; Yang, Ping; Albanes, Demetrius; Stevens, Victoria L; Gapstur, Susan; McKay, James; Boffetta, Paolo; Zaridze, David; Szeszenia-Dabrowska, Neonilia; Lissowska, Jolanta; Rudnai, Peter; Fabianova, Eleonora; Mates, Dana; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Krokan, Hans E; Skorpen, Frank; Gabrielsen, Maiken E; Vatten, Lars; Njølstad, Inger; Chen, Chu; Goodman, Gary; Lathrop, Mark; Vooder, Tõnu; Välk, Kristjan; Nelis, Mari; Metspalu, Andres; Broderick, Peter; Eisen, Timothy; Wu, Xifeng; Zhang, Di; Chen, Wei; Spitz, Margaret R; Wei, Yongyue; Su, Li; Xie, Dong; She, Jun; Matsuo, Keitaro; Matsuda, Fumihiko; Ito, Hidemi; Risch, Angela; Heinrich, Joachim; Rosenberger, Albert; Muley, Thomas; Dienemann, Hendrik; Field, John K; Raji, Olaide; Chen, Ying; Gosney, John; Liloglou, Triantafillos; Davies, Michael P A; Marcus, Michael; McLaughlin, John; Orlow, Irene; Han, Younghun; Li, Yafang; Zong, Xuchen; Johansson, Mattias; Liu, Geoffrey; Tworoger, Shelley S; Le Marchand, Loic; Henderson, Brian E; Wilkens, Lynne R; Dai, Juncheng; Shen, Hongbing; Houlston, Richard S; Landi, Maria T; Brennan, Paul; Hung, Rayjean J

    2015-11-01

    Large-scale genome-wide association studies (GWAS) have likely uncovered all common variants at the GWAS significance level. Additional variants within the suggestive range (0.0001> P > 5×10(-8)) are, however, still of interest for identifying causal associations. This analysis aimed to apply novel variant prioritization approaches to identify additional lung cancer variants that may not reach the GWAS level. Effects were combined across studies with a total of 33456 controls and 6756 adenocarcinoma (AC; 13 studies), 5061 squamous cell carcinoma (SCC; 12 studies) and 2216 small cell lung cancer cases (9 studies). Based on prior information such as variant physical properties and functional significance, we applied stratified false discovery rates, hierarchical modeling and Bayesian false discovery probabilities for variant prioritization. We conducted a fine mapping analysis as validation of our methods by examining top-ranking novel variants in six independent populations with a total of 3128 cases and 2966 controls. Three novel loci in the suggestive range were identified based on our Bayesian framework analyses: KCNIP4 at 4p15.2 (rs6448050, P = 4.6×10(-7)) and MTMR2 at 11q21 (rs10501831, P = 3.1×10(-6)) with SCC, as well as GAREM at 18q12.1 (rs11662168, P = 3.4×10(-7)) with AC. Use of our prioritization methods validated two of the top three loci associated with SCC (P = 1.05×10(-4) for KCNIP4, represented by rs9799795) and AC (P = 2.16×10(-4) for GAREM, represented by rs3786309) in the independent fine mapping populations. This study highlights the utility of using prior functional data for sequence variants in prioritization analyses to search for robust signals in the suggestive range. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Measuring mitochondrial uncoupling protein-2 level and activity in insulinoma cells.

    PubMed

    Barlow, Jonathan; Hirschberg, Verena; Brand, Martin D; Affourtit, Charles

    2013-01-01

    Mitochondrial uncoupling protein-2 (UCP2) regulates glucose-stimulated insulin secretion (GSIS) by pancreatic beta cells-the physiological role of the beta cell UCP2 remains a subject of debate. Experimental studies informing this debate benefit from reliable measurements of UCP2 protein level and activity. In this chapter, we describe how UCP2 protein can be detected in INS-1 insulinoma cells and how it can be knocked down by RNA interference. We demonstrate briefly that UCP2 knockdown lowers glucose-induced rises in mitochondrial respiratory activity, coupling efficiency of oxidative phosphorylation, levels of mitochondrial reactive oxygen species, and insulin secretion. We provide protocols for the detection of the respective UCP2 phenotypes, which are indirect, but invaluable measures of UCP2 activity. We also introduce a convenient method to normalize cellular respiration to cell density allowing measurement of UCP2 effects on specific mitochondrial oxygen consumption. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Base Excision Repair Variants in Cancer

    PubMed Central

    Marsden, Carolyn G.; Dragon, Julie A.; Wallace, Susan S.; Sweasy, Joann B.

    2018-01-01

    Base excision repair (BER) is a key genome maintenance pathway that removes endogenously damaged DNA bases that arise in cells at very high levels on a daily basis. Failure to remove these damaged DNA bases leads to increased levels of mutagenesis and chromosomal instability, which have the potential to drive carcinogenesis. Next Generation sequencing efforts of the germline and tumors genomes of thousands of individuals has uncovered many rare mutations in BER genes. Given that BER is critical for genome maintenance, it is important to determine whether BER genomic variants have functional phenotypes. In this chapter we present our in silico methods for the identification and prioritization of BER variants for further study. We also provide detailed instructions and commentary on the initial cellular assays we employ to dissect potentially important phenotypes of human BER variants and highlight the strengths and weaknesses of our approaches. BER variants possessing interesting functional phenotypes can then be studied in more detail to provide important mechanistic insights regarding the role of aberrant BER in carcinogenesis. PMID:28645367

  15. Scatter correction for x-ray conebeam CT using one-dimensional primary modulation

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Gao, Hewei; Bennett, N. Robert; Xing, Lei; Fahrig, Rebecca

    2009-02-01

    Recently, we developed an efficient scatter correction method for x-ray imaging using primary modulation. A two-dimensional (2D) primary modulator with spatially variant attenuating materials is inserted between the x-ray source and the object to separate primary and scatter signals in the Fourier domain. Due to the high modulation frequency in both directions, the 2D primary modulator has a strong scatter correction capability for objects with arbitrary geometries. However, signal processing on the modulated projection data requires knowledge of the modulator position and attenuation. In practical systems, mainly due to system gantry vibration, beam hardening effects and the ramp-filtering in the reconstruction, the insertion of the 2D primary modulator results in artifacts such as rings in the CT images, if no post-processing is applied. In this work, we eliminate the source of artifacts in the primary modulation method by using a one-dimensional (1D) modulator. The modulator is aligned parallel to the ramp-filtering direction to avoid error magnification, while sufficient primary modulation is still achieved for scatter correction on a quasicylindrical object, such as a human body. The scatter correction algorithm is also greatly simplified for the convenience and stability in practical implementations. The method is evaluated on a clinical CBCT system using the Catphan© 600 phantom. The result shows effective scatter suppression without introducing additional artifacts. In the selected regions of interest, the reconstruction error is reduced from 187.2HU to 10.0HU if the proposed method is used.

  16. Detecting very low allele fraction variants using targeted DNA sequencing and a novel molecular barcode-aware variant caller.

    PubMed

    Xu, Chang; Nezami Ranjbar, Mohammad R; Wu, Zhong; DiCarlo, John; Wang, Yexun

    2017-01-03

    Detection of DNA mutations at very low allele fractions with high accuracy will significantly improve the effectiveness of precision medicine for cancer patients. To achieve this goal through next generation sequencing, researchers need a detection method that 1) captures rare mutation-containing DNA fragments efficiently in the mix of abundant wild-type DNA; 2) sequences the DNA library extensively to deep coverage; and 3) distinguishes low level true variants from amplification and sequencing errors with high accuracy. Targeted enrichment using PCR primers provides researchers with a convenient way to achieve deep sequencing for a small, yet most relevant region using benchtop sequencers. Molecular barcoding (or indexing) provides a unique solution for reducing sequencing artifacts analytically. Although different molecular barcoding schemes have been reported in recent literature, most variant calling has been done on limited targets, using simple custom scripts. The analytical performance of barcode-aware variant calling can be significantly improved by incorporating advanced statistical models. We present here a highly efficient, simple and scalable enrichment protocol that integrates molecular barcodes in multiplex PCR amplification. In addition, we developed smCounter, an open source, generic, barcode-aware variant caller based on a Bayesian probabilistic model. smCounter was optimized and benchmarked on two independent read sets with SNVs and indels at 5 and 1% allele fractions. Variants were called with very good sensitivity and specificity within coding regions. We demonstrated that we can accurately detect somatic mutations with allele fractions as low as 1% in coding regions using our enrichment protocol and variant caller.

  17. The UCL low-density lipoprotein receptor gene variant database: pathogenicity update

    PubMed Central

    Futema, Marta; Whittall, Ros; Taylor-Beadling, Alison; Williams, Maggie; den Dunnen, Johan T; Humphries, Steve E

    2017-01-01

    Background Familial hypercholesterolaemia (OMIM 143890) is most frequently caused by variations in the low-density lipoprotein receptor (LDLR) gene. Predicting whether novel variants are pathogenic may not be straightforward, especially for missense and synonymous variants. In 2013, the Association of Clinical Genetic Scientists published guidelines for the classification of variants, with categories 1 and 2 representing clearly not or unlikely pathogenic, respectively, 3 representing variants of unknown significance (VUS), and 4 and 5 representing likely to be or clearly pathogenic, respectively. Here, we update the University College London (UCL) LDLR variant database according to these guidelines. Methods PubMed searches and alerts were used to identify novel LDLR variants for inclusion in the database. Standard in silico tools were used to predict potential pathogenicity. Variants were designated as class 4/5 only when the predictions from the different programs were concordant and as class 3 when predictions were discordant. Results The updated database (http://www.lovd.nl/LDLR) now includes 2925 curated variants, representing 1707 independent events. All 129 nonsense variants, 337 small frame-shifting and 117/118 large rearrangements were classified as 4 or 5. Of the 795 missense variants, 115 were in classes 1 and 2, 605 in class 4 and 75 in class 3. 111/181 intronic variants, 4/34 synonymous variants and 14/37 promoter variants were assigned to classes 4 or 5. Overall, 112 (7%) of reported variants were class 3. Conclusions This study updates the LDLR variant database and identifies a number of reported VUS where additional family and in vitro studies will be required to confirm or refute their pathogenicity. PMID:27821657

  18. Guidelines for investigating causality of sequence variants in human disease

    PubMed Central

    MacArthur, D. G.; Manolio, T. A.; Dimmock, D. P.; Rehm, H. L.; Shendure, J.; Abecasis, G. R.; Adams, D. R.; Altman, R. B.; Antonarakis, S. E.; Ashley, E. A.; Barrett, J. C.; Biesecker, L. G.; Conrad, D. F.; Cooper, G. M.; Cox, N. J.; Daly, M. J.; Gerstein, M. B.; Goldstein, D. B.; Hirschhorn, J. N.; Leal, S. M.; Pennacchio, L. A.; Stamatoyannopoulos, J. A.; Sunyaev, S. R.; Valle, D.; Voight, B. F.; Winckler, W.; Gunter, C.

    2014-01-01

    The discovery of rare genetic variants is accelerating, and clear guidelines for distinguishing disease-causing sequence variants from the many potentially functional variants present in any human genome are urgently needed. Without rigorous standards we risk an acceleration of false-positive reports of causality, which would impede the translation of genomic research findings into the clinical diagnostic setting and hinder biological understanding of disease. Here we discuss the key challenges of assessing sequence variants in human disease, integrating both gene-level and variant-level support for causality. We propose guidelines for summarizing confidence in variant pathogenicity and highlight several areas that require further resource development. PMID:24759409

  19. Guidelines for investigating causality of sequence variants in human disease.

    PubMed

    MacArthur, D G; Manolio, T A; Dimmock, D P; Rehm, H L; Shendure, J; Abecasis, G R; Adams, D R; Altman, R B; Antonarakis, S E; Ashley, E A; Barrett, J C; Biesecker, L G; Conrad, D F; Cooper, G M; Cox, N J; Daly, M J; Gerstein, M B; Goldstein, D B; Hirschhorn, J N; Leal, S M; Pennacchio, L A; Stamatoyannopoulos, J A; Sunyaev, S R; Valle, D; Voight, B F; Winckler, W; Gunter, C

    2014-04-24

    The discovery of rare genetic variants is accelerating, and clear guidelines for distinguishing disease-causing sequence variants from the many potentially functional variants present in any human genome are urgently needed. Without rigorous standards we risk an acceleration of false-positive reports of causality, which would impede the translation of genomic research findings into the clinical diagnostic setting and hinder biological understanding of disease. Here we discuss the key challenges of assessing sequence variants in human disease, integrating both gene-level and variant-level support for causality. We propose guidelines for summarizing confidence in variant pathogenicity and highlight several areas that require further resource development.

  20. Essential role for uncoupling protein-3 in mitochondrial adaptation to fasting but not in fatty acid oxidation or fatty acid anion export.

    PubMed

    Seifert, Erin L; Bézaire, Véronic; Estey, Carmen; Harper, Mary-Ellen

    2008-09-12

    Uncoupling protein-3 (UCP3) is a mitochondrial inner membrane protein expressed most abundantly in skeletal muscle and to a lesser extent in heart and brown adipose tissue. Evidence supports a role for UCP3 in fatty acid oxidation (FAO); however, the underlying mechanism has not been explored. In 2001 we proposed a role for UCP3 in fatty acid export, leading to higher FAO rates (Himms-Hagen, J., and Harper, M. E. (2001) Exp. Biol. Med. (Maywood) 226, 78-84). Specifically, this widely held hypothesis states that during elevated FAO rates, UCP3 exports fatty acid anions, thereby maintaining mitochondrial co-enzyme A availability; reactivation of exported fatty acid anions would ultimately enable increased FAO. Here we tested mechanistic aspects of this hypothesis as well as its functional implications, namely increased FAO rates. Using complementary mechanistic approaches in mitochondria from wild-type and Ucp3(-/-) mice, we find that UCP3 is not required for FAO regardless of substrate type or supply rate covering a 20-fold range. Fatty acid anion export and reoxidation during elevated FAO, although present in skeletal muscle mitochondria, are independent of UCP3 abundance. Interestingly, UCP3 was found to be necessary for the fasting-induced enhancement of FAO rate and capacity, possibly via mitigated mitochondrial oxidative stress. Thus, although our observations indicate that UCP3 can impact FAO rates, the mechanistic basis is not via an integral function for UCP3 in the FAO machinery. Overall our data indicate a function for UCP3 in mitochondrial adaptation to perturbed cellular energy balance and integrate previous observations that have linked UCP3 to reduced oxidative stress and FAO.

  1. Pathogenic Anti-Müllerian Hormone Variants in Polycystic Ovary Syndrome.

    PubMed

    Gorsic, Lidija K; Kosova, Gulum; Werstein, Brian; Sisk, Ryan; Legro, Richard S; Hayes, M Geoffrey; Teixeira, Jose M; Dunaif, Andrea; Urbanek, Margrit

    2017-08-01

    Polycystic ovary syndrome (PCOS), a common endocrine condition, is the leading cause of anovulatory infertility. Given that common disease-susceptibility variants account for only a small percentage of the estimated PCOS heritability, we tested the hypothesis that rare variants contribute to this deficit in heritability. Unbiased whole-genome sequencing (WGS) of 80 patients with PCOS and 24 reproductively normal control subjects identified potentially deleterious variants in AMH, the gene encoding anti-Müllerian hormone (AMH). Targeted sequencing of AMH of 643 patients with PCOS and 153 control patients was used to replicate WGS findings. Dual luciferase reporter assays measured the impact of the variants on downstream AMH signaling. We found 24 rare (minor allele frequency < 0.01) AMH variants in patients with PCOS and control subjects; 18 variants were specific to women with PCOS. Seventeen of 18 (94%) PCOS-specific variants had significantly reduced AMH signaling, whereas none of 6 variants observed in control subjects showed significant defects in signaling. Thus, we identified rare AMH coding variants that reduced AMH-mediated signaling in a subset of patients with PCOS. To our knowledge, this study is the first to identify rare genetic variants associated with a common PCOS phenotype. Our findings suggest decreased AMH signaling as a mechanism for the pathogenesis of PCOS. AMH decreases androgen biosynthesis by inhibiting CYP17 activity; a potential mechanism of action for AMH variants in PCOS, therefore, is to increase androgen biosynthesis due to decreased AMH-mediated inhibition of CYP17 activity. Copyright © 2017 Endocrine Society

  2. Degradome Products of the Matricellular Protein CCN1 as Modulators of Pathological Angiogenesis in the Retina*

    PubMed Central

    Choi, Jinok; Lin, Ann; Shrier, Eric; Lau, Lester F.; Grant, Maria B.; Chaqour, Brahim

    2013-01-01

    CCN1 is a matricellular protein involved in normal vascular development and tissue repair. CCN1 exhibits cell- and context-dependent activities that are reflective of its tetramodular structure phylogenetically linked to four domains found in various matrix proteins. Here, we show that vitreal fluids from patients with proliferative diabetic retinopathy (PDR) were enriched with a two-module form of CCN1 comprising completely or partially the insulin-like growth factor-binding protein (IGFBP) and von Willebrand factor type C (vWC) domains. The two- and three-module forms comprising, in addition to IGFBP and vWC, the thrombospondin type 1 (TSP1) repeats are CCN1 degradome products by matrix metalloproteinase-2 and -14. The functional significance of CCN1 and its truncated variants was determined in the mouse model of oxygen-induced retinopathy, which simulates neovascular growth associated with PDR and assesses treatment outcomes. In this model, lentivirus-mediated expression of either CCN1 or the IGFBP-vWC-TSP1 form reduced ischemia-induced neovascularization, whereas ectopic expression of the IGFBP-vWC variant exacerbated pathological angiogenesis. The IGFBP-vWC form has potent proangiogenic properties promoting retinal endothelial cell growth, migration, and three-dimensional tubular structure formation, whereas the IGFBP-vWC-TSP1 variant suppressed cell growth and angiogenic gene expression. Both IGFBP-vWC and IGFBP-vWC-TSP1 forms exhibited predictable variations of their domain folding that enhanced their functional potential. These data provide new insights into the formation and activities of CCN1-truncated variants and raise the predictive value of the form containing completely or partially the IGFBP and vWC domains as a surrogate marker of CCN1 activity in PDR distinguishing pathological from physiological angiogenesis. PMID:23798676

  3. Comparison of the BioRad Variant and Primus Ultra2 high-pressure liquid chromatography (HPLC) instruments for the detection of variant hemoglobins.

    PubMed

    Gosselin, R C; Carlin, A C; Dwyre, D M

    2011-04-01

    Hemoglobin variants are a result of genetic changes resulting in abnormal or dys-synchronous hemoglobin chain production (thalassemia) or the generation of hemoglobin chain variants such as hemoglobin S. Automated high-pressure liquid chromatography (HPLC) systems have become the method of choice for the evaluation of patients suspected with hemoglobinopathies. In this study, we evaluated the performance of two HPLC methods used in the detection of common hemoglobin variants: Variant and Ultra2. There were 377 samples tested, 26% (99/377) with HbS, 8.5% (32/377) with HbC, 20.7% (78/377) with other hemoglobin variant or thalassemia, and 2.9% with increased hemoglobin A(1) c. The interpretations of each chromatograph were compared. There were no differences noted for hemoglobins A(0), S, or C. There were significant differences between HPLC methods for hemoglobins F, A(2), and A(1) c. However, there was good concordance between normal and abnormal interpretations (97.9% and 96.2%, respectively). Both Variant and Ultra2 HPLC methods were able to detect most common hemoglobin variants. There was better discrimination for fast hemoglobins, between hemoglobins E and A(2), and between hemoglobins S and F using the Ultra2 HPLC method. © 2010 Blackwell Publishing Ltd.

  4. How important are rare variants in common disease?

    PubMed

    Saint Pierre, Aude; Génin, Emmanuelle

    2014-09-01

    Genome-wide association studies have uncovered hundreds of common genetic variants involved in complex diseases. However, for most complex diseases, these common genetic variants only marginally contribute to disease susceptibility. It is now argued that rare variants located in different genes could in fact play a more important role in disease susceptibility than common variants. These rare genetic variants were not captured by genome-wide association studies using single nucleotide polymorphism-chips but with the advent of next-generation sequencing technologies, they have become detectable. It is now possible to study their contribution to common disease by resequencing samples of cases and controls or by using new genotyping exome arrays that cover rare alleles. In this review, we address the question of the contribution of rare variants in common disease by taking the examples of different diseases for which some resequencing studies have already been performed, and by summarizing the results of simulation studies conducted so far to investigate the genetic architecture of complex traits in human. So far, empirical data have not allowed the exclusion of many models except the most extreme ones involving only a small number of rare variants with large effects contributing to complex disease. To unravel the genetic architecture of complex disease, case-control data will not be sufficient, and alternative study designs need to be proposed together with methodological developments. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies.

    PubMed

    Dhamrait, Sukhbir S; Maubaret, Cecilia; Pedersen-Bjergaard, Ulrik; Brull, David J; Gohlke, Peter; Payne, John R; World, Michael; Thorsteinsson, Birger; Humphries, Steve E; Montgomery, Hugh E

    2016-07-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P < 0·01) whilst increasing ACE expression within a physiological range (<1·8-fold at 48 h; P < 0·01). Our findings suggest novel hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role. © 2016 The Authors. BioEssays published by WILEY Periodicals, Inc.

  6. Mitochondrial uncoupling proteins regulate angiotensin‐converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies

    PubMed Central

    Maubaret, Cecilia; Pedersen‐Bjergaard, Ulrik; Brull, David J.; Gohlke, Peter; Payne, John R.; World, Michael; Thorsteinsson, Birger; Humphries, Steve E.; Montgomery, Hugh E.

