Sample records for ucp2-dependent mitochondrial mechanism

  1. Ghrelin promotes and protects nigrostriatal dopamine function via an UCP2-dependent mitochondrial mechanism

    PubMed Central

    Andrews, Zane B.; Erion, Derek; Beiler, Rudolph; Liu, Zhong-Wu; Abizaid, Alfonso; Zigman, Jeffrey; Elsworth, John D.; Savitt, Joseph M.; DiMarchi, Richard; Tschoep, Matthias; Roth, Robert H.; Gao, Xiao-Bing; Horvath, Tamas L.

    2010-01-01

    Ghrelin targets the hypothalamus to regulate food intake and adiposity. Endogenous ghrelin receptors (growth hormone secretagogue receptor, GHSR) are also present in extrahypothalamic sites where they promote circuit activity associated with learning and memory, and reward seeking behavior. Here, we show that the substantia nigra pars compacta (SNpc), a brain region where dopamine (DA) cell degeneration leads to Parkinson’s disease (PD), expresses GHSR. Ghrelin binds to SNpc cells, electrically activates SNpc DA neurons, increases tyrosine hydroxylase mRNA and increases DA concentration in the dorsal striatum. Exogenous ghrelin administration decreased SNpc DA cell loss and restricted striatal dopamine loss after 1-methyl-4-phenyl-1,2,5,6 tetrahydropyridine (MPTP) treatment. Genetic ablation of ghrelin or the ghrelin receptor (GHSR) increased SNpc DA cell loss and lowered striatal dopamine levels after MPTP treatment, an effect that was reversed by selective reactivation of GHSR in catecholaminergic neurons. Ghrelin-induced neuroprotection was dependent on the mitochondrial redox state via uncoupling protein 2 (UCP2)-dependent alterations in mitochondrial respiration, ROS production and biogenesis. Taken together, our data reveals that peripheral ghrelin plays an important role in the maintenance and protection of normal nigrostriatal dopamine function by activating UCP2-dependent mitochondrial mechanisms. These studies support ghrelin as a novel therapeutic strategy to combat neurodegeneration, loss of appetite and body weight associated with PD. Finally, we discuss the potential implications of these studies on the link between obesity and neurodegeneration. PMID:19906954

  2. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1

    PubMed Central

    Chouchani, Edward T.; Kazak, Lawrence; Jedrychowski, Mark P.; Lu, Gina Z.; Erickson, Brian K.; Szpyt, John; Pierce, Kerry A.; Laznik-Bogoslavski, Dina; Vetrivelan, Ramalingam; Clish, Clary B.; Robinson, Alan J.; Gygi, Steve P.; Spiegelman, Bruce M.

    2017-01-01

    Brown adipose tissue (BAT) can dissipate chemical energy as heat through thermogenic respiration, which requires uncoupling protein 1 (UCP1)1,2. Thermogenesis from BAT and beige adipose can combat obesity and diabetes3, encouraging investigation of factors that control UCP1-dependent respiration in vivo. Herein we show that acutely activated BAT thermogenesis is defined by a substantial increase in mitochondrial reactive oxygen species (ROS) levels. Remarkably, this process supports in vivo BAT thermogenesis, as pharmacological depletion of mitochondrial ROS results in hypothermia upon cold exposure, and inhibits UCP1-dependent increases in whole body energy expenditure. We further establish that thermogenic ROS alter BAT cysteine thiol redox status to drive increased respiration, and Cys253 of UCP1 is a key target. UCP1 Cys253 is sulfenylated during thermogenesis, while mutation of this site desensitizes the purine nucleotide inhibited state of the carrier to adrenergic activation and uncoupling. These studies identify BAT mitochondrial ROS induction as a mechanism that drives UCP1-dependent thermogenesis and whole body energy expenditure, which opens the way to develop improved therapeutic strategies for combating metabolic disorders. PMID:27027295

  3. UCP2 muscle gene transfer modifies mitochondrial membrane potential.

    PubMed

    Marti, A; Larrarte, E; Novo, F J; Garcia, M; Martinez, J A

    2001-01-01

    The aim of this work was to evaluate the effect of uncoupling protein 2 (UCP2) muscle gene transfer on mitochondrial activity. Five week-old male Wistar rats received an intramuscular injection of plasmid pXU1 containing UCP2 cDNA in the right tibialis anterior muscles. Left tibialis anterior muscles were injected with vehicle as control. Ten days after DNA injection, tibialis anterior muscles were dissected and muscle mitochondria isolated and analyzed. There were two mitochondrial populations in the muscle after UCP2 gene transfer, one of low fluorescence and complexity and the other, showing high fluorescence and complexity. UCP2 gene transfer resulted in a 3.6 fold increase in muscle UCP2 protein levels compared to control muscles assessed by Western blotting. Furthermore, a significant reduction in mitochondria membrane potential assessed by spectrofluorometry and flow cytometry was observed. The mitochondria membrane potential reduction might account for a decrease in fluorescence of the low fluorescence mitochondrial subpopulation. It has been demonstrated that UCP2 muscle gene transfer in vivo is associated with a lower mitochondria membrane potential. Our results suggest the potential involvement of UCP2 in uncoupling respiration. International Journal of Obesity (2001) 25, 68-74

  4. Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein.

    PubMed

    Park, Daeho; Han, Claudia Z; Elliott, Michael R; Kinchen, Jason M; Trampont, Paul C; Das, Soumita; Collins, Sheila; Lysiak, Jeffrey J; Hoehn, Kyle L; Ravichandran, Kodi S

    2011-08-21

    Rapid and efficient removal of apoptotic cells by phagocytes is important during development, tissue homeostasis and in immune responses. Efficient clearance depends on the capacity of a single phagocyte to ingest multiple apoptotic cells successively, and to process the corpse-derived cellular material. However, the factors that influence continued clearance by phagocytes are not known. Here we show that the mitochondrial membrane potential of the phagocyte critically controls engulfment capacity, with lower potential enhancing engulfment and vice versa. The mitochondrial membrane protein Ucp2, which acts to lower the mitochondrial membrane potential, was upregulated in phagocytes engulfing apoptotic cells. Loss of Ucp2 reduced phagocytic capacity, whereas Ucp2 overexpression enhanced engulfment. Mutational and pharmacological studies indicated a direct role for Ucp2-mediated mitochondrial function in phagocytosis. Macrophages from Ucp2-deficient mice were impaired in phagocytosis in vitro, and Ucp2-deficient mice showed profound in vivo defects in clearing dying cells in the thymus and testes. Collectively, these data indicate that mitochondrial membrane potential and Ucp2 are key molecular determinants of apoptotic cell clearance. As Ucp2 is linked to metabolic diseases and atherosclerosis, this newly discovered role for Ucp2 in apoptotic cell clearance has implications for the complex aetiology and pathogenesis of these diseases.

  5. Single nucleotide polymorphisms linked to mitochondrial uncoupling protein genes UCP2 and UCP3 affect mitochondrial metabolism and healthy aging in female nonagenarians

    PubMed Central

    Kim, Sangkyu; Myers, Leann; Ravussin, Eric; Cherry, Katie E.; Jazwinski, S. Michal

    2016-01-01

    Energy expenditure decreases with age, but in the oldest-old, energy demand for maintenance of body functions increases with declining health. Uncoupling proteins have profound impact on mitochondrial metabolic processes; therefore, we focused attention on mitochondrial uncoupling protein genes. Alongside resting metabolic rate (RMR), two SNPs in the promoter region of UCP2 were associated with healthy aging. These SNPs mark potential binding sites for several transcription factors; thus, they may affect expression of the gene. A third SNP in the 3′-UTR of UCP3 interacted with RMR. This UCP3 SNP is known to impact UCP3 expression in tissue culture cells, and it has been associated with body weight and mitochondrial energy metabolism. The significant main effects of the UCP2 SNPs and the interaction effect of the UCP3 SNP were also observed after controlling for fat-free mass (FFM) and physical-activity related energy consumption. The association of UCP2/3 with healthy aging was not found in males. Thus, our study provides evidence that the genetic risk factors for healthy aging differ in males and females, as expected from the differences in the phenotypes associated with healthy aging between the two sexes. It also has implications for how mitochondrial function changes during aging. PMID:26965008

  6. Single nucleotide polymorphisms linked to mitochondrial uncoupling protein genes UCP2 and UCP3 affect mitochondrial metabolism and healthy aging in female nonagenarians.

    PubMed

    Kim, Sangkyu; Myers, Leann; Ravussin, Eric; Cherry, Katie E; Jazwinski, S Michal

    2016-08-01

    Energy expenditure decreases with age, but in the oldest-old, energy demand for maintenance of body functions increases with declining health. Uncoupling proteins have profound impact on mitochondrial metabolic processes; therefore, we focused attention on mitochondrial uncoupling protein genes. Alongside resting metabolic rate (RMR), two SNPs in the promoter region of UCP2 were associated with healthy aging. These SNPs mark potential binding sites for several transcription factors; thus, they may affect expression of the gene. A third SNP in the 3'-UTR of UCP3 interacted with RMR. This UCP3 SNP is known to impact UCP3 expression in tissue culture cells, and it has been associated with body weight and mitochondrial energy metabolism. The significant main effects of the UCP2 SNPs and the interaction effect of the UCP3 SNP were also observed after controlling for fat-free mass (FFM) and physical-activity related energy consumption. The association of UCP2/3 with healthy aging was not found in males. Thus, our study provides evidence that the genetic risk factors for healthy aging differ in males and females, as expected from the differences in the phenotypes associated with healthy aging between the two sexes. It also has implications for how mitochondrial function changes during aging.

  7. Glutathionylation acts as a control switch for uncoupling proteins UCP2 and UCP3.

    PubMed

    Mailloux, Ryan J; Seifert, Erin L; Bouillaud, Frédéric; Aguer, Céline; Collins, Sheila; Harper, Mary-Ellen

    2011-06-17

    The mitochondrial uncoupling proteins 2 and 3 (UCP2 and -3) are known to curtail oxidative stress and participate in a wide array of cellular functions, including insulin secretion and the regulation of satiety. However, the molecular control mechanism(s) governing these proteins remains elusive. Here we reveal that UCP2 and UCP3 contain reactive cysteine residues that can be conjugated to glutathione. We further demonstrate that this modification controls UCP2 and UCP3 function. Both reactive oxygen species and glutathionylation were found to activate and deactivate UCP3-dependent increases in non-phosphorylating respiration. We identified both Cys(25) and Cys(259) as the major glutathionylation sites on UCP3. Additional experiments in thymocytes from wild-type and UCP2 null mice demonstrated that glutathionylation similarly diminishes non-phosphorylating respiration. Our results illustrate that UCP2- and UCP3-mediated state 4 respiration is controlled by reversible glutathionylation. Altogether, these findings advance our understanding of the roles UCP2 and UCP3 play in modulating metabolic efficiency, cell signaling, and oxidative stress processes.

  8. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalgaard, Louise T., E-mail: ltd@ruc.dk; Department of Science, Systems and Models, Roskilde University

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer UCP2 mRNA levels are decreased in islets of Langerhans from glucokinase deficient mice. Black-Right-Pointing-Pointer UCP2 mRNA up-regulation by glucose is dependent on glucokinase. Black-Right-Pointing-Pointer Absence of UCP2 increases GSIS of glucokinase heterozygous pancreatic islets. Black-Right-Pointing-Pointer This may protect glucokinase deficient mice from hyperglycemic damages. -- Abstract: Uncoupling Protein 2 (UCP2) is expressed in the pancreatic {beta}-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for UCP2 up-regulation in response to increased glucose is unknown. The aim was tomore » examine the effects of glucokinase (GK) deficiency on UCP2 mRNA levels and to characterize the interaction between UCP2 and GK with regard to glucose-stimulated insulin secretion in pancreatic islets. UCP2 mRNA expression was reduced in GK+/- islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase mimetic, did not prevent the glucose-induced up-regulation of UCP2. Glucose-stimulated insulin secretion was increased in UCP2-/- and GK+/- islets compared with GK+/- islets and UCP2 deficiency improved glucose tolerance of GK+/- mice. Accordingly, UCP2 deficiency increased ATP-levels of GK+/- mice. Thus, the compensatory down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients.« less

  9. Uncoupling Lipid Metabolism from Inflammation through Fatty Acid Binding Protein-Dependent Expression of UCP2

    PubMed Central

    Xu, Hongliang; Hertzel, Ann V.; Steen, Kaylee A.; Wang, Qigui; Suttles, Jill

    2015-01-01

    Chronic inflammation in obese adipose tissue is linked to endoplasmic reticulum (ER) stress and systemic insulin resistance. Targeted deletion of the murine fatty acid binding protein (FABP4/aP2) uncouples obesity from inflammation although the mechanism underlying this finding has remained enigmatic. Here, we show that inhibition or deletion of FABP4/aP2 in macrophages results in increased intracellular free fatty acids (FFAs) and elevated expression of uncoupling protein 2 (UCP2) without concomitant increases in UCP1 or UCP3. Silencing of UCP2 mRNA in FABP4/aP2-deficient macrophages negated the protective effect of FABP loss and increased ER stress in response to palmitate or lipopolysaccharide (LPS). Pharmacologic inhibition of FABP4/aP2 with the FABP inhibitor HTS01037 also upregulated UCP2 and reduced expression of BiP, CHOP, and XBP-1s. Expression of native FABP4/aP2 (but not the non-fatty acid binding mutant R126Q) into FABP4/aP2 null cells reduced UCP2 expression, suggesting that the FABP-FFA equilibrium controls UCP2 expression. FABP4/aP2-deficient macrophages are resistant to LPS-induced mitochondrial dysfunction and exhibit decreased mitochondrial protein carbonylation and UCP2-dependent reduction in intracellular reactive oxygen species. These data demonstrate that FABP4/aP2 directly regulates intracellular FFA levels and indirectly controls macrophage inflammation and ER stress by regulating the expression of UCP2. PMID:25582199

  10. Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein

    PubMed Central

    Park, Daeho; Han, Claudia; Elliott, Michael R.; Kinchen, Jason M.; Trampont, Paul C.; Das, Soumita; Collins, Sheila; Lysiak, Jeffrey J.; Hoehn, Kyle L.; Ravichandran, Kodi S.

    2012-01-01

    Rapid and efficient removal of apoptotic cells by phagocytes plays a key role during development, tissue homeostasis, and in controlling immune responses1–5. An important feature of efficient clearance is the capacity of a single phagocyte to ingest multiple apoptotic cells successively, and to process the increased load of corpse-derived cellular material6–9. However, factors that influence sustained phagocytic capacity or how they in turn influence continued clearance by phagocytes are not known. Here we identify that the ability of a phagocyte to control its mitochondrial membrane potential is a critical factor in the capacity of a phagocyte to engulf apoptotic cells. Changing the phagocyte mitochondrial membrane potential (genetically or pharmacologically) significantly affected phagocytosis, with lower potential enhancing engulfment and higher membrane potential inhibiting uptake. We then identified that Ucp2, a mitochondrial membrane protein that acts to lower the mitochondrial membrane potential10–12, is upregulated in phagocytes engulfing apoptotic cells (but not synthetic targets, bacteria, or yeast). Loss of Ucp2 limited the capacity of phagocytes to continually ingest apoptotic cells, while overexpression of Ucp2 increased the capacity for engulfment and the ability to engulf multiple apoptotic cells. Mutational and pharmacological inhibition of Ucp2 uncoupling activity reversed the positive effect of Ucp2 on engulfment capacity, suggesting a direct role for Ucp2-mediated mitochondrial function in phagocytosis. Macrophages from Ucp2-deficient mice13, 14 were impaired in their capacity to engulf apoptotic cells in vitro, and Ucp2-deficient mice displayed profound in vivo defects in clearing dying cells in the thymus and the testes. Collectively, these data suggest that phagocytes alter the mitochondrial membrane potential during engulfment to regulate uptake of sequential apoptotic cells, and that Ucp2 is a key molecular determinant of this step in

  11. Hexokinase II acts through UCP3 to suppress mitochondrial reactive oxygen species production and maintain aerobic respiration.

    PubMed

    Mailloux, Ryan J; Dumouchel, Tyler; Aguer, Céline; deKemp, Rob; Beanlands, Rob; Harper, Mary-Ellen

    2011-07-15

    UCP3 (uncoupling protein-3) mitigates mitochondrial ROS (reactive oxygen species) production, but the mechanisms are poorly understood. Previous studies have also examined UCP3 effects, including decreased ROS production, during metabolic states when fatty acid oxidation is high (e.g. a fasting state). However, the role of UCP3 when carbohydrate oxidation is high (e.g. fed state) has remained largely unexplored. In the present study, we show that mitochondrial-bound HK (hexokinase) II curtails oxidative stress and enhances aerobic metabolism of glucose in the fed state in a UCP3-dependent manner. Genetic knockout or inhibition of UCP3 significantly decreased mitochondrial-bound HKII. Furthermore, UCP3 was required for the HKII-mediated decrease in mitochondrial ROS emission. Intriguingly, the UCP3-mediated modulation of mitochondria-associated HKII was only observed in cells cultured under high-glucose conditions. UCP3 was required to maintain high rates of aerobic metabolism in high-glucose-treated cells and in muscle of fed mice. Deficiency in UCP3 resulted in a metabolic shift that favoured anaerobic glycolytic metabolism, increased glucose uptake and increased sensitivity to oxidative challenge. PET (positron emission tomography) of [18F]fluoro-deoxyglucose uptake confirmed these findings in UCP3-knockout and wild-type mice. Collectively, our findings link the anti-oxidative and metabolic functions of UCP3 through a surprising molecular connection with mitochondrial-bound HKII.

  12. Long-term fasting decreases mitochondrial avian UCP-mediated oxygen consumption in hypometabolic king penguins

    PubMed Central

    Rey, Benjamin; Halsey, Lewis G.; Dolmazon, Virginie; Rouanet, Jean-Louis; Roussel, Damien; Handrich, Yves; Butler, Patrick J.; Duchamp, Claude

    2008-01-01

    In endotherms, regulation of the degree of mitochondrial coupling affects cell metabolic efficiency. Thus it may be a key contributor to minimizing metabolic rate during long periods of fasting. The aim of the present study was to investigate whether variation in mitochondrial avian uncoupling proteins (avUCP), as putative regulators of mitochondrial oxidative phosphorylation, may contribute to the ability of king penguins (Aptenodytes patagonicus) to withstand fasting for several weeks. After 20 days of fasting, king penguins showed a reduced rate of whole animal oxygen consumption (V̇o2; −33%) at rest, together with a reduced abundance of avUCP and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1-α) mRNA in pectoralis muscle (−54%, −36%, respectively). These parameters were restored after the birds had been refed for 3 days. Furthermore, in recently fed, but not in fasted penguins, isolated muscle mitochondria showed a guanosine diphosphate-inhibited, fatty acid plus superoxide-activated respiration, indicating the presence of a functional UCP. It was calculated that variation in mitochondrial UCP-dependent respiration in vitro may contribute to nearly 20% of the difference in resting V̇o2 between fed or refed penguins and fasted penguins measured in vivo. These results suggest that the lowering of avUCP activity during periods of long-term energetic restriction may contribute to the reduction in metabolic rate and hence the ability of king penguins to face prolonged periods of fasting. PMID:18495832

  13. Long-term fasting decreases mitochondrial avian UCP-mediated oxygen consumption in hypometabolic king penguins.

    PubMed

    Rey, Benjamin; Halsey, Lewis G; Dolmazon, Virginie; Rouanet, Jean-Louis; Roussel, Damien; Handrich, Yves; Butler, Patrick J; Duchamp, Claude

    2008-07-01

    In endotherms, regulation of the degree of mitochondrial coupling affects cell metabolic efficiency. Thus it may be a key contributor to minimizing metabolic rate during long periods of fasting. The aim of the present study was to investigate whether variation in mitochondrial avian uncoupling proteins (avUCP), as putative regulators of mitochondrial oxidative phosphorylation, may contribute to the ability of king penguins (Aptenodytes patagonicus) to withstand fasting for several weeks. After 20 days of fasting, king penguins showed a reduced rate of whole animal oxygen consumption (Vo2; -33%) at rest, together with a reduced abundance of avUCP and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC1-alpha) mRNA in pectoralis muscle (-54%, -36%, respectively). These parameters were restored after the birds had been refed for 3 days. Furthermore, in recently fed, but not in fasted penguins, isolated muscle mitochondria showed a guanosine diphosphate-inhibited, fatty acid plus superoxide-activated respiration, indicating the presence of a functional UCP. It was calculated that variation in mitochondrial UCP-dependent respiration in vitro may contribute to nearly 20% of the difference in resting Vo2 between fed or refed penguins and fasted penguins measured in vivo. These results suggest that the lowering of avUCP activity during periods of long-term energetic restriction may contribute to the reduction in metabolic rate and hence the ability of king penguins to face prolonged periods of fasting.

  14. Calorie restriction in mice overexpressing UCP3: evidence that prior mitochondrial uncoupling alters response.

    PubMed

    Estey, Carmen; Seifert, Erin L; Aguer, Céline; Moffat, Cynthia; Harper, Mary-Ellen

    2012-05-01

    Calorie restriction (CR) without malnutrition is the only intervention to consistently increase lifespan in all species tested, and lower age-related pathologies in mammals including humans. It has been suggested that uncoupling of mitochondrial oxidative phosphorylation, using chemical uncouplers, mimics CR, and that overlapping mechanisms underlie the phenotypic changes induced by uncoupling and CR. We aimed to critically assess this using a unique mouse model of skeletal muscle-targeted UCP3-induced uncoupling (UCP3Tg), and focused our studies mainly on skeletal muscle mitochondria. Compared to ad libitum fed Wt mice, skeletal muscle mitochondria from ad libitum fed UCP3Tg mice showed higher basal uncoupling and lower H(2)O(2) emission, with unchanged maximal oxidative phosphorylation, and mitochondrial content. UCP3Tg CR mice showed some tendency for differential adaptation to CR, with lowered H(+) leak conductance and evidence for higher H(2)O(2) emission from skeletal muscle mitochondria following 2 weeks CR, and failure to lower H(2)O(2) emission after 1 month CR. Differential adaptation was also apparent at the whole body level: while UCP3Tg CR mice lost as much weight as Wt CR mice, the proportion of muscle lost was higher in UCP3Tg mice. However, a striking outcome of our studies was the absence of change with CR in many of the parameters of mitochondrial function and content that we measured in mice of either genotype. Overall, our study raises the question of whether CR can consistently modify skeletal muscle mitochondria; alterations with CR may only be apparent under certain conditions such as during the 2 wk CR intervention in the UCP3Tg mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Calorie restriction in mice overexpressing UCP3: evidence that prior mitochondrial uncoupling alters response

    PubMed Central

    Estey, Carmen; Seifert, Erin L.; Aguer, Céline; Moffat, Cynthia; Harper, Mary-Ellen

    2012-01-01

    SUMMARY Calorie restriction (CR) without malnutrition is the only intervention to consistently increase lifespan in all species tested, and lower age-related pathologies in mammals including humans. It has been suggested that uncoupling of mitochondrial oxidative phosphorylation, using chemical uncouplers, mimics CR, and that overlapping mechanisms underlie the phenotypic changes induced by uncoupling and CR. We aimed to critically assess this using a unique mouse model of skeletal muscle-targeted UCP3-induced uncoupling (UCP3Tg), and focused our studies mainly on skeletal muscle mitochondria. Compared to ad libitum fed Wt mice, skeletal muscle mitochondria from ad libitum fed UCP3Tg mice showed higher basal uncoupling and lower H2O2 emission, with unchanged maximal oxidative phosphorylation, and mitochondrial content. UCP3Tg CR mice showed some tendency for differential adaptation to CR, with lowered H+ leak conductance and evidence for higher H2O2 emission from skeletal muscle mitochondria following 2 weeks CR, and failure to lower H2O2 emission after 1 month CR. Differential adaptation was also apparent at the whole body level: while UCP3Tg CR mice lost as much weight as Wt CR mice, the proportion of muscle lost was higher in UCP3Tg mice. However, a striking outcome of our studies was the absence of change with CR in many of the parameters of mitochondrial function and content that we measured in mice of either genotype. Overall, our study raises the question of whether CR can consistently modify skeletal muscle mitochondria; alterations with CR may only be apparent under certain conditions such as during the 2 wk CR intervention in the UCP3Tg mice. PMID:22406134

  16. H2O2-Activated Mitochondrial Phospholipase iPLA2γ Prevents Lipotoxic Oxidative Stress in Synergy with UCP2, Amplifies Signaling via G-Protein–Coupled Receptor GPR40, and Regulates Insulin Secretion in Pancreatic β-Cells

    PubMed Central

    Ježek, Jan; Dlasková, Andrea; Zelenka, Jaroslav; Jabůrek, Martin

    2015-01-01

    Abstract Aims: Pancreatic β-cell chronic lipotoxicity evolves from acute free fatty acid (FA)–mediated oxidative stress, unprotected by antioxidant mechanisms. Since mitochondrial uncoupling protein-2 (UCP2) plays antioxidant and insulin-regulating roles in pancreatic β-cells, we tested our hypothesis, that UCP2-mediated uncoupling attenuating mitochondrial superoxide production is initiated by FA release due to a direct H2O2-induced activation of mitochondrial phospholipase iPLA2γ. Results: Pro-oxidant tert-butylhydroperoxide increased respiration, decreased membrane potential and mitochondrial matrix superoxide release rates of control but not UCP2- or iPLA2γ-silenced INS-1E cells. iPLA2γ/UCP2-mediated uncoupling was alternatively activated by an H2O2 burst, resulting from palmitic acid (PA) β-oxidation, and it was prevented by antioxidants or catalase overexpression. Exclusively, nascent FAs that cleaved off phospholipids by iPLA2γ were capable of activating UCP2, indicating that the previously reported direct redox UCP2 activation is actually indirect. Glucose-stimulated insulin release was not affected by UCP2 or iPLA2γ silencing, unless pro-oxidant activation had taken place. PA augmented insulin secretion via G-protein–coupled receptor 40 (GPR40), stimulated by iPLA2γ-cleaved FAs (absent after GPR40 silencing). Innovation and Conclusion: The iPLA2γ/UCP2 synergy provides a feedback antioxidant mechanism preventing oxidative stress by physiological FA intake in pancreatic β-cells, regulating glucose-, FA-, and redox-stimulated insulin secretion. iPLA2γ is regulated by exogenous FA via β-oxidation causing H2O2 signaling, while FAs are cleaved off phospholipids, subsequently acting as amplifying messengers for GPR40. Hence, iPLA2γ acts in eminent physiological redox signaling, the impairment of which results in the lack of antilipotoxic defense and contributes to chronic lipotoxicity. Antioxid. Redox Signal. 23, 958–972. PMID:25925080

  17. G2019S leucine-rich repeat kinase 2 causes uncoupling protein-mediated mitochondrial depolarization

    PubMed Central

    Papkovskaia, Tatiana D.; Chau, Kai-Yin; Inesta-Vaquera, Francisco; Papkovsky, Dmitri B.; Healy, Daniel G.; Nishio, Koji; Staddon, James; Duchen, Michael R.; Hardy, John; Schapira, Anthony H.V.; Cooper, J. Mark

    2012-01-01

    The G2019S leucine rich repeat kinase 2 (LRRK2) mutation is the most common genetic cause of Parkinson's disease (PD), clinically and pathologically indistinguishable from idiopathic PD. Mitochondrial abnormalities are a common feature in PD pathogenesis and we have investigated the impact of G2019S mutant LRRK2 expression on mitochondrial bioenergetics. LRRK2 protein expression was detected in fibroblasts and lymphoblasts at levels higher than those observed in the mouse brain. The presence of G2019S LRRK2 mutation did not influence LRRK2 expression in fibroblasts. However, the expression of the G2019S LRRK2 mutation in both fibroblast and neuroblastoma cells was associated with mitochondrial uncoupling. This was characterized by decreased mitochondrial membrane potential and increased oxygen utilization under basal and oligomycin-inhibited conditions. This resulted in a decrease in cellular ATP levels consistent with compromised cellular function. This uncoupling of mitochondrial oxidative phosphorylation was associated with a cell-specific increase in uncoupling protein (UCP) 2 and 4 expression. Restoration of mitochondrial membrane potential by the UCP inhibitor genipin confirmed the role of UCPs in this mechanism. The G2019S LRRK2-induced mitochondrial uncoupling and UCP4 mRNA up-regulation were LRRK2 kinase-dependent, whereas endogenous LRRK2 levels were required for constitutive UCP expression. We propose that normal mitochondrial function was deregulated by the expression of G2019S LRRK2 in a kinase-dependent mechanism that is a modification of the normal LRRK2 function, and this leads to the vulnerability of selected neuronal populations in PD. PMID:22736029

  18. Hypoxia-induced decrease of UCP3 gene expression in rat heart parallels metabolic gene switching but fails to affect mitochondrial respiratory coupling.

    PubMed

    Essop, M Faadiel; Razeghi, Peter; McLeod, Chris; Young, Martin E; Taegtmeyer, Heinrich; Sack, Michael N

    2004-02-06

    Mitochondrial uncoupling proteins 2 and 3 (UCP2 and UCP3) are postulated to contribute to antioxidant defense, nutrient partitioning, and energy efficiency in the heart. To distinguish isotype function in response to metabolic stress we measured cardiac mitochondrial function and cardiac UCP gene expression following chronic hypobaric hypoxia. Isolated mitochondrial O(2) consumption and ATP synthesis rate were reduced but respiratory coupling was unchanged compared to normoxic groups. Concurrently, left ventricular UCP3 mRNA levels were significantly decreased with hypoxia (p<0.05) while UCP2 levels remained unchanged versus controls. Diminished UCP3 expression was associated with coordinate regulation of counter-regulatory metabolic genes. From these data, we propose a role for UCP3 in the regulation of fatty acid oxidation in the heart as opposed to uncoupling of mitochondria. Moreover, the divergent hypoxia-induced regulation of UCP2 and UCP3 supports distinct mitochondrial regulatory functions of these inner mitochondrial membrane proteins in the heart in response to metabolic stress.

  19. UCP1, the mitochondrial uncoupling protein of brown adipocyte: A personal contribution and a historical perspective.

    PubMed

    Ricquier, Daniel

    2017-03-01

    The present text summarizes what was my contribution, starting in 1975, to the research on the uncoupling protein 1 (UCP1), the mitochondrial uncoupler of brown adipocytes. The research on UCP1 aimed at identifying the mechanisms of heat production by brown adipocytes that occurs in mammals either at birth or during cold exposure and arousal in hibernators. With others and in particular Dr. David Nicholls, I participated in the first experiments that contributed to the identification of UCP1. Important steps were the obtention of UCP1 antibodies followed with my main collaborator and friend Frédéric Bouillaud with the initial cloning of the UCP1 cDNA and gene from rats and humans. These molecular tools were then used not only to analyse UCP1 uncoupling activity and to investigate the effects of mutagenesis on the uncoupling function of this protein, but also to decipher the transcriptional regulation of the UCP1 gene. In addition to experiments carried out in rodents, we could identify UCP1 and thermogenic brown adipocytes in humans. A more recent outcome of our research on this uncoupling protein was the identification of a second isoform of UCP, that we named UCP2, and of several UCP homologues in mammals, chicken and plants. UCP1 is certainly a unique mitochondrial transporter able to uncouple respiration from ADP phosphorylation in mitochondria. The discovery of this protein has opened new avenues for studying energy expenditure in relation to overweight, obesity and related pathologies. Copyright © 2016. Published by Elsevier B.V.

  20. UCP2- and non-UCP2-mediated electric current in eukaryotic cells exhibits different properties.

    PubMed

    Wang, Ruihua; MoYung, K C; Zhang, M H; Poon, Karen

    2015-12-01

    Using live eukaryotic cells, including cancer cells, MCF-7 and HCT-116, normal hepatocytes and red blood cells in anode and potassium ferricyanide in cathode of MFC could generate bio-based electric current. Electrons and protons generated from the metabolic reaction in both cytosol and mitochondria contributing to the leaking would mediate the generation of electric current. Both resveratrol (RVT) and 2,4-dinitrophenol (DNP) used to induce proton leak in mitochondria were found to promote electric current production in all cells except red blood cells without mitochondria. Proton leak might be important for electric current production by bringing the charge balance in cells to enhance the further electron leak. The induced electric current by RVT can be blocked by Genipin, an inhibitor of UCP2-mediated proton leak, while that induced by DNP cannot. RVT could reduce reactive oxygen species (ROS) level in cells better than that of DNP. In addition, RVT increased mitochondrial membrane potential (MMP), while DNP decreased it. Results highly suggested the existence of at least two types of electric current that showed different properties. They included UCP2-mediated and non-UCP2-mediated electric current. UCP2-mediated electric current exhibited higher reactive oxygen species (ROS) reduction effect per unit electric current production than that of non-UCP2-mediated electric current. Higher UCP2-mediated electric current observed in cancer cells might contribute to the mechanism of drug resistence. Correlation could not be established between electric current production with either ROS and MMP without distinguishing the types of electric current.

  1. Uncoupling proteins (UCP) in unicellular eukaryotes: true UCPs or UCP1-like acting proteins?

    PubMed

    Luévano-Martínez, Luis Alberto

    2012-04-05

    Uncoupling proteins belong to the superfamily of mitochondrial anion carriers. They are apparently present throughout the Eukarya domain in which only some members have an established physiological function, i.e. UCP1 from brown adipose tissue is involved in non-shivering thermogenesis. However, the proteins responsible for the phenotype observed in unicellular organisms have not been characterized. In this report we analyzed functional evidence concerning unicellular UCPs and found that true UCPs are restricted to some taxonomical groups while proteins conferring a UCP1-like phenotype to fungi and most protists are the result of a promiscuous activity exerted by other mitochondrial anion carriers. We describe a possible evolutionary route followed by these proteins by which they acquire this promiscuous mechanism. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Mitophagy controls beige adipocyte maintenance through a Parkin-dependent and UCP1-independent mechanism.

    PubMed

    Lu, Xiaodan; Altshuler-Keylin, Svetlana; Wang, Qiang; Chen, Yong; Henrique Sponton, Carlos; Ikeda, Kenji; Maretich, Pema; Yoneshiro, Takeshi; Kajimura, Shingo

    2018-04-24

    Beige adipocytes are an inducible form of mitochondria-enriched thermogenic adipocytes that emerge in response to external stimuli, such as chronic cold exposure. We have previously shown that after the withdrawal of external stimuli, beige adipocytes directly acquire a white fat-like phenotype through autophagy-mediated mitochondrial degradation. We investigated the upstream pathway that mediates mitochondrial clearance and report that Parkin-mediated mitophagy plays a key role in the beige-to-white adipocyte transition. Mice genetically deficient in Park2 showed reduced mitochondrial degradation and retained thermogenic beige adipocytes even after the withdrawal of external stimuli. Norepinephrine signaling through the PKA pathway inhibited the recruitment of Parkin protein to mitochondria in beige adipocytes. However, mitochondrial proton uncoupling by uncoupling protein 1 (UCP1) was dispensable for Parkin recruitment and beige adipocyte maintenance. These results suggest a physiological mechanism by which external cues control mitochondrial homeostasis in thermogenic fat cells through mitophagy. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. UCP2 regulates mitochondrial fission and ventromedial nucleus control of glucose responsiveness

    PubMed Central

    Toda, Chitoku; Kim, Jung Dae; Impellizzeri, Daniela; Cuzzocrea, Salvatore; Liu, Zhong-Wu; Diano, Sabrina

    2016-01-01

    Summary The ventromedial nucleus of the hypothalamus (VMH) plays a critical role in regulating systemic glucose homeostasis. How neurons in this brain area adapt to the changing metabolic environment to regulate circulating glucose levels is ill-defined. Here we show that glucose load results in mitochondrial fission and reduced reactive oxygen species in VMH neurons mediated by dynamin-related peptide 1 (DRP1) under the control of uncoupling protein 2 (UCP2). Probed by genetic manipulations and chemical-genetic control of VMH neuronal circuitry, we unmasked that this mitochondrial adaptation determines the size of the pool of glucose-excited neurons in the VMH, and, that this process regulates systemic glucose homoeostasis. Thus, our data unmasked a critical cellular biological process controlled by mitochondrial dynamics in VMH regulation of systemic glucose homeostasis. PMID:26919426

  4. Human neuronal uncoupling proteins 4 and 5 (UCP4 and UCP5): structural properties, regulation, and physiological role in protection against oxidative stress and mitochondrial dysfunction.

    PubMed

    Ramsden, David B; Ho, Philip W-L; Ho, Jessica W-M; Liu, Hui-Fang; So, Danny H-F; Tse, Ho-Man; Chan, Koon-Ho; Ho, Shu-Leong

    2012-07-01

    Uncoupling proteins (UCPs) belong to a large family of mitochondrial solute carriers 25 (SLC25s) localized at the inner mitochondrial membrane. UCPs transport protons directly from the intermembrane space to the matrix. Of five structural homologues (UCP1 to 5), UCP4 and 5 are principally expressed in the central nervous system (CNS). Neurons derived their energy in the form of ATP that is generated through oxidative phosphorylation carried out by five multiprotein complexes (Complexes I-V) embedded in the inner mitochondrial membrane. In oxidative phosphorylation, the flow of electrons generated by the oxidation of substrates through the electron transport chain to molecular oxygen at Complex IV leads to the transport of protons from the matrix to the intermembrane space by Complex I, III, and IV. This movement of protons to the intermembrane space generates a proton gradient (mitochondrial membrane potential; MMP) across the inner membrane. Complex V (ATP synthase) uses this MMP to drive the conversion of ADP to ATP. Some electrons escape to oxygen-forming harmful reactive oxygen species (ROS). Proton leakage back to the matrix which bypasses Complex V resulting in a major reduction in ROS formation while having a minimal effect on MMP and hence, ATP synthesis; a process termed "mild uncoupling." UCPs act to promote this proton leakage as means to prevent excessive build up of MMP and ROS formation. In this review, we discuss the structure and function of mitochondrial UCPs 4 and 5 and factors influencing their expression. Hypotheses concerning the evolution of the two proteins are examined. The protective mechanisms of the two proteins against neurotoxins and their possible role in regulating intracellular calcium movement, particularly with regard to the pathogenesis of Parkinson's disease are discussed.

  5. Human neuronal uncoupling proteins 4 and 5 (UCP4 and UCP5): structural properties, regulation, and physiological role in protection against oxidative stress and mitochondrial dysfunction

    PubMed Central

    Ramsden, David B; Ho, Philip W-L; Ho, Jessica W-M; Liu, Hui-Fang; So, Danny H-F; Tse, Ho-Man; Chan, Koon-Ho; Ho, Shu-Leong

    2012-01-01

    Uncoupling proteins (UCPs) belong to a large family of mitochondrial solute carriers 25 (SLC25s) localized at the inner mitochondrial membrane. UCPs transport protons directly from the intermembrane space to the matrix. Of five structural homologues (UCP1 to 5), UCP4 and 5 are principally expressed in the central nervous system (CNS). Neurons derived their energy in the form of ATP that is generated through oxidative phosphorylation carried out by five multiprotein complexes (Complexes I–V) embedded in the inner mitochondrial membrane. In oxidative phosphorylation, the flow of electrons generated by the oxidation of substrates through the electron transport chain to molecular oxygen at Complex IV leads to the transport of protons from the matrix to the intermembrane space by Complex I, III, and IV. This movement of protons to the intermembrane space generates a proton gradient (mitochondrial membrane potential; MMP) across the inner membrane. Complex V (ATP synthase) uses this MMP to drive the conversion of ADP to ATP. Some electrons escape to oxygen-forming harmful reactive oxygen species (ROS). Proton leakage back to the matrix which bypasses Complex V resulting in a major reduction in ROS formation while having a minimal effect on MMP and hence, ATP synthesis; a process termed “mild uncoupling.” UCPs act to promote this proton leakage as means to prevent excessive build up of MMP and ROS formation. In this review, we discuss the structure and function of mitochondrial UCPs 4 and 5 and factors influencing their expression. Hypotheses concerning the evolution of the two proteins are examined. The protective mechanisms of the two proteins against neurotoxins and their possible role in regulating intracellular calcium movement, particularly with regard to the pathogenesis of Parkinson's disease are discussed. PMID:22950050

  6. UCP2 Regulates Mitochondrial Fission and Ventromedial Nucleus Control of Glucose Responsiveness.

    PubMed

    Toda, Chitoku; Kim, Jung Dae; Impellizzeri, Daniela; Cuzzocrea, Salvatore; Liu, Zhong-Wu; Diano, Sabrina

    2016-02-25

    The ventromedial nucleus of the hypothalamus (VMH) plays a critical role in regulating systemic glucose homeostasis. How neurons in this brain area adapt to the changing metabolic environment to regulate circulating glucose levels is ill defined. Here, we show that glucose load results in mitochondrial fission and reduced reactive oxygen species in VMH neurons mediated by dynamin-related peptide 1 (DRP1) under the control of uncoupling protein 2 (UCP2). Probed by genetic manipulations and chemical-genetic control of VMH neuronal circuitry, we unmasked that this mitochondrial adaptation determines the size of the pool of glucose-excited neurons in the VMH and that this process regulates systemic glucose homeostasis. Thus, our data unmasked a critical cellular biological process controlled by mitochondrial dynamics in VMH regulation of systemic glucose homeostasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Mitochondrial uncoupling in skeletal muscle by UCP1 augments energy expenditure and glutathione content while mitigating ROS production.

    PubMed

    Adjeitey, Cyril Nii-Klu; Mailloux, Ryan J; Dekemp, Robert A; Harper, Mary-Ellen

    2013-08-01

    Enhancement of proton leaks in muscle tissue represents a potential target for obesity treatment. In this study, we examined the bioenergetic and physiological implications of increased proton leak in skeletal muscle. To induce muscle-specific increases in proton leak, we used mice that selectively express uncoupling protein-1 (UCP1) in skeletal muscle tissue. UCP1 expression in muscle mitochondria was ∼13% of levels in brown adipose tissue (BAT) mitochondria and caused increased GDP-sensitive proton leak. This was associated with an increase in whole body energy expenditure and a decrease in white adipose tissue content. Muscle UCP1 activity had divergent effects on mitochondrial ROS emission and glutathione levels compared with BAT. UCP1 in muscle increased total mitochondrial glutathione levels ∼7.6 fold. Intriguingly, unlike in BAT mitochondria, leak through UCP1 in muscle controlled mitochondrial ROS emission. Inhibition of UCP1 with GDP in muscle mitochondria increased ROS emission ∼2.8-fold relative to WT muscle mitochondria. GDP had no impact on ROS emission from BAT mitochondria from either genotype. Collectively, these findings indicate that selective induction of UCP1-mediated proton leak in muscle can increase whole body energy expenditure and decrease adiposity. Moreover, ectopic UCP1 expression in skeletal muscle can control mitochondrial ROS emission, while it apparently plays no such role in its endogenous tissue, brown fat.

  8. Mitochondrial uncoupling in skeletal muscle by UCP1 augments energy expenditure and glutathione content while mitigating ROS production

    PubMed Central

    Adjeitey, Cyril Nii-Klu; Mailloux, Ryan J.; deKemp, Robert A.

    2013-01-01

    Enhancement of proton leaks in muscle tissue represents a potential target for obesity treatment. In this study, we examined the bioenergetic and physiological implications of increased proton leak in skeletal muscle. To induce muscle-specific increases in proton leak, we used mice that selectively express uncoupling protein-1 (UCP1) in skeletal muscle tissue. UCP1 expression in muscle mitochondria was ∼13% of levels in brown adipose tissue (BAT) mitochondria and caused increased GDP-sensitive proton leak. This was associated with an increase in whole body energy expenditure and a decrease in white adipose tissue content. Muscle UCP1 activity had divergent effects on mitochondrial ROS emission and glutathione levels compared with BAT. UCP1 in muscle increased total mitochondrial glutathione levels ∼7.6 fold. Intriguingly, unlike in BAT mitochondria, leak through UCP1 in muscle controlled mitochondrial ROS emission. Inhibition of UCP1 with GDP in muscle mitochondria increased ROS emission ∼2.8-fold relative to WT muscle mitochondria. GDP had no impact on ROS emission from BAT mitochondria from either genotype. Collectively, these findings indicate that selective induction of UCP1-mediated proton leak in muscle can increase whole body energy expenditure and decrease adiposity. Moreover, ectopic UCP1 expression in skeletal muscle can control mitochondrial ROS emission, while it apparently plays no such role in its endogenous tissue, brown fat. PMID:23757405

  9. Transcriptional upregulation of mitochondrial uncoupling protein 2 protects against oxidative stress-associated neurogenic hypertension.

    PubMed

    Chan, Samuel H H; Wu, Chiung-Ai; Wu, Kay L H; Ho, Ying-Hao; Chang, Alice Y W; Chan, Julie Y H

    2009-10-23

    Mitochondrial uncoupling proteins (UCPs) belong to a superfamily of mitochondrial anion transporters that uncouple ATP synthesis from oxidative phosphorylation and mitigates mitochondrial reactive oxygen species production. We assessed the hypothesis that UCP2 participates in central cardiovascular regulation by maintaining reactive oxygen species homeostasis in the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons that maintain vasomotor tone located. We also elucidated the molecular mechanisms that underlie transcriptional upregulation of UCP2 in response to oxidative stress in RVLM. In Sprague-Dawley rats, transcriptional upregulation of UCP2 in RVLM by rosiglitazone, an activator of its transcription factor peroxisome proliferator-activated receptor (PPAR)gamma, reduced mitochondrial hydrogen peroxide level in RVLM and systemic arterial pressure. Oxidative stress induced by microinjection of angiotensin II into RVLM augmented UCP2 mRNA or protein expression in RVLM, which was antagonized by comicroinjection of NADPH oxidase inhibitor (diphenyleneiodonium chloride), superoxide dismutase mimetic (tempol), or p38 mitogen-activated protein kinase inhibitor (SB203580) but not by extracellular signal-regulated kinase 1/2 inhibitor (U0126). Angiotensin II also induced phosphorylation of the PPARgamma coactivator, PPARgamma coactivator (PGC)-1alpha, and an increase in formation of PGC-1alpha/PPARgamma complexes in a p38 mitogen-activated protein kinase-dependent manner. Intracerebroventricular infusion of angiotensin II promoted an increase in mitochondrial hydrogen peroxide production in RVLM and chronic pressor response, which was potentiated by gene knockdown of UCP2 but blunted by rosiglitazone. These results suggest that transcriptional upregulation of mitochondrial UCP2 in response to an elevation in superoxide plays an active role in feedback regulation of reactive oxygen species production in RVLM and neurogenic hypertension associated

  10. Transcriptome response signatures associated with the overexpression of a mitochondrial uncoupling protein (AtUCP1) in tobacco.

    PubMed

    Laitz, Alessandra Vasconcellos Nunes; Acencio, Marcio Luis; Budzinski, Ilara G F; Labate, Mônica T V; Lemke, Ney; Ribolla, Paulo Eduardo Martins; Maia, Ivan G

    2015-01-01

    Mitochondrial inner membrane uncoupling proteins (UCP) dissipate the proton electrochemical gradient established by the respiratory chain, thus affecting the yield of ATP synthesis. UCP overexpression in plants has been correlated with oxidative stress tolerance, improved photosynthetic efficiency and increased mitochondrial biogenesis. This study reports the main transcriptomic responses associated with the overexpression of an UCP (AtUCP1) in tobacco seedlings. Compared to wild-type (WT), AtUCP1 transgenic seedlings showed unaltered ATP levels and higher accumulation of serine. By using RNA-sequencing, a total of 816 differentially expressed genes between the investigated overexpressor lines and the untransformed WT control were identified. Among them, 239 were up-regulated and 577 were down-regulated. As a general response to AtUCP1 overexpression, noticeable changes in the expression of genes involved in energy metabolism and redox homeostasis were detected. A substantial set of differentially expressed genes code for products targeted to the chloroplast and mainly involved in photosynthesis. The overall results demonstrate that the alterations in mitochondrial function provoked by AtUCP1 overexpression require important transcriptomic adjustments to maintain cell homeostasis. Moreover, the occurrence of an important cross-talk between chloroplast and mitochondria, which culminates in the transcriptional regulation of several genes involved in different pathways, was evidenced.

  11. Oxidative damage mediated iNOS and UCP-2 upregulation in rat brain after sub-acute cyanide exposure: dose and time-dependent effects.

    PubMed

    Bhattacharya, Rahul; Singh, Poonam; John, Jebin Jacob; Gujar, Niranjan L

    2018-04-03

    Cyanide-induced chemical hypoxia is responsible for pronounced oxidative damage in the central nervous system. The disruption of mitochondrial oxidative metabolism has been associated with upregulation of uncoupling proteins (UCPs). The present study addresses the dose- and time-dependent effect of sub-acute cyanide exposure on various non-enzymatic and enzymatic oxidative stress markers and their correlation with inducible-nitric oxide synthase (iNOS) and uncoupling protein-2 (UCP-2) expression. Animals received (oral) triple distilled water (vehicle control), 0.25 LD50 potassium cyanide (KCN) or 0.50 LD50 KCN daily for 21 d. Animals were sacrificed on 7, 14 and 21 d post-exposure to measure serum cyanide and nitrite, and brain malondialdehyde (MDA), reduced glutathione (GSH), glutathione disulfide (GSSG), cytochrome c oxidase (CCO), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CA) levels, together with iNOS and UCP-2 expression, and DNA damage. The study revealed that a dose- and time-dependent increase in cyanide concentration was accompanied by corresponding CCO inhibition and elevated MDA levels. Decrease in GSH levels was not followed by reciprocal change in GSSG levels. Diminution of SOD, GPx, GR and CA activity was congruent with elevated nitrite levels and upregulation of iNOS and UCP-2 expression, without any DNA damage. It was concluded that long-term cyanide exposure caused oxidative stress, accompanied by upregulation of iNOS. The upregulation of UCP-2 further sensitized the cells to cyanide and accentuated the oxidative stress, which was independent of DNA damage.

  12. IGF2BP2/IMP2-Deficient mice resist obesity through enhanced translation of Ucp1 mRNA and Other mRNAs encoding mitochondrial proteins.

    PubMed

    Dai, Ning; Zhao, Liping; Wrighting, Diedra; Krämer, Dana; Majithia, Amit; Wang, Yanqun; Cracan, Valentin; Borges-Rivera, Diego; Mootha, Vamsi K; Nahrendorf, Matthias; Thorburn, David R; Minichiello, Liliana; Altshuler, David; Avruch, Joseph

    2015-04-07

    Although variants in the IGF2BP2/IMP2 gene confer risk for type 2 diabetes, IMP2, an RNA binding protein, is not known to regulate metabolism. Imp2(-/-) mice gain less lean mass after weaning and have increased lifespan. Imp2(-/-) mice are highly resistant to diet-induced obesity and fatty liver and display superior glucose tolerance and insulin sensitivity, increased energy expenditure, and better defense of core temperature on cold exposure. Imp2(-/-) brown fat and Imp2(-/-) brown adipocytes differentiated in vitro contain more UCP1 polypeptide than Imp2(+/+) despite similar levels of Ucp1 mRNA; the Imp2(-/-)adipocytes also exhibit greater uncoupled oxygen consumption. IMP2 binds the mRNAs encoding Ucp1 and other mitochondrial components, and most exhibit increased translational efficiency in the absence of IMP2. In vitro IMP2 inhibits translation of mRNAs bearing the Ucp1 untranslated segments. Thus IMP2 limits longevity and regulates nutrient and energy metabolism in the mouse by controlling the translation of its client mRNAs. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Targeted mitochondrial uncoupling beyond UCP1 - The fine line between death and metabolic health.

    PubMed

    Ost, Mario; Keipert, Susanne; Klaus, Susanne

    2017-03-01

    In the early 1930s, the chemical uncoupling agent 2,4-dinitrophenol (DNP) was promoted for the very first time as a powerful and effective weight loss pill but quickly withdrawn from the market due to its lack of tissue-selectivity with resulting dangerous side effects, including hyperthermia and death. Today, novel mitochondria- or tissue-targeted chemical uncouplers with higher safety and therapeutic values are under investigation in order to tackle obesity, diabetes and fatty liver disease. Moreover, in the past 20 years, transgenic mouse models were generated to understand the molecular and metabolic consequences of targeted uncoupling, expressing functional uncoupling protein 1 (UCP1) ectopically in white adipose tissue or skeletal muscle. Similar to the action of chemical mitochondrial uncouplers, UCP1 protein dissipates the proton gradient across the inner mitochondrial membrane, thus allowing maximum activity of the respiratory chain and compensatory increase in oxygen consumption, uncoupled from ATP synthesis. Consequently, targeted mitochondrial uncoupling in adipose tissue and skeletal muscle of UCP1-transgenic mice increased substrate metabolism and ameliorates obesity, hypertriglyceridemia and insulin resistance. Further, muscle-specific decrease in mitochondrial efficiency promotes a cell-autonomous and cell-non-autonomous adaptive metabolic remodeling with increased oxidative stress tolerance. This review provides an overview of novel chemical uncouplers as well as the metabolic consequences and adaptive processes of targeted mitochondrial uncoupling on metabolic health and survival. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  14. Measuring mitochondrial uncoupling protein-2 level and activity in insulinoma cells.

    PubMed

    Barlow, Jonathan; Hirschberg, Verena; Brand, Martin D; Affourtit, Charles

    2013-01-01

    Mitochondrial uncoupling protein-2 (UCP2) regulates glucose-stimulated insulin secretion (GSIS) by pancreatic beta cells-the physiological role of the beta cell UCP2 remains a subject of debate. Experimental studies informing this debate benefit from reliable measurements of UCP2 protein level and activity. In this chapter, we describe how UCP2 protein can be detected in INS-1 insulinoma cells and how it can be knocked down by RNA interference. We demonstrate briefly that UCP2 knockdown lowers glucose-induced rises in mitochondrial respiratory activity, coupling efficiency of oxidative phosphorylation, levels of mitochondrial reactive oxygen species, and insulin secretion. We provide protocols for the detection of the respective UCP2 phenotypes, which are indirect, but invaluable measures of UCP2 activity. We also introduce a convenient method to normalize cellular respiration to cell density allowing measurement of UCP2 effects on specific mitochondrial oxygen consumption. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Cycling efficiency in humans is related to low UCP3 content and to type I fibres but not to mitochondrial efficiency.

    PubMed

    Mogensen, M; Bagger, M; Pedersen, P K; Fernström, M; Sahlin, K

    2006-03-15

    The purpose of this study was to investigate the hypothesis that cycling efficiency in vivo is related to mitochondrial efficiency measured in vitro and to investigate the effect of training status on these parameters. Nine endurance trained and nine untrained male subjects (V(O2peak) = 60.4 +/- 1.4 and 37.0 +/- 2.0 ml kg(-1) min(-1), respectively) completed an incremental submaximal efficiency test for determination of cycling efficiency (gross efficiency, work efficiency (WE) and delta efficiency). Muscle biopsies were taken from m. vastus lateralis and analysed for mitochondrial respiration, mitochondrial efficiency (MEff; i.e. P/O ratio), UCP3 protein content and fibre type composition (% MHC I). MEff was determined in isolated mitochondria during maximal (state 3) and submaximal (constant rate of ADP infusion) rates of respiration with pyruvate. The rates of mitochondrial respiration and oxidative phosphorylation per muscle mass were about 40% higher in trained subjects but were not different when expressed per unit citrate synthase (CS) activity (a marker of mitochondrial density). Training status had no influence on WE (trained 28.0 +/- 0.5, untrained 27.7 +/- 0.8%, N.S.). Muscle UCP3 was 52% higher in untrained subjects, when expressed per muscle mass (P < 0.05 versus trained). WE was inversely correlated to UCP3 (r = -0.57, P < 0.05) and positively correlated to percentage MHC I (r = 0.58, P < 0.05). MEff was lower (P < 0.05) at submaximal respiration rates (2.39 +/- 0.01 at 50% V(O2max)) than at state 3 (2.48 +/- 0.01) but was neither influenced by training status nor correlated to cycling efficiency. In conclusion cycling efficiency was not influenced by training status and not correlated to MEff, but was related to type I fibres and inversely related to UCP3. The inverse correlation between WE and UCP3 indicates that extrinsic factors may influence UCP3 activity and thus MEff in vivo.

  16. Fiber type dependent upregulation of human skeletal muscle UCP2 and UCP3 mRNA expression by high-fat diet.

    PubMed

    Schrauwen, P; Hoppeler, H; Billeter, R; Bakker, A H; Pendergast, D R

    2001-04-01

    To test the hypothesis that consumption of a high-fat diet leads to an increase in UCP mRNA expression in human skeletal muscle. In a group of endurance athletes, with a range in fiber type distribution, we hypothesized that the effect of the high-fat diet on UCP2 and UCP3 mRNA expression is more pronounced in muscle fibers which are known to have a high capacity to shift from carbohydrate to fat oxidation (type IIA fibers). Ten healthy trained athletes (five males, five females) consumed a low-fat diet (17+/-0.9 en% of fat) and high-fat diet (41.4+/-1.4 en% fat) for 4 weeks, separated by a 4 week wash-out period. Muscle biopsies were collected at the end of both dietary periods. Using RT-PCR, levels of UCP2 and UCP3 mRNA expression were measured and the percentage of type I, IIA and IIB fibers were determined using the myofibrillar ATPase method in all subjects. UCP3L mRNA expression tended to be higher on the high-fat diet, an effect which reached significance when only males were considered (P=0.037). Furthermore, diet-induced change in mRNA expression of UCP3T (r: 0.66, P=0.037), UCP3L (r: 0.61, P=0.06) and UCP2 (r: 0.70, P=0.025), but not UCP3S, correlated significantly with percentage dietary fat on the high-fat diet. Plasma FFA levels were not different during the two diets. Finally, the percentage of type IIA fibers was positively correlated with the diet-induced change in mRNA expression for UCP2 (r: 0.7, P=0.03), UCP3L (r: 0.73, P=0.016) and UCP3T (r: 0.68, P=0.03) but not with UCP3S (r: 0.06, NS). UCP2 and UCP3 mRNAs are upregulated by a high-fat diet. This upregulation is more pronounced in humans with high proportions of type IIA fibers, suggesting a role for UCPs in lipid utilization.

  17. Superresolution microscopy reveals spatial separation of UCP4 and F0F1-ATP synthase in neuronal mitochondria

    PubMed Central

    Klotzsch, Enrico; Smorodchenko, Alina; Löfler, Lukas; Moldzio, Rudolf; Parkinson, Elena; Schütz, Gerhard J.; Pohl, Elena E.

    2015-01-01

    Because different proteins compete for the proton gradient across the inner mitochondrial membrane, an efficient mechanism is required for allocation of associated chemical potential to the distinct demands, such as ATP production, thermogenesis, regulation of reactive oxygen species (ROS), etc. Here, we used the superresolution technique dSTORM (direct stochastic optical reconstruction microscopy) to visualize several mitochondrial proteins in primary mouse neurons and test the hypothesis that uncoupling protein 4 (UCP4) and F0F1-ATP synthase are spatially separated to eliminate competition for the proton motive force. We found that UCP4, F0F1-ATP synthase, and the mitochondrial marker voltage-dependent anion channel (VDAC) have various expression levels in different mitochondria, supporting the hypothesis of mitochondrial heterogeneity. Our experimental results further revealed that UCP4 is preferentially localized in close vicinity to VDAC, presumably at the inner boundary membrane, whereas F0F1-ATP synthase is more centrally located at the cristae membrane. The data suggest that UCP4 cannot compete for protons because of its spatial separation from both the proton pumps and the ATP synthase. Thus, mitochondrial morphology precludes UCP4 from acting as an uncoupler of oxidative phosphorylation but is consistent with the view that UCP4 may dissipate the excessive proton gradient, which is usually associated with ROS production. PMID:25535394

  18. Increased hepatic mitochondrial FA oxidation reduces plasma and liver TG levels and is associated with regulation of UCPs and APOC-III in rats

    PubMed Central

    Lindquist, Carine; Bjørndal, Bodil; Rossmann, Christine Renate; Tusubira, Deusdedit; Svardal, Asbjørn; Røsland, Gro Vatne; Tronstad, Karl Johan; Hallström, Seth; Berge, Rolf Kristian

    2017-01-01

    Hepatic mitochondrial function, APOC-III, and LPL are potential targets for triglyceride (TG)-lowering drugs. After 3 weeks of dietary treatment with the compound 2-(tridec-12-yn-1-ylthio)acetic acid (1-triple TTA), the hepatic mitochondrial FA oxidation increased more than 5-fold in male Wistar rats. Gene expression analysis in liver showed significant downregulation of APOC-III and upregulation of LPL and the VLDL receptor. This led to lower hepatic (53%) and plasma (73%) TG levels. Concomitantly, liver-specific biomarkers related to mitochondrial biogenesis and function (mitochondrial DNA, citrate synthase activity, and cytochrome c and TFAM gene expression) were elevated. Interestingly, 1-triple TTA lowered plasma acetylcarnitine levels, whereas the concentration of β-hydroxybutyrate was increased. The hepatic energy state was reduced in 1-triple TTA-treated rats, as reflected by increased AMP/ATP and decreased ATP/ADP ratios, whereas the energy state remained unchanged in muscle and heart. The 1-triple TTA administration induced gene expression of uncoupling protein (UCP)2 and UCP3 in liver. In conclusion, the 1-triple TTA-mediated clearance of blood TG may result from lowered APOC-III production, increased hepatic LPL gene expression, mitochondrial FA oxidation, and (re)uptake of VLDL facilitating drainage of FAs to the liver for β-oxidation and production of ketone bodies as extrahepatic fuel. The possibility that UCP2 and UCP3 mediate a moderate degree of mitochondrial uncoupling should be considered. PMID:28473603

  19. pVHL's kryptonite: E2-EPF UCP.

    PubMed

    Ohh, Michael

    2006-08-01

    E2-EPF ubiquitin carrier protein (UCP) is a member of an E2 family of enzymes that catalyzes the ligation of ubiquitin to proteins targeted for destruction by the proteasome. UCP is overexpressed in common human cancers, suggesting its involvement in oncogenesis, but a physiologic target of UCP has not been identified. In a recent report published in Nature Medicine, Jung et al. identified von Hippel-Lindau (VHL) tumor suppressor protein, which targets the alpha subunit of hypoxia-inducible factor (HIF) for ubiquitin-mediated destruction, as a bona fide substrate of UCP and demonstrated a potential pVHL-HIF pathway-dependent role for UCP in cancer development.

  20. Mitochondrial uncoupling, ROS generation and cardioprotection.

    PubMed

    Cadenas, Susana

    2018-05-31

    Mitochondrial oxidative phosphorylation is incompletely coupled, since protons translocated to the intermembrane space by specific respiratory complexes of the electron transport chain can return to the mitochondrial matrix independently of the ATP synthase -a process known as proton leak- generating heat instead of ATP. Proton leak across the inner mitochondrial membrane increases the respiration rate and decreases the electrochemical proton gradient (Δp), and is an important mechanism for energy dissipation that accounts for up to 25% of the basal metabolic rate. It is well established that mitochondrial superoxide production is steeply dependent on Δp in isolated mitochondria and, correspondingly, mitochondrial uncoupling has been identified as a cytoprotective strategy under conditions of oxidative stress, including diabetes, drug-resistance in tumor cells, ischemia-reperfusion (IR) injury or aging. Mitochondrial uncoupling proteins (UCPs) are able to lower the efficiency of oxidative phosphorylation and are involved in the control of mitochondrial reactive oxygen species (ROS) production. There is strong evidence that UCP2 and UCP3, the UCP1 homologues expressed in the heart, protect against mitochondrial oxidative damage by reducing the production of ROS. This review first analyzes the relationship between mitochondrial proton leak and ROS generation, and then focuses on the cardioprotective role of chemical uncoupling and uncoupling mediated by UCPs. This includes their protective effects against cardiac IR, a condition known to increase ROS production, and their roles in modulating cardiovascular risk factors such as obesity, diabetes and atherosclerosis. Copyright © 2018. Published by Elsevier B.V.

  1. UCP2 and 3 deletion screening and distribution in 15 pig breeds.

    PubMed

    Li, Yanhua; Li, Hanjie; Zhao, Xingbo; Li, Ning; Wu, Changxin

    2007-02-01

    The uncoupling protein family is a mitochondrial anion carrier family. It plays an important role in the biological traits of animal body weight, basal metabolic rate and energy conversion. Using PCR and PCR-SSCP, we scanned the porcine uncoupling protein 2 gene (UCP2) and uncoupling protein 3 gene (UCP3) and found seven deletion sites, three in UCP2 and four in UCP3. The deletions in 15 pig breeds showed that deletion influenced weight. The genotype compounding of seven deletion sites in 15 pig breeds had significant effects on performance traits of the pig, such as body weight. We predicted the potential protein factor binding sites using the transcription factor analysis tool TFSearch version 1.3 online. Two deletions (1830 nt and 3219 nt) in UCP3 were found to change the transcriptional factor sites. The 16 bp deletion in 1830 nt added a SP1 site and a 6 bp deletion in 3219 nt removed two MZF1 sites. Seven deletion polymorphisms were covered in introns of linkage genes of UCP2 and UCP3, showing that UCPs have conservation and genetic reliability.

  2. An ancient look at UCP1.

    PubMed

    Klingenspor, Martin; Fromme, Tobias; Hughes, David A; Manzke, Lars; Polymeropoulos, Elias; Riemann, Tobias; Trzcionka, Magdalene; Hirschberg, Verena; Jastroch, Martin

    2008-01-01

    Brown adipose tissue serves as a thermogenic organ in placental mammals to defend body temperature in the cold by nonshivering thermogenesis. The thermogenic function of brown adipose tissue is enabled by several specialised features on the organ as well as on the cellular level, including dense sympathetic innervation and vascularisation, high lipolytic capacity and mitochondrial density and the unique expression of uncoupling protein 1 (UCP1). This mitochondrial carrier protein is inserted into the inner mitochondrial membrane and stimulates maximum mitochondrial respiration by dissipating proton-motive force as heat. Studies in knockout mice have clearly demonstrated that UCP1 is essential for nonshivering thermogenesis in brown adipose tissue. For a long time it had been presumed that brown adipose tissue and UCP1 emerged in placental mammals providing them with a unique advantage to survive in the cold. Our subsequent discoveries of UCP1 orthologues in ectotherm vertebrates and marsupials clearly refute this presumption. We can now initiate comparative studies on the structure-function relationships in UCP1 orthologues from different vertebrates to elucidate when during vertebrate evolution UCP1 gained the biochemical properties required for nonshivering thermogenesis.

  3. HDAC6 regulates thermogenesis of brown adipocytes through activating PKA to induce UCP1 expression.

    PubMed

    Jung, Suna; Han, Miae; Korm, Sovannarith; Lee, Se-In; Noh, Solhee; Phorl, Sophors; Naskar, Rema; Lee, Kye-Sung; Kim, Geon-Hee; Choi, Yun-Jaie; Lee, Joo Yong

    2018-06-08

    Mitochondrial uncoupling protein 1 (UCP1) is responsible for nonshivering thermogenesis in brown adipose tissue (BAT). UCP1 increases the conductance of the inner mitochondrial membrane (IMM) for protons to make BAT mitochondria generate heat rather than ATP. HDAC6 is a cytosolic deacetylase for non-histone substrates to regulate various cellular processes, including mitochondrial quality control and dynamics. Here, we showed that the body temperature of HDAC6 knockout mice is slightly decreased in normal hosing condition. Interestingly, UCP1 was downregulated in BAT of HDAC6 knockout mice, which extensively linked mitochondrial thermogenesis. Mechanistically, we showed that cAMP-PKA signaling plays a key role in HDAC6-dependent UCP1 expression. Notably, the size of brown adipocytes and lipid droplets in HDAC6 knockout BAT is increased. Taken together, our findings suggested that HDAC6 contributes to mitochondrial thermogenesis in BAT by increasing UCP1 expression through cAMP-PKA signaling pathway. Copyright © 2018. Published by Elsevier Inc.

  4. UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction

    PubMed Central

    Kazak, Lawrence; Chouchani, Edward T.; Stavrovskaya, Irina G.; Lu, Gina Z.; Jedrychowski, Mark P.; Egan, Daniel F.; Kumari, Manju; Kong, Xingxing; Erickson, Brian K.; Szpyt, John; Rosen, Evan D.; Murphy, Michael P.; Kristal, Bruce S.; Gygi, Steven P.; Spiegelman, Bruce M.

    2017-01-01

    Brown adipose tissue (BAT) mitochondria exhibit high oxidative capacity and abundant expression of both electron transport chain components and uncoupling protein 1 (UCP1). UCP1 dissipates the mitochondrial proton motive force (Δp) generated by the respiratory chain and increases thermogenesis. Here we find that in mice genetically lacking UCP1, cold-induced activation of metabolism triggers innate immune signaling and markers of cell death in BAT. Moreover, global proteomic analysis reveals that this cascade induced by UCP1 deletion is associated with a dramatic reduction in electron transport chain abundance. UCP1-deficient BAT mitochondria exhibit reduced mitochondrial calcium buffering capacity and are highly sensitive to mitochondrial permeability transition induced by reactive oxygen species (ROS) and calcium overload. This dysfunction depends on ROS production by reverse electron transport through mitochondrial complex I, and can be rescued by inhibition of electron transfer through complex I or pharmacologic depletion of ROS levels. Our findings indicate that the interscapular BAT of Ucp1 knockout mice exhibits mitochondrial disruptions that extend well beyond the deletion of UCP1 itself. This finding should be carefully considered when using this mouse model to examine the role of UCP1 in physiology. PMID:28630339

  5. UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction.

    PubMed

    Kazak, Lawrence; Chouchani, Edward T; Stavrovskaya, Irina G; Lu, Gina Z; Jedrychowski, Mark P; Egan, Daniel F; Kumari, Manju; Kong, Xingxing; Erickson, Brian K; Szpyt, John; Rosen, Evan D; Murphy, Michael P; Kristal, Bruce S; Gygi, Steven P; Spiegelman, Bruce M

    2017-07-25

    Brown adipose tissue (BAT) mitochondria exhibit high oxidative capacity and abundant expression of both electron transport chain components and uncoupling protein 1 (UCP1). UCP1 dissipates the mitochondrial proton motive force (Δp) generated by the respiratory chain and increases thermogenesis. Here we find that in mice genetically lacking UCP1, cold-induced activation of metabolism triggers innate immune signaling and markers of cell death in BAT. Moreover, global proteomic analysis reveals that this cascade induced by UCP1 deletion is associated with a dramatic reduction in electron transport chain abundance. UCP1-deficient BAT mitochondria exhibit reduced mitochondrial calcium buffering capacity and are highly sensitive to mitochondrial permeability transition induced by reactive oxygen species (ROS) and calcium overload. This dysfunction depends on ROS production by reverse electron transport through mitochondrial complex I, and can be rescued by inhibition of electron transfer through complex I or pharmacologic depletion of ROS levels. Our findings indicate that the interscapular BAT of Ucp1 knockout mice exhibits mitochondrial disruptions that extend well beyond the deletion of UCP1 itself. This finding should be carefully considered when using this mouse model to examine the role of UCP1 in physiology.

  6. Activation of PPAR-γ by pioglitazone attenuates oxidative stress in aging rat cerebral arteries through upregulating UCP2.

    PubMed

    Wang, Peijian; Li, Binghu; Cai, Guocai; Huang, Mingqing; Jiang, Licheng; Pu, Jing; Li, Lu; Wu, Qi; Zuo, Li; Wang, Qiulin; Zhou, Peng

    2014-12-01

    Increasing amounts of evidence implicate oxidative stress as having a pivotal role in age-related cerebrovascular dysfunction, which is an important risk factor for the development of cerebrovascular disease. Previous studies have shown that the activation of the expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) in vascular endothelial cells results in an improvement of vascular function. Pioglitazone, a well-known PPAR-γ agonist, protects against oxidative stress in the rostral ventrolateral medulla by the upregulation of mitochondrial uncoupling protein 2 (UCP2). In this study, we sought to explore the effects and the underlying mechanisms of pioglitazone on age-related oxidative stress elevation and cerebrovascular dysfunction in aging rat cerebral arteries. A natural aging model was constructed and used in these experiments. One-month oral administration of pioglitazone (20 mg·kg·d) ameliorated the production of reactive oxygen species, promoted endothelial nitric oxide synthase phosphorylation and increased the nitric oxide available, thus improving endothelium-dependent relaxation in aging rat cerebral arteries. One-month pioglitazone administration also restored PPAR-γ expression and increased the levels of UCP2 in aging rat cerebral arteries. Using in vitro studies, we demonstrated that pioglitazone attenuated reactive oxygen species levels in aging human umbilical vein endothelial cells through PPAR-γ activation. Furthermore, we found that this occurs in an UCP2-dependent manner. Our study demonstrated that the activation of PPAR-γ by pioglitazone protected against oxidative stress damage in aging cerebral arteries by upregulating UCP2. PPAR-γ may be a new target in treating age-related cerebrovascular dysfunction.

  7. The mitochondrial uncoupling protein-2 promotes chemoresistance in cancer cells

    PubMed Central

    Derdak, Zoltan; Mark, Nicholas M.; Beldi, Guido; Robson, Simon C.; Wands, Jack R.; Baffy, György

    2008-01-01

    Cancer cells acquire drug resistance as a result of selection pressure dictated by unfavorable microenvironments. This survival process is facilitated through efficient control of oxidative stress originating from mitochondria that typically initiates programmed cell death. We show this critical adaptive response in cancer cells to be linked to uncoupling protein-2 (UCP2), a mitochondrial suppressor of reactive oxygen species (ROS). UCP2 is present in drug-resistant lines of various cancer cells and in human colon cancer. Overexpression of UCP2 in HCT116 human colon cancer cells inhibits ROS accumulation and apoptosis post-exposure to chemotherapeutic agents. Tumor xenografts of UCP2-overexpressing HCT116 cells retain growth in nude mice receiving chemotherapy. Augmented cancer cell survival is accompanied by altered N-terminal phosphorylation of the pivotal tumor suppressor p53 and induction of the glycolytic phenotype (Warburg effect). These findings link UCP2 with molecular mechanisms of chemoresistance. Targeting UCP2 may be considered a novel treatment strategy for cancer. PMID:18413749

  8. Glutathionylation of UCP2 sensitizes drug resistant leukemia cells to chemotherapeutics.

    PubMed

    Pfefferle, Aline; Mailloux, Ryan J; Adjeitey, Cyril Nii-Klu; Harper, Mary-Ellen

    2013-01-01

    Uncoupling protein-2 (UCP2) is used by cells to control reactive oxygen species (ROS) production by mitochondria. This ability depends on the glutathionylation state of UCP2. UCP2 is often overexpressed in drug resistant cancer cells and therein controls cell ROS levels and limits drug toxicity. With our recent observation that glutathionylation deactivates proton leak through UCP2, we decided to test if diamide, a glutathionylation catalyst, can sensitize drug resistant cells to chemotherapeutic agents. Using drug sensitive HL-60 cells and the drug resistant HL-60 subline, Mx2, we show that chemical induction of glutathionylation selectively deactivates proton leak through UCP2 in Mx2 cells. Chemical glutathionylation of UCP2 disables chemoresistance in the Mx2 cells. Exposure to 200μM diamide led to a significant increase in Mx2 cell death that was augmented when cells were exposed to either menadione or the anthracycline doxorubicin. Diamide also sensitized Mx2 cells to a number of other chemotherapeutics. Proton leak through UCP2 contributed significantly to the energetics of the Mx2 cells. Knockdown of UCP2 led to a significant decrease in both resting and state 4 (i.e., proton leak-dependent) respiration (~43% and 62%, respectively) in Mx2 cells. Similarly diamide inhibited proton leak-dependent respiration by ~64%. In contrast, diamide had very little effect on proton leak in HL-60 cells. Collectively, our observations indicate that manipulation of UCP2 glutathionylation status can serve as a therapeutic strategy for cancer treatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Hippocampal UCP2 is essential for cognition and resistance to anxiety but not required for the benefits of exercise.

    PubMed

    Wang, D; Zhai, X; Chen, P; Yang, M; Zhao, J; Dong, J; Liu, H

    2014-09-26

    Uncoupling protein-2 (UCP2) reduces oxidative stress by facilitating the influx of protons into mitochondrial matrix, thus dissociating mitochondrial oxidation from ATP synthesis. UCP2 is expressed abundantly in brain areas and plays a key role in neuroprotection. Here, we sought to determine if UCP2 deficiency produces cognitive impairment and anxiety in young mice, and to determine if hippocampal UCP2 is essential for the beneficial effects of voluntary exercise. Antisense oligonucleotide (ASO) was used to produce UCP2 knockdown in mice. Our results firstly showed that UCP2-targeted ASO significantly reduced UCP2 mRNA and protein expression in the hippocampus. ASO treatment impaired learning and memory of the mice in Y-maze, T-maze, and object recognition tests (ORT). ASO-treated mice exhibited more anxiously in OPT, light/dark box test, and elevated plus maze (EPM) than the control mice. We also found that wheel running ameliorated cognitive dysfunction and anxiety-like behaviors in ASO-treated mice. Furthermore, voluntary exercise reversed ASO-induced changes in hippocampal levels of serotonin (5-HT), dopamine (DA), and norepinephrine (NE). However, UCP2 protein in the hippocampus was not correlated with cognitive and anxiolytic benefits of exercise. These findings suggest that hippocampal UCP2 is essential for cognitive function and the resistance to anxiety of mice, but not required for the beneficial effects of exercise. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. UCP2 deficiency helps to restrict the pathogenesis of experimental cutaneous and visceral leishmaniosis in mice.

    PubMed

    Carrión, Javier; Abengozar, M Angeles; Fernández-Reyes, María; Sánchez-Martín, Carlos; Rial, Eduardo; Domínguez-Bernal, Gustavo; González-Barroso, M Mar

    2013-01-01

    Uncoupling protein 2 (UCP2) is a mitochondrial transporter that has been shown to lower the production of reactive oxygen species (ROS). Intracellular pathogens such as Leishmania upregulate UCP2 and thereby suppress ROS production in infected host tissues, allowing the multiplication of parasites within murine phagocytes. This makes host UCP2 and ROS production potential targets in the development of antileishmanial therapies. Here we explore how UCP2 affects the outcome of cutaneous leishmaniosis (CL) and visceral leishmaniosis (VL) in wild-type (WT) C57BL/6 mice and in C57BL/6 mice lacking the UCP2 gene (UCP2KO). To investigate the effects of host UCP2 deficiency on Leishmania infection, we evaluated parasite loads and cytokine production in target organs. Parasite loads were significantly lower in infected UCP2KO mice than in infected WT mice. We also found that UCP2KO mice produced significantly more interferon-γ (IFN-γ), IL-17 and IL-13 than WT mice (P<0.05), suggesting that UCP2KO mice are resistant to Leishmania infection. In this way, UCP2KO mice were better able than their WT counterparts to overcome L. major and L. infantum infections. These findings suggest that upregulating host ROS levels, perhaps by inhibiting UPC2, may be an effective approach to preventing leishmaniosis.

  11. Impaired Expression of Uncoupling Protein 2 (UCP2) Causes Defective Post-ischemic Angiogenesis in Mice Deficient in AMP-activated Protein Kinase α Subunits

    PubMed Central

    Xu, Ming-Jiang; Song, Ping; Shirwany, Najeeb; Liang, Bin; Xing, Junjie; Viollet, Benoit; Wang, Xian; Zhu, Yi; Zou, Ming-Hui

    2011-01-01

    Objective The aim of the present study was to determine whether mitochondrial uncoupling protein (UCP)-2 is required for AMPK-dependent angiogenesis in ischemia in vivo. Methods and Results Angiogenesis was assayed by monitoring endothelial tube formation (a surrogate for angiogenesis) in human umbilical vein endothelial cells (HUVECs), isolated mouse aortic endothelial cells (MAECs), and pulmomary microvascular endothelial cells (PMECs), or in ischemic thigh adductor muscles from wild-type (WT) mice or mice deficient in either AMPKα1 or AMPKα2. AMPK inhibition with pharmacological inhibitor (compound C) or genetic means (transfection of AMPKα-specific siRNA) significantly lowered the tube formation in HUVECs. Consistently, compared with WT mice, tube formation in MAECs isolated from either AMPKα1−/− or AMPKα2−/− mice, which exhibited oxidative stress and reduced expression of UCP2, were significantly impaired. In addition, adenoviral overexpression of UCP2, but not adenoviruses encoding green florescence protein (GFP), normalized tube formation in MAECs from either AMPKα1−/− or AMPKα2−/− mice. Similarly, supplementation with sodium nitroprusside (SNP), a nitric oxide (NO) donor, restored tube formation. Furthermore, ischemia significantly increased angiogenesis, serine 1177 phosphorylation of endothelial NO synthase (eNOS), and UCP2 in ischemic thigh adductor muscles from WT mice, but not from either AMPKα1−/− or AMPKα2−/− mice. Conclusion We conclude that AMPK-dependent UCP2 expression in endothelial cells promotes angiogenesis in vivo. PMID:21597006

  12. Structural organization and mutational analysis of the human uncoupling protein-2 (hUCP2) gene.

    PubMed

    Tu, N; Chen, H; Winnikes, U; Reinert, I; Marmann, G; Pirke, K M; Lentes, K U

    1999-01-01

    Uncoupling proteins (UCPs) are mitochondrial membrane transporters which are involved in dissipating the proton electrochemical gradient thereby releasing stored energy as heat. This implies a major role of UCPs in energy metabolism and thermogenesis which when deregulated are key risk factors for the development of obesity and other eating disorders. From the three different human UCPs identified so far by gene cloning both UCP2 and UCP3 were mapped in close proximity (75-150 kb) to regions of human chromosome 11 (11q13) that have been linked to obesity and hyperinsulinaemia. At the amino acid level hUCP2 has about 55% identity to hUCP1 while hUCP3 is 71% identical to hUCP2. In this study we have deduced the genomic structure of the human UCP2 gene by PCR and direct sequence analysis. The hUCP2 gene spans over 8.7 kb distributed on 8 exons. The localization of the exon/intron boundaries within the coding region matches precisely that of the hUCP1 gene and is almost conserved in the recently discovered hUCP3 gene as well. The high degree of homology at the nucleotide level and the conservation of the exon /intron boundaries among the three UCP genes suggests that they may have evolved from a common ancestor or are the result from gene duplication events. Mutational analysis of the hUCP2 gene in a cohort of 172 children (aged 7 - 13) of Caucasian origin revealed a polymorphism in exon 4 (C to T transition at position 164 of the cDNA resulting in the substitution of an alanine by a valine at codon 55) and an insertion polymorphism in exon 8. The insertion polymorphism consists of a 45 bp repeat located 150 bp downstream of the stop codon in the 3'-UTR. The allele frequencies were 0.63 and 0.37 for the alanine and valine encoded alleles, respectively, and 0.71 versus 0.29 for the insertion polymorphism. The allele frequencies of both polymorphisms were not significantly elevated in a subgroup of 25 children characterized by low Resting Metabolic Rates (RMR). So far a

  13. Snf1-related kinase improves cardiac mitochondrial efficiency and decreases mitochondrial uncoupling

    PubMed Central

    Rines, Amy K.; Chang, Hsiang-Chun; Wu, Rongxue; Sato, Tatsuya; Khechaduri, Arineh; Kouzu, Hidemichi; Shapiro, Jason; Shang, Meng; Burke, Michael A.; Abdelwahid, Eltyeb; Jiang, Xinghang; Chen, Chunlei; Rawlings, Tenley A.; Lopaschuk, Gary D.; Schumacker, Paul T.; Abel, E. Dale; Ardehali, Hossein

    2017-01-01

    Ischaemic heart disease limits oxygen and metabolic substrate availability to the heart, resulting in tissue death. Here, we demonstrate that the AMP-activated protein kinase (AMPK)-related protein Snf1-related kinase (SNRK) decreases cardiac metabolic substrate usage and mitochondrial uncoupling, and protects against ischaemia/reperfusion. Hearts from transgenic mice overexpressing SNRK have decreased glucose and palmitate metabolism and oxygen consumption, but maintained power and function. They also exhibit decreased uncoupling protein 3 (UCP3) and mitochondrial uncoupling. Conversely, Snrk knockout mouse hearts have increased glucose and palmitate oxidation and UCP3. SNRK knockdown in cardiac cells decreases mitochondrial efficiency, which is abolished with UCP3 knockdown. We show that Tribbles homologue 3 (Trib3) binds to SNRK, and downregulates UCP3 through PPARα. Finally, SNRK is increased in cardiomyopathy patients, and SNRK reduces infarct size after ischaemia/reperfusion. SNRK also decreases cardiac cell death in a UCP3-dependent manner. Our results suggest that SNRK improves cardiac mitochondrial efficiency and ischaemic protection. PMID:28117339

  14. Effect of Overproduction of Mitochondrial Uncoupling Protein 2 on Cos7 Cells: Induction of Senescent-like Morphology and Oncotic Cell Death.

    PubMed

    Nishio, Koji; Ma, Qian

    2016-01-01

    The maintenance of mitochondrial membrane potential is essential for cell growth and survival. Mitochondrial uncoupling protein 2 plays the most important roles in uncoupling oxidative phosphorylation and decreasing mitochondrial O2- production by regulating the mitochondrial membrane potential. We propose that mouse UCP2 has two glycine-rich motifs, motif 1: EGIRGLWKG (170-178) and a known Walker A-like motif 2: EGPRAFYKG (264-272). These motifs seem to be important for the function of UCP2. We investigated the biological effects of overproduced-UCP2 and its physiological consequence in Cos7 cells. We introduced several amino acid changes in the motif 1. The expression vectors of the green fluorescent protein (GFP)-fused UCP2 and mutant UCP2 were constructed and expressed in Cos7 cells. The UCP2-GFP-expressed cells significantly down-regulated the mitochondrial membrane potentials and induced the enlarged cell shapes. Next we generated the stably UCP2-GFP-expressed Cos7 cells by selection with the antibiotic Genecitin (G418). Within the first few weeks following G418-selection, the stably UCP2-GFP-expressed cells could not divide well and gradually manifested the irregular and enlarged senescent-like cell morphology. The UCP2/K177E- or UCP2/G174L-expressed cells did not induce the enlarged cell shapes. Hence, UCP2/K177E and UCP2/G174L produced the functional incompetence of the glycine-rich motif 1. The senescent-like cells significantly decreased the mitochondrial membrane potentials and finally died nearly one month. Overproduction of UCP2 irreversibly reduces the mitochondrial membrane potentials and induces the senescent-like morphology and finally oncotic cell death in Cos7 cells. These changes seem to occur from the irreversible metabolic changes following total loss of cellular ATP.

  15. Lopimune-induced mitochondrial toxicity is attenuated by increased uncoupling protein-2 level in treated mouse hepatocytes.

    PubMed

    El Hoss, Sara; Bahr, Georges M; Echtay, Karim S

    2015-06-15

    Although the protease inhibitor (PI) Lopimune has proven to be effective, no studies have examined the side effects of Lopimune on mitochondrial bioenergetics in hepatocytes. The objective of the present study is to evaluate mitochondrial respiration, production of reactive oxygen species (ROS) and expression of uncoupling protein-2 (UCP2) in mouse hepatocytes following Lopimune administration. Mitochondria were extracted from mouse liver using differential centrifugation and hepatocytes were isolated by the collagenase perfusion procedure. Mitochondrial respiration was measured using a Rank Brothers oxygen electrode. ROS production in hepatocytes was monitored by flow cytometry using a 2',7'-dichlorofluorescin diacetate probe and UCP2 protein expression was detected by Western blotting. We found that Lopimune induced a significant decrease of approximately 30% in the respiratory control ratio (RCR) starting from day 4 until day 9 of treatment. This decrease was due to an increase in state 4 respiration, reflecting an increase in mitochondrial proton leak. State 2 and state 3 respirations were not affected. Moreover, ROS production significantly increased by about 2-fold after day 1 of treatment and decreased after day 3, returning to the resting level on day 5. Interestingly, UCP2 which is absent from control hepatocytes, was expressed starting from day 4 of treatment. Our findings indicate that Lopimune-induced proton leak, mediated by UCP2, may represent a response to inhibit the production of ROS as a negative feedback regulatory mechanism. These results imply a potential involvement of UCP2 in the regulation of oxidative stress and add new insights into the understanding of mitochondrial toxicity induced by PIs. © The Authors Journal compilation © 2015 Biochemical Society.

  16. Peroxisome proliferator-activated receptors γ/mitochondrial uncoupling protein 2 signaling protects against seizure-induced neuronal cell death in the hippocampus following experimental status epilepticus

    PubMed Central

    2012-01-01

    Background Status epilepticus induces subcellular changes that may lead to neuronal cell death in the hippocampus. However, the mechanism of seizure-induced neuronal cell death remains unclear. The mitochondrial uncoupling protein 2 (UCP2) is expressed in selected regions of the brain and is emerged as an endogenous neuroprotective molecule in many neurological disorders. We evaluated the neuroprotective role of UCP2 against seizure-induced hippocampal neuronal cell death under experimental status epilepticus. Methods In Sprague–Dawley rats, kainic acid (KA) was microinjected unilaterally into the hippocampal CA3 subfield to induce prolonged bilateral seizure activity. Oxidized protein level, translocation of Bcl-2, Bax and cytochrome c between cytosol and mitochondria, and expression of peroxisome proliferator-activated receptors γ (PPARγ) and UCP2 were examined in the hippocampal CA3 subfield following KA-induced status epilepticus. The effects of microinjection bilaterally into CA3 area of a PPARγ agonist, rosiglitazone or a PPARγ antagonist, GW9662 on UCP2 expression, induced superoxide anion (O2· -) production, oxidized protein level, mitochondrial respiratory chain enzyme activities, translocation of Bcl-2, Bax and cytochrome c, and DNA fragmentation in bilateral CA3 subfields were examined. Results Increased oxidized proteins and mitochondrial or cytosol translocation of Bax or cytochrome c in the hippocampal CA3 subfield was observed 3–48 h after experimental status epilepticus. Expression of PPARγ and UCP2 increased 12–48 h after KA-induced status epilepticus. Pretreatment with rosiglitazone increased UCP2 expression, reduced protein oxidation, O2· - overproduction and dysfunction of mitochondrial Complex I, hindered the translocation of Bax and cytochrome c, and reduced DNA fragmentation in the CA3 subfield. Pretreatment with GW9662 produced opposite effects. Conclusions Activation of PPARγ upregulated mitochondrial UCP2 expression

  17. FABP4/aP2 Regulates Macrophage Redox Signaling and Inflammasome Activation via Control of UCP2.

    PubMed

    Steen, Kaylee A; Xu, Hongliang; Bernlohr, David A

    2017-01-15

    Obesity-linked metabolic disease is mechanistically associated with the accumulation of proinflammatory macrophages in adipose tissue, leading to increased reactive oxygen species (ROS) production and chronic low-grade inflammation. Previous work has demonstrated that deletion of the adipocyte fatty acid-binding protein (FABP4/aP2) uncouples obesity from inflammation via upregulation of the uncoupling protein 2 (UCP2). Here, we demonstrate that ablation of FABP4/aP2 regulates systemic redox capacity and reduces cellular protein sulfhydryl oxidation and, in particular, oxidation of mitochondrial protein cysteine residues. Coincident with the loss of FABP4/aP2 is the upregulation of the antioxidants superoxide dismutase (SOD2), catalase, methionine sulfoxide reductase A, and the 20S proteasome subunits PSMB5 and αβ. Reduced mitochondrial protein oxidation in FABP4/aP2 -/- macrophages attenuates the mitochondrial unfolded-protein response (mtUPR) as measured by expression of heat shock protein 60, Clp protease, and Lon peptidase 1. Consistent with a diminished mtUPR, FABP4/aP2 -/- macrophages exhibit reduced expression of cleaved caspase-1 and NLRP3. Secretion of interleukin 1β (IL-1β), in response to inflammasome activation, is ablated in FABP4/aP2 -/- macrophages, as well as in FABP4/aP2 inhibitor-treated cells, but partially rescued in FABP4/aP2-null macrophages when UCP2 is silenced. Collectively, these data offer a novel pathway whereby FABP4/aP2 regulates macrophage redox signaling and inflammasome activation via control of UCP2 expression. Copyright © 2017 American Society for Microbiology.

  18. Activation and function of mitochondrial uncoupling protein in plants.

    PubMed

    Smith, Anna M O; Ratcliffe, R George; Sweetlove, Lee J

    2004-12-10

    Plant mitochondrial uncoupling protein (UCP) is activated by superoxide suggesting that it may function to minimize mitochondrial reactive oxygen species (ROS) formation. However, the precise mechanism of superoxide activation and the exact function of UCP in plants are not known. We demonstrate that 4-hydroxy-2-nonenal (HNE), a product of lipid peroxidation, and a structurally related compound, trans-retinal, stimulate a proton conductance in potato mitochondria that is inhibitable by GTP (a characteristic of UCP). Proof that the effects of HNE and trans-retinal are mediated by UCP is provided by examination of proton conductance in transgenic plants overexpressing UCP. These experiments demonstrate that the mechanism of activation of UCP is conserved between animals and plants and imply a conservation of function. Mitochondria from transgenic plants overexpressing UCP were further studied to provide insight into function. Experimental conditions were designed to mimic a bioenergetic state that might be found in vivo (mitochondria were supplied with pyruvate as well as tricarboxylic cycle acids at in vivo cytosolic concentrations and an exogenous ATP sink was established). Under such conditions, an increase in UCP protein content resulted in a modest but significant decrease in the rate of superoxide production. In addition, 13C-labeling experiments revealed an increase in the conversion of pyruvate to citrate as a result of increased UCP protein content. These results demonstrate that under simulated in vivo conditions, UCP is active and suggest that UCP may influence not only mitochondrial ROS production but also tricarboxylic acid cycle flux.

  19. Uncoupling proteins and the control of mitochondrial reactive oxygen species production.

    PubMed

    Mailloux, Ryan J; Harper, Mary-Ellen

    2011-09-15

    Reactive oxygen species (ROS), natural by-products of aerobic respiration, are important cell signaling molecules, which left unchecked can severely impair cellular functions and induce cell death. Hence, cells have developed a series of systems to keep ROS in the nontoxic range. Uncoupling proteins (UCPs) 1-3 are mitochondrial anion carrier proteins that are purported to play important roles in minimizing ROS emission from the electron transport chain. The function of UCP1 in this regard is highly contentious. However, UCPs 2 and 3 are generally thought to be activated by ROS or ROS by-products to induce proton leak, thus providing a negative feedback loop for mitochondrial ROS production. In our laboratory, we have not only confirmed that ROS activate UCP2 and UCP3, but also demonstrated that UCP2 and UCP3 are controlled by covalent modification by glutathione. Furthermore, the reversible glutathionylation is required to activate/inhibit UCP2 and UCP3, but not UCP1. Hence, our findings are consistent with the notion that UCPs 2 and 3 are acutely activated by ROS, which then directly modulate the glutathionylation status of the UCP to decrease ROS emission and participate in cell signaling mechanisms. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Mitochondrial proton and electron leaks.

    PubMed

    Jastroch, Martin; Divakaruni, Ajit S; Mookerjee, Shona; Treberg, Jason R; Brand, Martin D

    2010-01-01

    Mitochondrial proton and electron leak have a major impact on mitochondrial coupling efficiency and production of reactive oxygen species. In the first part of this chapter, we address the molecular nature of the basal and inducible proton leak pathways, and their physiological importance. The basal leak is unregulated, and a major proportion can be attributed to mitochondrial anion carriers, whereas the proton leak through the lipid bilayer appears to be minor. The basal proton leak is cell-type specific and correlates with metabolic rate. The inducible leak through the ANT (adenine nucleotide translocase) and UCPs (uncoupling proteins) can be activated by fatty acids, superoxide or lipid peroxidation products. The physiological role of inducible leak through UCP1 in mammalian brown adipose tissue is heat production, whereas the roles of non-mammalian UCP1 and its paralogous proteins, in particular UCP2 and UCP3, are not yet resolved. The second part of the chapter focuses on the electron leak that occurs in the mitochondrial electron transport chain. Exit of electrons prior to the reduction of oxygen to water at cytochrome c oxidase causes superoxide production. As the mechanisms of electron leak are crucial to understanding their physiological relevance, we summarize the mechanisms and topology of electron leak from complexes I and III in studies using isolated mitochondria. We also highlight recent progress and challenges of assessing electron leak in the living cell. Finally, we emphasize the importance of proton and electron leak as therapeutic targets in body mass regulation and insulin secretion.

  1. Uncoupling protein-2 attenuates glucose-stimulated insulin secretion in INS-1E insulinoma cells by lowering mitochondrial reactive oxygen species

    PubMed Central

    Affourtit, Charles; Jastroch, Martin; Brand, Martin D.

    2011-01-01

    Glucose-stimulated insulin secretion (GSIS) by pancreatic β cells is regulated by mitochondrial uncoupling protein-2 (UCP2), but opposing phenotypes, GSIS improvement and impairment, have been reported for different Ucp2-ablated mouse models. By measuring mitochondrial bioenergetics in attached INS-1E insulinoma cells with and without UCP2, we show that UCP2 contributes to proton leak and attenuates glucose-induced rises in both respiratory activity and the coupling efficiency of oxidative phosphorylation. Strikingly, the GSIS improvement seen upon UCP2 knockdown in INS-1E cells is annulled completely by the cell-permeative antioxidant MnTMPyP. Consistent with this observation, UCP2 lowers mitochondrial reactive oxygen species at high glucose levels. We conclude that UCP2 plays both regulatory and protective roles in β cells by acutely lowering GSIS and chronically preventing oxidative stress. Our findings thus provide a mechanistic explanation for the apparently discrepant findings in the field. PMID:21172424

  2. Insulin alleviates mitochondrial oxidative stress involving upregulation of superoxide dismutase 2 and uncoupling protein 2 in septic acute kidney injury

    PubMed Central

    Chen, Guang-Dao; Zhang, Jun-Liang; Chen, Yi-Ting; Zhang, Ju-Xing; Wang, Tao; Zeng, Qi-Yi

    2018-01-01

    The aim of the present study was to explore the effects and mechanisms of insulin on mitochondrial oxidative stress in septic acute kidney injury (AKI). Male Sprague Dawley rats were divided randomly into four groups: Control group, sham surgery group, cecal ligation and puncture (CLP) group, and CLP plus insulin group. Blood specimens and kidney tissues were obtained at 12 and 24 h after surgery as separate experiments. Analyses of histology and indicators of renal injury [blood urea nitrogen (BUN) and serum creatinine (CRE) and neutrophil gelatinase-associated lipocalin (NGAL)], mitochondrial function [adenosine triphosphate (ATP) and mitochondrial membrane potential (MMP)], oxidative stress [inducible nitric oxide synthase (iNOS), reactive oxygen species (ROS) and nitric oxide (NO)], endogenous antioxidant systems [superoxide dismutase (SOD) and glutathione (GSH)] as well as the expression of uncoupling protein (UCP), PINK1 protein (a major mediator of mitophagy), PGC1α protein (a major regulator of mitochondrial biogenesis) were performed. Compared with CLP group, the CLP plus insulin group had milder histological damage, higher levels of ATP and MMP as well as lower levels of BUN, serum CRE and NGAL, intrarenal iNOS, mitochondrial ROS and total NO. Moreover, the CLP plus insulin group demonstrated increased expression of SOD2 and UCP2. In contrast, insulin administration suppressed mitophagy meanwhile did not upregulate total GSH and induce mitochondrial biogenesis following CLP. These findings indicated that the upregulation of SOD2 and UCP2 may be involved in insulin protecting against mitochondrial oxidative stress in septic AKI. PMID:29563990

  3. Insulin alleviates mitochondrial oxidative stress involving upregulation of superoxide dismutase 2 and uncoupling protein 2 in septic acute kidney injury.

    PubMed

    Chen, Guang-Dao; Zhang, Jun-Liang; Chen, Yi-Ting; Zhang, Ju-Xing; Wang, Tao; Zeng, Qi-Yi

    2018-04-01

    The aim of the present study was to explore the effects and mechanisms of insulin on mitochondrial oxidative stress in septic acute kidney injury (AKI). Male Sprague Dawley rats were divided randomly into four groups: Control group, sham surgery group, cecal ligation and puncture (CLP) group, and CLP plus insulin group. Blood specimens and kidney tissues were obtained at 12 and 24 h after surgery as separate experiments. Analyses of histology and indicators of renal injury [blood urea nitrogen (BUN) and serum creatinine (CRE) and neutrophil gelatinase-associated lipocalin (NGAL)], mitochondrial function [adenosine triphosphate (ATP) and mitochondrial membrane potential (MMP)], oxidative stress [inducible nitric oxide synthase (iNOS), reactive oxygen species (ROS) and nitric oxide (NO)], endogenous antioxidant systems [superoxide dismutase (SOD) and glutathione (GSH)] as well as the expression of uncoupling protein (UCP), PINK1 protein (a major mediator of mitophagy), PGC1α protein (a major regulator of mitochondrial biogenesis) were performed. Compared with CLP group, the CLP plus insulin group had milder histological damage, higher levels of ATP and MMP as well as lower levels of BUN, serum CRE and NGAL, intrarenal iNOS, mitochondrial ROS and total NO. Moreover, the CLP plus insulin group demonstrated increased expression of SOD2 and UCP2. In contrast, insulin administration suppressed mitophagy meanwhile did not upregulate total GSH and induce mitochondrial biogenesis following CLP. These findings indicated that the upregulation of SOD2 and UCP2 may be involved in insulin protecting against mitochondrial oxidative stress in septic AKI.

  4. Studies of UCP2 transgenic and knockout mice reveal that liver UCP2 is not essential for the antiobesity effects of fish oil.

