Sample records for udp-glucuronosyltransferase ugt enzymes

  1. Use Of Transgenic Mice In UDP-Glucuronosyltransferase (UGT) Studies

    PubMed Central

    Ou, Zhimin; Huang, Min; Zhao, Lizi; Xie, Wen

    2009-01-01

    Transgenic mouse models are useful to understand the function and regulation of drug metabolizing enzymes in vivo. This article is intended to describe the general strategies and to discuss specific examples on how to use transgenic, gene knockout, and humanized mice to study the function as well as genetic and pharmacological regulation of UDP-glucuronosyltransferases (UGTs). The physiological and pharmacological implications of transcription factor-mediated UGT regulation will also be discussed. The UGT-regulating transcription factors to be discussed in this article include nuclear hormone receptors (NRs), aryl hydrocarbon receptor (AhR), and nuclear factor erythroid 2-related factor 2 (Nrf2). PMID:20070245

  2. Structure–inhibition relationship of ginsenosides towards UDP-glucuronosyltransferases (UGTs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zhong-Ze; Joint Center for Translational Medicine, Dalian Institute of Chemical Physics Chinese Academy of Sciences and The first Affiliated Hospital of Liaoning Medical University, No.457, Zhongshan Road, Dalian 116023; Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892

    The wide utilization of ginseng provides the high risk of herb–drug interaction (HDI) with many clinical drugs. The inhibition of ginsenosides towards drug-metabolizing enzymes (DMEs) has been regarded as an important reason for herb–drug interaction (HDI). Compared with the deep studies on the ginsenosides' inhibition towards cytochrome P450 (CYP), the inhibition of ginsenosides towards the important phase II enzymes UDP-glucuronosyltransferases (UGTs) remains to be unclear. The present study aims to evaluate the inhibition behavior of ginsenosides towards important UGT isoforms located in the liver and intestine using in vitro methods. The recombinant UGT isoform-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction was employedmore » as in vitro probe reaction. The results showed that structure-dependent inhibition existed for the inhibition of ginsenosides towards UGT isoforms. To clarify the possibility of in vivo herb–drug interaction induced by this kind of inhibition, the ginsenoside Rg{sub 3} was selected as an example, and the inhibition kinetic type and parameters (K{sub i}) were determined. Rg{sub 3} competitively inhibited UGT1A7, 2B7 and 2B15-catalyzed 4-MU glucuronidation reaction, and exerted noncompetitive inhibition towards UGT1A8-catalyzed 4-MU glucuronidation. The inhibition parameters (K{sub i} values) were calculated to be 22.6, 7.9, 1.9, and 2.0 μM for UGT1A7, 1A8, 2B7 and 2B15. Using human maximum plasma concentration of Rg{sub 3} (400 ng/ml (0.5 μM)) after intramuscular injection of 60 mg Rg{sub 3}, the area under the plasma concentration-time curve (AUC) was extrapolated to increase by 2.2%, 6.3%, 26.3%, and 25% for the co-administered drugs completely undergoing the metabolism catalyzed by UGT1A7, 1A8, 2B7 and 2B15, respectively. All these results indicated that the ginsenosides' inhibition towards UGT isoforms might be an important reason for ginseng–drug interaction. - Highlights: ► Structure-dependent inhibition

  3. Enantioselective inhibition of carprofen towards UDP-glucuronosyltransferase (UGT) 2B7.

    PubMed

    Fang, Zhong-Ze; Wang, Haina; Cao, Yun-Feng; Sun, Dong-Xue; Wang, Li-Xuan; Hong, Mo; Huang, Ting; Chen, Jian-Xing; Zeng, Jia

    2015-03-01

    UDP-glucuronosyltransferases (UGTs)-catalyzed glucuronidation conjugation reaction plays an important role in the elimination of many important clinical drugs and endogenous substances. The present study aims to investigate the enantioselective inhibition of carprofen towards UGT isoforms. In vitro a recombinant UGT isoforms-catalyzed 4-methylumbelliferone (4-MU) glucuronidation incubation mixture was used to screen the inhibition potential of (R)-carprofen and (S)-carprofen towards multiple UGT isoforms. The results showed that (S)-carprofen exhibited stronger inhibition potential than (R)-carprofen towards UGT2B7. However, no significant difference was observed for the inhibition of (R)-carprofen and (S)-carprofen towards other UGT isoforms. Furthermore, the inhibition kinetic behavior was compared for the inhibition of (S)-carprofen and (R)-carprofen towards UGT2B7. A Lineweaver-Burk plot showed that both (S)-carprofen and (R)-carprofen exhibited competitive inhibition towards UGT2B7-catalyzed 4-MU glucuronidation. The inhibition kinetic parameter (Ki ) was calculated to be 7.0 μM and 31.1 μM for (S)-carprofen and (R)-carprofen, respectively. Based on the standard for drug-drug interaction, the threshold for (S)-carprofen and (R)-carprofen to induce a drug-drug interaction is 0.7 μM and 3.1 μM, respectively. In conclusion, enantioselective inhibition of carprofen towards UDP-glucuronosyltransferase (UGT) 2B7 was demonstrated in the present study. Using the in vitro inhibition kinetic parameter, the concentration threshold of (S)-carprofen and (R)-carprofen to possibly induce the drug-drug interaction was obtained. Therefore, clinical monitoring of the plasma concentration of (S)-carprofen is more important than (R)-carprofen to avoid a possible drug-drug interaction between carprofen and the drugs mainly undergoing UGT2B7-catalyzed metabolism. © 2014 Wiley Periodicals, Inc.

  4. Optimized UDP-glucuronosyltransferase (UGT) activity assay for trout liver S9 fractions

    EPA Pesticide Factsheets

    This publication provides an optimized UGT assay for trout liver S9 fractions which can be used to perform in vitro-in vivo extrapolations of measured UGT activityThis dataset is associated with the following publication:Ladd, M., P. Fitzsimmons , and J. Nichols. Optimization of a UDP-glucuronosyltransferase assay for trout liver S9 fractions: Activity enhancement by alamethicin, a pore-forming peptide. XENOBIOTICA. Taylor & Francis, Inc., Philadelphia, PA, USA, 46(12): 1066-1075, (2016).

  5. Genetic polymorphism of UDP-glucuronosyltransferase (UGT2B15) and glucuronidation of paracetamol in healthy population.

    PubMed

    Mehboob, Huma; Iqbal, Tahira; Jamil, Amer; Khaliq, Tanweer

    2016-05-01

    Inter individual variability in polymorphic UDP-glucuronosyltransferase (UGT2B15) has been associated with varied glucuronidation level. The present project was designed to determine the genetic polymorphism of UDP-glucuronosyltransferase (UGT2B15) and glucuronidation of paracetamol in healthy (male=59 and female=50) population. The association between genotype (UGT2B15) and phenotype (paracetamol glucuronidation) has been evaluated. According to trimodal model, genotypes and phenotypes were categorized as fast, intermediate and slow glucuronidators. Presence of wild type allele illustrated a UGT2B15 genotype as fast glucuronidator. The glucuronidation status was investigated by HPLC analysis of paracetamol. Ratio of paracetamol glucuronide to paracetamol was determined with two antimodes at glucuronidation ratio of 0.3 and 1.8. In our study, 7% and 12% of population was distributed as slow glucuronidators by phenotype and genotype, respectively and association between phenotype and genotype was good for analysis of glucuronidation status as displayed by kappa value (0.792).

  6. Inhibition of UDP-glucuronosyltransferases (UGTs) by phthalate monoesters.

    PubMed

    Du, Zuo; Cao, Yun-Feng; Li, Sai-Nan; Hu, Cui-Min; Fu, Zhi-Wei; Huang, Chun-Ting; Sun, Xiao-Yu; Liu, Yong-Zhe; Yang, Kun; Fang, Zhong-Ze

    2018-04-01

    Phthalate monoesters are important metabolites of phthalate esters (PAEs) which have been extensively utilized in industry. This study aims to investigate the inhibition of phthalate monoesters on the activity of various isoforms of UDP-glucuronosyltransferases (UGTs), trying to elucidate the toxicity mechanism of environmental endocrine disruptors from the new perspectives. In vitro recombinant UGTs-catalyzed glucuronidation of 4-methylumbelliferone (4-MU) was employed to evaluate 8 kinds of phthalate monoesters on 11 sorts of main human UGT isoforms. 100 μM phthalate monoesters exhibited negligible inhibition towards the activity of UGT1A1, UGT1A3, UGT1A6, UGT1A8, UGT1A10, UGT2B4, UGT2B7, UGT2B15 and UGT2B17. The activity of UGT1A7 was strongly inhibited by monoethylhexyl phthalate (MEHP), but slightly inhibited by all the other phthalate monoesters. UGT1A9 was broadly inhibited by monobenzyl phthalate (MBZP), monocyclohexyl phthalate (MCHP), MEHP, monohexyl phthalate (MHP) and monooctyl phthalate (MOP), respectively. MEHP exhibited competitive inhibition towards UGT1A7, and MBZP, MCHP, MEHP, MHP and MOP showed competitive inhibition towards UGT1A9. The inhibition kinetic parameters (K i ) were calculated to be 11.25 μM for MEHP-UGT1A7, and 2.13, 0.09, 1.17, 7.47, 0.16 μM for MBZP-UGT1A9, MCHP-UGT1A9, MEHP-UGT1A9, MHP-UGT1A9, MOP-UGT1A9, respectively. Molecular docking indicated that both hydrogen bonds formation and hydrophobic interactions significantly contributed to the interaction between phthalate monoesters and UGT isoforms. All these information will be beneficial for understanding the adverse effects of PAEs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Chirality Influence of Zaltoprofen Towards UDP-Glucuronosyltransferases (UGTs) Inhibition Potential.

    PubMed

    Jia, Lin; Hu, Cuimin; Wang, Haina; Liu, Yongzhe; Liu, Xin; Zhang, Yan-Yan; Li, Wei; Wang, Li-Xuan; Cao, Yun-Feng; Fang, Zhong-Ze

    2015-06-01

    Zaltoprofen (ZLT) is a nonsteroidal antiinflammation drug, and has been clinically employed to treat rheumatoid arthritis, osteoarthritis, and other chronic inflammatory pain conditions. The present study aims to investigate the chirality influence of zaltoprofen towards the inhibition potential towards UDP-glucuronosyltransferases (UGTs) isoforms. In vitro a recombinant UGT isoforms-catalyzed 4-methylumbelliferone (4-MU) glucuronidation incubation system was employed to investigate the inhibition of (R)-zaltoprofen and (S)-zaltoprofen towards UGT isoforms. The inhibition difference capability was observed for the inhibition of (R)-zaltoprofen and (S)-zaltoprofen towards UGT1A8 and UGT2B7, but not for other tested UGT isoforms. (R)-zaltoprofen exhibited noncompetitive inhibition towards UGT1A8 and competitive inhibition towards UGT2B7. The inhibition kinetic parameters were calculated to be 35.3 μM and 19.2 μM for UGT1A8 and UGT2B7. (R)-zaltoprofen and (S)-zaltoprofen exhibited a different inhibition type towards UGT1A7. Based on the reported maximum plasma concentration of (R)-zaltoprofen in vivo, a high drug-drug interaction between (R)-zaltoprofen and the drugs mainly undergoing UGT1A7, UGT1A8, and UGT2B7-catalyzed glucuronidation was indicated. © 2015 Wiley Periodicals, Inc.

  8. Understanding Substrate Selectivity of Human UDP-glucuronosyltransferases through QSAR modeling and analysis of homologous enzymes

    PubMed Central

    Dong, Dong; Ako, Roland; Hu, Ming; Wu, Baojian

    2015-01-01

    The UDP-glucuronosyltransferase (UGT) enzyme catalyzes the glucuronidation reaction which is a major metabolic and detoxification pathway in humans. Understanding the mechanisms for substrate recognition by UGT assumes great importance in an attempt to predict its contribution to xenobiotic/drug disposition in vivo. Spurred on by this interest, 2D/3D-quantitative structure activity relationships (QSAR) and pharmacophore models have been established in the absence of a complete mammalian UGT crystal structure. This review discusses the recent progress in modeling human UGT substrates including those with multiple sites of glucuronidation. A better understanding of UGT active site contributing to substrate selectivity (and regioselectivity) from the homologous enzymes (i.e., plant and bacterial UGTs, all belong to family 1 of glycosyltransferase (GT1)) is also highlighted, as these enzymes share a common catalytic mechanism and/or overlapping substrate selectivity. PMID:22385482

  9. Inhibition of UDP-Glucuronosyltransferase (UGT) Isoforms by Arctiin and Arctigenin.

    PubMed

    Zhang, Hui; Zhao, Zhenying; Wang, Tao; Wang, Yijia; Cui, Xiao; Zhang, Huijuan; Fang, Zhong-Ze

    2016-07-01

    Arctiin is the major pharmacological ingredient of Fructus Arctii, and arctigenin is the metabolite of arctiin formed via the catalysis of human intestinal bacteria. The present study aims to investigate the inhibition profile of arctiin and arctigenin on important phase II drug-metabolizing enzymes UDP-glucuronosyltransferases (UGTs), indicating the possible herb-drug interaction. In vitro screening experiment showed that 100 μM of arctiin and arctigenin inhibited the activity of UGT1A3, 1A9, 2B7, and 2B15. Homology modeling-based in silico docking of arctiin and arctigenin into the activity cavity of UGT2B15 showed that hydrogen bonds and hydrophobic interactions contributed to the strong binding free energy of arctiin (-8.14 kcal/mol) and arctigenin (-8.43 kcal/mol) with UGT2B15. Inhibition kinetics study showed that arctiin and arctigenin exerted competitive and noncompetitive inhibition toward UGT2B15, respectively. The inhibition kinetic parameters (Ki ) were calculated to be 16.0 and 76.7 μM for the inhibition of UGT2B15 by arctiin and arctigenin, respectively. Based on the plasma concentration of arctiin and arctigenin after administration of 100 mg/kg of arctiin, the [I]/Ki values were calculated to be 0.3 and 0.007 for arctiin and arctigenin, respectively. Based on the inhibition evaluation standard ([I]/Ki  < 0.1, low possibility; 0.1 < [I]/Ki  < 1, medium possibility; [I]/Ki  > 1, high possibility), arctiin might induce drug-drug interaction with medium possibility. Based on these results, clinical monitoring the utilization of Fructus Arctii is very important and necessary. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Comparison of inhibition capability of scutellarein and scutellarin towards important liver UDP-glucuronosyltransferase (UGT) isoforms.

    PubMed

    Ma, Guang-You; Cao, Yun-Feng; Hu, Cui-Min; Fang, Zhong-Ze; Sun, Xiao-Yu; Hong, Mo; Zhu, Zhi-Tu

    2014-03-01

    Scutellarin is an important bioactive flavonoid extracted from Erigeron breviscapus (Vant.) Hand-Mazz, and scutellarein is the corresponding aglycone of scutellarin. The present study aims to compare the inhibition potential of scutellarin and scutellarein towards several important UDP-glucuronosyltransferase (UGT) isoforms, including UGT1A1, UGT1A6, UGT1A9 and UGT2B7. It was demonstrated that scutellarein exerted stronger inhibition towards the tested UGT isoforms than scutellarin. Furthermore, the inhibition kinetic type and parameters (Ki ) were determined for the scutellarein's inhibition towards these UGT isoforms. Competitive inhibition of scutellarein towards all these UGT isoforms was demonstrated, and the Ki values were calculated to be 0.02, 5.0, 5.8 and 35.9 μM for UGT1A1, 1A6, 1A9 and 2B7, respectively. Using in vivo maximum plasma concentration of scutellarein in rat, the in vitro-in vivo extrapolation was performed to predict in vivo situation, indicating the most possible in vivo adverse effects due to the inhibition of scutellarein towards UGT1A1. All these results remind us to monitor the utilization of scutellarin and scutellarein, and the herbs containing these two components. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Inhibition of human UDP-glucuronosyltransferase enzymes by lapatinib, pazopanib, regorafenib and sorafenib: Implications for hyperbilirubinemia.

    PubMed

    Miners, John O; Chau, Nuy; Rowland, Andrew; Burns, Kushari; McKinnon, Ross A; Mackenzie, Peter I; Tucker, Geoffrey T; Knights, Kathleen M; Kichenadasse, Ganessan

    2017-04-01

    Kinase inhibitors (KIs) are a rapidly expanding class of drugs used primarily for the treatment of cancer. Data relating to the inhibition of UDP-glucuronosyltransferase (UGT) enzymes by KIs is sparse. However, lapatinib (LAP), pazopanib (PAZ), regorafenib (REG) and sorafenib (SOR) have been implicated in the development of hyperbilirubinemia in patients. This study aimed to characterise the role of UGT1A1 inhibition in hyperbilirubinemia and assess the broader potential of these drugs to perpetrate drug-drug interactions arising from UGT enzyme inhibition. Twelve recombinant human UGTs from subfamilies 1A and 2B were screened for inhibition by LAP, PAZ, REG and SOR. IC 50 values for the inhibition of all UGT1A enzymes, except UGT1A3 and UGT1A4, by the four KIs were <10μM. LAP, PAZ, REG and SOR inhibited UGT1A1-catalysed bilirubin glucuronidation with mean IC 50 values ranging from 34nM (REG) to 3734nM (PAZ). Subsequent kinetic experiments confirmed that REG and SOR were very potent inhibitors of human liver microsomal β-estradiol glucuronidation, an established surrogate for bilirubin glucuronidation, with mean K i values of 20 and 33nM, respectively. K i values for LAP and PAZ were approximately 1- and 2-orders of magnitude higher than those for REG and SOR. REG and SOR were equipotent inhibitors of human liver microsomal UGT1A9 (mean K i 678nM). REG and SOR are the most potent inhibitors of a human UGT enzyme identified to date. In vitro-in vivo extrapolation indicates that inhibition of UGT1A1 contributes significantly to the hyperbilirubinemia observed in patients treated with REG and SOR, but not with LAP and PAZ. Inhibition of other UGT1A1 substrates in vivo is likely. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Role of UDP-Glucuronosyltransferase (UGT) 2B2 in Metabolism of Triiodothyronine: Effect of Microsomal Enzyme Inducers in Sprague Dawley and UGT2B2-Deficient Fischer 344 Rats

    PubMed Central

    Richardson, Terrilyn A.; Klaassen, Curtis D.

    2010-01-01

    Microsomal enzyme inducers (MEI) that increase UDP-glucuronosyltransferases (UGTs) can impact thyroid hormone homeostasis in rodents. Increased glucuronidation can result in reduction of serum thyroid hormone and a concomitant increase in thyroid-stimulating hormone (TSH). UGT2B2 is thought to glucuronidate triiodothyronine (T3). The purposes of this study were to determine the role of UGT2B2 in T3 glucuronidation and whether increased T3 glucuronidation mediates the increased TSH observed after MEI treatment. Sprague Dawley (SD) and UGT2B2-deficient Fischer 344 (F344) rats were fed a control diet or diet containing pregnenolone-16α-carbonitrile (PCN; 800 ppm), 3-methylcholanthrene (3-MC; 200 ppm), or Aroclor 1254 (PCB; 100 ppm) for 7 days. Serum thyroxine (T4), T3, and TSH concentrations, hepatic androsterone/T4/T3 glucuronidation, and thyroid follicular cell proliferation were determined. In both SD and F344 rats, MEI treatments decreased serum T4, whereas serum T3 was maintained (except with PCB treatment). Hepatic T4 glucuronidation increased significantly after MEI in both rat strains. Compared with the other MEI, only PCN treatment significantly increased T3 glucuronidation (281 and 497%) in both SD and UGT2B2-deficient F344 rats, respectively, and increased both serum TSH and thyroid follicular cell proliferation. These data demonstrate an association among increases in T3 glucuronidation, TSH, and follicular cell proliferation after PCN treatment, suggesting that T3 is glucuronidated by other PCN-inducible UGTs in addition to UGT2B2. These data also suggest that PCN (rather than 3-MC or PCB) promotes thyroid tumors through excessive TSH stimulation of the thyroid gland. PMID:20421340

  13. Regioselectivity of Human UDP-Glucuronosyltransferase Isozymes in Flavonoid Biotransformation by Metal Complexation and Tandem Mass Spectrometry

    PubMed Central

    Robotham, Scott A.; Brodbelt, Jennifer S.

    2011-01-01

    Based on reactions with five flavonoids, the regioselectivities of twelve human UDP-glucuronosyltransferase (UGT) isozymes were elucidated. The various flavonoid glucuronides were differentiated based on LC-MS/MS fragmentation patterns of [Co(II)(flavonoid – H)(4,7-diphenyl-1,10-phenanthroline)2]+ complexes generated upon post-column complexation. Glucuronide distributions were evaluated to allow a systematic assessment of the regioselectivity of each isozyme. The various UGT enzymes, including eight UGT1A and four UGT2B, displayed a remarkable range of selectivities, both in terms of the positions of glucuronidation and relative reactivity with flavanones versus flavonols. PMID:21889496

  14. Role of extrahepatic UDP-glucuronosyltransferase 1A1: Advances in understanding breast milk-induced neonatal hyperbilirubinemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujiwara, Ryoichi, E-mail: fujiwarar@pharm.kitasato-u.ac.jp; Maruo, Yoshihiro; Chen, Shujuan

    Newborns commonly develop physiological hyperbilirubinemia (also known as jaundice). With increased bilirubin levels being observed in breast-fed infants, breast-feeding has been recognized as a contributing factor for the development of neonatal hyperbilirubinemia. Bilirubin undergoes selective metabolism by UDP-glucuronosyltransferase (UGT) 1A1 and becomes a water soluble glucuronide. Although several factors such as gestational age, dehydration and weight loss, and increased enterohepatic circulation have been associated with breast milk-induced jaundice (BMJ), deficiency in UGT1A1 expression is a known cause of BMJ. It is currently believed that unconjugated bilirubin is metabolized mainly in the liver. However, recent findings support the concept that extrahepaticmore » tissues, such as small intestine and skin, contribute to bilirubin glucuronidation during the neonatal period. We will review the recent advances made towards understanding biological and molecular events impacting BMJ, especially regarding the role of extrahepatic UGT1A1 expression. - Highlights: • Breast-feeding can be a factor for the development of neonatal hyperbilirubinemia. • UDP-glucuronosyltransferase (UGT) 1A1 is the sole bilirubin-metabolizing enzyme. • Extrahepatic UGT1A1 plays an important role in bilirubin metabolism. • We discuss the potential mechanism of breast milk-induced neonatal jaundice.« less

  15. Glycyrrhetinic acid exhibits strong inhibitory effects towards UDP-glucuronosyltransferase (UGT) 1A3 and 2B7.

    PubMed

    Huang, Yin-Peng; Cao, Yun-Feng; Fang, Zhong-Ze; Zhang, Yan-Yan; Hu, Cui-Min; Sun, Xiao-Yu; Yu, Zhen-Wen; Zhu, Xu; Hong, Mo; Yang, Lu; Sun, Hong-Zhi

    2013-09-01

    The aim of the present study is to evaluate the inhibitory effects of liver UDP-glucuronosyltransferases (UGTs) by glycyrrhizic acid and glycyrrhetinic acid, which are the bioactive ingredients isolated from licorice. The results showed that glycyrrhetinic acid exhibited stronger inhibition towards all the tested UGT isoforms, indicating that the deglycosylation process played an important role in the inhibitory potential towards UGT isoforms. Furthermore, the inhibition kinetic type and parameters were determined for the inhibition of glycyrrhetinic acid towards UGT1A3 and UGT2B7. Data fitting using Dixon and Lineweaver-Burk plots demonstrated that the inhibition of UGT1A3 and UGT2B7 by glycyrrhetinic acid was best fit to competitive and noncompetitive type, respectively. The second plot using the slopes from Lineweaver-Burk plots versus glycyrrhetinic acid concentrations was employed to calculate the inhibition kinetic parameters (K(i)), and the values were calculated to be 0.2 and 1.7 μM for UGT1A3 and UGT2B7, respectively. All these results remind us the possibility of UGT inhibition-based herb-drug interaction. However, the explanation of these in vitro parameters should be paid more caution due to complicated factors, including the probe substrate-dependent UGT inhibition behaviour, environmental factors affecting the abundance of herbs' ingredients, and individual difference of pharmacokinetic factors. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Herb–drug interaction prediction based on the high specific inhibition of andrographolide derivatives towards UDP-glucuronosyltransferase (UGT) 2B7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Hai-Ying, E-mail: cmu4h-mhy@126.com; Sun, Dong-Xue; Cao, Yun-Feng

    2014-05-15

    Herb–drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (K{sub i}) were determined for themore » compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsome (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behavior. In combination of inhibition parameters (K{sub i}) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb–drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7. - Highlights: • Specific inhibition of andrographolide derivatives towards UGT2B7. • Herb-drug interaction related withAndrographis paniculata. • Guidance for design of UGT2B7 specific inhibitors.« less

  17. Expression of UDP-glucuronosyltransferase 1A4 in human placenta at term

    PubMed Central

    Østby, Lene; Stuen, Ina; Sundby, Eirik

    2010-01-01

    The placenta contains a large variety of metabolizing enzymes, among them UDP-glucuronosyltransferase (UGT). Several UGT2B isozymes have so far been detected in human placenta, but little is known on placental expression of UGT1A isozymes. The antiepileptic drug lamotrigine (LTG) is a UGT1A4-substrate, and its serum concentration falls by over 50% during pregnancy, leading to impaired seizure control. The placenta may be involved in this. Microsomes from term placentas of 4 LTG-users and 10 healthy control subjects were prepared. Western blot analysis detected UGT1A proteins in all placentas. The presence of UGT1A4 in placenta from LTG users was confirmed with UGT1A4 commercial standard and a specific UGT1A4 primary antibody. Since LTG is primarily metabolized by UGT1A4 and this isozyme is shown to be present in placenta at term, it may be hypothesized that the placenta is involved in the fall of LTG serum concentrations during pregnancy. PMID:21302032

  18. Glucuronidation of OTS167 in Humans Is Catalyzed by UDP-Glucuronosyltransferases UGT1A1, UGT1A3, UGT1A8, and UGT1A10

    PubMed Central

    Ramírez, Jacqueline; Mirkov, Snezana; House, Larry K.

    2015-01-01

    OTS167 is a potent maternal embryonic leucine zipper kinase inhibitor undergoing clinical testing as antineoplastic agent. We aimed to identify the UDP-glucuronosyltransferases (UGTs) involved in OTS167 metabolism, study the relationship between UGT genetic polymorphisms and hepatic OTS167 glucuronidation, and investigate the inhibitory potential of OTS167 on UGTs. Formation of a single OTS167-glucuronide (OTS167-G) was observed in pooled human liver (HLM) (Km = 3.4 ± 0.2 µM), intestinal microsomes (HIM) (Km = 1.7 ± 0.1 µM), and UGTs. UGT1A1 (64 µl/min/mg) and UGT1A8 (72 µl/min/mg) exhibited the highest intrinsic clearances (CLint) for OTS167, followed by UGT1A3 (51 µl/min/mg) and UGT1A10 (47 µl/min/mg); UGT1A9 was a minor contributor. OTS167 glucuronidation in HLM was highly correlated with thyroxine glucuronidation (r = 0.91, P < 0.0001), SN-38 glucuronidation (r = 0.79, P < 0.0001), and UGT1A1 mRNA (r = 0.72, P < 0.0001). Nilotinib (UGT1A1 inhibitor) and emodin (UGT1A8 and UGT1A10 inhibitor) exhibited the highest inhibitory effects on OTS167-G formation in HLM (68%) and HIM (47%). We hypothesize that OTS167-G is an N-glucuronide according to mass spectrometry. A significant association was found between rs6706232 and reduced OTS167-G formation (P = 0.03). No or weak UGT inhibition (range: 0–21%) was observed using clinically relevant OTS167 concentrations (0.4–2 µM). We conclude that UGT1A1 and UGT1A3 are the main UGTs responsible for hepatic formation of OTS167-G. Intestinal UGT1A1, UGT1A8, and UGT1A10 may contribute to first-pass OTS167 metabolism after oral administration. PMID:25870101

  19. Glucuronidation of OTS167 in Humans Is Catalyzed by UDP-Glucuronosyltransferases UGT1A1, UGT1A3, UGT1A8, and UGT1A10.

    PubMed

    Ramírez, Jacqueline; Mirkov, Snezana; House, Larry K; Ratain, Mark J

    2015-07-01

    OTS167 is a potent maternal embryonic leucine zipper kinase inhibitor undergoing clinical testing as antineoplastic agent. We aimed to identify the UDP-glucuronosyltransferases (UGTs) involved in OTS167 metabolism, study the relationship between UGT genetic polymorphisms and hepatic OTS167 glucuronidation, and investigate the inhibitory potential of OTS167 on UGTs. Formation of a single OTS167-glucuronide (OTS167-G) was observed in pooled human liver (HLM) (Km = 3.4 ± 0.2 µM), intestinal microsomes (HIM) (Km = 1.7 ± 0.1 µM), and UGTs. UGT1A1 (64 µl/min/mg) and UGT1A8 (72 µl/min/mg) exhibited the highest intrinsic clearances (CLint) for OTS167, followed by UGT1A3 (51 µl/min/mg) and UGT1A10 (47 µl/min/mg); UGT1A9 was a minor contributor. OTS167 glucuronidation in HLM was highly correlated with thyroxine glucuronidation (r = 0.91, P < 0.0001), SN-38 glucuronidation (r = 0.79, P < 0.0001), and UGT1A1 mRNA (r = 0.72, P < 0.0001). Nilotinib (UGT1A1 inhibitor) and emodin (UGT1A8 and UGT1A10 inhibitor) exhibited the highest inhibitory effects on OTS167-G formation in HLM (68%) and HIM (47%). We hypothesize that OTS167-G is an N-glucuronide according to mass spectrometry. A significant association was found between rs6706232 and reduced OTS167-G formation (P = 0.03). No or weak UGT inhibition (range: 0-21%) was observed using clinically relevant OTS167 concentrations (0.4-2 µM). We conclude that UGT1A1 and UGT1A3 are the main UGTs responsible for hepatic formation of OTS167-G. Intestinal UGT1A1, UGT1A8, and UGT1A10 may contribute to first-pass OTS167 metabolism after oral administration. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  20. Inhibition of UDP-glucuronosyltransferase (UGT)-mediated glycyrrhetinic acid 3-O-glucuronidation by polyphenols and triterpenoids.

    PubMed

    Koyama, Mayuko; Shirahata, Tatsuya; Hirashima, Rika; Kobayashi, Yoshinori; Itoh, Tomoo; Fujiwara, Ryoichi

    2017-08-01

    Glycyrrhetinic acid (GA) is an active metabolite of glycyrrhizin, which is a main constituent in licorice (Glycyrrhiza glabra). While GA exhibits a wide variety of pharmacological activities in the body, it is converted to a toxic metabolite GA 3-O-glucuronide by hepatic UDP-glucuronosyltransferases (UGTs). To avoid the development of the toxic metabolite-induced pseudohyperaldosteronism (pseudoaldosteronism), there is a limitation in maximum daily dosage of licorice and in combined usage of other glycyrrhizin-containing natural medicine. In this study, we investigated the inhibitory effects of various polyphenols and triterpenoids on the UGT-mediated GA 3-O-glucuronidation. In human liver microsomes, UGT-mediated GA glucuronidation was significantly inhibited by protopanaxadiol with an IC 50 value of 59.2 μM. Isoliquiritigenin, rosmarinic acid, alisol B, alisol acetate, and catechin moderately inhibited the GA glucuronidation with IC 50 values of 96.4 μM, 125 μM, 160 μM, 163 μM, and 164 μM. Other tested 19 polyphenols and triterpenoids, including liquiritigenin, did not inhibit UGT-mediated GA glucuronidation in human liver microsomes. Our data indicate that relatively higher dosage of licorice can be used without a risk of developing pseudohyperaldosteronism in combination of natural medicine containing protopanaxadiol such as Panax ginseng. Furthermore, supplemental protopanaxadiol and isoliquiritigenin might be useful in preventing licorice-inducing pseudoaldosteronism. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  1. Bisphenol-A glucuronidation in human liver and breast: identification of UDP-glucuronosyltransferases (UGTs) and influence of genetic polymorphisms.

    PubMed

    Street, Christina M; Zhu, Zhaohui; Finel, Moshe; Court, Michael H

    2017-01-01

    1. Bisphenol-A is a ubiquitous environmental contaminant that is primarily metabolized by glucuronidation and associated with various human diseases including breast cancer. Here we identified UDP-glucuronosyltransferases (UGTs) and genetic polymorphisms responsible for interindividual variability in bisphenol-A glucuronidation in human liver and breast. 2. Hepatic UGTs showing the highest bisphenol-A glucuronidation activity included UGT2B15 and UGT1A9. Relative activity factor normalization indicated that UGT2B15 contributes >80% of activity at bisphenol-A concentrations under 5 μM, while UGT1A9 contributes up to 50% of activity at higher concentrations. 3. Bisphenol-A glucuronidation by liver microsomes (46 donors) ranged from 0.25 to 4.3 nmoles/min/mg protein. Two-fold higher glucuronidation (p = 0.018) was observed in UGT1A9 *22/*22 livers compared with *1/*1 and *1/*22 livers. However, no associations were observed for UGT2B15*2 or UGT1A1*28 genotypes. 4. Bisphenol-A glucuronidation by breast microsomes (15 donors) ranged from <0.2 to 56 fmoles/min/mg protein. Breast mRNA expression of UGTs capable of glucuronidating bisphenol-A was highest for UGT1A1, followed by UGT2B4, UGT1A9, UGT1A10, UGT2B7 and UGT2B15. Bisphenol-A glucuronidation was over 10-fold lower in breast tissues with the UGT1A1*28 allele compared with tissues without this allele (p = 0.006). 5. UGT2B15 and UGT1A9 contribute to glucuronidation variability in liver, while UGT1A1 is important in breast.

  2. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxication

    PubMed Central

    Ouzzine, Mohamed; Gulberti, Sandrine; Ramalanjaona, Nick; Magdalou, Jacques; Fournel-Gigleux, Sylvie

    2014-01-01

    UDP-glucuronosyltransferases (UGTs) form a multigenic family of membrane-bound enzymes expressed in various tissues, including brain. They catalyze the formation of β-D-glucuronides from structurally unrelated substances (drugs, other xenobiotics, as well as endogenous compounds) by the linkage of glucuronic acid from the high energy donor, UDP-α-D-glucuronic acid. In brain, UGTs actively participate to the overall protection of the tissue against the intrusion of potentially harmful lipophilic substances that are metabolized as hydrophilic glucuronides. These metabolites are generally inactive, except for important pharmacologically glucuronides such as morphine-6-glucuronide. UGTs are mainly expressed in endothelial cells and astrocytes of the blood brain barrier (BBB). They are also associated to brain interfaces devoid of BBB, such as circumventricular organ, pineal gland, pituitary gland and neuro-olfactory tissues. Beside their key-role as a detoxication barrier, UGTs play a role in the steady-state of endogenous compounds, like steroids or dopamine (DA) that participate to the function of the brain. UGT isoforms of family 1A, 2A, 2B and 3A are expressed in brain tissues to various levels and are known to present distinct but overlapping substrate specificity. The importance of these enzyme species with regard to the formation of toxic, pharmacologically or physiologically relevant glucuronides in the brain will be discussed. PMID:25389387

  3. Identification of human UDP-glucuronosyltransferases involved in N-carbamoyl glucuronidation of lorcaserin.

    PubMed

    Sadeque, Abu J M; Usmani, Khawja A; Palamar, Safet; Cerny, Matthew A; Chen, Weichao G

    2012-04-01

    Lorcaserin, a selective serotonin 5-HT(2C) receptor agonist, is a weight management agent in clinical development. Lorcaserin N-carbamoyl glucuronidation governs the predominant excretory pathway of lorcaserin in humans. Human UDP-glucuronosyltransferases (UGTs) responsible for lorcaserin N-carbamoyl glucuronidation are identified herein. Lorcaserin N-carbamoyl glucuronide formation was characterized by the following approaches: metabolic screening using human tissues (liver, kidney, intestine, and lung) and recombinant enzymes, kinetic analyses, and inhibition studies. Whereas microsomes from all human tissues studied herein were found to be catalytically active for lorcaserin N-carbamoyl glucuronidation, liver microsomes were the most efficient. With recombinant UGT enzymes, lorcaserin N-carbamoyl glucuronidation was predominantly catalyzed by three UGT2Bs (UGT2B7, UGT2B15, and UGT2B17), whereas two UGT1As (UGT1A6 and UGT1A9) played a minor role. UGT2B15 was most efficient, with an apparent K(m) value of 51.6 ± 1.9 μM and V(max) value of 237.4 ± 2.8 pmol/mg protein/min. The rank order of catalytic efficiency of human UGT enzymes for lorcaserin N-carbamoyl glucuronidation was UGT2B15 > UGT2B7 > UGT2B17 > UGT1A9 > UGT1A6. Inhibition of lorcaserin N-carbamoyl glucuronidation activities of UGT2B7, UGT2B15, and UGT2B17 in human liver microsomes by mefenamic acid, bisphenol A, and eugenol further substantiated the involvement of these UGT2B isoforms. In conclusion, multiple human UGT enzymes catalyze N-carbamoyl glucuronidation of lorcaserin; therefore, it is unlikely that inhibition of any one of these UGT activities will lead to significant inhibition of the lorcaserin N-carbamoyl glucuronidation pathway. Thus, the potential for drug-drug interaction by concomitant administration of a drug(s) that is metabolized by any of these UGTs is remote.

  4. Absolute protein quantification of clinically relevant cytochrome P450 enzymes and UDP-glucuronosyltransferases by mass spectrometry-based targeted proteomics.

    PubMed

    Gröer, C; Busch, D; Patrzyk, M; Beyer, K; Busemann, A; Heidecke, C D; Drozdzik, M; Siegmund, W; Oswald, S

    2014-11-01

    Cytochrome P450 (CYP) enzymes and UDP-glucuronosyltransferases (UGT) are major determinants in the pharmacokinetics of most drugs on the market. To investigate their impact on intestinal and hepatic drug metabolism, we developed and validated quantification methods for nine CYP (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5) and four UGT enzymes (UGT1A1, UGT1A3, UGT2B7 and UGT2B15) that have been shown to be of clinical relevance in human drug metabolism. Protein quantification was performed by targeted proteomics using liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based determination of enzyme specific peptides after tryptic digestion using in each case stable isotope labelled peptides as internal standard. The chromatography of the respective peptides was performed with gradient elution using a reversed phase (C18) column (Ascentis(®) Express Peptide ES-C18, 100mm×2.1mm, 2.7μm) and 0.1% formic acid (FA) as well as acetonitrile with 0.1% FA as mobile phases at a flow rate of 300μl/min. The MS/MS detection of all peptides was done simultaneously with a scheduled multiple reaction monitoring (MRM) method in the positive mode by monitoring in each case three mass transitions per proteospecific peptide and the internal standard. The assays were validated according to current bioanalytical guidelines with respect to specificity, linearity (0.25-50nM), within-day and between-day accuracy and precision, digestion efficiency as well as stability. Finally, the developed method was successfully applied to determine the CYP and UGT protein amount in human liver and intestinal microsomes. The method was shown to possess sufficient specificity, sensitivity, accuracy, precision and stability to quantify clinically relevant human CYP and UGT enzymes. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Optimization of a UDP-glucuronosyltransferase assay for trout liver S9 fractions: Activity enhancement by alamethicin, a pore-forming peptide

    EPA Science Inventory

    An existing assay for hepatic UDP-glucuronosyltransferase (UGT) activity was optimized for use with trout liver S9 fractions. Individual experiments were conducted to determine the time dependence of UGT activity as well as optimal levels of S9 protein, uridine 5’-diphosph...

  6. Quantitative Characterization of Major Hepatic UDP-Glucuronosyltransferase Enzymes in Human Liver Microsomes: Comparison of Two Proteomic Methods and Correlation with Catalytic Activity.

    PubMed

    Achour, Brahim; Dantonio, Alyssa; Niosi, Mark; Novak, Jonathan J; Fallon, John K; Barber, Jill; Smith, Philip C; Rostami-Hodjegan, Amin; Goosen, Theunis C

    2017-10-01

    Quantitative characterization of UDP-glucuronosyltransferase (UGT) enzymes is valuable in glucuronidation reaction phenotyping, predicting metabolic clearance and drug-drug interactions using extrapolation exercises based on pharmacokinetic modeling. Different quantitative proteomic workflows have been employed to quantify UGT enzymes in various systems, with reports indicating large variability in expression, which cannot be explained by interindividual variability alone. To evaluate the effect of methodological differences on end-point UGT abundance quantification, eight UGT enzymes were quantified in 24 matched liver microsomal samples by two laboratories using stable isotope-labeled (SIL) peptides or quantitative concatemer (QconCAT) standard, and measurements were assessed against catalytic activity in seven enzymes ( n = 59). There was little agreement between individual abundance levels reported by the two methods; only UGT1A1 showed strong correlation [Spearman rank order correlation (Rs) = 0.73, P < 0.0001; R 2 = 0.30; n = 24]. SIL-based abundance measurements correlated well with enzyme activities, with correlations ranging from moderate for UGTs 1A6, 1A9, and 2B15 (Rs = 0.52-0.59, P < 0.0001; R 2 = 0.34-0.58; n = 59) to strong correlations for UGTs 1A1, 1A3, 1A4, and 2B7 (Rs = 0.79-0.90, P < 0.0001; R 2 = 0.69-0.79). QconCAT-based data revealed generally poor correlation with activity, whereas moderate correlations were shown for UGTs 1A1, 1A3, and 2B7. Spurious abundance-activity correlations were identified in the cases of UGT1A4/2B4 and UGT2B7/2B15, which could be explained by correlations of protein expression between these enzymes. Consistent correlation of UGT abundance with catalytic activity, demonstrated by the SIL-based dataset, suggests that quantitative proteomic data should be validated against catalytic activity whenever possible. In addition, metabolic reaction phenotyping exercises should consider spurious abundance-activity correlations

  7. Glucuronidation of Drugs and Drug-Induced Toxicity in Humanized UDP-Glucuronosyltransferase 1 Mice

    PubMed Central

    Kutsuno, Yuki; Itoh, Tomoo; Tukey, Robert H.

    2014-01-01

    UDP-glucuronosyltransferases (UGTs) are phase II drug-metabolizing enzymes that catalyze glucuronidation of various drugs. Although experimental rodents are used in preclinical studies to predict glucuronidation and toxicity of drugs in humans, species differences in glucuronidation and drug-induced toxicity have been reported. Humanized UGT1 mice in which the original Ugt1 locus was disrupted and replaced with the human UGT1 locus (hUGT1 mice) were recently developed. In this study, acyl-glucuronidations of etodolac, diclofenac, and ibuprofen in liver microsomes of hUGT1 mice were examined and compared with those of humans and regular mice. The kinetics of etodolac, diclofenac, and ibuprofen acyl-glucuronidation in hUGT1 mice were almost comparable to those in humans, rather than in mice. We further investigated the hepatotoxicity of ibuprofen in hUGT1 mice and regular mice by measuring serum alanine amino transferase (ALT) levels. Because ALT levels were increased at 6 hours after dosing in hUGT1 mice and at 24 hours after dosing in regular mice, the onset pattern of ibuprofen-induced liver toxicity in hUGT1 mice was different from that in regular mice. These data suggest that hUGT1 mice can be valuable tools for understanding glucuronidations of drugs and drug-induced toxicity in humans. PMID:24764149

  8. Mangifera indica L. extract and mangiferin modulate cytochrome P450 and UDP-glucuronosyltransferase enzymes in primary cultures of human hepatocytes.

    PubMed

    Rodeiro, Idania; José Gómez-Lechón, M; Perez, Gabriela; Hernandez, Ivones; Herrera, José Alfredo; Delgado, Rene; Castell, José V; Teresa Donato, M

    2013-05-01

    The aqueous stem bark extract of Mangifera indica L. (MSBE) has been reported to have antioxidant, anti-inflammatory and analgesic properties. In previous studies, we showed that MSBE and mangiferin, its main component, lower the activity of some cytochrome P-450 (P450) enzymes in rat hepatocytes and human liver microsomes. In the present study, the effects of MSBE and mangiferin on several P450 enzymes and UDP-glucuronosyltransferases (UGTs) in human-cultured hepatocytes have been examined. After hepatocytes underwent a 48-h treatment with sub-cytotoxic concentrations of the products (50-250 µg/mL), a concentration-dependent decrease of the activity of the five P450 enzymes measured (CYP1A2, 2A6, 2C9, 2D6 and 3A4) was observed. For all the activities, a reduction of at least 50% at the highest concentration (250 µg/mL) was observed. In addition, UGT activities diminished. MSBE considerably reduced UGT1A9 activity (about 60% at 250 µg/mL) and lesser effects on the other UGTs. In contrast, 250 µg/mL mangiferin had greater effects on UGT1A1 and 2B7 than on UGT1A9 (about 55% vs. 35% reduction, respectively). Quantification of specific mRNAs revealed reduced CYP3A4 and 3A5 mRNAs content, and an increase in CYP1A1, CYP1A2, UGT1A1 and UGT1A9 mRNAs. No remarkable effects on the CYP2A6, 2B6, 2C9, 2C19, 2D6 and 2E1 levels were observed. Our results suggest that the activity and/or expression of major P450 and UGT enzymes is modulated by MSBE and that potential herb-drugs interactions could arise after a combined intake of this extract with conventional medicines. Therefore, the potential safety risks of this natural product derived by altering the ADMET properties of co-administered drugs should be examined. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Functional polymorphisms in UDP-glucuronosyltransferases and recurrence in tamoxifen-treated breast cancer survivors

    PubMed Central

    Ahern, Thomas P.; Christensen, Mariann; Cronin-Fenton, Deirdre P.; Lunetta, Kathryn L.; Søiland, Håvard; Gjerde, Jennifer; Garne, Jens Peter; Rosenberg, Carol L.; Silliman, Rebecca A.; Sørensen, Henrik Toft; Lash, Timothy L.; Hamilton-Dutoit, Stephen

    2011-01-01

    Background Tamoxifen is oxidized by cytochrome-P450 enzymes (e.g., CYP2D6) to two active metabolites, which are eliminated via glucuronidation by UDP-glucuronosyltransferases (UGTs). We measured the association between functional polymorphisms in key UGTs (UGT2B15*2, UGT2B7*2, and UGT1A8*3) and the recurrence rate among breast cancer survivors. Methods We used the Danish Breast Cancer Cooperative Group registry to identify 541 cases of recurrent breast cancer among women with estrogen receptor-positive tumors treated with tamoxifen for at least one year (ER+/TAM+), and 300 cases of recurrent breast cancer among women with estrogen receptor-negative tumors who were not treated with tamoxifen (ER−/TAM−). We matched 1 control to each case on ER status, menopausal status, stage, calendar period, and county. UGT polymorphisms were genotyped from archived primary tumors. We estimated the recurrence odds ratio for the UGT polymorphisms using logistic regression models, with and without stratification on CYP2D6*4 genotype. Results No UGT polymorphism was associated with breast cancer recurrence in either the ER+/TAM+ or ER-/TAM- groups [in the ER+TAM+ group, compared with two normal alleles: adjusted OR for two UGT2B15*2 variant alleles = 1.0 (95% CI: 0.70, 1.5); adjusted OR for two for UGT2B7*2 variant alleles = 0.91 (95% CI: 0.65, 1.3); adjusted OR for 1 or 2 UGT1A8*3 variant alleles = 0.75 (0.41, 1.4)]. Associations were similar within strata of CYP2D6*4 genotype. Conclusions Functional polymorphisms in key tamoxifen-metabolizing enzymes were not associated with breast cancer recurrence risk. Impact Our results do not support the genotyping of key metabolic enzyme polymorphisms to predict response to tamoxifen therapy. PMID:21750172

  10. Disturbance of Mammary UDP-Glucuronosyltransferase Represses Estrogen Metabolism and Exacerbates Experimental Breast Cancer.

    PubMed

    Zhou, Xueyan; Zheng, Ziqiang; Xu, Chang; Wang, Juan; Min, Mengjun; Zhao, Yun; Wang, Xi; Gong, Yinhan; Yin, Jiale; Guo, Meng; Guo, Dong; Zheng, Junnian; Zhang, Bei; Yin, Xiaoxing

    2017-08-01

    The progression of breast cancer is closely related to the levels of estrogens within the body. UDP-glucuronosyltransferase (UGT) is an important class of phase II metabolizing enzymes, playing a pivotal role in detoxifying steroid hormone. In the present study, we aim at uncovering the potential dysregulation pattern of UGT and its role in estrogen metabolism and in the pathogenesis of breast cancer. Female Sprague-Dawley rats were treated with 100 mg/kg dimethylbenz(a)anthracene (DMBA) to induce breast cancer. Our results showed that the expression and activity of UGT in mammary tissues were downregulated significantly in DMBA rats. Consistent with this, levels of estradiol, 4-hydroxylated estradiol, and 2-hydroxylated estradiol were increased in both mammary tissues and serum, supporting a notable accumulation of toxic estrogen species in the target tissue of breast cancer. In addition, we also observed the decreased cell migration, cell proliferation, and DNA damage in UGT-transfected MCF-7 cells, suggesting a protective role of UGT against estrogen-induced mammary carcinogenesis. Taken together, these results indicated that accumulation of estrogens induced by UGT deficiency is a critical factor to induce the development of breast cancer. UGT contributes to estrogen elimination, and its glucuronidation capacity influences the estrogen signaling pathway and the pathogenesis of breast cancer. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Effect of the β-glucuronidase inhibitor saccharolactone on glucuronidation by human tissue microsomes and recombinant UDP-glucuronosyltransferases (UGTs)

    PubMed Central

    Oleson, Lauren; Court, Michael H.

    2009-01-01

    Glucuronidation studies using microsomes and recombinant UDP-glucuronosyltransferases (rUGTs) can be complicated by the presence of endogenous β-glucuronidases leading to underestimation of glucuronide formation rates. Saccharolactone is the most frequently used β-glucuronidase inhibitor, although as of yet it is not clear whether this reagent should be routinely added to glucuronidation incubations. Here we determined the effect of saccharolactone on eight different UGT probe activities using pooled human liver microsomes (pHLMs) and rUGTs. Despite the use of buffered incubation solutions it was necessary to adjust the pH of saccharolactone solutions to avoid effects (enhancement or inhibition) of lowered pH on UGT activity. Saccharolactone at concentrations ranging from 1 to 20 mM failed to show enhancement of any of the glucuronidation activities evaluated that could be considered consistent with inhibition of β-glucuronidase. However, for most activities, higher saccharolactone concentrations resulted in a modest degree of inhibition. The greatest inhibitory effect was observed for 5-hydroxytryptamine and estradiol glucuronidation by pHLMs with 35% decrease at 20 mM saccharolactone concentration. Endogenous β-glucuronidase activities were also measured using various human tissue microsomes and rUGTs with estradiol-3-glucuronide and estradiol-17-glucuronide as substrates. Glucuronide hydrolysis was observed for pHLMs, lung microsomes, and insect-cell expressed rUGTs, but not for kidney or intestinal microsomes, or HEK293 microsomes. However, the extent of hydrolysis was relatively small representing only 9 to 19% of the glucuronide formation rate measured in the same preparations. Consequently, these data do not support the routine inclusion of saccharolactone in glucuronidation incubations and, if used, saccharolactone concentrations should be titrated to achieve activity enhancement without inhibition. PMID:18718121

  12. Role of UDP-glucuronosyltransferase isoforms in 13-cis retinoic acid metabolism in humans.

    PubMed

    Rowbotham, Sophie E; Illingworth, Nicola A; Daly, Ann K; Veal, Gareth J; Boddy, Alan V

    2010-07-01

    13-cis Retinoic acid (13cisRA, isotretinoin) is an important drug in both dermatology, and the treatment of high-risk neuroblastoma. 13cisRA is known to undergo cytochrome P450-mediated oxidation, mainly by CYP2C8, but phase II metabolic pathways have not been characterized. In the present study, the glucuronidation activities of human liver (HLM) and intestinal microsomes (HIM), as well as a panel of human UDP-glucuronosyltransferases (UGTs) toward both 13cisRA and the 4-oxo metabolite, 4-oxo 13cisRA, were compared using high-performance liquid chromatography. Both HLM and, to a greater extent, HIM catalyzed the glucuronidation of 13cisRA and 4-oxo 13cisRA. Based on the structures of 13cisRA and 4-oxo 13cisRA, the glucuronides formed are conjugated at the terminal carboxylic acid. Further analysis revealed that UGT1A1, UGT1A3, UGT1A7, UGT1A8, and UGT1A9 were the major isoforms responsible for the glucuronidation of both substrates. For 13cisRA, a pronounced substrate inhibition was observed with individual UGTs and with HIM. UGT1A3 exhibited the highest rate of activity toward both substrates, and a high rate of activity toward 13cisRA glucuronidation was also observed with UGT1A7. However, for both substrates, K(m) values were above concentrations reported in clinical studies. Therefore, UGT1A9 is likely to be the most important enzyme in the glucuronidation of both substrates as this enzyme had the lowest K(m) and is expressed in both the intestine and at high levels in the liver.

  13. Mapping the UDP-Glucuronic Acid Binding Site in UDP-Glucuronosyltransferase-1 A10 by Homology-based Modeling: Confirmation with Biochemical Evidence†

    PubMed Central

    Banerjee, Rajat; Pennington, Matthew W.; Garza, Amanda; Owens, Ida S.

    2008-01-01

    The UDP-glucuronosyltransferase (UGT) isozyme system is critical for protecting the body against endogenous and exogenous chemicals by linking glucuronic acid donated by UDP-glucuronic acid to a lipophilic acceptor substrate. UGTs convert metabolites, dietary constituents and environmental toxicants to highly excretable glucuronides. Because of difficulties associated with purifying endoplasmic reticulum-bound UGTs for structural studies, we carried out homology-based computer modeling to aid analysis. The search found structural homology in Escherichia coli UDP-galactose 4-epimerase. Consistent with predicted similarities involving the common UDP-moiety in substrates, UDP-glucose and UDP-hexanol amine caused competitive inhibition by Lineweaver-Burk plots. Among predicted binding sites N292, K314, K315 and K404 in UGT1A10, two informative sets of mutants K314R/Q/A/E /G and K404R/E had null activities or 2.7-fold higher/50% less activity, respectively. Scatchard analysis of binding data of affinity-ligand, 5-azido-uridine-[β-32P]-diphosphoglucuronic acid, to purified UGT1A10-His or UGT1A7-His revealed high and low affinity binding sites. 2-Nitro 5-thiocyanobenzoic acid-digested UGT1A10-His bound with radiolabeled affinity-ligand revealed an 11.3- and 14.3-kDa peptide associated with K314 and K404, respectively, in a discontinuous SDS-PAGE system. Similar treatment of 1A10His-K314A bound with the ligand lacked both peptides; 1A10-HisK404R- and 1A10-HisK404E showed 1.3-fold greater- and 50% less-label in the 14.3-kDa peptide, respectively, compared to 1A10-His without affecting the 11.3-kDa peptide. Scatchard analysis of binding data of affinity-ligand to 1A10His-K404R and -K404E showed a 6-fold reduction and a large increase in Kd, respectively. Our results indicate: K314 and K404 are required UDP-glcA binding sites in 1A10, that K404 controls activity and high affinity sites and that K314 and K404 are strictly conserved in 70 aligned UGTs, except for S321

  14. Inhibitory Effects of Commonly Used Herbal Extracts on UDP-Glucuronosyltransferase 1A4, 1A6, and 1A9 Enzyme Activities

    PubMed Central

    Mohamed, Mohamed-Eslam F.

    2011-01-01

    The aim of this study was to investigate the effect of commonly used botanicals on UDP-glucuronosyltransferase (UGT) 1A4, UGT1A6, and UGT1A9 activities in human liver microsomes. The extracts screened were black cohosh, cranberry, echinacea, garlic, ginkgo, ginseng, milk thistle, saw palmetto, and valerian in addition to the green tea catechin epigallocatechin gallate (EGCG). Formation of trifluoperazine glucuronide, serotonin glucuronide, and mycophenolic acid phenolic glucuronide was used as an index reaction for UGT1A4, UGT1A6, and UGT1A9 activities, respectively, in human liver microsomes. Inhibition potency was expressed as the concentration of the inhibitor at 50% activity (IC50) and the volume in which the dose could be diluted to generate an IC50-equivalent concentration [volume/dose index (VDI)]. Potential inhibitors were EGCG for UGT1A4, milk thistle for both UGT1A6 and UGT1A9, saw palmetto for UGT1A6, and cranberry for UGT1A9. EGCG inhibited UGT1A4 with an IC50 value of (mean ± S.E.) 33.8 ± 3.1 μg/ml. Milk thistle inhibited both UGT1A6 and UGT1A9 with IC50 values of 59.5 ± 3.6 and 33.6 ± 3.1 μg/ml, respectively. Saw palmetto and cranberry weakly inhibited UGT1A6 and UGT1A9, respectively, with IC50 values >100 μg/ml. For each inhibition, VDI was calculated to determine the potential of achieving IC50-equivalent concentrations in vivo. VDI values for inhibitors indicate a potential for inhibition of first-pass glucuronidation of UGT1A4, UGT1A6, and UGT1A9 substrates. These results highlight the possibility of herb-drug interactions through modulation of UGT enzyme activities. Further clinical studies are warranted to investigate the in vivo extent of the observed interactions. PMID:21632963

  15. Species differences in drug glucuronidation: Humanized UDP-glucuronosyltransferase 1 mice and their application for predicting drug glucuronidation and drug-induced toxicity in humans

    PubMed Central

    Fujiwara, Ryoichi; Yoda, Emiko; Tukey, Robert H.

    2018-01-01

    More than 20% of clinically used drugs are glucuronidated by a microsomal enzyme UDP-glucuronosyltransferase (UGT). Inhibition or induction of UGT can result in an increase or decrease in blood drug concentration. To avoid drug-drug interactions and adverse drug reactions in individuals, therefore, it is important to understand whether UGTs are involved in metabolism of drugs and drug candidates. While most of glucuronides are inactive metabolites, acyl-glucuronides that are formed from compounds with a carboxylic acid group can be highly toxic. Animals such as mice and rats are widely used to predict drug metabolism and drug-induced toxicity in humans. However, there are marked species differences in the expression and function of drug-metabolizing enzymes including UGTs. To overcome the species differences, mice in which certain drug-metabolizing enzymes are humanized have been recently developed. Humanized UGT1 (hUGT1) mice were created in 2010 by crossing Ugt1-null mice with human UGT1 transgenic mice in a C57BL/6 background. hUGT1 mice can be promising tools to predict human drug glucuronidation and acyl-glucuronide-associated toxicity. In this review article, studies of drug metabolism and toxicity in the hUGT1 mice are summarized. We further discuss research and strategic directions to advance the understanding of drug glucuronidation in humans. PMID:29079228

  16. Thiamethoxam Resistance in Aphis gossypii Glover Relies on Multiple UDP-Glucuronosyltransferases

    PubMed Central

    Pan, Yiou; Tian, Fayi; Wei, Xiang; Wu, Yongqiang; Gao, Xiwu; Xi, Jinghui; Shang, Qingli

    2018-01-01

    Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are major phase II enzymes that conjugate a variety of small lipophilic molecules with UDP sugars and alter them into more water-soluble metabolites. Therefore, glucosidation plays a major role in the inactivation and excretion of a great variety of both endogenous and exogenous compounds. In this study, two inhibitors of UGT enzymes, sulfinpyrazone and 5-nitrouracil, significantly increased the toxicity of thiamethoxam against the resistant strain of Aphis gossypii, which indicates that UGTs are involved in thiamethoxam resistance in the cotton aphid. Based on transcriptome data, 31 A. gossypii UGTs belonging to 11 families (UGT329, UGT330, UGT341, UGT342, UGT343, UGT344, UGT345, UGT348, UGT349, UGT350, and UGT351) were identified. Compared with the thiamethoxam-susceptible strain, the transcripts of 23 UGTs were elevated, and the transcripts of 13 UGTs (UGT344J2, UGT348A2, UGT344D4, UGT341A4, UGT343B2, UGT342B2, UGT350C3, UGT344N2, UGT344A14, UGT344B4, UGT351A4, UGT344A11, and UGT349A2) were increased by approximately 2.0-fold in the resistant cotton aphid. The suppression of selected UGTs significantly increased the insensitivity of resistant aphids to thiamethoxam, suggesting that the up-regulated UGTs might be associated with thiamethoxam tolerance. This study provides an overall view of the possible metabolic factor UGTs that are relevant to the development of insecticide resistance. The results might facilitate further work to validate the roles of these UGTs in thiamethoxam resistance. PMID:29670540

  17. Species differences in drug glucuronidation: Humanized UDP-glucuronosyltransferase 1 mice and their application for predicting drug glucuronidation and drug-induced toxicity in humans.

    PubMed

    Fujiwara, Ryoichi; Yoda, Emiko; Tukey, Robert H

    2018-02-01

    More than 20% of clinically used drugs are glucuronidated by a microsomal enzyme UDP-glucuronosyltransferase (UGT). Inhibition or induction of UGT can result in an increase or decrease in blood drug concentration. To avoid drug-drug interactions and adverse drug reactions in individuals, therefore, it is important to understand whether UGTs are involved in metabolism of drugs and drug candidates. While most of glucuronides are inactive metabolites, acyl-glucuronides that are formed from compounds with a carboxylic acid group can be highly toxic. Animals such as mice and rats are widely used to predict drug metabolism and drug-induced toxicity in humans. However, there are marked species differences in the expression and function of drug-metabolizing enzymes including UGTs. To overcome the species differences, mice in which certain drug-metabolizing enzymes are humanized have been recently developed. Humanized UGT1 (hUGT1) mice were created in 2010 by crossing Ugt1-null mice with human UGT1 transgenic mice in a C57BL/6 background. hUGT1 mice can be promising tools to predict human drug glucuronidation and acyl-glucuronide-associated toxicity. In this review article, studies of drug metabolism and toxicity in the hUGT1 mice are summarized. We further discuss research and strategic directions to advance the understanding of drug glucuronidation in humans. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  18. Optimization of a UDP-glucuronosyltransferase assay for trout ...

    EPA Pesticide Factsheets

    An existing assay for hepatic UDP-glucuronosyltransferase (UGT) activity was optimized for use with trout liver S9 fractions. Individual experiments were conducted to determine the time dependence of UGT activity as well as optimal levels of S9 protein, uridine 5’-diphosphoglucuronic acid (UDPGA; a necessary cofactor), alamethicin (a pore-forming agent added to eliminate latency), and substrate (p-nitrophenol). Addition of Mg2+ (to 1 mM) or bovine serum albumin (BSA; to 2% w/v) had variable effects on activity, but these effects were minor. Eliminating alamethicin from the system resulted in very low levels of activity. A portion of this activity could be recovered by adding Triton X-100 or Brij 58; however, the optimal concentration range for either detergent was very narrow. All studies were performed under physiological conditions (pH 7.8, 11 °C) to support ongoing development of methods for extrapolating in vitro rates of biotransformation to the intact animal. When expressed on a pmol/min/g liver basis, UGT activities determined using this updated assay were substantially higher than those reported previously for uninduced trout. The purpose of the present study was to optimize an existing in vitro assay for hepatic UGT activity in rainbow trout. The original assay, adapted here for use with trout S9 fractions, was updated by incorporating a membrane disrupting agent (alamethicin) to reduce latency. Additional experiments were conducted to evaluate

  19. Cooperation of NAD(P)H:quinone oxidoreductase 1 and UDP-glucuronosyltransferases reduces menadione cytotoxicity in HEK293 cells.

    PubMed

    Nishiyama, Takahito; Izawa, Tadashi; Usami, Mami; Ohnuma, Tomokazu; Ogura, Kenichiro; Hiratsuka, Akira

    2010-04-09

    Previous studies have shown that NAD(P)H:quinone oxidoreductase 1 (NQO1) plays an important role in the detoxification of menadione (2-methyl-1,4-naphthoquinone, also known as vitamin K3). However, menadiol (2-methyl-1,4-naphthalenediol) formed from menadione by NQO1-mediated reduction continues to be an unstable substance, which undergoes the reformation of menadione with concomitant formation of reactive oxygen species (ROS). Hence, we focused on the roles of phase II enzymes, with particular attention to UDP-glucuronosyltransferases (UGTs), in the detoxification process of menadione. In this study, we established an HEK293 cell line stably expressing NQO1 (HEK293/NQO1) and HEK293/NQO1 cell lines with doxycycline (DOX)-regulated expression of UGT1A6 (HEK293/NQO1/UGT1A6) and UGT1A10 (HEK293/NQO1/UGT1A10), and evaluated the role of NQO1 and UGTs against menadione-induced cytotoxicity. Our results differed from those of previous studies. HEK293/NQO1 was the most sensitive cell line to menadione cytotoxicity among cell lines established in this study. These phenomena were also observed in HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells in which the expression of UGT was suppressed by DOX treatment. On the contrary, HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells without DOX treatment were resistant to menadione-induced cytotoxicity. These results demonstrated that NQO1 is not a detoxification enzyme for menadione and that UGT-mediated glucuronidation of menadiol is the most important detoxification process. Copyright 2009 Elsevier Inc. All rights reserved.

  20. Androgen receptor signals regulate UDP-glucuronosyltransferases in the urinary bladder: a potential mechanism of androgen-induced bladder carcinogenesis.

    PubMed

    Izumi, Koji; Zheng, Yichun; Hsu, Jong-Wei; Chang, Chawnshang; Miyamoto, Hiroshi

    2013-02-01

    UDP-glucuronosyltransferases (UGTs), major phase II drug metabolism enzymes, play an important role in urinary bladder cancer initiation by detoxifying carcinogens. We aimed to determine if androgens regulate UGT expression via the androgen receptor (AR) pathway in the bladder. Real-time reverse transcription-polymerase chain reaction and Western blot analyses were used to assess UGT1A levels in the normal urothelium SVHUC cell line stably expressed with AR and in bladder tissues from AR knockout (ARKO) and castrated male mice. Immunohistochemistry was also performed in radical cystectomy specimens. Dihydrotestosterone (DHT) treatment in SVHUC-AR reduced mRNA expression of all the UGT1A subtypes (19-75% decrease), and hydroxyflutamide antagonized the DHT effects. In contrast, DHT showed only marginal effects on UGT1A expression in SVHUC-Vector. Of note were higher expression levels of UGT1As in SVHUC-Vector than in SVHUC-AR. In ARKO mice, all the Ugt1a subtypes were up-regulated, compared to wild-type littermates. In wild-type male mice, castration increased the expression of Ugt1a8, Ugt1a9, and Ugt1a10. Additionally, wild-type female mice had higher levels of Ugt1a than wild-type males. Immunohistochemical studies showed strong (3+) UGT1A staining in 11/24 (46%) cancer tissues, which was significantly lower than in corresponding benign tissues [17/18 (94%) cases (P = 0.0009)]. These results suggest that androgen-mediated AR signals promote bladder carcinogenesis by down-regulating the expression of UGTs in the bladder. Copyright © 2011 Wiley Periodicals, Inc.

  1. The UDP-Glucuronosyltransferase (UGT) 1A Polymorphism c.2042C>G (rs8330) Is Associated with Increased Human Liver Acetaminophen Glucuronidation, Increased UGT1A Exon 5a/5b Splice Variant mRNA Ratio, and Decreased Risk of Unintentional Acetaminophen-Induced Acute Liver FailureS⃞

    PubMed Central

    Freytsis, Marina; Wang, Xueding; Peter, Inga; Guillemette, Chantal; Hazarika, Suwagmani; Duan, Su X.; Greenblatt, David J.; Lee, William M.

    2013-01-01

    Acetaminophen is cleared primarily by hepatic glucuronidation. Polymorphisms in genes encoding the acetaminophen UDP-glucuronosyltransferase (UGT) enzymes could explain interindividual variability in acetaminophen glucuronidation and variable risk for liver injury after acetaminophen overdose. In this study, human liver bank samples were phenotyped for acetaminophen glucuronidation activity and genotyped for the major acetaminophen-glucuronidating enzymes (UGTs 1A1, 1A6, 1A9, and 2B15). Of these, only three linked single nucleotide polymorphisms (SNPs) located in the shared UGT1A-3′UTR region (rs10929303, rs1042640, rs8330) were associated with acetaminophen glucuronidation activity, with rs8330 consistently showing higher acetaminophen glucuronidation at all the tested concentrations of acetaminophen. Mechanistic studies using luciferase-UGT1A-3′UTR reporters indicated that these SNPs do not alter mRNA stability or translation efficiency. However, there was evidence for allelic imbalance and a gene-dose proportional increase in the amount of exon 5a versus exon 5b containing UGT1A mRNA spliced transcripts in livers with the rs8330 variant allele. Cotransfection studies demonstrated an inhibitory effect of exon 5b containing cDNAs on acetaminophen glucuronidation by UGT1A1 and UGT1A6 cDNAs containing exon 5a. In silico analysis predicted that rs8330 creates an exon splice enhancer site that could favor exon 5a (over exon 5b) utilization during splicing. Finally, the prevalence of rs8330 was significantly lower (P = 0.027, χ2 test) in patients who had acute liver failure from unintentional acetaminophen overdose compared with patients with acute liver failure from other causes or a race- or ethnicity-matched population. Together, these findings suggest that rs8330 is an important determinant of acetaminophen glucuronidation and could affect an individual’s risk for acetaminophen-induced liver injury. PMID:23408116

  2. Albumin Stimulates the Activity of the Human UDP-Glucuronosyltransferases 1A7, 1A8, 1A10, 2A1 and 2B15, but the Effects Are Enzyme and Substrate Dependent

    PubMed Central

    Svaluto-Moreolo, Paolo; Dziedzic, Klaudyna; Yli-Kauhaluoma, Jari; Finel, Moshe

    2013-01-01

    Human UDP-glucuronosyltransferases (UGTs) are important enzymes in metabolic elimination of endo- and xenobiotics. It was recently shown that addition of fatty acid free bovine serum albumin (BSA) significantly enhances in vitro activities of UGTs, a limiting factor in in vitro–in vivo extrapolation. Nevertheless, since only few human UGT enzymes were tested for this phenomenon, we have now performed detailed enzyme kinetic analysis on the BSA effects in six previously untested UGTs, using 2–4 suitable substrates for each enzyme. We also examined some of the previously tested UGTs, but using additional substrates and a lower BSA concentration, only 0.1%. The latter concentration allows the use of important but more lipophilic substrates, such as estradiol and 17-epiestradiol. In five newly tested UGTs, 1A7, 1A8, 1A10, 2A1, and 2B15, the addition of BSA enhanced, to a different degree, the in vitro activity by either decreasing reaction’s K m, increasing its V max, or both. In contrast, the activities of UGT2B17, another previously untested enzyme, were almost unaffected. The results of the assays with the previously tested UGTs, 1A1, 1A6, 2B4, and 2B7, were similar to the published BSA only as far as the BSA effects on the reactions’ K m are concerned. In the cases of V max values, however, our results differ significantly from the previously published ones, at least with some of the substrates. Hence, the magnitude of the BSA effects appears to be substrate dependent, especially with respect to V max increases. Additionally, the BSA effects may be UGT subfamily dependent since K m decreases were observed in members of subfamilies 1A, 2A and 2B, whereas large V max increases were only found in several UGT1A members. The results shed new light on the complexity of the BSA effects on the activity and enzyme kinetics of the human UGTs. PMID:23372764

  3. Identification of UDP-glucuronosyltransferases 1A1, 1A3 and 2B15 as the main contributors to glucuronidation of bakuchiol, a natural biologically active compound.

    PubMed

    Li, Feng; Wang, Shuai; Lu, Danyi; Wang, Yifei; Dong, Dong; Wu, Baojian

    2017-05-01

    1. Bakuchiol, one of the main active compounds of Psoralea corylifolia, possesses a variety of pharmacological activities such as anti-tumor and anti-aging effects. Here, we aimed to characterize the glucuronidation of bakuchiol using human liver microsomes (HLM) and expressed UDP-glucuronosyltransferase (UGT) enzymes. 2. The glucuronide of bakuchiol was confirmed by liquid chromatography-mass spectrometry (LC-MS) and β-glucuronidase hydrolysis assay. Glucuronidation rates and kinetic parameters were derived by enzymatic incubation and model fitting. Activity correlation analyses were performed to identify the main UGT isoforms contributing to hepatic metabolism of bakuchiol. 3. Among the three UGT enzymes (i.e., UGT1A1, UGT1A3 and UGT2B15) capable of catalyzing bakuchiol glucuronidation, UGT2B15 showed the highest activity with a CL int value of 100 μl/min/nmol. Bakuchiol glucuronidation was strongly correlated with glucuronidation of 5-hydroxyrofecoxib (r = 0.933; p < 0.001), 3-O-glucuronidation of β-estradiol (r = 0.719; p < 0.01) and significantly correlated with 24-O-glucuronidation of CDCA (r = 0.594; p < 0.05). In addition, a marked species difference existed in hepatic glucuronidation of bakuchiol. 4. In conclusion, UGT1A1, UGT1A3 and UGT2B15 were identified as the main contributors to glucuronidation of bakuchiol.