    2015-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin‐converting enzyme (ACE) is the central component of endocrine and local tissue renin–angiotensin systems (RAS), which also regulate diverse aspects of whole‐body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3‐55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P < 0·01) whilst increasing ACE expression within a physiological range (<1·8‐fold at 48 h; P < 0·01). Our findings suggest novel hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role. PMID:27347560

  7. Multiple Independent Genetic Factors at NOS1AP Modulate the QT Interval in a Multi-Ethnic Population

    PubMed Central

    Arking, Dan E.; Khera, Amit; Xing, Chao; Kao, W. H. Linda; Post, Wendy; Boerwinkle, Eric; Chakravarti, Aravinda

    2009-01-01

    Extremes of electrocardiographic QT interval are associated with increased risk for sudden cardiac death (SCD); thus, identification and characterization of genetic variants that modulate QT interval may elucidate the underlying etiology of SCD. Previous studies have revealed an association between a common genetic variant in NOS1AP and QT interval in populations of European ancestry, but this finding has not been extended to other ethnic populations. We sought to characterize the effects of NOS1AP genetic variants on QT interval in the multi-ethnic population-based Dallas Heart Study (DHS, n = 3,072). The SNP most strongly associated with QT interval in previous samples of European ancestry, rs16847548, was the most strongly associated in White (P = 0.005) and Black (P = 3.6×10−5) participants, with the same direction of effect in Hispanics (P = 0.17), and further showed a significant SNP × sex-interaction (P = 0.03). A second SNP, rs16856785, uncorrelated with rs16847548, was also associated with QT interval in Blacks (P = 0.01), with qualitatively similar results in Whites and Hispanics. In a previously genotyped cohort of 14,107 White individuals drawn from the combined Atherosclerotic Risk in Communities (ARIC) and Cardiovascular Health Study (CHS) cohorts, we validated both the second locus at rs16856785 (P = 7.63×10−8), as well as the sex-interaction with rs16847548 (P = 8.68×10−6). These data extend the association of genetic variants in NOS1AP with QT interval to a Black population, with similar trends, though not statistically significant at P<0.05, in Hispanics. In addition, we identify a strong sex-interaction and the presence of a second independent site within NOS1AP associated with the QT interval. These results highlight the consistent and complex role of NOS1AP genetic variants in modulating QT interval. PMID:19180230

  8. FAVR (Filtering and Annotation of Variants that are Rare): methods to facilitate the analysis of rare germline genetic variants from massively parallel sequencing datasets

    PubMed Central

    2013-01-01

    Background Characterising genetic diversity through the analysis of massively parallel sequencing (MPS) data offers enormous potential to significantly improve our understanding of the genetic basis for observed phenotypes, including predisposition to and progression of complex human disease. Great challenges remain in resolving genetic variants that are genuine from the millions of artefactual signals. Results FAVR is a suite of new methods designed to work with commonly used MPS analysis pipelines to assist in the resolution of some of the issues related to the analysis of the vast amount of resulting data, with a focus on relatively rare genetic variants. To the best of our knowledge, no equivalent method has previously been described. The most important and novel aspect of FAVR is the use of signatures in comparator sequence alignment files during variant filtering, and annotation of variants potentially shared between individuals. The FAVR methods use these signatures to facilitate filtering of (i) platform and/or mapping-specific artefacts, (ii) common genetic variants, and, where relevant, (iii) artefacts derived from imbalanced paired-end sequencing, as well as annotation of genetic variants based on evidence of co-occurrence in individuals. We applied conventional variant calling applied to whole-exome sequencing datasets, produced using both SOLiD and TruSeq chemistries, with or without downstream processing by FAVR methods. We demonstrate a 3-fold smaller rare single nucleotide variant shortlist with no detected reduction in sensitivity. This analysis included Sanger sequencing of rare variant signals not evident in dbSNP131, assessment of known variant signal preservation, and comparison of observed and expected rare variant numbers across a range of first cousin pairs. The principles described herein were applied in our recent publication identifying XRCC2 as a new breast cancer risk gene and have been made publically available as a suite of software

  9. CVD-associated non-coding RNA, ANRIL, modulates expression of atherogenic pathways in VSMC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congrains, Ada; Kamide, Kei; Katsuya, Tomohiro

    Highlights: Black-Right-Pointing-Pointer ANRIL maps in the strongest susceptibility locus for cardiovascular disease. Black-Right-Pointing-Pointer Silencing of ANRIL leads to altered expression of tissue remodeling-related genes. Black-Right-Pointing-Pointer The effects of ANRIL on gene expression are splicing variant specific. Black-Right-Pointing-Pointer ANRIL affects progression of cardiovascular disease by regulating proliferation and apoptosis pathways. -- Abstract: ANRIL is a newly discovered non-coding RNA lying on the strongest genetic susceptibility locus for cardiovascular disease (CVD) in the chromosome 9p21 region. Genome-wide association studies have been linking polymorphisms in this locus with CVD and several other major diseases such as diabetes and cancer. The role of thismore » non-coding RNA in atherosclerosis progression is still poorly understood. In this study, we investigated the implication of ANRIL in the modulation of gene sets directly involved in atherosclerosis. We designed and tested siRNA sequences to selectively target two exons (exon 1 and exon 19) of the transcript and successfully knocked down expression of ANRIL in human aortic vascular smooth muscle cells (HuAoVSMC). We used a pathway-focused RT-PCR array to profile gene expression changes caused by ANRIL knock down. Notably, the genes affected by each of the siRNAs were different, suggesting that different splicing variants of ANRIL might have distinct roles in cell physiology. Our results suggest that ANRIL splicing variants play a role in coordinating tissue remodeling, by modulating the expression of genes involved in cell proliferation, apoptosis, extra-cellular matrix remodeling and inflammatory response to finally impact in the risk of cardiovascular disease and other pathologies.« less

  10. Rare-Variant Association Analysis: Study Designs and Statistical Tests

    PubMed Central

    Lee, Seunggeung; Abecasis, Gonçalo R.; Boehnke, Michael; Lin, Xihong

    2014-01-01

    Despite the extensive discovery of trait- and disease-associated common variants, much of the genetic contribution to complex traits remains unexplained. Rare variants can explain additional disease risk or trait variability. An increasing number of studies are underway to identify trait- and disease-associated rare variants. In this review, we provide an overview of statistical issues in rare-variant association studies with a focus on study designs and statistical tests. We present the design and analysis pipeline of rare-variant studies and review cost-effective sequencing designs and genotyping platforms. We compare various gene- or region-based association tests, including burden tests, variance-component tests, and combined omnibus tests, in terms of their assumptions and performance. Also discussed are the related topics of meta-analysis, population-stratification adjustment, genotype imputation, follow-up studies, and heritability due to rare variants. We provide guidelines for analysis and discuss some of the challenges inherent in these studies and future research directions. PMID:24995866

  11. A Recurrent De Novo PACS2 Heterozygous Missense Variant Causes Neonatal-Onset Developmental Epileptic Encephalopathy, Facial Dysmorphism, and Cerebellar Dysgenesis.

    PubMed

    Olson, Heather E; Jean-Marçais, Nolwenn; Yang, Edward; Heron, Delphine; Tatton-Brown, Katrina; van der Zwaag, Paul A; Bijlsma, Emilia K; Krock, Bryan L; Backer, E; Kamsteeg, Erik-Jan; Sinnema, Margje; Reijnders, Margot R F; Bearden, David; Begtrup, Amber; Telegrafi, Aida; Lunsing, Roelineke J; Burglen, Lydie; Lesca, Gaetan; Cho, Megan T; Smith, Lacey A; Sheidley, Beth R; Moufawad El Achkar, Christelle; Pearl, Phillip L; Poduri, Annapurna; Skraban, Cara M; Tarpinian, Jennifer; Nesbitt, Addie I; Fransen van de Putte, Dietje E; Ruivenkamp, Claudia A L; Rump, Patrick; Chatron, Nicolas; Sabatier, Isabelle; De Bellescize, Julitta; Guibaud, Laurent; Sweetser, David A; Waxler, Jessica L; Wierenga, Klaas J; Donadieu, Jean; Narayanan, Vinodh; Ramsey, Keri M; Nava, Caroline; Rivière, Jean-Baptiste; Vitobello, Antonio; Tran Mau-Them, Frédéric; Philippe, Christophe; Bruel, Ange-Line; Duffourd, Yannis; Thomas, Laurel; Lelieveld, Stefan H; Schuurs-Hoeijmakers, Janneke; Brunner, Han G; Keren, Boris; Thevenon, Julien; Faivre, Laurence; Thomas, Gary; Thauvin-Robinet, Christel

    2018-05-03

    Developmental and epileptic encephalopathies (DEEs) represent a large clinical and genetic heterogeneous group of neurodevelopmental diseases. The identification of pathogenic genetic variants in DEEs remains crucial for deciphering this complex group and for accurately caring for affected individuals (clinical diagnosis, genetic counseling, impacting medical, precision therapy, clinical trials, etc.). Whole-exome sequencing and intensive data sharing identified a recurrent de novo PACS2 heterozygous missense variant in 14 unrelated individuals. Their phenotype was characterized by epilepsy, global developmental delay with or without autism, common cerebellar dysgenesis, and facial dysmorphism. Mixed focal and generalized epilepsy occurred in the neonatal period, controlled with difficulty in the first year, but many improved in early childhood. PACS2 is an important PACS1 paralog and encodes a multifunctional sorting protein involved in nuclear gene expression and pathway traffic regulation. Both proteins harbor cargo(furin)-binding regions (FBRs) that bind cargo proteins, sorting adaptors, and cellular kinase. Compared to the defined PACS1 recurrent variant series, individuals with PACS2 variant have more consistently neonatal/early-infantile-onset epilepsy that can be challenging to control. Cerebellar abnormalities may be similar but PACS2 individuals exhibit a pattern of clear dysgenesis ranging from mild to severe. Functional studies demonstrated that the PACS2 recurrent variant reduces the ability of the predicted autoregulatory domain to modulate the interaction between the PACS2 FBR and client proteins, which may disturb cellular function. These findings support the causality of this recurrent de novo PACS2 heterozygous missense in DEEs with facial dysmorphim and cerebellar dysgenesis. Copyright © 2018 American Society of Human Genetics. All rights reserved.

  12. Impact of rare variants in ARHGAP29 to the etiology of oral clefts: role of loss-of-function vs missense variants.

    PubMed

    Savastano, C P; Brito, L A; Faria, Á C; Setó-Salvia, N; Peskett, E; Musso, C M; Alvizi, L; Ezquina, S A M; James, C; GOSgene; Beales, P; Lees, M; Moore, G E; Stanier, P; Passos-Bueno, M R

    2017-05-01

    Non-syndromic cleft lip with or without cleft palate (NSCL/P) is a prevalent, complex congenital malformation. Genome-wide association studies (GWAS) on NSCL/P have consistently identified association for the 1p22 region, in which ARHGAP29 has emerged as the main candidate gene. ARHGAP29 re-sequencing studies in NSCL/P patients have identified rare variants; however, their clinical impact is still unclear. In this study we identified 10 rare variants in ARHGAP29, including five missense, one in-frame deletion, and four loss-of-function (LoF) variants, in a cohort of 188 familial NSCL/P cases. A significant mutational burden was found for LoF (Sequence Kernel Association Test, p = 0.0005) but not for missense variants in ARHGAP29, suggesting that only LoF variants contribute to the etiology of NSCL/P. Penetrance was estimated as 59%, indicating that heterozygous LoF variants in ARHGAP29 confer a moderate risk to NSCL/P. The GWAS hits in IRF6 (rs642961) and 1p22 (rs560426 and rs4147811) do not seem to contribute to the penetrance of the phenotype, based on co-segregation analysis. Our data show that rare variants leading to haploinsufficiency of ARHGAP29 represent an important etiological clefting mechanism, and genetic testing for this gene might be taken into consideration in genetic counseling of familial cases. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Uncoupling protein-2 deficient mice are not protected against warm ischemia/reperfusion injury of the liver.

    PubMed

    Le Minh, Khoi; Berger, Andreas; Eipel, Christian; Kuhla, Angela; Minor, Thomas; Stegemann, Judith; Vollmar, Brigitte

    2011-12-01

    Uncoupling protein-2 (UCP2) might play an important role in mediating ischemia/reperfusion (I/R) injury due to its function in uncoupling of oxidative phosphorylation and in the proton leak-associated increase of reactive oxygen species (ROS) production. The aim of this study was to elucidate the role of UCP2 in hepatic I/R injury. UCP2 wild type and UCP2 deficient mice were subjected to I/R of the left liver lobe. Sham-operated animals without I/R served as controls. Intravital fluorescence microscopy was used for assessing postischemic microcirculatory dysfunction. Indicators of hepatic inflammatory response, oxidative stress, and bioenergetic status as well as histomorphology were investigated. Under sham conditions UCP2-/-mice presented slightly but not significantly higher levels of hepatic ATP and energy charge than wild type mice. In addition, they exhibited higher systemic IL-6 levels and intrahepatic leukocyte adherence. After exposure to I/R, the extent of reperfusion injury did not differ between UCP2+/+ and UCP2-/-mice, as indicated by a comparable loss of sinusoidal perfusion, hepatic ATP, and energy charge levels, as well as rise of transaminases and disintegration of liver structures. Intrahepatic leukocyte adherence and plasma IL-6 levels of postischemic UCP2-/-mice still exceeded those of UCP2+/+mice. UCP2 appears to be of minor relevance for the manifestation and extent of postischemic reperfusion injury in nondiseased livers with the increased ATP availability being counteracted by the higher pro-inflammatory IL-6 levels in UCP2 deficient mice. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Activation and function of mitochondrial uncoupling protein in plants.

    PubMed

    Smith, Anna M O; Ratcliffe, R George; Sweetlove, Lee J

    2004-12-10

    Plant mitochondrial uncoupling protein (UCP) is activated by superoxide suggesting that it may function to minimize mitochondrial reactive oxygen species (ROS) formation. However, the precise mechanism of superoxide activation and the exact function of UCP in plants are not known. We demonstrate that 4-hydroxy-2-nonenal (HNE), a product of lipid peroxidation, and a structurally related compound, trans-retinal, stimulate a proton conductance in potato mitochondria that is inhibitable by GTP (a characteristic of UCP). Proof that the effects of HNE and trans-retinal are mediated by UCP is provided by examination of proton conductance in transgenic plants overexpressing UCP. These experiments demonstrate that the mechanism of activation of UCP is conserved between animals and plants and imply a conservation of function. Mitochondria from transgenic plants overexpressing UCP were further studied to provide insight into function. Experimental conditions were designed to mimic a bioenergetic state that might be found in vivo (mitochondria were supplied with pyruvate as well as tricarboxylic cycle acids at in vivo cytosolic concentrations and an exogenous ATP sink was established). Under such conditions, an increase in UCP protein content resulted in a modest but significant decrease in the rate of superoxide production. In addition, 13C-labeling experiments revealed an increase in the conversion of pyruvate to citrate as a result of increased UCP protein content. These results demonstrate that under simulated in vivo conditions, UCP is active and suggest that UCP may influence not only mitochondrial ROS production but also tricarboxylic acid cycle flux.

  15. N-terminal nesprin-2 variants regulate β-catenin signalling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qiuping; Minaisah, Rose-Marie; Ferraro, Elisa

    2016-07-15

    The spatial compartmentalisation of biochemical signalling pathways is essential for cell function. Nesprins are a multi-isomeric family of proteins that have emerged as signalling scaffolds, herein, we investigate the localisation and function of novel nesprin-2 N-terminal variants. We show that these nesprin-2 variants display cell specific distribution and reside in both the cytoplasm and nucleus. Immunofluorescence microscopy revealed that nesprin-2 N-terminal variants colocalised with β-catenin at cell-cell junctions in U2OS cells. Calcium switch assays demonstrated that nesprin-2 and β-catenin are lost from cell-cell junctions in low calcium conditions whereas emerin localisation at the NE remained unaltered, furthermore, an N-terminal fragmentmore » of nesprin-2 was sufficient for cell-cell junction localisation and interacted with β-catenin. Disruption of these N-terminal nesprin-2 variants, using siRNA depletion resulted in loss of β-catenin from cell-cell junctions, nuclear accumulation of active β-catenin and augmented β-catenin transcriptional activity. Importantly, we show that U2OS cells lack nesprin-2 giant, suggesting that the N-terminal nesprin-2 variants regulate β-catenin signalling independently of the NE. Together, these data identify N-terminal nesprin-2 variants as novel regulators of β-catenin signalling that tether β-catenin to cell-cell contacts to inhibit β-catenin transcriptional activity. - Highlights: • N-terminal nesprin-2 variants display cell specific expression patterns. • N-terminal spectrin repeats of nesprin-2 interact with β-catenin. • N-terminal nesprin-2 variants scaffold β-catenin at cell-cell junctions.. • Nesprin-2 variants play multiple roles in β-catenin signalling.« less

  16. Muscle uncoupling protein 3 overexpression mimics endurance training and reduces circulating biomarkers of incomplete β-oxidation

    PubMed Central

    Aguer, Céline; Fiehn, Oliver; Seifert, Erin L.; Bézaire, Véronic; Meissen, John K.; Daniels, Amanda; Scott, Kyle; Renaud, Jean-Marc; Padilla, Marta; Bickel, David R.; Dysart, Michael; Adams, Sean H.; Harper, Mary-Ellen

    2013-01-01

    Exercise substantially improves metabolic health, making the elicited mechanisms important targets for novel therapeutic strategies. Uncoupling protein 3 (UCP3) is a mitochondrial inner membrane protein highly selectively expressed in skeletal muscle. Here we report that moderate UCP3 overexpression (roughly 3-fold) in muscles of UCP3 transgenic (UCP3 Tg) mice acts as an exercise mimetic in many ways. UCP3 overexpression increased spontaneous activity (∼40%) and energy expenditure (∼5–10%) and decreased oxidative stress (∼15–20%), similar to exercise training in wild-type (WT) mice. The increase in complete fatty acid oxidation (FAO; ∼30% for WT and ∼70% for UCP3 Tg) and energy expenditure (∼8% for WT and 15% for UCP3 Tg) in response to endurance training was higher in UCP3 Tg than in WT mice, showing an additive effect of UCP3 and endurance training on these two parameters. Moreover, increases in circulating short-chain acylcarnitines in response to acute exercise in untrained WT mice were absent with training or in UCP3 Tg mice. UCP3 overexpression had the same effect as training in decreasing long-chain acylcarnitines. Outcomes coincided with a reduction in muscle carnitine acetyltransferase activity that catalyzes the formation of acylcarnitines. Overall, results are consistent with the conclusions that circulating acylcarnitines could be used as a marker of incomplete muscle FAO and that UCP3 is a potential target for the treatment of prevalent metabolic diseases in which muscle FAO is affected.—Aguer, C., Fiehn, O., Seifert, E. L., Bézaire, V., Meissen, J. K., Daniels, A., Scott, K., Renaud, J.-M., Padilla, M., Bickel, D. R., Dysart, M., Adams, S. H., Harper, M.-E. Muscle uncoupling protein 3 overexpression mimics endurance training and reduces circulating biomarkers of incomplete β-oxidation. PMID:23825224

  17. Searching for missing heritability: Designing rare variant association studies

    PubMed Central

    Zuk, Or; Schaffner, Stephen F.; Samocha, Kaitlin; Do, Ron; Hechter, Eliana; Kathiresan, Sekar; Daly, Mark J.; Neale, Benjamin M.; Sunyaev, Shamil R.; Lander, Eric S.

    2014-01-01

    Genetic studies have revealed thousands of loci predisposing to hundreds of human diseases and traits, revealing important biological pathways and defining novel therapeutic hypotheses. However, the genes discovered to date typically explain less than half of the apparent heritability. Because efforts have largely focused on common genetic variants, one hypothesis is that much of the missing heritability is due to rare genetic variants. Studies of common variants are typically referred to as genomewide association studies, whereas studies of rare variants are often simply called sequencing studies. Because they are actually closely related, we use the terms common variant association study (CVAS) and rare variant association study (RVAS). In this paper, we outline the similarities and differences between RVAS and CVAS and describe a conceptual framework for the design of RVAS. We apply the framework to address key questions about the sample sizes needed to detect association, the relative merits of testing disruptive alleles vs. missense alleles, frequency thresholds for filtering alleles, the value of predictors of the functional impact of missense alleles, the potential utility of isolated populations, the value of gene-set analysis, and the utility of de novo mutations. The optimal design depends critically on the selection coefficient against deleterious alleles and thus varies across genes. The analysis shows that common variant and rare variant studies require similarly large sample collections. In particular, a well-powered RVAS should involve discovery sets with at least 25,000 cases, together with a substantial replication set. PMID:24443550

  18. Cellular and subcellular localization of uncoupling protein 2 in the human kidney.

    PubMed

    Nigro, Michelangelo; De Sanctis, Claudia; Formisano, Pietro; Stanzione, Rosita; Forte, Maurizio; Capasso, Giovambattista; Gigliotti, Giuseppe; Rubattu, Speranza; Viggiano, Davide

    2018-06-23

    The uncoupling protein-2 (UCP2) is an anion transporter that plays a key role in the control of intracellular oxidative stress. In animal models UCP2 downregulation has several pathological sequelae, particularly affecting the vasculature and the kidney. Specifically, in these models kidney damage is highly favored in the absence of UCP2 in the context of experimental hypertension. Confirmations of these data in humans awaits further information, as no data are yet available concerning the cell-type and subcellular expression in the human kidney. In the present study, we aimed to characterize the UCP2 protein distribution in human kidney biopsies. In humans UCP2 is mainly localized in proximal convoluted tubule cells, with an intracytoplasmic punctate staining. UCP2 positive puncta are often localized at the interface between the endoplasmic reticulum and the mitochondria. Glomerular structures do not express UCP2 at detectable levels. The expression of UCP2 in proximal tubular cells may explain their relative propensity to damage in pathological conditions including the hypertensive disease.

  19. Upregulation of uncoupling proteins by oral administration of capsiate, a nonpungent capsaicin analog.

    PubMed

    Masuda, Yoriko; Haramizu, Satoshi; Oki, Kasumi; Ohnuki, Koichiro; Watanabe, Tatsuo; Yazawa, Susumu; Kawada, Teruo; Hashizume, Shu-ichi; Fushiki, Tohru

    2003-12-01

    Capsiate is a nonpungent capsaicin analog, a recently identified principle of the nonpungent red pepper cultivar CH-19 Sweet. In the present study, we report that 2-wk treatment of capsiate increased metabolic rate and promoted fat oxidation at rest, suggesting that capsiate may prevent obesity. To explain these effects, at least in part, we examined uncoupling proteins (UCPs) and thyroid hormones. UCPs and thyroid hormones play important roles in energy expenditure, the maintenance of body weight, and thermoregulation. Two-week treatment of capsiate increased the levels of UCP1 protein and mRNA in brown adipose tissue and UCP2 mRNA in white adipose tissue. This dose of capsiate did not change serum triiodothyronine or thyroxine levels. A single dose of capsiate temporarily raised both UCP1 mRNA in brown adipose tissue and UCP3 mRNA in skeletal muscle. These results suggest that UCP1 and UCP2 may contribute to the promotion of energy metabolism by capsiate, but that thyroid hormones do not.

  20. A genetic variant of the anti-apoptotic protein Akt predicts natalizumab-induced lymphocytosis and post-natalizumab multiple sclerosis reactivation.

    PubMed

    Rossi, Silvia; Motta, Caterina; Studer, Valeria; Monteleone, Fabrizia; De Chiara, Valentina; Buttari, Fabio; Barbieri, Francesca; Bernardi, Giorgio; Battistini, Luca; Cutter, Gary; Stüve, Olaf; Salvetti, Marco; Centonze, Diego

    2013-01-01

    Multiple sclerosis (MS) patients discontinuing natalizumab treatment are at risk of disease reactivation. No clinical or surrogate parameters exist to identify patients at risk of post-natalizumab MS reactivation. To determine the role of natalizumab-induced lymphocytosis and of Akt polymorphisms in disease reactivation after natalizumab discontinuation. Peripheral leukocyte count and composition were monitored in 93 MS patients during natalizumab treatment, and in 56 of these subjects who discontinued the treatment. Genetic variants of the anti-apoptotic protein Akt were determined in all subjects because natalizumab modulates the apoptotic pathway and lymphocyte survival is regulated by the apoptotic cascade. Natalizumab-induced peripheral lymphocytosis protected from post-natalizumab MS reactivation. Subjects who relapsed or had magnetic resonance imaging (MRI) worsening after treatment cessation, in fact, had milder peripheral lymphocyte increases during the treatment, largely caused by less marked T cell increase. Furthermore, subjects carrying a variant of the gene coding for Akt associated with reduced anti-apoptotic efficiency (rs2498804T) had lower lymphocytosis and higher risk of disease reactivation. This study identified one functionally meaningful genetic variant within the Akt signaling pathway that is associated with both lymphocyte count and composition alterations during natalizumab treatment, and with the risk of disease reactivation after natalizumab discontinuation.

  1. Energy gradients for VT-signal migration in the CNS: studies on melanocortin receptors, mitochondrial uncoupling proteins and food intake.

    PubMed

    Agnati, L F; Vergoni, A V; Leo, G; Genedani, S; Franco, R; Bertolini, A; Fuxe, K

    2004-01-01

    system (CNS) can modulate the energy stored from the amount of the food that the animal has eaten and also uncouple the thermal micro-gradients (dependent on UCP2 expression) and hence the VT-signal micro-migrations from the food intake. It should also be noticed that the control of the thermal gradients affects also the neuronal firing rate and hence the transmitter release (likely above all the release of peptides such as neuropeptide Y (NPY), melanin-concentrating hormone (MCH) and beta-endorphin, e.g., in the arcuate nucleus representing signals relevant to energy homeostasis). Thus, WT and VT are both modulated by peptidergic signals that affect thermal gradients.

  2. Modulation of Polarization for Phase Extraction in Holographic Interferometry with Two References

    NASA Astrophysics Data System (ADS)

    Rodriguez-Zurita, G.; Vázquez-Castillo, J.-F.; Toto-Arellano, N.-I.; Meneses-Fabian, C.; Jiménez-Montero, L.-E.

    2010-04-01

    Heterodyne holographic interferometry allows high accuracy for phase-difference extraction between two wave fronts, especially when they are previously recorded in the same recording medium. In part, this is because the wave fronts can be affected by the recording process in a very similar way. The double reconstruction of a double-exposure hologram with two independent references results in a two-beam holographic interferometer with an arm conveying a wave modulated in frequency when using heterodyne techniques. The heterodyne frequency has been usually introduced with a plane mirror attached to a piezo-electric stack driven with a suitable variable power supply. For holographic interferometry, however, less attention has been devoted to alternative phase retrieval variants as, for example, phase-shifting with modulation of polarization or Fourier methods. In this work, we propose and demonstrate the basic capabilities of modulation of polarization performing as a phase-shifting technique for holographic interferometry with two references in a phase-stepping scheme. Experimental results are provided.

  3. HFE gene variants affect iron in the brain.

    PubMed

    Nandar, Wint; Connor, James R

    2011-04-01

    Iron accumulation in the brain and increased oxidative stress are consistent observations in many neurodegenerative diseases. Thus, we have begun examination into gene mutations or allelic variants that could be associated with loss of iron homeostasis. One of the mechanisms leading to iron overload is a mutation in the HFE gene, which is involved in iron metabolism. The 2 most common HFE gene variants are C282Y (1.9%) and H63D (8.9%). The C282Y HFE variant is more commonly associated with hereditary hemochromatosis, which is an autosomal recessive disorder, characterized by iron overload in a number of systemic organs. The H63D HFE variant appears less frequently associated with hemochromatosis, but its role in the neurodegenerative diseases has received more attention. At the cellular level, the HFE mutant protein resulting from the H63D HFE gene variant is associated with iron dyshomeostasis, increased oxidative stress, glutamate release, tau phosphorylation, and alteration in inflammatory response, each of which is under investigation as a contributing factor to neurodegenerative diseases. Therefore, the HFE gene variants are proposed to be genetic modifiers or a risk factor for neurodegenerative diseases by establishing an enabling milieu for pathogenic agents. This review will discuss the current knowledge of the association of the HFE gene variants with neurodegenerative diseases: amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and ischemic stroke. Importantly, the data herein also begin to dispel the long-held view that the brain is protected from iron accumulation associated with the HFE mutations.