    PubMed

    Tsuboyama-Kasaoka, Nobuyo; Sano, Kayo; Shozawa, Chikako; Osaka, Toshimasa; Ezaki, Osamu

    2008-03-01

    Uncoupling protein 2 (UCP2) is a possible target molecule for energy dissipation. Many dietary fats, including safflower oil and lard, induce obesity in C57BL/6 mice, whereas fish oil does not. Fish oil increases UCP2 expression in hepatocytes and may enhance UCP2 activity by activating the UCP2 molecule or altering the lipid bilayer environment. To examine the role of liver UCP2 in obesity, we created transgenic mice that overexpressed human UCP2 in hepatocytes and examined whether UCP2 transgenic mice showed less obesity when fed a high-fat diet (safflower oil or lard). In addition, we examined whether fish oil had antiobesity effects in UCP2 knockout mice. UCP2 transgenic and wild-type mice fed a high-fat diet (safflower oil or lard) developed obesity to a similar degree. UCP2 knockout and wild-type mice fed fish oil had lower rates of obesity than mice fed safflower oil. Remarkably, safflower oil did not induce obesity in female UCP2 knockout mice, an unexpected phenotype for which we presently have no explanation. However, this unexpected effect was not observed in male UCP2 knockout mice or in UCP2 knockout mice fed a high-lard diet. These data indicate that liver UCP2 is not essential for fish oil-induced decreases in body fat.

  5. Brain cortex mitochondrial bioenergetics in synaptosomes and non-synaptic mitochondria during aging.

    PubMed

    Lores-Arnaiz, Silvia; Lombardi, Paulina; Karadayian, Analía G; Orgambide, Federico; Cicerchia, Daniela; Bustamante, Juanita

    2016-02-01

    Alterations in mitochondrial bioenergetics have been associated with brain aging. In order to evaluate the susceptibility of brain cortex synaptosomes and non-synaptic mitochondria to aging-dependent dysfunction, male Swiss mice of 3 or 17 months old were used. Mitochondrial function was evaluated by oxygen consumption, mitochondrial membrane potential and respiratory complexes activity, together with UCP-2 protein expression. Basal respiration and respiration driving proton leak were decreased by 26 and 33 % in synaptosomes from 17-months old mice, but spare respiratory capacity was not modified by aging. Succinate supported state 3 respiratory rate was decreased by 45 % in brain cortex non-synaptic mitochondria from 17-month-old mice, as compared with young animals, but respiratory control was not affected. Synaptosomal mitochondria would be susceptible to undergo calcium-induced depolarization in 17 months-old mice, while non-synaptic mitochondria would not be affected by calcium overload. UCP-2 was significantly up-regulated in both synaptosomal and submitochondrial membranes from 17-months old mice, compared to young animals. UCP-2 upregulation seems to be a possible mechanism by which mitochondria would be resistant to suffer oxidative damage during aging.

  6. Marked over expression of uncoupling protein-2 in beta cells exerts minor effects on mitochondrial metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hals, Ingrid K., E-mail: ingrid.hals@ntnu.no; Ogata, Hirotaka; Pettersen, Elin

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer The impact of UCP-2 over expression on mitochondrial function is controversial. Black-Right-Pointing-Pointer We tested mitochondrial functions at defined levels of overexpression. Black-Right-Pointing-Pointer We find minor increases of fatty acid oxidation and uncoupling. Black-Right-Pointing-Pointer Effects were seen only at high level (fourfold) of over expression. Black-Right-Pointing-Pointer Hence it is doubtful whether these effects are of importance in diabetes. -- Abstract: Evidence is conflicting as to the impact of elevated levels of uncoupling protein-2 (UCP-2) on insulin-producing beta cells. Here we investigated effects of a fourfold induction of UCP-2 protein primarily on mitochondrial parameters and tested for replication of positivemore » findings at a lower level of induction. We transfected INS-1 cells to obtain a tet-on inducible cell line. A 48 h exposure to 1 {mu}g/ml of doxycycline (dox) induced UCP-2 fourfold (424 {+-} 113%, mean {+-} SEM) and 0.1 {mu}g/ml twofold (178 {+-} 29%, n = 3). Fourfold induced cells displayed normal viability (MTT, apoptosis), normal cellular insulin contents and, glucose-induced insulin secretion (+27 {+-} 11%) as well as D-[U-{sup 14}C]-glucose oxidation (+5 {+-} 9% at 11 mM glucose). Oxidation of [1-{sup 14}C]-oleate was increased from 4088 to 5797 fmol/{mu}g prot/2 h at 3.3 mM glucose, p < 0.03. Oxidation of L-[{sup 14}C(U)]-glutamine was unaffected. Induction of UCP-2 did not significantly affect measures of mitochondrial membrane potential (Rhodamine 123) or mitochondrial mass (Mitotracker Green) and did not affect ATP levels. Oligomycin-inhibited oxygen consumption (a measure of mitochondrial uncoupling) was marginally increased, the effect being significant in comparison with dox-only treated cells, p < 0.05. Oxygen radicals, assessed by dichlorofluorescin diacetate, were decreased by 30%, p < 0.025. Testing for the lower level of UCP-2 induction did not reproduce

  7. E2-EPF UCP Possesses E3 Ubiquitin Ligase Activity via Its Cysteine 118 Residue.

    PubMed

    Lim, Jung Hwa; Shin, Hee Won; Chung, Kyung-Sook; Kim, Nam-Soon; Kim, Ju Hee; Jung, Hong-Ryul; Im, Dong-Soo; Jung, Cho-Rok

    Here, we show that E2-EPF ubiquitin carrier protein (UCP) elongated E3-independent polyubiquitin chains on the lysine residues of von Hippel-Lindau protein (pVHL) and its own lysine residues both in vitro and in vivo. The initiation of the ubiquitin reaction depended on not only Lys11 linkage but also the Lys6, Lys48 and Lys63 residues of ubiquitin, which were involved in polyubiquitin chain formation on UCP itself. UCP self-association occurred through the UBC domain, which also contributed to the interaction with pVHL. The polyubiquitin chains appeared on the N-terminus of UCP in vivo, which indicated that the N-terminus of UCP contains target lysines for polyubiquitination. The Lys76 residue of UCP was the most critical site for auto-ubiquitination, whereas the polyubiquitin chain formation on pVHL occurred on all three of its lysines (Lys159, Lys171 and Lys196). A UCP mutant in which Cys118 was changed to alanine (UCPC118A) did not form a polyubiquitin chain but did strongly accumulate mono- and di-ubiquitin via auto-ubiquitination. Polyubiquitin chain formation required the coordination of Cys95 and Cys118 between two interacting molecules. The mechanism of the polyubiquitin chain reaction of UCP may involve the transfer of ubiquitin from Cys95 to Cys118 by trans-thiolation, with polyubiquitin chains forming at Cys118 by reversible thioester bonding. The polyubiquitin chains are then moved to the lysine residues of the substrate by irreversible isopeptide bonding. During the elongation of the ubiquitin chain, an active Cys118 residue is required in both parts of UCP, namely, the catalytic enzyme and the substrate. In conclusion, UCP possesses not only E2 ubiquitin conjugating enzyme activity but also E3 ubiquitin ligase activity, and Cys118 is critical for polyubiquitin chain formation.

  8. E2-EPF UCP Possesses E3 Ubiquitin Ligase Activity via Its Cysteine 118 Residue

    PubMed Central

    Lim, Jung Hwa; Shin, Hee Won; Chung, Kyung-Sook; Kim, Nam-Soon; Kim, Ju Hee; Jung, Hong-Ryul; Im, Dong-Soo; Jung, Cho-Rok

    2016-01-01

    Here, we show that E2-EPF ubiquitin carrier protein (UCP) elongated E3-independent polyubiquitin chains on the lysine residues of von Hippel-Lindau protein (pVHL) and its own lysine residues both in vitro and in vivo. The initiation of the ubiquitin reaction depended on not only Lys11 linkage but also the Lys6, Lys48 and Lys63 residues of ubiquitin, which were involved in polyubiquitin chain formation on UCP itself. UCP self-association occurred through the UBC domain, which also contributed to the interaction with pVHL. The polyubiquitin chains appeared on the N-terminus of UCP in vivo, which indicated that the N-terminus of UCP contains target lysines for polyubiquitination. The Lys76 residue of UCP was the most critical site for auto-ubiquitination, whereas the polyubiquitin chain formation on pVHL occurred on all three of its lysines (Lys159, Lys171 and Lys196). A UCP mutant in which Cys118 was changed to alanine (UCPC118A) did not form a polyubiquitin chain but did strongly accumulate mono- and di-ubiquitin via auto-ubiquitination. Polyubiquitin chain formation required the coordination of Cys95 and Cys118 between two interacting molecules. The mechanism of the polyubiquitin chain reaction of UCP may involve the transfer of ubiquitin from Cys95 to Cys118 by trans-thiolation, with polyubiquitin chains forming at Cys118 by reversible thioester bonding. The polyubiquitin chains are then moved to the lysine residues of the substrate by irreversible isopeptide bonding. During the elongation of the ubiquitin chain, an active Cys118 residue is required in both parts of UCP, namely, the catalytic enzyme and the substrate. In conclusion, UCP possesses not only E2 ubiquitin conjugating enzyme activity but also E3 ubiquitin ligase activity, and Cys118 is critical for polyubiquitin chain formation. PMID:27685940

  9. Ameliorating Endothelial Mitochondrial Dysfunction Restores Coronary Function via Transient Receptor Potential Vanilloid 1-Mediated Protein Kinase A/Uncoupling Protein 2 Pathway.

    PubMed

    Xiong, Shiqiang; Wang, Peijian; Ma, Liqun; Gao, Peng; Gong, Liuping; Li, Li; Li, Qiang; Sun, Fang; Zhou, Xunmei; He, Hongbo; Chen, Jing; Yan, Zhencheng; Liu, Daoyan; Zhu, Zhiming

    2016-02-01

    Coronary heart disease arising from atherosclerosis is a leading cause of cardiogenic death worldwide. Mitochondria are the principal source of reactive oxygen species (ROS), and defective oxidative phosphorylation by the mitochondrial respiratory chain contributes to ROS generation. Uncoupling protein 2 (UCP2), an adaptive antioxidant defense factor, protects against mitochondrial ROS-induced endothelial dysfunction in atherosclerosis. The activation of transient receptor potential vanilloid 1 (TRPV1) attenuates vascular dysfunction. Therefore, whether TRPV1 activation antagonizes coronary lesions by alleviating endothelial mitochondrial dysfunction and enhancing the activity of the protein kinase A/UCP2 pathway warrants examination. ApoE(-/-), ApoE(-/-)/TRPV1(-/-), and ApoE(-/-)/UCP2(-/-) mice were fed standard chow, a high-fat diet (HFD), or the HFD plus 0.01% capsaicin. HFD intake profoundly impaired coronary vasodilatation and myocardial perfusion and shortened the survival duration of ApoE(-/-) mice. TRPV1 or UCP2 deficiency exacerbated HFD-induced coronary dysfunction and was associated with increased ROS generation and reduced nitric oxide production in the endothelium. The activation of TRPV1 by capsaicin upregulated UCP2 expression via protein kinase A phosphorylation, thereby alleviating endothelial mitochondrial dysfunction and inhibiting mitochondrial ROS generation. In vivo, dietary capsaicin supplementation enhanced coronary relaxation and prolonged the survival duration of HFD-fed ApoE(-/-) mice. These effects were not observed in ApoE(-/-) mice lacking the TRPV1 or UCP2 gene. The upregulation of protein kinase A /UCP2 via TRPV1 activation ameliorates coronary dysfunction and prolongs the lifespan of atherosclerotic mice by ameliorating endothelial mitochondrial dysfunction. Dietary capsaicin supplementation may represent a promising intervention for the primary prevention of coronary heart disease. © 2015 American Heart Association, Inc.

  10. The antioxidant uncoupling protein 2 stimulates hnRNPA2/B1, GLUT1 and PKM2 expression and sensitizes pancreas cancer cells to glycolysis inhibition.

    PubMed

    Brandi, Jessica; Cecconi, Daniela; Cordani, Marco; Torrens-Mas, Margalida; Pacchiana, Raffaella; Dalla Pozza, Elisa; Butera, Giovanna; Manfredi, Marcello; Marengo, Emilio; Oliver, Jordi; Roca, Pilar; Dando, Ilaria; Donadelli, Massimo

    2016-12-01

    Several evidence indicate that metabolic alterations play a pivotal role in cancer development. Here, we report that the mitochondrial uncoupling protein 2 (UCP2) sustains the metabolic shift from mitochondrial oxidative phosphorylation (mtOXPHOS) to glycolysis in pancreas cancer cells. Indeed, we show that UCP2 sensitizes pancreas cancer cells to the treatment with the glycolytic inhibitor 2-deoxy-D-glucose. Through a bidimensional electrophoresis analysis, we identify 19 protein species differentially expressed after treatment with the UCP2 inhibitor genipin and, by bioinformatic analyses, we show that these proteins are mainly involved in metabolic processes. In particular, we demonstrate that the antioxidant UCP2 induces the expression of hnRNPA2/B1, which is involved in the regulation of both GLUT1 and PKM2 mRNAs, and of lactate dehydrogenase (LDH) increasing the secretion of L-lactic acid. We further demonstrate that the radical scavenger N-acetyl-L-cysteine reverts hnRNPA2/B1 and PKM2 inhibition by genipin indicating a role for reactive oxygen species in the metabolic reprogramming of cancer cells mediated by UCP2. We also observe an UCP2-dependent decrease in mtOXPHOS complex I (NADH dehydrogenase), complex IV (cytochrome c oxidase), complex V (ATPase) and in mitochondrial oxygen consumption, suggesting a role for UCP2 in the counteraction of pancreatic cancer cellular respiration. All these results reveal novel mechanisms through which UCP2 promotes cancer cell proliferation with the concomitant metabolic shift from mtOXPHOS to the glycolytic pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Fatty Acids Change the Conformation of Uncoupling Protein 1 (UCP1)*

    PubMed Central

    Divakaruni, Ajit S.; Humphrey, Dickon M.; Brand, Martin D.

    2012-01-01

    UCP1 catalyzes proton leak across the mitochondrial inner membrane to disengage substrate oxidation from ATP production. It is well established that UCP1 is activated by fatty acids and inhibited by purine nucleotides, but precisely how this regulation occurs remains unsettled. Although fatty acids can competitively overcome nucleotide inhibition in functional assays, fatty acids have little effect on purine nucleotide binding. Here, we present the first demonstration that fatty acids induce a conformational change in UCP1. Palmitate dramatically changed the binding kinetics of 2′/3′-O-(N-methylanthraniloyl)-GDP, a fluorescently labeled nucleotide analog, for UCP1. Furthermore, palmitate accelerated the rate of enzymatic proteolysis of UCP1. The altered kinetics of both processes indicate that fatty acids change the conformation of UCP1, reconciling the apparent discrepancy between existing functional and ligand binding data. Our results provide a framework for how fatty acids and nucleotides compete to regulate the activity of UCP1. PMID:22952235

  12. Uncoupling Mitochondrial Respiration for Diabesity.

    PubMed

    Larrick, James W; Larrick, Jasmine W; Mendelsohn, Andrew R

    2016-08-01

    Until recently, the mechanism of adaptive thermogenesis was ascribed to the expression of uncoupling protein 1 (UCP1) in brown and beige adipocytes. UCP1 is known to catalyze a proton leak of the inner mitochondrial membrane, resulting in uncoupled oxidative metabolism with no production of adenosine triphosphate and increased energy expenditure. Thus increasing brown and beige adipose tissue with augmented UCP1 expression is a viable target for obesity-related disorders. Recent work demonstrates an UCP1-independent pathway to uncouple mitochondrial respiration. A secreted enzyme, PM20D1, enriched in UCP1+ adipocytes, exhibits catalytic and hydrolytic activity to reversibly form N-acyl amino acids. N-acyl amino acids act as endogenous uncouplers of mitochondrial respiration at physiological concentrations. Administration of PM20D1 or its products, N-acyl amino acids, to diet-induced obese mice improves glucose tolerance by increasing energy expenditure. In short-term studies, treated animals exhibit no toxicity while experiencing 10% weight loss primarily of adipose tissue. Further study of this metabolic pathway may identify novel therapies for diabesity, the disease state associated with diabetes and obesity.

  13. Mitochondrial uncoupling proteins in unicellular eukaryotes.

    PubMed

    Jarmuszkiewicz, Wieslawa; Woyda-Ploszczyca, Andrzej; Antos-Krzeminska, Nina; Sluse, Francis E

    2010-01-01

    Uncoupling proteins (UCPs) are members of the mitochondrial anion carrier protein family that are present in the mitochondrial inner membrane and mediate free fatty acid (FFA)-activated, purine nucleotide (PN)-inhibited proton conductance. Since 1999, the presence of UCPs has been demonstrated in some non-photosynthesising unicellular eukaryotes, including amoeboid and parasite protists, as well as in non-fermentative yeast and filamentous fungi. In the mitochondria of these organisms, UCP activity is revealed upon FFA-induced, PN-inhibited stimulation of resting respiration and a decrease in membrane potential, which are accompanied by a decrease in membranous ubiquinone (Q) reduction level. UCPs in unicellular eukaryotes are able to divert energy from oxidative phosphorylation and thus compete for a proton electrochemical gradient with ATP synthase. Our recent work indicates that membranous Q is a metabolic sensor that might utilise its redox state to release the PN inhibition of UCP-mediated mitochondrial uncoupling under conditions of phosphorylation and resting respiration. The action of reduced Q (QH2) could allow higher or complete activation of UCP. As this regulatory feature was demonstrated for microorganism UCPs (A. castellanii UCP), plant and mammalian UCP1 analogues, and UCP1 in brown adipose tissue, the process could involve all UCPs. Here, we discuss the functional connection and physiological role of UCP and alternative oxidase, two main energy-dissipating systems in the plant-type mitochondrial respiratory chain of unicellular eukaryotes, including the control of cellular energy balance as well as preventive action against the production of reactive oxygen species. Copyright © 2009 Elsevier B.V. All rights reserved.

  14. Association of telomere length with type 2 diabetes, oxidative stress and UCP2 gene variation.

    PubMed

    Salpea, Klelia D; Talmud, Philippa J; Cooper, Jackie A; Maubaret, Cecilia G; Stephens, Jeffrey W; Abelak, Kavin; Humphries, Steve E

    2010-03-01

    High oxidative stress potentially leads to accelerated telomere shortening and consequent premature cell senescence, implicated in type 2 diabetes (T2D) development. Therefore, we studied the association of leukocyte telomere length (LTL) with the presence of T2D, as well as the effect on the patients' LTL of plasma oxidative stress and of variation in UCP2, a gene involved in the mitochondrial production of reactive oxygen species. Mean LTL was determined in 569 Caucasian, 103 South Asian and 70 Afro-Caribbean T2D patients aged from 24 to 92 years, 81 healthy Caucasian male students aged from 18 to 28 years and 367 healthy Caucasian men aged from 40 to 61 years by real-time PCR. Plasma total antioxidant status (TAOS) was measured in the T2D patients by a photometric microassay. The patients were also genotyped for the UCP2 functional variants -866G>A and A55V. Afro-Carribeans had 510bp longer mean length compared to Caucasians (p<0.0001) and 500bp longer than South Asians (p=0.004). T2D subjects displayed shorter age-adjusted LTL compared to controls [6.94(6.8-7.03) vs. 7.72(7.53-7.9), p<0.001] with subjects in the middle and the lowest tertile of LTL having significantly higher odds ratios for T2D compared to those in the highest tertile [1.50(1.08-2.07) and 5.04(3.63-6.99), respectively, p<0.0001]. In the patients, LTL was correlated negatively with age (r=-0.18, p<0.0001) and positively with TAOS measures (r=0.12, p=0.01) after adjusting for age, while carriers of the UCP2 -866A allele had shorter age-adjusted LTL than common homozygotes [6.86(6.76-6.96)kb vs. 7.03(6.91-7.15)kb, p=0.04]. The present data suggest that shorter LTL is associated with the presence of T2D and this could be partially attributed to the high oxidative stress in these patients. The association of the UCP2 functional promoter variant with the LTL implies a link between mitochondrial production of reactive oxygen species and shorter telomere length in T2D.

  15. Interactions between UCP2 SNPs and telomere length exist in the absence of diabetes or pre-diabetes

    PubMed Central

    Zhou, Yuling; Simmons, David; Hambly, Brett D.; McLachlan, Craig S.

    2016-01-01

    Mitochondrial uncoupling protein 2 (UCP2) can affect oxidative stress levels. UCP2 polymorphisms are associated with leukocyte telomere length (LTL) in Type 2 Diabetes, which also induces considerable background oxidative stress. The effects of UCP2 polymorphisms on LTL in populations without diabetes have not been well described. Our aims are to evaluate the interaction between LTL and UCP2 polymorphisms in 950 subjects without diabetes. The monochrome multiplex quantitative PCR method was used to measure relative LTL. Taqman SNP genotyping assay was applied to genotypes for UCP2 rs659366 and rs660339. We found shorter LTL associated with increased age (P < 0.001) and triglyceride levels (P = 0.041). After adjustment for cardiovascular risk factors, rs659336 GG genotype carriers demonstrated a shorter LTL (1.257 ± 0.186), compared to GA carriers (1.288 ± 0.230, P = 0.022) and AA carriers (1.314 ± 0.253, P = 0.002). LTL was shorter in the CC rs660339 genotype (1.254 ± 0.187) compared to TT (1.297 ± 0.242, P = 0.007) and CT carriers (1.292 ± 0.229, P = 0.016). The T allele of rs660339 is associated with a longer LTL of approximately 0.04 compared to CC homozygotes. Thus, UCP2 rs659366 A allele and rs660339 T allele are both related to longer LTL in subjects without diabetes, independent of cardiovascular risk factors. PMID:27615599

  16. The conserved regulation of mitochondrial uncoupling proteins: From unicellular eukaryotes to mammals.

    PubMed

    Woyda-Ploszczyca, Andrzej M; Jarmuszkiewicz, Wieslawa

    2017-01-01

    Uncoupling proteins (UCPs) belong to the mitochondrial anion carrier protein family and mediate regulated proton leak across the inner mitochondrial membrane. Free fatty acids, aldehydes such as hydroxynonenal, and retinoids activate UCPs. However, there are some controversies about the effective action of retinoids and aldehydes alone; thus, only free fatty acids are commonly accepted positive effectors of UCPs. Purine nucleotides such as GTP inhibit UCP-mediated mitochondrial proton leak. In turn, membranous coenzyme Q may play a role as a redox state-dependent metabolic sensor that modulates the complete activation/inhibition of UCPs. Such regulation has been observed for UCPs in microorganisms, plant and animal UCP1 homologues, and UCP1 in mammalian brown adipose tissue. The origin of UCPs is still under debate, but UCP homologues have been identified in all systematic groups of eukaryotes. Despite the differing levels of amino acid/DNA sequence similarities, functional studies in unicellular and multicellular organisms, from amoebae to mammals, suggest that the mechanistic regulation of UCP activity is evolutionarily well conserved. This review focuses on the regulatory feedback loops of UCPs involving free fatty acids, aldehydes, retinoids, purine nucleotides, and coenzyme Q (particularly its reduction level), which may derive from the early stages of evolution as UCP first emerged. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Genomic organization and mutational analysis of the human UCP2 gene, a prime candidate gene for human obesity.

    PubMed

    Lentes, K U; Tu, N; Chen, H; Winnikes, U; Reinert, I; Marmann, G; Pirke, K M

    1999-01-01

    Uncoupling proteins (UCPs) are mitochondrial membrane transporters which are involved in dissipating the proton electrochemical gradient thereby releasing stored energy as heat. This implies a major role of UCPs in energy metabolism and thermogenesis which when deregulated are key risk factors for the development of obesity and other eating disorders. Recent studies have shown that the sympathetic nervous system, via norepinephrine (beta-adrenoceptors) and cAMP, as well as thyroid hormones and PPAR gamma ligands seem to be major regulators of UCP expression. From the three different UCPs identified so far by gene cloning UCP1 is expressed exclusively in brown adipocytes while UCP2 is widely expressed. The third analogue, UCP3, is expressed predominantly in human skeletal muscle and was found to exist in a long and a short form. At the amino acid level UCP2 has about 59% homology to UCP1 while UCP3 is 73% identical to UCP2. Both UCP2 and UCP3 were mapped in close proximity (75-150 kb) to regions of human chromosome 11 (11q13) that have been linked to obesity and hyper-insulinaemia. Furthermore, there is strong evidence that UCP2, by virtue of its ubiquitous expression, may be important for determining basal metabolic rate. Based on the published full-length cDNA sequence we have deduced the genomic structure of the human UCP2 (hUCP2) gene by PCR and direct sequence analysis. The hUCP2 gene spans over 8.4 kb distributed on 8 exons. The localization of the exon/intron boundaries within the coding region matches precisely the one found in the human UCP1 gene and is almost conserved in the recently discovered UCP3 gene as well. However, the size of each of the introns in the hUCP2 gene differs from its UCP1 and UCP3 counterparts. It varies from 81 bp (intron 5) to about 3 kb (intron 2). The high degree of homology at the nucleotide level and the conservation of the exon/intron boundaries among the three UCP genes suggests that they may have evolved from a common

  18. UCP3 Ablation Exacerbates High-Salt Induced Cardiac Hypertrophy and Cardiac Dysfunction.

    PubMed

    Lang, Hongmei; Xiang, Yang; Ai, Zhihua; You, Zhiqing; Jin, Xiaolan; Wan, Yong; Yang, Yongjian

    2018-04-20

    Excessive salt intake and left ventricular hypertrophy (LVH) are both critical for the development of hypertension and heart failure. The uncoupling protein 3 (UCP3) plays a cardio-protective role in early heart failure development. However, the potential role for UCP3 in salt intake and LVH is unclear. UCP3-/- and C57BL/6 mice were placed on either a normal-salt (NS, 0.5%) or a high-salt (HS, 8%) diet for 24 weeks. The cardiac function, endurance capacity, energy expenditure, and mitochondrial functional capacity were measured in each group. Elevated blood pressure was only observed in HS-fed UCP3-/- mice. High salt induced cardiac hypertrophy and dysfunction were observed in both C57BL/6 and UCP3-/- mice. However, the cardiac lesions were more profound in HS-fed UCP3-/- mice. Furthermore, HS-fed UCP3-/-mice experienced more severe mitochondrial respiratory dysfunction compared with HS-fed C57BL/6 mice, represented by the decreased volume of oxygen consumption and heat production at the whole-body level. UCP3 protein was involved in the incidence of high-salt induced hypertension and the progression of cardiac dysfunction in the early stages of heart failure. UCP3 ablation exacerbated high-salt-induced cardiac hypertrophy and cardiac dysfunction. © 2018 The Author(s). Published by S. Karger AG, Basel.

  19. The emerging functions of UCP2 in health, disease, and therapeutics.

    PubMed

    Mattiasson, Gustav; Sullivan, Patrick G

    2006-01-01

    The uncoupling proteins (UCPs) are attracting an increased interest as potential therapeutic targets in a number of important diseases. UCP2 is expressed in several tissues, but its physiological functions as well as potential therapeutic applications are still unclear. Unlike UCP1, UCP2 does not seem to be important to thermogenesis or weight control, but appears to have an important role in the regulation of production of reactive oxygen species, inhibition of inflammation, and inhibition of cell death. These are central features in, for example, neurodegenerative and cardiovascular disease, and experimental evidence suggests that an increased expression and activity of UCP2 in models of these diseases has a beneficial effect on disease progression, implicating a potential therapeutic role for UCP2. UCP2 has an important role in the pathogenesis of type 2 diabetes by inhibiting insulin secretion in islet beta cells. At the same time, type 2 diabetes is associated with increased risk of cardiovascular disease and atherosclerosis where an increased expression of UCP2 appears to be beneficial. This illustrates that therapeutic applications involving UCP2 likely will have to regulate expression and activity in a tissue-specific manner.

  20. In the Early Stages of Diabetes, Rat Retinal Mitochondria Undergo Mild Uncoupling due to UCP2 Activity

    PubMed Central

    Osorio-Paz, Ixchel; Uribe-Carvajal, Salvador; Salceda, Rocío

    2015-01-01

    In order to maintain high transmembrane ionic gradients, retinal tissues require a large amount of energy probably provided by a high rate of both, glycolysis and oxidative phosphorylation. However, little information exists on retinal mitochondrial efficiency. We analyzed the retinal mitochondrial activity in ex vivo retinas and in isolated mitochondria from normal rat retina and from short-term streptozotocin-diabetic rats. In normal ex vivo retinas, increasing glucose concentrations from 5.6mM to 30mM caused a four-fold increase in glucose accumulation and CO2 production. Retina from diabetic rats accumulated similar amounts of glucose. However, CO2 production was not as high. Isolated mitochondria from normal rat retina exhibited a resting rate of oxygen consumption of 14.6 ± 1.1 natgO (min.mg prot)-1 and a respiratory control of 4.0. Mitochondria from 7, 20 and 45 days diabetic rats increased the resting rate of oxygen consumption and the activity of the electron transport complexes; under these conditions the mitochondrial transmembrane potential decreased. In spite of this, the ATP synthesis was not modified. GDP, an UCP2 inhibitor, increased mitochondrial membrane potential and superoxide production in controls and at 45 days of diabetes. The role of UCP2 is discussed. The results suggest that at the early stage of diabetes we studied, retinal mitochondria undergo adaptations leading to maintain energetic requirements and prevent oxidative stress. PMID:25951172

  1. In the Early Stages of Diabetes, Rat Retinal Mitochondria Undergo Mild Uncoupling due to UCP2 Activity.

    PubMed

    Osorio-Paz, Ixchel; Uribe-Carvajal, Salvador; Salceda, Rocío

    2015-01-01

    In order to maintain high transmembrane ionic gradients, retinal tissues require a large amount of energy probably provided by a high rate of both, glycolysis and oxidative phosphorylation. However, little information exists on retinal mitochondrial efficiency. We analyzed the retinal mitochondrial activity in ex vivo retinas and in isolated mitochondria from normal rat retina and from short-term streptozotocin-diabetic rats. In normal ex vivo retinas, increasing glucose concentrations from 5.6 mM to 30 mM caused a four-fold increase in glucose accumulation and CO2 production. Retina from diabetic rats accumulated similar amounts of glucose. However, CO2 production was not as high. Isolated mitochondria from normal rat retina exhibited a resting rate of oxygen consumption of 14.6 ± 1.1 natgO (min.mg prot)(-1) and a respiratory control of 4.0. Mitochondria from 7, 20 and 45 days diabetic rats increased the resting rate of oxygen consumption and the activity of the electron transport complexes; under these conditions the mitochondrial transmembrane potential decreased. In spite of this, the ATP synthesis was not modified. GDP, an UCP2 inhibitor, increased mitochondrial membrane potential and superoxide production in controls and at 45 days of diabetes. The role of UCP2 is discussed. The results suggest that at the early stage of diabetes we studied, retinal mitochondria undergo adaptations leading to maintain energetic requirements and prevent oxidative stress.

  2. Adenovirus-mediated E2-EPF UCP gene transfer prevents autoamputation in a mouse model of hindlimb ischemia.

    PubMed

    Lim, Jung Hwa; Shin, Hyo Jung; Park, Kyeong-Su; Lee, Chan Hee; Jung, Cho-Rok; Im, Dong-Soo

    2012-04-01

    E2-EPF ubiquitin carrier protein (UCP) stabilizes hypoxia-inducible factor-1α (HIF-1α) inducing ischemic vascular responses. Here, we investigated the effect of UCP gene transfer on therapeutic angiogenesis. Adenovirus-encoded UCP (Ad-F-UCP) increased the expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) in cells and mice. Conditioned media from UCP-overexpressing cells promoted proliferation, tubule formation, and invasion of human umbilical-vascular-endothelial cells (HUVECs), and vascularization in chorioallantoic membrane (CAM) assay. Ad-F-UCP increased the vessel density in the Martigel plug assay, and generated copious vessel-like structures in the explanted muscle. The UCP effect on angiogenesis was dependent on VEGF and FGF-2. In mouse hindlimb ischemia model (N = 30/group), autoamputation (limb loss) occurred in 87% and 68% of the mice with saline and Ad encoding β-galactosidase (Ad-LacZ), respectively, whereas only 23% of the mice injected with Ad-F-UCP showed autoamputation after 21 days of treatment. Ad-F-UCP increased protein levels of HIF-1α, platelet-endothelial cell adhesion molecule-1 (PECAM-1), smooth muscle cell actin (SMA) in the ischemic muscle, and augmented blood vessels doubly positive for PECAM-1 and SMA. Consequently, UCP gene transfer prevented muscle degeneration and autoamputation of ischemic limb. The results suggest that E2-EPF UCP may be a target for therapeutic angiogenesis.

  3. PRDM16 enhances nuclear receptor-dependent transcription of the brown fat-specific Ucp1 gene through interactions with Mediator subunit MED1.

    PubMed

    Iida, Satoshi; Chen, Wei; Nakadai, Tomoyoshi; Ohkuma, Yoshiaki; Roeder, Robert G

    2015-02-01

    PR domain-containing 16 (PRDM16) induces expression of brown fat-specific genes in brown and beige adipocytes, although the underlying transcription-related mechanisms remain largely unknown. Here, in vitro studies show that PRDM16, through its zinc finger domains, directly interacts with the MED1 subunit of the Mediator complex, is recruited to the enhancer of the brown fat-specific uncoupling protein 1 (Ucp1) gene through this interaction, and enhances thyroid hormone receptor (TR)-driven transcription in a biochemically defined system in a Mediator-dependent manner, thus providing a direct link to the general transcription machinery. Complementary cell-based studies show that upon forskolin treatment, PRDM16 induces Ucp1 expression in undifferentiated murine embryonic fibroblasts, that this induction depends on MED1 and TR, and, consistent with a direct effect, that PRDM16 is recruited to the Ucp1 enhancer. Related studies have defined MED1 and PRDM16 interaction domains important for Ucp1 versus Ppargc1a induction by PRDM16. These results reveal novel mechanisms for PRDM16 function through the Mediator complex. © 2015 Iida et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Adenovirus-mediated E2-EPF UCP Gene Transfer Prevents Autoamputation in a Mouse Model of Hindlimb Ischemia

    PubMed Central

    Lim, Jung Hwa; Shin, Hyo Jung; Park, Kyeong-Su; Lee, Chan Hee; Jung, Cho-Rok; Im, Dong-Soo

    2012-01-01

    E2-EPF ubiquitin carrier protein (UCP) stabilizes hypoxia-inducible factor-1α (HIF-1α) inducing ischemic vascular responses. Here, we investigated the effect of UCP gene transfer on therapeutic angiogenesis. Adenovirus-encoded UCP (Ad-F-UCP) increased the expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) in cells and mice. Conditioned media from UCP-overexpressing cells promoted proliferation, tubule formation, and invasion of human umbilical-vascular-endothelial cells (HUVECs), and vascularization in chorioallantoic membrane (CAM) assay. Ad-F-UCP increased the vessel density in the Martigel plug assay, and generated copious vessel-like structures in the explanted muscle. The UCP effect on angiogenesis was dependent on VEGF and FGF-2. In mouse hindlimb ischemia model (N = 30/group), autoamputation (limb loss) occurred in 87% and 68% of the mice with saline and Ad encoding β-galactosidase (Ad-LacZ), respectively, whereas only 23% of the mice injected with Ad-F-UCP showed autoamputation after 21 days of treatment. Ad-F-UCP increased protein levels of HIF-1α, platelet-endothelial cell adhesion molecule-1 (PECAM-1), smooth muscle cell actin (SMA) in the ischemic muscle, and augmented blood vessels doubly positive for PECAM-1 and SMA. Consequently, UCP gene transfer prevented muscle degeneration and autoamputation of ischemic limb. The results suggest that E2-EPF UCP may be a target for therapeutic angiogenesis. PMID:22294149

  5. Adrenergic Signaling Regulates Mitochondrial Ca2+ Uptake Through Pyk2-Dependent Tyrosine Phosphorylation of the Mitochondrial Ca2+ Uniporter

    PubMed Central

    Jhun, Bong Sook; Xu, Shangcheng; Hurst, Stephen; Raffaello, Anna; Liu, Xiaoyun; Yi, Bing; Zhang, Huiliang; Gross, Polina; Mishra, Jyotsna; Ainbinder, Alina; Kettlewell, Sarah; Smith, Godfrey L.; Dirksen, Robert T.; Wang, Wang; Rizzuto, Rosario

    2014-01-01

    Abstract Aims: Mitochondrial Ca2+ homeostasis is crucial for balancing cell survival and death. The recent discovery of the molecular identity of the mitochondrial Ca2+ uniporter pore (MCU) opens new possibilities for applying genetic approaches to study mitochondrial Ca2+ regulation in various cell types, including cardiac myocytes. Basal tyrosine phosphorylation of MCU was reported from mass spectroscopy of human and mouse tissues, but the signaling pathways that regulate mitochondrial Ca2+ entry through posttranslational modifications of MCU are completely unknown. Therefore, we investigated α1-adrenergic-mediated signal transduction of MCU posttranslational modification and function in cardiac cells. Results: α1-adrenoceptor (α1-AR) signaling translocated activated proline-rich tyrosine kinase 2 (Pyk2) from the cytosol to mitochondrial matrix and accelerates mitochondrial Ca2+ uptake via Pyk2-dependent MCU phosphorylation and tetrametric MCU channel pore formation. Moreover, we found that α1-AR stimulation increases reactive oxygen species production at mitochondria, mitochondrial permeability transition pore activity, and initiates apoptotic signaling via Pyk2-dependent MCU activation and mitochondrial Ca2+ overload. Innovation: Our data indicate that inhibition of α1-AR-Pyk2-MCU signaling represents a potential novel therapeutic target to limit or prevent mitochondrial Ca2+ overload, oxidative stress, mitochondrial injury, and myocardial death during pathophysiological conditions, where chronic adrenergic stimulation is present. Conclusion: The α1-AR-Pyk2-dependent tyrosine phosphorylation of the MCU regulates mitochondrial Ca2+ entry and apoptosis in cardiac cells. Antioxid. Redox Signal. 21, 863–879. PMID:24800979

  6. The on/off switches of the mitochondrial uncoupling proteins

    PubMed Central

    Azzu, Vian; Brand, Martin D.

    2013-01-01

    Mitochondrial uncoupling proteins disengage substrate oxidation from ADP phosphorylation by dissipating the proton electrochemical gradient that is required for ATP synthesis. In doing this, the archetypal uncoupling protein, UCP1, mediates adaptive thermogenesis. By contrast, its paralogues UCP2 and UCP3 are not thought to mediate whole body thermogenesis in mammals. Instead, they have been implicated in a variety of physiological and pathological processes, including protection from oxidative stress, negative regulation of glucose sensing systems and the adaptation of fatty acid oxidation capacity to starving. Although much work has been devoted to how these proteins are activated, little is known of the mechanisms that reverse this activation. PMID:20006514

  7. Sirt1 Regulates Insulin Secretion by Repressing UCP2 in Pancreatic β Cells

    PubMed Central

    Bordone, Laura; Jhala, Ulupi S; Apfeld, Javier; McDonagh, Thomas; Lemieux, Madeleine; McBurney, Michael; Szilvasi, Akos; Easlon, Erin J; Lin, Su-Ju; Guarente, Leonard

    2006-01-01

    Sir2 and insulin/IGF-1 are the major pathways that impinge upon aging in lower organisms. In Caenorhabditis elegans a possible genetic link between Sir2 and the insulin/IGF-1 pathway has been reported. Here we investigate such a link in mammals. We show that Sirt1 positively regulates insulin secretion in pancreatic β cells. Sirt1 represses the uncoupling protein (UCP) gene UCP2 by binding directly to the UCP2 promoter. In β cell lines in which Sirt1 is reduced by SiRNA, UCP2 levels are elevated and insulin secretion is blunted. The up-regulation of UCP2 is associated with a failure of cells to increase ATP levels after glucose stimulation. Knockdown of UCP2 restores the ability to secrete insulin in cells with reduced Sirt1, showing that UCP2 causes the defect in glucose-stimulated insulin secretion. Food deprivation induces UCP2 in mouse pancreas, which may occur via a reduction in NAD (a derivative of niacin) levels in the pancreas and down-regulation of Sirt1. Sirt1 knockout mice display constitutively high UCP2 expression. Our findings show that Sirt1 regulates UCP2 in β cells to affect insulin secretion. PMID:16366736

  8. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies.

    PubMed

    Dhamrait, Sukhbir S; Maubaret, Cecilia; Pedersen-Bjergaard, Ulrik; Brull, David J; Gohlke, Peter; Payne, John R; World, Michael; Thorsteinsson, Birger; Humphries, Steve E; Montgomery, Hugh E

    2016-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations ( healthy young UK men and Scandinavian diabetic patients ) serum ACE (sACE) activity was significantly higher amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold ( P  < 0·01) whilst increasing ACE expression within a physiological range (<1·8-fold at 48 h; P  < 0·01). Our findings suggest novel hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role.

  9. Functional characterization of the 5'-flanking and the promoter region of the human UCP3 (hUCP3) gene.

    PubMed

    Tu, N; Chen, H; Winnikes, U; Reinert, I; Pirke, K M; Lentes, K U

    2000-09-22

    Uncoupling protein-3 (UCP3) is considered as an important regulator of energy expenditure and thermogenesis in humans. To get insight into the mechanisms regulating its expression we have cloned and characterized about 5 kb of the 5'-flanking region of the human UCP3 (hUCP3) gene. 5'-RACE analysis suggested a single transcription initiation site 187 bp upstream from the translational start site. The promoter region contains both TATA and CAAT boxes as well as consensus motifs for PPRE, TRE, CRE and muscle-specific factors like MyoD and MEF2 sites. Functional characterization of a 3 kb hUCP3 promoter fragment in multiple cell lines using a CAT-ELISA identified a cis-acting negative regulatory element between -2983 and -982 while the region between -982 and -284 showed greatly increased basal promoter activity suggesting the presence of a strong enhancer element. Promoter activity was particularly enhanced in the murine skeletal muscle cell line C2C12 reflecting the tissue-selective expression pattern of UCP3.

  10. UCP2 and UCP3 variants and gene-environment interaction associated with prediabetes and T2DM in a rural population: a case control study in China.

    PubMed

    Su, Meifang; Chen, Xiaoying; Chen, Yue; Wang, Congyun; Li, Songtao; Ying, Xuhua; Xiao, Tian; Wang, Na; Jiang, Qingwu; Fu, Chaowei

    2018-03-12

    There are disparities for the association between uncoupling proteins (UCP) and type 2 diabetes (T2DM). The study was to examine the associations of genetic variants of UCP2 and UCP3 with prediabetes and T2DM in a rural Chinese population. A population-based case-control study of 397 adults with T2DM, 394 with prediabetes and 409 with normal glucose tolerance (NGT) was carried out in 2014 in a rural community in eastern China. Three groups were identified through a community survey and the prediabetes and NGT groups were frequently matched by age and gender with the T2DM group and they were not relatives of T2DM subjects. With r 2  ≥ 0.8 and minor allele frequency (MAF) ≥0.05 for tag single nucleotide polymorphisms (SNPs) with potential function, three (rs660339, rs45560234 and rs643064) and six (rs7930460, rs15763, rs647126, rs1800849, rs3781907 and rs1685356) SNPs were selected respectively for UCP2 and UCP3 and genotyped in real time using the MassARRAY system (Sequenom; USA). The haplotypes, gene-environmental interaction and association between genetic variants of UCP2 and UCP3 and prediabetes or T2DM were explored. There were no significant differences in age and sex among three study groups. After the adjustment for possible covariates, the A allele of rs1800849 in UCP3 was significantly associated with prediabetes (aOR AA vs GG  = 1.68, 95% CI: 1.02-2.78), and the association was also significant under the recessive model (aOR AA vs GA + GG  = 1.64, 95% CI: 1.02-2.66). Also, rs15763 was found to be marginally significantly associated with T2DM under dominant model (OR GA + AA vs GG  = 0.73, 95% CI: 0.52-1.03, P = 0.072). No haplotype was significantly associated with prediabetes or T2DM. Multiplicative interactions for rs660339-overweight on T2DM were observed. In addition, the AA genotype of rs660339 was associated with an increased risk of T2DM in overweight subjects (OR = 1.48, 95%CI: 0.87-2.52) but with a decreased

  11. Defective Expression of the Mitochondrial-tRNA Modifying Enzyme GTPBP3 Triggers AMPK-Mediated Adaptive Responses Involving Complex I Assembly Factors, Uncoupling Protein 2, and the Mitochondrial Pyruvate Carrier.

    PubMed

    Martínez-Zamora, Ana; Meseguer, Salvador; Esteve, Juan M; Villarroya, Magda; Aguado, Carmen; Enríquez, J Antonio; Knecht, Erwin; Armengod, M-Eugenia

    2015-01-01

    GTPBP3 is an evolutionary conserved protein presumably involved in mitochondrial tRNA (mt-tRNA) modification. In humans, GTPBP3 mutations cause hypertrophic cardiomyopathy with lactic acidosis, and have been associated with a defect in mitochondrial translation, yet the pathomechanism remains unclear. Here we use a GTPBP3 stable-silencing model (shGTPBP3 cells) for a further characterization of the phenotype conferred by the GTPBP3 defect. We experimentally show for the first time that GTPBP3 depletion is associated with an mt-tRNA hypomodification status, as mt-tRNAs from shGTPBP3 cells were more sensitive to digestion by angiogenin than tRNAs from control cells. Despite the effect of stable silencing of GTPBP3 on global mitochondrial translation being rather mild, the steady-state levels and activity of Complex I, and cellular ATP levels were 50% of those found in the controls. Notably, the ATPase activity of Complex V increased by about 40% in GTPBP3 depleted cells suggesting that mitochondria consume ATP to maintain the membrane potential. Moreover, shGTPBP3 cells exhibited enhanced antioxidant capacity and a nearly 2-fold increase in the uncoupling protein UCP2 levels. Our data indicate that stable silencing of GTPBP3 triggers an AMPK-dependent retrograde signaling pathway that down-regulates the expression of the NDUFAF3 and NDUFAF4 Complex I assembly factors and the mitochondrial pyruvate carrier (MPC), while up-regulating the expression of UCP2. We also found that genes involved in glycolysis and oxidation of fatty acids are up-regulated. These data are compatible with a model in which high UCP2 levels, together with a reduction in pyruvate transport due to the down-regulation of MPC, promote a shift from pyruvate to fatty acid oxidation, and to an uncoupling of glycolysis and oxidative phosphorylation. These metabolic alterations, and the low ATP levels, may negatively affect heart function.

  12. Olive oil-supplemented diet alleviates acute heat stress-induced mitochondrial ROS production in chicken skeletal muscle.

    PubMed

    Mujahid, Ahmad; Akiba, Yukio; Toyomizu, Masaaki

    2009-09-01

    We have previously shown that avian uncoupling protein (avUCP) is downregulated on exposure to acute heat stress, stimulating mitochondrial reactive oxygen species (ROS) production and oxidative damage. In this study, we investigated whether upregulation of avUCP could attenuate oxidative damage caused by acute heat stress. Broiler chickens (Gallus gallus) were fed either a control diet or an olive oil-supplemented diet (6.7%), which has been shown to increase the expression of UCP3 in mammals, for 8 days and then exposed either to heat stress (34 degrees C, 12 h) or kept at a thermoneutral temperature (25 degrees C). Skeletal muscle mitochondrial ROS (measured as H(2)O(2)) production, avUCP expression, oxidative damage, mitochondrial membrane potential, and oxygen consumption were studied. We confirmed that heat stress increased mitochondrial ROS production and malondialdehyde levels and decreased the amount of avUCP. As expected, feeding birds an olive oil-supplemented diet increased the expression of avUCP in skeletal muscle mitochondria and decreased ROS production and oxidative damage. Studies on mitochondrial function showed that heat stress increased membrane potential in state 4, which was reversed by feeding birds an olive oil-supplemented diet, although no differences in basal proton leak were observed between control and heat-stressed groups. These results show that under heat stress, mitochondrial ROS production and olive oil-induced reduction of ROS production may occur due to changes in respiratory chain activity as well as avUCP expression in skeletal muscle mitochondria.

  13. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies.

    PubMed

    Dhamrait, Sukhbir S; Maubaret, Cecilia; Pedersen-Bjergaard, Ulrik; Brull, David J; Gohlke, Peter; Payne, John R; World, Michael; Thorsteinsson, Birger; Humphries, Steve E; Montgomery, Hugh E

    2016-07-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P < 0·01) whilst increasing ACE expression within a physiological range (<1·8-fold at 48 h; P < 0·01). Our findings suggest novel hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role. © 2016 The Authors. BioEssays published by WILEY Periodicals, Inc.

  14. Mitochondrial uncoupling proteins regulate angiotensin‐converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies

    PubMed Central

    Maubaret, Cecilia; Pedersen‐Bjergaard, Ulrik; Brull, David J.; Gohlke, Peter; Payne, John R.; World, Michael; Thorsteinsson, Birger; Humphries, Steve E.; Montgomery, Hugh E.

    2015-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin‐converting enzyme (ACE) is the central component of endocrine and local tissue renin–angiotensin systems (RAS), which also regulate diverse aspects of whole‐body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3‐55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P < 0·01) whilst increasing ACE expression within a physiological range (<1·8‐fold at 48 h; P < 0·01). Our findings suggest novel hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role. PMID:27347560

  15. Uncoupling protein and ATP/ADP carrier increase mitochondrial proton conductance after cold adaptation of king penguins.

    PubMed

    Talbot, Darren A; Duchamp, Claude; Rey, Benjamin; Hanuise, Nicolas; Rouanet, Jean Louis; Sibille, Brigitte; Brand, Martin D

    2004-07-01

    Juvenile king penguins develop adaptive thermogenesis after repeated immersion in cold water. However, the mechanisms of such metabolic adaptation in birds are unknown, as they lack brown adipose tissue and uncoupling protein-1 (UCP1), which mediate adaptive non-shivering thermogenesis in mammals. We used three different groups of juvenile king penguins to investigate the mitochondrial basis of avian adaptive thermogenesis in vitro. Skeletal muscle mitochondria isolated from penguins that had never been immersed in cold water showed no superoxide-stimulated proton conductance, indicating no functional avian UCP. Skeletal muscle mitochondria from penguins that had been either experimentally immersed or naturally adapted to cold water did possess functional avian UCP, demonstrated by a superoxide-stimulated, GDP-inhibitable proton conductance across their inner membrane. This was associated with a markedly greater abundance of avian UCP mRNA. In the presence (but not the absence) of fatty acids, these mitochondria also showed a greater adenine nucleotide translocase-catalysed proton conductance than those from never-immersed penguins. This was due to an increase in the amount of adenine nucleotide translocase. Therefore, adaptive thermogenesis in juvenile king penguins is linked to two separate mechanisms of uncoupling of oxidative phosphorylation in skeletal muscle mitochondria: increased proton transport activity of avian UCP (dependent on superoxide and inhibited by GDP) and increased proton transport activity of the adenine nucleotide translocase (dependent on fatty acids and inhibited by carboxyatractylate).

  16. Essential role for uncoupling protein-3 in mitochondrial adaptation to fasting but not in fatty acid oxidation or fatty acid anion export.

    PubMed

    Seifert, Erin L; Bézaire, Véronic; Estey, Carmen; Harper, Mary-Ellen

    2008-09-12

    Uncoupling protein-3 (UCP3) is a mitochondrial inner membrane protein expressed most abundantly in skeletal muscle and to a lesser extent in heart and brown adipose tissue. Evidence supports a role for UCP3 in fatty acid oxidation (FAO); however, the underlying mechanism has not been explored. In 2001 we proposed a role for UCP3 in fatty acid export, leading to higher FAO rates (Himms-Hagen, J., and Harper, M. E. (2001) Exp. Biol. Med. (Maywood) 226, 78-84). Specifically, this widely held hypothesis states that during elevated FAO rates, UCP3 exports fatty acid anions, thereby maintaining mitochondrial co-enzyme A availability; reactivation of exported fatty acid anions would ultimately enable increased FAO. Here we tested mechanistic aspects of this hypothesis as well as its functional implications, namely increased FAO rates. Using complementary mechanistic approaches in mitochondria from wild-type and Ucp3(-/-) mice, we find that UCP3 is not required for FAO regardless of substrate type or supply rate covering a 20-fold range. Fatty acid anion export and reoxidation during elevated FAO, although present in skeletal muscle mitochondria, are independent of UCP3 abundance. Interestingly, UCP3 was found to be necessary for the fasting-induced enhancement of FAO rate and capacity, possibly via mitigated mitochondrial oxidative stress. Thus, although our observations indicate that UCP3 can impact FAO rates, the mechanistic basis is not via an integral function for UCP3 in the FAO machinery. Overall our data indicate a function for UCP3 in mitochondrial adaptation to perturbed cellular energy balance and integrate previous observations that have linked UCP3 to reduced oxidative stress and FAO.

  17. The UCP2 -866G/A, Ala55Val and UCP3 -55C/T polymorphisms are associated with premature coronary artery disease and cardiovascular risk factors in Mexican population.

    PubMed

    Gamboa, Ricardo; Huesca-Gómez, Claudia; López-Pérez, Vanessa; Posadas-Sánchez, Rosalinda; Cardoso-Saldaña, Guillermo; Medina-Urrutia, Aida; Juárez-Rojas, Juan Gabriel; Soto, María Elena; Posadas-Romero, Carlos; Vargas-Alarcón, Gilberto

    2018-05-21

    We examined the role of UCP gene polymorphisms as susceptibility markers for premature coronary artery disease (pCAD). The UCP2 Ala55Val (C/T rs660339), UCP2 -866G/A (rs659366), and UCP3 -55C/T (rs1800849) polymorphisms were genotyped in 948 patients with pCAD, and 763 controls. The distribution of the UCP2 A55V (C/T rs660339) and UCP3 -55 (rs1800849) was similar in patients and controls. However, under a recessive model, the UCP2 -866 (rs659366) A allele was associated with increased risk of developing pCAD (OR = 1.43, Pc = 0.003). On the other hand, patients with pCAD and UCP2 A55V (rs660339) TT showed high levels of visceral abdominal fat (VAF) (Pc = 0.002), low levels of subcutaneous abdominal fat (SAF) (Pc = 0.001) and high VAT/SAT ratio (Pc < 0.001). Also, patients with UCP2 -866 (rs659366) AA showed increased levels of VAF (Pc = 0.003), low levels of SAF (Pc = 0.001) and a high VAT/SAT ratio (Pc = 0.002), whereas patients with the UCP3 -55 (rs1800849) TT presented high levels of VAF (Pc = 0.002). The results suggest the association of the UCP2 -866 (rs659366) polymorphism with risk of developing pCAD. Some polymorphisms were associated with abdominal fat levels and cardiovascular risk factors.

  18. Uncoupling protein and ATP/ADP carrier increase mitochondrial proton conductance after cold adaptation of king penguins

    PubMed Central

    Talbot, Darren A; Duchamp, Claude; Rey, Benjamin; Hanuise, Nicolas; Rouanet, Jean Louis; Sibille, Brigitte; Brand, Martin D

    2004-01-01

    Juvenile king penguins develop adaptive thermogenesis after repeated immersion in cold water. However, the mechanisms of such metabolic adaptation in birds are unknown, as they lack brown adipose tissue and uncoupling protein-1 (UCP1), which mediate adaptive non-shivering thermogenesis in mammals. We used three different groups of juvenile king penguins to investigate the mitochondrial basis of avian adaptive thermogenesis in vitro. Skeletal muscle mitochondria isolated from penguins that had never been immersed in cold water showed no superoxide-stimulated proton conductance, indicating no functional avian UCP. Skeletal muscle mitochondria from penguins that had been either experimentally immersed or naturally adapted to cold water did possess functional avian UCP, demonstrated by a superoxide-stimulated, GDP-inhibitable proton conductance across their inner membrane. This was associated with a markedly greater abundance of avian UCP mRNA. In the presence (but not the absence) of fatty acids, these mitochondria also showed a greater adenine nucleotide translocase-catalysed proton conductance than those from never-immersed penguins. This was due to an increase in the amount of adenine nucleotide translocase. Therefore, adaptive thermogenesis in juvenile king penguins is linked to two separate mechanisms of uncoupling of oxidative phosphorylation in skeletal muscle mitochondria: increased proton transport activity of avian UCP (dependent on superoxide and inhibited by GDP) and increased proton transport activity of the adenine nucleotide translocase (dependent on fatty acids and inhibited by carboxyatractylate). PMID:15146050

  19. The role of uncoupling protein 3 regulating calcium ion uptake into mitochondria during sarcopenia

    NASA Astrophysics Data System (ADS)

    Nikawa, Takeshi; Choi, Inho; Haruna, Marie; Hirasaka, Katsuya; Maita Ohno, Ayako; Kondo Teshima, Shigetada

    Overloaded mitochondrial calcium concentration contributes to progression of mitochondrial dysfunction in aged muscle, leading to sarcopenia. Uncoupling protein 3 (UCP3) is primarily expressed in the inner membrane of skeletal muscle mitochondria. Recently, it has been reported that UCP3 is associated with calcium uptake into mitochondria. However, the mechanisms by which UCP3 regulates mitochondrial calcium uptake are not well understood. Here we report that UCP3 interacts with HS-1 associated protein X-1 (Hax-1), an anti-apoptotic protein that is localized in mitochondria, which is involved in cellular responses to calcium ion. The hydrophilic sequences within the loop 2, matrix-localized hydrophilic domain of mouse UCP3 are necessary for binding to Hax-1 of the C-terminal domain in adjacent to mitochondrial innermembrane. Interestingly, these proteins interaction occur the calcium-dependent manner. Indeed, overexpression of UCP3 significantly enhanced calcium uptake into mitochondria on Hax-1 endogenously expressing C2C12 myoblasts. In addition, Hax-1 knock-down enhanced calcium uptake into mitochondria on both UCP3 and Hax-1 endogenously expressing C2C12 myotubes, but not myoblasts. Finally, the dissociation of UCP3 and Hax-1 enhances calcium uptake into mitochondria in aged muscle. These studies identify a novel UCP3-Hax-1 complex regulates the influx of calcium ion into mitochondria in muscle. Thus, the efficacy of UCP3-Hax-1 in mitochondrial calcium regulation may provide a novel therapeutic approach against mitochondrial dysfunction-related disease containing sarcopenia.

  20. Mitochondrial efficiency and exercise economy following heat stress: a potential role of uncoupling protein 3.

    PubMed

    Salgado, Roy M; Sheard, Ailish C; Vaughan, Roger A; Parker, Daryl L; Schneider, Suzanne M; Kenefick, Robert W; McCormick, James J; Gannon, Nicholas P; Van Dusseldorp, Trisha A; Kravitz, Len R; Mermier, Christine M

    2017-02-01

    Heat stress has been reported to reduce uncoupling proteins (UCP) expression, which in turn should improve mitochondrial efficiency. Such an improvement in efficiency may translate to the systemic level as greater exercise economy. However, neither the heat-induced improvement in mitochondrial efficiency (due to decrease in UCP), nor its potential to improve economy has been studied. Determine: (i) if heat stress in vitro lowers UCP3 thereby improving mitochondrial efficiency in C2C12 myocytes; (ii) whether heat acclimation (HA) in vivo improves exercise economy in trained individuals; and (iii) the potential improved economy during exercise at altitude. In vitro, myocytes were heat stressed for 24 h (40°C), followed by measurements of UCP3, mitochondrial uncoupling, and efficiency. In vivo, eight trained males completed: (i) pre-HA testing; (ii) 10 days of HA (40°C, 20% RH); and (iii) post-HA testing. Pre- and posttesting consisted of maximal exercise test and submaximal exercise at two intensities to assess exercise economy at 1600 m (Albuquerque, NM) and 4350 m. Heat-stressed myocytes displayed significantly reduced UCP3 mRNA expression and, mitochondrial uncoupling (77.1 ± 1.2%, P < 0.0001) and improved mitochondrial efficiency (62.9 ± 4.1%, P < 0.0001) compared to control. In humans, at both 1600 m and 4350 m, following HA, submaximal exercise economy did not change at low and moderate exercise intensities. Our findings indicate that while heat-induced reduction in UCP3 improves mitochondrial efficiency in vitro, this is not translated to in vivo improvement of exercise economy at 1600 m or 4350 m. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  1. Bnip3 mediates doxorubicin-induced cardiac myocyte necrosis and mortality through changes in mitochondrial signaling

    PubMed Central

    Dhingra, Rimpy; Margulets, Victoria; Chowdhury, Subir Roy; Thliveris, James; Jassal, Davinder; Fernyhough, Paul; Dorn, Gerald W.; Kirshenbaum, Lorrie A.

    2014-01-01

    Doxorubicin (DOX) is widely used for treating human cancers, but can induce heart failure through an undefined mechanism. Herein we describe a previously unidentified signaling pathway that couples DOX-induced mitochondrial respiratory chain defects and necrotic cell death to the BH3-only protein Bcl-2-like 19kDa-interacting protein 3 (Bnip3). Cellular defects, including vacuolization and disrupted mitochondria, were observed in DOX-treated mice hearts. This coincided with mitochondrial localization of Bnip3, increased reactive oxygen species production, loss of mitochondrial membrane potential, mitochondrial permeability transition pore opening, and necrosis. Interestingly, a 3.1-fold decrease in maximal mitochondrial respiration was observed in cardiac mitochondria of mice treated with DOX. In vehicle-treated control cells undergoing normal respiration, the respiratory chain complex IV subunit 1 (COX1) was tightly bound to uncoupling protein 3 (UCP3), but this complex was disrupted in cells treated with DOX. Mitochondrial dysfunction induced by DOX was accompanied by contractile failure and necrotic cell death. Conversely, shRNA directed against Bnip3 or a mutant of Bnip3 defective for mitochondrial targeting abrogated DOX-induced loss of COX1-UCP3 complexes and respiratory chain defects. Finally, Bnip3−/− mice treated with DOX displayed relatively normal mitochondrial morphology, respiration, and mortality rates comparable to those of saline-treated WT mice, supporting the idea that Bnip3 underlies the cardiotoxic effects of DOX. These findings reveal a new signaling pathway in which DOX-induced mitochondrial respiratory chain defects and necrotic cell death are mutually dependent on and obligatorily linked to Bnip3 gene activation. Interventions that antagonize Bnip3 may prove beneficial in preventing mitochondrial injury and heart failure in cancer patients undergoing chemotherapy. PMID:25489073

  2. Long-term high-fat feeding induces greater fat storage in mice lacking UCP3.

    PubMed

    Costford, Sheila R; Chaudhry, Shehla N; Crawford, Sean A; Salkhordeh, Mahmoud; Harper, Mary-Ellen

    2008-11-01

    Uncoupling protein-3 (UCP3) is a mitochondrial inner-membrane protein highly expressed in skeletal muscle. While UCP3's function is still unknown, it has been hypothesized to act as a fatty acid (FA) anion exporter, protecting mitochondria against lipid peroxidation and/or facilitating FA oxidation. The aim of this study was to determine the effects of long-term feeding of a 45% fat diet on whole body indicators of muscle metabolism in congenic C57BL/6 mice that were either lacking UCP3 (Ucp3(-/-)) or had a transgenically induced approximately twofold increase in UCP3 levels (UCP3tg). Mice were fed the high-fat (HF) diet for a period of either 4 or 8 mo immediately following weaning. After long-term HF feeding, UCP3tg mice weighed an average of 15% less than wild-type mice (P < 0.05) and were 20% less metabolically efficient than both wild-type and Ucp3(-/-) mice (P < 0.01). Additionally, wild-type mice had 21% lower, whereas UCP3tg mice had 36% lower, levels of adiposity compared with Ucp3(-/-) mice (P < 0.05 and P < 0.001, respectively), indicating a protective effect of UCP3 against fat gain. No differences in whole body oxygen consumption were detected following long-term HF feeding. Glucose and insulin tolerance tests revealed that both the UCP3tg and Ucp3(-/-) mice were more glucose tolerant and insulin sensitive compared with wild-type mice after short-term HF feeding, but this protection was not maintained in the long term. Findings indicate that UCP3 is involved in protection from fat gain induced by long-term HF feeding, but not in protection from insulin resistance.

  3. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity

    PubMed Central

    Zheng, Qiantao; Lin, Jun; Huang, Jiaojiao; Zhang, Hongyong; Zhang, Rui; Zhang, Xueying; Cao, Chunwei; Hambly, Catherine; Qin, Guosong; Yao, Jing; Song, Ruigao; Jia, Qitao; Wang, Xiao; Li, Yongshun; Zhang, Nan; Piao, Zhengyu; Ye, Rongcai; Speakman, John R.; Wang, Hongmei; Zhou, Qi; Wang, Yanfang; Jin, Wanzhu

    2017-01-01

    Uncoupling protein 1 (UCP1) is localized on the inner mitochondrial membrane and generates heat by uncoupling ATP synthesis from proton transit across the inner membrane. UCP1 is a key element of nonshivering thermogenesis and is most likely important in the regulation of body adiposity. Pigs (Artiodactyl family Suidae) lack a functional UCP1 gene, resulting in poor thermoregulation and susceptibility to cold, which is an economic and pig welfare issue owing to neonatal mortality. Pigs also have a tendency toward fat accumulation, which may be linked to their lack of UCP1, and thus influences the efficiency of pig production. Here, we report application of a CRISPR/Cas9-mediated, homologous recombination (HR)-independent approach to efficiently insert mouse adiponectin-UCP1 into the porcine endogenous UCP1 locus. The resultant UCP1 knock-in (KI) pigs showed an improved ability to maintain body temperature during acute cold exposure, but they did not have alterations in physical activity levels or total daily energy expenditure (DEE). Furthermore, ectopic UCP1 expression in white adipose tissue (WAT) dramatically decreased fat deposition by 4.89% (P < 0.01), consequently increasing carcass lean percentage (CLP; P < 0.05). Mechanism studies indicated that the loss of fat upon UCP1 activation in WAT was linked to elevated lipolysis. UCP1 KI pigs are a potentially valuable resource for agricultural production through their combination of cold adaptation, which improves pig welfare and reduces economic losses, with reduced fat deposition and increased lean meat production. PMID:29078316

  4. Plant uncoupling mitochondrial proteins.

    PubMed

    Vercesi, Aníbal Eugênio; Borecký, Jiri; Maia, Ivan de Godoy; Arruda, Paulo; Cuccovia, Iolanda Midea; Chaimovich, Hernan

    2006-01-01

    Uncoupling proteins (UCPs) are membrane proteins that mediate purine nucleotide-sensitive free fatty acid-activated H(+) flux through the inner mitochondrial membrane. After the discovery of UCP in higher plants in 1995, it was acknowledged that these proteins are widely distributed in eukaryotic organisms. The widespread presence of UCPs in eukaryotes implies that these proteins may have functions other than thermogenesis. In this review, we describe the current knowledge of plant UCPs, including their discovery, biochemical properties, distribution, gene family, gene expression profiles, regulation of gene expression, and evolutionary aspects. Expression analyses and functional studies on the plant UCPs under normal and stressful conditions suggest that UCPs regulate energy metabolism in the cellular responses to stress through regulation of the electrochemical proton potential (Deltamu(H)+) and production of reactive oxygen species.

  5. Control of Mitochondrial pH by Uncoupling Protein 4 in Astrocytes Promotes Neuronal Survival*

    PubMed Central

    Perreten Lambert, Hélène; Zenger, Manuel; Azarias, Guillaume; Chatton, Jean-Yves; Magistretti, Pierre J.; Lengacher, Sylvain

    2014-01-01

    Brain activity is energetically costly and requires a steady and highly regulated flow of energy equivalents between neural cells. It is believed that a substantial share of cerebral glucose, the major source of energy of the brain, will preferentially be metabolized in astrocytes via aerobic glycolysis. The aim of this study was to evaluate whether uncoupling proteins (UCPs), located in the inner membrane of mitochondria, play a role in setting up the metabolic response pattern of astrocytes. UCPs are believed to mediate the transmembrane transfer of protons, resulting in the uncoupling of oxidative phosphorylation from ATP production. UCPs are therefore potentially important regulators of energy fluxes. The main UCP isoforms expressed in the brain are UCP2, UCP4, and UCP5. We examined in particular the role of UCP4 in neuron-astrocyte metabolic coupling and measured a range of functional metabolic parameters including mitochondrial electrical potential and pH, reactive oxygen species production, NAD/NADH ratio, ATP/ADP ratio, CO2 and lactate production, and oxygen consumption rate. In brief, we found that UCP4 regulates the intramitochondrial pH of astrocytes, which acidifies as a consequence of glutamate uptake, with the main consequence of reducing efficiency of mitochondrial ATP production. The diminished ATP production is effectively compensated by enhancement of glycolysis. This nonoxidative production of energy is not associated with deleterious H2O2 production. We show that astrocytes expressing more UCP4 produced more lactate, which is used as an energy source by neurons, and had the ability to enhance neuronal survival. PMID:25237189

  6. Mitochondrial neuronal uncoupling proteins: a target for potential disease-modification in Parkinson's disease

    PubMed Central

    2012-01-01

    This review gives a brief insight into the role of mitochondrial dysfunction and oxidative stress in the converging pathogenic processes involved in Parkinson's disease (PD). Mitochondria provide cellular energy in the form of ATP via oxidative phosphorylation, but as an integral part of this process, superoxides and other reactive oxygen species are also produced. Excessive free radical production contributes to oxidative stress. Cells have evolved to handle such stress via various endogenous anti-oxidant proteins. One such family of proteins is the mitochondrial uncoupling proteins (UCPs), which are anion carriers located in the mitochondrial inner membrane. There are five known homologues (UCP1 to 5), of which UCP4 and 5 are predominantly expressed in neural cells. In a series of previous publications, we have shown how these neuronal UCPs respond to 1-methyl-4-phenylpyridinium (MPP+; toxic metabolite of MPTP) and dopamine-induced toxicity to alleviate neuronal cell death by preserving ATP levels and mitochondrial membrane potential, and reducing oxidative stress. We also showed how their expression can be influenced by nuclear factor kappa-B (NF-κB) signaling pathway specifically in UCP4. Furthermore, we previously reported an interesting link between PD and metabolic processes through the protective effects of leptin (hormone produced by adipocytes) acting via UCP2 against MPP+-induced toxicity. There is increasing evidence that these endogenous neuronal UCPs can play a vital role to protect neurons against various pathogenic stresses including those associated with PD. Their expression, which can be induced, may well be a potential therapeutic target for various drugs to alleviate the harmful effects of pathogenic processes in PD and hence modify the progression of this disease. PMID:23210978

  7. UCP2 expression is associated with weight loss after hypocaloric diet intervention.

    PubMed

    Cortes-Oliveira, C; Nicoletti, C F; de Souza Pinhel, M A; de Oliveira, B A P; Quinhoneiro, D C G; Noronha, N Y; Marchini, J S; da Silva Júnior, W A; Júnior, W S; Nonino, C B

    2017-03-01

    Although energy restriction contributes to weight loss, it may also reduce energy expenditure, limiting the success of weight loss in the long term. Studies have described how genetics contributes to the development of obesity, and uncoupling proteins 1 and 2 (UCP1 and UCP2) and beta-3-adrenoceptor (ADRB3) have been implicated in the metabolic pathways that culminate in this condition. This study aimed to evaluate how the UCP1, UCP2 and ADRB3 genes influence weight loss in severely obese women submitted to hypocaloric dietary intervention. This longitudinal study included 21 women divided into two groups: Group 1 (Dietary intervention (G1)) consisted of 11 individuals with severe obesity (body mass index (BMI) ⩾40 kg/m 2 ), selected for dietary intervention and Group 2 (Control (G2)) consisted of 10 normal-weight women (BMI between 18.5 and 24.9 kg/m 2 ). Evaluation included weight (kg), height (m), waist circumference (cm), body composition, resting metabolic rate (RMR, kcal) and abdominal subcutaneous adipose tissue collection. The dietary intervention required that G1 patients remained hospitalized in the university hospital for 6 weeks receiving a hypocaloric diet (1200 kcal per day). The statistical analyses included t-test for paired samples, Spearman correlation and multivariate linear regressions, with the level of significance set at P<0.05. Weight (155.0±31.4-146.5±27.8 kg), BMI (58.5±10.5-55.3±9.2 kg/m 2 ), fat-free mass (65.4±8.6-63.1±7.1 kg), fat mass (89.5±23.0-83.4±21.0 kg) and RMR (2511.6±386.1-2324.0±416.4 kcal per day) decreased significantly after dietary intervention. Multiple regression analyses showed that UCP2 expression contributed to weight loss after dietary intervention (P=0.05). UCP2 expression is associated with weight loss after hypocaloric diet intervention.

  8. Control of mitochondrial pH by uncoupling protein 4 in astrocytes promotes neuronal survival.

    PubMed

    Perreten Lambert, Hélène; Zenger, Manuel; Azarias, Guillaume; Chatton, Jean-Yves; Magistretti, Pierre J; Lengacher, Sylvain

    2014-11-07

    Brain activity is energetically costly and requires a steady and highly regulated flow of energy equivalents between neural cells. It is believed that a substantial share of cerebral glucose, the major source of energy of the brain, will preferentially be metabolized in astrocytes via aerobic glycolysis. The aim of this study was to evaluate whether uncoupling proteins (UCPs), located in the inner membrane of mitochondria, play a role in setting up the metabolic response pattern of astrocytes. UCPs are believed to mediate the transmembrane transfer of protons, resulting in the uncoupling of oxidative phosphorylation from ATP production. UCPs are therefore potentially important regulators of energy fluxes. The main UCP isoforms expressed in the brain are UCP2, UCP4, and UCP5. We examined in particular the role of UCP4 in neuron-astrocyte metabolic coupling and measured a range of functional metabolic parameters including mitochondrial electrical potential and pH, reactive oxygen species production, NAD/NADH ratio, ATP/ADP ratio, CO2 and lactate production, and oxygen consumption rate. In brief, we found that UCP4 regulates the intramitochondrial pH of astrocytes, which acidifies as a consequence of glutamate uptake, with the main consequence of reducing efficiency of mitochondrial ATP production. The diminished ATP production is effectively compensated by enhancement of glycolysis. This nonoxidative production of energy is not associated with deleterious H2O2 production. We show that astrocytes expressing more UCP4 produced more lactate, which is used as an energy source by neurons, and had the ability to enhance neuronal survival. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Inactivation of thermogenic UCP1 as a historical contingency in multiple placental mammal clades

    PubMed Central

    Gaudry, Michael J.; Jastroch, Martin; Treberg, Jason R.; Hofreiter, Michael; Paijmans, Johanna L. A.; Starrett, James; Wales, Nathan; Signore, Anthony V.; Springer, Mark S.; Campbell, Kevin L.

    2017-01-01

    Mitochondrial uncoupling protein 1 (UCP1) is essential for nonshivering thermogenesis in brown adipose tissue and is widely accepted to have played a key thermoregulatory role in small-bodied and neonatal placental mammals that enabled the exploitation of cold environments. We map ucp1 sequences from 133 mammals onto a species tree constructed from a ~51-kb sequence alignment and show that inactivating mutations have occurred in at least 8 of the 18 traditional placental orders, thereby challenging the physiological importance of UCP1 across Placentalia. Selection and timetree analyses further reveal that ucp1 inactivations temporally correspond with strong secondary reductions in metabolic intensity in xenarthrans and pangolins, or in six other lineages coincided with a ~30 million–year episode of global cooling in the Paleogene that promoted sharp increases in body mass and cladogenesis evident in the fossil record. Our findings also demonstrate that members of various lineages (for example, cetaceans, horses, woolly mammoths, Steller’s sea cows) evolved extreme cold hardiness in the absence of UCP1-mediated thermogenesis. Finally, we identify ucp1 inactivation as a historical contingency that is linked to the current low species diversity of clades lacking functional UCP1, thus providing the first evidence for species selection related to the presence or absence of a single gene product. PMID:28706989

  10. Protective effect of hydroxytyrosol in arsenic-induced mitochondrial dysfunction in rat brain.

    PubMed

    Soni, Manisha; Prakash, Chandra; Sehwag, Sfurti; Kumar, Vijay

    2017-07-01

    The present study was planned to investigate the protective effect of hydroxytyrosol (HT) against arsenic (As)-induced mitochondrial dysfunction in rat brain. Rats exposed to sodium arsenite (25 ppm for 8 weeks) showed decreased mitochondrial complexes (I, II, IV) activities, mitochondrial superoxide dismutase (MnSOD), and catalase activities in brain mitochondria. As-treated rats showed reduced mRNA expression of complex I (ND-1, ND-2), IV (COX-1, COX-4) subunits, and uncoupling protein-2 (UCP-2). In addition to this, As exposure downregulated the protein expression of MnSOD. Administration of HT with As restored the enzymatic activities of mitochondrial complexes, MnSOD and catalase, increased the mRNA levels of complexes subunits and UCP-2 as well as proteins level of MnSOD. These results suggest that HT efficiently restores mitochondrial dysfunction in As neurotoxicity and might be used as potential mitoprotective agent in future. © 2017 Wiley Periodicals, Inc.

  11. Adaptive facultative diet-induced thermogenesis in wild-type but not in UCP1-ablated mice.

    PubMed

    von Essen, Gabriella; Lindsund, Erik; Cannon, Barbara; Nedergaard, Jan

    2017-11-01

    The significance of diet-induced thermogenesis (DIT) for metabolic control is still debated. Although obesogenic diets recruit UCP1 and adrenergically inducible thermogenesis, and although the absence of UCP1 may promote the development of obesity, no actual UCP1-related thermogenesis identifiable as diet-induced thermogenesis has to date been unambiguously demonstrated. Examining mice living at thermoneutrality, we have identified a process of facultative (directly elicited by acute eating), adaptive (magnitude develops over weeks on an obesogenic diet), and fully UCP1-dependent thermogenesis. We found no evidence for UCP1-independent diet-induced thermogenesis. The thermogenesis was proportional to the total amount of UCP1 protein in brown adipose tissue and was not dependent on any contribution of UCP1 in brite/beige adipose tissue, since no UCP1 protein was found there under these conditions. Total UCP1 protein amount developed proportionally to total body fat content. The physiological messenger linking obesity level and acute eating to increased thermogenesis is not known. Thus UCP1-dependent diet-induced thermogenesis limits obesity development during exposure to obesogenic diets but does not prevent obesity as such. Copyright © 2017 the American Physiological Society.

  12. Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system.

    PubMed

    Kim, Minji; Goto, Tsuyoshi; Yu, Rina; Uchida, Kunitoshi; Tominaga, Makoto; Kano, Yuriko; Takahashi, Nobuyuki; Kawada, Teruo

    2015-12-17

    Brown adipose tissue (BAT) plays a central role in regulating energy homeostasis, and may provide novel strategies for the treatment of human obesity. BAT-mediated thermogenesis is regulated by mitochondrial uncoupling protein 1 (UCP1) in classical brown and ectopic beige adipocytes, and is controlled by sympathetic nervous system (SNS). Previous work indicated that fish oil intake reduces fat accumulation and induces UCP1 expression in BAT; however, the detailed mechanism of this effect remains unclear. In this study, we investigated the effect of fish oil on energy expenditure and the SNS. Fish oil intake increased oxygen consumption and rectal temperature, with concomitant upregulation of UCP1 and the β3 adrenergic receptor (β3AR), two markers of beige adipocytes, in the interscapular BAT and inguinal white adipose tissue (WAT). Additionally, fish oil intake increased the elimination of urinary catecholamines and the noradrenaline (NA) turnover rate in interscapular BAT and inguinal WAT. Furthermore, the effects of fish oil on SNS-mediated energy expenditure were abolished in transient receptor potential vanilloid 1 (TRPV1) knockout mice. In conclusion, fish oil intake can induce UCP1 expression in classical brown and beige adipocytes via the SNS, thereby attenuating fat accumulation and ameliorating lipid metabolism.

  13. Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system

    PubMed Central

    Kim, Minji; Goto, Tsuyoshi; Yu, Rina; Uchida, Kunitoshi; Tominaga, Makoto; Kano, Yuriko; Takahashi, Nobuyuki; Kawada, Teruo

    2015-01-01

    Brown adipose tissue (BAT) plays a central role in regulating energy homeostasis, and may provide novel strategies for the treatment of human obesity. BAT-mediated thermogenesis is regulated by mitochondrial uncoupling protein 1 (UCP1) in classical brown and ectopic beige adipocytes, and is controlled by sympathetic nervous system (SNS). Previous work indicated that fish oil intake reduces fat accumulation and induces UCP1 expression in BAT; however, the detailed mechanism of this effect remains unclear. In this study, we investigated the effect of fish oil on energy expenditure and the SNS. Fish oil intake increased oxygen consumption and rectal temperature, with concomitant upregulation of UCP1 and the β3 adrenergic receptor (β3AR), two markers of beige adipocytes, in the interscapular BAT and inguinal white adipose tissue (WAT). Additionally, fish oil intake increased the elimination of urinary catecholamines and the noradrenaline (NA) turnover rate in interscapular BAT and inguinal WAT. Furthermore, the effects of fish oil on SNS-mediated energy expenditure were abolished in transient receptor potential vanilloid 1 (TRPV1) knockout mice. In conclusion, fish oil intake can induce UCP1 expression in classical brown and beige adipocytes via the SNS, thereby attenuating fat accumulation and ameliorating lipid metabolism. PMID:26673120

  14. Effect of genetic polymorphism of UCP2-866 G/A on repaglinide response in Chinese patients with type 2 diabetes.

    PubMed

    Wang, Shan; Se, Yan-Mei; Liu, Zhao-Qian; Lei, Ming-Xiang; Hao-BoYang; Sun, Zhi-Xiang; Nie, Sheng-Dan; Zeng, Xiao-min; Wu, Jing

    2012-01-01

    The aim of the present study was to evaluate the impact of the UCP2-866 G/A polymorphism on the efficacy of repaglinide in treating patients with diabetes mellitus type 2 (T2DM). 370 patients with T2DM and 166 healthy volunteers were enrolled to identify UCP2-866 G/A genotypes. 16 patients with GG genotype, 14 with GA genotype and 11 with AA genotype of UCP2-866 G/A underwent an 8-week repaglinide treatment regimen. There were no differences in allele frequency of UCP2-866 G/A between T2DM patients and control subjects. The patient with AA genotype of UCP2-866 G/A had higher levels of fasting plasma glucose (FPG), 30-min and 2-h postload plasma glucose, glycated haemoglobin (HbA1c), and lower concentrations of 30-min and 2-h postload plasma insulin, homeostasis model assessment of beta cell function (HOMA-beta), deltaI30/deltaG30 compared with GG genotype. After repaglinide treatment for 8 consecutive weeks, we found that A allele carriers of UCP2 in the T2DM patients had smaller decrease in FPG (P < 0.05) and HbA1c (P < 0.05), and smaller increase in 30-min postload plasma insulin (P < 0.01) compared with GG genotypes. We demonstrated that UCP2-866 G/A polymorphism is associated with the therapeutic efficacy of repaglinide in Chinese T2DM patients.

  15. Lack of UCP3 does not affect skeletal muscle mitochondrial function under lipid-challenged conditions, but leads to sudden cardiac death.

    PubMed

    Nabben, Miranda; van Bree, Bianca W J; Lenaers, Ellen; Hoeks, Joris; Hesselink, Matthijs K C; Schaart, Gert; Gijbels, Marion J J; Glatz, Jan F C; da Silva, Gustavo J J; de Windt, Leon J; Tian, Rong; Mike, Elise; Skapura, Darlene G; Wehrens, Xander H T; Schrauwen, Patrick

    2014-01-01

    UCP3's exact physiological function in lipid handling in skeletal and cardiac muscle remains unknown. Interestingly, etomoxir, a fat oxidation inhibitor and strong inducer of UCP3, is proposed for treating both diabetes and heart failure. We hypothesize that the upregulation of UCP3 upon etomoxir serves to protect mitochondria against lipotoxicity. To evaluate UCP3's role in skeletal muscle (skm) and heart under lipid-challenged conditions, the effect of UCP3 ablation was examined in a state of dysbalance between fat availability and oxidative capacity. Wild type (WT) and UCP3(-/-) mice were subjected to high-fat feeding for 14 days. From day 6 onwards, they were given either saline or etomoxir. Etomoxir treatment induced an increase in markers of lipotoxicity in skm compared to saline. This increase upon etomoxir was similar for both, WT and UCP3(-/-) mice, suggesting that UCP3 does not play a role in protection against lipotoxicity. Interestingly, we observed 25 % mortality in UCP3(-/-)s upon etomoxir administration vs. 11 % in WTs. This increased mortality in UCP3(-/-) compared to WT mice could not be explained by differences in cardiac lipotoxicity, apoptosis, fibrosis (histology, immunohistochemistry), oxidative capacity (respirometry) or function (echocardiography). Electrophysiology demonstrated, however, prolonged QRS and QTc intervals and greater susceptibility to ventricular tachycardia upon programmed electrical stimulation in etomoxir-treated UCP3(-/-)s versus WTs. Isoproterenol administration after pacing resulted in 75 % mortality in UCP3(-/-)s vs. 14 % in WTs. Our results argue against a protective role for UCP3 on skm metabolism under lipid overload, but suggest UCP3 to be crucial in prevention of arrhythmias upon lipid-challenged conditions.

  16. Fipronil induces apoptosis through caspase-dependent mitochondrial pathways in Drosophila S2 cells.

    PubMed

    Zhang, Baoyan; Xu, Zhiping; Zhang, Yixi; Shao, Xusheng; Xu, Xiaoyong; Cheng, Jiaogao; Li, Zhong

    2015-03-01

    Fipronil is the first phenylpyrazole insecticide widely used in controlling pests, including pyrethroid, organophosphate and carbamate insecticides. It is generally accepted that fipronil elicits neurotoxicity via interactions with GABA and glutamate receptors, although alternative mechanisms have recently been proposed. This study evaluates the genotoxicity of fipronil and its likely mode of action in Drosophila S2 cells, as an in vitro model. Fipronil administrated the concentration- and time-dependent S2 cell proliferation. Intracellular biochemical assays showed that fipronil-induced S2 cell apoptosis coincided with a decrease in the mitochondrial membrane potential and an increase reactive oxygen species generation, a significant decrease of Bcl-2 and DIAP1, and a marked augmentation of Cyt c and caspase-3. Because caspase-3 is the major executioner caspase downstream of caspase-9 in Drosophila, enzyme activity assays were used to determine the activities of caspase-3 and caspase-9. Our results indicated that fipronil effectively induced apoptosis in Drosophila S2 cells through caspase-dependent mitochondrial pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Moderate ethanol administration accentuates cardiomyocyte contractile dysfunction and mitochondrial injury in high fat diet-induced obesity.

    PubMed

    Yuan, Fang; Lei, Yonghong; Wang, Qiurong; Esberg, Lucy B; Huang, Zaixing; Scott, Glenda I; Li, Xue; Ren, Jun

    2015-03-18

    Light to moderate drinking confers cardioprotection although it remains unclear with regards to the role of moderate drinking on cardiac function in obesity. This study was designed to examine the impact of moderate ethanol intake on myocardial function in high fat diet intake-induced obesity and the mechanism(s) involved with a focus on mitochondrial integrity. C57BL/6 mice were fed low or high fat diet for 16 weeks prior to ethanol challenge (1g/kg/d for 3 days). Cardiac contractile function, intracellular Ca(2+) homeostasis, myocardial histology, and mitochondrial integrity [aconitase activity and the mitochondrial proteins SOD1, UCP-2 and PPARγ coactivator 1α (PGC-1α)] were assessed 24h after the final ethanol challenge. Fat diet intake compromised cardiomyocyte contractile and intracellular Ca(2+) properties (depressed peak shortening and maximal velocities of shortening/relengthening, prolonged duration of relengthening, dampened intracellular Ca(2+) rise and clearance without affecting duration of shortening). Although moderate ethanol challenge failed to alter cardiomyocyte mechanical property under low fat diet intake, it accentuated high fat diet intake-induced changes in cardiomyocyte contractile function and intracellular Ca(2+) handling. Moderate ethanol challenge failed to affect fat diet intake-induced cardiac hypertrophy as evidenced by H&E staining. High fat diet intake reduced myocardial aconitase activity, downregulated levels of mitochondrial protein UCP-2, PGC-1α, SOD1 and interrupted intracellular Ca(2+) regulatory proteins, the effect of which was augmented by moderate ethanol challenge. Neither high fat diet intake nor moderate ethanol challenge affected protein or mRNA levels as well as phosphorylation of Akt and GSK3β in mouse hearts. Taken together, our data revealed that moderate ethanol challenge accentuated high fat diet-induced cardiac contractile and intracellular Ca(2+) anomalies as well as mitochondrial injury. Copyright

  18. Role of positively charged residues of the second transmembrane domain in the ion transport activity and conformation of human uncoupling protein-2.

    PubMed

    Hoang, Tuan; Matovic, Tijana; Parker, James; Smith, Matthew D; Jelokhani-Niaraki, Masoud

    2015-04-14

    Residing at the inner mitochondrial membrane, uncoupling protein-2 (UCP2) mediates proton transport from the intermembrane space (IMS) to the mitochondrial matrix and consequently reduces the rate of ATP synthesis in the mitochondria. The ubiquitous expression of UCP2 in humans can be attributed to the protein's multiple physiological roles in tissues, including its involvement in protective mechanisms against oxidative stress, as well as glucose and lipid metabolisms. Currently, the structural properties and ion transport mechanism of UCP2 and other UCP homologues remain poorly understood. UCP2-mediated proton transport is activated by fatty acids and inhibited by di- and triphosphate purine nucleotides. UCP2 also transports chloride and some other small anions. Identification of key amino acid residues of UCP2 in its ion transport pathway can shed light on the protein's ion transport function. On the basis of our previous studies, the second transmembrane helix segment (TM2) of UCP2 exhibited chloride channel activity. In addition, it was suggested that the positively charged residues on TM2 domains of UCPs 1 and 2 were important for their chloride transport activity. On this basis, to further understand the role of these positively charged residues on the ion transport activity of UCP2, we recombinantly expressed four TM2 mutants: R76Q, R88Q, R96Q, and K104Q. The wild type UCP2 and its mutants were purified and reconstituted into liposomes, and their conformation and ion (proton and chloride) transport activity were studied. TM2 Arg residues at the matrix interface of UCP2 proved to be crucial for the protein's anion transport function, and their absence resulted in highly diminished Cl(-) transport rates. On the other hand, the two other positively charged residues of TM2, located at the UCP2-IMS interface, could participate in the salt-bridge formation in the protein and promote the interhelical tight packing in the UCP2. Absence of these residues did not

  19. Glutaredoxin-2 is required to control proton leak through uncoupling protein-3.

    PubMed

    Mailloux, Ryan J; Xuan, Jian Ying; Beauchamp, Brittany; Jui, Linda; Lou, Marjorie; Harper, Mary-Ellen

    2013-03-22

    Glutathionylation has emerged as a key modification required for controlling protein function in response to changes in cell redox status. Recently, we showed that the glutathionylation state of uncoupling protein-3 (UCP3) modulates the leak of protons back into the mitochondrial matrix, thus controlling reactive oxygen species production. However, whether or not UCP3 glutathionylation is mediated enzymatically has remained unknown because previous work relied on the use of pharmacological agents, such as diamide, to alter the UCP3 glutathionylation state. Here, we demonstrate that glutaredoxin-2 (Grx2), a matrix oxidoreductase, is required to glutathionylate and inhibit UCP3. Analysis of bioenergetics in skeletal muscle mitochondria revealed that knock-out of Grx2 (Grx2(-/-)) increased proton leak in a UCP3-dependent manner. These effects were reversed using diamide, a glutathionylation catalyst. Importantly, the increased leak did not compromise coupled respiration. Knockdown of Grx2 augmented proton leak-dependent respiration in primary myotubes from wild type mice, an effect that was absent in UCP3(-/-) cells. These results confirm that Grx2 deactivates UCP3 by glutathionylation. To our knowledge, this is the first enzyme identified to regulate UCP3 by glutathionylation and is the first study on the role of Grx2 in the regulation of energy metabolism.

  20. UCP1 and UCP3 Expression Is Associated with Lipid and Carbohydrate Oxidation and Body Composition

    PubMed Central

    Oliveira, Bruno A. P.; Pinhel, Marcela A. S.; Nicoletti, Carolina F.; Oliveira, Cristiana C.; Quinhoneiro, Driele C. G.; Noronha, Natália Y.; Marchini, Júlio S.; Marchry, Ana J.; Junior, Wilson S.; Nonino, Carla B.

    2016-01-01

    Background/Objective Uncoupling proteins (UCPs) are located in the inner membrane of mitochondria. These proteins participate in thermogenesis and energy expenditure. This study aimed to evaluate how UCP1 and UCP3 expression influences substrate oxidation and elicits possible changes in body composition in patients submitted to bariatric surgery. Subjects/Methods This is a longitudinal study comprising 13 women with obesity grade III that underwent bariatric surgery and 10 healthy weight individuals (control group). Body composition was assessed by bioelectrical impedance. Carbohydrate and fat oxidation was determined by indirect calorimetry. Subcutaneous adipose tissue was collected for gene expression analysis. QPCR was used to evaluate UCP1 and UCP3 expression. Results Obese patients and the control group differed significantly in terms of lipid and carbohydrate oxidation. Six months after bariatric surgery, the differences disappeared. Lipid oxidation correlated with the percentage of fat mass in the postoperative period. Multiple linear regression analysis showed that the UCP1 and UCP3 genes contributed to lipid and carbohydrate oxidation. Additionally, UCP3 expression was associated with BMI, percentage of lean body mass, and percentage of mass in the postoperative period. Conclusions UCP1 and UCP3 expression is associated with lipid and carbohydrate oxidation in patients submitted to bariatric surgery. In addition, UCP3 participates in body composition modulation six months postoperatively. PMID:26959981

  1. Regulatory motifs for CREB-binding protein and Nfe2l2 transcription factors in the upstream enhancer of the mitochondrial uncoupling protein 1 gene.

    PubMed

    Rim, Jong S; Kozak, Leslie P

    2002-09-13

    Thermogenesis against cold exposure in mammals occurs in brown adipose tissue (BAT) through mitochondrial uncoupling protein (UCP1). Expression of the Ucp1 gene is unique in brown adipocytes and is regulated tightly. The 5'-flanking region of the mouse Ucp1 gene contains cis-acting elements including PPRE, TRE, and four half-site cAMP-responsive elements (CRE) with BAT-specific enhancer elements. In the course of analyzing how these half-site CREs are involved in Ucp1 expression, we found that a DNA regulatory element for NF-E2 overlaps CRE2. Electrophoretic mobility shift assay and competition assays with the CRE2 element indicates that nuclear proteins from BAT, inguinal fat, and retroperitoneal fat tissue interact with the CRE2 motif (CGTCA) in a specific manner. A supershift assay using an antibody against the CRE-binding protein (CREB) shows specific affinity to the complex from CRE2 and nuclear extract of BAT. Additionally, Western blot analysis for phospho-CREB/ATF1 shows an increase in phosphorylation of CREB/ATF1 in HIB-1B cells after norepinephrine treatment. Transient transfection assay using luciferase reporter constructs also indicates that the two half-site CREs are involved in transcriptional regulation of Ucp1 in response to norepinephrine and cAMP. We also show that a second DNA regulatory element for NF-E2 is located upstream of the CRE2 region. This element, which is found in a similar location in the 5'-flanking region of the human and rodent Ucp1 genes, shows specific binding to rat and human NF-E2 by electrophoretic mobility shift assay with nuclear extracts from brown fat. Co-transfections with an Nfe2l2 expression vector and a luciferase reporter construct of the Ucp1 enhancer region provide additional evidence that Nfe2l2 is involved in the regulation of Ucp1 by cAMP-mediated signaling.

  2. Mitochondrial diabetes: molecular mechanisms and clinical presentation.

    PubMed

    Maassen, J Antonie; 'T Hart, Leen M; Van Essen, Einar; Heine, Rob J; Nijpels, Giel; Jahangir Tafrechi, Roshan S; Raap, Anton K; Janssen, George M C; Lemkes, Herman H P J

    2004-02-01

    Mutations in mitochondrial DNA (mtDNA) associate with various disease states. A few mtDNA mutations strongly associate with diabetes, with the most common mutation being the A3243G mutation in the mitochondrial DNA-encoded tRNA(Leu,UUR) gene. This article describes clinical characteristics of mitochondrial diabetes and its molecular diagnosis. Furthermore, it outlines recent developments in the pathophysiological and molecular mechanisms leading to a diabetic state. A gradual development of pancreatic beta-cell dysfunction upon aging, rather than insulin resistance, is the main mechanism in developing glucose intolerance. Carriers of the A3243G mutation show during a hyperglycemic clamp at 10 mmol/l glucose a marked reduction in first- and second-phase insulin secretion compared with noncarriers. The molecular mechanism by which the A3243G mutation affects insulin secretion may involve an attenuation of cytosolic ADP/ATP levels leading to a resetting of the glucose sensor in the pancreatic beta-cell, such as in maturity-onset diabetes of the young (MODY)-2 patients with mutations in glucokinase. Unlike in MODY2, which is a nonprogressive form of diabetes, mitochondrial diabetes does show a pronounced age-dependent deterioration of pancreatic function indicating involvement of additional processes. Furthermore, one would expect that all mtDNA mutations that affect ATP synthesis lead to diabetes. This is in contrast to clinical observations. The origin of the age-dependent deterioration of pancreatic function in carriers of the A3243G mutation and the contribution of ATP and other mitochondrion-derived factors such as reactive oxygen species to the development of diabetes is discussed.

  3. Resveratrol stimulates mitochondrial fusion by a mechanism requiring mitofusin-2.

    PubMed

    Robb, Ellen L; Moradi, Fereshteh; Maddalena, Lucas A; Valente, Andrew J F; Fonseca, Joao; Stuart, Jeffrey A

    2017-04-01

    Resveratrol (RES) is a plant-derived stilbene associated with a wide range of health benefits. Mitochondria are a key downstream target of RES, and in some cell types RES promotes mitochondrial biogenesis, altered cellular redox status, and a shift toward oxidative metabolism. Mitochondria exist as a dynamic network that continually remodels via fusion and fission processes, and the extent of fusion is related to cellular redox status and metabolism. We investigated RES's effects on mitochondrial network morphology in several cell lines using a quantitative approach to measure the extent of network fusion. 48 h continuous treatment with 10-20 μM RES stimulated mitochondrial fusion in C2C12 myoblasts, PC3 cancer cells, and mouse embryonic fibroblasts stimulated significant increases in fusion in all instances, resulting in larger and more highly branched mitochondrial networks. Mitofusin-2 (Mfn2) is a key protein facilitating mitochondrial fusion, and its expression was also stimulated by RES. Using Mfn2-null cells we demonstrated that RES's effects on mitochondrial fusion, cellular respiration rates, and cell growth are all dependent upon the presence of Mfn2. Taken together, these results demonstrate that Mfn2 and mitochondrial fusion are affected by RES in ways that appear to relate to RES's known effects on cellular metabolism and growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Uncoupling protein 2 deficiency mimics the effects of hypoxia and endoplasmic reticulum stress on mitochondria and triggers pseudohypoxic pulmonary vascular remodeling and pulmonary hypertension.

    PubMed

    Dromparis, Peter; Paulin, Roxane; Sutendra, Gopinath; Qi, Andrew C; Bonnet, Sébastien; Michelakis, Evangelos D

    2013-07-05

    Mitochondrial signaling regulates both the acute and the chronic response of the pulmonary circulation to hypoxia, and suppressed mitochondrial glucose oxidation contributes to the apoptosis-resistance and proliferative diathesis in the vascular remodeling in pulmonary hypertension. Hypoxia directly inhibits glucose oxidation, whereas endoplasmic reticulum (ER)-stress can indirectly inhibit glucose oxidation by decreasing mitochondrial calcium (Ca²⁺m levels). Both hypoxia and ER stress promote proliferative pulmonary vascular remodeling. Uncoupling protein 2 (UCP2) has been shown to conduct calcium from the ER to mitochondria and suppress mitochondrial function. We hypothesized that UCP2 deficiency reduces Ca²⁺m in pulmonary artery smooth muscle cells (PASMCs), mimicking the effects of hypoxia and ER stress on mitochondria in vitro and in vivo, promoting normoxic hypoxia inducible factor-1α activation and pulmonary hypertension. Ucp2 knockout (KO)-PASMCs had lower mitochondrial calcium than Ucp2 wildtype (WT)-PASMCs at baseline and during histamine-stimulated ER-Ca²⁺ release. Normoxic Ucp2KO-PASMCs had mitochondrial hyperpolarization, lower Ca²⁺-sensitive mitochondrial enzyme activity, reduced levels of mitochondrial reactive oxygen species and Krebs' cycle intermediates, and increased resistance to apoptosis, mimicking the hypoxia-induced changes in Ucp2WT-PASMC. Ucp2KO mice spontaneously developed pulmonary vascular remodeling and pulmonary hypertension and exhibited a pseudohypoxic state with pulmonary vascular and systemic hypoxia inducible factor-1α activation (increased hematocrit), not exacerbated further by chronic hypoxia. This first description of the role of UCP2 in oxygen sensing and in pulmonary hypertension vascular remodeling may open a new window in biomarker and therapeutic strategies.

  5. Intramitochondrial Ascorbic Acid Enhances the Formation of Mitochondrial Superoxide Induced by Peroxynitrite via a Ca2+-Independent Mechanism

    PubMed Central

    Guidarelli, Andrea; Cerioni, Liana; Fiorani, Mara; Cantoni, Orazio

    2017-01-01

    Exposure of U937 cells to peroxynitrite promotes mitochondrial superoxide formation via a mechanism dependent on both inhibition of complex III and increased mitochondrial Ca2+ accumulation. Otherwise inactive concentrations of the oxidant produced the same maximal effects in the presence of either complex III inhibitors or agents mobilizing Ca2+ from the ryanodine receptor and enforcing its mitochondrial accumulation. l-Ascorbic acid (AA) produced similar enhancing effects in terms of superoxide formation, DNA strand scission and cytotoxicity. However, AA failed to enhance the intra-mitochondrial concentration of Ca2+ and the effects observed in cells supplemented with peroxinitrite, while insensitive to manipulations preventing the mobilization of Ca2+, or the mitochondrial accumulation of the cation, were also detected in human monocytes and macrophages, which do not express the ryanodine receptor. In all these cell types, mitochondrial permeability transition-dependent toxicity was detected in cells exposed to AA/peroxynitrite and, based on the above criteria, these responses also appeared Ca2+-independent. The enhancing effects of AA are therefore similar to those mediated by bona fide complex III inhibitors, although the vitamin failed to directly inhibit complex III, and in fact enhanced its sensitivity to the inhibitory effects of peroxynitrite. PMID:28767071

  6. Evidence for involvement of uncoupling proteins in cerebral mitochondrial oxidative phosphorylation deficiency of rats exposed to 5,000 m high altitude.