  4. Novel Resveratrol-Based Substrates for Human Hepatic, Renal, and Intestinal UDP-Glucuronosyltransferases

    PubMed Central

    2015-01-01

    Trans-Resveratrol (tRes) has been shown to have powerful antioxidant, anti-inflammatory, anticarcinogenic, and antiaging properties; however, its use as a therapeutic agent is limited by its rapid metabolism into its conjugated forms by UDP-glucuronosyltransferases (UGTs). The aim of the current study was to test the hypothesis that the limited bioavailability of tRes can be improved by modifying its structure to create analogs which would be glucuronidated at a lower rate than tRes itself. In this work, three synthetic stilbenoids, (E)-3-(3-hydroxy-4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)acrylic acid (NI-12a), (E)-2,4-dimethoxy-6-(4-methoxystyryl)benzaldehyde oxime (NI-ST-05), and (E)-4-(3,5-dimethoxystyryl)-2,6-dinitrophenol (DNR-1), have been designed based on the structure of tRes and synthesized in our laboratory. UGTs recognize and glucuronidate tRes at each of the 3 hydroxyl groups attached to its aromatic rings. Therefore, each of the above compounds was designed with the majority of the hydroxyl groups blocked by methylation and the addition of other novel functional groups as part of a drug optimization program. The activities of recombinant human UGTs from the 1A and 2B families were examined for their capacity to metabolize these compounds. Glucuronide formation was identified using HPLC and verified by β-glucuronidase hydrolysis and LC–MS/MS analysis. NI-12a was glucuronidated at both the −COOH and −OH functions, NI-ST-05 formed a novel N–O-glucuronide, and no product was observed for DNR-1. NI-12a is primarily metabolized by the hepatic and renal enzyme UGT1A9, whereas NI-ST-05 is primarily metabolized by an extrahepatic enzyme, UGT1A10, with apparent Km values of 240 and 6.2 μM, respectively. The involvement of hepatic and intestinal UGTs in the metabolism of both compounds was further confirmed using a panel of human liver and intestinal microsomes, and high individual variation in activity was demonstrated between donors. In summary

  5. Bilirubin UDP-Glucuronosyltransferase 1A1 (UGT1A1) Gene Promoter Polymorphisms and HPRT, Glycophorin A, and Micronuclei Mutant Frequencies in Human Blood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, D; Hall, I J; Eastmond, D

    2004-10-06

    A dinucleotide repeat polymorphism (5-, 6-, 7-, or 8-TA units) has been identified within the promoter region of UDP-glucuronosyltransferase 1A1 gene (UGT1A1). The 7-TA repeat allele has been associated with elevated serum bilirubin levels that cause a mild hyperbilirubinemia (Gilbert's syndrome). Studies suggest that promoter transcriptional activity of UGT1A1 is inversely related to the number of TA repeats and that unconjugated bilirubin concentration increases directly with the number of TA repeat elements. Because bilirubin is a known antioxidant, we hypothesized that UGT1A1 repeats associated with higher bilirubin may be protective against oxidative damage. We examined the effect of UGT1A1 genotypemore » on somatic mutant frequency in the hypoxanthine-guanine phosphoribosyl-transferase (HPRT) gene in human lymphocytes and the glycophorin A (GPA) gene of red blood cells (both N0, NN mutants), and the frequency of lymphocyte micronuclei (both kinetochore (K) positive or micronuclei K negative) in 101 healthy smoking and nonsmoking individuals. As hypothesized, genotypes containing 7-TA and 8-TA displayed marginally lower GPA{_}NN mutant frequency relative to 5/5, 5/6, 6/6 genotypes (p<0.05). In contrast, our analysis showed that lower expressing UGT1A1 alleles (7-TA and 8-TA) were associated with modestly increased HPRT mutation frequency (p<0.05) while the same low expression genotypes were not significantly associated with micronuclei frequencies (K-positive or K-negative) when compared to high expression genotypes (5-TA and 6-TA). We found weak evidence that UGT1A1 genotypes containing 7-TA and 8-TA were associated with increased GPA{_}N0 mutant frequency relative to 5/5, 5/6, 6/6 genotypes (p<0.05). These data suggest that UGT1A1 genotype may modulate somatic mutation of some types, in some cell lineages, by a mechanism not involving bilirubin antioxidant activity. More detailed studies examining UGT1A1 promoter variation, oxidant/antioxidant balance and

  6. Involvement of UDP-Glucuronosyltransferases and Sulfotransferases in the Excretion and Tissue Distribution of Resveratrol in Mice

    PubMed Central

    Böhmdorfer, Michaela; Szakmary, Akos; Schiestl, Robert H.; Vaquero, Javier; Riha, Juliane; Brenner, Stefan; Thalhammer, Theresia; Szekeres, Thomas; Jäger, Walter

    2017-01-01

    Resveratrol is a naturally occurring polyphenolic compound with various pharmacological activities. It is unknown whether the expression of metabolizing enzymes correlates with resveratrol levels in organs and tissues. Therefore, we investigated the metabolism and tissue distribution of resveratrol in mice and assessed its association with the expression of UDP-glucuronosyltransferase (Ugt) and sulfotransferase (Sult) genes. Plasma, urine, feces, and various organs were analyzed using high-performance liquid chromatography at up to 8 h after intragastric resveratrol administration. The metabolism of resveratrol was pronounced, leading to the formation of resveratrol glucuronides and sulfates. Concentrations of resveratrol and its metabolites were high in the gastrointestinal organs, urine, and feces, but low in the liver and kidneys. In lung, heart, thymus, and brain tissues, parent resveratrol levels exceeded the sulfate and glucuronide concentrations. The formation of resveratrol conjugates correlated with the expression of certain Ugt and Sult genes. Reverse transcription quantitative PCR (RT-qPCR) analysis revealed high mRNA expression of Ugt1a1 and Ugt1a6a in the liver, duodenum, jejunum, ileum, and colon, leading to high concentrations of resveratrol-3-O-glucuronide in these organs. Strong correlations of resveratrol-3-O-sulfate and resveratrol-3-O-4′-O-disulfate formation with Sult1a1 mRNA expression were also observed, particularly in the liver and colon. In summary, our data revealed organ-specific expression of Sults and Ugts in mice that strongly affects resveratrol concentrations; this may also be predictive in humans following oral uptake of dietary resveratrol. PMID:29231856

  7. Regiospecificity of Human UDP-glucuronosyltransferase Isoforms in Chalcone and Flavanone Glucuronidation Determined by Metal Complexation and Tandem Mass Spectrometry

    PubMed Central

    Niemeyer, Emily D.; Brodbelt, Jennifer S.

    2013-01-01

    The glucuronidation of a series of chalcones (2'-hydroxychalcone, 2',4'-dihydroxychalcone, 3,2'-dihydroxychalcone, 4,2'-dihydroxychalcone, and cardamonin) and their corresponding cyclized flavanones (7-hydroxyflavanone, 3'-hydroxyflavanone, 4'-hydroxyflavanone, and alpinetin) by nine human UDP-glucuronosyltransferase (UGT) 1A enzymes was evaluated. A post-column metal complexation LC-MS/MS strategy was used successfully to produce characteristic mass spectrometric product ions that were utilized in combination with elution order trends to identify chalcone and flavanone monoglucuronides unambiguously, thus allowing determination of the regioselectivities of the UGT1A isoforms. The presence of hydroxy groups on the A or B-ring had a significant effect on the glucuronide product yield and the site where glucuronidation occurred. For example, for reaction with UGT1A9, formation of the 2'-O-glucuronide was increased for dihydroxychalcones with A-ring hydroxy substituents. In contrast, although UGT1A8 reacted with 3,2'-dihydroxychalcone and 4,2'-dihydroxychalcone to yield 2'-O-glucuronide products, the presence of a B-ring hydroxy group at the 4' position on cardamonin and 2',4'-dihydroxychalcone quenched the reaction at the OH-2' position. Moreover, the A-ring OH-4 group promoted glucuronidation at the 2' position for the reaction of 4,2'-dihydroxychalcone with UGT1A1 and 1A3. For UGT1A7, hydroxy group substituents on the chalcone A-ring also promoted cyclization and formation of the corresponding flavanone glucuronide. PMID:23713759

  8. Regiospecificity of human UDP-glucuronosyltransferase isoforms in chalcone and flavanone glucuronidation determined by metal complexation and tandem mass spectrometry.

    PubMed

    Niemeyer, Emily D; Brodbelt, Jennifer S

    2013-06-28

    The glucuronidation of a series of chalcones (2'-hydroxychalcone, 2',4'-dihydroxychalcone, 3,2'-dihydroxychalcone, 4,2'-dihydroxychalcone, and cardamonin) and their corresponding cyclized flavanones (7-hydroxyflavanone, 3'-hydroxyflavanone, 4'-hydroxyflavanone, and alpinetin) by eight human UDP-glucuronosyltransferase (UGT) 1A enzymes was evaluated. A postcolumn metal complexation LC-MS/MS strategy was used successfully to produce characteristic mass spectrometric product ions that were utilized in combination with elution order trends to identify chalcone and flavanone monoglucuronides unambiguously, thus allowing determination of the regioselectivities of the UGT1A isoforms. The presence of hydroxy groups on the A- or B-ring had a significant effect on the glucuronide product yield and the site where glucuronidation occurred. For example, for reaction with UGT1A9, formation of the 2'-O-glucuronide was increased for dihydroxychalcones with A-ring hydroxy substituents. In contrast, although UGT1A8 reacted with 3,2'-dihydroxychalcone and 4,2'-dihydroxychalcone to yield 2'-O-glucuronide products, the presence of a B-ring hydroxy group at the 4' position on cardamonin and 2',4'-dihydroxychalcone quenched the reaction at the OH-2' position. Moreover, the A-ring OH-4 group promoted glucuronidation at the 2' position for the reaction of 4,2'-dihydroxychalcone with UGT1A1 and 1A3. For UGT1A7, hydroxy group substituents on the chalcone A-ring also promoted cyclization and formation of the corresponding flavanone glucuronide.

  9. Role of extrahepatic UDP-glucuronosyltransferase 1A1: Advances in understanding breast milk-induced neonatal hyperbilirubinemia.

    PubMed

    Fujiwara, Ryoichi; Maruo, Yoshihiro; Chen, Shujuan; Tukey, Robert H

    2015-11-15

    Newborns commonly develop physiological hyperbilirubinemia (also known as jaundice). With increased bilirubin levels being observed in breast-fed infants, breast-feeding has been recognized as a contributing factor for the development of neonatal hyperbilirubinemia. Bilirubin undergoes selective metabolism by UDP-glucuronosyltransferase (UGT) 1A1 and becomes a water soluble glucuronide. Although several factors such as gestational age, dehydration and weight loss, and increased enterohepatic circulation have been associated with breast milk-induced jaundice (BMJ), deficiency in UGT1A1 expression is a known cause of BMJ. It is currently believed that unconjugated bilirubin is metabolized mainly in the liver. However, recent findings support the concept that extrahepatic tissues, such as small intestine and skin, contribute to bilirubin glucuronidation during the neonatal period. We will review the recent advances made towards understanding biological and molecular events impacting BMJ, especially regarding the role of extrahepatic UGT1A1 expression. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Role of extrahepatic UDP-glucuronosyltransferase 1A1: advances in understanding breast milk-induced neonatal hyperbilirubinemia

    PubMed Central

    Fujiwara, Ryoichi; Maruo, Yoshihiro; Chen, Shujuan; Tukey, Robert H.

    2015-01-01

    Newborns commonly develop physiological hyperbilirubinemia (also known as jaundice). With increased bilirubin levels being observed in breast-fed infants, breast-feeding has been recognized as a contributing factor for the development of neonatal hyperbilirubinemia. Bilirubin undergoes selective metabolism by UDP-glucuronosyltransferase (UGT) 1A1 and becomes a water soluble glucuronide. Although several factors such as gestational age, dehydration and weight loss, and increased enterohepatic circulation have been associated with breast milk-induced jaundice (BMJ), deficiency in UGT1A1 expression is a known cause of BMJ. It is currently believed that unconjugated bilirubin is metabolized mainly in the liver. However, recent findings support the concept that extrahepatic tissues, such as small intestine and skin, contribute to bilirubin glucuronidation during the neonatal period. We will review the recent advances made towards understanding biological and molecular events impacting BMJ, especially regarding the role of extrahepatic UGT1A1 expression. PMID:26342858

  11. Evidence for differences in regioselective and stereoselective glucuronidation of silybin diastereomers from milk thistle (Silybum marianum) by human UDP-glucuronosyltransferases.

    PubMed

    Jančová, Petra; Siller, Michal; Anzenbacherová, Eva; Křen, Vladimír; Anzenbacher, Pavel; Simánek, Vilím

    2011-09-01

    The flavonolignan silybin, the main component of silymarin, extract from the seeds of Silybum marianum, is used mostly as a hepatoprotectant. Silybin is almost 1:1 mixture of two diastereomers A and B. The individual UDP-glucuronosyltransferases (UGTs) contributing to the metabolism of silybin diastereomers have not been identified yet. In this study, the contribution of UGTs to silybin metabolism was examined. The potential silybin metabolites were formed in vitro by incubating silybin (i) with the human liver microsomal fraction, (ii) with human hepatocytes and finally (iii) with 12 recombinant UGTs (UGT1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15 and 2B17). High-performance liquid chromatographic (HPLC) techniques with UV detection and additionally MS detection were used for metabolite identification. Hepatocytes and microsomes formed silybin A-7-O-β-D-glucuronides, B-7-O-β-D-glucuronides, A-20-O-β-D-glucuronides and B-20-O-β-D-glucuronides. With recombinant UGTs, the major role of the UGT1A1, 1A3, 1A8 and 1A10 enzymes but also of the UGT1A6, 1A7, 1A9, 2B7 and 2B15 in the stereoselective reactions leading to the respective silybin glucuronides was confirmed. UGT1A4, UGT2B4 and UGT2B17 did not participate in silybin glucuronidation. The predominant formation of 7-O-β-D-glucuronides and the preferential glucuronidation of silybin B diastereomer in vitro by human UGTs were confirmed.

  12. Induction of the UDP-Glucuronosyltransferase 1A1 during the Perinatal Period Can Cause Neurodevelopmental Toxicity.

    PubMed

    Hirashima, Rika; Michimae, Hirofumi; Takemoto, Hiroaki; Sasaki, Aya; Kobayashi, Yoshinori; Itoh, Tomoo; Tukey, Robert H; Fujiwara, Ryoichi

    2016-09-01

    Anticonvulsants can increase the risk of developing neurotoxicity in infants; however, the underlying mechanism has not been elucidated to date. Thyroxine [3,5,3',5'-l-tetraiodothyronine (T4)] plays crucial roles in the development of the central nervous system. In this study, we hypothesized that induction of UDP-glucuronosyltransferase 1A1 (UGT1A1)-an enzyme involved in the metabolism of T4-by anticonvulsants would reduce serum T4 levels and cause neurodevelopmental toxicity. Exposure of mice to phenytoin during both the prenatal and postnatal periods significantly induced UGT1A1 and decreased serum T4 levels on postnatal day 14. In the phenytoin-treated mice, the mRNA levels of synaptophysin and synapsin I in the hippocampus were lower than those in the control mice. The thickness of the external granule cell layer was greater in phenytoin-treated mice, indicating that induction of UGT1A1 during the perinatal period caused neurodevelopmental disorders. Exposure to phenytoin during only the postnatal period also caused these neurodevelopmental disorders. A T4 replacement attenuated the increase in thickness of the external granule cell layer, indicating that the reduced T4 was specifically associated with the phenytoin-induced neurodevelopmental disorder. In addition, these neurodevelopmental disorders were also found in the carbamazepine- and pregnenolone-16-α-carbonitrile-treated mice. Our study is the first to indicate that UGT1A1 can control neurodevelopment by regulating serum T4 levels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Induction of the UDP-Glucuronosyltransferase 1A1 during the Perinatal Period Can Cause Neurodevelopmental Toxicity

    PubMed Central

    Hirashima, Rika; Michimae, Hirofumi; Takemoto, Hiroaki; Sasaki, Aya; Kobayashi, Yoshinori; Itoh, Tomoo; Tukey, Robert H.

    2016-01-01

    Anticonvulsants can increase the risk of developing neurotoxicity in infants; however, the underlying mechanism has not been elucidated to date. Thyroxine [3,5,3′,5′-l-tetraiodothyronine (T4)] plays crucial roles in the development of the central nervous system. In this study, we hypothesized that induction of UDP-glucuronosyltransferase 1A1 (UGT1A1)—an enzyme involved in the metabolism of T4—by anticonvulsants would reduce serum T4 levels and cause neurodevelopmental toxicity. Exposure of mice to phenytoin during both the prenatal and postnatal periods significantly induced UGT1A1 and decreased serum T4 levels on postnatal day 14. In the phenytoin-treated mice, the mRNA levels of synaptophysin and synapsin I in the hippocampus were lower than those in the control mice. The thickness of the external granule cell layer was greater in phenytoin-treated mice, indicating that induction of UGT1A1 during the perinatal period caused neurodevelopmental disorders. Exposure to phenytoin during only the postnatal period also caused these neurodevelopmental disorders. A T4 replacement attenuated the increase in thickness of the external granule cell layer, indicating that the reduced T4 was specifically associated with the phenytoin-induced neurodevelopmental disorder. In addition, these neurodevelopmental disorders were also found in the carbamazepine- and pregnenolone-16-α-carbonitrile–treated mice. Our study is the first to indicate that UGT1A1 can control neurodevelopment by regulating serum T4 levels. PMID:27413119

  14. Genome-wide analysis of family-1 UDP glycosyltransferases (UGT) and identification of UGT genes for FHB resistance in wheat (Triticum aestivum L.).

    PubMed

    He, Yi; Ahmad, Dawood; Zhang, Xu; Zhang, Yu; Wu, Lei; Jiang, Peng; Ma, Hongxiang

    2018-04-19

    Fusarium head blight (FHB), a devastating disease in wheat worldwide, results in yield loses and mycotoxin, such as deoxynivalenol (DON), accumulation in infected grains. DON also facilitates the pathogen colonization and spread of FHB symptoms during disease development. UDP-glycosyltransferase enzymes (UGTs) are known to contribute to detoxification and enhance FHB resistance by glycosylating DON into DON-3-glucoside (D3G) in wheat. However, a comprehensive investigation of wheat (Triticum aestivum) UGT genes is still lacking. In this study, we carried out a genome-wide analysis of family-1 UDP glycosyltransferases in wheat based on the PSPG conserved box that resulted in the identification of 179 putative UGT genes. The identified genes were clustered into 16 major phylogenetic groups with a lack of phylogenetic group K. The UGT genes were invariably distributed among all the chromosomes of the 3 genomes. At least 10 intron insertion events were found in the UGT sequences, where intron 4 was observed as the most conserved intron. The expression analysis of the wheat UGT genes using both online microarray data and quantitative real-time PCR verification suggested the distinct role of UGT genes in different tissues and developmental stages. The expression of many UGT genes was up-regulated after Fusarium graminearum inoculation, and six of the genes were further verified by RT-qPCR. We identified 179 UGT genes from wheat using the available sequenced wheat genome. This study provides useful insight into the phylogenetic structure, distribution, and expression patterns of family-1 UDP glycosyltransferases in wheat. The results also offer a foundation for future work aimed at elucidating the molecular mechanisms underlying the resistance to FHB and DON accumulation.

  15. Comparison of the inhibition potentials of icotinib and erlotinib against human UDP-glucuronosyltransferase 1A1.

    PubMed

    Cheng, Xuewei; Lv, Xia; Qu, Hengyan; Li, Dandan; Hu, Mengmeng; Guo, Wenzhi; Ge, Guangbo; Dong, Ruihua

    2017-11-01

    UDP-glucuronosyltransferase 1A1 (UGT1A1) plays a key role in detoxification of many potentially harmful compounds and drugs. UGT1A1 inhibition may bring risks of drug-drug interactions (DDIs), hyperbilirubinemia and drug-induced liver injury. This study aimed to investigate and compare the inhibitory effects of icotinib and erlotinib against UGT1A1, as well as to evaluate their potential DDI risks via UGT1A1 inhibition. The results demonstrated that both icotinib and erlotinib are UGT1A1 inhibitors, but the inhibitory effect of icotinib on UGT1A1 is weaker than that of erlotinib. The IC 50 values of icotinib and erlotinib against UGT1A1-mediated NCHN- O -glucuronidation in human liver microsomes (HLMs) were 5.15 and 0.68 μmol/L, respectively. Inhibition kinetic analyses demonstrated that both icotinib and erlotinib were non-competitive inhibitors against UGT1A1-mediated glucuronidation of NCHN in HLMs, with the K i values of 8.55 and 1.23 μmol/L, respectively. Furthermore, their potential DDI risks via UGT1A1 inhibition were quantitatively predicted by the ratio of the areas under the concentration-time curve (AUC) of NCHN. These findings are helpful for the medicinal chemists to design and develop next generation tyrosine kinase inhibitors with improved safety, as well as to guide reasonable applications of icotinib and erlotinib in clinic, especially for avoiding their potential DDI risks via UGT1A1 inhibition.

  16. Statin Lactonization by Uridine 5'-Diphospho-glucuronosyltransferases (UGTs).

    PubMed

    Schirris, Tom J J; Ritschel, Tina; Bilos, Albert; Smeitink, Jan A M; Russel, Frans G M

    2015-11-02

    Statins are cholesterol-lowering drugs that have proven to be effective in lowering the risk of major cardiovascular events. Although well tolerated, statin-induced myopathies are the most common side effects. Compared to their pharmacologically active acid form, statin lactones are more potent inducers of toxicity. They can be formed by glucuronidation mediated by uridine 5'-diphospho-glucuronosyltransferases (UGTs), but a systematic characterization of subtype specificity and kinetics of lactonization is lacking. Here, we demonstrate for six clinically relevant statins that only UGT1A1, 1A3, and 2B7 contribute significantly to their lactonization. UGT1A3 appeared to have the highest lactonization capacity with marked differences in statin conversion rates: pitavastatin ≫ atorvastatin > cerivastatin > lovastatin > rosuvastatin (simvastatin not converted). Using in silico modeling we could identify a probable statin interaction region in the UGT binding pocket. Polymorphisms in these regions of UGT1A1, 1A3, and 2B7 may be a contributing factor in statin-induced myopathies, which could be used in personalization of statin therapy with improved safety.

  17. Identification of Human UDP-Glucuronosyltransferase 1A4 as the Major Isozyme Responsible for the Glucuronidation of 20(S)-Protopanaxadiol in Human Liver Microsomes

    PubMed Central

    Li, Jia; He, Chunyong; Fang, Lianxiang; Yang, Li; Wang, Zhengtao

    2016-01-01

    20(S)-protopanaxadiol (PPD), one of the representative aglycones of ginsenosides, has a broad spectrum of pharmacological activities. Although phase I metabolism has been investigated extensively, information regarding phase II metabolism of this compound remains to be elucidated. Here, a glucuronidated metabolite of PPD in human liver microsomes (HLMs) and rat liver microsomes (RLMs) was unambiguously identified as PPD-3-O-β-d-glucuronide by nuclear magnetic resonance spectroscopy and high resolution mass spectrometry. The chemical inhibition and recombinant human UDP-Glucuronosyltransferase (UGT) isoforms assay showed that the PPD glucuronidation was mainly catalyzed by UGT1A4 in HLM, whereas UGT1A3 showed weak catalytic activity. In conclusion, PPD-3-O-β-d-glucuronide was first identified as the principal glucuronidation metabolite of PPD in HLMs, which was catalyzed by UGT1A4. PMID:27005621

  18. UDP-Glucuronosyltransferase Expression in Mouse Liver Is Increased in Obesity- and Fasting-Induced Steatosis

    PubMed Central

    Xu, Jialin; Kulkarni, Supriya R.; Li, Liya

    2012-01-01

    UDP-glucuronosyltransferases (Ugt) catalyze phase II conjugation reactions with glucuronic acid, which enhances chemical polarity and the elimination from the body. Few studies have addressed whether Ugt expression and activity are affected by liver disease, such as steatosis. The purpose of this study was to determine whether steatosis induced by obesity or fasting could affect liver Ugt mRNA expression and activity. Male C57BL/6J and Lepob/ob (ob/ob) mice were fed ad libitum or food was withheld for 24 h. In steatotic livers of ob/ob mice, Ugt1a1, -1a6, -1a9, -2a3, -3a1, and -3a2 mRNA expression increased. Fasting, which also induced steatosis, increased hepatic Ugt1a1, -1a6, -1a7, -1a9, -2b1, -2b5, -2a3, -3a1, and -3a2 mRNA expression in mouse liver. Likewise, acetaminophen glucuronidation increased by 47% in hepatic microsomes from ob/ob mice compared with that in C57BL/6J mice, but not after fasting. In both steatosis models, Ugt induction was accompanied by increased aryl hydrocarbon receptor, constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor (PPAR)-α, pregnane X receptor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and peroxisome proliferator-activated receptor-γ coactivator-1α mRNA expression. In addition, fasting increased CAR, PPAR, and Nrf2 binding activity. The work points to hepatic triglyceride concentrations corresponding with nuclear receptor and Ugt expression. The findings indicate that steatosis significantly alters hepatic Ugt expression and activity, which could have a significant impact on determining circulating hormone levels, drug efficacy, and environmental chemical clearance. PMID:22031624

  19. UDP-glucuronosyltransferase expression in mouse liver is increased in obesity- and fasting-induced steatosis.

    PubMed

    Xu, Jialin; Kulkarni, Supriya R; Li, Liya; Slitt, Angela L

    2012-02-01

    UDP-glucuronosyltransferases (Ugt) catalyze phase II conjugation reactions with glucuronic acid, which enhances chemical polarity and the elimination from the body. Few studies have addressed whether Ugt expression and activity are affected by liver disease, such as steatosis. The purpose of this study was to determine whether steatosis induced by obesity or fasting could affect liver Ugt mRNA expression and activity. Male C57BL/6J and Lep(ob/ob) (ob/ob) mice were fed ad libitum or food was withheld for 24 h. In steatotic livers of ob/ob mice, Ugt1a1, -1a6, -1a9, -2a3, -3a1, and -3a2 mRNA expression increased. Fasting, which also induced steatosis, increased hepatic Ugt1a1, -1a6, -1a7, -1a9, -2b1, -2b5, -2a3, -3a1, and -3a2 mRNA expression in mouse liver. Likewise, acetaminophen glucuronidation increased by 47% in hepatic microsomes from ob/ob mice compared with that in C57BL/6J mice, but not after fasting. In both steatosis models, Ugt induction was accompanied by increased aryl hydrocarbon receptor, constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor (PPAR)-α, pregnane X receptor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and peroxisome proliferator-activated receptor-γ coactivator-1α mRNA expression. In addition, fasting increased CAR, PPAR, and Nrf2 binding activity. The work points to hepatic triglyceride concentrations corresponding with nuclear receptor and Ugt expression. The findings indicate that steatosis significantly alters hepatic Ugt expression and activity, which could have a significant impact on determining circulating hormone levels, drug efficacy, and environmental chemical clearance.

  20. The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: Animal-plant arms-race and co-evolution.

    PubMed

    Bock, Karl Walter

    2016-01-01

    UDP-glycosyltransferases (UGTs) are major phase II enzymes of a detoxification system evolved in all kingdoms of life. Lipophilic endobiotics such as hormones and xenobiotics including phytoalexins and drugs are conjugated by vertebrates mainly with glucuronic acid, by invertebrates and plants mainly with glucose. Plant-herbivore arms-race has been the major driving force for evolution of large UGT and other enzyme superfamilies. The UGT superfamily is defined by a common protein structure and signature sequence of 44 amino acids responsible for binding the UDP moiety of the sugar donor. Plants developed toxic phytoalexins stored as glucosides. Upon herbivore attack these conjugates are converted to highly reactive compounds. In turn, animals developed large families of UGTs in their intestine and liver to detoxify these phytoalexins. Interestingly, phytoalexins, exemplified by quercetin glucuronides and glucosinolate-derived isocyanates, are known insect attractant pigments in plants, and antioxidants, anti-inflammatory and chemopreventive compounds of humans. It is to be anticipated that phytochemicals may provide a rich source in beneficial drugs. Copyright © 2015. Published by Elsevier Inc.

  1. High Expression of UGT1A1/1A6 in Monkey Small Intestine: Comparison of Protein Expression Levels of Cytochromes P450, UDP-Glucuronosyltransferases, and Transporters in Small Intestine of Cynomolgus Monkey and Human.

    PubMed

    Akazawa, Takanori; Uchida, Yasuo; Miyauchi, Eisuke; Tachikawa, Masanori; Ohtsuki, Sumio; Terasaki, Tetsuya

    2018-01-02

    Cynomolgus monkeys have been widely used for the prediction of drug absorption in humans. The purpose of this study was to clarify the regional protein expression levels of cytochromes P450 (CYPs), UDP-glucuronosyltransferases (UGTs), and transporters in small intestine of cynomolgus monkey using liquid chromatography-tandem mass spectrometry, and to compare them with the corresponding levels in human. UGT1A1 in jejunum and ileum were >4.57- and >3.11-fold and UGT1A6 in jejunum and ileum were >16.1- and >8.57-fold, respectively, more highly expressed in monkey than in human. Also, jejunal expression of monkey CYP3A8 (homologue of human CYP3A4) was >3.34-fold higher than that of human CYP3A4. Among apical drug efflux transporters, BCRP showed the most abundant expression in monkey and human, and the expression levels of BCRP in monkey and human were >1.74- and >1.25-fold greater than those of P-gp and >2.76- and >4.50-fold greater than those of MRP2, respectively. These findings should be helpful to understand species differences of the functions of CYPs, UGTs, and transporters between monkey and human. The UGT1A1/1A6 data would be especially important because it is difficult to identify isoforms responsible for species differences of intestinal glucuronidation by means of functional studies due to overlapping substrate specificity.

  2. Recent advances in the in silico modelling of UDP glucuronosyltransferase substrates.

    PubMed

    Sorich, Michael J; Smith, Paul A; Miners, John O; Mackenzie, Peter I; McKinnon, Ross A

    2008-01-01

    UDP glucurononosyltransferases (UGT) are a superfamily of enzymes that catalyse the conjugation of a range of structurally diverse drugs, environmental and endogenous chemicals with glucuronic acid. This process plays a significant role in the clearance and detoxification of many chemicals. Over the last decade the regulation and substrate profiles of UGT isoforms have been increasingly characterised. The resulting data has facilitated the prototyping of ligand based in silico models capable of predicting, and gaining insights into, binding affinity and the substrate- and regio- selectivity of glucuronidation by UGT isoforms. Pharmacophore modelling has produced particularly insightful models and quantitative structure-activity relationships based on machine learning algorithms result in accurate predictions. Simple structural chemical descriptors were found to capture much of the chemical information relevant to UGT metabolism. However, quantum chemical properties of molecules and the nucleophilic atoms in the molecule can enhance both the predictivity and chemical intuitiveness of structure-activity models. Chemical diversity analysis of known substrates has shown some bias towards chemicals with aromatic and aliphatic hydroxyl groups. Future progress in in silico development will depend on larger and more diverse high quality metabolic datasets. Furthermore, improved protein structure data on UGTs will enable the application of structural modelling techniques likely leading to greater insight into the binding and reactive processes of UGT catalysed glucuronidation.

  3. Traditional Herbal Formulas to as Treatments for Musculoskeletal Disorders: Their Inhibitory Effects on the Activities of Human Microsomal Cytochrome P450s and UDP-glucuronosyltransferases

    PubMed Central

    Jin, Seong Eun; Seo, Chang-Seob; Shin, Hyeun-Kyoo; Ha, Hyekyung

    2016-01-01

    Objective: The aim of this study was to assess the influence of traditional herbal formulas, including Bangpungtongseong-san (BPTSS; Fangfengtongsheng-san, Bofu-tsusho-san), Ojeok-san (OJS; Wuji-san, Goshaku-san), and Oyaksungi-san (OYSGS; Wuyaoshungi-san, Uyakujyunki-san), on the activities of the human cytochrome P450s (CYP450s) and UDP-glucuronosyltransferases (UGTs), which are drug-metabolizing enzymes. Materials and Methods: The activities of the major human CYP450 isozymes (CYP1A2, CYP3A4, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP2E1) and UGTs (UGT1A1, UGT1A4, and UGT2B7) were investigated using in vitro fluorescence-based and luminescence-based enzyme assays, respectively. The inhibitory effects of the herbal formulas were characterized, and their IC50 values were determined. Results: BPTSS inhibited the activities of CYP1A2, CYP2C19, CYP2E1, and UGT1A1 while it exerted relatively weak inhibition on CYP2B6, CYP2C9, CYP2D6, and CYP3A4. BPTSS also negligibly inhibited the activities of UGT1A4 and UGT2B7, with IC50 values in the excess of 1000 μg/mL. OJS and OYSGS inhibited the activity of CYP2D6, whereas they exhibited no inhibition of the UGT1A4 activity at doses <1000 μg/mL. In addition, OJS inhibited the CYP1A2 activity but exerted a relatively weak inhibition on the activities of CYP2C9, CYP2C19, CYP2E1, and CYP3A4. Conversely, OJS negligibly inhibited the activities of CYP2B6, UGT1A1, and UGT2B7 with IC50 values in excess of 1000 μg/mL. OYSGS weakly inhibited the activities of CYP1A2, CYP2C19, CYP2E1, CYP3A4, and UGT1A1, with a negligible inhibition on the activities of CYP2B6, CYP2C9, and UGT2B7, with IC50 values in excess of 1000 μg/mL. Conclusions: These results provide information regarding the safety and effectiveness of BPTSS, OJS, and OYSGS when combined with conventional drugs. SUMMARY Bangpungtongseong-san inhibited the activities of human microsomal CYP1A2, CYP2C19, CYP2E1, and UGT1A1, with a negligibly inhibition on the activities of CYP2B6

  4. Metabolic Disposition of Luteolin Is Mediated by the Interplay of UDP-Glucuronosyltransferases and Catechol-O-Methyltransferases in Rats.

    PubMed

    Wang, Liping; Chen, Qingwei; Zhu, Lijun; Li, Qiang; Zeng, Xuejun; Lu, Linlin; Hu, Ming; Wang, Xinchun; Liu, Zhongqiu

    2017-03-01

    Luteolin partially exerts its biologic effects via its metabolites catalyzed by UDP-glucuronosyltransferases (UGTs) and catechol-O-methyltransferases (COMTs). However, the interplay of UGTs and COMTs in mediating luteolin disposition has not been well clarified. In this study, we investigated the glucuronidation and methylation pathways of luteolin mediated by the interplay of UGTs and COMTs in vivo and in vitro. A total of nine luteolin metabolites was detected in rat plasma and bile by liquid chromatography-tandem mass spectrometry, namely, three glucuronides, two methylated metabolites, and four methylated glucuronides. Luteolin-3'-glucuronide (Lut-3'-G) exhibited the highest systemic exposure among these metabolites. Kinetics studies in rat liver S9 fractions suggested two pathways, as follows: 1) Luteolin was glucuronidated to luteolin-7-glucuronide, luteolin-4'-glucuronide, and Lut-3'-G by UGTs, and then Lut-7-G was methylated to chrysoeriol-7-glucuronide and diosmetin-7-glucuronide by COMTs. 2) Alternatively, luteolin was methylated to chrysoeriol and diosmetin by COMTs, and then chrysoeriol and diosmetin were glucuronidated by UGTs to their respective glucuronides. The methylation rate of luteolin was significantly increased by the absence of glucuronidation, whereas the glucuronidation rate was increased by the absence of methylation, but to a lesser extent. In conclusion, two pathways mediated by the interplay of UGTs and COMTs are probably involved in the metabolic disposition of luteolin. The glucuronidation and methylation of luteolin compensate for each other, although glucuronidation is the predominant pathway. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Rapid prediction of chemical metabolism by human UDP-glucuronosyltransferase isoforms using quantum chemical descriptors derived with the electronegativity equalization method.

    PubMed

    Sorich, Michael J; McKinnon, Ross A; Miners, John O; Winkler, David A; Smith, Paul A

    2004-10-07

    This study aimed to evaluate in silico models based on quantum chemical (QC) descriptors derived using the electronegativity equalization method (EEM) and to assess the use of QC properties to predict chemical metabolism by human UDP-glucuronosyltransferase (UGT) isoforms. Various EEM-derived QC molecular descriptors were calculated for known UGT substrates and nonsubstrates. Classification models were developed using support vector machine and partial least squares discriminant analysis. In general, the most predictive models were generated with the support vector machine. Combining QC and 2D descriptors (from previous work) using a consensus approach resulted in a statistically significant improvement in predictivity (to 84%) over both the QC and 2D models and the other methods of combining the descriptors. EEM-derived QC descriptors were shown to be both highly predictive and computationally efficient. It is likely that EEM-derived QC properties will be generally useful for predicting ADMET and physicochemical properties during drug discovery.

  6. Effect of UDP-Glucuronosyltransferase (UGT) 1A Polymorphism (rs8330 and rs10929303) on Glucuronidation Status of Acetaminophen

    PubMed Central

    Tahir, Imtiaz Mahmood; Iqbal, Tahira; Saleem, Sadaf; Perveen, Sofia; Farooqi, Aboubakker

    2017-01-01

    Interindividual variability in polymorphic uridine diphosphate-glucuronosyltransferase 1A1 (UGT1A1) ascribed to genetic diversity is associated with relative glucuronidation level among individuals. The present research was aimed to study the effect of 2 important single nucleotide polymorphisms (SNPs; rs8330 and rs10929303) of UGT1A1 gene on glucuronidation status of acetaminophen in healthy volunteers (n = 109). Among enrolled volunteers, 54.13% were male (n = 59) and 45.87% were female (n = 50). The in vivo activity of UGT1A1 was investigated by high-performance liquid chromatography-based analysis of glucuronidation status (ie, acetaminophen and acetaminophen glucuronide) in human volunteers after oral intake of a single dose (1000 mg) of acetaminophen. The TaqMan SNP genotyping assay was used for UGT1A1 genotyping. The wild-type genotype (C/C) was observed the most frequent one for both SNPs (rs8330 and rs10929303) and associated with fast glucuronidator phenotypes. The distribution of variant genotype (G/G) for SNP rs8330 was observed in 5% of male and 8% of the female population; however, for SNP rs10929303, the G/G genotype was found in 8% of both genders. A trimodal distribution (fast, intermediate, and slow) based on phenotypes was observed. Among the male participants, the glucuronidation phenotypes were observed as 7% slow, 37% intermediate, and 56% fast glucuronidators; however, these findings for the females were slightly different as 8%, 32%, and 60% respectively. The k-statistics revealed a compelling evidence for good concordance between phenotype and genotype with a k value of 1.00 for SNP rs8330 and 0.966 for SNP rs10929303 in our population. PMID:28932176

  7. Characterization of UDP-glucuronosyltransferase genes and their possible roles in multi-insecticide resistance in Plutella xylostella (L.).

    PubMed

    Li, Xiuxia; Shi, Haiyan; Gao, Xiwu; Liang, Pei

    2018-03-01

    Uridine diphosphate-glucuronosyltransferases (UGTs), as multifunctional detoxification enzymes, play important roles in the biotransformation of various compounds. However, their roles in insecticide resistance are still unclear. This study presents a genome-wide identification of the UGTs in diamondback moth, Plutella xylostella (L.), a notorious insect pest of cruciferous crops worldwide. The possible roles of these UGTs in insecticide resistance were evaluated. A total of 21 putative UGTs in P. xylostella were identified. Quantitative real-time polymerase chain reaction (PCR)-based analyses showed that all the UGT genes were expressed in all tested developmental stages and tissues. Bioassay results indicated that a field-collected population (BL) was resistant to 9 of 10 commonly used insecticides, and 10 of 21 UGT mRNAs were upregulated in the BL population. Exposure to the LC 50 of each insecticide affected the expression of most UGT genes. Among these, the expression levels of UGT40V1, UGT45B1 and UGT33AA4 were induced by more than five insecticides, whereas indoxacarb and metaflumizone significantly repressed the expression of most UGT genes. UGTs may play important roles in the metabolism of commonly used insecticides in P. xylostella. These findings provide valuable information for further research on the physiological and toxicological functions of specific UGT genes in P. xylostella. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Identification and characterization of naturally occurring inhibitors against UDP-glucuronosyltransferase 1A1 in Fructus Psoraleae (Bu-gu-zhi)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin-Xin; Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023; Lv, Xia

    As an edible traditional Chinese herb, Fructus psoraleae (FP) has been widely used in Asia for the treatment of vitiligo, bone fracture and osteoporosis. Several cases on markedly elevated bilirubin and acute liver injury following administration of FP and its related proprietary medicine have been reported, but the mechanism in FP-associated toxicity has not been well investigated yet. This study aimed to investigate the inhibitory effects of FP extract and its major constituents against human UDP-glucuronosyltransferase 1A1 (UGT1A1), the key enzyme responsible for metabolic elimination of bilirubin. To this end, N-(3-carboxy propyl)-4-hydroxy-1,8-naphthalimide (NCHN), a newly developed specific fluorescent probe formore » UGT1A1, was used to evaluate the inhibitory effects of FP extract or its fractions in human liver microsomes (HLM), while LC-UV fingerprint and UGT1A1 inhibition profile were combined to identity and characterize the naturally occurring inhibitors of UGT1A1 in FP. Our results demonstrated that both the extract of FP and five major components of FP displayed evident inhibitory effects on UGT1A1 in HLM. Among these five identified naturally occurring inhibitors, bavachin and corylifol A were found to be strong inhibitors of UGT1A1 with the inhibition kinetic parameters (K{sub i}) values lower than 1 μM, while neobavaisoflavone, isobavachalcone, and bavachinin displayed moderate inhibitory effects against UGT1A1 in HLM, with the K{sub i} values ranging from 1.61 to 9.86 μM. These findings suggested that FP contains natural compounds with potent inhibitory effects against human UGT1A1, which may be one of the important reasons for triggering FP-associated toxicity, including elevated bilirubin levels and liver injury. - Graphical abstract: LC-UV fingerprint and UGT1A1 inhibition profiles were combined to identity and characterize the natural inhibitors of UGT1A1 in F. psoraleae for the first time. Five major components in F. psoraleae were

  9. Isothiocyanates induce UGT1A1 in humanized UGT1 mice in a CAR dependent fashion that is highly dependent upon oxidative stress.

    PubMed

    Yoda, Emiko; Paszek, Miles; Konopnicki, Camille; Fujiwara, Ryoichi; Chen, Shujuan; Tukey, Robert H

    2017-04-19

    Isothiocyanates, such as phenethyl isothiocyanate (PEITC), are formed following the consumption of cruciferous vegetables and generate reactive oxygen species (ROS) that lead to the induction of cytoprotective genes such as the UDP-glucuronosyltransferases (UGTs). The induction of ROS activates the Nrf2-Keap 1 pathway leading to the induction of genes through antioxidant response elements (AREs). UGT1A1, the sole enzyme responsible for the metabolism of bilirubin, can be induced following activation of Nrf2. When neonatal humanized UGT1 (hUGT1) mice, which exhibit severe levels of total serum bilirubin (TSB) because of a developmental delay in expression of the UGT1A1 gene, were treated with PEITC, TSB levels were reduced. Liver and intestinal UGT1A1 were induced, along with murine CYP2B10, a consensus CAR target gene. In both neonatal and adult hUGT1/Car -/- mice, PEITC was unable to induce CYP2B10. A similar result was observed following analysis of UGT1A1 expression in liver. However, TSB levels were still reduced in hUGT1/Car -/- neonatal mice because of ROS induction of intestinal UGT1A1. When oxidative stress was blocked by exposing mice to N-acetylcysteine, induction of liver UGT1A1 and CYP2B10 by PEITC was prevented. Thus, new findings in this report link an important role in CAR activation that is dependent upon oxidative stress.

  10. Identification of UGT2B9*2 and UGT2B33 isolated from female rhesus monkey liver.

    PubMed

    Dean, Brian; Arison, Byron; Chang, Steve; Thomas, Paul E; King, Christopher

    2004-06-01

    Two UDP-glucuronosyltransferases (UGT2B9(*)2 and UGT2B33) have been isolated from female rhesus monkey liver. Microsomal preparations of the cell lines expressing the UGTs catalyzed the glucuronidation of the general substrate 7-hydroxy-4-(trifluoromethyl)coumarin in addition to selected estrogens (beta-estradiol and estriol) and opioids (morphine, naloxone, and naltrexone). UGT2B9(*)2 displayed highest efficiency for beta-estradiol-17-glucuronide production and did not catalyze the glucuronidation of naltrexone. UGT2B33 displayed highest efficiency for estriol and did not catalyze the glucuronidation of beta-estradiol. UGT2B9(*)2 was found also to catalyze the glucuronidation of 4-hydroxyestrone, 16-epiestriol, and hyodeoxycholic acid, while UGT2B33 was capable of conjugating 4-hydroxyestrone, androsterone, diclofenac, and hyodeoxycholic acid. Three glucocorticoids (cortisone, cortisol, and corticosterone) were not substrates for glucuronidation by liver or kidney microsomes or any expressed UGTs. Our current data suggest the use of beta-estradiol-3-glucuronidation, beta-estradiol-17-glucuronidation, and estriol-17-glucuronidation to assay UGT1A01, UGT2B9(*)2, and UGT2B33 activity in rhesus liver microsomes, respectively.

  11. Potent and selective inhibition of magnolol on catalytic activities of UGT1A7 and 1A9.

    PubMed

    Zhu, Liangliang; Ge, Guangbo; Liu, Yong; He, Guiyuan; Liang, Sicheng; Fang, Zhongze; Dong, Peipei; Cao, Yunfeng; Yang, Ling

    2012-10-01

    1. Human exposure to magnolol can reach a high dose in daily life. Our previous studies indicated that magnolol showed high affinities to several UDP-glucuronosyltransferases (UGTs) This study was designed to examine the in vitro inhibitory effects of magnolol on UGTs, and further to evaluate the possibility of the in vivo inhibition that might happen. 2. Assays with recombinant UGTs and human liver microsomes (HLM) indicated that magnolol (10 µM) can selectively inhibit activities of UGT1A9 and extra-hepatic UGT1A7. Inhibition of magnolol on UGT1A7 followed competitive inhibition mechanism, while the inhibition on UGT1A9 obeyed either competitive or mixed inhibition mechanism, depending on substrates. The K(i) values for UGT1A7 and 1A9 are all in nanomolar ranges, lower than possible magnolol concentrations in human gut lumen and blood, indicating the in vivo inhibition on these two enzymes would likely occur. 3. In conclusion, UGT1A7 and 1A9 can be strongly inhibited by magnolol, raising the alarm for safe application of magnolol and traditional Chinese medicines containing magnolol. Additionally, given that UGT1A7 is an extra-hepatic enzyme, magnolol can serve as a selective UGT1A9 inhibitor that will act as a new useful tool in future hepatic glucuronidation phenotyping.

  12. UDP-Glucuronosyltransferase 1A Compromises Intracellular Accumulation and Anti-Cancer Effect of Tanshinone IIA in Human Colon Cancer Cells

    PubMed Central

    Liu, Miao; Wang, Qiong; Liu, Fang; Cheng, Xuefang; Wu, Xiaolan; Wang, Hong; Wu, Mengqiu; Ma, Ying; Wang, Guangji; Hao, Haiping

    2013-01-01

    Background and Purpose NAD(P)H: quinone oxidoreductase 1 (NQO1) mediated quinone reduction and subsequent UDP-glucuronosyltransferases (UGTs) catalyzed glucuronidation is the dominant metabolic pathway of tanshinone IIA (TSA), a promising anti-cancer agent. UGTs are positively expressed in various tumor tissues and play an important role in the metabolic elimination of TSA. This study aims to explore the role of UGT1A in determining the intracellular accumulation and the resultant apoptotic effect of TSA. Experimental Approach We examined TSA intracellular accumulation and glucuronidation in HT29 (UGT1A positive) and HCT116 (UGT1A negative) human colon cancer cell lines. We also examined TSA-mediated reactive oxygen species (ROS) production, cytotoxicity and apoptotic effect in HT29 and HCT116 cells to investigate whether UGT1A levels are directly associated with TSA anti-cancer effect. UGT1A siRNA or propofol, a UGT1A9 competitive inhibitor, was used to inhibit UGT1A expression or UGT1A9 activity. Key Results Multiple UGT1A isoforms are positively expressed in HT29 but not in HCT116 cells. Cellular S9 fractions prepared from HT29 cells exhibit strong glucuronidation activity towards TSA, which can be inhibited by propofol or UGT1A siRNA interference. TSA intracellular accumulation in HT29 cells is much lower than that in HCT116 cells, which correlates with high expression levels of UGT1A in HT29 cells. Consistently, TSA induces less intracellular ROS, cytotoxicity, and apoptotic effect in HT29 cells than those in HCT116 cells. Pretreatment of HT29 cells with UGT1A siRNA or propofol can decrease TSA glucuronidation and simultaneously improve its intracellular accumulation, as well as enhance TSA anti-cancer effect. Conclusions and Implications UGT1A can compromise TSA cytotoxicity via reducing its intracellular exposure and switching the NQO1-triggered redox cycle to metabolic elimination. Our study may shed a light in understanding the cellular pharmacokinetic and

  13. Conditional immortalization of Gunn rat hepatocytes: an ex vivo model for evaluating methods for bilirubin-UDP-glucuronosyltransferase gene transfer.

    PubMed

    Fox, I J; Chowdhury, N R; Gupta, S; Kondapalli, R; Schilsky, M L; Stockert, R J; Chowdhury, J R

    1995-03-01

    Viral vectors and protein carriers utilizing asialoglycoprotein receptor (ASGR)-mediated endocytosis are being developed to transfer genes for the correction of bilirubin-UDP-glucuronosyltransferase (bilirubin-UGT) deficiency. Ex vivo evaluation of these gene transfer vectors would be facilitated by a cell system that lacks bilirubin-UGT, but expresses differentiated liver functions, including ASGR. We immortalized primary Gunn rat hepatocytes by transduction with a recombinant Moloney murine leukemia virus expressing a thermolabile mutant SV40 large T antigen (tsA58). At 33 degrees C, the immortalized hepatocyte clones expressed SV40 large T antigen, synthesized DNA, and doubled in number every 2 to 3 days. At this temperature, differentiated hepatocyte markers, e.g., albumin, ASGR, and androsterone-UGT, were expressed at 5% to 10% of the levels found in primary hepatocytes maintained in culture for 24 hours. Glutathione-S-transferase Yp (GST-Yp), an oncofetal protein, was expressed in these cells at 33 degrees C, but was undetectable in primary hepatocytes. In contrast, when the cells were cultured at 39 degrees C or 37 degrees C, the large T antigen was degraded, DNA synthesis and cell growth stopped, and morphologic characteristics of differentiated hepatocytes were observed. The expression of albumin, ASGR, and androsterone-UGT, and their corresponding mRNAs, increased to 25% to 40% of the level in primary hepatocytes, whereas GST-Yp expression decreased. Functionality of ASGR was demonstrated by internalization of Texas red-labeled asialoorosomucoid, and binding and degradation of 125I-asialoorosomucoid. After liposome-mediated transfer of a plasmid containing the coding region of human bilirubin-UGT1, driven by the SV40 large T promoter, active human bilirubin-UGT1 was expressed in these cells. The immortalized cells were not tumorigenic after transplantation into severe combined immunodeficiency mice. These conditionally immortalized cells will be useful

  14. Upregulation of UDP-Glucuronosyltransferases 1a1 and 1a7 Are Involved in Altered Puerarin Pharmacokinetics in Type II Diabetic Rats.

    PubMed

    Dong, Songtao; Zhang, Maofan; Niu, Huimin; Jiang, Kunyu; Jiang, Jialei; Ma, Yinglin; Wang, Xin; Meng, Shengnan

    2018-06-20

    Puerarin is an isoflavonoid extracted from Pueraria lobata roots, and displays a broad range of pharmacological activities, including antidiabetic activity. However, information about the pharmacokinetics of puerarin in diabetics is scarce. This study was conducted to investigate the difference in pharmacokinetic effects of puerarin in normal rats and rats with diabetes mellitus (DM), and the mechanism involved. DM was induced by a combined high-fat diet (HFD) and streptozotocin (STZ) injection. Plasma concentrations of puerarin in DM, HFD, and control rats were determined after intravenous (20 mg/kg) and oral administration (500 mg/kg) of puerarin, and pharmacokinetic parameters were estimated. The messenger RNA (mRNA) and protein expression levels of Ugt1a1 and Ugt1a7 in rat livers and intestines were measured using qRT-PCR and western blot, respectively. The area under the concentration⁻time curve and the clearance of puerarin in the DM rats statistically differed from those in the control rats ( p <0.05) with both administration routes. The hepatic and intestinal gene and protein expressions of Ugt1a1 and Ugt1a7 were significantly increased in the DM rats ( p <0.05). Therefore, the metabolic changes in diabetes could alter the pharmacokinetics of puerarin. This change could be caused by upregulated uridine diphosphate (UDP)-glucuronosyltransferase activity, which may enhance puerarin clearance, and alter its therapeutic effects.

  15. Diabetes mellitus reduces activity of human UDP-glucuronosyltransferase 2B7 in liver and kidney leading to decreased formation of mycophenolic acid acyl-glucuronide metabolite.

    PubMed

    Dostalek, Miroslav; Court, Michael H; Hazarika, Suwagmani; Akhlaghi, Fatemeh

    2011-03-01

    Mycophenolic acid (MPA) is an immunosuppressive agent commonly used after organ transplantation. Altered concentrations of MPA metabolites have been reported in diabetic kidney transplant recipients, although the reason for this difference is unknown. We aimed to compare MPA biotransformation and UDP-glucuronosyltransferase (UGT) expression and activity between liver (n = 16) and kidney (n = 8) from diabetic and nondiabetic donors. Glucuronidation of MPA, as well as the expression and probe substrate activity of UGTs primarily responsible for MPA phenol glucuronide (MPAG) formation (UGT1A1 and UGT1A9), and MPA acyl glucuronide (AcMPAG) formation (UGT2B7), was characterized. We have found that both diabetic and nondiabetic human liver microsomes and kidney microsomes formed MPAG with similar efficiency; however, AcMPAG formation was significantly lower in diabetic samples. This finding is supported by markedly lower glucuronidation of the UGT2B7 probe zidovudine, UGT2B7 protein, and UGT2B7 mRNA in diabetic tissues. UGT genetic polymorphism did not explain this difference because UGT2B7*2 or *1c genotype were not associated with altered microsomal UGT2B7 protein levels or AcMPAG formation. Furthermore, mRNA expression and probe activities for UGT1A1 or UGT1A9, both forming MPAG but not AcMPAG, were comparable between diabetic and nondiabetic tissues, suggesting the effect may be specific to UGT2B7-mediated AcMPAG formation. These findings suggest that diabetes mellitus is associated with significantly reduced UGT2B7 mRNA expression, protein level, and enzymatic activity of human liver and kidney, explaining in part the relatively low circulating concentrations of AcMPAG in diabetic patients.

  16. Over-expression of UDP-glycosyltransferase gene UGT2B17 is involved in chlorantraniliprole resistance in Plutella xylostella (L.).

    PubMed

    Li, Xiuxia; Zhu, Bin; Gao, Xiwu; Liang, Pei

    2017-07-01

    UDP-glycosyltransferases (UGTs) are phase II detoxification enzymes widely distributed within living organisms. Their involvement in the biotransformation of various lipophilic endogenous compounds and phytoalexins in insects has been documented. However, the roles of this enzyme family in insecticide resistance have rarely been reported. Here, the functions of UGTs in chlorantraniliprole resistance in Plutella xylostella were investigated. Treatment with sulfinpyrazone and 5-nitrouracil (both inhibitors of UGT enzymes) significantly increased the toxicity of chlorantraniliprole against the third instar larvae of P. xylostella. Among the 23 UGT transcripts examined, only UGT2B17 was found to be over-expressed (with a range from 30.7- to 77.3-fold) in all four chlorantraniliprole-resistant populations compared to the susceptible one (CHS). The knock-down of UGT2B17 by RNA interference (RNAi) dramatically increased the toxicity of chlorantraniliprole by 27.4% and 29.8% in the CHS and CHR (resistant) populations, respectively. In contrast, exposure to phenobarbital significantly increased the relative expression of UGT2B17 while decreasing the toxicity of chlorantraniliprole to the larvae by 14.0%. UGT2B17 is involved in the detoxification of chlorantraniliprole, and its over-expression may play an important role in chlorantraniliprole resistance in P. xylostella. These results shed some light upon and further our understanding of the mechanisms of diamide insecticide resistance in insects. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Comparison of the inhibitory effects of tolcapone and entacapone against human UDP-glucuronosyltransferases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Xia

    2016-06-15

    Tolcapone and entacapone are two potent catechol-O-methyltransferase (COMT) inhibitors with a similar skeleton and displaying similar pharmacological activities. However, entacapone is a very safe drug used widely in the treatment of Parkinson's disease, while tolcapone is only in limited use for Parkinson's patients and needs careful monitoring of hepatic functions due to hepatotoxicity. This study aims to investigate and compare the inhibitory effects of entacapone and tolcapone on human UDP-glucosyltransferases (UGTs), as well as to evaluate the potential risks from the view of drug-drug interactions (DDI). The results demonstrated that both tolcapone and entacapone exhibited inhibitory effects on UGT1A1, UGT1A7,more » UGT1A9 and UGT1A10. In contrast to entacapone, tolcapone exhibited more potent inhibitory effects on UGT1A1, UGT1A7, and UGT1A10, while their inhibitory potentials against UGT1A9 were comparable. It is noteworthy that the inhibition constants (K{sub i}) of tolcapone and entacapone against bilirubin-O-glucuronidation in human liver microsomes (HLM) are determined as 0.68 μM and 30.82 μM, respectively, which means that the inhibition potency of tolcapone on UGT1A1 mediated bilirubin-O-glucuronidation in HLM is much higher than that of entacapone. Furthermore, the potential risks of tolcapone or entacapone via inhibition of human UGT1A1 were quantitatively predicted by the ratio of the areas under the plasma drug concentration-time curve (AUC). The results indicate that tolcapone may result in significant increase in AUC of bilirubin or the drugs primarily metabolized by UGT1A1, while entacapone is unlikely to cause a significant DDI through inhibition of UGT1A1. - Highlights: • Tolcapone and entacapone exhibited preferential inhibition against UGT1A enzymes. • In contrast to entacapone, tolcapone exhibited more potent inhibitory effects on human UGT1A1, 1 A7 and 1 A10. • Tolcapone may lead to significant increase in AUC of bilirubin.

  18. Influence of substrates on the in vitro kinetics of steviol glucuronidation and interaction between steviol glycosides metabolites and UGT2B7.

    PubMed

    Chen, Jun-Ming; Xia, Yong-Mei; Zhang, Yan-Dong; Zhang, Tong-Tong; Peng, Qing-Rui; Fang, Yun

    2018-06-01

    Steviol glycosides, a natural sweetener, may perform bioactivities via steviol, their main metabolite in human digestion. The metabolising kinetics, i.e. glucuronidation kinetics and interaction between steviol glycosides or their metabolites and metabolising enzyme, are important for understanding the bioactivity and cytotoxicity. The present study investigated kinetics of steviol glucuronidation in human liver microsome and a recombinant human UDP-glucuronosyltransferases isomer, UGT2B7, along with molecular docking to analyse interaction between UGT2B7 and steviol or glucose. The active pocket of UGT2B7 is consisted of Arg352, Leu347, Lys343, Phe339, Tyr354, Lys355 and Leu353. The influence of stevioside, rebaudioside A, glucose and some chemotherapy reagents on the glucuronidation was also studied. The predicted hepatic clearence suggested that steviol could be classified as high-clearence drug. The steviol glycosides did not affect the glucuronidation of steviol notably.

  19. S-Naproxen and desmethylnaproxen glucuronidation by human liver microsomes and recombinant human UDP-glucuronosyltransferases (UGT): role of UGT2B7 in the elimination of naproxen

    PubMed Central

    Bowalgaha, Kushari; Elliot, David J; Mackenzie, Peter I; Knights, Kathleen M; Swedmark, Stellan; Miners, John O

    2005-01-01

    Aims To characterize the kinetics of S-naproxen (‘naproxen’) acyl glucuronidation and desmethylnaproxen acyl and phenolic glucuronidation by human liver microsomes and identify the human UGT isoform(s) catalysing these reactions. Methods Naproxen and desmethylnaproxen glucuronidation were investigated using microsomes from six and five livers, respectively. Human recombinant UGTs were screened for activity towards naproxen and desmethylnaproxen. Where significant activity was observed, kinetic parameters were determined. Naproxen and desmethylnaproxen glucuronides were measured by separate high-performance liquid chromatography methods. Results Naproxen acyl glucuronidation by human liver microsomes followed biphasic kinetics. Mean apparent Km values (±SD, with 95% confidence interval in parentheses) for the high- and low-affinity components were 29 ± 13 µm (16, 43) and 473 ± 108 µm (359, 587), respectively. UGT 1A1, 1A3, 1A6, 1A7, 1A8, 1A9, 1A10 and 2B7 glucuronidated naproxen. UGT2B7 exhibited an apparent Km (72 µm) of the same order as the high-affinity human liver microsomal activity, which was inhibited by the UGT2B7 selective ‘probe’ fluconazole. Although data for desmethylnaproxen phenolic glucuronidation by human liver microsomes were generally adequately fitted to either the single- or two-enzyme Michaelis–Menten equation, model fitting was inconclusive for desmethylnaproxen acyl glucuronidation. UGT 1A1, 1A7, 1A9 and 1A10 catalysed both the phenolic and acyl glucuronidation of desmethylnaproxen, while UGT 1A3, 1A6 and 2B7 formed only the acyl glucuronide. Atypical glucuronidation kinetics were variably observed for naproxen and desmethylnaproxen glucuronidation by the recombinant UGTs. Conclusion UGT2B7 is responsible for human hepatic naproxen acyl glucuronidation, which is the primary elimination pathway for this drug. PMID:16187975

  20. Effects of Curcuma xanthorrhiza Extracts and Their Constituents on Phase II Drug-metabolizing Enzymes Activity.

    PubMed

    Salleh, Nurul Afifah Mohd; Ismail, Sabariah; Ab Halim, Mohd Rohaimi

    2016-01-01

    Curcuma xanthorrhiza is a native Indonesian plant and traditionally utilized for a range of illness including liver damage, hypertension, diabetes, and cancer. The study determined the effects of C. xanthorrhiza extracts (ethanol and aqueous) and their constituents (curcumene and xanthorrhizol) on UDP-glucuronosyltransferase (UGT) and glutathione transferase (GST) activities. The inhibition studies were evaluated both in rat liver microsomes and in human recombinant UGT1A1 and UGT2B7 enzymes. p-nitrophenol and beetle luciferin were used as the probe substrates for UGT assay while 1-chloro-2,4-dinitrobenzene as the probe for GST assay. The concentrations of extracts studied ranged from 0.1 to 1000 μg/mL while for constituents ranged from 0.01 to 500 μM. In rat liver microsomes, UGT activity was inhibited by the ethanol extract (IC 50 =279.74 ± 16.33 μg/mL). Both UGT1A1 and UGT2B7 were inhibited by the ethanol and aqueous extracts with IC 50 values ranging between 9.59-22.76 μg/mL and 110.71-526.65 μg/Ml, respectively. Rat liver GST and human GST Pi-1 were inhibited by ethanol and aqueous extracts, respectively (IC 50 =255.00 ± 13.06 μg/mL and 580.80 ± 18.56 μg/mL). Xanthorrhizol was the better inhibitor of UGT1A1 (IC 50 11.30 ± 0.27 μM) as compared to UGT2B7 while curcumene did not show any inhibition. For GST, both constituents did not show any inhibition. These findings suggest that C. xanthorrhiza have the potential to cause herb-drug interaction with drugs that are primarily metabolized by UGT and GST enzymes. Findings from this study would suggest which of Curcuma xanthorrhiza extracts and constituents that would have potential interactions with drugs which are highly metabolized by UGT and GST enzymes. Further clinical studies can then be designed if needed to evaluate the in vivo pharmacokinetic relevance of these interactions Abbreviations Used : BSA: Bovine serum albumin, CAM: Complementary and alternative medicine, cDNA: Complementary

  1. In vitro inhibition of human UGT isoforms by ritonavir and cobicistat.

    PubMed

    Algeelani, Sara; Alam, Novera; Hossain, Md Amin; Mikus, Gerd; Greenblatt, David J

    2018-08-01

    1. Ritonavir and cobicistat are pharmacokinetic boosting agents used to increase systemic exposure to other antiretroviral therapies. The manufacturer's data suggests that cobicistat is a more selective CYP3A4 inhibitor than ritonavir. However, the inhibitory effect of ritonavir and cobicistat on human UDP glucuronosyltransferase (UGT) enzymes in Phase II metabolism is not established. This study evaluated the inhibition of human UGT isoforms by ritonavir versus cobicistat. 2. Acetaminophen and ibuprofen were used as substrates to evaluate the metabolic activity of the principal human UGTs. Metabolite formation rates were determined by HPLC analysis of incubates following in vitro incubation of index substrates with human liver microsomes (HLMs) at different concentrations of ritonavir or cobicistat. Probenecid and estradiol served as positive control inhibitors. 3. The 50% inhibitory concentrations (IC 50 ) of cobicistat and ritonavir were at least 50 µM, which substantially exceeds usual clinical plasma concentrations. Probenecid inhibited the glucuronidation of acetaminophen (IC 50 0.7 mM), but not glucuronidation of ibuprofen. At relatively high concentrations, estradiol inhibited ibuprofen glucuronidation (IC 50 17 µM). 4. Ritonavir and cobicistat are unlikely to produce clinically important drug interactions involving drugs metabolized to glucuronide conjugates by UGT1A1, 1A3, 1A6, 1A9, 2B4 and 2B7.

  2. Effects of UDP-glucuronosyltransferase (UGT) polymorphisms on the pharmacokinetics of febuxostat in healthy Chinese volunteers.

    PubMed

    Lin, Meihua; Liu, Jian; Zhou, Huili; Wu, Minglan; Lv, Duo; Huang, Yujie; Zheng, Yunliang; Shentu, Jianzhong; Wu, Lihua

    2017-02-01

    The pharmacokinetics (PKs) of febuxostat varies among individuals, while the main causes are still unknown. We investigated whether the polymorphisms of UGT1A1 and UGT1A3 played an important role in the disposition of the drug after oral administration of febuxostat tablet in Chinese subjects. A total of 42 healthy subjects were from two previous independent clinical bioequivalence (BE) trials of febuxostat, in which the same reference formulation (ULORIC ® tablet, 80 mg) was taken, and thus the PK data were combined for the evaluation of pharmacogenomic effect on febuxostat PKs. Our study clearly indicated that the area under the plasma concentration-time curve (AUC) in the heterozygote and homozygote of UGT1A1*6 (c.211G > A, rs4148323) was significantly higher than that in the wild-type. Meanwhile, the clearance (CL/F) exhibited a significant reduction by 22.2%. Interestingly, UGT1A1*28, in perfect linkage disequilibrium (LD) with UGT1A3*2a, significantly increased its clearance. These results indicate that UGT1A1*6 was an important factor influencing the drug disposition, thus providing a probable explanation for interindividual variation of febuxostat PKs in Chinese subjects. In addition, by considering of the different allele distribution of UGT1A1*6 and *28 in Eastern and Western populations, these findings might further interpret the ethnic difference of febuxostat PKs. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  3. Catechol-O-Methyltransferase and UDP-Glucuronosyltransferases in the Metabolism of Baicalein in Different Species.

    PubMed

    Zhang, Ruiya; Cui, Yonglei; Wang, Yan; Tian, Xiangge; Zheng, Lu; Cong, HaiJian; Wu, Bin; Huo, Xiaokui; Wang, Chao; Zhang, BaoJing; Wang, Xiaobo; Yu, Zhonghui

    2017-12-01

    Baicalein is the major bioactive flavonoid in some herb medicines and dietary plants; however, the detailed metabolism pathway of its major metabolite oroxylin A-7-O-β-D-glucuronide in human was not clear. It was important to illustrate the major metabolic enzymes that participate in its elimination for the clinic use of baicalein. We first revealed a two-step metabolism profile for baicalein and illustrated the combination of catechol-O-methyltransferase (COMT) and uridine diphosphate-glucuronosyltransferases (UGTs) in drug metabolism, further evaluated its bioactivity variation during drug metabolism. The metabolism profiles were systematically characterized in different human biology preparations; after then, the anti-inflammatory activities of metabolites were evaluated in LPS-induced RAW264.7 cell. The first-step metabolite of baicalein was isolated and identified as oroxylin A; soluble-bound COMT (S-COMT) was the major enzyme responsible for its biotransformation. Specially, position 108 mutation of S-COMT significantly decreases the elimination. Meantime, oroxylin A was rapidly metabolized by UGTs, UGT1A1, -1A3, -1A6, -1A7, -1A8, -1A9, and -1A10 which were involved in the glucuronidation. Considerable species differences were observed with 1060-fold K m (3.05 ± 1.86-3234 ± 475 μM) and 330-fold CL int (5.93-1973 μL/min/mg) variations for baicalein metabolism. Finally, the middle metabolite oroxylin A exhibited a potent anti-inflammatory activity with the IC 50 value of 28 μM. The detailed kinetic parameters indicated that COMT provide convenience for the next glucuronidation; monkey would be a preferred animal model for the preclinical investigation of baicalein. Importantly, oroxylin A should be reconsidered in evaluating baicalein efficacy against inflammatory diseases.

  4. Preparation of reference material for UGT1A1 (TA)n polymorphism genotyping.

    PubMed

    Mlakar, Vid; Mlakar, Simona Jurković; Marc, Janja; Ostanek, Barbara

    2014-08-05

    Gilbert's syndrome is one of the most common metabolic syndromes in the human population characterised by mild unconjugated hyperbilirubinemia resulting from reduced activity of the bilirubin conjugating enzyme UDP-glucuronosyltransferase (UGT1A1). Although Gilbert's syndrome is usually quite benign UGT1A1(TA)n genotyping is important in exclusion of more serious causes of hyperbilirubinemia and since it has significant implications for personalised medicine. The aim of our study was to develop plasmid based reference materials which could be used for UGT1A1(TA)n genotyping. Plasmids were generated using recombinant DNA technology and their number of repeats as well as the entire sequence verified by Sanger sequencing. Their suitability as reference materials was tested using sizing by capillary electrophoresis and denaturing high performance liquid chromatography. Plasmids containing all four different alleles (TA)5, (TA)6, (TA)7 and (TA)8 that are present in the human population as well as a plasmid with (TA)4 repeats were successfully generated. Prepared plasmid reference materials allow the creation of all possible UGT1A1(TA)n polymorphism genotypes and can serve as an efficient substitute for the human genomic DNA reference material in routine genotyping and in the development of new genotyping tests. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Association between liver failure and hepatic UDP-glucuronosyltransferase activity in dairy cows with follicular cysts.

    PubMed

    Tanemura, Kouichi; Ohtaki, Tadatoshi; Kuwahara, Yasushi; Tsumagari, Shigehisa

    2017-01-20

    Uridine 5'-diphospho-glucuronosyltransferase (UGT) liver activity was measured using estradiol-17β as a substrate in dairy cows with follicular cysts. The activity was significantly lower than that in dairy cows with normal estrous cycles (P<0.01). Liver disorders, such as fatty liver and hepatitis, were observed in half cows with follicular cysts, and liver UGT activity was lower than that in cows with normal estrus cycles. In addition, the liver UGT activity was significantly lower in dairy cows with follicular cysts without liver disorders than in dairy cows with normal estrous cycles. Therefore, the cows were divided into those with low, middle and high liver UGT activities, and liver disorder complication rates were investigated. The complication rate was significantly higher in the low- (78.1%) than in the middle- (22.2%) and high-level (8.3%) groups, suggesting that liver disorders are closely associated with the development of follicular cysts in dairy cows and that steroid hormone metabolism is delayed because of reduced liver UGT activity, resulting in follicular cyst formation. We conclude that reduced estradiol-17β glucuronidation in the liver and liver disorders are associated with follicular cyst occurrence in dairy cows.

  6. Expression of the human UDP-galactose transporter gene hUGT1 in tobacco plants' enhanced plant hardness.

    PubMed

    Abedi, Tayebeh; Khalil, Mohamed Farouk Mohamed; Koike, Kanae; Hagura, Yoshio; Tazoe, Yuma; Ishida, Nobuhiro; Kitamura, Kenji; Tanaka, Nobukazu

    2018-04-09

    We reported previously that tobacco plants transformed with the human UDP-galactose transporter 1 gene (hUGT1) had enhanced growth, displayed characteristic traits, and had an increased proportion of galactose (hyper-galactosylation) in the cell wall matrix polysaccharides. Here, we report that hUGT1-transgenic plants have an enhanced hardness. As determined by breaking and bending tests, the leaves and stems of hUGT1-transgenic plants were harder than those of control plants. Transmission electron microscopy revealed that the cell walls of palisade cells in leaves, and those of cortex cells and xylem fibers in stems of hUGT1-transgenic plants, were thicker than those of control plants. The increased amounts of total cell wall materials extracted from the leaves and stems of hUGT1-transgenic plants supported the increased cell wall thickness. In addition, the cell walls of the hUGT1-transgenic plants showed an increased lignin contents, which was supported by the up-regulation of lignin biosynthetic genes. Thus, the heterologous expression of hUGT1 enhanced the accumulation of cell wall materials, which was accompanied by the increased lignin content, resulting in the increased hardness of the leaves and stems of hUGT1-trangenic plants. The enhanced accumulation of cell wall materials might be related to the hyper-galactosylation of cell wall matrix polysaccharides, most notably arabinogalactan, because of the enhanced UDP-galactose transport from the cytosol to the Golgi apparatus by hUGT1, as suggested in our previous report. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Association between liver failure and hepatic UDP-glucuronosyltransferase activity in dairy cows with follicular cysts

    PubMed Central

    TANEMURA, Kouichi; OHTAKI, Tadatoshi; KUWAHARA, Yasushi; TSUMAGARI, Shigehisa

    2016-01-01

    Uridine 5’-diphospho-glucuronosyltransferase (UGT) liver activity was measured using estradiol-17β as a substrate in dairy cows with follicular cysts. The activity was significantly lower than that in dairy cows with normal estrous cycles (P<0.01). Liver disorders, such as fatty liver and hepatitis, were observed in half cows with follicular cysts, and liver UGT activity was lower than that in cows with normal estrus cycles. In addition, the liver UGT activity was significantly lower in dairy cows with follicular cysts without liver disorders than in dairy cows with normal estrous cycles. Therefore, the cows were divided into those with low, middle and high liver UGT activities, and liver disorder complication rates were investigated. The complication rate was significantly higher in the low- (78.1%) than in the middle- (22.2%) and high-level (8.3%) groups, suggesting that liver disorders are closely associated with the development of follicular cysts in dairy cows and that steroid hormone metabolism is delayed because of reduced liver UGT activity, resulting in follicular cyst formation. We conclude that reduced estradiol-17β glucuronidation in the liver and liver disorders are associated with follicular cyst occurrence in dairy cows. PMID:27666462

  8. Coupling of UDP-glucuronosyltransferases and multidrug resistance-associated proteins is responsible for the intestinal disposition and poor bioavailability of emodin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei; Feng, Qian; Li, Ye

    2012-12-15

    Emodin is a poorly bioavailable but promising plant-derived anticancer drug candidate. The low oral bioavailability of emodin is due to its extensive glucuronidation in the intestine and liver. Caco-2 cell culture model was used to investigate the interplay between UDP-glucuronosyltransferases (UGTs) and efflux transporters in the intestinal disposition of emodin. Bidirectional transport assays of emodin at different concentrations were performed in the Caco-2 monolayers with or without multidrug resistance-associated protein (MRP) and breast cancer resistance protein (BCRP) efflux transporter chemical inhibitors. The bidirectional permeability of emodin and its glucuronide in the Caco-2 monolayers was determined. Emodin was rapidly metabolized tomore » emodin glucuronide in Caco-2 cells. LTC4, a potent inhibitor of MRP2, decreased the efflux of emodin glucuronide and also substantially increased the intracellular glucuronide level in the basolateral-to-apical (B–A) direction. MK-571, chemical inhibitor of MRP2, MRP3, and MRP4, significantly reduced the efflux of glucuronide in the apical-to-basolateral (A–B) and B–A directions in a dose-dependent manner. However, dipyridamole, a BCRP chemical inhibitor demonstrated no effect on formation and efflux of emodin glucuronide in Caco-2 cells. In conclusion, UGT is a main metabolic pathway for emodin in the intestine, and the MRP family is composed of major efflux transporters responsible for the excretion of emodin glucuronide in the intestine. The coupling of UGTs and MRP efflux transporters causes the extensive metabolism, excretion, and low bioavailability of emodin. -- Highlights: ► Glucuronidation is the main reason for the poor oral bioavailability of emodin. ► Efflux transporters are involved in the excretion of emodin glucuronide. ► The intestine is the main organ for metabolism of emodin.« less

  9. Differences in the Glucuronidation of Resveratrol and Pterostilbene: Altered Enzyme Specificity and Potential Gender Differences

    PubMed Central

    Dellinger, Ryan W.; Gomez Garcia, Angela M.; Meyskens, Frank L.

    2015-01-01

    Summary Resveratrol, a natural polyphenol found in grapes, berries and other plants, has been proposed as an ideal chemopreventative agent due to its plethora of health promoting activities. However, despite its lofty promise as a cancer prevention agent its success in human clinical trials has been limited due to its poor bioavailability. Thus, interest in other natural polyphenols is intensifying including the naturally occurring dimethylated analog of resveratrol, pterostilbene. The UDP-glucuronosyltransferase (UGT) family of enzymes plays a vital role in the metabolism of both resveratrol and pterostilbene. The current study sought to elucidate the UGT family members responsible for the metabolism of pterostilbene and to examine gender differences in the glucuronidation of resveratrol and pterostilbene. We demonstrate that UGT1A1 and UGT1A3 are mainly responsible for pterostilbene glucuronidation although UGT1A8, UGT1A9 and UGT1A10 also had detectable activity. Intriguingly, UGT1A1 exhibits the highest activity against both resveratrol and pterostilbene despite altered hydroxyl group specificity. Using pooled human liver microsomes, enzyme kinetics were determined for pterostilbene and resveratrol glucuronides. In all cases females were more efficient than males, indicating potential gender differences in stilbene metabolism. Importantly, the glucuronidation of pterostilbene is much less efficient than that of resveratrol, indicating that pterostilbene will have dramatically decreased metabolism in humans. PMID:23965644

  10. Identification of Intestinal UDP-Glucuronosyltransferase Inhibitors in Green Tea (Camellia sinensis) Using a Biochemometric Approach: Application to Raloxifene as a Test Drug via In Vitro to In Vivo Extrapolation.