  4. Using high-resolution variant frequencies to empower clinical genome interpretation.

    PubMed

    Whiffin, Nicola; Minikel, Eric; Walsh, Roddy; O'Donnell-Luria, Anne H; Karczewski, Konrad; Ing, Alexander Y; Barton, Paul J R; Funke, Birgit; Cook, Stuart A; MacArthur, Daniel; Ware, James S

    2017-10-01

    PurposeWhole-exome and whole-genome sequencing have transformed the discovery of genetic variants that cause human Mendelian disease, but discriminating pathogenic from benign variants remains a daunting challenge. Rarity is recognized as a necessary, although not sufficient, criterion for pathogenicity, but frequency cutoffs used in Mendelian analysis are often arbitrary and overly lenient. Recent very large reference datasets, such as the Exome Aggregation Consortium (ExAC), provide an unprecedented opportunity to obtain robust frequency estimates even for very rare variants.MethodsWe present a statistical framework for the frequency-based filtering of candidate disease-causing variants, accounting for disease prevalence, genetic and allelic heterogeneity, inheritance mode, penetrance, and sampling variance in reference datasets.ResultsUsing the example of cardiomyopathy, we show that our approach reduces by two-thirds the number of candidate variants under consideration in the average exome, without removing true pathogenic variants (false-positive rate<0.001).ConclusionWe outline a statistically robust framework for assessing whether a variant is "too common" to be causative for a Mendelian disorder of interest. We present precomputed allele frequency cutoffs for all variants in the ExAC dataset.

  5. Impact of constitutional copy number variants on biological pathway evolution

    PubMed Central

    2013-01-01

    Background Inherited Copy Number Variants (CNVs) can modulate the expression levels of individual genes. However, little is known about how CNVs alter biological pathways and how this varies across different populations. To trace potential evolutionary changes of well-described biological pathways, we jointly queried the genomes and the transcriptomes of a collection of individuals with Caucasian, Asian or Yoruban descent combining high-resolution array and sequencing data. Results We implemented an enrichment analysis of pathways accounting for CNVs and genes sizes and detected significant enrichment not only in signal transduction and extracellular biological processes, but also in metabolism pathways. Upon the estimation of CNV population differentiation (CNVs with different polymorphism frequencies across populations), we evaluated that 22% of the pathways contain at least one gene that is proximal to a CNV (CNV-gene pair) that shows significant population differentiation. The majority of these CNV-gene pairs belong to signal transduction pathways and 6% of the CNV-gene pairs show statistical association between the copy number states and the transcript levels. Conclusions The analysis suggested possible examples of positive selection within individual populations including NF-kB, MAPK signaling pathways, and Alu/L1 retrotransposition factors. Altogether, our results suggest that constitutional CNVs may modulate subtle pathway changes through specific pathway enzymes, which may become fixed in some populations. PMID:23342974

  6. Uncoupling proteins of invertebrates: A review.

    PubMed

    Slocinska, Malgorzata; Barylski, Jakub; Jarmuszkiewicz, Wieslawa

    2016-09-01

    Uncoupling proteins (UCPs) mediate inducible proton conductance in the mitochondrial inner membrane. Herein, we summarize our knowledge regarding UCPs in invertebrates. Since 2001, the presence of UCPs has been demonstrated in nematodes, mollusks, amphioxi, and insects. We discuss the following important issues concerning invertebrate UCPs: their evolutionary relationships, molecular and functional properties, and physiological impact. Evolutionary analysis indicates that the branch of vertebrate and invertebrate UCP4-5 diverged early in the evolutionary process prior to the divergence of the animal groups. Several proposed physiological roles of invertebrate UCPs are energy control, metabolic balance, and preventive action against oxidative stress. © 2016 IUBMB Life, 68(9):691-699, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  7. Second generation γ-secretase modulators exhibit different modulation of Notch β and Aβ production.

    PubMed

    Wanngren, Johanna; Ottervald, Jan; Parpal, Santiago; Portelius, Erik; Strömberg, Kia; Borgegård, Tomas; Klintenberg, Rebecka; Juréus, Anders; Blomqvist, Jenny; Blennow, Kaj; Zetterberg, Henrik; Lundkvist, Johan; Rosqvist, Susanne; Karlström, Helena

    2012-09-21

    The γ-secretase complex is an appealing drug target when the therapeutic strategy is to alter amyloid-β peptide (Aβ) aggregation in Alzheimer disease. γ-Secretase is directly involved in Aβ formation and determines the pathogenic potential of Aβ by generating the aggregation-prone Aβ42 peptide. Because γ-secretase mediates cleavage of many substrates involved in cell signaling, such as the Notch receptor, it is crucial to sustain these pathways while altering the Aβ secretion. A way of avoiding interference with the physiological function of γ-secretase is to use γ-secretase modulators (GSMs) instead of inhibitors of the enzyme. GSMs modify the Aβ formation from producing the amyloid-prone Aβ42 variant to shorter and less amyloidogenic Aβ species. The modes of action of GSMs are not fully understood, and even though the pharmacology of GSMs has been thoroughly studied regarding Aβ generation, knowledge is lacking about their effects on other substrates, such as Notch. Here, using immunoprecipitation followed by MALDI-TOF MS analysis, we found that two novel, second generation GSMs modulate both Notch β and Aβ production. Moreover, by correlating S3-specific Val-1744 cleavage of Notch intracellular domain (Notch intracellular domain) to total Notch intracellular domain levels using immunocytochemistry, we also demonstrated that Notch intracellular domain is not modulated by the compounds. Interestingly, two well characterized, nonsteroidal anti-inflammatory drugs (nonsteroidal anti-inflammatory drug), R-flurbiprofen and sulindac sulfide, affect only Aβ and not Notch β formation, indicating that second generation GSMs and nonsteroidal anti-inflammatory drug-based GSMs have different modes of action regarding Notch processing.

  8. Differential Expression Profile of ZFX Variants Discriminates Breast Cancer Subtypes

    PubMed

    Pourkeramati, Fatemeh; Asadi, Malek Hossein; Shakeri, Shahryar; Farsinejad, Alireza

    2018-05-13

    ZFX is a transcriptional regulator in embryonic stem cells that plays an important role in pluripotency and self-renewal. ZFX is widely expressed in pluripotent stem cells and is down-regulated during differentiation of embryonic stem cells. ZFX has five different variants that encode three different protein isoforms. While several reports have determined the overexpression of ZFX in a variety of somatic cancers, the expression of ZFX-spliced variants in cancer cells is not well-understood. We investigated the expression of ZFX variants in a series of breast cancer tissues and cell lines using quantitative PCR. The expression of ZFX variant 1/3 was higher in tumor tissue compared to marginal tissue. In contrast, the ZFX variant 5 was down-regulated in tumor tissues. While the ZFX variant 1/3 and ZFX variant 5 expression significantly increased in low-grade tumors, ZFX variant 4 was strongly expressed in high-grade tumors and demonstrating lymphatic invasion. In addition, our result revealed a significant association between the HER2 status and the expression of ZFX-spliced variants. Our data suggest that the expression of ZFX-spliced transcripts varies between different types of breast cancer and may contribute to their tumorigenesis process. Hence, ZFX-spliced transcripts could be considered as novel tumor markers with a probable value in diagnosis, prognosis, and therapy of breast cancer.

  9. Incorporation of DPP6a and DPP6K variants in ternary Kv4 channel complex reconstitutes properties of A-type K current in rat cerebellar granule cells.

    PubMed

    Jerng, Henry H; Pfaffinger, Paul J

    2012-01-01

    Dipeptidyl peptidase-like protein 6 (DPP6) proteins co-assemble with Kv4 channel α-subunits and Kv channel-interacting proteins (KChIPs) to form channel protein complexes underlying neuronal somatodendritic A-type potassium current (I(SA)). DPP6 proteins are expressed as N-terminal variants (DPP6a, DPP6K, DPP6S, DPP6L) that result from alternative mRNA initiation and exhibit overlapping expression patterns. Here, we study the role DPP6 variants play in shaping the functional properties of I(SA) found in cerebellar granule (CG) cells using quantitative RT-PCR and voltage-clamp recordings of whole-cell currents from reconstituted channel complexes and native I(SA) channels. Differential expression of DPP6 variants was detected in rat CG cells, with DPP6K (41 ± 3%)>DPP6a (33 ± 3%)>DPP6S (18 ± 2%)>DPP6L (8 ± 3%). To better understand how DPP6 variants shape native neuronal I(SA), we focused on studying interactions between the two dominant variants, DPP6K and DPP6a. Although previous studies did not identify unique functional effects of DPP6K, we find that the unique N-terminus of DPP6K modulates the effects of KChIP proteins, slowing recovery and producing a negative shift in the steady-state inactivation curve. By contrast, DPP6a uses its distinct N-terminus to directly confer rapid N-type inactivation independently of KChIP3a. When DPP6a and DPP6K are co-expressed in ratios similar to those found in CG cells, their distinct effects compete in modulating channel function. The more rapid inactivation from DPP6a dominates during strong depolarization; however, DPP6K produces a negative shift in the steady-state inactivation curve and introduces a slow phase of recovery from inactivation. A direct comparison to the native CG cell I(SA) shows that these mixed effects are present in the native channels. Our results support the hypothesis that the precise expression and co-assembly of different auxiliary subunit variants are important factors in shaping the I

  10. Antiobesity efficacy of GLP-1 receptor agonist liraglutide is associated with peripheral tissue-specific modulation of lipid metabolic regulators.

    PubMed

    Decara, Juan; Arrabal, Sergio; Beiroa, Daniel; Rivera, Patricia; Vargas, Antonio; Serrano, Antonia; Pavón, Francisco Javier; Ballesteros, Joan; Dieguez, Carlos; Nogueiras, Rubén; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2016-11-12

    To investigate the role of glucagon-like-peptide-1 receptor (GLP-1R) in peripheral lipid metabolism. Both lean and high-fat diet (HFD)-induced obesity (DIO) rats were used to compare the peripheral effects of the subcutaneous and repeated administration of the GLP-1R agonist liraglutide on the expression of key regulators involved in lipid metabolism, β-oxidation and thermogenesis in liver, abdominal muscle, and epididymal white adipose tissue (eWAT). We observed that liraglutide reduced caloric intake, body weight, and plasma levels of triglycerides and VLDL in a diet-independent manner. However, changes in liver fat content and the expression of lipid metabolism regulators were produced in a diet and tissue-dependent manner. In lean rats, liraglutide increased the gene/protein expression of elements involved in lipogenesis (ChREBP, Acaca/ACC, Fasn/FAS, Scd1/SCD1, PPARα/γ), β-oxidation (CPT1b), and thermogenesis (Cox4i1, Ucp1/UCP1) in eWAT and muscle, which suggest an increase in fatty-acid flux and utilization to activate energy expenditure. Regarding DIO rats, the specific reduction of liver lipid content by liraglutide was associated with a decreased expression of main elements involved in lipogenesis (phospho-ACC), peroxisomal β-oxidation (ACOX1), and lipid flux/storage (Pparγ/PPARγ) in liver, which suggest a recovery of lipid homeostasis. Interestingly, the muscle of DIO rats treated with liraglutide showed a decreased expression of PPARγ and the thermogenic factor UCP1. These results help us to better understand the peripheral mechanisms regulating lipid metabolism that underlay the effectiveness of GLP-1 analogues for the treatment of diabetes and obesity. © 2016 BioFactors, 42(6):600-611, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  11. Genotype–phenotype correlations in individuals with pathogenic RERE variants

    PubMed Central

    Jordan, Valerie K.; Fregeau, Brieana; Ge, Xiaoyan; Giordano, Jessica; Wapner, Ronald J.; Balci, Tugce B.; Carter, Melissa T.; Bernat, John A.; Moccia, Amanda N.; Srivastava, Anshika; Martin, Donna M.; Bielas, Stephanie L.; Pappas, John; Svoboda, Melissa D.; Rio, Marlène; Boddaert, Nathalie; Cantagrel, Vincent; Lewis, Andrea M.; Scaglia, Fernando; Kohler, Jennefer N.; Bernstein, Jonathan A.; Dries, Annika M.; Rosenfeld, Jill A.; DeFilippo, Colette; Thorson, Willa; Yang, Yaping; Sherr, Elliott H.; Bi, Weimin; Scott, Daryl A.

    2018-01-01

    Heterozygous variants in the arginine-glutamic acid dipeptide repeats gene (RERE) have been shown to cause neurodevelopmental disorder with or without anomalies of the brain, eye, or heart (NEDBEH). Here, we report nine individuals with NEDBEH who carry partial deletions or deleterious sequence variants in RERE. These variants were found to be de novo in all cases in which parental samples were available. An analysis of data from individuals with NEDBEH suggests that point mutations affecting the Atrophin-1 domain of RERE are associated with an increased risk of structural eye defects, congenital heart defects, renal anomalies, and sensorineural hearing loss when compared with loss-of-function variants that are likely to lead to haploinsufficiency. A high percentage of RERE pathogenic variants affect a histidine-rich region in the Atrophin-1 domain. We have also identified a recurrent two-amino-acid duplication in this region that is associated with the development of a CHARGE syndrome-like phenotype. We conclude that mutations affecting RERE result in a spectrum of clinical phenotypes. Genotype–phenotype correlations exist and can be used to guide medical decision making. Consideration should also be given to screening for RERE variants in individuals who fulfill diagnostic criteria for CHARGE syndrome but do not carry pathogenic variants in CHD7. PMID:29330883

  12. Digital PCR (dPCR) analysis reveals that the homozygous c.315-48T>C variant in the FECH gene might cause erythropoietic protoporphyria (EPP).

    PubMed

    Brancaleoni, Valentina; Granata, Francesca; Missineo, Pasquale; Fustinoni, Silvia; Graziadei, Giovanna; Di Pierro, Elena

    2018-06-13

    Alterations in the ferrochelatase gene (FECH) are the basis of the phenotypic expressions in erythropoietic protoporphyria. The phenotype is due to the presence of a mutation in the FECH gene associated in trans to the c.315-48 T > C variant in the intron 3. The latter is able to increase the physiological quota of alternative splicing events in the intron 3. Other two variants in the FECH gene (c.1-252A > G and c.68-23C > T) have been found to be associated to the intron 3 variant in some populations and together, they constitute a haplotype (ACT/GTC), but eventually, their role in the alternative splicing event has never been elucidated. The absolute number of the aberrantly spliced FECH mRNA molecules and the absolute expression of the FECH gene were evaluated by digital PCR technique in a comprehensive cohort. The number of splicing events that rose in the presence of the c.315-48 T > C variant, both in the heterozygous and homozygous condition was reported for the first time. Also, the percentage of the inserted FECH mRNA increased, even doubled in the T/C cases, compared to T/T cases. The constant presence of variants in the promoter and intron 2 did not influence or modulate the aberrant splicing. The results of FECH gene expression suggested that the homozygosity for the c.315-48 T > C variant could be considered pathological. Thus, this study identified the homozygotes for the c.315-48 T > C variant as pathological. By extension, when the samples were categorised according to the haplotypes, the GTC haplotype in homozygosis was pathological. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Poisson Approximation-Based Score Test for Detecting Association of Rare Variants.

    PubMed

    Fang, Hongyan; Zhang, Hong; Yang, Yaning

    2016-07-01

    Genome-wide association study (GWAS) has achieved great success in identifying genetic variants, but the nature of GWAS has determined its inherent limitations. Under the common disease rare variants (CDRV) hypothesis, the traditional association analysis methods commonly used in GWAS for common variants do not have enough power for detecting rare variants with a limited sample size. As a solution to this problem, pooling rare variants by their functions provides an efficient way for identifying susceptible genes. Rare variant typically have low frequencies of minor alleles, and the distribution of the total number of minor alleles of the rare variants can be approximated by a Poisson distribution. Based on this fact, we propose a new test method, the Poisson Approximation-based Score Test (PAST), for association analysis of rare variants. Two testing methods, namely, ePAST and mPAST, are proposed based on different strategies of pooling rare variants. Simulation results and application to the CRESCENDO cohort data show that our methods are more powerful than the existing methods. © 2016 John Wiley & Sons Ltd/University College London.

  14. Cellulase variants with improved expression, activity and stability, and use thereof

    DOEpatents

    Aehle, Wolfgang; Bott, Richard R; Bower, Benjamin; Caspi, Jonathan; Estell, David A; Goedegebuur, Frits; Hommes, Ronaldus W.J.; Kaper, Thijs; Kelemen, Bradley; Kralj, Slavko; Van Lieshout, Johan; Nikolaev, Igor; Van Stigt Thans, Sander; Wallace, Louise; Vogtentanz, Gudrun; Sandgren, Mats

    2014-03-25

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having improved expression, activity and/or stability. Also described are nucleic acids encoding the cellulase variants, compositions comprising the cellulase variants, and methods of use thereof.

  15. Cellulase variants with improved expression, activity and stability, and use thereof

    DOEpatents

    Aehle, Wolfgang; Bott, Richard R.; Bower, Benjamin S.; Caspi, Jonathan; Goedegebuur, Frits; Hommes, Ronaldus Wilhelmus Joannes; Kaper, Thijs; Kelemen, Bradley R.; Kralj, Slavko; Van Lieshout, Johannes Franciscus Thomas; Nikolaev, Igor; Wallace, Louise; Van Stigt Thans, Sander; Vogtentanz, Gudrun; Sandgren, Mats

    2016-12-20

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having improved expression, activity and/or stability. Also described are nucleic acids encoding the cellulase variants, compositions comprising the cellulase variants, and methods of use thereof.

  16. Genetic variants of ghrelin in metabolic disorders.

    PubMed

    Ukkola, Olavi

    2011-11-01

    An increasing understanding of the role of genes in the development of obesity may reveal genetic variants that, in combination with conventional risk factors, may help to predict an individual's risk for developing metabolic disorders. Accumulating evidence indicates that ghrelin plays a role in regulating food intake and energy homeostasis and it is a reasonable candidate gene for obesity-related co-morbidities. In cross-sectional studies low total ghrelin concentrations and some genetic polymorphisms of ghrelin have been associated with obesity-associated diseases. The present review highlights many of the important problems in association studies of genetic variants and complex diseases. It is known that population-specific differences in reported associations exist. We therefore conclude that more studies on variants of ghrelin gene are needed to perform in different populations to get deeper understanding on the relationship of ghrelin gene and its variants to obesity. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Isolation of a variant of Candida albicans.

    PubMed Central

    Buckley, H R; Price, M R; Daneo-Moore, L

    1982-01-01

    During the course of Candida albicans antigen production, a variant of this organism was encountered which did not produce hyphae at 37 degrees C. Presented here are some of the characteristics of this variant. It produces hyphae at 25 degrees C on cornmeal agar and synthetic medium plus N-acetylglucosamine and Tween 80. At 37 degrees C, it does not produce hyphae on these media, although C. albicans normally does produce hyphae under these circumstances. In liquid synthetic medium, this variant does not produce hyphae at 37 degrees C. The variant strain was analyzed for DNA, RNA, protein content, and particle size. After 50 to 70 h in balanced exponential-phase growth, particle size distribution was narrow, and there were no differences in the DNA, RNA, or protein content per particle in the two strains. When balanced exponential-phase cultures were brought into stationary phase, both strains contained the same amount of DNA per cell. Images PMID:6752021

  18. Isolation of a variant of Candida albicans.

    PubMed

    Buckley, H R; Price, M R; Daneo-Moore, L

    1982-09-01

    During the course of Candida albicans antigen production, a variant of this organism was encountered which did not produce hyphae at 37 degrees C. Presented here are some of the characteristics of this variant. It produces hyphae at 25 degrees C on cornmeal agar and synthetic medium plus N-acetylglucosamine and Tween 80. At 37 degrees C, it does not produce hyphae on these media, although C. albicans normally does produce hyphae under these circumstances. In liquid synthetic medium, this variant does not produce hyphae at 37 degrees C. The variant strain was analyzed for DNA, RNA, protein content, and particle size. After 50 to 70 h in balanced exponential-phase growth, particle size distribution was narrow, and there were no differences in the DNA, RNA, or protein content per particle in the two strains. When balanced exponential-phase cultures were brought into stationary phase, both strains contained the same amount of DNA per cell.

  19. Modulation of desensitization at glutamate receptors in isolated crucian carp horizontal cells by concanavalin A, cyclothiazide, aniracetam and PEPA.

    PubMed

    Shen, Y; Lu, T; Yang, X L

    1999-03-01

    In horizontal cells freshly dissociated from crucian carp (Carassius auratus) retina, we examined the effects of modulators of glutamate receptor desensitization, concanavalin A, cyclothiazide, aniracetam and 4-[2-(phenylsulfonylamino)ethylthio]-2,6-difluoro-phenoxyacetam ide (PEPA), on responses to rapid application of glutamate and kainate, using whole-cell voltage-clamp techniques. Incubation of concanavalin A suppressed the peak response but weakly potentiated the equilibrium response of horizontal cells to glutamate. Cyclothiazide blocked glutamate-induced desensitization in a dose-dependent manner, which resulted in a steady increase of the equilibrium current. The concentration of cyclothiazide causing a half-maximal potentiation for the equilibrium response was 85 microM. Furthermore, cyclothiazide shifted the dose-response relationship of the equilibrium current to the right, but slightly suppressed the kainate-induced sustained current. These effects of concanavalin A and cyclothiazide are consistent with the supposition that glutamate receptors of carp horizontal cells may be an alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-preferring subtype. In order to further characterize the AMPA receptors of horizontal cells, modulation by aniracetam and PEPA of glutamate- and kainate-induced currents was studied. Aniracetam, a preferential modulator of flop variants of AMPA receptors, considerably blocked desensitization of glutamate-induced currents, but only slightly potentiated kainate-induced currents. It was further found that PEPA, a flop-preferring allosteric modulator of AMPA receptor desensitization, slightly suppressed the peak current, while it dramatically potentiated the equilibrium current induced by glutamate in a dose-dependent manner. PEPA was much potent than aniracetam at these receptors and showed the effect on glutamate-induced desensitization even at a concentration as low as 3 microM. PEPA also potentiated non

  20. Biochemical characteristics of glucose-6-phosphate dehydrogenase variants among the Malays of Singapore with report of a new non-deficient (GdSingapore) and three deficient variants.

    PubMed

    Saha, N; Hong, S H; Wong, H A; Jeyaseelan, K; Tay, J S

    1991-12-01

    Biochemical characteristics of one non-deficient fast G6PD variant (GdSingapore) and six different deficient variants (three new, two Mahidol, one each of Indonesian and Mediterranean) were studied among the Malays of Singapore. The GdSingapore variant had normal enzyme activity (82%) and fast electrophoretic mobilities (140% in TEB buffer, 160% in phosphate and 140% in Tris-HCl buffer systems respectively). This variant is further characterized by normal Km for G6P; utilization of analogues (Gal6P, 2dG6P; dAmNADP), heat stability and pH optimum. The other six deficient G6PD variants had normal electrophoretic mobility in TEB buffer with enzyme activities ranging from 1 to 12% of GdB+. The biochemical characteristics identity them to be 2 Mahidol, 1 Indonesian and 1 Mediterranean variants and three new deficient variants.

  1. Genetic Variants Within Molecular Targets of Antipsychotic Treatment: Effects on Treatment Response, Schizophrenia Risk, and Psychopathological Features.

    PubMed

    Calabrò, Marco; Porcelli, Stefano; Crisafulli, Concetta; Wang, Sheng-Min; Lee, Soo-Jung; Han, Changsu; Patkar, Ashwin A; Masand, Prakash S; Albani, Diego; Raimondi, Ilaria; Forloni, Gianluigi; Bin, Sofia; Cristalli, Carlotta; Mantovani, Vilma; Pae, Chi-Un; Serretti, Alessandro

    2018-01-01

    Schizophrenia (SCZ) is a common and severe mental disorder. Genetic factors likely play a role in its pathophysiology as well as in treatment response. In the present study, we investigated the effects of several single nucleotide polymorphisms (SNPs) within 9 genes involved with antipsychotic (AP) mechanisms of action. Two independent samples were recruited. The Korean sample included 176 subjects diagnosed with SCZ and 326 healthy controls, while the Italian sample included 83 subjects and 194 controls. AP response as measured by the positive and negative syndrome scale (PANSS) was the primary outcome, while the secondary outcome was the SCZ risk. Exploratory analyses were performed on (1) symptom clusters response (as measured by PANSS subscales); (2) age of onset; (3) family history; and (4) suicide history. Associations evidenced in the primary analyses did not survive to the FDR correction. Concerning SCZ risk, we partially confirmed the associations among COMT and MAPK1 genetic variants and SCZ. Finally, our exploratory analysis suggested that CHRNA7 and HTR2A genes may modulate both positive and negative symptoms responses, while PLA2G4A and SIGMAR1 may modulate respectively positive and negative symptoms responses. Moreover, GSK3B, HTR2A, PLA2G4A, and S100B variants may determine an anticipation of SCZ age of onset. Our results did not support a primary role for the genes investigated in AP response as a whole. However, our exploratory findings suggested that these genes may be involved in symptom clusters response.