    PubMed

    Xu, Yu; Liu, Yuliang; Xia, Chen; Gao, Pan; Liu, Jun-Ze

    2013-02-01

    The present study aimed to investigate the change of proton leak and discuss the role of cerebral uncoupling proteins (UCPs) and its regulatory molecules non-esterified fatty acid (NEFA) in high altitude mitochondrial oxidative phosphorylation deficiency. The model group animals were exposed to acute high altitude hypoxia, and the mitochondrial respiration, protein leak, UCPs abundance/activity and cerebral NEFA concentration were measured. We found that in the model group, cerebral mitochondrial oxidative phosphorylation was severely impaired with decreased ST3 respiration rate and ATP pool. Proton leak kinetics curves demonstrated an increase in proton leak; GTP binding assay pointed out that total cerebral UCPs activity significantly increased; Q-PCR and western blot showed upregulated expression of UCP4 and UCP5. Moreover, cerebral NEFA concentration increased. In conclusion, UCPs mediated proton leak is closely related to cerebral mitochondria oxidative phosphorylation deficiency during acute high altitude hypoxia and NEFA is involved in this signaling pathway.

  7. Human biallelic MFN2 mutations induce mitochondrial dysfunction, upper body adipose hyperplasia, and suppression of leptin expression.

    PubMed

    Rocha, Nuno; Bulger, David A; Frontini, Andrea; Titheradge, Hannah; Gribsholt, Sigrid Bjerge; Knox, Rachel; Page, Matthew; Harris, Julie; Payne, Felicity; Adams, Claire; Sleigh, Alison; Crawford, John; Gjesing, Anette Prior; Bork-Jensen, Jette; Pedersen, Oluf; Barroso, Inês; Hansen, Torben; Cox, Helen; Reilly, Mary; Rossor, Alex; Brown, Rebecca J; Taylor, Simeon I; McHale, Duncan; Armstrong, Martin; Oral, Elif A; Saudek, Vladimir; O'Rahilly, Stephen; Maher, Eamonn R; Richelsen, Bjørn; Savage, David B; Semple, Robert K

    2017-04-19

    MFN2 encodes mitofusin 2, a membrane-bound mediator of mitochondrial membrane fusion and inter-organelle communication. MFN2 mutations cause axonal neuropathy, with associated lipodystrophy only occasionally noted, however homozygosity for the p.Arg707Trp mutation was recently associated with upper body adipose overgrowth. We describe similar massive adipose overgrowth with suppressed leptin expression in four further patients with biallelic MFN2 mutations and at least one p.Arg707Trp allele. Overgrown tissue was composed of normal-sized, UCP1-negative unilocular adipocytes, with mitochondrial network fragmentation, disorganised cristae, and increased autophagosomes. There was strong transcriptional evidence of mitochondrial stress signalling, increased protein synthesis, and suppression of signatures of cell death in affected tissue, whereas mitochondrial morphology and gene expression were normal in skin fibroblasts. These findings suggest that specific MFN2 mutations cause tissue-selective mitochondrial dysfunction with increased adipocyte proliferation and survival, confirm a novel form of excess adiposity with paradoxical suppression of leptin expression, and suggest potential targeted therapies.

  8. Asiatic acid uncouples respiration in isolated mouse liver mitochondria and induces HepG2 cells death.

    PubMed

    Lu, Yapeng; Liu, Siyuan; Wang, Ying; Wang, Dang; Gao, Jing; Zhu, Li

    2016-09-05

    Asiatic acid, one of the triterpenoid components isolated from Centella asiatica, has received increasing attention due to a wide variety of biological activities. To date, little is known about its mechanisms of action. Here we examined the cytotoxic effect of asiatic acid on HepG2 cells and elucidated some of the underlying mechanisms. Asiatic acid induced rapid cell death, as well as mitochondrial membrane potential (MMP) dissipation, ATP depletion and cytochrome c release from mitochondria to the cytosol in HepG2 cells. In mitochondria isolated from mouse liver, asiatic acid treatment significantly stimulated the succinate-supported state 4 respiration rate, dissipated the MMP, increased Ca(2+) release from Ca(2+)-loaded mitochondria, decreased ATP content and promoted cytochrome c release, indicating the uncoupling effect of asiatic acid. Hydrogen peroxide (H2O2) produced by succinate-supported mitochondrial respiration was also significantly inhibited by asiatic acid. In addition, asiatic acid inhibited Ca(2+)-induced mitochondrial swelling but did not induce mitochondrial swelling in hyposmotic potassium acetate medium which suggested that asiatic acid may not act as a protonophoric uncoupler. Inhibition of uncoupling proteins (UCPs) or blockade of adenine nucleotide transporter (ANT) attenuated the effect of asiatic acid on MMP dissipation, Ca(2+) release, mitochondrial respiration and HepG2 cell death. When combined inhibition of UCPs and ANT, asiatic acid-mediated uncoupling effect was noticeably alleviated. These results suggested that both UCPs and ANT partially contribute to the uncoupling properties of asiatic acid. In conclusion, asiatic acid is a novel mitochondrial uncoupler and this property is potentially involved in its toxicity on HepG2 cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Attenuation of Ca2+ homeostasis, oxidative stress, and mitochondrial dysfunctions in diabetic rat heart: insulin therapy or aerobic exercise?

    PubMed

    da Silva, Márcia F; Natali, Antônio J; da Silva, Edson; Gomes, Gilton J; Teodoro, Bruno G; Cunha, Daise N Q; Drummond, Lucas R; Drummond, Filipe R; Moura, Anselmo G; Belfort, Felipe G; de Oliveira, Alessandro; Maldonado, Izabel R S C; Alberici, Luciane C

    2015-07-15

    We tested the effects of swimming training and insulin therapy, either alone or in combination, on the intracellular calcium ([Ca(2+)]i) homeostasis, oxidative stress, and mitochondrial functions in diabetic rat hearts. Male Wistar rats were separated into control, diabetic, or diabetic plus insulin groups. Type 1 diabetes mellitus was induced by streptozotocin (STZ). Insulin-treated groups received 1 to 4 UI of insulin daily for 8 wk. Each group was divided into sedentary or exercised rats. Trained groups were submitted to swimming (90 min/day, 5 days/wk, 8 wk). [Ca(2+)]i transient in left ventricular myocytes (LVM), oxidative stress in LV tissue, and mitochondrial functions in the heart were assessed. Diabetes reduced the amplitude and prolonged the times to peak and to half decay of the [Ca(2+)]i transient in LVM, increased NADPH oxidase-4 (Nox-4) expression, decreased superoxide dismutase (SOD), and increased carbonyl protein contents in LV tissue. In isolated mitochondria, diabetes increased Ca(2+) uptake, susceptibility to permeability transition pore (MPTP) opening, uncoupling protein-2 (UCP-2) expression, and oxygen consumption but reduced H2O2 release. Swimming training corrected the time course of the [Ca(2+)]i transient, UCP-2 expression, and mitochondrial Ca(2+) uptake. Insulin replacement further normalized [Ca(2+)]i transient amplitude, Nox-4 expression, and carbonyl content. Alongside these benefits, the combination of both therapies restored the LV tissue SOD and mitochondrial O2 consumption, H2O2 release, and MPTP opening. In conclusion, the combination of swimming training with insulin replacement was more effective in attenuating intracellular Ca(2+) disruptions, oxidative stress, and mitochondrial dysfunctions in STZ-induced diabetic rat hearts. Copyright © 2015 the American Physiological Society.

  10. Ononitol monohydrate enhances PRDM16 & UCP-1 expression, mitochondrial biogenesis and insulin sensitivity via STAT6 and LTB4R in maturing adipocytes.

    PubMed

    Subash-Babu, P; Alshatwi, Ali A

    2018-03-01

    Ononitol monohydrate (OMH), a glycoside was originally isolated from Cassia tora (Linn.). Glycosides regulate lipid metabolism but scientific validation desired. Hence, we aimed to evaluate the effect of OMH on enhancing mitochondrial potential, mitochondrial biogenesis, upregulate the expression of brown adipogenesis specific genes in maturing adipocytes. In addition, we observed the inter-relation between adipocyte and T-lymphocyte; whether, OMH treated adipocyte-condition medium stimulate T-cell chemokine linked with insulin resistance. In a dose dependent manner OMH treated to preadipocyte significantly inhibited maturation and enhanced mitochondrial biogenesis, it was confirmed by Oil red 'O and Nile red stain without inducing cytotoxicity. The mRNA levels of adipocyte browning related genes such as, PR domain containing 16 (PRDM16), peroxisome proliferator activated receptor gamma coactivator 1 alpha (PPARγC1α) and uncoupling protein-1 (UCP-1) have been significantly upregulated. In addition, adipogenic transcription factors [such as proliferator activated receptor γ (PPARγ), CCAAT/enhancer binding protein (C/EBPα) and sterol regulatory element binding protein-1c (SREBP-1c)] and adipogenic genes were significantly down-regulated by treatment with OMH when compared to control cells. Protein expression levels of adiponectin have been increased; leptin, C/EBPα and leukotriene B4 receptor (LTB4R) were down regulated by OMH in mature adipocytes. In addition, adipocyte condition medium and OMH treated T-lymphocyte, significantly increased insulin signaling pathway related mRNAs, such as interlukin-4 (IL-4), signal transducer and activator of transcription 6 (STAT 6 ) and decreased leukotriene B4 (LTB 4 ). The present findings suggest that OMH increased browning factors in differentiating and maturing preadipocyte also decreased adipose tissue inflammation as well as the enhanced insulin signaling. Copyright © 2018. Published by Elsevier Masson SAS.

  11. Torpor patterns, arousal rates, and temporal organization of torpor entry in wildtype and UCP1-ablated mice.

    PubMed

    Oelkrug, R; Heldmaier, G; Meyer, C W

    2011-01-01

    In eutherian mammals, uncoupling protein 1 (UCP1) mediated non-shivering thermogenesis from brown adipose tissue (BAT) provides a mechanism through which arousal from torpor and hibernation is facilitated. In order to directly assess the magnitude by which the presence or absence of UCP1 affects torpor patterns, rewarming and arousal rates within one species we compared fasting induced torpor in wildtype (UCP1(+/+)) and UCP1-ablated mice (UCP(-/-)). Torpor was induced by depriving mice of food for up to 48 h and by a reduction of ambient temperature (T (a)) from 30 to 18°C at four different time points after 18, 24, 30 and 36 h of food deprivation. In most cases, torpor bouts occurred within 20 min after the switch in ambient temperature (30-18°C). Torpor bouts expressed during the light phase lasted 3-6 h while significantly longer bouts (up to 16 h) were observed when mice entered torpor during the dark phase. The degree of hypometabolism (5-22 ml h(-1)) and hypothermia (19.5-26.7°C) was comparable in wildtype and UCP1-ablated mice, and both genotypes were able to regain normothermia. In contrast to wildtype mice, UCP1-ablated mice did not display multiple torpor bouts per day and their peak rewarming rates from torpor were reduced by 50% (UCP1(+/+): 0.24 ± 0.08°C min(-1); UCP1(-/-): 0.12 ± 0.04°C min(-1)). UCP1-ablated mice therefore took significantly longer to rewarm from 25 to 32°C (39 vs. 70 min) and required 60% more energy for this process. Our results demonstrate the energetic benefit of functional BAT for rapid arousal from torpor. They also suggest that torpor entry and maintenance may be dependent on endogenous rhythms.

  12. Interactive Effects of Dietary Lipid and Phenotypic Feed Efficiency on the Expression of Nuclear and Mitochondrial Genes Involved in the Mitochondrial Electron Transport Chain in Rainbow Trout

    PubMed Central

    Eya, Jonathan C.; Ukwuaba, Vitalis O.; Yossa, Rodrigue; Gannam, Ann L.

    2015-01-01

    A 2 × 3 factorial study was conducted to evaluate the effects of dietary lipid level on the expression of mitochondrial and nuclear genes involved in electron transport chain in all-female rainbow trout Oncorhynchus mykiss. Three practical diets with a fixed crude protein content of 40%, formulated to contain 10% (40/10), 20% (40/20) and 30% (40/30) dietary lipid, were fed to apparent satiety to triplicate groups of either low-feed efficient (F120; 217.66 ± 2.24 g initial average mass) or high-feed efficient (F136; 205.47 ± 1.27 g) full-sib families of fish, twice per day, for 90 days. At the end of the experiment, the results showed that there is an interactive effect of the dietary lipid levels and the phenotypic feed efficiency (growth rate and feed efficiency) on the expression of the mitochondrial genes nd1 (NADH dehydrogenase subunit 1), cytb (Cytochrome b), cox1 (Cytochrome c oxidase subunits 1), cox2 (Cytochrome c oxidase subunits 2) and atp6 (ATP synthase subunit 6) and nuclear genes ucp2α (uncoupling proteins 2 alpha), ucp2β (uncoupling proteins 2 beta), pparα (peroxisome proliferator-activated receptor alpha), pparβ (peroxisome proliferatoractivated receptor beta) and ppargc1α (proliferator-activated receptor gamma coactivator 1 alpha) in fish liver, intestine and muscle, except on ppargc1α in the muscle which was affected by the diet and the family separately. Also, the results revealed that the expression of mitochondrial genes is associated with that of nuclear genes involved in electron transport chain in fish liver, intestine and muscle. Furthermore, this work showed that the expression of mitochondrial genes parallels with the expression of genes encoding uncoupling proteins (UCP) in the liver and the intestine of rainbow trout. This study for the first time presents the molecular basis of the effects of dietary lipid level on mitochondrial and nuclear genes involved in mitochondrial electron transport chain in fish. PMID:25853266

  13. E2-EPF UCP targets pVHL for degradation and associates with tumor growth and metastasis.

    PubMed

    Jung, Cho-Rok; Hwang, Kyung-Sun; Yoo, Jinsang; Cho, Won-Kyung; Kim, Jin-Man; Kim, Woo Ho; Im, Dong-Soo

    2006-07-01

    The von Hippel-Lindau tumor suppressor, pVHL, forms part of an E3 ubiquitin ligase complex that targets specific substrates for degradation, including hypoxia-inducible factor-1alpha (HIF-1alpha), which is involved in tumor progression and angiogenesis. It remains unclear, however, how pVHL is destabilized. Here we show that E2-EPF ubiquitin carrier protein (UCP) associates with and targets pVHL for ubiquitin-mediated proteolysis in cells, thereby stabilizing HIF-1alpha. UCP is detected coincidently with HIF-1alpha in human primary liver, colon and breast tumors, and metastatic cholangiocarcinoma and colon cancer cells. UCP level correlates inversely with pVHL level in most tumor cell lines. In vitro and in vivo, forced expression of UCP boosts tumor-cell proliferation, invasion and metastasis through effects on the pVHL-HIF pathway. Our results suggest that UCP helps stabilize HIF-1alpha and may be a new molecular target for therapeutic intervention in human cancers.

  14. Increased Furan Tolerance in Escherichia coli Due to a Cryptic ucpA Gene

    PubMed Central

    Wang, Xuan; Miller, Elliot N.; Yomano, Lorraine P.; Shanmugam, K. T.

    2012-01-01

    Expression arrays were used to identify 4 putative oxidoreductases that were upregulated (>3-fold) by furfural (15 mM, 15 min). Plasmid expression of one (ucpA) increased furan tolerance in ethanologenic strain LY180 and wild-type strain W. Deleting ucpA decreased furfural tolerance. Although the mechanism remains unknown, the cryptic ucpA gene is now associated with a phenotype: furan resistance. PMID:22267665

  15. Mitochondrial Ca2+ overload underlies Abeta oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs.

    PubMed

    Sanz-Blasco, Sara; Valero, Ruth A; Rodríguez-Crespo, Ignacio; Villalobos, Carlos; Núñez, Lucía

    2008-07-23

    Dysregulation of intracellular Ca(2+) homeostasis may underlie amyloid beta peptide (Abeta) toxicity in Alzheimer's Disease (AD) but the mechanism is unknown. In search for this mechanism we found that Abeta(1-42) oligomers, the assembly state correlating best with cognitive decline in AD, but not Abeta fibrils, induce a massive entry of Ca(2+) in neurons and promote mitochondrial Ca(2+) overload as shown by bioluminescence imaging of targeted aequorin in individual neurons. Abeta oligomers induce also mitochondrial permeability transition, cytochrome c release, apoptosis and cell death. Mitochondrial depolarization prevents mitochondrial Ca(2+) overload, cytochrome c release and cell death. In addition, we found that a series of non-steroidal anti-inflammatory drugs (NSAIDs) including salicylate, sulindac sulfide, indomethacin, ibuprofen and R-flurbiprofen depolarize mitochondria and inhibit mitochondrial Ca(2+) overload, cytochrome c release and cell death induced by Abeta oligomers. Our results indicate that i) mitochondrial Ca(2+) overload underlies the neurotoxicity induced by Abeta oligomers and ii) inhibition of mitochondrial Ca(2+) overload provides a novel mechanism of neuroprotection by NSAIDs against Abeta oligomers and AD.

  16. E2-EPF UCP regulates stability and functions of missense mutant pVHL via ubiquitin mediated proteolysis.

    PubMed

    Park, Kyeong-Su; Kim, Ju Hee; Shin, Hee Won; Chung, Kyung-Sook; Im, Dong-Soo; Lim, Jung Hwa; Jung, Cho-Rok

    2015-10-26

    Missense mutation of VHL gene is frequently detected in type 2 VHL diseases and linked to a wide range of pVHL functions and stability. Certain mutant pVHLs retain ability to regulate HIFs but lose their function by instability. In this case, regulating of degradation of mutant pVHLs, can be postulated as therapeutic method. The stability and cellular function of missense mutant pVHLs were determine in HEK293T transient expressing cell and 786-O stable cell line. Ubiquitination assay of mutant VHL proteins was performed in vitro system. Anticancer effect of adenovirus mediated shUCP expressing was evaluated using ex vivo mouse xenograft assay. Three VHL missense mutants (V155A, L158Q, and Q164R) are directly ubiquitinated by E2-EPF UCP (UCP) in vitro. Mutant pVHLs are more unstable than wild type in cell. Missense mutant pVHLs interact with UCP directly in both in vitro and cellular systems. Lacking all of lysine residues of pVHL result in resistance to ubiquitination thereby increase its stability. Missense mutant pVHLs maintained the function of E3 ligase to ubiquitinate HIF-1α in vitro. In cells expressing mutant pVHLs, Glut-1 and VEGF were relatively upregulated compared to their levels in cells expressing wild-type. Depletion of UCP restored missense mutant pVHLs levels and inhibited cell growth. Adenovirus-mediated shUCP RNA delivery inhibited tumor growth in ex vivo mouse xenograft model. These data suggest that targeting of UCP can be one of therapeutic method in type 2 VHL disease caused by unstable but functional missense mutant pVHL.

  17. FABP4 reversed the regulation of leptin on mitochondrial fatty acid oxidation in mice adipocytes

    PubMed Central

    Gan, Lu; Liu, Zhenjiang; Cao, Weina; Zhang, Zhenzhen; Sun, Chao

    2015-01-01

    Fatty acid binding protein 4 (FABP4), plays key role in fatty acid transportation and oxidation, and increases with leptin synergistically during adipose inflammation process. However, the regulation mechanism between FABP4 and leptin on mitochondrial fatty acid oxidation remains unclear. In this study, we found that FABP4 reduced the expression of leptin, CPT-1 and AOX1 in mice adipocytes. Conversely, FABP4 was down-regulated in a time-dependent manner by leptin treatment. Additionally, forced expression of FABP4 attenuated the expression of PGC1-α, UCP2, CPT-1, AOX1 and COX2 compared with leptin incubation. Moreover, mitochondrial membrane potential, fatty acid oxidation enzyme medium-chain acyl-CoA dehydrogenase (MCAD), long-chain acyl-CoA dehydrogenase (LCAD) and Cyt C levels were reduced in response to the overexpression of FABP4. These reductions correspond well with the reduced release of free fatty acid and the inactivation of mitochondrial complexes I and III by FABP4 overexpression. Furthermore, addition of the Akt/mTOR pathway-specific inhibitor (MK2206) blocked the mitochondrial fatty acid oxidation and respiration factors, whereas interference of FABP4 overcame these effects. Taken together, FABP4 could reverse the activation of the leptin-induced mitochondrial fatty acid oxidation, and the inhibition of Akt/mTOR signal pathway played a key role in this process. PMID:26310911

  18. FABP4 reversed the regulation of leptin on mitochondrial fatty acid oxidation in mice adipocytes.

    PubMed

    Gan, Lu; Liu, Zhenjiang; Cao, Weina; Zhang, Zhenzhen; Sun, Chao

    2015-08-27

    Fatty acid binding protein 4 (FABP4), plays key role in fatty acid transportation and oxidation, and increases with leptin synergistically during adipose inflammation process. However, the regulation mechanism between FABP4 and leptin on mitochondrial fatty acid oxidation remains unclear. In this study, we found that FABP4 reduced the expression of leptin, CPT-1 and AOX1 in mice adipocytes. Conversely, FABP4 was down-regulated in a time-dependent manner by leptin treatment. Additionally, forced expression of FABP4 attenuated the expression of PGC1-α, UCP2, CPT-1, AOX1 and COX2 compared with leptin incubation. Moreover, mitochondrial membrane potential, fatty acid oxidation enzyme medium-chain acyl-CoA dehydrogenase (MCAD), long-chain acyl-CoA dehydrogenase (LCAD) and Cyt C levels were reduced in response to the overexpression of FABP4. These reductions correspond well with the reduced release of free fatty acid and the inactivation of mitochondrial complexes I and III by FABP4 overexpression. Furthermore, addition of the Akt/mTOR pathway-specific inhibitor (MK2206) blocked the mitochondrial fatty acid oxidation and respiration factors, whereas interference of FABP4 overcame these effects. Taken together, FABP4 could reverse the activation of the leptin-induced mitochondrial fatty acid oxidation, and the inhibition of Akt/mTOR signal pathway played a key role in this process.

  19. Physiological uncoupling of mitochondrial oxidative phosphorylation. Studies in different yeast species.

    PubMed

    Guerrero-Castillo, Sergio; Araiza-Olivera, Daniela; Cabrera-Orefice, Alfredo; Espinasa-Jaramillo, Juan; Gutiérrez-Aguilar, Manuel; Luévano-Martínez, Luís A; Zepeda-Bastida, Armando; Uribe-Carvajal, Salvador

    2011-06-01

    Under non-phosphorylating conditions a high proton transmembrane gradient inhibits the rate of oxygen consumption mediated by the mitochondrial respiratory chain (state IV). Slow electron transit leads to production of reactive oxygen species (ROS) capable of participating in deleterious side reactions. In order to avoid overproducing ROS, mitochondria maintain a high rate of O(2) consumption by activating different exquisitely controlled uncoupling pathways. Different yeast species possess one or more uncoupling systems that work through one of two possible mechanisms: i) Proton sinks and ii) Non-pumping redox enzymes. Proton sinks are exemplified by mitochondrial unspecific channels (MUC) and by uncoupling proteins (UCP). Saccharomyces. cerevisiae and Debaryomyces hansenii express highly regulated MUCs. Also, a UCP was described in Yarrowia lipolytica which promotes uncoupled O(2) consumption. Non-pumping alternative oxido-reductases may substitute for a pump, as in S. cerevisiae or may coexist with a complete set of pumps as in the branched respiratory chains from Y. lipolytica or D. hansenii. In addition, pumps may suffer intrinsic uncoupling (slipping). Promising models for study are unicellular parasites which can turn off their aerobic metabolism completely. The variety of energy dissipating systems in eukaryote species is probably designed to control ROS production in the different environments where each species lives.

  20. SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake.

    PubMed

    Honrath, Birgit; Matschke, Lina; Meyer, Tammo; Magerhans, Lena; Perocchi, Fabiana; Ganjam, Goutham K; Zischka, Hans; Krasel, Cornelius; Gerding, Albert; Bakker, Barbara M; Bünemann, Moritz; Strack, Stefan; Decher, Niels; Culmsee, Carsten; Dolga, Amalia M

    2017-05-01

    Mitochondrial calcium ([Ca 2+ ] m ) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca 2+ ] m uptake upon SK channel activation as detected by time lapse mitochondrial Ca 2+ measurements with the Ca 2+ -binding mitochondria-targeted aequorin and FRET-based [Ca 2+ ] m probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca 2+ ] m uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death.

  1. SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake

    PubMed Central

    Honrath, Birgit; Matschke, Lina; Meyer, Tammo; Magerhans, Lena; Perocchi, Fabiana; Ganjam, Goutham K; Zischka, Hans; Krasel, Cornelius; Gerding, Albert; Bakker, Barbara M; Bünemann, Moritz; Strack, Stefan; Decher, Niels; Culmsee, Carsten; Dolga, Amalia M

    2017-01-01

    Mitochondrial calcium ([Ca2+]m) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca2+]m uptake upon SK channel activation as detected by time lapse mitochondrial Ca2+ measurements with the Ca2+-binding mitochondria-targeted aequorin and FRET-based [Ca2+]m probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca2+]m uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death. PMID:28282037

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almeida, Luciana O.; Goto, Renata N.; Neto, Marinaldo P.C.

    We hypothesized that SET, a protein accumulated in some cancer types and Alzheimer disease, is involved in cell death through mitochondrial mechanisms. We addressed the mRNA and protein levels of the mitochondrial uncoupling proteins UCP1, UCP2 and UCP3 (S and L isoforms) by quantitative real-time PCR and immunofluorescence as well as other mitochondrial involvements, in HEK293 cells overexpressing the SET protein (HEK293/SET), either in the presence or absence of oxidative stress induced by the pro-oxidant t-butyl hydroperoxide (t-BHP). SET overexpression in HEK293 cells decreased UCP1 and increased UCP2 and UCP3 (S/L) mRNA and protein levels, whilst also preventing lipid peroxidationmore » and decreasing the content of cellular ATP. SET overexpression also (i) decreased the area of mitochondria and increased the number of organelles and lysosomes, (ii) increased mitochondrial fission, as demonstrated by increased FIS1 mRNA and FIS-1 protein levels, an apparent accumulation of DRP-1 protein, and an increase in the VDAC protein level, and (iii) reduced autophagic flux, as demonstrated by a decrease in LC3B lipidation (LC3B-II) in the presence of chloroquine. Therefore, SET overexpression in HEK293 cells promotes mitochondrial fission and reduces autophagic flux in apparent association with up-regulation of UCP2 and UCP3; this implies a potential involvement in cellular processes that are deregulated such as in Alzheimer's disease and cancer. - Highlights: • SET, UCPs and autophagy prevention are correlated. • SET action has mitochondrial involvement. • UCP2/3 may reduce ROS and prevent autophagy. • SET protects cell from ROS via UCP2/3.« less

  3. Acute Knockdown of Uncoupling Protein-2 Increases Uncoupling via the Adenine Nucleotide Transporter and Decreases Oxidative Stress in Diabetic Kidneys

    PubMed Central

    Friederich-Persson, Malou; Aslam, Shakil; Nordquist, Lina; Welch, William J.; Wilcox, Christopher S.; Palm, Fredrik

    2012-01-01

    Increased O2 metabolism resulting in chronic hypoxia is common in models of endstage renal disease. Mitochondrial uncoupling increases O2 consumption but the ensuing reduction in mitochondrial membrane potential may limit excessive oxidative stress. The present study addressed the hypothesis that mitochondrial uncoupling regulates mitochondria function and oxidative stress in the diabetic kidney. Isolated mitochondria from kidney cortex of control and streptozotocin-induced diabetic rats were studied before and after siRNA knockdown of uncoupling protein-2 (UCP-2). Diabetes resulted in increased UCP-2 protein expression and UCP-2-mediated uncoupling, but normal mitochondria membrane potential. This uncoupling was inhibited by GDP, which also increased the membrane potential. siRNA reduced UCP-2 protein expression in controls and diabetics (−30–50%), but paradoxically further increased uncoupling and markedly reduced the membrane potential. This siRNA mediated uncoupling was unaffected by GDP but was blocked by ADP and carboxyatractylate (CAT). Mitochondria membrane potential after UCP-2 siRNA was unaffected by GDP but increased by CAT. This demonstrated that further increased mitochondria uncoupling after siRNA towards UCP-2 is mediated through the adenine nucleotide transporter (ANT). The increased oxidative stress in the diabetic kidney, manifested as increased thiobarbituric acids, was reduced by knocking down UCP-2 whereas whole-body oxidative stress, manifested as increased circulating malondialdehyde, remained unaffected. All parameters investigated were unaffected by scrambled siRNA. In conclusion, mitochondrial uncoupling via UCP-2 regulates mitochondria membrane potential in diabetes. However, blockade of the diabetes-induced upregulation of UCP- 2 results in excessive uncoupling and reduced oxidative stress in the kidney via activation of ANT. PMID:22768304

  4. Loss of UCP1 exacerbates Western diet-induced glycemic dysregulation independent of changes in body weight in female mice

    PubMed Central

    Winn, Nathan C.; Gastecki, Michelle L.; Welly, Rebecca J.; Scroggins, Rebecca J.; Zidon, Terese M.; Gaines, T’Keaya L.; Woodford, Makenzie L.; Karasseva, Natalia G.; Kanaley, Jill A.; Sacks, Harold S.

    2017-01-01

    We tested the hypothesis that female mice null for uncoupling protein 1 (UCP1) would have increased susceptibility to Western diet-induced “whitening” of brown adipose tissue (AT) and glucose intolerance. Six-week-old C57BL/6J wild-type (WT) and UCP1 knockout (UCP1−/−) mice, housed at 25°C, were randomized to either a control diet (10% kcal from fat) or Western diet (45% kcal from fat and 1% cholesterol) for 28 wk. Loss of UCP1 had no effect on energy intake, energy expenditure, spontaneous physical activity, weight gain, or visceral white AT mass. Despite similar susceptibility to weight gain compared with WT, UCP1−/− exhibited whitening of brown AT evidenced by a striking ~500% increase in mass and appearance of large unilocular adipocytes, increased expression of genes related to inflammation, immune cell infiltration, and endoplasmic reticulum/oxidative stress (P < 0.05), and decreased mitochondrial subunit protein (COX I, II, III, and IV, P < 0.05), all of which were exacerbated by Western diet (P < 0.05). UCP1−/− mice also developed liver steatosis and glucose intolerance, which was worsened by Western diet. Collectively, these findings demonstrate that loss of UCP1 exacerbates Western diet-induced whitening of brown AT, glucose intolerance, and induces liver steatosis. Notably, the adverse metabolic manifestations of UCP1−/− were independent of changes in body weight, visceral adiposity, and energy expenditure. These novel findings uncover a previously unrecognized metabolic protective role of UCP1 that is independent of its already established role in energy homeostasis. PMID:27881400

  5. PINK1/Parkin-Dependent Mitochondrial Surveillance: From Pleiotropy to Parkinson's Disease

    PubMed Central

    Mouton-Liger, Francois; Jacoupy, Maxime; Corvol, Jean-Christophe; Corti, Olga

    2017-01-01

    Parkinson's disease (PD) is one of the most frequent neurodegenerative disease caused by the preferential, progressive degeneration of the dopaminergic (DA) neurons of the substantia nigra (SN) pars compacta. PD is characterized by a multifaceted pathological process involving protein misfolding, mitochondrial dysfunction, neuroinflammation and metabolism deregulation. The molecular mechanisms governing the complex interplay between the different facets of this process are still unknown. PARK2/Parkin and PARK6/PINK1, two genes responsible for familial forms of PD, act as a ubiquitous core signaling pathway, coupling mitochondrial stress to mitochondrial surveillance, by regulating mitochondrial dynamics, the removal of damaged mitochondrial components by mitochondria-derived vesicles, mitophagy, and mitochondrial biogenesis. Over the last decade, PINK1/Parkin-dependent mitochondrial quality control emerged as a pleiotropic regulatory pathway. Loss of its function impinges on a number of physiological processes suspected to contribute to PD pathogenesis. Its role in the regulation of innate immunity and inflammatory processes stands out, providing compelling support to the contribution of non-cell-autonomous immune mechanisms in PD. In this review, we illustrate the central role of this multifunctional pathway at the crossroads between mitochondrial stress, neuroinflammation and metabolism. We discuss how its dysfunction may contribute to PD pathogenesis and pinpoint major unresolved questions in the field. PMID:28507507

  6. Mitochondrial Hormesis links nutrient restriction to improved metabolism in fat cell.

    PubMed

    Lettieri Barbato, Daniele; Tatulli, Giuseppe; Aquilano, Katia; Ciriolo, Maria R

    2015-10-01

    Fasting promotes longevity by reprogramming metabolic and stress resistance pathways. However, although the impact on adipose tissue physiology through hormonal inputs is well established, the direct role of fasting on adipose cells is poorly understood. Herein we show that white and beige adipocytes, as well as mouse epididymal and subcutaneous adipose depots, respond to nutrient scarcity by acquiring a brown-like phenotype. Indeed, they improve oxidative metabolism through modulating the expression of mitochondrial- and nuclear-encoded oxidative phosphorylation genes as well as mitochondrial stress defensive proteins (UCP1, SOD2). Such adaptation is placed in a canonical mitohormetic response that proceeds via mitochondrial reactive oxygen species ((mt)ROS) production and redistribution of FoxO1 transcription factor into nucleus. Nuclear FoxO1 ((n)FoxO1) mediates retrograde communication by inducing the expression of mitochondrial oxidative and stress defensive genes. Collectively, our findings describe an unusual white/beige fat cell response to nutrient availability highlighting another health-promoting mechanism of fasting.

  7. Mitochondrial Proton Leak Plays a Critical Role in Pathogenesis of Cardiovascular Diseases.

    PubMed

    Cheng, Jiali; Nanayakkara, Gayani; Shao, Ying; Cueto, Ramon; Wang, Luqiao; Yang, William Y; Tian, Ye; Wang, Hong; Yang, Xiaofeng

    2017-01-01

    Mitochondrial proton leak is the principal mechanism that incompletely couples substrate oxygen to ATP generation. This chapter briefly addresses the recent progress made in understanding the role of proton leak in the pathogenesis of cardiovascular diseases. Majority of the proton conductance is mediated by uncoupling proteins (UCPs) located in the mitochondrial inner membrane. It is evident that the proton leak and reactive oxygen species (ROS) generated from electron transport chain (ETC) in mitochondria are linked to each other. Increased ROS production has been shown to induce proton conductance, and in return, increased proton conductance suppresses ROS production, suggesting the existence of a positive feedback loop that protects the biological systems from detrimental effects of augmented oxidative stress. There is mounting evidence attributing to proton leak and uncoupling proteins a crucial role in the pathogenesis of cardiovascular disease. We can surmise the role of "uncoupling" in cardiovascular disorders as follows; First, the magnitude of the proton leak and the mechanism involved in mediating the proton leak determine whether there is a protective effect against ischemia-reperfusion (IR) injury. Second, uncoupling by UCP2 preserves vascular function in diet-induced obese mice as well as in diabetes. Third, etiology determines whether the proton conductance is altered or not during hypertension. And fourth, proton leak regulates ATP synthesis-uncoupled mitochondrial ROS generation, which determines pathological activation of endothelial cells for recruitment of inflammatory cells. Continue effort in improving our understanding in the role of proton leak in the pathogenesis of cardiovascular and metabolic diseases would lead to identification of novel therapeutic targets for treatment.

  8. An Actin-Dependent Step in Mitochondrial Fission Mediated by the ER-Associated Formin INF2

    PubMed Central

    Korobova, Farida; Ramabhadran, Vinay; Higgs, Henry N.

    2013-01-01

    Mitochondrial fission is fundamentally important to cellular physiology. The dynamin-related protein Drp1 mediates fission, and interaction between mitochondrion and endoplasmic reticulum (ER) enhances fission. However, the mechanism for Drp1 recruitment to mitochondria is unclear, although previous results implicate actin involvement. Here, we found that actin polymerization through ER-localized inverted formin 2 (INF2) was required for efficient mitochondrial fission in mammalian cells. INF2 functioned upstream of Drp1. Actin filaments appeared to accumulate between mitochondria and INF2-enriched ER membranes at constriction sites. Thus, INF2-induced actin filaments may drive initial mitochondrial constriction, which allows Drp1-driven secondary constriction. Because INF2 mutations can lead to Charcot-Marie-Tooth disease, our results provide a potential cellular mechanism for this disease state. PMID:23349293

  9. Fluoxetine induces lean phenotype in rat by increasing the brown/white adipose tissue ratio and UCP1 expression.

    PubMed

    da Silva, A I; Braz, G R F; Pedroza, A A; Nascimento, L; Freitas, C M; Ferreira, D J S; Manhães de Castro, R; Lagranha, C J

    2015-08-01

    The serotonergic system plays a crucial role in the energy balance regulation. Energy balance is mediated by food intake and caloric expenditure. Thus, the present study investigated the mechanisms that might be associated with fluoxetine treatment-induced weight reduction. Wistar male rat pups received daily injections with subcutaneous fluoxetine (Fx-group) or vehicle solution (Ct-group) from day 1 until 21 days of age. Several analyses were conducted to verify the involvement of mitochondria in weight reduction. We found that body weight in the Fx-group was lower compared to control. In association to lower fat mass in the Fx-group (25%). Neither neonatal caloric intake nor food intake reveals significant differences. Evaluating caloric expenditure (locomotor activity and temperature after stimulus), we did not observe differences in locomotor activity. However, we observed that the Fx group had a higher capacity to maintain body temperature in a cold environment compared with the Ct-group. Since brown adipose tissue-(BAT) is specialized for heat production and the rate of heat production is related to mitochondrial function, we found that Fx-treatment increases respiration by 36%, although after addition of GDP respiration returned to Ct-levels. Examining ROS production we observe that Fx-group produced less ROS than control group. Evaluating uncoupling protein (UCP) expression we found that Fx-treatment increases the expression by 23%. Taken together, our results suggest that modulation of serotonin system results in positive modulation of UCP and mitochondrial bioenergetics in brown fat tissue.

  10. α-Synuclein Shows High Affinity Interaction with Voltage-dependent Anion Channel, Suggesting Mechanisms of Mitochondrial Regulation and Toxicity in Parkinson Disease*

    PubMed Central

    Rostovtseva, Tatiana K.; Gurnev, Philip A.; Protchenko, Olga; Hoogerheide, David P.; Yap, Thai Leong; Philpott, Caroline C.; Lee, Jennifer C.; Bezrukov, Sergey M.

    2015-01-01

    Participation of the small, intrinsically disordered protein α-synuclein (α-syn) in Parkinson disease (PD) pathogenesis has been well documented. Although recent research demonstrates the involvement of α-syn in mitochondrial dysfunction in neurodegeneration and suggests direct interaction of α-syn with mitochondria, the molecular mechanism(s) of α-syn toxicity and its effect on neuronal mitochondria remain vague. Here we report that at nanomolar concentrations, α-syn reversibly blocks the voltage-dependent anion channel (VDAC), the major channel of the mitochondrial outer membrane that controls most of the metabolite fluxes in and out of the mitochondria. Detailed analysis of the blockage kinetics of VDAC reconstituted into planar lipid membranes suggests that α-syn is able to translocate through the channel and thus target complexes of the mitochondrial respiratory chain in the inner mitochondrial membrane. Supporting our in vitro experiments, a yeast model of PD shows that α-syn toxicity in yeast depends on VDAC. The functional interactions between VDAC and α-syn, revealed by the present study, point toward the long sought after physiological and pathophysiological roles for monomeric α-syn in PD and in other α-synucleinopathies. PMID:26055708

  11. ZmPUMP encodes a fully functional monocot plant uncoupling mitochondrial protein whose affinity to fatty acid is increased with the introduction of a His pair at the second matrix loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favaro, Regiane Degan; Borecky, Jiri; Colombi, Debora

    Uncoupling proteins (UCPs) are specialized mitochondrial transporter proteins that uncouple respiration from ATP synthesis. In this study, cDNA encoding maize uncoupling protein (ZmPUMP) was expressed in Escherichia coli and recombinant ZmPUMP reconstituted in liposomes. ZmPUMP activity was associated with a linoleic acid (LA)-mediated H{sup +} efflux with K {sub m} of 56.36 {+-} 0.27 {mu}M and V {sub max} of 66.9 {mu}mol H{sup +} min{sup -1} (mg prot){sup -1}. LA-mediated H{sup +} fluxes were sensitive to ATP inhibition with K {sub i} of 2.61 {+-} 0.36 mM (at pH 7.2), a value similar to those for dicot UCPs. ZmPUMP wasmore » also used to investigate the importance of a histidine pair present in the second matrix loop of mammalian UCP1 and absent in plant UCPs. ZmPUMP with introduced His pair (Lys155His and Ala157His) displayed a 1.55-fold increase in LA-affinity while its activity remained unchanged. Our data indicate conserved properties of plant UCPs and suggest an enhancing but not essential role of the histidine pair in proton transport mechanism.« less

  12. Evolution of UCP1 Transcriptional Regulatory Elements Across the Mammalian Phylogeny

    PubMed Central

    Gaudry, Michael J.; Campbell, Kevin L.

    2017-01-01

    Uncoupling protein 1 (UCP1) permits non-shivering thermogenesis (NST) when highly expressed in brown adipose tissue (BAT) mitochondria. Exclusive to placental mammals, BAT has commonly been regarded to be advantageous for thermoregulation in hibernators, small-bodied species, and the neonates of larger species. While numerous regulatory control motifs associated with UCP1 transcription have been proposed for murid rodents, it remains unclear whether these are conserved across the eutherian mammal phylogeny and hence essential for UCP1 expression. To address this shortcoming, we conducted a broad comparative survey of putative UCP1 transcriptional regulatory elements in 139 mammals (135 eutherians). We find no evidence for presence of a UCP1 enhancer in monotremes and marsupials, supporting the hypothesis that this control region evolved in a stem eutherian ancestor. We additionally reveal that several putative promoter elements (e.g., CRE-4, CCAAT) identified in murid rodents are not conserved among BAT-expressing eutherians, and together with the putative regulatory region (PRR) and CpG island do not appear to be crucial for UCP1 expression. The specificity and importance of the upTRE, dnTRE, URE1, CRE-2, RARE-2, NBRE, BRE-1, and BRE-2 enhancer elements first described from rats and mice are moreover uncertain as these motifs differ substantially—but generally remain highly conserved—in other BAT-expressing eutherians. Other UCP1 enhancer motifs (CRE-3, PPRE, and RARE-3) as well as the TATA box are also highly conserved in nearly all eutherian lineages with an intact UCP1. While these transcriptional regulatory motifs are generally also maintained in species where this gene is pseudogenized, the loss or degeneration of key basal promoter (e.g., TATA box) and enhancer elements in other UCP1-lacking lineages make it unlikely that the enhancer region is pleiotropic (i.e., co-regulates additional genes). Importantly, differential losses of (or mutations within

  13. Increased Energy Expenditure, Ucp1 Expression, and Resistance to Diet-induced Obesity in Mice Lacking Nuclear Factor-Erythroid-2-related Transcription Factor-2 (Nrf2).

    PubMed

    Schneider, Kevin; Valdez, Joshua; Nguyen, Janice; Vawter, Marquis; Galke, Brandi; Kurtz, Theodore W; Chan, Jefferson Y

    2016-04-01

    The NRF2 (also known as NFE2L2) transcription factor is a critical regulator of genes involved in defense against oxidative stress. Previous studies suggest thatNrf2plays a role in adipogenesisin vitro, and deletion of theNrf2gene protects against diet-induced obesity in mice. Here, we demonstrate that resistance to diet-induced obesity inNrf2(-/-)mice is associated with a 20-30% increase in energy expenditure. Analysis of bioenergetics revealed thatNrf2(-/-)white adipose tissues exhibit greater oxygen consumption. White adipose tissue showed a >2-fold increase inUcp1gene expression. Oxygen consumption is also increased nearly 2.5-fold inNrf2-deficient fibroblasts. Oxidative stress induced by glucose oxidase resulted in increasedUcp1expression. Conversely, antioxidant chemicals (such asN-acetylcysteine and Mn(III)tetrakis(4-benzoic acid)porphyrin chloride) and SB203580 (a known suppressor ofUcp1expression) decreasedUcp1and oxygen consumption inNrf2-deficient fibroblasts. These findings suggest that increasing oxidative stress by limitingNrf2function in white adipocytes may be a novel means to modulate energy balance as a treatment of obesity and related clinical disorders. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics

    PubMed Central

    Tan, Dun-Xian; Manchester, Lucien C.; Qin, Lilan; Reiter, Russel J.

    2016-01-01

    Melatonin has been speculated to be mainly synthesized by mitochondria. This speculation is supported by the recent discovery that aralkylamine N-acetyltransferase/serotonin N-acetyltransferase (AANAT/SNAT) is localized in mitochondria of oocytes and the isolated mitochondria generate melatonin. We have also speculated that melatonin is a mitochondria-targeted antioxidant. It accumulates in mitochondria with high concentration against a concentration gradient. This is probably achieved by an active transportation via mitochondrial melatonin transporter(s). Melatonin protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting the mitochondrial permeability transition pore (MPTP), and activating uncoupling proteins (UCPs). Thus, melatonin maintains the optimal mitochondrial membrane potential and preserves mitochondrial functions. In addition, mitochondrial biogenesis and dynamics is also regulated by melatonin. In most cases, melatonin reduces mitochondrial fission and elevates their fusion. Mitochondrial dynamics exhibit an oscillatory pattern which matches the melatonin circadian secretory rhythm in pinealeocytes and probably in other cells. Recently, melatonin has been found to promote mitophagy and improve homeostasis of mitochondria. PMID:27999288

  15. UCP4C mediates uncoupled respiration in larvae of Drosophila melanogaster.

    PubMed

    Da-Ré, Caterina; De Pittà, Cristiano; Zordan, Mauro A; Teza, Giordano; Nestola, Fabrizio; Zeviani, Massimo; Costa, Rodolfo; Bernardi, Paolo

    2014-05-01

    Larvae of Drosophila melanogaster reared at 23°C and switched to 14°C for 1 h are 0.5°C warmer than the surrounding medium. In keeping with dissipation of energy, respiration of Drosophila melanogaster larvae cannot be decreased by the F-ATPase inhibitor oligomycin or stimulated by protonophore. Silencing of Ucp4C conferred sensitivity of respiration to oligomycin and uncoupler, and prevented larva-to-adult progression at 15°C but not 23°C. Uncoupled respiration of larval mitochondria required palmitate, was dependent on Ucp4C and was inhibited by guanosine diphosphate. UCP4C is required for development through the prepupal stages at low temperatures and may be an uncoupling protein.

  16. Cyanide-induced death of dopaminergic cells is mediated by uncoupling protein-2 up-regulation and reduced Bcl-2 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X.; Li, L.; Zhang, L.

    Cyanide is a potent inhibitor of mitochondrial oxidative metabolism and produces mitochondria-mediated death of dopaminergic neurons and sublethal intoxications that are associated with a Parkinson-like syndrome. Cyanide toxicity is enhanced when mitochondrial uncoupling is stimulated following up-regulation of uncoupling protein-2 (UCP-2). In this study, the role of a pro-survival protein, Bcl-2, in cyanide-mediated cell death was determined in a rat dopaminergic immortalized mesencephalic cell line (N27 cells). Following pharmacological up-regulation of UCP-2 by treatment with Wy14,643, cyanide reduced cellular Bcl-2 expression by increasing proteasomal degradation of the protein. The increased turnover of Bcl-2 was mediated by an increase of oxidativemore » stress following UCP-2 up-regulation. The oxidative stress involved depletion of mitochondrial glutathione (mtGSH) and increased H{sub 2}O{sub 2} generation. Repletion of mtGSH by loading cells with glutathione ethyl ester reduced H{sub 2}O{sub 2} generation and in turn blocked the cyanide-induced decrease of Bcl-2. To determine if UCP-2 mediated the response, RNAi knock down was conducted. The RNAi decreased cyanide-induced depletion of mtGSH, reduced H{sub 2}O{sub 2} accumulation, and inhibited down-regulation of Bcl-2, thus blocking cell death. To confirm the role of Bcl-2 down-regulation in the cell death, it was shown that over-expression of Bcl-2 by cDNA transfection attenuated the enhancement of cyanide toxicity after UCP-2 up-regulation. It was concluded that UCP-2 up-regulation sensitizes cells to cyanide by increasing cellular oxidative stress, leading to an increase of Bcl-2 degradation. Then the reduced Bcl-2 levels sensitize the cells to cyanide-mediated cell death.« less

  17. Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases

    PubMed Central

    Werner, Erica; Werb, Zena

    2002-01-01

    We show here the transient activation of the small GTPase Rac, followed by a rise in reactive oxygen species (ROS), as necessary early steps in a signal transduction cascade that lead to NFκB activation and collagenase-1 (CL-1)/matrix metalloproteinase-1 production after integrin-mediated cell shape changes. We show evidence indicating that this constitutes a new mechanism for ROS production mediated by small GTPases. Activated RhoA also induced ROS production and up-regulated CL-1 expression. A Rac mutant (L37) that prevents reorganization of the actin cytoskeleton prevented integrin-induced CL-1 expression, whereas mutations that abrogate Rac binding to the neutrophil NADPH membrane oxidase in vitro (H26 and N130) did not. Instead, ROS were produced by integrin-induced changes in mitochondrial function, which were inhibited by Bcl-2 and involved transient membrane potential loss. The cells showing this transient decrease in mitochondrial membrane potential were already committed to CL-1 expression. These results unveil a new molecular mechanism of signal transduction triggered by integrin engagement where a global mitochondrial metabolic response leads to gene expression rather than apoptosis. PMID:12119354

  18. Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases.

    PubMed

    Werner, Erica; Werb, Zena

    2002-07-22

    We show here the transient activation of the small GTPase Rac, followed by a rise in reactive oxygen species (ROS), as necessary early steps in a signal transduction cascade that lead to NFkappaB activation and collagenase-1 (CL-1)/matrix metalloproteinase-1 production after integrin-mediated cell shape changes. We show evidence indicating that this constitutes a new mechanism for ROS production mediated by small GTPases. Activated RhoA also induced ROS production and up-regulated CL-1 expression. A Rac mutant (L37) that prevents reorganization of the actin cytoskeleton prevented integrin-induced CL-1 expression, whereas mutations that abrogate Rac binding to the neutrophil NADPH membrane oxidase in vitro (H26 and N130) did not. Instead, ROS were produced by integrin-induced changes in mitochondrial function, which were inhibited by Bcl-2 and involved transient membrane potential loss. The cells showing this transient decrease in mitochondrial membrane potential were already committed to CL-1 expression. These results unveil a new molecular mechanism of signal transduction triggered by integrin engagement where a global mitochondrial metabolic response leads to gene expression rather than apoptosis.

  19. The mRNA expression levels of uncoupling proteins 1 and 2 in mononuclear cells from patients with metabolic disorders: obesity and type 2 diabetes mellitus.

    PubMed

    Margaryan, Sona; Witkowicz, Agata; Partyka, Anna; Yepiskoposyan, Levon; Manukyan, Gayane; Karabon, Lidia

    2017-10-19

    Type 2 diabetes mellitus (T2DM) and obesity are metabolic disorders whose major hallmark is insulin resistance. Impaired mitochondrial activity, such as reduced ratio of energy production to respiration, has been implicated in the development of insulin resistance. Uncoupling proteins (UCPs) are proton carriers, expressed in the mitochondrial inner membrane, that uncouple oxygen consumption by the respiratory chain from ATP synthesis. The aim of the study was to determine transcriptional levels of UCP1 and UCP2 in peripheral blood mononuclear cells (PBMCs) from patients with metabolic disorders: T2DM, obesity and from healthy individuals. The mRNA levels of UCP1, UCP2 were determined by Real-Time PCR method using Applied Biosystems assays. The UCP1 mRNA expression level was not detectable in the majority of studied samples, while very low expression was found in PBMCs from 3 obese persons. UCP2 mRNA expression level was detectable in all samples. The median mRNA expression of UCP2 was lower in all patients with metabolic disorders as compared to the controls (0.20+0.14 vs. 0.010+0.009, p=0.05). When compared separately, the differences of medians UCP2 mRNA expression level between the obese individuals and the controls as well as between the T2DM patients and the controls did not reach statistical significance. Decreased UCP2 gene expression in mononuclear cells from obese and diabetic patients might contribute to the immunological abnormalities in these metabolic disorders and suggests its role as a candidate gene in future studies of obesity and diabetes.

  20. Is cell aging caused by respiration-dependent injury to the mitochondrial genome

    NASA Technical Reports Server (NTRS)

    Fleming, J. E.; Yengoyan, L. S.; Miquel, J.; Cottrell, S. F.; Economos, A. C.

    1982-01-01

    Though intrinsic mitochondrial aging has been considered before as a possible cause of cellular senescence, the mechanisms of such mitochondrial aging have remained obscure. In this article, the hypothesis of free-radical-induced inhibition of mitochondrial replenishment in fixed postmitotic cells is expanded. It is maintained that the respiration-dependent production of superoxide and hydroxyl radicals may not be fully counteracted, leading to a continuous production of lipoperoxides and malonaldehyde in actively respiring mitochondria. These compounds, in turn, can easily react with the mitochondrial DNA which is in close spatial relationship with the inner mitochondrial membrane, producing an injury that the mitochondria may be unable to counteract because of their apparent lack of adequate repair mechanisms. Mitochondrial division may thus be inhibited leading to age-related reduction of mitochondrial numbers, a deficit in energy production with a concomitant decrease in protein synthesis, deterioration of physiological performance, and, therefore, of organismic performance.

  1. Relationship between expression of muscle-specific uncoupling protein 2 messenger RNA and genetic selection toward growth in channel catfish.

    PubMed

    Kobayashi, Y; Peterson, B C; Waldbieser, G C

    2015-04-01

    This study tested the hypothesis that increased growth in channel catfish is associated with expression of the genes that code for uncoupling proteins (UCP) 2 and 3, members of the mitochondrial channel proteins involved in nutrient sensing and metabolism. The specific objective was to contrast the levels of UCP2 messenger RNA (mRNA) in fast vs slow growing catfish as well as in fed vs fasted catfish. Two distinct UCP2 transcripts were identified and named UCP2a and UCP2b, respectively. Nucleotide and amino acid sequence of catfish UCP2s were highly similar to UCP2 and other UCPs from other fish and mammals (>75%). Expression of UCP2a mRNA was detectable at very low levels in various metabolically active tissues, whereas the expression of UCP2b mRNA was readily detectable in the muscle and heart. In a 21-wk feeding study, fish that grew faster had a greater percent body fat at the end of the study (P < 0.01). Expression of UCP2b mRNA tended to be lower (P < 0.10) in fast growing fish in the middle of the study although levels were similar at the beginning and the end of the study. In the fed vs fasted study, expression of UCP2b mRNA in muscle was increased (P < 0.05) in fish assigned to 30 d of fasting. Our results suggest that, based on the nucleotide and amino acid sequence similarities and tissue mRNA distribution, catfish UCP2b may be the analog to UCP3. Moreover, our results suggest selection toward growth and associated fat accumulation appears to be independent of muscle UCP2b mRNA expression and UCP2b-mediated mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Rapid frequency‐dependent changes in free mitochondrial calcium concentration in rat cardiac myocytes

    PubMed Central

    Wüst, Rob C. I.; Helmes, Michiel; Martin, Jody L.; van der Wardt, Thomas J. T.; Musters, René J. P.; van der Velden, Jolanda

    2017-01-01

    Key points Calcium ions regulate mitochondrial ATP production and contractile activity and thus play a pivotal role in matching energy supply and demand in cardiac muscle.The magnitude and kinetics of the changes in free mitochondrial calcium concentration in cardiac myocytes are largely unknown.Rapid stimulation frequency‐dependent increases but relatively slow decreases in free mitochondrial calcium concentration were observed in rat cardiac myocytes. This asymmetry caused a rise in the mitochondrial calcium concentration with stimulation frequency.These results provide insight into the mechanisms of mitochondrial calcium uptake and release that are important in healthy and diseased myocardium. Abstract Calcium ions regulate mitochondrial ATP production and contractile activity and thus play a pivotal role in matching energy supply and demand in cardiac muscle. Little is known about the magnitude and kinetics of the changes in free mitochondrial calcium concentration in cardiomyocytes. Using adenoviral infection, a ratiometric mitochondrially targeted Förster resonance energy transfer (FRET)‐based calcium indicator (4mtD3cpv, MitoCam) was expressed in cultured adult rat cardiomyocytes and the free mitochondrial calcium concentration ([Ca2+]m) was measured at different stimulation frequencies (0.1–4 Hz) and external calcium concentrations (1.8–3.6 mm) at 37°C. Cytosolic calcium concentrations were assessed under the same experimental conditions in separate experiments using Fura‐4AM. The increases in [Ca2+]m during electrical stimulation at 0.1 Hz were rapid (rise time = 49 ± 2 ms), while the decreases in [Ca2+]m occurred more slowly (decay half time = 1.17 ± 0.07 s). Model calculations confirmed that this asymmetry caused the rise in [Ca2+]m during diastole observed at elevated stimulation frequencies. Inhibition of the mitochondrial sodium–calcium exchanger (mNCE) resulted in a rise in [Ca2+]m at baseline and, paradoxically, in an

  3. Overexpression of uncoupling protein-2 in cancer: metabolic and heat changes, inhibition and effects on drug resistance.

    PubMed

    Pitt, Michael A

    2015-12-01

    This paper deals with the role of uncoupling protein-2 (UCP2) in cancer. UCP2 is overexpressed in cancer. This overexpression results in uncoupling of mitochondrial oxidative phosphorylation and a shift in production of ATP from mitochondrial oxidative phosphorylation to cytosolic aerobic glycolysis. UCP2 overexpression results in the following changes. Mitochondrial membrane potential (Δψ(m)) is decreased and lactate accumulates. There is a diminished production of reactive oxygen species and apoptosis is inhibited post-exposure to chemotherapeutic agents. There is an increase in heat and entropy production and a departure from the stationary state of non-cancerous tissue. Uncoupling of oxidative phosphorylation may also be caused by protonophores and non-steroidal anti-inflammatory drugs. UCP2 requires activation by superoxide and lipid peroxidation derivatives. As vitamin E inhibits lipid peroxidation, it might be expected that vitamin E would act as a chemotherapeutic agent against cancer. A recent study has shown that vitamin E and another anti-oxidant accelerate cancer progression. UCP2 is inhibited by genipin, chromane compounds and short interfering RNAs (siRNA). Genipin, chromanes and siRNA are taken up by both cancer and non-cancerous cells. Targeting the uptake of these agents by cancer cells by the enhanced permeability and retention effect is considered. Inhibition of UCP2 enhances the action of several anti-cancer agents.

  4. Variation in the uncoupling protein 2 and 3 genes and human performance.

    PubMed

    Dhamrait, Sukhbir S; Williams, Alun G; Day, Stephen H; Skipworth, James; Payne, John R; World, Michael; Humphries, Steve E; Montgomery, Hugh E

    2012-04-01

    Uncoupling proteins 2 and 3 (UCP2 and UCP3) may negatively regulate mitochondrial ATP synthesis and, through this, influence human physical performance. However, human data relating to both these issues remain sparse. Examining the association of common variants in the UCP3/2 locus with performance phenotypes offers one means of investigation. The efficiency of skeletal muscle contraction, delta efficiency (DE), was assessed by cycle ergometry in 85 young, healthy, sedentary adults both before and after a period of endurance training. Of these, 58 were successfully genotyped for the UCP3-55C>T (rs1800849) and 61 for the UCP2-866G>A (rs659366) variant. At baseline, UCP genotype was unrelated to any physical characteristic, including DE. However, the UCP2-866G>A variant was independently and strongly associated with the DE response to physical training, with UCP2-866A allele carriers exhibiting a greater increase in DE with training (absolute change in DE of -0.2 ± 3.6% vs. 1.7 ± 2.8% vs. 2.3 ± 3.7% for GG vs. GA vs. AA, respectively; P = 0.02 for A allele carriers vs. GG homozygotes). In multivariate analysis, there was a significant interaction between UCP2-866G>A and UCP3-55C>T genotypes in determining changes in DE (adjusted R(2) = 0.137; P value for interaction = 0.003), which was independent of the effect of either single polymorphism or baseline characteristics. In conclusion, common genetic variation at the UCP3/2 gene locus is associated with training-related improvements in DE, an index of skeletal muscle performance. Such effects may be mediated through differences in the coupling of mitochondrial energy transduction in human skeletal muscle, but further mechanistic studies are required to delineate this potential role.

  5. The Hydroxyl at Position C1 of Genipin Is the Active Inhibitory Group that Affects Mitochondrial Uncoupling Protein 2 in Panc-1 Cells

    PubMed Central

    Hou, Jianwei; Ding, Yue; Zhang, Tong; Zhang, Yong; Wang, Jianying; Shi, Chenchen; Fu, Wenwei; Cai, Zhenzhen

    2016-01-01

    Genipin (GNP) effectively inhibits uncoupling protein 2 (UCP2), which regulates the leakage of protons across the inner mitochondrial membrane. UCP2 inhibition may induce pancreatic adenocarcinoma cell death by increasing reactive oxygen species (ROS) levels. In this study, the hydroxyls at positions C10 (10-OH) and C1 (1-OH) of GNP were hypothesized to be the active groups that cause these inhibitory effects. Four GNP derivatives in which the hydroxyl at position C10 or C1 was replaced with other chemical groups were synthesized and isolated. Differences in the inhibitory effects of GNP and its four derivatives on pancreatic carcinoma cell (Panc-1) proliferation were assessed. The effects of GNP and its derivatives on apoptosis, UCP2 inhibition and ROS production were also studied to explore the relationship between GNP’s activity and its structure. The derivatives with 1-OH substitutions, geniposide (1-GNP1) and 1-ethyl-genipin (1-GNP2) lacked cytotoxic effects, while the other derivatives that retained 1-OH, 10-piv-genipin (10-GNP1) and 10-acetic acid-genipin (10-GNP2) exerted biological effects similar to those of GNP, even in the absence of 10-OH. Thus, 1-OH is the key functional group in the structure of GNP that is responsible for GNP’s apoptotic effects. These cytotoxic effects involve the induction of Panc-1 cell apoptosis through UCP2 inhibition and subsequent ROS production. PMID:26771380

  6. The Hydroxyl at Position C1 of Genipin Is the Active Inhibitory Group that Affects Mitochondrial Uncoupling Protein 2 in Panc-1 Cells.

    PubMed

    Yang, Yang; Yang, Yifu; Hou, Jianwei; Ding, Yue; Zhang, Tong; Zhang, Yong; Wang, Jianying; Shi, Chenchen; Fu, Wenwei; Cai, Zhenzhen

    2016-01-01

    Genipin (GNP) effectively inhibits uncoupling protein 2 (UCP2), which regulates the leakage of protons across the inner mitochondrial membrane. UCP2 inhibition may induce pancreatic adenocarcinoma cell death by increasing reactive oxygen species (ROS) levels. In this study, the hydroxyls at positions C10 (10-OH) and C1 (1-OH) of GNP were hypothesized to be the active groups that cause these inhibitory effects. Four GNP derivatives in which the hydroxyl at position C10 or C1 was replaced with other chemical groups were synthesized and isolated. Differences in the inhibitory effects of GNP and its four derivatives on pancreatic carcinoma cell (Panc-1) proliferation were assessed. The effects of GNP and its derivatives on apoptosis, UCP2 inhibition and ROS production were also studied to explore the relationship between GNP's activity and its structure. The derivatives with 1-OH substitutions, geniposide (1-GNP1) and 1-ethyl-genipin (1-GNP2) lacked cytotoxic effects, while the other derivatives that retained 1-OH, 10-piv-genipin (10-GNP1) and 10-acetic acid-genipin (10-GNP2) exerted biological effects similar to those of GNP, even in the absence of 10-OH. Thus, 1-OH is the key functional group in the structure of GNP that is responsible for GNP's apoptotic effects. These cytotoxic effects involve the induction of Panc-1 cell apoptosis through UCP2 inhibition and subsequent ROS production.

  7. Native UCP1 displays simple competitive kinetics between the regulators purine nucleotides and fatty acids.

    PubMed

    Shabalina, Irina G; Jacobsson, Anders; Cannon, Barbara; Nedergaard, Jan

    2004-09-10

    Elucidation of the regulation of uncoupling protein 1 (UCP1) activity in its native environment, i.e. the inner membrane of brown-fat mitochondria, has been hampered by the presence of UCP1-independent, quantitatively unresolved effects of investigated regulators on the brown-fat mitochondria themselves. Here we have utilized the availability of UCP1-ablated mice to dissect UCP1-dependent and UCP1-independent effects of regulators. Using a complex-I-linked substrate (pyruvate), we found that UCP1 can mediate a 4-fold increase in thermogenesis when stimulated with the classical positive regulator fatty acids (oleate). After demonstrating that the fatty acids act in their free form, we found that UCP1 increased fatty acid sensitivity approximately 30-fold (as compared with the 1.5-fold increase reported earlier based on nominal fatty acid values). By identifying the UCP1-mediated fraction of the response, we could conclude that the interaction between purine nucleotides (GDP) and fatty acids (oleate) unexpectedly displayed simple competitive kinetics. In GDP-inhibited mitochondria, oleate apparently acted as an activator. However, only a model in which UCP1 is inherently active (i.e."activating" fatty acids cannot be included in the model), where GDP functions as an inhibitor with a K(m) of 0.05 mm, and where oleate functions as a competitive antagonist for the GDP effect (with a K(i) of 5 nm) can fit all of the experimental data. We conclude that, when examined in its native environment, UCP1 functions as a proton (equivalent) carrier in the absence of exogenous or endogenous fatty acids.

  8. Troxerutin attenuates diet-induced oxidative stress, impairment of mitochondrial biogenesis and respiratory chain complexes in mice heart.

    PubMed

    Rajagopalan, Geetha; Chandrasekaran, Sathiya Priya; Carani Venkatraman, Anuradha

    2017-01-01

    Mitochondrial abnormality is thought to play a key role in cardiac disease originating from the metabolic syndrome (MS). We evaluated the effect of troxerutin (TX), a semi-synthetic derivative of the natural bioflavanoid rutin, on the respiratory chain complex activity, oxidative stress, mitochondrial biogenesis and dynamics in heart of high fat, high fructose diet (HFFD) -induced mouse model of MS. Adult male Mus musculus mice of body weight 25-30 g were fed either control diet or HFFD for 60 days. Mice from each dietary regimen were divided into two groups on the 16th day and were treated or untreated with TX (150 mg/kg body weight [bw], per oral) for the next 45 days. At the end of experimental period, respiratory chain complex activity, uncoupling proteins (UCP)-2 and -3, mtDNA content, mitochondrial biogenesis and dynamics, oxidative stress markers and reactive oxygen species (ROS) generation were analyzed. Reduced mtDNA abundance with alterations in the expression of genes related to mitochondrial biogenesis and fission and fusion processes were observed in HFFD-fed mice. Disorganized and smaller mitochondria, reduction in complexes I, III and IV activities (by about 55%) and protein levels of UCP-2 (52%) and UCP-3 (46%) were noted in these mice. TX administration suppressed oxidative stress, improved the oxidative capacity and biogenesis and restored fission/fusion imbalance in the cardiac mitochondria of HFFD-fed mice. TX protects the myocardium by modulating the putative molecules of mitochondrial biogenesis and dynamics and by its anti-oxidant function in a mouse model of MS. © 2016 John Wiley & Sons Australia, Ltd.

  9. Thymidine kinase 2 enzyme kinetics elucidate the mechanism of thymidine-induced mitochondrial DNA depletion.

    PubMed

    Sun, Ren; Wang, Liya

    2014-10-07

    Mitochondrial thymidine kinase 2 (TK2) is a nuclear gene-encoded protein, synthesized in the cytosol and subsequently translocated into the mitochondrial matrix, where it catalyzes the phosphorylation of thymidine (dT) and deoxycytidine (dC). The kinetics of dT phosphorylation exhibits negative cooperativity, but dC phosphorylation follows hyperbolic Michaelis-Menten kinetics. The two substrates compete with each other in that dT is a competitive inhibitor of dC phosphorylation, while dC acts as a noncompetitive inhibitor of dT phosphorylation. In addition, TK2 is feedback inhibited by dTTP and dCTP. TK2 also phosphorylates a number of pyrimidine nucleoside analogues used in antiviral and anticancer therapy and thus plays an important role in mitochondrial toxicities caused by nucleoside analogues. Deficiency in TK2 activity due to genetic alterations causes devastating mitochondrial diseases, which are characterized by mitochondrial DNA (mtDNA) depletion or multiple deletions in the affected tissues. Severe TK2 deficiency is associated with early-onset fatal mitochondrial DNA depletion syndrome, while less severe deficiencies result in late-onset phenotypes. In this review, studies of the enzyme kinetic behavior of TK2 enzyme variants are used to explain the mechanism of mtDNA depletion caused by TK2 mutations, thymidine overload due to thymidine phosphorylase deficiency, and mitochondrial toxicity caused by antiviral thymidine analogues.

  10. The genetic association study between polymorphisms in uncoupling protein 2 and uncoupling protein 3 and metabolic data in dogs.

    PubMed

    Udagawa, Chihiro; Tada, Naomi; Asano, Junzo; Ishioka, Katsumi; Ochiai, Kazuhiko; Bonkobara, Makoto; Tsuchida, Shuichi; Omi, Toshinori

    2014-12-11

    The uncoupling proteins (UCPs) in the mitochondrial inner membrane are members of the mitochondrial anion carrier protein family that play an important role in energy homeostasis. Genetic association studies have shown that human UCP2 and UCP3 variants (SNPs and indels) are associated with obesity, insulin resistance, type 2 diabetes mellitus, and metabolic syndrome. The aim of this study was to examine the genetic association between polymorphisms in UCP2 and UCP3 and metabolic data in dogs. We identified 10 SNPs (9 intronic and 1 exonic) and 4 indels (intronic) in UCP2, and 13 SNPs (11 intronic and 2 exonic) and one indel (exonic) in UCP3, by DNA sequence analysis of 11 different dog breeds (n=119). An association study between these UCP2 and UCP3 variants and the biochemical parameters of glucose, total cholesterol, lactate dehydrogenase and triglyceride in Labrador Retrievers (n=50) showed that none of the UCP2 polymorphisms were significantly associated with the levels of these parameters. However, four UCP3 SNPs (intron 1) were significantly associated with total cholesterol levels. In addition, the allele frequencies of two of the four SNPs associated with higher total cholesterol levels in a breed that is susceptible to hypercholesterolemia (Shetland Sheepdogs, n=30), compared with the control breed (Shiba, n=30). The results obtained from a limited number of individuals suggest that the UCP3 gene in dogs may be associated with total cholesterol levels. The examination of larger sample sizes and further analysis will lead to increased precision of these results.

  11. Glutathionylation state of uncoupling protein-2 and the control of glucose-stimulated insulin secretion.

    PubMed

    Mailloux, Ryan J; Fu, Accalia; Robson-Doucette, Christine; Allister, Emma M; Wheeler, Michael B; Screaton, Robert; Harper, Mary-Ellen

    2012-11-16

    The role of reactive oxygen species (ROS) in glucose-stimulated insulin release remains controversial because ROS have been shown to both amplify and impede insulin release. In regard to preventing insulin release, ROS activates uncoupling protein-2 (UCP2), a mitochondrial inner membrane protein that negatively regulates glucose-stimulated insulin secretion (GSIS) by uncoupling oxidative phosphorylation. With our recent discovery that the UCP2-mediated proton leak is modulated by reversible glutathionylation, a process responsive to small changes in ROS levels, we resolved to determine whether glutathionylation is required for UCP2 regulation of GSIS. Using Min6 cells and pancreatic islets, we demonstrate that induction of glutathionylation not only deactivates UCP2-mediated proton leak but also enhances GSIS. Conversely, an increase in mitochondrial matrix ROS was found to deglutathionylate and activate UCP2 leak and impede GSIS. Glucose metabolism also decreased the total amount of cellular glutathionylated proteins and increased the cellular glutathione redox ratio (GSH/GSSG). Intriguingly, the provision of extracellular ROS (H(2)O(2), 10 μM) amplified GSIS and also activated UCP2. Collectively, our findings indicate that the glutathionylation status of UCP2 contributes to the regulation of GSIS, and different cellular sites and inducers of ROS can have opposing effects on GSIS, perhaps explaining some of the controversy surrounding the role of ROS in GSIS.

  12. Glutathionylation State of Uncoupling Protein-2 and the Control of Glucose-stimulated Insulin Secretion*

    PubMed Central

    Mailloux, Ryan J.; Fu, Accalia; Robson-Doucette, Christine; Allister, Emma M.; Wheeler, Michael B.; Screaton, Robert; Harper, Mary-Ellen

    2012-01-01

    The role of reactive oxygen species (ROS) in glucose-stimulated insulin release remains controversial because ROS have been shown to both amplify and impede insulin release. In regard to preventing insulin release, ROS activates uncoupling protein-2 (UCP2), a mitochondrial inner membrane protein that negatively regulates glucose-stimulated insulin secretion (GSIS) by uncoupling oxidative phosphorylation. With our recent discovery that the UCP2-mediated proton leak is modulated by reversible glutathionylation, a process responsive to small changes in ROS levels, we resolved to determine whether glutathionylation is required for UCP2 regulation of GSIS. Using Min6 cells and pancreatic islets, we demonstrate that induction of glutathionylation not only deactivates UCP2-mediated proton leak but also enhances GSIS. Conversely, an increase in mitochondrial matrix ROS was found to deglutathionylate and activate UCP2 leak and impede GSIS. Glucose metabolism also decreased the total amount of cellular glutathionylated proteins and increased the cellular glutathione redox ratio (GSH/GSSG). Intriguingly, the provision of extracellular ROS (H2O2, 10 μm) amplified GSIS and also activated UCP2. Collectively, our findings indicate that the glutathionylation status of UCP2 contributes to the regulation of GSIS, and different cellular sites and inducers of ROS can have opposing effects on GSIS, perhaps explaining some of the controversy surrounding the role of ROS in GSIS. PMID:23035124

  13. Ex Vivo Cardiotoxicity of Antineoplastic Casiopeinas Is Mediated through Energetic Dysfunction and Triggered Mitochondrial-Dependent Apoptosis.

    PubMed

    Silva-Platas, Christian; Villegas, César A; Oropeza-Almazán, Yuriana; Carrancá, Mariana; Torres-Quintanilla, Alejandro; Lozano, Omar; Valero-Elizondo, Javier; Castillo, Elena C; Bernal-Ramírez, Judith; Fernández-Sada, Evaristo; Vega, Luis F; Treviño-Saldaña, Niria; Chapoy-Villanueva, Héctor; Ruiz-Azuara, Lena; Hernández-Brenes, Carmen; Elizondo-Montemayor, Leticia; Guerrero-Beltrán, Carlos E; Carvajal, Karla; Bravo-Gómez, María E; García-Rivas, Gerardo

    2018-01-01

    Casiopeinas are a group of copper-based antineoplastic molecules designed as a less toxic and more therapeutic alternative to cisplatin or Doxorubicin; however, there is scarce evidence about their toxic effects on the whole heart and cardiomyocytes. Given this, rat hearts were perfused with Casiopeinas or Doxorubicin and the effects on mechanical performance, energetics, and mitochondrial function were measured. As well, the effects of Casiopeinas-triggered cell death were explored in isolated cardiomyocytes. Casiopeinas III-Ea, II-gly, and III-ia induced a progressive and sustained inhibition of heart contractile function that was dose- and time-dependent with an IC 50 of 1.3 ± 0.2, 5.5 ± 0.5, and 10 ± 0.7  μ M, correspondingly. Myocardial oxygen consumption was not modified at their respective IC 50 , although ATP levels were significantly reduced, indicating energy impairment. Isolated mitochondria from Casiopeinas-treated hearts showed a significant loss of membrane potential and reduction of mitochondrial Ca 2+ retention capacity. Interestingly, Cyclosporine A inhibited Casiopeinas-induced mitochondrial Ca 2+ release, which suggests the involvement of the mitochondrial permeability transition pore opening. In addition, Casiopeinas reduced the viability of cardiomyocytes and stimulated the activation of caspases 3, 7, and 9, demonstrating a cell death mitochondrial-dependent mechanism. Finally, the early perfusion of Cyclosporine A in isolated hearts decreased Casiopeinas-induced dysfunction with reduction of their toxic effect. Our results suggest that heart cardiotoxicity of Casiopeinas is similar to that of Doxorubicin, involving heart mitochondrial dysfunction, loss of membrane potential, changes in energetic metabolites, and apoptosis triggered by mitochondrial permeability.

  14. Ex Vivo Cardiotoxicity of Antineoplastic Casiopeinas Is Mediated through Energetic Dysfunction and Triggered Mitochondrial-Dependent Apoptosis

    PubMed Central

    Silva-Platas, Christian; Villegas, César A.; Carrancá, Mariana; Lozano, Omar; Valero-Elizondo, Javier; Bernal-Ramírez, Judith; Fernández-Sada, Evaristo; Vega, Luis F.; Chapoy-Villanueva, Héctor; Ruiz-Azuara, Lena; Hernández-Brenes, Carmen; Guerrero-Beltrán, Carlos E.; Bravo-Gómez, María E.

    2018-01-01

    Casiopeinas are a group of copper-based antineoplastic molecules designed as a less toxic and more therapeutic alternative to cisplatin or Doxorubicin; however, there is scarce evidence about their toxic effects on the whole heart and cardiomyocytes. Given this, rat hearts were perfused with Casiopeinas or Doxorubicin and the effects on mechanical performance, energetics, and mitochondrial function were measured. As well, the effects of Casiopeinas-triggered cell death were explored in isolated cardiomyocytes. Casiopeinas III-Ea, II-gly, and III-ia induced a progressive and sustained inhibition of heart contractile function that was dose- and time-dependent with an IC50 of 1.3 ± 0.2, 5.5 ± 0.5, and 10 ± 0.7 μM, correspondingly. Myocardial oxygen consumption was not modified at their respective IC50, although ATP levels were significantly reduced, indicating energy impairment. Isolated mitochondria from Casiopeinas-treated hearts showed a significant loss of membrane potential and reduction of mitochondrial Ca2+ retention capacity. Interestingly, Cyclosporine A inhibited Casiopeinas-induced mitochondrial Ca2+ release, which suggests the involvement of the mitochondrial permeability transition pore opening. In addition, Casiopeinas reduced the viability of cardiomyocytes and stimulated the activation of caspases 3, 7, and 9, demonstrating a cell death mitochondrial-dependent mechanism. Finally, the early perfusion of Cyclosporine A in isolated hearts decreased Casiopeinas-induced dysfunction with reduction of their toxic effect. Our results suggest that heart cardiotoxicity of Casiopeinas is similar to that of Doxorubicin, involving heart mitochondrial dysfunction, loss of membrane potential, changes in energetic metabolites, and apoptosis triggered by mitochondrial permeability. PMID:29765507

  15. Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings.

    PubMed

    Grabelnych, O I; Borovik, O A; Tauson, E L; Pobezhimova, T P; Katyshev, A I; Pavlovskaya, N S; Koroleva, N A; Lyubushkina, I V; Bashmakov, V Yu; Popov, V N; Borovskii, G B; Voinikov, V K

    2014-06-01

    Gene expression, protein synthesis, and activities of alternative oxidase (AOX), uncoupling proteins (UCP), adenine nucleotide translocator (ANT), and non-coupled NAD(P)H dehydrogenases (NDex, NDPex, and NDin) were studied in shoots of etiolated winter wheat (Triticum aestivum L.) seedlings after exposure to hardening low positive (2°C for 7 days) and freezing (-2°C for 2 days) temperatures. The cold hardening efficiently increased frost-resistance of the seedlings and decreased the generation of reactive oxygen species (ROS) during further cold shock. Functioning of mitochondrial energy-dissipating systems can represent a mechanism responsible for the decrease in ROS under these conditions. These systems are different in their response to the action of the hardening low positive and freezing temperatures. The functioning of the first system causes induction of AOX and UCP synthesis associated with an increase in electron transfer via AOX in the mitochondrial respiratory chain and also with an increase in the sensitivity of mitochondrial non-phosphorylating respiration to linoleic and palmitic acids. The increase in electron transfer via AOX upon exposure of seedlings to hardening freezing temperature is associated with retention of a high activity of NDex. It seems that NDex but not the NDPex and NDin can play an important role in maintaining the functional state of mitochondria in heterotrophic tissues of plants under the influence of freezing temperatures. The involvement of the mitochondrial energy-dissipating systems and their possible physiological role in the adaptation of winter crops to cold and frost are discussed.

  16. The leading role of mitochondrial depolarization in the mechanism of glutamate-induced disruptions in Ca2+ homeostasis.

    PubMed

    Khodorov, B I; Storozhevykh, T P; Surin, A M; Yuryavichyus, A I; Sorokina, E G; Borodin, A V; Vinskaya, N P; Khaspekov, L G; Pinelis, V G

    2002-01-01

    Data obtained in studies of the nature of the correlation which we have previously observed [10,17] between mitochondrial depolarization and the level of disruption of Ca2+ homeostasis in cultivated brain neuronsare summarized. Experiments were performed on cultured cerebellar granule cells loaded with Fura-2-AM or rhodamine 123 to measure changes in cytoplasmic Ca2+ and mitochondrial potential during pathogenic treatments of the cells. Prolonged exposure to 100 microM glutamate induced a reversible increase in [Ca2+]i, which was accompanied by only a small degree of mitochondrial depolarization. A sharp increase in this mitochondrial depolarization, induced by addition of 3 mM NaCN or 300 microM dinitrophenol (DNP) to the glutamate-containing solution, resulted in further increase in [Ca2+]i, due to blockade of electrophoretic mitochondrial Ca2+ uptake. Prolonged exposure to CN- or DNP in the post-glutamate period maintained [Ca2+]i at a high level until the metabolic inhibitors were removed. In most cells, this plateau was characterized by low sensitivity to removal of external Ca2+, demonstrating that the mechanisms of Ca2+ release from neurons were disrupted. Addition of oligomycin, a blocker of mitochondrial ATP synthase/ATPase, to the solution containing glutamate and CN- or DNP eliminated the post-glutamate plateau. Parallel experiments with direct measurements of intracellular ATP levels ([ATP]) showed that profound mitochondrial depolarization induced by CN- or DNP sharply enhanced the drop in ATP due to glutamate, while oligomycin significantly weakened this effect of the metabolic inhibitors. Analysis of these data led to the conclusion that blockade of mitochondrial Ca2+ uptake and inhibition of ATP synthesis resulted from mitochondrial depolarization and plays a key role in the mechanism disrupting [Ca2+]i homeostasis after toxic exposure to glutamate.

  17. [The leading role of mitochondrial depolarization in the mechanism of glutamate-induced disorder in Ca(2+)-homeostasis].

    PubMed

    Khodorov, B I; Storozhevykh, T P; Surin, A M; Iuriavichus, A I; Sorokina, E G; Borodin, A V; Vinskaia, N P; Khaspekov, L G; Pinelis, V G

    2001-04-01

    Digital fluorescence imaging techniques were employed to monitor changes in the cytoplasmic Ca2+ concentration and mitochondrial potential in fura-2 AM or rhodamine-123 loaded individual cerebellar granule cells during and following the Glu exposure. The data obtained suggests that the MD-induced blockade of the mitochondrial Ca2+ uptake and a reversal of the mitochondrial ATP-synthase play a critical role in the mechanism of the glutamate-induced disorder of neuronal Ca2+ homeostasis.

  18. Salicylic Acid-Dependent Plant Stress Signaling via Mitochondrial Succinate Dehydrogenase1[OPEN

    PubMed Central

    Thatcher, Louise F.

    2017-01-01

    Mitochondria are known for their role in ATP production and generation of reactive oxygen species, but little is known about the mechanism of their early involvement in plant stress signaling. The role of mitochondrial succinate dehydrogenase (SDH) in salicylic acid (SA) signaling was analyzed using two mutants: disrupted in stress response1 (dsr1), which is a point mutation in SDH1 identified in a loss of SA signaling screen, and a knockdown mutant (sdhaf2) for SDH assembly factor 2 that is required for FAD insertion into SDH1. Both mutants showed strongly decreased SA-inducible stress promoter responses and low SDH maximum capacity compared to wild type, while dsr1 also showed low succinate affinity, low catalytic efficiency, and increased resistance to SDH competitive inhibitors. The SA-induced promoter responses could be partially rescued in sdhaf2, but not in dsr1, by supplementing the plant growth media with succinate. Kinetic characterization showed that low concentrations of either SA or ubiquinone binding site inhibitors increased SDH activity and induced mitochondrial H2O2 production. Both dsr1 and sdhaf2 showed lower rates of SA-dependent H2O2 production in vitro in line with their low SA-dependent stress signaling responses in vivo. This provides quantitative and kinetic evidence that SA acts at or near the ubiquinone binding site of SDH to stimulate activity and contributes to plant stress signaling by increased rates of mitochondrial H2O2 production, leading to part of the SA-dependent transcriptional response in plant cells. PMID:28209841

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirasaka, Katsuya, E-mail: hirasaka@nagasaki-u.ac.jp; Department of Nutritional Physiology, Institute of Health Biosciences, University of Tokushima, Tokushima; Mills, Edward M.

    Uncoupling protein 3 (UCP3) is known to regulate energy dissipation, proton leakage, fatty acid oxidation, and oxidative stress. To identify the putative protein regulators of UCP3, we performed yeast two-hybrid screens. Here we report that UCP3 interacted with HS-1 associated protein X-1 (Hax-1), an anti-apoptotic protein that was localized in the mitochondria, and is involved in cellular responses to Ca{sup 2+}. The hydrophilic sequences within loop 2, and the matrix-localized hydrophilic domain of mouse UCP3, were necessary for binding to Hax-1 at the C-terminal domain, adjacent to the mitochondrial inner membrane. Interestingly, interaction of these proteins occurred in a calcium-dependentmore » manner. Moreover, the NMR spectrum of the C-terminal domain of Hax-1 was dramatically changed by removal of Ca{sup 2+}, suggesting that the C-terminal domain of Hax-1 underwent a Ca{sup 2+}-induced conformational change. In the Ca{sup 2+}-free state, the C-terminal Hax-1 tended to unfold, suggesting that Ca{sup 2+} binding may induce protein folding of the Hax-1 C-terminus. These results suggested that the UCP3-Hax-1 complex may regulate mitochondrial functional changes caused by mitochondrial Ca{sup 2+}. - Highlights: • UCP3 interacts with Hax-1. • The interaction of UCP3 and Hax-1 occurs in a calcium-dependent manner. • The C-terminal domain of Hax-1 undergoes a calcium-induced conformational change.« less

  20. Mitochondrial proticity and ROS signaling: lessons from the uncoupling proteins.

    PubMed

    Mailloux, Ryan J; Harper, Mary-Ellen

    2012-09-01

    Fifty years since Peter Mitchell proposed the theory of chemiosmosis, the transformation of cellular redox potential into ATP synthetic capacity is still a widely recognized function of mitochondria. Mitchell used the term 'proticity' to describe the force and flow of the proton circuit across the inner membrane. When the proton gradient is coupled to ATP synthase activity, the conversion of fuel to ATP is efficient. However, uncoupling proteins (UCPs) can cause proton leaks resulting in poor fuel conversion efficiency, and some UCPs might control mitochondrial reactive oxygen species (ROS) production. Once viewed as toxic metabolic waste, ROS are now implicated in cell signaling and regulation. Here, we discuss the role of mitochondrial proticity in the context of ROS production and signaling. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Association of UCP1 -3826A/G and UCP3 -55C/T gene polymorphisms with obesity and its related traits among multi-ethnic Malaysians.

    PubMed

    Lee, Kah-Hui; Chai, Voon-Yun; Kanachamy, Sathia S; Say, Yee-How

    2015-01-01

    Our study investigated the association of UCP1 -3826A/G and UCP3 -55C/T single nucleotide polymorphisms (SNPs) with obesity and its related traits among multi-ethnic Malaysians. A total of 447 (225 males; 46 Malays, 339 ethnic Chinese, 62 ethnic Indians; 111 obese) participated. Demographic and anthropometric data were collected, and genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism. The minor allele frequencies (MAFs) for UCP1 according to Malay/Chinese/Indian ethnicities were .61/.55/.52 and .32/.55/.38, respectively. UCP3 genotype and allele distribution was significantly associated with ethnicity and waist-to-hip ratio (WHR), but among non-obese and Chinese participants only, respectively, after stratified analysis. Chinese participants with T allele had significantly lesser risk to be centrally obese [odds ratio =.69 (CI =.48, 1.00; P=.04)], and also had significantly lower WHR compared to those with C allele. The UCP1 or UCP3 SNPs were not associated with obesity/BMI and total body fat (TBF), but combinatory genotype analysis revealed that those having the AA and CC genotype for the former and latter SNPs had significantly highest BMI and TBF compared to other genotype combinations. UCP3 -55C/T SNP was associated with central obesity among Malaysian participants of Chinese descent. Combinatory genotype analysis showed that BMI and TBF were significantly different among UCPI -3826A/G and UCP3 -55C/T genotype combinations, suggesting the existence of a gene interaction between UCP1 and UCP3 in influencing obesity and adiposity.

  2. PGC-1α-Dependent Mitochondrial Adaptation Is Necessary to Sustain IL-2-Induced Activities in Human NK Cells

    PubMed Central

    Jara, Claudia; Ibañez, Jorge; Ahumada, Viviana; Acuña-Castillo, Claudio; Martin, Adrian; Córdova, Alexandra

    2016-01-01

    Human Natural Killer (NK) cells are a specialized heterogeneous subpopulation of lymphocytes involved in antitumor defense reactions. NK cell effector functions are critically dependent on cytokines and metabolic activity. Among various cytokines modulating NK cell function, interleukin-2 (IL-2) can induce a more potent cytotoxic activity defined as lymphokine activated killer activity (LAK). Our aim was to determine if IL-2 induces changes at the mitochondrial level in NK cells to support the bioenergetic demand for performing this enhanced cytotoxic activity more efficiently. Purified human NK cells were cultured with high IL-2 concentrations to develop LAK activity, which was assessed by the ability of NK cells to lyse NK-resistant Daudi cells. Here we show that, after 72 h of culture of purified human NK cells with enough IL-2 to induce LAK activity, both the mitochondrial mass and the mitochondrial membrane potential increased in a PGC-1α-dependent manner. In addition, oligomycin, an inhibitor of ATP synthase, inhibited IL-2-induced LAK activity at 48 and 72 h of culture. Moreover, the secretion of IFN-γ from NK cells with LAK activity was also partially dependent on PGC-1α expression. These results indicate that PGC-1α plays a crucial role in regulating mitochondrial function involved in the maintenance of LAK activity in human NK cells stimulated with IL-2. PMID:27413259

  3. PGC-1α-Dependent Mitochondrial Adaptation Is Necessary to Sustain IL-2-Induced Activities in Human NK Cells.

    PubMed

    Miranda, Dante; Jara, Claudia; Ibañez, Jorge; Ahumada, Viviana; Acuña-Castillo, Claudio; Martin, Adrian; Córdova, Alexandra; Montoya, Margarita

    2016-01-01

    Human Natural Killer (NK) cells are a specialized heterogeneous subpopulation of lymphocytes involved in antitumor defense reactions. NK cell effector functions are critically dependent on cytokines and metabolic activity. Among various cytokines modulating NK cell function, interleukin-2 (IL-2) can induce a more potent cytotoxic activity defined as lymphokine activated killer activity (LAK). Our aim was to determine if IL-2 induces changes at the mitochondrial level in NK cells to support the bioenergetic demand for performing this enhanced cytotoxic activity more efficiently. Purified human NK cells were cultured with high IL-2 concentrations to develop LAK activity, which was assessed by the ability of NK cells to lyse NK-resistant Daudi cells. Here we show that, after 72 h of culture of purified human NK cells with enough IL-2 to induce LAK activity, both the mitochondrial mass and the mitochondrial membrane potential increased in a PGC-1α-dependent manner. In addition, oligomycin, an inhibitor of ATP synthase, inhibited IL-2-induced LAK activity at 48 and 72 h of culture. Moreover, the secretion of IFN-γ from NK cells with LAK activity was also partially dependent on PGC-1α expression. These results indicate that PGC-1α plays a crucial role in regulating mitochondrial function involved in the maintenance of LAK activity in human NK cells stimulated with IL-2.

  4. Uncoupling protein-2 mediates DPP-4 inhibitor-induced restoration of endothelial function in hypertension through reducing oxidative stress.

    PubMed

    Liu, Limei; Liu, Jian; Tian, Xiao Yu; Wong, Wing Tak; Lau, Chi Wai; Xu, Aimin; Xu, Gang; Ng, Chi Fai; Yao, Xiaoqiang; Gao, Yuansheng; Huang, Yu

    2014-10-10

    Although uncoupling protein 2 (UCP2) negatively regulates intracellular reactive oxygen species (ROS) production and protects vascular function, its participation in vascular benefits of drugs used to treat cardiometabolic diseases is largely unknown. This study investigated whether UCP2 and associated oxidative stress reduction contribute to the improvement of endothelial function by a dipeptidyl peptidase-4 inhibitor, sitagliptin, in hypertension. Pharmacological inhibition of cyclooxygenase-2 (COX-2) but not COX-1 prevented endothelial dysfunction, and ROS scavengers reduced COX-2 mRNA and protein expression in spontaneously hypertensive rats (SHR) renal arteries. Angiotensin II (Ang II) evoked endothelium-dependent contractions (EDCs) in C57BL/6 and UCP2 knockout (UCP2KO) mouse aortae. Chronic sitagliptin administration attenuated EDCs in SHR arteries and Ang II-infused C57BL/6 mouse aortae and eliminated ROS overproduction in SHR arteries, which were reversed by glucagon-like peptide 1 receptor (GLP-1R) antagonist exendin 9-39, AMP-activated protein kinase (AMPK)α inhibitor compound C, and UCP2 inhibitor genipin. By contrast, sitagliptin unaffected EDCs in Ang II-infused UCP2KO mice. Sitagliptin increased AMPKα phosphorylation, upregulated UCP2, and downregulated COX-2 expression in arteries from SHR and Ang II-infused C57BL/6 mice. Importantly, exendin 9-39, compound C, and genipin reversed the inhibitory effect of GLP-1R agonist exendin-4 on Ang II-stimulated mitochondrial ROS rises in SHR endothelial cells. Moreover, exendin-4 improved the endothelial function of renal arteries from SHR and hypertensive patients. We elucidate for the first time that UCP2 serves as an important signal molecule in endothelial protection conferred by GLP-1-related agents. UCP2 could be a useful target in treating hypertension-related vascular events. UCP2 inhibits oxidative stress and downregulates COX-2 expression through GLP-1/GLP-1R/AMPKα cascade.

  5. MitoQ protects dopaminergic neurons in a 6-OHDA induced PD model by enhancing Mfn2-dependent mitochondrial fusion via activation of PGC-1α.

    PubMed

    Xi, Ye; Feng, Dayun; Tao, Kai; Wang, Ronglin; Shi, Yajun; Qin, Huaizhou; Murphy, Michael P; Yang, Qian; Zhao, Gang

    2018-05-26

    Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra compacta (SNc). Although mitochondrial dysfunction is the critical factor in the pathogenesis of PD, the underlying molecular mechanisms are not well understood, and as a result, effective medical interventions are lacking. Mitochondrial fission and fusion play important roles in the maintenance of mitochondrial function and cell viability. Here, we investigated the effects of MitoQ, a mitochondria-targeted antioxidant, in 6-hydroxydopamine (6-OHDA)-induced in vitro and in vivo PD models. We observed that 6-OHDA enhanced mitochondrial fission by decreasing the expression of Mfn1, Mfn2 and OPA1 as well as by increasing the expression of Drp1 in the dopaminergic (DA) cell line SN4741. Notably, MitoQ treatment particularly upregulated the Mfn2 protein and mRNA levels and promoted mitochondrial fusion in the presence of 6-OHDA in a Mfn2-dependent manner. In addition, MitoQ also stabilized mitochondrial morphology and function in the presence of 6-OHDA, which further suppressed the formation of reactive oxygen species (ROS), as well as ameliorated mitochondrial fragmentation and cellular apoptosis. Moreover, the activation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) was attributed to the upregulation of Mfn2 induced by MitoQ. Consistent with these findings, administration of MitoQ in 6-OHDA-treated mice significantly rescued the decrease of Mfn2 expression and the loss of DA neurons in the SNc. Taken together, our findings suggest that MitoQ protects DA neurons in a 6-OHDA induced PD model by activating PGC-1α to enhance Mfn2-dependent mitochondrial fusion. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Resveratrol induces mitochondrial dysfunction and decreases chronological life span of Saccharomyces cerevisiae in a glucose-dependent manner.

    PubMed

    Ramos-Gomez, Minerva; Olivares-Marin, Ivanna Karina; Canizal-García, Melina; González-Hernández, Juan Carlos; Nava, Gerardo M; Madrigal-Perez, Luis Alberto

    2017-06-01

    A broad range of health benefits have been attributed to resveratrol (RSV) supplementation in mammalian systems, including the increases in longevity. Nonetheless, despite the growing number of studies performed with RSV, the molecular mechanism by which it acts still remains unknown. Recently, it has been proposed that inhibition of the oxidative phosphorylation activity is the principal mechanism of RSV action. This mechanism suggests that RSV might induce mitochondrial dysfunction resulting in oxidative damage to cells with a concomitant decrease of cell viability and cellular life span. To prove this hypothesis, the chronological life span (CLS) of Saccharomyces cerevisiae was studied as it is accepted as an important model of oxidative damage and aging. In addition, oxygen consumption, mitochondrial membrane potential, and hydrogen peroxide (H 2 O 2 ) release were measured in order to determine the extent of mitochondrial dysfunction. The results demonstrated that the supplementation of S. cerevisiae cultures with 100 μM RSV decreased CLS in a glucose-dependent manner. At high-level glucose, RSV supplementation increased oxygen consumption during the exponential phase yeast cultures, but inhibited it in chronologically aged yeast cultures. However, at low-level glucose, oxygen consumption was inhibited in yeast cultures in the exponential phase as well as in chronologically aged cultures. Furthermore, RSV supplementation promoted the polarization of the mitochondrial membrane in both cultures. Finally, RSV decreased the release of H 2 O 2 with high-level glucose and increased it at low-level glucose. Altogether, this data supports the hypothesis that RSV supplementation decreases CLS as a result of mitochondrial dysfunction and this phenotype occurs in a glucose-dependent manner.

  7. Deletion of PRKAA triggers mitochondrial fission by inhibiting the autophagy-dependent degradation of DNM1L.

    PubMed

    Wang, Qilong; Wu, Shengnan; Zhu, Huaiping; Ding, Ye; Dai, Xiaoyan; Ouyang, Changhan; Han, Young-Min; Xie, Zhonglin; Zou, Ming-Hui

    2017-02-01

    PRKAA (protein kinase, AMP-activated, α catalytic subunit) regulates mitochondrial biogenesis, function, and turnover. However, the molecular mechanisms by which PRKAA regulates mitochondrial dynamics remain poorly characterized. Here, we report that PRKAA regulated mitochondrial fission via the autophagy-dependent degradation of DNM1L (dynamin 1-like). Deletion of Prkaa1/AMPKα1 or Prkaa2/AMPKα2 resulted in defective autophagy, DNM1L accumulation, and aberrant mitochondrial fragmentation in the mouse aortic endothelium. Furthermore, autophagy inhibition by chloroquine treatment or ATG7 small interfering RNA (siRNA) transfection, upregulated DNM1L expression and triggered DNM1L-mediated mitochondrial fragmentation. In contrast, autophagy activation by overexpression of ATG7 or chronic administration of rapamycin, the MTOR inhibitor, promoted DNM1L degradation and attenuated mitochondrial fragmentation in Prkaa2-deficient (prkaa2 -/- ) mice, suggesting that defective autophagy contributes to enhanced DNM1L expression and mitochondrial fragmentation. Additionally, the autophagic receptor protein SQSTM1/p62, which bound to DNM1L and led to its translocation into the autophagosome, was involved in DNM1L degradation by the autophagy-lysosome pathway. Gene silencing of SQSTM1 markedly reduced the association between SQSTM1 and DNM1L, impaired the degradation of DNM1L, and enhanced mitochondrial fragmentation in PRKAA-deficient endothelial cells. Finally, the genetic (DNM1L siRNA) or pharmacological (mdivi-1) inhibition of DNMA1L ablated mitochondrial fragmentation in the mouse aortic endothelium and prevented the acetylcholine-induced relaxation of isolated mouse aortas. This suggests that aberrant DNM1L is responsible for enhanced mitochondrial fragmentation and endothelial dysfunction in prkaa knockout mice. Overall, our results show that PRKAA deletion promoted mitochondrial fragmentation in vascular endothelial cells by inhibiting the autophagy-dependent

  8. Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytes

    PubMed Central

    Sun, Xiaocun; Zemel, Michael B

    2009-01-01

    Background The effects of dairy on energy metabolism appear to be mediated, in part, by leucine and calcium which regulate both adipocyte and skeletal muscle energy metabolism. We recently demonstrated that leucine and calcitriol regulate fatty acid oxidation in skeletal muscle cells in vitro, with leucine promoting and calcitriol suppressing fatty acid oxidation. Moreover, leucine coordinately regulated adipocyte lipid metabolism to promote flux of lipid to skeletal muscle and regulate metabolic flexibility. We have now investigated the role of mitochondrial biogenesis in mediating these effects. Methods We tested the effect of leucine, calcitriol and calcium in regulation of mitochondrial mass using a fluorescence method and tested mitochondrial biogenesis regulatory genes as well mitochondrial component genes using real-time PCR. We also evaluated the effect of leucine on oxygen consumption with a modified perfusion system. Results Leucine (0.5 mM) increased mitochondrial mass by 30% and 53% in C2C12 myocytes and 3T3-L1 adipocytes, respectively, while calcitriol (10 nM) decreased mitochondrial abundance by 37% and 27% (p < 0.02). Leucine also stimulated mitochondrial biogenesis genes SIRT-1, PGC-1α and NRF-1 as well as mitochondrial component genes UCP3, COX, and NADH expression by 3–5 fold in C2C12 cells (p < 0.003). Adipocyte-conditioned medium reduced mitochondrial abundance (p < 0.001) and decreased UCP3 but increased PGC-1α expression in myocytes, suggesting a feedback stimulation of mitochondrial biogenesis. Similar data were observed in C2C12 myocytes co-cultured with adipocytes, with co-culture markedly suppressing mitochondrial abundance (p < 0.02). Leucine stimulated oxygen consumption in both C2C12 cells and adipocytes compared with either control or valine-treated cells. Transfection of C2C12 myocytes with SIRT-1 siRNA resulted in parallel suppression of SIRT-1 expression and leucine-induced stimulation of PGC-1α and NRF-1, indicating that SIRT

  9. A critical tyrosine residue determines the uncoupling protein-like activity of the yeast mitochondrial oxaloacetate carrier.