    PubMed

    Tian, Dan-Dan; Kellogg, Joshua J; Okut, Neşe; Oberlies, Nicholas H; Cech, Nadja B; Shen, Danny D; McCune, Jeannine S; Paine, Mary F

    2018-05-01

    Green tea ( Camellia sinensis ) is a popular beverage worldwide, raising concern for adverse interactions when co-consumed with conventional drugs. Like many botanical natural products, green tea contains numerous polyphenolic constituents that undergo extensive glucuronidation. As such, the UDP-glucuronosyltransferases (UGTs), particularly intestinal UGTs, represent potential first-pass targets for green tea-drug interactions. Candidate intestinal UGT inhibitors were identified using a biochemometrics approach, which combines bioassay and chemometric data. Extracts and fractions prepared from four widely consumed teas were screened (20-180 μ g/ml) as inhibitors of UGT activity (4-methylumbelliferone glucuronidation) in human intestinal microsomes; all demonstrated concentration-dependent inhibition. A biochemometrics-identified fraction rich in UGT inhibitors from a representative tea was purified further and subjected to second-stage biochemometric analysis. Five catechins were identified as major constituents in the bioactive subfractions and prioritized for further evaluation. Of these catechins, (-)-epicatechin gallate and (-)-epigallocatechin gallate showed concentration-dependent inhibition, with IC 50 values (105 and 59 μ M, respectively) near or below concentrations measured in a cup (240 ml) of tea (66 and 240 μ M, respectively). Using the clinical intestinal UGT substrate raloxifene, the K i values were ∼1.0 and 2.0 μ M, respectively. Using estimated intestinal lumen and enterocyte inhibitor concentrations, a mechanistic static model predicted green tea to increase the raloxifene plasma area under the curve up to 6.1- and 1.3-fold, respectively. Application of this novel approach, which combines biochemometrics with in vitro-in vivo extrapolation, to other natural product-drug combinations will refine these procedures, informing the need for further evaluation via dynamic modeling and clinical testing. Copyright © 2018 by The American Society for

  11. Differences in UGT1A1, UGT1A7, and UGT1A9 polymorphisms between Uzbek and Japanese populations.

    PubMed

    Maeda, Hiromichi; Hazama, Shoichi; Shavkat, Abdiev; Okamoto, Ken; Oba, Koji; Sakamoto, Junichi; Takahashi, Kenichi; Oka, Masaki; Nakamura, Daisuke; Tsunedomi, Ryouichi; Okayama, Naoko; Mishima, Hideyuki; Kobayashi, Michiya

    2014-06-01

    Uridine-diphosphate glucuronosyltransferase 1A (UGT1A) is a key enzyme involved in irinotecan metabolism, and polymorphisms in the UGT1A gene are associated with irinotecan-induced toxicity. The aim of this study was to elucidate the allele frequencies of UGT1A polymorphisms in healthy Uzbek volunteers, and to compare them with those of the Japanese population. A total of 97 healthy volunteers from Uzbekistan were enrolled and blood samples were collected from each participant. Genotyping analysis was performed by fragment size analysis for UGT1A1*28, direct sequencing for UGT1A7*3 and UGT1A9*22, and TaqMan assays for UGT1A1*93, UGT1A1*6, UGT1A1*27, UGT1A1*60, and UGT1A7*12. The frequencies of polymorphisms were compared with the Japanese population by using the data previously reported from our study group. When the Uzbek and Japanese populations were compared, heterozygotes or homozygotes for UGT1A1*28, UGT1A1*60, and UGT1A1*93 were significantly more frequent in the Uzbek population (P < 0.01). The rate of UGT1A7*12 was not significantly different between the two populations, whereas UGT1A1*6 and UGT1A9*22 were significantly less frequent in the Uzbek population (P < 0.05). UGT1A7*1 were less prevalent in the Uzbek population than in the Japanese population (P < 0.01). The Uzbek population has different frequencies of polymorphisms in UGT1A genes compared with the Japanese population. A comprehensive study of the influence of UGT1A1 polymorphisms on the risk of irinotecan-induced toxicity is necessary for optimal use of irinotecan treatment.

  12. Simultaneous quantification of the abundance of several cytochrome P450 and uridine 5'-diphospho-glucuronosyltransferase enzymes in human liver microsomes using multiplexed targeted proteomics.

    PubMed

    Achour, Brahim; Russell, Matthew R; Barber, Jill; Rostami-Hodjegan, Amin

    2014-04-01

    Cytochrome P450 (P450) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes mediate a major proportion of phase I and phase II metabolism of xenobiotics. In vitro-in vivo extrapolation (IVIVE) of hepatic clearance in conjunction with physiologically-based pharmacokinetics (PBPK) has become common practice in drug development. However, prediction of xenobiotic kinetics in virtual populations requires knowledge of both enzyme abundances and the extent to which these correlate. A multiplexed quantification concatemer (QconCAT) strategy was used in this study to quantify the expression of several P450 and UGT enzymes simultaneously and to establish correlations between various enzyme abundances in 24 individual liver samples (ages 27-66, 14 male). Abundances were comparable to previously reported values, including CYP2C9 (40.0 ± 26.0 pmol mg(-1)), CYP2D6 (11.9 ± 13.2 pmol mg(-1)), CYP3A4 (68.1 ± 52.3 pmol mg(-1)), UGT1A1 (33.6 ± 34.0 pmol mg(-1)), and UGT2B7 (82.9 ± 36.1 pmol mg(-1)), expressed as mean ± S.D. Previous reports of correlations in expression of various P450 (CYP3A4/CYP3A5*1/*3, CYP2C8/CYP2C9, and CYP3A4/CYP2B6) were confirmed. New correlations were demonstrated between UGTs [including UGT1A6/UGT1A9 (r(s) = 0.82, P < 0.0001) and UGT2B4/UGT2B15 (r(s) = 0.71, P < 0.0001)]. Expression of some P450 and UGT enzymes were shown to be correlated [including CYP1A2/UGT2B4 (r(s) = 0.67, P = 0.0002)]. The expression of CYP3A5 in individuals with *1/*3 genotype (n = 11) was higher than those with *3/*3 genotype (n = 10) (P < 0.0001). No significant effect of gender or history of smoking or alcohol use on enzyme expression was observed; however, expression of several enzymes declined with age. The correlation matrix produced for the first time by this study can be used to generate more realistic virtual populations with respect to abundance of various enzymes.

  13. Correlation of UGT1A1(*)28 and (*)6 polymorphisms with irinotecan-induced neutropenia in Thai colorectal cancer patients.

    PubMed

    Atasilp, Chalirmporn; Chansriwong, Pichai; Sirachainan, Ekapob; Reungwetwattana, Thanyanan; Chamnanphon, Montri; Puangpetch, Apichaya; Wongwaisayawan, Sansanee; Sukasem, Chonlaphat

    2016-02-01

    UDP-glucuronosyltransferase1A1 (UGT1A1) polymorphisms have been related with irinotecan toxicity. The purpose of this study was to determine the associations between UGT1A1(*)28 and (*)6 polymorphisms and irinotecan toxicity in Thai patients with metastatic colorectal cancer. 44 metastatic colorectal cancer patients received irinotecan-based chemotherapy. Hematologic toxicities were determined in the first and second cycles of treatment. The genotypes of UGT1A1(*)28 and (*)6 were analyzed by pyrosequencing technique. The frequencies of genetic testing for UGT1A1(*)28 and (*)6 polymorphisms were 22.8% (TA6/TA7; 20.5%, TA7/TA7; 2.3%) and 15.9% (GA), respectively. No patients had the homozygous UGT1A1(*)6 (AA). Neither UGT1A1(*)28 nor UGT1A1(*)6 polymorphisms were significantly associated with severe hematologic toxicities. However, analysis of UGT1A1(*)28 and (*)6 in combination revealed an association with severe neutropenia in the first and second cycles (P = 0.044, P = 0.017, respectively). Both UGT1A1(*)28 and (*)6 polymorphisms may have an increased risk of irinotecan-induced neutropenia in Thai colorectal cancer patients. Copyright © 2015 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  14. Use of Isoform-Specific UGT Metabolism to Determine and Describe Rates and Profiles of Glucuronidation of Wogonin and Oroxylin A by Human Liver and Intestinal Microsomes

    PubMed Central

    Zhou, Qiong; Zheng, Zhijie; Xia, Bijun; Tang, Lan; Lv, Chang; Liu, Wei; Liu, Zhongqiu; Hu, Ming

    2010-01-01

    Purposes Glucuronidation via UDP-glucuronosyltransferases (or UGTs) is a major metabolic pathway. The purposes of this study are to determine the UGT-isoform specific metabolic fingerprint (or GSMF) of wogonin and oroxylin A, and to use isoform-specific metabolism rates and kinetics to determine and describe their glucuronidation behaviors in tissue microsomes. Methods In vitro glucuronidation rates and profiles were measured using expressed UGTs and human intestinal and liver microsomes. Results GSMF experiments indicated that both flavonoids were metabolized mainly by UGT1As, with major contributions from UGT1A3 and UGT1A7-1A10. Isoform-specific metabolism showed that kinetic profiles obtained using expressed UGT1A3 and UGT1A7-1A10 could fit to known kinetic models. Glucuronidation of both flavonoids in human intestinal and liver microsomes followed simple Michaelis-Menten kinetics. A comparison of the kinetic parameters and profiles suggests that UGT1A9 is likely the main isoform responsible for liver metabolism. In contrast, a combination of UGT1As with a major contribution from UGT1A10 contributed to their intestinal metabolism. Correlation studies clearly showed that UGT isoform-specific metabolism could describe their metabolism rates and profiles in human liver and intestinal microsomes. Conclusion GSMF and isoform-specific metabolism profiles can determine and describe glucuronidation rates and profiles in human tissue microsomes. PMID:20411407

  15. The kinetic basis for age-associated changes in quercetin and genistein glucuronidation by rat liver microsomes

    USDA-ARS?s Scientific Manuscript database

    The dietary bioavailability of the isoflavone genistein is decreased in older rats compared to young adults. Since flavonoids are metabolized extensively by the UDP-glucuronosyltransferases (UGTs), we hypothesized that UGT flavonoid conjugating activity changes with age. The effect of age on flavono...

  16. Evolution of a Major Drug Metabolizing Enzyme Defect in the Domestic Cat and Other Felidae: Phylogenetic Timing and the Role of Hypercarnivory

    PubMed Central

    Shrestha, Binu; Reed, J. Michael; Starks, Philip T.; Kaufman, Gretchen E.; Goldstone, Jared V.; Roelke, Melody E.; O'Brien, Stephen J.; Koepfli, Klaus-Peter; Frank, Laurence G.; Court, Michael H.

    2011-01-01

    The domestic cat (Felis catus) shows remarkable sensitivity to the adverse effects of phenolic drugs, including acetaminophen and aspirin, as well as structurally-related toxicants found in the diet and environment. This idiosyncrasy results from pseudogenization of the gene encoding UDP-glucuronosyltransferase (UGT) 1A6, the major species-conserved phenol detoxification enzyme. Here, we established the phylogenetic timing of disruptive UGT1A6 mutations and explored the hypothesis that gene inactivation in cats was enabled by minimal exposure to plant-derived toxicants. Fixation of the UGT1A6 pseudogene was estimated to have occurred between 35 and 11 million years ago with all extant Felidae having dysfunctional UGT1A6. Out of 22 additional taxa sampled, representative of most Carnivora families, only brown hyena (Parahyaena brunnea) and northern elephant seal (Mirounga angustirostris) showed inactivating UGT1A6 mutations. A comprehensive literature review of the natural diet of the sampled taxa indicated that all species with defective UGT1A6 were hypercarnivores (>70% dietary animal matter). Furthermore those species with UGT1A6 defects showed evidence for reduced amino acid constraint (increased dN/dS ratios approaching the neutral selection value of 1.0) as compared with species with intact UGT1A6. In contrast, there was no evidence for reduced amino acid constraint for these same species within UGT1A1, the gene encoding the enzyme responsible for detoxification of endogenously generated bilirubin. Our results provide the first evidence suggesting that diet may have played a permissive role in the devolution of a mammalian drug metabolizing enzyme. Further work is needed to establish whether these preliminary findings can be generalized to all Carnivora. PMID:21464924

  17. Screening of recombinant glycosyltransferases reveals the broad acceptor specificity of stevia UGT-76G1.

    PubMed

    Dewitte, Griet; Walmagh, Maarten; Diricks, Margo; Lepak, Alexander; Gutmann, Alexander; Nidetzky, Bernd; Desmet, Tom

    2016-09-10

    UDP-glycosyltransferases (UGTs) are a promising class of biocatalysts that offer a sustainable alternative for chemical glycosylation of natural products. In this study, we aimed to characterize plant-derived UGTs from the GT-1 family with an emphasis on their acceptor promiscuity and their potential application in glycosylation processes. Recombinant expression in E. coli provided sufficient amounts of enzyme for the in-depth characterization of the salicylic acid UGT from Capsella rubella (UGT-SACr) and the stevia UGT from Stevia rebaudiana (UGT-76G1Sr). The latter was found to have a remarkably broad specificity with activities on a wide diversity of structures, from aliphatic and branched alcohols, over small phenolics to larger flavonoids, terpenoids and even higher glycoside compounds. As an example for its industrial potential, the glycosylation of curcumin was thoroughly evaluated. Under optimized conditions, 96% of curcumin was converted within 24h into the corresponding curcumin β-glycosides. In addition, the reaction was performed in a coupled system with sucrose synthase from Glycine max, to enable the cost-efficient (re)generation of UDP-Glc from sucrose as abundant and renewable resource. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Identification of UDP glucosyltransferases from the aluminum-resistant tree Eucalyptus camaldulensis forming β-glucogallin, the precursor of hydrolyzable tannins.

    PubMed

    Tahara, Ko; Nishiguchi, Mitsuru; Frolov, Andrej; Mittasch, Juliane; Milkowski, Carsten

    2018-08-01

    In the highly aluminum-resistant tree Eucalyptus camaldulensis, hydrolyzable tannins are proposed to play a role in internal detoxification of aluminum, which is a major factor inhibiting plant growth on acid soils. To understand and modulate the molecular mechanisms of aluminum detoxification by hydrolyzable tannins, the biosynthetic genes need to be identified. In this study, we identified and characterized genes encoding UDP-glucose:gallate glucosyltransferase, which catalyzes the formation of 1-O-galloyl-β-d-glucose (β-glucogallin), the precursor of hydrolyzable tannins. By homology-based cloning, seven full-length candidate cDNAs were isolated from E. camaldulensis and expressed in Escherichia coli as recombinant N-terminal His-tagged proteins. Phylogenetic analysis classified four of these as UDP glycosyltransferase (UGT) 84A subfamily proteins (UGT84A25a, -b, UGT84A26a, -b) and the other three as UGT84J subfamily proteins (UGT84J3, -4, -5). In vitro enzyme assays showed that the UGT84A proteins catalyzed esterification of UDP-glucose and gallic acid to form 1-O-galloyl-β-d-glucose, whereas the UGT84J proteins were inactive. Further analyses with UGT84A25a and -26a indicated that they also formed 1-O-glucose esters of other structurally related hydroxybenzoic and hydroxycinnamic acids with a preference for hydroxybenzoic acids. The UGT84A genes were expressed in leaves, stems, and roots of E. camaldulensis, regardless of aluminum stress. Taken together, our results suggest that the UGT84A subfamily enzymes of E. camaldulensis are responsible for constitutive production of 1-O-galloyl-β-d-glucose, which is the first step of hydrolyzable tannin biosynthesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Enhanced UGT1A1 Gene and Protein Expression in Endometriotic Lesions.

    PubMed

    Piccinato, Carla A; Neme, Rosa M; Torres, Natália; da Silva Victor, Elivane; Brudniewski, Heloísa F; Rosa E Silva, Júlio C; Ferriani, Rui A

    2018-01-01

    The cellular function in endometriosis lesions depends on a highly estrogenic milieu. Lately, it is becoming evident that, besides the circulating levels of estrogens, the balance of synthesis versus inactivation (metabolism) of estrogens by intralesion steroid-metabolizing enzymes also determines the local net estrogen availability. In order to extend the knowledge of the role of estrogen-metabolizing enzymes in endometriosis, we investigated the gene and protein expression of a key uridine diphospho-glucuronosyltransferase (UGT) for estrogen glucuronidation, UGT1A1, in eutopic endometrial samples obtained from nonaffected and endometriosis-affected women and also from endometriotic lesions. Although UGT1A1 messenger RNA (mRNA) expression was detected at similar frequencies in endometriotic lesions and in eutopic endometrial samples, the levels of mRNA expression were greater in deep-infiltrating endometriotic lesions and in non-deep-infiltrating lesions when compared with either control endometrium or eutopic endometrium from women with endometriosis. Overall, we observed that protein expression of UGT1A1 was significantly more frequent in samples from endometriotic lesions in comparison with endometria. In addition, expression of UGT1A1 protein was greater in deep-infiltrating than in non-deep-infiltrating endometriotic lesions. We suggest that the finding of increased expression of UGT1A1 in lesions versus endometria might be related to impairment of regulatory mechanisms, in response to a highly estrogenic milieu, and that this enzyme may be a new target for therapy.

  20. The Implication of the Polymorphisms of COX-1, UGT1A6, and CYP2C9 among Cardiovascular Disease (CVD) Patients Treated with Aspirin.

    PubMed

    Jalil, Nur Jalinna Abdul; Bannur, Zakaria; Derahman, A; Maskon, O; Darinah, Noor; Hamidi, Hamat; Gunasekaran, Osama Ali; Rafizi, Mohd; Azreen, Nur Izatul; Kek, Teh Lay; Salleh, Mohd Zaki

    2015-01-01

      Enzymes potentially responsible for the pharmacokinetic variations of aspirin include cyclooxygenase-1 (COX-1), UDP-glucuronosyltransferase (UGT1A6) and P450 (CYP) (CYP2C9). We therefore aimed to determine the types and frequencies of variants of COX-1 (A-842G), UGT1A6 (UGT1A6*2; A541G and UGT1A6*3; A522C) and CYP2C9 (CYP2C9*3; A1075C) in the three major ethnic groups in Malaysia. In addition, the role of these polymorphisms on aspirin-induced gastritis among the patients was investigated. A total of 165 patients with cardiovascular disease who were treated with 75-150 mg daily dose of aspirin and 300 healthy volunteers were recruited. DNA was extracted from the blood samples and genotyped for COX-1 (A-842G), UGT1A6 (UGT1A6*2 and UGT1A6*3) and CYP2C9 (CYP2C9*3; A1075C) using allele specific polymerase chain reaction (AS-PCR). Variants UGT1A6*2,*3 and CYP2C9*3 were detected in relatively high percentage of 22.83%, 30.0% and 6.50%, respectively; while COX-1 (A-842G) was absent. The genotype frequencies for UGT1A6*2 and *3 were significantly different between Indians and Malays or Chinese. The level of bilirubin among patients with different genotypes of UGT1A6 was significantly different (p-value < 0.05). In addition, CYP2C9*3 was found to be associated with gastritis with an odd ratio of 6.8 (95 % Cl OR: 1.39 - 33.19; P = 0.033). Screening of patients with defective genetic variants of UGT1A6 and CYP2C9*3 helps in identifying patients at risk of aspirin induced gastritis. However, a randomised clinical study of bigger sample size would be needed before it is translated to clinical use.

  1. Microsomal quercetin glucuronidation in rat small intestine depends on age and segment

    USDA-ARS?s Scientific Manuscript database

    UDP-glucuronosyltransferase (UGT) activity toward the flavonoid quercetin and UGT protein were characterized in 3 equidistant small intestine (SI) segments from 4, 12, 18, and 28 mo male F344 rats, n=8/age using villin to control for enterocyte content. SI microsomal intrinsic clearance of quercetin...

  2. UGT-29 protein expression and localization during bacterial infection in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Wong, Rui-Rui; Lee, Song-Hua; Nathan, Sheila

    2014-09-01

    The nematode Caenorhabditis elegans is routinely used as an animal model to delineate complex molecular mechanisms involved in the host response to pathogen infection. Following up on an earlier study on host-pathogen interaction, we constructed a ugt-29::GFP transcriptional fusion transgenic worm strain to examine UGT-29 protein expression and localization upon bacterial infection. UGT-29 orthologs can be found in higher organisms including humans and is proposed as a member of the UDP-Glucoronosyl Transferase family of proteins which are involved in phase II detoxification of compounds detrimental to the host organism. Under uninfected conditions, UGT-29::GFP fusion protein was highly expressed in the C. elegans anterior pharynx and intestine, two major organs involved in detoxification. We further evaluated the localization of the enzyme in worms infected with the bacterial pathogen, Burkholderia pseudomallei. The infected ugt-29::GFP transgenic strain exhibited increased fluorescence in the pharynx and intestine with pronounced fluorescence also extending to body wall muscle. This transcriptional fusion GFP transgenic worm is a convenient and direct tool to provide information on UGT detoxification enzyme gene expression and could be a useful tool for a number of diverse applications.

  3. UGT1A1*6 polymorphism is most predictive of severe neutropenia induced by irinotecan in Japanese cancer patients.

    PubMed

    Onoue, Masahide; Terada, Tomohiro; Kobayashi, Masahiko; Katsura, Toshiya; Matsumoto, Shigemi; Yanagihara, Kazuhiro; Nishimura, Takafumi; Kanai, Masashi; Teramukai, Satoshi; Shimizu, Akira; Fukushima, Masanori; Inui, Ken-ichi

    2009-04-01

    Gene polymorphisms of the UDP-glucuronosyltransferase 1 family, polypeptide A1 (UGT1A1) contribute to individual variations in adverse events among patients administered irinotecan, and the distribution of the polymorphisms shows large interethnic differences. Variation in the solute carrier organic anion-transporter family, member 1B1 (SLCO1B1) gene also has a significant effect on the disposition of irinotecan in Asian cancer patients. In the present study, we evaluated the association of genetic polymorphisms of UGT1A1 and SLCO1B1 with irinotecanrelated neutropenia in Japanese cancer patients. One hundred and thirty-five consecutive patients treated with irinotecan were enrolled. Genotypes of UGT1A1 (*60, *28, *6, and *27) and SLCO1B1 (*1b, *5, and haplotype *15) were determined by direct sequencing. Severe neutropenia refers to events observed during the first cycle of irinotecan treatment. Severe neutropenia was observed in 29 patients (22%). Six patients were homozygous and 48 heterozygous for UGT1A1*6. Only 1 patient was homozygous for UGT1A1*28. Homozygosity for UGT1A1*6 was associated with a high risk of severe neutropenia (odds ratio [OR], 7.78; 95% confidence interval [CI], 1.36 to 44.51). No significant association was found between severe neutropenia and other UGT1A1 polymorphisms or SLCO1B1 polymorphisms. These findings suggest that the UGT1A1*6 polymorphism is a potential predictor of severe neutropenia caused by irinotecan in Japanese cancer patients.

  4. Calcium/calmodulin alleviates substrate inhibition in a strawberry UDP-glucosyltransferase involved in fruit anthocyanin biosynthesis

    USDA-ARS?s Scientific Manuscript database

    UDP-glucosyltransferase (UGT) is a key enzyme during anthocyanin biosynthesis by catalyzing glucosylation of anthocyanins so as to increase their solubility and accumulation. Previously it has been shown that preharvest spray of calcium chloride enhances anthocyanin accumulation in strawberry fruit ...

  5. Identification and functional analysis of two Golgi-localized UDP-galactofuranose transporters with overlapping functions in Aspergillus niger.

    PubMed

    Park, Joohae; Tefsen, Boris; Heemskerk, Marc J; Lagendijk, Ellen L; van den Hondel, Cees A M J J; van Die, Irma; Ram, Arthur F J

    2015-11-02

    Galactofuranose (Galf)-containing glycoconjugates are present in numerous microbes, including filamentous fungi where they are important for morphology, virulence and maintaining cell wall integrity. The incorporation of Galf-residues into galactomannan, galactomannoproteins and glycolipids is carried out by Golgi-localized Galf transferases. The nucleotide sugar donor used by these transferases (UDP-Galf) is produced in the cytoplasm and has to be transported to the lumen of the Golgi by a dedicated nucleotide sugar transporter. Based on homology with recently identified UDP-Galf-transporters in A. fumigatus and A. nidulans, two putative UDP-Galf-transporters in A. niger were found. Their function and localization was determined by gene deletions and GFP-tagging studies, respectively. The two putative UDP-Galf-transporters in A. niger are homologous to each other and are predicted to contain eleven transmembrane domains (UgtA) or ten transmembrane domains (UgtB) due to a reduced length of the C-terminal part of the UgtB protein. The presence of two putative UDP-Galf-transporters in the genome was not unique for A. niger. From the twenty Aspergillus species analysed, nine species contained two additional putative UDP-Galf-transporters. Three of the nine species were outside the Aspergillus section nigri, indication an early duplication of UDP-Galf-transporters and subsequent loss of the UgtB copy in several aspergilli. Deletion analysis of the single and double mutants in A. niger indicated that the two putative UDP-Galf-transporters (named UgtA and UgtB) have a redundant function in UDP-Galf-transport as only the double mutant displayed a Galf-negative phenotype. The Galf-negative phenotype of the double mutant could be complemented by expressing either CFP-UgtA or CFP-UgtB fusion proteins from their endogenous promoters, indicating that both CFP-tagged proteins are functional. Both Ugt proteins co-localize with each other as well as with the GDP

  6. Biosynthesis of Drug Glucuronide Metabolites in the Budding Yeast Saccharomyces cerevisiae.

    PubMed

    Ikushiro, Shinichi; Nishikawa, Miyu; Masuyama, Yuuka; Shouji, Tadashi; Fujii, Miharu; Hamada, Masahiro; Nakajima, Noriyuki; Finel, Moshe; Yasuda, Kaori; Kamakura, Masaki; Sakaki, Toshiyuki

    2016-07-05

    Glucuronidation is one of the most common pathways in mammals for detoxification and elimination of hydrophobic xenobiotic compounds, including many drugs. Metabolites, however, can form active or toxic compounds, such as acyl glucuronides, and their safety assessment is often needed. The absence of efficient means for in vitro synthesis of correct glucuronide metabolites frequently limits such toxicological analyses. To overcome this hurdle we have developed a new approach, the essence of which is a coexpression system containing a human, or another mammalian UDP-glucuronosyltransferases (UGTs), as well as UDP-glucose-6-dehydrogenase (UGDH), within the budding yeast, Saccharomyces cerevisiae. The system was first tested using resting yeast cells coexpressing UGDH and human UGT1A6, 7-hydroxycoumarin as the substrate, in a reaction medium containing 8% glucose, serving as a source of UDP-glucuronic acid. Glucuronides were readily formed and recovered from the medium. Subsequently, by selecting suitable mammalian UGT enzyme for the coexpression system we could obtain the desired glucuronides of various compounds, including molecules with multiple conjugation sites and acyl glucuronides of several carboxylic acid containing drugs, namely, mefenamic acid, flufenamic acid, and zomepirac. In conclusion, a new and flexible yeast system with mammalian UGTs has been developed that exhibits a capacity for efficient production of various glucuronides, including acyl glucuronides.

  7. Phenobarbital Induction and Chemical Synergism Demonstrate the Role of UDP-Glucuronosyltransferases in Detoxification of Naphthalophos by Haemonchus contortus Larvae

    PubMed Central

    Ruffell, Angela P.; Ingham, Aaron B.

    2014-01-01

    We used an enzyme induction approach to study the role of detoxification enzymes in the interaction of the anthelmintic compound naphthalophos with Haemonchus contortus larvae. Larvae were treated with the barbiturate phenobarbital, which is known to induce the activity of a number of detoxification enzymes in mammals and insects, including cytochromes P450 (CYPs), UDP-glucuronosyltransferases (UDPGTs), and glutathione (GSH) S-transferases (GSTs). Cotreatment of larvae with phenobarbital and naphthalophos resulted in a significant increase in the naphthalophos 50% inhibitory concentration (IC50) compared to treatment of larvae with the anthelmintic alone (up to a 28-fold increase). The phenobarbital-induced drug tolerance was reversed by cotreatment with the UDPGT inhibitors 5-nitrouracil, 4,6-dihydroxy-5-nitropyrimidine, probenecid, and sulfinpyrazone. Isobologram analysis of the interaction of 5-nitrouracil with naphthalophos in phenobarbital-treated larvae clearly showed the presence of strong synergism. The UDPGT inhibitors 5-nitrouracil, 4,6-dihydroxy-5-nitropyrimidine, and probenecid also showed synergistic effects with non-phenobarbital-treated worms (synergism ratio up to 3.2-fold). This study indicates that H. contortus larvae possess one or more UDPGT enzymes able to detoxify naphthalophos. In highlighting the protective role of this enzyme group, this study reveals the potential for UDPGT enzymes to act as a resistance mechanism that may develop under drug selection pressure in field isolates of this species. In addition, the data indicate the potential for a chemotherapeutic approach utilizing inhibitors of UDPGT enzymes as synergists to increase the activity of naphthalophos against parasitic worms and to combat detoxification-mediated drug resistance if it arises in the field. PMID:25288079

  8. Phenobarbital induction and chemical synergism demonstrate the role of UDP-glucuronosyltransferases in detoxification of naphthalophos by Haemonchus contortus larvae.

    PubMed

    Kotze, Andrew C; Ruffell, Angela P; Ingham, Aaron B

    2014-12-01

    We used an enzyme induction approach to study the role of detoxification enzymes in the interaction of the anthelmintic compound naphthalophos with Haemonchus contortus larvae. Larvae were treated with the barbiturate phenobarbital, which is known to induce the activity of a number of detoxification enzymes in mammals and insects, including cytochromes P450 (CYPs), UDP-glucuronosyltransferases (UDPGTs), and glutathione (GSH) S-transferases (GSTs). Cotreatment of larvae with phenobarbital and naphthalophos resulted in a significant increase in the naphthalophos 50% inhibitory concentration (IC50) compared to treatment of larvae with the anthelmintic alone (up to a 28-fold increase). The phenobarbital-induced drug tolerance was reversed by cotreatment with the UDPGT inhibitors 5-nitrouracil, 4,6-dihydroxy-5-nitropyrimidine, probenecid, and sulfinpyrazone. Isobologram analysis of the interaction of 5-nitrouracil with naphthalophos in phenobarbital-treated larvae clearly showed the presence of strong synergism. The UDPGT inhibitors 5-nitrouracil, 4,6-dihydroxy-5-nitropyrimidine, and probenecid also showed synergistic effects with non-phenobarbital-treated worms (synergism ratio up to 3.2-fold). This study indicates that H. contortus larvae possess one or more UDPGT enzymes able to detoxify naphthalophos. In highlighting the protective role of this enzyme group, this study reveals the potential for UDPGT enzymes to act as a resistance mechanism that may develop under drug selection pressure in field isolates of this species. In addition, the data indicate the potential for a chemotherapeutic approach utilizing inhibitors of UDPGT enzymes as synergists to increase the activity of naphthalophos against parasitic worms and to combat detoxification-mediated drug resistance if it arises in the field. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. [Induction of uridine 5'-diphosphate-glucuronosyltransferase gene expression by sulforaphane and its mechanism: experimental study in human colon cancel cells].

    PubMed

    Wang, Min; Li, Yan-Qing; Zhong, Ning; Chen, Jian; Xu, Xiao-Qun; Yuan, Meng-Biao

    2005-03-30

    To study the induction of expression of uridine 5'-diphosphate (UDP)-glucuronosyltransferase (UGT) 1A in colon cancer cells by sulforaphane (SFN) and its possible mechanism. Human colon cancer cells of the line Caco-2 were cultured and added with SFN of different terminal concentrations, all below the concentration of IC(50). RT-PCR was used to examine the expression of UGT1A mRNA induced by SFN. Western blotting was used to detect the expression of UGT1A protein. The glucuronidation rate of N-hydroxy-PhIP was measured by high performance liquid chromatography (HPLC). The nuclear localization of transcription factor Nrf2 was observed by confocal laser microscopy. (1) Expression of UGT1A mRNA was observed in the Cac0-2 cells induced by SFN of the concentrations of 10 micromol/L approximately 35 micromol/L in a dose-independent manner (P < 0.05). Sulforaphane of the concentration of 25 micromol/L induced the UGT1A mRNA expression time-dependently. The levels of UGT1A1, UGT1A8, and UGT1A10 mRNA expression were significantly increased in the cells treated with 25 micromol/L sulforaphane compared to that in the controls (P = 0.006, P = 0.017, and P = 0.008 respectively). (2) The UGT1A protein band intensity increased significantly in the Coco-2 cells treated with sulforaphane of the concentrations 10 micromol/L approximately 30 micromol/L for 24 h in comparison with the control cells. (3) When the microsomes from the untreated Caco-2 cells were incubated with N-hydroxy-PhIP there was a minor HPLC peak at the expected retention time for N-hydroxy-PhIP-N2-glucuronide. This peak was dramatically increased in the sulforaphane-treated cells, suggesting higher activities of glucuronidation of N-hydroxy-PhIP. (4) Cytoplasmic labeling of NF-E2-related factor 2 (Nrf2), a transcription factor, with no nuclear staining was observed in the non-stimulated cells, whereas an intense nuclear labeling was observed in the sulforaphane-treated cells, indicating the induction of nuclear

  10. Discovery and Biochemical Characterization of the UDP-Xylose Biosynthesis Pathway in Sphaerobacter thermophilus.

    PubMed

    Gu, Bin; Laborda, Pedro; Wei, Shuang; Duan, Xu-Chu; Song, Hui-Bo; Liu, Li; Voglmeir, Josef

    2016-01-01

    The biosynthesis of UDP-xylose requires the stepwise oxidation/ decarboxylation of UDP-glucose, which is catalyzed by the enzymes UDPglucuronic acid dehydrogenase (UGD) and UDP-xylose synthase (UXS). UDPxylose biosynthesis is ubiquitous in animals and plants. However, only a few UGD and UXS isoforms of bacterial origin have thus far been biochemically characterized. Sphaerobacter thermophilus DSM 20745 is a bacterium isolated from heated sewage sludge, and therefore can be a valuable source of thermostable enzymes of biotechnological interest. However, no biochemical characterizations of any S. thermophilus enzymes have yet been reported. Herein, we describe the cloning and characterization of putative UGD (StUGD) and UXS (StUXS) isoforms from this organism. HPLC- and plate reader-based activity tests of the recombinantly expressed StUGD and StUXS showed that they are indeed active enzymes. Both StUGD and StUXS showed a temperature optimum of 70°C, and a reasonable thermal stability up to 60°C. No metal ions were required for enzymatic activities. StUGD had a higher pH optimum than StUXS. The simple purification procedures and the thermotolerance of StUGD and StUXS make them valuable biocatalysts for the synthesis of UDP-glucuronic acid and UDP-xylose at elevated temperatures. The biosynthetic potential of StUGD was further exemplified in a coupled enzymatic reaction with an UDP-glucuronosyltransferase, allowing the glucuronylation of the natural model substrate bilirubin.

  11. Quantum Chemical and Docking Insights into Bioavailability Enhancement of Curcumin by Piperine in Pepper.

    PubMed

    Patil, Vaishali M; Das, Sukanya; Balasubramanian, Krishnan

    2016-05-26

    We combine quantum chemical and molecular docking techniques to provide new insights into how piperine molecule in various forms of pepper enhances bioavailability of a number of drugs including curcumin in turmeric for which it increases its bioavailability by a 20-fold. We have carried out docking studies of quantum chemically optimized piperine structure binding to curcumin, CYP3A4 in cytochrome P450, p-Glycoprotein and UDP-glucuronosyltransferase (UGT), the enzyme responsible for glucuronosylation, which increases the solubility of curcumin. All of these studies establish that piperine binds to multiple sites on the enzymes and also intercalates with curcumin forming a hydrogen bonded complex with curcumin. The conjugated network of double bonds and the presence of multiple charge centers of piperine offer optimal binding sites for piperine to bind to enzymes such as UDP-GDH, UGT, and CYP3A4. Piperine competes for curcumin's intermolecular hydrogen bonding and its stacking propensity by hydrogen bonding with enolic proton of curcumin. This facilitates its metabolic transport, thereby increasing its bioavailability both through intercalation into curcumin layers through intermolecular hydrogen bonding, and by inhibiting enzymes that cause glucuronosylation of curcumin.

  12. A tandem array of UDP-glycosyltransferases from the UGT73C subfamily glycosylate sapogenins, forming a spectrum of mono- and bisdesmosidic saponins.

    PubMed

    Erthmann, Pernille Østerbye; Agerbirk, Niels; Bak, Søren

    2018-05-01

    This study identifies six UGT73Cs all able to glucosylate sapogenins at positions 3 and/or 28 which demonstrates that B. vulgaris has a much richer arsenal of UGTs involved in saponin biosynthesis than initially anticipated. The wild cruciferous plant Barbarea vulgaris is resistant to some insects due to accumulation of two monodesmosidic triterpenoid saponins, oleanolic acid 3-O-β-cellobioside and hederagenin 3-O-β-cellobioside. Insect resistance depends on the structure of the sapogenin aglycone and the glycosylation pattern. The B. vulgaris saponin profile is complex with at least 49 saponin-like metabolites, derived from eight sapogenins and including up to five monosaccharide units. Two B. vulgaris UDP-glycosyltransferases, UGT73C11 and UGT73C13, O-glucosylate sapogenins at positions 3 and 28, forming mainly 3-O-β-D-glucosides. The aim of this study was to identify UGTs responsible for the diverse saponin oligoglycoside moieties observed in B. vulgaris. Twenty UGT genes from the insect resistant genotype were selected and heterologously expressed in Nicotiana benthamiana and/or Escherichia coli. The extracts were screened for their ability to glycosylate sapogenins (oleanolic acid, hederagenin), the hormone 24-epibrassinolide and sapogenin monoglucosides (hederagenin and oleanolic acid 3-O-β-D-glucosides). Six UGTs from the UGT73C subfamily were able to glucosylate both sapogenins and both monoglucosides at positions 3 and/or 28. Some UGTs formed bisdesmosidic saponins efficiently. At least four UGT73C genes were localized in a tandem array with UGT73C11 and possibly UGT73C13. This organization most likely reflects duplication events followed by sub- and neofunctionalization. Indeed, signs of positive selection on several amino acid sites were identified and modelled to be localized on the UGT protein surface. This tandem array is proposed to initiate higher order bisdesmosidic glycosylation of B. vulgaris saponins, leading to the recently discovered

  13. Profiling serum bile acid glucuronides in humans: gender divergences, genetic determinants and response to fenofibrate

    PubMed Central

    Trottier, Jocelyn; Perreault, Martin; Rudkowska, Iwona; Levy, Cynthia; Dallaire-Theroux, Amélie; Verreault, Mélanie; Caron, Patrick; Staels, Bart; Vohl, Marie-Claude; Straka, Robert J.; Barbier, Olivier

    2014-01-01

    Glucuronidation, catalyzed by UDP-glucuronosyltransferase (UGT) enzymes detoxifies cholestatic bile acids (BAs). We aimed at i) characterizing the circulating BA-glucuronide (-G) pool composition in humans, ii) evaluating how sex and UGT polymorphisms influence this composition, and iii) analyzing the effects of lipid-lowering drug fenofibrate on the circulating BA-G profile in 300 volunteers and 5 cholestatic patients. Eleven BA-Gs were determined in pre- and post-fenofibrate samples. Men exhibited higher BA-G concentrations, and various genotype/BA-G associations were discovered in relevant UGT genes. The chenodeoxycholic acid-3G concentration was associated with the UGT2B7 802C>T polymorphism. Glucuronidation assays confirmed the predominant role of UGT2B7 and UGT1A4 in CDCA-3G formation. Fenofibrate exposure increased the serum levels of 5 BA-G species, including CDCA-3G, and up-regulated expression of UGT1A4, but not UGT2B7, in hepatic cells. This study demonstrates that fenofibrate stimulates BA glucuronidation in humans, and thus reduces bile acid toxicity in the liver. PMID:23756370

  14. Establishment and Use of New MDCK II Cells Overexpressing Both UGT1A1 and MRP2 to Characterize Flavonoid Metabolism via the Glucuronidation Pathway

    PubMed Central

    Wang, Meifang; Yang, Guangyi; He, Yu; Xu, Beibei; Zeng, Min; Yin, Taijun; Gao, Song; Hu, Ming

    2017-01-01

    Scope The purpose of this study is to characterize how overexpression of an efflux transporter and an UDP-glucuronosyltransferase (UGT) affects the cellular kinetics of glucuronidation processes. Methods and Results A new MDCK II cell line overexpressing both MRP2 and UGT1A1 (MDCKII-UGT1A1/MRP2 cells) was developed and used to determine how overexpression of an efflux transporter affects the kinetics of cellular flavonoid glucuronide production. The results showed that most model flavonoids (from a total of 13) were mainly metabolized into glucuronides in the MDCKII-UGT1A1/MRP2 cells and the glucuronides were rapidly excreted. Flavonoids with three or fewer hydroxyl group at 7, 3′ or 6 hydroxyl group were also metabolized into sulfates. Mechanistic studies using 7-hydroxylflavone showed that its glucuronide was mainly (90%) effluxed by BCRP with a small (10%) but significant contribution from MRP2. Maximal velocity of glucuronide production MDCK-MRP2/UGT1A1 cells showed a fairly good correlation (R2 >0.8) with those derived using UGT1A1 microsomes, but other kinetic parameters (e.g., Km) did not correlate. Conclusion Overexpression of a second efficient efflux transporter did not significantly change the fact that BCRP is the dominant transporter for flavonoid glucuronide nor did it diminish the influence of the efflux transporter as the “gate keeper” of glucuronidation process. PMID:26833852

  15. Biochemical Characterization of a Recombinant UDP-glucosyltransferase from Rice and Enzymatic Production of Deoxynivalenol-3-O-β-d-glucoside

    PubMed Central

    Michlmayr, Herbert; Malachová, Alexandra; Varga, Elisabeth; Kleinová, Jana; Lemmens, Marc; Newmister, Sean; Rayment, Ivan; Berthiller, Franz; Adam, Gerhard

    2015-01-01

    Glycosylation is an important plant defense mechanism and conjugates of Fusarium mycotoxins often co-occur with their parent compounds in cereal-based food and feed. In case of deoxynivalenol (DON), deoxynivalenol-3-O-β-d-glucoside (D3G) is the most important masked mycotoxin. The toxicological significance of D3G is not yet fully understood so that it is crucial to obtain this compound in pure and sufficient quantities for toxicological risk assessment and for use as an analytical standard. The aim of this study was the biochemical characterization of a DON-inactivating UDP-glucosyltransferase from rice (OsUGT79) and to investigate its suitability for preparative D3G synthesis. Apparent Michaelis constants (Km) of recombinant OsUGT79 were 0.23 mM DON and 2.2 mM UDP-glucose. Substrate inhibition occurred at DON concentrations above 2 mM (Ki = 24 mM DON), and UDP strongly inhibited the enzyme. Cu2+ and Zn2+ (1 mM) inhibited the enzyme completely. Sucrose synthase AtSUS1 was employed to regenerate UDP-glucose during the glucosylation reaction. With this approach, optimal conversion rates can be obtained at limited concentrations of the costly co-factor UDP-glucose. D3G can now be synthesized in sufficient quantity and purity. Similar strategies may be of interest to produce β-glucosides of other toxins. PMID:26197338

  16. Effect of Traumatic Brain Injury, Erythropoietin, and Anakinra on Hepatic Metabolizing Enzymes and Transporters in an Experimental Rat Model.

    PubMed

    Anderson, Gail D; Peterson, Todd C; Vonder Haar, Cole; Farin, Fred M; Bammler, Theo K; MacDonald, James W; Kantor, Eric D; Hoane, Michael R

    2015-09-01

    In contrast to considerable data demonstrating a decrease in cytochrome P450 (CYP) activity in inflammation and infection, clinically, traumatic brain injury (TBI) results in an increase in CYP and UDP glucuronosyltransferase (UGT) activity. The objective of this study was to determine the effects of TBI alone and with treatment with erythropoietin (EPO) or anakinra on the gene expression of hepatic inflammatory proteins, drug-metabolizing enzymes, and transporters in a cortical contusion impact (CCI) injury model. Microarray-based transcriptional profiling was used to determine the effect on gene expression at 24 h, 72 h, and 7 days post-CCI. Plasma cytokine and liver protein concentrations of CYP2D4, CYP3A1, EPHX1, and UGT2B7 were determined. There was no effect of TBI, TBI + EPO, or TBI + anakinra on gene expression of the inflammatory factors shown to be associated with decreased expression of hepatic metabolic enzymes in models of infection and inflammation. IL-6 plasma concentrations were increased in TBI animals and decreased with EPO and anakinra treatment. There was no significant effect of TBI and/or anakinra on gene expression of enzymes or transporters known to be involved in drug disposition. TBI + EPO treatment decreased the gene expression of Cyp2d4 at 72 h with a corresponding decrease in CYP2D4 protein at 72 h and 7 days. CYP3A1 protein was decreased at 24 h. In conclusion, EPO treatment may result in a significant decrease in the metabolism of Cyp-metabolized drugs. In contrast to clinical TBI, there was not a significant effect of experimental TBI on CYP or UGT metabolic enzymes.

  17. PBPK Model of Morphine Incorporating Developmental Changes in Hepatic OCT1 and UGT2B7 Proteins to Explain the Variability in Clearances in Neonates and Small Infants.

    PubMed

    Emoto, Chie; Johnson, Trevor N; Neuhoff, Sibylle; Hahn, David; Vinks, Alexander A; Fukuda, Tsuyoshi

    2018-06-19

    Morphine has large pharmacokinetic variability, which is further complicated by developmental changes in neonates and small infants. The impacts of organic cation transporter 1 (OCT1) genotype and changes in blood-flow on morphine clearance (CL) were previously demonstrated in children, whereas changes in UDP-glucuronosyltransferase 2B7 (UGT2B7) activity showed a small effect. This study, targeting neonates and small infants, was designed to assess the influence of developmental changes in OCT1 and UGT2B7 protein expression and modified blood-flow on morphine CL using physiologically based pharmacokinetic (PBPK) modeling. The implementation of these three age-dependent factors into the pediatric system platform resulted in reasonable prediction for an age-dependent increase in morphine CL in these populations. Sensitivity of morphine CL to changes in cardiac output increased with age up to 3 years, whereas sensitivity to changes in UGT2B7 activity decreased. This study suggests that morphine exhibits age-dependent extraction, likely due to the developmental increase in OCT1 and UGT2B7 protein expression/activity and hepatic blood-flow. © 2018 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  18. UGT2B17 and SULT1A1 gene copy number variation (CNV) detection by LabChip microfluidic technology.

    PubMed

    Gaedigk, Andrea; Gaedigk, Roger; Leeder, J Steven

    2010-05-01

    Gene copy number variations (CNVs) are increasingly recognized to play important roles in the expression of genes and hence on their respective enzymatic activities. This has been demonstrated for a number of drug metabolizing genes, such as UDP-glucuronosyltransferases 2B17 (UGT2B17) and sulfotransferase 1A1 (SULT1A1), which are subject to genetic heterogeneity, including CNV. Quantitative assays to assess gene copy number are therefore becoming an integral part of accurate genotype assessment and phenotype prediction. In this study, we evaluated a microfluidics-based system, the Bio-Rad Experion system, to determine the power and utility of this platform to detect UGT2B17 and SULT1A1 CNV in DNA samples derived from blood and tissue. UGT2B17 is known to present with 0, 1 or 2 and SULT1A1 with up to 5 gene copies. Distinct clustering (p<0.001) into copy number groups was achieved for both genes. DNA samples derived from blood exhibited less inter-run variability compared to DNA samples obtained from liver tissue. This variability may be caused by tissue-specific PCR inhibitors as it could be overcome by using DNA from another tissue, or after the DNA had undergone whole genome amplification. This method produced results comparable to those reported for other quantitative test platforms.

  19. [Hepatotoxicity of emodin based on UGT1A1 enzyme-mediated bilirubin in liver microsomes].

    PubMed

    Wang, Qi; Dai, Zhong; Zhang, Yu-Jie; Ma, Shuang-Cheng

    2016-12-01

    To study the hepatotoxicity of emodin based on bilirubin metabolism mediated by glucuronidation of UGT1A1 enzyme. In this study, three different incubation systems were established by using RLM, HLM, and rUGT1A1, with bilirubin as the substrate. Different concentrations of bilirubin and emodin were added in the incubation systems. The double reciprocal Michaelis equation was drawn based on the total amount of bilirubin glucuronidation. The apparent inhibition constant Ki was then calculated with the slope curve to predict the hepatotoxicity. The results indicated that emodin had a significant inhibition to the UGT1A1 enzyme in all of the three systems, with Ki=5.400±0.956(P<0.05) in HLM system, Ki =10.020±0.611(P<0.05) in RLM system, Ki=4.850±0.528(P<0.05) in rUGT1A1 system. Meanwhile, emodin had no significant difference between rat and human in terms of inhibition of UGT1A1 enzyme. Emodin had a potential risk of the hepatotoxicity by inhibiting the UGT1A1 enzyme activity. And the method established in this study provides a new thought and new method to evaluate hepatotoxicity and safety of traditional Chinese medicines. Copyright© by the Chinese Pharmaceutical Association.

  20. PROTEOMIC ANALYSIS OPTIMIZATION: SELECTIVE PROTEIN SAMPLE ON-COLUMN RETENTION IN REVERSE-PHASE LIQUID CHROMATOGRAPHY

    EPA Science Inventory

    Why work was done?

    To be able to identify, on a proteomic level, cytochromes P450 (CYP) and UDP-glucuronosyltransferases (UGT) in mouse liver microsomes for the conazole exposure study IRP # NHEERL-ECD-SCN-CZ-2002-01-R1_Addendum 1. The new enrichment method was necessary beca...

  1. Identification of drugs and drug metabolites as substrates of multidrug resistance protein 2 (MRP2) using triple-transfected MDCK-OATP1B1-UGT1A1-MRP2 cells

    PubMed Central

    Fahrmayr, C; König, J; Auge, D; Mieth, M; Fromm, MF

    2012-01-01

    BACKGROUND AND PURPOSE The coordinate activity of hepatic uptake transporters [e.g. organic anion transporting polypeptide 1B1 (OATP1B1)], drug-metabolizing enzymes [e.g. UDP-glucuronosyltransferase 1A1 (UGT1A1)] and efflux pumps (e.g. MRP2) is a crucial determinant of drug disposition. However, limited data are available on transport of drugs (e.g. ezetimibe, etoposide) and their glucuronidated metabolites by human MRP2 in intact cell systems. EXPERIMENTAL APPROACH Using monolayers of newly established triple-transfected MDCK-OATP1B1-UGT1A1-MRP2 cells as well as MDCK control cells, single- (OATP1B1) and double-transfected (OATP1B1-UGT1A1, OATP1B1-MRP2) MDCK cells, we therefore studied intracellular concentrations and transcellular transport after administration of ezetimibe or etoposide to the basal compartment. KEY RESULTS Intracellular accumulation of ezetimibe was significantly lower in MDCK-OATP1B1-UGT1A1-MRP2 triple-transfected cells compared with all other cell lines. Considerably higher amounts of ezetimibe glucuronide were found in the apical compartment of MDCK-OATP1B1-UGT1A1-MRP2 monolayers compared with all other cell lines. Using HEK cells, etoposide was identified as a substrate of OATP1B1. Intracellular concentrations of etoposide equivalents (i.e. parent compound plus metabolites) were affected only to a minor extent by the absence or presence of OATP1B1/UGT1A1/MRP2. In contrast, apical accumulation of etoposide equivalents was significantly higher in monolayers of both cell lines expressing MRP2 (MDCK-OATP1B1-MRP2, MDCK-OATP1B1-UGT1A1-MRP2) compared with the single-transfected (OATP1B1) and the control cell line. CONCLUSIONS AND IMPLICATIONS Ezetimibe glucuronide is a substrate of human MRP2. Moreover, etoposide and possibly also its glucuronide are substrates of MRP2. These data demonstrate the functional interplay between transporter-mediated uptake, phase II metabolism and export by hepatic proteins involved in drug disposition. PMID:21923755

  2. UDP-glucuronosyltransferase 1A1*6 and *28 polymorphisms as indicators of initial dose level of irinotecan to reduce risk of neutropenia in patients receiving FOLFIRI for colorectal cancer.

    PubMed

    Miyata, Yoshinori; Touyama, Tetsuo; Kusumi, Takaya; Morita, Yoshitaka; Mizunuma, Nobuyuki; Taniguchi, Fumihiro; Manabe, Mitsuaki

    2016-08-01

    Irinotecan (CPT-11)-induced neutropenia is associated with UDP-glucuronosyltransferase (UGT) 1A1*6 and *28 polymorphisms. This prospective study investigated whether using these polymorphisms to adjust the initial dose of CPT-11 as part of FOLFIRI treatment in colorectal cancer patients might improve safety. All data were collected by a physician. The relationship between UGT1A1 polymorphisms and first-cycle neutropenia, reasons for treatment discontinuation, and time-to-treatment failure were evaluated. Multivariate analysis was used to assess the risk of neutropenia. A total of 795 patients were divided into wild-type (*1/*1) (50.1 %), heterozygous (*28/*1, *6/*1) (41.1 %), and homozygous (*28/*28, *6/*6, *28/*6) (8.8 %) groups, in which the median starting dose of CPT-11 was 143.0, 143.0, and 115.0 mg/m(2), respectively. First-cycle grade ≥3 neutropenia occurred in 17.3, 25.4, and 28.6 % of these patients, respectively. Multivariate analysis revealed that the incidence of grade ≥3 neutropenia was significantly greater in the heterozygous and homozygous groups than in the wild-type group [odds ratio (OR) 1.67; 95 % confidence interval (CI) 1.16-2.42; p = 0.0060, and OR 2.22; 95 % CI 1.22-4.02; p = 0.0088, respectively]. Age (OR 1.77; 95 % CI 1.24-2.53; p = 0.0017), coelomic fluid (OR 1.84; 95 % CI 1.05-3.25; p = 0.0343), and non-reduction in starting dose (OR 1.53; 95 % CI 1.08-2.18; p = 0.0176) were also identified as significant risk factors. The risk of neutropenia was higher in the heterozygous and homozygous groups at initiation of CPT-11 treatment. This suggests that when a reduction in dose is required in patients harboring two variant alleles, the decrease should be approximately 20 %.

  3. Two UGT84 Family Glycosyltransferases Catalyze a Critical Reaction of Hydrolyzable Tannin Biosynthesis in Pomegranate (Punica granatum)

    PubMed Central

    Ono, Nadia N.; Qin, Xiaoqiong; Wilson, Alexander E.; Li, Gang

    2016-01-01

    Hydrolyzable tannins (HTs) play important roles in plant herbivore deterrence and promotion of human health. A critical step in HT production is the formation of 1-O-galloyl-β-D-glucopyranoside (β-glucogallin, ester-linked gallic acid and glucose) by a UDP-glucosyltransferase (UGT) activity. We cloned and biochemically characterized four candidate UGTs from pomegranate (Punica granatum), of which only UGT84A23 and UGT84A24 exhibited β-glucogallin forming activities in enzyme assays. Although overexpression and single RNAi knockdown pomegranate hairy root lines of UGT84A23 or UGT84A24 did not lead to obvious alterations in punicalagin (the prevalent HT in pomegranate) accumulation, double knockdown lines of the two UGTs resulted in largely reduced levels of punicalagins and bis-hexahydroxydiphenyl glucose isomers. An unexpected accumulation of galloyl glucosides (ether-linked gallic acid and glucose) was also detected in the double knockdown lines, suggesting that gallic acid was utilized by an unidentified UGT activity for glucoside formation. Transient expression in Nicotiana benthamiana leaves and immunogold labeling in roots of pomegranate seedlings collectively indicated cytosolic localization of UGT84A23 and UGT84A24. Overall, functional characterization and localization of UGT84A23 and UGT84A24 open up opportunities for further understanding the regulatory control of HT metabolism in plants and its coordination with other biochemical pathways in the metabolic network. PMID:27227328

  4. Two UGT84 Family Glycosyltransferases Catalyze a Critical Reaction of Hydrolyzable Tannin Biosynthesis in Pomegranate (Punica granatum).

    PubMed

    Ono, Nadia N; Qin, Xiaoqiong; Wilson, Alexander E; Li, Gang; Tian, Li

    2016-01-01

    Hydrolyzable tannins (HTs) play important roles in plant herbivore deterrence and promotion of human health. A critical step in HT production is the formation of 1-O-galloyl-β-D-glucopyranoside (β-glucogallin, ester-linked gallic acid and glucose) by a UDP-glucosyltransferase (UGT) activity. We cloned and biochemically characterized four candidate UGTs from pomegranate (Punica granatum), of which only UGT84A23 and UGT84A24 exhibited β-glucogallin forming activities in enzyme assays. Although overexpression and single RNAi knockdown pomegranate hairy root lines of UGT84A23 or UGT84A24 did not lead to obvious alterations in punicalagin (the prevalent HT in pomegranate) accumulation, double knockdown lines of the two UGTs resulted in largely reduced levels of punicalagins and bis-hexahydroxydiphenyl glucose isomers. An unexpected accumulation of galloyl glucosides (ether-linked gallic acid and glucose) was also detected in the double knockdown lines, suggesting that gallic acid was utilized by an unidentified UGT activity for glucoside formation. Transient expression in Nicotiana benthamiana leaves and immunogold labeling in roots of pomegranate seedlings collectively indicated cytosolic localization of UGT84A23 and UGT84A24. Overall, functional characterization and localization of UGT84A23 and UGT84A24 open up opportunities for further understanding the regulatory control of HT metabolism in plants and its coordination with other biochemical pathways in the metabolic network.

  5. Tissue and species differences in the glucuronidation of glabridin with UDP-glucuronosyltransferases.

    PubMed

    Guo, Bin; Fang, Zhongze; Yang, Lu; Xiao, Ling; Xia, Yangliu; Gonzalez, Frank J; Zhu, Liangliang; Cao, Yunfeng; Ge, Guangbo; Yang, Ling; Sun, Hongzhi

    2015-04-25

    Glabridin (GA) has gained wide application in the cosmetics and food industry. This study was performed to investigate its metabolic inactivation and elimination by glucuronidation by use of liver and intestine microsomes from humans (HLM and HIM) and rats (RLM and RIM), and liver microsomes from cynomolgus monkeys and beagle dogs (CyLM and DLM). Both hydroxyl groups at the C2 and C4 positions of the B ring are conjugated to generate two mono-glucuronides (M1 and M2). HIM, RIM and RLM showed the most robust activity in catalyzing M2 formation with intrinsic clearance values (Clint) above 2000 μL/min/mg, with little measurable M1 formation activity. DLM displayed considerable activity both in M1 and M2 formation, with Clint values of 71 and 214 μL/min/mg, respectively, while HLM and CyLM exhibited low activities in catalyzing M1 and M2 formation, with Clint values all below 20 μL/min/mg. It is revealed that UGT1A1, 1A3, 1A9, 2B7, 2B15 and extrahepatic UGT1A8 and 1A10 are involved in GA glucuronidation. Nearly all UGTs preferred M2 formation except for UGT1A1. Notably, UGT1A8 displayed the highest activity with a Clint value more than 5-fold higher than the other isoforms. Chemical inhibition studies, using selective inhibitors of UGT1A1, 1A9, 2B7 and 1A8, further revealed that UGT1A8 contributed significantly to intestinal GA glucuronidation in humans. In summary, this in vitro study demonstrated large species differences in GA glucuronidation by liver and intestinal microsomes, and that intestinal UGTs are important for the pathway in humans. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Correlation between plasma concentration ratios of SN-38 glucuronide and SN-38 and neutropenia induction in patients with colorectal cancer and wild-type UGT1A1 gene

    PubMed Central

    HIROSE, KOICHI; KOZU, CHIHIRO; YAMASHITA, KOSHIRO; MARUO, EIJI; KITAMURA, MIZUHO; HASEGAWA, JUNICHI; OMODA, KEI; MURAKAMI, TERUO; MAEDA, YORINOBU

    2011-01-01

    In irinotecan (CPT-11)-based chemotherapy, neutropenia and diarrhea are often induced. In the present study, the clinical significance of the concentration ratios of 7-ethyl-10-hydroxycamptothecin (SN-38) glucuronide (SN-38G) and SN-38 in the plasma in predicting CPT-11-induced neutropenia was examined. A total of 17 patients with colorectal cancer and wild-type UDP-glucuronosyltransferase (UGT)1A1 gene were enrolled and treated with CPT-11 as part of the FOLFIRI regimen [CPT-11 and fluorouracil (5-FU)]. Blood was taken exactly 15 min following a 2-h continuous infusion of CPT-11. Plasma concentrations of SN-38, SN-38G and CPT-11 were determined by a modified high-performance liquid chromatography (HPLC) method. The median, maximum and minimum values of plasma SN-38G/SN-38 ratios were 4.25, 7.09 and 1.03, respectively, indicating that UGT activities are variable among patients with the wild-type UGT1A1 gene. The plasma SN-38G/SN-38 ratios decreased with an increase in the trial numbers of chemotherapy (r=0.741, p=0.000669), suggesting that CPT-11 treatment suppresses UGT activity, and the low plasma SN-38G/SN-38 ratios resulted in the induction of greater neutropenia. However, in this analysis, 2 clearly separated regression lines were observed between plasma SN-38G/SN-38 ratios and neutropenia induction. In conclusion, UGT activity involved in SN-38 metabolism is variable among patients with the wild-type UGT1A1 gene, and each CPT-11 treatment suppresses UGT activity. One-point determination of the plasma SN-38G/SN-38 ratio may provide indications for the prediction of CPT-11-induced neutropenia and adjustment of the optimal dose, although further studies are required. PMID:22740978

  7. Influence of uridine diphosphate glucuronosyltransferase 2B7 -161C>T polymorphism on the concentration of valproic acid in pediatric epilepsy patients.

    PubMed

    Inoue, Kazuyuki; Suzuki, Eri; Yazawa, Rei; Yamamoto, Yoshiaki; Takahashi, Toshiki; Takahashi, Yukitoshi; Imai, Katsumi; Koyama, Seiichi; Inoue, Yushi; Tsuji, Daiki; Hayashi, Hideki; Itoh, Kunihiko

    2014-06-01

    Valproic acid (VPA) is widely used to treat various types of epilepsy. Interindividual variability in VPA pharmacokinetics may arise from genetic polymorphisms of VPA-metabolizing enzymes. This study aimed to examine the relationships between plasma VPA concentrations and the -161C>T single nucleotide polymorphism in uridine diphosphate glucuronosyltransferase (UGT) 2B7 genes in pediatric epilepsy patients. This study included 78 pediatric epilepsy patients carrying the cytochrome P450 (CYP) 2C9*1/*1 genotype and who were not treated with the enzyme inducers (phenytoin, phenobarbital, and carbamazepine), lamotrigine, and/or topiramate. CYP2C9*3 and UGT2B7 -161C>T polymorphisms were identified using methods based on polymerase chain reaction-restriction fragment length polymorphism. Blood samples were drawn from each patient under steady-state conditions, and plasma VPA concentrations were measured. Significant differences in adjusted plasma VPA concentrations were observed between carriers of CC, CT, and TT genotypes in the UGT2B7 -161C>T polymorphism (P = 0.039). Patients with the CC genotype had lower adjusted plasma VPA concentrations than those with CT or TT genotype (P = 0.028). These data suggest that the UGT2B7 -161C>T polymorphism in pediatric epilepsy patients carrying the CYP2C9*1/*1 genotype affects VPA concentration.

  8. Natural variations in xenobiotic-metabolizing enzymes: developing tools for coral monitoring

    NASA Astrophysics Data System (ADS)

    Rougée, L. R. A.; Richmond, R. H.; Collier, A. C.

    2014-06-01

    The continued deterioration of coral reefs worldwide demonstrates the need to develop diagnostic tools for corals that go beyond general ecological monitoring and can identify specific stressors at sublethal levels. Cellular diagnostics present an approach to defining indicators (biomarkers) that have the potential to reflect the impact of stress at the cellular level, allowing for the detection of intracellular changes in corals prior to outright mortality. Detoxification enzymes, which may be readily induced or inhibited by environmental stressors, present such a set of indicators. However, in order to apply these diagnostic tools for the detection of stress, a detailed understanding of their normal, homeostatic levels within healthy corals must first be established. Herein, we present molecular and biochemical evidence for the expression and activity of major Phase I detoxification enzymes cytochrome P450 (CYP450), CYP2E1, and CYP450 reductase, as well as the Phase II enzymes UDP, glucuronosyltransferase (UGT), β-glucuronidase, glutathione- S-transferase (GST), and arylsulfatase C (ASC) in the coral Pocillopora damicornis. Additionally, we characterized enzyme expression and activity variations over a reproductive cycle within a coral's life history to determine natural endogenous changes devoid of stress exposure. Significant changes in enzyme activity over the coral's natural lunar reproductive cycle were observed for CYP2E1 and CYP450 reductase as well as UGT and GST, while β-glucuronidase and ASC did not fluctuate significantly. The data represent a baseline description of `health' for the expression and activity of these enzymes that can be used toward understanding the impact of environmental stressors on corals. Such knowledge can be applied to address causes of coral reef ecosystem decline and to monitor effectiveness of mitigation strategies. Achieving a better understanding of cause-and-effect relationships between putative stressors and biological

  9. Improving oral bioavailability of resveratrol by a UDP-glucuronosyltransferase inhibitory excipient-based self-microemulsion.

    PubMed

    Yang, Fei-Fei; Zhou, Jing; Hu, Xiao; Cong, Zhao-Qing; Liu, Chun-Yu; Pan, Rui-Le; Chang, Qi; Liu, Xin-Min; Liao, Yong-Hong

    2018-03-01

    Self-microemulsifying (SME) drug delivery system has been developed to increase oral bioavailabilities, and inhibitory excipients are capable of improving oral bioavailability by inhibiting enzyme mediated intestinal metabolism. However, the potential of enzyme inhibitory excipients containing SME in boosting resveratrol bioavailability remains largely uninvestigated. In this study, we set out to prepare SME-1 with UGT inhibitory excipients (excipients without inhibitory activities named SME-2 as control) to increase the bioavailability of RES by inhibiting intestinal metabolism. Results demonstrated that similar physicochemical properties such as size, polydistribution index and in vitro release, cellular uptake and permeability in Caco-2 cells as well as in vivo lymphatic distribution between inhibitory SME-1 and non-inhibitory SME-2 were observed. In vivo study demonstrated that the molar ratios of RES-G/RES were 7.25±0.48 and 5.06±2.42 for free drug and SME-2, respectively, and the molar ratio decreased to 0.36±0.10 in SME-1 group. Pharmacokinetic study confirmed that the inhibitory excipients containing SME demonstrated potential in increasing bioavailability of RES from 6.5% for the free RES and 12.9% for SME-2 to 76.1% in SME-1 through modulating the glucuronidation by UGT inhibitory excipients. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Determinants and Expansion of Specificity in a Trichothecene UDP-Glucosyltransferase from Oryza sativa.

    PubMed

    Wetterhorn, Karl M; Gabardi, Kaitlyn; Michlmayr, Herbert; Malachova, Alexandra; Busman, Mark; McCormick, Susan P; Berthiller, Franz; Adam, Gerhard; Rayment, Ivan

    2017-12-19

    Family 1 UDP-glycosyltransferases (UGTs) in plants primarily form glucose conjugates of small molecules and, besides other functions, play a role in detoxification of xenobiotics. Indeed, overexpression of a barley UGT in wheat has been shown to control Fusarium head blight, which is a plant disease of global significance that leads to reduced crop yields and contamination with trichothecene mycotoxins such as deoxynivalenol (DON), T-2 toxin, and many other structural variants. The UGT Os79 from rice has emerged as a promising candidate for inactivation of mycotoxins because of its ability to glycosylate DON, nivalenol, and hydrolyzed T-2 toxin (HT-2). However, Os79 is unable to modify T-2 toxin (T-2), produced by pathogens such as Fusarium sporotrichioides and Fusarium langsethii. Activity toward T-2 is desirable because it would allow a single UGT to inactivate co-occurring mycotoxins. Here, the structure of Os79 in complex with the products UDP and deoxynivalenol 3-O-glucoside is reported together with a kinetic analysis of a broad range of trichothecene mycotoxins. Residues associated with the trichothecene binding pocket were examined by site-directed mutagenesis that revealed that trichothecenes substituted at the C4 position, which are not glycosylated by wild-type Os79, can be accommodated in the binding pocket by increasing its volume. The H122A/L123A/Q202L triple mutation, which increases the volume of the active site and attenuates polar contacts, led to strong and equivalent activity toward trichothecenes with C4 acetyl groups. This mutant enzyme provides the broad specificity required to control multiple toxins produced by different Fusarium species and chemotypes.

  11. Determinants and expansion of specificity in a trichothecene UDP-glucosyltransferase from Oryza sativa

    USDA-ARS?s Scientific Manuscript database

    Family 1 UDP-glycosyltransferases (UGTs) in plants primarily form glucose conjugates of small molecules and, besides other functions, play a role in detoxification of xenobiotics. Indeed, overexpression of a barley UGT in wheat has been shown to control Fusarium head blight, which is a plant disease...

  12. Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns.

    PubMed

    Barvkar, Vitthal T; Pardeshi, Varsha C; Kale, Sandip M; Kadoo, Narendra Y; Gupta, Vidya S

    2012-05-08

    The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT) family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L.) is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans. Identification and characterization of UDP glycosyltransferase (UGT) genes from flax could provide valuable basic information about this important gene family and help to explain the seed specific glycosylated metabolite accumulation and other processes in plants. Plant genome sequencing projects are useful to discover complexity within this gene family and also pave way for the development of functional genomics approaches. Taking advantage of the newly assembled draft genome sequence of flax, we identified 137 UDP glycosyltransferase (UGT) genes from flax using a conserved signature motif. Phylogenetic analysis of these protein sequences clustered them into 14 major groups (A-N). Expression patterns of these genes were investigated using publicly available expressed sequence tag (EST), microarray data and reverse transcription quantitative real time PCR (RT-qPCR). Seventy-three per cent of these genes (100 out of 137) showed expression evidence in 15 tissues examined and indicated varied expression profiles. The RT-qPCR results of 10 selected genes were also coherent with the digital expression analysis. Interestingly, five duplicated UGT genes were identified, which showed differential expression in various tissues. Of the seven intron loss/gain positions detected, two intron positions were conserved among most of the UGTs, although a clear relationship about the evolution of these genes could not be established. Comparison of the flax UGTs with orthologs from four other sequenced dicot genomes indicated that seven UGTs were

  13. Transcriptome association analysis identifies miR-375 as a major determinant of variable acetaminophen glucuronidation by human liver.

    PubMed

    Papageorgiou, Ioannis; Freytsis, Marina; Court, Michael H

    2016-10-01

    Acetaminophen is the leading cause of acute liver failure (ALF) in many countries including the United States. Hepatic glucuronidation by UDP-glucuronosyltransferase (UGT) 1A subfamily enzymes is the major route of acetaminophen elimination. Reduced glucuronidation may predispose some individuals to acetaminophen-induced ALF, but mechanisms underlying reduced glucuronidation are poorly understood. We hypothesized that specific microRNAs (miRNAs) may reduce UGT1A activity by direct effects on the UGT1A 3'-UTR shared by all UGT1A enzyme transcripts, or by indirect effects on transcription factors regulating UGT1A expression. We performed an unbiased miRNA whole transcriptome association analysis using a bank of human livers with known acetaminophen glucuronidation activities. Of 754 miRNAs evaluated, 9 miRNAs were identified that were significantly overexpressed (p<0.05; >2-fold) in livers with low acetaminophen glucuronidation activities compared with those with high activities. miR-375 showed the highest difference (>10-fold), and was chosen for further mechanistic validation. We demonstrated using in silico analysis and luciferase reporter assays that miR-375 has a unique functional binding site in the 3'-UTR of the aryl hydrocarbon receptor (AhR) gene. Furthermore overexpression of miR-375 in LS180 cells demonstrated significant repression of endogenous AhR protein (by 40%) and mRNA (by 10%), as well as enzyme activity and/or mRNA of AhR regulated enzymes including UGT1A1, UGT1A6, and CYP1A2, without affecting UGT2B7, which is not regulated by AhR. Thus miR-375 is identified as a novel repressor of UGT1A-mediated hepatic acetaminophen glucuronidation through reduced AhR expression, which could predispose some individuals to increased risk for acetaminophen-induced ALF. Published by Elsevier Inc.

  14. A diet containing the soy phytoestrogen genistein causes infertility in female rats partially deficient in UDP glucuronyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seppen, Jurgen, E-mail: j.seppen@amc.uva.nl

    Soy beans contain genistein, a natural compound that has estrogenic effects because it binds the estrogen receptor with relatively high affinity. Genistein is therefore the most important environmental estrogen in the human diet. Detoxification of genistein is mediated through conjugation by UDP-glucuronyltransferase 1 and 2 (UGT1 and UGT2) isoenzymes. Gunn rats have a genetic deficiency in UGT1 activity, UGT2 activities are not affected. Because our Gunn rats stopped breeding after the animal chow was changed to a type with much higher soy content, we examined the mechanism behind this soy diet induced infertility. Gunn and control rats were fed dietsmore » with and without genistein. In these rats, plasma levels of genistein and metabolites, fertility and reproductive parameters were determined. Enzyme assays showed reduced genistein UGT activity in Gunn rats, as compared to wild type rats. Female Gunn rats were completely infertile on a genistein diet, wild type rats were fertile. Genistein diet caused a persistent estrus, lowered serum progesterone and inhibited development of corpora lutea in Gunn rats. Concentrations of total genistein in Gunn and control rat plasma were identical and within the range observed in humans after soy consumption. However, Gunn rat plasma contained 25% unconjugated genistein, compared to 3.6% in control rats. This study shows that, under conditions of reduced glucuronidation, dietary genistein exhibits a strongly increased estrogenic effect. Because polymorphisms that reduce UGT1 expression are prevalent in the human population, these results suggest a cautionary attitude towards the consumption of large amounts of soy or soy supplements. -- Highlights: ► Gunn rats are partially deficient in detoxification by UDP glucuronyltransferases. ► Female Gunn rats are infertile on a soy containing diet. ► Soy contains genistein, a potent phytoestrogen. ► Inefficient glucuronidation of genistein causes female infertility.« less

  15. Identification and characterization of human UDP-glucuronosyltransferases responsible for the in-vitro glucuronidation of arctigenin.