  2. Investigation of exomic variants associated with overall survival in ovarian cancer

    PubMed Central

    Ann Chen, Yian; Larson, Melissa C; Fogarty, Zachary C; Earp, Madalene A; Anton-Culver, Hoda; Bandera, Elisa V; Cramer, Daniel; Doherty, Jennifer A; Goodman, Marc T; Gronwald, Jacek; Karlan, Beth Y; Kjaer, Susanne K; Levine, Douglas A; Menon, Usha; Ness, Roberta B; Pearce, Celeste L; Pejovic, Tanja; Rossing, Mary Anne; Wentzensen, Nicolas; Bean, Yukie T; Bisogna, Maria; Brinton, Louise A; Carney, Michael E; Cunningham, Julie M; Cybulski, Cezary; deFazio, Anna; Dicks, Ed M; Edwards, Robert P; Gayther, Simon A; Gentry-Maharaj, Aleksandra; Gore, Martin; Iversen, Edwin S; Jensen, Allan; Johnatty, Sharon E; Lester, Jenny; Lin, Hui-Yi; Lissowska, Jolanta; Lubinski, Jan; Menkiszak, Janusz; Modugno, Francesmary; Moysich, Kirsten B; Orlow, Irene; Pike, Malcolm C; Ramus, Susan J; Song, Honglin; Terry, Kathryn L; Thompson, Pamela J; Tyrer, Jonathan P; van den Berg, David J; Vierkant, Robert A; Vitonis, Allison F; Walsh, Christine; Wilkens, Lynne R; Wu, Anna H; Yang, Hannah; Ziogas, Argyrios; Berchuck, Andrew; Chenevix-Trench, Georgia; Schildkraut, Joellen M; Permuth-Wey, Jennifer; Phelan, Catherine M; Pharoah, Paul D P; Fridley, Brooke L

    2016-01-01

    Background While numerous susceptibility loci for epithelial ovarian cancer (EOC) have been identified, few associations have been reported with overall survival. In the absence of common prognostic genetic markers, we hypothesize that rare coding variants may be associated with overall EOC survival and assessed their contribution in two exome-based genotyping projects of the Ovarian Cancer Association Consortium (OCAC). Methods The primary patient set (Set 1) included 14 independent EOC studies (4293 patients) and 227,892 variants, and a secondary patient set (Set 2) included six additional EOC studies (1744 patients) and 114,620 variants. Because power to detect rare variants individually is reduced, gene-level tests were conducted. Sets were analyzed separately at individual variants and by gene, and then combined with meta-analyses (73,203 variants and 13,163 genes overlapped). Results No individual variant reached genome-wide statistical significance. A SNP previously implicated to be associated with EOC risk and, to a lesser extent, survival, rs8170, showed the strongest evidence of association with survival and similar effect size estimates across sets (Pmeta=1.1E-6, HRSet1=1.17, HRSet2=1.14). Rare variants in ATG2B, an autophagy gene important for apoptosis, were significantly associated with survival after multiple testing correction (Pmeta=1.1E-6; Pcorrected=0.01). Conclusions Common variant rs8170 and rare variants in ATG2B may be associated with EOC overall survival, although further study is needed. Impact This study represents the first exome-wide association study of EOC survival to include rare variant analyses, and suggests that complementary single variant and gene-level analyses in large studies are needed to identify rare variants that warrant follow-up study. PMID:26747452

  3. Multiplexed absorption tomography with calibration-free wavelength modulation spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Weiwei; Kaminski, Clemens F., E-mail: cfk23@cam.ac.uk

    2014-04-14

    We propose a multiplexed absorption tomography technique, which uses calibration-free wavelength modulation spectroscopy with tunable semiconductor lasers for the simultaneous imaging of temperature and species concentration in harsh combustion environments. Compared with the commonly used direct absorption spectroscopy (DAS) counterpart, the present variant enjoys better signal-to-noise ratios and requires no baseline fitting, a particularly desirable feature for high-pressure applications, where adjacent absorption features overlap and interfere severely. We present proof-of-concept numerical demonstrations of the technique using realistic phantom models of harsh combustion environments and prove that the proposed techniques outperform currently available tomography techniques based on DAS.

  4. Measuring missing heritability: Inferring the contribution of common variants

    PubMed Central

    Golan, David; Lander, Eric S.; Rosset, Saharon

    2014-01-01

    Genome-wide association studies (GWASs), also called common variant association studies (CVASs), have uncovered thousands of genetic variants associated with hundreds of diseases. However, the variants that reach statistical significance typically explain only a small fraction of the heritability. One explanation for the “missing heritability” is that there are many additional disease-associated common variants whose effects are too small to detect with current sample sizes. It therefore is useful to have methods to quantify the heritability due to common variation, without having to identify all causal variants. Recent studies applied restricted maximum likelihood (REML) estimation to case–control studies for diseases. Here, we show that REML considerably underestimates the fraction of heritability due to common variation in this setting. The degree of underestimation increases with the rarity of disease, the heritability of the disease, and the size of the sample. Instead, we develop a general framework for heritability estimation, called phenotype correlation–genotype correlation (PCGC) regression, which generalizes the well-known Haseman–Elston regression method. We show that PCGC regression yields unbiased estimates. Applying PCGC regression to six diseases, we estimate the proportion of the phenotypic variance due to common variants to range from 25% to 56% and the proportion of heritability due to common variants from 41% to 68% (mean 60%). These results suggest that common variants may explain at least half the heritability for many diseases. PCGC regression also is readily applicable to other settings, including analyzing extreme-phenotype studies and adjusting for covariates such as sex, age, and population structure. PMID:25422463

  5. MAML2 Rearrangements in Variant Forms of Mucoepidermoid Carcinoma: Ancillary Diagnostic Testing for the Ciliated and Warthin-like Variants.

    PubMed

    Bishop, Justin A; Cowan, Morgan L; Shum, Chung H; Westra, William H

    2018-01-01

    Mucoepidermoid carcinoma (MEC) is the most common salivary gland malignancy. Recent studies have shown that most MECs harbor gene fusions involving MAML2-an alteration that appears to be specific for MEC, a finding that could be diagnostically useful. While most cases of MEC are histologically straightforward, uncommon variants can cause considerable diagnostic difficulty. We present 2 variants of MEC for which MAML2 studies were crucial in establishing a diagnosis: a previously undescribed ciliated variant, and the recently described Warthin-like variant. All cases of ciliated and Warthin-like MEC were retrieved from the archives of The Johns Hopkins Hospital. Break-apart fluorescence in situ hybridization for MAML2 was performed on all cases. One ciliated MEC and 6 Warthin-like MECs were identified. The ciliated MEC presented as a 4.6 cm cystic lymph node metastasis originating from the tongue base in a 47-year-old woman. The Warthin-like MECs presented as parotid masses ranging in size from 1.2 to 3.3 (mean, 2.7 cm) in 4 women and 2 men. The ciliated MEC consisted of macrocystic spaces punctuated by tubulopapillary proliferations of squamoid cells and ciliated columnar cells. The Warthin-like MECs were comprised of cystic spaces lined by multilayered oncocytic to squamoid cells surrounded by a circumscribed cuff of lymphoid tissue with germinal centers. In these cases, the Warthin-like areas dominated the histologic picture. Conventional MEC, when present, represented a minor tumor component. MAML2 rearrangements were identified in all cases. Warthin-like MEC, and now a ciliated form of MEC, are newly described variants of a common salivary gland carcinoma. Unfamiliarity with these novel forms, unanticipated cellular features (eg, cilia), and morphologic overlap with mundane benign processes (eg, developmental ciliated cysts, Warthin tumor) or other carcinomas (eg, ciliated human papillomavirus-related carcinoma) may render these variants susceptible to

  6. Whole exome sequencing for familial bicuspid aortic valve identifies putative variants.

    PubMed

    Martin, Lisa J; Pilipenko, Valentina; Kaufman, Kenneth M; Cripe, Linda; Kottyan, Leah C; Keddache, Mehdi; Dexheimer, Phillip; Weirauch, Matthew T; Benson, D Woodrow

    2014-10-01

    Bicuspid aortic valve (BAV) is the most common congenital cardiovascular malformation. Although highly heritable, few causal variants have been identified. The purpose of this study was to identify genetic variants underlying BAV by whole exome sequencing a multiplex BAV kindred. Whole exome sequencing was performed on 17 individuals from a single family (BAV=3; other cardiovascular malformation, 3). Postvariant calling error control metrics were established after examining the relationship between Mendelian inheritance error rate and coverage, quality score, and call rate. To determine the most effective approach to identifying susceptibility variants from among 54 674 variants passing error control metrics, we evaluated 3 variant selection strategies frequently used in whole exome sequencing studies plus extended family linkage. No putative rare, high-effect variants were identified in all affected but no unaffected individuals. Eight high-effect variants were identified by ≥2 of the commonly used selection strategies; however, these were either common in the general population (>10%) or present in the majority of the unaffected family members. However, using extended family linkage, 3 synonymous variants were identified; all 3 variants were identified by at least one other strategy. These results suggest that traditional whole exome sequencing approaches, which assume causal variants alter coding sense, may be insufficient for BAV and other complex traits. Identification of disease-associated variants is facilitated by the use of segregation within families. © 2014 American Heart Association, Inc.

  7. Hepatitis B virus pre-S/S variants in liver diseases.

    PubMed

    Chen, Bing-Fang

    2018-04-14

    Chronic hepatitis B is a global health problem. The clinical outcomes of chronic hepatitis B infection include asymptomatic carrier state, chronic hepatitis (CH), liver cirrhosis (LC), and hepatocellular carcinoma (HCC). Because of the spontaneous error rate inherent to viral reverse transcriptase, the hepatitis B virus (HBV) genome evolves during the course of infection under the antiviral pressure of host immunity. The clinical significance of pre-S/S variants has become increasingly recognized in patients with chronic HBV infection. Pre-S/S variants are often identified in hepatitis B carriers with CH, LC, and HCC, which suggests that these naturally occurring pre-S/S variants may contribute to the development of progressive liver damage and hepatocarcinogenesis. This paper reviews the function of the pre-S/S region along with recent findings related to the role of pre-S/S variants in liver diseases. According to the mutation type, five pre-S/S variants have been identified: pre-S deletion, pre-S point mutation, pre-S1 splice variant, C-terminus S point mutation, and pre-S/S nonsense mutation. Their associations with HBV genotype and the possible pathogenesis of pre-S/S variants are discussed. Different pre-S/S variants cause liver diseases through different mechanisms. Most cause the intracellular retention of HBV envelope proteins and induction of endoplasmic reticulum stress, which results in liver diseases. Pre-S/S variants should be routinely determined in HBV carriers to help identify individuals who may be at a high risk of less favorable liver disease progression. Additional investigations are required to explore the molecular mechanisms of the pre-S/S variants involved in the pathogenesis of each stage of liver disease.

  8. Human papillomavirus variants among Inuit women in northern Quebec, Canada.

    PubMed

    Gauthier, Barbara; Coutlée, Francois; Franco, Eduardo L; Brassard, Paul

    2015-01-01

    Inuit communities in northern Quebec have high rates of human papillomavirus (HPV) infection, cervical cancer and cervical cancer-related mortality as compared to the Canadian population. HPV types can be further classified as intratypic variants based on the extent of homology in their nucleotide sequences. There is limited information on the distribution of intratypic variants in circumpolar areas. Our goal was to describe the HPV intratypic variants and associated baseline characteristics. We collected cervical cell samples in 2002-2006 from 676 Inuit women between the ages of 15 and 69 years in Nunavik. DNA isolates from high-risk HPVs were sequenced to determine the intratypic variant. There were 149 women that were positive for HPVs 16, 18, 31, 33, 35, 45, 52, 56 or 58 during follow-up. There were 5 different HPV16 variants, all of European lineage, among the 57 women positive for this type. There were 8 different variants of HPV18 present and all were of European lineage (n=21). The majority of samples of HPV31 (n=52) were of lineage B. The number of isolates and diversity of the other HPV types was low. Age was the only covariate associated with HPV16 variant category. These frequencies are similar to what was seen in another circumpolar region of Canada, although there appears to be less diversity as only European variants were detected. This study shows that most variants were clustered in one lineage for each HPV type.

  9. 180 MW/180 KW pulse modulator for S-band klystron of LUE-200 linac of IREN installation of JINR

    NASA Astrophysics Data System (ADS)

    Su, Kim Dong; Sumbaev, A. P.; Shvetsov, V. N.

    2014-09-01

    The offer on working out of the pulse modulator with 180 MW pulse power and 180 kW average power for pulse S-band klystrons of LUE-200 linac of IREN installation at the Laboratory of neutron physics (FLNP) at JINR is formulated. Main requirements, key parameters and element base of the modulator are presented. The variant of the basic scheme on the basis of 14 (or 11) stage 2 parallel PFN with the thyratron switchboard (TGI2-10K/50) and six parallel high voltage power supplies (CCPS Power Supply) is considered.

  10. Variants of human papillomavirus type 16 predispose toward persistent infection

    PubMed Central

    Zhang, Lei; Liao, Hong; Yang, Binlie; Geffre, Christopher P; Zhang, Ai; Zhou, Aizhi; Cao, Huimin; Wang, Jieru; Zhang, Zhenbo; Zheng, Wenxin

    2015-01-01

    A cohort study of 292 Chinese women was conducted to determine the relationship between human papillomavirus (HPV) type 16 variants and persistent viral infection. Enrolled patients were HPV16 positive and had both normal cytology and histology. Flow-through hybridization and gene chip technology was used to identify the HPV type. A PCR sequencing assay was performed to find HPV16 E2, E6 and E7 gene variants. The associations between these variants and HPV16 persistent infection was analyzed by Fisher’s exact test. It was found that the variants T178G, T350G and A442C in the E6 gene, as well as C3158A and G3248A variants in the E2 gene were associated with persistent HPV16 infection. No link was observed between E7 variants and persistent viral infection. Our findings suggest that detection of specific HPV variants would help identify patients who are at high risk for viral persistence and development of cervical neoplasia. PMID:26339417

  11. Interaction between GPR120 p.R270H loss-of-function variant and dietary fat intake on incident type 2 diabetes risk in the D.E.S.I.R. study.

    PubMed

    Lamri, A; Bonnefond, A; Meyre, D; Balkau, B; Roussel, R; Marre, M; Froguel, P; Fumeron, F

    2016-10-01

    GPR120 (encoded by FFAR4) is a lipid sensor that plays an important role in the control of energy balance. GPR120 is activated by long chain fatty acids (FAs) including omega-3 FAs. In humans, the loss of function p.R270H variant of the gene FFAR4 has been associated with a lower protein activity, an increased risk of obesity and higher fasting plasma glucose levels. The aim of this study was to investigate whether p.R270H interacts with dietary fat intake to modulate the risk of type 2 diabetes (T2D, 198 incident; 368 prevalent cases) and overweight (787 incident and 2891 prevalent cases) in the prospective D.E.S.I.R. study (n = 5,212, 9 years follow-up). The association of p.R270H with dietary fat and total calories was assessed by linear mixed models. The interaction between p.R270H and dietary fat on T2D and overweight was assessed by logistic regression analysis. The p.R270H variant had a minor allele frequency of 1.45% and was not significantly associated with total calories intake, fat intake or the total calories derived from fat (%). However, there was a significant interaction between p.R270H and dietary fat modulating the incidence of T2D (Pinteraction = 0.02) where the H-carriers had a higher risk of T2D than RR homozygotes in the low fat intake category only. The interaction between p.R270H and fat intake modulating the incidence and prevalence of overweight was not significant. The p.R270H variant of GPR120 modulates the risk of T2D in interaction with dietary fat intake in the D.E.S.I.R. Copyright © 2016 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  12. P/Q-type calcium channel modulators

    PubMed Central

    Nimmrich, V; Gross, G

    2012-01-01

    P/Q-type calcium channels are high-voltage-gated calcium channels contributing to vesicle release at synaptic terminals. A number of neurological diseases have been attributed to malfunctioning of P/Q channels, including ataxia, migraine and Alzheimer's disease. To date, only two specific P/Q-type blockers are known: both are peptides deriving from the spider venom of Agelenopsis aperta, ω-agatoxins. Other peptidic calcium channel blockers with activity at P/Q channels are available, albeit with less selectivity. A number of low molecular weight compounds modulate P/Q-type currents with different characteristics, and some exhibit a peculiar bidirectional pattern of modulation. Interestingly, there are a number of therapeutics in clinical use, which also show P/Q channel activity. Because selectivity as well as the exact mode of action is different between all P/Q-type channel modulators, the interpretation of clinical and experimental data is complicated and needs a comprehensive understanding of their target profile. The situation is further complicated by the fact that information on potency varies vastly in the literature, which may be the result of different experimental systems, conditions or the splice variants of the P/Q channel. This review attempts to provide a comprehensive overview of the compounds available that affect the P/Q-type channel and should help with the interpretation of results of in vitro experiments and animal models. It also aims to explain some clinical observations by implementing current knowledge about P/Q channel modulation of therapeutically used non-selective drugs. Chances and challenges of the development of P/Q channel-selective molecules are discussed. PMID:22670568

  13. Rare and Common Variants Conferring Risk of Tooth Agenesis.

    PubMed

    Jonsson, L; Magnusson, T E; Thordarson, A; Jonsson, T; Geller, F; Feenstra, B; Melbye, M; Nohr, E A; Vucic, S; Dhamo, B; Rivadeneira, F; Ongkosuwito, E M; Wolvius, E B; Leslie, E J; Marazita, M L; Howe, B J; Moreno Uribe, L M; Alonso, I; Santos, M; Pinho, T; Jonsson, R; Audolfsson, G; Gudmundsson, L; Nawaz, M S; Olafsson, S; Gustafsson, O; Ingason, A; Unnsteinsdottir, U; Bjornsdottir, G; Walters, G B; Zervas, M; Oddsson, A; Gudbjartsson, D F; Steinberg, S; Stefansson, H; Stefansson, K

    2018-05-01

    We present association results from a large genome-wide association study of tooth agenesis (TA) as well as selective TA, including 1,944 subjects with congenitally missing teeth, excluding third molars, and 338,554 controls, all of European ancestry. We also tested the association of previously identified risk variants, for timing of tooth eruption and orofacial clefts, with TA. We report associations between TA and 9 novel risk variants. Five of these variants associate with selective TA, including a variant conferring risk of orofacial clefts. These results contribute to a deeper understanding of the genetic architecture of tooth development and disease. The few variants previously associated with TA were uncovered through candidate gene studies guided by mouse knockouts. Knowing the etiology and clinical features of TA is important for planning oral rehabilitation that often involves an interdisciplinary approach.

  14. Negligible impact of rare autoimmune-locus coding-region variants on missing heritability.

    PubMed

    Hunt, Karen A; Mistry, Vanisha; Bockett, Nicholas A; Ahmad, Tariq; Ban, Maria; Barker, Jonathan N; Barrett, Jeffrey C; Blackburn, Hannah; Brand, Oliver; Burren, Oliver; Capon, Francesca; Compston, Alastair; Gough, Stephen C L; Jostins, Luke; Kong, Yong; Lee, James C; Lek, Monkol; MacArthur, Daniel G; Mansfield, John C; Mathew, Christopher G; Mein, Charles A; Mirza, Muddassar; Nutland, Sarah; Onengut-Gumuscu, Suna; Papouli, Efterpi; Parkes, Miles; Rich, Stephen S; Sawcer, Steven; Satsangi, Jack; Simmonds, Matthew J; Trembath, Richard C; Walker, Neil M; Wozniak, Eva; Todd, John A; Simpson, Michael A; Plagnol, Vincent; van Heel, David A

    2013-06-13

    Genome-wide association studies (GWAS) have identified common variants of modest-effect size at hundreds of loci for common autoimmune diseases; however, a substantial fraction of heritability remains unexplained, to which rare variants may contribute. To discover rare variants and test them for association with a phenotype, most studies re-sequence a small initial sample size and then genotype the discovered variants in a larger sample set. This approach fails to analyse a large fraction of the rare variants present in the entire sample set. Here we perform simultaneous amplicon-sequencing-based variant discovery and genotyping for coding exons of 25 GWAS risk genes in 41,911 UK residents of white European origin, comprising 24,892 subjects with six autoimmune disease phenotypes and 17,019 controls, and show that rare coding-region variants at known loci have a negligible role in common autoimmune disease susceptibility. These results do not support the rare-variant synthetic genome-wide-association hypothesis (in which unobserved rare causal variants lead to association detected at common tag variants). Many known autoimmune disease risk loci contain multiple, independently associated, common and low-frequency variants, and so genes at these loci are a priori stronger candidates for harbouring rare coding-region variants than other genes. Our data indicate that the missing heritability for common autoimmune diseases may not be attributable to the rare coding-region variant portion of the allelic spectrum, but perhaps, as others have proposed, may be a result of many common-variant loci of weak effect.

  15. Whole-Exome Sequencing Identifies Novel Variants for Tooth Agenesis.

    PubMed

    Dinckan, N; Du, R; Petty, L E; Coban-Akdemir, Z; Jhangiani, S N; Paine, I; Baugh, E H; Erdem, A P; Kayserili, H; Doddapaneni, H; Hu, J; Muzny, D M; Boerwinkle, E; Gibbs, R A; Lupski, J R; Uyguner, Z O; Below, J E; Letra, A

    2018-01-01

    Tooth agenesis is a common craniofacial abnormality in humans and represents failure to develop 1 or more permanent teeth. Tooth agenesis is complex, and variations in about a dozen genes have been reported as contributing to the etiology. Here, we combined whole-exome sequencing, array-based genotyping, and linkage analysis to identify putative pathogenic variants in candidate disease genes for tooth agenesis in 10 multiplex Turkish families. Novel homozygous and heterozygous variants in LRP6, DKK1, LAMA3, and COL17A1 genes, as well as known variants in WNT10A, were identified as likely pathogenic in isolated tooth agenesis. Novel variants in KREMEN1 were identified as likely pathogenic in 2 families with suspected syndromic tooth agenesis. Variants in more than 1 gene were identified segregating with tooth agenesis in 2 families, suggesting oligogenic inheritance. Structural modeling of missense variants suggests deleterious effects to the encoded proteins. Functional analysis of an indel variant (c.3607+3_6del) in LRP6 suggested that the predicted resulting mRNA is subject to nonsense-mediated decay. Our results support a major role for WNT pathways genes in the etiology of tooth agenesis while revealing new candidate genes. Moreover, oligogenic cosegregation was suggestive for complex inheritance and potentially complex gene product interactions during development, contributing to improved understanding of the genetic etiology of familial tooth agenesis.

  16. Genotype-phenotype correlations in individuals with pathogenic RERE variants.

    PubMed

    Jordan, Valerie K; Fregeau, Brieana; Ge, Xiaoyan; Giordano, Jessica; Wapner, Ronald J; Balci, Tugce B; Carter, Melissa T; Bernat, John A; Moccia, Amanda N; Srivastava, Anshika; Martin, Donna M; Bielas, Stephanie L; Pappas, John; Svoboda, Melissa D; Rio, Marlène; Boddaert, Nathalie; Cantagrel, Vincent; Lewis, Andrea M; Scaglia, Fernando; Kohler, Jennefer N; Bernstein, Jonathan A; Dries, Annika M; Rosenfeld, Jill A; DeFilippo, Colette; Thorson, Willa; Yang, Yaping; Sherr, Elliott H; Bi, Weimin; Scott, Daryl A

    2018-05-01

    Heterozygous variants in the arginine-glutamic acid dipeptide repeats gene (RERE) have been shown to cause neurodevelopmental disorder with or without anomalies of the brain, eye, or heart (NEDBEH). Here, we report nine individuals with NEDBEH who carry partial deletions or deleterious sequence variants in RERE. These variants were found to be de novo in all cases in which parental samples were available. An analysis of data from individuals with NEDBEH suggests that point mutations affecting the Atrophin-1 domain of RERE are associated with an increased risk of structural eye defects, congenital heart defects, renal anomalies, and sensorineural hearing loss when compared with loss-of-function variants that are likely to lead to haploinsufficiency. A high percentage of RERE pathogenic variants affect a histidine-rich region in the Atrophin-1 domain. We have also identified a recurrent two-amino-acid duplication in this region that is associated with the development of a CHARGE syndrome-like phenotype. We conclude that mutations affecting RERE result in a spectrum of clinical phenotypes. Genotype-phenotype correlations exist and can be used to guide medical decision making. Consideration should also be given to screening for RERE variants in individuals who fulfill diagnostic criteria for CHARGE syndrome but do not carry pathogenic variants in CHD7. © 2018 Wiley Periodicals, Inc.