    PubMed

    Luévano-Martínez, Luis A; Barba-Ostria, Carlos; Araiza-Olivera, Daniela; Chiquete-Félix, Natalia; Guerrero-Castillo, Sergio; Rial, Eduardo; Georgellis, Dimitris; Uribe-Carvajal, Salvador

    2012-04-01

    The mitochondrial Oac (oxaloacetate carrier) found in some fungi and plants catalyses the uptake of oxaloacetate, malonate and sulfate. Despite their sequence similarity, transport specificity varies considerably between Oacs. Indeed, whereas ScOac (Saccharomyces cerevisiae Oac) is a specific anion-proton symporter, the YlOac (Yarrowia lipolytica Oac) has the added ability to transport protons, behaving as a UCP (uncoupling protein). Significantly, we identified two amino acid changes at the matrix gate of YlOac and ScOac, tyrosine to phenylalanine and methionine to leucine. We studied the role of these amino acids by expressing both wild-type and specifically mutated Oacs in an Oac-null S. cerevisiae strain. No phenotype could be associated with the methionine to leucine substitution, whereas UCP-like activity was dependent on the presence of the tyrosine residue normally expressed in the YlOac, i.e. Tyr-ScOac mediated proton transport, whereas Phe-YlOac lost its protonophoric activity. These findings indicate that the UCP-like activity of YlOac is determined by the tyrosine residue at position 146.

  10. Mitochondrial Division Inhibitor 1 (mdivi-1) Protects Neurons against Excitotoxicity through the Modulation of Mitochondrial Function and Intracellular Ca2+ Signaling.

    PubMed

    Ruiz, Asier; Alberdi, Elena; Matute, Carlos

    2018-01-01

    Excessive dynamin related protein 1 (Drp1)-triggered mitochondrial fission contributes to apoptosis under pathological conditions and therefore it has emerged as a promising therapeutic target. Mitochondrial division inhibitor 1 (mdivi-1) inhibits Drp1-dependent mitochondrial fission and is neuroprotective in several models of brain ischemia and neurodegeneration. However, mdivi-1 also modulates mitochondrial function and oxidative stress independently of Drp1, and consequently the mechanisms through which it protects against neuronal injury are more complex than previously foreseen. In this study, we have analyzed the effects of mdivi-1 on mitochondrial dynamics, Ca 2+ signaling, mitochondrial bioenergetics and cell viability during neuronal excitotoxicity in vitro . Time-lapse fluorescence microscopy revealed that mdivi-1 blocked NMDA-induced mitochondrial fission but not that triggered by sustained AMPA receptor activation, showing that mdivi-1 inhibits excitotoxic mitochondrial fragmentation in a source specific manner. Similarly, mdivi-1 strongly reduced NMDA-triggered necrotic-like neuronal death and, to a lesser extent, AMPA-induced toxicity. Interestingly, neuroprotection provided by mdivi-1 against NMDA, but not AMPA, correlated with a reduction in cytosolic Ca 2+ ([Ca 2+ ] cyt ) overload and calpain activation indicating additional cytoprotective mechanisms. Indeed, mdivi-1 depolarized mitochondrial membrane and depleted ER Ca 2+ content, leading to attenuation of mitochondrial [Ca 2+ ] increase and enhancement of the integrated stress response (ISR) during NMDA receptor activation. Finally, lentiviral knockdown of Drp1 did not rescue NMDA-induced mitochondrial fission and toxicity, indicating that neuroprotective activity of mdivi-1 is Drp1-independent. Together, these results suggest that mdivi-1 induces a Drp1-independent protective phenotype that prevents predominantly NMDA receptor-mediated excitotoxicity through the modulation of mitochondrial

  11. ER-mediated stress induces mitochondrial-dependent caspases activation in NT2 neuron-like cells.

    PubMed

    Arduino, Daniela M; Esteves, A Raquel; Domingues, A Filipa; Pereira, Claudia M F; Cardoso, Sandra M; Oliveira, Catarina R

    2009-11-30

    Recent studies have revealed that endoplasmic reticulum (ER) disturbance is involved in the pathophysiology of neurodegenerative disorders, contributing to the activation of the ER stress-mediated apoptotic pathway. Therefore, we investigated here the molecular mechanisms underlying the ER-mitochondria axis, focusing on calcium as a potential mediator of cell death signals. Using NT2 cells treated with brefeldin A or tunicamycin, we observed that ER stress induces changes in the mitochondrial function, impairing mitochondrial membrane potential and distressing mitochondrial respiratory chain complex Moreover, stress stimuli at ER level evoked calcium fluxes between ER and mitochondria. Under these conditions, ER stress activated the unfolded protein response by an overexpression of GRP78, and also caspase-4 and-2, both involved upstream of caspase-9. Our findings show that ER and mitochondria interconnection plays a prominent role in the induction of neuronal cell death under particular stress circumstances.

  12. Electron transport chain-dependent and -independent mechanisms of mitochondrial H2O2 emission during long-chain fatty acid oxidation.

    PubMed

    Seifert, Erin L; Estey, Carmen; Xuan, Jian Y; Harper, Mary-Ellen

    2010-02-19

    Oxidative stress in skeletal muscle is a hallmark of various pathophysiologic states that also feature increased reliance on long-chain fatty acid (LCFA) substrate, such as insulin resistance and exercise. However, little is known about the mechanistic basis of the LCFA-induced reactive oxygen species (ROS) burden in intact mitochondria, and elucidation of this mechanistic basis was the goal of this study. Specific aims were to determine the extent to which LCFA catabolism is associated with ROS production and to gain mechanistic insights into the associated ROS production. Because intermediates and by-products of LCFA catabolism may interfere with antioxidant mechanisms, we predicted that ROS formation during LCFA catabolism reflects a complex process involving multiple sites of ROS production as well as modified mitochondrial function. Thus, we utilized several complementary approaches to probe the underlying mechanism(s). Using skeletal muscle mitochondria, our findings indicate that even a low supply of LCFA is associated with ROS formation in excess of that generated by NADH-linked substrates. Moreover, ROS production was evident across the physiologic range of membrane potential and was relatively insensitive to membrane potential changes. Determinations of topology and membrane potential as well as use of inhibitors revealed complex III and the electron transfer flavoprotein (ETF) and ETF-oxidoreductase, as likely sites of ROS production. Finally, ROS production was sensitive to matrix levels of LCFA catabolic intermediates, indicating that mitochondrial export of LCFA catabolic intermediates can play a role in determining ROS levels.

  13. Electron Transport Chain-dependent and -independent Mechanisms of Mitochondrial H2O2 Emission during Long-chain Fatty Acid Oxidation*

    PubMed Central

    Seifert, Erin L.; Estey, Carmen; Xuan, Jian Y.; Harper, Mary-Ellen

    2010-01-01

    Oxidative stress in skeletal muscle is a hallmark of various pathophysiologic states that also feature increased reliance on long-chain fatty acid (LCFA) substrate, such as insulin resistance and exercise. However, little is known about the mechanistic basis of the LCFA-induced reactive oxygen species (ROS) burden in intact mitochondria, and elucidation of this mechanistic basis was the goal of this study. Specific aims were to determine the extent to which LCFA catabolism is associated with ROS production and to gain mechanistic insights into the associated ROS production. Because intermediates and by-products of LCFA catabolism may interfere with antioxidant mechanisms, we predicted that ROS formation during LCFA catabolism reflects a complex process involving multiple sites of ROS production as well as modified mitochondrial function. Thus, we utilized several complementary approaches to probe the underlying mechanism(s). Using skeletal muscle mitochondria, our findings indicate that even a low supply of LCFA is associated with ROS formation in excess of that generated by NADH-linked substrates. Moreover, ROS production was evident across the physiologic range of membrane potential and was relatively insensitive to membrane potential changes. Determinations of topology and membrane potential as well as use of inhibitors revealed complex III and the electron transfer flavoprotein (ETF) and ETF-oxidoreductase, as likely sites of ROS production. Finally, ROS production was sensitive to matrix levels of LCFA catabolic intermediates, indicating that mitochondrial export of LCFA catabolic intermediates can play a role in determining ROS levels. PMID:20032466

  14. Population Genetic Analysis of the Uncoupling Proteins Supports a Role for UCP3 in Human Cold Resistance

    PubMed Central

    Hancock, Angela M.; Clark, Vanessa J.; Qian, Yudong; Di Rienzo, Anna

    2011-01-01

    Production of heat via nonshivering thermogenesis (NST) is critical for temperature homeostasis in mammals. Uncoupling protein UCP1 plays a central role in NST by uncoupling the proton gradients produced in the inner membranes of mitochondria to produce heat; however, the extent to which UCP1 homologues, UCP2 and UCP3, are involved in NST is the subject of an ongoing debate. We used an evolutionary approach to test the hypotheses that variants that are associated with increased expression of these genes (UCP1 −3826A, UCP2 −866A, and UCP3 −55T) show evidence of adaptation with winter climate. To that end, we calculated correlations between allele frequencies and winter climate variables for these single-nucleotide polymorphisms (SNPs), which we genotyped in a panel of 52 worldwide populations. We found significant correlations with winter climate for UCP1 −3826G/A and UCP3 −55C/T. Further, by analyzing previously published genotype data for these SNPs, we found that the peak of the correlation for the UCP1 region occurred at the disease-associated −3826A/G variant and that the UCP3 region has a striking signal overall, with several individual SNPs showing interesting patterns, including the −55C/T variant. Resequencing of the regions in a set of three diverse population samples helped to clarify the signals that we found with the genotype data. At UCP1, the resequencing data revealed modest evidence that the haplotype carrying the −3826A variant was driven to high frequency by selection. In the UCP3 region, combining results from the climate analysis and resequencing survey suggest a more complex model in which variants on multiple haplotypes may independently be correlated with temperature. This is further supported by an excess of intermediate frequency variants in the UCP3 region in the Han Chinese population. Taken together, our results suggest that adaptation to climate influenced the global distribution of allele frequencies in UCP1 and UCP3

  15. Genipin-induced inhibition of uncoupling protein-2 sensitizes drug-resistant cancer cells to cytotoxic agents.

    PubMed

    Mailloux, Ryan J; Adjeitey, Cyril Nii-Klu; Harper, Mary-Ellen

    2010-10-13

    Uncoupling protein-2 (UCP2) is known to suppress mitochondrial reactive oxygen species (ROS) production and is employed by drug-resistant cancer cells to mitigate oxidative stress. Using the drug-sensitive HL-60 cells and the drug-resistant MX2 subline as model systems, we show that genipin, a UCP2 inhibitor, sensitizes drug-resistant cells to cytotoxic agents. Increased MX2 cell death was observed upon co-treatment with genipin and different doses of menadione, doxorubicin, and epirubicin. DCFH-DA fluorimetry revealed that the increase in MX2 cell death was accompanied by enhanced cellular ROS levels. The drug-induced increase in ROS was linked to genipin-mediated inhibition of mitochondrial proton leak. State 4 and resting cellular respiratory rates were higher in the MX2 cells in comparison to the HL-60 cells, and the increased respiration was readily suppressed by genipin in the MX2 cells. UCP2 accounted for a remarkable 37% of the resting cellular oxygen consumption indicating that the MX2 cells are functionally reliant on this protein. Higher amounts of UCP2 protein were detected in the MX2 versus the HL-60 mitochondria. The observed effects of genipin were absent in the HL-60 cells pointing to the selectivity of this natural product for drug-resistant cells. The specificity of genipin for UCP2 was confirmed using CHO cells stably expressing UCP2 in which genipin induced an ∼22% decrease in state 4 respiration. These effects were absent in empty vector CHO cells expressing no UCP2. Thus, the chemical inhibition of UCP2 with genipin sensitizes multidrug-resistant cancer cells to cytotoxic agents.

  16. Tributyltin induces mitochondrial fission through NAD-IDH dependent mitofusin degradation in human embryonic carcinoma cells.

    PubMed

    Yamada, Shigeru; Kotake, Yaichiro; Nakano, Mizuho; Sekino, Yuko; Kanda, Yasunari

    2015-08-01

    Organotin compounds, such as tributyltin (TBT), are well-known endocrine disruptors. TBT acts at the nanomolar level through genomic pathways via the peroxisome proliferator activated receptor (PPAR)/retinoid X receptor (RXR). We recently reported that TBT inhibits cell growth and the ATP content in the human embryonic carcinoma cell line NT2/D1 via a non-genomic pathway involving NAD(+)-dependent isocitrate dehydrogenase (NAD-IDH), which metabolizes isocitrate to α-ketoglutarate. However, the molecular mechanisms by which NAD-IDH mediates TBT toxicity remain unclear. In the present study, we evaluated the effects of TBT on mitochondrial NAD-IDH and energy production. Staining with MitoTracker revealed that nanomolar TBT levels induced mitochondrial fragmentation. TBT also degraded the mitochondrial fusion proteins, mitofusins 1 and 2. Interestingly, apigenin, an inhibitor of NAD-IDH, mimicked the effects of TBT. Incubation with an α-ketoglutarate analogue partially recovered TBT-induced mitochondrial dysfunction, supporting the involvement of NAD-IDH. Our data suggest that nanomolar TBT levels impair mitochondrial quality control via NAD-IDH in NT2/D1 cells. Thus, mitochondrial function in embryonic cells could be used to assess cytotoxicity associated with metal exposure.

  17. Hydroxynonenal-stimulated activity of the uncoupling protein in Acanthamoeba castellanii mitochondria under phosphorylating conditions.

    PubMed

    Woyda-Ploszczyca, Andrzej; Jarmuszkiewicz, Wieslawa

    2013-05-01

    The influence of 4-hydroxy-2-nonenal (HNE), a lipid peroxidation end product, on the activity of the amoeba Acanthamoeba castellanii uncoupling protein (AcUCP) in isolated phosphorylating mitochondria was studied. Under phosphorylating conditions, exogenously added HNE induced GTP-sensitive AcUCP-mediated mitochondrial uncoupling. The HNE-induced proton leak decreased the yield of oxidative phosphorylation in an HNE concentration-dependent manner. The present study describes how the contributions of ATP synthase and HNE-induced AcUCP in phosphorylating respiration vary when the rate of succinate oxidation is decreased by limiting succinate uptake or inhibiting complex III activity within the range of a constant membrane potential. In phosphorylating mitochondria, at a given HNE concentration (100 μM), the efficiency of AcUCP in mitochondrial uncoupling increased as the respiratory rate decreased because the AcUCP contribution remained constant while the ATP synthase contribution decreased with the respiratory rate. HNE-induced uncoupling can be inhibited by GTP only when ubiquinone is sufficiently oxidized, indicating that in phosphorylating A. castellanii mitochondria, the sensitivity of AcUCP activity to GTP depends on the redox state of the membranous ubiquinone.

  18. Direct modulation of the outer mitochondrial membrane channel, voltage-dependent anion channel 1 (VDAC1) by cannabidiol: a novel mechanism for cannabinoid-induced cell death

    PubMed Central

    Rimmerman, N; Ben-Hail, D; Porat, Z; Juknat, A; Kozela, E; Daniels, M P; Connelly, P S; Leishman, E; Bradshaw, H B; Shoshan-Barmatz, V; Vogel, Z

    2013-01-01

    Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that inhibits cell proliferation and induces cell death of cancer cells and activated immune cells. It is not an agonist of the classical CB1/CB2 cannabinoid receptors and the mechanism by which it functions is unknown. Here, we studied the effects of CBD on various mitochondrial functions in BV-2 microglial cells. Our findings indicate that CBD treatment leads to a biphasic increase in intracellular calcium levels and to changes in mitochondrial function and morphology leading to cell death. Density gradient fractionation analysis by mass spectrometry and western blotting showed colocalization of CBD with protein markers of mitochondria. Single-channel recordings of the outer-mitochondrial membrane protein, the voltage-dependent anion channel 1 (VDAC1) functioning in cell energy, metabolic homeostasis and apoptosis revealed that CBD markedly decreases channel conductance. Finally, using microscale thermophoresis, we showed a direct interaction between purified fluorescently labeled VDAC1 and CBD. Thus, VDAC1 seems to serve as a novel mitochondrial target for CBD. The inhibition of VDAC1 by CBD may be responsible for the immunosuppressive and anticancer effects of CBD. PMID:24309936

  19. Absence of uncoupling protein-3 leads to greater activation of an adenine nucleotide translocase-mediated proton conductance in skeletal muscle mitochondria from calorie restricted mice.

    PubMed

    Bevilacqua, Lisa; Seifert, Erin L; Estey, Carmen; Gerrits, Martin F; Harper, Mary-Ellen

    2010-08-01

    Calorie restriction (CR), without malnutrition, consistently increases lifespan in all species tested, and reduces age-associated pathologies in mammals. Alterations in mitochondrial content and function are thought to underlie some of the effects of CR. Previously, we reported that rats subjected to variable durations of 40% CR demonstrated a rapid and sustained decrease in maximal leak-dependent respiration in skeletal muscle mitochondria. This was accompanied by decreased mitochondrial reactive oxygen species generation and increased uncoupling protein-3 protein (UCP3) expression. The aim of the present study was to determine the contribution of UCP3, as well as the adenine nucleotide translocase to these functional changes in skeletal muscle mitochondria. Consistent with previous findings in rats, short-term CR (2 weeks) in wild-type (Wt) mice resulted in a lowering of the maximal leak-dependent respiration in skeletal muscle mitochondria, without any change in proton conductance. In contrast, skeletal muscle mitochondria from Ucp3-knockout (KO) mice similarly subjected to short-term CR showed no change in maximal leak-dependent respiration, but displayed an increased proton conductance. Determination of ANT activity (by measurement of inhibitor-sensitive leak) and protein expression revealed that the increased proton conductance in mitochondria from CR Ucp3-KO mice could be entirely attributed to a greater acute activation of ANT. These observations implicate UCP3 in CR-induced mitochondrial remodeling. Specifically, they imply the potential for an interaction, or some degree of functional redundancy, between UCP3 and ANT, and also suggest that UCP3 can minimize the induction of the ANT-mediated 'energy-wasting' process during CR. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  20. Ubiquitin-Dependent Degradation of Mitochondrial Proteins Regulates Energy Metabolism.

    PubMed

    Lavie, Julie; De Belvalet, Harmony; Sonon, Sessinou; Ion, Ana Madalina; Dumon, Elodie; Melser, Su; Lacombe, Didier; Dupuy, Jean-William; Lalou, Claude; Bénard, Giovanni

    2018-06-05

    The ubiquitin proteasome system (UPS) regulates many cellular functions by degrading key proteins. Notably, the role of UPS in regulating mitochondrial metabolic functions is unclear. Here, we show that ubiquitination occurs in different mitochondrial compartments, including the inner mitochondrial membrane, and that turnover of several metabolic proteins is UPS dependent. We specifically detailed mitochondrial ubiquitination and subsequent UPS-dependent degradation of succinate dehydrogenase subunit A (SDHA), which occurred when SDHA was minimally involved in mitochondrial energy metabolism. We demonstrate that SDHA ubiquitination occurs inside the organelle. In addition, we show that the specific inhibition of SDHA degradation by UPS promotes SDHA-dependent oxygen consumption and increases ATP, malate, and citrate levels. These findings suggest that the mitochondrial metabolic machinery is also regulated by the UPS. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Uncoupling protein-2 mediates the protective action of berberine against oxidative stress in rat insulinoma INS-1E cells and in diabetic mouse islets.

    PubMed

    Liu, Limei; Liu, Jian; Gao, Yuansheng; Yu, Xiaoxing; Xu, Gang; Huang, Yu

    2014-07-01

    Uncoupling protein-2 (UCP2) may regulate glucose-stimulated insulin secretion. The current study investigated the effects of berberine, an alkaloid found in many medicinal plants, on oxidative stress and insulin secretion through restoration of UCP2 expression in high glucose (HG)-treated INS-1E cells and rat islets or in db/db mouse islets. Mouse and rat pancreatic islets were isolated. Nitrotyrosine, superoxide dismutase (SOD)-1 and UCP2 expression and AMPK phosphorylation were examined by Western blotting. Insulin secretion was measured by ELISA. Mitochondrial reactive oxygen species (ROS) production was detected by confocal microscopy. Incubation of INS-1E cells and rat islets with HG (30 mmol·L(-1); 8 h) elevated nitrotyrosine level, reduced SOD-1 and UCP2 expression and AMPK phosphorylation, and inhibited glucose-stimulated insulin secretion. HG also increased mitochondrial ROS in INS-1E cells. Co-treatment with berberine inhibited such effects. The AMPK inhibitor compound C, the UCP2 inhibitor genipin and adenovirus ucp2 shRNA inhibited these protective effects of berberine. Furthermore, compound C normalized berberine-stimulated UCP2 expression but genipin did not affect AMPK phosphorylation. Islets from db/db mice exhibited elevated nitrotyrosine levels, reduced expression of SOD-1 and UCP2 and AMPK phosphorylation, and decreased insulin secretion compared with those from db/m(+) mice. Berberine also improved these defects in diabetic islets and genipin blocked the effects of berberine. Berberine inhibited oxidative stress and restored insulin secretion in HG-treated INS-IE cells and diabetic mouse islets by activating AMPK and UCP2. UCP2 is an important signalling molecule in mediating anti-diabetic effects of berberine. © 2014 The British Pharmacological Society.

  2. Calcium-dependent mitochondrial cAMP production enhances aldosterone secretion.

    PubMed

    Katona, Dávid; Rajki, Anikó; Di Benedetto, Giulietta; Pozzan, Tullio; Spät, András

    2015-09-05

    Glomerulosa cells secrete aldosterone in response to agonists coupled to Ca(2+) increases such as angiotensin II and corticotrophin, coupled to a cAMP dependent pathway. A recently recognized interaction between Ca(2+) and cAMP is the Ca(2+)-induced cAMP formation in the mitochondrial matrix. Here we describe that soluble adenylyl cyclase (sAC) is expressed in H295R adrenocortical cells. Mitochondrial cAMP formation, monitored with a mitochondria-targeted fluorescent sensor (4mtH30), is enhanced by HCO3(-) and the Ca(2+) mobilizing agonist angiotensin II. The effect of angiotensin II is inhibited by 2-OHE, an inhibitor of sAC, and by RNA interference of sAC, but enhanced by an inhibitor of phosphodiesterase PDE2A. Heterologous expression of the Ca(2+) binding protein S100G within the mitochondrial matrix attenuates angiotensin II-induced mitochondrial cAMP formation. Inhibition and knockdown of sAC significantly reduce angiotensin II-induced aldosterone production. These data provide the first evidence for a cell-specific functional role of mitochondrial cAMP. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Egr-1 and serum response factor are involved in growth factors- and serum-mediated induction of E2-EPF UCP expression that regulates the VHL-HIF pathway.

    PubMed

    Lim, Jung Hwa; Jung, Cho-Rok; Lee, Chan-Hee; Im, Dong-Soo

    2008-11-01

    E2-EPF ubiquitin carrier protein (UCP) has been shown to be highly expressed in common human cancers and target von Hippel-Lindau (VHL) for proteosomal degradation in cells, thereby stabilizing hypoxia-inducible factor (HIF)-1alpha. Here, we investigated cellular factors that regulate the expression of UCP gene. Promoter deletion assay identified binding sites for early growth response-1 (Egr-1) and serum response factor (SRF) in the UCP promoter. Hepatocyte or epidermal growth factor (EGF), or phorbol 12-myristate 13-acetate induced UCP expression following early induction of Egr-1 expression in HeLa cells. Serum increased mRNA and protein levels of SRF and UCP in the cell. By electrophoretic mobility shift and chromatin immunoprecipitation assays, sequence-specific DNA-binding of Egr-1 and SRF to the UCP promoter was detected in nuclear extracts from HeLa cells treated with EGF and serum, respectively. Overexpression of Egr-1 or SRF increased UCP expression. RNA interference-mediated depletion of endogenous Egr-1 or SRF impaired EGF- or serum-mediated induction of UCP expression, which was required for cancer cell proliferation. Systemic delivery of EGF into mice also increased UCP expression following early induction of Egr-1 expression in mouse liver. The induced UCP expression by the growth factors or serum increased HIF-1alpha protein level under non-hypoxic conditions, suggesting that the Egr-1/SRF-UCP-VHL pathway is in part responsible for the increased HIF-1alpha protein level in vitro and in vivo. Thus, growth factors and serum induce expression of Egr-1 and SRF, respectively, which in turn induces UCP expression that positively regulates cancer cell growth.

  4. LL-37 attenuates inflammatory impairment via mTOR signaling-dependent mitochondrial protection.

    PubMed

    Sun, Wenyan; Zheng, Yan; Lu, Zhuoyang; Wang, Hui; Feng, Zhihui; Wang, Juan; Xiao, Shengxiang; Liu, Feng; Liu, Jiankang

    2014-09-01

    The human cationic antimicrobial protein LL-37 is a multifunctional host defense peptide with a wide range of immunomodulatory activities. Previous work has shown that LL-37 exerts both pro- and anti-inflammatory effects. The role of mitochondria in the skin inflammatory effects of LL-37 has not been well studied. Therefore, our aim was to investigate the immunomodulatory effect of LL-37 in HaCaT cells and to delineate the underlying mechanisms related to mitochondrial function. Immunohistochemistry results from tissue microarrays showed strong cytoplasmic LL-37 staining in inflammatory cells in chronic dermatic inflammation. Using exogenous LL-37 stimulation and LL-37 knockdown and overexpression, LL-37 was demonstrated to dramatically reduce the mRNA levels and protein secretion of inflammatory cytokines including IL-6, IL-8, IL-1α and tumor necrosis factor-α (TNF-α), which are induced by lipopolysaccharides (LPS). The anti-inflammatory effects of LL-37 are dependent upon its ability to increase mitochondrial biogenesis and to maintain mitochondrial homeostasis. Furthermore, we observed that LL-37 enhances the LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK1/2) and mammalian target of rapamycin (mTOR). The mTOR inhibitor rapamycin can neutralize the protective effects of LL-37 on mitochondria. In conclusion, these results suggest that high LL-37 expression levels correlate with chronic skin inflammation; mitochondrial dysfunction occurs in HaCaT cells during inflammation; and LL-37 attenuates inflammatory impairment by stimulating mitochondrial biogenesis and protecting mitochondrial function, which are dependent upon mTOR signaling. These findings provide new insights into targeting mitochondria with LL-37 to prevent skin inflammatory reactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Long-term modulation of mitochondrial Ca2+ signals by protein kinase C isozymes

    PubMed Central

    Pinton, Paolo; Leo, Sara; Wieckowski, Mariusz R.; Di Benedetto, Giulietta; Rizzuto, Rosario

    2004-01-01

    The modulation of Ca2+ signaling patterns during repetitive stimulations represents an important mechanism for integrating through time the inputs received by a cell. By either overexpressing the isoforms of protein kinase C (PKC) or inhibiting them with specific blockers, we investigated the role of this family of proteins in regulating the dynamic interplay of the intracellular Ca2+ pools. The effects of the different isoforms spanned from the reduction of ER Ca2+ release (PKCα) to the increase or reduction of mitochondrial Ca2+ uptake (PKCζ and PKCβ/PKCδ, respectively). This PKC-dependent regulatory mechanism underlies the process of mitochondrial Ca2+ desensitization, which in turn modulates cellular responses (e.g., insulin secretion). These results demonstrate that organelle Ca2+ homeostasis (and in particular mitochondrial processing of Ca2+ signals) is tuned through the wide molecular repertoire of intracellular Ca2+ transducers. PMID:15096525

  6. Gallic acid targets acute myeloid leukemia via Akt/mTOR-dependent mitochondrial respiration inhibition.

    PubMed

    Gu, Ruixin; Zhang, Minqin; Meng, Hu; Xu, Dandan; Xie, Yonghua

    2018-06-05

    Gallic acid is one of the many phenolic acids that can be found in dietary substances and traditional medicine herbs. The anti-cancer activities of gallic acid have been shown in various cancers but its underlying molecular mechanisms are not well understood. In this study, we show Akt/mammalian target of rapamycin (mTOR)-dependent inhibition of mitochondrial respiration as a mechanism of gallic acid's action in acute myeloid leukemia (AML). Gallic acid significantly induces apoptosis of AML cell lines, primary mononuclear cells (MNC) and CD34 stem/progenitors isolated form AML patients via caspase-dependent pathway. It also significantly enhances two standard AML chemotherapeutic agents' efficacy in vitro cell culture system and in vivo xenograft model. Gallic acid inhibits dose- and time-dependent mitochondrial respiration, leading to decreased ATP production and oxidative stress. Overexpression of constitutively active Akt restores gallic acid-mediated inhibition of mTOR signaling, mitochondrial dysfunction, energy crisis and apoptosis. Our results demonstrate that mitochondrial respiration inhibition by gallic acid is a consequence of Akt/mTOR signaling suppression. Our findings suggest that combination therapy with gallic acid may enhance antileukemic efficacy of standard chemotherapeutic agents in AML. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Mouse Tmem135 mutation reveals a mechanism involving mitochondrial dynamics that leads to age-dependent retinal pathologies

    PubMed Central

    Lee, Wei-Hua; Higuchi, Hitoshi; Ikeda, Sakae; Macke, Erica L; Takimoto, Tetsuya; Pattnaik, Bikash R; Liu, Che; Chu, Li-Fang; Siepka, Sandra M; Krentz, Kathleen J; Rubinstein, C Dustin; Kalejta, Robert F; Thomson, James A; Mullins, Robert F; Takahashi, Joseph S; Pinto, Lawrence H; Ikeda, Akihiro

    2016-01-01

    While the aging process is central to the pathogenesis of age-dependent diseases, it is poorly understood at the molecular level. We identified a mouse mutant with accelerated aging in the retina as well as pathologies observed in age-dependent retinal diseases, suggesting that the responsible gene regulates retinal aging, and its impairment results in age-dependent disease. We determined that a mutation in the transmembrane 135 (Tmem135) is responsible for these phenotypes. We observed localization of TMEM135 on mitochondria, and imbalance of mitochondrial fission and fusion in mutant Tmem135 as well as Tmem135 overexpressing cells, indicating that TMEM135 is involved in the regulation of mitochondrial dynamics. Additionally, mutant retina showed higher sensitivity to oxidative stress. These results suggest that the regulation of mitochondrial dynamics through TMEM135 is critical for protection from environmental stress and controlling the progression of retinal aging. Our study identified TMEM135 as a critical link between aging and age-dependent diseases. DOI: http://dx.doi.org/10.7554/eLife.19264.001 PMID:27863209

  8. Functional reconstitution of the mitochondrial Ca2+/H+ antiporter Letm1.

    PubMed

    Tsai, Ming-Feng; Jiang, Dawei; Zhao, Linlin; Clapham, David; Miller, Christopher

    2014-01-01

    The leucine zipper, EF hand-containing transmembrane protein 1 (Letm1) gene encodes a mitochondrial inner membrane protein, whose depletion severely perturbs mitochondrial Ca(2+) and K(+) homeostasis. Here we expressed, purified, and reconstituted human Letm1 protein in liposomes. Using Ca(2+) fluorophore and (45)Ca(2+)-based assays, we demonstrate directly that Letm1 is a Ca(2+) transporter, with apparent affinities of cations in the sequence of Ca(2+) ≈ Mn(2+) > Gd(3+) ≈ La(3+) > Sr(2+) > Ba(2+), Mg(2+), K(+), Na(+). Kinetic analysis yields a Letm1 turnover rate of 2 Ca(2+)/s and a Km of ∼25 µM. Further experiments show that Letm1 mediates electroneutral 1 Ca(2+)/2 H(+) antiport. Letm1 is insensitive to ruthenium red, an inhibitor of the mitochondrial calcium uniporter, and CGP-37157, an inhibitor of the mitochondrial Na(+)/Ca(2+) exchanger. Functional properties of Letm1 described here are remarkably similar to those of the H(+)-dependent Ca(2+) transport mechanism identified in intact mitochondria.

  9. Control mechanisms in mitochondrial oxidative phosphorylation.

    PubMed

    Hroudová, Jana; Fišar, Zdeněk

    2013-02-05

    Distribution and activity of mitochondria are key factors in neuronal development, synaptic plasticity and axogenesis. The majority of energy sources, necessary for cellular functions, originate from oxidative phosphorylation located in the inner mitochondrial membrane. The adenosine-5'- triphosphate production is regulated by many control mechanism-firstly by oxygen, substrate level, adenosine-5'-diphosphate level, mitochondrial membrane potential, and rate of coupling and proton leak. Recently, these mechanisms have been implemented by "second control mechanisms," such as reversible phosphorylation of the tricarboxylic acid cycle enzymes and electron transport chain complexes, allosteric inhibition of cytochrome c oxidase, thyroid hormones, effects of fatty acids and uncoupling proteins. Impaired function of mitochondria is implicated in many diseases ranging from mitochondrial myopathies to bipolar disorder and schizophrenia. Mitochondrial dysfunctions are usually related to the ability of mitochondria to generate adenosine-5'-triphosphate in response to energy demands. Large amounts of reactive oxygen species are released by defective mitochondria, similarly, decline of antioxidative enzyme activities (e.g. in the elderly) enhances reactive oxygen species production. We reviewed data concerning neuroplasticity, physiology, and control of mitochondrial oxidative phosphorylation and reactive oxygen species production.

  10. Influence of expression of UCP3, PLIN1 and PPARG2 on the oxidation of substrates after hypocaloric dietary intervention.

    PubMed

    Cortes de Oliveira, Cristiana; Nicoletti, Carolina Ferreira; Pinhel, Marcela Augusta de Souza; de Oliveira, Bruno Affonso Parenti; Quinhoneiro, Driele Cristina Gomes; Noronha, Natália Yumi; Fassini, Priscila Giacomo; Marchini, Júlio Sérgio; da Silva Júnior, Wilson Araújo; Salgado Júnior, Wilson; Nonino, Carla Barbosa

    2018-08-01

    In addition to environmental and psychosocial factors, it is known that genetic factors can also influence the regulation of energy metabolism, body composition and determination of excess weight. The objective of this study was to evaluate the influence of UCP3, PLIN1 and PPARG2 genes on the substrates oxidation in women with grade III obesity after hypocaloric dietary intervention. This is a longitudinal study with 21 women, divided into two groups: Intervention Group (G1): 11 obese women (Body Mass Index (BMI) ≥40 kg/m 2 ), and Control Group (G2): 10 eutrophic women (BMI between 18.5 kg/m 2 and 24.9 kg/m 2 ). Weight (kg), height (m), BMI (kg/m 2 ), substrate oxidation (by Indirect Calorimetry) and abdominal subcutaneous adipose tissue were collected before and after the intervention. For the dietary intervention, the patients were hospitalized for 6 weeks receiving 1200 kcal/day. There was a significant weight loss (8.4 ± 4.3 kg - 5.2 ± 1.8%) and reduction of UCP3 expression after hypocaloric dietary intervention. There was a positive correlation between carbohydrate oxidation and UCP3 (r = 0.609; p = 0.04), PLIN1 (r = 0.882; p = 0.00) and PPARG2 (r = 0.791; p = 0.00) expression before dietary intervention and with UCP3 (r = 0.682; p = 0.02) and PLIN1 (r = 0.745; p = 0.00) genes after 6 weeks of intervention. There was a negative correlation between lipid oxidation and PLIN1 (r = -0.755; p = 0.00) and PPARG2 (r = 0.664; p = 0.02) expression before dietary intervention and negative correlation with PLIN1 (r = 0.730; p = 0.02) expression after 6 weeks of hypocaloric diet. Hypocaloric diet reduces UCP3 expression in individuals with obesity and the UCP3, PLIN1 and PPARG2 expression correlate positively with carbohydrate oxidation and negatively with lipid oxidation. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  11. Age-Dependent Reductions in Mitochondrial Respiration are Exacerbated by Calcium in the Female Rat Heart

    PubMed Central

    Hunter, J. Craig; Machikas, Alexandra M.; Korzick, Donna H.

    2012-01-01

    Cardiovascular disease mortality increases rapidly following menopause by poorly defined mechanisms. Since mitochondrial function and Ca2+ sensitivity are important regulators of cell death following myocardial ischemia, we sought to determine if aging and/or estrogen deficiency (ovx) increased mitochondrial Ca2+ sensitivity. Mitochondrial respiration was measured in ventricular mitochondria isolated from adult (6mo; n=26) and aged (24mo; n=25), intact or ovariectomized female rats using the substrates: α-ketoglutarate/malate (Complex I); succinate/rotenone (Complex II); ascorbate/TMPD/Antimycin (Complex IV). State 2 and State 3 respiration was initiated by sequential addition of mitochondria and ADP. Ca2+ sensitivity was assessed by Ca2+-induced swelling of de-energized mitochondria and reduction in state 3 respiration. Propylpyrazole triol (PPT) was administered i.p. 45 min prior to euthanasia to assess mitochondrial protective effects through estrogen receptor (ER) α activation. Aging decreased the respiratory control index (RCI; state 3/state 2) for Complexes I and II by 12% and 8%, respectively, independent of ovary status (p<0.05). Of interest, Ca2+ induced a greater decrease (18–30%; p<0.05) in Complex I state 3 respiration in aged and ovx animals, and mitochondrial swelling occurred twice as quickly in aged (vs. adult) female rats (p<0.05). Pretreatment with PPT increased RCI by 8% and 7% at Complexes I and II, respectively (p<0.05) but surprisingly increased Ca2+ sensitivity. Age-dependent decreases in RCI and sensitization to Ca2+ may explain in part the age-associated reductions in female ischemic tolerance; however protection afforded by ER agonism involves more complex mechanisms. PMID:22555015

  12. RecA-Dependent DNA Repair Results in Increased Heteroplasmy of the Arabidopsis Mitochondrial Genome1[C][W

    PubMed Central

    Miller-Messmer, Marie; Kühn, Kristina; Bichara, Marc; Le Ret, Monique; Imbault, Patrice; Gualberto, José M.

    2012-01-01

    Plant mitochondria have very active DNA recombination activities that are responsible for its plastic structures and that should be involved in the repair of double-strand breaks in the mitochondrial genome. Little is still known on plant mitochondrial DNA repair, but repair by recombination is believed to be a major determinant in the rapid evolution of plant mitochondrial genomes. In flowering plants, mitochondria possess at least two eubacteria-type RecA proteins that should be core components of the mitochondrial repair mechanisms. We have performed functional analyses of the two Arabidopsis (Arabidopsis thaliana) mitochondrial RecAs (RECA2 and RECA3) to assess their potential roles in recombination-dependent repair. Heterologous expression in Escherichia coli revealed that RECA2 and RECA3 have overlapping as well as specific activities that allow them to partially complement bacterial repair pathways. RECA2 and RECA3 have similar patterns of expression, and mutants of either display the same molecular phenotypes of increased recombination between intermediate-size repeats, thus suggesting that they act in the same recombination pathways. However, RECA2 is essential past the seedling stage and should have additional important functions. Treatment of plants with several DNA-damaging drugs further showed that RECA3 is required for different recombination-dependent repair pathways that significantly contribute to plant fitness under stress. Replication repair of double-strand breaks results in the accumulation of crossovers that increase the heteroplasmic state of the mitochondrial DNA. It was shown that these are transmitted to the plant progeny, enhancing the potential for mitochondrial genome evolution. PMID:22415515

  13. Uncoupling protein-3 lowers reactive oxygen species production in isolated mitochondria

    PubMed Central

    Toime, Laurence J.; Brand, Martin D.

    2010-01-01

    Mitochondria are the major cellular producers of reactive oxygen species (ROS), and mitochondrial ROS production increases steeply with increased protonmotive force. The uncoupling proteins (UCP1, UCP2 and UCP3) and adenine nucleotide translocase induce proton leak in response to exogenously added fatty acids, superoxide or lipid peroxidation products. “Mild uncoupling” by these proteins may provide a negative feedback loop to decrease protonmotive force and attenuate ROS production. Using wild type and Ucp3−/− mice, we found that native UCP3 actively lowers the rate of ROS production in isolated energized skeletal muscle mitochondria, in the absence of exogenous activators. The estimated specific activity of UCP3 in lowering ROS production was 90 to 500 times higher than that of the adenine nucleotide translocase. The mild uncoupling hypothesis was tested by measuring whether the effect of UCP3 on ROS production could be mimicked by chemical uncoupling. A chemical uncoupler mimicked the effect of UCP3 at early time points after mitochondrial energization, in support of the mild uncoupling hypothesis. However, at later time points the uncoupler did not mimic UCP3, suggesting that UCP3 can also affect on ROS production through a membrane potential-independent mechanism. PMID:20493945

  14. Uncoupling protein-2 mediates the protective action of berberine against oxidative stress in rat insulinoma INS-1E cells and in diabetic mouse islets

    PubMed Central

    Liu, Limei; Liu, Jian; Gao, Yuansheng; Yu, Xiaoxing; Xu, Gang; Huang, Yu

    2014-01-01

    BACKGROUND AND PURPOSE Uncoupling protein-2 (UCP2) may regulate glucose-stimulated insulin secretion. The current study investigated the effects of berberine, an alkaloid found in many medicinal plants, on oxidative stress and insulin secretion through restoration of UCP2 expression in high glucose (HG)-treated INS-1E cells and rat islets or in db/db mouse islets. EXPERIMENTAL APPROACH Mouse and rat pancreatic islets were isolated. Nitrotyrosine, superoxide dismutase (SOD)-1 and UCP2 expression and AMPK phosphorylation were examined by Western blotting. Insulin secretion was measured by elisa. Mitochondrial reactive oxygen species (ROS) production was detected by confocal microscopy. KEY RESULTS Incubation of INS-1E cells and rat islets with HG (30 mmol·L−1; 8 h) elevated nitrotyrosine level, reduced SOD-1 and UCP2 expression and AMPK phosphorylation, and inhibited glucose-stimulated insulin secretion. HG also increased mitochondrial ROS in INS-1E cells. Co-treatment with berberine inhibited such effects. The AMPK inhibitor compound C, the UCP2 inhibitor genipin and adenovirus ucp2 shRNA inhibited these protective effects of berberine. Furthermore, compound C normalized berberine-stimulated UCP2 expression but genipin did not affect AMPK phosphorylation. Islets from db/db mice exhibited elevated nitrotyrosine levels, reduced expression of SOD-1 and UCP2 and AMPK phosphorylation, and decreased insulin secretion compared with those from db/m+ mice. Berberine also improved these defects in diabetic islets and genipin blocked the effects of berberine. CONCLUSIONS AND IMPLICATIONS Berberine inhibited oxidative stress and restored insulin secretion in HG-treated INS-IE cells and diabetic mouse islets by activating AMPK and UCP2. UCP2 is an important signalling molecule in mediating anti-diabetic effects of berberine. PMID:24588674

  15. Targeted impairment of thymidine kinase 2 expression in cells induces mitochondrial DNA depletion and reveals molecular mechanisms of compensation of mitochondrial respiratory activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villarroya, Joan, E-mail: joanvillarroya@gmail.com; Institut de Recerca l'Hospital de la Santa Creu i Sant Pau, Barcelona; Lara, Mari-Carmen

    Highlights: {yields} We impaired TK2 expression in Ost TK1{sup -} cells via siRNA-mediated interference (TK2{sup -}). {yields} TK2 impairment caused severe mitochondrial DNA (mtDNA) depletion in quiescent cells. {yields} Despite mtDNA depletion, TK2{sup -} cells show high cytochrome oxidase activity. {yields} Depletion of mtDNA occurs without imbalance in the mitochondrial dNTP pool. {yields} Nuclear-encoded ENT1, DNA-pol {gamma}, TFAM and TP gene expression is lowered in TK2{sup -} cells. -- Abstract: The mitochondrial DNA (mtDNA) depletion syndrome comprises a clinically heterogeneous group of diseases characterized by reductions of the mtDNA abundance, without associated point mutations or rearrangements. We have developed themore » first in vitro model to study of mtDNA depletion due to reduced mitochondrial thymidine kinase 2 gene (TK2) expression in order to understand the molecular mechanisms involved in mtDNA depletion syndrome due to TK2 mutations. Small interfering RNA targeting TK2 mRNA was used to decrease TK2 expression in Ost TK1{sup -} cells, a cell line devoid of endogenous thymidine kinase 1 (TK1). Stable TK2-deficient cell lines showed a reduction of TK2 levels close to 80%. In quiescent conditions, TK2-deficient cells showed severe mtDNA depletion, also close to 80% the control levels. However, TK2-deficient clones showed increased cytochrome c oxidase activity, higher cytochrome c oxidase subunit I transcript levels and higher subunit II protein expression respect to control cells. No alterations of the deoxynucleotide pools were found, whereas a reduction in the expression of genes involved in nucleoside/nucleotide homeostasis (human equilibrative nucleoside transporter 1, thymidine phosphorylase) and mtDNA maintenance (DNA-polymerase {gamma}, mitochondrial transcription factor A) was observed. Our findings highlight the importance of cellular compensatory mechanisms that enhance the expression of respiratory components to ensure respiratory

  16. Molecular mechanism of Mg2+-dependent gating in CorA

    NASA Astrophysics Data System (ADS)

    Dalmas, Olivier; Sompornpisut, Pornthep; Bezanilla, Francisco; Perozo, Eduardo

    2014-04-01

    CorA is the major transport system responsible for Mg2+ uptake in bacteria and can functionally substitute for its homologue Mrs2p in the yeast inner mitochondrial membrane. Although several CorA crystal structures are available, the molecular mechanism of Mg2+ uptake remains to be established. Here we use electron paramagnetic resonance spectroscopy, electrophysiology and molecular dynamic simulations to show that CorA is regulated by cytoplasmic Mg2+ acting as a ligand and elucidate the basic conformational rearrangements responsible for Mg2+-dependent gating. Mg2+ unbinding at the divalent cation sensor triggers a conformational change that leads to the inward motion of the stalk helix, which propagates to the pore-forming transmembrane helix TM1. Helical tilting and rotation in TM1 generates an iris-like motion that increases the diameter of the permeation pathway, triggering ion conduction. This work establishes the molecular basis of a Mg2+-driven negative feedback loop in CorA as the key physiological event controlling Mg2+ uptake and homeostasis in prokaryotes.

  17. Impaired Adaptability of in Vivo Mitochondrial Energetics to Acute Oxidative Insult in Aged Skeletal Muscle

    PubMed Central

    Siegel, Michael P.; Wilbur, Tim; Mathis, Mark; Shankland, Eric; Trieu, Atlas; Harper, Mary-Ellen; Marcinek, David J.

    2012-01-01

    Periods of elevated reactive oxygen species (ROS) production are a normal part of mitochondrial physiology. However, little is known about age-related changes in the mitochondrial response to elevated ROS in vivo. Significantly, ROS-induced uncoupling of oxidative phosphorylation has received attention as a negative feedback mechanism to reduce mitochondrial superoxide production. Here we use a novel in vivo spectroscopy system to test the hypothesis that ROS-induced uncoupling is diminished in aged mitochondria. This system simultaneously acquires 31P magnetic resonance and near-infrared optical spectra to non-invasively measure phosphometabolite and O2 concentrations in mouse skeletal muscle. Using low dose paraquat to elevate intracellular ROS we assess in vivo mitochondrial function in young, middle aged, and old mice. Oxidative phosphorylation was uncoupled to the same degree in response to ROS at each age, but this uncoupling was associated with loss of phosphorylation capacity and total ATP in old mice only. Using mice lacking UCP3 we demonstrate that this in vivo uncoupling is independent of this putative uncoupler of skeletal muscle mitochondria. These data indicate that ROS-induced uncoupling persists throughout life, but that oxidative stress leads to mitochondrial deficits and loss of ATP in aged organisms that may contribute to impaired function and degeneration. PMID:22935551

  18. Mitochondrial Free [Ca2+] Increases during ATP/ADP Antiport and ADP Phosphorylation: Exploration of Mechanisms

    PubMed Central

    Haumann, Johan; Dash, Ranjan K.; Stowe, David F.; Boelens, Age D.; Beard, Daniel A.; Camara, Amadou K.S.

    2010-01-01

    ADP influx and ADP phosphorylation may alter mitochondrial free [Ca2+] ([Ca2+]m) and consequently mitochondrial bioenergetics by several postulated mechanisms. We tested how [Ca2+]m is affected by H2PO4− (Pi), Mg2+, calcium uniporter activity, matrix volume changes, and the bioenergetic state. We measured [Ca2+]m, membrane potential, redox state, matrix volume, pHm, and O2 consumption in guinea pig heart mitochondria with or without ruthenium red, carboxyatractyloside, or oligomycin, and at several levels of Mg2+ and Pi. Energized mitochondria showed a dose-dependent increase in [Ca2+]m after adding CaCl2 equivalent to 20, 114, and 485 nM extramatrix free [Ca2+] ([Ca2+]e); this uptake was attenuated at higher buffer Mg2+. Adding ADP transiently increased [Ca2+]m up to twofold. The ADP effect on increasing [Ca2+]m could be partially attributed to matrix contraction, but was little affected by ruthenium red or changes in Mg2+ or Pi. Oligomycin largely reduced the increase in [Ca2+]m by ADP compared to control, and [Ca2+]m did not return to baseline. Carboxyatractyloside prevented the ADP-induced [Ca2+]m increase. Adding CaCl2 had no effect on bioenergetics, except for a small increase in state 2 and state 4 respiration at 485 nM [Ca2+]e. These data suggest that matrix ADP influx and subsequent phosphorylation increase [Ca2+]m largely due to the interaction of matrix Ca2+ with ATP, ADP, Pi, and cation buffering proteins in the matrix. PMID:20712982

  19. Calcium transport across the inner mitochondrial membrane: molecular mechanisms and pharmacology

    PubMed Central

    Csordás, György; Várnai, Peter; Golenár, Tünde; Sheu, Shey-Shing; Hajnóczky, György

    2011-01-01

    Growing evidence supports that mitochondrial calcium uptake is important for cell metabolism, signaling and survival. However, both the molecular nature of the mitochondrial Ca2+ transport sites and the calcium signals they respond to remained elusive. Recent RNA interference studies have identified new candidate proteins for Ca2+ uptake across the inner mitochondrial membrane, including LETM1, MCU, MICU1 and NCLX. The sensitivity of these factors to several drugs has been tested and in parallel, some new inhibitors of mitochondrial Ca2+ uptake have been described. This paper provides an update on the pharmacological aspects of the molecular mechanisms of the inner mitochondrial membrane Ca2+ transport. PMID:22123069

  20. Changes in UCP expression in tissues of Zucker rats fed diets with different protein content.

    PubMed

    Masanés, R M; Yubero, P; Rafecas, I; Remesar, X

    2002-09-01

    The effect of dietary protein content on the uncoupling proteins (UCP) 1, 2 and 3 expression in a number of tissues of Zucker lean and obese rats was studied. Thirty-day-old male Zucker lean (Fa/?) and obese (fa/fa) rats were fed on hyperproteic (HP, 30% protein), standard (RD, 17% protein) or hypoproteic (LP, 9% protein) diets ad libitum for 30 days. Although dietary protein intake affected the weights of individual muscles in lean and obese animals, these weights were similar. In contrast, huge differences were observed in brown adipose tissue (BAT) and liver weights. Lean rats fed on the LP diet generally increased UCP expression, whereas the HP group had lower values. Obese animals, HP and LP groups showed higher UCP expression in muscles, with slight differences in BAT and lower values for UCP3 in subcutaneous adipose tissue. The mean values of UCP expression in BAT of obese rats were lower than in their lean counterpart, whereas the expression in skeletal muscle was increased. Thus, expression of UCPs can be modified by dietary protein content, in lean and obese rats. A possible thermogenic function of UCP3 in muscle and WAT in obese rats must be taken into account.

  1. Mechanisms of Mitochondrial Dysfunction in Autism

    DTIC Science & Technology

    2012-07-01

    area code) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Mechanisms of Mitochondrial Dysfunction in Autism Dr. John Shoffner...before we will be able to draw meaningful conclusions from this study. Autism , functional MRI, mitochondria, mitochondrial disease 15 Table of Contents...mitochondrial defects in autism are not known, it is hypothesized that significant numbers of individuals with autism and autistic spectrum disorders

  2. Activation of UCPs gene expression in skeletal muscle can be independent on both circulating fatty acids and food intake. Involvement of ROS in a model of mouse cancer cachexia.

    PubMed

    Busquets, Sílvia; Almendro, Vanessa; Barreiro, Esther; Figueras, Maite; Argilés, Josep M; López-Soriano, Francisco J

    2005-01-31

    Implantation of a fast growing tumour to mice (Lewis lung carcinoma) resulted in a clear cachectic state characterized by a profound muscle wasting. This was accompanied by a significant increase in both UCP2 and UCP3 gene expression in skeletal muscle and heart. Interestingly, this increase in gene expression was not linked to a rise in circulating fatty acids or in a decrease in food intake, as previously reported in other pathophysiological states. These results question the concept that hyperlipaemia is the only factor controlling UCP gene expression in different pathophysiological conditions. In addition, the present work suggests that UCPs might participate in a counter-regulatory mechanism to lower the production of ROS.

  3. Muscle Mitochondrial Uncoupling Dismantles Neuromuscular Junction and Triggers Distal Degeneration of Motor Neurons

    PubMed Central

    Dupuis, Luc; Gonzalez de Aguilar, Jose-Luis; Echaniz-Laguna, Andoni; Eschbach, Judith; Rene, Frédérique; Oudart, Hugues; Halter, Benoit; Huze, Caroline; Schaeffer, Laurent; Bouillaud, Frédéric; Loeffler, Jean-Philippe

    2009-01-01

    Background Amyotrophic lateral sclerosis (ALS), the most frequent adult onset motor neuron disease, is associated with hypermetabolism linked to defects in muscle mitochondrial energy metabolism such as ATP depletion and increased oxygen consumption. It remains unknown whether muscle abnormalities in energy metabolism are causally involved in the destruction of neuromuscular junction (NMJ) and subsequent motor neuron degeneration during ALS. Methodology/Principal Findings We studied transgenic mice with muscular overexpression of uncoupling protein 1 (UCP1), a potent mitochondrial uncoupler, as a model of muscle restricted hypermetabolism. These animals displayed age-dependent deterioration of the NMJ that correlated with progressive signs of denervation and a mild late-onset motor neuron pathology. NMJ regeneration and functional recovery were profoundly delayed following injury of the sciatic nerve and muscle mitochondrial uncoupling exacerbated the pathology of an ALS animal model. Conclusions/Significance These findings provide the proof of principle that a muscle restricted mitochondrial defect is sufficient to generate motor neuron degeneration and suggest that therapeutic strategies targeted at muscle metabolism might prove useful for motor neuron diseases. PMID:19404401

  4. Age-dependent reductions in mitochondrial respiration are exacerbated by calcium in the female rat heart.

    PubMed

    Hunter, J Craig; Machikas, Alexandra M; Korzick, Donna H

    2012-06-01

    Cardiovascular disease mortality increases rapidly after menopause by poorly defined mechanisms. Because mitochondrial function and Ca(2+) sensitivity are important regulators of cell death after myocardial ischemia, we sought to determine whether aging and/or estrogen deficiency (ovariectomy) increased mitochondrial Ca(2+) sensitivity. Mitochondrial respiration was measured in ventricular mitochondria isolated from adult (6 months; n = 26) and aged (24 months; n = 25), intact or ovariectomized female rats using the substrates α-ketoglutarate/malate (complex I); succinate/rotenone (complex II); ascorbate/N,N,N',N'-tetramethyl-p-phenylenediamine/antimycin (complex IV). State 2 and 3 respiration was initiated by sequential addition of mitochondria and adenosine diphosphate. Ca(2+) sensitivity was assessed by Ca(2+)-induced swelling of de-energized mitochondria and reduction in state 3 respiration. Propylpyrazole triol (PPT) was administered intraperitoneally 45 minutes before euthanasia to assess mitochondrial protective effects through estrogen receptor (ER) α activation. Aging decreased the respiratory control index (RCI; state 3/state 2) for complexes I and II by 12% and 8%, respectively, independent of ovary status (P < 0.05). Of interest, Ca(2+) induced a greater decrease (18%-30%; P < 0.05) in complex I state 3 respiration in aged and ovariectomized animals, and mitochondrial swelling occurred twice as quickly in aged (vs adult) female rats (P < 0.05). Pretreatment with PPT increased RCI by 8% and 7% at complexes I and II, respectively (P < 0.05) but surprisingly increased Ca(2+) sensitivity. Age-dependent decreases in RCI and sensitization to Ca(2+) may explain in part the age-associated reductions in female ischemic tolerance; however, protection afforded by ER agonism involves more complex mechanisms. Copyright © 2012 Elsevier HS Journals, Inc. All rights reserved.

  5. Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rolo, Anabela P.; Palmeira, Carlos M.

    2006-04-15

    Hyperglycemia resulting from uncontrolled glucose regulation is widely recognized as the causal link between diabetes and diabetic complications. Four major molecular mechanisms have been implicated in hyperglycemia-induced tissue damage: activation of protein kinase C (PKC) isoforms via de novo synthesis of the lipid second messenger diacylglycerol (DAG), increased hexosamine pathway flux, increased advanced glycation end product (AGE) formation, and increased polyol pathway flux. Hyperglycemia-induced overproduction of superoxide is the causal link between high glucose and the pathways responsible for hyperglycemic damage. In fact, diabetes is typically accompanied by increased production of free radicals and/or impaired antioxidant defense capabilities, indicating amore » central contribution for reactive oxygen species (ROS) in the onset, progression, and pathological consequences of diabetes. Besides oxidative stress, a growing body of evidence has demonstrated a link between various disturbances in mitochondrial functioning and type 2 diabetes. Mutations in mitochondrial DNA (mtDNA) and decreases in mtDNA copy number have been linked to the pathogenesis of type 2 diabetes. The study of the relationship of mtDNA to type 2 diabetes has revealed the influence of the mitochondria on nuclear-encoded glucose transporters, glucose-stimulated insulin secretion, and nuclear-encoded uncoupling proteins (UCPs) in {beta}-cell glucose toxicity. This review focuses on a range of mitochondrial factors important in the pathogenesis of diabetes. We review the published literature regarding the direct effects of hyperglycemia on mitochondrial function and suggest the possibility of regulation of mitochondrial function at a transcriptional level in response to hyperglycemia. The main goal of this review is to include a fresh consideration of pathways involved in hyperglycemia-induced diabetic complications.« less

  6. Bax-mediated mitochondrial outer membrane permeabilization (MOMP), distinct from the mitochondrial permeability transition, is a key mechanism in diclofenac-induced hepatocyte injury: Multiple protective roles of cyclosporin A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siu, W.P.; Pun, Pamela Boon Li; Latchoumycandane, Calivarathan

    2008-03-15

    Diclofenac, a widely used nonsteroidal anti-inflammatory drug, has been associated with rare but severe cases of clinical hepatotoxicity. Diclofenac causes concentration-dependent cell death in human hepatocytes (after 24-48 h) by mitochondrial permeabilization via poorly defined mechanisms. To explore whether the cyclophilin D (CyD)-dependent mitochondrial permeability transition (mPT) and/or the mitochondrial outer membrane permeabilization (MOMP) was primarily involved in mediating cell death, we exposed immortalized human hepatocytes (HC-04) to apoptogenic concentrations of diclofenac (> 500 {mu}M) in the presence or absence of inhibitors of upstream mediators. The CyD inhibitor, cyclosporin A (CsA, 2 {mu}M) fully inhibited diclofenac-induced cell injury, suggesting thatmore » mPT was involved. However, CyD gene silencing using siRNA left the cells susceptible to diclofenac toxicity, and CsA still protected the CyD-negative cells from lethal injury. Diclofenac induced early (9 h) activation of Bax and Bak and caused mitochondrial translocation of Bax, indicating that MOMP was involved in cell death. Inhibition of Bax protein expression by using siRNA significantly protected HC-04 from diclofenac-induced cell injury. Diclofenac also induced early Bid activation (tBid formation, 6 h), which is an upstream mechanism that initiates Bax activation and mitochondrial translocation. Bid activation was sensitive to the Ca{sup 2+} chelator, BAPTA. In conclusion, we found that Bax/Bak-mediated MOMP is a key mechanism of diclofenac-induced lethal cell injury in human hepatocytes, and that CsA can prevent MOMP through inhibition of Bax activation. These data support our concept that the Ca{sup 2+}-Bid-Bax-MOMP axis is a critical pathway in diclofenac (metabolite)-induced hepatocyte injury.« less

  7. Mechanical ventilation causes pulmonary mitochondrial dysfunction and delayed alveolarization in neonatal mice.

    PubMed

    Ratner, Veniamin; Sosunov, Sergey A; Niatsetskaya, Zoya V; Utkina-Sosunova, Irina V; Ten, Vadim S

    2013-12-01

    Hyperoxia inhibits pulmonary bioenergetics, causing delayed alveolarization in mice. We hypothesized that mechanical ventilation (MV) also causes a failure of bioenergetics to support alveolarization. To test this hypothesis, neonatal mice were ventilated with room air for 8 hours (prolonged) or for 2 hours (brief) with 15 μl/g (aggressive) tidal volume (Tv), or for 8 hours with 8 μl/g (gentle) Tv. After 24 hours or 10 days of recovery, lung mitochondria were examined for adenosine diphosphate (ADP)-phosphorylating respiration, using complex I (C-I)-dependent, complex II (C-II)-dependent, or cytochrome C oxidase (C-IV)-dependent substrates, ATP production rate, and the activity of C-I and C-II. A separate cohort of mice was exposed to 2,4-dinitrophenol (DNP), a known uncoupler of oxidative phosphorylation. At 10 days of recovery, pulmonary alveolarization and the expression of vascular endothelial growth factor (VEGF) were assessed. Sham-operated littermates were used as control mice. At 24 hours after aggressive MV, mitochondrial ATP production rates and the activity of C-I and C-II were significantly decreased compared with control mice. However, at 10 days of recovery, only mice exposed to prolonged-aggressive MV continued to exhibit significantly depressed mitochondrial respiration. This was associated with significantly poorer alveolarization and VEGF expression. In contrast, mice exposed to brief-aggressive or prolonged-gentle MV exhibited restored mitochondrial ADP-phosphorylation, normal alveolarization and pulmonary VEGF content. Exposure to DNP fully replicated the phenotype consistent with alveolar developmental arrest. Our data suggest that the failure of bioenergetics to support normal lung development caused by aggressive and prolonged ventilation should be considered a fundamental mechanism for the development of bronchopulmonary dysplasia in premature neonates.

  8. Changes in Physiological Parameters after Combined Exercise according to the I/D Polymorphism of hUCP2 Gene in Middle-Aged Obese Females

    PubMed Central

    DUK OH, Sang

    2014-01-01

    Abstract Background The purpose of this study was to determine whether a 45 bp insertion/deletion (I/D) polymorphism in human uncoupling protein 2 (hUCP2) gene was associated with changes in several cardiovascular risk and physical fitness factors in response to combined exercise during 12 weeks in Korean middle-aged women. The changes in physiological parameters after combined exercise during 12 weeks were compared between each genotype subgroups of hUCP2 gene to clarify the inter-individual differences in exercised-induced changes according to genetic predisposition. Methods A total of 185 women aged over 40 years living in Seoul, Korea were participated in this study, and analyzed before and after 12 weeks on combined exercise including aerobic exercise and strength training for body composition, hemodynamic parameters, physical fitness and metabolic variables. A 45 bp I/D polymorphism in hUCP2 gene was genotyped by polymerase chain reaction (PCR) amplification and agarose gel electrophoresis method. Results Combined exercise program during 12 weeks indicated the significant health-promoting effects for our participants on multiple body composition, hemodynamic parameters, physical fitness factors and metabolic parameters, respectively. With respect to a 45 bp I/D polymorphism in hUCP2 gene, this polymorphism was significantly associated with baseline %body fat of our participants (P <.05). Moreover, this polymorphism was significantly associated with the changes in %body fat and serum triglyceride(TG) level after combined exercise program during 12 weeks(P <.05). Conclusion Our data suggest that a 45 bp I/D polymorphism in hUCP2 gene may at least in part contribute to the inter-individual differences on the changes in some clinical and metabolic parameters following combined exercise in middle-aged women. PMID:25909061

  9. Adipose tissue uncoupling protein 1 levels and function are increased in a mouse model of developmental obesity induced by maternal exposure to high-fat diet.

    PubMed

    Bytautiene Prewit, E; Porter, C; La Rosa, M; Bhattarai, N; Yin, H; Gamble, P; Kechichian, T; Sidossis, L S

    2018-05-17

    With brown adipose tissue (BAT) becoming a possible therapeutic target to counteract obesity, the prenatal environment could represent a critical window to modify BAT function and browning of white AT. We investigated if levels of uncoupling protein 1 (UCP1) and UCP1-mediated thermogenesis are altered in offspring exposed to prenatal obesity. Female CD-1 mice were fed a high-fat (HF) or standard-fat (SF) diet for 3 months before breeding. After weaning, all pups were placed on SF. UCP1 mRNA and protein levels were quantified using quantitative real-time PCR and Western blot analysis, respectively, in brown (BAT), subcutaneous (SAT) and visceral (VAT) adipose tissues at 6 months of age. Total and UCP1-dependent mitochondrial respiration were determined by high-resolution respirometry. A Student's t-test and Mann-Whitney test were used (significance: P<0.05). UCP1 mRNA levels were not different between the HF and SF offspring. UCP1 protein levels, total mitochondrial respiration and UCP1-dependent respiration were significantly higher in BAT from HF males (P=0.02, P=0.04, P=0.005, respectively) and females (P=0.01, P=0.04, P=0.02, respectively). In SAT, the UCP1 protein was significantly lower in HF females (P=0.03), and the UCP1-dependent thermogenesis was significantly lower from HF males (P=0.04). In VAT, UCP1 protein levels and UCP1-dependent respiration were significantly lower only in HF females (P=0.03, P=0.04, respectively). There were no differences in total respiration in SAT and VAT. Prenatal exposure to maternal obesity leads to significant increases in UCP1 levels and function in BAT in offspring with little impact on UCP1 levels and function in SAT and VAT.

  10. Bcl-2 proteins and autophagy regulate mitochondrial dynamics during programmed cell death in the Drosophila ovary.

    PubMed

    Tanner, Elizabeth A; Blute, Todd A; Brachmann, Carrie Baker; McCall, Kimberly

    2011-01-01

    The Bcl-2 family has been shown to regulate mitochondrial dynamics during cell death in mammals and C. elegans, but evidence for this in Drosophila has been elusive. Here, we investigate the regulation of mitochondrial dynamics during germline cell death in the Drosophila melanogaster ovary. We find that mitochondria undergo a series of events during the progression of cell death, with remodeling, cluster formation and uptake of clusters by somatic follicle cells. These mitochondrial dynamics are dependent on caspases, the Bcl-2 family, the mitochondrial fission and fusion machinery, and the autophagy machinery. Furthermore, Bcl-2 family mutants show a striking defect in cell death in the ovary. These data indicate that a mitochondrial pathway is a major mechanism for activation of cell death in Drosophila oogenesis.

  11. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization.

    PubMed

    Sarraf, Shireen A; Raman, Malavika; Guarani-Pereira, Virginia; Sowa, Mathew E; Huttlin, Edward L; Gygi, Steven P; Harper, J Wade

    2013-04-18

    The PARKIN ubiquitin ligase (also known as PARK2) and its regulatory kinase PINK1 (also known as PARK6), often mutated in familial early-onset Parkinson's disease, have central roles in mitochondrial homeostasis and mitophagy. Whereas PARKIN is recruited to the mitochondrial outer membrane (MOM) upon depolarization via PINK1 action and can ubiquitylate porin, mitofusin and Miro proteins on the MOM, the full repertoire of PARKIN substrates--the PARKIN-dependent ubiquitylome--remains poorly defined. Here we use quantitative diGly capture proteomics (diGly) to elucidate the ubiquitylation site specificity and topology of PARKIN-dependent target modification in response to mitochondrial depolarization. Hundreds of dynamically regulated ubiquitylation sites in dozens of proteins were identified, with strong enrichment for MOM proteins, indicating that PARKIN dramatically alters the ubiquitylation status of the mitochondrial proteome. Using complementary interaction proteomics, we found depolarization-dependent PARKIN association with numerous MOM targets, autophagy receptors, and the proteasome. Mutation of the PARKIN active site residue C431, which has been found mutated in Parkinson's disease patients, largely disrupts these associations. Structural and topological analysis revealed extensive conservation of PARKIN-dependent ubiquitylation sites on cytoplasmic domains in vertebrate and Drosophila melanogaster MOM proteins. These studies provide a resource for understanding how the PINK1-PARKIN pathway re-sculpts the proteome to support mitochondrial homeostasis.

  12. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization

    PubMed Central

    Sarraf, Shireen A.; Raman, Malavika; Guarani-Pereira, Virginia; Sowa, Mathew E.; Huttlin, Edward L.; Gygi, Steven P.; Harper, J. Wade

    2013-01-01

    The PARKIN (PARK2) ubiquitin ligase and its regulatory kinase PINK1 (PARK6), often mutated in familial early onset Parkinson’s Disease (PD), play central roles in mitochondrial homeostasis and mitophagy.1–3 While PARKIN is recruited to the mitochondrial outer membrane (MOM) upon depolarization via PINK1 action and can ubiquitylate Porin, Mitofusin, and Miro proteins on the MOM,1,4–11 the full repertoire of PARKIN substrates – the PARKIN-dependent ubiquitylome - remains poorly defined. Here we employ quantitative diGLY capture proteomics12,13 to elucidate the ubiquitylation site-specificity and topology of PARKIN-dependent target modification in response to mitochondrial depolarization. Hundreds of dynamically regulated ubiquitylation sites in dozens of proteins were identified, with strong enrichment for MOM proteins, indicating that PARKIN dramatically alters the ubiquitylation status of the mitochondrial proteome. Using complementary interaction proteomics, we found depolarization-dependent PARKIN association with numerous MOM targets, autophagy receptors, and the proteasome. Mutation of PARKIN’s active site residue C431, which has been found mutated in PD patients, largely disrupts these associations. Structural and topological analysis revealed extensive conservation of PARKIN-dependent ubiquitylation sites on cytoplasmic domains in vertebrate and D. melanogaster MOM proteins. These studies provide a resource for understanding how the PINK1-PARKIN pathway re-sculpts the proteome to support mitochondrial homeostasis. PMID:23503661

  13. Uncoupling protein 1 binds one nucleotide per monomer and is stabilized by tightly bound cardiolipin

    PubMed Central

    Lee, Yang; Willers, Chrissie; Kunji, Edmund R. S.; Crichton, Paul G.

    2015-01-01

    Uncoupling protein 1 (UCP1) catalyzes fatty acid-activated, purine nucleotide-sensitive proton leak across the mitochondrial inner membrane of brown adipose tissue to produce heat, and could help combat obesity and metabolic disease in humans. Studies over the last 30 years conclude that the protein is a dimer, binding one nucleotide molecule per two proteins, and unlike the related mitochondrial ADP/ATP carrier, does not bind cardiolipin. Here, we have developed novel methods to purify milligram amounts of UCP1 from native sources by using covalent chromatography that, unlike past methods, allows the protein to be prepared in defined conditions, free of excess detergent and lipid. Assessment of purified preparations by TLC reveal that UCP1 retains tightly bound cardiolipin, with a lipid phosphorus content equating to three molecules per protein, like the ADP/ATP carrier. Cardiolipin stabilizes UCP1, as demonstrated by reconstitution experiments and thermostability assays, indicating that the lipid has an integral role in the functioning of the protein, similar to other mitochondrial carriers. Furthermore, we find that UCP1 is not dimeric but monomeric, as indicated by size exclusion analysis, and has a ligand titration profile in isothermal calorimetric measurements that clearly shows that one nucleotide binds per monomer. These findings reveal the fundamental composition of UCP1, which is essential for understanding the mechanism of the protein. Our assessment of the properties of UCP1 indicate that it is not unique among mitochondrial carriers and so is likely to use a common exchange mechanism in its primary function in brown adipose tissue mitochondria. PMID:26038550

  14. Retinoic acid has different effects on UCP1 expression in mouse and human adipocytes

    PubMed Central

    2013-01-01

    Background Increased adipose thermogenesis is being considered as a strategy aimed at preventing or reversing obesity. Thus, regulation of the uncoupling protein 1 (UCP1) gene in human adipocytes is of significant interest. Retinoic acid (RA), the carboxylic acid form of vitamin A, displays agonist activity toward several nuclear hormone receptors, including RA receptors (RARs) and peroxisome proliferator-activated receptor δ (PPARδ). Moreover, RA is a potent positive regulator of UCP1 expression in mouse adipocytes. Results The effects of all-trans RA (ATRA) on UCP1 gene expression in models of mouse and human adipocyte differentiation were investigated. ATRA induced UCP1 expression in all mouse white and brown adipocytes, but inhibited or had no effect on UCP1 expression in human adipocyte cell lines and primary human white adipocytes. Experiments with various RAR agonists and a RAR antagonist in mouse cells demonstrated that the stimulatory effect of ATRA on UCP1 gene expression was indeed mediated by RARs. Consistently, a PPARδ agonist was without effect. Moreover, the ATRA-mediated induction of UCP1 expression in mouse adipocytes was independent of PPARγ coactivator-1α. Conclusions UCP1 expression is differently affected by ATRA in mouse and human adipocytes. ATRA induces UCP1 expression in mouse adipocytes through activation of RARs, whereas expression of UCP1 in human adipocytes is not increased by exposure to ATRA. PMID:24059847

  15. Cofilin1-dependent actin dynamics control DRP1-mediated mitochondrial fission

    PubMed Central

    Rehklau, Katharina; Hoffmann, Lena; Gurniak, Christine B; Ott, Martin; Witke, Walter; Scorrano, Luca; Culmsee, Carsten; Rust, Marco B

    2017-01-01

    Mitochondria form highly dynamic networks in which organelles constantly fuse and divide. The relevance of mitochondrial dynamics is evident from its implication in various human pathologies, including cancer or neurodegenerative, endocrine and cardiovascular diseases. Dynamin-related protein 1 (DRP1) is a key regulator of mitochondrial fission that oligomerizes at the mitochondrial outer membrane and hydrolyzes GTP to drive mitochondrial fragmentation. Previous studies demonstrated that DRP1 recruitment and mitochondrial fission is promoted by actin polymerization at the mitochondrial surface, controlled by the actin regulatory proteins inverted formin 2 (INF2) and Spire1C. These studies suggested the requirement of additional actin regulatory activities to control DRP1-mediated mitochondrial fission. Here we show that the actin-depolymerizing protein cofilin1, but not its close homolog actin-depolymerizing factor (ADF), is required to maintain mitochondrial morphology. Deletion of cofilin1 caused mitochondrial DRP1 accumulation and fragmentation, without altering mitochondrial function or other organelles’ morphology. Mitochondrial morphology in cofilin1-deficient cells was restored upon (i) re-expression of wild-type cofilin1 or a constitutively active mutant, but not of an actin-binding-deficient mutant, (ii) pharmacological destabilization of actin filaments and (iii) genetic depletion of DRP1. Our work unraveled a novel function for cofilin1-dependent actin dynamics in mitochondrial fission, and identified cofilin1 as a negative regulator of mitochondrial DRP1 activity. We conclude that cofilin1 is required for local actin dynamics at mitochondria, where it may balance INF2/Spire1C-induced actin polymerization. PMID:28981113

  16. Mitochondrial PKC-ε deficiency promotes I/R-mediated myocardial injury via GSK3β-dependent mitochondrial permeability transition pore opening.

    PubMed

    Wang, Shijun; Zhang, Feng; Zhao, Gang; Cheng, Yong; Wu, Ting; Wu, Bing; Zhang, You-En

    2017-09-01

    Mitochondrial fission is critically involved in cardiomyocyte apoptosis, which has been considered as one of the leading causes of ischaemia/reperfusion (I/R)-induced myocardial injury. In our previous works, we demonstrate that aldehyde dehydrogenase-2 (ALDH2) deficiency aggravates cardiomyocyte apoptosis and cardiac dysfunction. The aim of this study was to elucidate whether ALDH2 deficiency promotes mitochondrial injury and cardiomyocyte death in response to I/R stress and the underlying mechanism. I/R injury was induced by aortic cross-clamping for 45 min. followed by unclamping for 24 hrs in ALDH2 knockout (ALDH2 -/- ) and wild-type (WT) mice. Then myocardial infarct size, cell apoptosis and cardiac function were examined. The protein kinase C (PKC) isoform expressions and their mitochondrial translocation, the activity of dynamin-related protein 1 (Drp1), caspase9 and caspase3 were determined by Western blot. The effects of N-acetylcysteine (NAC) or PKC-δ shRNA treatment on glycogen synthase kinase-3β (GSK-3β) activity and mitochondrial permeability transition pore (mPTP) opening were also detected. The results showed that ALDH2 -/- mice exhibited increased myocardial infarct size and cardiomyocyte apoptosis, enhanced levels of cleaved caspase9, caspase3 and phosphorylated Drp1. Mitochondrial PKC-ε translocation was lower in ALDH2 -/- mice than in WT mice, and PKC-δ was the opposite. Further data showed that mitochondrial PKC isoform ratio was regulated by cellular reactive oxygen species (ROS) level, which could be reversed by NAC pre-treatment under I/R injury. In addition, PKC-ε inhibition caused activation of caspase9, caspase3 and Drp1Ser 616 in response to I/R stress. Importantly, expression of phosphorylated GSK-3β (inactive form) was lower in ALDH2 -/- mice than in WT mice, and both were increased by NAC pre-treatment. I/R-induced mitochondrial translocation of GSK-3β was inhibited by PKC-δ shRNA or NAC pre-treatment. In addition

  17. Control mechanisms in mitochondrial oxidative phosphorylation☆

    PubMed Central

    Hroudová, Jana; Fišar, Zdeněk

    2013-01-01

    Distribution and activity of mitochondria are key factors in neuronal development, synaptic plasticity and axogenesis. The majority of energy sources, necessary for cellular functions, originate from oxidative phosphorylation located in the inner mitochondrial membrane. The adenosine-5’- triphosphate production is regulated by many control mechanism–firstly by oxygen, substrate level, adenosine-5’-diphosphate level, mitochondrial membrane potential, and rate of coupling and proton leak. Recently, these mechanisms have been implemented by “second control mechanisms,” such as reversible phosphorylation of the tricarboxylic acid cycle enzymes and electron transport chain complexes, allosteric inhibition of cytochrome c oxidase, thyroid hormones, effects of fatty acids and uncoupling proteins. Impaired function of mitochondria is implicated in many diseases ranging from mitochondrial myopathies to bipolar disorder and schizophrenia. Mitochondrial dysfunctions are usually related to the ability of mitochondria to generate adenosine-5’-triphosphate in response to energy demands. Large amounts of reactive oxygen species are released by defective mitochondria, similarly, decline of antioxidative enzyme activities (e.g. in the elderly) enhances reactive oxygen species production. We reviewed data concerning neuroplasticity, physiology, and control of mitochondrial oxidative phosphorylation and reactive oxygen species production. PMID:25206677

  18. Adenosine 3′,5′-cyclic monophosphate (cAMP)-dependent phosphoregulation of mitochondrial complex I is inhibited by nucleoside reverse transcriptase inhibitors

    PubMed Central

    Lund, Kaleb C.; Wallace, Kendall B.

    2008-01-01

    Nucleoside analog reverse transcriptase inhibitors (NRTI) are known to directly inhibit mitochondrial complex I activity as well as various mitochondrial kinases. Recent observations that complex I activity and superoxide production are modulated through cAMP-dependent phosphorylation suggests a mechanism through which NRTIs may affect mitochondrial respiration via kinase-dependent protein phosphorylation. In the current study we examine the potential for NRTIs to inhibit the cAMP-dependent phosphorylation of complex I and the associated NADH:CoQ oxidoreductase activities and rates of superoxide production using HepG2 cells. Phosphoprotein staining of immunocaptured complex I revealed that 3′-azido-3′-deoxythymidine (AZT; 10 and 50 μM), AZT monophosphate (150 μM), and 2′,3′-dideoxycytidine (ddC; 1μM) prevented the phosphorylation of the NDUFB11 subunit of complex I. This was associated with a decrease in complex I activity with AZT and AZT monophosphate only. In the presence of succinate, superoxide production was increased with 2′,3′-dideoxyinosine (ddI; 10 μM) and ddC (1 μM). In the presence of succinate + cAMP AZT showed an inverse dose-dependent effect on superoxide production. None of the NRTIs examined inhibit PKA activity suggesting that the observed effects are due to a direct interaction with complex I. These data demonstrate a direct effect of NRTIs on cAMP-dependent regulation of mitochondrial bioenergetics independent of DNA polymerase-γ activity; in the case of AZT these observations may provide a mechanism for the observed long-term toxicity with this drug. PMID:17904600

  19. Mitochondrial uncoupling in cancer cells: Liabilities and opportunities.

    PubMed

    Baffy, Gyorgy

    2017-08-01

    Acquisition of the endosymbiotic ancestor of mitochondria was a critical event in eukaryote evolution. Mitochondria offered an unparalleled source of metabolic energy through oxidative phosphorylation and allowed the development of multicellular life. However, as molecular oxygen had become the terminal electron acceptor in most eukaryotic cells, the electron transport chain proved to be the largest intracellular source of superoxide, contributing to macromolecular injury, aging, and cancer. Hence, the 'contract of endosymbiosis' represents a compromise between the possibilities and perils of multicellular life. Uncoupling proteins (UCPs), a group of the solute carrier family of transporters, may remove some of the physiologic constraints that link mitochondrial respiration and ATP synthesis by mediating inducible proton leak and limiting oxidative cell injury. This important property makes UCPs an ancient partner in the metabolic adaptation of cancer cells. Efforts are underway to explore the therapeutic opportunities stemming from the intriguing relationship of UCPs and cancer. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux. Published by Elsevier B.V.

  20. AS-2, a novel inhibitor of p53-dependent apoptosis, prevents apoptotic mitochondrial dysfunction in a transcription-independent manner and protects mice from a lethal dose of ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morita, Akinori, E-mail: morita@tokushima-u.ac.jp; Ariyasu, Shinya; Wang, Bing

    2014-08-08

    Highlights: • A bidentate HQ derivative, AS-2, suppresses p53-dependent apoptosis by DNA damage. • AS-2 does not significantly affect nuclear p53 response. • UV-excited blue emission of AS-2 clearly showed its extranuclear localization. • AS-2 prevents mitochondrial dysfunction despite the increase of mitochondrial p53. • AS-2 protects mice from a radiation dose that causes lethal hematopoietic syndrome. - Abstract: In a previous study, we reported that some tetradentate zinc(II) chelators inhibit p53 through the denaturation of its zinc-requiring structure but a chelator, Bispicen, a potent inhibitor of in vitro apoptosis, failed to show any efficient radioprotective effect against irradiated micemore » because the toxicity of the chelator to mice. The unsuitability of using tetradentate chelators as radioprotectors prompted us to undertake a more extensive search for p53-inhibiting agents that are weaker zinc(II) chelators and therefore less toxic. Here, we show that an 8-hydroxyquinoline (8HQ) derivative, AS-2, suppresses p53-dependent apoptosis through a transcription-independent mechanism. A mechanistic study using cells with different p53 characteristics revealed that the suppressive effect of AS-2 on apoptosis is specifically mediated through p53. In addition, AS-2 was less effective in preventing p53-mediated transcription-dependent events than pifithrin-μ (PFTμ), an inhibitor of transcription-independent apoptosis by p53. Fluorescence visualization of the extranuclear distribution of AS-2 also supports that it is ineffective on the transcription-dependent pathway. Further investigations revealed that AS-2 suppressed mitochondrial apoptotic events, such as the mitochondrial release of intermembrane proteins and the loss of mitochondrial membrane potential, although AS-2 resulted in an increase in the mitochondrial translocation of p53 as opposed to the decrease of cytosolic p53, and did not affect the apoptotic interaction of p53 with Bcl-2

  1. Genetic variants of uncoupling proteins-2 and -3 in relation to maximal oxygen uptake in different sports.

    PubMed

    Holdys, Joanna; Gronek, Piotr; Kryściak, Jakub; Stanisławski, Daniel

    2013-01-01

    Uncoupling proteins 2 and 3 (UCP2 and UCP3) as mitochondrial electron transporters are involved in regulation of ATP production and energy dissipation as heat. Energy efficiency plays an important role in physical performance, especially in aerobic fitness. The aim of this study was to examine the association between maximal oxygen uptake and genetic variants of the UCP2 and UCP3 genes. The studies were carried out in a group of 154 men and 85 women, professional athletes representing various sports and fitness levels and students of the University of Physical Education in Poznań. Physiological and molecular procedures were used, i.e. direct measurement of maximum oxygen uptake (VO₂max) and analysis of an insertion/deletion (I/D) polymorphism in the 3'untranslated region of exon 8 of the UCP2 gene and a C>T substitution in exon 5 (Y210Y) of the UCP3 gene. No statistically significant associations were found, only certain trends. Insertion allele (I) of the I/D UCP2 and the T allele of the UCP3 gene were favourable in obtaining higher VO₂max level and might be considered as endurance-related alleles.

  2. BAIBA Does Not Regulate UCP-3 Expression in Human Skeletal Muscle as a Response to Aerobic Exercise.

    PubMed

    Morales, Flor E; Forsse, Jeffrey S; Andre, Thomas L; McKinley-Barnard, Sarah K; Hwang, Paul S; Anthony, Ian G; Tinsley, Grant M; Spillane, Mike; Grandjean, Peter W; Ramirez, Alejandro; Willoughby, Darryn S

    2017-01-01

    β-Aminoisobutyric acid (BAIBA) has shown to modulate uncoupling protein (UCP)-1 expression, which is mainly expressed in white adipose tissue; however, no studies to date have analyzed its potential effect on the main uncoupling protein of skeletal muscle, UCP-3. The main goal of this study was to assess the potential effect of acute aerobic exercise on serum BAIBA and skeletal muscle UCP-3. The secondary goal was to assess the potential involvement of the transcription factors proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and peroxisome proliferator-activated receptor alpha (PPARα), as well as free fatty acids (FFAs) in UCP-3 expression. A tertiary goal of the study was to evaluate the potential effect of consuming a preexercise meal on the outcome of the first 2 objectives. In a randomized crossover design, untrained participants performed 2 acute cycling sessions (350 kcal at 70% of their VO 2peak ) after 2 experimental conditions: (1) consumption of a multi-macronutrient shake and (2) a fasting period of 8 hours. Blood samples were taken at baseline, preexercise, postexercise, 1 hour, and 4 hours postexercise, and muscle biopsies were taken at the last 4 time points. UCP-3 protein concentration and expression, as well as the mRNA expression of PGC-1α and PPARα, were measured in muscle, and BAIBA, glucose, and FFA were measured in serum. Aerobic exercise failed to induce a significant effect on serum BAIBA, PGC-1α, and PPARα regardless on the feeding condition. Despite the lack of effect of exercise on the previous variables, UCP-3 expression and protein concentration significantly increased in the shake condition. The expression of human skeletal muscle UCP-3 as a result of exercise might be controlled by factors other than BAIBA.

  3. Uncoupling proteins and sleep deprivation.

    PubMed

    Cirelli, C; Tononi, G

    2004-07-01

    In both humans and animals sleep deprivation (SD) produces an increase in food intake and in energy expenditure (EE). The increase in EE is a core element of the SD syndrome and, in rats, is negatively correlated with survival rate. However, the mechanisms involved are not understood. A large component of resting EE is accounted for by the mitochondrial proton leak, which is mediated by uncoupling proteins (UCPs). We measured UCP2, UCP3, and UCP5 mRNA levels in rats during the spontaneous sleep/waking cycle and after short (8 hours) and long (7 days) SD. During spontaneous sleep and waking there was no change in the level of mitochondrial uncoupling as measured by UCPs expression, either in the brain or in peripheral tissues. During SD, by contrast, UCP3 expression in skeletal muscle was elevated, but the increase was similar, compared to sleep, after both short-term and long-term SD. UCP2 expression, on the other hand, was strongly increased in the liver and skeletal muscle of long-term sleep deprived animals and much less so, or not at all, in yoked controls or in rats that lost only 8 hours of sleep. Since the skeletal muscle is the largest tissue in the body, an elevated muscular expression of UCP2 is likely to affect the overall resting EE and may thus contribute to its increase after SD.

  4. Impaired adaptability of in vivo mitochondrial energetics to acute oxidative insult in aged skeletal muscle.

    PubMed

    Siegel, Michael P; Wilbur, Tim; Mathis, Mark; Shankland, Eric G; Trieu, Atlas; Harper, Mary-Ellen; Marcinek, David J

    2012-01-01

    Periods of elevated reactive oxygen species (ROS) production are a normal part of mitochondrial physiology. However, little is known about age-related changes in the mitochondrial response to elevated ROS in vivo. Significantly, ROS-induced uncoupling of oxidative phosphorylation has received attention as a negative feedback mechanism to reduce mitochondrial superoxide production. Here we use a novel in vivo spectroscopy system to test the hypothesis that ROS-induced uncoupling is diminished in aged mitochondria. This system simultaneously acquires (31)P magnetic resonance and near-infrared optical spectra to non-invasively measure phosphometabolite and O(2) concentrations in mouse skeletal muscle. Using low dose paraquat to elevate intracellular ROS we assess in vivo mitochondrial function in young, middle aged, and old mice. Oxidative phosphorylation was uncoupled to the same degree in response to ROS at each age, but this uncoupling was associated with loss of phosphorylation capacity and total ATP in old mice only. Using mice lacking UCP3 we demonstrate that this in vivo uncoupling is independent of this putative uncoupler of skeletal muscle mitochondria. These data indicate that ROS-induced uncoupling persists throughout life, but that oxidative stress leads to mitochondrial deficits and loss of ATP in aged organisms that may contribute to impaired function and degeneration. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Increased uncoupling protein-2 mRNA abundance and glucocorticoid action in adipose tissue in the sheep fetus during late gestation is dependent on plasma cortisol and triiodothyronine

    PubMed Central

    Gnanalingham, MG; Mostyn, A; Forhead, AJ; Fowden, AL; Symonds, ME; Stephenson, T

    2005-01-01

    The endocrine regulation of uncoupling protein-2 (UCP2), an inner mitochondrial protein, in fetal adipose tissue remains unclear. The present study aimed to determine if fetal plasma cortisol and triiodothyronine (T3) influenced the mRNA abundance of UCP2, glucocorticoid receptor (GR) and 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) and 2 (11βHSD2) in fetal adipose tissue in the sheep during late gestation. Perirenal–abdominal adipose tissue was sampled from ovine fetuses to which either cortisol (2–3 mg kg−1 day−1) or saline was infused for 5 days up to 127–130 days gestation, or near term fetuses (i.e. 142–145 days gestation) that were either adrenalectomised (AX) or remained intact. Fetal plasma cortisol and T3 concentrations were higher in the cortisol infused animals and lower in AX fetuses compared with their corresponding control group, and increased with gestational age. UCP2 and GR mRNA abundance were significantly lower in AX fetuses compared with age-matched controls, and increased with gestational age and by cortisol infusion. Glucocorticoid action in fetal adipose tissue was augmented by AX and suppressed by cortisol infusion, the latter also preventing the gestational increase in 11βHSD1 mRNA and decrease in 11βHSD2 mRNA. When all treatment groups were combined, both fetal plasma cortisol and T3 concentrations were positively correlated with UCP2, GR and 11βHSD2 mRNA abundance, but negatively correlated with 11βHSD1 mRNA abundance. In conclusion, plasma cortisol and T3 are both required for the late gestation rise in UCP2 mRNA and differentially regulate glucocorticoid action in fetal adipose tissue in the sheep during late gestation. PMID:15961419

  6. Sources, mechanisms, and consequences of chemical-induced mitochondrial toxicity

    PubMed Central

    Meyer, Joel N.; Chan, Sherine S. L.

    2017-01-01

    Mitochondrial function is critical for health, as demonstrated by the effects of mitochondrial toxicity, mutations in genes encoding mitochondrial proteins, and the role of mitochondrial dysfunction in many chronic diseases. However, much basic mitochondrial biology is still being discovered. Furthermore, the details of how different environmental exposures affect mitochondria, how mitochondria respond to stressors, and how genetic variation affecting mitochondrial function alters response to exposures are areas of rapid research growth. This Special Issue was created to highlight and review cutting-edge areas of research into chemical effects on mitochondrial function. We anticipate that it will stimulate additional research into the mechanisms by which chemical exposures impact mitochondria, the biological processes that protect mitochondria from such impacts, and the health consequences that result when defense and homeostatic mechanisms are overcome. PMID:28627407

  7. Bruton's tyrosine kinase inhibition increases BCL-2 dependence and enhances sensitivity to venetoclax in chronic lymphocytic leukemia.

    PubMed

    Deng, J; Isik, E; Fernandes, S M; Brown, J R; Letai, A; Davids, M S

    2017-10-01

    Although the BTK inhibitor ibrutinib has transformed the management of patients with chronic lymphocytic leukemia (CLL), it does not induce substantial apoptosis in vitro, and as such the mechanisms underlying its ability to kill CLL cells are not well understood. Acalabrutinib, a more specific BTK inhibitor now in development, also appears to be highly effective in CLL, but the connection of its mechanism with CLL cell death is also unclear. Using dynamic BH3 profiling, we analyzed alterations in the function of the mitochondrial apoptotic pathway induced by ibrutinib and acalabrutinib. We studied CLL patient samples treated ex vivo with both drugs, as well as primary samples from CLL patients on clinical trials of both drugs. We found that BTK inhibition enhances mitochondrial BCL-2 dependence without significantly altering overall mitochondrial priming. Enhancement of BCL-2 dependence was accompanied by an increase in the pro-apoptotic protein BIM. In contrast, treatment with the selective BCL-2 inhibitor venetoclax enhanced overall mitochondrial priming without increasing BCL-2 dependence. Pre-treatment of CLL cells with either BTK inhibitor, whether ex vivo or in vivo in patients, enhanced killing by venetoclax. Our data suggest that BTK inhibition enhances mitochondrial BCL-2 dependence, supporting the ongoing development of clinical trials combining BTK and BCL-2 inhibition.

  8. Cell Death and Heart Failure in Obesity: Role of Uncoupling Proteins

    PubMed Central

    Ruiz-Ramírez, Angélica; López-Acosta, Ocarol; Barrios-Maya, Miguel Angel

    2016-01-01

    Metabolic diseases such as obesity, metabolic syndrome, and type II diabetes are often characterized by increased reactive oxygen species (ROS) generation in mitochondrial respiratory complexes, associated with fat accumulation in cardiomyocytes, skeletal muscle, and hepatocytes. Several rodents studies showed that lipid accumulation in cardiac myocytes produces lipotoxicity that causes apoptosis and leads to heart failure, a dynamic pathological process. Meanwhile, several tissues including cardiac tissue develop an adaptive mechanism against oxidative stress and lipotoxicity by overexpressing uncoupling proteins (UCPs), specific mitochondrial membrane proteins. In heart from rodent and human with obesity, UCP2 and UCP3 may protect cardiomyocytes from death and from a state progressing to heart failure by downregulating programmed cell death. UCP activation may affect cytochrome c and proapoptotic protein release from mitochondria by reducing ROS generation and apoptotic cell death. Therefore the aim of this review is to discuss recent findings regarding the role that UCPs play in cardiomyocyte survival by protecting against ROS generation and maintaining bioenergetic metabolism homeostasis to promote heart protection. PMID:27642497

  9. Mitochondrial Ca2+ and membrane potential, an alternative pathway for Interleukin 6 to regulate CD4 cell effector function

    PubMed Central

    Yang, Rui; Lirussi, Dario; Thornton, Tina M; Jelley-Gibbs, Dawn M; Diehl, Sean A; Case, Laure K; Madesh, Muniswamy; Taatjes, Douglas J; Teuscher, Cory; Haynes, Laura; Rincón, Mercedes

    2015-01-01

    IL-6 plays an important role in determining the fate of effector CD4 cells and the cytokines that these cells produce. Here we identify a novel molecular mechanism by which IL-6 regulates CD4 cell effector function. We show that IL-6-dependent signal facilitates the formation of mitochondrial respiratory chain supercomplexes to sustain high mitochondrial membrane potential late during activation of CD4 cells. Mitochondrial hyperpolarization caused by IL-6 is uncoupled from the production of ATP by oxidative phosphorylation. However, it is a mechanism to raise the levels of mitochondrial Ca2+ late during activation of CD4 cells. Increased levels of mitochondrial Ca2+ in the presence of IL-6 are used to prolong Il4 and Il21 expression in effector CD4 cells. Thus, the effect of IL-6 on mitochondrial membrane potential and mitochondrial Ca2+ is an alternative pathway by which IL-6 regulates effector function of CD4 cells and it could contribute to the pathogenesis of inflammatory diseases. DOI: http://dx.doi.org/10.7554/eLife.06376.001 PMID:25974216

  10. Quality Saving Mechanisms of Mitochondria during Aging in a Fully Time-Dependent Computational Biophysical Model

    PubMed Central

    Mellem, Daniel; Fischer, Frank; Jaspers, Sören; Wenck, Horst; Rübhausen, Michael

    2016-01-01

    Mitochondria are essential for the energy production of eukaryotic cells. During aging mitochondria run through various processes which change their quality in terms of activity, health and metabolic supply. In recent years, many of these processes such as fission and fusion of mitochondria, mitophagy, mitochondrial biogenesis and energy consumption have been subject of research. Based on numerous experimental insights, it was possible to qualify mitochondrial behaviour in computational simulations. Here, we present a new biophysical model based on the approach of Figge et al. in 2012. We introduce exponential decay and growth laws for each mitochondrial process to derive its time-dependent probability during the aging of cells. All mitochondrial processes of the original model are mathematically and biophysically redefined and additional processes are implemented: Mitochondrial fission and fusion is separated into a metabolic outer-membrane part and a protein-related inner-membrane part, a quality-dependent threshold for mitophagy and mitochondrial biogenesis is introduced and processes for activity-dependent internal oxidative stress as well as mitochondrial repair mechanisms are newly included. Our findings reveal a decrease of mitochondrial quality and a fragmentation of the mitochondrial network during aging. Additionally, the model discloses a quality increasing mechanism due to the interplay of the mitophagy and biogenesis cycle and the fission and fusion cycle of mitochondria. It is revealed that decreased mitochondrial repair can be a quality saving process in aged cells. Furthermore, the model finds strategies to sustain the quality of the mitochondrial network in cells with high production rates of reactive oxygen species due to large energy demands. Hence, the model adds new insights to biophysical mechanisms of mitochondrial aging and provides novel understandings of the interdependency of mitochondrial processes. PMID:26771181

  11. OXPHOS-Dependent Cells Identify Environmental Disruptors of Mitochondrial Function

    EPA Science Inventory

    Mitochondrial dysfunction is associated with numerous chronic diseases including metabolic syndrome. Environmental chemicals can impair mitochondrial function through numerous mechanisms such as membrane disruption, complex inhibition and electron transport chain uncoupling. Curr...

  12. Inhibition of Uncoupling Protein 2 Attenuates Cardiac Hypertrophy Induced by Transverse Aortic Constriction in Mice.

    PubMed

    Ji, Xiao-Bing; Li, Xiu-Rong; Hao-Ding; Sun, Qi; Zhou, Yang; Wen, Ping; Dai, Chun-Sun; Yang, Jun-Wei

    2015-01-01

    Uncoupling protein 2 (UCP2) is critical in regulating energy metabolism. Due to the significant change in energy metabolism of myocardium upon pressure overload, we hypothesize that UCP2 could contribute to the etiology of cardiac hypertrophy. Adult male C57BL/6J mice were subjected to pressure overload by using transverse aortic constriction (TAC), and then received genipin (a UCP2 selective inhibitor; 25 mg/kg/d, ip) or vehicle for three weeks prior to histologic assessment of myocardial hypertrophy. ATP concentration, ROS level, and myocardial apoptosis were also examined. A parallel set of experiments was also conducted in UCP2-/- mice. TAC induced left ventricular hypertrophy, as reflected by increased ventricular weight/thickness and increased size of myocardial cell (vs. sham controls). ATP concentration was decreased; ROS level was increased. Apoptosis and fibrosis markers were increased. TAC increased mitochondrial UCP2 expression in the myocardium at both mRNA and protein levels. Genipin treatment attenuated cardiac hypertrophy and the histologic/biochemical changes described above. Hypertrophy and associated changes induced by TAC in UCP2-/- mice were much less pronounced than in WT mice. Blocking UCP2 expression attenuates cardiac hypertrophy induced by pressure overload. © 2015 S. Karger AG, Basel.

  13. Acetyl-L-carnitine supplementation to old rats partially reverts the age-related mitochondrial decay of soleus muscle by activating peroxisome proliferator-activated receptor gamma coactivator-1alpha-dependent mitochondrial biogenesis.

    PubMed

    Pesce, Vito; Fracasso, Flavio; Cassano, Pierluigi; Lezza, Angela Maria Serena; Cantatore, Palmiro; Gadaleta, Maria Nicola

    2010-01-01

    The age-related decay of mitochondrial function is a major contributor to the aging process. We tested the effects of 2-month-daily acetyl-L-carnitine (ALCAR) supplementation on mitochondrial biogenesis in the soleus muscle of aged rats. This muscle is heavily dependent on oxidative metabolism. Mitochondrial (mt) DNA content, citrate synthase activity, transcript levels of some nuclear- and mitochondrial-coded genes (cytochrome c oxidase subunit IV [COX-IV], 16S rRNA, COX-I) and of some factors involved in the mitochondrial biogenesis signaling pathway (peroxisome proliferator-activated receptor gamma [PPARgamma] coactivator-1alpha [PGC-1alpha], mitochondrial transcription factor A mitochondrial [TFAM], mitochondrial transcription factor 2B [TFB2]), as well as the protein content of PGC-1alpha were determined. The results suggest that the ALCAR treatment in old rats activates PGC-1alpha-dependent mitochondrial biogenesis, thus partially reverting the age-related mitochondrial decay.