    PubMed

    Xin, Hong; Xia, Yang-Liu; Hou, Jie; Wang, Ping; He, Wei; Yang, Ling; Ge, Guang-Bo; Xu, Wei

    2015-12-01

    This study aimed to characterize the glucuronidation pathway of arctigenin (AR) in human liver microsomes (HLM) and human intestine microsomes (HIM). HLM and HIM incubation systems were employed to catalyse the formation of AR glucuronide. The glucuronidation activity of commercially recombinant UGT isoforms towards AR was screened. A combination of chemical inhibition assay and kinetic analysis was used to determine the UGT isoforms involved in the glucuronidation of AR in HLM and HIM. AR could be extensively metabolized to one mono-glucuronide in HLM and HIM. The mono-glucuronide was biosynthesized and characterized as 4'-O-glucuronide. UGT1A1, 1A3, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7 and 2B17 participated in the formation of 4'-O-G, while UGT2B17 demonstrated the highest catalytic activity in this biotransformation. Both kinetic analysis and chemical inhibition assays demonstrated that UGT1A9, UGT2B7 and UGT2B17 played important roles in AR-4'-O-glucuronidation in HLM. Furthermore, HIM demonstrated moderate efficiency for AR-4'-O-glucuronidation, implying that AR may undergo a first-pass metabolism during the absorption process. UGT1A9, UGT2B7 and UGT2B17 were the major isoforms responsible for the 4'-O-glucuronidation of AR in HLM, while UGT2B7 and UGT2B17 were the major contributors to this biotransformation in HIM. © 2015 Royal Pharmaceutical Society.

  16. The influence of charge and the distribution of charge in the polar region of phospholipids on the activity of UDP-glucuronosyltransferase.

    PubMed

    Zakim, D; Eibl, H

    1992-07-05

    Studies of the mechanism of lipid-induced regulation of the microsomal enzyme UDP-glucuronosyltransferase have been extended by examining the influence of charge within the polar region on the ability of lipids to activate delipidated pure enzyme. The effects of net negative charge, of charge separation in phosphocholine, and of the distribution of charge in the polar region of lipids were studied using the GT2p isoform isolated from pig liver. Prior experiments have shown that lipids with net negative charge inhibit the enzyme (Zakim, D., Cantor, M., and Eibl, H. (1988) J. Biol. Chem. 263, 5164-5169). The current experiments show that the extent of inhibition on a molar basis increases as the net negative charge increases from -1 to -2. The inhibitory effect of negatively charged lipids is on the functional state of the enzyme and is not due to electrostatic repulsion of negatively charged substrates of the enzyme. Although the inhibitory effect of net negative charge is removed when negative charge is balanced by a positive charge due to a quaternary nitrogen, neutrality of the polar region is not a sufficient condition for activation of the enzyme. In addition to a balance of charge between Pi and the quaternary nitrogen, the distance between the negative and positive charges and the orientation of the dipole created by them are critical for activation of GT2p. The negative and positive charges must be separated by the equivalent of three -CH2- groups for optimal activation by a lipid. Shortening this distance by one -CH2- unit leads to a lipid that is ineffective in activating the enzyme. Reversal of the orientation of the dipole in which the negative charge is on the polymethylene side of the lipid-water interface and the positive charge extends into water also produces a lipid that is not effective for activating GT2p. On the other hand, lipids with phosphoserine as the polar region, which has the "normal" P-N distance but carries a net negative charge, do

  17. Urinary Elimination of Bile Acid Glucuronides under Severe Cholestatic Situations: Contribution of Hepatic and Renal Glucuronidation Reactions.

    PubMed

    Perreault, Martin; Wunsch, Ewa; Białek, Andrzej; Trottier, Jocelyn; Verreault, Mélanie; Caron, Patrick; Poirier, Guy G; Milkiewicz, Piotr; Barbier, Olivier

    2018-01-01

    Biliary obstruction, a severe cholestatic complication, causes accumulation of toxic bile acids (BAs) in liver cells. Glucuronidation, catalyzed by UDP-glucuronosyltransferase (UGT) enzymes, detoxifies cholestatic BAs. Using liquid chromatography coupled to tandem mass spectrometry, 11 BA glucuronide (-G) species were quantified in prebiliary and postbiliary stenting serum and urine samples from 17 patients with biliary obstruction. Stenting caused glucuronide- and fluid-specific changes in BA-G levels and BA-G/BA metabolic ratios. In vitro glucuronidation assays with human liver and kidney microsomes revealed that even if renal enzymes generally displayed lower K M values, the two tissues shared similar glucuronidation capacities for BAs. By contrast, major differences between the two tissues were observed when four human BA-conjugating UGTs 1A3, 1A4, 2B4, and 2B7 were analyzed for mRNA and protein levels. Notably, the BA-24G producing UGT1A3 enzyme, abundant in the liver, was not detected in kidney microsomes. In conclusion, the circulating and urinary BA-G profiles are hugely impacted under severe cholestasis. The similar BA-glucuronidating abilities of hepatic and renal extracts suggest that both the liver and kidney may contribute to the urine BA-G pool.

  18. Urinary Elimination of Bile Acid Glucuronides under Severe Cholestatic Situations: Contribution of Hepatic and Renal Glucuronidation Reactions

    PubMed Central

    Perreault, Martin; Białek, Andrzej; Trottier, Jocelyn; Verreault, Mélanie; Caron, Patrick; Poirier, Guy G.

    2018-01-01

    Biliary obstruction, a severe cholestatic complication, causes accumulation of toxic bile acids (BAs) in liver cells. Glucuronidation, catalyzed by UDP-glucuronosyltransferase (UGT) enzymes, detoxifies cholestatic BAs. Using liquid chromatography coupled to tandem mass spectrometry, 11 BA glucuronide (-G) species were quantified in prebiliary and postbiliary stenting serum and urine samples from 17 patients with biliary obstruction. Stenting caused glucuronide- and fluid-specific changes in BA-G levels and BA-G/BA metabolic ratios. In vitro glucuronidation assays with human liver and kidney microsomes revealed that even if renal enzymes generally displayed lower KM values, the two tissues shared similar glucuronidation capacities for BAs. By contrast, major differences between the two tissues were observed when four human BA-conjugating UGTs 1A3, 1A4, 2B4, and 2B7 were analyzed for mRNA and protein levels. Notably, the BA-24G producing UGT1A3 enzyme, abundant in the liver, was not detected in kidney microsomes. In conclusion, the circulating and urinary BA-G profiles are hugely impacted under severe cholestasis. The similar BA-glucuronidating abilities of hepatic and renal extracts suggest that both the liver and kidney may contribute to the urine BA-G pool. PMID:29850459

  19. Effects of UGT1A9 genetic polymorphisms on monohydroxylated derivative of oxcarbazepine concentrations and oxcarbazepine monotherapeutic efficacy in Chinese patients with epilepsy.

    PubMed

    Lu, Yao; Fang, Youxin; Wu, Xunyi; Ma, Chunlai; Wang, Yue; Xu, Lan

    2017-03-01

    The human UDP-glucuronosyltransferase which is genetically polymorphic catalyzes glucuronidations of various drugs. The interactions among UGT1A4, UGT1A6, UGT1A9, and UGT2B15 genetic polymorphisms, monohydroxylated derivative (MHD) of oxcarbazepine (OXC) plasma concentrations, and OXC monotherapeutic efficacy were explored in 124 Chinese patients with epilepsy receiving OXC monotherapy. MHD is the major active metabolite of OXC, and its plasma concentration was measured using high-performance liquid chromatography when patients reached their maintenance dose of OXC. Genomic DNA was extracted from whole blood and SNP genotyping performed using PCR followed by dideoxy chain termination sequencing. We followed the patients for at least 1 year to evaluate the OXC monotherapy efficacy. Patients were divided into two groups according to their therapeutic outcome: group 1, seizure free; group 2, not seizure free. The data were analyzed using T test, one-way analysis of variance (ANOVA), Kruskal-Wallis test, chi-square test, Fisher's exact test, correlation analysis, and multivariate regression analysis. T test analysis showed that MHD plasma concentrations were significantly different between the two groups (p = 0.002). One-way ANOVA followed by Bonferroni post hoc testing of four candidate SNPs revealed that carriers of the UGT1A9 variant allele I399 C > T (TT 13.28 ± 7.44 mg/L, TC 16.41 ± 6.53 mg/L) had significantly lower MHD plasma concentrations and poorer seizure control than noncarriers (CC 22.24 ± 8.49 mg/L, p < 0.05). In our study, we have demonstrated the effects of UGT1A9 genetic polymorphisms on MHD plasma concentrations and OXC therapeutic efficacy. Through MHD monitoring, we can predict OXC therapeutic efficacy, which may be useful for the personalization of OXC therapy in epileptic patients.

  20. 3-Methyl-4-nitrophenol metabolism by uridine diphosphate glucuronosyltransferase and sulfotransferase in liver microsomes of mice, rats, and Japanese quail (Coturnix japonica).

    PubMed

    Lee, Chul-Ho; Kamijima, Michihiro; Li, ChunMei; Taneda, Shinji; Suzuki, Akira K; Nakajima, Tamie

    2007-09-01

    3-Methyl-4-nitrophenol (PNMC) is a component of diesel exhaust particles and one of the major breakdown products of the insecticide fenitrothion. This chemical has a high potential for reproductive toxicity in Japanese quail (Coturnix japonica) and rats. Because PNMC inhaled by the body is metabolized by uridine diphosphate glucuronosyltransferase (UGT) and sulfotransferase, we investigated these enzyme activities in the hepatic microsomes and cytosols of quail (as a model of wild birds) and compared these activities with those of rats and mice as models of ecological and human risk assessment. The maximum velocity of the UGT for PNMC in quail was 12.7 nmol/min/mg, which was one third and one fourth those of rats and mice, respectively. The Michaelis-Menten constant of UGT for PNMC in quail was 0.29 mM, which was 1.3- and 1.8-fold higher than that in mice and rats, respectively, but not significantly different. In accordance with these results, UGT activities for PNMC were lowest in quail, with those in mice and rats being 4.4- and 2.7-fold higher, respectively. Sulfotransferase activity for PNMC was considerably less than that of UGT in all animals, including quail; no significant differences in the activities were found among mice, rats, and quail. These results suggest that glucuronidation may be involved primarily in PNMC elimination from wild birds as well as mammals and that the UGT activity in quail is less than that in the rodents.

  1. A QUANTITATIVE MODEL FOR XENOBIOTIC METABOLIZING ENZYME (XME) INDUCTION REGULATED BY THE PREGNANE X RECEPTOR (PXR)

    EPA Science Inventory

    The nuclear receptor, PXR, is an integral part of the regulation of hepatic metabolism. It has been shown to regulate specific CYPs (phase I drug-metabolizing enzymes) as well as certain phase II drug metabolism activities, including UDP-glucuronosyl transferase (UGT), sulfotran...

  2. Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns

    PubMed Central

    2012-01-01

    Background The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT) family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L.) is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans. Identification and characterization of UDP glycosyltransferase (UGT) genes from flax could provide valuable basic information about this important gene family and help to explain the seed specific glycosylated metabolite accumulation and other processes in plants. Plant genome sequencing projects are useful to discover complexity within this gene family and also pave way for the development of functional genomics approaches. Results Taking advantage of the newly assembled draft genome sequence of flax, we identified 137 UDP glycosyltransferase (UGT) genes from flax using a conserved signature motif. Phylogenetic analysis of these protein sequences clustered them into 14 major groups (A-N). Expression patterns of these genes were investigated using publicly available expressed sequence tag (EST), microarray data and reverse transcription quantitative real time PCR (RT-qPCR). Seventy-three per cent of these genes (100 out of 137) showed expression evidence in 15 tissues examined and indicated varied expression profiles. The RT-qPCR results of 10 selected genes were also coherent with the digital expression analysis. Interestingly, five duplicated UGT genes were identified, which showed differential expression in various tissues. Of the seven intron loss/gain positions detected, two intron positions were conserved among most of the UGTs, although a clear relationship about the evolution of these genes could not be established. Comparison of the flax UGTs with orthologs from four other sequenced dicot genomes indicated that

  3. The inverse relationship between bladder and liver in 4-aminobiphenyl-induced DNA damage

    PubMed Central

    Stablewski, Aimee B.; Vouros, Paul; Zhang, Yuesheng

    2015-01-01

    Bladder cancer risk is significantly higher in men than in women. 4-Aminobiphenyl (ABP) is a major human bladder carcinogen from tobacco smoke and other sources. In mice, male bladder is more susceptible to ABP-induced carcinogenesis than female bladder, but ABP is more carcinogenic in the livers of female mice than of male mice. Here, we show that castration causes male mice to acquire female phenotype regarding susceptibility of bladder and liver to ABP. However, spaying has little impact on organ susceptibility to ABP. Liver UDP-glucuronosyltransferases (UGTs) are believed to protect liver against but sensitize bladder to ABP, as glucuronidation of ABP and its metabolites generally reduces their toxicity and promotes their elimination via urine, but the metabolites are labile in urine, delivering carcinogenic species to the bladder. Indeed, liver expression of ABP-metabolizing human UGT1A3 transgene in mice increases bladder susceptibility to ABP. However, ABP-specific liver UGT activity is significantly higher in wild-type female mice than in their male counterparts, and castration also significantly increases ABP-specific UGT activity in the liver. Taken together, our data suggest that androgen increases bladder susceptibility to ABP via liver, likely by modulating an ABP-metabolizing liver enzyme, but exclude UGT as an important mediator. PMID:25596734

  4. Identification and Partial Characterization of a Novel UDP-N-Acetylenolpyruvoylglucosamine Reductase/UDP-N-Acetylmuramate:l-Alanine Ligase Fusion Enzyme from Verrucomicrobium spinosum DSM 4136(T).

    PubMed

    Naqvi, Kubra F; Patin, Delphine; Wheatley, Matthew S; Savka, Michael A; Dobson, Renwick C J; Gan, Han Ming; Barreteau, Hélène; Blanot, Didier; Mengin-Lecreulx, Dominique; Hudson, André O

    2016-01-01

    The enzymes involved in synthesizing the bacterial cell wall are attractive targets for the design of antibacterial compounds, since this pathway is essential for bacteria and is absent in animals, particularly humans. A survey of the genome of a bacterium that belongs to the phylum Verrucomicrobia, the closest free-living relative to bacteria from the Chlamydiales phylum, shows genetic evidence that Verrucomicrobium spinosum possesses a novel fusion open reading frame (ORF) annotated by the locus tag (VspiD_010100018130). The ORF, which is predicted to encode the enzymes UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) and UDP-N-acetylmuramate:l-alanine ligase (MurC) that are involved in the cytoplasmic steps of peptidoglycan biosynthesis, was cloned. In vivo analyses using functional complementation showed that the fusion gene was able to complement Escherichia coli murB and murC temperature sensitive mutants. The purified recombinant fusion enzyme (MurB/C Vs ) was shown to be endowed with UDP-N-acetylmuramate:l-alanine ligase activity. In vitro analyses demonstrated that the latter enzyme had a pH optimum of 9.0, a magnesium optimum of 10 mM and a temperature optimum of 44-46°C. Its apparent K m values for ATP, UDP-MurNAc, and l-alanine were 470, 90, and 25 μM, respectively. However, all attempts to demonstrate an in vitro UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) activity were unsuccessful. Lastly, Hidden Markov Model-based similarity search and phylogenetic analysis revealed that this fusion enzyme could only be identified in specific lineages within the Verrucomicrobia phylum.

  5. Identification and Partial Characterization of a Novel UDP-N-Acetylenolpyruvoylglucosamine Reductase/UDP-N-Acetylmuramate:l-Alanine Ligase Fusion Enzyme from Verrucomicrobium spinosum DSM 4136T

    PubMed Central

    Naqvi, Kubra F.; Patin, Delphine; Wheatley, Matthew S.; Savka, Michael A.; Dobson, Renwick C. J.; Gan, Han Ming; Barreteau, Hélène; Blanot, Didier; Mengin-Lecreulx, Dominique; Hudson, André O.

    2016-01-01

    The enzymes involved in synthesizing the bacterial cell wall are attractive targets for the design of antibacterial compounds, since this pathway is essential for bacteria and is absent in animals, particularly humans. A survey of the genome of a bacterium that belongs to the phylum Verrucomicrobia, the closest free-living relative to bacteria from the Chlamydiales phylum, shows genetic evidence that Verrucomicrobium spinosum possesses a novel fusion open reading frame (ORF) annotated by the locus tag (VspiD_010100018130). The ORF, which is predicted to encode the enzymes UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) and UDP-N-acetylmuramate:l-alanine ligase (MurC) that are involved in the cytoplasmic steps of peptidoglycan biosynthesis, was cloned. In vivo analyses using functional complementation showed that the fusion gene was able to complement Escherichia coli murB and murC temperature sensitive mutants. The purified recombinant fusion enzyme (MurB/CVs) was shown to be endowed with UDP-N-acetylmuramate:l-alanine ligase activity. In vitro analyses demonstrated that the latter enzyme had a pH optimum of 9.0, a magnesium optimum of 10 mM and a temperature optimum of 44–46°C. Its apparent Km values for ATP, UDP-MurNAc, and l-alanine were 470, 90, and 25 μM, respectively. However, all attempts to demonstrate an in vitro UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) activity were unsuccessful. Lastly, Hidden Markov Model-based similarity search and phylogenetic analysis revealed that this fusion enzyme could only be identified in specific lineages within the Verrucomicrobia phylum. PMID:27047475

  6. Role of UDP-Glucuronosyltransferase 1A1 in the Metabolism and Pharmacokinetics of Silymarin Flavonolignans in Patients with HCV and NAFLD.

    PubMed

    Xie, Ying; Miranda, Sonia R; Hoskins, Janelle M; Hawke, Roy L

    2017-01-15

    Silymarin is the most commonly used herbal medicine by patients with chronic liver disease. Silymarin flavonolignans undergo rapid first-pass metabolism primarily by glucuronidation. The aims of this investigation were: (1) to determine the association of UGT1A1*28 polymorphism with the area under the plasma concentration-time curves (AUCs) for silybin A (SA) and silybin B (SB); (2) to evaluate the effect of UGT1A1*28 polymorphism on the profile of flavonolignan glucuronide conjugates found in the plasma; and (3) to investigate the role of UGT1A1 enzyme kinetics on the pharmacokinetics of SA and SB. AUCs and metabolic ratios for thirty-three patients with chronic liver disease administered oral doses of silymarin were compared between different UGT1A1*28 genotypes. The AUCs, metabolic ratios, and the profiles of major SA and SB glucuronides did not differ significantly among the three UGT1A1 genotypes. In contrast, an increase in the proportion of sulfated flavonolignan conjugates in plasma was observed in subjects with UGT1A1*28/*28 genotype compared to subjects carrying wild type alleles. Differences in SA and SB in vitro intrinsic clearance estimates for UGTIA1 correlated inversely with SA and SB exposures observed in vivo indicating a major role for UGT1A1 in silymarin metabolism. In addition, a significant difference in the metabolic ratio observed between patients with NAFLD and HCV suggests that any effect of UGT1A1 polymorphism may be obscured by a greater effect of liver disease on the pharmacokinetics of silymarin. Taken together, these results suggest the presence of the UGT1A1*28 allele does not contribute significantly to a large inter-subject variability in the pharmacokinetics of silybin A and silybin B which may obscure the ability to detect beneficial effects of silymarin in patients with liver disease.

  7. Inhibition of UDP-glucose dehydrogenase by 6-thiopurine and its oxidative metabolites: Possible mechanism for its interaction within the bilirubin excretion pathway and 6TP associated liver toxicity.

    PubMed

    Weeramange, Chamitha J; Binns, Cassie M; Chen, Chixiang; Rafferty, Ryan J

    2018-03-20

    6-Thiopurine (6TP) is an actively prescribed drug in the treatment of various diseases ranging from Crohn's disease and other inflammatory diseases to acute lymphocytic leukemia and non-Hodgkin's leukemia. While 6TP has beneficial therapeutic uses, severe toxicities are also reported with its use, such as jaundice and liver toxicity. While numerous investigations into the mode in which toxicity originates has been undertaken. None have investigated the effects of inhibition towards UDP-Glucose Dehydrogenase (UDPGDH), an oxidative enzyme responsible for UDP-glucuronic acid (UDPGA) formation or UDP-Glucuronosyl transferase (UGT1A1), which is responsible for the conjugation of bilirubin with UDPGA for excretion. Failure to excrete bilirubin leads to jaundice and liver toxicity. We proposed that either 6TP or its primary oxidative excretion metabolites inhibit one or both of these enzymes, resulting in the observed toxicity from 6TP administration. Inhibition analysis of these purines revealed that 6-thiopurine has weak to no inhibition towards UDPGDH with a K i of 288 μM with regard to varying UDP-glucose, but 6-thiouric (primary end metabolite, fully oxidized at carbon 2 and 8, and highly retained by the body) has a near six-fold increased inhibition towards UDPGDH with a K i of 7 μM. Inhibition was also observed by 6-thioxanthine (oxidized at carbon 2) and 8-OH-6TP with K i values of 54 and 14 μM, respectively. Neither 6-thiopurine or its excretion metabolites were shown to inhibit UGT1A1. Our results show that the C2 and C8 positions of 6TP are pivotal in said inhibition towards UDPGDH and have no effect upon UGT1A1, and that blocking C8 could lead to new analogs with reduced, if not eliminated jaundice and liver toxicities. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Dissimilarities in the Metabolism of Antiretroviral Drugs used in HIV Pre-exposure Prophylaxis in Colon and Vagina Tissues

    PubMed Central

    To, Elaine E.; Hendrix, Craig W.; Bumpus, Namandjé N.

    2013-01-01

    Attempts to prevent HIV infection through pre-exposure prophylaxis (PrEP) include topical application of anti-HIV drugs to the mucosal sites of infection; however, a potential role for local drug metabolizing enzymes in modulating the exposure of the mucosal tissues to these drugs has yet to be explored. Here we present the first report that enzymes belonging to the cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) families of drug metabolizing enzymes are expressed and active in vaginal and colorectal tissue using biopsies collected from healthy volunteers. In doing so, we discovered that dapivirine and maraviroc, a non-nucleoside reverse transcriptase inhibitor and an entry inhibitor currently in development as microbicides for HIV PrEP, are differentially metabolized in colorectal tissue and vaginal tissue. Taken together, these data should help to guide the optimization of small molecules being developed for HIV PrEP. PMID:23965226

  9. Novel associations of UDP-glucuronosyltransferase 2B gene variants with prostate cancer risk in a multiethnic study.

    PubMed

    Vidal, Adriana C; Tucker, Cocoa; Schildkraut, Joellen M; Richardson, Ricardo M; McPhail, Megan; Freedland, Stephen J; Hoyo, Cathrine; Grant, Delores J

    2013-11-22

    We have previously shown that a functional polymorphism of the UGT2B15 gene (rs1902023) was associated with increased risk of prostate cancer (PC). Novel functional polymorphisms of the UGT2B17 and UGT2B15 genes have been recently characterized by in vitro assays but have not been evaluated in epidemiologic studies. Fifteen functional SNPs of the UGT2B17 and UGT2B15 genes, including cis-acting UGT2B gene SNPs, were genotyped in African American and Caucasian men (233 PC cases and 342 controls). Regression models were used to analyze the association between SNPs and PC risk. After adjusting for race, age and BMI, we found that six UGT2B15 SNPs (rs4148269, rs3100, rs9994887, rs13112099, rs7686914 and rs7696472) were associated with an increased risk of PC in log-additive models (p < 0.05). A SNP cis-acting on UGT2B17 and UGT2B15 expression (rs17147338) was also associated with increased risk of prostate cancer (OR = 1.65, 95% CI = 1.00-2.70); while a stronger association among men with high Gleason sum was observed for SNPs rs4148269 and rs3100. Although small sample size limits inference, we report novel associations between UGT2B15 and UGT2B17 variants and PC risk. These associations with PC risk in men with high Gleason sum, more frequently found in African American men, support the relevance of genetic differences in the androgen metabolism pathway, which could explain, in part, the high incidence of PC among African American men. Larger studies are required.

  10. Novel associations of UDP-glucuronosyltransferase 2B gene variants with prostate cancer risk in a multiethnic study

    PubMed Central

    2013-01-01

    Background We have previously shown that a functional polymorphism of the UGT2B15 gene (rs1902023) was associated with increased risk of prostate cancer (PC). Novel functional polymorphisms of the UGT2B17 and UGT2B15 genes have been recently characterized by in vitro assays but have not been evaluated in epidemiologic studies. Methods Fifteen functional SNPs of the UGT2B17 and UGT2B15 genes, including cis-acting UGT2B gene SNPs, were genotyped in African American and Caucasian men (233 PC cases and 342 controls). Regression models were used to analyze the association between SNPs and PC risk. Results After adjusting for race, age and BMI, we found that six UGT2B15 SNPs (rs4148269, rs3100, rs9994887, rs13112099, rs7686914 and rs7696472) were associated with an increased risk of PC in log-additive models (p < 0.05). A SNP cis-acting on UGT2B17 and UGT2B15 expression (rs17147338) was also associated with increased risk of prostate cancer (OR = 1.65, 95% CI = 1.00-2.70); while a stronger association among men with high Gleason sum was observed for SNPs rs4148269 and rs3100. Conclusions Although small sample size limits inference, we report novel associations between UGT2B15 and UGT2B17 variants and PC risk. These associations with PC risk in men with high Gleason sum, more frequently found in African American men, support the relevance of genetic differences in the androgen metabolism pathway, which could explain, in part, the high incidence of PC among African American men. Larger studies are required. PMID:24267955

  11. UGT1A1*6 polymorphisms are correlated with irinotecan-induced neutropenia: a systematic review and meta-analysis.

    PubMed

    Zhang, Xue; Yin, Jia-Fu; Zhang, Jiao; Kong, Shu-Jia; Zhang, Hong-Yin; Chen, Xue-Mei

    2017-07-01

    Irinotecan (IRI) chemotherapy toxicities can be severe, and may result in treatment delay, morbidity and in some rare cases death. Neutropenia is a life-threatening side effect of irinotecan, and UDP glucuronosyltransferases (UGTs) gene polymorphisms could predict the side effects in cancer patients and then reduce IRI-induced toxicity by preventative treatment or a decrease in dose. Both UGT1A1*6 and *28 were reliably demonstrated to be risk factors for IRI-induced neutropenia, with tests for both polymorphisms potentially being particularly useful in Asian cancer patients. However, some researchers reported that UGT1A1*6 could predict IRI-induced toxicities in Asian populations, controversial conclusions still remained. Thus, the association between UGT1A1*6 polymorphisms and IRI-induced severe toxicity in cancer patients is still needed to be explored. Therefore, this study aims to investigate the association between UGT1A1*6 polymorphisms and IRI-related severe neutropenia in cancer patients on a large scale. A total of 12 studies that included 746 wild genotype (G/G) cases and 394 variant genotype (G/A and A/A) cases were included on the basis of inclusion criteria. Then we assessed the methodologies quality; odds ratio (OR), risk difference (RD) and 95% confidence intervals (95% CI) were used to assess the strength of association. Overall, an increased risk of severe neutropenia in cancer patients with UGT1A1*6 polymorphisms was found. Patients with recessive models (GA + AA vs. GG) of UGT1A1*6 showed an increased risk (OR 2.03, 95% CI 1.54-2.68; RD = 0.11, P < 0.001). Specifically, the heterozygous variant of UGT1A1*6 showed an increased risk (OR 1.83, 95% CI 1.36-2.46; RD = 0.09, P < 0.001), and homozygous mutation showed also high risk (OR 2.95, 95% CI 1.83-4.75; RD = 0.18, P < 0.001) for severe neutropenia. Subgroup meta-analysis revealed that for patients harboring both heterozygous and homozygous variants, cancer types, low dose of IRI and

  12. Three-dimensional quantitative structure-activity relationship studies on UGT1A9-mediated 3-O-glucuronidation of natural flavonols using a pharmacophore-based comparative molecular field analysis model.

    PubMed

    Wu, Baojian; Morrow, John Kenneth; Singh, Rashim; Zhang, Shuxing; Hu, Ming

    2011-02-01

    Glucuronidation is often recognized as one of the rate-determining factors that limit the bioavailability of flavonols. Hence, design and synthesis of more bioavailable flavonols would benefit from the establishment of predictive models of glucuronidation using kinetic parameters [e.g., K(m), V(max), intrinsic clearance (CL(int)) = V(max)/K(m)] derived for flavonols. This article aims to construct position (3-OH)-specific comparative molecular field analysis (CoMFA) models to describe UDP-glucuronosyltransferase (UGT) 1A9-mediated glucuronidation of flavonols, which can be used to design poor UGT1A9 substrates. The kinetics of recombinant UGT1A9-mediated 3-O-glucuronidation of 30 flavonols was characterized, and kinetic parameters (K(m), V(max), CL(int)) were obtained. The observed K(m), V(max), and CL(int) values of 3-O-glucuronidation ranged from 0.04 to 0.68 μM, 0.04 to 12.95 nmol/mg/min, and 0.06 to 109.60 ml/mg/min, respectively. To model UGT1A9-mediated glucuronidation, 30 flavonols were split into the training (23 compounds) and test (7 compounds) sets. These flavonols were then aligned by mapping the flavonols to specific common feature pharmacophores, which were used to construct CoMFA models of V(max) and CL(int), respectively. The derived CoMFA models possessed good internal and external consistency and showed statistical significance and substantive predictive abilities (V(max) model: q(2) = 0.738, r(2) = 0.976, r(pred)(2) = 0.735; CL(int) model: q(2) = 0.561, r(2) = 0.938, r(pred)(2) = 0.630). The contour maps derived from CoMFA modeling clearly indicate structural characteristics associated with rapid or slow 3-O-glucuronidation. In conclusion, the approach of coupling CoMFA analysis with a pharmacophore-based structural alignment is viable for constructing a predictive model for regiospecific glucuronidation rates of flavonols by UGT1A9.

  13. Expression levels of uridine 5'-diphospho-glucuronosyltransferase genes in breast tissue from healthy women are associated with mammographic density.

    PubMed

    Haakensen, Vilde D; Biong, Margarethe; Lingjærde, Ole Christian; Holmen, Marit Muri; Frantzen, Jan Ole; Chen, Ying; Navjord, Dina; Romundstad, Linda; Lüders, Torben; Bukholm, Ida K; Solvang, Hiroko K; Kristensen, Vessela N; Ursin, Giske; Børresen-Dale, Anne-Lise; Helland, Aslaug

    2010-01-01

    Mammographic density (MD), as assessed from film screen mammograms, is determined by the relative content of adipose, connective and epithelial tissue in the female breast. In epidemiological studies, a high percentage of MD confers a four to six fold risk elevation of developing breast cancer, even after adjustment for other known breast cancer risk factors. However, the biologic correlates of density are little known. Gene expression analysis using whole genome arrays was performed on breast biopsies from 143 women; 79 women with no malignancy (healthy women) and 64 newly diagnosed breast cancer patients, both included from mammographic centres. Percent MD was determined using a previously validated, computerized method on scanned mammograms. Significance analysis of microarrays (SAM) was performed to identify genes influencing MD and a linear regression model was used to assess the independent contribution from different variables to MD. SAM-analysis identified 24 genes differentially expressed between samples from breasts with high and low MD. These genes included three uridine 5'-diphospho-glucuronosyltransferase (UGT) genes and the oestrogen receptor gene (ESR1). These genes were down-regulated in samples with high MD compared to those with low MD. The UGT gene products, which are known to inactivate oestrogen metabolites, were also down-regulated in tumour samples compared to samples from healthy individuals. Several single nucleotide polymorphisms (SNPs) in the UGT genes associated with the expression of UGT and other genes in their vicinity were identified. Three UGT enzymes were lower expressed both in breast tissue biopsies from healthy women with high MD and in biopsies from newly diagnosed breast cancers. The association was strongest amongst young women and women using hormonal therapy. UGT2B10 predicts MD independently of age, hormone therapy and parity. Our results indicate that down-regulation of UGT genes in women exposed to female sex hormones is

  14. Expression levels of uridine 5'-diphospho-glucuronosyltransferase genes in breast tissue from healthy women are associated with mammographic density

    PubMed Central

    2010-01-01

    Introduction Mammographic density (MD), as assessed from film screen mammograms, is determined by the relative content of adipose, connective and epithelial tissue in the female breast. In epidemiological studies, a high percentage of MD confers a four to six fold risk elevation of developing breast cancer, even after adjustment for other known breast cancer risk factors. However, the biologic correlates of density are little known. Methods Gene expression analysis using whole genome arrays was performed on breast biopsies from 143 women; 79 women with no malignancy (healthy women) and 64 newly diagnosed breast cancer patients, both included from mammographic centres. Percent MD was determined using a previously validated, computerized method on scanned mammograms. Significance analysis of microarrays (SAM) was performed to identify genes influencing MD and a linear regression model was used to assess the independent contribution from different variables to MD. Results SAM-analysis identified 24 genes differentially expressed between samples from breasts with high and low MD. These genes included three uridine 5'-diphospho-glucuronosyltransferase (UGT) genes and the oestrogen receptor gene (ESR1). These genes were down-regulated in samples with high MD compared to those with low MD. The UGT gene products, which are known to inactivate oestrogen metabolites, were also down-regulated in tumour samples compared to samples from healthy individuals. Several single nucleotide polymorphisms (SNPs) in the UGT genes associated with the expression of UGT and other genes in their vicinity were identified. Conclusions Three UGT enzymes were lower expressed both in breast tissue biopsies from healthy women with high MD and in biopsies from newly diagnosed breast cancers. The association was strongest amongst young women and women using hormonal therapy. UGT2B10 predicts MD independently of age, hormone therapy and parity. Our results indicate that down-regulation of UGT genes

  15. Maternal drug abuse and human term placental xenobiotic and steroid metabolizing enzymes in vitro.

    PubMed

    Paakki, P; Stockmann, H; Kantola, M; Wagner, P; Lauper, U; Huch, R; Elovaara, E; Kirkinen, P; Pasanen, M

    2000-02-01

    We evaluated the impact of maternal drug abuse at term on human placental cytochrome P450 (CYP)-mediated (Phase I) xenobiotic and steroid-metabolizing activities [aromatase, 7-ethoxyresorufin O-deethylase (EROD), 7-ethoxycoumarin O-deethylase (ECOD), pyrene 1-hydroxylase (P1OH), and testosterone hydroxylase], and androstenedione-forming isomerase, NADPH quinone oxidoreductase (Phase II), UDP-glucuronosyltransferase (UGT), and glutathione S-transferase (GST) activities in vitro. Overall, the formation of androstenedione, P1OH, and testosterone hydroxylase was statistically significant between control and drug-abusing subjects; we observed no significant differences in any other of the phase I and II activities. In placentas from drug-abusing mothers, we found significant correlations between ECOD and P1OH activities (p < 0. 001), but not between ECOD and aromatase or P1OH and EROD activities; we also found significant correlations between blood cotinine and UGT activities (p < 0.01). In contrast, in controls (mothers who did not abuse drugs but did smoke cigarettes), the P1OH activity correlated with ECOD, EROD (p < 0.001), and testosterone hydroxylase (p < 0.001) activities. Our results (wider variation in ECOD activity among tissue from drug-abusing mothers and the significant correlation between P1OH and ECOD activities, but not with aromatase or EROD activities) indicate that maternal drug abuse results in an additive effect in enhancing placental xenobiotic metabolizing enzymes when the mother also smokes cigarettes; this may be due to enhancing a "silent" CYP form, or a new placental CYP form may be activated. The change in the steroid metabolism profile in vitro suggests that maternal drug abuse may alter normal hormonal homeostasis during pregnancy.

  16. Protective effects of coffee against oxidative stress induced by the tobacco carcinogen benzo[α]pyrene.

    PubMed

    Kalthoff, Sandra; Landerer, Steffen; Reich, Julia; Strassburg, Christian P

    2017-07-01

    Coffee consumption has been epidemiologically associated with a lower risk for liver cirrhosis and cancer. UDP-glucuronosyltransferases (UGT1A) catalyze the detoxification of reactive metabolites thereby acting as indirect antioxidants. Aim of the study was to examine UGT1A regulation in response to Benzo[α]pyrene (BaP) to elucidate the potentially protective effects of coffee on BaP-induced oxidative stress and toxicity. In cell culture (HepG2, KYSE70 cells) and in htgUGT1A-WT mice, UGT1A transcription was activated by BaP, while it was reduced or absent htgUGT1A-SNP (containing 10 commonly occurring UGT1A-SNPs) mice. siRNA-mediated knockdown identified aryl hydrocarbon receptor (AhR) and nuclear factor erythroid2-related factor-2 (Nrf2) as mediators of BaP-induced UGT1A upregulation. Exposure to coffee led to a reduction of BaP-induced production of reactive oxygen species in vitro and in htgUGT1A-WT and -SNP mice. After UGT1A silencing by UGT1A-specific siRNA in cell culture, the coffee-mediated reduction of ROS production was significantly impaired compared to UGT1A expressing cells. A common UGT1A haplotype, prevalent in 9% (homozygous) of the White population, significantly impairs the expression of UGT1A enzymes in response to the putative tobacco carcinogen BaP and is likely to represent a significant risk factor for reduced detoxification and increased genotoxicity. Coffee was demonstrated to inhibit BaP-induced production of oxidative stress by UGT1A activation, and is therefore an attractive candidate for chemoprotection in risk groups for HCC or other tumors. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Dissimilarities in the metabolism of antiretroviral drugs used in HIV pre-exposure prophylaxis in colon and vagina tissues.

    PubMed

    To, Elaine E; Hendrix, Craig W; Bumpus, Namandjé N

    2013-10-01

    Attempts to prevent HIV infection through pre-exposure prophylaxis (PrEP) include topical application of anti-HIV drugs to the mucosal sites of infection; however, a potential role for local drug metabolizing enzymes in modulating the exposure of the mucosal tissues to these drugs has yet to be explored. Here we present the first report that enzymes belonging to the cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) families of drug metabolizing enzymes are expressed and active in vaginal and colorectal tissue using biopsies collected from healthy volunteers. In doing so, we discovered that dapivirine and maraviroc, a non-nucleoside reverse transcriptase inhibitor and an entry inhibitor currently in development as microbicides for HIV PrEP, are differentially metabolized in colorectal tissue and vaginal tissue. Taken together, these data should help to guide the optimization of small molecules being developed for HIV PrEP. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Isolated gene encoding an enzyme with UDP-glucose pyrophosphorylase and phosphoglucomutase activities from Cyclotella cryptica

    DOEpatents

    Jarvis, Eric E.; Roessler, Paul G.

    1999-01-01

    The present invention relates to a cloned gene which encodes an enzyme, the purified enzyme, and the applications and products resulting from the use of the gene and enzyme. The gene, isolated from Cyclotella cryptica, encodes a multifunctional enzyme that has both UDP-glucose pyrophosphorylase and phosphoglucomutase activities.

  19. Soybean greatly reduces valproic acid plasma concentrations: A food–drug interaction study

    PubMed Central

    Marahatta, Anu; Bhandary, Bidur; Jeong, Seul-Ki; Kim, Hyung-Ryong; Chae, Han-Jung

    2014-01-01

    The aim of this study was to investigate the effects of soy on the pharmacokinetics and pharmacodynamics of valproic acid (VPA). In a preclinical study, rats were pretreated with two different amounts of soy extract for five days (150 mg/kg and 500 mg/kg), which resulted in decreases of 57% and 65% in the Cmax of VPA, respectively. AUC of VPA decreased to 83% and 70% in the soy pretreatment groups. Interestingly, the excretion rate of VPA glucuronide (VPAG) was higher in the soy-fed groups. Levels of UDP-glucuronosyltransferase (UGT) UGT1A3, UGT1A6, UGT2B7 and UGT2B15 were elevated in the soy-treated group, and GABA concentrations were elevated in the brain after VPA administration. However, this was less pronounced in soy extract pretreated group than for the untreated group. This is the first study to report the effects of soy pretreatment on the pharmacokinetics and pharmacodynamics of VPA in rodents. PMID:24618639

  20. Soybean greatly reduces valproic acid plasma concentrations: a food-drug interaction study.

    PubMed

    Marahatta, Anu; Bhandary, Bidur; Jeong, Seul-Ki; Kim, Hyung-Ryong; Chae, Han-Jung

    2014-03-12

    The aim of this study was to investigate the effects of soy on the pharmacokinetics and pharmacodynamics of valproic acid (VPA). In a preclinical study, rats were pretreated with two different amounts of soy extract for five days (150 mg/kg and 500 mg/kg), which resulted in decreases of 57% and 65% in the Cmax of VPA, respectively. AUC of VPA decreased to 83% and 70% in the soy pretreatment groups. Interestingly, the excretion rate of VPA glucuronide (VPAG) was higher in the soy-fed groups. Levels of UDP-glucuronosyltransferase (UGT) UGT1A3, UGT1A6, UGT2B7 and UGT2B15 were elevated in the soy-treated group, and GABA concentrations were elevated in the brain after VPA administration. However, this was less pronounced in soy extract pretreated group than for the untreated group. This is the first study to report the effects of soy pretreatment on the pharmacokinetics and pharmacodynamics of VPA in rodents.

  1. Isolated gene encoding an enzyme with UDP-glucose pyrophosphorylase and phosphoglucomutase activities from Cyclotella cryptica

    DOEpatents

    Jarvis, E.E.; Roessler, P.G.

    1999-07-27

    The present invention relates to a cloned gene which encodes an enzyme, the purified enzyme, and the applications and products resulting from the use of the gene and enzyme. The gene, isolated from Cyclotella cryptica, encodes a multifunctional enzyme that has both UDP-glucose pyrophosphorylase and phosphoglucomutase activities. 8 figs.

  2. Biosynthesis of UDP-GlcNAc, UndPP-GlcNAc and UDP-GlcNAcA Involves Three Easily Distinguished 4-Epimerase Enzymes, Gne, Gnu and GnaB

    PubMed Central

    Cunneen, Monica M.; Liu, Bin; Wang, Lei; Reeves, Peter R.

    2013-01-01

    We have undertaken an extensive survey of a group of epimerases originally named Gne, that were thought to be responsible for inter-conversion of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc). The analysis builds on recent work clarifying the specificity of some of these epimerases. We find three well defined clades responsible for inter-conversion of the gluco- and galacto-configuration at C4 of different N-acetylhexosamines. Their major biological roles are the formation of UDP-GalNAc, UDP-N-acetylgalactosaminuronic acid (UDP-GalNAcA) and undecaprenyl pyrophosphate-N-acetylgalactosamine (UndPP-GalNAc) from the corresponding glucose forms. We propose that the clade of UDP-GlcNAcA epimerase genes be named gnaB and the clade of UndPP-GlcNAc epimerase genes be named gnu, while the UDP-GlcNAc epimerase genes retain the name gne. The Gne epimerases, as now defined after exclusion of those to be named GnaB or Gnu, are in the same clade as the GalE 4-epimerases for inter-conversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal). This work brings clarity to an area that had become quite confusing. The identification of distinct enzymes for epimerisation of UDP-GlcNAc, UDP-GlcNAcA and UndPP-GlcNAc will greatly facilitate allocation of gene function in polysaccharide gene clusters, including those found in bacterial genome sequences. A table of the accession numbers for the 295 proteins used in the analysis is provided to enable the major tree to be regenerated with the inclusion of additional proteins of interest. This and other suggestions for annotation of 4-epimerase genes will facilitate annotation. PMID:23799153

  3. Studies on the flavonoid substrates of human UDP-glucuronosyl transferase (UGT) 2B7.

    PubMed

    Xie, Shenggu; You, Linya; Zeng, Su

    2007-08-01

    Flavonoids are found in fruits, vegetables, nuts, seeds, herbs, spices, stems and flowers, as well as in tea and red wine. They are prominent components of citrus fruits and other food sources, are consumed regularly with the human diet, and have been shown to have many biological functions, including antioxidant and chelating properties. This study suggests features of the flavonoid structure necessary for it to act as a substrate of human UGT2B7. Generally speaking, flavonol has higher glucuronidation activity than flavones and isoflavones. Differences in C3' position have an important effect on UGT2B7 glucuronidation activity, and the various substituents have different influences on glucuronidation activity. For flavonol, the bulky group at C4' can enhance glucuronidation activity. Increasing the number of hydroxyl groups of flavonoids will increase their glucuronidation activity towards UGT2B7, while conjugation of glycon will weaken the activity, and hydroxyl position can also have an important role in activity. The high glucuronidation efficiency observed with many flavonoids suggests that the contribution of UGT2B7 to the metabolism of flavonoids may be significant. The results suggest that we should not only pay attention to glucuronidation activity, but should also attach importance to the regioselectivity of glucuronidation.

  4. Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase.

    PubMed

    Jackson, R G; Lim, E K; Li, Y; Kowalczyk, M; Sandberg, G; Hoggett, J; Ashford, D A; Bowles, D J

    2001-02-09

    Biochemical characterization of recombinant gene products following a phylogenetic analysis of the UDP-glucosyltransferase (UGT) multigene family of Arabidopsis has identified one enzyme (UGT84B1) with high activity toward the plant hormone indole-3-acetic acid (IAA) and three related enzymes (UGT84B2, UGT75B1, and UGT75B2) with trace activities. The identity of the IAA conjugate has been confirmed to be 1-O-indole acetyl glucose ester. A sequence annotated as a UDP-glucose:IAA glucosyltransferase (IAA-UGT) in the Arabidopsis genome and expressed sequence tag data bases given its similarity to the maize iaglu gene sequence showed no activity toward IAA. This study describes the first biochemical analysis of a recombinant IAA-UGT and provides the foundation for future genetic approaches to understand the role of 1-O-indole acetyl glucose ester in Arabidopsis.

  5. Green cocoons in silkworm Bombyx mori resulting from the quercetin 5-O-glucosyltransferase of UGT86, is an evolved response to dietary toxins.

    PubMed

    Xu, Xu; Wang, Meng; Wang, Ying; Sima, Yanghu; Zhang, Dayan; Li, Juan; Yin, Weiming; Xu, Shiqing

    2013-05-01

    The glycosylation of UDP-glucosyltransferases (UGTs) is of great importance in the control and elimination of both endogenous and exogenous toxins. Bm-UGT10286 (UGT86) is the sole provider of UGT activity against the 5-O position of quercetin and directly influences the formation of green pigment in the Bombyx cocoon. To evaluate whether cocoon coloration evolved for mimetic purposes, we concentrated on the expression pattern of Ugt86 and the activities of the enzyme substrates. The expression of Ugt86 was not only detected in the cocoon absorbing and accumulating tissues such as the digestive tube and silk glands, but also in quantity in the detoxification tissues of the malpighian tubes and fat body, as well as in the gonads. As in the green cocoon strains, Ugt86 was clearly expressed in the yellow and white cocoon strains. In vitro, the fusion protein of UGT86 showed quercetin metabolic activity. Nevertheless, Ugt86 expression of 5th instar larvae was not up-regulated in the silk gland by exogenous quercetin. However, it was significantly up-regulated in the digestive tube and gonads (P < 0.05). A similar result was observed in experiments where larvae were exposed to rutin, an insect resistance inducer and growth inhibitor typically found in plants, and to 20-hydroxylecdysone (20E), an insect endocrine and plant source hormone. On the contrary, up-regulated Ugt86 expression was almost nil in larvae exposed to juvenile hormone III (P > 0.05). The results of HPLC revealed that a new substance was formed by mixing 20E with the recombinant UGT86 protein in vitro, indicating that the effect of Ugt86 on 20E was similar to that on exogenous quercetin derived from plant food, and that the effect probably initiated the detoxification reaction against rutin. The conclusion is that the reaction of Ugt86 on the silkworm cocoon pigment quercetin is not the result of active mimetic ecogenesis, but derives from the detoxification of UGTs.

  6. UDP-4-Keto-6-Deoxyglucose, a Transient Antifungal Metabolite, Weakens the Fungal Cell Wall Partly by Inhibition of UDP-Galactopyranose Mutase

    PubMed Central

    Ma, Liang; Salas, Omar; Bowler, Kyle

    2017-01-01

    ABSTRACT Can accumulation of a normally transient metabolite affect fungal biology? UDP-4-keto-6-deoxyglucose (UDP-KDG) represents an intermediate stage in conversion of UDP-glucose to UDP-rhamnose. Normally, UDP-KDG is not detected in living cells, because it is quickly converted to UDP-rhamnose by the enzyme UDP-4-keto-6-deoxyglucose-3,5-epimerase/-4-reductase (ER). We previously found that deletion of the er gene in Botrytis cinerea resulted in accumulation of UDP-KDG to levels that were toxic to the fungus due to destabilization of the cell wall. Here we show that these negative effects are at least partly due to inhibition by UDP-KDG of the enzyme UDP-galactopyranose mutase (UGM), which reversibly converts UDP-galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-Galf). An enzymatic activity assay showed that UDP-KDG inhibits the B. cinerea UGM enzyme with a Ki of 221.9 µM. Deletion of the ugm gene resulted in strains with weakened cell walls and phenotypes that were similar to those of the er deletion strain, which accumulates UDP-KDG. Galf residue levels were completely abolished in the Δugm strain and reduced in the Δer strain, while overexpression of the ugm gene in the background of a Δer strain restored Galf levels and alleviated the phenotypes. Collectively, our results show that the antifungal activity of UDP-KDG is due to inhibition of UGM and possibly other nucleotide sugar-modifying enzymes and that the rhamnose metabolic pathway serves as a shunt that prevents accumulation of UDP-KDG to toxic levels. These findings, together with the fact that there is no Galf in mammals, support the possibility of developing UDP-KDG or its derivatives as antifungal drugs. PMID:29162710

  7. Impacts of the Glucuronidase Genotypes UGT1A4, UGT2B7, UGT2B15 and UGT2B17 on Tamoxifen Metabolism in Breast Cancer Patients

    PubMed Central

    Romero-Lorca, Alicia; Novillo, Apolonia; Gaibar, María; Bandrés, Fernando; Fernández-Santander, Ana

    2015-01-01

    Tamoxifen is used to prevent and treat estrogen-dependent breast cancer. It is described as a prodrug since most of its antiestrogen effects are exerted through its hydroxylated metabolites 4-OH-tamoxifen and endoxifen. In prior work, we correlated optimal plasma levels of these metabolites with certain genotypes of CYP2D6 and SULT1A2. This descriptive study examines correlations between concentrations of tamoxifen's glucuronide metabolites and genotypes UGT1A4 Pro24Thr, UGT1A4 Leu48Val, UGT2B7 His268Tyr, UGT2B15 Asp85YTyr UGT2B15 Lys523Thr and UGT2B17del in 132 patients with estrogen receptor-positive breast cancer under treatment with tamoxifen. Patients were genotyped by real-time and conventional PCR-RFLP. The glucuronides 4-OH-tamoxifen-N-glucuronide, 4-OH-tamoxifen-O-glucuronide and endoxifen-O-glucuronide were isolated from blood plasma and quantified using a high-pressure liquid chromatography-tandem mass spectrometry system. Individuals who were homozygous for UGT1A448VAL showed significantly lower mean concentrations of both glucuronide metabolites compared to subjects genotyped as wt/wt plus wt/48Val (p=0.037 and p=0.031, respectively). Women homozygous for UGT2B7268Tyr also showed mean substrate/product ratios of 4-OH-tamoxifen/4-OH-tamoxifen-O-glucuronide and 4-OH-tamoxifen/4-OH-tamoxifen-N-glucuronide indicative of reduced glucuronidase activity compared to wt homozygotes or to heterozygotes for the polymorphism (p=0.005 and p=0.003, respectively). In contrast, UGT2B15 Lys523Thr and UGT2B17del were associated with possibly increased enzyme activity. Patients with at least one variant allele UGT2B15523Thr showed significantly higher 4-OH-tamoxifen-O-glucuronide and endoxifen-glucuronide levels (p=0.023 and p=0.025, respectively) indicating a variant gene-dose effect. Higher 4-OH-tamoxifen-N-glucuronide levels observed in UGT2B17del genotypes (p=0.042) could be attributed to a mechanism that compensates for the greater expression of other genes in UGT2B

  8. Suppression of abnormal morphology and extracytoplasmic function sigma activity in Bacillus subtilis ugtP mutant cells by expression of heterologous glucolipid synthases from Acholeplasma laidlawii.

    PubMed

    Matsuoka, Satoshi; Seki, Takahiro; Matsumoto, Kouji; Hara, Hiroshi

    2016-12-01

    Glucolipids in Bacillus subtilis are synthesized by UgtP processively transferring glucose from UDP-glucose to diacylglycerol. Here we conclude that the abnormal morphology of a ugtP mutant is caused by lack of glucolipids, since the same morphology arises after abolition of glucolipid production by disruption of pgcA and gtaB, which are involved in UDP-glucose synthesis. Conversely, expression of a monoglucosyldiacylglycerol (MGlcDG) produced by 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii (alMGS) almost completely suppressed the ugtP disruptant phenotype. Activation of extracytoplasmic function (ECF) sigmas (SigM, SigV, and SigX) in the ugtP mutant was decreased by alMGS expression, and was suppressed to low levels by MgSO 4 addition. When alMGS and alDGS (A. laidlawii 1,2-diacylglycerol-3-glucose (1-2)-glucosyltransferase producing diglucosyldiacylglycerol (DGlcDG)) were simultaneously expressed, SigX activation was repressed to wild type level. These observations suggest that MGlcDG molecules are required for maintenance of B. subtilis cell shape and regulation of ECF sigmas, and DGlcDG regulates SigX activity.

  9. Genetic variations in UGT2B28, UGT2B17, UGT2B15 genes and the risk of prostate cancer: A case-control study.

    PubMed

    Habibi, Mohsen; Mirfakhraie, Reza; Khani, Maryam; Rakhshan, Azadeh; Azargashb, Eznollah; Pouresmaeili, Farkhondeh

    2017-11-15

    Glucuronidation is a major pathway for elimination of exogenous and endogenous compounds such as environmental carcinogens and androgens from the body. This biochemical pathway is mediated by enzymes called uridine diphosphoglucuronosyltransferases (UGTs). Null (del/del) genes polymorphisms in UGT2B17, and UGT2B28 and D85Y single-nucleotide polymorphism (SNP) of UGT2B15 have been reported to increase the risk of prostate cancer. The goal of this study was to determine the association of mentioned genetic variants with the risk of prostate cancer. We investigated the copy number variations (CNVs) of UGT2B17 and UGT2B28 loci and the association between rs1902023 polymorphism of UGT2B15 gene in 360 subjects consisted of 120 healthy controls, 120 prostate cancer (PC) patients and 120 benign prostatic hyperplasia (BPH) patients. No association was detected for the mentioned polymorphisms and the risk of PC. However, a significant association was detected between UGT2B17 copy number variation and BPH risk (OR=2.189; 95% CI, 1.303-3.675; p=0.003). Furthermore, we observed that the D85Y polymorphism increases the risk of BPH when analyzed in combination with the copy number variation of UGT2B17 gene (OR=0.135; 95% CI, 0.036-0.512; p=0.003). Our findings suggest that the D85Y polymorphism of UGT2B15 and CNVs in UGT2B28 and UGT2B17 genes is not associated with prostate cancer risk in Iranian patients. To our knowledge, this is the first report that implicates the role of CNV of UGT2B17 gene in BPH. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A UDP-glucosyltransferase functions in both acylphloroglucinol glucoside and anthocyanin biosynthesis in strawberry (Fragaria × ananassa).

    PubMed

    Song, Chuankui; Zhao, Shuai; Hong, Xiaotong; Liu, Jingyi; Schulenburg, Katja; Schwab, Wilfried

    2016-03-01

    Physiologically active acylphloroglucinol (APG) glucosides were recently found in strawberry (Fragaria sp.) fruit. Although the formation of the APG aglycones has been clarified, little is known about APG glycosylation in plants. In this study we functionally characterized ripening-related glucosyltransferase genes in Fragaria by comprehensive biochemical analyses of the encoded proteins and by a RNA interference (RNAi) approach in vivo. The allelic proteins UGT71K3a/b catalyzed the glucosylation of diverse hydroxycoumarins, naphthols and flavonoids as well as phloroglucinols, enzymatically synthesized APG aglycones and pelargonidin. Total enzymatic synthesis of APG glucosides was achieved by co-incubation of recombinant dual functional chalcone/valerophenone synthase and UGT71K3 proteins with essential coenzyme A esters and UDP-glucose. An APG glucoside was identified in strawberry fruit which has not yet been reported in other plants. Suppression of UGT71K3 activity in transient RNAi-silenced fruits led to a loss of pigmentation and a substantial decrease of the levels of various APG glucosides and an anthocyanin. Metabolite analyses of transgenic fruits confirmed UGT71K3 as a UDP-glucose:APG glucosyltransferase in planta. These results provide the foundation for the breeding of fruits with improved health benefits and for the biotechnological production of bioactive natural products. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  11. Involvement of three putative glucosyltransferases from the UGT72 family in flavonol glucoside/rhamnoside biosynthesis in Lotus japonicus seeds

    PubMed Central

    Yin, Qinggang; Shen, Guoan; Chang, Zhenzhan; Tang, Yuhong; Gao, Hongwen

    2017-01-01

    Abstract Flavonols are one of the largest groups of flavonoids that confer benefits for the health of plants and animals. Flavonol glycosides are the predominant flavonoids present in the model legume Lotus japonicus. The molecular mechanisms underlying the biosynthesis of flavonol glycosides as yet remain unknown in L. japonicus. In the present study, we identified a total of 188 UDP-glycosyltransferases (UGTs) in L. japonicus by genome-wide searching. Notably, 12 UGTs from the UGT72 family were distributed widely among L. japonicus chromosomes, expressed in all tissues, and showed different docking scores in an in silico bioinformatics docking analysis. Further enzymatic assays showed that five recombinant UGTs (UGT72AD1, UGT72AF1, UGT72AH1, UGT72V3, and UGT72Z2) exhibit activity toward flavonol, flavone, and isoflavone aglycones. In particular, UGT72AD1, UGT72AH1, and UGT72Z2 are flavonol-specific UGTs with different kinetic properties. In addition, the overexpression of UGT72AD1 and UGT72Z2 led to increased accumulation of flavonol rhamnosides in L. japonicus and Arabidopsis thaliana. Moreover, the increase of kaempferol 3-O-rhamnoside-7-O-rhamnoside in transgenic A. thaliana inhibited root growth as compared with the wild-type control. These results highlight the significance of the UGT72 family in flavonol glycosylation and the role of flavonol rhamnosides in plant growth. PMID:28204516

  12. Preclinical discovery of candidate genes to guide pharmacogenetics during phase I development: the example of the novel anticancer agent ABT-751

    PubMed Central

    Innocenti, Federico; Ramírez, Jacqueline; Obel, Jennifer; Xiong, Julia; Mirkov, Snezana; Chiu, Yi-Lin; Katz, David A.; Carr, Robert A.; Zhang, Wei; Das, Soma; Adjei, Araba; Moyer, Ann M.; Chen, Pei Xian; Krivoshik, Andrew; Medina, Diane; Gordon, Gary B.; Ratain, Mark J.; Sahelijo, Leonardo; Weinshilboum, Richard M.; Fleming, Gini F.; Bhathena, Anahita

    2013-01-01

    Objective ABT-751, a novel orally available antitubulin agent, is mainly eliminated as inactive glucuronide (ABT-751G) and sulfate (ABT-751S) conjugates. We performed a pharmacogenetic investigation of ABT-751 pharmacokinetics using in-vitro data to guide the selection of genes for genotyping in a phase I trial of ABT-751. Methods UDP-glucuronosyltransferase (UGT) and sulfotransferase (SULT) enzymes were screened for ABT-751 metabolite formation in vitro. Forty-seven cancer patients treated with ABT-751 were genotyped for 21 variants in these genes. Results UGT1A1, UGT1A4, UGT1A8, UGT2B7, and SULT1A1 were found to be involved in the formation of inactive ABT-751 glucuronide (ABT-751G) and sulfate (ABT-751S). SULT1A1 copy number (> 2) was associated with an average 34% increase in ABT-751 clearance (P= 0.044), an 18% reduction in ABT-751 AUC (P = 0.045), and a 50% increase in sulfation metabolic ratios (P=0.025). UGT1A8 rs6431558 was associated with a 28% increase in glucuronidation metabolic ratios (P =0.022), and UGT1A4*2 was associated with a 65% decrease in ABT-751 Ctrough (P = 0.009). Conclusion These results might represent the first example of a clinical pharmacokinetic effect of the SULT1A1 copy number variant on the clearance of a SULT1A1 substrate. A-priori selection of candidate genes guided by in-vitro metabolic screening enhanced our ability to identify genetic determinants of interpatient pharmacokinetic variability. PMID:23670235

  13. UGT2B17 minor histocompatibility mismatch and clinical outcome after HLA-identical sibling donor stem cell transplantation.

    PubMed

    Santos, N; Rodríguez-Romanos, R; Nieto, J B; Buño, I; Vallejo, C; Jiménez-Velasco, A; Brunet, S; Buces, E; López-Jiménez, J; González, M; Ferrá, C; Sampol, A; de la Cámara, R; Martínez, C; Gallardo, D

    2016-01-01

    Minor histocompatibility Ags (mHags) have been implicated in the pathogenesis of GVHD after allogeneic hematopoietic stem cell transplantation (HSCT). Uridine diphospho-glucuronosyltransferase 2B17 (UGT2B17) gene deletion may act as a mHag and its association with acute GVHD (aGVHD) has been described. We retrospectively studied the clinical impact of a UGT2B17 mismatch in a cohort of 1127 patients receiving a HSCT from an HLA-identical sibling donor. UGT2B17 mismatch was present in 69 cases (6.1%). Incidence of severe aGVHD was higher in the UGT2B17 mismatched pairs (22.7% vs 14.6%), but this difference was not statistically significant (P: 0.098). We did not detect differences in chronic GVHD, overall survival, relapse-free survival, transplant-related mortality or relapse. Nevertheless, when we analyzed only those patients receiving grafts from a male donor (616 cases), aGVHD was significantly higher in the UGT2B17 mismatched group (25.1% vs 12.8%; P: 0.005) and this association was confirmed by the multivariate analysis (P: 0.043; hazard ratio: 2.16, 95% confidence interval: 1.03-4.57). Overall survival was worse for patients mismatched for UGT2B17 (P: 0.005). We conclude that UGT2B17 mismatch has a negative clinical impact in allogeneic HSCT from HLA-identical sibling donors only when a male donor is used. These results should be confirmed by other studies.

  14. Significantly decreased and more variable expression of major CYPs and UGTs in liver microsomes prepared from HBV-positive human hepatocellular carcinoma and matched pericarcinomatous tissues determined using an isotope label-free UPLC-MS/MS method.

    PubMed

    Yan, Tongmeng; Gao, Song; Peng, Xiaojuan; Shi, Jian; Xie, Cong; Li, Qiang; Lu, Linlin; Wang, Ying; Zhou, Fuyuan; Liu, Zhongqiu; Hu, Ming

    2015-03-01

    To determine the liver expression of cytochrome P450 (CYPs) and uridine 5'-diphosphate-glucuronosyltransferases (UGTs), the major phase I and II metabolism enzymes responsible for clearance and detoxification of drugs, xenobiotic and endogenous substances. A validated isotope label-free method was established for absolute and simultaneous quantification of 9 CYPs (1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D, 2E1 and 3A4) and 5 UGTs (1A1, 1A4, 1A6, 1A9 and 2B7) in human liver microsomes using LC-MS/MS. The LC-MS/MS method displayed excellent dynamic range (at least 250-fold) and high sensitivity for each of the signature peptides with acceptable recovery, accuracy and precision. The protein expression profile of CYP and UGT isoforms were then determined in match microsomes samples prepared from patients with HBV-positive human hepatocellular carcinoma (HCC). In the tumor microsomes, the average absolute amounts of 8 major CYP isoforms (except CYP2C19) and 3 UGT isoforms (UGT1A1, UGT1A4 and UGT2B7) were decreased significantly (p < 0.05), whereas UGT1A6 and UGT1A9 levels were unchanged (p > 0.05). In addition, among isoforms with altered expression, 6 of 8 CYP isoforms and all three UGT isoforms were much more variable in tumor microsomes. Lastly, the importance of CYP3A4 was greatly diminished whereas the importance of UGT1A6 was enhanced in tumor microsomes. The use of an isotope label-free absolute quantification method for the simultaneous determination of 9 CYPs and 5 UGTs in human liver microsomes reveals that expression levels of CYPs and UGTs in human liver are severely impact by HCC, which could impact drug metabolism, disposition and pharmacotherapy.

  15. Rifampin modulation of xeno- and endobiotic conjugating enzyme mRNA expression and associated microRNAs in human hepatocytes.

    PubMed

    Gufford, Brandon T; Robarge, Jason D; Eadon, Michael T; Gao, Hongyu; Lin, Hai; Liu, Yunlong; Desta, Zeruesenay; Skaar, Todd C

    2018-04-01

    Rifampin is a pleiotropic inducer of multiple drug metabolizing enzymes and transporters. This work utilized a global approach to evaluate rifampin effects on conjugating enzyme gene expression with relevance to human xeno- and endo-biotic metabolism. Primary human hepatocytes from 7 subjects were treated with rifampin (10 μmol/L, 24 hours). Standard methods for RNA-seq library construction, EZBead preparation, and NextGen sequencing were used to measure UDP-glucuronosyl transferase UGT, sulfonyltransferase SULT, N acetyltransferase NAT, and glutathione-S-transferase GST mRNA expression compared to vehicle control (0.01% MeOH). Rifampin-induced (>1.25-fold) mRNA expression of 13 clinically important phase II drug metabolizing genes and repressed (>1.25-fold) the expression of 3 genes ( P  <   .05). Rifampin-induced miRNA expression changes correlated with mRNA changes and miRNAs were identified that may modulate conjugating enzyme expression. NAT2 gene expression was most strongly repressed (1.3-fold) by rifampin while UGT1A4 and UGT1A1 genes were most strongly induced (7.9- and 4.8-fold, respectively). Physiologically based pharmacokinetic modeling (PBPK) was used to simulate the clinical consequences of rifampin induction of CYP3A4- and UGT1A4-mediated midazolam metabolism. Simulations evaluating isolated UGT1A4 induction predicted increased midazolam N-glucuronide exposure (~4-fold) with minimal reductions in parent midazolam exposure (~10%). Simulations accounting for simultaneous induction of both CYP3A4 and UGT1A4 predicted a ~10-fold decrease in parent midazolam exposure with only a ~2-fold decrease in midazolam N-glucuronide metabolite exposure. These data reveal differential effects of rifampin on the human conjugating enzyme transcriptome and potential associations with miRNAs that form the basis for future mechanistic studies to elucidate the interplay of conjugating enzyme regulatory elements.

  16. A Quaternary Mechanism Enables the Complex Biological Functions of Octameric Human UDP-glucose Pyrophosphorylase, a Key Enzyme in Cell Metabolism

    PubMed Central

    Führing, Jana Indra; Cramer, Johannes Thomas; Schneider, Julia; Baruch, Petra; Gerardy-Schahn, Rita; Fedorov, Roman

    2015-01-01

    In mammals, UDP-glucose pyrophosphorylase (UGP) is the only enzyme capable of activating glucose-1-phosphate (Glc-1-P) to UDP-glucose (UDP-Glc), a metabolite located at the intersection of virtually all metabolic pathways in the mammalian cell. Despite the essential role of its product, the molecular basis of UGP function is poorly understood. Here we report the crystal structure of human UGP in complex with its product UDP-Glc. Beyond providing first insight into the active site architecture, we describe the substrate binding mode and intermolecular interactions in the octameric enzyme that are crucial to its activity. Importantly, the quaternary mechanism identified for human UGP in this study may be common for oligomeric sugar-activating nucleotidyltransferases. Elucidating such mechanisms is essential for understanding nucleotide sugar metabolism and opens the perspective for the development of drugs that specifically inhibit simpler organized nucleotidyltransferases in pathogens. PMID:25860585

  17. Introducing the "TCDD-inducible AhR-Nrf2 gene battery".

    PubMed

    Yeager, Ronnie L; Reisman, Scott A; Aleksunes, Lauren M; Klaassen, Curtis D

    2009-10-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces genes via the transcription factor aryl hydrocarbon receptor (AhR), including Cyp1a1, NAD(P)H:quinone oxidoreductase 1 (Nqo1), UDP-glucuronosyltransferase 1a6 (Ugt1a6), and glutathione S-transferase a1 (Gsta1). These genes are referred to as the "AhR gene battery." However, Nqo1 is also considered a prototypical target gene of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). In mice, TCDD induction of Nrf2 and Nrf2 target, Nqo1, is dependent on AhR, and thus TCDD induction of drug-processing genes may be routed through an AhR-Nrf2 sequence. There has been speculation that Nrf2 may be involved in the TCDD induction of drug-processing genes; however, the data are not definitive. Therefore, to address whether TCDD induction of Nqo1, Ugts, and Gsts is dependent on Nrf2, we conducted the definitive experiment by administering TCDD (50 mug/kg, ip) to Nrf2-null and wild-type (WT) mice and collecting livers 24 h later to quantify the mRNA of drug-processing genes. TCDD induction of Cyp1a1 and Ugt1a1 was similar in WT and Nrf2-null mice, whereas TCDD induction of Ugt1a5 and 1a9 was blunted in Nrf2-null mice. TCDD induced Nqo1, Ugt1a6, 2b34, 2b35, 2b36, UDP-glucuronic acid-synthesizing gene UDP-glucose dehydrogenase, and Gsta1, m1, m2, m3, m6, p2, t2, and microsomal Gst1 in WT mice but not in Nrf2-null mice. Therefore, the present study demonstrates the novel finding that Nrf2 is required for TCDD induction of classical AhR battery genes Nqo1, Ugt1a6, and Gsta1, as well as most Ugt and Gst isoforms in livers of mice.

  18. Nutritional Status Differentially Alters Cytochrome P450 3A4 (CYP3A4) and Uridine 5'-Diphospho-Glucuronosyltransferase (UGT) Mediated Drug Metabolism: Effect of Short-Term Fasting and High Fat Diet on Midazolam Metabolism.

    PubMed

    Lammers, Laureen A; Achterbergh, Roos; Romijn, Johannes A; Mathôt, Ron A A

    2018-06-06

    Previous studies have shown that nutritional status can alter drug metabolism which may result in treatment failure or untoward side effects. This study assesses the effect of two nutritional conditions, short-term fasting, and a short-term high fat diet (HFD) on cytochrome P450 3A4 (CYP3A4) and uridine 5'-diphospho-glucuronosyltransferase (UGT) mediated drug metabolism by studying the pharmacokinetics of midazolam and its main metabolites. In a randomized-controlled cross-over trial, nine healthy subjects received a single intravenous administration of 0.015 mg/kg midazolam after: (1) an overnight fast (control); (2) 36 h of fasting; and (3) an overnight fast after 3 days of a HFD consisting of 500 ml of cream supplemented to their regular diet. Pharmacokinetic parameters were analyzed simultaneously using non-linear mixed-effects modeling. Short-term fasting increased CYP3A4-mediated midazolam clearance by 12% (p < 0.01) and decreased UGT-mediated metabolism apparent 1-OH-midazolam clearance by 13% (p < 0.01) by decreasing the ratio of clearance and the fraction metabolite formed (ΔCL 1-OH-MDZ /f 1-OH-MDZ ). Furthermore, short-term fasting decreased apparent clearance of 1-OH-midazolam-O-glucuronide (CL 1-OH-MDZ-glucuronide /(f 1-OH-MDZ-glucuronide  × f 1-OH-MDZ )) by 20% (p < 0.01). The HFD did not affect systemic clearance of midazolam or metabolites. Short-term fasting differentially alters midazolam metabolism by increasing CYP3A4-mediated metabolism but by decreasing UGT-mediated metabolism. In contrast, a short-term HFD did not affect systemic clearance of midazolam.

  19. Effects of Andrographis paniculata and Orthosiphon stamineus extracts on the glucuronidation of 4-methylumbelliferone in human UGT isoforms.

    PubMed

    Ismail, Sabariah; Hanapi, Nur Aziah; Ab Halim, Mohd Rohaimi; Uchaipichat, Verawan; Mackenzie, Peter I

    2010-05-14

    The effects of Andrographis paniculata and Orthosiphon stamineus extracts on the in vitro glucuronidation of 4-methylumbelliferone (4MU) by recombinant human UGTs, UGT1A1, UGT1A3, UGT1A6, UGT1A7, UGT1A8, UGT1A10, UGT2B7 and UGT2B15 were determined. The potential inhibitory effects of both of the extracts on the activity of each of the UGT isoforms were investigated using 4MU as the substrate. Incubations contained UDP-glucuronic acid (UDPGA) as the cofactor, MgCl(2), cell lysate of respective isoform, and 4MU at the approximate apparent K(m) or S(50) value of each isoform. Final concentrations of Andrographis paniculata and Orthosiphon stamineus extracts used were 0.025, 0.25, 2.5, 25 and 50 microg/mL and 0.01, 0.10, 1.0, 10 and 50 microg/mL respectively. Both extracts variably inhibited the activity of most of the isoforms in a concentration dependent manner. Andrographis paniculata extract was the better inhibitor of all the isoforms studied (IC(50) 1.70 microg/mL for UGT1A3, 2.57 microg/mL for UGT1A8, 2.82 microg/mL for UGT2B7, 5.00 micorg/mL for UGT1A1, 5.66 microg/mL for UGT1A6, 9.88 microg/mL for UGT1A7 and 15.66 microg/mL for UGT1A10). Both extracts showed less than 70% inhibition of UGT2B15, so the IC(50) values were >50 microg/mL. The inhibition of human UGTs by Andrographis paniculata and Orthosiphon stamineus extracts in vitro suggests a potential for drug-herbal extract interactions in the therapeutic setting.

  20. Serum Bilirubin Levels and Promoter Variations in HMOX1 and UGT1A1 Genes in Patients with Fabry Disease.

    PubMed

    Jirásková, Alena; Bortolussi, Giulia; Dostálová, Gabriela; Eremiášová, Lenka; Golaň, Lubor; Danzig, Vilém; Linhart, Aleš; Vítek, Libor

    2017-01-01

    The aim of our study was to assess the possible relationships among heme oxygenase (HMOX), bilirubin UDP-glucuronosyl transferase (UGT1A1) promoter gene variations, serum bilirubin levels, and Fabry disease (FD). The study included 56 patients with FD (M : F ratio = 0.65) and 185 healthy individuals. Complete standard laboratory and clinical work-up was performed on all subjects, together with the determination of total peroxyl radical-scavenging capacity. The (GT)n and (TA)n dinucleotide variations in the HMOX1 and UGT1A1 gene promoters, respectively, were determined by DNA fragment analysis. Compared to controls, patients with FD had substantially lower serum bilirubin levels (12.0 versus 8.85  μ mol/L, p = 0.003) and also total antioxidant capacity ( p < 0.05), which showed a close positive relationship with serum bilirubin levels ( p = 0.067) and the use of enzyme replacement therapy ( p = 0.036). There was no association between HMOX1 gene promoter polymorphism and manifestation of FD. However, the presence of the TA 7 allele UGT1A1 gene promoter, responsible for higher systemic bilirubin levels, was associated with a twofold lower risk of manifestation of FD (OR = 0.51, 95% CI = 0.27-0.97, p = 0.038). Markedly lower serum bilirubin levels in FD patients seem to be due to bilirubin consumption during increased oxidative stress, although UGT1A1 promoter gene polymorphism may modify the manifestation of FD as well.

  1. UGT1A and UGT2B genetic variation alters nicotine and nitrosamine glucuronidation in european and african american smokers.