  17. Method of generating ploynucleotides encoding enhanced folding variants

    DOEpatents

    Bradbury, Andrew M.; Kiss, Csaba; Waldo, Geoffrey S.

    2017-05-02

    The invention provides directed evolution methods for improving the folding, solubility and stability (including thermostability) characteristics of polypeptides. In one aspect, the invention provides a method for generating folding and stability-enhanced variants of proteins, including but not limited to fluorescent proteins, chromophoric proteins and enzymes. In another aspect, the invention provides methods for generating thermostable variants of a target protein or polypeptide via an internal destabilization baiting strategy. Internally destabilization a protein of interest is achieved by inserting a heterologous, folding-destabilizing sequence (folding interference domain) within DNA encoding the protein of interest, evolving the protein sequences adjacent to the heterologous insertion to overcome the destabilization (using any number of mutagenesis methods), thereby creating a library of variants. The variants in the library are expressed, and those with enhanced folding characteristics selected.

  18. cyvcf2: fast, flexible variant analysis with Python.

    PubMed

    Pedersen, Brent S; Quinlan, Aaron R

    2017-06-15

    Variant call format (VCF) files document the genetic variation observed after DNA sequencing, alignment and variant calling of a sample cohort. Given the complexity of the VCF format as well as the diverse variant annotations and genotype metadata, there is a need for fast, flexible methods enabling intuitive analysis of the variant data within VCF and BCF files. We introduce cyvcf2 , a Python library and software package for fast parsing and querying of VCF and BCF files and illustrate its speed, simplicity and utility. bpederse@gmail.com or aaronquinlan@gmail.com. cyvcf2 is available from https://github.com/brentp/cyvcf2 under the MIT license and from common python package managers. Detailed documentation is available at http://brentp.github.io/cyvcf2/. © The Author 2017. Published by Oxford University Press.

  19. Neuroradiological findings in GM2 gangliosidosis variant B1.

    PubMed

    Bano, Shahina; Prasad, Akhila; Yadav, Sachchida Nand; Chaudhary, Vikas; Garga, Umesh Chandra

    2011-07-01

    GM2 gangliosidosis variant B1 is a very rare lysosomal disorder. As per our knowledge, to date, only one article depicting the magnetic resonance imaging (MRI) findings of GM2 gangliosidosis variant B1 is available in the literature. We are the first to describe the neuroradiological findings in an Indian patient diagnosed with GM2 gangliosidosis variant B1.

  20. 49 CFR 26.81 - What are the requirements for Unified Certification Programs?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... regional UCP. UCPs may also enter into written reciprocity agreements with other UCPs. Such an agreement..., to perform certification functions required by this part. You may also grant reciprocity to other...

  1. 49 CFR 26.81 - What are the requirements for Unified Certification Programs?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... regional UCP. UCPs may also enter into written reciprocity agreements with other UCPs. Such an agreement..., to perform certification functions required by this part. You may also grant reciprocity to other...

  2. 49 CFR 26.81 - What are the requirements for Unified Certification Programs?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... regional UCP. UCPs may also enter into written reciprocity agreements with other UCPs. Such an agreement..., to perform certification functions required by this part. You may also grant reciprocity to other...

  3. 49 CFR 26.81 - What are the requirements for Unified Certification Programs?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... regional UCP. UCPs may also enter into written reciprocity agreements with other UCPs. Such an agreement..., to perform certification functions required by this part. You may also grant reciprocity to other...

  4. 49 CFR 26.81 - What are the requirements for Unified Certification Programs?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... regional UCP. UCPs may also enter into written reciprocity agreements with other UCPs. Such an agreement..., to perform certification functions required by this part. You may also grant reciprocity to other...

  5. Uncoupling protein-2 attenuates glucose-stimulated insulin secretion in INS-1E insulinoma cells by lowering mitochondrial reactive oxygen species

    PubMed Central

    Affourtit, Charles; Jastroch, Martin; Brand, Martin D.

    2011-01-01

    Glucose-stimulated insulin secretion (GSIS) by pancreatic β cells is regulated by mitochondrial uncoupling protein-2 (UCP2), but opposing phenotypes, GSIS improvement and impairment, have been reported for different Ucp2-ablated mouse models. By measuring mitochondrial bioenergetics in attached INS-1E insulinoma cells with and without UCP2, we show that UCP2 contributes to proton leak and attenuates glucose-induced rises in both respiratory activity and the coupling efficiency of oxidative phosphorylation. Strikingly, the GSIS improvement seen upon UCP2 knockdown in INS-1E cells is annulled completely by the cell-permeative antioxidant MnTMPyP. Consistent with this observation, UCP2 lowers mitochondrial reactive oxygen species at high glucose levels. We conclude that UCP2 plays both regulatory and protective roles in β cells by acutely lowering GSIS and chronically preventing oxidative stress. Our findings thus provide a mechanistic explanation for the apparently discrepant findings in the field. PMID:21172424

  6. Role of TGFBR1 and TGFBR2 genetic variants in Marfan syndrome.

    PubMed

    De Cario, Rosina; Sticchi, Elena; Lucarini, Laura; Attanasio, Monica; Nistri, Stefano; Marcucci, Rossella; Pepe, Guglielmina; Giusti, Betti

    2017-08-25

    Genetic variants in transforming growth factor beta (TGF-β) receptors type 1 (TGFBR1) and type 2 (TGFBR2) genes have been associated with different hereditary connective tissue disorders sharing thoracic aortic aneurysm and dissection (TAA/D). Mutations in both TGFBR1/2 genes have been described in patients with TAA/D and Marfan syndrome (MFS), and they are associated consistently with Loeys-Dietz syndrome. The existing literature shows discordant data resulting from mutational screening of TGFBR1/2 genes in patients with MFS. The aim of the study was to investigate the role of TGFBR1/2 genetic variants in determining and/or modulating MFS clinical phenotype. We investigated 75 unrelated patients with MFS referred to the Center for Marfan Syndrome and Related Disorders (Careggi University Hospital, Florence) who were subjected to FBN1 and TGFBR1/2 Sanger mutational screening. Forty-seven patients with MFS (63%) carried a pathogenetic FBN1 mutation. No pathogenetic mutations were detected in TGFBR1/2 genes. Ten common polymorphisms were identified in TGFBR2 and 6 in TGFBR1. Their association with cardiovascular manifestations was evaluated. Carriers of the A allele of rs11466512, delA allele of c.383delA or delT allele of c.1256-15del1T polymorphisms had a trend toward or significantly reduced z-scores (median [interquartile range (IQR)], 2.2 [1.13-4.77]; 2.1 [1.72-3.48]; 2.5 [1.85-3.86]) with respect to homozygous patients with wild-type MFS (median [IQR], 4.20 [2.39-7.25]; 3.9 [2.19-7.00]; 3.9 [2.14-6.93]). Carriers of the A allele of the rs2276767 polymorphism showed a trend toward increased z-score (median [IQR], 4.9 [2.14-7.16]) with respect to patients with wild-type MFS (median [IQR], 3.3 [1.75-5.45]). The protective effect of TGFBR1/2 genetic score including all the 4 variants was also evaluated. Patients with MFS with two or more protective alleles included in the score had statistically significant reduced aortic z-scores (median [IQR], 2.20 [1

  7. Ankle fracture spur sign is pathognomonic for a variant ankle fracture.

    PubMed

    Hinds, Richard M; Garner, Matthew R; Lazaro, Lionel E; Warner, Stephen J; Loftus, Michael L; Birnbaum, Jacqueline F; Burket, Jayme C; Lorich, Dean G

    2015-02-01

    The hyperplantarflexion variant ankle fracture is composed of a posterior tibial lip fracture with posterolateral and posteromedial fracture fragments separated by a vertical fracture line. This infrequently reported injury pattern often includes an associated "spur sign" or double cortical density at the inferomedial tibial metaphysis. The objective of this study was to quantitatively establish the association of the ankle fracture spur sign with the hyperplantarflexion variant ankle fracture. Our clinical database of operative ankle fractures was retrospectively reviewed for the incidence of hyperplantarflexion variant and nonvariant ankle fractures as determined by assessment of injury radiographs, preoperative advanced imaging, and intraoperative observation. Injury radiographs were then evaluated for the presence of the spur sign, and association between the spur sign and variant fractures was analyzed. The incidence of the hyperplantarflexion variant fracture among all ankle fractures was 6.7% (43/640). The spur sign was present in 79% (34/43) of variant fractures and absent in all nonvariant fractures, conferring a specificity of 100% in identifying variant fractures. Positive predictive value and negative predictive value were 100% and 99%, respectively. The ankle fracture spur sign was pathognomonic for the hyperplantarflexion variant ankle fracture. It is important to identify variant fractures preoperatively as patient positioning, operative approach, and fixation construct of variant fractures often differ from those employed for osteosynthesis of nonvariant fractures. Identification of the spur sign should prompt acquisition of advanced imaging to formulate an appropriate operative plan to address the variant fracture pattern. Level III, retrospective comparative study. © The Author(s) 2014.

  8. Fast single-pass alignment and variant calling using sequencing data

    USDA-ARS?s Scientific Manuscript database

    Sequencing research requires efficient computation. Few programs use already known information about DNA variants when aligning sequence data to the reference map. New program findmap.f90 reads the previous variant list before aligning sequence, calling variant alleles, and summing the allele counts...

  9. Histone variant innovation in a rapidly evolving chordate lineage.

    PubMed

    Moosmann, Alexandra; Campsteijn, Coen; Jansen, Pascal Wtc; Nasrallah, Carole; Raasholm, Martina; Stunnenberg, Henk G; Thompson, Eric M

    2011-07-15

    Histone variants alter the composition of nucleosomes and play crucial roles in transcription, chromosome segregation, DNA repair, and sperm compaction. Modification of metazoan histone variant lineages occurs on a background of genome architecture that shows global similarities from sponges to vertebrates, but the urochordate, Oikopleura dioica, a member of the sister group to vertebrates, exhibits profound modification of this ancestral architecture. We show that a histone complement of 47 gene loci encodes 31 histone variants, grouped in distinct sets of developmental expression profiles throughout the life cycle. A particularly diverse array of 15 male-specific histone variants was uncovered, including a testes-specific H4t, the first metazoan H4 sequence variant reported. Universal histone variants H3.3, CenH3, and H2A.Z are present but O. dioica lacks homologs of macroH2A and H2AX. The genome encodes many H2A and H2B variants and the repertoire of H2A.Z isoforms is expanded through alternative splicing, incrementally regulating the number of acetylatable lysine residues in the functionally important N-terminal "charge patch". Mass spectrometry identified 40 acetylation, methylation and ubiquitylation posttranslational modifications (PTMs) and showed that hallmark PTMs of "active" and "repressive" chromatin were present in O. dioica. No obvious reduction in silent heterochromatic marks was observed despite high gene density in this extraordinarily compacted chordate genome. These results show that histone gene complements and their organization differ considerably even over modest phylogenetic distances. Substantial innovation among all core and linker histone variants has evolved in concert with adaptation of specific life history traits in this rapidly evolving chordate lineage.

  10. A Novel, In-solution Separation of Endogenous Cardiac Sarcomeric Proteins and Identification of Distinct Charged Variants of Regulatory Light Chain*

    PubMed Central

    Scruggs, Sarah B.; Reisdorph, Rick; Armstrong, Mike L.; Warren, Chad M.; Reisdorph, Nichole; Solaro, R. John; Buttrick, Peter M.

    2010-01-01

    The molecular conformation of the cardiac myosin motor is modulated by intermolecular interactions among the heavy chain, the light chains, myosin binding protein-C, and titin and is governed by post-translational modifications (PTMs). In-gel digestion followed by LC/MS/MS has classically been applied to identify cardiac sarcomeric PTMs; however, this approach is limited by protein size, pI, and difficulties in peptide extraction. We report a solution-based work flow for global separation of endogenous cardiac sarcomeric proteins with a focus on the regulatory light chain (RLC) in which specific sites of phosphorylation have been unclear. Subcellular fractionation followed by OFFGEL electrophoresis resulted in isolation of endogenous charge variants of sarcomeric proteins, including regulatory and essential light chains, myosin heavy chain, and myosin-binding protein-C of the thick filament. Further purification of RLC using reverse-phase HPLC separation and UV detection enriched for RLC PTMs at the intact protein level and provided a stoichiometric and quantitative assessment of endogenous RLC charge variants. Digestion and subsequent LC/MS/MS unequivocally identified that the endogenous charge variants of cardiac RLC focused in unique OFFGEL electrophoresis fractions were unphosphorylated (78.8%), singly phosphorylated (18.1%), and doubly phosphorylated (3.1%) RLC. The novel aspects of this study are that 1) milligram amounts of endogenous cardiac sarcomeric subproteome were focused with resolution comparable with two-dimensional electrophoresis, 2) separation and quantification of post-translationally modified variants were achieved at the intact protein level, 3) separation of intact high molecular weight thick filament proteins was achieved in solution, and 4) endogenous charge variants of RLC were separated; a novel doubly phosphorylated form was identified in mouse, and singly phosphorylated, singly deamidated, and deamidated/phosphorylated forms were

  11. Influenza A (H3N2) Variant Virus

    MedlinePlus

    ... When Planning Fairs Key Facts for People Exhibiting Pigs at Fairs News & Highlights Materials & Resources Publications & Resources ... What's this? Submit Button Influenza Types Seasonal Avian Swine Variant Pandemic Other Influenza A (H3N2) Variant Virus ...

  12. Comprehensive genotyping in dyslipidemia: mendelian dyslipidemias caused by rare variants and Mendelian randomization studies using common variants.

    PubMed

    Tada, Hayato; Kawashiri, Masa-Aki; Yamagishi, Masakazu

    2017-04-01

    Dyslipidemias, especially hyper-low-density lipoprotein cholesterolemia and hypertriglyceridemia, are important causal risk factors for coronary artery disease. Comprehensive genotyping using the 'next-generation sequencing' technique has facilitated the investigation of Mendelian dyslipidemias, in addition to Mendelian randomization studies using common genetic variants associated with plasma lipids and coronary artery disease. The beneficial effects of low-density lipoprotein cholesterol-lowering therapies on coronary artery disease have been verified by many randomized controlled trials over the years, and subsequent genetic studies have supported these findings. More recently, Mendelian randomization studies have preceded randomized controlled trials. When the on-target/off-target effects of rare variants and common variants exhibit the same direction, novel drugs targeting molecules identified by investigations of rare Mendelian lipid disorders could be promising. Such a strategy could aid in the search for drug discovery seeds other than those for dyslipidemias.

  13. A variational Bayes discrete mixture test for rare variant association

    PubMed Central

    Logsdon, Benjamin A.; Dai, James Y.; Auer, Paul L.; Johnsen, Jill M.; Ganesh, Santhi K.; Smith, Nicholas L.; Wilson, James G.; Tracy, Russell P.; Lange, Leslie A.; Jiao, Shuo; Rich, Stephen S.; Lettre, Guillaume; Carlson, Christopher S.; Jackson, Rebecca D.; O’Donnell, Christopher J.; Wurfel, Mark M.; Nickerson, Deborah A.; Tang, Hua; Reiner, Alexander P.; Kooperberg, Charles

    2014-01-01

    Recently, many statistical methods have been proposed to test for associations between rare genetic variants and complex traits. Most of these methods test for association by aggregating genetic variations within a predefined region, such as a gene. Although there is evidence that “aggregate” tests are more powerful than the single marker test, these tests generally ignore neutral variants and therefore are unable to identify specific variants driving the association with phenotype. We propose a novel aggregate rare-variant test that explicitly models a fraction of variants as neutral, tests associations at the gene-level, and infers the rare-variants driving the association. Simulations show that in the practical scenario where there are many variants within a given region of the genome with only a fraction causal our approach has greater power compared to other popular tests such as the Sequence Kernel Association Test (SKAT), the Weighted Sum Statistic (WSS), and the collapsing method of Morris and Zeggini (MZ). Our algorithm leverages a fast variational Bayes approximate inference methodology to scale to exome-wide analyses, a significant computational advantage over exact inference model selection methodologies. To demonstrate the efficacy of our methodology we test for associations between von Willebrand Factor (VWF) levels and VWF missense rare-variants imputed from the National Heart, Lung, and Blood Institute’s Exome Sequencing project into 2,487 African Americans within the VWF gene. Our method suggests that a relatively small fraction (~10%) of the imputed rare missense variants within VWF are strongly associated with lower VWF levels in African Americans. PMID:24482836

  14. A variational Bayes discrete mixture test for rare variant association.

    PubMed

    Logsdon, Benjamin A; Dai, James Y; Auer, Paul L; Johnsen, Jill M; Ganesh, Santhi K; Smith, Nicholas L; Wilson, James G; Tracy, Russell P; Lange, Leslie A; Jiao, Shuo; Rich, Stephen S; Lettre, Guillaume; Carlson, Christopher S; Jackson, Rebecca D; O'Donnell, Christopher J; Wurfel, Mark M; Nickerson, Deborah A; Tang, Hua; Reiner, Alexander P; Kooperberg, Charles

    2014-01-01

    Recently, many statistical methods have been proposed to test for associations between rare genetic variants and complex traits. Most of these methods test for association by aggregating genetic variations within a predefined region, such as a gene. Although there is evidence that "aggregate" tests are more powerful than the single marker test, these tests generally ignore neutral variants and therefore are unable to identify specific variants driving the association with phenotype. We propose a novel aggregate rare-variant test that explicitly models a fraction of variants as neutral, tests associations at the gene-level, and infers the rare-variants driving the association. Simulations show that in the practical scenario where there are many variants within a given region of the genome with only a fraction causal our approach has greater power compared to other popular tests such as the Sequence Kernel Association Test (SKAT), the Weighted Sum Statistic (WSS), and the collapsing method of Morris and Zeggini (MZ). Our algorithm leverages a fast variational Bayes approximate inference methodology to scale to exome-wide analyses, a significant computational advantage over exact inference model selection methodologies. To demonstrate the efficacy of our methodology we test for associations between von Willebrand Factor (VWF) levels and VWF missense rare-variants imputed from the National Heart, Lung, and Blood Institute's Exome Sequencing project into 2,487 African Americans within the VWF gene. Our method suggests that a relatively small fraction (~10%) of the imputed rare missense variants within VWF are strongly associated with lower VWF levels in African Americans.

  15. Expression of uncoupling protein 3 is upregulated in skeletal muscle during sepsis.

    PubMed

    Sun, Xiaoyan; Wray, Curtis; Tian, Xintian; Hasselgren, Per-Olof; Lu, James

    2003-09-01

    Uncoupling protein 3 (UCP3) is a member of the mitochondrial transporter superfamily that is expressed primarily in skeletal muscle. UCP3 is upregulated in various conditions characterized by skeletal muscle atrophy, including hyperthyroidism, fasting, denervation, diabetes, cancer, lipopolysaccharide (LPS), and treatment with glucocorticoids (GCs). The influence of sepsis, another condition characterized by muscle cachexia, on UCP3 expression and activity is not known. We examined UCP3 gene and protein expression in skeletal muscles from rats after cecal ligation and puncture and from sham-operated control rats. Sepsis resulted in a two- to threefold increase in both mRNA and protein levels of UCP3 in skeletal muscle. Treatment of rats with the glucocorticoid receptor antagonist RU-38486 prevented the sepsis-induced increase in gene and protein expression of UCP3. The UCP3 mRNA and protein levels were increased 2.4- to 3.6-fold when incubated muscles from normal rats were treated with dexamethasone (DEX) and/or free fatty acids (FFA) ex vivo. In addition, UCP3 mRNA and protein levels were significantly increased in normal rat muscles in vivo with treatment of either DEX or FFA. The results suggest that sepsis upregulates the gene and protein expression of UCP3 in skeletal muscle, which may at least in part be mediated by GCs and FFA.

  16. Glucose 6-phosphate dehydrogenase variants in Japan.

    PubMed

    Miwa, S

    1980-01-01

    Fifty-four cases of glucose 6-phosphate dehydrogenase (G6PD) deficiency have so far been reported in Japan. Among them, 21 G6PD variants have been characterized. Nineteen out of the 21 variants were characterized in our laboratory and G6PD Heian and "Kyoto" by others. G6PD Tokyo, Tokushima, Ogikubo, Kurume, Fukushima, Yokohama, Yamaguchi, Wakayama, Akita, Heian and "Kyoto" were classified as Class 1, because all these cases showed chronic hemolytic anemia and severe enzyme deficiency. All these variants showed thermal instability. G6PD Mediterranean-like, Ogori, Gifu and Fukuoka were classified as Class 2, whereas G6PD Hofu, B(-) Chinese, Ube, Konan, Kamiube and Kiwa belonged to Class 3. All the 6 Class 3 variants were found as the results of the screening tests. The incidence of the deficiency in Japanese seems to be 0.1-0.5% but that of the cases which may slow drug-induced hemolysis would be much less. G6PD Ube and Konan appear to be relatively common in Japan.

  17. Cerivastatin, Genetic Variants, and the Risk of Rhabdomyolysis

    PubMed Central

    Marciante, Kristin D.; Durda, Jon P.; Heckbert, Susan R.; Lumley, Thomas; Rice, Ken; McKnight, Barbara; Totah, Rheem A.; Tamraz, Bani; Kroetz, Deanna L.; Fukushima, Hisayo; Kaspera, Rüdiger; Bis, Joshua C.; Glazer, Nicole L.; Li, Guo; Austin, Thomas R.; Taylor, Kent D.; Rotter, Jerome I.; Jaquish, Cashell E.; Kwok, Pui-Yan; Tracy, Russell P.; Psaty, Bruce M.

    2011-01-01

    Objective The withdrawal of cerivastatin involved an uncommon but serious adverse reaction, rhabdomyolysis. The bimodal response--rhabdomyolysis in a small proportion of users-- points to genetic factors as a potential cause. We conducted a case-control study to evaluate genetic markers for cerivastatin-associated rhabdomyolysis. Methods The study had two components: a candidate gene study to evaluate variants in CYP2C8, UGT1A1, UGT1A3, and SLCO1B1; and a genome-wide association (GWA) study to identify risk factors in other regions of the genome. 185 rhabdomyolysis cases were frequency matched to statin-using controls from the Cardiovascular Health Study (n=374) and the Heart and Vascular Health Study (n=358). Validation relied on functional studies. Results Permutation test results suggested an association between cerivastatin-associated rhabdomyolysis and variants in SLCO1B1 (p = 0.002), but not variants in CYP2C8 (p = 0.073) or the UGTs (p = 0.523). An additional copy of the minor allele of SLCO1B1 rs4149056 (p.Val174Ala) was associated with the risk of rhabdomyolysis (OR: 1.89, 95% CI: 1.40 to 2.56). In transfected cells, this variant reduced cerivastatin transport by 40% compared with the reference transporter (p < 0.001). The GWA identified an intronic variant (rs2819742) in the ryanodine receptor 2 gene (RYR2) as significant (p=1.74E-07). An additional copy of the minor allele of the RYR2 variant was associated with a reduced risk of rhabdomyolysis (OR: 0.48; 95% CI: 0.36 to 0.63). Conclusion We identified modest genetic risk factors for an extreme response to cerivastatin. Disabling genetic variants in the candidate genes were not responsible for the bimodal response to cerivastatin. PMID:21386754

  18. Control of Mitochondrial pH by Uncoupling Protein 4 in Astrocytes Promotes Neuronal Survival*

    PubMed Central

    Perreten Lambert, Hélène; Zenger, Manuel; Azarias, Guillaume; Chatton, Jean-Yves; Magistretti, Pierre J.; Lengacher, Sylvain

    2014-01-01

    Brain activity is energetically costly and requires a steady and highly regulated flow of energy equivalents between neural cells. It is believed that a substantial share of cerebral glucose, the major source of energy of the brain, will preferentially be metabolized in astrocytes via aerobic glycolysis. The aim of this study was to evaluate whether uncoupling proteins (UCPs), located in the inner membrane of mitochondria, play a role in setting up the metabolic response pattern of astrocytes. UCPs are believed to mediate the transmembrane transfer of protons, resulting in the uncoupling of oxidative phosphorylation from ATP production. UCPs are therefore potentially important regulators of energy fluxes. The main UCP isoforms expressed in the brain are UCP2, UCP4, and UCP5. We examined in particular the role of UCP4 in neuron-astrocyte metabolic coupling and measured a range of functional metabolic parameters including mitochondrial electrical potential and pH, reactive oxygen species production, NAD/NADH ratio, ATP/ADP ratio, CO2 and lactate production, and oxygen consumption rate. In brief, we found that UCP4 regulates the intramitochondrial pH of astrocytes, which acidifies as a consequence of glutamate uptake, with the main consequence of reducing efficiency of mitochondrial ATP production. The diminished ATP production is effectively compensated by enhancement of glycolysis. This nonoxidative production of energy is not associated with deleterious H2O2 production. We show that astrocytes expressing more UCP4 produced more lactate, which is used as an energy source by neurons, and had the ability to enhance neuronal survival. PMID:25237189

  19. The role of uncoupling protein 3 regulating calcium ion uptake into mitochondria during sarcopenia

    NASA Astrophysics Data System (ADS)

    Nikawa, Takeshi; Choi, Inho; Haruna, Marie; Hirasaka, Katsuya; Maita Ohno, Ayako; Kondo Teshima, Shigetada

    Overloaded mitochondrial calcium concentration contributes to progression of mitochondrial dysfunction in aged muscle, leading to sarcopenia. Uncoupling protein 3 (UCP3) is primarily expressed in the inner membrane of skeletal muscle mitochondria. Recently, it has been reported that UCP3 is associated with calcium uptake into mitochondria. However, the mechanisms by which UCP3 regulates mitochondrial calcium uptake are not well understood. Here we report that UCP3 interacts with HS-1 associated protein X-1 (Hax-1), an anti-apoptotic protein that is localized in mitochondria, which is involved in cellular responses to calcium ion. The hydrophilic sequences within the loop 2, matrix-localized hydrophilic domain of mouse UCP3 are necessary for binding to Hax-1 of the C-terminal domain in adjacent to mitochondrial innermembrane. Interestingly, these proteins interaction occur the calcium-dependent manner. Indeed, overexpression of UCP3 significantly enhanced calcium uptake into mitochondria on Hax-1 endogenously expressing C2C12 myoblasts. In addition, Hax-1 knock-down enhanced calcium uptake into mitochondria on both UCP3 and Hax-1 endogenously expressing C2C12 myotubes, but not myoblasts. Finally, the dissociation of UCP3 and Hax-1 enhances calcium uptake into mitochondria in aged muscle. These studies identify a novel UCP3-Hax-1 complex regulates the influx of calcium ion into mitochondria in muscle. Thus, the efficacy of UCP3-Hax-1 in mitochondrial calcium regulation may provide a novel therapeutic approach against mitochondrial dysfunction-related disease containing sarcopenia.