  14. Bruton’s tyrosine kinase inhibition increases BCL-2 dependence and enhances sensitivity to venetoclax in chronic lymphocytic leukemia

    PubMed Central

    Deng, Jing; Isik, Elif; Fernandes, Stacey M.; Brown, Jennifer R.; Letai, Anthony; Davids, Matthew S.

    2017-01-01

    Although the BTK inhibitor ibrutinib has transformed the management of patients with CLL, it does not induce substantial apoptosis in vitro, and as such the mechanisms underlying its ability to kill CLL cells are not well understood. Acalabrutinib, a more specific BTK inhibitor now in development, also appears to be highly effective in CLL, but the connection of its mechanism with CLL cell death is also unclear. Using dynamic BH3 profiling, we analyzed alterations in the function of the mitochondrial apoptotic pathway induced by ibrutinib and acalabrutinib. We studied CLL patient samples treated ex vivo with both drugs, as well as primary samples from CLL patients on clinical trials of both drugs. We found that BTK inhibition enhances mitochondrial BCL-2 dependence without significantly altering overall mitochondrial priming. Enhancement of BCL-2 dependence was accompanied by an increase in the pro-apoptotic protein BIM. In contrast, treatment with the selective BCL-2 inhibitor venetoclax enhanced overall mitochondrial priming without increasing BCL-2 dependence. Pre-treatment of CLL cells with either BTK inhibitor, whether ex vivo or in vivo in patients, enhanced killing by venetoclax. Our data suggest that BTK inhibition enhances mitochondrial BCL2 dependence, supporting the ongoing development of clinical trials combining BTK and BCL-2 inhibition. PMID:28111464

  15. Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration

    PubMed Central

    Stevens, Daniel A.; Lee, Yunjong; Kang, Ho Chul; Lee, Byoung Dae; Lee, Yun-Il; Bower, Aaron; Jiang, Haisong; Kang, Sung-Ung; Andrabi, Shaida A.; Dawson, Valina L.; Shin, Joo-Ho; Dawson, Ted M.

    2015-01-01

    Mutations in parkin lead to early-onset autosomal recessive Parkinson’s disease (PD) and inactivation of parkin is thought to contribute to sporadic PD. Adult knockout of parkin in the ventral midbrain of mice leads to an age-dependent loss of dopamine neurons that is dependent on the accumulation of parkin interacting substrate (PARIS), zinc finger protein 746 (ZNF746), and its transcriptional repression of PGC-1α. Here we show that adult knockout of parkin in mouse ventral midbrain leads to decreases in mitochondrial size, number, and protein markers consistent with a defect in mitochondrial biogenesis. This decrease in mitochondrial mass is prevented by short hairpin RNA knockdown of PARIS. PARIS overexpression in mouse ventral midbrain leads to decreases in mitochondrial number and protein markers and PGC-1α–dependent deficits in mitochondrial respiration. Taken together, these results suggest that parkin loss impairs mitochondrial biogenesis, leading to declining function of the mitochondrial pool and cell death. PMID:26324925

  16. Calcium-Induced Mitochondrial Permeability Transitions: Parameters of Ca2+ Ion Interactions with Mitochondria and Effects of Oxidative Agents.

    PubMed

    Golovach, Nina G; Cheshchevik, Vitali T; Lapshina, Elena A; Ilyich, Tatsiana V; Zavodnik, Ilya B

    2017-04-01

    We evaluated the parameters of Ca 2+ -induced mitochondrial permeability transition (MPT) pore formations, Ca 2+ binding constants, stoichiometry, energy of activation, and the effect of oxidative agents, tert-butyl hydroperoxide (tBHP), and hypochlorous acid (HOCl), on Ca 2+ -mediated process in rat liver mitochondria. From the Hill plot of the dependence of MPT rate on Ca 2+ concentration, we determined the order of interaction of Ca 2+ ions with the mitochondrial sites, n = 3, and the apparent K d = 60 ± 12 µM. We also found the apparent Michaelis-Menten constant, K m , for Ca 2+ interactions with mitochondria to be equal to 75 ± 20 µM, whereas that in the presence of 300 µM tBHP was 120 ± 20 µM. Using the Arrhenius plots of the temperature dependences of apparent mitochondrial swelling rate at various Ca 2+ concentrations, we calculated the activation energy of the MPT process. ΔE a was 130 ± 20 kJ/mol at temperatures below the break point of the Arrhenius plot (30-34 °C) and 50 ± 9 kJ/mol at higher temperatures. Ca 2+ ions induced rapid mitochondrial NADH depletion and membrane depolarization. Prevention of the pore formation by cyclosporin A inhibited Ca 2+ -dependent mitochondrial depolarization and Mg 2+ ions attenuated the potential dissipation. tBHP (10-150 µM) dose-dependently enhanced the rate of MPT opening, whereas the effect of HOCl on MPT depended on the ratio of HOCl/Ca 2+ . The apparent K m of tBHP interaction with mitochondria in the swelling reaction was found to be K m = 11 ± 3 µM. The present study provides evidence that three calcium ions interact with mitochondrial site with high affinity during MPT. Ca 2+ -induced MPT pore formations due to mitochondrial membrane protein denaturation resulted in membrane potential dissipation. Oxidants with different mechanisms, tBHP and HOCl, reduced mitochondrial membrane potential and oxidized mitochondrial NADH in EDTA-free medium and had an effect on

  17. Eicosapentaenoic acid and arachidonic acid differentially regulate adipogenesis, acquisition of a brite phenotype and mitochondrial function in primary human adipocytes.

    PubMed

    Fleckenstein-Elsen, Manuela; Dinnies, Daniela; Jelenik, Tomas; Roden, Michael; Romacho, Tania; Eckel, Jürgen

    2016-09-01

    n-3 and n-6 PUFAs have several opposing biological effects and influence white adipose tissue (WAT) function. The recent discovery of thermogenic UCP1-expressing brite adipocytes within WAT raised the question whether n-3 and n-6 PUFAs exert differential effects on brite adipocyte formation and mitochondrial function. Primary human preadipocytes were treated with n-3 PUFAs (eicosapentaenoic acid, EPA; docosahexaenoic acid, DHA) or n-6 PUFA (arachidonic acid, ARA) during differentiation, and adipogenesis, white and brite gene expression markers, mitochondrial content and function were analyzed at day 12 of differentiation. Adipogenesis was equally increased by n-3 and n-6 PUFAs. The n-6 PUFA ARA increased lipid droplet size and expression of the white-specific marker TCF21 while decreased mitochondrial protein expression and respiratory function. In contrast, EPA increased expression of the brown adipocyte-related genes UCP1 and CPT1B, and improved mitochondrial function of adipocytes. The opposing effects of EPA and ARA on gene expression and mitochondrial function were also observed in cells treated from day 8 to 12 of adipocyte differentiation. EPA promotes brite adipogenesis and improves parameters of mitochondrial function, such as increased expression of CPTB1, citrate synthase activity and higher maximal respiratory capacity, while ARA reduced mitochondrial spare respiratory capacity in vitro. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to inhibit hepatocellular carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Meili, E-mail: fumeilidrlinyi@tom.com; Wan, Fuqiang; Li, Zhengling

    The aim of the present study is to investigate the potential anti-hepatocellular carcinoma (HCC) cell activity by 4SC-202, a novel class I HDAC inhibitor (HDACi). The associated signaling mechanisms were also analyzed. We showed that 4SC-202 treatment induced potent cytotoxic and proliferation–inhibitory activities against established HCC cell lines (HepG2, HepB3, SMMC-7721) and patient-derived primary HCC cells. Further, adding 4SC-202 in HCC cells activated mitochondrial apoptosis pathway, which was evidenced by mitochondrial permeability transition pore (mPTP) opening, cytochrome C cytosol release and caspase-3/-9 activation. Inhibition of this apoptosis pathway, by caspase-3/-9 inhibitors, mPTP blockers, or by shRNA-mediated knockdown of cyclophilin-D (Cyp-D,more » a key component of mPTP), significantly attenuated 4SC-202-induced HCC cell death and apoptosis. Reversely, over-expression of Cyp-D enhanced 4SC-202's sensitivity in HCC cells. Further studies showed that 4SC-202 induced apoptosis signal-regulating kinase 1 (ASK1) activation, causing it translocation to mitochondria and physical association with Cyp-D. This mitochondrial ASK1-Cyp-D complexation appeared required for mediating 4SC-202-induced apoptosis activation. ASK1 stable knockdown by targeted-shRNAs largely inhibited 4SC-202-induced mPTP opening, cytochrome C release, and following HCC cell apoptotic death. Together, we suggest that 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to potently inhibit human HCC cells. - Highlights: • 4SC-202 exerts potent anti-proliferative and cytotoxic activity against established/primary HCC cells. • SC-202-induced anti-HCC cell activity relies on caspase-dependent apoptosis activation. • 4SC-202 activates Cyp-D-dependent mitochondrial apoptosis pathway in HCC cells. • 4SC-202 activates ASK1 in HCC cells, causing it translocation to mitochondria. • Mitochondrial ASK1-Cyp-D complexation mediates 4SC-202's activity in HCC cells.« less

  19. Mg(2+) differentially regulates two modes of mitochondrial Ca(2+) uptake in isolated cardiac mitochondria: implications for mitochondrial Ca(2+) sequestration.

    PubMed

    Blomeyer, Christoph A; Bazil, Jason N; Stowe, David F; Dash, Ranjan K; Camara, Amadou K S

    2016-06-01

    The manner in which mitochondria take up and store Ca(2+) remains highly debated. Recent experimental and computational evidence has suggested the presence of at least two modes of Ca(2+) uptake and a complex Ca(2+) sequestration mechanism in mitochondria. But how Mg(2+) regulates these different modes of Ca(2+) uptake as well as mitochondrial Ca(2+) sequestration is not known. In this study, we investigated two different ways by which mitochondria take up and sequester Ca(2+) by using two different protocols. Isolated guinea pig cardiac mitochondria were exposed to varying concentrations of CaCl2 in the presence or absence of MgCl2. In the first protocol, A, CaCl2 was added to the respiration buffer containing isolated mitochondria, whereas in the second protocol, B, mitochondria were added to the respiration buffer with CaCl2 already present. Protocol A resulted first in a fast transitory uptake followed by a slow gradual uptake. In contrast, protocol B only revealed a slow and gradual Ca(2+) uptake, which was approximately 40 % of the slow uptake rate observed in protocol A. These two types of Ca(2+) uptake modes were differentially modulated by extra-matrix Mg(2+). That is, Mg(2+) markedly inhibited the slow mode of Ca(2+) uptake in both protocols in a concentration-dependent manner, but not the fast mode of uptake exhibited in protocol A. Mg(2+) also inhibited Na(+)-dependent Ca(2+) extrusion. The general Ca(2+) binding properties of the mitochondrial Ca(2+) sequestration system were reaffirmed and shown to be independent of the mode of Ca(2+) uptake, i.e. through the fast or slow mode of uptake. In addition, extra-matrix Mg(2+) hindered Ca(2+) sequestration. Our results indicate that mitochondria exhibit different modes of Ca(2+) uptake depending on the nature of exposure to extra-matrix Ca(2+), which are differentially sensitive to Mg(2+). The implications of these findings in cardiomyocytes are discussed.

  20. Neuronal Ca2+ sensor-1 contributes to stress tolerance in cardiomyocytes via activation of mitochondrial detoxification pathways.

    PubMed

    Nakamura, Tomoe Y; Nakao, Shu; Wakabayashi, Shigeo

    2016-10-01

    Identification of the molecules involved in cell death/survival pathways is important for understanding the mechanisms of cell loss in cardiac disease, and thus is clinically relevant. Ca 2+ -dependent signals are often involved in these pathways. Here, we found that neuronal Ca 2+ -sensor-1 (NCS-1), a Ca 2+ -binding protein, has an important role in cardiac survival during stress. Cardiomyocytes derived from NCS-1-deficient (Ncs1 -/- ) mice were more susceptible to oxidative and metabolic stress than wild-type (WT) myocytes. Cellular ATP levels and mitochondrial respiration rates, as well as the levels of mitochondrial marker proteins, were lower in Ncs1 -/- myocytes. Although oxidative stress elevated mitochondrial proton leak, which exerts a protective effect by inhibiting the production of reactive oxygen species in WT myocytes, this response was considerably diminished in Ncs1 -/- cardiomyocytes, and this would be a major reason for cell death. Consistently, H 2 O 2 -induced loss of mitochondrial membrane potential, a critical early event in cell death, was accelerated in Ncs1 -/- myocytes. Furthermore, NCS-1 was upregulated in hearts subjected to ischemia-reperfusion, and ischemia-reperfusion injury was more severe in Ncs1 -/- hearts. Activation of stress-induced Ca 2+ -dependent survival pathways, such as Akt and PGC-1α (which promotes mitochondrial biogenesis and function), was diminished in Ncs1 -/- hearts. Overall, these data demonstrate that NCS-1 contributes to stress tolerance in cardiomyocytes at least in part by activating certain Ca 2+ -dependent survival pathways that promote mitochondrial biosynthesis/function and detoxification pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Mitochondrial ADP/ATP exchange inhibition: a novel off-target mechanism underlying ibipinabant-induced myotoxicity.

    PubMed

    Schirris, Tom J J; Ritschel, Tina; Herma Renkema, G; Willems, Peter H G M; Smeitink, Jan A M; Russel, Frans G M

    2015-09-29

    Cannabinoid receptor 1 (CB1R) antagonists appear to be promising drugs for the treatment of obesity, however, serious side effects have hampered their clinical application. Rimonabant, the first in class CB1R antagonist, was withdrawn from the market because of psychiatric side effects. This has led to the search for more peripherally restricted CB1R antagonists, one of which is ibipinabant. However, this 3,4-diarylpyrazoline derivative showed muscle toxicity in a pre-clinical dog study with mitochondrial dysfunction. Here, we studied the molecular mechanism by which ibipinabant induces mitochondrial toxicity. We observed a strong cytotoxic potency of ibipinabant in C2C12 myoblasts. Functional characterization of mitochondria revealed increased cellular reactive oxygen species generation and a decreased ATP production capacity, without effects on the catalytic activities of mitochondrial enzyme complexes I-V or the complex specific-driven oxygen consumption. Using in silico off-target prediction modelling, combined with in vitro validation in isolated mitochondria and mitoplasts, we identified adenine nucleotide translocase (ANT)-dependent mitochondrial ADP/ATP exchange as a novel molecular mechanism underlying ibipinabant-induced toxicity. Minor structural modification of ibipinabant could abolish ANT inhibition leading to a decreased cytotoxic potency, as observed with the ibipinabant derivative CB23. Our results will be instrumental in the development of new types of safer CB1R antagonists.

  2. Alteration in mitochondrial Ca(2+) uptake disrupts insulin signaling in hypertrophic cardiomyocytes.

    PubMed

    Gutiérrez, Tomás; Parra, Valentina; Troncoso, Rodrigo; Pennanen, Christian; Contreras-Ferrat, Ariel; Vasquez-Trincado, César; Morales, Pablo E; Lopez-Crisosto, Camila; Sotomayor-Flores, Cristian; Chiong, Mario; Rothermel, Beverly A; Lavandero, Sergio

    2014-11-07

    Cardiac hypertrophy is characterized by alterations in both cardiac bioenergetics and insulin sensitivity. Insulin promotes glucose uptake by cardiomyocytes and its use as a substrate for glycolysis and mitochondrial oxidation in order to maintain the high cardiac energy demands. Insulin stimulates Ca(2+) release from the endoplasmic reticulum, however, how this translates to changes in mitochondrial metabolism in either healthy or hypertrophic cardiomyocytes is not fully understood. In the present study we investigated insulin-dependent mitochondrial Ca(2+) signaling in normal and norepinephrine or insulin like growth factor-1-induced hypertrophic cardiomyocytes. Using mitochondrion-selective Ca(2+)-fluorescent probes we showed that insulin increases mitochondrial Ca(2+) levels. This signal was inhibited by the pharmacological blockade of either the inositol 1,4,5-triphosphate receptor or the mitochondrial Ca(2+) uniporter, as well as by siRNA-dependent mitochondrial Ca(2+) uniporter knockdown. Norepinephrine-stimulated cardiomyocytes showed a significant decrease in endoplasmic reticulum-mitochondrial contacts compared to either control or insulin like growth factor-1-stimulated cells. This resulted in a reduction in mitochondrial Ca(2+) uptake, Akt activation, glucose uptake and oxygen consumption in response to insulin. Blocking mitochondrial Ca(2+) uptake was sufficient to mimic the effect of norepinephrine-induced cardiomyocyte hypertrophy on insulin signaling. Mitochondrial Ca(2+) uptake is a key event in insulin signaling and metabolism in cardiomyocytes.

  3. [Endoplasmic-mitochondrial Ca(2+)-functional unit: dependence of respiration of secretory cells on activity of ryanodine- and IP3 - sensitive Ca(2+)-channels].

    PubMed

    Velykopols'ka, O Iu; Man'ko, B O; Man'ko, V V

    2012-01-01

    Using Clark oxygen electrode, dependence of mitochondrial functions on Ca(2+)-release channels activity of Chironomus plumosus L. larvae salivary glands suspension was investigated. Cells were ATP-permeabilized in order to enable penetration of exogenous oxidative substrates. Activation of plasmalemmal P2X-receptors (as well as P2Y-receptors) per se does not modify the endogenous respiration of salivary gland suspension. That is, Ca(2+)-influx from extracellular medium does not influence functional activity of mitochondria, although they are located along the basal part of the plasma membrane. Activation of RyRs intensifies endogenous respiration and pyruvate-malate-stimulated respiration, but not succinate-stimulated respiration. Neither activation of IP3Rs (via P2Y-receptors activation), nor their inhibition alters endogenous respiration. Nevertheless, IP3Rs inhibition by 2-APB intensifies succinate-stimulated respiration. All abovementioned facts testify that Ca2+, released from stores via channels, alters functional activity of mitochondria, and undoubtedly confirm the existence of endoplasmic-mitochondrial Ca(2+)-functional unit in Ch. plumosus larvae salivary glands secretory cells. In steady state of endoplasmic-mitochondrial Ca(2+)-functional unit the spontaneous activity of IP3Rs is observed; released through IP3Rs, Ca2+ is accumulated in mitochondria via uniporter and modulates oxidative processes. Activation of RyRs induces the transition of endoplasmic-mitochondrial Ca(2+)-functional unit to the active state, which is required to intensify cell respiration and oxidative phosphorylation. As expected, the transition of endoplasmic-mitochondrial Ca(2+)-functional unit to inactivated state (i. e. inhibition of Ca(2+)-release channels at excessive [Ca2+]i) limits the duration of signal transduction, has protective nature and prevents apoptosis.

  4. Chronic aerobic exercise training attenuates aortic stiffening and endothelial dysfunction through preserving aortic mitochondrial function in aged rats.

    PubMed

    Gu, Qi; Wang, Bing; Zhang, Xiao-Feng; Ma, Yan-Ping; Liu, Jian-Dong; Wang, Xiao-Ze

    2014-08-01

    Aging leads to large vessel arterial stiffening and endothelial dysfunction, which are important determinants of cardiovascular risk. The aim of present work was to assess the effects of chronic aerobic exercise training on aortic stiffening and endothelial dysfunction in aged rats and investigate the underlying mechanism about mitochondrial function. Chronic aerobic exercise training attenuated aortic stiffening with age marked by reduced collagen concentration, increased elastin concentration and reduced pulse wave velocity (PWV), and prevented aging-related endothelial dysfunction marked by improved endothelium-mediated vascular relaxation of aortas in response to acetylcholine. Chronic aerobic exercise training abated oxidative stress and nitrosative stress in aortas of aged rats. More importantly, we found that chronic aerobic exercise training in old rats preserved aortic mitochondrial function marked by reduced reactive oxygen species (ROS) formation and mitochondrial swelling, increased ATP formation and mitochondrial DNA content, and restored activities of complexes I and III and electron-coupling capacity between complexes I and III and between complexes II and III. In addition, it was found that chronic aerobic exercise training in old rats enhanced protein expression of uncoupling protein 2 (UCP-2), peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), manganese superoxide dismutase (Mn-SOD), aldehyde dehydrogenase 2 (ALDH-2), prohibitin (PHB) and AMP-activated kinase (AMPK) phosphorylation in aortas. In conclusion, chronic aerobic exercise training preserved mitochondrial function in aortas, which, at least in part, explained the aorta-protecting effects of exercise training in aging. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Rosiglitazone-Induced Mitochondrial Biogenesis in White Adipose Tissue Is Independent of Peroxisome Proliferator-Activated Receptor γ Coactivator-1α

    PubMed Central

    Pardo, Rosario; Enguix, Natàlia; Lasheras, Jaime; Feliu, Juan E.; Kralli, Anastasia; Villena, Josep A.

    2011-01-01

    Background Thiazolidinediones, a family of insulin-sensitizing drugs commonly used to treat type 2 diabetes, are thought to exert their effects in part by promoting mitochondrial biogenesis in white adipose tissue through the transcriptional coactivator PGC-1α (Peroxisome Proliferator-Activated Receptor γ Coactivator-1α). Methodology/Principal Findings To assess the role of PGC-1α in the control of rosiglitazone-induced mitochondrial biogenesis, we have generated a mouse model that lacks expression of PGC-1α specifically in adipose tissues (PGC-1α-FAT-KO mice). We found that expression of genes encoding for mitochondrial proteins involved in oxidative phosphorylation, tricarboxylic acid cycle or fatty acid oxidation, was similar in white adipose tissue of wild type and PGC-1α-FAT-KO mice. Furthermore, the absence of PGC-1α did not prevent the positive effect of rosiglitazone on mitochondrial gene expression or biogenesis, but it precluded the induction by rosiglitazone of UCP1 and other brown fat-specific genes in white adipose tissue. Consistent with the in vivo findings, basal and rosiglitazone-induced mitochondrial gene expression in 3T3-L1 adipocytes was unaffected by the knockdown of PGC-1α but it was impaired when PGC-1β expression was knockdown by the use of specific siRNA. Conclusions/Significance These results indicate that in white adipose tissue PGC-1α is dispensable for basal and rosiglitazone-induced mitochondrial biogenesis but required for the rosiglitazone-induced expression of UCP1 and other brown adipocyte-specific markers. Our study suggests that PGC-1α is important for the appearance of brown adipocytes in white adipose tissue. Our findings also provide evidence that PGC-1β and not PGC-1α regulates basal and rosiglitazone-induced mitochondrial gene expression in white adipocytes. PMID:22087241

  6. The mitochondrial calcium uniporter is involved in mitochondrial calcium cycle dysfunction: Underlying mechanism of hypertension associated with mitochondrial tRNA(Ile) A4263G mutation.

    PubMed

    Chen, Xi; Zhang, Yu; Xu, Bin; Cai, Zhongqi; Wang, Lin; Tian, Jinwen; Liu, Yuqi; Li, Yang

    2016-09-01

    Recent studies have shown that the mitochondrial DNA mutations are involved in the pathogenesis of hypertension. Our previous study identified mitochondrial tRNA(Ile) A4263G mutation in a large Chinese Han family with maternally-inherited hypertension. This mutation may contribute to mitochondrial Ca(2+) cycling dysfuntion, but the mechanism is unclear. Lymphoblastoid cell lines were derived from hypertensive and normotensive individuals, either with or without tRNA(Ile) A4263G mutation. The mitochondrial calcium ([Ca(2+)]m) in cells from hypertensive subjects with the tRNA(Ile) A4263G mutation, was lower than in cells from normotension or hypertension without mutation, or normotension with mutation (P<0.05). Meanwhile, cytosolic calcium ([Ca(2+)]c) in hypertensive with mutation cells was higher than another three groups. After exposure to caffeine, which could increase the [Ca(2+)]c by activating ryanodine receptor on endoplasmic reticulum, [Ca(2+)]c/[Ca(2+)]m increased higher than in hypertensive with mutation cells from another three groups. Moreover, MCU expression was decreased in hypertensive with mutation cells compared with in another three groups (P<0.05). [Ca(2+)]c increased and [Ca(2+)]m decreased after treatment with Ru360 (an inhibitor of MCU) or an siRNA against MCU. In this study we found decreased MCU expression in hypertensive with mutation cells contributed to dysregulated Ca(2+) uptake into the mitochondria, and cytoplasmic Ca(2+) overload. This abnormality might be involved in the underlying mechanisms of maternally inherited hypertension in subjects carrying the mitochondrial tRNA(Ile) A4263G mutation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Mitochondrial mechanisms of neural cell death and neuroprotective interventions in Parkinson's disease.

    PubMed

    Fiskum, Gary; Starkov, Anatoly; Polster, Brian M; Chinopoulos, Christos

    2003-06-01

    Mitochondrial dysfunction, due to either environmental or genetic factors, can result in excessive production of reactive oxygen species, triggering the apoptotic death of dopaminergic cells in Parkinson's disease. Mitochondrial free radical production is promoted by the inhibition of electron transport at any point distal to the sites of superoxide production. Neurotoxins that induce parkinsonian neuropathology, such as MPP(+) and rotenone, stimulate superoxide production at complex I of the electron transport chain and also stimulate free radical production at proximal redox sites including mitochondrial matrix dehydrogenases. The oxidative stress caused by elevated mitochondrial production of reactive oxygen species promotes the expression and (or) intracellular distribution of the proapoptotic protein Bax to the mitochondrial outer membrane. Interactions between Bax and BH3 death domain proteins such as tBid result in Bax membrane integration, oligomerization, and permeabilization of the outer membrane to intermembrane proteins such as cytochrome c. Once released into the cytosol, cytochrome c together with other proteins activates the caspase cascade of protease activities that mediate the biochemical and morphological alterations characteristic of apoptosis. In addition, loss of mitochondrial cytochrome c stimulates mitochondrial free radical production, further promoting cell death pathways. Excessive mitochondrial Ca(2+) accumulation can also release cytochrome c and promote superoxide production through a mechanism distinctly different from that of Bax. Ca(2+) activates a mitochondrial inner membrane permeability transition causing osmotic swelling, rupture of the outer membrane, and complete loss of mitochondrial structural and functional integrity. While amphiphilic cations, such as dibucaine and propranolol, inhibit Bax-mediated cytochrome c release, transient receptor potential channel inhibitors inhibit mitochondrial swelling and cytochrome c release

  8. Roles of mitochondrial energy dissipation systems in plant development and acclimation to stress.

    PubMed

    Pu, Xiaojun; Lv, Xin; Tan, Tinghong; Fu, Faqiong; Qin, Gongwei; Lin, Honghui

    2015-09-01

    Plants are sessile organisms that have the ability to integrate external cues into metabolic and developmental signals. The cues initiate specific signal cascades that can enhance the tolerance of plants to stress, and these mechanisms are crucial to the survival and fitness of plants. The adaption of plants to stresses is a complex process that involves decoding stress inputs as energy-deficiency signals. The process functions through vast metabolic and/or transcriptional reprogramming to re-establish the cellular energy balance. Members of the mitochondrial energy dissipation pathway (MEDP), alternative oxidases (AOXs) and uncoupling proteins (UCPs), act as energy mediators and might play crucial roles in the adaption of plants to stresses. However, their roles in plant growth and development have been relatively less explored. This review summarizes current knowledge about the role of members of the MEDP in plant development as well as recent advances in identifying molecular components that regulate the expression of AOXs and UCPs. Highlighted in particular is a comparative analysis of the expression, regulation and stress responses between AOXs and UCPs when plants are exposed to stresses, and a possible signal cross-talk that orchestrates the MEDP, reactive oxygen species (ROS), calcium signalling and hormone signalling. The MEDP might act as a cellular energy/metabolic mediator that integrates ROS signalling, energy signalling and hormone signalling with plant development and stress accumulation. However, the regulation of MEDP members is complex and occurs at transcriptional, translational, post-translational and metabolic levels. How this regulation is linked to actual fluxes through the AOX/UCP in vivo remains elusive. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. The FGF-2-triggered protection of cardiac subsarcolemmal mitochondria from calcium overload is mitochondrial connexin 43-dependent.

    PubMed

    Srisakuldee, Wattamon; Makazan, Zhanna; Nickel, Barbara E; Zhang, Feixiong; Thliveris, James A; Pasumarthi, Kishore B S; Kardami, Elissavet

    2014-07-01

    Fibroblast growth factor 2 (FGF-2) protects the heart from ischaemia- and reperfusion-induced cell death by a mechanism linked to protein kinase C (PKC)ε-mediated connexin 43 (Cx43) phosphorylation. Cx43 localizes predominantly to gap junctions, but has also been detected at subsarcolemmal (SSM), but not interfibrillar (IFM), mitochondria, where it is considered important for cardioprotection. We have now examined the effect of FGF-2 administration to the heart on resistance to calcium-induced permeability transition (mPTP) of isolated SSM vs. IFM suspensions, in relation to mitochondrial PKCε/Cx43 levels, phosphorylation, and the presence of peptide Gap27, a Cx43 channel blocker. FGF-2 perfusion increased resistance to calcium-induced mPTP in SSM and IFM suspensions by 2.9- and 1.7-fold, respectively, compared with their counterparts from vehicle-perfused hearts, assessed spectrophotometrically as cyclosporine A-inhibitable swelling. The salutary effect of FGF-2 was lost in SSM, but not in IFM, in the presence of Gap27. FGF-2 perfusion increased relative levels of PKCε, phospho(p) PKCε, and Tom-20 translocase in SSM and IFM, and of Cx43 in SSM. Phospho-serine (pS) 262- and pS368-Cx43 showed a 30- and 8-fold increase, respectively, in SSM from FGF-2-treated, compared with untreated, hearts. Stimulation of control SSM with phorbol 12-myristate 13-acetate (PMA), a PKC activator, increased both calcium tolerance and mitochondrial Cx43 phosphorylation at S262 and S368. The PMA-induced phosphorylation of mitochondrial Cx43 was prevented by εV1-2, a PKCε-inhibiting peptide. SSM are more responsive than IFM to FGF-2-triggered protection from calcium-induced mPTP, by a mitochondrial Cx43 channel-mediated pathway, associated with mitochondrial Cx43 phosphorylation at PKCε target sites. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  10. Transgenic overexpression of uncoupling protein 2 attenuates salt-induced vascular dysfunction by inhibition of oxidative stress.

    PubMed

    Ma, Shuangtao; Wang, Qiang; Zhang, Yan; Yang, Dachun; Li, De; Tang, Bing; Yang, Yongjian

    2014-03-01

    Ablation of uncoupling protein 2 (UCP2) has been involved in the enhancement of salt sensitivity associated with increased superoxide level and decreased nitric oxide (NO) bioavailability. However, the role of overexpression of UCP2 in salt-induced vascular dysfunction remains elusive. UCP2 transgenic (TG) and wild-type (WT) mice were placed on either a normal-salt (NS, 0.5%) or a high-salt (HS, 8%) diet for 12 weeks. Blood pressure (BP) and hypotensive responses were measured, and the vascular tone, superoxide level, and NO bioavailability in aortas were measured in each group. The TG mice had increased expression and function of UCP2 in vascular smooth muscle cells. The acetylcholine (ACh)- and nitroglycerin (NTG)-induced hypotensive responses and aortic relaxations were significantly blunted in WT mice fed with an HS diet compared with an NS diet. These harmful effects were prevented in UCP2 TG mice. The impairments of ACh- and NTG-induced relaxation in aorta were inhibited by the endothelial NO synthase (eNOS) inhibitor L-NAME and mitochondrial antioxidant MitoQ, respectively. The HS intake led to a significant increase in superoxide production and a comparable decrease in NO bioavailability in aortas, and these effects were blunted in UCP2 TG mice. The expression of UCP2 was slightly increased in the HS group. However, the expression and phosphorylation of eNOS were not affected by an HS diet and overexpression of UCP2. These findings suggest that overexpression of UCP2 can ameliorate salt-induced vascular dysfunction. This beneficial effect of UCP2 is mediated by decreased superoxide and reserved NO bioavailability.

  11. Cisplatin Induces a Mitochondrial-ROS Response That Contributes to Cytotoxicity Depending on Mitochondrial Redox Status and Bioenergetic Functions

    PubMed Central

    Marullo, Rossella; Werner, Erica; Degtyareva, Natalya; Moore, Bryn; Altavilla, Giuseppe; Ramalingam, Suresh S.; Doetsch, Paul W.

    2013-01-01

    Cisplatin is one of the most effective and widely used anticancer agents for the treatment of several types of tumors. The cytotoxic effect of cisplatin is thought to be mediated primarily by the generation of nuclear DNA adducts, which, if not repaired, cause cell death as a consequence of DNA replication and transcription blockage. However, the ability of cisplatin to induce nuclear DNA (nDNA) damage per se is not sufficient to explain its high degree of effectiveness nor the toxic effects exerted on normal, post-mitotic tissues. Oxidative damage has been observed in vivo following exposure to cisplatin in several tissues, suggesting a role for oxidative stress in the pathogenesis of cisplatin-induced dose-limiting toxicities. However, the mechanism of cisplatin-induced generation of ROS and their contribution to cisplatin cytotoxicity in normal and cancer cells is still poorly understood. By employing a panel of normal and cancer cell lines and the budding yeast Saccharomyces cerevisiae as model system, we show that exposure to cisplatin induces a mitochondrial-dependent ROS response that significantly enhances the cytotoxic effect caused by nDNA damage. ROS generation is independent of the amount of cisplatin-induced nDNA damage and occurs in mitochondria as a consequence of protein synthesis impairment. The contribution of cisplatin-induced mitochondrial dysfunction in determining its cytotoxic effect varies among cells and depends on mitochondrial redox status, mitochondrial DNA integrity and bioenergetic function. Thus, by manipulating these cellular parameters, we were able to enhance cisplatin cytotoxicity in cancer cells. This study provides a new mechanistic insight into cisplatin-induced cell killing and may lead to the design of novel therapeutic strategies to improve anticancer drug efficacy. PMID:24260552

  12. Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobashigawa, Shinko, E-mail: kobashin@nagasaki-u.ac.jp; Suzuki, Keiji; Yamashita, Shunichi

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer We report first time that ionizing radiation induces mitochondrial dynamic changes. Black-Right-Pointing-Pointer Radiation-induced mitochondrial fission was caused by Drp1 localization. Black-Right-Pointing-Pointer We found that radiation causes delayed ROS from mitochondria. Black-Right-Pointing-Pointer Down regulation of Drp1 rescued mitochondrial dysfunction after radiation exposure. -- Abstract: Ionizing radiation is known to increase intracellular level of reactive oxygen species (ROS) through mitochondrial dysfunction. Although it has been as a basis of radiation-induced genetic instability, the mechanism involving mitochondrial dysfunction remains unclear. Here we studied the dynamics of mitochondrial structure in normal human fibroblast like cells exposed to ionizing radiation. Delayed mitochondrial O{submore » 2}{sup {center_dot}-} production was peaked 3 days after irradiation, which was coupled with accelerated mitochondrial fission. We found that radiation exposure accumulated dynamin-related protein 1 (Drp1) to mitochondria. Knocking down of Drp1 expression prevented radiation induced acceleration of mitochondrial fission. Furthermore, knockdown of Drp1 significantly suppressed delayed production of mitochondrial O{sub 2}{sup {center_dot}-}. Since the loss of mitochondrial membrane potential, which was induced by radiation was prevented in cells knocking down of Drp1 expression, indicating that the excessive mitochondrial fission was involved in delayed mitochondrial dysfunction after irradiation.« less

  13. Expression profiles of genes for mitochondrial respiratory energy-dissipating systems and antioxidant enzymes in wheat leaves during de-etiolation.

    PubMed

    Garmash, Elena V; Velegzhaninov, Ilya O; Grabelnych, Olga I; Borovik, Olga A; Silina, Ekaterina V; Voinikov, Victor K; Golovko, Tamara K

    2017-08-01

    Mitochondrial respiratory components participate in the maintenance of chloroplast functional activity. This study investigates the effects 48h de-etiolation of spring wheat seedlings (Triticum aestivum L., var. Irgina) on the expression of genes that encode energy-dissipating respiratory components and antioxidant enzymes under continuous light conditions. The expression of AOX1a following the prolonged darkness exhibited a pattern indicating a prominent dependence on light. The expression of other respiratory genes, including NDA2, NDB2, and UCP1b, increased during de-etiolation and dark-to-light transition; however, changes in the expression of these genes occurred later than those in AOX1a expression. A high expression of NDA1 was detected after 12h of de-etiolation. The suppression of AOX1a, NDA2, NDB2, and UCP1b was observed 24h after de-etiolation when the photosynthetic apparatus and its defence systems against excess light were completely developed. The expression patterns of the respiratory genes and several genes encoding antioxidant enzymes (MnSOD, Cu-ZnSOD, t-APX, GR, and GRX) were quite similar. Our data indicate that the induction of nuclear genes encoding respiratory and antioxidant enzymes allow the plants to control reactive oxygen species (ROS) production and avoid oxidative stress during de-etiolation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Metformin induces oxidative stress in white adipocytes and raises uncoupling protein 2 levels.

    PubMed

    Anedda, Andrea; Rial, Eduardo; González-Barroso, M Mar

    2008-10-01

    Metformin is a drug widely used to treat type 2 diabetes. It enhances insulin sensitivity by improving glucose utilization in tissues like liver or muscle. Metformin inhibits respiration, and the decrease in cellular energy activates the AMP-activated protein kinase that in turn switches on catabolic pathways. Moreover, metformin increases lipolysis and beta-oxidation in white adipose tissue, thereby reducing the triglyceride stores. The uncoupling proteins (UCPs) are transporters that lower the efficiency of mitochondrial oxidative phosphorylation. UCP2 is thought to protect against oxidative stress although, alternatively, it could play an energy dissipation role. The aim of this work was to analyse the involvement of UCP2 on the effects of metformin in white adipocytes. We studied the effect of this drug in differentiating 3T3-L1 adipocytes and found that metformin causes oxidative stress since it increases the levels of reactive oxygen species (ROS) and lowers the aconitase activity. Variations in UCP2 protein levels parallel those of ROS. Metformin also increases lipolysis in these cells although only when the levels of ROS and UCP2 have decreased. Hence, UCP2 does not appear to be needed to facilitate fatty acid oxidation. Furthermore, treatment of C57BL/6 mice with metformin also augmented the levels of UCP2 in epididymal white adipose tissue. We conclude that metformin treatment leads to the overexpression of UCP2 in adipocytes to minimize the oxidative stress that is probably due to the inhibition of respiration caused by the drug.

  15. Modulation of liver mitochondrial NOS is implicated in thyroid-dependent regulation of O(2) uptake.

    PubMed

    Carreras, M C; Peralta, J G; Converso, D P; Finocchietto, P V; Rebagliati, I; Zaninovich, A A; Poderoso, J J

    2001-12-01

    Changes in O(2) uptake at different thyroid status have been explained on the basis of the modulation of mitochondrial enzymes and membrane biophysical properties. Regarding the nitric oxide (NO) effects, we tested whether liver mitochondrial nitric oxide synthase (mtNOS) participates in the modulation of O(2) uptake in thyroid disorders. Wistar rats were inoculated with 400 microCi (131)I (hypothyroid group), 20 microg thyroxine (T(4))/100 g body wt administered daily for 2 wk (hyperthyroid group) or vehicle (control). Basal metabolic rate, mitochondrial function, and mtNOS activity were analyzed. Systemic and liver mitochondrial O(2) uptake and cytochrome oxidase activity were lower in hypothyroid rats with respect to controls; mitochondrial parameters were further decreased by L-arginine (-42 and -34%, P < 0.05), consistent with 5- to 10-fold increases in matrix NO concentration. Accordingly, mtNOS expression (75%) and activity (260%) were selectively increased in hypothyroidism and reverted by hormone replacement without changes in other nitric oxide isoforms. Moreover, mtNOS activity correlated with serum 3,5,3'-triiodothyronine (T(3)) and O(2) uptake. Increased mtNOS activity was also observed in skeletal muscle mitochondria from hypothyroid rats. Therefore, we suggest that modulation of mtNOS is a substantial part of thyroid effects on mitochondrial O(2) uptake.

  16. The mitochondrial antioxidants MitoE(2) and MitoQ(10) increase mitochondrial Ca(2+) load upon cell stimulation by inhibiting Ca(2+) efflux from the organelle.

    PubMed

    Leo, Sara; Szabadkai, György; Rizzuto, Rosario

    2008-12-01

    Mitochondrial reactive oxygen species (ROS) production is recognized as a major pathogenic event in a number of human diseases, and mitochondrial scavenging of ROS appears a promising therapeutic approach. Recently, two mitochondrial antioxidants have been developed; conjugating alpha-tocopherol and the ubiquinol moiety of coenzyme Q to the lipophilic triphenylphosphonium cation (TPP+), denominated MitoE(2) and MitoQ(10), respectively. We have investigated the effect of these compounds on mitochondrial Ca(2+) homeostasis, which controls processes as diverse as activation of mitochondrial dehydrogenases and pro-apoptotic morphological changes of the organelle. We demonstrate that treatment of HeLa cells with both MitoE(2) and MitoQ(10) induces (albeit with different efficacy) a major enhancement of the increase in matrix Ca(2+) concentration triggered by cell stimulation with the inositol 1,4,5-trisphosphate-generating agonist histamine. The effect is a result of the inhibition of Ca(2+) efflux from the organelle and depends on the TPP+ moiety of these compounds. Overall, the data identify an effect independent of their antioxidant activity, that on the one hand may be useful in addressing disorders in which mitochondrial Ca(2+) handling is impaired (e.g., mitochondrial diseases) and on the other may favor mitochondrial Ca(2+) overload and thus increase cell sensitivity to apoptosis (thus possibly counteracting the benefits of the antioxidant activity).

  17. Exploring Uncoupling Proteins and Antioxidant Mechanisms under Acute Cold Exposure in Brains of Fish

    PubMed Central

    Lucassen, Magnus; Schmidt, Maike M.; Dringen, Ralf; Abele, Doris; Hwang, Pung-Pung

    2011-01-01

    Exposure to fluctuating temperatures accelerates the mitochondrial respiration and increases the formation of mitochondrial reactive oxygen species (ROS) in ectothermic vertebrates including fish. To date, little is known on potential oxidative damage and on protective antioxidative defense mechanisms in the brain of fish under cold shock. In this study, the concentration of cellular protein carbonyls in brain was significantly increased by 38% within 1 h after cold exposure (from 28°C to 18°C) of zebrafish (Danio rerio). In addition, the specific activity of superoxide dismutase (SOD) and the mRNA level of catalase (CAT) were increased after cold exposure by about 60% (6 h) and by 60%–90% (1 and 24 h), respectively, while the specific glutathione content as well as the ratio of glutathione disulfide to glutathione remained constant and at a very low level. In addition, cold exposure increased the protein level of hypoxia-inducible factor (HIF) by about 50% and the mRNA level of the glucose transporter zglut3 in brain by 50%–100%. To test for an involvement of uncoupling proteins (UCPs) in the cold adaptation of zebrafish, five UCP members were annotated and identified (zucp1-5). With the exception of zucp1, the mRNA levels of the other four zucps were significantly increased after cold exposure. In addition, the mRNA levels of four of the fish homologs (zppar) of the peroxisome proliferator-activated receptor (PPAR) were increased after cold exposure. These data suggest that PPARs and UCPs are involved in the alterations observed in zebrafish brain after exposure to 18°C. The observed stimulation of the PPAR-UCP axis may help to prevent oxidative damage and to maintain metabolic balance and cellular homeostasis in the brains of ectothermic zebrafish upon cold exposure. PMID:21464954

  18. Down-regulated energy metabolism genes associated with mitochondria oxidative phosphorylation and fatty acid metabolism in viral cardiomyopathy mouse heart.

    PubMed

    Xu, Jing; Nie, Hong-gang; Zhang, Xiao-dong; Tian, Ye; Yu, Bo

    2011-08-01

    The majority of experimental and clinical studies indicates that the hypertrophied and failing myocardium are characterized by changes in energy and substrate metabolism that attributed to failing heart changes at the genomic level, in fact, heart failure is caused by various diseases, their energy metabolism and substrate are in different genetic variations, then the potential significance of the molecular mechanisms for the aetiology of heart failure is necessary to be evaluated. Persistent viral infection (especially coxsackievirus group B3) of the myocardium in viral myocarditis and viral dilated cardiomyopathy has never been neglected by experts. This study aimed to explore the role and regulatory mechanism of the altered gene expression for energy metabolism involved in mitochondrial oxidative phosphorylation, fatty acid metabolism in viral dilated cardiomyopathy. cDNA Microarray technology was used to evaluate the expression of >35,852 genes in a mice model of viral dilated cardiomyopathy. In total 1385 highly different genes expression, we analyzed 33 altered genes expression for energy metabolism involved in mitochondrial oxidative phosphorylation, fatty acid metabolism and further selected real-time-PCR for quantity one of regulatory mechanisms for energy including fatty acid metabolism-the UCP2 and assayed cytochrome C oxidase activity by Spectrophotometer to explore mitochondrial oxidative phosphorylation function. We found obviously different expression of 33 energy metabolism genes associated with mitochondria oxidative phosphorylation, fatty acid metabolism in cardiomyopathy mouse heart, the regulatory gene for energy metabolism: UCP2 was down-regulated and cytochrome C oxidase activity was decreased. Genes involved in both fatty acid metabolism and mitochondrial oxidative phosphorylation were down-regulated, mitochondrial uncoupling proteins (UCP2) expression did not increase but decrease which might be a kind of adaptive protection response to

  19. Functional reconstitution of Arabidopsis thaliana plant uncoupling mitochondrial protein (AtPUMP1) expressed in Escherichia coli.

    PubMed

    Borecký, J; Maia, I G; Costa, A D; Jezek, P; Chaimovich, H; de Andrade, P B; Vercesi, A E; Arruda, P

    2001-09-14

    The Arabidopsis thaliana uncoupling protein (UCP) gene was expressed in Escherichia coli and isolated protein reconstituted into liposomes. Linoleic acid-induced H+ fluxes were sensitive to purine nucleotide inhibition with an apparent K(i) (in mM) of 0.8 (GDP), 0.85 (ATP), 0.98 (GTP), and 1.41 (ADP); the inhibition was pH-dependent. Kinetics of AtPUMP1-mediated H+ fluxes were determined for lauric, myristic, palmitic, oleic, linoleic, and linolenic acids. Properties of recombinant AtPUMP1 indicate that it represents a plant counterpart of animal UCP2 or UCP3. This work brings the functional and genetic approaches together for the first time, providing strong support that AtPUMP1 is truly an UCP.

  20. Mitochondrial energy deficiency leads to hyperproliferation of skeletal muscle mitochondria and enhanced insulin sensitivity.

    PubMed

    Morrow, Ryan M; Picard, Martin; Derbeneva, Olga; Leipzig, Jeremy; McManus, Meagan J; Gouspillou, Gilles; Barbat-Artigas, Sébastien; Dos Santos, Carlos; Hepple, Russell T; Murdock, Deborah G; Wallace, Douglas C

    2017-03-07

    Diabetes is associated with impaired glucose metabolism in the presence of excess insulin. Glucose and fatty acids provide reducing equivalents to mitochondria to generate energy, and studies have reported mitochondrial dysfunction in type II diabetes patients. If mitochondrial dysfunction can cause diabetes, then we hypothesized that increased mitochondrial metabolism should render animals resistant to diabetes. This was confirmed in mice in which the heart-muscle-brain adenine nucleotide translocator isoform 1 (ANT1) was inactivated. ANT1-deficient animals are insulin-hypersensitive, glucose-tolerant, and resistant to high fat diet (HFD)-induced toxicity. In ANT1-deficient skeletal muscle, mitochondrial gene expression is induced in association with the hyperproliferation of mitochondria. The ANT1-deficient muscle mitochondria produce excess reactive oxygen species (ROS) and are partially uncoupled. Hence, the muscle respiration under nonphosphorylating conditions is increased. Muscle transcriptome analysis revealed the induction of mitochondrial biogenesis, down-regulation of diabetes-related genes, and increased expression of the genes encoding the myokines FGF21 and GDF15. However, FGF21 was not elevated in serum, and FGF21 and UCP1 mRNAs were not induced in liver or brown adipose tissue (BAT). Hence, increased oxidation of dietary-reducing equivalents by elevated muscle mitochondrial respiration appears to be the mechanism by which ANT1-deficient mice prevent diabetes, demonstrating that the rate of mitochondrial oxidation of calories is important in the etiology of metabolic disease.

  1. Ca2+-Dependent Regulations and Signaling in Skeletal Muscle: From Electro-Mechanical Coupling to Adaptation

    PubMed Central

    Gehlert, Sebastian; Bloch, Wilhelm; Suhr, Frank

    2015-01-01

    Calcium (Ca2+) plays a pivotal role in almost all cellular processes and ensures the functionality of an organism. In skeletal muscle fibers, Ca2+ is critically involved in the innervation of skeletal muscle fibers that results in the exertion of an action potential along the muscle fiber membrane, the prerequisite for skeletal muscle contraction. Furthermore and among others, Ca2+ regulates also intracellular processes, such as myosin-actin cross bridging, protein synthesis, protein degradation and fiber type shifting by the control of Ca2+-sensitive proteases and transcription factors, as well as mitochondrial adaptations, plasticity and respiration. These data highlight the overwhelming significance of Ca2+ ions for the integrity of skeletal muscle tissue. In this review, we address the major functions of Ca2+ ions in adult muscle but also highlight recent findings of critical Ca2+-dependent mechanisms essential for skeletal muscle-regulation and maintenance. PMID:25569087

  2. Protosappanin B protects PC12 cells against oxygen-glucose deprivation-induced neuronal death by maintaining mitochondrial homeostasis via induction of ubiquitin-dependent p53 protein degradation.

    PubMed

    Zeng, Ke-Wu; Liao, Li-Xi; Zhao, Ming-Bo; Song, Fang-Jiao; Yu, Qian; Jiang, Yong; Tu, Peng-Fei

    2015-03-15

    Protosappanin B (PTB) is a bioactive dibenzoxocin derivative isolated from Caesalpinia sappan L. Here, we investigated the neuroprotective effects and the potential mechanisms of PTB on oxygen-glucose deprivation (OGD)-injured PC12 cells. Results showed that PTB significantly increased cell viability, inhibited cell apoptosis and up-regulated the expression of growth-associated protein 43 (a marker of neural outgrowth). Moreover, our study revealed that PTB effectively maintained mitochondrial homeostasis by up-regulation of mitochondrial membrane potential (MMP), inhibition of cytochrome c release from mitochondria and inactivation of mitochondrial caspase-9/3 apoptosis pathway. Further study showed that PTB significantly promoted cytoplasmic component degradation of p53 protein, a key negative regulator for mitochondrial function, resulting in a release of Bcl-2 from p53-Bcl-2 complex and an enhancing translocation of Bcl-2 to mitochondrial outer membrane. Finally, we found the degradation of p53 protein was induced by PTB via activation of a MDM2-dependent ubiquitination process. Taken together, our findings provided a new viewpoint of neuronal protection strategy for anoxia and ischemic injury with natural small molecular dibenzoxocin derivative by activating ubiquitin-dependent p53 protein degradation as well as increasing mitochondrial function. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. A Mechanism for the Temporal Potentiation of Genipin to the Cytotoxicity of Cisplatin in Colon Cancer Cells.

    PubMed

    Wang, Ruihua; MoYung, K C; Zhao, Y J; Poon, Karen

    2016-01-01

    To investigate the potentiation effect of Genipin to Cisplatin induced cell senescence in HCT-116 colon cancer cells in vitro. Cell viability was estimated by Propidium iodide and Hoechst 3342, reactive oxygen species (ROS) with DHE, mitochondrial membrane potential (MMP) with JC-1 MMP assay Kit and electron current production with microbial fuel cells (MFC). Genipin inhibited the UCP2 mediated anti-oxidative proton leak significantly promoted the Cisplatin induced ROS and subsequent cell death, which was similar to that of UCP2-siRNA. Cells treated with Cisplatin alone or combined with Genipin, ROS negatively, while MMP positively correlated with cell viability. Cisplatin induced ROS was significantly decreased by detouring electrons to MFC, or increased by Genipin combined treatment. Compensatory effects of UCP2 up-regulation with time against Genipin treatment were suggested. Shorter the Genipin treatment before Cisplatin better promoted the Cisplatin induced ROS and subsequent cell death. The interaction of leaked electron with Cisplatin was important during ROS generation. Inhibition of UCP2-mediated proton leak with Genipin potentiated the cytotoxicity of Cisplatin. Owing to the compensatory effects against Genipin, shorter Genipin treatment before Cisplatin was recommended in order to achieve better potentiation effect.

  4. Eicosapentaenoic acid (EPA) induced apoptosis in HepG2 cells through ROS-Ca(2+)-JNK mitochondrial pathways.

    PubMed

    Zhang, Yuanyuan; Han, Lirong; Qi, Wentao; Cheng, Dai; Ma, Xiaolei; Hou, Lihua; Cao, Xiaohong; Wang, Chunling

    2015-01-24

    Eicosapentaenoic acid (EPA), a well-known dietary n-3 PUFAS, has been considered to inhibit proliferation of tumor cells. However, the molecular mechanism related to EPA-induced liver cancer cells apoptosis has not been reported. In this study, we investigated the effect of EPA on HepG2 cells proliferation and apoptosis mechanism through mitochondrial pathways. EPA inhibited proliferation of HepG2 cells in a dose-dependent manner and had no significant effect on the cell viability of humor normal liver L-02 cells. It was found that EPA initially evoked ROS formation, leading to [Ca(2+)]c accumulation and the mitochondrial permeability transition pore (MPTP) opening; EPA-induced HepG2 cells apoptosis was inhibited by N-acetylcysteine (NAC, an inhibitor of ROS), 1,2-bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM, a chelator of calcium) and CsA (inhibitor of MPTP). The relationship between ROS production, the increase of cytoplasmic Ca and MPTP opening was detected. It seems that ROS may act as an upstream regulator of EPA-induced [Ca(2+)]c generation, moreover, generation of ROS, overload of mitochondrial [Ca(2+)]c, and JNK activated cause the opening of MPTP. Western blotting results showed that EPA elevated the phosphorylation status of JNK, processes associated with the ROS generation. Simultaneously, the apoptosis induced by EPA was related to release of cytochrome C from mitochondria to cytoplasm through the MPTP and activation of caspase-9 and caspase-3. These results suggest that EPA induces apoptosis through ROS-Ca(2+)-JNK mitochondrial pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Eicosapentaenoic acid (EPA) induced apoptosis in HepG2 cells through ROS–Ca{sup 2+}–JNK mitochondrial pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuanyuan; Han, Lirong; Qi, Wentao

    Highlights: • EPA evoked ROS formation, [Ca{sup 2+}]{sub c} accumulation, the opening of MPTP and the phosphorylation of JNK. • EPA-induced [Ca{sup 2+}]{sub c} elevation was depended on production of ROS. • EPA-induced ROS generation, [Ca{sup 2+}]{sub c} increase, and JNK activated caused MPTP opening. • The apoptosis induced by EPA was related to release of cytochrome C through the MPTP. • EPA induced HepG2 cells apoptosis through ROS–Ca{sup 2+}–JNK mitochondrial pathways. - Abstract: Eicosapentaenoic acid (EPA), a well-known dietary n−3 PUFAS, has been considered to inhibit proliferation of tumor cells. However, the molecular mechanism related to EPA-induced liver cancermore » cells apoptosis has not been reported. In this study, we investigated the effect of EPA on HepG2 cells proliferation and apoptosis mechanism through mitochondrial pathways. EPA inhibited proliferation of HepG2 cells in a dose-dependent manner and had no significant effect on the cell viability of humor normal liver L-02 cells. It was found that EPA initially evoked ROS formation, leading to [Ca{sup 2+}]{sub c} accumulation and the mitochondrial permeability transition pore (MPTP) opening; EPA-induced HepG2 cells apoptosis was inhibited by N-acetylcysteine (NAC, an inhibitor of ROS), 1,2-bis (2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA-AM, a chelator of calcium) and CsA (inhibitor of MPTP). The relationship between ROS production, the increase of cytoplasmic Ca and MPTP opening was detected. It seems that ROS may act as an upstream regulator of EPA-induced [Ca{sup 2+}]{sub c} generation, moreover, generation of ROS, overload of mitochondrial [Ca{sup 2+}]{sub c}, and JNK activated cause the opening of MPTP. Western blotting results showed that EPA elevated the phosphorylation status of JNK, processes associated with the ROS generation. Simultaneously, the apoptosis induced by EPA was related to release of cytochrome C from mitochondria to cytoplasm through

  6. UCP1 in adipose tissues: two steps to full browning.

    PubMed

    Kalinovich, Anastasia V; de Jong, Jasper M A; Cannon, Barbara; Nedergaard, Jan

    2017-03-01

    The possibility that brown adipose tissue thermogenesis can be recruited in order to combat the development of obesity has led to a high interest in the identification of "browning agents", i.e. agents that increase the amount and activity of UCP1 in brown and brite/beige adipose tissues. However, functional analysis of the browning process yields confusingly different results when the analysis is performed in one of two alternative steps. Thus, in one of the steps, using cold acclimation as a potent model browning agent, we find that if the browning process is followed in mice initially housed at 21 °C (the most common procedure), there is only weak molecular evidence for increases in UCP1 gene expression or UCP1 protein abundance in classical brown adipose tissue; however, in brite/beige adipose depots, there are large increases, apparently associating functional browning with events only in the brite/beige tissues. Contrastingly, in another step, if the process is followed starting with mice initially housed at 30 °C (thermoneutrality for mice, thus similar to normal human conditions), large increases in UCP1 gene expression and UCP1 protein abundance are observed in the classical brown adipose tissue depots; there is then practically no observable UCP1 gene expression in brite/beige tissues. This apparent conundrum can be resolved when it is realized that the classical brown adipose tissue at 21 °C is already essentially fully differentiated and thus expands extensively through proliferation upon further browning induction, rather than by further enhancing cellular differentiation. When the limiting factor for thermogenesis, i.e. the total amount of UCP1 protein per depot, is analyzed, classical brown adipose tissue is by far the predominant site for the browning process, irrespective of which of the two steps is analyzed. There are to date no published data demonstrating that alternative browning agents would selectively promote brite/beige tissues

  7. Saxagliptin restores vascular mitochondrial exercise response in the Goto-Kakizaki rat.

    PubMed

    Keller, Amy C; Knaub, Leslie A; Miller, Matthew W; Birdsey, Nicholas; Klemm, Dwight J; Reusch, Jane E B

    2015-02-01

    Cardiovascular disease risk and all-cause mortality are largely predicted by physical fitness. Exercise stimulates vascular mitochondrial biogenesis through endothelial nitric oxide synthase (eNOS), sirtuins, and PPARγ coactivator 1α (PGC-1α), a response absent in diabetes and hypertension. We hypothesized that an agent regulating eNOS in the context of diabetes could reconstitute exercise-mediated signaling to mitochondrial biogenesis. Glucagon-like peptide 1 (GLP-1) stimulates eNOS and blood flow; we used saxagliptin, an inhibitor of GLP-1 degradation, to test whether vascular mitochondrial adaptation to exercise in diabetes could be restored. Goto-Kakizaki (GK) rats, a nonobese, type 2 diabetes model, and Wistar controls were exposed to an 8-day exercise intervention with or without saxagliptin (10 mg·kg·d). We evaluated the impact of exercise and saxagliptin on mitochondrial proteins and signaling pathways in aorta. Mitochondrial protein expression increased with exercise in the Wistar aorta and decreased or remained unchanged in the GK animals. GK rats treated with saxagliptin plus exercise showed increased expression of mitochondrial complexes, cytochrome c, eNOS, nNOS, PGC-1α, and UCP3 proteins. Notably, a 3-week saxagliptin plus exercise intervention significantly increased running time in the GK rats. These data suggest that saxagliptin restores vascular mitochondrial adaptation to exercise in a diabetic rodent model and may augment the impact of exercise on the vasculature.

  8. Over-expression of a putative oxidoreductase (UcpA) for increasing furfural or 5-hydroxymethylfurfural tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xuan; Miller, Elliot N.; Yomano, Lorraine P.

    The subject invention pertains to overexpression of a putative oxidoreductase (ucpA) for increasing furfural tolerance in genetically modified microorganisms. Genetically modified microorganisms capable of overexpressing UcpA are also provided. Increased expression of ucpA was shown to increase furfural tolerance by 50%, and to permit the fermentation of sugars to products in the presence of 15 mM furfural.

  9. Hyperuricemia induces endothelial dysfunction via mitochondrial Na+/Ca2+ exchanger-mediated mitochondrial calcium overload.

    PubMed

    Hong, Quan; Qi, Ka; Feng, Zhe; Huang, Zhiyong; Cui, Shaoyuan; Wang, Liyuan; Fu, Bo; Ding, Rui; Yang, Jurong; Chen, Xiangmei; Wu, Di

    2012-05-01

    Uric acid (UA) has proven to be a causal agent in endothelial dysfunction in which ROS production plays an important role. Calcium overload in mitochondria can promote the mitochondrial production of ROS. We hypothesize that calcium transduction in mitochondria contributes to UA-induced endothelial dysfunction. We first demonstrated that high concentrations of UA cause endothelial dysfunction, marked by a reduction in eNOS protein expression and NO release in vitro. We further found that a high concentration of UA increased levels of [Ca2+]mito, total intracellular ROS, H2O2, and mitochondrial O2·-, and Δψmito but not the [Ca2+]cyt level. When the mitochondrial calcium channels NCXmito and MCU were blocked by CGP-37157 and Ru360, respectively, the UA-induced increases in the levels of [Ca2+]mito and total intracellular ROS were significantly reduced. Mitochondrial levels of O2·- and Δψmito were reduced by inhibition of NCXmito but not of MCU. Moreover, inhibition of NCXmito, but not of MCU, blocked the UA-induced reductions in eNOS protein expression and NO release. The increased generation of mitochondrial O2·- induced by a high concentration of UA is triggered by mitochondrial calcium overload and ultimately leads to endothelial dysfunction. In this process, the activation of NCXmito is the major cause of the influx of calcium into mitochondria. Our results provide a new pathophysiological mechanism for UA-induced endothelial dysfunction and may offer a new therapeutic target for clinicians. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Urinary elimination of coproporphyrins is dependent on ABCC2 polymorphisms and represents a potential biomarker of MRP2 activity in humans.

    PubMed

    Benz-de Bretagne, Isabelle; Respaud, Renaud; Vourc'h, Patrick; Halimi, Jean-Michel; Caille, Agnès; Hulot, Jean-Sébastien; Andres, Christian R; Le Guellec, Chantal

    2011-01-01

    MRP2 encoded by ABCC2 gene is involved in the secretion of numerous drugs and endogenous substrates. Patients with Dubin-Johnson syndrome due to mutation in ABCC2 gene have elevated urinary coproporphyrin ratio (UCP I/(I + III)). Here we investigated whether this ratio could serve as a biomarker of MRP2 function. Phenotype-genotype relationships were studied in 74 healthy subjects by measuring individual UCP I/(I + III) ratio obtained on 24-hour urine and by analyzing five common SNPs in ABCC2 gene. The UCP I/(I + III) ratio varied from 14.7% to 46.0% in our population. Subjects with 3972TT genotype had a higher ratio (P = .04) than those carrying the C allele. This higher UCP I/(I + III) ratio was correlated with a higher level of isomer I excretion. This study provides a proof of concept that UCP I/(I + III) ratio can be used as a biomarker of MRP2 function in clinical studies as it provides quantitative information about the in vivo activity of MRP2 in a given patient.

  11. Urinary Elimination of Coproporphyrins Is Dependent on ABCC2 Polymorphisms and Represents a Potential Biomarker of MRP2 Activity in Humans

    PubMed Central

    Benz-de Bretagne, Isabelle; Respaud, Renaud; Vourc'h, Patrick; Halimi, Jean-Michel; Caille, Agnès; Hulot, Jean-Sébastien; Andres, Christian R.; Le Guellec, Chantal

    2011-01-01

    MRP2 encoded by ABCC2 gene is involved in the secretion of numerous drugs and endogenous substrates. Patients with Dubin-Johnson syndrome due to mutation in ABCC2 gene have elevated urinary coproporphyrin ratio (UCP I/(I + III)). Here we investigated whether this ratio could serve as a biomarker of MRP2 function. Phenotype-genotype relationships were studied in 74 healthy subjects by measuring individual UCP I/(I + III) ratio obtained on 24-hour urine and by analyzing five common SNPs in ABCC2 gene. The UCP I/(I + III) ratio varied from 14.7% to 46.0% in our population. Subjects with 3972TT genotype had a higher ratio (P = .04) than those carrying the C allele. This higher UCP I/(I + III) ratio was correlated with a higher level of isomer I excretion. This study provides a proof of concept that UCP I/(I + III) ratio can be used as a biomarker of MRP2 function in clinical studies as it provides quantitative information about the in vivo activity of MRP2 in a given patient. PMID:21541183

  12. Adult cases of mitochondrial DNA depletion due to TK2 defect: an expanding spectrum.

    PubMed

    Béhin, A; Jardel, C; Claeys, K G; Fagart, J; Louha, M; Romero, N B; Laforêt, P; Eymard, B; Lombès, A

    2012-02-28

    In this study we aim to demonstrate the occurrence of adult forms of TK2 mutations causing progressive mitochondrial myopathy with significant muscle mitochondrial DNA (mtDNA) depletion. Patients' investigations included serum creatine kinase, blood lactate, electromyographic, echocardiographic, and functional respiratory analyses as well as TK2 gene sequencing and TK2 activity measurement. Mitochondrial activities and mtDNA were analyzed in the patients' muscle biopsy. The 3 adult patients with TK2 mutations presented with slowly progressive myopathy compatible with a fairly normal life during decades. Apart from its much slower progression, these patients' phenotype closely resembled that of pediatric cases including early onset, absence of CNS symptoms, generalized muscle weakness predominating on axial and proximal muscles but affecting facial, ocular, and respiratory muscles, typical mitochondrial myopathy with a mosaic pattern of COX-negative and ragged-red fibers, combined mtDNA-dependent respiratory complexes deficiency and mtDNA depletion. In accordance with the disease's relatively slow progression, the residual mtDNA content was higher than that observed in pediatric cases. That difference was not explained by the type of the TK2 mutations or by the residual TK2 activity. TK2 mutations can cause mitochondrial myopathy with a slow progression. Comparison of patients with similar mutations but different disease progression might address potential mechanisms of mtDNA maintenance modulation.

  13. Expression profiling analysis: Uncoupling protein 2 deficiency improves hepatic glucose, lipid profiles and insulin sensitivity in high-fat diet-fed mice by modulating expression of genes in peroxisome proliferator-activated receptor signaling pathway.

    PubMed

    Zhou, Mei-Cen; Yu, Ping; Sun, Qi; Li, Yu-Xiu

    2016-03-01

    Uncoupling protein 2 (UCP2), which was an important mitochondrial inner membrane protein associated with glucose and lipid metabolism, widely expresses in all kinds of tissues including hepatocytes. The present study aimed to explore the impact of UCP2 deficiency on glucose and lipid metabolism, insulin sensitivity and its effect on the liver-associated signaling pathway by expression profiling analysis. Four-week-old male UCP2-/- mice and UCP2+/+ mice were randomly assigned to four groups: UCP2-/- on a high-fat diet, UCP2-/- on a normal chow diet, UCP2+/+ on a high-fat diet and UCP2+/+ on a normal chow diet. The differentially expressed genes in the four groups on the 16th week were identified by Affymetrix gene array. The results of intraperitoneal glucose tolerance test and insulin tolerance showed that blood glucose and β-cell function were improved in the UCP2-/- group on high-fat diet. Enhanced insulin sensitivity was observed in the UCP2-/- group. The differentially expressed genes were mapped to 23 pathways (P < 0.05). We concentrated on the 'peroxisome proliferator-activated receptor (PPAR) signaling pathway' (P = 3.19 × 10(-11)), because it is closely associated with the regulation of glucose and lipid profiles. In the PPAR signaling pathway, seven genes (PPARγ, Dbi, Acsl3, Lpl, Me1, Scd1, Fads2) in the UCP2-/- mice were significantly upregulated. The present study used gene arrays to show that activity of the PPAR signaling pathway involved in the improvement of glucose and lipid metabolism in the liver of UCP2-deficient mice on a long-term high-fat diet. The upregulation of genes in the PPAR signaling pathway could explain our finding that UCP2 deficiency ameliorated insulin sensitivity. The manipulation of UCP2 protein expression could represent a new strategy for the prevention and treatment of diabetes.

  14. Assays of mitochondrial Ca2+ transport and Ca2+ efflux via the MPTP.

    PubMed

    Ben-Hail, Danya; Shoshan-Barmatz, Varda

    2014-02-01

    Studying Ca(2+) transport in mitochondria in connection with energy production, as well as cell death, is of great importance. Ca(2+) activates several key enzymes in the mitochondrial matrix to enhance ATP production. This provides an important mechanism for synchronizing energy production with the energy demands of Ca(2+)-activated processes, such as contraction, allowing important feedback effects to help shape cytosolic Ca(2+) signals. A rise in mitochondrial Ca(2+) can convey both apoptotic and necrotic death signals by inducing opening of the mitochondrial permeability transition pore (MPTP). Here, we present a protocol for measuring Ca(2+) transport and release in isolated mitochondria.

  15. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint.

    PubMed

    Yamamori, Tohru; Yasui, Hironobu; Yamazumi, Masayuki; Wada, Yusuke; Nakamura, Yoshinari; Nakamura, Hideo; Inanami, Osamu

    2012-07-15

    Whereas ionizing radiation (Ir) instantaneously causes the formation of water radiolysis products that contain some reactive oxygen species (ROS), ROS are also suggested to be released from biological sources in irradiated cells. It is now becoming clear that these ROS generated secondarily after Ir have a variety of biological roles. Although mitochondria are assumed to be responsible for this Ir-induced ROS production, it remains to be elucidated how Ir triggers it. Therefore, we conducted this study to decipher the mechanism of Ir-induced mitochondrial ROS production. In human lung carcinoma A549 cells, Ir (10 Gy of X-rays) induced a time-dependent increase in the mitochondrial ROS level. Ir also increased mitochondrial membrane potential, mitochondrial respiration, and mitochondrial ATP production, suggesting upregulation of the mitochondrial electron transport chain (ETC) function after Ir. Although we found that Ir slightly enhanced mitochondrial ETC complex II activity, the complex II inhibitor 3-nitropropionic acid failed to reduce Ir-induced mitochondrial ROS production. Meanwhile, we observed that the mitochondrial mass and mitochondrial DNA level were upregulated after Ir, indicating that Ir increased the mitochondrial content of the cell. Because irradiated cells are known to undergo cell cycle arrest under control of the checkpoint mechanisms, we examined the relationships between cell cycle and mitochondrial content and cellular oxidative stress level. We found that the cells in the G2/M phase had a higher mitochondrial content and cellular oxidative stress level than cells in the G1 or S phase, regardless of whether the cells were irradiated. We also found that Ir-induced accumulation of the cells in the G2/M phase led to an increase in cells with a high mitochondrial content and cellular oxidative stress level. This suggested that Ir upregulated mitochondrial ETC function and mitochondrial content, resulting in mitochondrial ROS production, and that

  16. Essential role of UCP1 modulating the central effects of thyroid hormones on energy balance

    PubMed Central

    Alvarez-Crespo, Mayte; Csikasz, Robert I.; Martínez-Sánchez, Noelia; Diéguez, Carlos; Cannon, Barbara; Nedergaard, Jan; López, Miguel

    2016-01-01

    Objective Classically, metabolic effects of thyroid hormones (THs) have been considered to be peripherally mediated, i.e. different tissues in the body respond directly to thyroid hormones with an increased metabolism. An alternative view is that the metabolic effects are centrally regulated. We have examined here the degree to which prolonged, centrally infused triiodothyronine (T3) could in itself induce total body metabolic effects and the degree to which brown adipose tissue (BAT) thermogenesis was essential for such effects, by examining uncoupling protein 1 (UCP1) KO mice. Methods Wildtype and UPC1 KO mice were centrally-treated with T3 by using minipumps. Metabolic measurements were analyzed by indirect calorimetry and expression analysis by RT-PCR or western blot. BAT morphology and histology were studied by immunohistochemistry. Results We found that central T3-treatment led to reduced levels of hypothalamic AMP-activated protein kinase (AMPK) and elevated body temperature (0.7 °C). UCP1 was essential for the T3-induced increased rate of energy expenditure, which was only observable at thermoneutrality and notably only during the active phase, for the increased body weight loss, for the increased hypothalamic levels of neuropeptide Y (NPY) and agouti-related peptide (AgRP) and for the increased food intake induced by central T3-treatment. Prolonged central T3-treatment also led to recruitment of BAT and britening/beiging (“browning”) of inguinal white adipose tissue (iWAT). Conclusions We conclude that UCP1 is essential for mediation of the central effects of thyroid hormones on energy balance, and we suggest that similar UCP1-dependent effects may underlie central energy balance effects of other agents. PMID:27069867

  17. Endoplasmic Reticulum Stress Activates the Inflammasome via NLRP3- and Caspase-2-Driven Mitochondrial Damage.

    PubMed

    Bronner, Denise N; Abuaita, Basel H; Chen, Xiaoyun; Fitzgerald, Katherine A; Nuñez, Gabriel; He, Yongqun; Yin, Xiao-Ming; O'Riordan, Mary X D

    2015-09-15

    Endoplasmic reticulum (ER) stress is observed in many human diseases, often associated with inflammation. ER stress can trigger inflammation through nucleotide-binding domain and leucine-rich repeat containing (NLRP3) inflammasome, which might stimulate inflammasome formation by association with damaged mitochondria. How ER stress triggers mitochondrial dysfunction and inflammasome activation is ill defined. Here we have used an infection model to show that the IRE1α ER stress sensor regulates regulated mitochondrial dysfunction through an NLRP3-mediated feed-forward loop, independently of ASC. IRE1α activation increased mitochondrial reactive oxygen species, promoting NLRP3 association with mitochondria. NLRP3 was required for ER stress-induced cleavage of caspase-2 and the pro-apoptotic factor, Bid, leading to subsequent release of mitochondrial contents. Caspase-2 and Bid were necessary for activation of the canonical inflammasome by infection-associated or general ER stress. These data identify an NLRP3-caspase-2-dependent mechanism that relays ER stress to the mitochondria to promote inflammation, integrating cellular stress and innate immunity. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Curcumin analog EF24 induces apoptosis via ROS-dependent mitochondrial dysfunction in human colorectal cancer cells.

    PubMed

    He, Guodong; Feng, Chen; Vinothkumar, Rajamanickam; Chen, Weiqian; Dai, Xuanxuan; Chen, Xi; Ye, Qingqing; Qiu, Chenyu; Zhou, Huiping; Wang, Yi; Liang, Guang; Xie, Yubo; Wu, Wei

    2016-12-01

    Colorectal cancer is the most commonly diagnosed malignancy with high mortality rates worldwide. Improved therapeutic strategies with minimal adverse side effects are urgently needed. In this study, the anti-tumor effects of EF24, a novel analog of the natural compound curcumin, were evaluated in colorectal cancer cells. The anti-tumor activity of EF24 on human colon cancer lines (HCT-116, SW-620, and HT-29) was determined by measures of cell cycle arrest, apoptosis, and mitochondrial function. The contribution of ROS in the EF24-induced anti-tumor activity was evaluated by measures of H 2 O 2 and pretreatment with an ROS scavenger, NAC. The findings indicated that EF24 treatment dose-dependently inhibited cell viability and caused cell cycle arrest at G2/M phase in all the tested colon cancer cell lines. Furthermore, we demonstrated that EF24 treatment induced apoptosis effectively via enhancing intracellular accumulation of ROS in both HCT-116 and SW-620 cells, but with moderate effects in HT-29 cells. We found that EF24 treatment decreased the mitochondrial membrane potential in the colon cancer cells, leading to the release of mitochondrial cytochrome c. Also, EF24 induced activation of caspases 9 and 3, causing decreased Bcl-2 protein expression and Bcl-2/Bax ratio. Pretreatment with NAC, a ROS scavenger, abrogated the EF24-induced cell death, apoptosis, cell cycle arrest, and mitochondrial dysfunction, suggesting an upstream ROS generation which was responsible for the anticancer effects of EF24. Our findings support an anticancer mechanism by which EF24 enhanced ROS accumulation in colon cancer cells, thereby resulting in mitochondrial membrane collapse and activated intrinsic apoptotic signaling. Thus, EF24 could be a potential candidate for therapeutic application of colon cancer.

  19. Modeling the detailed kinetics of mitochondrial cytochrome c oxidase: Catalytic mechanism and nitric oxide inhibition

    PubMed Central

    Pannala, Venkat R.; Camara, Amadou K. S.

    2016-01-01

    Cytochrome c oxidase (CcO) catalyzes the exothermic reduction of O2 to H2O by using electrons from cytochrome c, and hence plays a crucial role in ATP production. Although details on the enzyme structure and redox centers involved in O2 reduction have been known, there still remains a considerable ambiguity on its mechanism of action, e.g., the number of sequential electrons donated to O2 in each catalytic step, the sites of protonation and proton pumping, and nitric oxide (NO) inhibition mechanism. In this work, we developed a thermodynamically constrained mechanistic mathematical model for the catalytic action of CcO based on available kinetic data. The model considers a minimal number of redox centers on CcO and couples electron transfer and proton pumping driven by proton motive force (PMF), and accounts for the inhibitory effects of NO on the reaction kinetics. The model is able to fit well all the available kinetic data under diverse experimental conditions with a physiologically realistic unique parameter set. The model predictions show that: 1) the apparent Km of O2 varies considerably and increases from fully reduced to fully oxidized cytochrome c depending on pH and the energy state of mitochondria, and 2) the intermediate enzyme states depend on pH and cytochrome c redox fraction and play a central role in coupling mitochondrial respiration to PMF. The developed CcO model can easily be integrated into existing mitochondrial bioenergetics models to understand the role of the enzyme in controlling oxidative phosphorylation in normal and disease conditions. PMID:27633738

  20. Early Changes in Costameric and Mitochondrial Protein Expression with Unloading Are Muscle Specific

    PubMed Central

    Li, Ruowei; Linnehan, Richard M.; Castells, Josiane; Tesch, Per; Gustafsson, Thomas

    2014-01-01

    We hypothesised that load-sensitive expression of costameric proteins, which hold the sarcomere in place and position the mitochondria, contributes to the early adaptations of antigravity muscle to unloading and would depend on muscle fibre composition and chymotrypsin activity of the proteasome. Biopsies were obtained from vastus lateralis (VL) and soleus (SOL) muscles of eight men before and after 3 days of unilateral lower limb suspension (ULLS) and subjected to fibre typing and measures for costameric (FAK and FRNK), mitochondrial (NDUFA9, SDHA, UQCRC1, UCP3, and ATP5A1), and MHCI protein and RNA content. Mean cross-sectional area (MCSA) of types I and II muscle fibres in VL and type I fibres in SOL demonstrated a trend for a reduction after ULLS (0.05 ≤ P < 0.10). FAK phosphorylation at tyrosine 397 showed a 20% reduction in VL muscle (P = 0.029). SOL muscle demonstrated a specific reduction in UCP3 content (−23%; P = 0.012). Muscle-specific effects of ULLS were identified for linear relationships between measured proteins, chymotrypsin activity and fibre MCSA. The molecular modifications in costamere turnover and energy homoeostasis identify that aspects of atrophy and fibre transformation are detectable at the protein level in weight-bearing muscles within 3 days of unloading. PMID:25313365

  1. Destruxin B Isolated from Entomopathogenic Fungus Metarhizium anisopliae Induces Apoptosis via a Bcl-2 Family-Dependent Mitochondrial Pathway in Human Nonsmall Cell Lung Cancer Cells

    PubMed Central

    Wu, Chun-Chi; Chen, Tzu-Hsiu; Liu, Bing-Lan; Wu, Li-Chen; Chen, Yung-Ching; Tzeng, Yew-Min; Hsu, Shih-Lan

    2013-01-01

    Destruxin B, isolated from entomopathogenic fungus Metarhizium anisopliae, is one of the cyclodepsipeptides with insecticidal and anticancer activities. In this study, destruxin B was extracted and purified by ion-exchange chromatography, silica gel chromatography, and semipreparative high-performance liquid chromatography. The potential anticancer effects and molecular mechanisms of destruxin B in human nonsmall cell lung cancer cell lines were characterized. Our results showed that destruxin B induced apoptotic cell death in A549 cells. This event was accompanied by the activation of caspase-2, -3, and -9. Moreover, destruxin B increased the expression level of proapoptotic molecule, PUMA, while decreased antiapoptotic molecule Mcl-1. Additionally, the translocation of Bax from cytosol to mitochondrial membrane was observed upon destruxin B treatment. Knockdown of Bax by shRNA effectively attenuated destruxin-B-triggered apoptosis in A549 cells. Interestingly, similar toxic effects and underlying mechanisms including caspase activation, upregulation of PUMA, and downregulation of Mcl-1 were also observed in a p53-null lung cancer H1299 cell line upon destruxin B treatment. Taken together, our findings suggest that destruxin-B-induced apoptosis in human nonsmall cell lung cancer cells is via a Bcl-2 family-dependent mitochondrial pathway. PMID:24204395

  2. High glucose-induced Ca2+ overload and oxidative stress contribute to apoptosis of cardiac cells through mitochondrial dependent and independent pathways.

    PubMed

    Kumar, Sandeep; Kain, Vasundhara; Sitasawad, Sandhya L

    2012-07-01

    Cardiac cell apoptosis is the initiating factor of cardiac complications especially diabetic cardiomyopathy. Mitochondria are susceptible to the damaging effects of elevated glucose condition. Calcium overload and oxidative insult are the two mutually non-exclusive phenomena suggested to cause cardiac dysfunction. Here, we examined the effect of high-glucose induced calcium overload in calpain-1 mediated cardiac apoptosis in an in vitro setting. H9c2, rat ventricular myoblast cell line was treated with elevated glucose condition and the cellular consequences were studied. Intracellular calcium trafficking, ROS generation, calpain-1 activation and caspase-12 and caspase-9 pathway were studied using flow cytometry, confocal microscopy and Western blot analysis. High-glucose treatment resulted in increased intracellular calcium ([Ca2+]i) which was mobilized to the mitochondria. Concomitant intra-mitochondrial calcium ([Ca2+]m) increase resulted in enhanced reactive oxygen and nitrogen species generation. These events led to mitochondrial dysfunction and apoptosis. Cardiomyocyte death exhibited several classical markers of apoptosis, including activation of caspases, appearance of annexin V on the outer plasma membrane, increased population of cells with sub-G0/G1 DNA content and nuclear condensation. Key findings include elucidation of cell signaling mechanism of high-glucose induced calcium-dependent cysteine protease calpain-1 activation, which triggers non-conventional caspases as alternate mode of cell death. This information increases the understanding of cardiac cell death under hyperglycemic condition and can possibly be extended for designing new therapeutic strategies for diabetic cardiomyopathy. The novel findings of the study reveal that high glucose induces apoptosis by both mitochondria-dependent and independent pathways via concomitant rise in intracellular calcium. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Measurement of mitochondrial Ca2+ transport mediated by three transport proteins: VDAC1, the Na+/Ca2+ exchanger, and the Ca2+ uniporter.

    PubMed

    Ben-Hail, Danya; Palty, Raz; Shoshan-Barmatz, Varda

    2014-02-01

    Ca(2+) is a ubiquitous cellular signal, with changes in intracellular Ca(2+) concentration not only stimulating a number of intercellular events but also triggering cell death pathways, including apoptosis. Mitochondrial Ca(2+) uptake and release play pivotal roles in cellular physiology by regulating intracellular Ca(2+) signaling, energy metabolism and cell death. Ca(2+) transport across the inner and outer mitochondrial membranes is mediated by several proteins, including channels, antiporters, and a uniporter. In this article, we present the background to several methods now established for assaying mitochondrial Ca(2+) transport activity across both mitochondrial membranes. The first of these is Ca(2+) transport mediated by the outer mitochondrial protein, the voltage-dependent anion-selective channel protein 1 (VDAC1, also known as porin 1), both as a purified protein reconstituted into a planar lipid bilayer (PLB) or into liposomes and as a mitochondrial membrane-embedded protein. The second method involves isolated mitochondria for assaying the activity of an inner mitochondrial membrane transport protein, the mitochondrial Ca(2+) uniporter (MCU) that transports Ca(2+) and is powered by the steep mitochondrial membrane potential. In the event of Ca(2+) overload, this leads to opening of the mitochondrial permeability transition pore (MPTP) and cell death. The third method describes how Na(+)-dependent mitochondrial Ca(2+) efflux mediated by mitochondrial NCLX, a member of the Na(+)/Ca(2+) exchanger superfamily, can be assayed in digitonin-permeabilized HEK-293 cells. The Ca(2+)-transport assays can be performed under various conditions and in combination with inhibitors, allowing detailed characterization of the transport activity of interest.

  4. MK-STYX, a Catalytically Inactive Phosphatase Regulating Mitochondrially Dependent Apoptosis ▿

    PubMed Central

    Niemi, Natalie M.; Lanning, Nathan J.; Klomp, Jeff A.; Tait, Stephen W.; Xu, Yong; Dykema, Karl J.; Murphy, Leon O.; Gaither, L. Alex; Xu, H. Eric; Furge, Kyle A.; Green, Douglas R.; MacKeigan, Jeffrey P.

    2011-01-01

    Evasion of apoptosis is a significant problem affecting an array of cancers. In order to identify novel regulators of apoptosis, we performed an RNA interference (RNAi) screen against all kinases and phosphatases in the human genome. We identified MK-STYX (STYXL1), a catalytically inactive phosphatase with homology to the mitogen-activated protein kinase (MAPK) phosphatases. Despite this homology, MK-STYX knockdown does not significantly regulate MAPK signaling in response to growth factors or apoptotic stimuli. Rather, RNAi-mediated knockdown of MK-STYX inhibits cells from undergoing apoptosis induced by cellular stressors activating mitochondrion-dependent apoptosis. This MK-STYX phenotype mimics the loss of Bax and Bak, two potent guardians of mitochondrial apoptotic potential. Similar to loss of both Bax and Bak, cells without MK-STYX expression are unable to release cytochrome c. Proapoptotic members of the BCL-2 family (Bax, Bid, and Bim) are unable to trigger cytochrome c release in MK-STYX-depleted cells, placing the apoptotic deficiency at the level of mitochondrial outer membrane permeabilization (MOMP). MK-STYX was found to localize to the mitochondria but is neither released from the mitochondria upon apoptotic stress nor proximal to the machinery currently known to control MOMP, indicating that MK-STYX regulates MOMP using a distinct mechanism. PMID:21262771

  5. Mitochondrial Disease: Clinical Aspects, Molecular Mechanisms, Translational Science, and Clinical Frontiers

    PubMed Central

    Thornton, Ben; Cohen, Bruce; Copeland, William; Maria, Bernard L.

    2015-01-01

    Mitochondrial medicine provides a metabolic perspective on the pathology of conditions linked with inadequate oxidative phosphorylation. Dysfunction in the mitochondrial machinery can result in improper energy production, leading to cellular injury or even apoptosis. Clinical presentations are often subtle, so clinicians must have a high index of suspicion to make early diagnoses. Symptoms could include muscle weakness and pain, seizures, loss of motor control, decreased visual and auditory functions, metabolic acidosis, acute developmental regression, and immune system dysfunction. The 2013 Neurobiology of Disease in Children Symposium, held in conjunction with the 42nd Annual Meeting of the Child Neurology Society, aimed to (1) describe accepted clinical phenotypes of mitochondrial disease produced from various mitochondrial mutations, (2) discuss contemporary understanding of molecular mechanisms that contribute to disease pathology, (3) highlight the systemic effects produced by dysfunction within the mitochondrial machinery, and (4) introduce current strategies that are being translated from bench to bedside as potential therapeutics. PMID:24916430

  6. Pivotal roles of p53 transcription-dependent and -independent pathways in manganese-induced mitochondrial dysfunction and neuronal apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Chunhua; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019 Jiangsu; Ma, Xa

    2014-12-15

    Chronic exposure to excessive manganese (Mn) has been known to lead to neuronal loss and a clinical syndrome resembling idiopathic Parkinson's disease (IPD). p53 plays an integral role in the development of various human diseases, including neurodegenerative disorders. However, the role of p53 in Mn-induced neuronal apoptosis and neurological deficits remains obscure. In the present study, we showed that p53 was critically involved in Mn-induced neuronal apoptosis in rat striatum through both transcription-dependent and -independent mechanisms. Western blot and immunohistochemistrical analyses revealed that p53 was remarkably upregulated in the striatum of rats following Mn exposure. Coincidentally, increased level of cleavedmore » PARP, a hallmark of apoptosis, was observed. Furthermore, using nerve growth factor (NGF)-differentiated PC12 cells as a neuronal cell model, we showed that Mn exposure decreased cell viability and induced apparent apoptosis. Importantly, p53 was progressively upregulated, and accumulated in both the nucleus and the cytoplasm. The cytoplasmic p53 had a remarkable distribution in mitochondria, suggesting an involvement of p53 mitochondrial translocation in Mn-induced neuronal apoptosis. In addition, Mn-induced impairment of mitochondrial membrane potential (ΔΨm) could be partially rescued by pretreatment with inhibitors of p53 transcriptional activity and p53 mitochondrial translocation, Pifithrin-α (PFT-α) and Pifithrin-μ (PFT-μ), respectively. Moreover, blockage of p53 activities with PFT-α and PFT-μ significantly attenuated Mn-induced reactive oxidative stress (ROS) generation and mitochondrial H{sub 2}O{sub 2} production. Finally, we observed that pretreatment with PFT-α and PFT-μ ameliorated Mn-induced apoptosis in PC12 cells. Collectively, these findings implicate that p53 transcription-dependent and -independent pathways may play crucial roles in the regulation of Mn-induced neuronal death. - Highlights: • p53 is

  7. Saxagliptin Restores Vascular Mitochondrial Exercise Response in the Goto-Kakizaki Rat

    PubMed Central

    Keller, Amy C.; Knaub, Leslie A.; Miller, Matthew W.; Birdsey, Nicholas; Klemm, Dwight J.

    2015-01-01

    Abstract: Cardiovascular disease risk and all-cause mortality are largely predicted by physical fitness. Exercise stimulates vascular mitochondrial biogenesis through endothelial nitric oxide synthase (eNOS), sirtuins, and PPARγ coactivator 1α (PGC-1α), a response absent in diabetes and hypertension. We hypothesized that an agent regulating eNOS in the context of diabetes could reconstitute exercise-mediated signaling to mitochondrial biogenesis. Glucagon-like peptide 1 (GLP-1) stimulates eNOS and blood flow; we used saxagliptin, an inhibitor of GLP-1 degradation, to test whether vascular mitochondrial adaptation to exercise in diabetes could be restored. Goto-Kakizaki (GK) rats, a nonobese, type 2 diabetes model, and Wistar controls were exposed to an 8-day exercise intervention with or without saxagliptin (10 mg·kg−1·d−1). We evaluated the impact of exercise and saxagliptin on mitochondrial proteins and signaling pathways in aorta. Mitochondrial protein expression increased with exercise in the Wistar aorta and decreased or remained unchanged in the GK animals. GK rats treated with saxagliptin plus exercise showed increased expression of mitochondrial complexes, cytochrome c, eNOS, nNOS, PGC-1α, and UCP3 proteins. Notably, a 3-week saxagliptin plus exercise intervention significantly increased running time in the GK rats. These data suggest that saxagliptin restores vascular mitochondrial adaptation to exercise in a diabetic rodent model and may augment the impact of exercise on the vasculature. PMID:25264749

  8. Age-dependent neurodegeneration accompanying memory loss in transgenic mice defective in mitochondrial aldehyde dehydrogenase 2 activity.

    PubMed

    Ohsawa, Ikuroh; Nishimaki, Kiyomi; Murakami, Yayoi; Suzuki, Yuko; Ishikawa, Masahiro; Ohta, Shigeo

    2008-06-11

    Oxidative stress may underlie age-dependent memory loss and cognitive decline. Toxic aldehydes, including 4-hydroxy-2-nonenal (HNE), an end product of lipid peroxides, are known to accumulate in the brain in neurodegenerative disease. We have previously shown that mitochondrial aldehyde dehydrogenase 2 (ALDH2) detoxifies HNE by oxidizing its aldehyde group. To investigate the role of such toxic aldehydes, we produced transgenic mice, which expressed a dominant-negative form of ALDH2 in the brain. The mice had decreased ability to detoxify HNE in their cortical neurons and accelerated accumulation of HNE in the brain. Consequently, their lifespan was shortened and age-dependent neurodegeneration and hyperphosphorylation of tau were observed. Object recognition and Morris water maze tests revealed that the onset of cognitive impairment correlated with the degeneration, which was further accelerated by APOE (apolipoprotein E) knock-out; therefore, the accumulation of toxic aldehydes is by itself critical in the progression of neurodegenerative disease, which could be suppressed by ALDH2.

  9. Mitochondrial Protection and Anti-aging Activity of Astragalus Polysaccharides and Their Potential Mechanism

    PubMed Central

    Li, Xing-Tai; Zhang, Ya-Kui; Kuang, Hai-Xue; Jin, Feng-Xin; Liu, De-Wen; Gao, Ming-Bo; Liu, Ze; Xin, Xiao-Juan

    2012-01-01

    The current study was performed to investigate mitochondrial protection and anti-aging activity of Astragalus polysaccharides (APS) and the potential underlying mechanism. Lipid peroxidation of liver and brain mitochondria was induced by Fe2+–Vit C in vitro. Thiobarbituric acid (TBA) colorimetry was used to measure the content of thiobarbituric acid reactive substances (TBARS). Mouse liver mitochondrial permeability transition (PT) was induced by calcium overload in vitro and spectrophotometry was used to measure it. The scavenging activities of APS on superoxide anion (O2•−) and hydroxyl radical (•OH), which were produced by reduced nicotinamide adenine dinucleotide (NADH)—N-Methylphenazonium methyl sulfate (PMS) and hydrogen peroxide (H2O2)–Fe2+ system respectively, were measured by 4-nitrobluetetrazolium chloride (NBT) reduction and Fenton reaction colorimetry respectively. The Na2S2O3 titration method was used to measure the scavenging activities of APS on H2O2. APS could inhibit TBARS production, protect mitochondria from PT, and scavenge O2•−, •OH and H2O2 significantly in a concentration-dependent manner respectively. The back of the neck of mice was injected subcutaneously with D-galactose to induce aging at a dose of 100 mg/kg/d for seven weeks. Moreover, the activities of catalase (CAT), surperoxide dismutase (SOD) and glutathione peroxidase (GPx) and anti-hydroxyl radical which were assayed by using commercial monitoring kits were increased significantly in vivo by APS. According to this research, APS protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting mitochondrial PT and increasing the activities of antioxidases. Therefore, APS has the effect of promoting health. PMID:22408421

  10. The effects and mechanisms of mitochondrial nutrient alpha-lipoic acid on improving age-associated mitochondrial and cognitive dysfunction: an overview.

    PubMed

    Liu, Jiankang

    2008-01-01

    We have identified a group of nutrients that can directly or indirectly protect mitochondria from oxidative damage and improve mitochondrial function and named them "mitochondrial nutrients". The direct protection includes preventing the generation of oxidants, scavenging free radicals or inhibiting oxidant reactivity, and elevating cofactors of defective mitochondrial enzymes with increased Michaelis-Menten constant to stimulate enzyme activity, and also protect enzymes from further oxidation, and the indirect protection includes repairing oxidative damage by enhancing antioxidant defense systems either through activation of phase 2 enzymes or through increase in mitochondrial biogenesis. In this review, we take alpha-lipoic acid (LA) as an example of mitochondrial nutrients by summarizing the protective effects and possible mechanisms of LA and its derivatives on age-associated cognitive and mitochondrial dysfunction of the brain. LA and its derivatives improve the age-associated decline of memory, improve mitochondrial structure and function, inhibit the age-associated increase of oxidative damage, elevate the levels of antioxidants, and restore the activity of key enzymes. In addition, co-administration of LA with other mitochondrial nutrients, such as acetyl-L: -carnitine and coenzyme Q10, appears more effective in improving cognitive dysfunction and reducing oxidative mitochondrial dysfunction. Therefore, administrating mitochondrial nutrients, such as LA and its derivatives in combination with other mitochondrial nutrients to aged people and patients suffering from neurodegenerative diseases, may be an effective strategy for improving mitochondrial and cognitive dysfunction.

  11. The role of nuclear factor E2-Related factor 2 and uncoupling protein 2 in glutathione metabolism: Evidence from an in vivo gene knockout study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yanyan; The Hamner Institutes for Health Sciences, Research Triangle Park, NC; Xu, Yuanyuan, E-mail: yyxu@cmu.edu.cn

    Nuclear factor E2-related factor 2 (NRF2) and uncoupling protein 2 (UCP2) are indicated to protect from oxidative stress. They also play roles in the homeostasis of glutathione. However, the detailed mechanisms are not well understood. In the present study, we found Nrf2-knockout (Nrf2-KO) mice exhibited altered glutathione homeostasis and reduced expression of various genes involved in GSH biosynthesis, regeneration, utilization and transport in the liver. Ucp2-knockout (Ucp2-KO) mice exhibited altered glutathione homeostasis in the liver, spleen and blood, as well as increased transcript of cystic fibrosis transmembrane conductance regulator in the liver, a protein capable of mediating glutathione efflux. Nrf2-Ucp2-doublemore » knockout (DKO) mice showed characteristics of both Nrf2-KO and Ucp2-KO mice. But no significant difference was observed in DKO mice when compared with Nrf2-KO or Ucp2-KO mice, except in blood glutathione levels. These data suggest that ablation of Nrf2 and Ucp2 leads to disrupted GSH balance, which could result from altered expression of genes involved in GSH metabolism. DKO may not evoke more severe oxidative stress than the single gene knockout. - Highlights: • Nrf2/Ucp2 deficiency leads to alteration of glutathione homeostasis. • Nrf2 regulates expression of genes in glutathione generation and utilization. • Ucp2 affects glutathione metabolism by regulating hepatic efflux of glutathione. • Nrf2 deficiency may not aggravate oxidative stress in Ucp2-deficient mice.« less

  12. Alteration in mitochondrial function and glutamate metabolism affected by 2-chloroethanol in primary cultured astrocytes.

    PubMed

    Sun, Qi; Liao, Yingjun; Wang, Tong; Wang, Gaoyang; Zhao, Fenghong; Jin, Yaping

    2016-12-01

    The aim of this study was to explore the mechanisms that contribute to 1,2-dichloroethane (1,2-DCE) induced brain edema by focusing on alteration of mitochondrial function and glutamate metabolism in primary cultured astrocytes induced by 2-chloroethanol (2-CE), a metabolite of 1,2-DCE in vivo. The cells were exposed to different levels of 2-CE in the media for 24h. Mitochondrial function was evaluated by its membrane potential and intracellular contents of ATP, lactic acid and reactive oxygen species (ROS). Glutamate metabolism was indicated by expression of glutamine synthase (GS), glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) at both protein and gene levels. Compared to the control group, exposure to 2-CE could cause a dose dependent damage in astrocytes, indicated by decreased cell viability and morphological changes, and supported by decreased levels of nonprotein sulfhydryl (NPSH) and inhibited activities of Na + /K + -ATPase and Ca 2+ -ATPase in the cells. The present study also revealed both mitochondrial function and glutamate metabolism in astrocytes were significantly disturbed by 2-CE. Of which, mitochondrial function was much vulnerable to the effects of 2-CE. In conclusion, our findings suggested that mitochondrial dysfunction and glutamate metabolism disorder could contribute to 2-CE-induced cytotoxicity in astrocytes, which might be related to 1,2-DCE-induced brain edema. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver.

    PubMed

    Woodman, Andrew G; Mah, Richard; Keddie, Danae; Noble, Ronan M N; Panahi, Sareh; Gragasin, Ferrante S; Lemieux, Hélène; Bourque, Stephane L

    2018-06-01

    Prenatal iron deficiency alters fetal developmental trajectories, which results in persistent changes in organ function. Here, we studied the effects of prenatal iron deficiency on fetal kidney and liver mitochondrial function. Pregnant Sprague-Dawley rats were fed partially or fully iron-restricted diets to induce a state of moderate or severe iron deficiency alongside iron-replete control rats. We assessed mitochondrial function via high-resolution respirometry and reactive oxygen species generation via fluorescence microscopy on gestational d 21. Hemoglobin levels were reduced in dams in the moderate (-31%) and severe groups (-54%) compared with controls, which was accompanied by 55% reductions in fetal hemoglobin levels in both moderate and severe groups versus controls. Male iron-deficient kidneys exhibited globally reduced mitochondrial content and respiration, as well as increased cytosolic superoxide and decreased NO. Female iron-deficient kidneys exhibited complex II down-regulation and increased mitochondrial oxidative stress. Male iron-deficient livers exhibited reduced complex IV respiration and increased cytosolic superoxide, whereas female liver tissues exhibited no alteration in oxidant levels or mitochondrial function. These findings indicate that prenatal iron deficiency causes changes in mitochondrial content and function as well as oxidant status in a sex- and organ-dependent manner, which may be an important mechanism that underlies the programming of cardiovascular disease.-Woodman, A. G., Mah, R., Keddie, D., Noble, R. M. N., Panahi, S., Gragasin, F. S., Lemieux, H., Bourque, S. L. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver.