    PubMed

    Wassenaar, Catherine A; Conti, David V; Das, Soma; Chen, Peixian; Cook, Edwin H; Ratain, Mark J; Benowitz, Neal L; Tyndale, Rachel F

    2015-01-01

    Identifying sources of variation in the nicotine and nitrosamine metabolic inactivation pathways is important to understanding the relationship between smoking and cancer risk. Numerous UGT1A and UGT2B enzymes are implicated in nicotine and nitrosamine metabolism in vitro; however, little is known about their roles in vivo. Within UGT1A1, UGT1A4, UGT1A9, UGT2B7, UGT2B10, and UGT2B17, 47 variants were genotyped, including UGT2B10*2 and UGT2B17*2. The association between variation in these UGTs and glucuronidation activity within European and African American current smokers (n = 128), quantified as urinary ratios of the glucuronide over unconjugated compound for nicotine, cotinine, trans-3'-hydroxycotinine, and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), was investigated in regression models assuming a dominant effect of variant alleles. Correcting for multiple testing, three UGT2B10 variants were associated with cotinine glucuronidation, rs2331559 and rs11726322 in European Americans and rs835309 in African Americans (P ≤ 0.0002). Additional variants predominantly in UGT2B10 were nominally associated with nicotine (P = 0.008-0.04) and cotinine (P = <0.001-0.02) glucuronidation in both ethnicities in addition to UGT2B10*2 in European Americans (P = 0.01, P < 0.001). UGT2B17*2 (P = 0.03) in European Americans and UGT2B7 variants (P = 0.02-0.04) in African Americans were nominally associated with 3HC glucuronidation. UGT1A (P = 0.007-0.01), UGT2B10 (P = 0.02), and UGT2B7 (P = 0.02-0.03) variants in African Americans were nominally associated with NNAL glucuronidation. Findings from this initial in vivo study support a role for multiple UGTs in the glucuronidation of tobacco-related compounds in vivo, in particular UGT2B10 and cotinine glucuronidation. Findings also provide insight into ethnic differences in glucuronidation activity, which could be contributing to ethnic disparities in the risk for smoking-related cancers. Cancer Epidemiol Biomarkers Prev

  2. Feline drug metabolism and disposition: pharmacokinetic evidence for species differences and molecular mechanisms

    PubMed Central

    2013-01-01

    Synopsis Although it is widely appreciated that cats respond differently to certain drugs when compared with other companion animal species, the causes of these differences are poorly understood. This review critically evaluates published evidence for altered drug effects in cats, focusing on pharmacokinetic differences between cats, dogs and humans, and the molecular mechanisms underlying these differences. Pharmacokinetic studies indicate that acetaminophen, propofol, carprofen, and acetylsalicylic acid (aspirin) are cleared significantly more slowly in cats versus dogs and humans. All of these drugs are metabolized by conjugation. Cats lack the major phenol UDP-glucuronosyltransferase (UGT) enzymes, including UGT1A6 and UGT1A9, that glucuronidate acetaminophen and propofol. Deficient glucuronidation may also explain slower carprofen clearance, although there is no direct evidence for this. However, poor aspirin clearance in cats appears to be mainly a consequence of slower glycine conjugation. Cats are also deficient in several other conjugation enzymes, including N-acetyltransferase (NAT) 2 and thiopurine methyltransferase (TMPT). NAT2 deficiency may be the reason cats are more prone to developing methemoglobinemia rather than hepatotoxicity from acetaminophen. TMPT deficiency may predispose cats to azathioprine toxicity. No evidence was found for slower elimination of drugs cleared by oxidation or unchanged into urine or bile. Piroxicam, an oxidized drug, was cleared much more rapidly in cats than humans and dogs, although the mechanism for this difference is unclear. More work is needed to better understand drug metabolism and disposition differences in cats, thereby enabling more rational prescribing of existing medications, and the development of safer drugs for this species. PMID:23890237

  3. Broad spectrum detoxification: the major longevity assurance process regulated by insulin/IGF-1 signaling?

    PubMed

    Gems, David; McElwee, Joshua J

    2005-03-01

    Our recent survey of genes regulated by insulin/IGF-1 signaling (IIS) in Caenorhabditis elegans suggests a role for a number of gene classes in longevity assurance. Based on these findings, we propose a model for the biochemistry of longevity assurance and ageing, which is as follows. Ageing results from molecular damage from highly diverse endobiotic toxins. These are stochastic by-products of diverse metabolic processes, of which reactive oxygen species (ROS) are likely to be only one component. Our microarray analysis suggests a major role in longevity assurance of the phase 1, phase 2 detoxification system involving cytochrome P450 (CYP), short-chain dehydrogenase/reductase (SDR) and UDP-glucuronosyltransferase (UGT) enzymes. Unlike superoxide and hydrogen peroxide detoxification, this system is energetically costly, and requires the excretion from the cell of its products. Given such costs, its activity may be selected against, as predicted by the disposable soma theory. CYP and UGT enzymes target lipophilic molecular species; insufficient activity of this system is consistent with age-pigment (lipofuscin) accumulation during ageing. We suggest that IIS-regulated longevity assurance involves: (a) energetically costly detoxification and excretion of molecular rubbish, and (b) conservation of existing proteins via molecular chaperones. Given the emphasis in this theory on investment in cellular waste disposal, and on protein conservation, we have dubbed it the green theory.

  4. Synthesis of Mono- and Di-Glucosides of Zearalenone and α-/β-Zearalenol by Recombinant Barley Glucosyltransferase HvUGT14077

    PubMed Central

    Michlmayr, Herbert; Varga, Elisabeth; Lupi, Francesca; Malachová, Alexandra; Hametner, Christian; Berthiller, Franz; Adam, Gerhard

    2017-01-01

    Zearalenone (ZEN) is an estrogenic mycotoxin occurring in Fusarium-infected cereals. Glucosylation is an important plant defense mechanism and generally reduces the acute toxicity of mycotoxins to humans and animals. Toxicological information about ZEN-glucosides is limited due to the unavailability of larger amounts required for animal studies. HvUGT14077, a recently-validated ZEN-conjugating barley UDP-glucosyltransferase was expressed in Escherichia coli, affinity purified, and characterized. HvUGT14077 possesses high affinity (Km = 3 µM) and catalytic efficiency (kcat/Km = 190 s−1·mM−1) with ZEN. It also efficiently glucosylates the phase-I ZEN-metabolites α-zearalenol and β-zearalenol, with kcat/Km of 40 and 74 s−1·mM−1, respectively. HvUGT14077 catalyzes O-glucosylation at C-14 and C-16 with preference of 14-glucoside synthesis. Furthermore, relatively slow consecutive formation of 14,16-di-glucosides was observed; their structures were tentatively identified by mass spectrometry and for ZEN-14,16-di-glucoside confirmed by nuclear magnetic resonance spectroscopy. Recombinant HvUGT14077 allowed efficient preparative synthesis of ZEN-glucosides, yielding about 90% ZEN-14-glucoside and 10% ZEN-16-glucoside. The yield of ZEN-16-glucoside could be increased to 85% by co-incubation with a β-glucosidase highly selective for ZEN-14-glucoside. Depletion of the co-substrate UDP-glucose was counteracted by a sucrose synthase based regeneration system. This strategy could also be of interest to increase the yield of minor glucosides synthesized by other glucosyltransferases. PMID:28208765

  5. Leishmania UDP-sugar pyrophosphorylase: the missing link in galactose salvage?

    PubMed

    Damerow, Sebastian; Lamerz, Anne-Christin; Haselhorst, Thomas; Führing, Jana; Zarnovican, Patricia; von Itzstein, Mark; Routier, Françoise H

    2010-01-08

    The Leishmania parasite glycocalyx is rich in galactose-containing glycoconjugates that are synthesized by specific glycosyltransferases that use UDP-galactose as a glycosyl donor. UDP-galactose biosynthesis is thought to be predominantly a de novo process involving epimerization of the abundant nucleotide sugar UDP-glucose by the UDP-glucose 4-epimerase, although galactose salvage from the environment has been demonstrated for Leishmania major. Here, we present the characterization of an L. major UDP-sugar pyrophosphorylase able to reversibly activate galactose 1-phosphate into UDP-galactose thus proving the existence of the Isselbacher salvage pathway in this parasite. The ordered bisubstrate mechanism and high affinity of the enzyme for UTP seem to favor the synthesis of nucleotide sugar rather than their pyrophosphorolysis. Although L. major UDP-sugar pyrophosphorylase preferentially activates galactose 1-phosphate and glucose 1-phosphate, the enzyme is able to act on a variety of hexose 1-phosphates as well as pentose 1-phosphates but not hexosamine 1-phosphates and hence presents a broad in vitro specificity. The newly identified enzyme exhibits a low but significant homology with UDP-glucose pyrophosphorylases and conserved in particular is the pyrophosphorylase consensus sequence and residues involved in nucleotide and phosphate binding. Saturation transfer difference NMR spectroscopy experiments confirm the importance of these moieties for substrate binding. The described leishmanial enzyme is closely related to plant UDP-sugar pyrophosphorylases and presents a similar substrate specificity suggesting their common origin.

  6. Data Generated by Quantitative Liquid Chromatography-Mass Spectrometry Proteomics Are Only the Start and Not the Endpoint: Optimization of Quantitative Concatemer-Based Measurement of Hepatic Uridine-5'-Diphosphate-Glucuronosyltransferase Enzymes with Reference to Catalytic Activity.

    PubMed

    Achour, Brahim; Dantonio, Alyssa; Niosi, Mark; Novak, Jonathan J; Al-Majdoub, Zubida M; Goosen, Theunis C; Rostami-Hodjegan, Amin; Barber, Jill

    2018-06-01

    Quantitative proteomic methods require optimization at several stages, including sample preparation, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and data analysis, with the final analysis stage being less widely appreciated by end-users. Previously reported measurement of eight uridine-5'-diphospho-glucuronosyltransferases (UGT) generated by two laboratories [using stable isotope-labeled (SIL) peptides or quantitative concatemer (QconCAT)] reflected significant disparity between proteomic methods. Initial analysis of QconCAT data showed lack of correlation with catalytic activity for several UGTs (1A4, 1A6, 1A9, 2B15) and moderate correlations for UGTs 1A1, 1A3, and 2B7 ( R s = 0.40-0.79, P < 0.05; R 2 = 0.30); good correlations were demonstrated between cytochrome P450 activities and abundances measured in the same experiments. Consequently, a systematic review of data analysis, starting from unprocessed LC-MS/MS data, was undertaken, with the aim of improving accuracy, defined by correlation against activity. Three main criteria were found to be important: choice of monitored peptides and fragments, correction for isotope-label incorporation, and abundance normalization using fractional protein mass. Upon optimization, abundance-activity correlations improved significantly for six UGTs ( R s = 0.53-0.87, P < 0.01; R 2 = 0.48-0.73); UGT1A9 showed moderate correlation ( R s = 0.47, P = 0.02; R 2 = 0.34). No spurious abundance-activity relationships were identified. However, methods remained suboptimal for UGT1A3 and UGT1A9; here hydrophobicity of standard peptides is believed to be limiting. This commentary provides a detailed data analysis strategy and indicates, using examples, the significance of systematic data processing following acquisition. The proposed strategy offers significant improvement on existing guidelines applicable to clinically relevant proteins quantified using QconCAT. Copyright © 2018 by The American Society for Pharmacology

  7. Binding pattern of intermediate UDP-4-keto-xylose to human UDP-xylose synthase: Synthesis and STD NMR of model keto-saccharides.

    PubMed

    Puchner, Claudia; Eixelsberger, Thomas; Nidetzky, Bernd; Brecker, Lothar

    2017-01-02

    Human UDP-xylose synthase (hUXS1) exclusively converts UDP-glucuronic acid to UDP-xylose via intermediate UDP-4-keto-xylose (UDP-Xyl-4O). Synthesis of model compounds like methyl-4-keto-xylose (Me-Xyl-4O) is reported to investigate the binding pattern thereof to hUXS1. Hence, selective oxidation of the desired hydroxyl function required employment of protecting group chemistry. Solution behavior of synthesized keto-saccharides was studied without enzyme via 1 H and 13 C NMR spectroscopy with respect to existent forms in deuterated potassium phosphate buffer. Keto-enol tautomerism was observed for all investigated keto-saccharides, while gem-diol hydrate forms were only observed for 4-keto-xylose derivatives. Saturation transfer difference (STD) NMR was used to study binding of synthesized keto-gylcosides to wild type hUXS1. Resulting epitope maps were correlated to earlier published molecular modeling studies of UDP-Xyl-4O. STD NMR results of Me-Xyl-4O are in good agreement with simulations of the intermediate UDP-Xyl-4O indicating a strong interaction of proton H3 with the enzyme, potentially caused by active site residue Ala 79 . In contrast, pyranoside binding pattern studies of methyl uronic acids showed some differences compared to previously published STD NMR results of UDP-glycosides. In general, obtained results can contribute to a better understanding in binding of UDP-glycosides to other UXS enzyme family members, which have high structural similarities in the active site. Copyright © 2016. Published by Elsevier Ltd.

  8. Genetic alteration of UDP-rhamnose metabolism in Botrytis cinerea leads to the accumulation of UDP-KDG that adversely affects development and pathogenicity.

    PubMed

    Ma, Liang; Salas, Omar; Bowler, Kyle; Oren-Young, Liat; Bar-Peled, Maor; Sharon, Amir

    2017-02-01

    Botrytis cinerea is a model plant-pathogenic fungus that causes grey mould and rot diseases in a wide range of agriculturally important crops. A previous study has identified two enzymes and corresponding genes (bcdh, bcer) that are involved in the biochemical transformation of uridine diphosphate (UDP)-glucose, the major fungal wall nucleotide sugar precursor, to UDP-rhamnose. We report here that deletion of bcdh, the first biosynthetic gene in the metabolic pathway, or of bcer, the second gene in the pathway, abolishes the production of rhamnose-containing glycans in these mutant strains. Deletion of bcdh or double deletion of both bcdh and bcer has no apparent effect on fungal development or pathogenicity. Interestingly, deletion of the bcer gene alone adversely affects fungal development, giving rise to altered hyphal growth and morphology, as well as reduced sporulation, sclerotia production and virulence. Treatments with wall stressors suggest the alteration of cell wall integrity. Analysis of nucleotide sugars reveals the accumulation of the UDP-rhamnose pathway intermediate UDP-4-keto-6-deoxy-glucose (UDP-KDG) in hyphae of the Δbcer strain. UDP-KDG could not be detected in hyphae of the wild-type strain, indicating fast conversion to UDP-rhamnose by the BcEr enzyme. The correlation between high UDP-KDG and modified cell wall and developmental defects raises the possibility that high levels of UDP-KDG result in deleterious effects on cell wall composition, and hence on virulence. This is the first report demonstrating that the accumulation of a minor nucleotide sugar intermediate has such a profound and adverse effect on a fungus. The ability to identify molecules that inhibit Er (also known as NRS/ER) enzymes or mimic UDP-KDG may lead to the development of new antifungal drugs. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  9. PHENOBARBITAL AFFECTS THYROID HISTOLOGY AND LARVAL DEVELOPMENT IN THE AFRICAN CLAWED FROG XENOPUS LAEVIS

    EPA Science Inventory

    The abstract highlights our recent study to explore endocrine disrupting effects of phenobarbital in the African clawed frog, Xenopus laevis. In mammals, this chemical is known to induce the biotransforming enzyme UDP-glucuronosyltransferase (UDPGT) resulting in increased thyroid...

  10. Single Nucleotide Polymorphisms in B-Genome Specific UDP-Glucosyl Transferases Associated with Fusarium Head Blight Resistance and Reduced Deoxynivalenol Accumulation in Wheat Grain.

    PubMed

    Sharma, Pallavi; Gangola, Manu P; Huang, Chen; Kutcher, H Randy; Ganeshan, Seedhabadee; Chibbar, Ravindra N

    2018-01-01

    An in vitro spike culture method was optimized to evaluate Fusarium head blight (FHB) resistance in wheat (Triticum aestivum) and used to screen a population of ethyl methane sulfonate treated spike culture-derived variants (SCDV). Of the 134 SCDV evaluated, the disease severity score of 47 of the variants was ≤30%. Single nucleotide polymorphisms (SNP) in the UDP-glucosyltransferase (UGT) genes, TaUGT-2B, TaUGT-3B, and TaUGT-EST, differed between AC Nanda (an FHB-susceptible wheat variety) and Sumai-3 (an FHB-resistant wheat cultivar). SNP at 450 and 1,558 bp from the translation initiation site in TaUGT-2B and TaUGT-3B, respectively were negatively correlated with FHB severity in the SCDV population, whereas the SNP in TaUGT-EST was not associated with FHB severity. Fusarium graminearum strain M7-07-1 induced early expression of TaUGT-2B and TaUGT-3B in FHB-resistant SCDV lines, which were associated with deoxynivalenol accumulation and reduced FHB disease progression. At 8 days after inoculation, deoxynivalenol concentration varied from 767 ppm in FHB-resistant variants to 2,576 ppm in FHB-susceptible variants. The FHB-resistant SCDV identified can be used as new sources of FHB resistance in wheat improvement programs.

  11. UDP-Glycosyltransferases from the UGT73C Subfamily in Barbarea vulgaris Catalyze Sapogenin 3-O-Glucosylation in Saponin-Mediated Insect Resistance1[W][OA

    PubMed Central

    Augustin, Jörg M.; Drok, Sylvia; Shinoda, Tetsuro; Sanmiya, Kazutsuka; Nielsen, Jens Kvist; Khakimov, Bekzod; Olsen, Carl Erik; Hansen, Esben Halkjær; Kuzina, Vera; Ekstrøm, Claus Thorn; Hauser, Thure; Bak, Søren

    2012-01-01

    Triterpenoid saponins are bioactive metabolites that have evolved recurrently in plants, presumably for defense. Their biosynthesis is poorly understood, as is the relationship between bioactivity and structure. Barbarea vulgaris is the only crucifer known to produce saponins. Hederagenin and oleanolic acid cellobioside make some B. vulgaris plants resistant to important insect pests, while other, susceptible plants produce different saponins. Resistance could be caused by glucosylation of the sapogenins. We identified four family 1 glycosyltransferases (UGTs) that catalyze 3-O-glucosylation of the sapogenins oleanolic acid and hederagenin. Among these, UGT73C10 and UGT73C11 show highest activity, substrate specificity and regiospecificity, and are under positive selection, while UGT73C12 and UGT73C13 show lower substrate specificity and regiospecificity and are under purifying selection. The expression of UGT73C10 and UGT73C11 in different B. vulgaris organs correlates with saponin abundance. Monoglucosylated hederagenin and oleanolic acid were produced in vitro and tested for effects on P. nemorum. 3-O-β-d-Glc hederagenin strongly deterred feeding, while 3-O-β-d-Glc oleanolic acid only had a minor effect, showing that hydroxylation of C23 is important for resistance to this herbivore. The closest homolog in Arabidopsis thaliana, UGT73C5, only showed weak activity toward sapogenins. This indicates that UGT73C10 and UGT73C11 have neofunctionalized to specifically glucosylate sapogenins at the C3 position and demonstrates that C3 monoglucosylation activates resistance. As the UGTs from both the resistant and susceptible types of B. vulgaris glucosylate sapogenins and are not located in the known quantitative trait loci for resistance, the difference between the susceptible and resistant plant types is determined at an earlier stage in saponin biosynthesis. PMID:23027665

  12. Candidate enzymes for saffron crocin biosynthesis are localized in multiple cellular compartments.

    PubMed

    Demurtas, Olivia Costantina; Frusciante, Sarah; Ferrante, Paola; Diretto, Gianfranco; Azad, Noraddin Hosseinpour; Pietrella, Marco; Aprea, Giuseppe; Taddei, Anna Rita; Romano, Elena; Mi, Jianing; Al-Babili, Salim; Frigerio, Lorenzo; Giuliano, Giovanni

    2018-05-29

    Saffron is composed of the dried stigmas of Crocus sativus and is the most expensive spice on Earth. Its red color is due to the apocarotenoid glycosides, crocins, which accumulate in the vacuole and reach up to 10% of the stigma dry weight. We have previously characterized the first dedicated enzyme in crocin biosynthesis, CsCCD2, which cleaves zeaxanthin to yield crocetin dialdehyde. In this work, we identified six putative aldehyde dehydrogenase (ALDH) transcripts expressed in saffron stigmas. When expressed in E. coli, only one of corresponding proteins (CsALDH3I1), was able to convert crocetin dialdehyde into the crocin precursor, crocetin. CsALDH3I1 carries a C-terminal hydrophobic domain, similar to that of a Neurospora membrane-associated apocarotenoid dehydrogenase, YLO-1. We also characterized a UDP-glycosyltransferase enzyme, CsUGT74AD1, able to convert crocetin to crocins 1 and 2'. In vitro assays showed high specificity of CsALDH3I1 for crocetin dialdehyde and long chain apocarotenals, and of CsUGT74AD1 for crocetin. Upon extract fractionation, the CsCCD2, CsALDH3I1 and CsUGT74AD1 enzymes partitioned in the insoluble fraction, suggesting that they are associated to membranes or to large insoluble complexes. Immunogold labeling of saffron stigmas and confocal microscopy of fusions to Green Fluorescent Protein expressed in N. benthamiana leaves revealed that CsCCD2 localizes to plastids, CsALDH3I1 to the endoplasmic reticulum (ER) and CsUGT74AD1 to the cytoplasm, in association with cytoskeletal-like structures. Based on our and on literature data, we propose that the ER and cytoplasm function as "transit centers" for metabolites whose biosynthesis starts in the plastid and are accumulated in the vacuole. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  13. Effect of UGT2B10, UGT2B17, FMO3, and OCT2 Genetic Variation on Nicotine and Cotinine Pharmacokinetics and Smoking in African Americans

    PubMed Central

    Taghavi, Taraneh; St. Helen, Gideon; Benowitz, Neal L.; Tyndale, Rachel F.

    2017-01-01

    OBJECTIVES Nicotine metabolism rates differ greatly among individuals, even after controlling for variation in the major nicotine metabolizing enzyme, CYP2A6. In this study, the impact of genetic variation in alternative metabolic enzymes and transporters on nicotine and cotinine pharmacokinetics and smoking was investigated. METHODS We examined the impact of UGT2B10, UGT2B17, FMO3, NAT1, and OCT2 variation on pharmacokinetics and smoking (total nicotine equivalents and topography), before and after stratifying by CYP2A6 genotype in 60 African American smokers who received a simultaneous intravenous infusion of deuterium-labeled nicotine and cotinine. RESULTS Variants in UGT2B10 and UGT2B17 were associated with urinary glucuronidation ratios (glucuronide/free substrate). UGT2B10 rs116294140 was associated with significant alterations in cotinine and modest alterations in nicotine pharmacokinetics. These alterations, however, were not sufficient to change nicotine intake or topography. Neither UGT2B10 rs61750900, UGT2B17*2, FMO3 rs2266782, nor NAT1 rs13253389 altered nicotine or cotinine pharmacokinetics among all subjects (n=60); or among individuals with reduced CYP2A6 activity (n=23). The organic cation transporter OCT2 rs316019 significantly increased nicotine and cotinine Cmax (p=0.005, p=0.02, respectively) and decreased nicotine clearance (p=0.05). UGT2B10 rs116294140 had no significant impact on the plasma or urinary trans-3’-hydroxycotinine/cotinine ratio, commonly used as a biomarker of CYP2A6 activity. CONCLUSIONS We demonstrated that polymorphisms in genes other than CYP2A6 represent minor sources of variation in nicotine pharmacokinetics, insufficient to alter smoking in African Americans. The change in cotinine pharmacokinetics with UGT2B10 rs116294140 highlights the UGT2B10 gene as a source of variability in cotinine as a biomarker of tobacco exposure among African American smokers. PMID:28178031

  14. UDP-Glucosyltransferases from Rice, Brachypodium, and Barley: Substrate Specificities and Synthesis of Type A and B Trichothecene-3-O-β-d-glucosides

    PubMed Central

    Malachová, Alexandra; Piątkowska, Marta; Hametner, Christian; Šofrová, Jana; Jaunecker, Günther; Häubl, Georg; Lemmens, Marc

    2018-01-01

    Trichothecene toxins are confirmed or suspected virulence factors of various plant-pathogenic Fusarium species. Plants can detoxify these to a variable extent by glucosylation, a reaction catalyzed by UDP-glucosyltransferases (UGTs). Due to the unavailability of analytical standards for many trichothecene-glucoconjugates, information on such compounds is limited. Here, the previously identified deoxynivalenol-conjugating UGTs HvUGT13248 (barley), OsUGT79 (rice) and Bradi5g03300 (Brachypodium), were expressed in E. coli, affinity purified, and characterized towards their abilities to glucosylate the most relevant type A and B trichothecenes. HvUGT13248, which prefers nivalenol over deoxynivalenol, is also able to conjugate C-4 acetylated trichothecenes (e.g., T-2 toxin) to some degree while OsUGT79 and Bradi5g03300 are completely inactive with C-4 acetylated derivatives. The type A trichothecenes HT-2 toxin and T-2 triol are the kinetically preferred substrates in the case of HvUGT13248 and Bradi5g03300. We glucosylated several trichothecenes with OsUGT79 (HT-2 toxin, T-2 triol) and HvUGT13248 (T-2 toxin, neosolaniol, 4,15-diacetoxyscirpenol, fusarenon X) in the preparative scale. NMR analysis of the purified glucosides showed that exclusively β-d-glucosides were formed regio-selectively at position C-3-OH of the trichothecenes. These synthesized standards can be used to investigate the occurrence and toxicological properties of these modified mycotoxins. PMID:29509722

  15. UDP-Glucosyltransferases from Rice, Brachypodium, and Barley: Substrate Specificities and Synthesis of Type A and B Trichothecene-3-O-β-d-glucosides.

    PubMed

    Michlmayr, Herbert; Varga, Elisabeth; Malachová, Alexandra; Fruhmann, Philipp; Piątkowska, Marta; Hametner, Christian; Šofrová, Jana; Jaunecker, Günther; Häubl, Georg; Lemmens, Marc; Berthiller, Franz; Adam, Gerhard

    2018-03-06

    Trichothecene toxins are confirmed or suspected virulence factors of various plant-pathogenic Fusarium species. Plants can detoxify these to a variable extent by glucosylation, a reaction catalyzed by UDP-glucosyltransferases (UGTs). Due to the unavailability of analytical standards for many trichothecene-glucoconjugates, information on such compounds is limited. Here, the previously identified deoxynivalenol-conjugating UGTs HvUGT13248 (barley), OsUGT79 (rice) and Bradi5g03300 ( Brachypodium ), were expressed in E. coli , affinity purified, and characterized towards their abilities to glucosylate the most relevant type A and B trichothecenes. HvUGT13248, which prefers nivalenol over deoxynivalenol, is also able to conjugate C-4 acetylated trichothecenes (e.g., T-2 toxin) to some degree while OsUGT79 and Bradi5g03300 are completely inactive with C-4 acetylated derivatives. The type A trichothecenes HT-2 toxin and T-2 triol are the kinetically preferred substrates in the case of HvUGT13248 and Bradi5g03300. We glucosylated several trichothecenes with OsUGT79 (HT-2 toxin, T-2 triol) and HvUGT13248 (T-2 toxin, neosolaniol, 4,15-diacetoxyscirpenol, fusarenon X) in the preparative scale. NMR analysis of the purified glucosides showed that exclusively β-D-glucosides were formed regio-selectively at position C-3-OH of the trichothecenes. These synthesized standards can be used to investigate the occurrence and toxicological properties of these modified mycotoxins.

  16. Characterization of in vitro glucuronidation clearance of a range of drugs in human kidney microsomes: comparison with liver and intestinal glucuronidation and impact of albumin.

    PubMed

    Gill, Katherine L; Houston, J Brian; Galetin, Aleksandra

    2012-04-01

    Previous studies have shown the importance of the addition of albumin for characterization of hepatic glucuronidation in vitro; however, no reports exist on the effects of albumin on renal or intestinal microsomal glucuronidation assays. This study characterized glucuronidation clearance (CL(int, UGT)) in human kidney, liver, and intestinal microsomes in the presence and absence of bovine serum albumin (BSA) for seven drugs with differential UDP-glucuronosyltransferase (UGT) 1A9 and UGT2B7 specificity, namely, diclofenac, ezetimibe, gemfibrozil, mycophenolic acid, naloxone, propofol, and telmisartan. The impact of renal CL(int, UGT) on accuracy of in vitro-in vivo extrapolation (IVIVE) of glucuronidation clearance was investigated. Inclusion of 1% BSA for acidic drugs and 2% for bases/neutral drugs in incubations was found to be suitable for characterization of CL(int, UGT) in different tissues. Although BSA increased CL(int, UGT) in all tissues, the extent was tissue- and drug-dependent. Scaled CL(int, UGT) in the presence of BSA ranged from 2.22 to 207, 0.439 to 24.4, and 0.292 to 23.8 ml · min(-1) · g tissue(-1) in liver, kidney, and intestinal microsomes. Renal CL(int, UGT) (per gram of tissue) was up to 2-fold higher in comparison with that for liver for UGT1A9 substrates; in contrast, CL(int, UGT) for UGT2B7 substrates represented approximately one-third of hepatic estimates. Scaled renal CL(int, UGT) (in the presence of BSA) was up to 30-fold higher than intestinal glucuronidation for the drugs investigated. Use of in vitro data obtained in the presence of BSA and inclusion of renal clearance improved the IVIVE of glucuronidation clearance, with 50% of drugs predicted within 2-fold of observed values. Characterization and consideration of kidney CL(int, UGT) is particularly important for UGT1A9 substrates.

  17. Characterization of In Vitro Glucuronidation Clearance of a Range of Drugs in Human Kidney Microsomes: Comparison with Liver and Intestinal Glucuronidation and Impact of Albumin

    PubMed Central

    Gill, Katherine L.; Houston, J. Brian

    2012-01-01

    Previous studies have shown the importance of the addition of albumin for characterization of hepatic glucuronidation in vitro; however, no reports exist on the effects of albumin on renal or intestinal microsomal glucuronidation assays. This study characterized glucuronidation clearance (CLint, UGT) in human kidney, liver, and intestinal microsomes in the presence and absence of bovine serum albumin (BSA) for seven drugs with differential UDP-glucuronosyltransferase (UGT) 1A9 and UGT2B7 specificity, namely, diclofenac, ezetimibe, gemfibrozil, mycophenolic acid, naloxone, propofol, and telmisartan. The impact of renal CLint, UGT on accuracy of in vitro-in vivo extrapolation (IVIVE) of glucuronidation clearance was investigated. Inclusion of 1% BSA for acidic drugs and 2% for bases/neutral drugs in incubations was found to be suitable for characterization of CLint, UGT in different tissues. Although BSA increased CLint, UGT in all tissues, the extent was tissue- and drug-dependent. Scaled CLint, UGT in the presence of BSA ranged from 2.22 to 207, 0.439 to 24.4, and 0.292 to 23.8 ml · min−1 · g tissue−1 in liver, kidney, and intestinal microsomes. Renal CLint, UGT (per gram of tissue) was up to 2-fold higher in comparison with that for liver for UGT1A9 substrates; in contrast, CLint, UGT for UGT2B7 substrates represented approximately one-third of hepatic estimates. Scaled renal CLint, UGT (in the presence of BSA) was up to 30-fold higher than intestinal glucuronidation for the drugs investigated. Use of in vitro data obtained in the presence of BSA and inclusion of renal clearance improved the IVIVE of glucuronidation clearance, with 50% of drugs predicted within 2-fold of observed values. Characterization and consideration of kidney CLint, UGT is particularly important for UGT1A9 substrates. PMID:22275465

  18. Cloning and expression studies of the Dunaliella salina UDP-glucose dehydrogenase cDNA.

    PubMed

    Qinghua, He; Dairong, Qiao; Qinglian, Zhang; Shunji, He; Yin, Li; Linhan, Bai; Zhirong, Yang; Yi, Cao

    2005-06-01

    The enzyme UDP-glucose dehydrogenase (EC 1.1.1.22) converts UDP-glucose to UDP-glucuronate. Plant UDP-glucose dehydrogenase (UGDH) is an important enzyme in the formation of hemicellulose and pectin, the components of primary cell walls. A cDNA, named DsUGDH, (GeneBank accession number: AY795899) corresponding to UGDH was cloned by RT-PCR approach from Dunaliella salina. The cDNA is 1941-bp long and has an open reading frame encoded a protein of 483 amino acids with a calculated molecular weight of 53 kDa. The derived amino acids sequence shows high homology with reported plants UGDHs, and has highly conserved amino acids motifs believed to be NAD binding site and catalytic site. Although UDP-glucose dehydrogenase is a comparatively well characterized enzyme, the cloning and characterization of the green alga Dunaliella salina UDP-glucose dehydrogenase gene is very important to understand the salt tolerance mechanism of Dunaliella salina. Northern analyses indicate that NaCl can induce the expression the DsUGDH.

  19. Cancer Chemoprevention by Traditional Chinese Herbal Medicine and Dietary Phytochemicals: Targeting Nrf2-Mediated Oxidative Stress/Anti-Inflammatory Responses, Epigenetics, and Cancer Stem Cells

    PubMed Central

    Hun Lee, Jong; Shu, Limin; Fuentes, Francisco; Su, Zheng-Yuan; Tony Kong, Ah-Ng

    2013-01-01

    Excessive oxidative stress induced by reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive metabolites of carcinogens alters cellular homeostasis, leading to genetic/epigenetic changes, genomic instability, neoplastic transformation, and cancer initiation/progression. As a protective mechanism against oxidative stress, antioxidant/detoxifying enzymes reduce these reactive species and protect normal cells from endo-/exogenous oxidative damage. The transcription factor nuclear factor-erythroid 2 p45 (NF-E2)-related factor 2 (Nrf2), a master regulator of the antioxidative stress response, plays a critical role in the expression of many cytoprotective enzymes, including NAD(P)H:quinine oxidoreductase (NQO1), heme oxygenase-1 (HO-1), UDP-glucuronosyltransferase (UGT), and glutathione S-transferase (GST). Recent studies demonstrated that many dietary phytochemicals derived from various vegetables, fruits, spices, and herbal medicines induce Nrf2-mediated antioxidant/detoxifying enzymes, restore aberrant epigenetic alterations, and eliminate cancer stem cells (CSCs). The Nrf2-mediated antioxidant response prevents many age-related diseases, including cancer. Owing to their fundamental contribution to carcinogenesis, epigenetic modifications and CSCs are novel targets of dietary phytochemicals and traditional Chinese herbal medicine (TCHM). In this review, we summarize cancer chemoprevention by dietary phytochemicals, including TCHM, which have great potential as a safer and more effective strategy for preventing cancer. PMID:24716158

  20. Cancer chemoprevention by traditional chinese herbal medicine and dietary phytochemicals: targeting nrf2-mediated oxidative stress/anti-inflammatory responses, epigenetics, and cancer stem cells.

    PubMed

    Hun Lee, Jong; Shu, Limin; Fuentes, Francisco; Su, Zheng-Yuan; Tony Kong, Ah-Ng

    2013-01-01

    Excessive oxidative stress induced by reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive metabolites of carcinogens alters cellular homeostasis, leading to genetic/epigenetic changes, genomic instability, neoplastic transformation, and cancer initiation/progression. As a protective mechanism against oxidative stress, antioxidant/detoxifying enzymes reduce these reactive species and protect normal cells from endo-/exogenous oxidative damage. The transcription factor nuclear factor-erythroid 2 p45 (NF-E2)-related factor 2 (Nrf2), a master regulator of the antioxidative stress response, plays a critical role in the expression of many cytoprotective enzymes, including quinine oxidoreductase (NQO1), heme oxygenase-1 (HO-1), UDP-glucuronosyltransferase (UGT), and glutathione S-transferase (GST). Recent studies demonstrated that many dietary phytochemicals derived from various vegetables, fruits, spices, and herbal medicines induce Nrf2-mediated antioxidant/detoxifying enzymes, restore aberrant epigenetic alterations, and eliminate cancer stem cells (CSCs). The Nrf2-mediated antioxidant response prevents many age-related diseases, including cancer. Owing to their fundamental contribution to carcinogenesis, epigenetic modifications and CSCs are novel targets of dietary phytochemicals and traditional Chinese herbal medicine (TCHM). In this review, we summarize cancer chemoprevention by dietary phytochemicals, including TCHM, which have great potential as a safer and more effective strategy for preventing cancer.

  1. Effects of triiodothyronine on turnover rate and metabolizing enzymes for thyroxine in thyroidectomized rats.

    PubMed

    Nagao, Hidenori; Sasaki, Makoto; Imazu, Tetsuya; Takahashi, Kenjo; Aoki, Hironori; Minato, Kouichi

    2014-10-29

    Previous studies in rats have indicated that surgical thyroidectomy represses turnover of serum thyroxine (T4). However, the mechanism of this process has not been identified. To clarify the mechanism, we studied adaptive variation of metabolic enzymes involved in T4 turnover. We compared serum T4 turnover rates in thyroidectomized (Tx) rats with or without infusion of active thyroid hormone, triiodothyronine (T3). Furthermore, the levels of mRNA expression and activity of the metabolizing enzymes, deiodinase type 1 (D1), type 2 (D2), uridine diphosphate-glucuronosyltransferase (UGT), and sulfotransferase were also compared in several tissues with or without T3 infusion. After the T3 infusion, the turnover rate of serum T4 in Tx rats returned to normal. Although mRNA expression and activity of D1 decreased significantly in both liver and kidneys without T3 infusion, D2 expression and activity increased markedly in the brain, brown adipose tissue, and skeletal muscle. Surprisingly, hepatic UGT mRNA expression and activity in Tx rats increased significantly in comparison with normal rats, and returned to normal after T3 infusion. This study suggests that repression of the disappearance of serum T4 in rats after Tx is a homeostatic response to decreased serum T3 concentrations. Additionally, T4 glucuronide is a storage form of T4, but may also have biological significance. These results suggest strongly that repression of deiodination of T4 by D1 in the liver and kidneys plays a major role in thyroid hormone homeostasis in Tx rats, and that hepatic UGT also plays a key role in this mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Extended mathematical model for "in vivo" quantification of the interaction betweeen atazanavir and bilirubin.

    PubMed

    Lozano, Roberto; Domeque, Nieves; Apesteguia, Alberto-Fermín

    2014-02-01

    The objective of the present work was to conduct an "in vivo" analysis of the atazanavir-bilirubin interaction. We developed a new mathematical approach to PK/PDPK models for competitive interaction based on the Michaelis-Menten equation, which was applied to patients with polymorphisms in the gene for UDP-glucuronosyltransferase 1A1 (UGT1A1). Atazanavir is known to induce concentration-dependent increases in bilirubin plasma levels. Thus, we employed our mathematical model to analyse rises in steady state atazanavir and bilirubin concentrations, ultimately plotting a nomogram for detection of suboptimal atazanavir exposure. Application of our model revealed that an absolute value or a steady state increase in bilirubin falling below 3.8Φ µmol/L (where Φ is a correction factor, =1 for UGT1A1 wild type and ≠1 for UGT1A1 variants) could be used to predict suboptimal atazanavir exposure and treatment failure. Thus, we have successfully established a new mathematical approach for pharmacodynamic-pharmacokinetic modelling of the interaction between atazanavir and bilirubin, as it relates to genetic variants of UGT1A1. Taken together, our findings indicate that bilirubin plasma levels represent a valuable marker of atazanavir exposure. © 2013, The American College of Clinical Pharmacology.

  3. Functional Screening of Metagenome and Genome Libraries for Detection of Novel Flavonoid-Modifying Enzymes

    PubMed Central

    Rabausch, U.; Juergensen, J.; Ilmberger, N.; Böhnke, S.; Fischer, S.; Schubach, B.; Schulte, M.

    2013-01-01

    The functional detection of novel enzymes other than hydrolases from metagenomes is limited since only a very few reliable screening procedures are available that allow the rapid screening of large clone libraries. For the discovery of flavonoid-modifying enzymes in genome and metagenome clone libraries, we have developed a new screening system based on high-performance thin-layer chromatography (HPTLC). This metagenome extract thin-layer chromatography analysis (META) allows the rapid detection of glycosyltransferase (GT) and also other flavonoid-modifying activities. The developed screening method is highly sensitive, and an amount of 4 ng of modified flavonoid molecules can be detected. This novel technology was validated against a control library of 1,920 fosmid clones generated from a single Bacillus cereus isolate and then used to analyze more than 38,000 clones derived from two different metagenomic preparations. Thereby we identified two novel UDP glycosyltransferase (UGT) genes. The metagenome-derived gtfC gene encoded a 52-kDa protein, and the deduced amino acid sequence was weakly similar to sequences of putative UGTs from Fibrisoma and Dyadobacter. GtfC mediated the transfer of different hexose moieties and exhibited high activities on flavones, flavonols, flavanones, and stilbenes and also accepted isoflavones and chalcones. From the control library we identified a novel macroside glycosyltransferase (MGT) with a calculated molecular mass of 46 kDa. The deduced amino acid sequence was highly similar to sequences of MGTs from Bacillus thuringiensis. Recombinant MgtB transferred the sugar residue from UDP-glucose effectively to flavones, flavonols, isoflavones, and flavanones. Moreover, MgtB exhibited high activity on larger flavonoid molecules such as tiliroside. PMID:23686272

  4. Crystal Structures of Trypanosoma cruzi UDP-Galactopyranose Mutase Implicate Flexibility of the Histidine Loop in Enzyme Activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhatwalia, Richa; Singh, Harkewal; Oppenheimer, Michelle

    2012-11-01

    Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. Here we report crystal structures of the galactofuranose biosynthetic enzyme UDP-galactopyranose mutase (UGM) from T. cruzi, which are the first structures of this enzyme from a protozoan parasite. UGM is an attractive target for drug design because galactofuranose is absent in humans but is an essential component of key glycoproteins and glycolipids in trypanosomatids. Analysis of the enzyme-UDP noncovalent interactions and sequence alignments suggests that substrate recognition is exquisitely conserved among eukaryotic UGMs and distinct from that of bacterial UGMs. This observation has implications for inhibitormore » design. Activation of the enzyme via reduction of the FAD induces profound conformational changes, including a 2.3 {angstrom} movement of the histidine loop (Gly60-Gly61-His62), rotation and protonation of the imidazole of His62, and cooperative movement of residues located on the si face of the FAD. Interestingly, these changes are substantially different from those described for Aspergillus fumigatus UGM, which is 45% identical to T. cruzi UGM. The importance of Gly61 and His62 for enzymatic activity was studied with the site-directed mutant enzymes G61A, G61P, and H62A. These mutations lower the catalytic efficiency by factors of 10-50, primarily by decreasing k{sub cat}. Considered together, the structural, kinetic, and sequence data suggest that the middle Gly of the histidine loop imparts flexibility that is essential for activation of eukaryotic UGMs. Our results provide new information about UGM biochemistry and suggest a unified strategy for designing inhibitors of UGMs from the eukaryotic pathogens.« less

  5. Crystal Structures of Trypanosoma cruzi UDP-Galactopyranose Mutase Implicate Flexibility of the Histidine Loop in Enzyme Activation

    PubMed Central

    Dhatwalia, Richa; Singh, Harkewal; Oppenheimer, Michelle; Sobrado, Pablo; Tanner, John J.

    2012-01-01

    Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. Here we report crystal structures of the galactofuranose biosynthetic enzyme UDP-galactopyranose mutase (UGM) from T. cruzi, which are the first structures of this enzyme from a protozoan parasite. UGM is an attractive target for drug design because galactofuranose is absent in humans but is an essential component of key glycoproteins and glycolipids in trypanosomatids. Analysis of the enzyme-UDP noncovalent interactions and sequence alignments suggests that substrate recognition is exquisitely conserved among eukaryotic UGMs and distinct from that of bacterial UGMs. This observation has implications for inhibitor design. Activation of the enzyme via reduction of the FAD induces profound conformational changes, including a 2.3-Å movement of the histidine loop (Gly60-Gly61-His62), rotation and protonation of the imidazole of His62, and cooperative movement of residues located on the si face of the FAD. Interestingly, these changes are substantially different from those described for Aspergillus fumigatus UGM, which is 45 % identical to T. cruzi UGM. The importance of Gly61 and His62 for enzymatic activity was studied with the site-directed mutant enzymes G61A, G61P, and H62A. These mutations lower the catalytic efficiency by factors of 10–50, primarily by decreasing kcat. Considered together, the structural, kinetic, and sequence data suggest that the middle Gly of the histidine loop imparts flexibility that is essential for activation of eukaryotic UGMs. Our results provide new information about UGM biochemistry and suggest a unified strategy for designing inhibitors of UGMs from the eukaryotic pathogens. PMID:22646091

  6. Crystal structures of Trypanosoma cruzi UDP-galactopyranose mutase implicate flexibility of the histidine loop in enzyme activation.

    PubMed

    Dhatwalia, Richa; Singh, Harkewal; Oppenheimer, Michelle; Sobrado, Pablo; Tanner, John J

    2012-06-19

    Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. Here we report crystal structures of the galactofuranose biosynthetic enzyme UDP-galactopyranose mutase (UGM) from T. cruzi, which are the first structures of this enzyme from a protozoan parasite. UGM is an attractive target for drug design because galactofuranose is absent in humans but is an essential component of key glycoproteins and glycolipids in trypanosomatids. Analysis of the enzyme-UDP noncovalent interactions and sequence alignments suggests that substrate recognition is exquisitely conserved among eukaryotic UGMs and distinct from that of bacterial UGMs. This observation has implications for inhibitor design. Activation of the enzyme via reduction of the FAD induces profound conformational changes, including a 2.3 Å movement of the histidine loop (Gly60-Gly61-His62), rotation and protonation of the imidazole of His62, and cooperative movement of residues located on the si face of the FAD. Interestingly, these changes are substantially different from those described for Aspergillus fumigatus UGM, which is 45% identical to T. cruzi UGM. The importance of Gly61 and His62 for enzymatic activity was studied with the site-directed mutant enzymes G61A, G61P, and H62A. These mutations lower the catalytic efficiency by factors of 10-50, primarily by decreasing k(cat). Considered together, the structural, kinetic, and sequence data suggest that the middle Gly of the histidine loop imparts flexibility that is essential for activation of eukaryotic UGMs. Our results provide new information about UGM biochemistry and suggest a unified strategy for designing inhibitors of UGMs from the eukaryotic pathogens.

  7. Regulatory insights into the production of UDP-N-acetylglucosamine by Lactobacillus casei

    PubMed Central

    Rodríguez-Díaz, Jesús; Rubio-del-Campo, Antonio; Yebra, María J.

    2012-01-01

    UDP-N-acetylglucosamine (UDP-GlcNAc) is an important sugar nucleotide used as a precursor of cell wall components in bacteria, and as a substrate in the synthesis of oligosaccharides in eukaryotes. In bacteria UDP-GlcNAc is synthesized from the glycolytic intermediate D-fructose-6-phosphate (fructose-6P) by four successive reactions catalyzed by three enzymes: glucosamine-6-phosphate synthase (GlmS), phosphoglucosamine mutase (GlmM) and the bi-functional enzyme glucosamine-1-phosphate acetyltransferase/ N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). We have previously reported a metabolic engineering strategy in Lactobacillus casei directed to increase the intracellular levels of UDP-GlcNAc by homologous overexpression of the genes glmS, glmM and glmU. One of the most remarkable features regarding the production of UDP-GlcNAc in L. casei was to find multiple regulation points on its biosynthetic pathway: (1) regulation by the NagB enzyme, (2) glmS RNA specific degradation through the possible participation of a glmS riboswitch mechanism, (3) regulation of the GlmU activity probably by end product inhibition and (4) transcription of glmU. PMID:22825354

  8. Hepatic expression of transcription factors affecting developmental regulation of UGT1A1 in the Han Chinese population.

    PubMed

    Nie, Ya-Li; He, Hang; Li, Jiang-Feng; Meng, Xiang-Guang; Yan, Liang; Wang, Pei; Wang, Shu-Jie; Bi, Hong-Zheng; Zhang, Li-Rong; Kan, Quan-Cheng

    2017-01-01

    Complete or partial inactivity of UGT1A1, the unique enzyme responsible for bilirubin glucuronidation, is commonly associated with hyperbilirubinemia. We investigated the dynamic expression of UGT1A1, and that of the transcription factors (TFs) involved in its developmental regulation, during human hepatic growth in Han Chinese individuals. Eighty-eight prenatal, pediatric, and adult liver samples were obtained from Han Chinese individuals. Quantitative real-time polymerase chain reaction was used to evaluate mRNA expression of UGT1A1 and TFs including PXR, CAR, HNF1A, HNF4A, PPARA, etc. UGT1A1 protein levels and metabolic activity were determined by western blotting and high-performance liquid chromatography. Direct sequencing was employed to genotype UGT1A1*6 (211G˃A) and UGT1A1*28 (TA6˃TA7) polymorphisms. UGT1A1 expression was minimal in prenatal samples, but significantly elevated during pediatric and adult stages. mRNA and protein levels and metabolic activity were prominently increased (120-, 20-, and 10-fold, respectively) in pediatric and adult livers compared to prenatal samples. Furthermore, expression did not differ appreciably between pediatric and adult periods. Dynamic expression of TFs, including PXR, CAR, HNF1A, HNF4A, and PPARA, was consistent with UGT1A1 levels at each developmental stage. A pronounced correlation between expression of these TFs and that of UGT1A1 (P < 0.001) was observed. Moreover, UGT1A1*6 and UGT1A1*28 polymorphisms reduced levels of UGT1A1 by up to 40-60 %. Hepatic expression of transcription factors is associated with developmental regulation of UGT1A1 in the Han Chinese population. Moreover, UGT1A1 polymorphisms are associated with reduced expression of UGT1A1 mRNA and protein, as well as enzyme activity.

  9. Role of the UGT2B17 deletion in exemestane pharmacogenetics

    PubMed Central

    Luo, Shaman; Chen, Gang; Truica, Cristina; Baird, Cynthia C.; Leitzel, Kim; Lazarus, Philip

    2017-01-01

    Exemestane (EXE) is an aromatase inhibitor used for the prevention and treatment of breast cancer. The major metabolic pathway for EXE is reduction to form the active 17β-dihydro-EXE (17β-DHE) and subsequent glucuronidation to 17β-hydroxy-EXE-17-O-β-D-glucuronide (17β-DHE-Gluc) by UGT2B17. The aim of the present study was to determine the effects of UGT2B17 copy number variation on the levels of urinary and plasma 17β-DHE-Gluc and 17β-DHE in patients taking EXE. Ninety-six post-menopausal Caucasian breast cancer patients with ER+ breast tumors taking 25 mg EXE daily were recruited into this study. UGT2B17 copy number was determined by a real-time PCR copy number variant assay and the levels of EXE, 17β-DHE and 17β-DHE-Gluc were quantified by UPLC/MS in patients’ urine and plasma. A 39-fold decrease (P<0.0001) in the levels of creatinine-adjusted urinary 17β-DHE-Gluc was observed among UGT2B17 (*2/*2) subjects vs. subjects with the UGT2B17 (*1/*1) genotype. The plasma levels of 17β-DHE-Gluc was decreased 29-fold (P<0.0001) in subjects with the UGT2B17 (*2/*2) genotype vs. subjects with UGT2B17 (*1/*1) genotype. The levels of plasma EXE-adjusted 17β-DHE was 28% higher (P=0.04) in subjects with the UGT2B17 (*2/*2) genotype vs. subjects with the UGT2B17 (*1/*1) genotype. These data indicate that UGT2B17 is the major enzyme responsible for 17β-DHE-Gluc formation in vivo and that the UGT2B17 copy number variant may play a role in inter-individual variability in 17β-DHE levels in vivo. PMID:28534527

  10. Role of the UGT2B17 deletion in exemestane pharmacogenetics.

    PubMed

    Luo, S; Chen, G; Truica, C; Baird, C C; Leitzel, K; Lazarus, P

    2018-04-01

    Exemestane (EXE) is an aromatase inhibitor used for the prevention and treatment of breast cancer. The major metabolic pathway for EXE is reduction to form the active 17β-dihydro-EXE (17β-DHE) and subsequent glucuronidation to 17β-hydroxy-EXE-17-O-β-D-glucuronide (17β-DHE-Gluc) by UGT2B17. The aim of the present study was to determine the effects of UGT2B17 copy number variation on the levels of urinary and plasma 17β-DHE-Gluc and 17β-DHE in patients taking EXE. Ninety-six post-menopausal Caucasian breast cancer patients with ER+ breast tumors taking 25 mg EXE daily were recruited into this study. UGT2B17 copy number was determined by a real-time PCR copy number variant assay and the levels of EXE, 17β-DHE and 17β-DHE-Gluc were quantified by UPLC/MS in patients' urine and plasma. A 39-fold decrease (P<0.0001) in the levels of creatinine-adjusted urinary 17β-DHE-Gluc was observed among UGT2B17 (*2/*2) subjects vs subjects with the UGT2B17 (*1/*1) genotype. The plasma levels of 17β-DHE-Gluc was decreased 29-fold (P<0.0001) in subjects with the UGT2B17 (*2/*2) genotype vs subjects with UGT2B17 (*1/*1) genotype. The levels of plasma EXE-adjusted 17β-DHE was 28% higher (P=0.04) in subjects with the UGT2B17 (*2/*2) genotype vs subjects with the UGT2B17 (*1/*1) genotype. These data indicate that UGT2B17 is the major enzyme responsible for 17β-DHE-Gluc formation in vivo and that the UGT2B17 copy number variant may play a role in inter-individual variability in 17β-DHE levels in vivo.

  11. Biotransformation of Bisphenol AF to Its Major Glucuronide Metabolite Reduces Estrogenic Activity

    PubMed Central

    Yin, Jie; Zhang, Jing; Feng, Yixing; Shao, Bing

    2013-01-01

    Bisphenol AF (BPAF), an endocrine disrupting chemical, can induce estrogenic activity through binding to estrogen receptor (ER). However, the metabolism of BPAF in vivo and the estrogenic activity of its metabolites remain unknown. In the present study, we identified four metabolites including BPAF diglucuronide, BPAF glucuronide (BPAF-G), BPAF glucuronide dehydrated and BPAF sulfate in the urine of Sprague-Dawley (SD) rats. BPAF-G was further characterized by nuclear magnetic resonance (NMR). After treatment with a single dose of BPAF, BPAF was metabolized rapidly to BPAF-G, as detected in the plasma of SD rats. Biotransformation of BPAF to BPAF-G was confirmed with human liver microsomes (HLM), and Vmax of glucuronidation for HLM was 11.6 nmol/min/mg. We also found that BPAF glucuronidation could be mediated through several human recombinant UDP-glucuronosyltransferases (UGTs) including UGT1A1, UGT1A3, UGT1A8, UGT1A9, UGT2B4, UGT2B7, UGT2B15 and UGT2B17, among which UGT2B7 showed the highest efficiency of glucuronidation. To explain the biological function of BPAF biotransformation, the estrogenic activities of BPAF and BPAF-G were evaluated in ER-positive breast cancer T47D and MCF7 cells. BPAF significantly stimulates ER-regulated gene expression and cell proliferation at the dose of 100 nM and 1 μM in breast cancer cells. However, BPAF-G did not show any induction of estrogenic activity at the same dosages, implying that formation of BPAF-G is a potential host defense mechanism against BPAF. Based on our study, biotransformation of BPAF to BPAF-G can eliminate BPAF-induced estrogenic activity, which is therefore considered as reducing the potential threat to human beings. PMID:24349450

  12. Correlations between polymorphisms in the uridine diphosphate-glucuronosyltransferase 1A and C-C motif chemokine receptor 5 genes and infection with the hepatitis B virus in three ethnic groups in China.

    PubMed

    Zhang, Chan; He, Yan; Shan, Ke-Ren; Tan, Kui; Zhang, Ting; Wang, Chan-Juan; Guan, Zhi-Zhong

    2018-02-01

    Objective To determine whether genetic polymorphisms in the uridine diphosphate-glucuronosyltransferase 1A ( UGT1A) and the C-C motif chemokine receptor 5 ( CCR5) genes are associated with hepatitis B virus (HBV) infection in Yi, Yao and Han ethnic groups in the Guizhou Province of China. Methods The study enrolled subjects with and without HBV infection. Whole blood was used for DNA genotyping using standard techniques. The study determined the frequencies of several polymorphic alleles ( UGT1A6 [rs2070959], UGT1A1 [rs8175347], CCR5-59029 [rs1799987] and CCR5Δ32 [rs333]) and then characterized their relationship with HBV infection. Results A total of 404 subjects were enrolled in the study: 138 from the Yao group, 101 from the Yi group and 165 from the Han group. There was a significant difference in the frequency of UGT1A1 rs8175347 polymorphisms among the three groups. The rates of 7TA carriers of UGT1A1 rs8175347 in all three groups were significantly higher than the other genotypes. Individuals with genotype AA of UGT1A6 rs2070959 in the Yi group had a higher risk for HBV infection than in the Yao and Han groups. The frequency of genotype GG in CCR5-59029 in the Yao group was significantly higher than in the Yi group. The genotypes of CCR5Δ32 were not associated with HBV infection. Conclusion These findings provide genetic and epidemiological evidence for an association of UGT1A and CCR5-59029 polymorphisms with HBV infection in Chinese Yi and Yao populations.

  13. The Contribution of Common UGT2B10 and CYP2A6 Alleles to Variation in Nicotine Glucuronidation among European Americans

    PubMed Central

    Bloom, A. Joseph; von Weymarn, Linda B.; Martinez, Maribel; Bierut, Laura J.; Goate, Alison; Murphy, Sharon E.

    2014-01-01

    UDP-glucuronosytransferase-2B10 (UGT2B10) is the primary catalyst of nicotine glucuronidation. To develop a predictive genetic model of nicotine metabolism, the conversion of deuterated (D2)-nicotine to D2-nicotine-glucuronide, D2-cotinine, D2-cotinine-glucuronide, and D2-trans-3'-hydroxycotinine were quantified in 188 European Americans, and the contribution of UGT2B10 genotype to variability in first-pass nicotine glucuronidation assessed, following a procedure previously applied to nicotine C-oxidation. The proportion of total nicotine converted to nicotine-glucuronide (D2-nicotine-glucuronide/ (D2-nicotine +D2-nicotine-glucuronide +D2-cotinine +D2-cotinine-glucuronide +D2-trans-3'-hydroxycotinine)) was the primary phenotype. The variant, rs61750900T (D67Y) (minor allele frequency (MAF) = 10%), is confirmed to abolish nicotine glucuronidation activity. Another variant, rs112561475G (N397D) (MAF = 2%), is significantly associated with enhanced glucuronidation. rs112561475G is the ancestral allele of a well-conserved amino acid, indicating that the majority of human UGT2B10 alleles are derived hypomorphic alleles. CYP2A6 and UGT2B10 genotype explain 53% of the variance in oral nicotine glucuronidation in this sample. CYP2A6 and UGT2B10 genetic variants are also significantly associated with un-deuterated (D0) nicotine glucuronidation in subjects smoking ad libitum. We find no evidence for further common variation markedly influencing hepatic UGT2B10 expression in European Americans. PMID:24192532

  14. Development of in vivo biotransformation enzyme assays for ecotoxicity screening: In vivo measurement of phases I and II enzyme activities in freshwater planarians.

    PubMed

    Li, Mei-Hui

    2016-08-01

    The development of a high-throughput tool is required for screening of environmental pollutants and assessing their impacts on aquatic animals. Freshwater planarians can be used in rapid and sensitive toxicity bioassays. Planarians are known for their remarkable regeneration ability but much less known for their metabolic and xenobiotic biotransformation abilities. In this study, the activities of different phase I and II enzymes were determined in vivo by directly measuring fluorescent enzyme substrate disappearance or fluorescent enzyme metabolite production in planarian culture media. For phase I enzyme activity, O-deethylation activities with alkoxyresorufin could not be detected in planarian culture media. By contrast, O-deethylation activities with alkoxycoumarin were detected in planarian culture media. Increases in 7-ethoxycoumarin O-deethylase (ECOD) activities was only observed in planarians exposed to 1μM, but not 10μM, β-naphthoflavone for 24h. ECOD activity was inhibited in planarians exposed to 10 and 100μM rifampicin or carbamazepine for 24h. For phase II enzyme activity, DT-diaphorase, arylsulfatases, uridine 5'-diphospho (UDP)-glucuronosyltransferase or catechol-O-methyltransferase activity was determined in culture media containing planarians. The results of this study indicate that freshwater planarians are a promising model organism to monitor exposure to environmental pollutants or assess their impacts through the in vivo measurement of phase I and II enzyme activities. Copyright © 2016. Published by Elsevier Inc.

  15. Red wine and component flavonoids inhibit UGT2B17 in vitro

    PubMed Central

    2012-01-01

    Background The metabolism and excretion of the anabolic steroid testosterone occurs by glucuronidation to the conjugate testosterone glucuronide which is then excreted in urine. Alterations in UGT glucuronidation enzyme activity could alter the rate of testosterone excretion and thus its bioavailability. The aim of this study is to investigate if red wine, a common dietary substance, has an inhibitory effect on UGT2B17. Methods Testosterone glucuronidation was assayed using human UGT2B17 supersomes with quantification of unglucuronidated testosterone over time using HPLC with DAD detection. The selected red wine was analyzed using HPLC; and the inhibitory effects of the wine and phenolic components were tested independently in a screening assay. Further analyses were conducted for the strongest inhibitors at physiologically relevant concentrations. Control experiments were conducted to determine the effects of the ethanol on UGT2B17. Results Over the concentration range of 2 to 8%, the red wine sample inhibited the glucuronidation of testosterone by up to 70% over 2 hours. The ethanol content had no significant effect. Three red wine phenolics, identified by HPLC analyses, also inhibited the enzyme by varying amounts in the order of quercetin (72%), caffeic acid (22%) and gallic acid (9%); using a ratio of phenolic:testosterone of 1:2.5. In contrast p-coumaric acid and chlorogenic acid had no effect on the UGT2B17. The most active phenolic was selected for a detailed study at physiologically relevant concentrations, and quercetin maintained inhibitory activity of 20% at 2 μM despite a ten-fold excess of testosterone. Conclusion This study reports that in an in vitro supersome-based assay, the key steroid-metabolizing enzyme UGT2B17 is inhibited by a number of phenolic dietary substances and therefore may reduce the rate of testosterone glucuronidation in vivo. These results highlight the potential interactions of a number of common dietary compounds on

  16. Resveratrol as a Bioenhancer to Improve Anti-Inflammatory Activities of Apigenin.

    PubMed

    Lee, Jin-Ah; Ha, Sang Keun; Cho, EunJung; Choi, Inwook

    2015-11-19

    The aim of this study was to improve the anti-inflammatory activities of apigenin through co-treatment with resveratrol as a bioenhancer of apigenin. RAW 264.7 cells pretreated with hepatic metabolites formed by the co-metabolism of apigenin and resveratrol (ARMs) in HepG2 cells were stimulated with lipopolysaccharide (LPS). ARMs prominently inhibited (p < 0.05) the production of nitric oxide (NO), prostaglandin E₂ (PGE₂), interleukin (IL)-1β, IL-6 and TNF-α. Otherwise no such activity was observed by hepatic metabolites of apigenin alone (AMs). ARMs also effectively suppressed protein expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Co-administration of apigenin (50 mg/kg) and resveratrol (25 mg/kg) also showed a significant reduction of carrageenan-induced paw edema in mice (61.20% to 23.81%). Co-administration of apigenin and resveratrol led to a 2.39 fold increase in plasma apigenin levels compared to administration of apigenin alone, suggesting that co-administration of resveratrol could increase bioavailability of apigenin. When the action of resveratrol on the main apigenin metabolizing enzymes, UDP-glucuronosyltransferases (UGTs), was investigated, resveratrol mainly inhibited the formation of apigenin glucuronides by UGT1A9 in a non-competitive manner with a Ki value of 7.782 μM. These results suggested that resveratrol helps apigenin to bypass hepatic metabolism and maintain apigenin's anti-inflammatory activities in the body.

  17. Resveratrol as a Bioenhancer to Improve Anti-Inflammatory Activities of Apigenin

    PubMed Central

    Lee, Jin-Ah; Ha, Sang Keun; Cho, EunJung; Choi, Inwook

    2015-01-01

    The aim of this study was to improve the anti-inflammatory activities of apigenin through co-treatment with resveratrol as a bioenhancer of apigenin. RAW 264.7 cells pretreated with hepatic metabolites formed by the co-metabolism of apigenin and resveratrol (ARMs) in HepG2 cells were stimulated with lipopolysaccharide (LPS). ARMs prominently inhibited (p < 0.05) the production of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin (IL)-1β, IL-6 and TNF-α. Otherwise no such activity was observed by hepatic metabolites of apigenin alone (AMs). ARMs also effectively suppressed protein expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Co-administration of apigenin (50 mg/kg) and resveratrol (25 mg/kg) also showed a significant reduction of carrageenan-induced paw edema in mice (61.20% to 23.81%). Co-administration of apigenin and resveratrol led to a 2.39 fold increase in plasma apigenin levels compared to administration of apigenin alone, suggesting that co-administration of resveratrol could increase bioavailability of apigenin. When the action of resveratrol on the main apigenin metabolizing enzymes, UDP-glucuronosyltransferases (UGTs), was investigated, resveratrol mainly inhibited the formation of apigenin glucuronides by UGT1A9 in a non-competitive manner with a Ki value of 7.782 μM. These results suggested that resveratrol helps apigenin to bypass hepatic metabolism and maintain apigenin’s anti-inflammatory activities in the body. PMID:26610561

  18. Functional and Biochemical Analysis of Chlamydia trachomatis MurC, an Enzyme Displaying UDP-N-Acetylmuramate:Amino Acid Ligase Activity

    PubMed Central

    Hesse, Lars; Bostock, Julieanne; Dementin, Sebastien; Blanot, Didier; Mengin-Lecreulx, Dominique; Chopra, Ian

    2003-01-01

    Chlamydiae are unusual obligate intracellular bacteria that cause serious infections in humans. Chlamydiae contain genes that appear to encode products with peptidoglycan biosynthetic activity. The organisms are also susceptible to antibiotics that inhibit peptidoglycan synthesis. However, chlamydiae do not synthesize detectable peptidoglycan. The paradox created by these observations is known as the chlamydial anomaly. The MurC enzyme of chlamydiae, which is synthesized as a bifunctional MurC-Ddl product, is expected to possess UDP-N-acetylmuramate (UDP-MurNAc):l-alanine ligase activity. In this paper we demonstrate that the MurC domain of the Chlamydia trachomatis bifunctional protein is functionally expressed in Escherichia coli, since it complements a conditional lethal E. coli mutant possessing a temperature-sensitive lesion in MurC. The recombinant MurC domain was overexpressed in and purified from E. coli. It displayed in vitro ATP-dependent UDP-MurNAc:l-alanine ligase activity, with a pH optimum of 8.0 and dependence upon magnesium ions (optimum concentration, 20 mM). Its substrate specificity was studied with three amino acids (l-alanine, l-serine, and glycine); comparable Vmax/Km values were obtained. Our results are consistent with the synthesis of a muramic acid-containing polymer in chlamydiae with UDP-MurNAc-pentapeptide as a precursor molecule. However, due to the lack of specificity of MurC activity in vitro, it is not obvious which amino acid is present in the first position of the pentapeptide. PMID:14594822

  19. Functional and biochemical analysis of Chlamydia trachomatis MurC, an enzyme displaying UDP-N-acetylmuramate:amino acid ligase activity.

    PubMed

    Hesse, Lars; Bostock, Julieanne; Dementin, Sebastien; Blanot, Didier; Mengin-Lecreulx, Dominique; Chopra, Ian

    2003-11-01

    Chlamydiae are unusual obligate intracellular bacteria that cause serious infections in humans. Chlamydiae contain genes that appear to encode products with peptidoglycan biosynthetic activity. The organisms are also susceptible to antibiotics that inhibit peptidoglycan synthesis. However, chlamydiae do not synthesize detectable peptidoglycan. The paradox created by these observations is known as the chlamydial anomaly. The MurC enzyme of chlamydiae, which is synthesized as a bifunctional MurC-Ddl product, is expected to possess UDP-N-acetylmuramate (UDP-MurNAc):L-alanine ligase activity. In this paper we demonstrate that the MurC domain of the Chlamydia trachomatis bifunctional protein is functionally expressed in Escherichia coli, since it complements a conditional lethal E. coli mutant possessing a temperature-sensitive lesion in MurC. The recombinant MurC domain was overexpressed in and purified from E. coli. It displayed in vitro ATP-dependent UDP-MurNAc:L-alanine ligase activity, with a pH optimum of 8.0 and dependence upon magnesium ions (optimum concentration, 20 mM). Its substrate specificity was studied with three amino acids (L-alanine, L-serine, and glycine); comparable Vmax/Km values were obtained. Our results are consistent with the synthesis of a muramic acid-containing polymer in chlamydiae with UDP-MurNAc-pentapeptide as a precursor molecule. However, due to the lack of specificity of MurC activity in vitro, it is not obvious which amino acid is present in the first position of the pentapeptide.

  20. UGT74S1 is the key player in controlling secoisolariciresinol diglucoside (SDG) formation in flax.

    PubMed

    Fofana, Bourlaye; Ghose, Kaushik; McCallum, Jason; You, Frank M; Cloutier, Sylvie

    2017-02-02

    Flax lignan, commonly known as secoisolariciresinol (SECO) diglucoside (SDG), has recently been reported with health-promoting activities, including its positive impact in metabolic diseases. However, not much was reported on the biosynthesis of SDG and its monoglucoside (SMG) until lately. Flax UGT74S1 was recently reported to sequentially glucosylate SECO into SMG and SDG in vitro. However, whether this gene is the only UGT achieving SECO glucosylation in flax was not known. Flax genome-wide mining for UGTs was performed. Phylogenetic and gene duplication analyses, heterologous gene expression and enzyme assays were conducted to identify family members closely related to UGT74S1 and to establish their roles in SECO glucosylation. A total of 299 different UGTs were identified, of which 241 (81%) were duplicated. Flax UGTs diverged 2.4-153.6 MYA and 71% were found to be under purifying selection pressure. UGT74S1, a single copy gene located on chromosome 7, displayed no evidence of duplication and was deemed to be under positive selection pressure. The phylogenetic analysis identified four main clusters where cluster 4, which included UGT74S1, was the most diverse. The duplicated UGT74S4 and UGT74S3, located on chromosomes 8 and 14, respectively, were the most closely related to UGT74S1 and were differentially expressed in different tissues. Heterologous expression levels of UGT74S1, UGT74S4 and UGT74S3 proteins were similar but UGT74S4 and UGT74S3 glucosylation activity towards SECO was seven fold less than UGT74S1. In addition, they both failed to produce SDG, suggesting neofunctionalization following their divergence from UGT74S1. We showed that UGT74S1 is closely related to two duplicated genes, UGT74S4 and UGT74S3 which, unlike UGT74S1, failed to glucosylate SMG into SDG. The study suggests that UGT74S1 may be the key player in controlling SECO glucosylation into SDG in flax although its closely related genes may also contribute to a minor extent in supplying

  1. Toxicological responses on cytochrome P450 and metabolic transferases in liver of goldfish (Carassius auratus) exposed to lead and paraquat.

    PubMed

    Xu, Xiaoming; Cui, Zhaojie; Wang, Xinlei; Wang, Xixin; Zhang, Su

    2018-04-30

    As the producer of reactive oxygen species (ROS), both lead (Pb) and paraquat (PQ) can generate serious oxidative stress in target organs which result in irreversible toxic effects on organisms. They can disturb the normal catalytic activities of many enzymes by means of different toxicity mechanism. The changed responses of enzymes are frequently used as the biomarkers for indicating the relationship between toxicological effects and exposure levels. In this work, goldfish was exposed to a series of test groups containing lead and paraquat in the range of 0.05-10mg/L, respectively. Four hepatic enzyme activities, including 7-ethoxyresorufinO-deethylase (EROD), 7-benzyloxy-4-trifluoromethyl-coumarin-O-debenzyloxylase (BFCOD), glutathione S-transferase (GST) and UDP-glucuronosyltransferase (UGT) were determined after 1, 7, 14, 28 days exposure. The results showed that the activities of EROD and BFCOD in fish were significantly inhibited in response to paraquat at all exposure levels during the whole experiment. Similarly, the inhibitory effects of lead exposure on BFCOD activity were found in our study, while different responses of lead on EROD were observed. There were no significant differences on EROD activity under lower concentrations of lead (less than 0.1mg/L) before 14 days until an obvious increase was occurred for the 0.5mg/L lead treatment group at day 14. Furthermore, lead showed stronger inhibition on GST activity than paraquat when the concentrations of the two toxicants were more than 0.5mg/L. However, the similar dose and time-dependent manners of UGT activity were found under lead and paraquat exposure. Our results indicated that higher exposure levels and longer accumulations caused inhibitory effects on the four enzymes regardless of lead or paraquat stress. In addition, the responses of phase I enzymes were more sensitive than that of phase II enzymes and they may be served as the acceptable biomarkers for evaluating the toxicity effects of both

  2. Disposition of lasofoxifene, a next-generation selective estrogen receptor modulator, in healthy male subjects.

    PubMed

    Prakash, Chandra; Johnson, Kim A; Gardner, Mark J

    2008-07-01

    Disposition of lasofoxifene, a next-generation selective estrogen receptor modulator, was investigated in male volunteers after p.o. administration of a single 20-mg dose of [(14)C]lasofoxifene. Approximately 72% of the administered dose was recovered from the urine and feces, with majority of dose excreted in the feces, probably via bile. The absorption of lasofoxifene in humans was slow with T(max) values typically exceeding 6 h. The C(max) and area under plasma concentration-time profile from time 0 to the last quantifiable time point values of lasofoxifene were lower than those determined for total radioactivity, indicating presence of circulating metabolites. The primary clearance mechanisms for lasofoxifene in humans were direct conjugation (glucuronide and sulfate conjugates) and phase I oxidation, each accounting for about half of the metabolism. Several oxidative metabolites were identified by liquid chromatography/tandem mass spectrometry. The primary phase I metabolites were the result of hydroxylations on the tetraline moiety and the phenyl rings attached to the tetraline, and oxidation on the pyrrolidine moiety. Considering the numerous metabolites seen in vivo, additional in vitro studies using human liver and intestinal microsomes, recombinant cytochromes P450 (P450s), and UDP glucuronosyltransferases (UGTs) were performed. The turnover of lasofoxifene was very slow in liver microsomes, and only two metabolites were identified as two regioisomers of the catechol metabolite. The results from in vitro experiments with recombinant isoforms and P450 isoform-selective inhibitors suggested that the oxidative metabolism of lasofoxifene is catalyzed primarily by CYP3A and CYP2D6. In addition, its glucuronidation is catalyzed by UGTs that are expressed in both the liver (UGT1A1, UGT1A3, UGT1A6, and UGT1A9) and the intestine (UGT1A8 and UGT1A10).

  3. A novel glucuronosyltransferase has an unprecedented ability to catalyse continuous two-step glucuronosylation of glycyrrhetinic acid to yield glycyrrhizin.

    PubMed

    Xu, Guojie; Cai, Wei; Gao, Wei; Liu, Chunsheng

    2016-10-01

    Glycyrrhizin is an important bioactive compound that is used clinically to treat chronic hepatitis and is also used as a sweetener world-wide. However, the key UDP-dependent glucuronosyltransferases (UGATs) involved in the biosynthesis of glycyrrhizin remain unknown. To discover unknown UGATs, we fully annotated potential UGATs from Glycyrrhiza uralensis using deep transcriptome sequencing. The catalytic functions of candidate UGATs were determined by an in vitro enzyme assay. Systematically screening 434 potential UGATs, we unexpectedly found one unique GuUGAT that was able to catalyse the glucuronosylation of glycyrrhetinic acid to directly yield glycyrrhizin via continuous two-step glucuronosylation. Expression analysis further confirmed the key role of GuUGAT in the biosynthesis of glycyrrhizin. Site-directed mutagenesis revealed that Gln-352 may be important for the initial step of glucuronosylation, and His-22, Trp-370, Glu-375 and Gln-392 may be important residues for the second step of glucuronosylation. Notably, the ability of GuUGAT to catalyse a continuous two-step glucuronosylation reaction was determined to be unprecedented among known glycosyltransferases of bioactive plant natural products. Our findings increase the understanding of traditional glycosyltransferases and pave the way for the complete biosynthesis of glycyrrhizin. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. Bilirubin glucuronidation revisited: proper assay conditions to estimate enzyme kinetics with recombinant UGT1A1.