  20. The role of nuclear factor E2-Related factor 2 and uncoupling protein 2 in glutathione metabolism: Evidence from an in vivo gene knockout study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yanyan; The Hamner Institutes for Health Sciences, Research Triangle Park, NC; Xu, Yuanyuan, E-mail: yyxu@cmu.edu.cn

    Nuclear factor E2-related factor 2 (NRF2) and uncoupling protein 2 (UCP2) are indicated to protect from oxidative stress. They also play roles in the homeostasis of glutathione. However, the detailed mechanisms are not well understood. In the present study, we found Nrf2-knockout (Nrf2-KO) mice exhibited altered glutathione homeostasis and reduced expression of various genes involved in GSH biosynthesis, regeneration, utilization and transport in the liver. Ucp2-knockout (Ucp2-KO) mice exhibited altered glutathione homeostasis in the liver, spleen and blood, as well as increased transcript of cystic fibrosis transmembrane conductance regulator in the liver, a protein capable of mediating glutathione efflux. Nrf2-Ucp2-doublemore » knockout (DKO) mice showed characteristics of both Nrf2-KO and Ucp2-KO mice. But no significant difference was observed in DKO mice when compared with Nrf2-KO or Ucp2-KO mice, except in blood glutathione levels. These data suggest that ablation of Nrf2 and Ucp2 leads to disrupted GSH balance, which could result from altered expression of genes involved in GSH metabolism. DKO may not evoke more severe oxidative stress than the single gene knockout. - Highlights: • Nrf2/Ucp2 deficiency leads to alteration of glutathione homeostasis. • Nrf2 regulates expression of genes in glutathione generation and utilization. • Ucp2 affects glutathione metabolism by regulating hepatic efflux of glutathione. • Nrf2 deficiency may not aggravate oxidative stress in Ucp2-deficient mice.« less

  1. Rare ADH Variant Constellations are Specific for Alcohol Dependence

    PubMed Central

    Zuo, Lingjun; Zhang, Heping; Malison, Robert T.; Li, Chiang-Shan R.; Zhang, Xiang-Yang; Wang, Fei; Lu, Lingeng; Lu, Lin; Wang, Xiaoping; Krystal, John H.; Zhang, Fengyu; Deng, Hong-Wen; Luo, Xingguang

    2013-01-01

    Aims: Some of the well-known functional alcohol dehydrogenase (ADH) gene variants (e.g. ADH1B*2, ADH1B*3 and ADH1C*2) that significantly affect the risk of alcohol dependence are rare variants in most populations. In the present study, we comprehensively examined the associations between rare ADH variants [minor allele frequency (MAF) <0.05] and alcohol dependence, with several other neuropsychiatric and neurological disorders as reference. Methods: A total of 49,358 subjects in 22 independent cohorts with 11 different neuropsychiatric and neurological disorders were analyzed, including 3 cohorts with alcohol dependence. The entire ADH gene cluster (ADH7–ADH1C–ADH1B–ADH1A–ADH6–ADH4–ADH5 at Chr4) was imputed in all samples using the same reference panels that included whole-genome sequencing data. We stringently cleaned the phenotype and genotype data to obtain a total of 870 single nucleotide polymorphisms with 0< MAF <0.05 for association analysis. Results: We found that a rare variant constellation across the entire ADH gene cluster was significantly associated with alcohol dependence in European-Americans (Fp1: simulated global P = 0.045), European-Australians (Fp5: global P = 0.027; collapsing: P = 0.038) and African-Americans (Fp5: global P = 0.050; collapsing: P = 0.038), but not with any other neuropsychiatric disease. Association signals in this region came principally from ADH6, ADH7, ADH1B and ADH1C. In particular, a rare ADH6 variant constellation showed a replicable association with alcohol dependence across these three independent cohorts. No individual rare variants were statistically significantly associated with any disease examined after group- and region-wide correction for multiple comparisons. Conclusion: We conclude that rare ADH variants are specific for alcohol dependence. The ADH gene cluster may harbor a causal variant(s) for alcohol dependence. PMID:23019235

  2. Positional bias in variant calls against draft reference assemblies.

    PubMed

    Briskine, Roman V; Shimizu, Kentaro K

    2017-03-28

    Whole genome resequencing projects may implement variant calling using draft reference genomes assembled de novo from short-read libraries. Despite lower quality of such assemblies, they allowed researchers to extend a wide range of population genetic and genome-wide association analyses to non-model species. As the variant calling pipelines are complex and involve many software packages, it is important to understand inherent biases and limitations at each step of the analysis. In this article, we report a positional bias present in variant calling performed against draft reference assemblies constructed from de Bruijn or string overlap graphs. We assessed how frequently variants appeared at each position counted from ends of a contig or scaffold sequence, and discovered unexpectedly high number of variants at the positions related to the length of either k-mers or reads used for the assembly. We detected the bias in both publicly available draft assemblies from Assemblathon 2 competition as well as in the assemblies we generated from our simulated short-read data. Simulations confirmed that the bias causing variants are predominantly false positives induced by reads from spatially distant repeated sequences. The bias is particularly strong in contig assemblies. Scaffolding does not eliminate the bias but tends to mitigate it because of the changes in variants' relative positions and alterations in read alignments. The bias can be effectively reduced by filtering out the variants that reside in repetitive elements. Draft genome sequences generated by several popular assemblers appear to be susceptible to the positional bias potentially affecting many resequencing projects in non-model species. The bias is inherent to the assembly algorithms and arises from their particular handling of repeated sequences. It is recommended to reduce the bias by filtering especially if higher-quality genome assembly cannot be achieved. Our findings can help other researchers to

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almeida, Luciana O.; Goto, Renata N.; Neto, Marinaldo P.C.

    We hypothesized that SET, a protein accumulated in some cancer types and Alzheimer disease, is involved in cell death through mitochondrial mechanisms. We addressed the mRNA and protein levels of the mitochondrial uncoupling proteins UCP1, UCP2 and UCP3 (S and L isoforms) by quantitative real-time PCR and immunofluorescence as well as other mitochondrial involvements, in HEK293 cells overexpressing the SET protein (HEK293/SET), either in the presence or absence of oxidative stress induced by the pro-oxidant t-butyl hydroperoxide (t-BHP). SET overexpression in HEK293 cells decreased UCP1 and increased UCP2 and UCP3 (S/L) mRNA and protein levels, whilst also preventing lipid peroxidationmore » and decreasing the content of cellular ATP. SET overexpression also (i) decreased the area of mitochondria and increased the number of organelles and lysosomes, (ii) increased mitochondrial fission, as demonstrated by increased FIS1 mRNA and FIS-1 protein levels, an apparent accumulation of DRP-1 protein, and an increase in the VDAC protein level, and (iii) reduced autophagic flux, as demonstrated by a decrease in LC3B lipidation (LC3B-II) in the presence of chloroquine. Therefore, SET overexpression in HEK293 cells promotes mitochondrial fission and reduces autophagic flux in apparent association with up-regulation of UCP2 and UCP3; this implies a potential involvement in cellular processes that are deregulated such as in Alzheimer's disease and cancer. - Highlights: • SET, UCPs and autophagy prevention are correlated. • SET action has mitochondrial involvement. • UCP2/3 may reduce ROS and prevent autophagy. • SET protects cell from ROS via UCP2/3.« less

  4. CDKL5 variants: Improving our understanding of a rare neurologic disorder.

    PubMed

    Hector, Ralph D; Kalscheuer, Vera M; Hennig, Friederike; Leonard, Helen; Downs, Jenny; Clarke, Angus; Benke, Tim A; Armstrong, Judith; Pineda, Mercedes; Bailey, Mark E S; Cobb, Stuart R

    2017-12-01

    To provide new insights into the interpretation of genetic variants in a rare neurologic disorder, CDKL5 deficiency, in the contexts of population sequencing data and an updated characterization of the CDKL5 gene. We analyzed all known potentially pathogenic CDKL5 variants by combining data from large-scale population sequencing studies with CDKL5 variants from new and all available clinical cohorts and combined this with computational methods to predict pathogenicity. The study has identified several variants that can be reclassified as benign or likely benign. With the addition of novel CDKL5 variants, we confirm that pathogenic missense variants cluster in the catalytic domain of CDKL5 and reclassify a purported missense variant as having a splicing consequence. We provide further evidence that missense variants in the final 3 exons are likely to be benign and not important to disease pathology. We also describe benign splicing and nonsense variants within these exons, suggesting that isoform hCDKL5_5 is likely to have little or no neurologic significance. We also use the available data to make a preliminary estimate of minimum incidence of CDKL5 deficiency. These findings have implications for genetic diagnosis, providing evidence for the reclassification of specific variants previously thought to result in CDKL5 deficiency. Together, these analyses support the view that the predominant brain isoform in humans (hCDKL5_1) is crucial for normal neurodevelopment and that the catalytic domain is the primary functional domain.

  5. Evaluation of copy-number variants as modifiers of breast and ovarian cancer risk for BRCA1 pathogenic variant carriers

    PubMed Central

    Walker, Logan C; Marquart, Louise; Pearson, John F; Wiggins, George A R; O'Mara, Tracy A; Parsons, Michael T; Barrowdale, Daniel; McGuffog, Lesley; Dennis, Joe; Benitez, Javier; Slavin, Thomas P; Radice, Paolo; Frost, Debra; Godwin, Andrew K; Meindl, Alfons; Schmutzler, Rita Katharina; Isaacs, Claudine; Peshkin, Beth N; Caldes, Trinidad; Hogervorst, Frans BL; Lazaro, Conxi; Jakubowska, Anna; Montagna, Marco; Chen, Xiaoqing; Offit, Kenneth; Hulick, Peter J; Andrulis, Irene L; Lindblom, Annika; Nussbaum, Robert L; Nathanson, Katherine L; Chenevix-Trench, Georgia; Antoniou, Antonis C; Couch, Fergus J; Spurdle, Amanda B

    2017-01-01

    Genome-wide studies of patients carrying pathogenic variants (mutations) in BRCA1 or BRCA2 have reported strong associations between single-nucleotide polymorphisms (SNPs) and cancer risk. To conduct the first genome-wide association analysis of copy-number variants (CNVs) with breast or ovarian cancer risk in a cohort of 2500 BRCA1 pathogenic variant carriers, CNV discovery was performed using multiple calling algorithms and Illumina 610k SNP array data from a previously published genome-wide association study. Our analysis, which focused on functionally disruptive genomic deletions overlapping gene regions, identified a number of loci associated with risk of breast or ovarian cancer for BRCA1 pathogenic variant carriers. Despite only including putative deletions called by at least two or more algorithms, detection of selected CNVs by ancillary molecular technologies only confirmed 40% of predicted common (>1% allele frequency) variants. These include four loci that were associated (unadjusted P<0.05) with breast cancer (GTF2H2, ZNF385B, NAALADL2 and PSG5), and two loci associated with ovarian cancer (CYP2A7 and OR2A1). An interesting finding from this study was an association of a validated CNV deletion at the CYP2A7 locus (19q13.2) with decreased ovarian cancer risk (relative risk=0.50, P=0.007). Genomic analysis found this deletion coincides with a region displaying strong regulatory potential in ovarian tissue, but not in breast epithelial cells. This study highlighted the need to verify CNVs in vitro, but also provides evidence that experimentally validated CNVs (with plausible biological consequences) can modify risk of breast or ovarian cancer in BRCA1 pathogenic variant carriers. PMID:28145423

  6. A variant on promoter of the cannabinoid receptor 1 gene (CNR1) moderates the effect of valence on working memory.

    PubMed

    Fairfield, Beth; Mammarella, Nicola; Franzago, Marica; Di Domenico, Alberto; Stuppia, Liborio; Gatta, Valentina

    2018-02-01

    Cannabinoid receptor 1 gene (CNR1) variants have been related to affective information processing and, in particular, to stress release. Here, we aimed to examine whether the endocannabinoid system via CNR1 signaling modulates affective working memory, the memory system that transiently maintains and manipulates emotionally charged material. We focused on rs2180619 (A > G) polymorphism and examined genotype data collected from 231 healthy females. Analyses showed how a general positivity bias in working memory (i.e., better memory for positive words) emerged as task strings lengthened only in carriers of the major allele (AA/AG). Differently, GG carriers showed better memory for affective items in general (i.e., positive and negative words). These findings are some of the first to directly highlight the role of variant on promoter of the CNR1 gene in affective working memory and to evidence a differentiation among CNR1 genotypes in terms of larger difficulties in disengaging from negative stimuli in GG carriers.

  7. A new genetic variant in the Sp1 binding cis-element of cholecystokinin gene promoter region and relationship to alcoholism.

    PubMed

    Harada, S; Okubo, T; Tsutsumi, M; Takase, S; Muramatsu, T

    1998-05-01

    Neuropeptide cholecystokinin (CCK) and the CCK receptors in the central nervous system mediate actions on increasing firings, anxiety, and nociceptions. Furthermore, CCK modulates the release of dopamine and dopamine-related behaviors in the mesolimbic pathway. In our study, genetic variation in the promoter and coding regions of the prepro-CCK gene were analyzed among 66 Japanese, 66 American Whites, 54 Chinese, and 41 Colombian natives. Two nucleotide sequence variants were found: a frequent mutation at nucleotide position -45 C to T involved in core sequence of Sp1 binding cis-element of the promoter region, and a C to T substitution at the 1662 position in intron 2. Analysis for the segregation study in 10 families of twins confirmed codominant heredity of two alleles. Distribution of genotypes and gene frequencies of 66 controls and 108 alcoholics in Japan presented that allelic variant T type in alcoholics was found in higher frequencies than that of controls, and distribution of these genotypes was significantly different between the both groups.

  8. Effects of common hemoglobin variants on HbA1c measurements in China: results for α- and β-globin variants measured by six methods.

    PubMed

    Xu, Anping; Chen, Weidong; Xia, Yong; Zhou, Yu; Ji, Ling

    2018-04-07

    HbA1c is a widely used biomarker for diabetes mellitus management. Here, we evaluated the accuracy of six methods for determining HbA1c values in Chinese patients with common α- and β-globin chains variants in China. Blood samples from normal subjects and individuals exhibiting hemoglobin variants were analyzed for HbA1c, using Sebia Capillarys 2 Flex Piercing (C2FP), Bio-Rad Variant II Turbo 2.0, Tosoh HLC-723 G8 (ver. 5.24), Arkray ADAMS A1c HA-8180V fast mode, Cobas c501 and Trinity Ultra2 systems. DNA sequencing revealed five common β-globin chain variants and three common α-globin chain variants. The most common variant was Hb E, followed by Hb New York, Hb J-Bangkok, Hb G-Coushatta, Hb Q-Thailand, Hb G-Honolulu, Hb Ube-2 and Hb G-Taipei. Variant II Turbo 2.0, Ultra2 and Cobas c501 showed good agreement with C2FP for most samples with variants. HLC-723 G8 yielded no HbA1c values for Hb J-Bangkok, Hb Q-Thailand and Hb G-Honolulu. Samples with Hb E, Hb G-Coushatta, Hb G-Taipei and Hb Ube-2 produced significant negative biases for HLC-723 G8. HA-8180V showed statistically significant differences for Hb E, Hb G-Coushatta, Hb G-Taipei, Hb Q-Thailand and Hb G-Honolulu. HA-8180V yielded no HbA1c values for Hb J-Bangkok. All methods showed good agreement for samples with Hb New York. Some common hemoglobin variants can interfere with HbA1c determination by the most popular methods in China.

  9. REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants.

    PubMed

    Ioannidis, Nilah M; Rothstein, Joseph H; Pejaver, Vikas; Middha, Sumit; McDonnell, Shannon K; Baheti, Saurabh; Musolf, Anthony; Li, Qing; Holzinger, Emily; Karyadi, Danielle; Cannon-Albright, Lisa A; Teerlink, Craig C; Stanford, Janet L; Isaacs, William B; Xu, Jianfeng; Cooney, Kathleen A; Lange, Ethan M; Schleutker, Johanna; Carpten, John D; Powell, Isaac J; Cussenot, Olivier; Cancel-Tassin, Geraldine; Giles, Graham G; MacInnis, Robert J; Maier, Christiane; Hsieh, Chih-Lin; Wiklund, Fredrik; Catalona, William J; Foulkes, William D; Mandal, Diptasri; Eeles, Rosalind A; Kote-Jarai, Zsofia; Bustamante, Carlos D; Schaid, Daniel J; Hastie, Trevor; Ostrander, Elaine A; Bailey-Wilson, Joan E; Radivojac, Predrag; Thibodeau, Stephen N; Whittemore, Alice S; Sieh, Weiva

    2016-10-06

    The vast majority of coding variants are rare, and assessment of the contribution of rare variants to complex traits is hampered by low statistical power and limited functional data. Improved methods for predicting the pathogenicity of rare coding variants are needed to facilitate the discovery of disease variants from exome sequencing studies. We developed REVEL (rare exome variant ensemble learner), an ensemble method for predicting the pathogenicity of missense variants on the basis of individual tools: MutPred, FATHMM, VEST, PolyPhen, SIFT, PROVEAN, MutationAssessor, MutationTaster, LRT, GERP, SiPhy, phyloP, and phastCons. REVEL was trained with recently discovered pathogenic and rare neutral missense variants, excluding those previously used to train its constituent tools. When applied to two independent test sets, REVEL had the best overall performance (p < 10 -12 ) as compared to any individual tool and seven ensemble methods: MetaSVM, MetaLR, KGGSeq, Condel, CADD, DANN, and Eigen. Importantly, REVEL also had the best performance for distinguishing pathogenic from rare neutral variants with allele frequencies <0.5%. The area under the receiver operating characteristic curve (AUC) for REVEL was 0.046-0.182 higher in an independent test set of 935 recent SwissVar disease variants and 123,935 putatively neutral exome sequencing variants and 0.027-0.143 higher in an independent test set of 1,953 pathogenic and 2,406 benign variants recently reported in ClinVar than the AUCs for other ensemble methods. We provide pre-computed REVEL scores for all possible human missense variants to facilitate the identification of pathogenic variants in the sea of rare variants discovered as sequencing studies expand in scale. Copyright © 2016 American Society of Human Genetics. All rights reserved.

  10. Plant uncoupling mitochondrial proteins.

    PubMed

    Vercesi, Aníbal Eugênio; Borecký, Jiri; Maia, Ivan de Godoy; Arruda, Paulo; Cuccovia, Iolanda Midea; Chaimovich, Hernan

    2006-01-01

    Uncoupling proteins (UCPs) are membrane proteins that mediate purine nucleotide-sensitive free fatty acid-activated H(+) flux through the inner mitochondrial membrane. After the discovery of UCP in higher plants in 1995, it was acknowledged that these proteins are widely distributed in eukaryotic organisms. The widespread presence of UCPs in eukaryotes implies that these proteins may have functions other than thermogenesis. In this review, we describe the current knowledge of plant UCPs, including their discovery, biochemical properties, distribution, gene family, gene expression profiles, regulation of gene expression, and evolutionary aspects. Expression analyses and functional studies on the plant UCPs under normal and stressful conditions suggest that UCPs regulate energy metabolism in the cellular responses to stress through regulation of the electrochemical proton potential (Deltamu(H)+) and production of reactive oxygen species.

  11. Filtering genetic variants and placing informative priors based on putative biological function.

    PubMed

    Friedrichs, Stefanie; Malzahn, Dörthe; Pugh, Elizabeth W; Almeida, Marcio; Liu, Xiao Qing; Bailey, Julia N

    2016-02-03

    High-density genetic marker data, especially sequence data, imply an immense multiple testing burden. This can be ameliorated by filtering genetic variants, exploiting or accounting for correlations between variants, jointly testing variants, and by incorporating informative priors. Priors can be based on biological knowledge or predicted variant function, or even be used to integrate gene expression or other omics data. Based on Genetic Analysis Workshop (GAW) 19 data, this article discusses diversity and usefulness of functional variant scores provided, for example, by PolyPhen2, SIFT, or RegulomeDB annotations. Incorporating functional scores into variant filters or weights and adjusting the significance level for correlations between variants yielded significant associations with blood pressure traits in a large family study of Mexican Americans (GAW19 data set). Marker rs218966 in gene PHF14 and rs9836027 in MAP4 significantly associated with hypertension; additionally, rare variants in SNUPN significantly associated with systolic blood pressure. Variant weights strongly influenced the power of kernel methods and burden tests. Apart from variant weights in test statistics, prior weights may also be used when combining test statistics or to informatively weight p values while controlling false discovery rate (FDR). Indeed, power improved when gene expression data for FDR-controlled informative weighting of association test p values of genes was used. Finally, approaches exploiting variant correlations included identity-by-descent mapping and the optimal strategy for joint testing rare and common variants, which was observed to depend on linkage disequilibrium structure.

  12. Investigation of the role of TCF4 rare sequence variants in schizophrenia.

    PubMed

    Basmanav, F Buket; Forstner, Andreas J; Fier, Heide; Herms, Stefan; Meier, Sandra; Degenhardt, Franziska; Hoffmann, Per; Barth, Sandra; Fricker, Nadine; Strohmaier, Jana; Witt, Stephanie H; Ludwig, Michael; Schmael, Christine; Moebus, Susanne; Maier, Wolfgang; Mössner, Rainald; Rujescu, Dan; Rietschel, Marcella; Lange, Christoph; Nöthen, Markus M; Cichon, Sven

    2015-07-01

    Transcription factor 4 (TCF4) is one of the most robust of all reported schizophrenia risk loci and is supported by several genetic and functional lines of evidence. While numerous studies have implicated common genetic variation at TCF4 in schizophrenia risk, the role of rare, small-sized variants at this locus-such as single nucleotide variants and short indels which are below the resolution of chip-based arrays requires further exploration. The aim of the present study was to investigate the association between rare TCF4 sequence variants and schizophrenia. Exon-targeted resequencing was performed in 190 German schizophrenia patients. Six rare variants at the coding exons and flanking sequences of the TCF4 gene were identified, including two missense variants and one splice site variant. These six variants were then pooled with nine additional rare variants identified in 379 European participants of the 1000 Genomes Project, and all 15 variants were genotyped in an independent German sample (n = 1,808 patients; n = 2,261 controls). These data were then analyzed using six statistical methods developed for the association analysis of rare variants. No significant association (P < 0.05) was found. However, the results from our association and power analyses suggest that further research into the possible involvement of rare TCF4 sequence variants in schizophrenia risk is warranted by the assessment of larger cohorts with higher statistical power to identify rare variant associations. © 2015 Wiley Periodicals, Inc.