  14. Glutamine-mediated protection from neuronal cell death depends on mitochondrial activity.

    PubMed

    Stelmashook, E V; Lozier, E R; Goryacheva, E S; Mergenthaler, P; Novikova, S V; Zorov, D B; Isaev, N K

    2010-09-27

    The specific aim of this study was to elucidate the role of mitochondria in a neuronal death caused by different metabolic effectors and possible role of intracellular calcium ions ([Ca(2+)](i)) and glutamine in mitochondria- and non-mitochondria-mediated cell death. Inhibition of mitochondrial complex I by rotenone was found to cause intensive death of cultured cerebellar granule neurons (CGNs) that was preceded by an increase in intracellular calcium concentration ([Ca(2+)](i)). The neuronal death induced by rotenone was significantly potentiated by glutamine. In addition, inhibition of Na/K-ATPase by ouabain also caused [Ca(2+)](i) increase, but it induced neuronal cell death only in the absence of glucose. Treatment with glutamine prevented the toxic effect of ouabain and decreased [Ca(2+)](i). Blockade of ionotropic glutamate receptors prevented neuronal death and significantly decreased [Ca(2+)](i), demonstrating that toxicity of rotenone and ouabain was at least partially mediated by activation of these receptors. Activation of glutamate receptors by NMDA increased [Ca(2+)](i) and decreased mitochondrial membrane potential leading to markedly decreased neuronal survival under glucose deprivation. Glutamine treatment under these conditions prevented cell death and significantly decreased the disturbances of [Ca(2+)](i) and changes in mitochondrial membrane potential caused by NMDA during hypoglycemia. Our results indicate that glutamine stimulates glutamate-dependent neuronal damage when mitochondrial respiration is impaired. However, when mitochondria are functionally active, glutamine can be used by mitochondria as an alternative substrate to maintain cellular energy levels and promote cell survival. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Millimeter wave treatment induces apoptosis via activation of the mitochondrial-dependent pathway in human osteosarcoma cells.

    PubMed

    Wu, Guangwen; Chen, Xuzheng; Peng, Jun; Cai, Qiaoyan; Ye, Jinxia; Xu, Huifeng; Zheng, Chunsong; Li, Xihai; Ye, Hongzhi; Liu, Xianxiang

    2012-05-01

    Millimeter wave (MW) is an electromagnetic wave with a wavelength between 1 and 10 mm and a frequency of 30-300 GHz that causes multiple biological effects and has been used as a major component in physiotherapies for the clinical treatment of various types of diseases including cancers. However, the precise molecular mechanism of the anticancer activity of millimeter wave remains to be elucidated. In the present study, we investigated the cellular effects of the MW in the U-2OS human osteosarcoma cell line. Our results showed that MW induced cell morphological changes and reduced cell viability in a dose- and time-dependent manner suggesting that MW inhibited the growth of U-2OS cells as demonstrated. Hoechst 33258 staining and Annexin V/propidium iodide double staining exhibited the typical nuclear features of apoptosis and increased the proportion of apoptotic Annexin V-positive cells in a dose-dependent manner, respectively. In addition, MW treatment caused loss of plasma membrane asymmetry, release of cytochrome c, collapse of mitochondrial membrane potential, activation of caspase-9 and -3, and increase of the ratio of pro-apoptotic Bax to anti-apoptotic Bcl-2. Taken together, the results indicate that the U-2OS cell growth inhibitory activity of MW was due to mitochondrial-mediated apoptosis, which may partly explain the anticancer activity of millimeter wave treatment.

  16. Beetroot juice supplementation reduces whole body oxygen consumption but does not improve indices of mitochondrial efficiency in human skeletal muscle.

    PubMed

    Whitfield, J; Ludzki, A; Heigenhauser, G J F; Senden, J M G; Verdijk, L B; van Loon, L J C; Spriet, L L; Holloway, G P

    2016-01-15

    Oral consumption of nitrate (NO3(-)) in beetroot juice has been shown to decrease the oxygen cost of submaximal exercise; however, the mechanism of action remains unresolved. We supplemented recreationally active males with beetroot juice to determine if this altered mitochondrial bioenergetics. Despite reduced submaximal exercise oxygen consumption, measures of mitochondrial coupling and respiratory efficiency were not altered in muscle. In contrast, rates of mitochondrial hydrogen peroxide (H2O2) emission were increased in the absence of markers of lipid or protein oxidative damage. These results suggest that improvements in mitochondrial oxidative metabolism are not the cause of beetroot juice-mediated improvements in whole body oxygen consumption. Ingestion of sodium nitrate (NO3(-)) simultaneously reduces whole body oxygen consumption (V̇O2) during submaximal exercise while improving mitochondrial efficiency, suggesting a causal link. Consumption of beetroot juice (BRJ) elicits similar decreases in V̇O2 but potential effects on the mitochondria remain unknown. Therefore we examined the effects of 7-day supplementation with BRJ (280 ml day(-1), ∼26 mmol NO3(-)) in young active males (n = 10) who had muscle biopsies taken before and after supplementation for assessments of mitochondrial bioenergetics. Subjects performed 20 min of cycling (10 min at 50% and 70% V̇O2 peak) 48 h before 'Pre' (baseline) and 'Post' (day 5 of supplementation) biopsies. Whole body V̇O2 decreased (P < 0.05) by ∼3% at 70% V̇O2 peak following supplementation. Mitochondrial respiration in permeabilized muscle fibres showed no change in leak respiration, the content of proteins associated with uncoupling (UCP3, ANT1, ANT2), maximal substrate-supported respiration, or ADP sensitivity (apparent Km). In addition, isolated subsarcolemmal and intermyofibrillar mitochondria showed unaltered assessments of mitochondrial efficiency, including ADP consumed/oxygen consumed (P/O ratio

  17. Optogenetic control of mitochondrial metabolism and Ca2+ signaling by mitochondria-targeted opsins.

    PubMed

    Tkatch, Tatiana; Greotti, Elisa; Baranauskas, Gytis; Pendin, Diana; Roy, Soumitra; Nita, Luliaoana I; Wettmarshausen, Jennifer; Prigge, Matthias; Yizhar, Ofer; Shirihai, Orian S; Fishman, Daniel; Hershfinkel, Michal; Fleidervish, Ilya A; Perocchi, Fabiana; Pozzan, Tullio; Sekler, Israel

    2017-06-27

    Key mitochondrial functions such as ATP production, Ca 2+ uptake and release, and substrate accumulation depend on the proton electrochemical gradient (ΔμH + ) across the inner membrane. Although several drugs can modulate ΔμH + , their effects are hardly reversible, and lack cellular specificity and spatial resolution. Although channelrhodopsins are widely used to modulate the plasma membrane potential of excitable cells, mitochondria have thus far eluded optogenetic control. Here we describe a toolkit of optometabolic constructs based on selective targeting of channelrhodopsins with distinct functional properties to the inner mitochondrial membrane of intact cells. We show that our strategy enables a light-dependent control of the mitochondrial membrane potential (Δψ m ) and coupled mitochondrial functions such as ATP synthesis by oxidative phosphorylation, Ca 2+ dynamics, and respiratory metabolism. By directly modulating Δψ m , the mitochondria-targeted opsins were used to control complex physiological processes such as spontaneous beats in cardiac myocytes and glucose-dependent ATP increase in pancreatic β-cells. Furthermore, our optometabolic tools allow modulation of mitochondrial functions in single cells and defined cell regions.

  18. Impaired ALDH2 activity decreases the mitochondrial respiration in H9C2 cardiomyocytes.

    PubMed

    Mali, Vishal R; Deshpande, Mandar; Pan, Guodong; Thandavarayan, Rajarajan A; Palaniyandi, Suresh S

    2016-02-01

    Reactive oxygen species (ROS)-mediated reactive aldehydes induce cellular stress. In cardiovascular diseases such as ischemia-reperfusion injury, lipid-peroxidation derived reactive aldehydes such as 4-hydroxy-2-nonenal (4HNE) are known to contribute to the pathogenesis. 4HNE is involved in ROS formation, abnormal calcium handling and more importantly defective mitochondrial respiration. Aldehyde dehydrogenase (ALDH) superfamily contains NAD(P)(+)-dependent isozymes which can detoxify endogenous and exogenous aldehydes into non-toxic carboxylic acids. Therefore we hypothesize that 4HNE afflicts mitochondrial respiration and leads to cell death by impairing ALDH2 activity in cultured H9C2 cardiomyocyte cell lines. H9C2 cardiomyocytes were treated with 25, 50 and 75 μM 4HNE and its vehicle, ethanol as well as 25, 50 and 75 μM disulfiram (DSF), an inhibitor of ALDH2 and its vehicle (DMSO) for 4 h. 4HNE significantly decreased ALDH2 activity, ALDH2 protein levels, mitochondrial respiration and mitochondrial respiratory reserve capacity, and increased 4HNE adduct formation and cell death in cultured H9C2 cardiomyocytes. ALDH2 inhibition by DSF and ALDH2 siRNA attenuated ALDH2 activity besides reducing ALDH2 levels, mitochondrial respiration and mitochondrial respiratory reserve capacity and increased cell death. Our results indicate that ALDH2 impairment can lead to poor mitochondrial respiration and increased cell death in cultured H9C2 cardiomyocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Control of mitochondrial physiology and cell death by the Bcl-2 family proteins Bax and Bok.

    PubMed

    D'Orsi, Beatrice; Mateyka, Julia; Prehn, Jochen H M

    2017-10-01

    Neuronal cell death is often triggered by events that involve intracellular increases in Ca 2+ . Under resting conditions, the intracellular Ca 2+ concentration is tightly controlled by a number of extrusion and sequestering mechanisms involving the plasma membrane, mitochondria, and ER. These mechanisms act to prevent a disruption of neuronal ion homeostasis. As these processes require ATP, excessive Ca 2+ overloading may cause energy depletion, mitochondrial dysfunction, and may eventually lead to Ca 2+ -dependent cell death. Excessive Ca 2+ entry though glutamate receptors (excitotoxicity) has been implicated in several neurologic and chronic neurodegenerative diseases, including ischemic stroke, epilepsy, and Alzheimer's disease. Recent evidence has revealed that excitotoxic cell death is regulated by the B-cell lymphoma-2 (Bcl-2) family of proteins. Bcl-2 proteins, comprising of both pro-apoptotic and anti-apoptotic members, have been shown to not only mediate the intrinsic apoptosis pathway by controlling mitochondrial outer membrane (MOM) integrity, but to also control neuronal Ca 2+ homeostasis and energetics. In this review, the role of Bcl-2 family proteins in the regulation of apoptosis, their expression in the central nervous system and how they control Ca 2+ -dependent neuronal injury are summarized. We review the current knowledge on Bcl-2 family proteins in the regulation of mitochondrial function and bioenergetics, including the fusion and fission machinery, and their role in Ca 2+ homeostasis regulation at the mitochondria and ER. Specifically, we discuss how the 'pro-apoptotic' Bcl-2 family proteins, Bax and Bok, physiologically expressed in the nervous system, regulate such 'non-apoptotic/daytime' functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Tissue specific distribution of pyrimidine deoxynucleoside salvage enzymes shed light on the mechanism of mitochondrial DNA depletion.

    PubMed

    Wang, L; Eriksson, S

    2010-06-01

    Deficiency in thymidine kinase 2 (TK2) activity due to genetic alterations caused tissue specific mitochondrial DNA (mtDNA) depletion syndrome with symptoms resembling these of AIDS patients treated with nucleoside analogues. Mechanisms behind this mitochondrial effects is still not well understood. With rat as a model we isolated mitochondrial and cytosolic fractions from major organs and studied enzymes involved in thymidine (dT) and deoxycytidine (dC) phosphorylation by using ionic exchange column chromatography. A cytosolic form of TK2 was identified in all tested tissues in addition to mitochondrial TK2. TK1 was detected in liver and spleen cytosolic extracts while dCK was found in liver, spleen and lung cytosolic extracts. Thus, the nature of dT and dC salvage enzymes in each tissue type was determined. In most tissues TK2 is the only salvage enzyme present except liver and spleen. These results may help to explain the mechanisms of mitochondrial toxicity of antiviral nucleoside analogues and mtDNA depletion caused by TK2 deficiency.

  1. Double-stranded DNA-dependent ATPase Irc3p is directly involved in mitochondrial genome maintenance

    PubMed Central

    Sedman, Tiina; Gaidutšik, Ilja; Villemson, Karin; Hou, YingJian; Sedman, Juhan

    2014-01-01

    Nucleic acid-dependent ATPases are involved in nearly all aspects of DNA and RNA metabolism. Previous studies have described a number of mitochondrial helicases. However, double-stranded DNA-dependent ATPases, including translocases or enzymes remodeling DNA-protein complexes, have not been identified in mitochondria of the yeast Saccharomyces cerevisae. Here, we demonstrate that Irc3p is a mitochondrial double-stranded DNA-dependent ATPase of the Superfamily II. In contrast to the other mitochondrial Superfamily II enzymes Mss116p, Suv3p and Mrh4p, which are RNA helicases, Irc3p has a direct role in mitochondrial DNA (mtDNA) maintenance. Specific Irc3p-dependent mtDNA metabolic intermediates can be detected, including high levels of double-stranded DNA breaks that accumulate in irc3Δ mutants. irc3Δ-related topology changes in rho- mtDNA can be reversed by the deletion of mitochondrial RNA polymerase RPO41, suggesting that Irc3p counterbalances adverse effects of transcription on mitochondrial genome stability. PMID:25389272

  2. Defects in mitochondrial localization and ATP synthesis in the mdx mouse model of Duchenne muscular dystrophy are not alleviated by PDE5 inhibition

    PubMed Central

    Percival, Justin M.; Siegel, Michael P.; Knowels, Gary; Marcinek, David J.

    2013-01-01

    Given the crucial roles for mitochondria in ATP energy supply, Ca2+ handling and cell death, mitochondrial dysfunction has long been suspected to be an important pathogenic feature in Duchenne muscular dystrophy (DMD). Despite this foresight, mitochondrial function in dystrophin-deficient muscles has remained poorly defined and unknown in vivo. Here, we used the mdx mouse model of DMD and non-invasive spectroscopy to determine the impact of dystrophin-deficiency on skeletal muscle mitochondrial localization and oxidative phosphorylation function in vivo. Mdx mitochondria exhibited significant uncoupling of oxidative phosphorylation (reduced P/O) and a reduction in maximal ATP synthesis capacity that together decreased intramuscular ATP levels. Uncoupling was not driven by increased UCP3 or ANT1 expression. Dystrophin was required to maintain subsarcolemmal mitochondria (SSM) pool density, implicating it in the spatial control of mitochondrial localization. Given that nitric oxide-cGMP pathways regulate mitochondria and that sildenafil-mediated phosphodiesterase 5 inhibition ameliorates dystrophic pathology, we tested whether sildenafil's benefits result from decreased mitochondrial dysfunction in mdx mice. Unexpectedly, sildenafil treatment did not affect mitochondrial content or oxidative phosphorylation defects in mdx mice. Rather, PDE5 inhibition decreased resting levels of ATP, phosphocreatine and myoglobin, suggesting that sildenafil improves dystrophic pathology through other mechanisms. Overall, these data indicate that dystrophin-deficiency disrupts SSM localization, promotes mitochondrial inefficiency and restricts maximal mitochondrial ATP-generating capacity. Together these defects decrease intramuscular ATP and the ability of mdx muscle mitochondria to meet ATP demand. These findings further understanding of how mitochondrial bioenergetic dysfunction contributes to disease pathogenesis in dystrophin-deficient skeletal muscle in vivo. PMID:23049075

  3. Genistein modulates oxidative stress in breast cancer cell lines according to ERα/ERβ ratio: effects on mitochondrial functionality, sirtuins, uncoupling protein 2 and antioxidant enzymes.

    PubMed

    Nadal-Serrano, Mercedes; Pons, Daniel Gabriel; Sastre-Serra, Jorge; Blanquer-Rosselló, M del Mar; Roca, Pilar; Oliver, Jordi

    2013-09-01

    Genistein is a biologically active isoflavone with estrogenic activity and can be found in a variety of soy products. This natural compound displays a wide array of biological activities, but it is best known for its ability to inhibit cancer progression, especially for hormone-related ones such as breast cancer. Genistein has been shown to bind both the estrogen receptor alpha (ERα) and the estrogen receptor beta (ERβ), although it has a higher affinity for the ERβ. The ERα/ERβ ratio is a prognostic marker for breast tumors, and ERβ expression could indicate the presence of tumors more benign in state, whereas ERα indicates malignant tumors. The objective of the present study was to investigate the effects of genistein on oxidative stress and mitochondrial functionality through its interaction with the estrogen receptor in breast cancer cell lines with different ERα/ERβ ratios. The lower ERα/ERβ ratio T47D cell line showed lower oxidative stress and greater mitochondrial functionality, along with an up-regulation of uncoupling protein 2 and sirtuins. On the other hand, genistein-treated MCF-7 cell line, with the highest ERα/ERβ ratio, reported no changes for the control situation. On the whole, our results show different genistein effects depending on ERα/ERβ ratio for oxidative stress regulation, mitochondrial functionality, and modulation of UCPs, antioxidant enzymes and sirtuins in breast cancer cell lines. Effects of genistein on oxidative stress and mitochondria could be due at least in part, to a higher ERβ presence, but could also be due to up-regulation of ERβ caused by the genistein treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Regulation of Heat Stress by HSF1 and GR

    DTIC Science & Technology

    2016-09-01

    Geiger PC. (2009). Heat treatment improves glucose tolerance and prevents skeletal muscle insulin resistance in rats fed a high -fat diet . Diabetes...appear to have different effects on the mitochondrial morphology and fission protein in skeletal muscle cells. The signaling pathways involving HSF1...preliminary results show that mitochondrial uncoupling proteins 2 and 3 (UCP2, UCP3) were down-regulated in in the gastrocnemius muscles of INT mice

  5. Mitochondrial Control by DRP1 in Brain Tumor Initiating Cells

    PubMed Central

    Xie, Qi; Wu, Qiulian; Horbinski, Craig M.; Flavahan, William A.; Yang, Kailin; Zhou, Wenchao; Dombrowski, Stephen M.; Huang, Zhi; Fang, Xiaoguang; Shi, Yu; Ferguson, Ashley N.; Kashatus, David F.; Bao, Shideng; Rich, Jeremy N.

    2015-01-01

    Brain tumor initiating cells (BTICs) coopt the neuronal high affinity GLUT3 glucose transporter to withstand metabolic stress. Here, we investigated another mechanism critical to brain metabolism, mitochondrial morphology. BTICs displayed mitochondrial fragmentation relative to non-BTICs, suggesting that BTICs have increased mitochondrial fission. The essential mediator of mitochondrial fission, dynamin-related protein 1 (DRP1), was activated in BTICs and inhibited in non-BTICs. Targeting DRP1 using RNA interference or pharmacologic inhibition induced BTIC apoptosis and inhibited tumor growth. Downstream, DRP1 activity regulated the essential metabolic stress sensor, AMP-activated protein kinase (AMPK), and AMPK targeting rescued the effects of DRP1 disruption. Cyclin-dependent kinase 5 (CDK5) phosphorylated DRP1 to increase its activity in BTICs, whereas Ca2+–calmodulin-dependent protein kinase 2 (CAMK2) inhibited DRP1 in non-BTICs, suggesting tumor cell differentiation induces a regulatory switch in mitochondrial morphology. DRP1 activation correlates with poor prognosis in glioblastoma, suggesting mitochondrial dynamics may represent a therapeutic target for BTICs. PMID:25730670

  6. Mitochondrial Citrate Transporter-dependent Metabolic Signature in the 22q11.2 Deletion Syndrome.

    PubMed

    Napoli, Eleonora; Tassone, Flora; Wong, Sarah; Angkustsiri, Kathleen; Simon, Tony J; Song, Gyu; Giulivi, Cecilia

    2015-09-18

    The congenital disorder 22q11.2 deletion syndrome (22qDS), characterized by a hemizygous deletion of 1.5-3 Mb on chromosome 22 at locus 11.2, is the most common microdeletion disorder (estimated prevalence of 1 in 4000) and the second risk factor for schizophrenia. Nine of ∼30 genes involved in 22qDS have the potential of disrupting mitochondrial metabolism (COMT, UFD1L, DGCR8, MRPL40, PRODH, SLC25A1, TXNRD2, T10, and ZDHHC8). Deficits in bioenergetics during early postnatal brain development could set the basis for a disrupted neuronal metabolism or synaptic signaling, partly explaining the higher incidence in developmental and behavioral deficits in these individuals. Here, we investigated whether mitochondrial outcomes and metabolites from 22qDS children segregated with the altered dosage of one or several of these mitochondrial genes contributing to 22qDS etiology and/or morbidity. Plasma metabolomics, lymphocytic mitochondrial outcomes, and epigenetics (histone H3 Lys-4 trimethylation and 5-methylcytosine) were evaluated in samples from 11 22qDS children and 13 age- and sex-matched neurotypically developing controls. Metabolite differences between 22qDS children and controls reflected a shift from oxidative phosphorylation to glycolysis (higher lactate/pyruvate ratios) accompanied by an increase in reductive carboxylation of α-ketoglutarate (increased concentrations of 2-hydroxyglutaric acid, cholesterol, and fatty acids). Altered metabolism in 22qDS reflected a critical role for the haploinsufficiency of the mitochondrial citrate transporter SLC25A1, further enhanced by HIF-1α, MYC, and metabolite controls. This comprehensive profiling served to clarify the biochemistry of this disease underlying its broad, complex phenotype. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis.

    PubMed

    Zhou, Hao; Zhang, Ying; Hu, Shunying; Shi, Chen; Zhu, Pingjun; Ma, Qiang; Jin, Qinhua; Cao, Feng; Tian, Feng; Chen, Yundai

    2017-08-01

    The cardiac microvascular system, which is primarily composed of monolayer endothelial cells, is the site of blood supply and nutrient exchange to cardiomyocytes. However, microvascular ischemia/reperfusion injury (IRI) following percutaneous coronary intervention is a woefully neglected topic, and few strategies are available to reverse such pathologies. Here, we studied the effects of melatonin on microcirculation IRI and elucidated the underlying mechanism. Melatonin markedly reduced infarcted area, improved cardiac function, restored blood flow, and lower microcirculation perfusion defects. Histological analysis showed that cardiac microcirculation endothelial cells (CMEC) in melatonin-treated mice had an unbroken endothelial barrier, increased endothelial nitric oxide synthase expression, unobstructed lumen, reduced inflammatory cell infiltration, and less endothelial damage. In contrast, AMP-activated protein kinase α (AMPKα) deficiency abolished the beneficial effects of melatonin on microvasculature. In vitro, IRI activated dynamin-related protein 1 (Drp1)-dependent mitochondrial fission, which subsequently induced voltage-dependent anion channel 1 (VDAC1) oligomerization, hexokinase 2 (HK2) liberation, mitochondrial permeability transition pore (mPTP) opening, PINK1/Parkin upregulation, and ultimately mitophagy-mediated CMEC death. However, melatonin strengthened CMEC survival via activation of AMPKα, followed by p-Drp1 S616 downregulation and p-Drp1 S37 upregulation, which blunted Drp1-dependent mitochondrial fission. Suppression of mitochondrial fission by melatonin recovered VDAC1-HK2 interaction that prevented mPTP opening and PINK1/Parkin activation, eventually blocking mitophagy-mediated cellular death. In summary, this study confirmed that melatonin protects cardiac microvasculature against IRI. The underlying mechanism may be attributed to the inhibitory effects of melatonin on mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis via activation

  8. ATG3-dependent autophagy mediates mitochondrial homeostasis in pluripotency acquirement and maintenance

    PubMed Central

    Liu, Kun; Zhao, Qian; Liu, Pinglei; Cao, Jiani; Gong, Jiaqi; Wang, Chaoqun; Wang, Weixu; Li, Xiaoyan; Sun, Hongyan; Zhang, Chao; Li, Yufei; Jiang, Minggui; Zhu, Shaohua; Sun, Qingyuan; Jiao, Jianwei; Hu, Baoyang; Zhao, Xiaoyang; Li, Wei; Chen, Quan; Zhou, Qi; Zhao, Tongbiao

    2016-01-01

    ABSTRACT Pluripotent stem cells, including induced pluripotent and embryonic stem cells (ESCs), have less developed mitochondria than somatic cells and, therefore, rely more heavily on glycolysis for energy production.1-3 However, how mitochondrial homeostasis matches the demands of nuclear reprogramming and regulates pluripotency in ESCs is largely unknown. Here, we identified ATG3-dependent autophagy as an executor for both mitochondrial remodeling during somatic cell reprogramming and mitochondrial homeostasis regulation in ESCs. Dysfunctional autophagy by Atg3 deletion inhibited mitochondrial removal during pluripotency induction, resulting in decreased reprogramming efficiency and accumulation of abnormal mitochondria in established iPSCs. In Atg3 null mouse ESCs, accumulation of aberrant mitochondria was accompanied by enhanced ROS generation, defective ATP production and attenuated pluripotency gene expression, leading to abnormal self-renewal and differentiation. These defects were rescued by reacquisition of wild-type but not lipidation-deficient Atg3 expression. Taken together, our findings highlight a critical role of ATG3-dependent autophagy for mitochondrial homeostasis regulation in both pluripotency acquirement and maintenance. PMID:27575019

  9. ATG3-dependent autophagy mediates mitochondrial homeostasis in pluripotency acquirement and maintenance.

    PubMed

    Liu, Kun; Zhao, Qian; Liu, Pinglei; Cao, Jiani; Gong, Jiaqi; Wang, Chaoqun; Wang, Weixu; Li, Xiaoyan; Sun, Hongyan; Zhang, Chao; Li, Yufei; Jiang, Minggui; Zhu, Shaohua; Sun, Qingyuan; Jiao, Jianwei; Hu, Baoyang; Zhao, Xiaoyang; Li, Wei; Chen, Quan; Zhou, Qi; Zhao, Tongbiao

    2016-11-01

    Pluripotent stem cells, including induced pluripotent and embryonic stem cells (ESCs), have less developed mitochondria than somatic cells and, therefore, rely more heavily on glycolysis for energy production. 1-3 However, how mitochondrial homeostasis matches the demands of nuclear reprogramming and regulates pluripotency in ESCs is largely unknown. Here, we identified ATG3-dependent autophagy as an executor for both mitochondrial remodeling during somatic cell reprogramming and mitochondrial homeostasis regulation in ESCs. Dysfunctional autophagy by Atg3 deletion inhibited mitochondrial removal during pluripotency induction, resulting in decreased reprogramming efficiency and accumulation of abnormal mitochondria in established iPSCs. In Atg3 null mouse ESCs, accumulation of aberrant mitochondria was accompanied by enhanced ROS generation, defective ATP production and attenuated pluripotency gene expression, leading to abnormal self-renewal and differentiation. These defects were rescued by reacquisition of wild-type but not lipidation-deficient Atg3 expression. Taken together, our findings highlight a critical role of ATG3-dependent autophagy for mitochondrial homeostasis regulation in both pluripotency acquirement and maintenance.

  10. Uncoupling protein homologs may provide a link between mitochondria, metabolism and lifespan

    PubMed Central

    Wolkow, Catherine A.; Iser, Wendy B.

    2008-01-01

    Uncoupling proteins (UCPs), which dissipate the mitochondrial proton gradient, have the ability to decouple mitochodrial respiration from ATP production. Since mitochondrial electron transport is a major source of free radical production, it is possible that UCP activity might impact free radical production. Free radicals can react with and damage cellular proteins, DNA and lipids. Accumulated damage from oxidative stress is believed to be a major contributor to cellular decline during aging. If UCP function were to impact mitochondrial free radical production, then one would expect to find a link between UCP activity and aging. This theory has recently been tested in a handful of organisms whose genomes contain UCP1 homologs. Interestingly, these experiments indicate that UCP homologs can affect lifespan, although they do not support a simple relationship between UCP activity and aging. Instead, UCP-like proteins appear to have a variety of effects on lifespan, and on pathways implicated in lifespan regulation. One possible explanation for this complex picture is that UCP homologs may have tissue-specific effects that complicate their effects on aging. Furthermore, the functional analysis of UCP1 homologs is incomplete. Thus, these proteins may perform functions in addition to, or instead of, mitochondrial uncoupling. Although these studies have not revealed a clear picture of UCP effects on aging, they have contributed to the growing knowledge base for these interesting proteins. Future biochemical and genetic investigation of UCP-like proteins will do much to clarify their functions and to identify the regulatory networks in which they are involved. PMID:16707280

  11. The role of nuclear factor E2-Related factor 2 and uncoupling protein 2 in glutathione metabolism: Evidence from an in vivo gene knockout study.

    PubMed

    Chen, Yanyan; Xu, Yuanyuan; Zheng, Hongzhi; Fu, Jingqi; Hou, Yongyong; Wang, Huihui; Zhang, Qiang; Yamamoto, Masayuki; Pi, Jingbo

    2016-09-09

    Nuclear factor E2-related factor 2 (NRF2) and uncoupling protein 2 (UCP2) are indicated to protect from oxidative stress. They also play roles in the homeostasis of glutathione. However, the detailed mechanisms are not well understood. In the present study, we found Nrf2-knockout (Nrf2-KO) mice exhibited altered glutathione homeostasis and reduced expression of various genes involved in GSH biosynthesis, regeneration, utilization and transport in the liver. Ucp2-knockout (Ucp2-KO) mice exhibited altered glutathione homeostasis in the liver, spleen and blood, as well as increased transcript of cystic fibrosis transmembrane conductance regulator in the liver, a protein capable of mediating glutathione efflux. Nrf2-Ucp2-double knockout (DKO) mice showed characteristics of both Nrf2-KO and Ucp2-KO mice. But no significant difference was observed in DKO mice when compared with Nrf2-KO or Ucp2-KO mice, except in blood glutathione levels. These data suggest that ablation of Nrf2 and Ucp2 leads to disrupted GSH balance, which could result from altered expression of genes involved in GSH metabolism. DKO may not evoke more severe oxidative stress than the single gene knockout. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The mitochondrial elongation factors MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tong; Yu, Rong; Jin, Shao-Bo

    2013-11-01

    Mitochondria are dynamic organelles whose morphology is regulated by a complex balance of fission and fusion processes, and we still know relatively little about how mitochondrial dynamics is regulated. MIEF1 (also called MiD51) has recently been characterized as a key regulator of mitochondrial dynamics and in this report we explore the functions of its paralog MIEF2 (also called MiD49), to learn to what extent MIEF2 is functionally distinct from MIEF1. We show that MIEF1 and MIEF2 have many functions in common. Both are anchored in the mitochondrial outer membrane, recruit Drp1 from the cytoplasm to the mitochondrial surface and causemore » mitochondrial fusion, and MIEF2, like MIEF1, can interact with Drp1 and hFis1. MIEF1 and MIEF2, however, also differ in certain aspects. MIEF1 and MIEF2 are differentially expressed in human tissues during development. When overexpressed, MIEF2 exerts a stronger fusion-promoting effect than MIEF1, and in line with this, hFis1 and Mff can only partially revert the MIEF2-induced fusion phenotype, whereas MIEF1-induced fusion is reverted to a larger extent by hFis1 and Mff. MIEF2 forms high molecular weight oligomers, while MIEF1 is largely present as a dimer. Furthermore, MIEF1 and MIEF2 use distinct domains for oligomerization: in MIEF1, the region from amino acid residues 109–154 is required, whereas oligomerization of MIEF2 depends on amino acid residues 1 to 49, i.e. the N-terminal end. We also show that oligomerization of MIEF1 is not required for its mitochondrial localization and interaction with Drp1. In conclusion, our data suggest that the mitochondrial regulators MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics. - Highlights: • MIEF1 and MIEF2 recruit Drp1 to mitochondria and cause mitochondrial fusion. • MIEF2, like MIEF1, can interact with Drp1 and hFis1. • MIEF1 and MIEF2 are differentially expressed in human tissues during development. • MIEF2 exerts a stronger fusion

  13. Copper Import into the Mitochondrial Matrix in Saccharomyces cerevisiae Is Mediated by Pic2, a Mitochondrial Carrier Family Protein*

    PubMed Central

    Vest, Katherine E.; Leary, Scot C.; Winge, Dennis R.; Cobine, Paul A.

    2013-01-01

    Saccharomyces cerevisiae must import copper into the mitochondrial matrix for eventual assembly of cytochrome c oxidase. This copper is bound to an anionic fluorescent molecule known as the copper ligand (CuL). Here, we identify for the first time a mitochondrial carrier family protein capable of importing copper into the matrix. In vitro transport of the CuL into the mitochondrial matrix was saturable and temperature-dependent. Strains with a deletion of PIC2 grew poorly on copper-deficient non-fermentable medium supplemented with silver and under respiratory conditions when challenged with a matrix-targeted copper competitor. Mitochondria from pic2Δ cells had lower total mitochondrial copper and exhibited a decreased capacity for copper uptake. Heterologous expression of Pic2 in Lactococcus lactis significantly enhanced CuL transport into these cells. Therefore, we propose a novel role for Pic2 in copper import into mitochondria. PMID:23846699

  14. Copper import into the mitochondrial matrix in Saccharomyces cerevisiae is mediated by Pic2, a mitochondrial carrier family protein.

    PubMed

    Vest, Katherine E; Leary, Scot C; Winge, Dennis R; Cobine, Paul A

    2013-08-16

    Saccharomyces cerevisiae must import copper into the mitochondrial matrix for eventual assembly of cytochrome c oxidase. This copper is bound to an anionic fluorescent molecule known as the copper ligand (CuL). Here, we identify for the first time a mitochondrial carrier family protein capable of importing copper into the matrix. In vitro transport of the CuL into the mitochondrial matrix was saturable and temperature-dependent. Strains with a deletion of PIC2 grew poorly on copper-deficient non-fermentable medium supplemented with silver and under respiratory conditions when challenged with a matrix-targeted copper competitor. Mitochondria from pic2Δ cells had lower total mitochondrial copper and exhibited a decreased capacity for copper uptake. Heterologous expression of Pic2 in Lactococcus lactis significantly enhanced CuL transport into these cells. Therefore, we propose a novel role for Pic2 in copper import into mitochondria.

  15. Investigating mitochondrial dysfunction in human lung cells exposed to redox-active PM components.

    PubMed

    Lavrich, Katelyn S; Corteselli, Elizabeth M; Wages, Phillip A; Bromberg, Philip A; Simmons, Steven O; Gibbs-Flournoy, Eugene A; Samet, James M

    2018-03-01

    Exposure to ambient particulate matter (PM) causes cardiopulmonary morbidity and mortality through mechanisms that involve oxidative stress. 1,2-naphthoquinone (1,2-NQ) is a ubiquitous component of PM and a potent redox-active electrophile. We previously reported that 1,2-NQ increases mitochondrial H 2 O 2 production through an unidentified mechanism. We sought to characterize the effects of 1,2-NQ exposure on mitochondrial respiration as a source of H 2 O 2 in human airway epithelial cells. We measured the effects of acute exposure to 1,2-NQ on oxygen consumption rate (OCR) in the human bronchial epithelial cell line BEAS-2B and mitochondrial preparations using extracellular flux analysis. Complex-specific assays and NADPH depletion by glucose deprivation distinguished between mitochondrial and non-mitochondrial oxygen utilization. 1,2-NQ exposure of BEAS cells caused a rapid, marked dose-dependent increase in OCR that was independent of mitochondrial respiration, exceeded the OCR observed after mitochondrial uncoupling, and remained sensitive to NADPH depletion, implicating extra-mitochondrial redox cycling processes. Similar effects were observed with the environmentally relevant redox-cycling quinones 1,4-naphthoquinone and 9,10-phenanthrenequinone, but not with quinones that do not redox cycle, such as 1,4-benzoquinone. In mitochondrial preparations, 1,2-NQ caused a decrease in Complex I-linked substrate oxidation, suggesting impairment of pyruvate utilization or transport, a novel mechanism of mitochondrial inhibition by an environmental exposure. This study also highlights the methodological utility and challenges in the use of extracellular flux analysis to elucidate the mechanisms of action of redox-active electrophiles present in ambient air. Published by Elsevier Inc.

  16. Mitochondrial aquaporin-8 knockdown in human hepatoma HepG2 cells causes ROS-induced mitochondrial depolarization and loss of viability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchissio, Maria Julia; Francés, Daniel Eleazar Antonio; Carnovale, Cristina Ester

    Human aquaporin-8 (AQP8) channels facilitate the diffusional transport of H{sub 2}O{sub 2} across membranes. Since AQP8 is expressed in hepatic inner mitochondrial membranes, we studied whether mitochondrial AQP8 (mtAQP8) knockdown in human hepatoma HepG2 cells impairs mitochondrial H{sub 2}O{sub 2} release, which may lead to organelle dysfunction and cell death. We confirmed AQP8 expression in HepG2 inner mitochondrial membranes and found that 72 h after cell transfection with siRNAs targeting two different regions of the human AQP8 molecule, mtAQP8 protein specifically decreased by around 60% (p < 0.05). Studies in isolated mtAQP8-knockdown mitochondria showed that H{sub 2}O{sub 2} release, assessedmore » by Amplex Red, was reduced by about 45% (p < 0.05), an effect not observed in digitonin-permeabilized mitochondria. mtAQP8-knockdown cells showed an increase in mitochondrial ROS, assessed by dichlorodihydrofluorescein diacetate (+ 120%, p < 0.05) and loss of mitochondrial membrane potential (− 80%, p < 0.05), assessed by tetramethylrhodamine-coupled quantitative fluorescence microscopy. The mitochondria-targeted antioxidant MitoTempol prevented ROS accumulation and dissipation of mitochondrial membrane potential. Cyclosporin A, a mitochondrial permeability transition pore blocker, also abolished the mtAQP8 knockdown-induced mitochondrial depolarization. Besides, the loss of viability in mtAQP8 knockdown cells verified by MTT assay, LDH leakage, and trypan blue exclusion test could be prevented by cyclosporin A. Our data on human hepatoma HepG2 cells suggest that mtAQP8 facilitates mitochondrial H{sub 2}O{sub 2} release and that its defective expression causes ROS-induced mitochondrial depolarization via the mitochondrial permeability transition mechanism, and cell death. -- Highlights: ► Aquaporin-8 is expressed in mitochondria of human hepatoma HepG2 cells. ► Aquaporin-8 knockdown impairs mitochondrial H{sub 2}O{sub 2} release and increases ROS.

  17. Mitochondrial Complex IV Subunit 4 Isoform 2 Is Essential for Acute Pulmonary Oxygen Sensing.

    PubMed

    Sommer, Natascha; Hüttemann, Maik; Pak, Oleg; Scheibe, Susan; Knoepp, Fenja; Sinkler, Christopher; Malczyk, Monika; Gierhardt, Mareike; Esfandiary, Azadeh; Kraut, Simone; Jonas, Felix; Veith, Christine; Aras, Siddhesh; Sydykov, Akylbek; Alebrahimdehkordi, Nasim; Giehl, Klaudia; Hecker, Matthias; Brandes, Ralf P; Seeger, Werner; Grimminger, Friedrich; Ghofrani, Hossein A; Schermuly, Ralph T; Grossman, Lawrence I; Weissmann, Norbert

    2017-08-04

    Acute pulmonary oxygen sensing is essential to avoid life-threatening hypoxemia via hypoxic pulmonary vasoconstriction (HPV) which matches perfusion to ventilation. Hypoxia-induced mitochondrial superoxide release has been suggested as a critical step in the signaling pathway underlying HPV. However, the identity of the primary oxygen sensor and the mechanism of superoxide release in acute hypoxia, as well as its relevance for chronic pulmonary oxygen sensing, remain unresolved. To investigate the role of the pulmonary-specific isoform 2 of subunit 4 of the mitochondrial complex IV (Cox4i2) and the subsequent mediators superoxide and hydrogen peroxide for pulmonary oxygen sensing and signaling. Isolated ventilated and perfused lungs from Cox4i2 -/- mice lacked acute HPV. In parallel, pulmonary arterial smooth muscle cells (PASMCs) from Cox4i2 -/- mice showed no hypoxia-induced increase of intracellular calcium. Hypoxia-induced superoxide release which was detected by electron spin resonance spectroscopy in wild-type PASMCs was absent in Cox4i2 -/- PASMCs and was dependent on cysteine residues of Cox4i2. HPV could be inhibited by mitochondrial superoxide inhibitors proving the functional relevance of superoxide release for HPV. Mitochondrial hyperpolarization, which can promote mitochondrial superoxide release, was detected during acute hypoxia in wild-type but not Cox4i2 -/- PASMCs. Downstream signaling determined by patch-clamp measurements showed decreased hypoxia-induced cellular membrane depolarization in Cox4i2 -/- PASMCs compared with wild-type PASMCs, which could be normalized by the application of hydrogen peroxide. In contrast, chronic hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling were not or only slightly affected by Cox4i2 deficiency, respectively. Cox4i2 is essential for acute but not chronic pulmonary oxygen sensing by triggering mitochondrial hyperpolarization and release of mitochondrial superoxide which, after conversion

  18. Differences in mitochondrial gene expression profiles, enzyme activities and myosin heavy chain types in yak versus bovine skeletal muscles.

    PubMed

    Lin, Y Q; Xu, Y O; Yue, Y; Jin, S Y; Qu, Y; Dong, F; Li, Y P; Zheng, Y C

    2012-08-29

    Hypoxia can affect energy metabolism. We examined gene expression and enzyme activity related to mitochondrial energy metabolism, as well as myosin heavy chain (MyHC) types in yaks (Bos grunniens) living at high altitudes. Real-time quantitative PCR assays indicated that the yak has significantly lower levels of carnitine palmitoyltransferase (CPT) mRNA in the biceps femoris and lower levels of uncoupling protein 3 (UCP3) mRNA in both biceps femoris and longissimus dorsi than in Yellow cattle. No significant differences between yak and Yellow cattle were observed in the activities of mitochondrial β-hydroxyacyl-CoA dehydrogenase, isocitrate dehydrogenase and cytochrome oxidase in the same muscles. Semi-quantitative RT-PCR analysis showed that the MyHC 1 mRNA levels in yak biceps femoris was lower than in Yellow cattle. We conclude that the yak has significantly lower mRNA levels of CPT, UCP3, and MyHC 1 in biceps femoris than in Yellow cattle, suggesting that the yak biceps femoris has lower fatty acid oxidation capacity and greater glycolytic metabolic potential.

  19. Thioredoxin-2 Inhibits Mitochondrial ROS Generation and ASK1 Activity to Maintain Cardiac Function

    PubMed Central

    Huang, Qunhua; Zhou, Huanjiao Jenny; Zhang, Haifeng; Huang, Yan; Hinojosa-Kirschenbaum, Ford; Fan, Peidong; Yao, Lina; Belardinelli, Luiz; Tellides, George; Giordano, Frank J.; Budas, Grant R.; Min, Wang

    2015-01-01

    Background Thioredoxin 2 (Trx2) is a key mitochondrial protein which regulates cellular redox and survival by suppressing mitochondrial ROS generation and by inhibiting apoptosis stress kinase-1 (ASK1)-dependent apoptotic signaling. To date, the role of the mitochondrial Trx2 system in heart failure pathogenesis has not been investigated. Methods and Results Western blot and histological analysis revealed that Trx2 protein expression levels were reduced in hearts from patients with dilated cardiomyopathy (DCM), with a concomitant increase in increased ASK1 phosphorylation/activity. Cardiac-specific Trx2 knockout mice (Trx2-cKO). Trx2-cKO mice develop spontaneous DCM at 1 month of age with increased heart size, reduced ventricular wall thickness, and a progressive decline in left ventricular (LV) contractile function, resulting in mortality due to heart failure by ~4 months of age. The progressive decline in cardiac function observed in Trx2-cKO mice was accompanied by disruption of mitochondrial ultrastructure, mitochondrial membrane depolarization, increased mitochondrial ROS generation and reduced ATP production, correlating with increased ASK1 signaling and increased cardiomyocyte apoptosis. Chronic administration of a highly selective ASK1 inhibitor improved cardiac phenotype and reduced maladaptive LV remodeling with significant reductions in oxidative stress, apoptosis, fibrosis and cardiac failure. Cellular data from Trx2-deficient cardiomyocytes demonstrated that ASK1 inhibition reduced apoptosis and reduced mitochondrial ROS generation. Conclusions Our data support an essential role for mitochondrial Trx2 in preserving cardiac function by suppressing mitochondrial ROS production and ASK1-dependent apoptosis. Inhibition of ASK1 represents a promising therapeutic strategy for the treatment of dilated cardiomyopathy and heart failure. PMID:25628390

  20. NAD+-Dependent Activation of Sirt1 Corrects the Phenotype in a Mouse Model of Mitochondrial Disease

    PubMed Central

    Cerutti, Raffaele; Pirinen, Eija; Lamperti, Costanza; Marchet, Silvia; Sauve, Anthony A.; Li, Wei; Leoni, Valerio; Schon, Eric A.; Dantzer, Françoise; Auwerx, Johan; Viscomi, Carlo; Zeviani, Massimo

    2014-01-01

    Summary Mitochondrial disorders are highly heterogeneous conditions characterized by defects of the mitochondrial respiratory chain. Pharmacological activation of mitochondrial biogenesis has been proposed as an effective means to correct the biochemical defects and ameliorate the clinical phenotype in these severely disabling, often fatal, disorders. Pathways related to mitochondrial biogenesis are targets of Sirtuin1, a NAD+-dependent protein deacetylase. As NAD+ boosts the activity of Sirtuin1 and other sirtuins, intracellular levels of NAD+ play a key role in the homeostatic control of mitochondrial function by the metabolic status of the cell. We show here that supplementation with nicotinamide riboside, a natural NAD+ precursor, or reduction of NAD+ consumption by inhibiting the poly(ADP-ribose) polymerases, leads to marked improvement of the respiratory chain defect and exercise intolerance of the Sco2 knockout/knockin mouse, a mitochondrial disease model characterized by impaired cytochrome c oxidase biogenesis. This strategy is potentially translatable into therapy of mitochondrial disorders in humans. PMID:24814483

  1. Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kieper, Nicole; Holmstroem, Kira M.; Ciceri, Dalila

    2010-04-15

    Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro-apoptotic factor from the mitochondrial intermembrane space into the cytosol. Under physiological conditions, Omi/HtrA2 is thought to be involved in protection against cellular stress, but the cytological and molecular mechanisms are not clear. Omi/HtrA2 deficiency caused an accumulation of reactive oxygen species and reduced mitochondrial membrane potential. In Omi/HtrA2 knockout mouse embryonic fibroblasts, as well as in Omi/HtrA2 silenced human HeLa cells and Drosophila S2R+ cells, we found elongatedmore » mitochondria by live cell imaging. Electron microscopy confirmed the mitochondrial morphology alterations and showed abnormal cristae structure. Examining the levels of proteins involved in mitochondrial fusion, we found a selective up-regulation of more soluble OPA1 protein. Complementation of knockout cells with wild-type Omi/HtrA2 but not with the protease mutant [S306A]Omi/HtrA2 reversed the mitochondrial elongation phenotype and OPA1 alterations. Finally, co-immunoprecipitation showed direct interaction of Omi/HtrA2 with endogenous OPA1. Thus, we show for the first time a direct effect of loss of Omi/HtrA2 on mitochondrial morphology and demonstrate a novel role of this mitochondrial serine protease in the modulation of OPA1. Our results underscore a critical role of impaired mitochondrial dynamics in neurodegenerative disorders.« less

  2. Distinct Mechanisms of Pathogenic DJ-1 Mutations in Mitochondrial Quality Control

    PubMed Central

    Strobbe, Daniela; Robinson, Alexis A.; Harvey, Kirsten; Rossi, Lara; Ferraina, Caterina; de Biase, Valerio; Rodolfo, Carlo; Harvey, Robert J.; Campanella, Michelangelo

    2018-01-01

    The deglycase and chaperone protein DJ-1 is pivotal for cellular oxidative stress responses and mitochondrial quality control. Mutations in PARK7, encoding DJ-1, are associated with early-onset familial Parkinson’s disease and lead to pathological oxidative stress and/or disrupted protein degradation by the proteasome. The aim of this study was to gain insights into the pathogenic mechanisms of selected DJ-1 missense mutations, by characterizing protein–protein interactions, core parameters of mitochondrial function, quality control regulation via autophagy, and cellular death following dopamine accumulation. We report that the DJ-1M26I mutant influences DJ-1 interactions with SUMO-1, in turn enhancing removal of mitochondria and conferring increased cellular susceptibility to dopamine toxicity. By contrast, the DJ-1D149A mutant does not influence mitophagy, but instead impairs Ca2+ dynamics and free radical homeostasis by disrupting DJ-1 interactions with a mitochondrial accessory protein known as DJ-1-binding protein (DJBP/EFCAB6). Thus, individual DJ-1 mutations have different effects on mitochondrial function and quality control, implying mutation-specific pathomechanisms converging on impaired mitochondrial homeostasis. PMID:29599708

  3. Novel browning agents, mechanisms and therapeutic potentials of brown adipose tissue

    USDA-ARS?s Scientific Manuscript database

    Non-shivering thermogenesis is the process of biological heat production in mammals and is primarily mediated by brown adipose tissue (BAT). Through ubiquitous expression of uncoupling protein 1 (Ucp1) on the mitochondrial inner membrane, BAT displays uncoupling of fuel combustion and ATP production...

  4. ASSOCIATIONS BETWEEN UNCOUPLING PROTEIN 2, BODY COMPOSITION, AND RESTING ENERGY EXPENDITURE IN LEAN AND OBESE AFRICAN AMERICAN, CAUCASIAN, AND ASIAN CHILDREN

    PubMed Central

    Yanovski, J.A.; Diament, A.L.; Sovik, K.N.; Nguyen, T.T.; Li, H.; Sebring, N.G.; Warden, C.H.

    2015-01-01

    Background Little is known about genes affecting childhood body weight. Objective To examine alleles of the mitochondrial uncoupling protein-2 (UCP2) gene for association with obesity, since UCP2 may influence energy expenditure. Design We related UCP2 genotype to body composition, and to resting energy expenditure, in 105 children aged 6–10y. Overweight children and non-overweight children of overweight parents were genotyped for a 45 bp deletion/insertion (del/ins) in 3’ UTR of exon 8 and for an exon 4 C to T transition. Results 89 children were genotyped for the exon 8 allele: 50 children had del/del, 33 del/ins, and 6 ins/ins. Body mass index (BMI) was greater for del/ins (24.1 ± 5.9 kg/m2) than for del/del (20.4 ± 4.8 kg/m2, p<0.001). BMI of ins/ins (23.7 ± 7.8 kg/m2) was not different from del/ins. This effect was independent of race and gender (ANOVAs, p< 0.05). Body composition was also different according to UCP2 genotype. All body circumferences and skin fold thicknesses examined were significantly greater in del/ins than in del/del. DXA body fat mass (p<0.005) was also greater in del/ins than del/del. For 104 children genotyped at exon 4, no significant differences in BMI or body composition were found among the three exon 4 genotypes. Neither resting energy expenditure nor respiratory quotient were different according to UCP2 exon 4 or exon 8 genotype. Conclusion The exon 8 ins/del polymorphism of UCP2 appears to be associated with childhood-onset obesity. The UCP2/UCP3 genetic locus may play a role in childhood body weight. PMID:10837279

  5. Mitochondrial control by DRP1 in brain tumor initiating cells.

    PubMed

    Xie, Qi; Wu, Qiulian; Horbinski, Craig M; Flavahan, William A; Yang, Kailin; Zhou, Wenchao; Dombrowski, Stephen M; Huang, Zhi; Fang, Xiaoguang; Shi, Yu; Ferguson, Ashley N; Kashatus, David F; Bao, Shideng; Rich, Jeremy N

    2015-04-01

    Brain tumor initiating cells (BTICs) co-opt the neuronal high affinity glucose transporter, GLUT3, to withstand metabolic stress. We investigated another mechanism critical to brain metabolism, mitochondrial morphology, in BTICs. BTIC mitochondria were fragmented relative to non-BTIC tumor cell mitochondria, suggesting that BTICs increase mitochondrial fission. The essential mediator of mitochondrial fission, dynamin-related protein 1 (DRP1), showed activating phosphorylation in BTICs and inhibitory phosphorylation in non-BTIC tumor cells. Targeting DRP1 using RNA interference or pharmacologic inhibition induced BTIC apoptosis and inhibited tumor growth. Downstream, DRP1 activity regulated the essential metabolic stress sensor, AMP-activated protein kinase (AMPK), and targeting AMPK rescued the effects of DRP1 disruption. Cyclin-dependent kinase 5 (CDK5) phosphorylated DRP1 to increase its activity in BTICs, whereas Ca(2+)-calmodulin-dependent protein kinase 2 (CAMK2) inhibited DRP1 in non-BTIC tumor cells, suggesting that tumor cell differentiation induces a regulatory switch in mitochondrial morphology. DRP1 activation correlated with poor prognosis in glioblastoma, suggesting that mitochondrial dynamics may represent a therapeutic target for BTICs.

  6. Mhr1p-dependent concatemeric mitochondrial DNA formation for generating yeast mitochondrial homoplasmic cells.

    PubMed

    Ling, Feng; Shibata, Takehiko

    2004-01-01

    Mitochondria carry many copies of mitochondrial DNA (mtDNA), but mt-alleles quickly segregate during mitotic growth through unknown mechanisms. Consequently, all mtDNA copies are often genetically homogeneous within each individual ("homoplasmic"). Our previous study suggested that tandem multimers ("concatemers") formed mainly by the Mhr1p (a yeast nuclear gene-encoded mtDNA-recombination protein)-dependent pathway are required for mtDNA partitioning into buds with concomitant monomerization. The transmission of a few randomly selected clones (as concatemers) of mtDNA into buds is a possible mechanism to establish homoplasmy. The current study provides evidence for this hypothesis as follows: the overexpression of MHR1 accelerates mt-allele-segregation in growing heteroplasmic zygotes, and mhr1-1 (recombination-deficient) causes its delay. The mt-allele-segregation rate correlates with the abundance of concatemers, which depends on Mhr1p. In G1-arrested cells, concatemeric mtDNA was labeled by [14C]thymidine at a much higher density than monomers, indicating concatemers as the immediate products of mtDNA replication, most likely in a rolling circle mode. After releasing the G1 arrest in the absence of [14C]thymidine, the monomers as the major species in growing buds of dividing cells bear a similar density of 14C as the concatemers in the mother cells, indicating that the concatemers in mother cells are the precursors of the monomers in buds.

  7. Febuxostat ameliorates secondary progressive experimental autoimmune encephalomyelitis by restoring mitochondrial energy production in a GOT2-dependent manner

    PubMed Central

    Kinoshita, Makoto; Sumi-Akamaru, Hisae; Sasaki, Tsutomu; Takata, Kazushiro; Koda, Toru; Namba, Akiko; Yamashita, Kazuya; Sanda, Eri; Sakaguchi, Manabu; Kumanogoh, Atsushi; Shirakura, Takashi; Tamura, Mizuho; Sakoda, Saburo; Mochizuki, Hideki

    2017-01-01

    Oxidative stress and mitochondrial dysfunction are important determinants of neurodegeneration in secondary progressive multiple sclerosis (SPMS). We previously showed that febuxostat, a xanthine oxidase inhibitor, ameliorated both relapsing-remitting and secondary progressive experimental autoimmune encephalomyelitis (EAE) by preventing neurodegeneration in mice. In this study, we investigated how febuxostat protects neuron in secondary progressive EAE. A DNA microarray analysis revealed that febuxostat treatment increased the CNS expression of several mitochondria-related genes in EAE mice, most notably including GOT2, which encodes glutamate oxaloacetate transaminase 2 (GOT2). GOT2 is a mitochondrial enzyme that oxidizes glutamate to produce α-ketoglutarate for the Krebs cycle, eventually leading to the production of adenosine triphosphate (ATP). Whereas GOT2 expression was decreased in the spinal cord during the chronic progressive phase of EAE, febuxostat-treated EAE mice showed increased GOT2 expression. Moreover, febuxostat treatment of Neuro2a cells in vitro ameliorated ATP exhaustion induced by rotenone application. The ability of febuxostat to preserve ATP production in the presence of rotenone was significantly reduced by GOT2 siRNA. GOT2-mediated ATP synthesis may be a pivotal mechanism underlying the protective effect of febuxostat against neurodegeneration in EAE. Accordingly, febuxostat may also have clinical utility as a disease-modifying drug in SPMS. PMID:29107957

  8. Febuxostat ameliorates secondary progressive experimental autoimmune encephalomyelitis by restoring mitochondrial energy production in a GOT2-dependent manner.

    PubMed

    Honorat, Josephe A; Nakatsuji, Yuji; Shimizu, Mikito; Kinoshita, Makoto; Sumi-Akamaru, Hisae; Sasaki, Tsutomu; Takata, Kazushiro; Koda, Toru; Namba, Akiko; Yamashita, Kazuya; Sanda, Eri; Sakaguchi, Manabu; Kumanogoh, Atsushi; Shirakura, Takashi; Tamura, Mizuho; Sakoda, Saburo; Mochizuki, Hideki; Okuno, Tatsusada

    2017-01-01

    Oxidative stress and mitochondrial dysfunction are important determinants of neurodegeneration in secondary progressive multiple sclerosis (SPMS). We previously showed that febuxostat, a xanthine oxidase inhibitor, ameliorated both relapsing-remitting and secondary progressive experimental autoimmune encephalomyelitis (EAE) by preventing neurodegeneration in mice. In this study, we investigated how febuxostat protects neuron in secondary progressive EAE. A DNA microarray analysis revealed that febuxostat treatment increased the CNS expression of several mitochondria-related genes in EAE mice, most notably including GOT2, which encodes glutamate oxaloacetate transaminase 2 (GOT2). GOT2 is a mitochondrial enzyme that oxidizes glutamate to produce α-ketoglutarate for the Krebs cycle, eventually leading to the production of adenosine triphosphate (ATP). Whereas GOT2 expression was decreased in the spinal cord during the chronic progressive phase of EAE, febuxostat-treated EAE mice showed increased GOT2 expression. Moreover, febuxostat treatment of Neuro2a cells in vitro ameliorated ATP exhaustion induced by rotenone application. The ability of febuxostat to preserve ATP production in the presence of rotenone was significantly reduced by GOT2 siRNA. GOT2-mediated ATP synthesis may be a pivotal mechanism underlying the protective effect of febuxostat against neurodegeneration in EAE. Accordingly, febuxostat may also have clinical utility as a disease-modifying drug in SPMS.

  9. The Measurement of Reversible Redox Dependent Post-translational Modifications and Their Regulation of Mitochondrial and Skeletal Muscle Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, Philip A.; Duan, Jicheng; Qian, Wei-Jun

    Mitochondrial oxidative stress is a common feature of skeletal myopathies across multiple conditions; however, the mechanism by which it contributes to skeletal muscle dysfunction remains controversial. Oxidative damage to proteins, lipids, and DNA has received the most attention, yet an important role for reversible redox post-translational modifications (PTMs) in pathophysiology is emerging. The possibility that these PTMs can exert dynamic control of muscle function implicates them as a mechanism contributing to skeletal muscle dysfunction in chronic disease. Herein, we discuss the significance of thiol-based redox dependent modifications to mitochondrial, myofibrillar and excitation-contraction (EC) coupling proteins with an emphasis on howmore » these changes could alter skeletal muscle performance under chronically stressed conditions. A major barrier to a better mechanistic understanding of the role of reversible redox PTMs in muscle function is the technical challenges associated with accurately measuring the changes of site-specific redox PTMs. Here we will critically review current approaches with an emphasis on sample preparation artifacts, quantitation, and specificity. Despite these challenges, the ability to accurately quantify reversible redox PTMs is critical to understanding the mechanisms by which mitochondrial oxidative stress contributes to skeletal muscle dysfunction in chronic diseases.« less

  10. Alteration in cardiac uncoupling proteins and eNOS gene expression following high-intensity interval training in favor of increasing mechanical efficiency.

    PubMed

    Fallahi, Ali Asghar; Shekarfroush, Shahnaz; Rahimi, Mostafa; Jalali, Amirhossain; Khoshbaten, Ali

    2016-03-01

    High-intensity interval training (HIIT) increases energy expenditure and mechanical energy efficiency. Although both uncoupling proteins (UCPs) and endothelial nitric oxide synthase (eNOS) affect the mechanical efficiency and antioxidant capacity, their effects are inverse. The aim of this study was to determine whether the alterations of cardiac UCP2, UCP3, and eNOS mRNA expression following HIIT are in favor of increased mechanical efficiency or decreased oxidative stress. Wistar rats were divided into five groups: control group (n=12), HIIT for an acute bout (AT1), short term HIIT for 3 and 5 sessions (ST3 and ST5), long-term training for 8 weeks (LT) (6 in each group). The rats of the training groups were made to run on a treadmill for 60 min in three stages: 6 min running for warm-up, 7 intervals of 7 min running on treadmill with a slope of 5° to 20° (4 min with an intensity of 80-110% VO2max and 3 min at 50-60% VO2max), and 5-min running for cool-down. The control group did not participate in any exercise program. Rats were sacrificed and the hearts were extracted to analyze the levels of UCP2, UCP3 and eNOS mRNA by RT-PCR. UCP3 expression was increased significantly following an acute training bout. Repeated HIIT for 8 weeks resulted in a significant decrease in UCPs mRNA and a significant increase in eNOS expression in cardiac muscle. This study indicates that Long term HIIT through decreasing UCPs mRNA and increasing eNOS mRNA expression may enhance energy efficiency and physical performance.

  11. Ascorbate and low concentrations of FeSO4 induce Ca2+-dependent pore in rat liver mitochondria.

    PubMed

    Brailovskaya, I V; Starkov, A A; Mokhova, E N

    2001-08-01

    Oxidative stress is one of the most frequent causes of tissue and cell injury in various pathologies. The molecular mechanism of mitochondrial damage under conditions of oxidative stress induced in vitro with low concentrations of FeSO4 and ascorbate (vitamin C) was studied. FeSO4 (1-4 microM) added to rat liver mitochondria that were incubated in the presence of 2.3 mM ascorbate induced (with a certain delay) a decrease in membrane potential and high-amplitude swelling. It also significantly decreased the ability of mitochondria to accumulate exogenous Ca2+. All the effects of FeSO4 + ascorbate were essentially prevented by cyclosporin A, a specific inhibitor of the mitochondrial Ca2+-dependent pore (also known as the mitochondrial permeability transition). EGTA restored the membrane potential of mitochondria de-energized with FeSO4 + ascorbate. We hypothesize that oxidative stress induced in vitro with FeSO4 and millimolar concentrations of ascorbate damages mitochondria by inducing the cyclosporin A-sensitive Ca2+-dependent pore in the inner mitochondrial membrane.

  12. CaMKII determines mitochondrial stress responses in heart

    PubMed Central

    Joiner, Mei-ling A.; Koval, Olha M.; Jingdong, Li; He, B. Julie; Allamargot, Chantal; Gao, Zhan; Luczak, Elizabeth D.; Hall, Duane D.; Fink, Brian D.; Chen, Biyi; Yang, Jinying; Moore, Steven A.; Scholz, Thomas D.; Strack, Stefan; Mohler, Peter J.; Sivitz, William I.; Song, Long-Sheng; Anderson, Mark E.

    2012-01-01

    Myocardial cell death is initiated by excessive mitochondrial Ca2+ entry, causing Ca2+ overload, mitochondrial permeability transition pore (mPTP) opening and dissipation of the mitochondrial inner membrane potential (ΔΨm)1,2. However, the signaling pathways that control mitochondrial Ca2+ entry through the inner membrane mitochondrial Ca2+ uniporter (MCU)3–5 are not known. The multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII) is activated in ischemia reperfusion (I/R), myocardial infarction (MI) and neurohumoral injury, common causes of myocardial death and heart failure, suggesting CaMKII could couple disease stress to mitochondrial injury. Here we show that CaMKII promotes mPTP opening and myocardial death by increasing MCU current (IMCU). Mitochondrial-targeted CaMKII inhibitory protein or cyclosporin A (CsA), an mPTP antagonist with clinical efficacy in I/R injury6, equivalently prevent mPTP opening, ΔΨm deterioration and diminish mitochondrial disruption and programmed cell death in response to I/R injury. Mice with myocardial and mitochondrial-targeted CaMKII inhibition are resistant to I/R injury, MI and neurohumoral injury, suggesting pathological actions of CaMKII are substantially mediated by increasing IMCU. Our findings identify CaMKII activity as a central mechanism for mitochondrial Ca2+ entry and suggest mitochondrial-targeted CaMKII inhibition could prevent or reduce myocardial death and heart failure dysfunction in response to common experimental forms of pathophysiological stress. PMID:23051746

  13. Associations between uncoupling protein 2, body composition, and resting energy expenditure in lean and obese African American, white, and Asian children.

    PubMed

    Yanovski, J A; Diament, A L; Sovik, K N; Nguyen, T T; Li, H; Sebring, N G; Warden, C H

    2000-06-01

    Little is known about genes that affect childhood body weight. The objective of this study was to examine the association between alleles of the mitochondrial uncoupling protein 2 (UCP2) gene and obesity because UCP2 may influence energy expenditure. We related UCP2 genotype to body composition and resting energy expenditure in 105 children aged 6-10 y. Overweight children and nonoverweight children of overweight parents were genotyped for a 45-base pair deletion/insertion (del/ins) in 3'-untranslated region of exon 8 and for an exon 4 C to T transition. Eighty-nine children were genotyped for the exon 8 allele: 50 children had del/del, 33 had del/ins, and 6 had ins/ins. Mean (+/-SD) body mass index (BMI; in kg/m(2)) was greater for children with del/ins (24.1 +/- 5.9) than for children with del/del (20.4 +/- 4.8; P < 0.001). BMI of ins/ins children (23.7 +/- 7.8) was not significantly different from that of del/ins children. A greater BMI in del/ins children was independent of race and sex. Body composition was also different according to UCP2 genotype. All body circumferences and skinfold thicknesses examined were significantly greater in del/ins than in del/del children. Body fat mass as determined by dual-energy X-ray absorptiometry was also greater in del/ins than in del/del children (P < 0.005). For 104 children genotyped at exon 4, no significant differences in BMI or body composition were found among the 3 exon 4 genotypes. Neither resting energy expenditure nor respiratory quotient were different according to UCP2 exon 4 or exon 8 genotype. The exon 8 ins/del polymorphism of UCP2 appears to be associated with childhood-onset obesity. The UCP2/UCP3 genetic locus may play a role in childhood body weight.

  14. Disrupting mitochondrial Ca2+ homeostasis causes tumor-selective TRAIL sensitization through mitochondrial network abnormalities.

    PubMed

    Ohshima, Yohei; Takata, Natsuhiko; Suzuki-Karasaki, Miki; Yoshida, Yukihiro; Tokuhashi, Yasuaki; Suzuki-Karasaki, Yoshihiro

    2017-10-01

    The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has emerged as a promising anticancer agent with high tumor-selective cytotoxicity. The congenital and acquired resistance of some cancer types including malignant melanoma and osteosarcoma impede the current TRAIL therapy of these cancers. Since fine tuning of the intracellular Ca2+ level is essential for cell function and survival, Ca2+ dynamics could be a promising target for cancer treatment. Recently, we demonstrated that mitochondrial Ca2+ removal increased TRAIL efficacy toward malignant melanoma and osteosarcoma cells. Here we report that mitochondrial Ca2+ overload leads to tumor-selective sensitization to TRAIL cytotoxicity. Treatment with the mitochondrial Na+/Ca2+ exchanger inhibitor CGP-37157 and oxidative phosphorylation inhibitor antimycin A and FCCP resulted in a rapid and persistent mitochondrial Ca2+ rise. These agents also increased TRAIL sensitivity in a tumor-selective manner with a switching from apoptosis to a nonapoptotic cell death. Moreover, we found that mitochondrial Ca2+ overload led to increased mitochondrial fragmentation, while mitochondrial Ca2+ removal resulted in mitochondrial hyperfusion. Regardless of their reciprocal actions on the mitochondrial dynamics, both interventions commonly exacerbated TRAIL-induced mitochondrial network abnormalities. These results expand our previous study and suggest that an appropriate level of mitochondrial Ca2+ is essential for maintaining the mitochondrial dynamics and the survival of these cells. Thus, disturbing mitochondrial Ca2+ homeostasis may serve as a promising approach to overcome the TRAIL resistance of these cancers with minimally compromising the tumor-selectivity.

  15. Mitochondrial DNA: impacting central and peripheral nervous systems

    PubMed Central

    Carelli, Valerio

    2014-01-01

    Because of their high-energy metabolism, neurons are highly dependent on mitochondria, which generate cellular ATP through oxidative phosphorylation. The mitochondrial genome encodes for critical components of the oxidative phosphorylation pathway machinery, and therefore mutations in mitochondrial DNA (mtDNA) cause energy production defects that frequently have severe neurological manifestations. Here, we review the principles of mitochondrial genetics and focus on prototypical mitochondrial diseases to illustrate how primary defects in mtDNA or secondary defects in mtDNA due to nuclear genome mutations can cause prominent neurological and multisystem features. In addition, we discuss the pathophysiological mechanisms underlying mitochondrial diseases, the cellular mechanisms that protect mitochondrial integrity, and the prospects for therapy. PMID:25521375

  16. Targeted Transgenic Overexpression of Mitochondrial Thymidine Kinase (TK2) Alters Mitochondrial DNA (mtDNA) and Mitochondrial Polypeptide Abundance

    PubMed Central

    Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-01-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity. PMID:17322372

  17. Arabidopsis mitochondrial voltage-dependent anion channel 3 (AtVDAC3) protein interacts with thioredoxin m2.

    PubMed

    Zhang, Min; Takano, Tetsuo; Liu, Shenkui; Zhang, Xinxin

    2015-05-08

    Voltage-dependent anion channels (VDACs) are conserved mitochondrial outer membrane proteins. A yeast two-hybrid screen identified interaction between Arabidopsis VDAC3 and the chloroplast protein thioredoxin m2 (AtTrx m2). This was confirmed via pull-down assay. A bimolecular fluorescence complementation assay located the interaction in mitochondria. AtVDAC3 and AtTrx m2 transcripts were expressed in multiple tissues and up-regulated by abiotic stress. Under NaCl stress, AtVDAC3 overexpression inhibited growth and increased H2O2 accumulation, while AtTrx m2 overexpression conferred resistance to NaCl and reduced H2O2. Results indicate that both AtVDAC3 and AtTrx m2 are involved in ROS signaling and play opposite roles in NaCl stress response. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. AMP-Activated Protein Kinase Deficiency Rescues Paraquat-Induced Cardiac Contractile Dysfunction Through an Autophagy-Dependent Mechanism

    PubMed Central

    Wang, Qiurong; Yang, Lifang; Hua, Yinan; Nair, Sreejayan; Xu, Xihui; Ren, Jun

    2014-01-01

    Aim: Paraquat, a quaternary nitrogen herbicide, is a highly toxic prooxidant resulting in multi-organ failure including the heart although the underlying mechanism still remains elusive. This study was designed to examine the role of the cellular fuel sensor AMP-activated protein kinase (AMPK) in paraquat-induced cardiac contractile and mitochondrial injury. Results: Wild-type and transgenic mice with overexpression of a mutant AMPK α2 subunit (kinase dead, KD), with reduced activity in both α1 and α2 subunits, were administered with paraquat (45 mg/kg) for 48 h. Paraquat elicited cardiac mechanical anomalies including compromised echocardiographic parameters (elevated left ventricular end-systolic diameter and reduced factional shortening), suppressed cardiomyocyte contractile function, intracellular Ca2+ handling, reduced cell survival, and overt mitochondrial damage (loss in mitochondrial membrane potential). In addition, paraquat treatment promoted phosphorylation of AMPK and autophagy. Interestingly, deficiency in AMPK attenuated paraquat-induced cardiac contractile and intracellular Ca2+ derangement. The beneficial effect of AMPK inhibition was associated with inhibition of the AMPK-TSC-mTOR-ULK1 signaling cascade. In vitro study revealed that inhibitors for AMPK and autophagy attenuated paraquat-induced cardiomyocyte contractile dysfunction. Conclusion: Taken together, our findings revealed that AMPK may mediate paraquat-induced myocardial anomalies possibly by regulating the AMPK/mTOR-dependent autophagy. PMID:25092649

  19. Mechanisms by Which Dietary Fatty Acids Regulate Mitochondrial Structure-Function in Health and Disease.

    PubMed

    Sullivan, E Madison; Pennington, Edward Ross; Green, William D; Beck, Melinda A; Brown, David A; Shaikh, Saame Raza

    2018-05-01

    Mitochondria are the energy-producing organelles within a cell. Furthermore, mitochondria have a role in maintaining cellular homeostasis and proper calcium concentrations, building critical components of hormones and other signaling molecules, and controlling apoptosis. Structurally, mitochondria are unique because they have 2 membranes that allow for compartmentalization. The composition and molecular organization of these membranes are crucial to the maintenance and function of mitochondria. In this review, we first present a general overview of mitochondrial membrane biochemistry and biophysics followed by the role of different dietary saturated and unsaturated fatty acids in modulating mitochondrial membrane structure-function. We focus extensively on long-chain n-3 (ω-3) polyunsaturated fatty acids and their underlying mechanisms of action. Finally, we discuss implications of understanding molecular mechanisms by which dietary n-3 fatty acids target mitochondrial structure-function in metabolic diseases such as obesity, cardiac-ischemia reperfusion injury, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and select cancers.

  20. Parkin-mediated mitophagy is downregulated in browning of white adipose tissue.

    PubMed

    Taylor, David; Gottlieb, Roberta A

    2017-04-01

    Browning of white adipose tissue (WAT) promotes increased energy expenditure through the action of uncoupling protein 1 (UCP1) and is an attractive target to promote weight loss in obesity. Lowering of mitochondrial membrane potential by UCP1 is uniquely beneficial in this context; in other tissues, reduced membrane potential promotes mitochondrial clearance via mitophagy. It is unknown how parkin-mediated mitophagy is regulated in beige adipocytes. The relationship between parkin expression and WAT browning was investigated in 3T3-L1 adipocytes and parkin-deficient male C57BL/6 mice in response to pharmacological browning stimuli. Rosiglitazone treatment in 3T3-L1 adipocytes promoted mitochondrial biogenesis, UCP1 expression, and mitochondrial uncoupling. Parkin expression was decreased and reduced mitochondrial-associated parkin, and p62 indicated a reduction in mitophagy activity. Parkin overexpression prevented mitochondrial remodeling in response to rosiglitazone. In CL 316,243-treated wild-type mice, decreased parkin expression was observed in subcutaneous inguinal WAT, where UCP1 was strongly induced. CL 316,243 treatment weakly induced UCP1 expression in the gonadal depot, where parkin expression was unchanged. In contrast, parkin-deficient mice exhibited robust UCP1 expression in gonadal WAT following CL 316,243 treatment. WAT browning was associated with a decrease in parkin-mediated mitophagy, and parkin expression antagonized browning of WAT. © 2017 The Obesity Society.

  1. Relationship between expression of muscle-specific uncoupling protein 2 messenger RNA and genetic selection toward growth in channel catfish

    USDA-ARS?s Scientific Manuscript database

    Uncoupling protein 2 is a member of the mitochondrial channel proteins that regulate the flow of hydrogen ions and ATP generation. The relationship between UCP2 and nutrient metabolism has been well-defined in humans but unclear in fish. We hypothesized that increased muscle growth in channel catf...

  2. The PLA2R1-JAK2 pathway upregulates ERRα and its mitochondrial program to exert tumor-suppressive action.

    PubMed

    Griveau, A; Devailly, G; Eberst, L; Navaratnam, N; Le Calvé, B; Ferrand, M; Faull, P; Augert, A; Dante, R; Vanacker, J M; Vindrieux, D; Bernard, D

    2016-09-22

    Little is known about the biological role of the phospholipase A2 receptor (PLA2R1) transmembrane protein. In recent years, PLA2R1 has been shown to have an important role in regulating tumor-suppressive responses via JAK2 activation, but the underlying mechanisms are largely undeciphered. In this study, we observed that PLA2R1 increases the mitochondrial content, judged by increased levels of numerous mitochondrial proteins, of the mitochondrial structural component cardiolipin, of the mitochondrial DNA content, and of the mitochondrial DNA replication and transcription factor TFAM. This effect of PLA2R1 relies on a transcriptional program controlled by the estrogen-related receptor alpha1 (ERRα) mitochondrial master regulator. Expression of ERRα and of its nucleus-encoded mitochondrial targets is upregulated upon PLA2R1 ectopic expression, and this effect is mediated by JAK2. Conversely, downregulation of PLA2R1 decreases the level of ERRα and of its nucleus-encoded mitochondrial targets. Finally, blocking the ERRα-controlled mitochondrial program largely inhibits the PLA2R1-induced tumor-suppressive response. Together, our data document ERRα and its mitochondrial program as downstream effectors of the PLA2R1-JAK2 pathway leading to oncosuppression.

  3. Preconditioning by isoflurane elicits mitochondrial protective mechanisms independent of sarcolemmal KATP channel in mouse cardiomyocytes

    PubMed Central

    Muravyeva, Maria; Sedlic, Filip; Dolan, Nicholas; Bosnjak, Zeljko J; Stadnicka, Anna

    2013-01-01

    Cardiac mitochondria and the sarcolemmal (sarc)KATP channels contribute to cardioprotective signaling of anesthetic-induced preconditioning (APC). Changes in mitochondrial bioenergetics influence the sarcKATP channel function, but whether this channel has impacts on mitochondria is uncertain. We used the mouse model with deleted pore-forming Kir6.2 subunit of sarcKATP channel (Kir6.2 KO) to investigate whether the functional sarcKATP channels are necessary for isoflurane activation of mitochondrial protective mechanisms. Ventricular cardiomyocytes were isolated from C57Bl6 wild type (WT) and Kir6.2 KO mouse hearts. Flavoprotein autofluorescence, mitochondrial ROS production and mitochondrial membrane potential were monitored by laser-scanning confocal microscopy in intact cardiomyocytes. Cell survival was assessed using H2O2-induced stress. Isoflurane (0.5 mM) increased flavoprotein fluorescence to 180±14% and 190±15% and ROS production to 118±2% and 124±6% of baseline in WT and Kir6.2 KO myocytes, respectively. TMRE fluorescence decreased to 84±6% in WT and to 86±4% in Kir6.2 KO myocytes. This effect was abolished by 5HD. Pretreatment with isoflurane decreased the stress-induced cell death from 31±1% to 21±1% in WT and from 44±2% to 35±2% in Kir6.2 KO myocytes. In conclusion, Kir6.2 deletion increases sensitivity of intact cardiomyocytes t o oxidative stress, but does not alter the isoflurane-elicited protective mitochondrial mechanisms, suggesting independent roles for cardiac mitochondria and sarcKATP channels in APC by isoflurane. PMID:23318991

  4. Identification of residues that control Li+ versus Na+ dependent Ca2+ exchange at the transport site of the mitochondrial NCLX.

    PubMed

    Roy, Soumitra; Dey, Kuntal; Hershfinkel, Michal; Ohana, Ehud; Sekler, Israel

    2017-06-01

    The Na + /Ca 2+ /Li + exchanger (NCLX) is a member of the Na + /Ca 2+ exchanger family. NCLX is unique in its capacity to transport both Na + and Li + , unlike other members, which are Na + selective. The major aim of this study was twofold, i.e., to identify NCLX residues that confer Li + or Na + selective Ca 2+ transport and map their putative location on NCLX cation transport site. We combined molecular modeling to map transport site of NCLX with euryarchaeal H + /Ca 2+ exchanger, CAX_Af, and fluorescence analysis to monitor Li + versus Na + dependent mitochondrial Ca 2+ efflux of transport site mutants of NCLX in permeabilized cells. Mutation of Asn149, Pro152, Asp153, Gly176, Asn467, Ser468, Gly494 and Asn498 partially or strongly abolished mitochondrial Ca 2+ exchange activity in intact cells. In permeabilized cells, N149A, P152A, D153A, N467Q, S468T and G494S demonstrated normal Li + /Ca 2+ exchange activity but a reduced Na + /Ca 2+ exchange activity. On the other hand, D471A showed dramatically reduced Li + /Ca 2+ exchange, but Na + /Ca 2+ exchange activity was unaffected. Finally, simultaneous mutation of four putative Ca 2+ binding residues was required to completely abolish both Na + /Ca 2+ and Li + /Ca 2+ exchange activities. We identified distinct Na + and Li + selective residues in the NCLX transport site. We propose that functional segregation in Li + and Na + sites reflects the functional properties of NCLX required for Ca 2+ exchange under the unique membrane potential and ion gradient across the inner mitochondrial membrane. The results of this study provide functional insights into the unique Li + and Na + selectivity of the mitochondrial exchanger. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Kinesin-1 and mitochondrial motility control by discrimination of structurally equivalent but distinct subdomains in Ran-GTP-binding domains of Ran-binding protein 2.

    PubMed

    Patil, Hemangi; Cho, Kyoung-in; Lee, James; Yang, Yi; Orry, Andrew; Ferreira, Paulo A

    2013-03-27

    The pleckstrin homology (PH) domain is a versatile fold that mediates a variety of protein-protein and protein-phosphatidylinositol lipid interactions. The Ran-binding protein 2 (RanBP2) contains four interspersed Ran GTPase-binding domains (RBD(n = 1-4)) with close structural homology to the PH domain of Bruton's tyrosine kinase. The RBD2, kinesin-binding domain (KBD) and RBD3 comprise a tripartite domain (R2KR3) of RanBP2 that causes the unfolding, microtubule binding and biphasic activation of kinesin-1, a crucial anterograde motor of mitochondrial motility. However, the interplay between Ran GTPase and R2KR3 of RanBP2 in kinesin-1 activation and mitochondrial motility is elusive. We use structure-function, biochemical, kinetic and cell-based assays with time-lapse live-cell microscopy of over 260,000 mitochondrial-motility-related events to find mutually exclusive subdomains in RBD2 and RBD3 towards Ran GTPase binding, kinesin-1 activation and mitochondrial motility regulation. The RBD2 and RBD3 exhibit Ran-GTP-independent, subdomain and stereochemical-dependent discrimination on the biphasic kinetics of kinesin-1 activation or regulation of mitochondrial motility. Further, KBD alone and R2KR3 stimulate and suppress, respectively, multiple biophysical parameters of mitochondrial motility. The regulation of the bidirectional transport of mitochondria by either KBD or R2KR3 is highly coordinated, because their kinetic effects are accompanied always by changes in mitochondrial motile events of either transport polarity. These studies uncover novel roles in Ran GTPase-independent subdomains of RBD2 and RBD3, and KBD of RanBP2, that confer antagonizing and multi-modal mechanisms of kinesin-1 activation and regulation of mitochondrial motility. These findings open new venues towards the pharmacological harnessing of cooperative and competitive mechanisms regulating kinesins, RanBP2 or mitochondrial motility in disparate human disorders.

  6. Morphological and molecular variations induce mitochondrial dysfunction as a possible underlying mechanism of athletic amenorrhea.

    PubMed

    Xiong, Ruo-Hong; Wen, Shi-Lei; Wang, Qiang; Zhou, Hong-Ying; Feng, Shi

    2018-01-01

    Female athletes may experience difficulties in achieving pregnancy due to athletic amenorrhea (AA); however, the underlying mechanisms of AA remain unknown. The present study focuses on the mitochondrial alteration and its function in detecting the possible mechanism of AA. An AA rat model was established by excessive swimming. Hematoxylin and eosin staining, and transmission electron microscopic methods were performed to evaluate the morphological changes of the ovary, immunohistochemical examinations and radioimmunoassays were used to detect the reproductive hormones and corresponding receptors. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to test the mtDNA copy number. PCR and western blot analysis were used to test the expression of ND2. The change of morphological features of the rat ovaries revealed evident abnormalities. Particularly, the features of the mitochondria were markedly altered. In addition, reproductive hormones in the serum and tissues of AA rats were also detected to evaluate the function of the ovaries, and the levels of these hormones were significantly decreased. Furthermore, the mitochondrial DNA copy number (mtDNA) and expression of NADH dehydrogenase subunit 2 (ND2) were quantitated by qPCR or western blot analysis. Accordingly, the mtDNA copy number and expression of ND2 expression were markedly reduced in the AA rats. In conclusion, mitochondrial dysfunction in AA may affect the cellular energy supply and, therefore, result in dysfunction of the ovary. Thus, mitochondrial dysfunction may be considered as a possible underlying mechanism for the occurrence of AA.

  7. Chronic Oxidative Stress, Mitochondrial Dysfunction, Nrf2 Activation and Inflammation in the Hippocampus Accompany Heightened Systemic Inflammation and Oxidative Stress in an Animal Model of Gulf War Illness

    PubMed Central

    Shetty, Geetha A.; Hattiangady, Bharathi; Upadhya, Dinesh; Bates, Adrian; Attaluri, Sahithi; Shuai, Bing; Kodali, Maheedhar; Shetty, Ashok K.

    2017-01-01

    Memory and mood dysfunction are the key symptoms of Gulf war illness (GWI), a lingering multi-symptom ailment afflicting >200,000 veterans who served in the Persian Gulf War-1. Research probing the source of the disease has demonstrated that concomitant exposures to anti-nerve gas agent pyridostigmine bromide (PB), pesticides, and war-related stress are among the chief causes of GWI. Indeed, exposures to GWI-related chemicals (GWIR-Cs) and mild stress in animal models cause memory and mood impairments alongside reduced neurogenesis and chronic low-level inflammation in the hippocampus. In the current study, we examined whether exposure to GWIR-Cs and stress causes chronic changes in the expression of genes related to increased oxidative stress, mitochondrial dysfunction, and inflammation in the hippocampus. We also investigated whether GWI is linked with chronically increased activation of Nrf2 (a master regulator of antioxidant response) in the hippocampus, and inflammation and enhanced oxidative stress at the systemic level. Adult male rats were exposed daily to low-doses of PB and pesticides (DEET and permethrin), in combination with 5 min of restraint stress for 4 weeks. Analysis of the hippocampus performed 6 months after the exposure revealed increased expression of many genes related to oxidative stress response and/or antioxidant activity (Hmox1, Sepp1, and Srxn1), reactive oxygen species metabolism (Fmo2, Sod2, and Ucp2) and oxygen transport (Ift172 and Slc38a1). Furthermore, multiple genes relevant to mitochondrial respiration (Atp6a1, Cox6a1, Cox7a2L, Ndufs7, Ndufv1, Lhpp, Slc25a10, and Ucp1) and neuroinflammation (Nfkb1, Bcl6, Csf2, IL6, Mapk1, Mapk3, Ngf, N-pac, and Prkaca) were up-regulated, alongside 73–88% reduction in the expression of anti-inflammatory genes IL4 and IL10, and nuclear translocation and increased expression of Nrf2 protein. These hippocampal changes were associated with elevated levels of pro-inflammatory cytokines and chemokines

  8. Mitochondrial Ca2+ influx and efflux rates in guinea pig cardiac mitochondria: low and high affinity effects of cyclosporine A.

    PubMed

    Wei, An-Chi; Liu, Ting; Cortassa, Sonia; Winslow, Raimond L; O'Rourke, Brian

    2011-07-01

    Ca(2+) plays a central role in energy supply and demand matching in cardiomyocytes by transmitting changes in excitation-contraction coupling to mitochondrial oxidative phosphorylation. Matrix Ca(2+) is controlled primarily by the mitochondrial Ca(2+) uniporter and the mitochondrial Na(+)/Ca(2+) exchanger, influencing NADH production through Ca(2+)-sensitive dehydrogenases in the Krebs cycle. In addition to the well-accepted role of the Ca(2+)-triggered mitochondrial permeability transition pore in cell death, it has been proposed that the permeability transition pore might also contribute to physiological mitochondrial Ca(2+) release. Here we selectively measure Ca(2+) influx rate through the mitochondrial Ca(2+) uniporter and Ca(2+) efflux rates through Na(+)-dependent and Na(+)-independent pathways in isolated guinea pig heart mitochondria in the presence or absence of inhibitors of mitochondrial Na(+)/Ca(2+) exchanger (CGP 37157) or the permeability transition pore (cyclosporine A). cyclosporine A suppressed the negative bioenergetic consequences (ΔΨ(m) loss, Ca(2+) release, NADH oxidation, swelling) of high extramitochondrial Ca(2+) additions, allowing mitochondria to tolerate total mitochondrial Ca(2+) loads of >400nmol/mg protein. For Ca(2+) pulses up to 15μM, Na(+)-independent Ca(2+) efflux through the permeability transition pore accounted for ~5% of the total Ca(2+) efflux rate compared to that mediated by the mitochondrial Na(+)/Ca(2+) exchanger (in 5mM Na(+)). Unexpectedly, we also observed that cyclosporine A inhibited mitochondrial Na(+)/Ca(2+) exchanger-mediated Ca(2+) efflux at higher concentrations (IC(50)=2μM) than those required to inhibit the permeability transition pore, with a maximal inhibition of ~40% at 10μM cyclosporine A, while having no effect on the mitochondrial Ca(2+) uniporter. The results suggest a possible alternative mechanism by which cyclosporine A could affect mitochondrial Ca(2+) load in cardiomyocytes, potentially

  9. Manganese inhibits mitochondrial aconitase: a mechanism of manganese neurotoxicity1

    PubMed Central

    Zheng, Wei; Ren, Sean; Graziano, Joseph H.

    2014-01-01

    The symptoms of Mn-induced neurotoxicity resemble those of Parkinson’s diseases. Since iron (Fe) appears to play a pivotal role in pathophysiology of Parkinson’s disease, we set out to test the hypothesis that alterations in Fe-requiring enzymes such as aconitase contribute to Mn-induced neurotoxicity. Mitochondrial fractions prepared from rat brain were preincubated with MnCl2 in vitro, followed by the enzyme assay. Mn treatment significantly inhibited mitochondrial aconitase activity (24% inhibition at 625 μM to 81% at 2.5 mM, p < 0.05). The inhibitory effect was reversible and Mn-concentration dependent, and was reversed by the addition of Fe (0.05–1 mM) to the reaction mixture. In an in vivo chronic Mn exposure model, rats received intraperitoneal injection of 6 mg/kg Mn as MnCl2 once daily for 30 consecutive days. Mn exposure led to a region-specific alteration in total aconitase (i.e., mitochondrial + cytoplasmic): 48.5% reduction of the enzyme activity in frontal cortex (p < 0.01), 33.7% in striatum (p < 0.0963), and 20.6% in substantia nigra (p < 0.139). Chronic Mn exposure increased Mn concentrations in serum, CSF, and brain tissues. The elevation of Mn in all selected brain regions (range between 3.1 and 3.9 fold) was similar in magnitude to that in CSF (3.1 fold) rather than serum (6.1 fold). The present results suggest that Mn alters brain aconitase activity, which may lead to the disruption of mitochondrial energy production and cellular Fe metabolism in the brain. PMID:9675333

  10. Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy

    PubMed Central

    McLelland, Gian-Luca; Goiran, Thomas; Yi, Wei; Dorval, Geneviève; Chen, Carol X; Lauinger, Nadine D; Krahn, Andrea I; Valimehr, Sepideh; Rakovic, Aleksandar; Rouiller, Isabelle; Durcan, Thomas M; Trempe, Jean-François

    2018-01-01

    Despite their importance as signaling hubs, the function of mitochondria-ER contact sites in mitochondrial quality control pathways remains unexplored. Here we describe a mechanism by which Mfn2, a mitochondria-ER tether, gates the autophagic turnover of mitochondria by PINK1 and parkin. Mitochondria-ER appositions are destroyed during mitophagy, and reducing mitochondria-ER contacts increases the rate of mitochondrial degradation. Mechanistically, parkin/PINK1 catalyze a rapid burst of Mfn2 phosphoubiquitination to trigger p97-dependent disassembly of Mfn2 complexes from the outer mitochondrial membrane, dissociating mitochondria from the ER. We additionally demonstrate that a major portion of the facilitatory effect of p97 on mitophagy is epistatic to Mfn2 and promotes the availability of other parkin substrates such as VDAC1. Finally, we reconstitute the action of these factors on Mfn2 and VDAC1 ubiquitination in a cell-free assay. We show that mitochondria-ER tethering suppresses mitophagy and describe a parkin-/PINK1-dependent mechanism that regulates the destruction of mitochondria-ER contact sites. PMID:29676259

  11. Targeted transgenic overexpression of mitochondrial thymidine kinase (TK2) alters mitochondrial DNA (mtDNA) and mitochondrial polypeptide abundance: transgenic TK2, mtDNA, and antiretrovirals.

    PubMed

    Hosseini, Seyed H; Kohler, James J; Haase, Chad P; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-03-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-gamma. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity.

  12. NAD(+)-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease.

    PubMed

    Cerutti, Raffaele; Pirinen, Eija; Lamperti, Costanza; Marchet, Silvia; Sauve, Anthony A; Li, Wei; Leoni, Valerio; Schon, Eric A; Dantzer, Françoise; Auwerx, Johan; Viscomi, Carlo; Zeviani, Massimo

    2014-06-03

    Mitochondrial disorders are highly heterogeneous conditions characterized by defects of the mitochondrial respiratory chain. Pharmacological activation of mitochondrial biogenesis has been proposed as an effective means to correct the biochemical defects and ameliorate the clinical phenotype in these severely disabling, often fatal, disorders. Pathways related to mitochondrial biogenesis are targets of Sirtuin1, a NAD(+)-dependent protein deacetylase. As NAD(+) boosts the activity of Sirtuin1 and other sirtuins, intracellular levels of NAD(+) play a key role in the homeostatic control of mitochondrial function by the metabolic status of the cell. We show here that supplementation with nicotinamide riboside, a natural NAD(+) precursor, or reduction of NAD(+) consumption by inhibiting the poly(ADP-ribose) polymerases, leads to marked improvement of the respiratory chain defect and exercise intolerance of the Sco2 knockout/knockin mouse, a mitochondrial disease model characterized by impaired cytochrome c oxidase biogenesis. This strategy is potentially translatable into therapy of mitochondrial disorders in humans. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Mitochondrial Calcium Dysregulation Contributes to Dendrite Degeneration Mediated by PD/LBD-Associated LRRK2 Mutants.

    PubMed

    Verma, Manish; Callio, Jason; Otero, P Anthony; Sekler, Israel; Wills, Zachary P; Chu, Charleen T

    2017-11-15

    Mutations in leucine-rich repeat kinase 2 (LRRK2) contribute to development of late-onset familial Parkinson's disease (PD), with clinical features of motor and cognitive dysfunction indistinguishable from sporadic PD. Calcium dysregulation plays an important role in PD pathogenesis, but the mechanisms of neurodegeneration remain unclear. Recent reports indicate enhanced excitatory neurotransmission in cortical neurons expressing mutant LRRK2, which occurs before the well-characterized phenotype of dendritic shortening. As mitochondria play a major role in the rapid buffering of cytosolic calcium, we hypothesized that altered mitochondrial calcium handling contributes to dendritic retraction elicited by the LRRK2-G2019S and -R1441C mutations. In primary mouse cortical neurons, we observed increased depolarization-induced mitochondrial calcium uptake. We found that expression of mutant LRRK2 elicited transcriptional upregulation of the mitochondrial calcium uniporter (MCU) and the mitochondrial calcium uptake 1 protein (MICU1) with no change in levels of the mitochondrial calcium antiporter NCLX. Elevated MCU and MICU1 were also observed in LRRK2-mutated patient fibroblasts, along with increased mitochondrial calcium uptake, and in postmortem brains of sporadic PD/PDD patients of both sexes. Transcriptional upregulation of MCU and MICU1 was caused by activation of the ERK1/2 (MAPK3/1) pathway. Inhibiting ERK1/2 conferred protection against mutant LRRK2-induced neurite shortening. Pharmacological inhibitors or RNAi knockdown of MCU attenuated mitochondrial calcium uptake and dendritic/neuritic shortening elicited by mutant LRRK2, whereas expression of a constitutively active mutant of NCLX that enhances calcium export from mitochondria was neuroprotective. These data suggest that an increased susceptibility to mitochondrial calcium dysregulation contributes to dendritic injury in mutant LRRK2 pathogenesis. SIGNIFICANCE STATEMENT Cognitive dysfunction and dementia are

  14. Increased mitochondrial DNA deletions and copy number in transfusion-dependent thalassemia

    PubMed Central

    Calloway, Cassandra

    2016-01-01

    BACKGROUND. Iron overload is the primary cause of morbidity in transfusion-dependent thalassemia. Increase in iron causes mitochondrial dysfunction under experimental conditions, but the occurrence and significance of mitochondrial damage is not understood in patients with thalassemia. METHODS. Mitochondrial DNA (mtDNA) to nuclear DNA copy number (Mt/N) and frequency of the common 4977-bp mitochondrial deletion (ΔmtDNA4977) were quantified using a quantitative PCR assay on whole blood samples from 38 subjects with thalassemia who were receiving regular transfusions. RESULTS. Compared with healthy controls, Mt/N and ΔmtDNA4977 frequency were elevated in thalassemia (P = 0.038 and P < 0.001, respectively). ΔmtDNA4977 was increased in the presence of either liver iron concentration > 15 mg/g dry-weight or splenectomy, with the highest levels observed in subjects who had both risk factors (P = 0.003). Myocardial iron (MRI T2* < 20 ms) was present in 0%, 22%, and 46% of subjects with ΔmtDNA4977 frequency < 20, 20–40, and > 40/1 × 107 mtDNA, respectively (P = 0.025). Subjects with Mt/N values below the group median had significantly lower Matsuda insulin sensitivity index (5.76 ± 0.53) compared with the high Mt/N group (9.11 ± 0.95, P = 0.008). CONCLUSION. Individuals with transfusion-dependent thalassemia demonstrate age-related increase in mtDNA damage in leukocytes. These changes are markedly amplified by splenectomy and are associated with extrahepatic iron deposition. Elevated mtDNA damage in blood cells may predict the risk of iron-associated organ damage in thalassemia. FUNDING. This project was supported by Children’s Hospital & Research Center Oakland Institutional Research Award and by the National Center for Advancing Translational Sciences, NIH, through UCSF-CTSI grant UL1 TR000004. PMID:27583305

  15. HDAC6 maintains mitochondrial connectivity under hypoxic stress by suppressing MARCH5/MITOL dependent MFN2 degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hak-June; Nagano, Yoshito; Choi, Su Jin

    2015-09-04

    Mitochondria undergo fusion and fission in response to various metabolic stresses. Growing evidences have suggested that the morphological change of mitochondria by fusion and fission plays a critical role in protecting mitochondria from metabolic stresses. Here, we showed that hypoxia treatment could induce interaction between HDAC6 and MFN2, thus protecting mitochondrial connectivity. Mechanistically, we demonstrated that a mitochondrial ubiquitin ligase MARCH5/MITOL was responsible for hypoxia-induced MFN2 degradation in HDAC6 deficient cells. Notably, genetic abolition of HDAC6 in amyotrophic lateral sclerosis model mice showed MFN2 degradation with MARCH5 induction. Our results indicate that HDAC6 is a critical regulator of MFN2 degradationmore » by MARCH5, thus protecting mitochondrial connectivity from hypoxic stress. - Highlights: • Hypoxic stress induces the interaction between HDAC6 and MFN2. • Hypoxic stress activates MARCH5 in HDAC6 deficient cells to degrade MFN2. • HDAC6 is required to maintain mitochondrial connectivity under hypoxia. • MARCH5 is increased and promotes the degradation of MFN2 in HDAC6 KO ALS mice.« less

  16. miR-125a induces apoptosis, metabolism disorder and migration impairment in pancreatic cancer cells by targeting Mfn2-related mitochondrial fission

    PubMed Central

    Pan, Lichao; Zhou, Lin; Yin, Weijia; Bai, Jia; Liu, Rong

    2018-01-01

    Mitochondrial fission is important for the development and progression of pancreatic cancer (PC). However, little is known regarding its role in pancreatic cancer apoptosis, metabolism and migration. In the current study, the mechanism by which mitochondrial fission modifies the biological characteristics of PC was explored. MicroRNA-125a (miR-125a) had the ability to inhibit mitochondrial fission and contributed to cellular survival. Suppressed mitochondrial fission led to a reduction in mitochondrial debris, preserved the mitochondrial membrane potential, inhibited mitochondrial permeability transition pore opening, ablated cytochrome c leakage into the cytoplasm and reduced the pro-apoptotic protein contents, finally blocking mitochondria related apoptosis pathways. Furthermore, defective mitochondrial fission induced by miR-125a enhanced mitochondria-dependent energy metabolism by promoting activity of electron transport chain complexes. Furthermore, suppressed mitochondrial fission also contributed to PANC-1 cell migration by preserving the F-actin balance. Furthermore, mitofusin 2 (Mfn2), the key defender of mitochondrial fission, is involved in inhibition of miR125a-mediated mitochondrial fission. Low contents of miR-125a upregulated Mfn2 transcription and expression, leading to inactivation of mitochondrial fission. Ultimately, the current study determined that miR-125a and Mfn2 are regulated by hypoxia-inducible factor 1 (HIF1). Knockdown of HIF1 reversed miR-125a expression, and therefore, inhibited Mfn2 expression, leading to activation of mitochondrial fission. Collectively, the present study demonstrated mitochondrial fission as a tumor suppression process that is regulated by the HIF/miR-125a/Mfn2 pathways, acting to restrict PANC-1 cell survival, energy metabolism and migration, with potential implications for novel approaches for PC therapy. PMID:29749475

  17. Glucose Acutely Reduces Cytosolic and Mitochondrial H2O2 in Rat Pancreatic Beta Cells.

    PubMed

    Deglasse, Jean-Philippe; Roma, Leticia Prates; Pastor-Flores, Daniel; Gilon, Patrick; Dick, Tobias P; Jonas, Jean-Christophe

    2018-06-14

    Whether H 2 O 2 contributes to the glucose-dependent stimulation of insulin secretion (GSIS) by pancreatic β cells is highly controversial. We used two H 2 O 2 -sensitive probes, roGFP2-Orp1 (reduction/oxidation-sensitive enhanced green fluorescent protein fused to oxidant receptor peroxidase 1) and HyPer (hydrogen peroxide sensor) with its pH-control SypHer, to test the acute effects of glucose, monomethyl succinate, leucine with glutamine, and α-ketoisocaproate on β cell cytosolic and mitochondrial H 2 O 2 concentrations. We then tested the effects of low H 2 O 2 and menadione concentrations on insulin secretion. RoGFP2-Orp1 was more sensitive than HyPer to H 2 O 2 (response at 2-5 vs. 10 μM) and less pH-sensitive. Under control conditions, stimulation with glucose reduced mitochondrial roGFP2-Orp1 oxidation without affecting cytosolic roGFP2-Orp1 and HyPer fluorescence ratios, except for the pH-dependent effects on HyPer. However, stimulation with glucose decreased the oxidation of both cytosolic probes by 15 μM exogenous H 2 O 2 . The glucose effects were not affected by overexpression of catalase, mitochondrial catalase, or superoxide dismutase 1 and 2. They followed the increase in NAD(P)H autofluorescence, were maximal at 5 mM glucose in the cytosol and 10 mM glucose in the mitochondria, and were partly mimicked by the other nutrients. Exogenous H 2 O 2 (1-15 μM) did not affect insulin secretion. By contrast, menadione (1-5 μM) did not increase basal insulin secretion but reduced the stimulation of insulin secretion by 20 mM glucose. Subcellular changes in β cell H 2 O 2 levels are better monitored with roGFP2-Orp1 than HyPer/SypHer. Nutrients acutely lower mitochondrial H 2 O 2 levels in β cells and promote degradation of exogenously supplied H 2 O 2 in both cytosolic and mitochondrial compartments. The GSIS occurs independently of a detectable increase in β cell cytosolic or mitochondrial H 2 O 2 levels. Antioxid. Redox Signal. 00

  18. Alteration in cardiac uncoupling proteins and eNOS gene expression following high-intensity interval training in favor of increasing mechanical efficiency

    PubMed Central

    Fallahi, Ali Asghar; Shekarfroush, Shahnaz; Rahimi, Mostafa; Jalali, Amirhossain; Khoshbaten, Ali

    2016-01-01

    Objective(s): High-intensity interval training (HIIT) increases energy expenditure and mechanical energy efficiency. Although both uncoupling proteins (UCPs) and endothelial nitric oxide synthase (eNOS) affect the mechanical efficiency and antioxidant capacity, their effects are inverse. The aim of this study was to determine whether the alterations of cardiac UCP2, UCP3, and eNOS mRNA expression following HIIT are in favor of increased mechanical efficiency or decreased oxidative stress. Materials and Methods: Wistar rats were divided into five groups: control group (n=12), HIIT for an acute bout (AT1), short term HIIT for 3 and 5 sessions (ST3 and ST5), long-term training for 8 weeks (LT) (6 in each group). The rats of the training groups were made to run on a treadmill for 60 min in three stages: 6 min running for warm-up, 7 intervals of 7 min running on treadmill with a slope of 5° to 20° (4 min with an intensity of 80-110% VO2max and 3 min at 50-60% VO2max), and 5-min running for cool-down. The control group did not participate in any exercise program. Rats were sacrificed and the hearts were extracted to analyze the levels of UCP2, UCP3 and eNOS mRNA by RT-PCR. Results: UCP3 expression was increased significantly following an acute training bout. Repeated HIIT for 8 weeks resulted in a significant decrease in UCPs mRNA and a significant increase in eNOS expression in cardiac muscle. Conclusion: This study indicates that Long term HIIT through decreasing UCPs mRNA and increasing eNOS mRNA expression may enhance energy efficiency and physical performance. PMID:27114795

  19. miR-125a induces apoptosis, metabolism disorder and migrationimpairment in pancreatic cancer cells by targeting Mfn2-related mitochondrial fission.