    PubMed

    Zhou, Jin; Tracy, Timothy S; Remmel, Rory P

    2010-11-01

    Bilirubin, an end product of heme catabolism, is primarily eliminated via glucuronic acid conjugation by UGT1A1. Impaired bilirubin conjugation, caused by inhibition of UGT1A1, can result in clinical consequences, including jaundice and kernicterus. Thus, evaluation of the ability of new drug candidates to inhibit UGT1A1-catalyzed bilirubin glucuronidation in vitro has become common practice. However, the instability of bilirubin and its glucuronides presents substantial technical challenges to conduct in vitro bilirubin glucuronidation assays. Furthermore, because bilirubin can be diglucuronidated through a sequential reaction, establishment of initial rate conditions can be problematic. To address these issues, a robust high-performance liquid chromatography assay to measure both bilirubin mono- and diglucuronide conjugates was developed, and the incubation conditions for bilirubin glucuronidation by human embryonic kidney 293-expressed UGT1A1 were carefully characterized. Our results indicated that bilirubin glucuronidation should be assessed at very low protein concentrations (0.05 mg/ml protein) and over a short incubation time (5 min) to assure initial rate conditions. Under these conditions, bilirubin total glucuronide formation exhibited a hyperbolic (Michaelis-Menten) kinetic profile with a K(m) of ∼0.2 μM. In addition, under these initial rate conditions, the relative proportions between the total monoglucuronide and the diglucuronide product were constant across the range of bilirubin concentration evaluated (0.05-2 μM), with the monoglucuronide being the predominant species (∼70%). In conclusion, establishment of appropriate incubation conditions (i.e., very low protein concentrations and short incubation times) is necessary to properly characterize the kinetics of bilirubin glucuronidation in a recombinant UGT1A1 system.

  5. TAPBPR bridges UDP-glucose:glycoprotein glucosyltransferase 1 onto MHC class I to provide quality control in the antigen presentation pathway

    PubMed Central

    Neerincx, Andreas; Hermann, Clemens; Antrobus, Robin; van Hateren, Andy; Cao, Huan; Trautwein, Nico; Stevanović, Stefan; Elliott, Tim; Deane, Janet E; Boyle, Louise H

    2017-01-01

    Recently, we revealed that TAPBPR is a peptide exchange catalyst that is important for optimal peptide selection by MHC class I molecules. Here, we asked whether any other co-factors associate with TAPBPR, which would explain its effect on peptide selection. We identify an interaction between TAPBPR and UDP-glucose:glycoprotein glucosyltransferase 1 (UGT1), a folding sensor in the calnexin/calreticulin quality control cycle that is known to regenerate the Glc1Man9GlcNAc2 moiety on glycoproteins. Our results suggest the formation of a multimeric complex, dependent on a conserved cysteine at position 94 in TAPBPR, in which TAPBPR promotes the association of UGT1 with peptide-receptive MHC class I molecules. We reveal that the interaction between TAPBPR and UGT1 facilities the reglucosylation of the glycan on MHC class I molecules, promoting their recognition by calreticulin. Our results suggest that in addition to being a peptide editor, TAPBPR improves peptide optimisation by promoting peptide-receptive MHC class I molecules to associate with the peptide-loading complex. DOI: http://dx.doi.org/10.7554/eLife.23049.001 PMID:28425917

  6. Glucuronidation and its impact on the bioactivity of [6]-shogaol.

    PubMed

    Wang, Pei; Zhao, Yantao; Zhu, Yingdong; Sang, Shengmin

    2017-09-01

    -shogaol (6S) from ginger has been reported to have diverse bioactivities and can be widely metabolized in animals and humans; however, the impact of glucuronidation on its bioactivity is still largely unknown. This study investigates the glucuronidation of 6S and its effect on cell cytotoxicity and Nrf2-inducing activities of 6S. The glucuronidated metabolite of 6S, 4-O-monoglucuronide 6S (6S-G), was synthesized and characterized for the first time. Glucuronidation of 6S in humans was studied using microsomes of the liver and intestine and recombinant UDP-glucuronosyltransferase (UGTs). The kinetics of 6S glucuronidation by human liver and intestinal microsomes followed the substrate inhibition kinetics model. The intrinsic glucuronidation clearance (CL int ) of 6S in human liver microsomes was higher than that in human intestine microsomes. Among the recombinant UGTs examined, UGT1A1, 1A3, 1A6, 1A8, 1A10, 2B7, 2B15, and 2B17 exhibited glucuronidation activity toward 6S, with UGT2B7 being the most potent one. Compared with 6S, the glucuronidation of 6S largely eliminated its cell cytotoxicity against human colon cancer cell lines HT-116 and HT-29, and its Nrf2-inducing activity. The findings from current study provide foundations for understanding the role of glucuronidation in biotransformation and biological activities of 6S. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Transgenic Wheat Expressing a Barley UDP-Glucosyltransferase Detoxifies Deoxynivalenol and Provides High Levels of Resistance to Fusarium graminearum.

    PubMed

    Li, Xin; Shin, Sanghyun; Heinen, Shane; Dill-Macky, Ruth; Berthiller, Franz; Nersesian, Natalya; Clemente, Thomas; McCormick, Susan; Muehlbauer, Gary J

    2015-11-01

    Fusarium head blight (FHB), mainly caused by Fusarium graminearum, is a devastating disease of wheat that results in economic losses worldwide. During infection, F. graminearum produces trichothecene mycotoxins, including deoxynivalenol (DON), that increase fungal virulence and reduce grain quality. Transgenic wheat expressing a barley UDP-glucosyltransferase (HvUGT13248) were developed and evaluated for FHB resistance, DON accumulation, and the ability to metabolize DON to the less toxic DON-3-O-glucoside (D3G). Point-inoculation tests in the greenhouse showed that transgenic wheat carrying HvUGT13248 exhibited significantly higher resistance to disease spread in the spike (type II resistance) compared with nontransformed controls. Two transgenic events displayed complete suppression of disease spread in the spikes. Expression of HvUGT13248 in transgenic wheat rapidly and efficiently conjugated DON to D3G, suggesting that the enzymatic rate of DON detoxification translates to type II resistance. Under field conditions, FHB severity was variable; nonetheless, transgenic events showed significantly less-severe disease phenotypes compared with the nontransformed controls. In addition, a seedling assay demonstrated that the transformed plants had a higher tolerance to DON-inhibited root growth than nontransformed plants. These results demonstrate the utility of detoxifying DON as a FHB control strategy in wheat.

  8. Exome-Wide Association Study Identifies New Low-Frequency and Rare UGT1A1 Coding Variants and UGT1A6 Coding Variants Influencing Serum Bilirubin in Elderly Subjects

    PubMed Central

    Oussalah, Abderrahim; Bosco, Paolo; Anello, Guido; Spada, Rosario; Guéant-Rodriguez, Rosa-Maria; Chery, Céline; Rouyer, Pierre; Josse, Thomas; Romano, Antonino; Elia, Maurizzio; Bronowicki, Jean-Pierre; Guéant, Jean-Louis

    2015-01-01

    level and hyperbilirubinemia risk in elderly subjects. UGT1A1 intronic single-nucleotide polymorphisms (SNPs) (rs6742078, rs887829, rs4148324) serve as proxy markers for the low-frequency and rare UGT1A1 variants, thereby providing mechanistic explanation to the relationship between UGT1A1 intronic SNPs and the UGT1A1 enzyme activity. UGT1A1 and UGT1A6 variants might be potentially associated with gallstone-related cholecystectomy risk. PMID:26039129

  9. Glutathione S-transferases and UDP-glycosyltransferases Are Involved in Response to Aluminum Stress in Flax

    PubMed Central

    Dmitriev, Alexey A.; Krasnov, George S.; Rozhmina, Tatiana A.; Kishlyan, Natalya V.; Zyablitsin, Alexander V.; Sadritdinova, Asiya F.; Snezhkina, Anastasiya V.; Fedorova, Maria S.; Yurkevich, Olga Y.; Muravenko, Olga V.; Bolsheva, Nadezhda L.; Kudryavtseva, Anna V.; Melnikova, Nataliya V.

    2016-01-01

    About 30% of the world's ice-free land area is occupied by acid soils. In soils with pH below 5, aluminum (Al) releases to the soil solution, and becomes highly toxic for plants. Therefore, breeding of varieties that are resistant to Al is needed. Flax (Linum usitatissimum L.) is grown worldwide for fiber and seed production. Al toxicity in acid soils is a serious problem for flax cultivation. However, very little is known about mechanisms of flax resistance to Al and the genetics of this resistance. In the present work, we sequenced 16 transcriptomes of flax cultivars resistant (Hermes and TMP1919) and sensitive (Lira and Orshanskiy) to Al, which were exposed to control conditions and aluminum treatment for 4, 12, and 24 h. In total, 44.9–63.3 million paired-end 100-nucleotide reads were generated for each sequencing library. Based on the obtained high-throughput sequencing data, genes with differential expression under aluminum exposure were revealed in flax. The majority of the top 50 up-regulated genes were involved in transmembrane transport and transporter activity in both the Al-resistant and Al-sensitive cultivars. However, genes encoding proteins with glutathione transferase and UDP-glycosyltransferase activity were in the top 50 up-regulated genes only in the flax cultivars resistant to aluminum. For qPCR analysis in extended sampling, two UDP-glycosyltransferases (UGTs), and three glutathione S-transferases (GSTs) were selected. The general trend of alterations in the expression of the examined genes was the up-regulation under Al stress, especially after 4 h of Al exposure. Moreover, in the flax cultivars resistant to aluminum, the increase in expression was more pronounced than that in the sensitive cultivars. We speculate that the defense against the Al toxicity via GST antioxidant activity is the probable mechanism of the response of flax plants to aluminum stress. We also suggest that UGTs could be involved in cell wall modification and protection

  10. Functional regulation of ginsenoside biosynthesis by RNA interferences of a UDP-glycosyltransferase gene in Panax ginseng and Panax quinquefolius.

    PubMed

    Lu, Chao; Zhao, Shoujing; Wei, Guanning; Zhao, Huijuan; Qu, Qingling

    2017-02-01

    Panax ginseng (Asian ginseng) and Panax quinquefolius (American ginseng) have been used as medicinal and functional herbal remedies worldwide. Different properties of P. ginseng and P. quinquefolius were confirmed not only in clinical findings, but also at cellular and molecular levels. The major pharmacological ingredients of P. ginseng and P. quinquefolius are the triterpene saponins known as ginsenosides. The P. ginseng roots contain a higher ratio of ginsenoside Rg1:Rb1 than that in P. quinquefolius. In ginseng plants, various ginsenosides are synthesized via three key reactions: cyclization, hydroxylation and glycosylation. To date, several genes including dammarenediol synthase (DS), protopanaxadiol synthase and protopanaxatriol synthase have been isolated in P. ginseng and P. quinquefolius. Although some glycosyltransferase genes have been isolated and identified association with ginsenoside synthesis in P. ginseng, little is known about the glycosylation mechanism in P. quinquefolius. In this paper, we cloned and identified a UDP-glycosyltransferase gene named Pq3-O-UGT2 from P. quinquefolius (GenBank accession No. KR106207). In vitro enzymatic activity experiments biochemically confirmed that Pq3-O-UGT2 catalyzed the glycosylation of Rh2 and F2 to produce Rg3 and Rd, and the chemical structure of the products were confirmed susing high performance liquid chromatography electrospray ionization mass spectrometry (HPLC/ESI-MS). High sequence similarity between Pq3-O-UGT2 and PgUGT94Q2 indicated a close evolutionary relationship between P. ginseng and P. quinquefolius. Moreover, we established both P. ginseng and P. quinquefolius RNAi transgenic roots lines. RNA interference of Pq3-O-UGT2 and PgUGT94Q2 led to reduce levels of ginsenoside Rd, protopanaxadiol-type and total ginsenosides. Expression of key genes including protopanaxadiol and protopanaxatriol synthases was up-regulated in RNAi lines, while expression of dammarenediol synthase gene

  11. The elaborate route for UDP-arabinose delivery into the Golgi of plants

    DOE PAGES

    Rautengarten, Carsten; Birdseye, Devon; Pattathil, Sivakumar; ...

    2017-04-03

    In plants, L-Arabinose (Ara) is a key component of cell wall polymers, glycoproteins, as well as flavonoids, and signaling peptides. Whereas the majority of Ara found in plant glycans occurs as a furanose ring (Araf), the activated precursor has a pyranose ring configuration (UDP-Arap). The biosynthesis of UDP-Arap mainly occurs via the epimerization of UDP-xylose (UDP-Xyl) in the Golgi lumen. Given that the predominant Ara form found in plants is Araf, UDP-Arap must exit the Golgi to be interconverted into UDPAraf by UDP-Ara mutases that are located outside on the cytosolic surface of the Golgi. Subsequently, UDP-Araf must be transportedmore » back into the lumen. During this step it is vital because glycosyltransferases, the enzymes mediating the glycosylation reactions, are located within the Golgi lumen, and UDP-Arap, synthesized within the Golgi, is not their preferred substrate. Therefore, the transport of UDP-Araf into the Golgi is a prerequisite. Although this step is critical for cell wall biosynthesis and the glycosylation of proteins and signaling peptides, the identification of these transporters has remained elusive. In this study, we present data demonstrating the identification and characterization of a family of Golgilocalized UDP-Araf transporters in Arabidopsis. The application of a proteoliposome-based transport assay revealed that four members of the nucleotide sugar transporter (NST) family can efficiently transport UDP-Araf in vitro. Subsequent analysis of mutant lines affected in the function of these NSTs confirmed their role as UDP-Araf transporters in vivo.« less

  12. The elaborate route for UDP-arabinose delivery into the Golgi of plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rautengarten, Carsten; Birdseye, Devon; Pattathil, Sivakumar

    In plants, L-Arabinose (Ara) is a key component of cell wall polymers, glycoproteins, as well as flavonoids, and signaling peptides. Whereas the majority of Ara found in plant glycans occurs as a furanose ring (Araf), the activated precursor has a pyranose ring configuration (UDP-Arap). The biosynthesis of UDP-Arap mainly occurs via the epimerization of UDP-xylose (UDP-Xyl) in the Golgi lumen. Given that the predominant Ara form found in plants is Araf, UDP-Arap must exit the Golgi to be interconverted into UDPAraf by UDP-Ara mutases that are located outside on the cytosolic surface of the Golgi. Subsequently, UDP-Araf must be transportedmore » back into the lumen. During this step it is vital because glycosyltransferases, the enzymes mediating the glycosylation reactions, are located within the Golgi lumen, and UDP-Arap, synthesized within the Golgi, is not their preferred substrate. Therefore, the transport of UDP-Araf into the Golgi is a prerequisite. Although this step is critical for cell wall biosynthesis and the glycosylation of proteins and signaling peptides, the identification of these transporters has remained elusive. In this study, we present data demonstrating the identification and characterization of a family of Golgilocalized UDP-Araf transporters in Arabidopsis. The application of a proteoliposome-based transport assay revealed that four members of the nucleotide sugar transporter (NST) family can efficiently transport UDP-Araf in vitro. Subsequent analysis of mutant lines affected in the function of these NSTs confirmed their role as UDP-Araf transporters in vivo.« less

  13. Characterization of raloxifene glucuronidation. Potential role of UGT1A8 genotype on raloxifene metabolism in vivo

    PubMed Central

    Sun, Dongxiao; Jones, Nathan R; Manni, Andrea; Lazarus, Philip

    2014-01-01

    Raloxifene is a 2nd-generation selective estrogen receptor modulator used for the prevention and treatment of osteoporosis and the prevention of breast cancer in postmenopausal women. Raloxifene is extensively metabolized by glucuronidation to form raloxifene-6-glucuronide (ral-6-Gluc) and raloxifene-4′-glucuronide (ral-4′-Gluc). The goal of the present study was to determine whether functional polymorphisms in active UGTs could play a role in altered raloxifene glucuronidation in vivo. Using homogenates from HEK293 UGT-overexpressing cell lines, raloxifene was shown to be glucuronidated primarily by the hepatic UGTs 1A1 and 1A9 and the extra-hepatic UGTs 1A8 and 1A10; no detectable raloxifene glucuronidation activity was found for UGT2B enzymes. Functional UGT1A1 transcriptional promoter genotypes were significantly (ptrend=0.005) associated with ral-6-Gluc formation in human liver microsomes, and, consistent with the decreased raloxifene glucuronidation activities observed in vitro with cell line over-expressing UGT1A8 variants, the UGT1A8*2 variant was significantly (p=0.023) correlated with total raloxifene glucuronide formation in human jejunum homogenates. While ral-4′-Gluc exhibited 1/100th the anti-estrogenic activity of raloxifene itself as measured by binding to the estrogen receptor, raloxifene glucuronides comprised ∼99% of the circulating raloxifene dose in raloxifene-treated subjects, with ral-4′-Gluc comprising ∼70% of raloxifene glucuronides. Plasma ral-6-Gluc (ptrend=0.0025), ral-4′-Gluc (ptrend=0.001), and total raloxifene glucuronides (ptrend=0.001) were increased in raloxifene-treated subjects who were predicted slow metabolizers [UGT1A8 (*1/*3)] vs intermediate metabolizers [UGT1A8 (*1/*1) or UGT1A8 (*1/*2)] vs fast metabolizers [UGT1A8 (*2/*2). These data suggest that raloxifene metabolism may be dependent on UGT1A8 genotype and that UGT1A8 genotype may play an important role in overall response to raloxifene. PMID:23682072

  14. Hepatic and intestinal glucuronidation of mono(2-ethylhexyl) phthalate, an active metabolite of di(2-ethylhexyl) phthalate, in humans, dogs, rats, and mice: an in vitro analysis using microsomal fractions.

    PubMed

    Hanioka, Nobumitsu; Isobe, Takashi; Kinashi, Yu; Tanaka-Kagawa, Toshiko; Jinno, Hideto

    2016-07-01

    Mono(2-ethylhexyl) phthalate (MEHP) is an active metabolite of di(2-ethylhexyl) phthalate (DEHP) and has endocrine-disrupting effects. MEHP is metabolized into glucuronide by UDP-glucuronosyltransferase (UGT) enzymes in mammals. In the present study, the hepatic and intestinal glucuronidation of MEHP in humans, dogs, rats, and mice was examined in an in vitro system using microsomal fractions. The kinetics of MEHP glucuronidation by liver microsomes followed the Michaelis-Menten model for humans and dogs, and the biphasic model for rats and mice. The K m and V max values of human liver microsomes were 110 µM and 5.8 nmol/min/mg protein, respectively. The kinetics of intestinal microsomes followed the biphasic model for humans, dogs, and mice, and the Michaelis-Menten model for rats. The K m and V max values of human intestinal microsomes were 5.6 µM and 0.40 nmol/min/mg protein, respectively, for the high-affinity phase, and 430 µM and 0.70 nmol/min/mg protein, respectively, for the low-affinity phase. The relative levels of V max estimated by Eadie-Hofstee plots were dogs (2.0) > mice (1.4) > rats (1.0) ≈ humans (1.0) for liver microsomes, and mice (8.5) > dogs (4.1) > rats (3.1) > humans (1.0) for intestinal microsomes. The percentages of the V max values of intestinal microsomes to liver microsomes were mice (120 %) > rats (57 %) > dogs (39 %) > humans (19 %). These results suggest that the metabolic abilities of UGT enzymes expressed in the liver and intestine toward MEHP markedly differed among species, and imply that these species differences are strongly associated with the toxicity of DEHP.

  15. Nicotine N-glucuronidation relative to N-oxidation and C-oxidation and UGT2B10 genotype in five ethnic/racial groups

    PubMed Central

    Murphy, Sharon E.; Park, Sung-Shim L.; Thompson, Elizabeth F.; Wilkens, Lynne R.; Patel, Yesha; Stram, Daniel O.; Le Marchand, Loic

    2014-01-01

    Nicotine metabolism influences smoking behavior and differences in metabolism probably contribute to ethnic variability in lung cancer risk. We report here on the proportion of nicotine metabolism by cytochrome P450 2A6-catalyzed C-oxidation, UDP-glucuronosyl transferase 2B10 (UGT2B10)-catalyzed N-glucuronidation and flavin monooxygenase 3-catalyzed N-oxidation in five ethnic/racial groups and the role of UGT2B10 genotype on the metabolic patterns observed. Nicotine and its metabolites were quantified in urine from African American (AA, n = 364), Native Hawaiian (NH, n = 311), White (n = 437), Latino (LA, n = 453) and Japanese American (JA, n = 674) smokers. Total nicotine equivalents, the sum of nicotine and six metabolites, and nicotine metabolism phenotypes were calculated. The relationship of UGT2B10 genotype to nicotine metabolic pathways was determined for each group; geometric means were computed and adjusted for age, sex, creatinine, and body mass index. Nicotine metabolism patterns were unique across the groups, C-oxidation was lowest in JA and NH (P < 0.0001), and N-glucuronidation lowest in AA (P < 0.0001). There was no difference in C-oxidation among Whites and AA and LA. Nicotine and cotinine glucuronide ratios were 2- and 3-fold lower in AA compared with Whites. Two UGT variants, a missense mutation (Asp67Tyr, rs61750900) and a splice variant (rs116294140) accounted for 33% of the variation in glucuronidation. In AA, the splice variant accounted for the majority of the reduced nicotine glucuronidation. UGT2B10 variant allele carriers had increased levels of C-oxidation (P = 0.0099). Our data indicate that the relative importance of nicotine metabolic pathways varies by ethnicity, and all pathways should be considered when characterizing the role of nicotine metabolism on smoking behavior and cancer risk. PMID:25233931

  16. The Inhibition of Hepatic and Renal Glucuronidation of p-Nitrophenol and 4-Methylumbelliferone by Oil Palm Empty Fruit Bunch Lignin and Its Main Oxidation Compounds

    PubMed Central

    Salleh, Norliyana Mohamad; Ismail, Sabariah; Ibrahim, Mohamad Nasir Mohamad

    2017-01-01

    Background: In order to develop oil palm empty fruit bunch (EFB) lignin as a nutraceutical and health supplement, the investigation of its potential in interacting with other drugs via inhibition of drug-metabolizing enzymes (DMEs) would ensure product safety. Objective: The study was aimed to investigate the in vitro effect of oil palm EFB lignin and its main oxidation compounds on phase II DME UDP-glucuronosyltransferases (UGTs) in rat liver and kidney microsomes. Materials and Methods: The p-nitrophenol (p-NP) and 4-methylumbelliferone (4-MU) were employed as probe substrates in glucuronidation assays. The effect of soda oil palm EFB lignin on Vmax, Km, CLint, Ki, and mode of inhibition of 4-MU glucuronidation in RLM was also determined. Results: The inhibitory potency of oil palm EFB lignin for both p-NP and 4-MU glucuronidation in rat liver microsome (RLM) and rat kidneys microsomes (RKM) was found to be in the rank order of soda > kraft > organosolv. However, the inhibitory potency of its main oxidation compounds were in the rank order of vanillin > syringaldehyde > p-hydroxybenzaldehyde. Soda oil palm EFB lignin exhibited mixed-type inhibition against 4-MU glucuronidation in RLM, showing the change in apparent Vmax and with only a minor effect on Km compared with control. Conclusions: The findings showed that effect of oil palm EFB lignin on both p-NP and 4-MU glucuronidation in RLM and RKM was enhanced by the presence of vanillin as well as flavonoids. Kinetic study showed that soda oil palm EFB lignin exhibited strong inhibition on UGT activity in RLM with mixed-type inhibition mode. SUMMARY The inhibitory potential of oil palm EFB lignin extracts for p-NP and 4-MU glucuronidation in RLM and RKM can be listed in the following rank order: soda > kraft > organosolvThe inhibitory potential of oil palm EFB lignin main oxidation compounds for p-NP and 4-MU glucuronidation in RLM and RKM can be listed in the following rank order: vanillin > syringaldehyde > p

  17. The Inhibition of Hepatic and Renal Glucuronidation of p-Nitrophenol and 4-Methylumbelliferone by Oil Palm Empty Fruit Bunch Lignin and Its Main Oxidation Compounds.

    PubMed

    Salleh, Norliyana Mohamad; Ismail, Sabariah; Ibrahim, Mohamad Nasir Mohamad

    2017-01-01

    In order to develop oil palm empty fruit bunch (EFB) lignin as a nutraceutical and health supplement, the investigation of its potential in interacting with other drugs via inhibition of drug-metabolizing enzymes (DMEs) would ensure product safety. The study was aimed to investigate the in vitro effect of oil palm EFB lignin and its main oxidation compounds on phase II DME UDP-glucuronosyltransferases (UGTs) in rat liver and kidney microsomes. The p -nitrophenol ( p -NP) and 4-methylumbelliferone (4-MU) were employed as probe substrates in glucuronidation assays. The effect of soda oil palm EFB lignin on V max , K m , CL int , K i , and mode of inhibition of 4-MU glucuronidation in RLM was also determined. The inhibitory potency of oil palm EFB lignin for both p -NP and 4-MU glucuronidation in rat liver microsome (RLM) and rat kidneys microsomes (RKM) was found to be in the rank order of soda > kraft > organosolv. However, the inhibitory potency of its main oxidation compounds were in the rank order of vanillin > syringaldehyde > p -hydroxybenzaldehyde. Soda oil palm EFB lignin exhibited mixed-type inhibition against 4-MU glucuronidation in RLM, showing the change in apparent V max and with only a minor effect on K m compared with control. The findings showed that effect of oil palm EFB lignin on both p -NP and 4-MU glucuronidation in RLM and RKM was enhanced by the presence of vanillin as well as flavonoids. Kinetic study showed that soda oil palm EFB lignin exhibited strong inhibition on UGT activity in RLM with mixed-type inhibition mode. The inhibitory potential of oil palm EFB lignin extracts for p -NP and 4-MU glucuronidation in RLM and RKM can be listed in the following rank order: soda > kraft > organosolvThe inhibitory potential of oil palm EFB lignin main oxidation compounds for p -NP and 4-MU glucuronidation in RLM and RKM can be listed in the following rank order: vanillin > syringaldehyde > p-hydroxybenzaldehydeResults suggested that the effect of oil

  18. Prostate cancer and polymorphism D85Y in gene for dihydrotestosterone degrading enzyme UGT2B15: Frequency of DD homozygotes increases with Gleason Score.

    PubMed

    Hajdinjak, Tine; Zagradisnik, Boris

    2004-06-01

    Although, a functional rationale for influence of polymorphism D85Y in gene UGT2B15 on prostate cancer (PCa) exists (different V(max) of enzyme), conflicting results have been reported. DNA from 178 controls and 206 PCa patients with known Gleason score were genotyped using a newly developed RFLP assay, which allowed the detection of both alleles in an individual after single PCR amplification. 16% DD, 52% DY; PCa patients: 23% DD, 49% DY. Subgroups of PCa: well differentiated: 11% DD, 37% DY; moderately differentiated: 22% DD, 50% DY; poorly differentiated: 34% DD, 50% DY. Correlation was confirmed between Gleason score and number of D alleles (P = 0.018) and persisted after age adjustment. When comparing controls to patients with a Gleason score of 7 or more, difference for the frequency of homozygosity DD was significant between the groups (P = 0.032, OR = 2.04). Polymorphism D85Y in gene UGT2B15 correlates with differentiation of PCa. Copyright 2004 Wiley-Liss, Inc.

  19. Epidemiological investigation of the UGT2B17 polymorphism in doping control urine samples and its correlation to T/E ratios.

    PubMed

    Anielski, Patricia; Simmchen, Juliane; Wassill, Lars; Ganghofner, Dirk; Thieme, Detlef

    2011-10-01

    The deletion polymorphism of the enzyme UGT2B17 is known to correlate with the level of the testosterone to epitestosterone (T/E) ratio in urine specimen. Due to the importance of the T/E ratio to detect testosterone abuse in doping analysis, a PCR-ELISA system (Genotype® UGT test, AmplexDiagnostics) was established to identify the UGT2B17 phenotype in urine samples. Epidemiological investigations in a set of 674 routine doping controls (in- and out-of-competition) resulted in 22.8% homozygote gene-deleted and 74.5% UGT2B17-positive athletes. The validated test system has shown to be robust and sensitive: in only 18 cases (2.7%) isolation of cell material from urine failed. Following hydrolysis of glucuronidated conjugates, steroids were analyzed as bis-TMS derivatives by gas chromatography-mass spectrometry (GC-MS), for example, testosterone (T) and epitestosterone (E). Additionally, isotope ration mass spectrometry (IRMS) analysis and luteinizing hormone (LH) measurement were applied. Mean T/E ratios significantly correlated with the UGT2B17 phenotype (del: T/E 0.9; pos: 1.7), however the values did not differ as distinctive as reported in previous studies. Additionally, the T/E ratios in the gene-deleted group did not show a normal curve of distribution (median of T/E 0.5). Obviously, beside the UGT2B17 deletion further influences have to be taken into account, for example, polymorphisms or induction of other metabolizing enzymes. Our results indicate that the UGT2B17 polymorphism might be insufficient when utilized solely as a crucial parameter for individual interpretation of T/E in urine. Nevertheless, the detection of the UGT2B17-gene deletion in urine samples would provide additional information important for gathering evidence in analysis of steroids in doping control. Copyright © 2011 John Wiley & Sons, Ltd.

  20. Synthesis of aryl azide derivatives of UDP-GlcNAc and UDP-GalNAc and their use for the affinity labeling of glycosyltransferases and the UDP-HexNAc pyrophosphorylase.

    PubMed

    Zeng, Y; Shabalin, Y; Szumilo, T; Pastuszak, I; Drake, R R; Elbein, A D

    1996-07-15

    The chemical synthesis and utilization of two photoaffinity analogs, 125I-labeled 5-[3-(p-azidosalicylamido)-1-propenyl]-UDP-GlcNAc and -UDP-GalNAc, is described. Starting with either UDP-GlcNAc or UDP-GalNAc, the synthesis involved the preparation of the 5-mercuri-UDP-HexNAc and then attachment of an allylamine to the 5 position to give 5-(3-amino)allyl-UDP-HexNAc. This was followed by acylation with N-hydroxysuccinimide p-aminosalicylic acid to form the final product, i.e., 5-[3-(p-azidosalicylamido)-1-propenyl]-UDP-GlcNAc or UDP-GalNAc. These products could then be iodinated with chloramine T to give the 125I-derivatives. Both the UDP-GlcNAc and the UDP-GalNAc derivatives reacted in a concentration-dependent manner with a highly purified UDP-HexNAc pyrophosphorylase, and both specifically labeled the subunit(s) of this protein. The labeling of the protein by the UDP-GlcNAc derivative was inhibited in dose-dependent fashion by either unlabeled UDP-GlcNAc or unlabeled UDP-GalNAc. Likewise, labeling with the UDP-GalNAc probe was blocked by either UDP-GlcNAc or UDP-GalNAc. The UDP-GlcNAc probe also specifically labeled a partially purified preparation of GlcNAc transferase I.

  1. Shengjiang Xiexin Decoction Alters Pharmacokinetics of Irinotecan by Regulating Metabolic Enzymes and Transporters: A Multi-Target Therapy for Alleviating the Gastrointestinal Toxicity.

    PubMed

    Guan, Huan-Yu; Li, Peng-Fei; Wang, Xiao-Ming; Yue, Jia-Jing; He, Yang; Luo, Xiao-Mei; Su, Mei-Feng; Liao, Shang-Gao; Shi, Yue

    2017-01-01

    Shengjiang Xiexin decoction (SXD), a classic traditional Chinese medical formula chronicled in Shang Han Lun , is used in modern clinical practice to decrease gastrointestinal toxicity induced by the chemotherapeutic drug irinotecan (CPT-11). In this study, the effect of SXD on the pharmacokinetics of CPT-11 and its active metabolites (SN-38 and SN-38G), and the underlying mechanisms were further examined. An ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed and validated for the simultaneous quantification of CPT-11, SN-38, and SN-38G in the plasma, bile, liver, intestine, and intestinal contents of control and SXD-pre-treated rats after intravenous administration of CPT-11. SXD pretreatment increased the area under the curve (AUC) and the initial plasma concentration (C 0 ) of CPT-11 but decreased the plasma clearance (CL). The AUC and the maximum plasma concentration (C max ) of SN-38 decreased, whereas the C max of SN-38G increased. Compared with that of the control group, the biliary excretion of CPT-11, SN-38, and SN-38G was inhibited. The CPT-11, SN-38, and SN-38G concentrations in the liver, intestine, and intestinal contents were different between the two groups. Furthermore, the hepatic expression of multidrug resistance-associated protein-2 (Mrp-2), P-glycoprotein (P-gp), and carboxylesterase 2 (CES2) was significantly down-regulated by SXD, while the hepatic and jejunal uridine diphosphate (UDP)-glucuronosyltransferase 1A1 (UGT1A1) expression was elevated. The hydrolysis of CPT-11 to SN-38 by CES and the glucuronidation of SN-38 to SN-38G by UGT were affected by liver and jejunum S9 fractions from rats pre-treated with SXD. Therefore, this study demonstrated for the first time that SXD could alter the pharmacokinetics of CPT-11 and its metabolites to alleviate CPT-11-induced diarrhea. And the underlying mechanism of drug interaction between CPT-11 and SXD involves decreasing hepatic Mrp-2 and P

  2. Cajanus cajan Linn. (Leguminosae) prevents alcohol-induced rat liver damage and augments cytoprotective function.

    PubMed

    Kundu, Rakesh; Dasgupta, Suman; Biswas, Anindita; Bhattacharya, Anirban; Pal, Bikas C; Bandyopadhyay, Debashis; Bhattacharya, Shelley; Bhattacharya, Samir

    2008-08-13

    Cajanus cajan Linn. (Leguminosae) is a nontoxic edible herb, widely used in Indian folk medicine for the prevention of various liver disorders. In the present study we have demonstrated that methanol-aqueous fraction (MAF2) of Cajanus cajan leaf extract could prevent the chronically treated alcohol induced rat liver damage. Chronic doses of alcohol (3.7 g/ kg) orally administered to rats for 28 days and liver function marker enzymes such as GPT, GOT, ALP and anti-oxidant enzyme activities were determined. Effect of MAF2 at a dose of 50mg/kg body weight on alcohol treated rats was noted. Alcohol effected significant increase in liver marker enzyme activities and reduced the activities of anti-oxidant enzymes. Co-administration of MAF2 reversed the liver damage due to alcohol; it decreased the activities of liver marker enzymes and augmented antioxidant enzyme activities. We also demonstrate significant decrease of the phase II detoxifying enzyme, UDP-glucuronosyl transferase (UGT) activity along with a three- and two-fold decrease of UGT2B gene and protein expression respectively. MAF2 co-administration normalized UGT activity and revived the expression of UGT2B with a concomitant expression and nuclear translocation of Nrf2, a transcription factor that regulates the expression of many cytoprotective genes. Cajanus cajan extract therefore shows a promise in therapeutic use in alcohol induced liver dysfunction.

  3. Structure and mechanism of human UDP-xylose synthase: evidence for a promoting role of sugar ring distortion in a three-step catalytic conversion of UDP-glucuronic acid.

    PubMed

    Eixelsberger, Thomas; Sykora, Sabine; Egger, Sigrid; Brunsteiner, Michael; Kavanagh, Kathryn L; Oppermann, Udo; Brecker, Lothar; Nidetzky, Bernd

    2012-09-07

    UDP-xylose synthase (UXS) catalyzes decarboxylation of UDP-D-glucuronic acid to UDP-xylose. In mammals, UDP-xylose serves to initiate glycosaminoglycan synthesis on the protein core of extracellular matrix proteoglycans. Lack of UXS activity leads to a defective extracellular matrix, resulting in strong interference with cell signaling pathways. We present comprehensive structural and mechanistic characterization of the human form of UXS. The 1.26-Å crystal structure of the enzyme bound with NAD(+) and UDP reveals a homodimeric short-chain dehydrogenase/reductase (SDR), belonging to the NDP-sugar epimerases/dehydratases subclass. We show that enzymatic reaction proceeds in three chemical steps via UDP-4-keto-D-glucuronic acid and UDP-4-keto-pentose intermediates. Molecular dynamics simulations reveal that the D-glucuronyl ring accommodated by UXS features a marked (4)C(1) chair to B(O,3) boat distortion that facilitates catalysis in two different ways. It promotes oxidation at C(4) (step 1) by aligning the enzymatic base Tyr(147) with the reactive substrate hydroxyl and it brings the carboxylate group at C(5) into an almost fully axial position, ideal for decarboxylation of UDP-4-keto-D-glucuronic acid in the second chemical step. The protonated side chain of Tyr(147) stabilizes the enolate of decarboxylated C(4) keto species ((2)H(1) half-chair) that is then protonated from the Si face at C(5), involving water coordinated by Glu(120). Arg(277), which is positioned by a salt-link interaction with Glu(120), closes up the catalytic site and prevents release of the UDP-4-keto-pentose and NADH intermediates. Hydrogenation of the C(4) keto group by NADH, assisted by Tyr(147) as catalytic proton donor, yields UDP-xylose adopting the relaxed (4)C(1) chair conformation (step 3).

  4. Identification and functional characterization of a flax UDP-glycosyltransferase glucosylating secoisolariciresinol (SECO) into secoisolariciresinol monoglucoside (SMG) and diglucoside (SDG).

    PubMed

    Ghose, Kaushik; Selvaraj, Kumarakurubaran; McCallum, Jason; Kirby, Chris W; Sweeney-Nixon, Marva; Cloutier, Sylvie J; Deyholos, Michael; Datla, Raju; Fofana, Bourlaye

    2014-03-28

    Lignans are a class of diphenolic nonsteroidal phytoestrogens often found glycosylated in planta. Flax seeds are a rich source of secoisolariciresinol diglucoside (SDG) lignans. Glycosylation is a process by which a glycosyl group is covalently attached to an aglycone substrate and is catalyzed by uridine diphosphate glycosyltransferases (UGTs). Until now, very little information was available on UGT genes that may play a role in flax SDG biosynthesis. Here we report on the identification, structural and functional characterization of 5 putative UGTs potentially involved in secoisolariciresinol (SECO) glucosylation in flax. Five UGT genes belonging to the glycosyltransferases' family 1 (EC 2.4.x.y) were cloned and characterized. They fall under four UGT families corresponding to five sub-families referred to as UGT74S1, UGT74T1, UGT89B3, UGT94H1, UGT712B1 that all display the characteristic plant secondary product glycosyltransferase (PSPG) conserved motif. However, diversity was observed within this 44 amino acid sequence, especially in the two peptide sequences WAPQV and HCGWNS known to play a key role in the recognition and binding of diverse aglycone substrates and in the sugar donor specificity. In developing flax seeds, UGT74S1 and UGT94H1 showed a coordinated gene expression with that of pinoresinol-lariciresinol reductase (PLR) and their gene expression patterns correlated with SDG biosynthesis. Enzyme assays of the five heterologously expressed UGTs identified UGT74S1 as the only one using SECO as substrate, forming SECO monoglucoside (SMG) and then SDG in a sequential manner. We have cloned and characterized five flax UGTs and provided evidence that UGT74S1 uses SECO as substrate to form SDG in vitro. This study allowed us to propose a model for the missing step in SDG lignan biosynthesis.

  5. Identification and functional characterization of a flax UDP-glycosyltransferase glucosylating secoisolariciresinol (SECO) into secoisolariciresinol monoglucoside (SMG) and diglucoside (SDG)

    PubMed Central

    2014-01-01

    Background Lignans are a class of diphenolic nonsteroidal phytoestrogens often found glycosylated in planta. Flax seeds are a rich source of secoisolariciresinol diglucoside (SDG) lignans. Glycosylation is a process by which a glycosyl group is covalently attached to an aglycone substrate and is catalyzed by uridine diphosphate glycosyltransferases (UGTs). Until now, very little information was available on UGT genes that may play a role in flax SDG biosynthesis. Here we report on the identification, structural and functional characterization of 5 putative UGTs potentially involved in secoisolariciresinol (SECO) glucosylation in flax. Results Five UGT genes belonging to the glycosyltransferases’ family 1 (EC 2.4.x.y) were cloned and characterized. They fall under four UGT families corresponding to five sub-families referred to as UGT74S1, UGT74T1, UGT89B3, UGT94H1, UGT712B1 that all display the characteristic plant secondary product glycosyltransferase (PSPG) conserved motif. However, diversity was observed within this 44 amino acid sequence, especially in the two peptide sequences WAPQV and HCGWNS known to play a key role in the recognition and binding of diverse aglycone substrates and in the sugar donor specificity. In developing flax seeds, UGT74S1 and UGT94H1 showed a coordinated gene expression with that of pinoresinol-lariciresinol reductase (PLR) and their gene expression patterns correlated with SDG biosynthesis. Enzyme assays of the five heterologously expressed UGTs identified UGT74S1 as the only one using SECO as substrate, forming SECO monoglucoside (SMG) and then SDG in a sequential manner. Conclusion We have cloned and characterized five flax UGTs and provided evidence that UGT74S1 uses SECO as substrate to form SDG in vitro. This study allowed us to propose a model for the missing step in SDG lignan biosynthesis. PMID:24678929

  6. Adaptation in Caco-2 Human Intestinal Cell Differentiation and Phenolic Transport with Chronic Exposure to Blackberry (Rubus sp.) Extract.

    PubMed

    Redan, Benjamin W; Albaugh, George P; Charron, Craig S; Novotny, Janet A; Ferruzzi, Mario G

    2017-04-05

    As evidence mounts for a health-protective role of dietary phenolics, the importance of understanding factors influencing bioavailability increases. Recent evidence has suggested chronic exposure to phenolics may impact their absorption and metabolism. To explore alterations occurring from chronic dietary exposure to phenolics, Caco-2 cell monolayers were differentiated on Transwell inserts with 0-10 μM blackberry (Rubus sp.) total phenolics extracts rich in anthocyanins, flavonols, and phenolic acids. Following differentiation, apical to basolateral transport of phenolics was assessed from an acute treatment of 100 μM blackberry phenolics from 0 to 4 h. Additionally, differences in gene expression of transport and phase II metabolizing systems including ABC transporters, organic anion transporters (OATs), and uridine 5'-diphospho (UDP) glucuronosyltransferases (UGTs) were probed. After 4 h, 1 μM pretreated monolayers showed a significant (P < 0.05) decrease in the percentage of cumulative transport including less epicatechin (42.1 ± 0.53), kaempferol glucoside (23.5 ± 0.29), and dicaffeoylquinic acid (31.9 ± 0.20) compared to control. Finally, significant (P < 0.05) alterations in mRNA expression of key phase II metabolizing enzymes and transport proteins were observed with treatment. Therefore, adaptation to blackberry extract exposure may impact intestinal transport and metabolism of phenolics.

  7. The role of polyhalogenated aromatic hydrocarbons on thyroid hormone disruption and cognitive function: a review.

    PubMed

    Builee, T L; Hatherill, J R

    2004-11-01

    Thyroid hormones (TH) are essential to normal brain development, influencing behavior and cognitive function in both adult and children. It is suggested that conditions found in TH abnormalities such as hypothyroidism, hyperthyroidism and generalized resistance to thyroid hormone (GRTH) share symptomatic behavioral impulses found in cases of attention deficit hyperactivity disorder (ADHD) and other cognitive disorders. Disrupters of TH are various and prevalent in the environment. This paper reviews the mechanisms of TH disruption caused by the general class of polyhalogenated aromatic hydrocarbons (PHAH)'s acting as thyroid disrupters (TD). PHAHs influence the hypothalamus-pituitary-thyroid (HPT) axis, as mimicry agents affecting synthesis and secretion of TH. Exposure to PHAH induces liver microsomal enzymes UDP-glucuronosyltransferase (UGT) resulting in accelerated clearance of TH. PHAHs can compromise function of transport and receptor binding proteins such as transthyretin and aryl hydrocarbon receptors (Ahr). Glucose metabolism and catecholamine synthesis are disrupted in the brain by the presence of PHAH. Further, PHAH can alter brain growth and development by perturbing cytoskeletal formation, thereby affecting neuronal migration, elongation and branching. The complex relationships between PHAH and cognitive function are examined in regard to the disruption of T4 regulation in the hypothalamus-pituitary-thyroid axis, blood, brain, neurons, liver and pre and postnatal development.

  8. UGT1A1*6 and UGT1A1*28 polymorphisms are correlated with irinotecan-induced toxicity: A meta-analysis.

    PubMed

    Yang, Yuwei; Zhou, MengMeng; Hu, Mingjun; Cui, Yanjie; Zhong, Qi; Liang, Ling; Huang, Fen

    2018-06-22

    Previous articles explored the role of UGT1A1 polymorphism on predicting irinotecan-induced toxicity, but the conclusions were still inconsistent and not comprehensive. We performed this meta-analysis to investigate the association between UGT1A1 polymorphism and irinotecan-induced toxicity. PubMed and Web of Science were searched for articles before July 2017. Inclusion and exclusion criteria were set to select eligible articles, and corresponding data were extracted from those articles. Subgroup analyses based on different cancer categories, doses and races were carried out to achieve comprehensive results. Statistical analyses were conducted using STATA 11.0. A total of 38 studies with 6742 cases were included after reading full text. Both UGT1A1*6 and UGT1A1*28 polymorphism are significantly associated with severe irinotecan-induced toxicity. Both Asian and Caucasian cancer patients with UGT1A1*28 variant had an increased risk. Compared with heterozygous variant, patients with homozygous variant suffered from a higher risk of toxicity. The effect of UGT1A1*28 polymorphism on diarrhea was less than on neutropenia. Subgroup analysis exhibited that for UGT1A1*6 polymorphism, patients treated with low-dose irinotecan were at a notable risk of toxicity. Moreover, the association between UGT1A1*6 polymorphism and irinotecan-induced toxicity was found in patients suffering from respiratory system cancers. Both UGT1A1*6 and UGT1A1*28 polymorphisms can be considered as predictors of irinotecan-induced toxicity, with effect varying by race, cancer type and irinotecan dose. © 2018 John Wiley & Sons Australia, Ltd.

  9. Predicting Flavonoid UGT Regioselectivity

    PubMed Central

    Jackson, Rhydon; Knisley, Debra; McIntosh, Cecilia; Pfeiffer, Phillip

    2011-01-01

    Machine learning was applied to a challenging and biologically significant protein classification problem: the prediction of avonoid UGT acceptor regioselectivity from primary sequence. Novel indices characterizing graphical models of residues were proposed and found to be widely distributed among existing amino acid indices and to cluster residues appropriately. UGT subsequences biochemically linked to regioselectivity were modeled as sets of index sequences. Several learning techniques incorporating these UGT models were compared with classifications based on standard sequence alignment scores. These techniques included an application of time series distance functions to protein classification. Time series distances defined on the index sequences were used in nearest neighbor and support vector machine classifiers. Additionally, Bayesian neural network classifiers were applied to the index sequences. The experiments identified improvements over the nearest neighbor and support vector machine classifications relying on standard alignment similarity scores, as well as strong correlations between specific subsequences and regioselectivities. PMID:21747849

  10. Induced Mutagenesis in UGT74S1 Gene Leads to Stable New Flax Lines with Altered Secoisolariciresinol Diglucoside (SDG) Profiles.

    PubMed

    Fofana, Bourlaye; Ghose, Kaushik; Somalraju, Ashok; McCallum, Jason; Main, David; Deyholos, Michael K; Rowland, Gordon G; Cloutier, Sylvie

    2017-01-01

    Flax secoisolariciresinol (SECO) diglucoside (SDG) lignan is an emerging natural product purported to prevent chronic diseases in humans. SECO, the aglycone form of SDG, has shown higher intestinal cell absorption but it is not accumulated naturally in planta . Recently, we have identified and characterized a UDP-glucosyltransferase gene, UGT74S1 , that glucosylates SECO into its monoglucoside (SMG) and SDG forms when expressed in yeast. However, whether this gene is unique in controlling SECO glucosylation into SDG in planta is unclear. Here, we report on the use of UGT74S1 in reverse and forward genetics to characterize an ethyl methane sulfonate (EMS) mutagenized flax population from cultivar CDC Bethune and consisting of 1996 M2 families. EMS mutagenesis generated 73 SNP variants causing 79 mutational events in the UGT74S1 exonic regions of 93 M2 families. The mutation frequency in the exonic regions was determined to be one per 28 Kb. Of these mutations, 13 homozygous missense mutations and two homozygous nonsense mutations were observed and all were transmitted into the M3 and M4 generations. Forward genetics screening of the population showed homozygous nonsense mutants completely lacking SDG biosynthesis while the production of SMG was observed only in a subset of the M4 lines. Heterozygous or homozygous M4 missense mutants displayed a wide range of SDG levels, some being greater than those of CDC Bethune. No additional deleterious mutations were detected in these mutant lines using a panel of 10 other genes potentially involved in the lignan biosynthesis. This study provides further evidence that UGT74S1 is unique in controlling SDG formation from SECO and this is the first report of non-transgenic flax germplasm with simultaneous knockout of SDG and presence of SMG in planta .

  11. Induced Mutagenesis in UGT74S1 Gene Leads to Stable New Flax Lines with Altered Secoisolariciresinol Diglucoside (SDG) Profiles

    PubMed Central

    Fofana, Bourlaye; Ghose, Kaushik; Somalraju, Ashok; McCallum, Jason; Main, David; Deyholos, Michael K.; Rowland, Gordon G.; Cloutier, Sylvie

    2017-01-01

    Flax secoisolariciresinol (SECO) diglucoside (SDG) lignan is an emerging natural product purported to prevent chronic diseases in humans. SECO, the aglycone form of SDG, has shown higher intestinal cell absorption but it is not accumulated naturally in planta. Recently, we have identified and characterized a UDP-glucosyltransferase gene, UGT74S1, that glucosylates SECO into its monoglucoside (SMG) and SDG forms when expressed in yeast. However, whether this gene is unique in controlling SECO glucosylation into SDG in planta is unclear. Here, we report on the use of UGT74S1 in reverse and forward genetics to characterize an ethyl methane sulfonate (EMS) mutagenized flax population from cultivar CDC Bethune and consisting of 1996 M2 families. EMS mutagenesis generated 73 SNP variants causing 79 mutational events in the UGT74S1 exonic regions of 93 M2 families. The mutation frequency in the exonic regions was determined to be one per 28 Kb. Of these mutations, 13 homozygous missense mutations and two homozygous nonsense mutations were observed and all were transmitted into the M3 and M4 generations. Forward genetics screening of the population showed homozygous nonsense mutants completely lacking SDG biosynthesis while the production of SMG was observed only in a subset of the M4 lines. Heterozygous or homozygous M4 missense mutants displayed a wide range of SDG levels, some being greater than those of CDC Bethune. No additional deleterious mutations were detected in these mutant lines using a panel of 10 other genes potentially involved in the lignan biosynthesis. This study provides further evidence that UGT74S1 is unique in controlling SDG formation from SECO and this is the first report of non-transgenic flax germplasm with simultaneous knockout of SDG and presence of SMG in planta. PMID:28983308

  12. Characterization and mutational analysis of the UDP-Glc(NAc) 4-epimerase from Marinithermus hydrothermalis.

    PubMed

    Beerens, Koen; Soetaert, Wim; Desmet, Tom

    2013-09-01

    UDP-hexose 4-epimerases are important enzymes that play key roles in various biological pathways, including lipopolysaccharide biosynthesis, galactose metabolism through the Leloir pathway, and biofilm formation. Unfortunately, the determinants of their substrate specificity are not yet fully understood. They can be classified into three groups, with groups 1 and 3 preferring non-acetylated and acetylated UDP-hexoses, respectively, whereas members of group 2 are equally active on both types of substrates. In this study, the UDP-Glc(NAc) 4-epimerase from Marinithermus hydrothermalis (mGalE) was functionally expressed in Escherichia coli and thoroughly characterized. The enzyme was found to be thermostable, displaying its highest activity at 70 °C and having a half-life of 23 min at 60 °C. Activity could be detected on both acetylated and non-acetylated UDP-hexoses, meaning that this epimerase belongs to group 2. This observation correlates well with the identity of the so-called "gatekeeper" residue (Ser279), which has previously been suggested to influence substrate specificity (Schulz et al., J Biol Chem 279:32796-32803, 2004). Furthermore, substituting this serine to a tyrosine brings about a significant preference for non-acetylated sugars, thereby demonstrating that a single residue can determine substrate specificity among type 1 and type 2 epimerases. In addition, two consecutive glycine residues (Gly118 and Gly119) were identified as a unique feature of GalE enzymes from Thermus species, and their importance for activity as well as affinity was confirmed by mutagenesis. Finally, homology modeling and mutational analysis has revealed that the enzyme's catalytic triad contains a threonine residue (Thr117) instead of the usual serine.

  13. Synthesis of UDP-apiose in Bacteria: The marine phototroph Geminicoccus roseus and the plant pathogen Xanthomonas pisi.

    PubMed

    Smith, James Amor; Bar-Peled, Maor

    2017-01-01

    The branched-chain sugar apiose was widely assumed to be synthesized only by plant species. In plants, apiose-containing polysaccharides are found in vascularized plant cell walls as the pectic polymers rhamnogalacturonan II and apiogalacturonan. Apiosylated secondary metabolites are also common in many plant species including ancestral avascular bryophytes and green algae. Apiosyl-residues have not been documented in bacteria. In a screen for new bacterial glycan structures, we detected small amounts of apiose in methanolic extracts of the aerobic phototroph Geminicoccus roseus and the pathogenic soil-dwelling bacteria Xanthomonas pisi. Apiose was also present in the cell pellet of X. pisi. Examination of these bacterial genomes uncovered genes with relatively low protein homology to plant UDP-apiose/UDP-xylose synthase (UAS). Phylogenetic analysis revealed that these bacterial UAS-like homologs belong in a clade distinct to UAS and separated from other nucleotide sugar biosynthetic enzymes. Recombinant expression of three bacterial UAS-like proteins demonstrates that they actively convert UDP-glucuronic acid to UDP-apiose and UDP-xylose. Both UDP-apiose and UDP-xylose were detectable in cell cultures of G. roseus and X. pisi. We could not, however, definitively identify the apiosides made by these bacteria, but the detection of apiosides coupled with the in vivo transcription of bUAS and production of UDP-apiose clearly demonstrate that these microbes have evolved the ability to incorporate apiose into glycans during their lifecycles. While this is the first report to describe enzymes for the formation of activated apiose in bacteria, the advantage of synthesizing apiose-containing glycans in bacteria remains unknown. The characteristics of bUAS and its products are discussed.

  14. Selective Detoxification of Phenols by Pichia pastoris and Arabidopsis thaliana Heterologously Expressing the PtUGT72B1 from Populus trichocarpa

    PubMed Central

    Xu, Zhi-Sheng; Lin, Ya-Qiu; Xu, Jing; Zhu, Bo; Zhao, Wei; Peng, Ri-He; Yao, Quan-Hong

    2013-01-01

    Phenols are present in the environment and commonly in contact with humans and animals because of their wide applications in many industries. In a previous study, we reported that uridine diphosphate-glucose-dependent glucosyltransferase PtUGT72B1 from Populus trichocarpa has high activity in detoxifying trichlorophenol by conjugating glucose. In this study, more experiments were performed to determine the substrate specificity of PtUGT72B1 towards phenolic compounds. Among seven phenols tested, three were glucosylated by PtUGT72B1 including phenol, hydroquinone, and catechol. Transgenic Arabidopsis plants expressing the enzyme PtUGT72B1 showed higher resistance to hydroquinone and catechol but more sensitivity to phenol than wild type plants. Transgenic Pichia pastoris expressing PtUGT72B1 showed enhanced resistance to all three phenols. Compared with wild type Arabidopsis plants, transgenic Arabidopsis plants showed higher removal efficiencies and exported more glucosides of phenol, phenyl β-D-glucopyranoside, to the medium after cultured with the three phenols. Protein extracts from transgenic Arabidopsis plants showed enhanced conjugating activity towards phenol, hydroquinone and catechol. PtUGT72B1 showed much higher expression level in Pichia pastoris than in Arabidopsis plants. Kinetic analysis of the PtUGT72B1 was also performed. PMID:23840543

  15. Magnetic Flyer Facility Correlation and UGT Simulation

    DTIC Science & Technology

    1978-05-01

    AND UGT SIMULATION (U) Kaman Sciences Corporation L ~ P.O. Box 7463 I Colorado Springs, Colcerado 80933 ý4 May 1978DC Final Report CONTRACT No. DNA O01...selected underground test ( UGT ) environment on 3DQP; and, (2) To correlate the magnetically driven flyer plate facilities of VKSC with those of the...tailored to matcb the pressure vs. time anid total impulse measurements obtained on UGT events. This matching of experi- mental data required considerable

  16. Antiretroviral Drug Interactions: Overview of Interactions Involving New and Investigational Agents and the Role of Therapeutic Drug Monitoring for Management

    PubMed Central

    Rathbun, R. Chris; Liedtke, Michelle D.

    2011-01-01

    Antiretrovirals are prone to drug-drug and drug-food interactions that can result in subtherapeutic or supratherapeutic concentrations. Interactions between antiretrovirals and medications for other diseases are common due to shared metabolism through cytochrome P450 (CYP450) and uridine diphosphate glucuronosyltransferase (UGT) enzymes and transport by membrane proteins (e.g., p-glycoprotein, organic anion-transporting polypeptide). The clinical significance of antiretroviral drug interactions is reviewed, with a focus on new and investigational agents. An overview of the mechanistic basis for drug interactions and the effect of individual antiretrovirals on CYP450 and UGT isoforms are provided. Interactions between antiretrovirals and medications for other co-morbidities are summarized. The role of therapeutic drug monitoring in the detection and management of antiretroviral drug interactions is also briefly discussed. PMID:24309307

  17. Cloning and Expression Analysis of a UDP-Galactose/Glucose Pyrophosphorylase from Melon Fruit Provides Evidence for the Major Metabolic Pathway of Galactose Metabolism in Raffinose Oligosaccharide Metabolizing Plants1

    PubMed Central

    Dai, Nir; Petreikov, Marina; Portnoy, Vitaly; Katzir, Nurit; Pharr, David M.; Schaffer, Arthur A.

    2006-01-01

    The Cucurbitaceae translocate a significant portion of their photosynthate as raffinose and stachyose, which are galactosyl derivatives of sucrose. These are initially hydrolyzed by α-galactosidase to yield free galactose (Gal) and, accordingly, Gal metabolism is an important pathway in Cucurbitaceae sink tissue. We report here on a novel plant-specific enzyme responsible for the nucleotide activation of phosphorylated Gal and the subsequent entry of Gal into sink metabolism. The enzyme was antibody purified, sequenced, and the gene cloned and functionally expressed in Escherichia coli. The heterologous protein showed the characteristics of a dual substrate UDP-hexose pyrophosphorylase (PPase) with activity toward both Gal-1-P and glucose (Glc)-1-P in the uridinylation direction and their respective UDP-sugars in the reverse direction. The two other enzymes involved in Glc-P and Gal-P uridinylation are UDP-Glc PPase and uridyltransferase, and these were also cloned, heterologously expressed, and characterized. The gene expression and enzyme activities of all three enzymes in melon (Cucumis melo) fruit were measured. The UDP-Glc PPase was expressed in melon fruit to a similar extent as the novel enzyme, but the expressed protein was specific for Glc-1-P in the UDP-Glc synthesis direction and did not catalyze the nucleotide activation of Gal-1-P. The uridyltransferase gene was only weakly expressed in melon fruit, and activity was not observed in crude extracts. The results indicate that this novel enzyme carries out both the synthesis of UDP-Gal from Gal-1-P as well as the subsequent synthesis of Glc-1-P from the epimerase product, UDP-Glc, and thus plays a key role in melon fruit sink metabolism. PMID:16829585

  18. Effect of milk thistle (Silybum marianum) on the pharmacokinetics of irinotecan.

    PubMed

    van Erp, Nielka P H; Baker, Sharyn D; Zhao, Ming; Rudek, Michelle A; Guchelaar, Henk-Jan; Nortier, Johan W R; Sparreboom, Alex; Gelderblom, Hans

    2005-11-01

    Milk thistle (Silybum marianum) is one of the most commonly used herbal therapies, and its principal constituent silybin significantly inhibits cytochrome P450 isoform 3A4 (CYP3A4) and UDP glucuronosyltransferase isoform 1A1 (UGT1A1) in vitro. Here, we investigated whether milk thistle affects the pharmacokinetics of irinotecan, a substrate for CYP3A4 and UGT1A1, in humans. Six cancer patients were treated with irinotecan (dose, 125 mg/m(2)) given as a 90-minute infusion once every week. Four days before the second dose, patients received 200 mg milk thistle, thrice a day, for 14 consecutive days. Pharmacokinetic studies of irinotecan and its metabolites 7-ethyl-10-hydroxycamptothecin (SN-38), 7-ethyl-10-[3,4,5-trihydroxy-pyran-2-carboxylic acid]-camptothecin (SN-38-glucuronide), and 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino]-carbonyloxycamptothecin were done during the first three irinotecan administrations. Short-term (4 days) or more prolonged intake of milk thistle (12 days) had no significant effect on irinotecan clearance (mean, 31.2 versus 25.4 versus 25.6 L/h; P = 0.16). The area under the curve ratio of SN-38 and irinotecan was slightly decreased by milk thistle (2.58% versus 2.23% versus 2.17%; P = 0.047), whereas the relative extent of glucuronidation of SN-38 was similar (10.8 versus 13.5 versus 13.1; P = 0.64). Likewise, the area under the curve ratio of 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino]-carbonyloxycamptothecin and irinotecan was unaffected by milk thistle (0.332 versus 0.285 versus 0.337; P = 0.53). The maximum plasma concentrations of silybin ranged between 0.0249 and 0.257 micromol/L. Silybin concentrations after intake of milk thistle are too low to significantly affect the function of CYP3A4 and UGT1A1 in vivo, indicating that milk thistle is unlikely to alter the disposition of anticancer drugs metabolized by these enzymes.

  19. Association of UGT2B7 and UGT1A4 Polymorphisms with Serum Concentration of Antiepileptic Drugs in Children.

    PubMed

    Du, Zhongliang; Jiao, Yukun; Shi, Lianting

    2016-10-31

    BACKGROUND This study aimed to analyze the relationship of UGT2B7 and UGT1A4 polymorphisms with metabolism of valproic acid (VPA) and lamotrigine (LTG) in epileptic children. MATERIAL AND METHODS We administered VPA (102) and LTG (102) to 204 children with epilepsy. Blood samples were collected before the morning dose. Serum concentration of LTG was measured by high-performance liquid chromatography (HPLC). Serum VPA concentration was tested by fluorescence polarization immunoassay. UGT2B7 A268G, C802T, and G211T polymorphisms, as well as UGT1A4 L48V polymorphism, were assayed by direct automated DNA sequencing after PCR. Evaluation of efficacy was conducted using the Engel method. RESULTS The adjusted serum concentration of VPA was 4.26 μg/mL per mg/kg and LTG was 1.56 μg/mL per mg/kg. Multiple linear regression analysis revealed that VPA or LTG adjusted concentration showed a good linear relation with sex and age. UGT2B7 A268G and C802T polymorphisms were demonstrated to affect the serum concentration of VPA (F=3.147, P=0.047; F=22.754, P=0.000). UGT1A4 L48V polymorphism was not related with the serum concentration of LTG (F=5.328, P=0.006). In the efficacy analysis, we found that C802T polymorphism exerted strong effects on efficacy of VPA (χ²=9.265, P=0.010). L48V polymorphism also showed effects on efficacy of LTG (χ²=17.397, P=0.001). CONCLUSIONS UGT2B7, UGT1A4 polymorphisms play crucial roles in metabolism of VPA and LTG.

  20. Association between the low-dose irinotecan regimen-induced occurrence of grade 4 neutropenia and genetic variants of UGT1A1 in patients with gynecological cancers

    PubMed Central

    MORIYA, HIROYUKI; SAITO, KATSUHIKO; HELSBY, NUALA; SUGINO, SHIGEKAZU; YAMAKAGE, MICHIAKI; SAWAGUCHI, TAKERU; TAKASAKI, MASAHIKO; KATO, HIDENORI; KUROSAWA, NAHOKO

    2014-01-01

    The occurrence of severe neutropenia during treatment with irinotecan (CPT-11) is associated with the *6 and *28 alleles of uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1). However, the correlation between these variants and the occurrence of severe neutropenia in a low-dose CPT-11 regimen for the treatment of gynecological cancers has not been extensively studied. There are also no studies regarding the association between the 421C>A mutation in ATP-binding cassette sub-family G member 2 (ABCG2) and the occurrence of severe neutropenia in CPT-11-treated patients with gynecological cancers. The present study was designed to determine the factors associated with the occurrence of grade 4 neutropenia during chemotherapy for gynecological cancers with combinations of CPT-11 and cisplatin or mitomycin C. In total, 44 patients with gynecological cancer were enrolled in the study. The association between the absolute neutrophil count (ANC) nadir values, the total dose of CPT-11 and the genotypes of UGT1A1 or ABCG2 was studied. No correlation was observed between the ANC nadir values and the total dose of CPT-11. The ANC nadir values in the UGT1A1*6/*28 and *6/*6 groups were significantly lower compared with those in the *1/*1 group (P<0.01). Univariate analysis showed no association between the occurrence of grade 4 neutropenia and the ABCG2 421C>A mutation. Subsequent to narrowing the factors by univariate analysis, multivariate logistic regression analysis only detected significant correlations between the occurrence of grade 4 neutropenia and the UGT1A1*6/*6 and *6/*28 groups (P=0.029; odds ratio, 6.90; 95% confidence interval, 1.22–38.99). No associations were detected between the occurrence of grade 4 neutropenia and the heterozygous variant (*1/*6 or *1/*28) genotype, type of regimen or age. In conclusion, the UGT1A1*6/*28 and *6/*6 genotypes were found to be associated with the occurrence of severe neutropenia in the low-dose CPT-11 regimen for

  1. Identification of novel inhibitors against UDP-galactopyranose mutase to combat leishmaniasis.

    PubMed

    Kashif, Mohammad; Tabrez, Shams; Husein, Atahar; Arish, Mohd; Kalaiarasan, Ponnusamy; Manna, Partha P; Subbarao, Naidu; Akhter, Yusuf; Rub, Abdur

    2018-03-01

    Leishmania, a protozoan parasite that causes leishmaniasis, affects 1-2 million people every year worldwide. Leishmaniasis is a vector born disease and characterized by a diverse group of clinical syndromes. Current treatment is limited because of drug resistance, high cost, poor safety, and low efficacy. The urgent need for potent agents against Leishmania has led to significant advances in the development of novel antileishmanial drugs. β-galactofuranose (β-Galf) is an important component of Leishmanial cell surface matrix and plays a critical role in the pathogenesis of parasite. UDP-galactopyranose mutase (UGM) converts UDP-galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-Galf) which acts as the precursor for β-Galf synthesis. Due to its absence in human, this enzyme is selected as the potential target in search of new antileishmanial drugs. Three dimensional protein structure model of Leishmania major UGM (LmUGM) has been homology modeled using Trypanosoma cruzi UGM (TcUGM) as a template. The stereochemistry was validated further. We selected already reported active compounds from PubChem database to target the LmUGM. Three compounds (6064500, 44570814, and 6158954) among the top hit occupied the UDP binding site of UGM suggested to work as a possible inhibitor for it. In vitro antileishmanial activity assay was performed with the top ranked inhibitor, 6064500. The 6064500 molecule has inhibited the growth of Leishmania donovani promastigotes significantly. Further, at similar concentrations it has exhibited significantly lesser toxicity than standard drug miltefosine hydrate in mammalian cells. © 2017 Wiley Periodicals, Inc.

  2. In Vitro Biosynthesis and Chemical Identification of UDP-N-acetyl-d-quinovosamine (UDP-d-QuiNAc)*

    PubMed Central

    Li, Tiezheng; Simonds, Laurie; Kovrigin, Evgenii L.; Noel, K. Dale

    2014-01-01

    N-acetyl-d-quinovosamine (2-acetamido-2,6-dideoxy-d-glucose, QuiNAc) occurs in the polysaccharide structures of many Gram-negative bacteria. In the biosynthesis of QuiNAc-containing polysaccharides, UDP-QuiNAc is the hypothetical donor of the QuiNAc residue. Biosynthesis of UDP-QuiNAc has been proposed to occur by 4,6-dehydration of UDP-N-acetyl-d-glucosamine (UDP-GlcNAc) to UDP-2-acetamido-2,6-dideoxy-d-xylo-4-hexulose followed by reduction of this 4-keto intermediate to UDP-QuiNAc. Several specific dehydratases are known to catalyze the first proposed step. A specific reductase for the last step has not been demonstrated in vitro, but previous mutant analysis suggested that Rhizobium etli gene wreQ might encode this reductase. Therefore, this gene was cloned and expressed in Escherichia coli, and the resulting His6-tagged WreQ protein was purified. It was tested for 4-reductase activity by adding it and NAD(P)H to reaction mixtures in which 4,6-dehydratase WbpM had acted on the precursor substrate UDP-GlcNAc. Thin layer chromatography of the nucleotide sugars in the mixture at various stages of the reaction showed that WbpM converted UDP-GlcNAc completely to what was shown to be its 4-keto-6-deoxy derivative by NMR and that addition of WreQ and NADH led to formation of a third compound. Combined gas chromatography-mass spectrometry analysis of acid hydrolysates of the final reaction mixture showed that a quinovosamine moiety had been synthesized after WreQ addition. The two-step reaction progress also was monitored in real time by NMR. The final UDP-sugar product after WreQ addition was purified and determined to be UDP-d-QuiNAc by one-dimensional and two-dimensional NMR experiments. These results confirmed that WreQ has UDP-2-acetamido-2,6-dideoxy-d-xylo-4-hexulose 4-reductase activity, completing a pathway for UDP-d-QuiNAc synthesis in vitro. PMID:24817117

  3. Cloning, expression and characterization of a mammalian Nudix hydrolase-like enzyme that cleaves the pyrophosphate bond of UDP-glucose.

    PubMed Central

    Yagi, Toshihiro; Baroja-Fernández, Edurne; Yamamoto, Ryuji; Muñoz, Francisco José; Akazawa, Takashi; Hong, Kyoung Su; Pozueta-Romero, Javier

    2003-01-01

    A distinct UDP-glucose (UDPG) pyrophosphatase (UGPPase, EC 3.6.1.45) has been characterized using pig kidney ( Sus scrofa ). This enzyme hydrolyses UDPG, the precursor molecule of numerous glycosylation reactions in animals, to produce glucose 1-phosphate (G1P) and UMP. Sequence analyses of the purified enzyme revealed that, similar to the case of a nucleotide-sugar hydrolase controlling the intracellular levels of ADP-glucose linked to glycogen biosynthesis in Escherichia coli [Moreno-Bruna, Baroja-Fernández, Muñoz, Bastarrica-Berasategui, Zandueta-Criado, Rodri;guez-López, Lasa, Akazawa and Pozueta-Romero (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 8128-8132], UGPPase appears to be a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated Nudix hydrolases. A complete cDNA of the UGPPase-encoding gene, designated UGPP, was isolated from a human thyroid cDNA library and expressed in E. coli. The resulting cells accumulated a protein that showed kinetic properties identical to those of pig UGPPase. PMID:12429023

  4. Cloning, expression and characterization of a mammalian Nudix hydrolase-like enzyme that cleaves the pyrophosphate bond of UDP-glucose.

    PubMed

    Yagi, Toshihiro; Baroja-Fernández, Edurne; Yamamoto, Ryuji; Muñoz, Francisco José; Akazawa, Takashi; Hong, Kyoung Su; Pozueta-Romero, Javier

    2003-03-01

    A distinct UDP-glucose (UDPG) pyrophosphatase (UGPPase, EC 3.6.1.45) has been characterized using pig kidney ( Sus scrofa ). This enzyme hydrolyses UDPG, the precursor molecule of numerous glycosylation reactions in animals, to produce glucose 1-phosphate (G1P) and UMP. Sequence analyses of the purified enzyme revealed that, similar to the case of a nucleotide-sugar hydrolase controlling the intracellular levels of ADP-glucose linked to glycogen biosynthesis in Escherichia coli [Moreno-Bruna, Baroja-Fernández, Muñoz, Bastarrica-Berasategui, Zandueta-Criado, Rodri;guez-López, Lasa, Akazawa and Pozueta-Romero (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 8128-8132], UGPPase appears to be a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated Nudix hydrolases. A complete cDNA of the UGPPase-encoding gene, designated UGPP, was isolated from a human thyroid cDNA library and expressed in E. coli. The resulting cells accumulated a protein that showed kinetic properties identical to those of pig UGPPase.

  5. Albumin's Influence on Carprofen Enantiomers-Hymecromone Interaction.

    PubMed

    Tang, Mingjie; Guo, Yanjie; Gao, Youshui; Tang, Chao; Dang, Xiaoqian; Zhou, Zubin; Sun, Yuqiang; Wang, Kunzheng

    2016-03-01

    Hymecromone is an important coumarin drug, and carprofen is one of the most important nonsteroidal antiinflammatory drugs (NSAIDs). The present study aims to determine the influence of bovine serum albumin (BSA) on the carprofen-hymecromone interaction. The inhibition of carprofen enantiomers on the UDP-glucuronosyltransferase (UGT) 2B7-catalyzed glucuronidation of hymecromone was investigated in the UGTs incubation system with and without BSA. The inhibition capability of increased by 20% (P < 0.001) of (R)-carprofen after the addition of 0.5% BSA in the incubation mixture. In contrast, no significant difference was observed for the inhibition of (S)-carprofen on UGT2B7 activity in the absence or presence of 0.5% BSA in the incubation system. The Lineweaver-Burk plot showed that the intersection point was located in the vertical axis, indicating the competitive inhibition of (R)-carprofen on UGT2B7 in the incubation system with BSA, which is consistent with the inhibition kinetic type of (R)-carprofen on UGT2B7 in the incubation system without BSA. Furthermore, the second plot using the slopes from the Lineweaver-Burk versus the concentrations of (R)-carprofen showed that the fitting equation was y=39.997x+50. Using this equation, the inhibition kinetic parameter was calculated to be 1.3 μM. For (S)-carprofen, the intersection point was located in the horizontal axis in the Lineweaver-Burk plot for the incubation system with BSA, indicating the noncompetitive inhibition of (S)-carprofen on the activity of UGT2B7. The fitting plot of the second plot was y=24.6x+180, and the inhibition kinetic parameter was 7.3 μM. In conclusion, the present study gives a short summary of BSA's influence on the carprofen enantiomers-hymecromone interaction, which will guide the clinical application of carprofen and hymecromone. © 2015 Wiley Periodicals, Inc.