  13. Re-Ranking Sequencing Variants in the Post-GWAS Era for Accurate Causal Variant Identification

    PubMed Central

    Faye, Laura L.; Machiela, Mitchell J.; Kraft, Peter; Bull, Shelley B.; Sun, Lei

    2013-01-01

    Next generation sequencing has dramatically increased our ability to localize disease-causing variants by providing base-pair level information at costs increasingly feasible for the large sample sizes required to detect complex-trait associations. Yet, identification of causal variants within an established region of association remains a challenge. Counter-intuitively, certain factors that increase power to detect an associated region can decrease power to localize the causal variant. First, combining GWAS with imputation or low coverage sequencing to achieve the large sample sizes required for high power can have the unintended effect of producing differential genotyping error among SNPs. This tends to bias the relative evidence for association toward better genotyped SNPs. Second, re-use of GWAS data for fine-mapping exploits previous findings to ensure genome-wide significance in GWAS-associated regions. However, using GWAS findings to inform fine-mapping analysis can bias evidence away from the causal SNP toward the tag SNP and SNPs in high LD with the tag. Together these factors can reduce power to localize the causal SNP by more than half. Other strategies commonly employed to increase power to detect association, namely increasing sample size and using higher density genotyping arrays, can, in certain common scenarios, actually exacerbate these effects and further decrease power to localize causal variants. We develop a re-ranking procedure that accounts for these adverse effects and substantially improves the accuracy of causal SNP identification, often doubling the probability that the causal SNP is top-ranked. Application to the NCI BPC3 aggressive prostate cancer GWAS with imputation meta-analysis identified a new top SNP at 2 of 3 associated loci and several additional possible causal SNPs at these loci that may have otherwise been overlooked. This method is simple to implement using R scripts provided on the author's website. PMID:23950724

  14. Ionic liquid and deep eutectic solvent-activated CelA2 variants generated by directed evolution.

    PubMed

    Lehmann, Christian; Bocola, Marco; Streit, Wolfgang R; Martinez, Ronny; Schwaneberg, Ulrich

    2014-06-01

    Chemoenzymatic cellulose degradation is one of the key steps for the production of biomass-based fuels under mild conditions. An effective cellulose degradation process requires diverse physico-chemical dissolution of the biomass prior to enzymatic degradation. In recent years, "green" solvents, such as ionic liquids and, more recently, deep eutectic liquids, have been proposed as suitable alternatives for biomass dissolution by homogenous catalysis. In this manuscript, a directed evolution campaign of an ionic liquid tolerant β-1,4-endoglucanase (CelA2) was performed in order to increase its performance in the presence of choline chloride/glycerol (ChCl:Gly) or 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), as a first step to identify residues which govern ionic strength resistance and obtaining insights for employing cellulases on the long run in homogenous catalysis of lignocellulose degradation. After mutant library screening, variant M4 (His288Phe, Ser300Arg) was identified, showing a dramatically reduced activity in potassium phosphate buffer and an increased activity in the presence of ChCl:Gly or [BMIM]Cl. Further characterization showed that the CelA2 variant M4 is activated in the presence of these solvents, representing a first report of an engineered enzyme with an ionic strength activity switch. Structural analysis revealed that Arg300 could be a key residue for the ionic strength activation through a salt bridge with the neighboring Asp287. Experimental and computational results suggest that the salt bridge Asp287-Arg300 generates a nearly inactive CelA2 variant and activity is regained when ChCl:Gly or [BMIM]Cl are supplemented (~5-fold increase from 0.64 to 3.37 μM 4-MU/h with the addition ChCl:Gly and ~23-fold increase from 3.84 to 89.21 μM 4-pNP/h with the addition of [BMIM]Cl). Molecular dynamic simulations further suggest that the salt bridge between Asp287 and Arg300 in variant M4 (His288Phe, Ser300Arg) modulates the observed salt

  15. Using ClinVar as a Resource to Support Variant Interpretations

    PubMed Central

    Harrison, Steven M.; Riggs, Erin R.; Maglott, Donna R.; Lee, Jennifer M.; Azzariti, Danielle R.; Niehaus, Annie; Ramos, Erin M.; Martin, Christa L.; Landrum, Melissa J.; Rehm, Heidi L.

    2016-01-01

    ClinVar is a freely accessible, public archive of reports of the relationships among genomic variants and phenotypes. To facilitate evaluation of the clinical significance of each variant, ClinVar aggregates submissions of the same variant, displays supporting data from each submission, and determines if the submitted clinical interpretations are conflicting or concordant. The unit describes how to (1) identify sequence and structural variants of interest in ClinVar with by multiple searching approaches, including Variation Viewer and (2) understand the display of submissions to ClinVar and the evidence supporting each interpretation. By following this protocol, ClinVar users will be able to learn how to incorporate the wealth of resources and knowledge in ClinVar into variant curation and interpretation. PMID:27037489

  16. No effect of serotoninergic gene variants on response to interpersonal counseling and antidepressants in major depression.

    PubMed

    Serretti, Alessandro; Fabbri, Chiara; Pellegrini, Silvia; Porcelli, Stefano; Politi, Pierluigi; Bellino, Silvio; Menchetti, Marco; Mariotti, Veronica; Demi, Cristina; Martinelli, Valentina; Cappucciati, Marco; Bozzatello, Paola; Brignolo, Elena; Brambilla, Paolo; Pae, Chi-Un; Balestrieri, Matteo; De Ronchi, Diana

    2013-06-01

    Gene variants within the serotonin pathway have been associated with major depressive disorder (MDD) treatment outcomes, however a possible different modulation on pharmacological or psychological treatments has never been investigated. One hundred sixty MDD patients were partially randomized to either inter-personal counseling (IPC) or antidepressants. The primary outcome was remission at week 8. Five serotonergic polymorphisms were investigated (COMT rs4680, HTR1A rs6295, HTR2A rs2224721, HTR2A rs7997012 and SLC6A4 rs421417). IPC (n=43) and antidepressant (n=117) treated patients did not show any difference in remission rates at week 8 (corrected for baseline severity, age and center). None of the studied gene variants impacted on response and remission rates at week 8 neither in the IPC nor in the antidepressant group. An analysis of the whole sample showed a trend of association between rs7997012 AA genotype and a better treatment outcome. Our study confirms that IPC is an effective psychological intervention comparable to antidepressants in mild-moderate MDD. Polymorphisms related to the serotonin system did not exert a major effect on clinical outcomes in none of the treatment groups.

  17. Human papillomavirus type-16 variants in Quechua aboriginals from Argentina.

    PubMed

    Picconi, María Alejandra; Alonio, Lidia Virginia; Sichero, Laura; Mbayed, Viviana; Villa, Luisa Lina; Gronda, Jorge; Campos, Rodolfo; Teyssié, Angélica

    2003-04-01

    Cervical carcinoma is the leading cause of cancer death in Quechua indians from Jujuy (northwestern Argentina). To determine the prevalence of HPV-16 variants, 106 HPV-16 positive cervical samples were studied, including 33 low-grade squamous intraepithelial lesions (LSIL), 28 high-grade squamous intraepithelial lesions (HSIL), 9 invasive cervical cancer (ICC), and 36 samples from women with normal colposcopy and cytology. HPV genome variability was examined in the L1 and E6 genes by PCR-hybridization. In a subset of 20 samples, a LCR fragment was also analyzed by PCR-sequencing. Most variants belonged to the European branch with subtle differences that depended on the viral gene fragment studied. Only about 10% of the specimens had non-European variants, including eight Asian-American, two Asian, and one North-American-1. E6 gene analysis revealed that 43% of the samples were identical to HPV-16 prototype, while 57% corresponded to variants. Interestingly, the majority (87%) of normal smears had HPV-16 prototype, whereas variants were detected mainly in SIL and ICC. LCR sequencing yielded 80% of variants, including 69% of European, 19% Asian-American, and 12% Asian. We identified a new variant, the Argentine Quechua-51 (AQ-51), similar to B-14 plus two additional changes: G7842-->A and A7837-->C; phylogenetic inference allocated it in the Asian-American branch. The high proportion of European variants may reflect Spanish colonial influence on these native Inca descendants. The predominance of HPV-16 variants in pathologic samples when compared to normal controls could have implications for the natural history of cervical lesions. Copyright 2003 Wiley-Liss, Inc.

  18. Infectious Bronchitis Virus Variants: Molecular Analysis and Pathogenicity Investigation

    PubMed Central

    Lin, Shu-Yi

    2017-01-01

    Infectious bronchitis virus (IBV) variants constantly emerge and pose economic threats to poultry farms worldwide. Numerous studies on the molecular and pathogenic characterization of IBV variants have been performed between 2007 and 2017, which we have reviewed herein. We noted that viral genetic mutations and recombination events commonly gave rise to distinct IBV genotypes, serotypes and pathotypes. In addition to characterizing the S1 genes, full viral genomic sequencing, comprehensive antigenicity, and pathogenicity studies on emerging variants have advanced our understanding of IBV infections, which is valuable for developing countermeasures against IBV field outbreaks. This review of IBV variants provides practical value for understanding their phylogenetic relationships and epidemiology from both regional and worldwide viewpoints. PMID:28937583

  19. Variant myopia: A new presentation?

    PubMed Central

    Hussaindeen, Jameel Rizwana; Anand, Mithra; Sivaraman, Viswanathan; Ramani, Krishna Kumar; Allen, Peter M

    2018-01-01

    Purpose: Variant myopia (VM) presents as a discrepancy of >1 diopter (D) between subjective and objective refraction, without the presence of any accommodative dysfunction. The purpose of this study is to create a clinical profile of VM. Methods: Fourteen eyes of 12 VM patients who had a discrepancy of >1D between retinoscopy and subjective acceptance under both cycloplegic and noncycloplegic conditions were included in the study. Fourteen eyes of 14 age- and refractive error-matched participants served as controls. Potential participants underwent a comprehensive orthoptic examination followed by retinoscopy (Ret), closed-field autorefractor (CA), subjective acceptance (SA), choroidal and retinal thickness, ocular biometry, and higher order spherical aberrations measurements. Results: In the VM eyes, a statistically and clinically significant difference was noted between the Ret and CA and Ret and SA under both cycloplegic and noncycloplegic conditions (multivariate repeated measures analysis of variance, P < 0.0001). A statistically significant difference was observed between the VM eyes, non-VM eyes, and controls for choroidal thickness in all the quadrants (Univariate ANOVA P < 0.05). The VM eyes had thinner choroids (197.21 ± 13.04 μ) compared to the non-VM eyes (249.25 ± 53.70 μ) and refractive error-matched controls (264.62 ± 12.53 μ). No statistically significant differences between groups in root mean square of total higher order aberrations and spherical aberration were observed. Conclusion: Accommodative etiology does not play a role in the refractive discrepancy seen in individuals with the variant myopic presentation. These individuals have thinner choroids in the eye with variant myopic presentation compared to the fellow eyes and controls. Hypotheses and clinical implications of variant myopia are discussed. PMID:29785987

  20. BRCA Share: A Collection of Clinical BRCA Gene Variants.

    PubMed

    Béroud, Christophe; Letovsky, Stanley I; Braastad, Corey D; Caputo, Sandrine M; Beaudoux, Olivia; Bignon, Yves Jean; Bressac-De Paillerets, Brigitte; Bronner, Myriam; Buell, Crystal M; Collod-Béroud, Gwenaëlle; Coulet, Florence; Derive, Nicolas; Divincenzo, Christina; Elzinga, Christopher D; Garrec, Céline; Houdayer, Claude; Karbassi, Izabela; Lizard, Sarab; Love, Angela; Muller, Danièle; Nagan, Narasimhan; Nery, Camille R; Rai, Ghadi; Revillion, Françoise; Salgado, David; Sévenet, Nicolas; Sinilnikova, Olga; Sobol, Hagay; Stoppa-Lyonnet, Dominique; Toulas, Christine; Trautman, Edwin; Vaur, Dominique; Vilquin, Paul; Weymouth, Katelyn S; Willis, Alecia; Eisenberg, Marcia; Strom, Charles M

    2016-12-01

    As next-generation sequencing increases access to human genetic variation, the challenge of determining clinical significance of variants becomes ever more acute. Germline variants in the BRCA1 and BRCA2 genes can confer substantial lifetime risk of breast and ovarian cancer. Assessment of variant pathogenicity is a vital part of clinical genetic testing for these genes. A database of clinical observations of BRCA variants is a critical resource in that process. This article describes BRCA Share™, a database created by a unique international alliance of academic centers and commercial testing laboratories. By integrating the content of the Universal Mutation Database generated by the French Unicancer Genetic Group with the testing results of two large commercial laboratories, Quest Diagnostics and Laboratory Corporation of America (LabCorp), BRCA Share™ has assembled one of the largest publicly accessible collections of BRCA variants currently available. Although access is available to academic researchers without charge, commercial participants in the project are required to pay a support fee and contribute their data. The fees fund the ongoing curation effort, as well as planned experiments to functionally characterize variants of uncertain significance. BRCA Share™ databases can therefore be considered as models of successful data sharing between private companies and the academic world. © 2016 WILEY PERIODICALS, INC.

  1. Astronomical component estimation (ACE v.1) by time-variant sinusoidal modeling

    NASA Astrophysics Data System (ADS)

    Sinnesael, Matthias; Zivanovic, Miroslav; De Vleeschouwer, David; Claeys, Philippe; Schoukens, Johan

    2016-09-01

    accumulation rate, whereas amplitude modulation identifies eccentricity-modulated precession. The functioning of the time-variant sinusoidal model is illustrated and validated using a synthetic insolation signal. The new modeling approach is tested on two case studies: (1) a Pliocene-Pleistocene benthic δ18O record from Ocean Drilling Program (ODP) Site 846 and (2) a Danian magnetic susceptibility record from the Contessa Highway section, Gubbio, Italy.

  2. Hemoglobin Variants: Biochemical Properties and Clinical Correlates

    PubMed Central

    Thom, Christopher S.; Dickson, Claire F.; Gell, David A.; Weiss, Mitchell J.

    2013-01-01

    Diseases affecting hemoglobin synthesis and function are extremely common worldwide. More than 1000 naturally occurring human hemoglobin variants with single amino acid substitutions throughout the molecule have been discovered, mainly through their clinical and/or laboratory manifestations. These variants alter hemoglobin structure and biochemical properties with physiological effects ranging from insignificant to severe. Studies of these mutations in patients and in the laboratory have produced a wealth of information on hemoglobin biochemistry and biology with significant implications for hematology practice. More generally, landmark studies of hemoglobin performed over the past 60 years have established important paradigms for the disciplines of structural biology, genetics, biochemistry, and medicine. Here we review the major classes of hemoglobin variants, emphasizing general concepts and illustrative examples. PMID:23388674

  3. VarBin, a novel method for classifying true and false positive variants in NGS data

    PubMed Central

    2013-01-01

    Background Variant discovery for rare genetic diseases using Illumina genome or exome sequencing involves screening of up to millions of variants to find only the one or few causative variant(s). Sequencing or alignment errors create "false positive" variants, which are often retained in the variant screening process. Methods to remove false positive variants often retain many false positive variants. This report presents VarBin, a method to prioritize variants based on a false positive variant likelihood prediction. Methods VarBin uses the Genome Analysis Toolkit variant calling software to calculate the variant-to-wild type genotype likelihood ratio at each variant change and position divided by read depth. The resulting Phred-scaled, likelihood-ratio by depth (PLRD) was used to segregate variants into 4 Bins with Bin 1 variants most likely true and Bin 4 most likely false positive. PLRD values were calculated for a proband of interest and 41 additional Illumina HiSeq, exome and whole genome samples (proband's family or unrelated samples). At variant sites without apparent sequencing or alignment error, wild type/non-variant calls cluster near -3 PLRD and variant calls typically cluster above 10 PLRD. Sites with systematic variant calling problems (evident by variant quality scores and biases as well as displayed on the iGV viewer) tend to have higher and more variable wild type/non-variant PLRD values. Depending on the separation of a proband's variant PLRD value from the cluster of wild type/non-variant PLRD values for background samples at the same variant change and position, the VarBin method's classification is assigned to each proband variant (Bin 1 to Bin 4). Results To assess VarBin performance, Sanger sequencing was performed on 98 variants in the proband and background samples. True variants were confirmed in 97% of Bin 1 variants, 30% of Bin 2, and 0% of Bin 3/Bin 4. Conclusions These data indicate that VarBin correctly classifies the majority of true

  4. Identifying Mendelian disease genes with the Variant Effect Scoring Tool

    PubMed Central

    2013-01-01

    Background Whole exome sequencing studies identify hundreds to thousands of rare protein coding variants of ambiguous significance for human health. Computational tools are needed to accelerate the identification of specific variants and genes that contribute to human disease. Results We have developed the Variant Effect Scoring Tool (VEST), a supervised machine learning-based classifier, to prioritize rare missense variants with likely involvement in human disease. The VEST classifier training set comprised ~ 45,000 disease mutations from the latest Human Gene Mutation Database release and another ~45,000 high frequency (allele frequency >1%) putatively neutral missense variants from the Exome Sequencing Project. VEST outperforms some of the most popular methods for prioritizing missense variants in carefully designed holdout benchmarking experiments (VEST ROC AUC = 0.91, PolyPhen2 ROC AUC = 0.86, SIFT4.0 ROC AUC = 0.84). VEST estimates variant score p-values against a null distribution of VEST scores for neutral variants not included in the VEST training set. These p-values can be aggregated at the gene level across multiple disease exomes to rank genes for probable disease involvement. We tested the ability of an aggregate VEST gene score to identify candidate Mendelian disease genes, based on whole-exome sequencing of a small number of disease cases. We used whole-exome data for two Mendelian disorders for which the causal gene is known. Considering only genes that contained variants in all cases, the VEST gene score ranked dihydroorotate dehydrogenase (DHODH) number 2 of 2253 genes in four cases of Miller syndrome, and myosin-3 (MYH3) number 2 of 2313 genes in three cases of Freeman Sheldon syndrome. Conclusions Our results demonstrate the potential power gain of aggregating bioinformatics variant scores into gene-level scores and the general utility of bioinformatics in assisting the search for disease genes in large-scale exome sequencing studies. VEST is

  5. Strong association of common variants in the CDKN2A/CDKN2B region with type 2 diabetes in French Europids.

    PubMed

    Duesing, K; Fatemifar, G; Charpentier, G; Marre, M; Tichet, J; Hercberg, S; Balkau, B; Froguel, P; Gibson, F

    2008-05-01

    Genome-wide association studies (GWASs) recently identified common variants in the CDKN2A/CDKN2B region on chromosome 9p as being strongly associated with type 2 diabetes. Since these association signals were not picked up by the French-Canadian GWAS, we sought to replicate these findings in the French Europid population and to further characterise the susceptibility variants at this novel locus. We genotyped 20 single nucleotide polymorphisms (SNPs) spanning the CDKN2A/CDKN2B locus in our type 2 diabetes case-control cohort. The association between CDKN2A/CDKN2B SNPs and quantitative metabolic traits was also examined in the normoglycaemic participants comprising the control cohort. We report replication of the strong association of rs10811661 with type 2 diabetes found in the GWASs (P= 3.8 X 10(-7); OR 1.43 [95% CI 1.24-1.64]). The other CDKN2A/CDKN2B susceptibility variant, rs564398, did not attain statistical significance (p = 0.053; OR 1.11 [95% CI 1.00-1.24]) in the present study. We also obtained several additional nominal association signals (p < 0.05) at the CDKN2A/CDKN2B locus; however, only the rs3218018 result (p = 0.002) survived Bonferroni correction for multiple testing (adjusted p = 0.04). Our comprehensive association study of common variation spanning the CDKN2A/CDKN2B locus confirms the strong association between the distal susceptibility variant rs10811661 and type 2 diabetes in the French population. Further genetic and functional studies are required to identify the aetiological variants at this locus and determine the cellular and physiological mechanisms by which they act to modulate type 2 diabetes susceptibility.

  6. Uncoupling protein-2 mediates the protective action of berberine against oxidative stress in rat insulinoma INS-1E cells and in diabetic mouse islets.

    PubMed

    Liu, Limei; Liu, Jian; Gao, Yuansheng; Yu, Xiaoxing; Xu, Gang; Huang, Yu

    2014-07-01

    Uncoupling protein-2 (UCP2) may regulate glucose-stimulated insulin secretion. The current study investigated the effects of berberine, an alkaloid found in many medicinal plants, on oxidative stress and insulin secretion through restoration of UCP2 expression in high glucose (HG)-treated INS-1E cells and rat islets or in db/db mouse islets. Mouse and rat pancreatic islets were isolated. Nitrotyrosine, superoxide dismutase (SOD)-1 and UCP2 expression and AMPK phosphorylation were examined by Western blotting. Insulin secretion was measured by ELISA. Mitochondrial reactive oxygen species (ROS) production was detected by confocal microscopy. Incubation of INS-1E cells and rat islets with HG (30 mmol·L(-1); 8 h) elevated nitrotyrosine level, reduced SOD-1 and UCP2 expression and AMPK phosphorylation, and inhibited glucose-stimulated insulin secretion. HG also increased mitochondrial ROS in INS-1E cells. Co-treatment with berberine inhibited such effects. The AMPK inhibitor compound C, the UCP2 inhibitor genipin and adenovirus ucp2 shRNA inhibited these protective effects of berberine. Furthermore, compound C normalized berberine-stimulated UCP2 expression but genipin did not affect AMPK phosphorylation. Islets from db/db mice exhibited elevated nitrotyrosine levels, reduced expression of SOD-1 and UCP2 and AMPK phosphorylation, and decreased insulin secretion compared with those from db/m(+) mice. Berberine also improved these defects in diabetic islets and genipin blocked the effects of berberine. Berberine inhibited oxidative stress and restored insulin secretion in HG-treated INS-IE cells and diabetic mouse islets by activating AMPK and UCP2. UCP2 is an important signalling molecule in mediating anti-diabetic effects of berberine. © 2014 The British Pharmacological Society.

  7. Control of mitochondrial pH by uncoupling protein 4 in astrocytes promotes neuronal survival.

    PubMed

    Perreten Lambert, Hélène; Zenger, Manuel; Azarias, Guillaume; Chatton, Jean-Yves; Magistretti, Pierre J; Lengacher, Sylvain

    2014-11-07

    Brain activity is energetically costly and requires a steady and highly regulated flow of energy equivalents between neural cells. It is believed that a substantial share of cerebral glucose, the major source of energy of the brain, will preferentially be metabolized in astrocytes via aerobic glycolysis. The aim of this study was to evaluate whether uncoupling proteins (UCPs), located in the inner membrane of mitochondria, play a role in setting up the metabolic response pattern of astrocytes. UCPs are believed to mediate the transmembrane transfer of protons, resulting in the uncoupling of oxidative phosphorylation from ATP production. UCPs are therefore potentially important regulators of energy fluxes. The main UCP isoforms expressed in the brain are UCP2, UCP4, and UCP5. We examined in particular the role of UCP4 in neuron-astrocyte metabolic coupling and measured a range of functional metabolic parameters including mitochondrial electrical potential and pH, reactive oxygen species production, NAD/NADH ratio, ATP/ADP ratio, CO2 and lactate production, and oxygen consumption rate. In brief, we found that UCP4 regulates the intramitochondrial pH of astrocytes, which acidifies as a consequence of glutamate uptake, with the main consequence of reducing efficiency of mitochondrial ATP production. The diminished ATP production is effectively compensated by enhancement of glycolysis. This nonoxidative production of energy is not associated with deleterious H2O2 production. We show that astrocytes expressing more UCP4 produced more lactate, which is used as an energy source by neurons, and had the ability to enhance neuronal survival. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. The mRNA expression levels of uncoupling proteins 1 and 2 in mononuclear cells from patients with metabolic disorders: obesity and type 2 diabetes mellitus.

    PubMed

    Margaryan, Sona; Witkowicz, Agata; Partyka, Anna; Yepiskoposyan, Levon; Manukyan, Gayane; Karabon, Lidia

    2017-10-19

    Type 2 diabetes mellitus (T2DM) and obesity are metabolic disorders whose major hallmark is insulin resistance. Impaired mitochondrial activity, such as reduced ratio of energy production to respiration, has been implicated in the development of insulin resistance. Uncoupling proteins (UCPs) are proton carriers, expressed in the mitochondrial inner membrane, that uncouple oxygen consumption by the respiratory chain from ATP synthesis. The aim of the study was to determine transcriptional levels of UCP1 and UCP2 in peripheral blood mononuclear cells (PBMCs) from patients with metabolic disorders: T2DM, obesity and from healthy individuals. The mRNA levels of UCP1, UCP2 were determined by Real-Time PCR method using Applied Biosystems assays. The UCP1 mRNA expression level was not detectable in the majority of studied samples, while very low expression was found in PBMCs from 3 obese persons. UCP2 mRNA expression level was detectable in all samples. The median mRNA expression of UCP2 was lower in all patients with metabolic disorders as compared to the controls (0.20+0.14 vs. 0.010+0.009, p=0.05). When compared separately, the differences of medians UCP2 mRNA expression level between the obese individuals and the controls as well as between the T2DM patients and the controls did not reach statistical significance. Decreased UCP2 gene expression in mononuclear cells from obese and diabetic patients might contribute to the immunological abnormalities in these metabolic disorders and suggests its role as a candidate gene in future studies of obesity and diabetes.