    PubMed

    Pan, Lichao; Zhou, Lin; Yin, Weijia; Bai, Jia; Liu, Rong

    2018-07-01

    Mitochondrial fission is important for the development and progression of pancreatic cancer (PC). However, little is known regarding its role in pancreatic cancer apoptosis, metabolism and migration. In the current study, the mechanism by which mitochondrial fission modifies the biological characteristics of PC was explored. MicroRNA‑125a (miR‑125a) had the ability to inhibit mitochondrial fission and contributed to cellular survival. Suppressed mitochondrial fission led to a reduction in mitochondrial debris, preserved the mitochondrial membrane potential, inhibited mitochondrial permeability transition pore opening, ablated cytochrome c leakage into the cytoplasm and reduced the pro‑apoptotic protein contents, finally blocking mitochondria related apoptosis pathways. Furthermore, defective mitochondrial fission induced by miR‑125a enhanced mitochondria‑dependent energy metabolism by promoting activity of electron transport chain complexes. Furthermore, suppressed mitochondrial fission also contributed to PANC‑1 cell migration by preserving the F‑actin balance. Furthermore, mitofusin 2 (Mfn2), the key defender of mitochondrial fission, is involved in inhibition of miR125a‑mediated mitochondrial fission. Low contents of miR‑125a upregulated Mfn2 transcription and expression, leading to inactivation of mitochondrial fission. Ultimately, the current study determined that miR‑125a and Mfn2 are regulated by hypoxia‑inducible factor 1 (HIF1). Knockdown of HIF1 reversed miR‑125a expression, and therefore, inhibited Mfn2 expression, leading to activation of mitochondrial fission. Collectively, the present study demonstrated mitochondrial fission as a tumor suppression process that is regulated by the HIF/miR‑125a/Mfn2 pathways, acting to restrict PANC‑1 cell survival, energy metabolism and migration, with potential implications for novel approaches for PC therapy.

  20. Trends in Thermostability Provide Information on the Nature of Substrate, Inhibitor, and Lipid Interactions with Mitochondrial Carriers*

    PubMed Central

    Crichton, Paul G.; Lee, Yang; Ruprecht, Jonathan J.; Cerson, Elizabeth; Thangaratnarajah, Chancievan; King, Martin S.; Kunji, Edmund R. S.

    2015-01-01

    Mitochondrial carriers, including uncoupling proteins, are unstable in detergents, which hampers structural and mechanistic studies. To investigate carrier stability, we have purified ligand-free carriers and assessed their stability with a fluorescence-based thermostability assay that monitors protein unfolding with a thiol-reactive dye. We find that mitochondrial carriers from both mesophilic and thermophilic organisms exhibit poor stability in mild detergents, indicating that instability is inherent to the protein family. Trends in the thermostability of yeast ADP/ATP carrier AAC2 and ovine uncoupling protein UCP1 allow optimal conditions for stability in detergents to be established but also provide mechanistic insights into the interactions of lipids, substrates, and inhibitors with these proteins. Both proteins exhibit similar stability profiles across various detergents, where stability increases with the size of the associated detergent micelle. Detailed analysis shows that lipids stabilize carriers indirectly by increasing the associated detergent micelle size, but cardiolipin stabilizes by direct interactions as well. Cardiolipin reverses destabilizing effects of ADP and bongkrekic acid on AAC2 and enhances large stabilizing effects of carboxyatractyloside, revealing that this lipid interacts in the m-state and possibly other states of the transport cycle, despite being in a dynamic interface. Fatty acid activators destabilize UCP1 in a similar way, which can also be prevented by cardiolipin, indicating that they interact like transport substrates. Our controls show that carriers can be soluble but unfolded in some commonly used detergents, such as the zwitterionic Fos-choline-12, which emphasizes the need for simple validation assays like the one used here. PMID:25653283

  1. Biogenesis of mitochondrial carrier proteins: molecular mechanisms of import into mitochondria.

    PubMed

    Ferramosca, Alessandra; Zara, Vincenzo

    2013-03-01

    Mitochondrial metabolite carriers are hydrophobic proteins which catalyze the flux of several charged or hydrophilic substrates across the inner membrane of mitochondria. These proteins, like most mitochondrial proteins, are nuclear encoded and after their synthesis in the cytosol are transported into the inner mitochondrial membrane. Most metabolite carriers, differently from other nuclear encoded mitochondrial proteins, are synthesized without a cleavable presequence and contain several, poorly characterized, internal targeting signals. However, an interesting aspect is the presence of a positively charged N-terminal presequence in a limited number of mitochondrial metabolite carriers. Over the last few years the molecular mechanisms of import of metabolite carrier proteins into mitochondria have been thoroughly investigated. This review summarizes the present knowledge and discusses recent advances on the import and sorting of mitochondrial metabolite carriers. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. SR4 Uncouples Mitochondrial Oxidative Phosphorylation, Modulates AMP-dependent Kinase (AMPK)-Mammalian Target of Rapamycin (mTOR) Signaling, and Inhibits Proliferation of HepG2 Hepatocarcinoma Cells.

    PubMed

    Figarola, James L; Singhal, Jyotsana; Tompkins, Joshua D; Rogers, George W; Warden, Charles; Horne, David; Riggs, Arthur D; Awasthi, Sanjay; Singhal, Sharad S

    2015-12-18

    Mitochondrial oxidative phosphorylation produces most of the energy in aerobic cells by coupling respiration to the production of ATP. Mitochondrial uncouplers, which reduce the proton gradient across the mitochondrial inner membrane, create a futile cycle of nutrient oxidation without generating ATP. Regulation of mitochondrial dysfunction and associated cellular bioenergetics has been recently identified as a promising target for anticancer therapy. Here, we show that SR4 is a novel mitochondrial uncoupler that causes dose-dependent increase in mitochondrial respiration and dissipation of mitochondrial membrane potential in HepG2 hepatocarcinoma cells. These effects were reversed by the recoupling agent 6-ketocholestanol but not cyclosporin A and were nonexistent in mitochondrial DNA-depleted HepG2 cells. In isolated mouse liver mitochondria, SR4 similarly increased oxygen consumption independent of adenine nucleotide translocase and uncoupling proteins, decreased mitochondrial membrane potential, and promoted swelling of valinomycin-treated mitochondria in potassium acetate medium. Mitochondrial uncoupling in HepG2 cells by SR4 results in the reduction of cellular ATP production, increased ROS production, activation of the energy-sensing enzyme AMPK, and inhibition of acetyl-CoA carboxylase and mammalian target of rapamycin signaling pathways, leading to cell cycle arrest and apoptosis. Global analysis of SR4-associated differential gene expression confirms these observations, including significant induction of apoptotic genes and down-regulation of cell cycle, mitochondrial, and oxidative phosphorylation pathway transcripts at 24 h post-treatment. Collectively, our studies demonstrate that the previously reported indirect activation of AMPK and in vitro anticancer properties of SR4 as well as its beneficial effects in both animal xenograft and obese mice models could be a direct consequence of its mitochondrial uncoupling activity. © 2015 by The American

  3. SR4 Uncouples Mitochondrial Oxidative Phosphorylation, Modulates AMP-dependent Kinase (AMPK)-Mammalian Target of Rapamycin (mTOR) Signaling, and Inhibits Proliferation of HepG2 Hepatocarcinoma Cells*

    PubMed Central

    Figarola, James L.; Singhal, Jyotsana; Tompkins, Joshua D.; Rogers, George W.; Warden, Charles; Horne, David; Riggs, Arthur D.; Awasthi, Sanjay; Singhal, Sharad S.

    2015-01-01

    Mitochondrial oxidative phosphorylation produces most of the energy in aerobic cells by coupling respiration to the production of ATP. Mitochondrial uncouplers, which reduce the proton gradient across the mitochondrial inner membrane, create a futile cycle of nutrient oxidation without generating ATP. Regulation of mitochondrial dysfunction and associated cellular bioenergetics has been recently identified as a promising target for anticancer therapy. Here, we show that SR4 is a novel mitochondrial uncoupler that causes dose-dependent increase in mitochondrial respiration and dissipation of mitochondrial membrane potential in HepG2 hepatocarcinoma cells. These effects were reversed by the recoupling agent 6-ketocholestanol but not cyclosporin A and were nonexistent in mitochondrial DNA-depleted HepG2 cells. In isolated mouse liver mitochondria, SR4 similarly increased oxygen consumption independent of adenine nucleotide translocase and uncoupling proteins, decreased mitochondrial membrane potential, and promoted swelling of valinomycin-treated mitochondria in potassium acetate medium. Mitochondrial uncoupling in HepG2 cells by SR4 results in the reduction of cellular ATP production, increased ROS production, activation of the energy-sensing enzyme AMPK, and inhibition of acetyl-CoA carboxylase and mammalian target of rapamycin signaling pathways, leading to cell cycle arrest and apoptosis. Global analysis of SR4-associated differential gene expression confirms these observations, including significant induction of apoptotic genes and down-regulation of cell cycle, mitochondrial, and oxidative phosphorylation pathway transcripts at 24 h post-treatment. Collectively, our studies demonstrate that the previously reported indirect activation of AMPK and in vitro anticancer properties of SR4 as well as its beneficial effects in both animal xenograft and obese mice models could be a direct consequence of its mitochondrial uncoupling activity. PMID:26534958

  4. Mechanisms Behind Pyrroloquinoline Quinone Supplementation on Skeletal Muscle Mitochondrial Biogenesis: Possible Synergistic Effects with Exercise.

    PubMed

    Hwang, Paul; Willoughby, Darryn S

    2018-05-01

    There is clear evidence that endurance exercise training elicits intramuscular adaptations that can lead to elevations in mitochondrial biogenesis, oxidative capacity, mitochondrial density, and mitochondrial function. Mitochondrial biogenesis is regulated by the activation of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha. This master regulator of mitochondrial biogenesis activates nuclear respiratory factors (NRF-1, NRF-2) and mitochondrial transcription factor A, which enables the expansion of mitochondrial size and transcription of mitochondrial DNA. Pyrroloquinoline quinone (PQQ) has been identified as a novel supplement that is involved in various physiological processes such as redox modulation, cellular energy metabolism, and mitochondrial biogenesis and is a potent antioxidant. Since both exercise and supplemental PQQ have mechanisms associated with mitochondrial biogenesis, it is plausible that a differential additive ergogenic benefit with PQQ can ensue. However, there is a major paucity of research exploring the role of PQQ in conjunction with exercise. In this respect, the purpose of the critical literature review will be to present a comprehensive overview of PQQ and the proposed mechanisms underlying mitochondrial biogenesis. Because exercise can instigate the molecular responses indicative of mitochondrial biogenesis, it is plausible that PQQ and exercise may instigate a synergistic response. Key teaching points • Endurance exercise training enables skeletal muscle adaptations that can induce increases in mitochondrial biogenesis, improve oxidative capacity, mitochondrial density, and mitochondrial function. • Pyrroloquinoline quinone (PQQ) has been identified as a novel supplement that is involved in physiological processes including redox modulation, cellular energy metabolism, mitochondrial biogenesis, and antioxidant potential. • There is emerging evidence to support that PQQ

  5. Suppression of Arrhythmia by Enhancing Mitochondrial Ca2+ Uptake in Catecholaminergic Ventricular Tachycardia Models.

    PubMed

    Schweitzer, Maria K; Wilting, Fabiola; Sedej, Simon; Dreizehnter, Lisa; Dupper, Nathan J; Tian, Qinghai; Moretti, Alessandra; My, Ilaria; Kwon, Ohyun; Priori, Silvia G; Laugwitz, Karl-Ludwig; Storch, Ursula; Lipp, Peter; Breit, Andreas; Mederos Y Schnitzler, Michael; Gudermann, Thomas; Schredelseker, Johann

    2017-12-01

    Cardiovascular disease-related deaths frequently arise from arrhythmias, but treatment options are limited due to perilous side effects of commonly used antiarrhythmic drugs. Cardiac rhythmicity strongly depends on cardiomyocyte Ca 2+ handling and prevalent cardiac diseases are causally associated with perturbations in intracellular Ca 2+ handling. Therefore, intracellular Ca 2+ transporters are lead candidate structures for novel and safer antiarrhythmic therapies. Mitochondria and mitochondrial Ca 2+ transport proteins are important regulators of cardiac Ca 2+ handling. Here we evaluated the potential of pharmacological activation of mitochondrial Ca 2+ uptake for the treatment of cardiac arrhythmia. To this aim,we tested substances that enhance mitochondrial Ca 2+ uptake for their ability to suppress arrhythmia in a murine model for ryanodine receptor 2 (RyR2)-mediated catecholaminergic polymorphic ventricular tachycardia (CPVT) in vitro and in vivo and in induced pluripotent stem cell-derived cardiomyocytes from a CPVT patient. In freshly isolated cardiomyocytes of RyR2 R4496C/WT mice efsevin, a synthetic agonist of the voltage-dependent anion channel 2 (VDAC2) in the outer mitochondrial membrane, prevented the formation of diastolic Ca 2+ waves and spontaneous action potentials. The antiarrhythmic effect of efsevin was abolished by blockade of the mitochondrial Ca 2+ uniporter (MCU), but could be reproduced using the natural MCU activator kaempferol. Both mitochondrial Ca 2+ uptake enhancers (MiCUps), efsevin and kaempferol, significantly reduced episodes of stress-induced ventricular tachycardia in RyR2 R4496C/WT mice in vivo and abolished diastolic, arrhythmogenic Ca 2+ events in human iPSC-derived cardiomyocytes.

  6. Different effects of low- and high-dose insulin on ROS production and VEGF expression in bovine retinal microvascular endothelial cells in the presence of high glucose.

    PubMed

    Wu, Haixiang; Jiang, Chunhui; Gan, Dekang; Liao, Yujie; Ren, Hui; Sun, Zhongcui; Zhang, Meng; Xu, Gezhi

    2011-09-01

    Clinical trials have demonstrated that acute intensive insulin therapy may cause transient worsening of retinopathy in type 1 and type 2 diabetes patients. However, the related mechanism still remains controversial. The purpose of the present study was to investigate the effect of insulin on the mitochondrial membrane potential (△Ψm), reactive oxygen species (ROS) production, UCP-2 and VEGF expression in bovine retinal microvascular endothelial cells (BRECs) in the presence of normal or high glucose and the related mechanisms. BRECs were isolated as primary cultures and identified by immunostaining. Passage BRECs were initially exposed to normal (5 mM) or high glucose (30 mM) for 3 days, with equimolar L: -glucose supplemented for osmotic equation. Then the cells were treated with 1 nM, 10 nM, or 100 nM insulin for 24 h: △Ψm and ROS production were determined by JC-1 and CM-H2DCFDA, respectively. Expression of UCP-2 and VEGF mRNA was determined by real-time RT-PCR; expression UCP-2 and VEGF protein was determined by Western-blotting analysis. A general ROS scavenger N-acetylcysteine (NAC, 10 mM) and an NADPH oxidase inhibitor apocynin (1 mmol/l) were added 1 h before treatment with 100 nM insulin. Insulin increased △Ψm, ROS production, and expression of UCP-2 and VEGF in BRECs at normal glucose (5 mM) in a dose-dependent manner. Low-dose insulin (1 nM) decreased △Ψm, ROS production, and UCP-2, VEGF expression in BRECs at high glucose (30 mM); and high-dose insulin (10 nM, 100nM) recovered △Ψm, ROS production, and UCP-2, VEGF expression. Pretreatment of cells with NADPH oxidase inhibitor apocynin significantly suppressed 100 nM insulin-induced ROS production (p < 0.01, one-way ANOVA). Pretreatment of cells with ROS scavenger N-acetylcysteine completely blocked insulin-induced UCP-2 expression (p < 0.01, one-way ANOVA) and significantly suppressed VEGF expression (p < 0.01, one-way ANOVA). High-dose insulin-induced ROS

  7. Saikosaponin D disrupts platelet-derived growth factor-β receptor/p38 pathway leading to mitochondrial apoptosis in human LO2 hepatocyte cells: a potential mechanism of hepatotoxicity.

    PubMed

    Chen, Li; Zhang, Feng; Kong, Desong; Zhu, Xiaojing; Chen, Wenxing; Wang, Aiyun; Zheng, Shizhong

    2013-10-25

    Herbal hepatotoxicity has been increasingly reported in clinical context, but the underlying mechanisms are poorly understood. Saikosaponin D (SSD) is a major component of saikosaponins isolated from Bupleurum falactum, a herb that has been linked to hepatotoxicity. Our current study was to examine the toxic effect of SSD on human hepatocyte LO2 cells and explore the possible mechanism. The results demonstrated that SSD reduced cell viability and led to dramatic morphological alterations in LO2 cells. Hoechst staining and flow cytometry analyses showed that SSD stimulated hepatocyte apoptosis. SSD-treated cells exhibited apparent nuclear condensation and fragmentation, and the apoptotic cells were increased by SSD dose-dependently. Subsequent experiments showed that SSD decreased mitochondrial membrane potential and downregulated Bcl-2 but upregulated Bax. Moreover, caspase-9 and caspase-3 were activated in SSD-treated LO2 cells. These data consistently indicated that SSD stimulated mitochondrial apoptosis in hepatocytes. Mechanistic investigations showed that SSD disrupted p38 signaling and that p38 specific inhibitor SB203580 mimicked the pro-apoptotic effect of SSD. In addition, platelet-derived growth factor-β receptor (PDGF-βR) blocker imatinib reduced p38 phosphorylation and also mimicked the pro-apoptotic effect of SSD in LO2 cells. These data collectively indicated that SSD induced apoptosis by interrupting PDGF-βR/p38 pathway in LO2 hepatocytes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Cells with impaired mitochondrial H2O2 sensing generate less •OH radicals and live longer.

    PubMed

    Martins, Dorival; Titorenko, Vladimir I; English, Ann M

    2014-10-01

    Mitochondria are major sites of reactive oxygen species (ROS) generation, and adaptive mitochondrial ROS signaling extends longevity. We aim at linking the genetic manipulation of mitochondrial H2O2 sensing in live cells to mechanisms driving aging in the model organism, Saccharomyces cerevisiae. To this end, we compare in vivo ROS (O2(•-), H2O2 and (•)OH) accumulation, antioxidant enzyme activities, labile iron levels, GSH depletion, and protein oxidative damage during the chronological aging of three yeast strains: ccp1Δ that does not produce the mitochondrial H2O2 sensor protein, cytochrome c peroxidase (Ccp1); ccp1(W191F) that produces a hyperactive variant of this sensor protein (Ccp1(W191F)); and the isogenic wild-type strain. Since they possess elevated manganese superoxide dismutase (Sod2) activity, young ccp1Δ cells accumulate low mitochondrial superoxide (O2(•-)) levels but high H2O2 levels. These cells exhibit stable aconitase activity and contain low amounts of labile iron and hydroxyl radicals ((•)OH). Furthermore, they undergo late glutathione (GSH) depletion, less mitochondrial protein oxidative damage and live longer than wild-type cells. In contrast, young ccp1(W191F) cells accumulate little H2O2, possess depressed Sod2 activity, enabling their O2(•-) level to spike and deactivate aconitase, which, ultimately, leads to greater mitochondrial oxidative damage, early GSH depletion, and a shorter lifespan than wild-type cells. Modulation of mitochondrial H2O2 sensing offers a novel interventional approach to alter mitochondrial H2O2 levels in live cells and probe the pro- versus anti-aging effects of ROS. The strength of mitochondrial H2O2 sensing modulates adaptive mitochondrial ROS signaling and, hence, lifespan.

  9. Statin Adverse Effects: A Review of the Literature and Evidence for a Mitochondrial Mechanism

    PubMed Central

    Golomb, Beatrice A.; Evans, Marcella A.

    2009-01-01

    HMG-CoA reductase inhibitors (statins) are a widely used class of drug, and like all medications have potential for adverse effects (AEs). Here we review the statin AE literature, first focusing on muscle AEs as the most reported problem both in the literature and by patients. Evidence regarding the statin muscle AE mechanism, dose effect, drug interactions, and genetic predisposition is examined. We hypothesize, and provide evidence, that the demonstrated mitochondrial mechanisms for muscle AEs have implications to other nonmuscle AEs in patients treated with statins. In meta-analyses of randomized controlled trials (RCTs), muscle AEs are more frequent with statins than with placebo. A number of manifestations of muscle AEs have been reported, with rhabdomyolysis the most feared. AEs are dose dependent, and risk is amplified by drug interactions that functionally increase statin potency, often through inhibition of the cytochrome P450 (CYP)3A4 system. An array of additional risk factors for statin AEs are those that amplify (or reflect) mitochondrial or metabolic vulnerability, such as metabolic syndrome factors, thyroid disease, and genetic mutations linked to mitochondrial dysfunction. Converging evidence supports a mitochondrial foundation for muscle AEs associated with statins, and both theoretical and empirical considerations suggest that mitochondrial dysfunction may also underlie many non-muscle statin AEs. Evidence from RCTs and studies of other designs indicates existence of additional statin-associated AEs, such as cognitive loss, neuropathy, pancreatic and hepatic dysfunction, and sexual dysfunction. Physician awareness of statin AEs is reportedly low even for the AEs most widely reported by patients. Awareness and vigilance for AEs should be maintained to enable informed treatment decisions, treatment modification if appropriate, improved quality of patient care, and reduced patient morbidity. PMID:19159124

  10. The influence of ethnicity in the association of WC, WHR, hypertension and PGC-1α (Gly482Ser), UCP2 -866 G/A and SIRT1 -1400 T/C polymorphisms with T2D in the population of Punjab.

    PubMed

    Kaul, Nabodita; Singh, Yoginder P; Bhanwer, A J S

    2015-06-01

    To assess the effect of ethnicity, the association of WC, WHR and hypertension along with PGC-1α (Gly482Ser), UCP2 -866 G/A and SIRT1 -1400 T/C polymorphisms in seven endogamous caste groups and pooled population of Punjab. Study was conducted on 1813 individuals (859 T2D patients and 954 healthy controls) belonging to seven endogamous groups. Waist and hip circumference, height, weight and blood pressure were recorded following standard protocol using designed performa. PGC-1α (Gly482Ser) and UCP2 -866 G/A polymorphisms were genotyped using PCR RFLP and SIRT1 -1400 T/C was genotyped by direct DNA sequencing. WHR conferred risk in Brahmins (p=0.00003), Khtaris (p=0.001) and SCs (p=0.02). Similarly, we detected that WC conferred risk in BCs (p=0.012), Brahmins (p=0.016), Jat Sikhs (0.00025), Khatris (0.005) and SCs (p=0.015). In pooled population, all three factors imparted risk (WHR (p=0.00001), hypertension (p=0.003) and WC (p=0.0000016)). With respect to gene polymorphism, PGC-1α (Gly482Ser) was associated in Banias (p=0.0003), Jat Sikhs (p=0.003) and Khatris (p=0.03). Similarly, UCP2 -866 G>A showed risk in Banias (p=0.000004), BCs (p=0.01) and SCs (p=0.01). However, SIRT1 -1400 T>C showed risk only in Khatris (p=0.004). In the pooled population of Punjab, both PGC-1α (Gly482Ser) [p=0.001] and UCP2 -866 G>A (p=0.0001) polymorphisms provided risk. Interaction analysis showed 72% of the patients had risk combination of PGC-1α XA and UCP2-866 XA genotypes. Based on the data, Khatris were found to be showing the highest susceptibility to T2D followed by SCs. Different combinations of factors provided risk in each caste group and in pooled population. Therefore, to curve the menace of T2D, detailed information about the ethnic background of the individual will be very useful for proper medical intervention. Copyright © 2015. Published by Elsevier B.V.

  11. Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington's disease knock-in striatal cells.

    PubMed

    Ribeiro, Márcio; Rosenstock, Tatiana R; Oliveira, Ana M; Oliveira, Catarina R; Rego, A Cristina

    2014-09-01

    Oxidative stress and mitochondrial dysfunction have been described in Huntington's disease, a disorder caused by expression of mutant huntingtin (mHtt). IGF-1 was previously shown to protect HD cells, whereas insulin prevented neuronal oxidative stress. In this work we analyzed the role of insulin and IGF-1 in striatal cells derived from HD knock-in mice on mitochondrial production of reactive oxygen species (ROS) and related antioxidant and signaling pathways influencing mitochondrial function. Insulin and IGF-1 decreased mitochondrial ROS induced by mHtt and normalized mitochondrial SOD activity, without affecting intracellular glutathione levels. IGF-1 and insulin promoted Akt phosphorylation without changing the nuclear levels of phosphorylated Nrf2 or Nrf2/ARE activity. Insulin and IGF-1 treatment also decreased mitochondrial Drp1 phosphorylation, suggesting reduced mitochondrial fragmentation, and ameliorated mitochondrial function in HD cells in a PI-3K/Akt-dependent manner. This was accompanied by increased total and phosphorylated Akt, Tfam, and mitochondrial-encoded cytochrome c oxidase II, as well as Tom20 and Tom40 in mitochondria of insulin- and IGF-1-treated mutant striatal cells. Concomitantly, insulin/IGF-1-treated mutant cells showed reduced apoptotic features. Hence, insulin and IGF-1 improve mitochondrial function and reduce mitochondrial ROS caused by mHtt by activating the PI-3K/Akt signaling pathway, in a process independent of Nrf2 transcriptional activity, but involving enhanced mitochondrial levels of Akt and mitochondrial-encoded complex IV subunit. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Lipotoxicity, fatty acid uncoupling and mitochondrial carrier function.

    PubMed

    Rial, Eduardo; Rodríguez-Sánchez, Leonor; Gallardo-Vara, Eunate; Zaragoza, Pilar; Moyano, Eva; González-Barroso, M Mar

    2010-01-01

    Diseases like obesity, diabetes or generalized lipodystrophy cause a chronic elevation of circulating fatty acids that can become cytotoxic, a condition known as lipotoxicity. Fatty acids cause oxidative stress and alterations in mitochondrial structure and function. The uncoupling of the oxidative phosphorylation is one of the most recognized deleterious fatty acid effects and several metabolite transporters are known to mediate in their action. The fatty acid interaction with the carriers leads to membrane depolarization and/or the conversion of the carrier into a pore. The result is the opening of the permeability transition pore and the initiation of apoptosis. Unlike the other members of the mitochondrial carrier superfamily, the eutherian uncoupling protein UCP1 has evolved to achieve its heat-generating capacity in the physiological context provided by the brown adipocyte and therefore it is activated by the low fatty acid concentrations generated by the noradrenaline-stimulated lipolysis. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression☆

    PubMed Central

    Gómez-Sánchez, Rubén; Gegg, Matthew E.; Bravo-San Pedro, José M.; Niso-Santano, Mireia; Alvarez-Erviti, Lydia; Pizarro-Estrella, Elisa; Gutiérrez-Martín, Yolanda; Alvarez-Barrientos, Alberto; Fuentes, José M.; González-Polo, Rosa Ana; Schapira, Anthony H.V.

    2014-01-01

    Mutations of the PTEN-induced kinase 1 (PINK1) gene are a cause of autosomal recessive Parkinson's disease (PD). This gene encodes a mitochondrial serine/threonine kinase, which is partly localized to mitochondria, and has been shown to play a role in protecting neuronal cells from oxidative stress and cell death, perhaps related to its role in mitochondrial dynamics and mitophagy. In this study, we report that increased mitochondrial PINK1 levels observed in human neuroblastoma SH-SY5Y cells after carbonyl cyanide m-chlorophelyhydrazone (CCCP) treatment were due to de novo protein synthesis, and not just increased stabilization of full length PINK1 (FL-PINK1). PINK1 mRNA levels were significantly increased by 4-fold after 24 h. FL-PINK1 protein levels at this time point were significantly higher than vehicle-treated, or cells treated with CCCP for 3 h, despite mitochondrial content being decreased by 29%. We have also shown that CCCP dissipated the mitochondrial membrane potential (Δψm) and induced entry of extracellular calcium through L/N-type calcium channels. The calcium chelating agent BAPTA-AM impaired the CCCP-induced PINK1 mRNA and protein expression. Furthermore, CCCP treatment activated the transcription factor c-Fos in a calcium-dependent manner. These data indicate that PINK1 expression is significantly increased upon CCCP-induced mitophagy in a calcium-dependent manner. This increase in expression continues after peak Parkin mitochondrial translocation, suggesting a role for PINK1 in mitophagy that is downstream of ubiquitination of mitochondrial substrates. This sensitivity to intracellular calcium levels supports the hypothesis that PINK1 may also play a role in cellular calcium homeostasis and neuroprotection. PMID:24184327

  14. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis.

    PubMed

    Ordureau, Alban; Sarraf, Shireen A; Duda, David M; Heo, Jin-Mi; Jedrychowski, Mark P; Sviderskiy, Vladislav O; Olszewski, Jennifer L; Koerber, James T; Xie, Tiao; Beausoleil, Sean A; Wells, James A; Gygi, Steven P; Schulman, Brenda A; Harper, J Wade

    2014-11-06

    Phosphorylation is often used to promote protein ubiquitylation, yet we rarely understand quantitatively how ligase activation and ubiquitin (UB) chain assembly are integrated with phosphoregulation. Here we employ quantitative proteomics and live-cell imaging to dissect individual steps in the PINK1 kinase-PARKIN UB ligase mitochondrial control pathway disrupted in Parkinson's disease. PINK1 plays a dual role by phosphorylating PARKIN on its UB-like domain and poly-UB chains on mitochondria. PARKIN activation by PINK1 produces canonical and noncanonical UB chains on mitochondria, and PARKIN-dependent chain assembly is required for accumulation of poly-phospho-UB (poly-p-UB) on mitochondria. In vitro, PINK1 directly activates PARKIN's ability to assemble canonical and noncanonical UB chains and promotes association of PARKIN with both p-UB and poly-p-UB. Our data reveal a feedforward mechanism that explains how PINK1 phosphorylation of both PARKIN and poly-UB chains synthesized by PARKIN drives a program of PARKIN recruitment and mitochondrial ubiquitylation in response to mitochondrial damage. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Meat-type chickens have a higher efficiency of mitochondrial oxidative phosphorylation than laying-type chickens.

    PubMed

    Toyomizu, Masaaki; Kikusato, Motoi; Kawabata, Yusuke; Azad, Md Abul Kalam; Inui, Eriko; Amo, Taku

    2011-05-01

    Meat-type chickens show high feed efficiency and have a very rapid growth rate compared with laying-type chickens. To clarify whether the type-specific difference in feed conversion efficiency is involved in mitochondrial bioenergetics, modular kinetic analysis was applied to oxidative phosphorylation in skeletal muscle mitochondria of both type chickens. Mitochondria from skeletal muscle of meat-type chickens showed greater substrate oxidation and phosphorylating activities, and less proton leak than those of the laying-type, resulting in a higher efficiency of oxidative phosphorylation. Gene expression and protein content of uncoupling protein (avUCP) but not adenine nucleotide translocase (avANT) gene expression were lower in skeletal muscle mitochondria of meat-type chickens than the laying-type. The current results regarding a higher efficiency of oxidative phosphorylation and UCP content may partially support the high feed efficiency of meat-type chickens. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Lowered iPLA2γ activity causes increased mitochondrial lipid peroxidation and mitochondrial dysfunction in a rotenone-induced model of Parkinson's disease.

    PubMed

    Chao, Honglu; Liu, Yinlong; Fu, Xian; Xu, Xiupeng; Bao, Zhongyuan; Lin, Chao; Li, Zheng; Liu, Yan; Wang, Xiaoming; You, Yongping; Liu, Ning; Ji, Jing

    2018-02-01

    iPLA 2 γ, calcium-independent phospholipase A 2 γ, discerningly hydrolyses glycerophospholipids to liberate free fatty acids. iPLA 2 γ-deficiency has been associated with abnormal mitochondrial function. More importantly, the iPLA 2 family is causative proteins in mitochondrial neurodegenerative disorders such as parkinsonian disorders. However, the mechanisms by which iPLA 2 γ affects Parkinson's disease (PD) remain unknown. Mitochondrion stress has a key part in rotenone-induced dopaminergic neuronal degeneration. The present evaluation revealed that lowered iPLA 2 γ function provokes the parkinsonian phenotype and leads to the reduction of dopamine and its metabolites, lowered survival, locomotor deficiencies, and organismal hypersensitivity to rotenone-induced oxidative stress. In addition, lowered iPLA 2 γ function escalated the amount of mitochondrial irregularities, including mitochondrial reactive oxygen species (ROS) regeneration, reduced ATP synthesis, reduced glutathione levels, and abnormal mitochondrial morphology. Further, lowered iPLA 2 γ function was tightly linked with strengthened lipid peroxidation and mitochondrial membrane flaws following rotenone treatment, which can cause cytochrome c release and eventually apoptosis. These results confirmed the important role of iPLA 2 γ, whereby decreasing iPLA 2 γ activity aggravates mitochondrial degeneration to induce neurodegenerative disorders in a rotenone rat model of Parkinson's disease. These findings may be useful in the design of rational approaches for the prevention and treatment of PD-associated symptoms. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Sex-Dependent Expression of Caveolin 1 in Response to Sex Steroid Hormones Is Closely Associated with Development of Obesity in Rats

    PubMed Central

    Mukherjee, Rajib; Kim, Sang Woo; Choi, Myung Sook; Yun, Jong Won

    2014-01-01

    Caveolin-1 (CAV1) is a conserved group of structural membrane proteins that form special cholesterol and sphingolipid-rich compartments, especially in adipocytes. Recently, it has been reported that CAV1 is an important target protein in sex hormone-dependent regulation of various metabolic pathways, particularly in cancer and diabetes. To clarify distinct roles of CAV1 in sex-dependent obesity development, we investigated the effects of high fat diet (HFD) and sex steroid hormones on CAV1 expression in adipose tissues of male and female rats. Results of animal experiments revealed that estrogen (17-β-estradiol, E2) and androgen (dihydrotestosterone, DHT) had opposite effects on body weight gain as well as on the regulation of CAV1, hormone sensitive lipase (HSL) and uncoupling protein 1 (UCP1) in adipose tissues. Furthermore, sex hormone receptors and aromatase were differentially expressed in a sex-dependent manner in response to E2 and DHT treatments. In vivo data were confirmed using 3T3-L1 and HIB1B cell lines, where Cav1 knock down stimulated lipogenesis but suppressed sex hormone receptor signaling proteins. Most importantly, co-immunoprecipitation enabled the identification of previously unrecognized CAV1-interacting mitochondrial or lipid oxidative pathway proteins in adipose tissues. Taken together, current data showed that CAV1 may play important preventive role in the development of obesity, with more prominent effects in females, and proved to be an important target protein for the hormonal regulation of adipose tissue metabolism by manipulating sex hormone receptors and mitochondrial oxidative pathways. Therefore, we can report, for the first time, the molecular mechanism underlying the effects of sex steroid hormones in the sex-dimorphic regulation of CAV1. PMID:24608114

  18. Mitochondrial DNA 3243A>G heteroplasmy is associated with changes in cytoskeletal protein expression and cell mechanics.

    PubMed

    Kandel, Judith; Picard, Martin; Wallace, Douglas C; Eckmann, David M

    2017-06-01

    Mitochondrial and mechanical alterations in cells have both been shown to be hallmarks of human disease. However, little research has endeavoured to establish connections between these two essential features of cells in both functional and dysfunctional situations. In this work, we hypothesized that a specific genetic alteration in mitochondrial function known to cause human disease would trigger changes in cell mechanics. Using a previously characterized set of mitochondrial cybrid cell lines, we examined the relationship between heteroplasmy for the mitochondrial DNA (mtDNA) 3243A>G mutation, the cell cytoskeleton, and resulting cellular mechanical properties. We found that cells with increasing mitochondrial dysfunction markedly differed from one another in gene expression and protein production of various co-regulated cytoskeletal elements. The intracellular positioning and organization of actin also differed across cell lines. To explore the relationship between these changes and cell mechanics, we then measured cellular mechanical properties using atomic force microscopy and found that cell stiffness correlated with gene expression data for known determinants of cell mechanics, γ-actin, α-actinin and filamin A. This work points towards a mechanism linking mitochondrial genetics to single-cell mechanical properties. The transcriptional and structural regulation of cytoskeletal components by mitochondrial function may explain why energetic and mechanical alterations often coexist in clinical conditions. © 2017 The Author(s).

  19. Vitamin K2 alleviates type 2 diabetes in rats by induction of osteocalcin gene expression.

    PubMed

    Hussein, Atef G; Mohamed, Randa H; Shalaby, Sally M; Abd El Motteleb, Dalia M

    2018-03-01

    The biological mechanisms behind the association between vitamin K (Vit K) and glucose metabolism are uncertain. We aimed to analyze the expression of insulin 1 (Ins 1), insulin 2 (Ins 2) and cyclin D2, the expression of adiponectin and UCP-1 . In addition, we aimed to estimate the doses of Vit K2 able to affect various aspects of glucose and energy metabolism in type 2 diabetes. Thirty adult male rats were allocated equally into five groups: control group, diabetes mellitus group, and groups 3, 4, and 5, which received Vit K 2 at three daily dose levels (10, 15, and 30 mg/kg, respectively) for 8 wk. At the end of the study, blood samples were collected to quantify total osteocalcin, fasting plasma glucose, fasting insulin, and relevant variables. The expression of OC, Ins 1, Ins 2, cyclin D2, adiponectin, UCP-1 genes was analyzed by real-time polymerase chain reaction. After administration of Vit K 2 , a dose-dependent decrease in fasting plasma glucose, hemoglobin A1c and homeostatic model assessment method insulin resistance, and a dose-dependent increase in fasting insulin and homeostatic model assessment method β cell function levels, when compared with diabetes mellitus rats, were detected. There was significant upregulation of OC, Ins 1, Ins 2, or cyclin D2 gene expression in the three treated groups in a dose-dependent manner when compared with the diabetic rats. However, expression of adiponectin and UCP-1 were significantly increased at the highest dose (30 mg/kg daily) only. Vit K 2 administration could improve glycemic status in type 2 diabetic rats by induction of OC gene expression. Osteocalcin could increase β-cell proliferation, energy expenditure, and adiponectin expression. Different concentrations of Vit K 2 were required to affect glucose metabolism and insulin sensitivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Liraglutide alleviates H2O2-induced retinal ganglion cells injury by inhibiting autophagy through mitochondrial pathways.

    PubMed

    Ma, Xuefei; Lin, Wenjian; Lin, Zhenyu; Hao, Ming; Gao, Xinyuan; Zhang, Yue; Kuang, Hongyu

    2017-06-01

    Retinal ganglion cells (RGCs), which exist in the inner retina, are the retinal neurons which can be damaged in the early stage of diabetic retinopathy (DR). Liraglutide, a glucagon-like peptide-1 (GLP-1) analog, exerts biological functions by binding the receptor (GLP-1R), the expression of which in RGC-5 cells was first shown by our team in 2012. It was reported that liraglutide prevented retinal neurodegeneration in diabetic subjects. However, the involvement of mechanisms such as autophagy and mitochondrial balance in liraglutide-induced retinal protection is unknown. Here, we aimed to investigate the protective effects of liraglutide and explore the potential mechanisms of liraglutide-induced retinal RGC protection. RGC-5 cells were treated with H 2 O 2 and/or liraglutide. Cell viability was detected with the CCK-8 kit. The axon marker GAP43, autophagy and mitophagy indicators LC3A/B, Beclin-1, p62, Parkin, BCL2/Adenovirus E1B 19kDa protein-interacting protein 3-like (BNIP3L) and the key regulator of mitochondrial biogenesis PGC-1α were examined via western blot analysis. Autophagy was also evaluated using the ImageXpress Micro XLS system and transmission electron microscopy (TEM). Reactive oxygen species (ROS), mitochondrial membrane potential and fluorescent staining for mitochondria were also measured using the ImageXpress Micro XLS system. Our results showed that pretreatment with liraglutide significantly prevented H 2 O 2 -induced cell viability decline, mitochondrial morphological deterioration and induction of autophagy, which appeared as increased expression of LC3 II/I and Beclin-1, along with p62 degradation. Moreover, liraglutide suppressed the H 2 O 2 -induced decline in GAP43 expression, thus protecting cells. However, rapamycin induced autophagy and blocked the protective process. Liraglutide also provided mitochondrial protection and appeared to alleviate H 2 O 2 -induced ROS overproduction and a decline in mitochondrial membrane potential

  1. Oligomeric BAX induces mitochondrial permeability transition and complete cytochrome c release without oxidative stress.

    PubMed

    Li, Tsyregma; Brustovetsky, Tatiana; Antonsson, Bruno; Brustovetsky, Nickolay

    2008-11-01

    In the present study, we investigated the mechanism of cytochrome c release from isolated brain mitochondria induced by recombinant oligomeric BAX (BAX(oligo)). We found that BAX(oligo) caused a complete release of cytochrome c in a concentration- and time-dependent manner. The release was similar to those induced by alamethicin, which causes maximal mitochondrial swelling and eliminates barrier properties of the OMM. BAX(oligo) also produced large amplitude mitochondrial swelling as judged by light scattering assay and transmission electron microscopy. In addition, BAX(oligo) resulted in a strong mitochondrial depolarization. ATP or a combination of cyclosporin A and ADP, inhibitors of the mPT, suppressed BAX(oligo)-induced mitochondrial swelling and depolarization as well as cytochrome c release but did not influence BAX(oligo) insertion into the OMM. Both BAX(oligo)- and alamethicin-induced cytochrome c releases were accompanied by inhibition of ROS generation, which was assessed by measuring mitochondrial H(2)O(2) release with an Amplex Red assay. The mPT inhibitors antagonized suppression of ROS generation caused by BAX(oligo) but not by alamethicin. Thus, BAX(oligo) resulted in a complete cytochrome c release from isolated brain mitochondria in the mPT-dependent manner without involvement of oxidative stress by the mechanism requiring mitochondrial remodeling and permeabilization of the OMM.

  2. Mitochondrial targeted curcumin exhibits anticancer effects through disruption of mitochondrial redox and modulation of TrxR2 activity.

    PubMed

    Jayakumar, Sundarraj; Patwardhan, Raghavendra S; Pal, Debojyoti; Singh, Babita; Sharma, Deepak; Kutala, Vijay Kumar; Sandur, Santosh Kumar

    2017-12-01

    Mitocurcumin is a derivative of curcumin, which has been shown to selectively enter mitochondria. Here we describe the anti-tumor efficacy of mitocurcumin in lung cancer cells and its mechanism of action. Mitocurcumin, showed 25-50 fold higher efficacy in killing lung cancer cells as compared to curcumin as demonstrated by clonogenic assay, flow cytometry and high throughput screening assay. Treatment of lung cancer cells with mitocurcumin significantly decreased the frequency of cancer stem cells. Mitocurcumin increased the mitochondrial reactive oxygen species (ROS), decreased the mitochondrial glutathione levels and induced strand breaks in the mitochondrial DNA. As a result, we observed increased BAX to BCL-2 ratio, cytochrome C release into the cytosol, loss of mitochondrial membrane potential and increased caspase-3 activity suggesting that mitocurcumin activates the intrinsic apoptotic pathway. Docking studies using mitocurcumin revealed that it binds to the active site of the mitochondrial thioredoxin reductase (TrxR2) with high affinity. In corroboration with the above finding, mitocurcumin decreased TrxR activity in cell free as well as the cellular system. The anti-cancer activity of mitocurcumin measured in terms of apoptotic cell death and the decrease in cancer stem cell frequency was accentuated by TrxR2 overexpression. This was due to modulation of TrxR2 activity to NADPH oxidase like activity by mitocurcumin, resulting in higher ROS accumulation and cell death. Thus, our findings reveal mitocurcumin as a potent anticancer agent with better efficacy than curcumin. This study also demonstrates the role of TrxR2 and mitochondrial DNA damage in mitocurcumin mediated killing of cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Mitochondrial genome-knockout cells demonstrate a dual mechanism of action for the electron transport complex I inhibitor mycothiazole.

    PubMed

    Meyer, Kirsten J; Singh, A Jonathan; Cameron, Alanna; Tan, An S; Leahy, Dora C; O'Sullivan, David; Joshi, Praneta; La Flamme, Anne C; Northcote, Peter T; Berridge, Michael V; Miller, John H

    2012-04-01

    Mycothiazole, a polyketide metabolite isolated from the marine sponge Cacospongia mycofijiensis, is a potent inhibitor of metabolic activity and mitochondrial electron transport chain complex I in sensitive cells, but other cells are relatively insensitive to the drug. Sensitive cell lines (IC(50) 0.36-13.8 nM) include HeLa, P815, RAW 264.7, MDCK, HeLa S3, 143B, 4T1, B16, and CD4/CD8 T cells. Insensitive cell lines (IC(50) 12.2-26.5 μM) include HL-60, LN18, and Jurkat. Thus, there is a 34,000-fold difference in sensitivity between HeLa and HL-60 cells. Some sensitive cell lines show a biphasic response, suggesting more than one mechanism of action. Mitochondrial genome-knockout ρ(0) cell lines are insensitive to mycothiazole, supporting a conditional mitochondrial site of action. Mycothiazole is cytostatic rather than cytotoxic in sensitive cells, has a long lag period of about 12 h, and unlike the complex I inhibitor, rotenone, does not cause G(2)/M cell cycle arrest. Mycothiazole decreases, rather than increases the levels of reactive oxygen species after 24 h. It is concluded that the cytostatic inhibitory effects of mycothiazole on mitochondrial electron transport function in sensitive cell lines may depend on a pre-activation step that is absent in insensitive cell lines with intact mitochondria, and that a second lower-affinity cytotoxic target may also be involved in the metabolic and growth inhibition of cells.

  4. Onset and organ specificity of Tk2 deficiency depends on Tk1 down-regulation and transcriptional compensation.

    PubMed

    Dorado, Beatriz; Area, Estela; Akman, Hasan O; Hirano, Michio

    2011-01-01

    Deficiency of thymidine kinase 2 (TK2) is a frequent cause of isolated myopathy or encephalomyopathy in children with mitochondrial DNA (mtDNA) depletion. To determine the bases of disease onset, organ specificity and severity of TK2 deficiency, we have carefully characterized Tk2 H126N knockin mice (Tk2-/-). Although normal until postnatal day 8, Tk2-/- mice rapidly develop fatal encephalomyopathy between postnatal days 10 and 13. We have observed that wild-type Tk2 activity is constant in the second week of life, while Tk1 activity decreases significantly between postnatal days 8 and 13. The down-regulation of Tk1 activity unmasks Tk2 deficiency in Tk2-/- mice and correlates with the onset of mtDNA depletion in the brain and the heart. Resistance to pathology in Tk2 mutant organs depends on compensatory mechanisms to the reduced mtDNA level. Our analyses at postnatal day 13 have revealed that Tk2-/- heart significantly increases mitochondrial transcript levels relative to the mtDNA content. This transcriptional compensation allows the heart to maintain normal levels of mtDNA-encoded proteins. The up-regulation in mitochondrial transcripts is not due to increased expression of the master mitochondrial biogenesis regulators peroxisome proliferator-activated receptor-gamma coactivator 1 alpha and nuclear respiratory factors 1 and 2, or to enhanced expression of the mitochondrial transcription factors A, B1 or B2. Instead, Tk2-/- heart compensates for mtDNA depletion by down-regulating the expression of the mitochondrial transcriptional terminator transcription factor 3 (MTERF3). Understanding the molecular mechanisms that allow Tk2 mutant organs to be spared may help design therapies for Tk2 deficiency.

  5. Mechanism of Peptide Binding and Cleavage by the Human Mitochondrial Peptidase Neurolysin.

    PubMed

    Teixeira, Pedro F; Masuyer, Geoffrey; Pinho, Catarina M; Branca, Rui M M; Kmiec, Beata; Wallin, Cecilia; Wärmländer, Sebastian K T S; Berntsson, Ronnie P-A; Ankarcrona, Maria; Gräslund, Astrid; Lehtiö, Janne; Stenmark, Pål; Glaser, Elzbieta

    2018-02-02

    Proteolysis plays an important role in mitochondrial biogenesis, from the processing of newly imported precursor proteins to the degradation of mitochondrial targeting peptides. Disruption of peptide degradation activity in yeast, plant and mammalian mitochondria is known to have deleterious consequences for organism physiology, highlighting the important role of mitochondrial peptidases. In the present work, we show that the human mitochondrial peptidase neurolysin (hNLN) can degrade mitochondrial presequence peptides as well as other fragments up to 19 amino acids long. The crystal structure of hNLN E475Q in complex with the products of neurotensin cleavage at 2.7Å revealed a closed conformation with an internal cavity that restricts substrate length and highlighted the mechanism of enzyme opening/closing that is necessary for substrate binding and catalytic activity. Analysis of peptide degradation in vitro showed that hNLN cooperates with presequence protease (PreP or PITRM1) in the degradation of long targeting peptides and amyloid-β peptide, Aβ1-40, associated with Alzheimer disease, particularly cleaving the hydrophobic fragment Aβ35-40. These findings suggest that a network of proteases may be required for complete degradation of peptides localized in mitochondria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Role of Mitochondrial Ca2+ in the Regulation of Cellular Energetics

    PubMed Central

    Glancy, Brian; Balaban, Robert S.

    2012-01-01

    Calcium is an important signaling molecule involved in the regulation of many cellular functions. The large free energy in the Ca2+ ion membrane gradients make Ca2+ signaling inherently sensitive to the available cellular free energy, primarily in the form of ATP. In addition, Ca2+ regulates many cellular ATP consuming reactions such as muscle contraction, exocytosis, biosynthesis and neuronal signaling. Thus, Ca2+ becomes a logical candidate as a signaling molecule to modulate ATP hydrolysis and synthesis during changes in numerous forms of cellular work. Mitochondria are the primary source of aerobic energy production in mammalian cells and also maintain a large Ca2+ gradient across their inner membrane providing a signaling potential for this molecule. The demonstrated link between cytosolic and mitochondrial [Ca2+], identification of transport mechanisms as well as proximity of mitochondria to Ca2+ release sites further supports the notion that Ca2+ can be an important signaling molecule in the energy metabolism interplay of the cytosol with the mitochondria. Here we review sites within the mitochondria where Ca2+ plays a role in the regulation of ATP generation and potentially contributes to the orchestration of the cellular metabolic homeostasis. Early work on isolated enzymes pointed to several matrix dehydrogenases that are stimulated by Ca2+, which were confirmed in the intact mitochondrion as well as cellular and in vivo systems. However, studies in these intact systems suggested a more expansive influence of Ca2+ on mitochondrial energy conversion. Numerous non-invasive approaches monitoring NADH, mitochondrial membrane potential, oxygen consumption and workloads suggest significant Ca2+ effects on other elements of NADH generation as well as downstream elements of oxidative phosphorylation including the F1FO-ATPase and the cytochrome chain. These other potential elements of Ca2+ modification of mitochondrial energy conversion will be the focus of this

  7. SLP-2 negatively modulates mitochondrial sodium-calcium exchange.

    PubMed

    Da Cruz, Sandrine; De Marchi, Umberto; Frieden, Maud; Parone, Philippe A; Martinou, Jean-Claude; Demaurex, Nicolas

    2010-01-01

    Mitochondria play a major role in cellular calcium homeostasis. Despite decades of studies, the molecules that mediate and regulate the transport of calcium ions in and out of the mitochondrial matrix remain unknown. Here, we investigate whether SLP-2, an inner membrane mitochondrial protein of unknown function, modulates the activity of mitochondrial Ca(2+) transporters. In HeLa cells depleted of SLP-2, the amplitude and duration of mitochondrial Ca(2+) elevations evoked by agonists were decreased compared to control cells. SLP-2 depletion increased the rates of calcium extrusion from mitochondria. This effect disappeared upon Na(+) removal or addition of CGP-37157, an inhibitor of the mitochondrial Na(+)/Ca(2+) exchanger, and persisted in permeabilized cells exposed to a fixed cytosolic Na(+) and Ca(2+) concentration. The rates of mitochondrial Ca(2+) extrusion were prolonged in SLP-2 over-expressing cells, independently of the amplitude of mitochondrial Ca(2+) elevations. The amplitude of cytosolic Ca(2+) elevations was increased by SLP-2 depletion and decreased by SLP-2 over-expression. These data show that SLP-2 modulates mitochondrial calcium extrusion, thereby altering the ability of mitochondria to buffer Ca(2+) and to shape cytosolic Ca(2+) signals. 2009 Elsevier Ltd. All rights reserved.

  8. Complementary Roles of Estrogen-Related Receptors in Brown Adipocyte Thermogenic Function

    PubMed Central

    Gantner, Marin L.; Hazen, Bethany C.; Eury, Elodie; Brown, Erin L.

    2016-01-01

    Brown adipose tissue (BAT) thermogenesis relies on a high abundance of mitochondria and the unique expression of the mitochondrial Uncoupling Protein 1 (UCP1), which uncouples substrate oxidation from ATP synthesis. Adrenergic stimulation of brown adipocytes activates UCP1-mediated thermogenesis; it also induces the expression of Ucp1 and other genes important for thermogenesis, thereby endowing adipocytes with higher oxidative and uncoupling capacities. Adipocyte mitochondrial biogenesis and oxidative capacity are controlled by multiple transcription factors, including the estrogen-related receptor (ERR)α. Whole-body ERRα knockout mice show decreased BAT mitochondrial content and oxidative function but normal induction of Ucp1 in response to cold. In addition to ERRα, brown adipocytes express ERRβ and ERRγ, 2 nuclear receptors that are highly similar to ERRα and whose function in adipocytes is largely unknown. To gain insights into the roles of all 3 ERRs, we assessed mitochondrial function and adrenergic responses in primary brown adipocytes lacking combinations of ERRs. We show that adipocytes lacking just ERRα, the most abundant ERR, show only mild mitochondrial defects. Adipocytes lacking ERRβ and ERRγ also show just mild defects. In contrast, adipocytes lacking all 3 ERRs have severe reductions in mitochondrial content and oxidative capacity. Moreover, adipocytes lacking all 3 ERRs have defects in the transcriptional and metabolic response to adrenergic stimulation, suggesting a wider role of ERRs in BAT function than previously appreciated. Our study shows that ERRs have a great capacity to compensate for each other in protecting mitochondrial function and the metabolic response to adrenergic signaling, processes vital to BAT function. PMID:27763777

  9. KDM4A Coactivates E2F1 to Regulate the PDK-Dependent Metabolic Switch between Mitochondrial Oxidation and Glycolysis.

    PubMed

    Wang, Ling-Yu; Hung, Chiu-Lien; Chen, Yun-Ru; Yang, Joy C; Wang, Junjian; Campbell, Mel; Izumiya, Yoshihiro; Chen, Hong-Wu; Wang, Wen-Ching; Ann, David K; Kung, Hsing-Jien

    2016-09-13

    The histone lysine demethylase KDM4A/JMJD2A has been implicated in prostate carcinogenesis through its role in transcriptional regulation. Here, we describe KDM4A as a E2F1 coactivator and demonstrate a functional role for the E2F1-KDM4A complex in the control of tumor metabolism. KDM4A associates with E2F1 on target gene promoters and enhances E2F1 chromatin binding and transcriptional activity, thereby modulating the transcriptional profile essential for cancer cell proliferation and survival. The pyruvate dehydrogenase kinases (PDKs) PDK1 and PDK3 are direct targets of KDM4A and E2F1 and modulate the switch between glycolytic metabolism and mitochondrial oxidation. Downregulation of KDM4A leads to elevated activity of pyruvate dehydrogenase and mitochondrial oxidation, resulting in excessive accumulation of reactive oxygen species. The altered metabolic phenotypes can be partially rescued by ectopic expression of PDK1 and PDK3, indicating a KDM4A-dependent tumor metabolic regulation via PDK. Our results suggest that KDM4A is a key regulator of tumor metabolism and a potential therapeutic target for prostate cancer. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Mitochondrial loss, dysfunction and altered dynamics in Huntington's disease.

    PubMed

    Kim, Jinho; Moody, Jennifer P; Edgerly, Christina K; Bordiuk, Olivia L; Cormier, Kerry; Smith, Karen; Beal, M Flint; Ferrante, Robert J

    2010-10-15

    Although a direct causative pathway from the gene mutation to the selective neostriatal neurodegeneration remains unclear in Huntington's disease (HD), one putative pathological mechanism reported to play a prominent role in the pathogenesis of this neurological disorder is mitochondrial dysfunction. We examined mitochondria in preferentially vulnerable striatal calbindin-positive neurons in moderate-to-severe grade HD patients, using antisera against mitochondrial markers of COX2, SOD2 and cytochrome c. Combined calbindin and mitochondrial marker immunofluorescence showed a significant and progressive grade-dependent reduction in the number of mitochondria in spiny striatal neurons, with marked alteration in size. Consistent with mitochondrial loss, there was a reduction in COX2 protein levels using western analysis that corresponded with disease severity. In addition, both mitochondrial transcription factor A, a regulator of mtDNA, and peroxisome proliferator-activated receptor-co-activator gamma-1 alpha, a key transcriptional regulator of energy metabolism and mitochondrial biogenesis, were also significantly reduced with increasing disease severity. Abnormalities in mitochondrial dynamics were observed, showing a significant increase in the fission protein Drp1 and a reduction in the expression of the fusion protein mitofusin 1. Lastly, mitochondrial PCR array profiling in HD caudate nucleus specimens showed increased mRNA expression of proteins involved in mitochondrial localization, membrane translocation and polarization and transport that paralleled mitochondrial derangement. These findings reveal that there are both mitochondrial loss and altered mitochondrial morphogenesis with increased mitochondrial fission and reduced fusion in HD. These findings provide further evidence that mitochondrial dysfunction plays a critical role in the pathogenesis of HD.

  11. Mitochondrial optic neuropathies – Disease mechanisms and therapeutic strategies

    PubMed Central

    Yu-Wai-Man, Patrick; Griffiths, Philip G.; Chinnery, Patrick F.

    2011-01-01

    Leber hereditary optic neuropathy (LHON) and autosomal-dominant optic atrophy (DOA) are the two most common inherited optic neuropathies in the general population. Both disorders share striking pathological similarities, marked by the selective loss of retinal ganglion cells (RGCs) and the early involvement of the papillomacular bundle. Three mitochondrial DNA (mtDNA) point mutations; m.3460G>A, m.11778G>A, and m.14484T>C account for over 90% of LHON cases, and in DOA, the majority of affected families harbour mutations in the OPA1 gene, which codes for a mitochondrial inner membrane protein. Optic nerve degeneration in LHON and DOA is therefore due to disturbed mitochondrial function and a predominantly complex I respiratory chain defect has been identified using both in vitro and in vivo biochemical assays. However, the trigger for RGC loss is much more complex than a simple bioenergetic crisis and other important disease mechanisms have emerged relating to mitochondrial network dynamics, mtDNA maintenance, axonal transport, and the involvement of the cytoskeleton in maintaining a differential mitochondrial gradient at sites such as the lamina cribosa. The downstream consequences of these mitochondrial disturbances are likely to be influenced by the local cellular milieu. The vulnerability of RGCs in LHON and DOA could derive not only from tissue-specific, genetically-determined biological factors, but also from an increased susceptibility to exogenous influences such as light exposure, smoking, and pharmacological agents with putative mitochondrial toxic effects. Our concept of inherited mitochondrial optic neuropathies has evolved over the past decade, with the observation that patients with LHON and DOA can manifest a much broader phenotypic spectrum than pure optic nerve involvement. Interestingly, these phenotypes are sometimes clinically indistinguishable from other neurodegenerative disorders such as Charcot-Marie-Tooth disease, hereditary spastic

  12. Unibody Composite Pressurized Structure (UCPS) for In-Space Propulsion

    NASA Technical Reports Server (NTRS)

    Rufer, Markus

    2015-01-01

    Microcosm, Inc., in conjunction with the Scorpius Space Launch Company, is developing a UCPS (Unibody Composite Pressurized Structure )for in-space propulsion. This innovative approach constitutes a clean break from traditional spacecraft design by combining what were traditionally separate primary and secondary support structures and metal propellant tanks into a single unit.

  13. Thyroid hormone affects secretory activity and uncoupling protein-3 expression in rat harderian gland.

    PubMed

    Chieffi Baccari, Gabriella; Monteforte, Rossella; de Lange, Pieter; Raucci, Franca; Farina, Paola; Lanni, Antonia

    2004-07-01

    The effects of T(3) administration on the rat Harderian gland were examined at morphological, biochemical, and molecular levels. T(3) induced hypertrophy of the two cell types (A and B) present in the glandular epithelium. In type A cells, the hypertrophy was mainly due to an increase in the size of the lipid compartment. The acinar lumina were filled with lipoproteic substances, and the cells often showed an olocrine secretory pattern. In type B cells, the hypertrophy largely consisted of a marked proliferation of mitochondria endowed with tightly packed cristae, the mitochondrial number being nearly doubled (from 62 to 101/100 microm(2)). Although the average area of individual mitochondria decreased by about 50%, the total area of the mitochondrial compartment increased by about 80% (from 11 to 19/100 microm(2)). This could be ascribed to T(3)-induced mitochondrial proliferation. The morphological and morphometric data correlated well with our biochemical results, which indicated that mitochondrial respiratory activity is increased in hyperthyroid rats. T(3), by influencing the metabolic function of the mitochondrial compartment, induces lipogenesis and the release of secretory product by type A cells. Mitochondrial uncoupling proteins 2 and 3 were expressed at both mRNA and protein levels in the euthyroid rat Harderian gland. T(3) treatment increased the mRNA levels of both uncoupling protein 2 (UCP2) and UCP3, but the protein level only of UCP3. A possible role for these proteins in the Harderian gland is discussed.

  14. Mechanistic perspective of mitochondrial fusion: tubulation vs. fragmentation.

    PubMed

    Escobar-Henriques, Mafalda; Anton, Fabian

    2013-01-01

    Mitochondrial fusion is a fundamental process driven by dynamin related GTPase proteins (DRPs), in contrast to the general SNARE-dependence of most cellular fusion events. The DRPs Mfn1/Mfn2/Fzo1 and OPA1/Mgm1 are the key effectors for fusion of the mitochondrial outer and inner membranes, respectively. In order to promote fusion, these two DRPs require post-translational modifications and proteolysis. OPA1/Mgm1 undergoes partial proteolytic processing, which results in a combination between short and long isoforms. In turn, ubiquitylation of mitofusins, after oligomerization and GTP hydrolysis, promotes and positively regulates mitochondrial fusion. In contrast, under conditions of mitochondrial dysfunction, negative regulation by proteolysis on these DRPs results in mitochondrial fragmentation. This occurs by complete processing of OPA1 and via ubiquitylation and degradation of mitofusins. Mitochondrial fragmentation contributes to the elimination of damaged mitochondria by mitophagy, and may play a protective role against Parkinson's disease. Moreover, a link of Mfn2 to Alzheimer's disease is emerging and mutations in Mfn2 or OPA1 cause Charcot-Marie-Tooth type 2A neuropathy or autosomal-dominant optic atrophy. Here, we summarize our current understanding on the molecular mechanisms promoting or inhibiting fusion of mitochondrial membranes, which is essential for cellular survival and disease control. This article is part of a Special Issue entitled: Mitochondrial dynamics and physiology. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Photosensitized 2-amino-3-hydroxypyridine-induced mitochondrial apoptosis via Smac/DIABLO in human skin cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyal, Shruti; Amar, Saroj Kumar; Academy of Scientific and Innovative Research

    The popularity of hair dyes use has been increasing regularly throughout the world as per the demand of hair coloring fashion trends and other cosmetic products. 2-Amino-3-hydroxypyridine (A132) is widely used as a hair dye ingredient around the world. We are reporting first time the phototoxicity mechanism of A132 under ambient environmental UV-B radiation. It showed maximum absorption in UV-B region (317 nm) and forms a photoproduct within an hour exposure of UV-B irradiation. Photocytotoxicity of A132 in human keratinocytes (HaCaT) was measured by mitochondrial (MTT), lysosomal (NRU) and LDH assays which illustrated the significant reduction in cell viability. Themore » role of reactive oxygen species (ROS) generation for A132 phototoxicity was established photo- chemically as well as intracellularly. Noteworthy, formation of tail DNA (comet assay), micronuclei and cyclobutane pyrimidine dimers (CPDs) (immunocytochemistry) formation confirmed the photogenotoxic potential of dye. Cell cycle study (sub-G1peak) and staining with EB/AO revealed the cell cycle arrest and apoptosis. Further, mitochondrial mediated apoptosis was corroborated by reduced MMP, release of cytochrome c and upregulation of caspase-3. Release of mitochondrial Smac/DIABLO in cytoplasm demonstrated the caspase dependent apoptotic cell death by photolabile A132 dye. In-addition increased Bax/Bcl2 ratio again proved the apoptosis. Thus, study suggests that A132 induces photogenotoxicity, phototoxicity and apoptotic cell death through the involvement of Smac/DIABLO in mitochondrial apoptosis via caspase dependent manner. Therefore, the long term use of A132 dye and sunlight exposure jointly increased the oxidative stress in skin which causes premature hair loss, damage to progenitor cells of hair follicles. - Highlights: • Photodegradation of A132 and formation of novel photoproduct • Involvement of ROS in A132 phototoxicity • Role of ROS in DNA damage, CPD and micronuclei formation

  16. Onset and organ specificity of Tk2 deficiency depends on Tk1 down-regulation and transcriptional compensation

    PubMed Central

    Dorado, Beatriz; Area, Estela; Akman, Hasan O.; Hirano, Michio

    2011-01-01

    Deficiency of thymidine kinase 2 (TK2) is a frequent cause of isolated myopathy or encephalomyopathy in children with mitochondrial DNA (mtDNA) depletion. To determine the bases of disease onset, organ specificity and severity of TK2 deficiency, we have carefully characterized Tk2 H126N knockin mice (Tk2−/−). Although normal until postnatal day 8, Tk2−/− mice rapidly develop fatal encephalomyopathy between postnatal days 10 and 13. We have observed that wild-type Tk2 activity is constant in the second week of life, while Tk1 activity decreases significantly between postnatal days 8 and 13. The down-regulation of Tk1 activity unmasks Tk2 deficiency in Tk2−/− mice and correlates with the onset of mtDNA depletion in the brain and the heart. Resistance to pathology in Tk2 mutant organs depends on compensatory mechanisms to the reduced mtDNA level. Our analyses at postnatal day 13 have revealed that Tk2−/− heart significantly increases mitochondrial transcript levels relative to the mtDNA content. This transcriptional compensation allows the heart to maintain normal levels of mtDNA-encoded proteins. The up-regulation in mitochondrial transcripts is not due to increased expression of the master mitochondrial biogenesis regulators peroxisome proliferator-activated receptor-gamma coactivator 1 alpha and nuclear respiratory factors 1 and 2, or to enhanced expression of the mitochondrial transcription factors A, B1 or B2. Instead, Tk2−/− heart compensates for mtDNA depletion by down-regulating the expression of the mitochondrial transcriptional terminator transcription factor 3 (MTERF3). Understanding the molecular mechanisms that allow Tk2 mutant organs to be spared may help design therapies for Tk2 deficiency. PMID:20940150

  17. The bacterial secondary metabolite 2,4-diacetylphloroglucinol impairs mitochondrial function and affects calcium homeostasis in Neurospora crassa.

    PubMed

    Troppens, Danielle M; Chu, Meiling; Holcombe, Lucy J; Gleeson, Olive; O'Gara, Fergal; Read, Nick D; Morrissey, John P

    2013-07-01

    The bacterial secondary metabolite 2,4-diacetylphloroglucinol (DAPG) is of interest as an active ingredient of biological control strains of Pseudomonas fluorescens and as a potential lead pharmaceutical molecule because of its capacity to inhibit growth of diverse microbial and non-microbial cells. The mechanism by which this occurs is unknown and in this study the filamentous fungus Neurospora crassa was used as a model to investigate the effects of DAPG on a eukaryotic cell. Colony growth, conidial germination and cell fusion assays confirmed the inhibitory nature of DAPG towards N. crassa. A number of different fluorescent dyes and fluorescent protein reporters were used to assess the effects of DAPG treatment on mitochondrial and other cellular functions. DAPG treatment led to changes in mitochondrial morphology, and rapid loss of mitochondrial membrane potential. These effects are likely to be responsible for the toxicity of DAPG. It was also found that DAPG treatment caused extracellular calcium to be taken up by conidial germlings leading to a transient increase in cytosolic free Ca(2+) with a distinct concentration dependent Ca(2+) signature. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Drp-1 dependent mitochondrial fragmentation and protective autophagy in dopaminergic SH-SY5Y cells overexpressing alpha-synuclein.

    PubMed

    Martinez, Jimena Hebe; Alaimo, Agustina; Gorojod, Roxana Mayra; Porte Alcon, Soledad; Fuentes, Federico; Coluccio Leskow, Federico; Kotler, Mónica Lidia

    2018-04-01

    Parkinson's disease is a neurodegenerative movement disorder caused by the loss of dopaminergic neurons from substantia nigra. It is characterized by the accumulation of aggregated α-synuclein as the major component of the Lewy bodies. Additional common features of this disease are the mitochondrial dysfunction and the activation/inhibition of autophagy both events associated to the intracellular accumulation of α-synuclein. The mechanism by which these events contribute to neural degeneration remains unknown. In the present work we investigated the effect of α-synuclein on mitochondrial dynamics and autophagy/mitophagy in SH-SY5Y cells, an in vitro model of Parkinson disease. We demonstrated that overexpression of wild type α-synuclein causes moderated toxicity, ROS generation and mitochondrial dysfunction. In addition, α-synuclein induces the mitochondrial fragmentation on a Drp-1-dependent fashion. Overexpression of the fusion protein Opa-1 prevented both mitochondrial fragmentation and cytotoxicity. On the other hand, cells expressing α-synuclein showed activated autophagy and particularly mitophagy. Employing a genetic strategy we demonstrated that autophagy is triggered in order to protect cells from α-synuclein-induced cell death. Our results clarify the role of Opa-1 and Drp-1 in mitochondrial dynamics and cell survival, a controversial α-synuclein research issue. The findings presented point to the relevance of mitochondrial homeostasis and autophagy in the pathogenesis of PD. Better understanding of the molecular interaction between these processes could give rise to novel therapeutic methods for PD prevention and amelioration. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Etomoxir-induced increase in UCP3 supports a role of uncoupling protein 3 as a mitochondrial fatty acid anion exporter.

    PubMed

    Schrauwen, Patrick; Hinderling, Vera; Hesselink, Matthijs K C; Schaart, Gert; Kornips, Esther; Saris, Wim H M; Westerterp-Plantenga, Margriet; Langhans, Wolfgang

    2002-10-01

    The physiological function of human uncoupling protein-3 is still unknown. Uncoupling protein-3 is increased during fasting and high-fat feeding. In these situations the availability of fatty acids to the mitochondria exceeds the capacity to metabolize fatty acids, suggesting a role for uncoupling protein-3 in handling of non-metabolizable fatty acids. To test the hypothesis that uncoupling protein-3 acts as a mitochondrial exporter of non-metabolizable fatty acids from the mitochondrial matrix, we gave human subjects Etomoxir (which blocks mitochondrial entry of fatty acids) or placebo in a cross-over design during a 36-h stay in a respiration chamber. Etomoxir inhibited 24-h fat oxidation and fat oxidation during exercise by approximately 14-19%. Surprisingly, uncoupling protein-3 content in human vastus lateralis muscle was markedly up-regulated within 36 h of Etomoxir administration. Up-regulation of uncoupling protein-3 was accompanied by lowered fasting blood glucose and increased translocation of glucose transporter-4. These data support the hypothesis that the physiological function of uncoupling protein-3 is to facilitate the outward transport of non-metabolizable fatty acids from the mitochondrial matrix and thus prevents mitochondria from the potential deleterious effects of high fatty acid levels. In addition our data show that up-regulation of uncoupling protein-3 can be beneficial in the treatment of type 2 diabetes.

  20. Exercise training protects against aging-induced mitochondrial fragmentation in mouse skeletal muscle in a PGC-1α dependent manner.

    PubMed

    Halling, Jens Frey; Ringholm, Stine; Olesen, Jesper; Prats, Clara; Pilegaard, Henriette

    2017-10-01

    Aging is associated with impaired mitochondrial function, whereas exercise training enhances mitochondrial content and function in part through activation of PGC-1α. Mitochondria form dynamic networks regulated by fission and fusion with profound effects on mitochondrial functions, yet the effects of aging and exercise training on mitochondrial network structure remain unclear. This study examined the effects of aging and exercise training on mitochondrial network structure using confocal microscopy on mitochondria-specific stains in single muscle fibers from PGC-1α KO and WT mice. Hyperfragmentation of mitochondrial networks was observed in aged relative to young animals while exercise training normalized mitochondrial network structure in WT, but not in PGC-1α KO. Mitochondrial fission protein content (FIS1 and DRP1) relative to mitochondrial content was increased with aging in both WT and PGC-1α KO mice, while exercise training lowered mitochondrial fission protein content relative to mitochondrial content only in WT. Mitochondrial fusion protein content (MFN1/2 and OPA1) was unaffected by aging and lifelong exercise training in both PGC-1α KO and WT mice. The present results provide evidence that exercise training rescues aging-induced mitochondrial fragmentation in skeletal muscle by suppressing mitochondrial fission protein expression in a PGC-1α dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Both brown adipose tissue and skeletal muscle thermogenesis processes are activated during mild to severe cold adaptation in mice.

    PubMed

    Bal, Naresh C; Singh, Sushant; Reis, Felipe C G; Maurya, Santosh K; Pani, Sunil; Rowland, Leslie A; Periasamy, Muthu

    2017-10-06

    Thermogenesis is an important homeostatic mechanism essential for survival and normal physiological functions in mammals. Both brown adipose tissue (BAT) ( i.e. uncoupling protein 1 (UCP1)-based) and skeletal muscle ( i.e. sarcolipin (SLN)-based) thermogenesis processes play important roles in temperature homeostasis, but their relative contributions differ from small to large mammals. In this study, we investigated the functional interplay between skeletal muscle- and BAT-based thermogenesis under mild versus severe cold adaptation by employing UCP1 -/- and SLN -/- mice. Interestingly, adaptation of SLN -/- mice to mild cold conditions (16 °C) significantly increased UCP1 expression, suggesting increased reliance on BAT-based thermogenesis. This was also evident from structural alterations in BAT morphology, including mitochondrial architecture, increased expression of electron transport chain proteins, and depletion of fat droplets. Similarly, UCP1 -/- mice adapted to mild cold up-regulated muscle-based thermogenesis, indicated by increases in muscle succinate dehydrogenase activity, SLN expression, mitochondrial content, and neovascularization, compared with WT mice. These results further confirm that SLN-based thermogenesis is a key player in muscle non-shivering thermogenesis (NST) and can compensate for loss of BAT activity. We also present evidence that the increased reliance on BAT-based NST depends on increased autonomic input, as indicated by abundant levels of tyrosine hydroxylase and neuropeptide Y. Our findings demonstrate that both BAT and muscle-based NST are equally recruited during mild and severe cold adaptation and that loss of heat production from one thermogenic pathway leads to increased recruitment of the other, indicating a functional interplay between these two thermogenic processes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. The sesquiterpene (-)-α-bisabolol is active against the causative agents of Old World cutaneous leishmaniasis through the induction of mitochondrial-dependent apoptosis.

    PubMed

    Corpas-López, V; Merino-Espinosa, G; Díaz-Sáez, V; Morillas-Márquez, F; Navarro-Moll, M C; Martín-Sánchez, J

    2016-10-01

    Cutaneous leishmaniasis treatment remains challenging due to the absence of a satisfactory treatment. The screening of natural compounds is a valuable strategy in the search of new drugs against leishmaniasis. The sesquiterpene (-)-α-bisabolol is effective in vivo against visceral leishmaniasis due to Leishmania infantum, but its mechanism of action remains elusive. The aim of this study is to validate this promising compound against the causative species of Old World cutaneous leishmaniasis and to get an insight into its antileishmanial mode of action. The compound was evaluated on L. tropica promastigotes and intracellular amastigotes using bone marrow-derived macrophages and its cytotoxicity was evaluated on L929 fibroblasts. The reactive oxygen species generation was evaluated using a sensitive probe. Mitochondrial depolarization was assessed evaluating the fluorescence due to rhodamine 123 in a flow cytometer. Apoptosis was investigated by measuring the fluorescence due to annexin V and propidium iodide in a flow cytometer. The ultrastructure of treated promastigotes and intracellular amastigotes was analysed through transmission electron microscopy. (-)-α-Bisabolol was active against L. tropica intracellular amastigotes displaying an inhibitory concentration 50 % of 25.2 µM and showing low cytotoxicity. This compound induced time and dose-dependent oxidative stress, mitochondrial depolarization and phosphatidilserine externalization (a marker of apoptosis). These effects were noticed at a low concentration and short exposure time. In the ultrastructural analyses, the treated parasites showed mitochondrial disruption, presence of electron-dense structures and chromatin condensation. These results suggest that this natural compound induces oxidative stress and mitochondrial-dependent apoptosis on Leishmania without disturbing the plasma membrane.

  3. Reversible infantile mitochondrial diseases.

    PubMed

    Boczonadi, Veronika; Bansagi, Boglarka; Horvath, Rita

    2015-05-01

    Mitochondrial diseases are usually severe and progressive conditions; however, there are rare forms that show remarkable spontaneous recoveries. Two homoplasmic mitochondrial tRNA mutations (m.14674T>C/G in mt-tRNA(Glu)) have been reported to cause severe infantile mitochondrial myopathy in the first months of life. If these patients survive the first year of life by extensive life-sustaining measures they usually recover and develop normally. Another mitochondrial disease due to deficiency of the 5-methylaminomethyl-2-thiouridylate methyltransferase (TRMU) causes severe liver failure in infancy, but similar to the reversible mitochondrial myopathy, within the first year of life these infants may also recover completely. Partial recovery has been noted in some other rare forms of mitochondrial disease due to deficiency of mitochondrial tRNA synthetases and mitochondrial tRNA modifying enzymes. Here we summarize the clinical presentation of these unique reversible mitochondrial diseases and discuss potential molecular mechanisms behind the reversibility. Understanding these mechanisms may provide the key to treatments of potential broader relevance in mitochondrial disease, where for the majority of the patients no effective treatment is currently available.

  4. Mechanism of body weight reducing effect of oral boric Acid intake.

    PubMed

    Aysan, Erhan; Sahin, Fikrettin; Telci, Dilek; Erdem, Merve; Muslumanoglu, Mahmut; Yardımcı, Erkan; Bektasoglu, Huseyin

    2013-01-01

    Objective. The effect of oral boric acid intake on reducing body weight has been previously demonstrated although the mechanism has been unclear. This research study reveals the mechanism. Subjects. Twelve mice were used, in groups of six each in the control and study groups. For five days, control group mice drank standard tap water while during the same time period the study group mice drank tap water which contains 0.28 mg/250 mL boric acid. After a 5-day period, gene expression levels for uncoupling proteins (UCPs) in the white adipose tissue (WAT), brown adipose tissue (BAT), and skeletal muscle tissue (SMT) and total body weight changes were analyzed. Results. Real time PCR analysis revealed no significant change in UCP3 expressions, but UCP2 in WAT (P: 0.0317), BAT (P: 0.014), and SMT (P: 0.0159) and UCP1 in BAT (P: 0.026) were overexpressed in the boric acid group. In addition, mice in the boric acid group lost body weight (mean 28.1%) while mice in the control group experienced no weight loss but a slight weight gain (mean 0.09%, P < 0.001). Conclusion. Oral boric acid intake causes overexpression of thermogenic proteins in the adipose and skeletal muscle tissues. Increasing thermogenesis through UCP protein pathway results in the accelerated lipolysis and body weight loss.

  5. The effects of fasting and cold exposure on metabolic rate and mitochondrial proton leak in liver and skeletal muscle of an amphibian, the cane toad Bufo marinus.

    PubMed

    Trzcionka, M; Withers, K W; Klingenspor, M; Jastroch, M

    2008-06-01

    Futile cycling of protons across the mitochondrial inner membrane contributes significantly to standard metabolic rate in a variety of ectothermic and endothermic animals, but adaptations of the mitochondrial bioenergetics to different environmental conditions have rarely been studied in ectotherms. Changes in ambient temperature and nutritional status have a great effect on the physiological demands of ectothermic amphibians and may require the adjustment of mitochondrial efficiency. In order to investigate the effect of temperature and nutritional status on the mitochondrial level, we exposed male cane toads to either 10 degrees C or 30 degrees C and fasted half of the animals in each group. Cold exposure resulted in a fourfold reduction of the resting metabolic rate whereas nutritional status had only minor effects. The mitochondrial adjustments to each condition were observed by comparing the proton leak kinetics of isolated liver and skeletal muscle mitochondria at 25 degrees C. In response to cold exposure, liver mitochondria showed a decrease in proton conductance while skeletal muscle mitochondria were unchanged. Additional food deprivation had minor effects in skeletal muscle, but in liver we uncovered surprising differences in energy saving mechanisms between the acclimation temperatures: in warm-acclimated toads, fasting resulted in a decrease of the proton conductance whereas in cold-acclimated toads, the activity of the respiratory chain was reduced. To investigate the molecular mechanism underlying mitochondrial proton leakage, we determined the adenine-nucleotide transporter (ANT) content, which explained tissue-specific differences in the basal proton leak, but neither the ANT nor uncoupling protein (UCP) gene expression correlated with alterations of the proton leak in response to physiological stimuli.

  6. External Mechanical Work and Pendular Energy Transduction of Overground and Treadmill Walking in Adolescents with Unilateral Cerebral Palsy.

    PubMed

    Zollinger, Marie; Degache, Francis; Currat, Gabriel; Pochon, Ludmila; Peyrot, Nicolas; Newman, Christopher J; Malatesta, Davide

    2016-01-01

    Motor impairments affect functional abilities and gait in children and adolescents with cerebral palsy (CP). Improving their walking is an essential objective of treatment, and the use of a treadmill for gait analysis and training could offer several advantages in adolescents with CP. However, there is a controversy regarding the similarity between treadmill and overground walking both for gait analysis and training in children and adolescents. The aim of this study was to compare the external mechanical work and pendular energy transduction of these two types of gait modalities at standard and preferred walking speeds in adolescents with unilateral cerebral palsy (UCP) and typically developing (TD) adolescents matched on age, height and body mass. Spatiotemporal parameters, external mechanical work and pendular energy transduction of walking were computed using two inertial sensors equipped with a triaxial accelerometer and gyroscope and compared in 10 UCP (14.2 ± 1.7 year) and 10 TD (14.1 ± 1.9 year) adolescents during treadmill and overground walking at standard and preferred speeds. The treadmill induced almost identical mechanical changes to overground walking in TD adolescents and those with UCP, with the exception of potential and kinetic vertical and lateral mechanical works, which are both significantly increased in the overground-treadmill transition only in UCP (P < 0.05). Adolescents with UCP have a reduced adaptive capacity in absorbing and decelerating the speed created by a treadmill (i.e., dynamic stability) compared to TD adolescents. This may have an important implication in rehabilitation programs that assess and train gait by using a treadmill in adolescents with UCP.

  7. Pharmacological modulation of mitochondrial calcium homeostasis.

    PubMed

    Arduino, Daniela M; Perocchi, Fabiana

    2018-01-10

    Mitochondria are pivotal organelles in calcium (Ca 2+ ) handling and signalling, constituting intracellular checkpoints for numerous processes that are vital for cell life. Alterations in mitochondrial Ca 2+ homeostasis have been linked to a variety of pathological conditions and are critical in the aetiology of several human diseases. Efforts have been taken to harness mitochondrial Ca 2+ transport mechanisms for therapeutic intervention, but pharmacological compounds that direct and selectively modulate mitochondrial Ca 2+ homeostasis are currently lacking. New avenues have, however, emerged with the breakthrough discoveries on the genetic identification of the main players involved in mitochondrial Ca 2+ influx and efflux pathways and with recent hints towards a deep understanding of the function of these molecular systems. Here, we review the current advances in the understanding of the mechanisms and regulation of mitochondrial Ca 2+ homeostasis and its contribution to physiology and human disease. We also introduce and comment on the recent progress towards a systems-level pharmacological targeting of mitochondrial Ca 2+ homeostasis. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  8. Nitric Oxide Regulates Skeletal Muscle Fatigue, Fiber Type, Microtubule Organization, and Mitochondrial ATP Synthesis Efficiency Through cGMP-Dependent Mechanisms.

    PubMed

    Moon, Younghye; Balke, Jordan E; Madorma, Derik; Siegel, Michael P; Knowels, Gary; Brouckaert, Peter; Buys, Emmanuel S; Marcinek, David J; Percival, Justin M

    2017-06-10

    Skeletal muscle nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathways are impaired in Duchenne and Becker muscular dystrophy partly because of reduced nNOSμ and soluble guanylate cyclase (GC) activity. However, GC function and the consequences of reduced GC activity in skeletal muscle are unknown. In this study, we explore the functions of GC and NO-cGMP signaling in skeletal muscle. GC1, but not GC2, expression was higher in oxidative than glycolytic muscles. GC1 was found in a complex with nNOSμ and targeted to nNOS compartments at the Golgi complex and neuromuscular junction. Baseline GC activity and GC agonist responsiveness was reduced in the absence of nNOS. Structural analyses revealed aberrant microtubule directionality in GC1 -/- muscle. Functional analyses of GC1 -/- muscles revealed reduced fatigue resistance and postexercise force recovery that were not due to shifts in type IIA-IIX fiber balance. Force deficits in GC1 -/- muscles were also not driven by defects in resting mitochondrial adenosine triphosphate (ATP) synthesis. However, increasing muscle cGMP with sildenafil decreased ATP synthesis efficiency and capacity, without impacting mitochondrial content or ultrastructure. GC may represent a new target for alleviating muscle fatigue and that NO-cGMP signaling may play important roles in muscle structure, contractility, and bioenergetics. These findings suggest that GC activity is nNOS dependent and that muscle-specific control of GC expression and differential GC targeting may facilitate NO-cGMP signaling diversity. They suggest that nNOS regulates muscle fiber type, microtubule organization, fatigability, and postexercise force recovery partly through GC1 and suggest that NO-cGMP pathways may modulate mitochondrial ATP synthesis efficiency. Antioxid. Redox Signal. 26, 966-985.

  9. Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica

    PubMed Central

    2011-01-01

    Background Angiosperm mitochondrial genomes are more complex than those of other organisms. Analyses of the mitochondrial genome sequences of at least 11 angiosperm species have showed several common properties; these cannot easily explain, however, how the diverse mitotypes evolved within each genus or species. We analyzed the evolutionary relationships of Brassica mitotypes by sequencing. Results We sequenced the mitotypes of cam (Brassica rapa), ole (B. oleracea), jun (B. juncea), and car (B. carinata) and analyzed them together with two previously sequenced mitotypes of B. napus (pol and nap). The sizes of whole single circular genomes of cam, jun, ole, and car are 219,747 bp, 219,766 bp, 360,271 bp, and 232,241 bp, respectively. The mitochondrial genome of ole is largest as a resulting of the duplication of a 141.8 kb segment. The jun mitotype is the result of an inherited cam mitotype, and pol is also derived from the cam mitotype with evolutionary modifications. Genes with known functions are conserved in all mitotypes, but clear variation in open reading frames (ORFs) with unknown functions among the six mitotypes was observed. Sequence relationship analysis showed that there has been genome compaction and inheritance in the course of Brassica mitotype evolution. Conclusions We have sequenced four Brassica mitotypes, compared six Brassica mitotypes and suggested a mechanism for mitochondrial genome formation in Brassica, including evolutionary events such as inheritance, duplication, rearrangement, genome compaction, and mutation. PMID:21988783

  10. Glutaredoxin-2 controls cardiac mitochondrial dynamics and energetics in mice, and protects against human cardiac pathologies.

    PubMed

    Kanaan, Georges N; Ichim, Bianca; Gharibeh, Lara; Maharsy, Wael; Patten, David A; Xuan, Jian Ying; Reunov, Arkadiy; Marshall, Philip; Veinot, John; Menzies, Keir; Nemer, Mona; Harper, Mary-Ellen

    2018-04-01

    Glutaredoxin 2 (GRX2), a mitochondrial glutathione-dependent oxidoreductase, is central to glutathione homeostasis and mitochondrial redox, which is crucial in highly metabolic tissues like the heart. Previous research showed that absence of Grx2, leads to impaired mitochondrial complex I function, hypertension and cardiac hypertrophy in mice but the impact on mitochondrial structure and function in intact cardiomyocytes and in humans has not been explored. We hypothesized that Grx2 controls cardiac mitochondrial dynamics and function in cellular and mouse models, and that low expression is associated with human cardiac dysfunction. Here we show that Grx2 absence impairs mitochondrial fusion, ultrastructure and energetics in primary cardiomyocytes and cardiac tissue. Moreover, provision of the glutathione precursor, N-acetylcysteine (NAC) to Grx2-/- mice did not restore glutathione redox or prevent impairments. Using genetic and histopathological data from the human Genotype-Tissue Expression consortium we demonstrate that low GRX2 is associated with fibrosis, hypertrophy, and infarct in the left ventricle. Altogether, GRX2 is important in the control of cardiac mitochondrial structure and function, and protects against human cardiac pathologies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Pathological mechanisms underlying single large‐scale mitochondrial DNA deletions

    PubMed Central

    Rocha, Mariana C.; Rosa, Hannah S.; Grady, John P.; Blakely, Emma L.; He, Langping; Romain, Nadine; Haller, Ronald G.; Newman, Jane; McFarland, Robert; Ng, Yi Shiau; Gorman, Grainne S.; Schaefer, Andrew M.; Tuppen, Helen A.; Taylor, Robert W.

    2018-01-01

    Objective Single, large‐scale deletions in mitochondrial DNA (mtDNA) are a common cause of mitochondrial disease. This study aimed to investigate the relationship between the genetic defect and molecular phenotype to improve understanding of pathogenic mechanisms associated with single, large‐scale mtDNA deletions in skeletal muscle. Methods We investigated 23 muscle biopsies taken from adult patients (6 males/17 females with a mean age of 43 years) with characterized single, large‐scale mtDNA deletions. Mitochondrial respiratory chain deficiency in skeletal muscle biopsies was quantified by immunoreactivity levels for complex I and complex IV proteins. Single muscle fibers with varying degrees of deficiency were selected from 6 patient biopsies for determination of mtDNA deletion level and copy number by quantitative polymerase chain reaction. Results We have defined 3 “classes” of single, large‐scale deletion with distinct patterns of mitochondrial deficiency, determined by the size and location of the deletion. Single fiber analyses showed that fibers with greater respiratory chain deficiency harbored higher levels of mtDNA deletion with an increase in total mtDNA copy number. For the first time, we have demonstrated that threshold levels for complex I and complex IV deficiency differ based on deletion class. Interpretation Combining genetic and immunofluorescent assays, we conclude that thresholds for complex I and complex IV deficiency are modulated by the deletion of complex‐specific protein‐encoding genes. Furthermore, removal of mt‐tRNA genes impacts specific complexes only at high deletion levels, when complex‐specific protein‐encoding genes remain. These novel findings provide valuable insight into the pathogenic mechanisms associated with these mutations. Ann Neurol 2018;83:115–130 PMID:29283441

  12. Glycogen synthase kinase 3-mediated voltage-dependent anion channel phosphorylation controls outer mitochondrial membrane permeability during lipid accumulation.

    PubMed

    Martel, Cecile; Allouche, Maya; Esposti, Davide Degli; Fanelli, Elena; Boursier, Céline; Henry, Céline; Chopineau, Joel; Calamita, Giuseppe; Kroemer, Guido; Lemoine, Antoinette; Brenner, Catherine

    2013-01-01

    Nonalcoholic steatosis is a liver pathology characterized by fat accumulation and severe metabolic alterations involving early mitochondrial impairment and late hepatocyte cell death. However, mitochondrial dysfunction mechanisms remain elusive. Using four models of nonalcoholic steatosis, i.e., livers from patients with fatty liver disease, ob/ob mice, mice fed a high-fat diet, and in vitro models of lipotoxicity, we show that outer mitochondrial membrane permeability is altered and identified a posttranslational modification of voltage-dependent anion channel (VDAC), a membrane channel and NADH oxidase, as a cause of early mitochondrial dysfunction. Thus, in nonalcoholic steatosis VDAC exhibits reduced threonine phosphorylation, which increases the influx of water and calcium into mitochondria, sensitizes the organelle to matrix swelling, depolarization, and cytochrome c release without inducing cell death. This also amplifies VDAC enzymatic and channel activities regulation by calcium and modifies its interaction with proteic partners. Moreover, lipid accumulation triggers a rapid lack of VDAC phosphorylation by glycogen synthase kinase 3 (GSK3). Pharmacological and genetic manipulations proved GSK3 to be responsible for VDAC phosphorylation in normal cells. Notably, VDAC phosphorylation level correlated with steatosis severity in patients. VDAC acts as an early sensor of lipid toxicity and its GSK3-mediated phosphorylation status controls outer mitochondrial membrane permeabilization in hepatosteatosis. Copyright © 2012 American Association for the Study of Liver Diseases.

  13. Age-related changes of serum mitochondrial uncoupling 1, rumen and rectal temperature in goats.

    PubMed

    Arfuso, Francesca; Rizzo, Maria; Giannetto, Claudia; Giudice, Elisabetta; Fazio, Francesco; Piccione, Giuseppe

    2016-07-01

    Thermoregulatory processes are induced not only by exposure to cold or heat but also by a variety of physiological situations including age, fasting and food intake that result in changes in body temperature. The aim of the present study was to evaluate the differences in serum mitochondrial uncoupling protein 1 (UCP1), rumen temperature (TRUMEN) and rectal temperature (TRECTAL) values between adult and kids goats. Ten adult male Maltese goats aged 3-5 years old (Group A) and 30 male kids, raised for meat, were enrolled in this study. The kids were equally divided into 3 groups according to their age: Group B included kids aged 3 months, Group C included kids aged 4 months and Group D included kids aged 5 months. Blood samples and measurements of TRUMEN and TRECTAL were obtained from each animal. One-way repeated measures analysis of variance (ANOVA) was applied to evaluate the effect of age on the studied parameters. Statistically significant higher serum UCP1 levels (P<0.001) were found in Group A as compared to Groups B, C and D. Higher TRUMEN values (P<0.001) were found in Group A than in Groups B, C and D, and in Group B than in Groups C and D. Group A showed lower TRECTAL values (P<0.001) than Groups B, C and D. The Pearson's Correlation test was applied to assess significant relationship among studied parameters showing a statistically significant negative correlation between the values of TRECTAL and serum UCP1 in all studied Groups (P<0.001). These results indicate that goats have good control of body temperature suggesting that further details about the thermogenic capacity and the function of UCP1 in kids and adult goats are worth exploring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Mitochondrial DNA Damage and its Consequences for Mitochondrial Gene Expression

    PubMed Central

    Cline, Susan D.

    2012-01-01

    How mitochondria process DNA damage and whether a change in the steady-state level of mitochondrial DNA damage (mtDNA) contributes to mitochondrial dysfunction are questions that fuel burgeoning areas of research into aging and disease pathogenesis. Over the past decade, researchers have identified and measured various forms of endogenous and environmental mtDNA damage and have elucidated mtDNA repair pathways. Interestingly, mitochondria do not appear to contain the full range of DNA repair mechanisms that operate in the nucleus, although mtDNA contains types of damage that are targets of each nuclear DNA repair pathway. The reduced repair capacity may, in part, explain the high mutation frequency of the mitochondrial chromosome. Since mtDNA replication is dependent on transcription, mtDNA damage may alter mitochondrial gene expression at three levels: by causing DNA polymerase γ nucleotide incorporation errors leading to mutations, by interfering with the priming of mtDNA replication by the mitochondrial RNA polymerase, or by inducing transcriptional mutagenesis or premature transcript termination. This review summarizes our current knowledge of mtDNA damage, its repair, and its effects on mtDNA integrity and gene expression. PMID:22728831

  15. E1A enhances cellular sensitivity to DNA-damage-induced apoptosis through PIDD-dependent caspase-2 activation.

    PubMed

    Radke, Jay R; Siddiqui, Zeba K; Figueroa, Iris; Cook, James L

    Expression of the adenoviral protein, E1A, sensitizes mammalian cells to a wide variety of apoptosis-inducing agents through multiple cellular pathways. For example, E1A sensitizes cells to apoptosis induced by TNF-superfamily members by inhibiting NF-kappa B (NF- κ B)-dependent gene expression. In contrast, E1A sensitization to nitric oxide, an inducer of the intrinsic apoptotic pathway, is not dependent upon repression of NF- κ B-dependent transcription but rather is dependent upon caspase-2 activation. The latter observation suggested that E1A-induced enhancement of caspase-2 activation might be a critical factor in cellular sensitization to other intrinsic apoptosis pathway-inducing agents. Etoposide and gemcitabine are two DNA damaging agents that induce intrinsic apoptosis. Here we report that E1A-induced sensitization to both of these agents, like NO, is independent of NF- κ B activation but dependent on caspase-2 activation. The results show that caspase-2 is a key mitochondrial-injuring caspase during etoposide and gemcitabine-induced apoptosis of E1A-positive cells, and that caspase-2 is required for induction of caspase-3 activity by both chemotherapeutic agents. Expression of PIDD was required for caspase-2 activation, mitochondrial injury and enhanced apoptotic cell death. Furthermore, E1A-enhanced sensitivity to injury-induced apoptosis required PIDD cleavage to PIDD-CC. These results define the PIDD/caspase-2 pathway as a key apical, mitochondrial-injuring mechanism in E1A-induced sensitivity of mammalian cells to chemotherapeutic agents.

  16. Low levels of lipopolysaccharide modulate mitochondrial oxygen consumption in skeletal muscle

    PubMed Central

    Frisard, Madlyn I.; Wu, Yaru; McMillan, Ryan P.; Voelker, Kevin A.; Wahlberg, Kristin A.; Anderson, Angela S.; Boutagy, Nabil; Resendes, Kyle; Ravussin, Eric; Hulver, Matthew W.