  6. The effects of clobazam treatment in rats on the expression of genes and proteins encoding glucronosyltransferase 1A/2B (UGT1A/2B) and multidrug resistance‐associated protein-2 (MRP2), and development of thyroid follicular cell hypertrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyawaki, Izuru, E-mail: izuru-miyawaki@ds-pharma.co.jp; Tamura, Akitoshi; Matsumoto, Izumi

    Clobazam (CLB) is known to increase hepatobiliary thyroxine (T4) clearance in Sprague–Dawley (SD) rats, which results in hypothyroidism followed by thyroid follicular cell hypertrophy. However, the mechanism of the acceleration of T4-clearance has not been fully investigated. In the present study, we tried to clarify the roles of hepatic UDP-glucronosyltransferase (UGT) isoenzymes (UGT1A and UGT2B) and efflux transporter (multidrug resistance–associated protein-2; MRP2) in the CLB-induced acceleration of T4-clearance using two mutant rat strains, UGT1A-deficient mutant (Gunn) and MRP2-deficient mutant (EHBR) rats, especially focusing on thyroid morphology, levels of circulating hormones (T4 and triiodothyronine (T3)) and thyroid-stimulating hormone (TSH), and mRNAmore » or protein expressions of UGTs (Ugt1a1, Ugt1a6, and Ugt2b1/2) and MRP2 (Mrp). CLB induced thyroid morphological changes with increases in TSH in SD and Gunn rats, but not in EHBR rats. T4 was slightly decreased in SD and Gunn rats, and T3 was decreased in Gunn rats, whereas these hormones were maintained in EHBR rats. Hepatic Ugt1a1, Ugt1a6, Ugt2b1/2, and Mrp2 mRNAs were upregulated in SD rats. In Gunn rats, UGT1A mRNAs (Ugt1a1/6) and protein levels were quite low, but UGT2B mRNAs (Ugt2b1/2) and protein were prominently upregulated. In SD and Gunn rats, MRP2 mRNA and protein were upregulated to the same degree. These results suggest that MRP2 is an important contributor in development of the thyroid cellular hypertrophy in CLB-treated rats, and that UGT1A and UGT2B work in concert with MRP2 in the presence of MRP2 function to enable the effective elimination of thyroid hormones. -- Highlights: ► Role of UGT and MRP2 in thyroid pathology was investigated in clobazam-treated rats. ► Clobazam induced thyroid cellular hypertrophy in SD and Gunn rats, but not EHBR rats. ► Hepatic Mrp2 gene and protein were upregulated in SD and Gunn rats, but not EHBR rats. ► Neither serum thyroid hormones

  7. Activity-Based Profiling of a Physiologic Aglycone Library Reveals Sugar Acceptor Promiscuity of Family 1 UDP-Glucosyltransferases from Grape1[W

    PubMed Central

    Bönisch, Friedericke; Frotscher, Johanna; Stanitzek, Sarah; Rühl, Ernst; Wüst, Matthias; Bitz, Oliver; Schwab, Wilfried

    2014-01-01

    Monoterpenols serve various biological functions and accumulate in grape (Vitis vinifera), where a major fraction occurs as nonvolatile glycosides. We have screened the grape genome for sequences with similarity to terpene URIDINE DIPHOSPHATE GLYCOSYLTRANSFERASES (UGTs) from Arabidopsis (Arabidopsis thaliana). A ripening-related expression pattern was shown for three candidates by spatial and temporal expression analyses in five grape cultivars. Transcript accumulation correlated with the production of monoterpenyl β-d-glucosides in grape exocarp during ripening and was low in vegetative tissue. Targeted functional screening of the recombinant UGTs for their biological substrates was performed by activity-based metabolite profiling (ABMP) employing a physiologic library of aglycones built from glycosides isolated from grape. This approach led to the identification of two UDP-glucose:monoterpenol β-d-glucosyltransferases. Whereas VvGT14a glucosylated geraniol, R,S-citronellol, and nerol with similar efficiency, the three allelic forms VvGT15a, VvGT15b, and VvGT15c preferred geraniol over nerol. Kinetic resolution of R,S-citronellol and R,S-linalool was shown for VvGT15a and VvGT14a, respectively. ABMP revealed geraniol as the major biological substrate but also disclosed that these UGTs may add to the production of further glycoconjugates in planta. ABMP of aglycone libraries provides a versatile tool to uncover novel biologically relevant substrates of small-molecule glycosyltransferases that often show broad sugar acceptor promiscuity. PMID:25073706

  8. METABOLISM AND DISPOSITION OF ACETAMINOPHEN: RECENT ADVANCES IN RELATION TO HEPATOTOXICITY AND DIAGNOSIS

    PubMed Central

    McGill, Mitchell R.; Jaeschke, Hartmut

    2013-01-01

    Acetaminophen (APAP) is one of the most widely used drugs. Though safe at therapeutic doses, overdose causes mitochondrial dysfunction and centrilobular necrosis in the liver. The first studies of APAP metabolism and activation were published more than forty years ago. Most of the drug is eliminated by glucuronidation and sulfation. These reactions are catalyzed by UDP-glucuronosyltransferases (UGT1A1 and 1A6) and sulfotransferases (SULT1A1, 1A3/4, and 1E1), respectively. However, some is converted by CYP2E1 and other cytochrome P450 enzymes to a reactive intermediate that can bind to sulfhydryl groups. The metabolite can deplete liver glutathione (GSH) and modify cellular proteins. GSH binding occurs spontaneously, but may also involve GSH-S-transferases. Protein binding leads to oxidative stress and mitochondrial damage. The glucuronide, sulfate, and GSH conjugates are excreted by transporters in the canalicular (Mrp2 and Bcrp) and basolateral (Mrp3 and Mrp4) hepatocyte membranes. Conditions that interfere with metabolism and metabolic activation can alter the hepatotoxicity of the drug. Recent data providing novel insights into these processes, particularly in humans, are reviewed in the context of earlier work, and the effects of altered metabolism and reactive metabolite formation are discussed. Recent advances in the diagnostic use of serum adducts are covered. PMID:23462933

  9. Studies on induction of lamotrigine metabolism in transgenic UGT1 mice

    PubMed Central

    Argikar, U. A.; Senekeo-Effenberger, K.; Larson, E. E.; Tukey, R. H.; Remmel, R. P.

    2010-01-01

    A transgenic ‘knock-in’ mouse model expressing a human UGT1 locus (Tg-UGT1) was recently developed and validated. Although these animals express mouse UGT1A proteins, UGT1A4 is a pseudo-gene in mice. Therefore, Tg-UGT1 mice serve as a ‘humanized’ UGT1A4 animal model.Lamotrigine (LTG) is primarily metabolized to its N-glucuronide (LTGG) by hUGT1A4. This investigation aimed at examining the impact of pregnane X receptor (PXR), constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor (PPAR) activators on LTG glucuronidation in vivo and in vitro. Tg-UGT1 mice were administered the inducers phenobarbital (CAR), pregnenolone-16α-carbonitrile (PXR), WY-14643 (PPAR-α), ciglitazone (PPAR-γ), or L-165041 (PPAR-β), once daily for 3 or 4 days. Thereafter, LTG was administered orally and blood samples were collected over 24 h. LTG was measured in blood and formation of LTGG was measured in pooled microsomes made from the livers of treated animals.A three-fold increase in in vivo LTG clearance was seen after phenobarbital administration. In microsomes prepared from phenobarbital-treated Tg-UGT1 animals, 13-fold higher CLint (Vmax/Km) value was observed as compared with the untreated transgenic mice. A trend toward induction of catalytic activity in vitro and in vivo was also observed following pregnenolone-16α-carbonitrile and WY-14643 treatment. This study demonstrates the successful application of Tg-UGT1 mice as a novel tool to study the impact of induction and regulation on metabolism of UGT1A4 substrates. PMID:19845433

  10. Genome-wide identification of glycosyltransferases converting phloretin to phloridzin in Malus species.

    PubMed

    Zhou, Kun; Hu, Lingyu; Li, Pengmin; Gong, Xiaoqing; Ma, Fengwang

    2017-12-01

    Phloridzin (phloretin 2'-O-glucoside) is the most abundant phenolic compound in Malus species, accounting for up to 18% of the dry weight in leaves. Glycosylation of phloretin at the 2' position is the last and key step in phloridzin biosynthesis. It is catalyzed by a uridine diphosphate (UDP)-glucose:phloretin 2'-O-glucosyltransferase (P2'GT), which directly determines the concentration of phloridzin. However, this process is poorly understood. We conducted a large-scale investigation of phloridzin accumulations in leaves from 64 Malus species and cultivars. To identify the responsible P2'GT, we performed a genome-wide analysis of the expression patterns of UDP-dependent glycosyltransferase genes (UGTs). Two candidates were screened preliminarily in Malus spp. cv. Adams (North American Begonia). Results from further qRT-PCR analyses of the genotypes showed a divergence in phloridzin production. Our assays of enzyme activity also suggested that MdUGT88F4 and MdUGT88F1 regulate the conversion of phloretin to phloridzin in Malus plants. Finally, when they were silenced in 'GL-3' ('Royal Gala'), the concentrations of phloridzin and phloretin (and trilobatin) were significantly reduced and increased, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Evaluation of a mucoadhesive fenretinide patch for local intraoral delivery: a strategy to reintroduce fenretinide for oral cancer chemoprevention

    PubMed Central

    Holpuch, Andrew S.; Phelps, Maynard P.; Desai, Kashappa-Goud H.; Chen, Wei; Koutras, George M.; Han, Byungdo B.; Warner, Blake M.; Pei, Ping; Seghi, Garrett A.; Tong, Meng; Border, Michael B.; Fields, Henry W.; Stoner, Gary D.; Larsen, Peter E.; Liu, Zhongfa; Schwendeman, Steven P.; Mallery, Susan R.

    2012-01-01

    Systemic delivery of fenretinide in oral cancer chemoprevention trials has been largely unsuccessful due to dose-limiting toxicities and subtherapeutic intraoral drug levels. Local drug delivery, however, provides site-specific therapeutically relevant levels while minimizing systemic exposure. These studies evaluated the pharmacokinetic and growth-modulatory parameters of fenretinide mucoadhesive patch application on rabbit buccal mucosa. Fenretinide and blank-control patches were placed on right/left buccal mucosa, respectively, in eight rabbits (30 min, q.d., 10 days). No clinical or histological deleterious effects occurred. LC-MS/MS analyses of post-treatment samples revealed a delivery gradient with highest fenretinide levels achieved at the patch-mucosal interface (no metabolites), pharmacologically active levels in fenretinide-treated oral mucosa (mean: 5.65 μM; trace amounts of 4-oxo-4-HPR) and undetectable sera levels. Epithelial markers for cell proliferation (Ki-67), terminal differentiation (transglutaminase 1—TGase1) and glucuronidation (UDP-glucuronosyltransferase1A1—UGT1A1) exhibited fenretinide concentration-specific relationships (elevated TGase1 and UGT1A1 levels <5 μM, reduced Ki-67 indices >5μM) relative to blank-treated epithelium. All fenretinide-treated tissues showed significantly increased intraepithelial apoptosis (TUNEL) positivity, implying activation of intersecting apoptotic and differentiation pathways. Human oral mucosal correlative studies showed substantial interdonor variations in levels of the enzyme (cytochrome P450 3A4—CYP3A4) responsible for conversion of fenretinide to its highly active metabolite, 4-oxo-4-HPR. Complementary in vitro assays in human oral keratinocytes revealed fenretinide and 4-oxo-4-HPR’s preferential suppression of DNA synthesis in dysplastic as opposed to normal oral keratinocytes. Collectively, these data showed that mucoadhesive patch-mediated fenretinide delivery is a viable strategy to

  12. Evaluation of a mucoadhesive fenretinide patch for local intraoral delivery: a strategy to reintroduce fenretinide for oral cancer chemoprevention.

    PubMed

    Holpuch, Andrew S; Phelps, Maynard P; Desai, Kashappa-Goud H; Chen, Wei; Koutras, George M; Han, Byungdo B; Warner, Blake M; Pei, Ping; Seghi, Garrett A; Tong, Meng; Border, Michael B; Fields, Henry W; Stoner, Gary D; Larsen, Peter E; Liu, Zhongfa; Schwendeman, Steven P; Mallery, Susan R

    2012-05-01

    Systemic delivery of fenretinide in oral cancer chemoprevention trials has been largely unsuccessful due to dose-limiting toxicities and subtherapeutic intraoral drug levels. Local drug delivery, however, provides site-specific therapeutically relevant levels while minimizing systemic exposure. These studies evaluated the pharmacokinetic and growth-modulatory parameters of fenretinide mucoadhesive patch application on rabbit buccal mucosa. Fenretinide and blank-control patches were placed on right/left buccal mucosa, respectively, in eight rabbits (30 min, q.d., 10 days). No clinical or histological deleterious effects occurred. LC-MS/MS analyses of post-treatment samples revealed a delivery gradient with highest fenretinide levels achieved at the patch-mucosal interface (no metabolites), pharmacologically active levels in fenretinide-treated oral mucosa (mean: 5.65 μM; trace amounts of 4-oxo-4-HPR) and undetectable sera levels. Epithelial markers for cell proliferation (Ki-67), terminal differentiation (transglutaminase 1-TGase1) and glucuronidation (UDP-glucuronosyltransferase1A1-UGT1A1) exhibited fenretinide concentration-specific relationships (elevated TGase1 and UGT1A1 levels <5 μM, reduced Ki-67 indices >5 μM) relative to blank-treated epithelium. All fenretinide-treated tissues showed significantly increased intraepithelial apoptosis (TUNEL) positivity, implying activation of intersecting apoptotic and differentiation pathways. Human oral mucosal correlative studies showed substantial interdonor variations in levels of the enzyme (cytochrome P450 3A4-CYP3A4) responsible for conversion of fenretinide to its highly active metabolite, 4-oxo-4-HPR. Complementary in vitro assays in human oral keratinocytes revealed fenretinide and 4-oxo-4-HPR's preferential suppression of DNA synthesis in dysplastic as opposed to normal oral keratinocytes. Collectively, these data showed that mucoadhesive patch-mediated fenretinide delivery is a viable strategy to reintroduce

  13. Identification of a Direct Biosynthetic Pathway for UDP-N-Acetylgalactosamine from Glucosamine-6-Phosphate in Thermophilic Crenarchaeon Sulfolobus tokodaii.

    PubMed

    Dadashipour, Mohammad; Iwamoto, Mariko; Hossain, Mohammad Murad; Akutsu, Jun-Ichi; Zhang, Zilian; Kawarabayasi, Yutaka

    2018-05-15

    pathways. IMPORTANCE In this work, a novel protein capable of directly converting glucosamine-6-phosphate to galactosamine-6-phosphate was successfully purified from a cell extract of the thermophilic crenarchaeon Sulfolobus tokodaii Confirmation of this novel activity using the recombinant protein indicates that S. tokodaii possesses a novel UDP-GalNAc biosynthetic pathway derived from glucosamine-6-phosphate. The distributions of this and related genes indicate the presence of three different types of UDP-GalNAc biosynthetic pathways: a direct pathway using a novel enzyme and two conversion pathways from UDP-GlcNAc using known enzymes. Additionally, Crenarchaeota species lacking all three pathways were found, predicting the presence of one more unknown pathway. Identification of these novel proteins and pathways provides important insights into the evolution of nucleotide sugar biosynthesis, as well as being potentially important industrially. Copyright © 2018 American Society for Microbiology.

  14. Evaluation of the in vitro/in vivo potential of five berries (bilberry, blueberry, cranberry, elderberry, and raspberry ketones) commonly used as herbal supplements to inhibit uridine diphospho-glucuronosyltransferase.

    PubMed

    Choi, Eu Jin; Park, Jung Bae; Yoon, Kee Dong; Bae, Soo Kyung

    2014-10-01

    In this study, we evaluated inhibitory potentials of popularly-consumed berries (bilberry, blueberry, cranberry, elderberry, and raspberry ketones) as herbal supplements on UGT1A1, UGT1A4, UGT1A6, UGT1A9, and UGT2B7 in vitro. We also investigated the potential herb-drug interaction via UGT1A1 inhibition by blueberry in vivo. We demonstrated that these berries had only weak inhibitory effects on the five UGTs. Bilberry and elderberry had no apparent inhibitions. Blueberry weakly inhibited UGT1A1 with an IC50 value of 62.4±4.40 μg/mL and a Ki value of 53.1 μg/mL. Blueberry also weakly inhibited UGT2B7 with an IC50 value of 147±11.1 μg/mL. In addition, cranberry weakly inhibited UGT1A9 activity (IC50=458±49.7 μg/mL) and raspberry ketones weakly inhibited UGT2B7 activity (IC50=248±28.2 μg/mL). Among tested berries, blueberry showed the lowest IC50 value in the inhibition of UGT1A1 in vitro. However, the co-administration of blueberry had no effect on the pharmacokinetics of irinotecan and its active metabolite, SN-38, which was mainly eliminated via UGT1A1, in vivo. Our data suggests that these five berries are unlikely to cause clinically significant herb-drug interactions mediated via inhibition of UGT enzymes involved in drug metabolism. These findings should enable an understanding of herb-drug interactions for the safe use of popularly-consumed berries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. UDP-glucose Dehydrogenase Polymorphisms from Patients with Congenital Heart Valve Defects Disrupt Enzyme Stability and Quaternary Assembly*

    PubMed Central

    Hyde, Annastasia S.; Farmer, Erin L.; Easley, Katherine E.; van Lammeren, Kristy; Christoffels, Vincent M.; Barycki, Joseph J.; Bakkers, Jeroen; Simpson, Melanie A.

    2012-01-01

    Cardiac valve defects are a common congenital heart malformation and a significant clinical problem. Defining molecular factors in cardiac valve development has facilitated identification of underlying causes of valve malformation. Gene disruption in zebrafish revealed a critical role for UDP-glucose dehydrogenase (UGDH) in valve development, so this gene was screened for polymorphisms in a patient population suffering from cardiac valve defects. Two genetic substitutions were identified and predicted to encode missense mutations of arginine 141 to cysteine and glutamate 416 to aspartate, respectively. Using a zebrafish model of defective heart valve formation caused by morpholino oligonucleotide knockdown of UGDH, transcripts encoding the UGDH R141C or E416D mutant enzymes were unable to restore cardiac valve formation and could only partially rescue cardiac edema. Characterization of the mutant recombinant enzymes purified from Escherichia coli revealed modest alterations in the enzymatic activity of the mutants and a significant reduction in the half-life of enzyme activity at 37 °C. This reduction in activity could be propagated to the wild-type enzyme in a 1:1 mixed reaction. Furthermore, the quaternary structure of both mutants, normally hexameric, was destabilized to favor the dimeric species, and the intrinsic thermal stability of the R141C mutant was highly compromised. The results are consistent with the reduced function of both missense mutations significantly reducing the ability of UGDH to provide precursors for cardiac cushion formation, which is essential to subsequent valve formation. The identification of these polymorphisms in patient populations will help identify families genetically at risk for valve defects. PMID:22815472

  16. Substrate Specificity and Inhibitor Sensitivity of Plant UDP-Sugar Producing Pyrophosphorylases.

    PubMed

    Decker, Daniel; Kleczkowski, Leszek A

    2017-01-01

    UDP-sugars are essential precursors for glycosylation reactions producing cell wall polysaccharides, sucrose, glycoproteins, glycolipids, etc. Primary mechanisms of UDP sugar formation involve the action of at least three distinct pyrophosphorylases using UTP and sugar-1-P as substrates. Here, substrate specificities of barley and Arabidopsis (two isozymes) UDP-glucose pyrophosphorylases (UGPase), Arabidopsis UDP-sugar pyrophosphorylase (USPase) and Arabidopsis UDP- N -acetyl glucosamine pyrophosphorylase2 (UAGPase2) were investigated using a range of sugar-1-phosphates and nucleoside-triphosphates as substrates. Whereas all the enzymes preferentially used UTP as nucleotide donor, they differed in their specificity for sugar-1-P. UGPases had high activity with D-Glc-1-P, but could also react with Fru-1-P and Fru-2-P ( K m values over 10 mM). Contrary to an earlier report, their activity with Gal-1-P was extremely low. USPase reacted with a range of sugar-1-phosphates, including D-Glc-1-P, D-Gal-1-P, D-GalA-1-P ( K m of 1.3 mM), β-L-Ara-1-P and α-D-Fuc-1-P ( K m of 3.4 mM), but not β-L-Fuc-1-P. In contrast, UAGPase2 reacted only with D-GlcNAc-1-P, D-GalNAc-1-P ( K m of 1 mM) and, to some extent, D-Glc-1-P ( K m of 3.2 mM). Generally, different conformations/substituents at C2, C4, and C5 of the pyranose ring of a sugar were crucial determinants of substrate specificity of a given pyrophosphorylase. Homology models of UDP-sugar binding to UGPase, USPase and UAGPase2 revealed more common amino acids for UDP binding than for sugar binding, reflecting differences in substrate specificity of these proteins. UAGPase2 was inhibited by a salicylate derivative that was earlier shown to affect UGPase and USPase activities, consistent with a common structural architecture of the three pyrophosphorylases. The results are discussed with respect to the role of the pyrophosphorylases in sugar activation for glycosylated end-products.

  17. Substrate Specificity and Inhibitor Sensitivity of Plant UDP-Sugar Producing Pyrophosphorylases

    PubMed Central

    Decker, Daniel; Kleczkowski, Leszek A.

    2017-01-01

    UDP-sugars are essential precursors for glycosylation reactions producing cell wall polysaccharides, sucrose, glycoproteins, glycolipids, etc. Primary mechanisms of UDP sugar formation involve the action of at least three distinct pyrophosphorylases using UTP and sugar-1-P as substrates. Here, substrate specificities of barley and Arabidopsis (two isozymes) UDP-glucose pyrophosphorylases (UGPase), Arabidopsis UDP-sugar pyrophosphorylase (USPase) and Arabidopsis UDP-N-acetyl glucosamine pyrophosphorylase2 (UAGPase2) were investigated using a range of sugar-1-phosphates and nucleoside-triphosphates as substrates. Whereas all the enzymes preferentially used UTP as nucleotide donor, they differed in their specificity for sugar-1-P. UGPases had high activity with D-Glc-1-P, but could also react with Fru-1-P and Fru-2-P (Km values over 10 mM). Contrary to an earlier report, their activity with Gal-1-P was extremely low. USPase reacted with a range of sugar-1-phosphates, including D-Glc-1-P, D-Gal-1-P, D-GalA-1-P (Km of 1.3 mM), β-L-Ara-1-P and α-D-Fuc-1-P (Km of 3.4 mM), but not β-L-Fuc-1-P. In contrast, UAGPase2 reacted only with D-GlcNAc-1-P, D-GalNAc-1-P (Km of 1 mM) and, to some extent, D-Glc-1-P (Km of 3.2 mM). Generally, different conformations/substituents at C2, C4, and C5 of the pyranose ring of a sugar were crucial determinants of substrate specificity of a given pyrophosphorylase. Homology models of UDP-sugar binding to UGPase, USPase and UAGPase2 revealed more common amino acids for UDP binding than for sugar binding, reflecting differences in substrate specificity of these proteins. UAGPase2 was inhibited by a salicylate derivative that was earlier shown to affect UGPase and USPase activities, consistent with a common structural architecture of the three pyrophosphorylases. The results are discussed with respect to the role of the pyrophosphorylases in sugar activation for glycosylated end-products. PMID:28970843

  18. Proteolysis of HCF-1 by Ser/Thr glycosylation-incompetent O-GlcNAc transferase:UDP-GlcNAc complexes

    PubMed Central

    Kapuria, Vaibhav; Röhrig, Ute F.; Bhuiyan, Tanja; Borodkin, Vladimir S.; van Aalten, Daan M.F.; Zoete, Vincent; Herr, Winship

    2016-01-01

    In complex with the cosubstrate UDP-N-acetylglucosamine (UDP-GlcNAc), O-linked-GlcNAc transferase (OGT) catalyzes Ser/Thr O-GlcNAcylation of many cellular proteins and proteolysis of the transcriptional coregulator HCF-1. Such a dual glycosyltransferase–protease activity, which occurs in the same active site, is unprecedented and integrates both reversible and irreversible forms of protein post-translational modification within one enzyme. Although occurring within the same active site, we show here that glycosylation and proteolysis occur through separable mechanisms. OGT consists of tetratricopeptide repeat (TPR) and catalytic domains, which, together with UDP-GlcNAc, are required for both glycosylation and proteolysis. Nevertheless, a specific TPR domain contact with the HCF-1 substrate is critical for proteolysis but not Ser/Thr glycosylation. In contrast, key catalytic domain residues and even a UDP-GlcNAc oxygen important for Ser/Thr glycosylation are irrelevant for proteolysis. Thus, from a dual glycosyltransferase–protease, essentially single-activity enzymes can be engineered both in vitro and in vivo. Curiously, whereas OGT-mediated HCF-1 proteolysis is limited to vertebrate species, invertebrate OGTs can cleave human HCF-1. We present a model for the evolution of HCF-1 proteolysis by OGT. PMID:27056667

  19. Biological definition of multiple chemical sensitivity from redox state and cytokine profiling and not from polymorphisms of xenobiotic-metabolizing enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Luca, Chiara; Scordo, Maria G.; Cesareo, Eleonora

    Background: Multiple chemical sensitivity (MCS) is a poorly clinically and biologically defined environment-associated syndrome. Although dysfunctions of phase I/phase II metabolizing enzymes and redox imbalance have been hypothesized, corresponding genetic and metabolic parameters in MCS have not been systematically examined. Objectives: We sought for genetic, immunological, and metabolic markers in MCS. Methods: We genotyped patients with diagnosis of MCS, suspected MCS and Italian healthy controls for allelic variants of cytochrome P450 isoforms (CYP2C9, CYP2C19, CYP2D6, and CYP3A5), UDP-glucuronosyl transferase (UGT1A1), and glutathione S-transferases (GSTP1, GSTM1, and GSTT1). Erythrocyte membrane fatty acids, antioxidant (catalase, superoxide dismutase (SOD)) and glutathione metabolizing (GST,more » glutathione peroxidase (Gpx)) enzymes, whole blood chemiluminescence, total antioxidant capacity, levels of nitrites/nitrates, glutathione, HNE-protein adducts, and a wide spectrum of cytokines in the plasma were determined. Results: Allele and genotype frequencies of CYPs, UGT, GSTM, GSTT, and GSTP were similar in the Italian MCS patients and in the control populations. The activities of erythrocyte catalase and GST were lower, whereas Gpx was higher than normal. Both reduced and oxidised glutathione were decreased, whereas nitrites/nitrates were increased in the MCS groups. The MCS fatty acid profile was shifted to saturated compartment and IFNgamma, IL-8, IL-10, MCP-1, PDGFbb, and VEGF were increased. Conclusions: Altered redox and cytokine patterns suggest inhibition of expression/activity of metabolizing and antioxidant enzymes in MCS. Metabolic parameters indicating accelerated lipid oxidation, increased nitric oxide production and glutathione depletion in combination with increased plasma inflammatory cytokines should be considered in biological definition and diagnosis of MCS.« less

  20. Developmental control of apiogalacturonan biosynthesis and UDP-apiose production in a duckweed. [Spirodela polyrrhiza

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longland, J.M.; Fry, S.C.; Trewavas, A.J.

    1989-07-01

    Vegetative fronds of Spirodela polyrrhiza were induced to form dormant turions by the addition of 1 micromolar abscisic acid or by shading. The cell wall polymers of fronds contained a high proportion of the branched-chain pentose, D-apiose (about 20% of total noncellulosic wall sugar residues), whereas turion cell walls contained only trace amounts (about 0.2%). When the fronds were fed D-({sup 3}H)glucuronic acid for 30 minutes, the accumulated UDP-({sup 3}H)apiose pool accounted for about 27% of the total phosphorylated ({sup 3}H)pentose derivatives; in turions, the UDP({sup 3}H)apiose pool accounted for only about 4% of the total phosphorylated ({sup 3}H)pentose derivatives.more » They conclude that the developmentally regulated decrease in the biosynthesis of a wall polysaccharide during turion formation involves a reduction in the supply of the relevant sugar nucleotide. One controlling enzyme activity is suggested to be UDP-apiose/UDP-xylose synthase. However, since there was a 100-fold decrease in the rate of polysaccharide synthesis and only a 9-fold decrease in UDP-apiose accumulation, there is probably also control of the activity of the relevant polysaccharide synthase.« less

  1. Comparison of dynamics of wildtype and V94M human UDP-galactose 4-epimerase-A computational perspective on severe epimerase-deficiency galactosemia.

    PubMed

    Timson, David J; Lindert, Steffen

    2013-09-10

    UDP-galactose 4'-epimerase (GALE) catalyzes the interconversion of UDP-galactose and UDP-glucose, an important step in galactose catabolism. Type III galactosemia, an inherited metabolic disease, is associated with mutations in human GALE. The V94M mutation has been associated with a very severe form of type III galactosemia. While a variety of structural and biochemical studies have been reported that elucidate differences between the wildtype and this mutant form of human GALE, little is known about the dynamics of the protein and how mutations influence structure and function. We performed molecular dynamics simulations on the wildtype and V94M enzyme in different states of substrate and cofactor binding. In the mutant, the average distance between the substrate and both a key catalytic residue (Tyr157) and the enzyme-bound NAD+ cofactor and the active site dynamics are altered making substrate binding slightly less stable. However, overall stability or dynamics of the protein is not altered. This is consistent with experimental findings that the impact is largely on the turnover number (kcat), with less substantial effects on Km. Active site fluctuations were found to be correlated in enzyme with substrate bound to just one of the subunits in the homodimer suggesting inter-subunit communication. Greater active site loop mobility in human GALE compared to the equivalent loop in Escherichia coli GALE explains why the former can catalyze the interconversion of UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine while the bacterial enzyme cannot. This work illuminates molecular mechanisms of disease and may inform the design of small molecule therapies for type III galactosemia. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Identification of Diet-Derived Constituents as Potent Inhibitors of Intestinal Glucuronidation

    PubMed Central

    Gufford, Brandon T.; Chen, Gang; Lazarus, Philip; Graf, Tyler N.; Oberlies, Nicholas H.

    2014-01-01

    Drug-metabolizing enzymes within enterocytes constitute a key barrier to xenobiotic entry into the systemic circulation. Furanocoumarins in grapefruit juice are cornerstone examples of diet-derived xenobiotics that perpetrate interactions with drugs via mechanism-based inhibition of intestinal CYP3A4. Relative to intestinal CYP3A4-mediated inhibition, alternate mechanisms underlying dietary substance–drug interactions remain understudied. A working systematic framework was applied to a panel of structurally diverse diet-derived constituents/extracts (n = 15) as inhibitors of intestinal UDP-glucuronosyl transferases (UGTs) to identify and characterize additional perpetrators of dietary substance–drug interactions. Using a screening assay involving the nonspecific UGT probe substrate 4-methylumbelliferone, human intestinal microsomes, and human embryonic kidney cell lysates overexpressing gut-relevant UGT1A isoforms, 14 diet-derived constituents/extracts inhibited UGT activity by >50% in at least one enzyme source, prompting IC50 determination. The IC50 values of 13 constituents/extracts (≤10 μM with at least one enzyme source) were well below intestinal tissue concentrations or concentrations in relevant juices, suggesting that these diet-derived substances can inhibit intestinal UGTs at clinically achievable concentrations. Evaluation of the effect of inhibitor depletion on IC50 determination demonstrated substantial impact (up to 2.8-fold shift) using silybin A and silybin B, two key flavonolignans from milk thistle (Silybum marianum) as exemplar inhibitors, highlighting an important consideration for interpretation of UGT inhibition in vitro. Results from this work will help refine a working systematic framework to identify dietary substance–drug interactions that warrant advanced modeling and simulation to inform clinical assessment. PMID:25008344

  3. Metabolic interactions between acetaminophen (paracetamol) and two flavonoids, luteolin and quercetin, through in-vitro inhibition studies.

    PubMed

    Cao, Lei; Kwara, Awewura; Greenblatt, David J

    2017-12-01

    Excessive exposure to acetaminophen (APAP, paracetamol) can cause liver injury through formation of a reactive metabolite that depletes hepatic glutathione and causes hepatocellular oxidative stress and damage. Generation of this metabolite is mediated by Cytochrome-P450 (CYP) isoforms, mainly CYP2E1. A number of naturally occurring flavonoids can mitigate APAP-induced hepatotoxicity in experimental animal models. Our objective was to determine the mechanism of these protective effects and to evaluate possible human applicability. Two flavonoids, luteolin and quercetin, were evaluated as potential inhibitors of eight human CYP isoforms, of six UDP-glucuronosyltransferase (UGT) isoforms and of APAP glucuronidation and sulfation. The experimental model was based on in-vitro metabolism by human liver microsomes, using isoform-specific substrates. Luteolin and quercetin inhibited human CYP isoforms to varying degrees, with greatest potency towards CYP1A2 and CYP2C8. However, 50% inhibitory concentrations (IC 50 values) were generally in the micromolar range. UGT isoforms were minimally inhibited. Both luteolin and quercetin inhibited APAP sulfation but not glucuronidation. Inhibition of human CYP activity by luteolin and quercetin occurred with IC 50 values exceeding customary in-vivo human exposure with tolerable supplemental doses of these compounds. The findings indicate that luteolin and quercetin are not likely to be of clinical value for preventing or treating APAP-induced hepatotoxicity. © 2017 Royal Pharmaceutical Society.

  4. Analysis of pharmacogenetic traits in two distinct South African populations

    PubMed Central

    2011-01-01

    Our knowledge of pharmacogenetic variability in diverse populations is scarce, especially in sub-Saharan Africa. To bridge this gap in knowledge, we characterised population frequencies of clinically relevant pharmacogenetic traits in two distinct South African population groups. We genotyped 211 tagging single nucleotide polymorphisms (tagSNPs) in 12 genes that influence antiretroviral drug disposition, in 176 South African individuals belonging to two distinct population groups residing in the Western Cape: the Xhosa (n = 109) and Cape Mixed Ancestry (CMA) (n = 67) groups. The minor allele frequencies (MAFs) of eight tagSNPs in six genes (those encoding the ATP binding cassette sub-family B, member 1 [ABCB1], four members of the cytochrome P450 family [CYP2A7P1, CYP2C18, CYP3A4, CYP3A5] and UDP-glucuronosyltransferase 1 [UGT1A1]) were significantly different between the Xhosa and CMA populations (Bonferroni p < 0.05). Twenty-seven haplotypes were inferred in four genes (CYP2C18, CYP3A4, the gene encoding solute carrier family 22 member 6 [SLC22A6] and UGT1A1) between the two South African populations. Characterising the Xhosa and CMA population frequencies of variant alleles important for drug transport and metabolism can help to establish the clinical relevance of pharmacogenetic testing in these populations. PMID:21712189

  5. UGT2B17 gene deletion associated with an increase in bone mineral density similar to the effect of hormone replacement in postmenopausal women.

    PubMed

    Giroux, S; Bussières, J; Bureau, A; Rousseau, F

    2012-03-01

    UGT2B17 is one of the most important enzymes for androgen metabolism. In addition, the UGT2B17 gene is one of the most commonly deleted regions of the human genome. The deletion was previously found associated with higher femoral bone density in men and women, and we replicated this association in a sample of postmenopausal who never used hormone therapy. Deletion of the UGT2B17 gene was previously shown to be associated with a higher hip bone mineral density (BMD). Using a PCR assay, we tried to replicate the association among a large group of 2,379 women. We examined the effect of the deletion on femoral neck BMD and lumbar spine BMD according to the menopausal status and hormone replacement therapy (HRT). We used a high-throughput PCR assay to identify the gene and the deletion in a population of well-characterized women. Two additional polymorphisms, UGT2B28 deletion and UGT2B15 rs1902023 G > T were also investigated. Only UGT2B17 deletion was associated with LS and FN BMD. Furthermore, the association was seen only among postmenopausal women who had never used hormone replacement as in the first reported association. We confirmed the association between UGT2B17 deletion and a higher LS and FN BMD. In addition, we show that the association is observed among postmenopausal women who never used HRT consistent with the enzymatic function of UGT2B17. The analysis shows that those having one or two UGT2B17 alleles benefit from HRT, which is not the case for null carriers.

  6. Obstetric Obesity is Associated with Neonatal Hyperbilirubinemia with High Prevalence in Native Hawaiians and Pacific Island Women

    PubMed Central

    Rougée, Luc RA; Miyagi, Shogo J

    2016-01-01

    Obesity and pregnancy both place the liver under metabolic stress, but interactions between obstetric obesity and bilirubin metabolism have not been studied. We determined associations between obesity, maternal/neonatal bilirubin levels, and uridine 5′diphosphate-glucuronosyltransferase 1A1 (UGT1A1) enzyme that eliminates bilirubin. Adult livers were analyzed for UGT1A1 expression, activity, and bilirubin clearance by pharmacokinetic modeling. Then, matched maternal and neonatal sera (N = 450) were assayed for total and unconjugated bilirubin. Associations between obesity, UGT1A1, maternal and neonatal hyperbilirubinemia were determined statistically through correlation analysis (Pearson's test) as well as binned categories (one-way ANOVA). Morbid obesity decreased hepatic UGT1A1 protein levels, activity, and bilirubin clearance (P < .001). Increasing obesity corresponded to elevated maternal unconjugated bilirubin (P < .05). Maternal obesity was also significantly positively correlated with elevated neonatal bilirubin levels (P < .01, N = 450) and this was strongest in Native Hawaiians and Pacific Islander (NHPI) women (P < .01, n = 150). Obstetric obesity is associated with maternal and neonatal hyperbilirubinemia, likely through inhibition of hepatic UGT1A1. The NHPI cohort was the most obese and had the highest levels of maternal and neonatal unconjugated bilirubin. Neonates from obese mothers may be more susceptible to jaundice and side effects from parenteral nutrition. PMID:27980881

  7. [Detection of UGT1A1*28 Polymorphism Using Fragment Analysis].

    PubMed

    Huang, Ying; Su, Jian; Huang, Xiaosui; Lu, Danxia; Xie, Zhi; Yang, Suqing; Guo, Weibang; Lv, Zhiyi; Wu, Hongsui; Zhang, Xuchao

    2017-12-20

    Uridine-diphosphoglucuronosyl transferase 1A1 (UGT1A1), UGT1A1*28 polymorphism can reduce UGT1A1 enzymatic activity, which may lead to severe toxicities in patients who receive irinotecan. This study tries to build a fragment analysis method to detect UGT1A1*28 polymorphism. A total of 286 blood specimens from the lung cancer patients who were hospitalized in Guangdong General Hospital between April 2014 to May 2015 were detected UGT1A1*28 polymorphism by fragment analysis method. Comparing with Sanger sequencing, precision and accuracy of the fragment analysis method were 100%. Of the 286 patients, 236 (82.5% harbored TA6/6 genotype, 48 (16.8%) TA 6/7 genotype and 2 (0.7%) TA7/7 genotype. Our data suggest hat the fragment analysis method is robust for detecting UGT1A1*28 polymorphism in clinical practice. It's simple, time-saving, and easy-to-carry.

  8. Gene expression patterns and catalytic properties of UDP-D-glucose 4-epimerases from barley (Hordeum vulgare L.).

    PubMed

    Zhang, Qisen; Hrmova, Maria; Shirley, Neil J; Lahnstein, Jelle; Fincher, Geoffrey B

    2006-02-15

    UGE (UDP-Glc 4-epimerase or UDP-Gal 4-epimerase; EC 5.1.3.2) catalyses the interconversion of UDP-Gal and UDP-Glc. Both nucleotide sugars act as activated sugar donors for the biosynthesis of cell wall polysaccharides such as cellulose, xyloglucans, (1,3;1,4)-beta-D-glucan and pectins, together with other biologically significant compounds including glycoproteins and glycolipids. Three members of the HvUGE (barley UGE) gene family, designated HvUGE1, HvUGE2 and HvUGE3, have been characterized. Q-PCR (quantitative real-time PCR) showed that HvUGE1 mRNA was most abundant in leaf tips and mature roots, but its expression levels were relatively low in basal leaves and root tips. The HvUGE2 gene was transcribed at significant levels in all organs examined, while HvUGE3 mRNA levels were very low in all the organs. Heterologous expression of a near full-length cDNA confirmed that HvUGE1 encodes a functional UGE. A non-covalently bound NAD+ was released from the enzyme after denaturing with aqueous ethanol and was identified by its spectrophotometric properties and by electrospray ionization MS. The K(m) values were 40 microM for UDP-Gal and 55 muM for UDP-Glc. HvUGE also catalyses the interconversion of UDP-GalNAc and UDP-GlcNAc, although it is not known if this has any biological significance. A three-dimensional model of the HvUGE revealed that its overall structural fold is highly conserved compared with the human UGE and provides a structural rationale for its ability to bind UDP-GlcNAc.

  9. Gene-Gene and Gene-Environment Interactions in the Etiology of Breast Cancer

    DTIC Science & Technology

    2007-06-01

    When you eat fried or baked pork or beef , you normally prefer that: Entire surface is brown with a slight burnt flavor 1...Uridine diphospho-glucuronosyltransferase 1A1 (UGT1A1) is involved in catalyzing estrogen, the hormone that plays a central role in the etiology of...relationship of UGT1A1 genotypes with plasma levels of estrone, estrone sulfate, estradiol, testosterone, and sex hormone binding globulins (SHBG

  10. Effect of UGT1A1, UGT1A3, DIO1 and DIO2 polymorphisms on L-thyroxine doses required for TSH suppression in patients with differentiated thyroid cancer.

    PubMed

    Santoro, Ana B; Vargens, Daniela D; Barros Filho, Mateus de Camargo; Bulzico, Daniel A; Kowalski, Luiz Paulo; Meirelles, Ricardo M R; Paula, Daniela P; Neves, Ronaldo R S; Pessoa, Cencita N; Struchine, Claudio J; Suarez-Kurtz, Guilherme

    2014-11-01

    To evaluate the impact of genetic polymorphisms in uridine 5'-glucuronosylytansferases UGT1A1 and UGT1A3 and iodothyronine-deiodinases types 1 and 2 on levothyroxine (T4 ; 3,5,3',5'-triiodo-L-thyronine) dose requirement for suppression of thyrotropin (TSH) secretion in patients with differentiated thyroid cancer (DTC). Patients (n = 268) submitted to total thyroidectomy and ablation by (131) I, under T4 therapy for at least 6 months were recruited in three public institutions in Brazil. Multivariate regression modelling was applied to assess the association of T4 dosing with polymorphisms in UGT1A1 (rs8175347), UGT1A3 (rs3806596 and rs1983023), DIO1 (rs11206244 and rs2235544) and DIO2 (rs225014 and rs12885300), demographic and clinical variables. A regression model including UGT1A haplotypes, age, gender, body weight and serum TSH concentration accounted for 39% of the inter-individual variation in the T4 dosage. The association of T4 dose with UGT1A haplotype is attributed to reduced UGT1A1 expression and T4 glucuronidation in liver of carriers of low expression UGT1A1 rs8175347 alleles. The DIO1 and DIO2 genotypes had no influence of T4 dosage. UGT1A haplotypes associate with T4 dosage in DTC patients, but the effect accounts for only 2% of the total variability and recommendation of pre-emptive UGT1A genotyping is not warranted. © 2014 The British Pharmacological Society.

  11. Effect of UGT1A1, UGT1A3, DIO1 and DIO2 polymorphisms on L-thyroxine doses required for TSH suppression in patients with differentiated thyroid cancer

    PubMed Central

    Santoro, Ana B; Vargens, Daniela D; Barros Filho, Mateus de Camargo; Bulzico, Daniel A; Kowalski, Luiz Paulo; Meirelles, Ricardo M R; Paula, Daniela P; Neves, Ronaldo R S; Pessoa, Cencita N; Struchine, Claudio J; Suarez-Kurtz, Guilherme

    2014-01-01

    Aim To evaluate the impact of genetic polymorphisms in uridine 5′-glucuronosylytansferases UGT1A1 and UGT1A3 and iodothyronine-deiodinases types 1 and 2 on levothyroxine (T4; 3,5,3′,5′-triiodo-L-thyronine) dose requirement for suppression of thyrotropin (TSH) secretion in patients with differentiated thyroid cancer (DTC). Methods Patients (n = 268) submitted to total thyroidectomy and ablation by 131I, under T4 therapy for at least 6 months were recruited in three public institutions in Brazil. Multivariate regression modelling was applied to assess the association of T4 dosing with polymorphisms in UGT1A1 (rs8175347), UGT1A3 (rs3806596 and rs1983023), DIO1 (rs11206244 and rs2235544) and DIO2 (rs225014 and rs12885300), demographic and clinical variables. Results A regression model including UGT1A haplotypes, age, gender, body weight and serum TSH concentration accounted for 39% of the inter-individual variation in the T4 dosage. The association of T4 dose with UGT1A haplotype is attributed to reduced UGT1A1 expression and T4 glucuronidation in liver of carriers of low expression UGT1A1 rs8175347 alleles. The DIO1 and DIO2 genotypes had no influence of T4 dosage. Conclusion UGT1A haplotypes associate with T4 dosage in DTC patients, but the effect accounts for only 2% of the total variability and recommendation of pre-emptive UGT1A genotyping is not warranted. PMID:24910925

  12. Crystal structure of product-bound complex of UDP-N-acetyl-D-mannosamine dehydrogenase from Pyrococcus horikoshii OT3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pampa, K.J., E-mail: sagarikakj@gmail.com; Lokanath, N.K.; Girish, T.U.

    Highlights: • Determined the structure of UDP-D-ManNAcADH to a resolution of 1.55 Å. • First complex structure of PhUDP-D-ManNAcADH with UDP-D-ManMAcA. • The monomeric structure consists of three distinct domains. • Cys258 acting as catalytic nucleophilic and Lys204 acts as acid/base catalyst. • Oligomeric state plays an important role for the catalytic function. - Abstract: UDP-N-acetyl-D-mannosamine dehydrogenase (UDP-D-ManNAcDH) belongs to UDP-glucose/GDP-mannose dehydrogenase family and catalyzes Uridine-diphospho-N-acetyl-D-mannosamine (UDP-D-ManNAc) to Uridine-diphospho-N-acetyl-D-mannosaminuronic acid (UDP-D-ManNAcA) through twofold oxidation of NAD{sup +}. In order to reveal the structural features of the Pyrococcus horikoshii UDP-D-ManNAcADH, we have determined the crystal structure of the product-bound enzyme bymore » X-ray diffraction to resolution of 1.55 Å. The protomer folds into three distinct domains; nucleotide binding domain (NBD), substrate binding domain (SBD) and oligomerization domain (OD, involved in the dimerization). The clear electron density of the UDP-D-ManNAcA is observed and the residues binding are identified for the first time. Crystal structures reveal a tight dimeric polymer chains with product-bound in all the structures. The catalytic residues Cys258 and Lys204 are conserved. The Cys258 acts as catalytic nucleophile and Lys204 as acid/base catalyst. The product is directly interacts with residues Arg211, Thr249, Arg244, Gly255, Arg289, Lys319 and Arg398. In addition, the structural parameters responsible for thermostability and oligomerization of the three dimensional structure are analyzed.« less

  13. Novel characteristics of UDP-glucose dehydrogenase activities in maize: non-involvement of alcohol dehydrogenases in cell wall polysaccharide biosynthesis.

    PubMed

    Kärkönen, Anna; Fry, Stephen C

    2006-03-01

    UDP-glucose dehydrogenase (UDPGDH) activity was detected in extracts of maize cell-cultures and developing leaves. The reaction product was confirmed as UDP-glucuronate. Leaf extracts from null mutants defective in one or both of the ethanol dehydrogenase genes, ADH1 and ADH2, had similar UDPGDH activities to wild-type, showing that UDPGDH activity is not primarily due to ADH proteins. The mutants showed no defect in their wall matrix pentose:galactose ratios, or matrix:cellulose ratio, showing that ADHs were not required for normal wall biosynthesis. The majority of maize leaf UDPGDH activity had K (m) (for UDP-glucose) 0.5-1.0 mM; there was also a minor activity with an unusually high K (m) of >50 mM. In extracts of cultured cells, kinetic data indicated at least three UDPGDHs, with K (m) values (for UDP-glucose) of roughly 0.027, 2.8 and >50 mM (designated enzymes E(L), E(M) and E(H) respectively). E(M) was the single major contributor to extractable UDPGDH activity when assayed at 0.6-9.0 mM UDP-Glc. Most studies, in other plant species, had reported only E(L)-like isoforms. Ethanol (100 mM) partially inhibited UDPGDH activity assayed at low, but not high, UDP-glucose concentrations, supporting the conclusion that at least E(H) activity is not due to ADH. At 30 microM UDP-glucose, 20-150 microM UDP-xylose inhibited UDPGDH activity, whereas 5-15 microM UDP-xylose promoted it. In conclusion, several very different UDPGDH isoenzymes contribute to UDP-glucuronate and hence wall matrix biosynthesis in maize, but ADHs are not responsible for these activities.

  14. Long range molecular dynamics study of interactions of the eukaryotic glucosamine-6-phosphate synthase with fructose-6-phosphate and UDP-GlcNAc.

    PubMed

    Miszkiel, Aleksandra; Wojciechowski, Marek

    2017-11-01

    Glucosamine-6-phosphate synthase (EC 2.6.1.16) is responsible for catalysis of the first and practically irreversible step in hexosamine metabolism. The final product of this pathway, uridine 5' diphospho N-acetyl-d-glucosamine (UDP-GlcNAc), is an essential substrate for assembly of bacterial and fungal cell walls. Moreover, the enzyme is involved in phenomenon of hexosamine induced insulin resistance in type II diabetes, which makes of it a potential target for anti-fungal, anti-bacterial and anti-diabetic therapy. The crystal structure of isomerase domain from human pathogenic fungus Candida albicans has been solved recently but it doesn't reveal the molecular mechanism details of inhibition taking place under UDP-GlcNAc influence, the unique feature of eukaryotic enzyme. The following study is a continuation of the previous research based on comparative molecular dynamics simulations of the structures with and without the enzyme's physiological inhibitor (UDP-GlcNAc) bound. The models used for this study included fructose-6-phosphate, one of the enzyme's substrates in its binding pocket. The simulation results studies demonstrated differences in mobility of the compared structures. Some amino acid residues were determined, for which flexibility is evidently different between the models. Importantly, it has been confirmed that the most fixed residues are related to the inhibitor binding process and to the catalysis reaction. The obtained results constitute an important step towards understanding of the inhibition that GlcN-6-P synthase is subjected by UDP-GlcNAc molecule. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Update on the Genetic Polymorphisms of Drug-Metabolizing Enzymes in Antiepileptic Drug Therapy

    PubMed Central

    Saruwatari, Junji; Ishitsu, Takateru; Nakagawa, Kazuko

    2010-01-01

    Genetic polymorphisms in the genes that encode drug-metabolizing enzymes are implicated in the inter-individual variability in the pharmacokinetics and pharmaco-dynamics of antiepileptic drugs (AEDs). However, the clinical impact of these polymorphisms on AED therapy still remains controversial. The defective alleles of cytochrome P450 (CYP) 2C9 and/or CYP2C19 could affect not only the pharmacokinetics, but also the pharmacodynamics of phenytoin therapy. CYP2C19 deficient genotypes were associated with the higher serum concentration of an active metabolite of clobazam, N-desmethylclobazam, and with the higher clinical efficacy of clobazam therapy than the other CYP2C19 genotypes. The defective alleles of CYP2C9 and/or CYP2C19 were also found to have clinically significant effects on the inter-individual variabilities in the population pharmacokinetics of phenobarbital, valproic acid and zonisamide. EPHX1 polymorphisms may be associated with the pharmacokinetics of carbamazepine and the risk of phenytoin-induced congenital malformations. Similarly, the UDP-glucuronosyltransferase 2B7 genotype may affect the pharmacokinetics of lamotrigine. Gluthatione S-transferase null genotypes are implicated in an increased risk of hepatotoxicity caused by carbamazepine and valproic acid. This article summarizes the state of research on the effects of mutations of drug-metabolizing enzymes on the pharmacokinetics and pharmacodynamics of AED therapies. Future directions for the dose-adjustment of AED are discussed. PMID:27713373

  16. The impact of the UGT1A1*60 allele on bilirubin serum concentrations.

    PubMed

    Pasternak, Amy L; Crews, Kristine R; Caudle, Kelly E; Smith, Colton; Pei, Deqing; Cheng, Cheng; Broeckel, Ulrich; Gaur, Aditya H; Hankins, Jane; Relling, Mary V; Haidar, Cyrine E

    2017-01-01

    Identify the functional status of the uridine-diphosphate glucuronyl transferase 1A1 (UGT1A1) -3279T>G (*60) variant. Retrospective review of clinically obtained serum bilirubin concentrations in pediatric patients to evaluate the association of the UGT1A1 -3279T>G (*60) variant with bilirubin concentrations and assessed linkage disequilibrium of the UGT1A1 -3279T>G (*60) and A(TA)7TAA (*28) variants. Total bilirubin concentration did not differ between patients who had a UGT1A1*1/*1 diplotype and patients homozygous for the UGT1A1 -3279T>G (*60/*60) variant. Total bilirubin concentration was lower in patients homozygous for the UGT1A1 -3279T>G (*60/*60) variant than in patients homozygous for the UGT1A1 A(TA)7TAA (*28/*28) variant (p < 0.01). The -3279T>G (*60) and A(TA)7TAA (*28) variants were in strong incomplete linkage disequilibrium in both black and white patients. The presence of the UGT1A1 -3279T>G (*60) variant is not associated with increased bilirubin concentrations.

  17. Down-regulation of UDP-glucose dehydrogenase affects glycosaminoglycans synthesis and motility in HCT-8 colorectal carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Tsung-Pao; Pan, Yun-Ru; Fu, Chien-Yu

    2010-10-15

    UDP-glucose dehydrogenase (UGDH) catalyzes oxidation of UDP-glucose to yield UDP-glucuronic acid, a precursor of hyaluronic acid (HA) and other glycosaminoglycans (GAGs) in extracellular matrix. Although association of extracellular matrix with cell proliferation and migration has been well documented, the importance of UGDH in these behaviors is not clear. Using UGDH-specific small interference RNA to treat HCT-8 colorectal carcinoma cells, a decrease in both mRNA and protein levels of UGDH, as well as the cellular UDP-glucuronic acid and GAG production was observed. Treatment of HCT-8 cells with either UGDH-specific siRNA or HA synthesis inhibitor 4-methylumbelliferone effectively delayed cell aggregation into multicellularmore » spheroids and impaired cell motility in both three-dimensional collagen gel and transwell migration assays. The reduction in cell aggregation and migration rates could be restored by addition of exogenous HA. These results indicate that UGDH can regulate cell motility through the production of GAG. The enzyme may be a potential target for therapeutic intervention of colorectal cancers.« less

  18. UDP-galactose and acetyl-CoA transporters as Plasmodium multidrug resistance genes.

    PubMed

    Lim, Michelle Yi-Xiu; LaMonte, Gregory; Lee, Marcus C S; Reimer, Christin; Tan, Bee Huat; Corey, Victoria; Tjahjadi, Bianca F; Chua, Adeline; Nachon, Marie; Wintjens, René; Gedeck, Peter; Malleret, Benoit; Renia, Laurent; Bonamy, Ghislain M C; Ho, Paul Chi-Lui; Yeung, Bryan K S; Chow, Eric D; Lim, Liting; Fidock, David A; Diagana, Thierry T; Winzeler, Elizabeth A; Bifani, Pablo

    2016-09-19

    A molecular understanding of drug resistance mechanisms enables surveillance of the effectiveness of new antimicrobial therapies during development and deployment in the field. We used conventional drug resistance selection as well as a regime of limiting dilution at early stages of drug treatment to probe two antimalarial imidazolopiperazines, KAF156 and GNF179. The latter approach permits the isolation of low-fitness mutants that might otherwise be out-competed during selection. Whole-genome sequencing of 24 independently derived resistant Plasmodium falciparum clones revealed four parasites with mutations in the known cyclic amine resistance locus (pfcarl) and a further 20 with mutations in two previously unreported P. falciparum drug resistance genes, an acetyl-CoA transporter (pfact) and a UDP-galactose transporter (pfugt). Mutations were validated both in vitro by CRISPR editing in P. falciparum and in vivo by evolution of resistant Plasmodium berghei mutants. Both PfACT and PfUGT were localized to the endoplasmic reticulum by fluorescence microscopy. As mutations in pfact and pfugt conveyed resistance against additional unrelated chemical scaffolds, these genes are probably involved in broad mechanisms of antimalarial drug resistance.

  19. UDP-arabinopyranose mutase 3 is required for pollen wall morphogenesis in rice (Oryza sativa).

    PubMed

    Sumiyoshi, Minako; Inamura, Takuya; Nakamura, Atsuko; Aohara, Tsutomu; Ishii, Tadashi; Satoh, Shinobu; Iwai, Hiroaki

    2015-02-01

    l-Arabinose is one of the main constituents of cell wall polysaccharides such as pectic rhamnogalacturonan I (RG-I), glucuronoarabinoxylans and other glycoproteins. It is found predominantly in the furanose form rather than in the thermodynamically more stable pyranose form. UDP-L-arabinofuranose (UDP-Araf), rather than UDP-L-arabinopyranose (UDP-Arap), is a sugar donor for the biosynthesis of arabinofuranosyl (Araf) residues. UDP-arabinopyranose mutases (UAMs) have been shown to interconvert UDP-Araf and UDP-Arap and are involved in the biosynthesis of polysaccharides including Araf. The UAM gene family has three members in Oryza sativa. Co-expression network in silico analysis showed that OsUAM3 expression was independent from OsUAM1 and OsUAM2 co-expression networks. OsUAM1 and OsUAM2 were expressed ubiquitously throughout plant development, but OsUAM3 was expressed primarily in reproductive tissue, particularly at the pollen cell wall formation developmental stage. OsUAM3 co-expression networks include pectin catabolic enzymes. To determine the function of OsUAMs in reproductive tissues, we analyzed RNA interference (RNAi)-knockdown transformants (OsUAM3-KD) specific for OsUAM3. OsUAM3-KD plants grew normally and showed abnormal phenotypes in reproductive tissues, especially in terms of the pollen cell wall and exine. In addition, we examined modifications of cell wall polysaccharides at the cellular level using antibodies against polysaccharides including Araf. Immunolocalization of arabinan using the LM6 antibody showed low levels of arabinan in OsUAM3-KD pollen grains. Our results suggest that the function of OsUAM3 is important for synthesis of arabinan side chains of RG-I and is required for reproductive developmental processes, especially the formation of the cell wall in pollen. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Purification, crystallization and preliminary X-ray diffraction studies of UDP-N-acetylglucosamine pyrophosphorylase from Candida albicans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, Daisuke; Nishitani, Yuichi; Nonaka, Tsuyoshi

    2006-12-01

    UDP-N-acetylglucosamine pyrophosphorylase was purified and crystallized and X-ray diffraction data were collected to 2.3 Å resolution. UDP-N-acetylglucosamine pyrophosphorylase (UAP) is an essential enzyme in the synthesis of UDP-N-acetylglucosamine. UAP from Candida albicans was purified and crystallized by the sitting-drop vapour-diffusion method. The crystals of the substrate and product complexes both diffract X-rays to beyond 2.3 Å resolution using synchrotron radiation. The crystals of the substrate complex belong to the triclinic space group P1, with unit-cell parameters a = 47.77, b = 62.89, c = 90.60 Å, α = 90.01, β = 97.72, γ = 92.88°, whereas those of the productmore » complex belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 61.95, b = 90.87, c = 94.88 Å.« less

  1. Dose-dependent testosterone sensitivity of the steroidal passport and GC-C-IRMS analysis in relation to the UGT2B17 deletion polymorphism.

    PubMed

    Strahm, Emmanuel; Mullen, Jenny E; Gårevik, Nina; Ericsson, Magnus; Schulze, Jenny J; Rane, Anders; Ekström, Lena

    2015-01-01

    The newly implemented Steroid Module of the Athlete Biological Passport has improved doping tests for steroids. A biomarker included in this passport is the urinary testosterone glucuronide to epitestosterone glucuronide (T/E) ratio, a ratio greatly affected by a deletion polymorphism in UGT2B17. Suspect urine doping tests are further analyzed with gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) to determine the origin of the androgen. In this study, we investigated the sensitivity of the steroidal module and the IRMS analysis, in subjects administered with three doses of testosterone enanthate (500, 250, and 125 mg), in relation to the UGT2B17 polymorphism. All subjects carrying the UGT2B17 enzyme reached the traditionally used threshold, a T/E ratio of 4, after all three administered doses, whereas none of the subjects devoid of this enzyme reached a T/E of 4. On the other hand, using the athlete biological passport and IRMS analysis, all three doses could be detected to a high degree of sensitivity. The concentrations of all steroids included in the steroidal module were dose dependently increased, except for epitestosterone which decreased independent of dose. The decrease in epitestosterone was significantly associated with circulatory levels of testosterone post dose (rs =0.60 and p=0.007). In conclusion, these results demonstrate that administration of a single dose of 125-500 mg testosterone enanthate could be detected using the athlete biological passport, together with IRMS. Since IRMS is sensitive to testosterone doping independent of UGT2B17 genotype, also very small changes in the steroidal passport should be investigated with IRMS. Copyright © 2015 John Wiley & Sons, Ltd.

  2. The effects of antiepileptic inducers in neuropsychopharmacology, a neglected issue. Part II: Pharmacological issues and further understanding.

    PubMed

    de Leon, Jose

    2015-01-01

    The literature on inducers in epilepsy and bipolar disorder is seriously contaminated by false negative findings. Part II of this comprehensive review on antiepileptic drug (AED) inducers provides clinicians with further educational material about the complexity of interpreting AED drug-drug interactions. The basic pharmacology of induction is reviewed including the cytochrome P450 (CYP) isoenzymes, the Uridine Diphosphate Glucuronosyltransferases (UGTs), and P-glycoprotein (P-gp). CYP2B6 and CYP3A4 are very sensitive to induction. CYP1A2 is moderately sensitive while CYP2C9 and CYP2C19 are only mildly sensitive. CYP2D6 cannot be induced by medications. Induction of UGT and P-gp are poorly understood. The induction of metabolic enzymes such as CYPs and UGTs, and transporters such as P-gp, implies that the amount of these proteins increases when they are induced; this is almost always explained by increasing synthesis mediated by the so-called nuclear receptors (constitutive androstane, estrogen, glucocorticoid receptors and pregnaneX receptors). Although parti provides correction factors for AEDs, extrapolation from an average to an individual patient may be influenced by administration route, absence of metabolic enzyme for genetic reasons, and presence of inhibitors or other inducers. AED pharmacodynamic DDIs may also be important. Six patients with extreme sensitivity to AED inductive effects are described. Copyright © 2014 SEP y SEPB. Published by Elsevier España. All rights reserved.

  3. Networking of differentially expressed genes in human cancer cells resistant to methotrexate

    PubMed Central

    2009-01-01

    Background The need for an integrated view of data obtained from high-throughput technologies gave rise to network analyses. These are especially useful to rationalize how external perturbations propagate through the expression of genes. To address this issue in the case of drug resistance, we constructed biological association networks of genes differentially expressed in cell lines resistant to methotrexate (MTX). Methods Seven cell lines representative of different types of cancer, including colon cancer (HT29 and Caco2), breast cancer (MCF-7 and MDA-MB-468), pancreatic cancer (MIA PaCa-2), erythroblastic leukemia (K562) and osteosarcoma (Saos-2), were used. The differential expression pattern between sensitive and MTX-resistant cells was determined by whole human genome microarrays and analyzed with the GeneSpring GX software package. Genes deregulated in common between the different cancer cell lines served to generate biological association networks using the Pathway Architect software. Results Dikkopf homolog-1 (DKK1) is a highly interconnected node in the network generated with genes in common between the two colon cancer cell lines, and functional validations of this target using small interfering RNAs (siRNAs) showed a chemosensitization toward MTX. Members of the UDP-glucuronosyltransferase 1A (UGT1A) family formed a network of genes differentially expressed in the two breast cancer cell lines. siRNA treatment against UGT1A also showed an increase in MTX sensitivity. Eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) was overexpressed among the pancreatic cancer, leukemia and osteosarcoma cell lines, and siRNA treatment against EEF1A1 produced a chemosensitization toward MTX. Conclusions Biological association networks identified DKK1, UGT1As and EEF1A1 as important gene nodes in MTX-resistance. Treatments using siRNA technology against these three genes showed chemosensitization toward MTX. PMID:19732436

  4. Identification of an unintended consequence of Nrf2-directed cytoprotection against a key tobacco carcinogen plus a counteracting chemopreventive intervention

    PubMed Central

    Paonessa, Joseph D.; Ding, Yi; Randall, Kristen L.; Munday, Rex; Argoti, Dayana; Vouros, Paul; Zhang, Yuesheng

    2011-01-01

    Nrf2 is a major cytoprotective gene and is a key chemopreventive target against cancer and other diseases. Here we show that Nrf2 faces a dilemma in defense against 4-aminobiphenyl (ABP), a major human bladder carcinogen from tobacco smoke and other environmental sources. While Nrf2 protected mouse liver against ABP (which is metabolically activated in liver), the bladder level of N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP), the predominant ABP-DNA adduct formed in bladder cells and tissues, was markedly higher in Nrf2+/+ mice than in Nrf2−/− mice after ABP exposure. Notably, Nrf2 protected bladder cells against ABP in vitro. Mechanistic investigations showed that the dichotomous effects of Nrf2 could be explained at least partly by upregulation of UDP-glucuronosyltransferase (UGT). Nrf2 promoted conjugation of ABP with glucuronic acid in the liver, increasing urinary excretion of the conjugate. While glucuronidation of ABP and its metabolites is a detoxification process, these conjugates, which are excreted in urine, are known to be unstable in acidic urine, leading to delivery of the parent compounds to bladder. Hence, while higher liver UGT activity may protect the liver against ABP it increases bladder exposure to ABP. These findings raise concerns of potential bladder toxicity when Nrf2-activating chemopreventive agents are used in humans exposed to ABP, especially in smokers. We further demonstrate that 5,6-dihydrocyclopenta[c][1,2]-dithiole-3(4H)-thione (CPDT) significantly inhibits dG-C8-ABP formation in bladder cells and tissues, but does not appear to significantly modulate ABP-catalyzing UGT in liver. Thus, CPDT exemplifies a counteracting solution to the dilemma posed by Nrf2. PMID:21487034

  5. High Resolution Structures of the Human ABO(H) Blood Group Enzymes in Complex with Donor Analogs Reveal That the Enzymes Utilize Multiple Donor Conformations to Bind Substrates in a Stepwise Manner*

    PubMed Central

    Gagnon, Susannah M. L.; Meloncelli, Peter J.; Zheng, Ruixiang B.; Haji-Ghassemi, Omid; Johal, Asha R.; Borisova, Svetlana N.; Lowary, Todd L.; Evans, Stephen V.

    2015-01-01

    Homologous glycosyltransferases α-(1→3)-N-acetylgalactosaminyltransferase (GTA) and α-(1→3)-galactosyltransferase (GTB) catalyze the final step in ABO(H) blood group A and B antigen synthesis through sugar transfer from activated donor to the H antigen acceptor. These enzymes have a GT-A fold type with characteristic mobile polypeptide loops that cover the active site upon substrate binding and, despite intense investigation, many aspects of substrate specificity and catalysis remain unclear. The structures of GTA, GTB, and their chimeras have been determined to between 1.55 and 1.39 Å resolution in complex with natural donors UDP-Gal, UDP-Glc and, in an attempt to overcome one of the common problems associated with three-dimensional studies, the non-hydrolyzable donor analog UDP-phosphono-galactose (UDP-C-Gal). Whereas the uracil moieties of the donors are observed to maintain a constant location, the sugar moieties lie in four distinct conformations, varying from extended to the “tucked under” conformation associated with catalysis, each stabilized by different hydrogen bonding partners with the enzyme. Further, several structures show clear evidence that the donor sugar is disordered over two of the observed conformations and so provide evidence for stepwise insertion into the active site. Although the natural donors can both assume the tucked under conformation in complex with enzyme, UDP-C-Gal cannot. Whereas UDP-C-Gal was designed to be “isosteric” with natural donor, the small differences in structure imposed by changing the epimeric oxygen atom to carbon appear to render the enzyme incapable of binding the analog in the active conformation and so preclude its use as a substrate mimic in GTA and GTB. PMID:26374898

  6. Integrated process design for biocatalytic synthesis by a Leloir Glycosyltransferase: UDP-glucose production with sucrose synthase.

    PubMed

    Schmölzer, Katharina; Lemmerer, Martin; Gutmann, Alexander; Nidetzky, Bernd

    2017-04-01

    Nucleotide sugar-dependent ("Leloir") glycosyltransferases (GTs), represent a new paradigm for the application of biocatalytic glycosylations to the production of fine chemicals. However, it remains to be shown that GT processes meet the high efficiency targets of industrial biotransformations. We demonstrate in this study of uridine-5'-diphosphate glucose (UDP-glc) production by sucrose synthase (from Acidithiobacillus caldus) that a holistic process design, involving coordinated development of biocatalyst production, biotransformation, and downstream processing (DSP) was vital for target achievement at ∼100 g scale synthesis. Constitutive expression in Escherichia coli shifted the recombinant protein production mainly to the stationary phase and enhanced the specific enzyme activity to a level (∼480 U/g cell dry weight ) suitable for whole-cell biotransformation. The UDP-glc production had excellent performance metrics of ∼100 g product /L, 86% yield (based on UDP), and a total turnover number of 103 g UDP-glc /g cell dry weight at a space-time yield of 10 g/L/h. Using efficient chromatography-free DSP, the UDP-glc was isolated in a single batch with ≥90% purity and in 73% isolated yield. Overall, the process would allow production of ∼0.7 kg of isolated product/L E. coli bioreactor culture, thus demonstrating how integrated process design promotes the practical use of a GT conversion. Biotechnol. Bioeng. 2017;114: 924-928. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Toward a blueprint for UDP-glucose pyrophosphorylase structure/function properties: homology-modeling analyses.

    PubMed

    Geisler, Matt; Wilczynska, Malgorzata; Karpinski, Stanislaw; Kleczkowski, Leszek A

    2004-11-01

    UDP-glucose pyrophosphorylase (UGPase) is an important enzyme of synthesis of sucrose, cellulose, and several other polysaccharides in all plants. The protein is evolutionarily conserved among eukaryotes, but has little relation, aside from its catalytic reaction, to UGPases of prokaryotic origin. Using protein homology modeling strategy, 3D structures for barley, poplar, and Arabidopsis UGPases have been derived, based on recently published crystal structure of human UDP-N-acetylglucosamine pyrophosphorylase. The derived 3D structures correspond to a bowl-shaped protein with the active site at a central groove, and a C-terminal domain that includes a loop (I-loop) possibly involved in dimerization. Data on a plethora of earlier described UGPase mutants from a variety of eukaryotic organisms have been revisited, and we have, in most cases, verified the role of each mutation in enzyme catalysis/regulation/structural integrity. We have also found that one of two alternatively spliced forms of poplar UGPase has a very short I-loop, suggesting differences in oligomerization ability of the two isozymes. The derivation of the structural model for plant UGPase should serve as a useful blueprint for further function/structure studies on this protein.

  8. Role of UGT1A1*6, UGT1A1*28 and ABCG2 c.421C>A polymorphisms in irinotecan-induced neutropenia in Asian cancer patients.

    PubMed

    Jada, Srinivasa Rao; Lim, Robert; Wong, Chiung Ing; Shu, Xiaochen; Lee, Soo Chin; Zhou, Qingyu; Goh, Boon Cher; Chowbay, Balram

    2007-09-01

    The objectives of the present study were (i) to study the pharmacogenetics of UGT1A1*6, UGT1A1*28 and ABCG2 c.421C>A in three distinct healthy Asian populations (Chinese, Malays and Indians), and (ii) to investigate the polygenic influence of these polymorphic variants in irinotecan-induced neutropenia in Asian cancer patients. Pharmacokinetic and pharmacogenetic analyses were done after administration of irinotecan as a 90-min intravenous infusion of 375 mg/m(2) once every 3 weeks (n = 45). Genotypic-phenotypic correlates showed a non-significant influence of UGT1A1*28 and ABCG2 c.421C>A polymorphisms on the pharmacokinetics of SN-38 (P > 0.05), as well as severity of neutropenia (P > 0.05). Significantly higher exposure levels to SN-38 (P = 0.018), lower relative extent of glucuronidation (REG; P = 0.006) and higher biliary index (BI; P = 0.003) were found in cancer patients homozygous for the UGT1A1*6 allele compared with patients harboring the reference genotype. The mean absolute neutrophil count (ANC) was 85% lower and the prevalence of grade 4 neutropenia (ANC < or = 500/microL) was 27% in patients homozygous for UGT1A1*6 compared with the reference group. Furthermore, the presence of the UGT1A1*6 allele was associated with an approximately 3-fold increased risk of developing severe grade 4 neutropenia compared with patients harboring the reference genotype. These exploratory findings suggest that homozygosity for UGT1A1*6 allele may be associated with altered SN-38 disposition and may increase the risk of severe neutropenia in Asian cancer patients, particularly in the Chinese cancer patients who comprised 80% (n = 36) of the patient population in the present study.

  9. A homogeneous, high-throughput-compatible, fluorescence intensity-based assay for UDP-N-acetylenolpyruvylglucosamine reductase (MurB) with nanomolar product detection.

    PubMed

    Shapiro, Adam B; Livchak, Stephania; Gao, Ning; Whiteaker, James; Thresher, Jason; Jahić, Haris; Huang, Jian; Gu, Rong-Fang

    2012-03-01

    A novel assay for the NADPH-dependent bacterial enzyme UDP-N-acetylenolpyruvylglucosamine reductase (MurB) is described that has nanomolar sensitivity for product formation and is suitable for high-throughput applications. MurB catalyzes an essential cytoplasmic step in the synthesis of peptidoglycan for the bacterial cell wall, reduction of UDP-N-acetylenolpyruvylglucosamine to UDP-N-acetylmuramic acid (UNAM). Interruption of this biosynthetic pathway leads to cell death, making MurB an attractive target for antibacterial drug discovery. In the new assay, the UNAM product of the MurB reaction is ligated to L-alanine by the next enzyme in the peptidoglycan biosynthesis pathway, MurC, resulting in hydrolysis of adenosine triphosphate (ATP) to adenosine diphosphate (ADP). The ADP is detected with nanomolar sensitivity by converting it to oligomeric RNA with polynucleotide phosphorylase and detecting the oligomeric RNA with a fluorescent dye. The product sensitivity of the new assay is 1000-fold greater than that of the standard assay that follows the absorbance decrease resulting from the conversion of NADPH to NADP(+). This sensitivity allows inhibitor screening to be performed at the low substrate concentrations needed to make the assay sensitive to competitive inhibition of MurB.

  10. Unique regulatory properties of the UDP-glucose:. beta. -1,4-glucan synthetase of Acetobacter xylinum. [Acetobacter xylinum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benziman, M.; Aloni, Y.; Delmer, D.P.

    1983-01-01

    Conditions have been found for an extremely efficient transfer of glucose from UDP-glucose to a cellulosic ..beta..-1,4-glucan product, using enzyme preparations derived from cells of Acetobacter xylinum. Membrane fractions obtained by rupturing cells in the presence of 20% (w/v) polyethylene glycol-4000 (PEG-4000) exhibited UDP-glucose:..beta..-1,4-glucan synthetase activity 3- to 10-fold higher than those previously reported. Enzyme prepared in this fashion also shows a further marked activation by GTP. The activation (apparent K/sub alpha/ = 35 ..mu..M) is quite specific for GTP. A variety of other nucleotides and nucleotide derivatives had no effect on activity. Guanosine-5'-(lambda-thio)triphosphate, an analog of GTP, is evenmore » more efficient than GTP (K/sub alpha/ = 17 ..mu..M). Enzyme prepared in the absence of PEG-4000 does not respond to GTP because it lacks a protein factor essential for GTP activation. PEG-4000 promotes the interaction of the protein factor with the enzyme. The factor itself is devoid of synthetase activity and does not stimulate activity of the enzyme in the absence of GTP. Under optimal conditions, in the presence of GTP, factor, and PEG-4000, initial rates of enzyme activity that are 200 times higher than those previously reported can be achieved. Such rates exceed 40% of the in vivo rate of cellulose synthesis from glucose. 26 references, 3 figures, 3 tables.« less

  11. [Human drug metabolizing enzymes. II. Conjugation enzymes].