  9. Transgenic overexpression of uncoupling protein 2 attenuates salt-induced vascular dysfunction by inhibition of oxidative stress.

    PubMed

    Ma, Shuangtao; Wang, Qiang; Zhang, Yan; Yang, Dachun; Li, De; Tang, Bing; Yang, Yongjian

    2014-03-01

    Ablation of uncoupling protein 2 (UCP2) has been involved in the enhancement of salt sensitivity associated with increased superoxide level and decreased nitric oxide (NO) bioavailability. However, the role of overexpression of UCP2 in salt-induced vascular dysfunction remains elusive. UCP2 transgenic (TG) and wild-type (WT) mice were placed on either a normal-salt (NS, 0.5%) or a high-salt (HS, 8%) diet for 12 weeks. Blood pressure (BP) and hypotensive responses were measured, and the vascular tone, superoxide level, and NO bioavailability in aortas were measured in each group. The TG mice had increased expression and function of UCP2 in vascular smooth muscle cells. The acetylcholine (ACh)- and nitroglycerin (NTG)-induced hypotensive responses and aortic relaxations were significantly blunted in WT mice fed with an HS diet compared with an NS diet. These harmful effects were prevented in UCP2 TG mice. The impairments of ACh- and NTG-induced relaxation in aorta were inhibited by the endothelial NO synthase (eNOS) inhibitor L-NAME and mitochondrial antioxidant MitoQ, respectively. The HS intake led to a significant increase in superoxide production and a comparable decrease in NO bioavailability in aortas, and these effects were blunted in UCP2 TG mice. The expression of UCP2 was slightly increased in the HS group. However, the expression and phosphorylation of eNOS were not affected by an HS diet and overexpression of UCP2. These findings suggest that overexpression of UCP2 can ameliorate salt-induced vascular dysfunction. This beneficial effect of UCP2 is mediated by decreased superoxide and reserved NO bioavailability.

  10. Canine parvovirus: the worldwide occurrence of antigenic variants.

    PubMed

    Miranda, Carla; Thompson, Gertrude

    2016-09-01

    The most important enteric virus infecting canids is canine parvovirus type 2 (CPV-2). CPV is the aetiologic agent of a contagious disease, mainly characterized by clinical gastroenteritis signs in younger dogs. CPV-2 emerged as a new virus in the late 1970s, which could infect domestic dogs, and became distributed in the global dog population within 2 years. A few years later, the virus's original type was replaced by a new genetic and antigenic variant, called CPV-2a. Around 1984 and 2000, virus variants with the single change to Asp or Glu in the VP2 residue 426 were detected (sometimes termed CPV-2b and -2c). The genetic and antigenic changes in the variants have also been correlated with changes in their host range; in particular, in the ability to replicate in cats and also host range differences in canine and other tissue culture cells. CPV-2 variants have been circulating among wild carnivores and have been well-documented in several countries around the world. Here, we have reviewed and summarized the current information about the worldwide distribution and evolution of CPV-2 variants since they emerged, as well as the host ranges they are associated with.

  11. The predictive role of E2-EPF ubiquitin carrier protein in esophageal squamous cell carcinoma.

    PubMed

    Chen, Miao-Fen; Lee, Kuan-Der; Lu, Ming-Shian; Chen, Chih-Cheng; Hsieh, Ming-Ju; Liu, Yun-Hen; Lin, Paul-Yang; Chen, Wen-Cheng

    2009-03-01

    The ubiquitin proteasome pathway has been implicated in carcinogenesis. However, the role of E2-EPF ubiquitin carrier protein (UCP) in esophageal cancer remains relatively unstudied. In the study, we examined the mRNA level of circulating tumor cells from 60 esophageal cancer patients by membrane arrays consisting of a panel of potential markers including UCP, compared to 40 normal populations. The predictive capacity of UCP was also assessed by immunohistochemical staining of a retrospective series of 84 biopsied esophageal squamous cell carcinomas in relation to clinical outcome. In addition, we studied in vitro biological changes including tumor growth, metastatic capacity, and the sensitivity to irradiation and cisplatin, after experimental manipulation of UCP expression in esophageal cancer cells. By the data of 25-gene membrane array analysis, UCP was the only factor significantly associated with the extent of tumor burden in esophageal cancer patients. Our immunochemistry findings further indicate that UCP positivity was linked to poor response to neoadjuvant therapy and worse survival. In cell culture, inhibited UCP significantly decrease tumor growth and the capacity for metastasis. The epithelial-mesenchymal transition (EMT) induced by VHL/HIF-1alpha-TGF-beta1 pathway might be the underlying mechanism responsible to the more aggressive tumor growth in UCP-positive esophageal cancer. Our results suggest that UCP was significantly associated with poor prognosis of esophageal cancer and may be a new molecular target for therapeutic intervention for esophageal squamous cell carcinoma.

  12. Repeated immobilization stress increases uncoupling protein 1 expression and activity in Wistar rats.

    PubMed

    Gao, Bihu; Kikuchi-Utsumi, Kazue; Ohinata, Hiroshi; Hashimoto, Masaaki; Kuroshima, Akihiro

    2003-06-01

    Repeat immobilization-stressed rats are leaner and have improved cold tolerance due to enhancement of brown adipose tissue (BAT) thermogenesis. This process likely involves stress-induced sympathetic nervous system activation and adrenocortical hormone release, which dynamically enhances and suppresses uncoupling protein 1 (UCP1) function, respectively. To investigate whether repeated immobilization influences UCP1 thermogenic properties, we assessed UCP1 mRNA, protein expression, and activity (GDP binding) in BAT from immobilization-naive or repeatedly immobilized rats (3 h daily for 4 weeks) and sham operated or adrenalectomized (ADX) rats. UCP1 properties were assessed before (basal) and after exposure to 3 h of acute immobilization. Basal levels of GDP binding and UCP1 expression was significantly increased (140 and 140%) in the repeated immobilized group. Acute immobilization increased GDP binding in both naive (180%) and repeated immobilized groups (220%) without changing UCP1 expression. In ADX rats, basal GDP binding and UCP1 gene expression significantly increased (140 and 110%), and acute immobilization induced further increase. These data demonstrate that repeated immobilization resulted in enhanced UCP1 function, suggesting that enhanced BAT thermogenesis contributes to lower body weight gain through excess energy loss and an improved ability to maintain body temperature during cold exposure.

  13. Truncated variants of apolipoprotein B cause hypobetalipoproteinaemia.

    PubMed Central

    Collins, D R; Knott, T J; Pease, R J; Powell, L M; Wallis, S C; Robertson, S; Pullinger, C R; Milne, R W; Marcel, Y L; Humphries, S E

    1988-01-01

    Familial hypobetalipoproteinaemia is a rare autosomal dominant disorder in which levels of apo-B-containing plasma lipoproteins are approximately half-normal in heterozygotes and virtually absent in homozygotes. Here we describe mutations of the apo-B gene that cause two different truncated variants of apo-B in unrelated individuals with hypobetalipoproteinaemia. One variant, apo-B(His1795----Met-Trp-Leu-Val-Thr-Term) is predicted to be 1799 amino acids long and arises from deletion of a single nucleotide (G) from leucine codon 1794. This protein was found at low levels in very low density and low density lipoprotein fractions in the blood. The second, shorter variant, apo-B(Arg1306----Term), is caused by mutation of a CpG dinucleotide in arginine codon 1306 converting it to a stop codon and predicting a protein of 1305 residues. The product of this allele could not be detected in the circulation. The differences in size and behaviour of these two variants compared to apo-B100 or apo-B48 point to domains that may be important for the assembly, secretion or stability of apo-B-containing lipoproteins. Images PMID:2843815

  14. Integrated analysis of germline and somatic variants in ovarian cancer.

    PubMed

    Kanchi, Krishna L; Johnson, Kimberly J; Lu, Charles; McLellan, Michael D; Leiserson, Mark D M; Wendl, Michael C; Zhang, Qunyuan; Koboldt, Daniel C; Xie, Mingchao; Kandoth, Cyriac; McMichael, Joshua F; Wyczalkowski, Matthew A; Larson, David E; Schmidt, Heather K; Miller, Christopher A; Fulton, Robert S; Spellman, Paul T; Mardis, Elaine R; Druley, Todd E; Graubert, Timothy A; Goodfellow, Paul J; Raphael, Benjamin J; Wilson, Richard K; Ding, Li

    2014-01-01

    We report the first large-scale exome-wide analysis of the combined germline-somatic landscape in ovarian cancer. Here we analyse germline and somatic alterations in 429 ovarian carcinoma cases and 557 controls. We identify 3,635 high confidence, rare truncation and 22,953 missense variants with predicted functional impact. We find germline truncation variants and large deletions across Fanconi pathway genes in 20% of cases. Enrichment of rare truncations is shown in BRCA1, BRCA2 and PALB2. In addition, we observe germline truncation variants in genes not previously associated with ovarian cancer susceptibility (NF1, MAP3K4, CDKN2B and MLL3). Evidence for loss of heterozygosity was found in 100 and 76% of cases with germline BRCA1 and BRCA2 truncations, respectively. Germline-somatic interaction analysis combined with extensive bioinformatics annotation identifies 222 candidate functional germline truncation and missense variants, including two pathogenic BRCA1 and 1 TP53 deleterious variants. Finally, integrated analyses of germline and somatic variants identify significantly altered pathways, including the Fanconi, MAPK and MLL pathways.

  15. Rare and low-frequency coding variants alter human adult height

    PubMed Central

    Marouli, Eirini; Graff, Mariaelisa; Medina-Gomez, Carolina; Lo, Ken Sin; Wood, Andrew R; Kjaer, Troels R; Fine, Rebecca S; Lu, Yingchang; Schurmann, Claudia; Highland, Heather M; Rüeger, Sina; Thorleifsson, Gudmar; Justice, Anne E; Lamparter, David; Stirrups, Kathleen E; Turcot, Valérie; Young, Kristin L; Winkler, Thomas W; Esko, Tõnu; Karaderi, Tugce; Locke, Adam E; Masca, Nicholas GD; Ng, Maggie CY; Mudgal, Poorva; Rivas, Manuel A; Vedantam, Sailaja; Mahajan, Anubha; Guo, Xiuqing; Abecasis, Goncalo; Aben, Katja K; Adair, Linda S; Alam, Dewan S; Albrecht, Eva; Allin, Kristine H; Allison, Matthew; Amouyel, Philippe; Appel, Emil V; Arveiler, Dominique; Asselbergs, Folkert W; Auer, Paul L; Balkau, Beverley; Banas, Bernhard; Bang, Lia E; Benn, Marianne; Bergmann, Sven; Bielak, Lawrence F; Blüher, Matthias; Boeing, Heiner; Boerwinkle, Eric; Böger, Carsten A; Bonnycastle, Lori L; Bork-Jensen, Jette; Bots, Michiel L; Bottinger, Erwin P; Bowden, Donald W; Brandslund, Ivan; Breen, Gerome; Brilliant, Murray H; Broer, Linda; Burt, Amber A; Butterworth, Adam S; Carey, David J; Caulfield, Mark J; Chambers, John C; Chasman, Daniel I; Chen, Yii-Der Ida; Chowdhury, Rajiv; Christensen, Cramer; Chu, Audrey Y; Cocca, Massimiliano; Collins, Francis S; Cook, James P; Corley, Janie; Galbany, Jordi Corominas; Cox, Amanda J; Cuellar-Partida, Gabriel; Danesh, John; Davies, Gail; de Bakker, Paul IW; de Borst, Gert J.; de Denus, Simon; de Groot, Mark CH; de Mutsert, Renée; Deary, Ian J; Dedoussis, George; Demerath, Ellen W; den Hollander, Anneke I; Dennis, Joe G; Di Angelantonio, Emanuele; Drenos, Fotios; Du, Mengmeng; Dunning, Alison M; Easton, Douglas F; Ebeling, Tapani; Edwards, Todd L; Ellinor, Patrick T; Elliott, Paul; Evangelou, Evangelos; Farmaki, Aliki-Eleni; Faul, Jessica D; Feitosa, Mary F; Feng, Shuang; Ferrannini, Ele; Ferrario, Marco M; Ferrieres, Jean; Florez, Jose C; Ford, Ian; Fornage, Myriam; Franks, Paul W; Frikke-Schmidt, Ruth; Galesloot, Tessel E; Gan, Wei; Gandin, Ilaria; Gasparini, Paolo; Giedraitis, Vilmantas; Giri, Ayush; Girotto, Giorgia; Gordon, Scott D; Gordon-Larsen, Penny; Gorski, Mathias; Grarup, Niels; Grove, Megan L.; Gudnason, Vilmundur; Gustafsson, Stefan; Hansen, Torben; Harris, Kathleen Mullan; Harris, Tamara B; Hattersley, Andrew T; Hayward, Caroline; He, Liang; Heid, Iris M; Heikkilä, Kauko; Helgeland, Øyvind; Hernesniemi, Jussi; Hewitt, Alex W; Hocking, Lynne J; Hollensted, Mette; Holmen, Oddgeir L; Hovingh, G. Kees; Howson, Joanna MM; Hoyng, Carel B; Huang, Paul L; Hveem, Kristian; Ikram, M. Arfan; Ingelsson, Erik; Jackson, Anne U; Jansson, Jan-Håkan; Jarvik, Gail P; Jensen, Gorm B; Jhun, Min A; Jia, Yucheng; Jiang, Xuejuan; Johansson, Stefan; Jørgensen, Marit E; Jørgensen, Torben; Jousilahti, Pekka; Jukema, J Wouter; Kahali, Bratati; Kahn, René S; Kähönen, Mika; Kamstrup, Pia R; Kanoni, Stavroula; Kaprio, Jaakko; Karaleftheri, Maria; Kardia, Sharon LR; Karpe, Fredrik; Kee, Frank; Keeman, Renske; Kiemeney, Lambertus A; Kitajima, Hidetoshi; Kluivers, Kirsten B; Kocher, Thomas; Komulainen, Pirjo; Kontto, Jukka; Kooner, Jaspal S; Kooperberg, Charles; Kovacs, Peter; Kriebel, Jennifer; Kuivaniemi, Helena; Küry, Sébastien; Kuusisto, Johanna; La Bianca, Martina; Laakso, Markku; Lakka, Timo A; Lange, Ethan M; Lange, Leslie A; Langefeld, Carl D; Langenberg, Claudia; Larson, Eric B; Lee, I-Te; Lehtimäki, Terho; Lewis, Cora E; Li, Huaixing; Li, Jin; Li-Gao, Ruifang; Lin, Honghuang; Lin, Li-An; Lin, Xu; Lind, Lars; Lindström, Jaana; Linneberg, Allan; Liu, Yeheng; Liu, Yongmei; Lophatananon, Artitaya; Luan, Jian'an; Lubitz, Steven A; Lyytikäinen, Leo-Pekka; Mackey, David A; Madden, Pamela AF; Manning, Alisa K; Männistö, Satu; Marenne, Gaëlle; Marten, Jonathan; Martin, Nicholas G; Mazul, Angela L; Meidtner, Karina; Metspalu, Andres; Mitchell, Paul; Mohlke, Karen L; Mook-Kanamori, Dennis O; Morgan, Anna; Morris, Andrew D; Morris, Andrew P; Müller-Nurasyid, Martina; Munroe, Patricia B; Nalls, Mike A; Nauck, Matthias; Nelson, Christopher P; Neville, Matt; Nielsen, Sune F; Nikus, Kjell; Njølstad, Pål R; Nordestgaard, Børge G; Ntalla, Ioanna; O'Connel, Jeffrey R; Oksa, Heikki; Loohuis, Loes M Olde; Ophoff, Roel A; Owen, Katharine R; Packard, Chris J; Padmanabhan, Sandosh; Palmer, Colin NA; Pasterkamp, Gerard; Patel, Aniruddh P; Pattie, Alison; Pedersen, Oluf; Peissig, Peggy L; Peloso, Gina M; Pennell, Craig E; Perola, Markus; Perry, James A; Perry, John R.B.; Person, Thomas N; Pirie, Ailith; Polasek, Ozren; Posthuma, Danielle; Raitakari, Olli T; Rasheed, Asif; Rauramaa, Rainer; Reilly, Dermot F; Reiner, Alex P; Renström, Frida; Ridker, Paul M; Rioux, John D; Robertson, Neil; Robino, Antonietta; Rolandsson, Olov; Rudan, Igor; Ruth, Katherine S; Saleheen, Danish; Salomaa, Veikko; Samani, Nilesh J; Sandow, Kevin; Sapkota, Yadav; Sattar, Naveed; Schmidt, Marjanka K; Schreiner, Pamela J; Schulze, Matthias B; Scott, Robert A; Segura-Lepe, Marcelo P; Shah, Svati; Sim, Xueling; Sivapalaratnam, Suthesh; Small, Kerrin S; Smith, Albert Vernon; Smith, Jennifer A; Southam, Lorraine; Spector, Timothy D; Speliotes, Elizabeth K; Starr, John M; Steinthorsdottir, Valgerdur; Stringham, Heather M; Stumvoll, Michael; Surendran, Praveen; Hart, Leen M ‘t; Tansey, Katherine E; Tardif, Jean-Claude; Taylor, Kent D; Teumer, Alexander; Thompson, Deborah J; Thorsteinsdottir, Unnur; Thuesen, Betina H; Tönjes, Anke; Tromp, Gerard; Trompet, Stella; Tsafantakis, Emmanouil; Tuomilehto, Jaakko; Tybjaerg-Hansen, Anne; Tyrer, Jonathan P; Uher, Rudolf; Uitterlinden, André G; Ulivi, Sheila; van der Laan, Sander W; Van Der Leij, Andries R; van Duijn, Cornelia M; van Schoor, Natasja M; van Setten, Jessica; Varbo, Anette; Varga, Tibor V; Varma, Rohit; Edwards, Digna R Velez; Vermeulen, Sita H; Vestergaard, Henrik; Vitart, Veronique; Vogt, Thomas F; Vozzi, Diego; Walker, Mark; Wang, Feijie; Wang, Carol A; Wang, Shuai; Wang, Yiqin; Wareham, Nicholas J; Warren, Helen R; Wessel, Jennifer; Willems, Sara M; Wilson, James G; Witte, Daniel R; Woods, Michael O; Wu, Ying; Yaghootkar, Hanieh; Yao, Jie; Yao, Pang; Yerges-Armstrong, Laura M; Young, Robin; Zeggini, Eleftheria; Zhan, Xiaowei; Zhang, Weihua; Zhao, Jing Hua; Zhao, Wei; Zhao, Wei; Zheng, He; Zhou, Wei; Rotter, Jerome I; Boehnke, Michael; Kathiresan, Sekar; McCarthy, Mark I; Willer, Cristen J; Stefansson, Kari; Borecki, Ingrid B; Liu, Dajiang J; North, Kari E; Heard-Costa, Nancy L; Pers, Tune H; Lindgren, Cecilia M; Oxvig, Claus; Kutalik, Zoltán; Rivadeneira, Fernando; Loos, Ruth JF; Frayling, Timothy M; Hirschhorn, Joel N; Deloukas, Panos; Lettre, Guillaume

    2016-01-01

    Summary Height is a highly heritable, classic polygenic trait with ∼700 common associated variants identified so far through genome-wide association studies. Here, we report 83 height-associated coding variants with lower minor allele frequencies (range of 0.1-4.8%) and effects of up to 2 cm/allele (e.g. in IHH, STC2, AR and CRISPLD2), >10 times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (+1-2 cm/allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes mutated in monogenic growth disorders and highlight new biological candidates (e.g. ADAMTS3, IL11RA, NOX4) and pathways (e.g. proteoglycan/glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate to large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways. PMID:28146470

  16. Variants of polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, Matt; Wogulis, Mark

    The present invention relates to polypeptide having cellulolytic enhancing activity variants. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.

  17. Listeners' processing of a given reduced word pronunciation variant directly reflects their exposure to this variant: Evidence from native listeners and learners of French.

    PubMed

    Brand, Sophie; Ernestus, Mirjam

    2018-05-01

    In casual conversations, words often lack segments. This study investigates whether listeners rely on their experience with reduced word pronunciation variants during the processing of single segment reduction. We tested three groups of listeners in a lexical decision experiment with French words produced either with or without word-medial schwa (e.g., /ʀvy/ and /ʀvy/ for revue). Participants also rated the relative frequencies of the two pronunciation variants of the words. If the recognition accuracy and reaction times (RTs) for a given listener group correlate best with the frequencies of occurrence holding for that given listener group, recognition is influenced by listeners' exposure to these variants. Native listeners' relative frequency ratings correlated well with their accuracy scores and RTs. Dutch advanced learners' accuracy scores and RTs were best predicted by their own ratings. In contrast, the accuracy and RTs from Dutch beginner learners of French could not be predicted by any relative frequency rating; the rating task was probably too difficult for them. The participant groups showed behaviour reflecting their difference in experience with the pronunciation variants. Our results strongly suggest that listeners store the frequencies of occurrence of pronunciation variants, and consequently the variants themselves.

  18. Foodborne outbreak and nonmotile Salmonella enterica variant, France.

    PubMed

    Le Hello, Simon; Brisabois, Anne; Accou-Demartin, Marie; Josse, Adeline; Marault, Muriel; Francart, Sylvie; Da Silva, Nathalie Jourdan; Weill, François-Xavier

    2012-01-01

    We report a food-related outbreak of salmonellosis in humans caused by a nonmotile variant of Salmonella enterica serotype Typhimurium in France in 2009. This nonmotile variant had been circulating in laying hens but was not considered as Typhimurium and consequently escaped European poultry flock regulations.

  19. Identification of copy number variants in horses.

    PubMed

    Doan, Ryan; Cohen, Noah; Harrington, Jessica; Veazey, Kylee; Veazy, Kylee; Juras, Rytis; Cothran, Gus; McCue, Molly E; Skow, Loren; Dindot, Scott V

    2012-05-01

    Copy number variants (CNVs) represent a substantial source of genetic variation in mammals. However, the occurrence of CNVs in horses and their subsequent impact on phenotypic variation is unknown. We performed a study to identify CNVs in 16 horses representing 15 distinct breeds (Equus caballus) and an individual gray donkey (Equus asinus) using a whole-exome tiling array and the array comparative genomic hybridization methodology. We identified 2368 CNVs ranging in size from 197 bp to 3.5 Mb. Merging identical CNVs from each animal yielded 775 CNV regions (CNVRs), involving 1707 protein- and RNA-coding genes. The number of CNVs per animal ranged from 55 to 347, with median and mean sizes of CNVs of 5.3 kb and 99.4 kb, respectively. Approximately 6% of the genes investigated were affected by a CNV. Biological process enrichment analysis indicated CNVs primarily affected genes involved in sensory perception, signal transduction, and metabolism. CNVs also were identified in genes regulating blood group antigens, coat color, fecundity, lactation, keratin formation, neuronal homeostasis, and height in other species. Collectively, these data are the first report of copy number variation in horses and suggest that CNVs are common in the horse genome and may modulate biological processes underlying different traits observed among horses and horse breeds.

  20. Spatial distributions of Pseudomonas fluorescens colony variants in mixed-culture biofilms.

    PubMed

    Workentine, Matthew L; Wang, Siyuan; Ceri, Howard; Turner, Raymond J

    2013-07-28

    The emergence of colony morphology variants in structured environments is being recognized as important to both niche specialization and stress tolerance. Pseudomonas fluorescens demonstrates diversity in both its natural environment, the rhizosphere, and in laboratory grown biofilms. Sub-populations of these variants within a biofilm have been suggested as important contributors to antimicrobial stress tolerance given their altered susceptibility to various agents. As such it is of interest to determine how these variants might be distributed in the biofilm environment. Here we present an analysis of the spatial distribution of Pseudomonas fluorescens colony morphology variants in mixed-culture biofilms with the wildtype phenotype. These findings reveal that two variant colony morphotypes demonstrate a significant growth advantage over the wildtype morphotype in the biofilm environment. The two variant morphotypes out-grew the wildtype across the entire biofilm and this occurred within 24 h and was maintained through to 96 h. This competitive advantage was not observed in homogeneous broth culture. The significant advantage that the variants demonstrate in biofilm colonization over the wildtype denotes the importance of this phenotype in structured environments.