    2014-01-01

    Objective We have previously demonstrated that activation of toll-like receptor 4 (TLR4) in skeletal muscle results in an increased reliance on glucose as an energy source and a concomitant decrease in fatty acid oxidation under basal conditions. Herein, we examined the effects of lipopolysaccharide (LPS), the primary ligand for TLR4, on mitochondrial oxygen consumption in skeletal muscle cell culture and isolated mitochondria. Materials/ methods Skeletal muscle cell cultures were exposed to LPS and oxygen consumption was assessed using a Seahorse Bioscience extracellular flux analyzer. Mice were also exposed to LPS and oxygen consumption was assessed in mitochondria isolated from skeletal muscle. Results Acute LPS exposure resulted in significant reductions in cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP)-stimulated maximal respiration (state 3u) and increased oligomycin induced state 4 (state 4O) respiration in C2C12 and human primary myotubes. These findings were observed in conjunction with increased mRNA of uncoupling protein 3 (UCP3), superoxide dismutase 2 (SOD2), and pyruvate dehydrogenase activity. The LPS-mediated changes in substrate oxidation and maximal mitochondrial respiration were prevented in the presence of the antioxidants N-acetylcysteine and catalase, suggesting a potential role of reactive oxygen species in mediating these effects. Mitochondria isolated from red gastrocnemius and quadriceps femoris muscle from mice injected with LPS also demonstrated reduced respiratory control ratio (RCR), and ADP- and FCCP-stimulated respiration. Conclusion LPS exposure in skeletal muscle alters mitochondrial oxygen consumption and substrate preference, which is absent when antioxidants are present. PMID:25528444

  17. Mössbauer Spectra of Mouse Hearts Reveal Age-dependent Changes in Mitochondrial and Ferritin Iron Levels.

    PubMed

    Wofford, Joshua D; Chakrabarti, Mrinmoy; Lindahl, Paul A

    2017-03-31

    Cardiac function requires continuous high levels of energy, and so iron, a critical player in mitochondrial respiration, is an important component of the heart. Hearts from 57 Fe-enriched mice were evaluated by Mössbauer spectroscopy. Spectra consisted of a sextet and two quadrupole doublets. One doublet was due to residual blood, whereas the other was due to [Fe 4 S 4 ] 2+ clusters and low-spin Fe II hemes, most of which were associated with mitochondrial respiration. The sextet was due to ferritin; there was no evidence of hemosiderin, a ferritin decomposition product. Iron from ferritin was nearly absent in young hearts, but increased steadily with age. EPR spectra exhibited signals similar to those of brain, liver, and human cells. No age-dependent EPR trends were apparent. Hearts from HFE -/- mice with hemochromatosis contained slightly more iron overall than controls, including more ferritin and less mitochondrial iron; these differences typify slightly older hearts, perhaps reflecting the burden due to this disease. HFE -/- livers were overloaded with ferritin but had low mitochondrial iron levels. IRP2 -/- hearts contained less ferritin than controls but normal levels of mitochondrial iron. Hearts of young mice born to an iron-deficient mother contained normal levels of mitochondrial iron and no ferritin; the heart from the mother contained low ferritin and normal levels of mitochondrial iron. High-spin Fe II ions were nearly undetectable in heart samples; these were evident in brains, livers, and human cells. Previous Mössbauer spectra of unenriched diseased human hearts lacked mitochondrial and blood doublets and included hemosiderin features. This suggests degradation of iron-containing species during sample preparation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Reduction in Autophagy by (-)-Epigallocatechin-3-Gallate (EGCG): a Potential Mechanism of Prevention of Mitochondrial Dysfunction After Subarachnoid Hemorrhage.

    PubMed

    Chen, Ying; Huang, Liyong; Zhang, Huiyong; Diao, Xiling; Zhao, Shuyang; Zhou, Wenke

    2017-01-01

    Mitochondrial dysfunction and subsequent autophagy, which are common features in central nervous system (CNS) disorders, were found to contribute to neuronal cell injury after subarachnoid hemorrhage (SAH). (-)-Epigallocatechin-3-gallate (EGCG), the main biological active of tea catechin, is well known for its beneficial effects in the treatment of CNS diseases. Here, the ability of EGCG to rescue cellular injury and mitochondrial function following the improvement of autophagic flux after SAH was investigated. As expected, EGCG-protected mitochondrial function depended on the inhibition of cytosolic Ca 2+ concentration ([Ca 2+ ] i ) influx via voltage-gated calcium channels (VGCCs) and, consequently, mitochondrial Ca 2+ concentration ([Ca 2+ ] m ) overload via mitochondrial Ca 2+ uniporter (MCU). The attenuated [Ca 2+ ] i and [Ca 2+ ] m levels observed in the EGCG-treated group likely lessened oxyhemoglobin (OxyHb)-induced mitochondrial dysfunction, including mitochondrial membrane potential depolarization, mitochondrial membrane permeability transition pore (mPTP) opening, reactive oxygen species (ROS), and cytochrosome c (cyt c) releasing. Subsequently, EGCG can restore the disrupted autophagy flux after SAH both at the initiation and formation stages by regulating Atg5, LC3B, and Becn-1 (Beclin-1) mRNA expressions. Thus, precondition EGCG resulted in autophagosomes and more autolysosomes compared with SAH group. As a result, EGCG pre-treatment increased the neurological score and decreased cell death. This study suggested that the mitochondrial dysfunction and abnormal autophagy flux synergistically contribute to SAH pathogenesis. Thus, EGCG can be regarded as a new pharmacological agent that targets both mitochondria and altered autophagy in SAH therapy.

  19. CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism.

    PubMed

    Camacho-Pereira, Juliana; Tarragó, Mariana G; Chini, Claudia C S; Nin, Veronica; Escande, Carlos; Warner, Gina M; Puranik, Amrutesh S; Schoon, Renee A; Reid, Joel M; Galina, Antonio; Chini, Eduardo N

    2016-06-14

    Nicotinamide adenine dinucleotide (NAD) levels decrease during aging and are involved in age-related metabolic decline. To date, the mechanism responsible for the age-related reduction in NAD has not been elucidated. Here we demonstrate that expression and activity of the NADase CD38 increase with aging and that CD38 is required for the age-related NAD decline and mitochondrial dysfunction via a pathway mediated at least in part by regulation of SIRT3 activity. We also identified CD38 as the main enzyme involved in the degradation of the NAD precursor nicotinamide mononucleotide (NMN) in vivo, indicating that CD38 has a key role in the modulation of NAD-replacement therapy for aging and metabolic diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies

    PubMed Central

    Lasserre, Jean-Paul; Dautant, Alain; Aiyar, Raeka S.; Kucharczyk, Roza; Glatigny, Annie; Tribouillard-Tanvier, Déborah; Rytka, Joanna; Blondel, Marc; Skoczen, Natalia; Reynier, Pascal; Pitayu, Laras; Rötig, Agnès; Delahodde, Agnès; Steinmetz, Lars M.; Dujardin, Geneviève; Procaccio, Vincent; di Rago, Jean-Paul

    2015-01-01

    ABSTRACT Mitochondrial diseases are severe and largely untreatable. Owing to the many essential processes carried out by mitochondria and the complex cellular systems that support these processes, these diseases are diverse, pleiotropic, and challenging to study. Much of our current understanding of mitochondrial function and dysfunction comes from studies in the baker's yeast Saccharomyces cerevisiae. Because of its good fermenting capacity, S. cerevisiae can survive mutations that inactivate oxidative phosphorylation, has the ability to tolerate the complete loss of mitochondrial DNA (a property referred to as ‘petite-positivity’), and is amenable to mitochondrial and nuclear genome manipulation. These attributes make it an excellent model system for studying and resolving the molecular basis of numerous mitochondrial diseases. Here, we review the invaluable insights this model organism has yielded about diseases caused by mitochondrial dysfunction, which ranges from primary defects in oxidative phosphorylation to metabolic disorders, as well as dysfunctions in maintaining the genome or in the dynamics of mitochondria. Owing to the high level of functional conservation between yeast and human mitochondrial genes, several yeast species have been instrumental in revealing the molecular mechanisms of pathogenic human mitochondrial gene mutations. Importantly, such insights have pointed to potential therapeutic targets, as have genetic and chemical screens using yeast. PMID:26035862

  1. Regulation of Mitochondrial Structure and Dynamics by the Cytoskeleton and Mechanical Factors.

    PubMed

    Bartolák-Suki, Erzsébet; Imsirovic, Jasmin; Nishibori, Yuichiro; Krishnan, Ramaswamy; Suki, Béla

    2017-08-21

    Mitochondria supply cells with energy in the form of ATP, guide apoptosis, and contribute to calcium buffering and reactive oxygen species production. To support these diverse functions, mitochondria form an extensive network with smaller clusters that are able to move along microtubules aided by motor proteins. Mitochondria are also associated with the actin network, which is involved in cellular responses to various mechanical factors. In this review, we discuss mitochondrial structure and function in relation to the cytoskeleton and various mechanical factors influencing cell functions. We first summarize the morphological features of mitochondria with an emphasis on fission and fusion as well as how network properties govern function. We then review the relationship between the mitochondria and the cytoskeletal structures, including mechanical interactions. We also discuss how stretch and its dynamic pattern affect mitochondrial structure and function. Finally, we present preliminary data on how extracellular matrix stiffness influences mitochondrial morphology and ATP generation. We conclude by discussing the more general role that mitochondria may play in mechanobiology and how the mechanosensitivity of mitochondria may contribute to the development of several diseases and aging.

  2. The Ustilago maydis a2 Mating-Type Locus Genes lga2 and rga2 Compromise Pathogenicity in the Absence of the Mitochondrial p32 Family Protein Mrb1

    PubMed Central

    Bortfeld, Miriam; Auffarth, Kathrin; Kahmann, Regine; Basse, Christoph W.

    2004-01-01

    The Ustilago maydis mrb1 gene specifies a mitochondrial matrix protein with significant similarity to mitochondrial p32 family proteins known from human and many other eukaryotic species. Compatible mrb1 mutant strains were able to mate and form dikaryotic hyphae; however, proliferation within infected tissue and the ability to induce tumor development of infected maize (Zea mays) plants were drastically impaired. Surprisingly, manifestation of the mrb1 mutant phenotype selectively depended on the a2 mating type locus. The a2 locus contains, in addition to pheromone signaling components, the genes lga2 and rga2 of unknown function. Deletion of lga2 in an a2Δmrb1 strain fully restored pathogenicity, whereas pathogenicity was partially regained in an a2Δmrb1Δrga2 strain, implicating a concerted action between Lga2 and Rga2 in compromising pathogenicity in Δmrb1 strains. Lga2 and Rga2 localized to mitochondria and Mrb1 interacted with Rga2 in the yeast two-hybrid system. Conditional expression of lga2 in haploid cells reduced vegetative growth, conferred mitochondrial fragmentation and mitochondrial DNA degradation, and interfered with respiratory activity. The consequences of lga2 overexpression depended on the expression strength and were greatly exacerbated in Δmrb1 mutants. We propose that Lga2 interferes with mitochondrial fusion and that Mrb1 controls this activity, emphasizing a critical link between mitochondrial morphology and pathogenicity. PMID:15273296

  3. Nrf2 inhibits oxaliplatin-induced peripheral neuropathy via protection of mitochondrial function.

    PubMed

    Yang, Yang; Luo, Lan; Cai, Xueting; Fang, Yuan; Wang, Jiaqi; Chen, Gang; Yang, Jie; Zhou, Qian; Sun, Xiaoyan; Cheng, Xiaolan; Yan, Huaijiang; Lu, Wuguang; Hu, Chunping; Cao, Peng

    2018-05-20

    Oxaliplatin-induced peripheral neuropathy (OIPN) is a severe, dose-limiting toxicity associated with cancer chemotherapy. The efficacy of antioxidant administration in OIPN is debatable, as the promising preliminary results obtained with a number of antioxidants have not been confirmed in larger clinical trials. Besides its antioxidant activity, the transcription factor, nuclear factor-erythroid 2 (NF-E2) p45-related factor 2 (Nrf2) plays a crucial role in the maintenance of mitochondrial homeostasis, and mitochondrial dysfunction is a key contributor to OIPN. Here, we have investigated the protective properties of Nrf2 in OIPN. Nrf2 -/- mice displayed severe mechanical allodynia and cold sensitivity and thus experienced increased peripheral nervous system injury compared to Nrf2 +/+ mice. Furthermore, Nrf2 knockout aggravated oxaliplatin-induced reactive oxygen species production, decreased the mitochondrial membrane potential, led to abnormal intracellular calcium levels, and induced cytochrome c-related apoptosis and overexpression of the TRP protein family. Sulforaphane-induced activation of the Nrf2 signaling pathway alleviated morphological alterations, mitochondrial dysfunction in dorsal root ganglion neurons, and nociceptive sensations in mice. Our findings reveal that Nrf2 may play a critical role in ameliorating OIPN, through protection of mitochondrial function by alleviating oxidative stress and inhibiting TRP protein family expression. This suggests that pharmacological or therapeutic activation of Nrf2 may be used to prevent or slow down the progression of OIPN. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. MicroRNA‑29a is involved lipid metabolism dysfunction and insulin resistance in C2C12 myotubes by targeting PPARδ.

    PubMed

    Wu, Peng; Wang, Qianyi; Jiang, Cuilian; Chen, Chen; Liu, Yun; Chen, Yajun; Zeng, Yu

    2018-06-01

    MicroRNA‑29a (miR‑29a) expression has been reported to be closely associated with skeletal muscle insulin resistance and type 2 diabetes. The present study investigated the effect of miR‑29a on palmitic acid (PA)‑induced lipid metabolism dysfunction and insulin resistance in C2C12 myotubes via overexpressing or silencing of miR‑29a expression. Mouse C2C12 myoblasts were cultured, differentiated and transfected with miR‑29a or miR‑29a inhibitor lentiviral with or without subsequent palmitic acid (PA) treatment. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blot analysis were performed to assess the mRNA and protein levels of related genes, respectively. PA treatment increased the expression of miR‑29a in a time‑ and dose‑ dependent manner. miR‑29a silencing improved insulin‑induced glucose uptake and increased glucose transporter‑4 (GLUT4) transportation to the plasma membrane by upregulating its target peroxisome proliferator‑activated receptor δ (PPARδ). Furthermore, it was observed that miR‑29a regulated the expression of genes associated with lipid metabolism, including pyruvate dehydrogenase kinase isoform, mitochondrial uncoupling protein (UCP)2, UCP3, long chain specific acyl‑CoA dehydrogenase, mitochondrial and fatty acid transport protein 2. The results confirmed that silencing miR‑29a induced a decrease in glucose transport and affected lipid metabolism in PA‑treated C2C12 cells, and therefore may be involved in insulin resistance by targeting PPARδ in skeletal muscle. Therefore, the inhibition of miR‑29a may be a potential novel strategy for treating insulin resistance and type 2 diabetes.

  5. Sexual Dimorphism in the Alterations of Cardiac Muscle Mitochondrial Bioenergetics Associated to the Ageing Process.

    PubMed

    Colom, Bartomeu; Oliver, Jordi; Garcia-Palmer, Francisco J

    2015-11-01

    The incidence of cardiac disease is age and sex dependent, but the mechanisms governing these associations remain poorly understood. Mitochondria are the organelles in charge of producing energy for the cells, and their malfunction has been linked to cardiovascular disease and heart failure. Interestingly, heart mitochondrial content and functionality are also age and sex dependent. Here we investigated the combinatory effects of age and sex in mitochondrial bioenergetics that could help to understand their role on cardiac disease. Cardiac mitochondria from 6- and 24-month-old male and female Wistar rats were isolated, and the enzymatic activities of the oxidative-phosphorylative complexes I, III, and IV and ATPase, as well as the protein levels of complex IV, β-ATPase, and mitochondrial transcription factor A (TFAM), were measured. Furthermore, heart DNA content, citrate synthase activity, mitochondrial protein content, oxygen consumption, and H2O2 generation were also determined. Results showed a reduction in heart mitochondrial mass and functionality with age that correlated with increased H2O2 generation. Moreover, sex-dependent differences were found in several of these parameters. In particular, old females exhibited a significant loss of mitochondrial function and increased relative H2O2 production compared with their male counterparts. The results demonstrate a sex dimorphism in the age-associated defects on cardiac mitochondrial function. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Mitochondrial fusion increases the mitochondrial DNA copy number in budding yeast.

    PubMed

    Hori, Akiko; Yoshida, Minoru; Ling, Feng

    2011-05-01

    Mitochondrial fusion plays an important role in mitochondrial DNA (mtDNA) maintenance, although the underlying mechanisms are unclear. In budding yeast, certain levels of reactive oxygen species (ROS) can promote recombination-mediated mtDNA replication, and mtDNA maintenance depends on the homologous DNA pairing protein Mhr1. Here, we show that the fusion of isolated yeast mitochondria, which can be monitored by the bimolecular fluorescence complementation-derived green fluorescent protein (GFP) fluorescence, increases the mtDNA copy number in a manner dependent on Mhr1. The fusion event, accompanied by the degradation of dissociated electron transport chain complex IV and transient reductions in the complex IV subunits by the inner membrane AAA proteases such as Yme1, increases ROS levels. Analysis of the initial stage of mitochondrial fusion in early log-phase cells produced similar results. Moreover, higher ROS levels in mitochondrial fusion-deficient mutant cells increased the amount of newly synthesized mtDNA, resulting in increases in the mtDNA copy number. In contrast, reducing ROS levels in yme1 null mutant cells significantly decreased the mtDNA copy number, leading to an increase in cells lacking mtDNA. Our results indicate that mitochondrial fusion induces mtDNA synthesis by facilitating ROS-triggered, recombination-mediated replication and thereby prevents the generation of mitochondria lacking DNA. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  7. Gradual changes in permeability of inner mitochondrial membrane precede the mitochondrial permeability transition.

    PubMed

    Balakirev, M Y; Zimmer, G

    1998-08-01

    Some compounds are known to induce solute-nonselective permeability of the inner mitochondrial membrane (IMM) in Ca2+-loaded mitochondria. Existing data suggest that this process, following the opening of a mitochondrial permeability transition pore, is preceded by different solute-selective permeable states of IMM. At pH 7, for instance, the K0.5 for Ca2+-induced pore opening is 16 microM, a value 80-fold above a therapeutically relevant shift of intracellular Ca2+ during ischemia in vivo. The present work shows that in the absence of Ca2+, phenylarsine oxide and tetraalkyl thiuram disulfides (TDs) are able to induce a complex sequence of IMM permeability changes. At first, these agents activated an electrogenic K+ influx into the mitochondria. This K+-specific pathway had K0.5 = 35 mM for K+ and was inhibited by bromsulfalein with Ki = 2.5 microM. The inhibitors of mitochondrial KATP channel, ATP and glibenclamide, did not inhibit K+ transport via this pathway. Moreover, 50 microM glibenclamide induced by itself K+ influx into the mitochondria. After the increase in K+ permeability of IMM, mitochondria become increasingly permeable to protons. Mechanisms of H+ leak and nonselective permeability increase could also be different depending on the type of mitochondrial permeability transition (MPT) inducer. Thus, permeabilization of mitochondria induced by phenylarsine oxide was fully prevented by ADP and/or cyclosporin A, whereas TD-induced membrane alterations were insensitive toward these inhibitors. It is suggested that MPT in vivo leading to irreversible apoptosis is irrelevant in reversible ischemia/reperfusion injury. Copyright 1998 Academic Press.

  8. IGF-1 Alleviates High Fat Diet-Induced Myocardial Contractile Dysfunction: Role of Insulin Signaling and Mitochondrial Function

    PubMed Central

    Zhang, Yingmei; Yuan, Ming; Bradley, Katherine M.; Dong, Feng; Anversa, Piero; Ren, Jun

    2012-01-01

    Obesity is often associated with reduced plasma IGF-1 levels, oxidative stress, mitochondrial damage and cardiac dysfunction. This study was designed to evaluate the impact of IGF-1 on high fat diet-induced oxidative, myocardial, geometric and mitochondrial responses. FVB and cardiomyocyte-specific IGF-1 overexpression transgenic mice were fed a low (10%) or high fat (45%) diet to induce obesity. High fat diet feeding led to glucose intolerance, elevated plasma levels of leptin, interleukin-6, insulin and triglyceride as well as reduced circulating IGF-1 levels. Echocardiography revealed reduced fractional shortening, increased end systolic and diastolic diameter, increased wall thickness, and cardiac hypertrophy in high fat-fed FVB mice. High fat diet promoted ROS generation, apoptosis, protein and mitochondrial damage, reduced ATP content, cardiomyocyte cross-sectional area, contractile and intracellular Ca2+ dysregulation, including depressed peak shortening and maximal velocity of shortening/relengthening, prolonged duration of relengthening, and dampened intracellular Ca2+ rise and clearance. Western blot analysis revealed disrupted phosphorylation of insulin receptor, post-receptor signaling molecules IRS-1 (tyrosine/serine phosphorylation), Akt, GSK3β, Foxo3a, mTOR, as well as downregulated expression of mitochondrial proteins PPARγ coactivator 1α (PGC1α) and UCP-2. Intriguingly, IGF-1 mitigated high fat diet feeding-induced alterations in ROS, protein and mitochondrial damage, ATP content, apoptosis, myocardial contraction, intracellular Ca2+ handling and insulin signaling, but not whole body glucose intolerance and cardiac hypertrophy. Exogenous IGF-1 treatment also alleviated high fat diet-induced cardiac dysfunction. Our data revealed that IGF-1 alleviates high fat diet-induced cardiac dysfunction despite persistent cardiac remodeling, possibly due to preserved cell survival, mitochondrial function and insulin signaling. PMID:22275536

  9. Nuclear localization of pyruvate dehydrogenase complex-E2 (PDC-E2), a mitochondrial enzyme, and its role in signal transducer and activator of transcription 5 (STAT5)-dependent gene transcription.

    PubMed

    Chueh, Fu-Yu; Leong, King-Fu; Cronk, Robert J; Venkitachalam, Srividya; Pabich, Samantha; Yu, Chao-Lan

    2011-07-01

    STAT (signal transducer and activator of transcription) proteins play a critical role in cellular response to a wide variety of cytokines and growth factors by regulating specific nuclear genes. STAT-dependent gene transcription can be finely tuned through the association with co-factors in the nucleus. We showed previously that STAT5 (including 5a and 5b) specifically interacts with a mitochondrial enzyme PDC-E2 (E2 subunit of pyruvate dehydrogenase complex) in both leukemic T cells and cytokine-stimulated cells. However, the functional significance of this novel association remains largely unknown. Here we report that PDC-E2 may function as a co-activator in STAT5-dependent nuclear gene expression. Subcellular fractionation analysis revealed that a substantial amount of PDC-E2 was constitutively present in the nucleus of BaF3, an interleukin-3 (IL-3)-dependent cell line. IL-3-induced tyrosine-phosphorylated STAT5 associated with nuclear PDC-E2 in co-immunoprecipitation analysis. These findings were confirmed by confocal immunofluorescence microscopy showing constant nuclear localization of PDC-E2 and its co-localization with STAT5 after IL-3 stimulation. Similar to mitochondrial PDC-E2, nuclear PDC-E2 was lipoylated and associated with PDC-E1. Overexpression of PDC-E2 in BaF3 cells augmented IL-3-induced STAT5 activity as measured by reporter assay with consensus STAT5-binding sites. Consistent with the reporter data, PDC-E2 overexpression in BaF3 cells led to elevated mRNA levels of endogenous SOCS3 (suppressor of cytokine signaling 3) gene, a known STAT5 target. We further identified two functional STAT5-binding sites in the SOCS3 gene promoter important for its IL-3-inducibility. The observation that both cis-acting elements were essential to detect the stimulatory effect by PDC-E2 strongly supports the role of PDC-E2 in up-regulating the transactivating ability of STAT5. All together, our results reveal a novel function of PDC-E2 in the nucleus. It also

  10. Nuclear localization of pyruvate dehydrogenase complex-E2 (PDC-E2), a mitochondrial enzyme, and its role in signal transducer and activator of transcription 5 (STAT5)-dependent gene transcription

    PubMed Central

    Chueh, Fu-Yu; Leong, King-Fu; Cronk, Robert J.; Venkitachalam, Srividya; Pabich, Samantha; Yu, Chao-Lan

    2011-01-01

    STAT (signal transducer and activator of transcription) proteins play a critical role in cellular response to a wide variety of cytokines and growth factors by regulating specific nuclear genes. STAT-dependent gene transcription can be finely tuned through the association with cofactors in the nucleus. We showed previously that STAT5 (including 5a and 5b) specifically interacts with a mitochondrial enzyme PDC-E2 (E2 subunit of pyruvate dehydrogenase complex) in both leukemic T cells and cytokine-stimulated cells. However, the functional significance of this novel association remains largely unknown. Here we report that PDC-E2 may function as a co-activator in STAT5-dependent nuclear gene expression. Subcellular fractionation analysis revealed that a substantial amount of PDC-E2 was constitutively present in the nucleus of BaF3, an interleukin-3 (IL-3)-dependent cell line. IL-3-induced tyrosine-phosphorylated STAT5 associated with nuclear PDC-E2 in co-immunoprecipitation analysis. These findings were confirmed by confocal immunofluorescence microscopy showing constant nuclear localization of PDC-E2 and its co-localization with STAT5 after IL-3 stimulation. Similar to mitochondrial PDC-E2, nuclear PDC-E2 was lipoylated and associated with PDC-E1. Overexpression of PDC-E2 in BaF3 cells augmented IL-3-induced STAT5 activity as measured by reporter assay with consensus STAT5-binding sites. Consistent with the reporter data, PDC-E2 overexpression in BaF3 cells led to elevated mRNA levels of endogenous SOCS3 (suppressor of cytokine signaling 3) gene, a known STAT5 target. We further identified two functional STAT5-binding sites in the SOCS3 gene promoter important for its IL-3-inducibility. The observation that both cis-acting elements were essential to detect the stimulatory effect by PDC-E2 strongly supports the role of PDC-E2 in up-regulating the transactivating ability of STAT5. All together, our results reveal a novel function of PDC-E2 in the nucleus. It also raises

  11. Structure and function of yeast glutaredoxin 2 depend on postranslational processing and are related to subcellular distribution.

    PubMed

    Porras, Pablo; McDonagh, Brian; Pedrajas, Jose Rafael; Bárcena, J Antonio; Padilla, C Alicia

    2010-04-01

    We have previously shown that glutaredoxin 2 (Grx2) from Saccharomyces cerevisiae localizes at 3 different subcellular compartments, cytosol, mitochondrial matrix and outer membrane, as the result of different postranslational processing of one single gene. Having set the mechanism responsible for this remarkable phenomenon, we have now aimed at defining whether this diversity of subcellular localizations correlates with differences in structure and function of the Grx2 isoforms. We have determined the N-terminal sequence of the soluble mitochondrial matrix Grx2 by mass spectrometry and have determined the exact cleavage site by Mitochondrial Processing Peptidase (MPP). As a consequence of this cleavage, the mitochondrial matrix Grx2 isoform possesses a basic tetrapeptide extension at the N-terminus compared to the cytosolic form. A functional relationship to this structural difference is that mitochondrial Grx2 displays a markedly higher activity in the catalysis of GSSG reduction by the mitochondrial dithiol dihydrolipoamide. We have prepared Grx2 mutants affected on key residues inside the presequence to direct the protein to one single cellular compartment; either the cytosol, the mitochondrial membrane or the matrix and have analyzed their functional phenotypes. Strains expressing Grx2 only in the cytosol are equally sensitive to H(2)O(2) as strains lacking the gene, whereas those expressing Grx2 exclusively in the mitochondrial matrix are more resistant. Mutations on key basic residues drastically affect the cellular fate of the protein, showing that evolutionary diversification of Grx2 structural and functional properties are strictly dependent on the sequence of the targeting signal peptide. Copyright 2009 Elsevier B.V. All rights reserved.

  12. Role of cyclophilin D-dependent mitochondrial permeability transition in glutamate-induced calcium deregulation and excitotoxic neuronal death

    PubMed Central

    Li, Viacheslav; Brustovetsky, Tatiana; Brustovetsky, Nickolay

    2009-01-01

    In the present study we tested the hypothesis that the cyclophilin D-dependent (CyD) mitochondrial permeability transition (CyD-mPT) plays an important role in glutamate-triggered delayed calcium deregulation (DCD) and excitotoxic neuronal death. We used cultured cortical neurons from wild-type C57BL/6 and cyclophilin D knockout mice (Ppif-/-). Induction of the mPT was identified by following the rapid secondary acidification of mitochondrial matrices monitored with mitochondrially targeted pH-sensitive yellow fluorescent protein. Suppression of the CyD-mPT due to genetic CyD ablation deferred DCD and mitochondrial depolarization, and increased the survival rate after exposure of neurons to 10μM glutamate, but not to 100μM glutamate. Ca2+ influx into Ppif-/- neurons was not diminished in comparison with WT neurons judging by 45Ca accumulation. In both types of neurons, 100μM glutamate produced greater Ca2+ influx than 10μM glutamate. We hypothesize that greater Ca2+ influx produced by higher glutamate rapidly triggered the CyD-independent mPT in both WT and Ppif-/- neurons equalizing their responses to supra-physiologic excitotoxic insults. In neurons exposed to moderate but pathophysiologically-relevant glutamate concentrations, an induction of the CyD-mPT appears to play an important role in mitochondrial injury contributing to DCD and cell death. PMID:19236863

  13. DLP1-Dependent Mitochondrial Fragmentation Mediates 1-methyl-4-phenylpyridinium Toxicity in Neurons: Implications for Parkinson's Disease

    PubMed Central

    Wang, Xinglong; Su, Bo; Liu, Wanhong; He, Xiaohua; Gao, Yuan; Castellani, Rudy J.; Perry, George; Smith, Mark A.; Zhu, Xiongwei

    2011-01-01

    SUMMARY Selective degeneration of nigrostriatal dopaminergic neurons in Parkinson disease (PD) can be modeled by the administration of the neurotoxin 1-methyl-4-phenylpyridinium (MPP+). Since abnormal mitochondrial dynamics are increasingly implicated in the pathogenesis of PD, in this study, we investigated the effect of MPP+ on mitochondrial dynamics and assessed temporal and causal relationship with other toxic effects induced by MPP+ in neuronal cells. In SH-SY5Y cells, MPP+ causes a rapid increase in mitochondrial fragmentation followed by a second wave of increase in mitochondrial fragmentation, along with increased DLP1 expression and mitochondrial translocation. Genetic inactivation of DLP1 completely blocks MPP+-induced mitochondrial fragmentation. Notably, this approach partially rescues MPP+-induced decline in ATP levels and ATP/ADP ratio and increased [Ca2+]i and almost completely prevents increased reactive oxygen species production, loss of mitochondrial membrane potential, enhanced autophagy and cell death, suggesting that mitochondria fragmentation is an upstream event that mediates MPP+-induced toxicity. On the other hand, thiol antioxidant NAC or glutamate receptor antagonist D-AP5 also partially alleviate MPP+-induced mitochondrial fragmentation, suggesting a vicious spiral of events contributes to MPP+-induced toxicity. We further validated our findings in primary rat midbrain dopaminergic neurons that 0.5 μM MPP+ induced mitochondrial fragmentation only in TH-positive dopaminergic neurons in a similar pattern to that in SH-SY5Y cells but had no effects on these mitochondrial parameters in TH-negative neurons. Overall, these findings suggest that DLP1-dependent mitochondrial fragmentation plays a crucial role in mediating MPP+-induced mitochondria abnormalities and cellular dysfunction and may represent a novel therapeutic target for PD. PMID:21615675

  14. mtDNA depletion myopathy: elucidation of the tissue specificity in the mitochondrial thymidine kinase (TK2) deficiency.

    PubMed

    Saada, Ann; Shaag, Avraham; Elpeleg, Orly

    2003-05-01

    Decreased mitochondrial thymidine kinase (TK2) activity is associated with mitochondrial DNA (mtDNA) depletion and respiratory chain dysfunction and is manifested by isolated, fatal skeletal myopathy. Other tissues such as liver, brain, heart, and skin remain unaffected throughout the patients' life. In order to elucidate the mechanism of tissue specificity in the disease we have investigated the expression of the mitochondrial deoxynucleotide carrier, the mtDNA content and the activity of TK2 in mitochondria of various tissues. Our results suggest that low basal TK2 activity combined with a high requirement for mitochondrial encoded proteins in muscle predispose this tissue to the devastating effect of TK2 deficiency.

  15. Mitochondrial Aging: Is There a Mitochondrial Clock?

    PubMed

    Zorov, Dmitry B; Popkov, Vasily A; Zorova, Ljubava D; Vorobjev, Ivan A; Pevzner, Irina B; Silachev, Denis N; Zorov, Savva D; Jankauskas, Stanislovas S; Babenko, Valentina A; Plotnikov, Egor Y

    2017-09-01

    Fragmentation (fission) of mitochondria, occurring in response to oxidative challenge, leads to heterogeneity in the mitochondrial population. It is assumed that fission provides a way to segregate mitochondrial content between the "young" and "old" phenotype, with the formation of mitochondrial "garbage," which later will be disposed. Fidelity of this process is the basis of mitochondrial homeostasis, which is disrupted in pathological conditions and aging. The asymmetry of the mitochondrial fission is similar to that of their evolutionary ancestors, bacteria, which also undergo an aging process. It is assumed that mitochondrial markers of aging are recognized by the mitochondrial quality control system, preventing the accumulation of dysfunctional mitochondria, which normally are subjected to disposal. Possibly, oncocytoma, with its abnormal proliferation of mitochondria occupying the entire cytoplasm, represents the case when segregation of damaged mitochondria is impaired during mitochondrial division. It is plausible that mitochondria contain a "clock" which counts the degree of mitochondrial senescence as the extent of flagging (by ubiquitination) of damaged mitochondria. Mitochondrial aging captures the essence of the systemic aging which must be analyzed. We assume that the mitochondrial aging mechanism is similar to the mechanism of aging of the immune system which we discuss in detail. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Inhibiting Mitochondrial DNA Ligase IIIα Activates Caspase 1-Dependent Apoptosis in Cancer Cells.

    PubMed

    Sallmyr, Annahita; Matsumoto, Yoshihiro; Roginskaya, Vera; Van Houten, Bennett; Tomkinson, Alan E

    2016-09-15

    Elevated levels of DNA ligase IIIα (LigIIIα) have been identified as a biomarker of an alteration in DNA repair in cancer cells that confers hypersensitivity to a LigIIIα inhibitor, L67, in combination with a poly (ADP-ribose) polymerase inhibitor. Because LigIIIα functions in the nucleus and mitochondria, we examined the effect of L67 on these organelles. Here, we show that, although the DNA ligase inhibitor selectively targets mitochondria, cancer and nonmalignant cells respond differently to disruption of mitochondrial DNA metabolism. Inhibition of mitochondrial LigIIIα in cancer cells resulted in abnormal mitochondrial morphology, reduced levels of mitochondrial DNA, and increased levels of mitochondrially generated reactive oxygen species that caused nuclear DNA damage. In contrast, these effects did not occur in nonmalignant cells. Furthermore, inhibition of mitochondrial LigIIIα activated a caspase 1-dependent apoptotic pathway, which is known to be part of inflammatory responses induced by pathogenic microorganisms in cancer, but not nonmalignant cells. These results demonstrate that the disruption of mitochondrial DNA metabolism elicits different responses in nonmalignant and cancer cells and suggests that the abnormal response in cancer cells may be exploited in the development of novel therapeutic strategies that selectively target cancer cells. Cancer Res; 76(18); 5431-41. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. REDOX IMAGING OF THE p53-DEPENDENT MITOCHONDRIAL REDOX STATE IN COLON CANCER EX VIVO

    PubMed Central

    XU, HE N.; FENG, MIN; MOON, LILY; DOLLOFF, NATHAN; EL-DEIRY, WAFIK; LI, LIN Z.

    2015-01-01

    The mitochondrial redox state and its heterogeneity of colon cancer at tissue level have not been previously reported. Nor has how p53 regulates mitochondrial respiration been measured at (deep) tissue level, presumably due to the unavailability of the technology that has sufficient spatial resolution and tissue penetration depth. Our prior work demonstrated that the mitochondrial redox state and its intratumor heterogeneity is associated with cancer aggressiveness in human melanoma and breast cancer in mouse models, with the more metastatic tumors exhibiting localized regions of more oxidized redox state. Using the Chance redox scanner with an in-plane spatial resolution of 200 μm, we imaged the mitochondrial redox state of the wild-type p53 colon tumors (HCT116 p53 wt) and the p53-deleted colon tumors (HCT116 p53−/−) by collecting the fluorescence signals of nicotinamide adenine dinucleotide (NADH) and oxidized flavoproteins [Fp, including flavin adenine dinucleotide (FAD)] from the mouse xenografts snap-frozen at low temperature. Our results show that: (1) both tumor lines have significant degree of intratumor heterogeneity of the redox state, typically exhibiting a distinct bi-modal distribution that either correlates with the spatial core–rim pattern or the “hot/cold” oxidation-reduction patches; (2) the p53−/− group is significantly more heterogeneous in the mitochondrial redox state and has a more oxidized tumor core compared to the p53 wt group when the tumor sizes of the two groups are matched; (3) the tumor size dependence of the redox indices (such as Fp and Fp redox ratio) is significant in the p53−/− group with the larger ones being more oxidized and more heterogeneous in their redox state, particularly more oxidized in the tumor central regions; (4) the H&E staining images of tumor sections grossly correlate with the redox images. The present work is the first to reveal at the submillimeter scale the intratumor heterogeneity pattern

  18. External Mechanical Work and Pendular Energy Transduction of Overground and Treadmill Walking in Adolescents with Unilateral Cerebral Palsy

    PubMed Central

    Zollinger, Marie; Degache, Francis; Currat, Gabriel; Pochon, Ludmila; Peyrot, Nicolas; Newman, Christopher J.; Malatesta, Davide

    2016-01-01

    Purpose: Motor impairments affect functional abilities and gait in children and adolescents with cerebral palsy (CP). Improving their walking is an essential objective of treatment, and the use of a treadmill for gait analysis and training could offer several advantages in adolescents with CP. However, there is a controversy regarding the similarity between treadmill and overground walking both for gait analysis and training in children and adolescents. The aim of this study was to compare the external mechanical work and pendular energy transduction of these two types of gait modalities at standard and preferred walking speeds in adolescents with unilateral cerebral palsy (UCP) and typically developing (TD) adolescents matched on age, height and body mass. Methods: Spatiotemporal parameters, external mechanical work and pendular energy transduction of walking were computed using two inertial sensors equipped with a triaxial accelerometer and gyroscope and compared in 10 UCP (14.2 ± 1.7 year) and 10 TD (14.1 ± 1.9 year) adolescents during treadmill and overground walking at standard and preferred speeds. Results: The treadmill induced almost identical mechanical changes to overground walking in TD adolescents and those with UCP, with the exception of potential and kinetic vertical and lateral mechanical works, which are both significantly increased in the overground-treadmill transition only in UCP (P < 0.05). Conclusions: Adolescents with UCP have a reduced adaptive capacity in absorbing and decelerating the speed created by a treadmill (i.e., dynamic stability) compared to TD adolescents. This may have an important implication in rehabilitation programs that assess and train gait by using a treadmill in adolescents with UCP. PMID:27148062

  19. Novel reptilian uncoupling proteins: molecular evolution and gene expression during cold acclimation.

    PubMed

    Schwartz, Tonia S; Murray, Shauna; Seebacher, Frank

    2008-04-22

    Many animals upregulate metabolism in response to cold. Uncoupling proteins (UCPs) increase proton conductance across the mitochondrial membrane and can thereby alleviate damage from reactive oxygen species that may form as a result of metabolic upregulation. Our aim in this study was to determine whether reptiles (Crocodylus porosus) possess UCP genes. If so, we aimed to place reptilian UCP genes within a phylogenetic context and to determine whether the expression of UCP genes is increased during cold acclimation. We provide the first evidence that UCP2 and UCP3 genes are present in reptiles. Unlike in other vertebrates, UCP2 and UPC3 are expressed in liver and skeletal muscle of the crocodile, and both are upregulated in liver during cold acclimation but not in muscle. We identified two transcripts of UCP3, one of which produces a truncated protein similar to the UCP3S transcript in humans, and the resulting protein lacks the predicted nucleotide-binding regulatory domain. Our molecular phylogeny suggests that uncoupling protein 1 (UCP1) is ancestral and has been lost in archosaurs. In birds, UCP3 may have assumed a similar function as UCP1 in mammals, which has important ramifications for understanding endothermic heat production.

  20. Histone Deacetylase 3 Prepares Brown Adipose Tissue For Acute Thermogenic Challenge

    PubMed Central

    Emmett, Matthew J.; Lim, Hee-Woong; Jager, Jennifer; Richter, Hannah J.; Adlanmerini, Marine; Peed, Lindsey C.; Briggs, Erika R.; Steger, David J.; Ma, Tao; Sims, Carrie A.; Baur, Joseph A.; Pei, Liming; Won, Kyoung-Jae; Seale, Patrick; Gerhart-Hines, Zachary; Lazar, Mitchell A.

    2017-01-01

    Brown adipose tissue (BAT) is a thermogenic organ that dissipates chemical energy as heat to protect animals against hypothermia and to counteract metabolic disease1. However, the transcriptional mechanisms that determine BAT thermogenic capacity prior to environmental cold are unknown. Here we show that Histone Deacetylase 3 (HDAC3) is required to activate BAT enhancers to ensure thermogenic aptitude. Mice with BAT-specific genetic ablation of HDAC3 become severely hypothermic and succumb to acute cold exposure. UCP1 is nearly absent in BAT lacking HDAC3 and there is also marked down-regulation of mitochondrial oxidative phosphorylation (OXPHOS) genes resulting in diminished mitochondrial respiration. Remarkably, although HDAC3 acts canonically as a transcriptional corepressor2, it functions as a coactivator of Estrogen-Related Receptor α (ERRα) in BAT. HDAC3 coactivation of ERRα is mediated by deacetylation of PGC-1α and is required for the transcription of Ucp1, Pgc-1α and OXPHOS genes. Importantly, HDAC3 promotes the basal transcription of these genes independent of adrenergic stimulation. Thus, HDAC3 uniquely primes Ucp1 and the thermogenic transcriptional program to maintain a critical capacity for thermogenesis in BAT that can be rapidly engaged upon exposure to dangerously cold temperature. PMID:28614293

  1. Both retinoic-acid-receptor- and retinoid-X-receptor-dependent signalling pathways mediate the induction of the brown-adipose-tissue-uncoupling-protein-1 gene by retinoids.

    PubMed Central

    Alvarez, R; Checa, M; Brun, S; Viñas, O; Mampel, T; Iglesias, R; Giralt, M; Villarroya, F

    2000-01-01

    The intracellular pathways and receptors mediating the effects of retinoic acid (RA) on the brown-fat-uncoupling-protein-1 gene (ucp-1) have been analysed. RA activates transcription of ucp-1 and the RA receptor (RAR) is known to be involved in this effect. However, co-transfection of an expression vector for retinoid-X receptor (RXR) increases the action of 9-cis RA but not the effects of all-trans RA on the ucp-1 promoter in brown adipocytes. Either RAR-specific ¿p-[(E)-2-(5,6,7,8,-tetrahydro-5,5,8, 8-tetramethyl-2-naphthalenyl)-1-propenyl]benzoic acid¿ or RXR-specific [isopropyl-(E,E)-(R,S)-11-methoxy-3,7, 11-trimethyldodeca-2,4-dienoate, or methoprene] synthetic compounds increase the expression of UCP-1 mRNA and the activity of chloramphenicol acetyltransferase expression vectors driven by the ucp-1 promoter. The RXR-mediated action of 9-cis RA requires the upstream enhancer region at -2469/-2318 in ucp-1. During brown-adipocyte differentiation RXRalpha and RXRgamma mRNA expression is induced in parallel with UCP-1 mRNA, whereas the mRNA for the three RAR subtypes, alpha, beta and gamma, decreases. Co-transfection of murine expression vectors for the different RAR and RXR subtypes indicates that RARalpha and RARbeta as well as RXRalpha are the major retinoid-receptor subtypes capable of mediating the responsiveness of ucp-1 to retinoids. It is concluded that the effects of retinoids on ucp-1 transcription involve both RAR- and RXR-dependent signalling pathways. The responsiveness of brown adipose tissue to retinoids in vivo relies on a complex combination of the capacity of RAR and RXR subtypes to mediate ucp-1 induction and their distinct expression in the differentiated brown adipocyte. PMID:10600643

  2. Acute and chronic cold exposure differentially affects the browning of porcine white adipose tissue.

    PubMed

    Gao, Y; Qimuge, N R; Qin, J; Cai, R; Li, X; Chu, G Y; Pang, W J; Yang, G S

    2018-07-01

    Piglets are characteristically cold intolerant and thus susceptible to high mortality. However, browning of white adipose tissue (WAT) can induce non-shivering thermogenesis as a potential strategy to facilitate the animal's response to cold. Whether cold exposure can induce browning of subcutaneous WAT (sWAT) in piglets in a similar manner as it can in humans remains largely unknown. In this study, piglets were exposed to acute cold (4°C, 10 h) or chronic cold exposure (8°C, 15 days), and the genes and proteins of uncoupling protein 1 (UCP1)-dependent and independent thermogenesis, mitochondrial biogenesis, lipogenic and lipolytic processes were analysed. Interestingly, acute cold exposure induced browning of porcine sWAT, smaller adipocytes and the upregulated expression of UCP1, PGC1α, PGC1β, C/EBPβ, Cidea, UCP3, CKMT1 and PM20D1. Conversely, chronic cold exposure impaired the browning process, reduced mitochondrial numbers and the expression of browning markers, including UCP1, PGC1α and PRDM16. The present study demonstrated that acute cold exposure (but not chronic cold exposure) induces porcine sWAT browning. Thus, browning of porcine sWAT could be a novel strategy to balance the body temperature of piglets, and thus could be protective against cold exposure.

  3. Bim and VDAC1 are hierarchically essential for mitochondrial ATF2 mediated cell death.

    PubMed

    Liu, Zhaoyun; Luo, Qianfu; Guo, Chunbao

    2015-01-01

    ATF2 mediated cytochrome c release is the formation of a channel with some unknown factors larger than that of the individual proteins. BHS-only proteins (BH3s), such as Bim, could induce BAX and VDAC, forming a new channel. According to this facts, we can speculated that there is possible signal relationship with BH3s and ATF2, which is associated with mitochondrial-based death programs. The growth inhibitory effects of mitochondrial ATF2 were tested in cancer cell lines B16F10, A549, EG7, and LL2. Apoptosis was measured by flow cytometry. The effects of ATF2 and levels of apoptosis regulatory proteins were measured by Western blotting. The interaction of proteins were evaluated by immunoprecipitation analysis. The in vivo antitumor activity of mitochondrial ATF2 were tested in xenograft B16F10 models. Genotoxic stress enabled mitochondrial ATF2 accumulation, perturbing the HK1-VDAC1 complex, increasing mitochondrial permeability, and promoting apoptosis. ATF2 inhibition strongly reduced the conformational activation of Bim, suggesting that Bim acts downstream of ATF2. Although Bim downregulation had no effect on ATF2 activation, Bim knockdown abolished VDAC1 activation; the failure of VDAC1 activation in Bim-depleted cells could be reversed by the BH3-only protein mimic ABT-737. We also demonstrate that silencing of ATF2 in B16F10 cells increases both the incidence and prevalence of tumor xenografts in vivo, whereas stably mitochondrial ATF2 transfection inhibited B16F10 tumor xenografts growth. Altogether, these results show that ATF2 is a component of the apoptosis machinery that involves a hierarchical contribution of ATF2, Bim, and VDAC1. Our data offer new insight into the mechanism of mitochondrial ATF2 in mitochondrial apoptosis.

  4. Mechanisms of Mitochondrial Defects in Gulf War Syndrome

    DTIC Science & Technology

    2012-08-01

    oxidized; POR: porin; TCA: Tricarboxylic acid cycle ( Kreb cycle ). Page 2 Body: YEAR 1 of research (10/13/2009-7/14/2010) (9 months): Human... mitochondria , fatigue, myalgias 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON...abnormalities in genes that are related to mitochondrial function. Hence, investigation of mitochondrial dysfunction in GWS is a priority. Mitochondria

  5. Multifunctional Mitochondrial AAA Proteases

    PubMed Central

    Glynn, Steven E.

    2017-01-01

    Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle. PMID:28589125

  6. Multifunctional Mitochondrial AAA Proteases.

    PubMed

    Glynn, Steven E

    2017-01-01

    Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle.

  7. Different molecular mechanisms involved in spontaneous and oxidative stress-induced mitochondrial fragmentation in tripeptidyl peptidase-1 (TPP-1)-deficient fibroblasts

    PubMed Central

    Van Beersel, Guillaume; Tihon, Eliane; Demine, Stéphane; Hamer, Isabelle; Jadot, Michel; Arnould, Thierry

    2012-01-01

    NCLs (neuronal ceroid lipofuscinoses) form a group of eight inherited autosomal recessive diseases characterized by the intralysosomal accumulation of autofluorescent pigments, called ceroids. Recent data suggest that the pathogenesis of NCL is associated with the appearance of fragmented mitochondria with altered functions. However, even if an impairement in the autophagic pathway has often been evoked, the molecular mechanisms leading to mitochondrial fragmentation in response to a lysosomal dysfunction are still poorly understood. In this study, we show that fibroblasts that are deficient for the TPP-1 (tripeptidyl peptidase-1), a lysosomal hydrolase encoded by the gene mutated in the LINCL (late infantile NCL, CLN2 form) also exhibit a fragmented mitochondrial network. This morphological alteration is accompanied by an increase in the expression of the protein BNIP3 (Bcl2/adenovirus E1B 19 kDa interacting protein 3) as well as a decrease in the abundance of mitofusins 1 and 2, two proteins involved in mitochondrial fusion. Using RNAi (RNA interference) and quantitative analysis of the mitochondrial morphology, we show that the inhibition of BNIP3 expression does not result in an increase in the reticulation of the mitochondrial population in LINCL cells. However, this protein seems to play a key role in cell response to mitochondrial oxidative stress as it sensitizes mitochondria to antimycin A-induced fragmentation. To our knowledge, our results bring the first evidence of a mechanism that links TPP-1 deficiency and oxidative stress-induced changes in mitochondrial morphology. PMID:23249249

  8. Caffeic acid attenuates rat liver reperfusion injury through sirtuin 3-dependent regulation of mitochondrial respiratory chain.

    PubMed

    Mu, Hong-Na; Li, Quan; Pan, Chun-Shui; Liu, Yu-Ying; Yan, Li; Hu, Bai-He; Sun, Kai; Chang, Xin; Zhao, Xin-Rong; Fan, Jing-Yu; Han, Jing-Yan

    2015-08-01

    Sirtuin 3 (Sirt3) plays critical roles in regulating mitochondrial oxidative metabolism. However, whether Sirt3 is involved in liver ischemia and reperfusion (I/R) injury remains elusive. Caffeic acid (CA) is a natural antioxidant derived from Salvia miltiorrhiza. Whether CA protects against liver I/R injury through regulating Sirt3 and the mitochondrial respiratory chain (MRC) is unclear. This study investigated the effect of CA on liver I/R injury, microcirculatory disturbance, and potential mechanisms, particularly focusing on Sirt3-dependent MRC. Liver I/R of male Sprague-Dawley rats was established by occlusion of portal area vessels for 30 min followed by 120 min of reperfusion. CA (15 mg/kg/h) was continuously infused via the femoral vein starting 30 min before ischemia. After I/R, Sirt3 expression, and MRC activity decreased, acetylation of NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9 and succinate dehydrogenase complex, subunit A, flavoprotein variant provoked, and the liver microcirculatory disturbance and injury were observed. Treatment with CA attenuated liver injury, inhibited Sirt3 down-expression, and up-regulated MRC activity. CA attenuated rat liver microcirculatory disturbance and oxidative injury through regulation of Sirt3 and the mitochondrial respiratory chain. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Mitochondrial adaptations to physiological vs. pathological cardiac hypertrophy

    PubMed Central

    Abel, E. Dale; Doenst, Torsten

    2011-01-01

    Cardiac hypertrophy is a stereotypic response of the heart to increased workload. The nature of the workload increase may vary depending on the stimulus (repetitive, chronic, pressure, or volume overload). If the heart fully adapts to the new loading condition, the hypertrophic response is considered physiological. If the hypertrophic response is associated with the ultimate development of contractile dysfunction and heart failure, the response is considered pathological. Although divergent signalling mechanisms may lead to these distinct patterns of hypertrophy, there is some overlap. Given the close relationship between workload and energy demand, any form of cardiac hypertrophy will impact the energy generation by mitochondria, which are the key organelles for cellular ATP production. Significant changes in the expression of nuclear and mitochondrially encoded transcripts that impact mitochondrial function as well as altered mitochondrial proteome composition and mitochondrial energetics have been described in various forms of cardiac hypertrophy. Here, we review mitochondrial alterations in pathological and physiological hypertrophy. We suggest that mitochondrial adaptations to pathological and physiological hypertrophy are distinct, and we shall review potential mechanisms that might account for these differences. PMID:21257612

  10. Structural Basis of Mitochondrial Transcription Initiation.

    PubMed

    Hillen, Hauke S; Morozov, Yaroslav I; Sarfallah, Azadeh; Temiakov, Dmitry; Cramer, Patrick

    2017-11-16

    Transcription in human mitochondria is driven by a single-subunit, factor-dependent RNA polymerase (mtRNAP). Despite its critical role in both expression and replication of the mitochondrial genome, transcription initiation by mtRNAP remains poorly understood. Here, we report crystal structures of human mitochondrial transcription initiation complexes assembled on both light and heavy strand promoters. The structures reveal how transcription factors TFAM and TFB2M assist mtRNAP to achieve promoter-dependent initiation. TFAM tethers the N-terminal region of mtRNAP to recruit the polymerase to the promoter whereas TFB2M induces structural changes in mtRNAP to enable promoter opening and trapping of the DNA non-template strand. Structural comparisons demonstrate that the initiation mechanism in mitochondria is distinct from that in the well-studied nuclear, bacterial, or bacteriophage transcription systems but that similarities are found on the topological and conceptual level. These results provide a framework for studying the regulation of gene expression and DNA replication in mitochondria. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Mitochondrial NUDIX hydrolases: A metabolic link between NAD catabolism, GTP and mitochondrial dynamics.

    PubMed

    Long, Aaron; Klimova, Nina; Kristian, Tibor

    2017-10-01

    NAD + catabolism and mitochondrial dynamics are important parts of normal mitochondrial function and are both reported to be disrupted in aging, neurodegenerative diseases, and acute brain injury. While both processes have been extensively studied there has been little reported on how the mechanisms of these two processes are linked. This review focuses on how downstream NAD + catabolism via NUDIX hydrolases affects mitochondrial dynamics under pathologic conditions. Additionally, several potential targets in mitochondrial dysfunction and fragmentation are discussed, including the roles of mitochondrial poly(ADP-ribose) polymerase 1(mtPARP1), AMPK, AMP, and intra-mitochondrial GTP metabolism. Mitochondrial and cytosolic NUDIX hydrolases (NUDT9α and NUDT9β) can affect mitochondrial and cellular AMP levels by hydrolyzing ADP- ribose (ADPr) and subsequently altering the levels of GTP and ATP. Poly (ADP-ribose) polymerase 1 (PARP1) is activated after DNA damage, which depletes NAD + pools and results in the PARylation of nuclear and mitochondrial proteins. In the mitochondria, ADP-ribosyl hydrolase-3 (ARH3) hydrolyzes PAR to ADPr, while NUDT9α metabolizes ADPr to AMP. Elevated AMP levels have been reported to reduce mitochondrial ATP production by inhibiting the adenine nucleotide translocase (ANT), allosterically activating AMPK by altering the cellular AMP: ATP ratio, and by depleting mitochondrial GTP pools by being phosphorylated by adenylate kinase 3 (AK3), which uses GTP as a phosphate donor. Recently, activated AMPK was reported to phosphorylate mitochondria fission factor (MFF), which increases Drp1 localization to the mitochondria and promotes mitochondrial fission. Moreover, the increased AK3 activity could deplete mitochondrial GTP pools and possibly inhibit normal activity of GTP-dependent fusion enzymes, thus altering mitochondrial dynamics. Published by Elsevier Ltd.

  12. Regulation of Mitochondrial Structure and Dynamics by the Cytoskeleton and Mechanical Factors

    PubMed Central

    Bartolák-Suki, Erzsébet; Imsirovic, Jasmin; Nishibori, Yuichiro; Krishnan, Ramaswamy; Suki, Béla

    2017-01-01

    Mitochondria supply cells with energy in the form of ATP, guide apoptosis, and contribute to calcium buffering and reactive oxygen species production. To support these diverse functions, mitochondria form an extensive network with smaller clusters that are able to move along microtubules aided by motor proteins. Mitochondria are also associated with the actin network, which is involved in cellular responses to various mechanical factors. In this review, we discuss mitochondrial structure and function in relation to the cytoskeleton and various mechanical factors influencing cell functions. We first summarize the morphological features of mitochondria with an emphasis on fission and fusion as well as how network properties govern function. We then review the relationship between the mitochondria and the cytoskeletal structures, including mechanical interactions. We also discuss how stretch and its dynamic pattern affect mitochondrial structure and function. Finally, we present preliminary data on how extracellular matrix stiffness influences mitochondrial morphology and ATP generation. We conclude by discussing the more general role that mitochondria may play in mechanobiology and how the mechanosensitivity of mitochondria may contribute to the development of several diseases and aging. PMID:28825689

  13. Mechanisms of MDMA (Ecstasy)-Induced Oxidative Stress, Mitochondrial Dysfunction, and Organ Damage

    PubMed Central

    Song, Byoung-Joon; Moon, Kwan-Hoon; Upreti, Vijay V.; Eddington, Natalie D.; Lee, Insong J.

    2010-01-01

    Despite numerous reports about the acute and sub-chronic toxicities caused by MDMA (3,4-methylenedioxymethamphetamine, ecstasy), the underlying mechanism of organ damage is poorly understood. The aim of this review is to present an update of the mechanistic studies on MDMA-mediated organ damage partly caused by increased oxidative/nitrosative stress. Because of the extensive reviews on MDMA-mediated oxidative stress and tissue damage, we specifically focus on the mechanisms and consequences of oxidative-modifications of mitochondrial proteins, leading to mitochondrial dysfunction. We briefly describe a method to systematically identify oxidatively-modified mitochondrial proteins in control and MDMA-exposed rats by using biotin-N-maleimide (biotin-NM) as a sensitive probe for oxidized proteins. We also describe various applications and advantages of this Cys-targeted proteomics method and alternative approaches to overcome potential limitations of this method in studying oxidized proteins from MDMA-exposed tissues. Finally we discuss the mechanism of synergistic drug-interaction between MDMA and other abused substances including alcohol (ethanol) as well as application of this redox-based proteomics method in translational studies for developing effective preventive and therapeutic agents against MDMA-induced organ damage. PMID:20420575

  14. MAP4 Mechanism that Stabilizes Mitochondrial Permeability Transition in Hypoxia: Microtubule Enhancement and DYNLT1 Interaction with VDAC1

    PubMed Central

    Zhang, Yi-ming; Zhang, Jia-ping; Hu, Jiong-yu; Zhang, Qiong; Dai, Xia; Teng, Miao; Zhang, Dong-xia; Huang, Yue-sheng

    2011-01-01

    Mitochondrial membrane permeability has received considerable attention recently because of its key role in apoptosis and necrosis induced by physiological events such as hypoxia. The manner in which mitochondria interact with other molecules to regulate mitochondrial permeability and cell destiny remains elusive. Previously we verified that hypoxia-induced phosphorylation of microtubule-associated protein 4 (MAP4) could lead to microtubules (MTs) disruption. In this study, we established the hypoxic (1% O2) cell models of rat cardiomyocytes, H9c2 and HeLa cells to further test MAP4 function. We demonstrated that increase in the pool of MAP4 could promote the stabilization of MT networks by increasing the synthesis and polymerization of tubulin in hypoxia. Results showed MAP4 overexpression could enhance cell viability and ATP content under hypoxic conditions. Subsequently we employed a yeast two-hybrid system to tag a protein interacting with mitochondria, dynein light chain Tctex-type 1 (DYNLT1), by hVDAC1 bait. We confirmed that DYNLT1 had protein-protein interactions with voltage-dependent anion channel 1 (VDAC1) using co-immunoprecipitation; and immunofluorescence technique showed that DYNLT1 was closely associated with MTs and VDAC1. Furthermore, DYNLT1 interactions with MAP4 were explored using a knockdown technique. We thus propose two possible mechanisms triggered by MAP4: (1) stabilization of MT networks, (2) DYNLT1 modulation, which is connected with VDAC1, and inhibition of hypoxia-induced mitochondrial permeabilization. PMID:22164227

  15. Minnelide/Triptolide Impairs Mitochondrial Function by Regulating SIRT3 in P53-Dependent Manner in Non-Small Cell Lung Cancer.

    PubMed

    Kumar, Ajay; Corey, Catherine; Scott, Iain; Shiva, Sruti; D'Cunha, Jonathan

    2016-01-01

    Minnelide/Triptolide (TL) has recently emerged as a potent anticancer drug in non-small cell lung cancer (NSCLC). However, the precise mechanism of its action remains ambiguous. In this study, we elucidated the molecular basis for TL-induced cell death in context to p53 status. Cell death was attributed to dysfunction of mitochondrial bioenergetics in p53-deficient cells, which was characterized by decreased mitochondrial respiration, steady-state ATP level and membrane potential, but augmented reactive oxygen species (ROS). Increased ROS production resulted in oxidative stress in TL-treated cells. This was exhibited by elevated nuclear levels of a redox-sensitive transcriptional factor, NF-E2-related factor-2 (NRF2), along with diminished cellular glutathione (GSH) content. We further demonstrated that in the absence of p53, TL blunted the expression of mitochondrial SIRT3 triggering increased acetylation of NDUAF9 and succinate dehydrogenase, components of complexes I and II of the electron transport chain (ETC). TL-mediated hyperacetylation of complexes I and II proteins and these complexes displayed decreased enzymatic activities. We also provide the evidence that P53 regulate steady-state level of SIRT3 through Proteasome-Pathway. Finally, forced overexpression of Sirt3, but not deacetylase-deficient mutant of Sirt3 (H243Y), restored the deleterious effect of TL on p53-deficient cells by rescuing mitochondrial bioenergetics. On contrary, Sirt3 deficiency in the background of wild-type p53 triggered TL-induced mitochondrial impairment that echoed TL effect in p53-deficeint cells. These findings illustrate a novel mechanism by which TL exerts its potent effects on mitochondrial function and ultimately the viability of NSCLC tumor.

  16. Mitochondrial electron transport chain is involved in microcystin-RR induced tobacco BY-2 cells apoptosis.

    PubMed

    Huang, Wenmin; Li, Dunhai; Liu, Yongding

    2014-09-01

    Microcystin-RR (MC-RR) has been suggested to induce apoptosis in tobacco BY-2 cells through mitochondrial dysfunction including the loss of mitochondrial membrane potential (ΔΨm). To further elucidate the mechanisms involved in MC-RR induced apoptosis in tobacco BY-2 cells, we have investigated the role of mitochondrial electron transport chain (ETC) as a potential source for reactive oxygen species (ROS). Tobacco BY-2 cells after exposure to MC-RR (60mg/L) displayed apoptotic changes in association with an increased production of ROS and loss of ΔΨm. All of these adverse effects were significantly attenuated by ETC inhibitors including Rotenone (2μmol/L, complex I inhibitor) and antimycin A (0.01μmol/L, complex III inhibitor), but not by thenoyltrifluoroacetone (5μmol/L, complex II inhibitor). These results suggest that mitochondrial ETC plays a key role in mediating MC-RR induced apoptosis in tobacco BY-2 cells through an increased mitochondrial production of ROS. Copyright © 2014. Published by Elsevier B.V.

  17. Silencing of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase gene enhances glioma radiosensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sung Youl; Yoo, Young Hyun; Park, Jeen-Woo, E-mail: parkjw@knu.ac.kr

    Highlights: •Silencing of the IDPm gene enhances IR-induced autophagy in glioma cells. •Autophagy inhibition augmented apoptosis of irradiated glioma cells. •Results offer a redox-active therapeutic strategy for the treatment of cancer. -- Abstract: Reactive oxygen species (ROS) levels are elevated in organisms that have been exposed to ionizing radiation and are protagonists in the induction of cell death. Recently, we demonstrated that the control of mitochondrial redox balance and the cellular defense against oxidative damage are primary functions of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDPm) via the supply of NADPH for antioxidant systems. In the present study, we report anmore » autophagic response to ionizing radiation in A172 glioma cells transfected with small interfering RNA (siRNA) targeting the IDPm gene. Autophagy in A172 transfectant cells was associated with enhanced autophagolysosome formation and GFP–LC3 punctuation/aggregation. Furthermore, we found that the inhibition of autophagy by chloroquine augmented apoptotic cell death of irradiated A172 cells transfected with IDPm siRNA. Taken together, our data suggest that autophagy functions as a survival mechanism in A172 cells against ionizing radiation-induced apoptosis and the sensitizing effect of IDPm siRNA and autophagy inhibitor on the ionizing radiation-induced apoptotic cell death of glioma cells offers a novel redox-active therapeutic strategy for the treatment of cancer.« less

  18. Mitochondrial Dynamics Impacts Stem Cell Identity and Fate Decisions by Regulating a Nuclear Transcriptional Program.

    PubMed

    Khacho, Mireille; Clark, Alysen; Svoboda, Devon S; Azzi, Joelle; MacLaurin, Jason G; Meghaizel, Cynthia; Sesaki, Hiromi; Lagace, Diane C; Germain, Marc; Harper, Mary-Ellen; Park, David S; Slack, Ruth S

    2016-08-04

    Regulated mechanisms of stem cell maintenance are key to preventing stem cell depletion and aging. While mitochondrial morphology plays a fundamental role in tissue development and homeostasis, its role in stem cells remains unknown. Here, we uncover that mitochondrial dynamics regulates stem cell identity, self-renewal, and fate decisions by orchestrating a transcriptional program. Manipulation of mitochondrial structure, through OPA1 or MFN1/2 deletion, impaired neural stem cell (NSC) self-renewal, with consequent age-dependent depletion, neurogenesis defects, and cognitive impairments. Gene expression profiling revealed ectopic expression of the Notch self-renewal inhibitor Botch and premature induction of transcription factors that promote differentiation. Changes in mitochondrial dynamics regulate stem cell fate decisions by driving a physiological reactive oxygen species (ROS)-mediated process, which triggers a dual program to suppress self-renewal and promote differentiation via NRF2-mediated retrograde signaling. These findings reveal mitochondrial dynamics as an upstream regulator of essential mechanisms governing stem cell self-renewal and fate decisions through transcriptional programming. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Mitochondrial and Morphologic Alterations in Native Human Corneal Endothelial Cells Associated With Diabetes Mellitus.

    PubMed

    Aldrich, Benjamin T; Schlötzer-Schrehardt, Ursula; Skeie, Jessica M; Burckart, Kimberlee A; Schmidt, Gregory A; Reed, Cynthia R; Zimmerman, M Bridget; Kruse, Friedrich E; Greiner, Mark A

    2017-04-01

    To characterize changes in the energy-producing metabolic activity and morphologic ultrastructure of corneal endothelial cells associated with diabetes mellitus. Transplant suitable corneoscleral tissue was obtained from donors aged 50 to 75 years. We assayed 3-mm punches of endothelium-Descemet membrane for mitochondrial respiration and glycolysis activity using extracellular flux analysis of oxygen and pH, respectively. Transmission electron microscopy was used to assess qualitative and quantitative ultrastructural changes in corneal endothelial cells and associated Descemet membrane. For purposes of analysis, samples were divided into four groups based on a medical history of diabetes regardless of type: (1) nondiabetic, (2) noninsulin-dependent diabetic, (3) insulin-dependent diabetic, and (4) insulin-dependent diabetic with specified complications due to diabetes (advanced diabetic). In total, 229 corneas from 159 donors were analyzed. Insulin-dependent diabetic samples with complications due to diabetes displayed the lowest spare respiratory values compared to all other groups (P ≤ 0.002). The remaining mitochondrial respiration and glycolysis metrics did not differ significantly among groups. Compared to nondiabetic controls, the endothelium from advanced diabetic samples had alterations in mitochondrial morphology, pronounced Golgi bodies associated with abundant vesicles, accumulation of lysosomal bodies/autophagosomes, and focal production of abnormal long-spacing collagen. Extracellular flux analysis suggests that corneal endothelial cells of donors with advanced diabetes have impaired mitochondrial function. Metabolic findings are supported by observed differences in mitochondrial morphology of advanced diabetic samples but not controls. Additional studies are needed to determine the precise mechanism(s) by which mitochondria become impaired in diabetic corneal endothelial cells.

  20. In silico aided thoughts on mitochondrial vitamin C transport.

    PubMed

    Szarka, András; Balogh, Tibor

    2015-01-21

    The huge demand of mitochondria as the quantitatively most important sources of ROS in the majority of heterotrophic cells for vitamin C is indisputable. The reduced form of the vitamin, l-ascorbic acid, is imported by an active mechanism requiring two sodium-dependent vitamin C transporters (SVCT1 and SVCT2). The oxidized form, dehydroascorbate is taken up by different members of the GLUT family. Because of the controversial experimental results the picture on mitochondrial vitamin C transport became quite obscure by the spring of 2014. Thus in silico prediction tools were applied in aid of the support of in vitro and in vivo results. The role of GLUT1 as a mitochondrial dehydroascorbate transporter could be reinforced by in silico predictions however the mitochondrial presence of GLUT10 is not likely since this transport protein got far the lowest mitochondrial localization scores. Furthermore the possible roles of GLUT9 and 11 in mitochondrial vitamin C transport can be proposed leastwise on the base of their computational localization analysis. In good concordance with the newest experimental observations on SVCT2 the mitochondrial presence of this transporter could also be supported by the computational prediction tools. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Mechanisms Underlying the Essential Role of Mitochondrial Membrane Lipids in Yeast Chronological Aging

    PubMed Central

    Medkour, Younes; Dakik, Paméla; McAuley, Mélissa; Mohammad, Karamat; Mitrofanova, Darya

    2017-01-01

    The functional state of mitochondria is vital to cellular and organismal aging in eukaryotes across phyla. Studies in the yeast Saccharomyces cerevisiae have provided evidence that age-related changes in some aspects of mitochondrial functionality can create certain molecular signals. These signals can then define the rate of cellular aging by altering unidirectional and bidirectional communications between mitochondria and other organelles. Several aspects of mitochondrial functionality are known to impact the replicative and/or chronological modes of yeast aging. They include mitochondrial electron transport, membrane potential, reactive oxygen species, and protein synthesis and proteostasis, as well as mitochondrial synthesis of iron-sulfur clusters, amino acids, and NADPH. Our recent findings have revealed that the composition of mitochondrial membrane lipids is one of the key aspects of mitochondrial functionality affecting yeast chronological aging. We demonstrated that exogenously added lithocholic bile acid can delay chronological aging in yeast because it elicits specific changes in mitochondrial membrane lipids. These changes allow mitochondria to operate as signaling platforms that delay yeast chronological aging by orchestrating an institution and maintenance of a distinct cellular pattern. In this review, we discuss molecular and cellular mechanisms underlying the essential role of mitochondrial membrane lipids in yeast chronological aging. PMID:28593023

  2. Adenine nucleotide-dependent and redox-independent control of mitochondrial malate dehydrogenase activity in Arabidopsis thaliana.

    PubMed

    Yoshida, Keisuke; Hisabori, Toru

    2016-06-01

    Mitochondrial metabolism is important for sustaining cellular growth and maintenance; however, the regulatory mechanisms underlying individual processes in plant mitochondria remain largely uncharacterized. Previous redox-proteomics studies have suggested that mitochondrial malate dehydrogenase (mMDH), a key enzyme in the tricarboxylic acid (TCA) cycle and redox shuttling, is under thiol-based redox regulation as a target candidate of thioredoxin (Trx). In addition, the adenine nucleotide status may be another factor controlling mitochondrial metabolism, as respiratory ATP production in mitochondria is believed to be influenced by several environmental stimuli. Using biochemical and reverse-genetic approaches, we addressed the redox- and adenine nucleotide-dependent regulation of mMDH in Arabidopsis thaliana. Recombinant mMDH protein formed intramolecular disulfide bonds under oxidative conditions, but these bonds did not have a considerable effect on mMDH activity. Mitochondria-localized o-type Trx (Trx-o) did not facilitate re-reduction of oxidized mMDH. Determination of the in vivo redox state revealed that mMDH was stably present in the reduced form even in Trx-o-deficient plants. Accordingly, we concluded that mMDH is not in the class of redox-regulated enzymes. By contrast, mMDH activity was lowered by adenine nucleotides (AMP, ADP, and ATP). Each adenine nucleotide suppressed mMDH activity with different potencies and ATP exerted the largest inhibitory effect with a significantly lower K(I). Correspondingly, mMDH activity was inhibited by the increase in ATP/ADP ratio within the physiological range. These results suggest that mMDH activity is finely controlled in response to variations in mitochondrial adenine nucleotide balance. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Synthetic Ubiquinones Specifically Bind to Mitochondrial Voltage-Dependent Anion Channel 1 (VDAC1) in Saccharomyces cerevisiae Mitochondria.

    PubMed

    Murai, Masatoshi; Okuda, Ayaka; Yamamoto, Takenori; Shinohara, Yasuo; Miyoshi, Hideto

    2017-01-31

    The role of the voltage-dependent anion channel (VDAC) as a metabolic gate of the mitochondrial outer membrane has been firmly established; however, its involvement in the regulation of mitochondrial permeability transition (PT) remains extremely controversial. Although some low-molecular-weight chemicals have been proposed to modulate the regulatory role of VDAC in the induction of PT, direct binding between these chemicals and VDAC has not yet been demonstrated. In the present study, we investigated whether the ubiquinone molecule directly binds to VDAC in Saccharomyces cerevisiae mitochondria through a photoaffinity labeling technique using two photoreactive ubiquinones (PUQ-1 and PUQ-2). The results of the labeling experiments demonstrated that PUQ-1 and PUQ-2 specifically bind to VDAC1 and that the labeled position is located in the C-terminal region Phe221-Lys234, connecting the 15th and 16th β-strand sheets. Mutations introduced in this region (R224A, Y225A, D228A, and Y225A/D228A) hardly affected the binding affinity of PUQ-1. PUQ-1 and PUQ-2 both significantly suppressed the Ca 2+ -induced mitochondrial PT (monitored by mitochondrial swelling) at the one digit μM level. Thus, the results of the present study provided, for the first time to our knowledge, direct evidence indicating that the ubiquinone molecule specifically binds to VDAC1 through its quinone-head ring.

  4. ROS-dependent signal transduction

    PubMed Central

    Reczek, Colleen R; Chandel, Navdeep S

    2014-01-01

    Reactive oxygen species (ROS) are no longer viewed as just a toxic by-product of mitochondrial respiration, but are now appreciated for their role in regulating a myriad of cellular signaling pathways. H2O2, a type of ROS, is a signaling molecule that confers target specificity through thiol oxidation. Although redox-dependent signaling has been implicated in numerous cellular processes, the mechanism by which the ROS signal is transmitted to its target protein in the face of highly reactive and abundant antioxidants is not fully understood. In this review of redox-signaling biology, we discuss the possible mechanisms for H2O2-dependent signal transduction. PMID:25305438

  5. Overexpression of hexokinase 2 reduces mitochondrial calcium overload in coronary endothelial cells of type 2 diabetic mice.

    PubMed

    Pan, Minglin; Han, Ying; Basu, Aninda; Dai, Anzhi; Si, Rui; Willson, Conor; Balistrieri, Angela; Scott, Brian T; Makino, Ayako

    2018-03-07

    Coronary microvascular rarefaction due to endothelial cell (EC) dysfunction is one of the causes of increased morbidity and mortality in diabetes. Coronary ECs in diabetes are more apoptotic due partly to mitochondrial calcium overload. This study was designed to investigate the role of hexokinase 2 (HK2, an endogenous inhibitor of voltage-dependent anion channel) in coronary endothelial dysfunction in type 2 diabetes. We used mouse coronary ECs (MCECs) isolated from type 2 diabetic mice and human coronary ECs (HCECs) from type 2 diabetic patients to examine protein levels and mitochondrial functions. ECs were more apoptotic and capillary density was lower in the left ventricle of diabetic mice than the control. MCECs from diabetic mice exhibited significant increase in mitochondrial Ca 2+ concentration ([Ca 2+ ] mito ) compared to the control. Among several regulatory proteins for [Ca 2+ ] mito , HK1 and HK2 were significantly lower in MCECs from diabetic mice than control MCECs. We also found that the level of HK2 ubiquitination was higher in MCECs from diabetic mice than in control MCECs. In line with the data from MCECs, HCECs from diabetic patients showed lower HK2 protein levels than HCECs from non-diabetic patients. High-glucose treatment, but not high-fat treatment, significantly decreased HK2 protein levels in the MCEC. HK2 overexpression in MCECs of diabetic mice not only lowered the level of [Ca 2+ ] mito , but also reduced mitochondrial ROS production toward the level seen in control MCECs. These data suggest that HK2 is a potential therapeutic target for coronary microvascular disease in diabetes by restoring mitochondrial function in coronary ECs.

  6. Antiproliferative effects of mitochondria-targeted cationic antioxidants and analogs: Role of mitochondrial bioenergetics and energy-sensing mechanism

    PubMed Central

    Cheng, Gang; Zielonka, Jacek; McAllister, Donna; Hardy, Micael; Ouari, Olivier; Joseph, Joy; Dwinell, Michael B.; Kalyanaraman, Balaraman

    2015-01-01

    One of the proposed mechanisms for tumor proliferation involves redox signaling mediated by reactive oxygen species such as superoxide and hydrogen peroxide generated at moderate levels. Thus, the antiproliferative and anti-tumor effects of certain antioxidants were attributed to their ability to mitigate intracellular reactive oxygen species (ROS). Recent reports support a role for mitochondrial ROS in stimulating tumor cell proliferation. In this study, we compared the antiproliferative effects and the effects on mitochondrial bioenergetic functions of a mitochondria-targeted cationic carboxyproxyl nitroxide (Mito-CP), exhibiting superoxide dismutase (SOD)-like activity and a synthetic cationic acetamide analog (Mito-CP-Ac) lacking the nitroxide moiety responsible for the SOD activity. Results indicate that both Mito-CP and Mito-CP-Ac potently inhibited tumor cell proliferation. Both compounds altered mitochondrial and glycolytic functions, and intracellular citrate levels. Both Mito-CP and Mito-CP-Ac synergized with 2-deoxy-glucose (2-DG) to deplete intracellular ATP, inhibit cell proliferation and induce apoptosis in pancreatic cancer cells. We conclude that mitochondria-targeted cationic agents inhibit tumor proliferation via modification of mitochondrial bioenergetics pathways rather than by dismutating and detoxifying mitochondrial superoxide. PMID:26004344

  7. Mechanism of cytotoxic action of perfluorinated acids. III. Disturbance in Ca{sup 2+} homeostasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleszczynski, Konrad; Skladanowski, Andrzej C., E-mail: acskla@gumed.edu.pl

    The global distribution of perfluorinated acids (PFAs) in industry and in household is well known. Their increasing environmental occurrence and biomagnification in the living organisms have drawn growing interests in efforts to describe precisely the mechanisms of action in vitro and in vivo. Our previous investigations widely described lipophilicity-dependent cytotoxicity of PFAs as well as the effect of perfluorination of carbon chain on depolarization of plasma membrane potential, acidification or mitochondrial dysfunctions. In this study we presented in dose- and time-dependent manner the impact of PFAs on calcium homeostasis in HCT116 cells. Comparative analysis of cytosolic [Ca{sup 2+}]{sub c} andmore » mitochondrial calcium [Ca{sup 2+}]{sub m} carried out by flow cytometry revealed distinct uptake of calcium into mitochondria in correlation to increasing lipophilicity of PFAs. Massive accumulation of [Ca{sup 2+}]{sub m} was not accompanied by equivalent loss of [Ca{sup 2+}]{sub c}. Indeed, moderate changes of [Ca{sup 2+}]{sub c} were observed after incubation with 400 {mu}M PFDoDA reaching 29.83% and 49.17% decrease at 4th and 72nd hour, respectively. At the same time, mitochondrial calcium uptake increased from 2- to more than 4-fold comparing with non-treated cells. Incubation with non-fluorinated decanoic acid (DA) did not cause any changes in calcium homeostasis. Presented data show that PFAs-induced perturbations in calcium distribution seem to be a missing link related to mitochondria dysfunction playing a crucial role in determination of apoptotic cell death. Complete scheme for the mechanism of cytotoxic action of PFAs has been included.« less

  8. Mechanism of triclosan toxicity: Mitochondrial dysfunction including complex II inhibition, superoxide release and uncoupling of oxidative phosphorylation.

    PubMed

    Teplova, Vera V; Belosludtsev, Konstantin N; Kruglov, Alexey G

    2017-06-05

    Triclosan (5-chloro-2'-(2,4-dichlorophenoxy)phenol), a widely used antibacterial agent, exerts adverse effects on the organism of mammals. Recent research reviled that triclosan at low micromolar concentrations causes mitochondrial dysfunction in many cell types, but the mechanisms of its effect are not fully understood. Here we show that exposure to triclosan disrupted membrane potential, prevented the calcium uptake-driven high-amplitude mitochondrial swelling, stimulated the respiration in the presence of complex I substrates, and suppressed the ADP-stimulated respiration in the presence of complex II substrate, succinate. Triclosan directly inhibited complex II activity. Similar to the complex II inhibitor thenoyltrifluoroacetone, triclosan induced the oxidation of the cytochromes b566 and b562 and caused the release of mitochondrial superoxide. Opposite to thenoyltrifluoroacetone, triclosan increased superoxide release synergistically with myxothiazol but not with antimycin A, indicating different topology of superoxide-producing sites. We concluded that triclosan is unique by its capability of acting as both a protonophore and an unusual complex II inhibitor, which interferes with the mitochondrial respiration by blocking the electron transfer between ubiquinone at the Q d -binding site and heme b. Our data can provide an insight into the mechanisms of the carcinogenic effect of triclosan in the liver and other tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Zinc-dependent multi-conductance channel activity in mitochondria isolated from ischemic brain.

    PubMed

    Bonanni, Laura; Chachar, Mushtaque; Jover-Mengual, Teresa; Li, Hongmei; Jones, Adrienne; Yokota, Hidenori; Ofengeim, Dimitry; Flannery, Richard J; Miyawaki, Takahiro; Cho, Chang-Hoon; Polster, Brian M; Pypaert, Marc; Hardwick, J Marie; Sensi, Stefano L; Zukin, R Suzanne; Jonas, Elizabeth A

    2006-06-21

    Transient global ischemia is a neuronal insult that induces delayed cell death. A hallmark event in the early post-ischemic period is enhanced permeability of mitochondrial membranes. The precise mechanisms by which mitochondrial function is disrupted are, as yet, unclear. Here we show that global ischemia promotes alterations in mitochondrial membrane contact points, a rise in intramitochondrial Zn2+, and activation of large, multi-conductance channels in mitochondrial outer membranes by 1 h after insult. Mitochondrial channel activity was associated with enhanced protease activity and proteolytic cleavage of BCL-xL to generate its pro-death counterpart, deltaN-BCL-xL. The findings implicate deltaN-BCL-xL in large, multi-conductance channel activity. Consistent with this, large channel activity was mimicked by introduction of recombinant deltaN-BCL-xL to control mitochondria and blocked by introduction of a functional BCL-xL antibody to post-ischemic mitochondria via the patch pipette. Channel activity was also inhibited by nicotinamide adenine dinucleotide, indicative of a role for the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane. In vivo administration of the membrane-impermeant Zn2+ chelator CaEDTA before ischemia or in vitro application of the membrane-permeant Zn2+ chelator tetrakis-(2-pyridylmethyl) ethylenediamine attenuated channel activity, suggesting a requirement for Zn2+. These findings reveal a novel mechanism by which ischemic insults disrupt the functional integrity of the outer mitochondrial membrane and implicate deltaN-BCL-xL and VDAC in the large, Zn2+-dependent mitochondrial channels observed in post-ischemic hippocampal mitochondria.

  10. Zinc-Dependent Multi-Conductance Channel Activity in Mitochondria Isolated from Ischemic Brain

    PubMed Central

    Bonanni, Laura; Chachar, Mushtaque; Jover-Mengual, Teresa; Li, Hongmei; Jones, Adrienne; Yokota, Hidenori; Ofengeim, Dimitry; Flannery, Richard J.; Miyawaki, Takahiro; Cho, Chang-Hoon; Polster, Brian M.; Pypaert, Marc; Hardwick, J. Marie; Sensi, Stefano L.; Zukin, R. Suzanne; Jonas, Elizabeth A.

    2015-01-01

    Transient global ischemia is a neuronal insult that induces delayed cell death. A hallmark event in the early post-ischemic period is enhanced permeability of mitochondrial membranes. The precise mechanisms by which mitochondrial function is disrupted are, as yet, unclear.Here we show that global ischemia promotes alterations in mitochondrial membrane contact points, a rise in intramitochondrial Zn2+, and activation of large, multi-conductance channels in mitochondrial outer membranes by 1 h after insult. Mitochondrial channel activity was associated with enhanced protease activity and proteolytic cleavage of BCL-xL to generate its pro-death counterpart, ΔN-BCL-xL. The findings implicate ΔN-BCL-xL in large, multi-conductance channel activity. Consistent with this, large channel activity was mimicked by introduction of recombinant ΔN-BCL-xL to control mitochondria and blocked by introduction of a functional BCL-xL antibody to post-ischemic mitochondria via the patch pipette. Channel activity was also inhibited by nicotinamide adenine dinucleotide, indicative of a role for the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane. In vivo administration of the membrane-impermeant Zn2+ chelator CaEDTA before ischemia or in vitro application of the membrane-permeant Zn2+ chelator tetrakis-(2-pyridylmethyl) ethylenediamine attenuated channel activity, suggesting a requirement for Zn2+. These findings reveal a novel mechanism by which ischemic insults disrupt the functional integrity of the outer mitochondrial membrane and implicate ΔNBCL-xL and VDAC in the large, Zn2+-dependent mitochondrial channels observed in post-ischemic hippocampal mitochondria. PMID:16793892

  11. Fatty acid ethyl ester synthase inhibition ameliorates ethanol-induced Ca2+-dependent mitochondrial dysfunction and acute pancreatitis

    PubMed Central

    Huang, Wei; Booth, David M; Cane, Matthew C; Chvanov, Michael; Javed, Muhammad A; Elliott, Victoria L; Armstrong, Jane A; Dingsdale, Hayley; Cash, Nicole; Li, Yan; Greenhalf, William; Mukherjee, Rajarshi; Kaphalia, Bhupendra S; Jaffar, Mohammed; Petersen, Ole H; Tepikin, Alexei V; Sutton, Robert; Criddle, David N

    2014-01-01

    Objective Non-oxidative metabolism of ethanol (NOME) produces fatty acid ethyl esters (FAEEs) via carboxylester lipase (CEL) and other enzyme action implicated in mitochondrial injury and acute pancreatitis (AP). This study investigated the relative importance of oxidative and non-oxidative pathways in mitochondrial dysfunction, pancreatic damage and development of alcoholic AP, and whether deleterious effects of NOME are preventable. Design Intracellular calcium ([Ca2+]C), NAD(P)H, mitochondrial membrane potential and activation of apoptotic and necrotic cell death pathways were examined in isolated pancreatic acinar cells in response to ethanol and/or palmitoleic acid (POA) in the presence or absence of 4-methylpyrazole (4-MP) to inhibit oxidative metabolism. A novel in vivo model of alcoholic AP induced by intraperitoneal administration of ethanol and POA was developed to assess the effects of manipulating alcohol metabolism. Results Inhibition of OME with 4-MP converted predominantly transient [Ca2+]C rises induced by low ethanol/POA combination to sustained elevations, with concurrent mitochondrial depolarisation, fall of NAD(P)H and cellular necrosis in vitro. All effects were prevented by 3-benzyl-6-chloro-2-pyrone (3-BCP), a CEL inhibitor. 3-BCP also significantly inhibited rises of pancreatic FAEE in vivo and ameliorated acute pancreatic damage and inflammation induced by administration of ethanol and POA to mice. Conclusions A combination of low ethanol and fatty acid that did not exert deleterious effects per se became toxic when oxidative metabolism was inhibited. The in vitro and in vivo damage was markedly inhibited by blockade of CEL, indicating the potential for development of specific therapy for treatment of alcoholic AP via inhibition of FAEE generation. PMID:24162590

  12. UCP1 -3826 A>G polymorphism affects weight, fat mass, and risk of type 2 diabetes mellitus in grade III obese patients.

    PubMed

    Nicoletti, Carolina Ferreira; de Oliveira, Ana Paula Rus Perez; Brochado, Maria Jose Franco; de Oliveira, Bruno Parenti; Pinhel, Marcela Augusta de Souza; Marchini, Julio Sergio; dos Santos, Jose Ernesto; Salgado Junior, Wilson; Silva Junior, Wilson Araujo; Nonino, Carla Barbosa

    2016-01-01

    We investigated whether or not the UCP1 -3826 A>G polymorphism is associated with obesity and related metabolic disorders in grade III obese patients. 150 obese patients (body mass index ≥35 kg/m(2)) who were candidates for bariatric surgery were studied. Weight (kg), body mass index (kg/m(2)); fat free mass (kg), fat mass (kg), energy intake (kcal), level of physical activity, plasma levels of glucose, total cholesterol, low-density lipoprotein, high-density lipoprotein (HDL), triacylglycerols, and the prevalence of comorbidities associated with obesity were collected from medical records. Polymorphism rs1800592 genotyping was performed through allelic discrimination method in real time polymerase chain reaction using the TaqMan predesigned SNP Genotyping Assays kits. The t test was done to determine if genotypes of each polymorphism are associated with anthropometric and body composition variables. Linear regression models were used for age, sex, height, physical activity, and energy intake in weight and body composition variations (P < 0.05). Among these 150 individuals (47.2 ± 10.5 y, 80% women) the distribution of AA, AG, and GG was 41.3%, 45.3%, and 13.4%, respectively. Weight and body fat were lower in individuals who were carriers of a mutated allele G. It was observed that mutated homozygotes (GG) had a lower frequency of type 2 diabetes mellitus compared with those of wild allele (AA+AG). UCP1 -3826 A>G polymorphism is associated with weight, body fat mass, and risk of type 2 diabetes mellitus in obese individuals candidates for bariatric surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Mitochondrial function, ornamentation, and immunocompetence.

    PubMed

    Koch, Rebecca E; Josefson, Chloe C; Hill, Geoffrey E

    2017-08-01

    Understanding the mechanisms that link ornamental displays and individual condition is key to understanding the evolution and function of ornaments. Immune function is an aspect of individual quality that is often associated with the expression of ornamentation, but a general explanation for why the expression of some ornaments seems to be consistently linked to immunocompetence remains elusive. We propose that condition-dependent ornaments may be linked to key aspects of immunocompetence through co-dependence on mitochondrial function. Mitochondrial involvement in immune function is rarely considered outside of the biomedical literature, but the role of mitochondria as the primary energy producers of the cell and the centres of biosynthesis, the oxidative stress response, and cellular signalling place them at the hub of a variety of immune pathways. A promising new mechanistic explanation for correlations between a wide range of ornamental traits and the properties of individual quality is that mitochondrial function may be the 'shared pathway' responsible for links between ornament production and individual condition. Herein, we first review the role of mitochondria as both signal transducers and metabolic regulators of immune function. We then describe connections between hormonal pathways and mitochondria, with implications for both immune function and the expression of ornamentation. Finally, we explore the possibility that ornament expression may link directly to mitochondrial function. Considering condition-dependent traits within the framework of mitochondrial function has the potential to unify central tenets within the study of sexual selection, eco-immunology, oxidative stress ecology, stress and reproductive hormone biology, and animal physiology. © 2016 Cambridge Philosophical Society.

  14. Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements

    PubMed Central

    Jühling, Frank; Pütz, Joern; Bernt, Matthias; Donath, Alexander; Middendorf, Martin; Florentz, Catherine; Stadler, Peter F.

    2012-01-01

    Transfer RNAs (tRNAs) are present in all types of cells as well as in organelles. tRNAs of animal mitochondria show a low level of primary sequence conservation and exhibit ‘bizarre’ secondary structures, lacking complete domains of the common cloverleaf. Such sequences are hard to detect and hence frequently missed in computational analyses and mitochondrial genome annotation. Here, we introduce an automatic annotation procedure for mitochondrial tRNA genes in Metazoa based on sequence and structural information in manually curated covariance models. The method, applied to re-annotate 1876 available metazoan mitochondrial RefSeq genomes, allows to distinguish between remaining functional genes and degrading ‘pseudogenes’, even at early stages of divergence. The subsequent analysis of a comprehensive set of mitochondrial tRNA genes gives new insights into the evolution of structures of mitochondrial tRNA sequences as well as into the mechanisms of genome rearrangements. We find frequent losses of tRNA genes concentrated in basal Metazoa, frequent independent losses of individual parts of tRNA genes, particularly in Arthropoda, and wide-spread conserved overlaps of tRNAs in opposite reading direction. Direct evidence for several recent Tandem Duplication-Random Loss events is gained, demonstrating that this mechanism has an impact on the appearance of new mitochondrial gene orders. PMID:22139921

  15. Long-chain acyl-CoA synthetase 6 regulates lipid synthesis and mitochondrial oxidative capacity in human and rat skeletal muscle.

    PubMed

    Teodoro, Bruno G; Sampaio, Igor H; Bomfim, Lucas H M; Queiroz, André L; Silveira, Leonardo R; Souza, Anderson O; Fernandes, Anna M A P; Eberlin, Marcos N; Huang, Tai-Yu; Zheng, Donghai; Neufer, P Darrell; Cortright, Ronald N; Alberici, Luciane C

    2017-02-01

    Long-chain acyl-CoA synthetase 6 (ACSL6) mRNA is present in human and rat skeletal muscle, and is modulated by nutritional status: exercise and fasting decrease ACSL6 mRNA, whereas acute lipid ingestion increase its expression. ACSL6 genic inhibition in rat primary myotubes decreased lipid accumulation, as well as activated the higher mitochondrial oxidative capacity programme and fatty acid oxidation through the AMPK/PGC1-α pathway. ACSL6 overexpression in human primary myotubes increased phospholipid species and decreased oxidative metabolism. Long-chain acyl-CoA synthetases (ACSL 1 to 6) are key enzymes regulating the partitioning of acyl-CoA species toward different metabolic fates such as lipid synthesis or β-oxidation. Despite our understanding of ecotopic lipid accumulation in skeletal muscle being associated with metabolic diseases such as obesity and type II diabetes, the role of specific ACSL isoforms in lipid synthesis remains unclear. In the present study, we describe for the first time the presence of ACSL6 mRNA in human skeletal muscle and the role that ACSL6 plays in lipid synthesis in both rodent and human skeletal muscle. ACSL6 mRNA was observed to be up-regulated by acute high-fat meal ingestion in both rodents and humans. In rats, we also demonstrated that fasting and chronic aerobic training negatively modulated the ACSL6 mRNA and other genes of lipid synthesis. Similar results were obtained following ACSL6 knockdown in rat myotubes, which was associated with a decreased accumulation of TAGs and lipid droplets. Under the same knockdown condition, we further demonstrate an increase in fatty acid content, p-AMPK, mitochondrial content, mitochondrial respiratory rates and palmitate oxidation. These results were associated with increased PGC-1α, UCP2 and UCP3 mRNA and decreased reactive oxygen species production. In human myotubes, ACSL6 overexpression reduced palmitate oxidation and PGC-1α mRNA. In conclusion, ACSL6 drives acyl-CoA toward lipid

  16. Redox dynamics of manganese as a mitochondrial life-death switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Matthew Ryan; Fernandes, Jolyn; Go, Young-Mi

    Sten Orrenius, M.D., Ph.D., pioneered many areas of cellular and molecular toxicology and made seminal contributions to our knowledge of oxidative stress and glutathione (GSH) metabolism, organellar functions and Ca{sup +2}-dependent mechanisms of cell death, and mechanisms of apoptosis. On the occasion of his 80{sup th} birthday, we summarize current knowledge on redox biology of manganese (Mn) and its role in mechanisms of cell death. Mn is found in all organisms and has critical roles in cell survival and death mechanisms by regulating Mn-containing enzymes such as manganese superoxide dismutase (SOD2) or affecting expression and activity of caspases. Occupational exposuresmore » to Mn cause “manganism”, a Parkinson's disease-like condition of neurotoxicity, and experimental studies show that Mn exposure leads to accumulation of Mn in the brain, especially in mitochondria, and neuronal cell death occurs with features of an apoptotic mechanism. Interesting questions are why a ubiquitous metal that is essential for mitochondrial function would accumulate to excessive levels, cause increased H{sub 2}O{sub 2} production and lead to cell death. Is this due to the interactions of Mn with other essential metals, such as iron, or with toxic metals, such as cadmium? Why is the Mn loading in the human brain so variable, and why is there such a narrow window between dietary adequacy and toxicity? Are non-neuronal tissues similarly vulnerable to insufficiency and excess, yet not characterized? We conclude that Mn is an important component of the redox interface between an organism and its environment and warrants detailed studies to understand the role of Mn as a mitochondrial life-death switch. - Highlights: • Either insufficient or excess manganese activates mitochondria-mediated cell death. • The optimal healthy Mn exposure window is very narrow. • Mitochondrial H{sub 2}O{sub 2} production depends on Mn across physiologic to toxicologic range. • Integrative

  17. NAD(+)- dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10

    USDA-ARS?s Scientific Manuscript database

    A member of the sirtuin family of NAD (+)-dependent deacetylases, SIRT3, is located in mammalian mitochondria and is important for regulation of mitochondrial metabolism, cell survival, and longevity. In this study, MRPL10 (mitochondrial ribosomal protein L10) was identified as the major acetylated ...

  18. Brown adipose tissue dynamics in wild-type and UCP1-knockout mice: in vivo insights with magnetic resonance[S

    PubMed Central

    Grimpo, Kirsten; Völker, Maximilian N.; Heppe, Eva N.; Braun, Steve; Heverhagen, Johannes T.; Heldmaier, Gerhard

    2014-01-01

    We used noninvasive magnetic resonance imaging (MRI) and magnetic resonance spectroscopy to compare interscapular brown adipose tissue (iBAT) of wild-type (WT) and uncoupling protein 1 (UCP1)-knockout mice lacking UCP1-mediated nonshivering thermogenesis (NST). Mice were sequentially acclimated to an ambient temperature of 30°C, 18°C, and 5°C. We detected a remodeling of iBAT and a decrease in its lipid content in all mice during cold exposure. Ratios of energy-rich phosphates (ATP/ADP, phosphocreatine/ATP) in iBAT were maintained stable during noradrenergic stimulation of thermogenesis in cold- and warm-adapted mice and no difference between the genotypes was observed. As free fatty acids (FFAs) serve as fuel for thermogenesis and activate UCP1 for uncoupling of oxidative phosphorylation, brown adipose tissue is considered to be a main acceptor and consumer of FFAs. We measured a major loss of FFAs from iBAT during noradrenergic stimulation of thermogenesis. This mobilization of FFAs was observed in iBAT of WT mice as well as in mice lacking UCP1. The high turnover and the release of FFAs from iBAT suggests an enhancement of lipid metabolism, which in itself contributes to the sympathetically activated NST and which is independent from uncoupled respiration mediated by UCP1. Our study demonstrates that MRI, besides its potential for visualizing and quantification of fat tissue, is a valuable tool for monitoring functional in vivo processes like lipid and phosphate metabolism during NST. PMID:24343897

  19. Muscle uncoupling protein 3 overexpression mimics endurance training and reduces circulating biomarkers of incomplete β-oxidation.

    PubMed

    Aguer, Céline; Fiehn, Oliver; Seifert, Erin L; Bézaire, Véronic; Meissen, John K; Daniels, Amanda; Scott, Kyle; Renaud, Jean-Marc; Padilla, Marta; Bickel, David R; Dysart, Michael; Adams, Sean H; Harper, Mary-Ellen

    2013-10-01

    Exercise substantially improves metabolic health, making the elicited mechanisms important targets for novel therapeutic strategies. Uncoupling protein 3 (UCP3) is a mitochondrial inner membrane protein highly selectively expressed in skeletal muscle. Here we report that moderate UCP3 overexpression (roughly 3-fold) in muscles of UCP3 transgenic (UCP3 Tg) mice acts as an exercise mimetic in many ways. UCP3 overexpression increased spontaneous activity (∼40%) and energy expenditure (∼5-10%) and decreased oxidative stress (∼15-20%), similar to exercise training in wild-type (WT) mice. The increase in complete fatty acid oxidation (FAO; ∼30% for WT and ∼70% for UCP3 Tg) and energy expenditure (∼8% for WT and 15% for UCP3 Tg) in response to endurance training was higher in UCP3 Tg than in WT mice, showing an additive effect of UCP3 and endurance training on these two parameters. Moreover, increases in circulating short-chain acylcarnitines in response to acute exercise in untrained WT mice were absent with training or in UCP3 Tg mice. UCP3 overexpression had the same effect as training in decreasing long-chain acylcarnitines. Outcomes coincided with a reduction in muscle carnitine acetyltransferase activity that catalyzes the formation of acylcarnitines. Overall, results are consistent with the conclusions that circulating acylcarnitines could be used as a marker of incomplete muscle FAO and that UCP3 is a potential target for the treatment of prevalent metabolic diseases in which muscle FAO is affected.

  20. Dysregulation of mitochondrial calcium signaling and superoxide flashes cause mitochondrial genomic DNA damage in Huntington disease.

    PubMed

    Wang, Jiu-Qiang; Chen, Qian; Wang, Xianhua; Wang, Qiao-Chu; Wang, Yun; Cheng, He-Ping; Guo, Caixia; Sun, Qinmiao; Chen, Quan; Tang, Tie-Shan

    2013-02-01

    Huntington disease (HD) is an inherited, fatal neurodegenerative disorder characterized by the progressive loss of striatal medium spiny neurons. Indications of oxidative stress are apparent in brain tissues from both HD patients and HD mouse models; however, the origin of this oxidant stress remains a mystery. Here, we used a yeast artificial chromosome transgenic mouse model of HD (YAC128) to investigate the potential connections between dysregulation of cytosolic Ca(2+) signaling and mitochondrial oxidative damage in HD cells. We found that YAC128 mouse embryonic fibroblasts exhibit a strikingly higher level of mitochondrial matrix Ca(2+) loading and elevated superoxide generation compared with WT cells, indicating that both mitochondrial Ca(2+) signaling and superoxide generation are dysregulated in HD cells. The excessive mitochondrial oxidant stress is critically dependent on mitochondrial Ca(2+) loading in HD cells, because blocking mitochondrial Ca(2+) uptake abolished elevated superoxide generation. Similar results were obtained using neurons from HD model mice and fibroblast cells from HD patients. More importantly, mitochondrial Ca(2+) loading in HD cells caused a 2-fold higher level of mitochondrial genomic DNA (mtDNA) damage due to the excessive oxidant generation. This study provides strong evidence to support a new causal link between dysregulated mitochondrial Ca(2+) signaling, elevated mitochondrial oxidant stress, and mtDNA damage in HD. Our results also indicate that reducing mitochondrial Ca(2+) uptake could be a therapeutic strategy for HD.