    PubMed

    Vereczkey, L; Jemnitz, K; Gregus, Z

    1998-09-01

    In this review we focus on human conjugation enzymes (UDP-glucuronyltransferases, methyl-trasferases, N-acetyl-transferases, O-acetyl-transferases, Amidases/carboxyesterases, sulfotransferases, Glutation-S-transferases and the enzymes involved in the conjugation with amino acids) that participate in the metabolism of xenobiotics. Although conjugation reactions in most of the cases result in detoxication, more and more publications prove that the reactions catalysed by these enzymes very often lead to activated molecules that may attack macromolecules (proteins, RNAs, DNAs), resulting in toxicity (liver, neuro-, embryotoxicity, allergy, carcinogenecity). We have summarised the data available on these enzymes concerning their catalytic profile and specificity, inhibition, induction properties, their possible role in the generation of toxic compounds, their importance in clinical practice and drug development.

  12. Epigenetic modifications of triterpenoid ursolic acid in activating Nrf2 and blocking cellular transformation of mouse epidermal cells

    PubMed Central

    Kim, Hyuck; Ramirez, Christina N.; Su, Zheng-Yuan; Kong, Ah-Ng Tony

    2016-01-01

    Ursolic acid (UA), a well-known natural triterpenoid found in abundance in blueberries, cranberries and apple peels, has been reported to possess many beneficial health effects. These effects include anti-cancer activity in various cancers, such as skin cancer. Skin cancer is the most common cancer in the world. Nuclear factor E2-related factor 2 (Nrf2) is a master regulator of anti-oxidative stress response with anti-carcinogenic activity against UV- and chemical-induced tumor formation in the skin. Recent studies show that epigenetic modifications of Nrf2 play an important role in cancer prevention. However the epigenetic impact of UA on Nrf2 signaling remains poorly understood in skin cancer. In this study, we investigated the epigenetic effects of UA on mouse epidermal JB6 P+ cells. UA inhibited cellular transformation by 12-O-tetradecanoylphorbol-13-acetate (TPA) at a concentration at which the cytotoxicity was no more than 25%. Under this condition, UA induced the expression of the Nrf2-mediated detoxifying/antioxidant enzymes heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO1), and UDP-glucuronosyltransferase 1A1 (UGT1A1). DNA methylation analysis revealed that UA demethylated the first 15 CpG sites of the Nrf2 promoter region, which correlated with the re-expression of Nrf2. Furthermore, UA reduced the expression of epigenetic modifying enzymes, including the DNA methyltransferases (DNMTs) DNMT1 and DNMT3a and the histone deacetylases (HDACs) HDAC1, 2, 3, and 8 (Class I) and HDAC6 and 7 (Class II), and HDAC activity. Taken together, these results suggest that the epigenetic effects of the triterpenoid UA could potentially contribute to its beneficial effects, including the prevention of skin cancer. PMID:27260468

  13. Endocrine Disrupting Effects of Triclosan on the Placenta in Pregnant Rats

    PubMed Central

    Zhang, Zhaobin; Shi, Jiachen; Jiao, Zhihao; Shao, Bing

    2016-01-01

    Triclosan (TCS) is a broad-spectrum antimicrobial agent that is frequently used in pharmaceuticals and personal care products. Reports have shown that TCS is a potential endocrine disruptor; however, the potential effects of TCS on placental endocrine function are unclear. The aim of this study was to investigate the endocrine disrupting effects of TCS on the placenta in pregnant rats. Pregnant rats from gestational day (GD) 6 to GD 20 were treated with 0, 30, 100, 300 and 600 mg/kg/d TCS followed by analysis of various biochemical parameters. Of the seven tissues examined, the greatest bioaccumulation of TCS was observed in the placenta. Reduction of gravid uterine weight and the occurrence of abortion were observed in the 600 mg/kg/d TCS-exposed group. Moreover, hormone detection demonstrated that the serum levels of progesterone (P), estradiol (E2), testosterone (T), human chorionic gonadotropin (hCG) and prolactin (PRL) were decreased in groups exposed to higher doses of TCS. Real-time quantitative reverse transcriptase-polymerase chain reaction (Q-RT-PCR) analysis revealed a significant increase in mRNA levels for placental steroid metabolism enzymes, including UDP-glucuronosyltransferase 1A1 (UGT1A1), estrogen sulfotransferase 1E1 (SULT1E1), steroid 5α-reductase 1 (SRD5A1) and steroid 5α-reductase 2 (SRD5A2). Furthermore, the transcriptional expression levels of progesterone receptor (PR), estrogen receptor (ERα) and androgen receptor (AR) were up-regulated. Taken together, these data demonstrated that the placenta was a target tissue of TCS and that TCS induced inhibition of circulating steroid hormone production might be related to the altered expression of hormone metabolism enzyme genes in the placenta. This hormone disruption might subsequently affect fetal development and growth. PMID:27149376

  14. Functionalized Anodic Aluminum Oxide Membrane–Electrode System for Enzyme Immobilization

    PubMed Central

    2015-01-01

    A nanoporous membrane system with directed flow carrying reagents to sequentially attached enzymes to mimic nature’s enzyme complex system was demonstrated. Genetically modified glycosylation enzyme, OleD Loki variant, was immobilized onto nanometer-scale electrodes at the pore entrances/exits of anodic aluminum oxide membranes through His6-tag affinity binding. The enzyme activity was assessed in two reactions—a one-step “reverse” sugar nucleotide formation reaction (UDP-Glc) and a two-step sequential sugar nucleotide formation and sugar nucleotide-based glycosylation reaction. For the one-step reaction, enzyme specific activity of 6–20 min–1 on membrane supports was seen to be comparable to solution enzyme specific activity of 10 min–1. UDP-Glc production efficiencies as high as 98% were observed at a flow rate of 0.5 mL/min, at which the substrate residence time over the electrode length down pore entrances was matched to the enzyme activity rate. This flow geometry also prevented an unwanted secondary product hydrolysis reaction, as observed in the test homogeneous solution. Enzyme utilization increased by a factor of 280 compared to test homogeneous conditions due to the continuous flow of fresh substrate over the enzyme. To mimic enzyme complex systems, a two-step sequential reaction using OleD Loki enzyme was performed at membrane pore entrances then exits. After UDP-Glc formation at the entrance electrode, aglycon 4-methylumbelliferone was supplied at the exit face of the reactor, affording overall 80% glycosylation efficiency. The membrane platform showed the ability to be regenerated with purified enzyme as well as directly from expression crude, thus demonstrating a single-step immobilization and purification process. PMID:25025628

  15. Grouping and characterization of putative glycosyltransferase genes from Panax ginseng Meyer.

    PubMed

    Khorolragchaa, Altanzul; Kim, Yu-Jin; Rahimi, Shadi; Sukweenadhi, Johan; Jang, Moon-Gi; Yang, Deok-Chun

    2014-02-15

    Glycosyltransferases are members of the multigene family of plants that can transfer single or multiple activated sugars to a range of plant molecules, resulting in the glycosylation of plant compounds. Although the activities of many glycosyltransferases and their products have been recognized for a long time, only in recent years were some glycosyltransferase genes identified and few have been functionally characterized in detail. Korean ginseng (Panax ginseng Meyer), belonging to Araliaceae, has been well known as a popular mysterious medicinal herb in East Asia for over 2,000 years. A total of 704 glycosyltransferase unique sequences have been found from a ginseng expressed sequence tag (EST) library, and these sequences encode enzymes responsible for the secondary metabolite biosynthesis. Finally, twelve UDP glycosyltransferases (UGTs) were selected as the candidates most likely to be involved in triterpenoid synthesis. In this study, we classified the candidate P. ginseng UGTs (PgUGTs) into proper families and groups, which resulted in eight UGT families and six UGT groups. We also investigated those gene candidates encoding for glycosyltransferases by analysis of gene expression in methyl jasmonate (MeJA)-treated ginseng adventitious roots and different tissues from four-year-old ginseng using quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). For organ-specific expression, most of PgUGT transcription levels were higher in leaves and roots compared with flower buds and stems. The transcription of PgUGTs in adventitious roots treated with MeJA increased as compared with the control. PgUGT1 and PgUGT2, which belong to the UGT71 family genes expressed in MeJA-treated adventitious roots, were especially sensitive, showing 33.32 and 38.88-fold expression increases upon 24h post-treatments, respectively. © 2013 Elsevier B.V. All rights reserved.

  16. Diethylstilbestrol can effectively accelerate estradiol-17-O-glucuronidation, while potently inhibiting estradiol-3-O-glucuronidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Liangliang; Xiao, Ling; Xia, Yangliu

    This in vitro study investigates the effects of diethylstilbestrol (DES), a widely used toxic synthetic estrogen, on estradiol-3- and 17-O- (E2-3/17-O) glucuronidation, via culturing human liver microsomes (HLMs) or recombinant UDP-glucuronosyltransferases (UGTs) with DES and E2. DES can potently inhibit E2-3-O-glucuronidation in HLM, a probe reaction for UGT1A1. Kinetic assays indicate that the inhibition follows a competitive inhibition mechanism, with the Ki value of 2.1 ± 0.3 μM, which is less than the possible in vivo level. In contrast to the inhibition on E2-3-O-glucuronidation, the acceleration is observed on E2-17-O-glucuronidation in HLM, in which cholestatic E2-17-O-glucuronide is generated. In themore » presence of DES (0–6.25 μM), K{sub m} values for E2-17-O-glucuronidation are located in the range of 7.2–7.4 μM, while V{sub max} values range from 0.38 to 1.54 nmol/min/mg. The mechanism behind the activation in HLM is further demonstrated by the fact that DES can efficiently elevate the activity of UGT1A4 in catalyzing E2-17-O-glucuronidation. The presence of DES (2 μM) can elevate V{sub max} from 0.016 to 0.81 nmol/min/mg, while lifting K{sub m} in a much lesser extent from 4.4 to 11 μM. Activation of E2-17-O-glucuronidation is well described by a two binding site model, with K{sub A}, α, and β values of 0.077 ± 0.18 μM, 3.3 ± 1.1 and 104 ± 56, respectively. However, diverse effects of DES towards E2-3/17-O-glucuronidation are not observed in liver microsomes from several common experimental animals. In summary, this study issues new potential toxic mechanisms for DES: potently inhibiting the activity of UGT1A1 and powerfully accelerating the formation of cholestatic E2-17-O-glucuronide by UGT1A4. - Highlights: • E2-3-O-glucuronidation in HLM is inhibited when co-incubated with DES. • E2-17-O-glucuronidation in HLM is stimulated when co-incubated with DES. • Acceleration of E2-17-O-glucuronidationin in HLM by DES is via

  17. Glucuronidation of trans-resveratrol by human liver and intestinal microsomes and UGT isoforms.

    PubMed

    Brill, Shirley S; Furimsky, Anna M; Ho, Mark N; Furniss, Michael J; Li, Yi; Green, Adam G; Bradford, Wallace W; Green, Carol E; Kapetanovic, Izet M; Iyer, Lalitha V

    2006-04-01

    Resveratrol (trans-resveratrol, trans-3,5,4'-trihydroxystilbene) is a naturally occurring stilbene analogue found in high concentrations in red wine. There is considerable research interest to determine the therapeutic potential of resveratrol, as it has been shown to have tumour inhibitory and antioxidant properties. This study was performed to investigate the glucuronidation of resveratrol and possible drug interactions via glucuronidation. Two glucuronide conjugates, resveratrol 3-O-glucuronide and resveratrol 4'-O-glucuronide, were formed by human liver and intestinal microsomes. UGT1A1 and UGT1A9 were predominantly responsible for the formation of the 3-O-glucuronide (Km = 149 microM) and 4'-O-glucuronide (Km = 365 microM), respectively. The glucuronide conjugates were formed at higher levels (up to 10-fold) by intestinal rather than liver microsomes. Resveratrol was co-incubated with substrates of UGT1A1 (bilirubin and 7-ethyl-10-hydroxycamptothecin (SN-38)) and UGT1A9 (7-hydroxytrifluoromethyl coumarin (7-HFC)). No major changes were noted in bilirubin glucuronidation in the presence of resveratrol. Resveratrol significantly inhibited the glucuronidation of SN-38 (Ki = 6.2 +/- 2.1 microM) and 7-HFC (Ki = 0.6 +/- 0.2 microM). Hence, resveratrol has the potential to inhibit the glucuronidation of concomitantly administered therapeutic drugs or dietary components that are substrates of UGT1A1 and UGT1A9.

  18. Functional Characterization of UDP-apiose Synthases from Bryophytes and Green Algae Provides Insight into the Appearance of Apiose-containing Glycans during Plant Evolution.

    PubMed

    Smith, James; Yang, Yiwen; Levy, Shahar; Adelusi, Oluwatoyin Oluwayemi; Hahn, Michael G; O'Neill, Malcolm A; Bar-Peled, Maor

    2016-10-07

    Apiose is a branched monosaccharide that is present in the cell wall pectic polysaccharides rhamnogalacturonan II and apiogalacturonan and in numerous plant secondary metabolites. These apiose-containing glycans are synthesized using UDP-apiose as the donor. UDP-apiose (UDP-Api) together with UDP-xylose is formed from UDP-glucuronic acid (UDP-GlcA) by UDP-Api synthase (UAS). It was hypothesized that the ability to form Api distinguishes vascular plants from the avascular plants and green algae. UAS from several dicotyledonous plants has been characterized; however, it is not known if avascular plants or green algae produce this enzyme. Here we report the identification and functional characterization of UAS homologs from avascular plants (mosses, liverwort, and hornwort), from streptophyte green algae, and from a monocot (duckweed). The recombinant UAS homologs all form UDP-Api from UDP-glucuronic acid albeit in different amounts. Apiose was detected in aqueous methanolic extracts of these plants. Apiose was detected in duckweed cell walls but not in the walls of the avascular plants and algae. Overexpressing duckweed UAS in the moss Physcomitrella patens led to an increase in the amounts of aqueous methanol-acetonitrile-soluble apiose but did not result in discernible amounts of cell wall-associated apiose. Thus, bryophytes and algae likely lack the glycosyltransferase machinery required to synthesize apiose-containing cell wall glycans. Nevertheless, these plants may have the ability to form apiosylated secondary metabolites. Our data are the first to provide evidence that the ability to form apiose existed prior to the appearance of rhamnogalacturonan II and apiogalacturonan and provide new insights into the evolution of apiose-containing glycans. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Functional Characterization of UDP-apiose Synthases from Bryophytes and Green Algae Provides Insight into the Appearance of Apiose-containing Glycans during Plant Evolution*

    PubMed Central

    Smith, James; Yang, Yiwen; Levy, Shahar; Adelusi, Oluwatoyin Oluwayemi; Hahn, Michael G.; O'Neill, Malcolm A.; Bar-Peled, Maor

    2016-01-01

    Apiose is a branched monosaccharide that is present in the cell wall pectic polysaccharides rhamnogalacturonan II and apiogalacturonan and in numerous plant secondary metabolites. These apiose-containing glycans are synthesized using UDP-apiose as the donor. UDP-apiose (UDP-Api) together with UDP-xylose is formed from UDP-glucuronic acid (UDP-GlcA) by UDP-Api synthase (UAS). It was hypothesized that the ability to form Api distinguishes vascular plants from the avascular plants and green algae. UAS from several dicotyledonous plants has been characterized; however, it is not known if avascular plants or green algae produce this enzyme. Here we report the identification and functional characterization of UAS homologs from avascular plants (mosses, liverwort, and hornwort), from streptophyte green algae, and from a monocot (duckweed). The recombinant UAS homologs all form UDP-Api from UDP-glucuronic acid albeit in different amounts. Apiose was detected in aqueous methanolic extracts of these plants. Apiose was detected in duckweed cell walls but not in the walls of the avascular plants and algae. Overexpressing duckweed UAS in the moss Physcomitrella patens led to an increase in the amounts of aqueous methanol-acetonitrile-soluble apiose but did not result in discernible amounts of cell wall-associated apiose. Thus, bryophytes and algae likely lack the glycosyltransferase machinery required to synthesize apiose-containing cell wall glycans. Nevertheless, these plants may have the ability to form apiosylated secondary metabolites. Our data are the first to provide evidence that the ability to form apiose existed prior to the appearance of rhamnogalacturonan II and apiogalacturonan and provide new insights into the evolution of apiose-containing glycans. PMID:27551039

  20. Toxicity of xanthene food dyes by inhibition of human drug-metabolizing enzymes in a noncompetitive manner.

    PubMed

    Mizutani, Takaharu

    2009-01-01

    The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC(50) values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC(50) values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the noninhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of (1)O(2) originating on xanthene dyes by light irradiation, because inhibition was prevented by (1)O(2) quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin.

  1. Metabolism of the Folate Precursor p-Aminobenzoate in Plants

    PubMed Central

    Eudes, Aymerick; Bozzo, Gale G.; Waller, Jeffrey C.; Naponelli, Valeria; Lim, Eng-Kiat; Bowles, Dianna J.; Gregory, Jesse F.; Hanson, Andrew D.

    2008-01-01

    Plants produce p-aminobenzoate (pABA) in chloroplasts and use it for folate synthesis in mitochondria. In plant tissues, however, pABA is known to occur predominantly as its glucose ester (pABA-Glc), and the role of this metabolite in folate synthesis has not been defined. In this study, the UDP-glucose:pABA acyl-glucosyltransferase (pAGT) activity in Arabidopsis extracts was found to reside principally (95%) in one isoform with an apparent Km for pABA of 0.12 mm. Screening of recombinant Arabidopsis UDP-glycosyltransferases identified only three that recognized pABA. One of these (UGT75B1) exhibited a far higher kcat/Km value than the others and a far lower apparent Km for pABA (0.12 mm), suggesting its identity with the principal enzyme in vivo. Supporting this possibility, ablation of UGT75B1 reduced extractable pAGT activity by 95%, in vivo [14C]pABA glucosylation by 77%, and the endogenous pABA-Glc/pABA ratio by 9-fold. The Keq for the pABA esterification reaction was found to be 3 × 10-3. Taken with literature data on the cytosolic location of pAGT activity and on cytosolic UDP-glucose/UDP ratios, this Keq value allowed estimation that only 4% of cytosolic pABA is esterified. That pABA-Glc predominates in planta therefore implies that it is sequestered away from the cytosol and, consistent with this possibility, vacuoles isolated from [14C]pABA-fed pea leaves were estimated to contain≥88% of the [14C]pABA-Glc formed. In total, these data and the fact that isolated mitochondria did not take up [3H]pABA-Glc, suggest that the glucose ester represents a storage form of pABA that does not contribute directly to folate synthesis. PMID:18385129

  2. Biosynthesis of nucleotide sugars by a promiscuous UDP-sugar pyrophosphorylase from Arabidopsis thaliana (AtUSP).

    PubMed

    Liu, Jun; Zou, Yang; Guan, Wanyi; Zhai, Yafei; Xue, Mengyang; Jin, Lan; Zhao, Xueer; Dong, Junkai; Wang, Wenjun; Shen, Jie; Wang, Peng George; Chen, Min

    2013-07-01

    Nucleotide sugars are activated forms of monosaccharides and key intermediates of carbohydrate metabolism in all organisms. The availability of structurally diverse nucleotide sugars is particularly important for the characterization of glycosyltransferases. Given that limited methods are available for preparation of nucleotide sugars, especially their useful non-natural derivatives, we introduced herein an efficient one-step three-enzyme catalytic system for the synthesis of nucleotide sugars from monosaccharides. In this study, a promiscuous UDP-sugar pyrophosphorylase (USP) from Arabidopsis thaliana (AtUSP) was used with a galactokinase from Streptococcus pneumoniae TIGR4 (SpGalK) and an inorganic pyrophosphatase (PPase) to effectively synthesize four UDP-sugars. AtUSP has better tolerance for C4-derivatives of Gal-1-P compared to UDP-glucose pyrophosphorylase from S. pneumoniae TIGR4 (SpGalU). Besides, the nucleotide substrate specificity and kinetic parameters of AtUSP were systematically studied. AtUSP exhibited considerable activity toward UTP, dUTP and dTTP, the yield of which was 87%, 85% and 84%, respectively. These results provide abundant information for better understanding of the relationship between substrate specificity and structural features of AtUSP. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. The UDP-glucose dehydrogenase of Escherichia coli K-12 displays substrate inhibition by NAD that is relieved by nucleotide triphosphates.

    PubMed

    Mainprize, Iain L; Bean, Jordan D; Bouwman, Catrien; Kimber, Matthew S; Whitfield, Chris

    2013-08-09

    UDP-glucose dehydrogenase (Ugd) generates UDP-glucuronic acid, an important precursor for the production of many hexuronic acid-containing bacterial surface glycostructures. In Escherichia coli K-12, Ugd is important for biosynthesis of the environmentally regulated exopolysaccharide known as colanic acid, whereas in other E. coli isolates, the same enzyme is required for production of the constitutive group 1 capsular polysaccharides, which act as virulence determinants. Recent studies have implicated tyrosine phosphorylation in the activation of Ugd from E. coli K-12, although it is not known if this is a feature shared by bacterial Ugd proteins. The activities of Ugd from E. coli K-12 and from the group 1 capsule prototype (serotype K30) were compared. Surprisingly, for both enzymes, site-directed Tyr → Phe mutants affecting the previously proposed phosphorylation site retained similar kinetic properties to the wild-type protein. Purified Ugd from E. coli K-12 had significant levels of NAD substrate inhibition, which could be alleviated by the addition of ATP and several other nucleotide triphosphates. Mutations in a previously identified UDP-glucuronic acid allosteric binding site decreased the binding affinity of the nucleotide triphosphate. Ugd from E. coli serotype K30 was not inhibited by NAD, but its activity still increased in the presence of ATP.

  4. Functional Expression of Enterobacterial O-Polysaccharide Biosynthesis Enzymes in Bacillus subtilis

    PubMed Central

    Schäffer, Christina; Wugeditsch, Thomas; Messner, Paul; Whitfield, Chris

    2002-01-01

    The expression of heterologous bacterial glycosyltransferases is of interest for potential application in the emerging field of carbohydrate engineering in gram-positive organisms. To assess the feasibility of using enzymes from gram-negative bacteria, the functional expression of the genes wbaP (formerly rfbP), wecA (formerly rfe), and wbbO (formerly rfbF) from enterobacterial lipopolysaccharide O-polysaccharide biosynthesis pathways was examined in Bacillus subtilis. WbaP and WecA are initiation enzymes for O-polysaccharide formation, catalyzing the transfer of galactosyl 1-phosphate from UDP-galactose and N-acetylglucosaminyl 1-phosphate from UDP-N-acetylglucosamine, respectively, to undecaprenylphosphate. The WecA product (undecaprenylpyrophosphoryl GlcNAc) is used as an acceptor to which the bifunctional wbbO gene product sequentially adds a galactopyranose and a galactofuranose residue from the corresponding UDP sugars to form a lipid-linked trisaccharide. Genes were cloned into the shuttle vectors pRB374 and pAW10. In B. subtilis hosts, the genes were effectively transcribed under the vegII promoter control of pRB374, but the plasmids were susceptible to rearrangements and deletion. In contrast, pAW10-based constructs, in which genes were cloned downstream of the tet resistance cassette, were stable but yielded lower levels of enzyme activity. In vitro glycosyltransferase assays were performed in Escherichia coli and B. subtilis, using membrane preparations as sources of enzymes and endogenous undecaprenylphosphate as an acceptor. Incorporation of radioactivity from UDP-α-d-14C-sugar into reaction products verified the functionality of WbaP, WecA, and WbbO in either host. Enzyme activities in B. subtilis varied between 20 and 75% of those measured in E. coli. PMID:12324313

  5. Xenobiotic metabolism capacities of human skin in comparison with a 3D-epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: phase II enzymes.

    PubMed

    Götz, Christine; Pfeiffer, Roland; Tigges, Julia; Ruwiedel, Karsten; Hübenthal, Ulrike; Merk, Hans F; Krutmann, Jean; Edwards, Robert J; Abel, Josef; Pease, Camilla; Goebel, Carsten; Hewitt, Nicola; Fritsche, Ellen

    2012-05-01

    The 7th Amendment to the EU Cosmetics Directive prohibits the use of animals in cosmetic testing for certain endpoints, such as genotoxicity. Therefore, skin in vitro models have to replace chemical testing in vivo. However, the metabolic competence neither of human skin nor of alternative in vitro models has so far been fully characterized, although skin is the first-pass organ for accidentally or purposely (cosmetics and pharmaceuticals) applied chemicals. Thus, there is an urgent need to understand the xenobiotic-metabolizing capacities of human skin and to compare these activities to models developed to replace animal testing. We have measured the activity of the phase II enzymes glutathione S-transferase, UDP-glucuronosyltransferase and N-acetyltransferase in ex vivo human skin, the 3D epidermal model EpiDerm 200 (EPI-200), immortalized keratinocyte-based cell lines (HaCaT and NCTC 2544) and primary normal human epidermal keratinocytes. We show that all three phase II enzymes are present and highly active in skin as compared to phase I. Human skin, therefore, represents a more detoxifying than activating organ. This work systematically compares the activities of three important phase II enzymes in four different in vitro models directly to human skin. We conclude from our studies that 3D epidermal models, like the EPI-200 employed here, are superior over monolayer cultures in mimicking human skin xenobiotic metabolism and thus better suited for dermatotoxicity testing. © 2012 John Wiley & Sons A/S.

  6. Inhibitory effects of Aphanizomenon flos-aquae constituents on human UDP-glucose dehydrogenase activity.

    PubMed

    Scoglio, Stefano; Lo Curcio, Valeria; Catalani, Simona; Palma, Francesco; Battistelli, Serafina; Benedetti, Serena

    2016-12-01

    The purpose of this study was to investigate the in vitro inhibitory effects of the edible microalga Aphanizomenon flos-aquae (AFA) on human UDP-α-d-glucose 6-dehydrogenase (UGDH) activity, a cytosolic enzyme involved both in tumor progression and in phytochemical bioavailability. Both the hydrophilic and ethanolic AFA extracts as well as the constitutive active principles phycocyanin (PC), phycocyanobilin (PCB) and mycosporine-like amino acids (MAAs) were tested. Among AFA components, PCB presented the strongest inhibitory effect on UGDH activity, acting as a competitive inhibitor with respect to UDP-glucose and a non-competitive inhibitor with respect to NAD(+). In preliminary experiments, AFA PCB was also effective in reducing the colony formation capacity of PC-3 prostate cancer cells and FTC-133 thyroid cancer cells. Overall, these findings confirmed that AFA and its active principles are natural compounds with high biological activity. Further studies evaluating the effects of AFA PCB in reducing tumor cell growth and phytochemical glucuronidation are encouraged.

  7. Comparison of the UDP-N-Acetylmuramate:l-Alanine Ligase Enzymes from Mycobacterium tuberculosis and Mycobacterium leprae

    PubMed Central

    Mahapatra, Sebabrata; Crick, Dean C.; Brennan, Patrick J.

    2000-01-01

    In the peptidoglycan of Mycobacterium leprae, l-alanine of the side chain is replaced by glycine. When expressed in Escherichia coli, MurC (UDP-N-acetyl-muramate:l-alanine ligase) of M. leprae showed Km and Vmax for l-alanine and glycine similar to those of Mycobacterium tuberculosis MurC, suggesting that another explanation should be sought for the presence of glycine. PMID:11073931

  8. Identification of the uridine 5'-diphosphoglucose (UDP-Glc) binding subunit of cellulose synthase in Acetobacter xylinum using the photoaffinity probe 5-azido-UDP-Glc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, F.C.; Brown, R.M. Jr.; Drake, R.R. Jr.

    1990-03-25

    Photoaffinity labeling of purified cellulose synthase with (beta-32P)5-azidouridine 5'-diphosphoglucose (UDP-Glc) has been used to identify the UDP-Glc binding subunit of the cellulose synthase from Acetobacter xylinum strain ATCC 53582. The results showed exclusive labeling of an 83-kDa polypeptide. Photoinsertion of (beta-32P)5-azido-UDP-Glc is stimulated by the cellulose synthase activator, bis-(3'----5') cyclic diguanylic acid. Addition of increasing amounts of UDP-Glc prevents photolabeling of the 83-kDa polypeptide. The reversible and photocatalyzed binding of this photoprobe also showed saturation kinetics. These studies demonstrate that the 83-kDa polypeptide is the catalytic subunit of the cellulose synthase in A. xylinum strain ATCC 53582.

  9. Toxicity of Xanthene Food Dyes by Inhibition of Human Drug-Metabolizing Enzymes in a Noncompetitive Manner

    PubMed Central

    Mizutani, Takaharu

    2009-01-01

    The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC50 values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC50 values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the noninhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of 1O2 originating on xanthene dyes by light irradiation, because inhibition was prevented by 1O2 quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin. PMID:20041016

  10. Purification, crystallization and preliminary X-ray analysis of Escherichia coli UDP-N-acetylmuramoyl:L-alanine ligase (MurC).

    PubMed

    Deva, Taru; Pryor, KellyAnn D; Leiting, Barbara; Baker, Edward N; Smith, Clyde A

    2003-08-01

    UDP-N-acetylmuramoyl:L-alanine ligase (MurC) is involved in the pathway leading from UDP-N-glucosamine to the UDP-N-acetylmuramoyl:pentapeptide unit, which is the building block for the peptidoglycan layer found in all bacterial cell walls. The pathways leading to the biosynthesis of the peptidoglycan layer are important targets for the development of novel antibiotics, since animal cells do not contain these pathways. MurC is the first of four similar ATP-dependent amide-bond ligases which share primary and tertiary structural similarities. The crystal structures of three of these have been determined by X-ray crystallography, giving insights into the binding of the carbohydrate substrate and the ATP. Diffraction-quality crystals of the enzyme MurC have been obtained in both native and selenomethionine forms and X-ray diffraction data have been collected at the Se edge at a synchrotron source. The crystals are orthorhombic, with unit-cell parameters a = 73.9, b = 93.6, c = 176.8 A, and diffraction has been observed to 2.6 A resolution.

  11. Attachment of UDP-hexosamines to the ribosomes isolated from rat liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopacz-Jodczyk, T.; Paszkiewicz-Gadek, A.; Galasinski, W.

    1988-06-01

    The binding of UDP-N-acetylhexosamines with purified ribosomes was studied and it was found that the radioactive nucleotides can be attached to these particles. The radioactivity of the purified ribosomal pellet depends on the amounts of ribosomes and UDP-N-acetylhexosamines. Some characteristics of the binding system indicate that the attachment of UDP-sugar to ribosome does not require the participation of glycosyltransferases. The results of the competition experiment would suggest that there are specific sites on ribosomes for the binding of UDP-N-acetylglucosamine.

  12. Glucosylation of 4-Hydroxy-2,5-Dimethyl-3(2H)-Furanone, the Key Strawberry Flavor Compound in Strawberry Fruit1

    PubMed Central

    Hong, Xiaotong; Zhao, Shuai; Liu, Jingyi; Schulenburg, Katja; Huang, Fong-Chin; Franz-Oberdorf, Katrin

    2016-01-01

    Strawberries emit hundreds of different volatiles, but only a dozen, including the key compound HDMF [4-hydroxy-2,5-dimethyl-3(2H)-furanone] contribute to the flavor of the fruit. However, during ripening, a considerable amount of HDMF is metabolized to the flavorless HDMF β-d-glucoside. Here, we functionally characterize nine ripening-related UGTs (UDP-glucosyltransferases) in Fragaria that function in the glucosylation of volatile metabolites by comprehensive biochemical analyses. Some UGTs showed a rather broad substrate tolerance and glucosylated a range of aroma compounds in vitro, whereas others had a more limited substrate spectrum. The allelic UGT71K3a and b proteins and to a lesser extent UGT73B24, UGT71W2, and UGT73B23 catalyzed the glucosylation of HDMF and its structural homolog 2(or 5)-ethyl-4-hydroxy-5(or 2)-methyl-3(2H)-furanone. Site-directed mutagenesis to introduce single K458R, D445E, D343E, and V383A mutations and a double G433A/I434V mutation led to enhanced HDMF glucosylation activity compared to the wild-type enzymes. In contrast, a single mutation in the center of the plant secondary product glycosyltransferase box (A389V) reduced the enzymatic activity. Down-regulation of UGT71K3 transcript expression in strawberry receptacles led to a significant reduction in the level of HDMF-glucoside and a smaller decline in HDMF-glucoside-malonate compared with the level in control fruits. These results provide the foundation for improvement of strawberry flavor and the biotechnological production of HDMF-glucoside. PMID:26993618

  13. Glucosylation of 4-Hydroxy-2,5-Dimethyl-3(2H)-Furanone, the Key Strawberry Flavor Compound in Strawberry Fruit.

    PubMed

    Song, Chuankui; Hong, Xiaotong; Zhao, Shuai; Liu, Jingyi; Schulenburg, Katja; Huang, Fong-Chin; Franz-Oberdorf, Katrin; Schwab, Wilfried

    2016-05-01

    Strawberries emit hundreds of different volatiles, but only a dozen, including the key compound HDMF [4-hydroxy-2,5-dimethyl-3(2H)-furanone] contribute to the flavor of the fruit. However, during ripening, a considerable amount of HDMF is metabolized to the flavorless HDMF β-d-glucoside. Here, we functionally characterize nine ripening-related UGTs (UDP-glucosyltransferases) in Fragaria that function in the glucosylation of volatile metabolites by comprehensive biochemical analyses. Some UGTs showed a rather broad substrate tolerance and glucosylated a range of aroma compounds in vitro, whereas others had a more limited substrate spectrum. The allelic UGT71K3a and b proteins and to a lesser extent UGT73B24, UGT71W2, and UGT73B23 catalyzed the glucosylation of HDMF and its structural homolog 2(or 5)-ethyl-4-hydroxy-5(or 2)-methyl-3(2H)-furanone. Site-directed mutagenesis to introduce single K458R, D445E, D343E, and V383A mutations and a double G433A/I434V mutation led to enhanced HDMF glucosylation activity compared to the wild-type enzymes. In contrast, a single mutation in the center of the plant secondary product glycosyltransferase box (A389V) reduced the enzymatic activity. Down-regulation of UGT71K3 transcript expression in strawberry receptacles led to a significant reduction in the level of HDMF-glucoside and a smaller decline in HDMF-glucoside-malonate compared with the level in control fruits. These results provide the foundation for improvement of strawberry flavor and the biotechnological production of HDMF-glucoside. © 2016 American Society of Plant Biologists. All Rights Reserved.

  14. Alkaloids and leishmania donovani UDP-galactopyarnose mutase: Anovel approach in drug designing against Visceral leishmaniasis.

    PubMed

    Srivastava, Ankita; Chandra, Deepak

    2017-06-05

    The unsatisfactory treatment options for Visceral Leishmaniasis (VL), needs identification of new drug targets. Among natural products, Alkaloids have been proved to be highly effective against number of diseases. In Leishmania UDP-galactopyranose mutase (UGM) is a critical enzyme required for cell wall synthesis and thus a drug target for structure based drug designing against L. donovani. To build the homology model of UDP galactopyranse mutase and investigate the interaction of selected alkaloids with this modeled UDP galactopyranose mutase by molecular docking. Since there is no crystal structure record has been found with this protein, a homology modeling was performed and a three dimensional structure of L. donovani UGM was created using MODELLER v9.9, structure quality was validated using PROCHECK and QMEAN programs which confirms that the structure is reliable. Further Molecular docking was performed with previously reported 15 alkaloids. It was found that Protopine shows a binding energy of -12.39Kcal/mole, binds at Flavin adenine dinucleotide (FAD) biding site. Concluding that Protopine, an alkaloid could interrupt the functional aspect of L. donovani UGM and thus may be useful for drug designing studies. These finding would contribute to the understanding of effect of drug on the parasite. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Characterization of three terpenoid glycosyltransferase genes in 'Valencia' sweet orange (Citrus sinensis L. Osbeck).

    PubMed

    Fan, Jing; Chen, Chunxian; Yu, Qibin; Li, Zheng-Guo; Gmitter, Frederick G

    2010-10-01

    Three putative terpenoid UDP-glycosyltransferase (UGT) genes, designated CsUGT1, CsUGT2, and CsUGT3, were isolated and characterized in 'Valencia' sweet orange (Citrus sinensis L. Osbeck). CsUGT1 consisted of 1493 nucleotides with an open reading frame encoding 492 amino acids, CsUGT2 consisted of 1727 nucleotides encoding 504 amino acids, and CsUGT3 consisted of 1705 nucleotides encoding 468 amino acids. CsUGT3 had a 145 bp intron at 730-874, whereas CsUGT1 and CsUGT2 had none. The three deduced glycosyltransferase proteins had a highly conserved plant secondary product glycosyltransferase motif in the C terminus. Phylogenetic analysis showed that CsUGT1 and CsUGT3 were classified into group L of glycosyltransferase family 1, and CsUGT2 was classified into group D. Through Southern blotting analysis, CsUGT1 was found to have two copies in the sweet orange genome, whereas CsUGT2 and CsUGT3 had at least seven and nine copies, respectively. CsUGT1, CsUGT2, and CsUGT3 were constitutively expressed in leaf, flower, and fruit tissues. The results facilitate further investigation of the function of terpenoid glycosyltransferases in citrus and the biosynthesis of terpenoid glycosides in vitro.

  16. Predictive effects of bilirubin on response of colorectal cancer to irinotecan-based chemotherapy.

    PubMed

    Yu, Qian-Qian; Qiu, Hong; Zhang, Ming-Sheng; Hu, Guang-Yuan; Liu, Bo; Huang, Liu; Liao, Xin; Li, Qian-Xia; Li, Zhi-Huan; Yuan, Xiang-Lin

    2016-04-28

    To examine the predictive effects of baseline serum bilirubin levels and UDP-glucuronosyltransferase (UGT) 1A1*28 polymorphism on response of colorectal cancer to irinotecan-based chemotherapy. The present study was based on a prospective multicenter longitudinal trial of Chinese metastatic colorectal cancer (mCRC) patients treated with irinotecan-based chemotherapy (NCT01282658). Baseline serum bilirubin levels, including total bilirubin (TBil) and unconjugated bilirubin (UBil), were measured, and genotyping of UGT1A1*28 polymorphism was performed. Receiver operating characteristic curve (ROC) analysis was used to determine cutoff values of TBil and UBil. The TBil values were categorized into > 13.0 or ≤ 13.0 groups; the UBil values were categorized into > 4.1 or ≤ 4.1 groups. Combining the cutoff values of TBil and UBil, which was recorded as CoBil, patients were classified into three groups. The classifier's performance of UGT1A1*28 and CoBil for predicting treatment response was evaluated by ROC analysis. Associations between response and CoBil or UGT1A1*28 polymorphism were estimated using simple and multiple logistic regression models. Among the 120 mCRC patients, the serum bilirubin level was significantly different between the UGT1A1*28 wild-type and mutant genotypes. Patients with the mutant genotype had an increased likelihood of a higher TBil (P = 0.018) and a higher UBil (P = 0.014) level compared with the wild-type genotype. Patients were stratified into three groups based on CoBil. Group 1 was patients with TBil > 13.0 and UBil > 4.1; Group 2 was patients with TBil ≤ 13.0 and UBil > 4.1; and Group 3 was patients with TBil ≤ 13.0 and UBil ≤ 4.1. Patients in Group 3 had more than a 10-fold higher likelihood of having a response in the simple (OR = 11.250; 95%CI: 2.286-55.367; P = 0.003) and multiple (OR = 16.001; 95%CI: 2.802 -91.371; P = 0.002) analyses compared with the Group 1 individuals. Patients carrying the UGT1A1*28 (TA)7 allele were 4

  17. Simultaneous determination of intracellular UDP-sugars in hyaluronic acid-producing Streptococcus zooepidemicus.

    PubMed

    Franke, Lukáš; Čožíková, Dagmar; Smirnou, Dzianis; Hermannová, Martina; Hanová, Tereza; Růžičková, Andrea; Velebný, Vladimír

    2015-08-01

    Two chromatographic methods for the quantitative analysis of uridine diphosphate (UDP) sugars involved in hyaluronan pathway of Streptococcus zooepidemicus (SEZ) were developed and compared. The sample preparation protocol using centrifugation and extraction in hot ethanol was employed prior to the analyses. Separation was achieved using an anion exchange Spherisorb SAX column or a Shodex QA-825 column connected with a photodiode array (PDA) detector. To increase the throughput of the chromatography method employing the Spherisorb SAX column, the solid phase extraction (SPE) procedure was introduced. Method validation results displayed that limits of detection (LODs) of UDP-glucose (UDP-Glc), UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-glucuronic acid (UDP-GlcA) calculated according to QC Expert software were in the low micromolar range and the coefficient of correlation (R(2)) was above 0.997. However, the analytical technique using the Spherisorb SAX column resulted in 80-90% recoveries and low LODs (≤6.19μM), the Shodex QA-825 column showed better long-term stability and reproducible chromatographic properties (RSD≤5.60%). The Shodex QA-825 column was successfully used to monitor UDP-sugar levels during the growth rate of SEZ cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Cloning and expression of UDP-glucose: flavonoid 7-O-glucosyltransferase from hairy root cultures of Scutellaria baicalensis.

    PubMed

    Hirotani, M; Kuroda, R; Suzuki, H; Yoshikawa, T

    2000-05-01

    A cDNA encoding UDP-glucose: baicalein 7-O-glucosyltransferase (UBGT) was isolated from a cDNA library from hairy root cultures of Scutellaria baicalensis Georgi probed with a partial-length cDNA clone of a UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) from grape (Vitis vinifera L.). The heterologous probe contained a glucosyltransferase consensus amino acid sequence which was also present in the Scutellaria cDNA clones. The complete nucleotide sequence of the 1688-bp cDNA insert was determined and the deduced amino acid sequences are presented. The nucleotide sequence analysis of UBGT revealed an open reading frame encoding a polypeptide of 476 amino acids with a calculated molecular mass of 53,094 Da. The reaction product for baicalein and UDP-glucose catalyzed by recombinant UBGT in Escherichia coli was identified as authentic baicalein 7-O-glucoside using high-performance liquid chromatography and proton nuclear magnetic resonance spectroscopy. The enzyme activities of recombinant UBGT expressed in E. coli were also detected towards flavonoids such as baicalein, wogonin, apigenin, scutellarein, 7,4'-dihydroxyflavone and kaempferol, and phenolic compounds. The accumulation of UBGT mRNA in hairy roots was in response to wounding or salicylic acid treatments.

  19. THE URBAN DISPERSION PROGRAM ( UDP ) NYC MSG05 EXPERIMENT

    EPA Science Inventory

    The multi-organizational Urban Dispersion Program (UDP) has been conducting tracer release experiments at various locations within the United States. In March 2005 the UDP conducted the first NYC based experiment called Madison Square Garden -05 (MSG05). The field study involved ...

  20. IN VITRO METABOLISM OF THYROID HORMONES BY RECOMBINANT HUMAN UDP-GLUCORONOSYLTRANSFERASES AND SULFOTRANSFERASES

    EPA Science Inventory

    Endocrine disruptors can decrease thyroid hormone levels via the induction of hepatic uridinediphosphate-glucoronosyltransferases (UGTs) and sulfotransferases (SULTs). Due to their ability to catalyze glucuronidation and sulfation of hormones and xenobiotics, UGTs and SULTs play ...

  1. The attachment of UDP-hexosamines to the ribosomes isolated from rat liver.

    PubMed

    Kopacz-Jodczyk, T; Paszkiewicz-Gadek, A; Gałasiński, W

    1988-06-01

    The binding of UDP-N-acetylhexosamines with purified ribosomes was studied and it was found that the radioactive nucleotides can be attached to these particles. The radioactivity of the purified ribosomal pellet depends on the amounts of ribosomes and UDP-N-acetylhexosamines. Some characteristics of the binding system indicate that the attachment of UDP-sugar to ribosome does not require the participation of glycosyltransferases. The results of the competition experiment would suggest that there are specific sites on ribosomes for the binding of UDP-N-acetylglucosamine.

  2. Constitutive androstane receptor activation promotes bilirubin clearance in a murine model of alcoholic liver disease.

    PubMed

    Wang, Xiuyan; Zheng, Liyu; Wu, Jinming; Tang, Binbin; Zhang, Mengqin; Zhu, Debin; Lin, Xianfan

    2017-06-01

    Increased plasma levels of bilirubin have been reported in rat models and patients with alcoholic liver disease (ALD). The constitutive androstane receptor (CAR) is a known xenobiotic receptor, which induces the detoxification and transport of bilirubin. In the present study, the bilirubin transport regulatory mechanisms, and the role of CAR activation in hepatic and extrahepatic bilirubin clearance were investigated in a murine model of ALD. The mice were fed a Lieber-DeCarli ethanol diet or an isocaloric control diet for 4 weeks, followed by the administration of CAR agonists, 1,4-bis-[2‑(3,5-dichlorpyridyloxy)]benzene (TCPOBOP) and phenobarbital (PB), and their vehicles to examine the effect of the pharmacological activation of CAR on serum levels of bilirubin and on the bilirubin clearance pathway in ALD by serological survey, western blotting and reverse transcription‑quantitative polymerase chain reaction. The results showed that chronic ethanol ingestion impaired the nuclear translocation of CAR, which was accompanied by elevated serum levels of bilirubin, suppression of the expression of hepatic and renal organic anion transporting polypeptide (OATP) 1A1 and hepatic multidrug resistance‑associated protein 2 (MRP2), and induction of the expression of UDP-glucuronosyltransferase (UGT) 1A1. The activation of CAR by TCPOBOP and PB resulted in downregulation of the serum levels of bilirubin followed by selective upregulation of the expression levels of OATP1A1, OATP1A4, UGT1A1 and MRP2 in ALD. These results revealed the bilirubin transport regulatory mechanisms and highlighted the importance of CAR in modulating the bilirubin clearance pathway in the ALD mouse model.

  3. Polychlorinated Biphenyl Congeners that Increase the Glucuronidation and Biliary Excretion of Thyroxine Are Distinct from the Congeners that Enhance the Serum Disappearance of Thyroxine

    PubMed Central

    Martin, L. A.; Wilson, D. T.; Reuhl, K. R.; Gallo, M. A.

    2012-01-01

    Polychlorinated biphenyl (PCB) congeners differentially reduce serum thyroxine (T4) in rats, but little is known about their ability to affect biliary excretion of T4. Thus, male Sprague-Dawley rats were orally administered Aroclor-1254, Aroclor-1242 (32 mg/kg per day), PCB-95, PCB-99, PCB-118 (16 mg/kg per day), PCB-126 (40 μg/kg per day), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (3.9 μg/kg per day), or corn oil for 7 days. Twenty-four hours after the last dose, [125I]T4 was administered intravenously, and blood, bile, and urine samples were collected for quantifying [125I]T4 and in bile [125I]T4 metabolites. Serum T4 concentrations were reduced by all treatments, but dramatic reductions occurred in response to Aroclor-1254, PCB-99 [phenobarbital (PB)-type congener], and PCB-118 (mixed-type congener). None of the treatments increased urinary excretion of [125I]T4. Aroclor-1254, PCB-118, TCDD, and PCB-126 (TCDD-type congener) increased biliary excretion of T4-glucuronide by 850, 756, 710, and 573%, respectively, corresponding to marked induction of hepatic UDP-glucuronosyltransferase (UGT) activity toward T4. PCB-95 and PCB-99 did not induce UGT activity; therefore, the increased biliary excretion of T4-glucuronide was related to the affinity of congeners for the aryl hydrocarbon receptor. The disappearance of [125I]T4 from serum was rapid (within 15-min) and was increased by Aroclor-1254, PCB-99 and PCB-118. Thus, reductions in serum T4 in response to PCBs did not always correspond with UGT activity toward T4 or with increased biliary excretion of T4-glucuronide. The rapid disappearance of [125I]T4 from the serum of rats treated with PB-like PCBs suggests that increased tissue uptake of T4 is an additional mechanism by which PCBs may reduce serum T4. PMID:22187485

  4. Lightweight UDP Pervasive Protocol in Smart Home Environment Based on Labview

    NASA Astrophysics Data System (ADS)

    Kurniawan, Wijaya; Hannats Hanafi Ichsan, Mochammad; Rizqika Akbar, Sabriansyah; Arwani, Issa

    2017-04-01

    TCP (Transmission Control Protocol) technology in a reliable environment was not a problem, but not in an environment where the entire Smart Home network connected locally. Currently employing pervasive protocols using TCP technology, when data transmission is sent, it would be slower because they have to perform handshaking process in advance and could not broadcast the data. On smart home environment, it does not need large size and complex data transmission between monitoring site and monitoring center required in Smart home strain monitoring system. UDP (User Datagram Protocol) technology is quick and simple on data transmission process. UDP can broadcast messages because the UDP did not require handshaking and with more efficient memory usage. LabVIEW is a programming language software for processing and visualization of data in the field of data acquisition. This paper proposes to examine Pervasive UDP protocol implementations in smart home environment based on LabVIEW. UDP coded in LabVIEW and experiments were performed on a PC and can work properly.

  5. Man o' War Mutation in UDP-α-D-Xylose Synthase Favors the Abortive Catalytic Cycle and Uncovers a Latent Potential for Hexamer Formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, Jr., Richard M.; Polizzi, Samuel J.; Kadirvelraj, Renuka

    The man o’ war (mow) phenotype in zebrafish is characterized by severe craniofacial defects due to a missense mutation in UDP-α-D-xylose synthase (UXS), an essential enzyme in proteoglycan biosynthesis. The mow mutation is located in the UXS dimer interface ~16 Å away from the active site, suggesting an indirect effect on the enzyme mechanism. We have examined the structural and catalytic consequences of the mow mutation (R236H) in the soluble fragment of human UXS (hUXS), which shares 93% sequence identity with the zebrafish enzyme. In solution, hUXS dimers undergo a concentration-dependent association to form a tetramer. Sedimentation velocity studies showmore » that the R236H substitution induces the formation of a new hexameric species. Using two new crystal structures of the hexamer, we show that R236H and R236A substitutions cause a local unfolding of the active site that allows for a rotation of the dimer interface necessary to form the hexamer. The disordered active sites in the R236H and R236A mutant constructs displace Y231, the essential acid/base catalyst in the UXS reaction mechanism. The loss of Y231 favors an abortive catalytic cycle in which the reaction intermediate, UDP-α-D-4-keto-xylose, is not reduced to the final product, UDP-α-D-xylose. Surprisingly, the mow-induced hexamer is almost identical to the hexamers formed by the deeply divergent UXS homologues from Staphylococcus aureus and Helicobacter pylori (21% and 16% sequence identity, respectively). The persistence of a latent hexamer-building interface in the human enzyme suggests that the ancestral UXS may have been a hexamer.« less

  6. Milk Thistle Constituents Inhibit Raloxifene Intestinal Glucuronidation: A Potential Clinically Relevant Natural Product–Drug Interaction

    PubMed Central

    Gufford, Brandon T.; Chen, Gang; Vergara, Ana G.; Lazarus, Philip; Oberlies, Nicholas H.

    2015-01-01

    Women at high risk of developing breast cancer are prescribed selective estrogen response modulators, including raloxifene, as chemoprevention. Patients often seek complementary and alternative treatment modalities, including herbal products, to supplement prescribed medications. Milk thistle preparations, including silibinin and silymarin, are top-selling herbal products that may be consumed by women taking raloxifene, which undergoes extensive first-pass glucuronidation in the intestine. Key constituents in milk thistle, flavonolignans, were previously shown to be potent inhibitors of intestinal UDP-glucuronosyl transferases (UGTs), with IC50s ≤ 10 μM. Taken together, milk thistle preparations may perpetrate unwanted interactions with raloxifene. The objective of this work was to evaluate the inhibitory effects of individual milk thistle constituents on the intestinal glucuronidation of raloxifene using human intestinal microsomes and human embryonic kidney cell lysates overexpressing UGT1A1, UGT1A8, and UGT1A10, isoforms highly expressed in the intestine that are critical to raloxifene clearance. The flavonolignans silybin A and silybin B were potent inhibitors of both raloxifene 4′- and 6-glucuronidation in all enzyme systems. The Kis (human intestinal microsomes, 27–66 µM; UGT1A1, 3.2–8.3 µM; UGT1A8, 19–73 µM; and UGT1A10, 65–120 µM) encompassed reported intestinal tissue concentrations (20–310 µM), prompting prediction of clinical interaction risk using a mechanistic static model. Silibinin and silymarin were predicted to increase raloxifene systemic exposure by 4- to 5-fold, indicating high interaction risk that merits further evaluation. This systematic investigation of the potential interaction between a widely used herbal product and chemopreventive agent underscores the importance of understanding natural product–drug interactions in the context of cancer prevention. PMID:26070840

  7. Milk Thistle Constituents Inhibit Raloxifene Intestinal Glucuronidation: A Potential Clinically Relevant Natural Product-Drug Interaction.

    PubMed

    Gufford, Brandon T; Chen, Gang; Vergara, Ana G; Lazarus, Philip; Oberlies, Nicholas H; Paine, Mary F

    2015-09-01

    Women at high risk of developing breast cancer are prescribed selective estrogen response modulators, including raloxifene, as chemoprevention. Patients often seek complementary and alternative treatment modalities, including herbal products, to supplement prescribed medications. Milk thistle preparations, including silibinin and silymarin, are top-selling herbal products that may be consumed by women taking raloxifene, which undergoes extensive first-pass glucuronidation in the intestine. Key constituents in milk thistle, flavonolignans, were previously shown to be potent inhibitors of intestinal UDP-glucuronosyl transferases (UGTs), with IC50s ≤ 10 μM. Taken together, milk thistle preparations may perpetrate unwanted interactions with raloxifene. The objective of this work was to evaluate the inhibitory effects of individual milk thistle constituents on the intestinal glucuronidation of raloxifene using human intestinal microsomes and human embryonic kidney cell lysates overexpressing UGT1A1, UGT1A8, and UGT1A10, isoforms highly expressed in the intestine that are critical to raloxifene clearance. The flavonolignans silybin A and silybin B were potent inhibitors of both raloxifene 4'- and 6-glucuronidation in all enzyme systems. The Kis (human intestinal microsomes, 27-66 µM; UGT1A1, 3.2-8.3 µM; UGT1A8, 19-73 µM; and UGT1A10, 65-120 µM) encompassed reported intestinal tissue concentrations (20-310 µM), prompting prediction of clinical interaction risk using a mechanistic static model. Silibinin and silymarin were predicted to increase raloxifene systemic exposure by 4- to 5-fold, indicating high interaction risk that merits further evaluation. This systematic investigation of the potential interaction between a widely used herbal product and chemopreventive agent underscores the importance of understanding natural product-drug interactions in the context of cancer prevention. Copyright © 2015 by The American Society for Pharmacology and Experimental

  8. Base substitution mutations in uridinediphosphate-dependent glycosyltransferase 76G1 gene of Stevia rebaudiana causes the low levels of rebaudioside A: mutations in UGT76G1, a key gene of steviol glycosides synthesis.

    PubMed

    Yang, Yong-Heng; Huang, Su-Zhen; Han, Yu-Lin; Yuan, Hai-Yan; Gu, Chun-Sun; Zhao, Yan-Hai

    2014-07-01

    Steviol glycosides, extracted from the leaves of Stevia rebaudiana (Bert) Bertoni, are calorie-free sugar substitute of natural origin with intensely sweet (Boileau et al., 2012). Stevioside and rebaudioside A are the two main kinds of the diterpenic glycosides. We analyzed the concentration of stevioside and rebaudioside A in Stevia leaves of about 500 samples (hybrid progenies) and discovered a mutation plant "Z05" with very low levels of rebaudioside A. Because UGT76G1, a uridinediphosphate-dependent glycosyltransferases, is responsible for the conversion from stevioside to rebaudioside A (Richman et al., 2005), so mutation identification was done by sequencing the candidate gene, UGT76G1. In this study molecular analysis of two strains revealed a heterozygotic nonsense mutation of c.389T > G (p.L121X) in UGT76G1. Meanwhile, we found some amino acid substitutions significant change the protein structure. And the difference of enzyme activity between two strains proved the lack of functionality of UGT76G1 of the mutation "Z05". So the nonsense mutation and amino acid substitution mutation resulted in the low levels of rebaudioside A. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  9. Disposition of Naringenin via Glucuronidation Pathway Is Affected by Compensating Efflux Transporters of Hydrophilic Glucuronides

    PubMed Central

    Xu, Haiyan; Kulkarni, Kaustubh H.; Singh, Rashim; Yang, Zhen; Wang, Stephen W.J.; Tam, Vincent H.; Hu, Ming

    2010-01-01

    The purposes of this study were to investigate how efflux transporters and UDP-glucuronosyltransferases (UGT) affect the disposition of naringenin. A rat intestinal perfusion model with bile duct cannulation was used along with rat intestinal and liver microsomes. In the intestinal perfusion model, both absorption and subsequent excretion of naringenin metabolites were rapid and site-dependent (p < 0.05). Naringenin was absorbed the most in colon and its glucuronides were excreted the most in duodenum. In metabolism studies, the intrinsic clearance value of naringenin glucuronidation was the highest in jejunum microsomes, followed by liver, ileal and colonic microsomes. The rapid metabolism in microsomes did not always translate into more efficient excretion in the rat perfusion model, however, because of presence of rate-limiting efflux transporters. When used separately, MK-571 (an inhibitor of multidrug resistance-related protein 2 or Mrp2) or dipyridamole (an inhibitor of breast cancer resistance protein or Bcrp1) did not affect excretion of naringenin glucuronides, but when used together, they significantly (p < 0.05) decreased intestinal and biliary excretion of naringenin glucuronides. In conclusion, efflux transporters Mrp2 and Bcrp1 are shown to compensate for each other and enable the intestinal excretion of flavonoid (i.e., naringenin) glucuronides. PMID:19736994

  10. Nrf2 the rescue: effects of the antioxidative/electrophilic response on the liver.

    PubMed

    Klaassen, Curtis D; Reisman, Scott A

    2010-04-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that positively regulates the basal and inducible expression of a large battery of cytoprotective genes. These gene products include proteins that catalyze reduction reactions (NAD(P)H:quinone oxidoreductase 1, Nqo1), conjugation reactions (glutathione-S-transferases, Gsts and UDP-glucuronosyltransferases, Ugts), as well as the efflux of potentially toxic xenobiotics and xenobiotic conjugates (multidrug resistance-associated proteins, Mrps). The significance of Nrf2 in the liver has been established, as livers of Nrf2-null mice are more susceptible to various oxidative/electrophilic stress-induced pathologies than wild-type mice. In contrast, both pharmacological and genetic models of hepatic Nrf2 activation are protective against oxidative/electrophilic stress. Furthermore, because certain Nrf2-target genes in the liver could affect the distribution, metabolism, and excretion of xenobiotics, the effects of Nrf2 on the kinetics of drugs and other xenobiotics should also be considered, with a special emphasis on metabolism and excretion. Therefore, this review highlights the research that has contributed to the understanding of the importance of Nrf2 in toxicodynamics and toxicokinetics, especially that which pertains to the liver. 2010 Elsevier Inc. All rights reserved.

  11. Liver Zonation Index of Drug Transporter and Metabolizing Enzyme Protein Expressions in Mouse Liver Acinus.

    PubMed

    Tachikawa, Masanori; Sumiyoshiya, Yuna; Saigusa, Daisuke; Sasaki, Kazunari; Watanabe, Michitoshi; Uchida, Yasuo; Terasaki, Tetsuya

    2018-05-01

    The purpose of the present study was to clarify the molecular basis of zonated drug distributions in mouse liver based on the protein expression levels of transporters and metabolizing enzymes in periportal (PP) and pericentral (PC) vein regions of mouse hepatic lobules. The distributions of sulforhodamine 101 (SR-101), a substrate of organic anion transporting polypeptides (Oatps), and ribavirin, a substrate of equilibrative nucleoside transporter 1 (Ent1), were elucidated in frozen liver sections of mice, to which each compound had been intravenously administered. Regions strongly positive for SR-101 (SR-101 + ) and regions weakly positive or negative for SR-101 (SR-101 - ) were separated by laser microdissection. The zonated distribution of protein expression was quantified in terms of the liver zonation index. Quantitative targeted absolute proteomics revealed the selective expression of glutamine synthetase in the SR-101 + region, indicating predominant distribution of SR-101 in hepatocytes of the PC vein region. The protein levels of Oatp1a1, Oatp1b2, organic cation transporter 1 (Oct1), and cytochrome P450 (P450) 2e1 were greater in the PC vein regions, whereas the level of organic anion transporter 2 (Oat2) was greater in the PP vein regions. Mouse Oatp1a1 mediated SR-101 transport. On the other hand, there were no statistically significant differences in expression of Ent1, Na + -taurocholate cotransporting polypeptide, several canalicular transporters, P450 enzymes, and UDP-glucuronosyltransferases between the PP and PC vein regions. This is consistent with the almost uniform distribution of ribavirin in the liver. In conclusion, sinusoidal membrane transporters such as Oatp1a1, Oatp1b2, Oct1, and Oat2 appear to be determinants of the zonated distribution of drugs in the liver. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Identification of eukaryotic UDP-galactopyranose mutase inhibitors using the ThermoFAD assay.

    PubMed

    Martín Del Campo, Julia S; Eckshtain-Levi, Meital; Sobrado, Pablo

    2017-11-04

    Aspergillus fumigatus is a human pathogen responsible for deadly infections in immune-compromised patients. A potential strategy for treating A. fumigatus infections is by targeting the biosynthesis of cell wall components, such as galactofuranase, which is absent in humans. Galactofuranose biosynthesis is initiated by the flavoenzyme UDP-galactopyranose mutase (UGM), which converts UDP-galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-Galf). UGM requires the reduced form of the flavin for activity, which is obtained by reacting with NADPH. We aimed to identify inhibitors of UGM by screening a kinase inhibitor library using ThermoFAD, a flavin fluorescence thermal shift assay. The screening assay identified flavopiridol as a compound that increased the melting temperature of A. fumigatus UGM. Further characterization showed that flavopiridol is a non-competitive inhibitor of UGM and docking studies suggest that it binds in the active site. This compound does not inhibit the prokaryotic UGM from Mycobacteria tuberculosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Characterization of Arabidopsis sterol glycosyltransferase TTG15/UGT80B1 role during freeze and heat stress

    PubMed Central

    Mishra, Manoj K; Singh, Gaurav; Tiwari, Shalini; Singh, Ruchi; Kumari, Nishi; Misra, Pratibha

    2015-01-01

    Sterol glycosyltransferases regulate the properties of sterols by catalyzing the transfer of carbohydrate molecules to the sterol moiety for the synthesis of steryl glycosides and acyl steryl glycosides. We have analyzed the functional role of TTG15/UGT80B1 gene of Arabidopsis thaliana in freeze/thaw and heat shock stress using T-DNA insertional sgt knockout mutants. Quantitative study of spatial as well as temporal gene expression showed tissue-specific and dynamic expression patterns throughout the growth stages. Comparative responses of Col-0, TTG15/UGT80B1 knockout mutant and p35S:TTG15/UGT80B1 restored lines were analyzed under heat and freeze stress conditions. Heat tolerance was determined by survival of plants at 42°C for 3 h, MDA analysis and chlorophyll fluorescence image (CFI) analysis. Freezing tolerance was determined by survival of the plants at -1°C temperature in non-acclimatized (NA) and cold acclimatized (CA) conditions and also by CFI analysis, which revealed that, p35S:TTG15/UGT80B1 restored plants were more adapted to freeze stress than TTG15/UGT80B1 knockout mutant under CA condition. HPLC analysis of the plants showed reduced sterol glycoside in mutant seedlings as compared to other genotypes. Following CA condition, both β-sitosterol and sitosterol glycoside quantity was more in Col-0 and p35S:TTG15/UGT80B1 restored lines, whereas it was significantly less in TTG15/UGT80B1 knockout mutants. From these results, it may be concluded that due to low content of free sterols and sterol glycosides, the physiology of mutant plants was more affected during both, the chilling and heat stress. PMID:26382564

  14. Thyroid hormones and the hepatic handling of bilirubin. I. Effects of hypothyroidism and hyperthyroidism on the hepatic transport of bilirubin mono- and diconjugates in the Wistar rat.

    PubMed

    Van Steenbergen, W; Fevery, J; De Vos, R; Leyten, R; Heirwegh, K P; De Groote, J

    1989-02-01

    The effects of thyroidectomy and of thyroid hormone administration on the hepatic transport of endogenous bilirubin were investigated in the Wistar R/APfd rat. Hypothyroidism resulted in an enhanced hepatic bilirubin UDP-glucuronosyltransferase activity and in a decreased p-nitrophenol transferase activity. It caused a cholestatic condition with a 50% decrease in bile flow and bile salt excretion, and an increased proportion of conjugated bilirubin in serum. The biliary output of unconjugated and monoconjugated bilirubins decreased in parallel by about 65%, whereas the excretion rate of the diconjugate dropped by only 47%, resulting in an increased di- to monoconjugate ratio in bile. Hyperthyroidism was characterized by a decreased bilirubin and an increased p-nitrophenol transferase activity, and by an augmented bilirubin output in bile. The output of unconjugated and monoconjugated bilirubins increased in parallel by about 50 or 100%, whereas the excretion of the diconjugate increased by only 20 to 50%, depending on the dose of thyroxine administered; this resulted in a decreased di- to monoconjugate ratio in bile. A linear positive relationship was found between bilirubin UDP-glucuronosyltransferase activity and the ratio of bilirubin di- to monoconjugates present in bile or formed by in vitro incubation of liver homogenates at low concentration of bilirubin (10 to 15 microM), indicating that bile pigment composition is mainly determined by the conjugation activity in the liver. The inverse relationship observed between hepatic beta-glucuronidase activity and the ratio of di- to monoconjugates in bile warrants further investigation to analyze whether this enzyme activity also plays a possible role in the changes in bile pigment composition in hypo- and hyperthyroid rats.

  15. Crystal Structures and Small-angle X-ray Scattering Analysis of UDP-galactopyranose Mutase from the Pathogenic Fungus Aspergillus fumigatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhatwalia, Richa; Singh, Harkewal; Oppenheimer, Michelle

    2015-10-15

    UDP-galactopyranose mutase (UGM) is a flavoenzyme that catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose, which is a central reaction in galactofuranose biosynthesis. Galactofuranose has never been found in humans but is an essential building block of the cell wall and extracellular matrix of many bacteria, fungi, and protozoa. The importance of UGM for the viability of many pathogens and its absence in humans make UGM a potential drug target. Here we report the first crystal structures and small-angle x-ray scattering data for UGM from the fungus Aspergillus fumigatus, the causative agent of aspergillosis. The structures reveal that Aspergillus UGM hasmore » several extra secondary and tertiary structural elements that are not found in bacterial UGMs yet are important for substrate recognition and oligomerization. Small-angle x-ray scattering data show that Aspergillus UGM forms a tetramer in solution, which is unprecedented for UGMs. The binding of UDP or the substrate induces profound conformational changes in the enzyme. Two loops on opposite sides of the active site move toward each other by over 10 {angstrom} to cover the substrate and create a closed active site. The degree of substrate-induced conformational change exceeds that of bacterial UGMs and is a direct consequence of the unique quaternary structure of Aspergillus UGM. Galactopyranose binds at the re face of the FAD isoalloxazine with the anomeric carbon atom poised for nucleophilic attack by the FAD N5 atom. The structural data provide new insight into substrate recognition and the catalytic mechanism and thus will aid inhibitor design.« less

  16. Characterization of Recombinant UDP- and ADP-Glucose Pyrophosphorylases and Glycogen Synthase To Elucidate Glucose-1-Phosphate Partitioning into Oligo- and Polysaccharides in Streptomyces coelicolor

    PubMed Central

    Asención Diez, Matías D.; Peirú, Salvador; Demonte, Ana M.; Gramajo, Hugo

    2012-01-01

    Streptomyces coelicolor exhibits a major secondary metabolism, deriving important amounts of glucose to synthesize pigmented antibiotics. Understanding the pathways occurring in the bacterium with respect to synthesis of oligo- and polysaccharides is of relevance to determine a plausible scenario for the partitioning of glucose-1-phosphate into different metabolic fates. We report the molecular cloning of the genes coding for UDP- and ADP-glucose pyrophosphorylases as well as for glycogen synthase from genomic DNA of S. coelicolor A3(2). Each gene was heterologously expressed in Escherichia coli cells to produce and purify to electrophoretic homogeneity the respective enzymes. UDP-glucose pyrophosphorylase (UDP-Glc PPase) was characterized as a dimer exhibiting a relatively high Vmax in catalyzing UDP-glucose synthesis (270 units/mg) and with respect to dTDP-glucose (94 units/mg). ADP-glucose pyrophosphorylase (ADP-Glc PPase) was found to be tetrameric in structure and specific in utilizing ATP as a substrate, reaching similar activities in the directions of ADP-glucose synthesis or pyrophosphorolysis (Vmax of 0.15 and 0.27 units/mg, respectively). Glycogen synthase was arranged as a dimer and exhibited specificity in the use of ADP-glucose to elongate α-1,4-glucan chains in the polysaccharide. ADP-Glc PPase was the only of the three enzymes exhibiting sensitivity to allosteric regulation by different metabolites. Mannose-6-phosphate, phosphoenolpyruvate, fructose-6-phosphate, and glucose-6-phosphate behaved as major activators, whereas NADPH was a main inhibitor of ADP-Glc PPase. The results support a metabolic picture where glycogen synthesis occurs via ADP-glucose in S. coelicolor, with the pathway being strictly regulated in connection with other routes involved with oligo- and polysaccharides, as well as with antibiotic synthesis in the bacterium. PMID:22210767

  17. Improving UDP/IP Transmission Without Increasing Congestion

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott

    2006-01-01

    Datagram Retransmission (DGR) is a computer program that, within certain limits, ensures the reception of each datagram transmitted under the User Datagram Protocol/Internet Protocol. [User Datagram Protocol (UDP) is considered unreliable because it does not involve a reliability-ensuring connection-initiation dialogue between sender and receiver. UDP is well suited to issuing of many small messages to many different receivers.] Unlike prior software for ensuring reception of UDP datagrams, DGR does not contribute to network congestion by retransmitting data more frequently as an ever-increasing number of messages and acknowledgements is lost. Instead, DGR does just the opposite: DGR includes an adaptive timeout-interval- computing component that provides maximum opportunity for reception of acknowledgements, minimizing retransmission. By monitoring changes in the rate at which message-transmission transactions are completed, DGR detects changes in the level of congestion and responds by imposing varying degrees of delay on the transmission of new messages. In addition, DGR maximizes throughput by not waiting for acknowledgement of a message before sending the next message. All DGR communication is asynchronous, to maximize efficient utilization of network connections. DGR manages multiple concurrent datagram transmission and acknowledgement conversations.

  18. Pharmacokinetic Analysis of Irinotecan Plus Bevacizumab in Patients with Advanced Solid Tumors

    PubMed Central

    Denlinger, Crystal S.; Blanchard, Rebecca; Xu, Lu; Bernaards, Coen; Litwin, Samuel; Spittle, Cynthia; Berg, Daniel J.; McLaughlin, Susan; Redlinger, Maryann; Dorr, Andrew; Hambleton, Julie; Holden, Scott; Kearns, Anne; Kenkare-Mitra, Sara; Lum, Bert; Meropol, Neal J.; O'Dwyer, Peter J.

    2009-01-01

    Purpose To evaluate the effect of bevacizumab on the pharmacokinetics (PK) of irinotecan and its active metabolite. Exploratory analyses of the impact of variability in uridine diphosphate glucuronosyltransferase 1A (UGT1A) genes on irinotecan metabolism and toxicity were conducted. Methods This was an open-labeled, fixed-sequence study of bevacizumab with FOLFIRI (irinotecan, leucovorin, and infusional 5-fluorouracil). Pharmacokinetic assessments were conducted in cycles 1 and 3. Results Forty-five subjects were enrolled. No difference in dose-normalized AUC0-last for irinotecan and SN-38 between irinotecan administered alone or in combination with bevacizumab was identified. Leukopenia was associated with higher exposure to both irinotecan and SN-38. UGT1A1 polymorphisms were associated with variability in irinotecan PK. Gastrointestinal toxicity was associated with UGT1A6 genotype. No other associations between UGT1A genotypes and toxicity were detected. Conclusion Bevacizumab does not affect irinotecan PK when administered concurrently. A variety of pharmacogenetic relationships may influence the pharmacokinetics of irinotecan and its toxicity. PMID:19415281

  19. Reserpine Inhibit the JB6 P+ Cell Transformation Through Epigenetic Reactivation of Nrf2-Mediated Anti-oxidative Stress Pathway.

    PubMed

    Hong, Bo; Su, Zhengyuan; Zhang, Chengyue; Yang, Yuqing; Guo, Yue; Li, Wenjing; Kong, Ah-Ng Tony

    2016-05-01

    Nuclear factor erythroid-2 related factor 2 (Nrf2) is a crucial transcription factor that regulates the expression of defensive antioxidants and detoxification enzymes in cells. In a previous study, we showed that expression of the Nrf2 gene is regulated by an epigenetic modification. Rauvolfia verticillata, a traditional Chinese herbal medicine widely used in China, possesses anticancer and antioxidant effects. In this study, we investigated how Nrf2 is epigenetically regulated by reserpine, the main active component in R. verticillata, in mouse skin epidermal JB6 P+ cells. Reserpine induced ARE (antioxidant response element)-luciferase activity in HepG2-C8 cells. Accordingly, in JB6 P+ cells, it upregulated the mRNA and protein levels of Nrf2 and its downstream target genes heme oxygenase-1 (HO-1) and quinone oxidoreductase 1 (NQO1), while it only increased the protein level of UDP-glucuronosyltransferase 1A1 (UGT1A1). Furthermore, reserpine decreased the TPA (12-O-tetradecanoylphorbol-13-acetate)-induced colony formation of JB6 cells in a dose-dependent manner. DNA sequencing and methylated DNA immunoprecipitation further demonstrated the demethylation effect of reserpine on the first 15 CpGs of the Nrf2 promoter in JB6 P+ cells. Reserpine also reduced the mRNA and protein expression of DNMT1 (DNA methyltransferase 1), DNMT3a (DNA methyltransferases 3a), and DNMT3b (DNA methyltransferases 3b). Moreover, reserpine induced Nrf2 expression via an epigenetic pathway in skin epidermal JB6 P+ cells, enhancing the protective antioxidant activity and decreasing TPA-induced cell transformation. These results suggest that reserpine exhibits a cancer preventive effect by reactivating Nrf2 and inducing the expression of target genes involved in cellular protection, potentially providing new insight into the chemoprevention of skin cancer using reserpine.

  20. Overlapping and distinct roles of Aspergillus fumigatus UDP-glucose 4-epimerases in galactose metabolism and the synthesis of galactose-containing cell wall polysaccharides.

    PubMed

    Lee, Mark J; Gravelat, Fabrice N; Cerone, Robert P; Baptista, Stefanie D; Campoli, Paolo V; Choe, Se-In; Kravtsov, Ilia; Vinogradov, Evgeny; Creuzenet, Carole; Liu, Hong; Berghuis, Albert M; Latgé, Jean-Paul; Filler, Scott G; Fontaine, Thierry; Sheppard, Donald C

    2014-01-17

    The cell wall of Aspergillus fumigatus contains two galactose-containing polysaccharides, galactomannan and galactosaminogalactan, whose biosynthetic pathways are not well understood. The A. fumigatus genome contains three genes encoding putative UDP-glucose 4-epimerases, uge3, uge4, and uge5. We undertook this study to elucidate the function of these epimerases. We found that uge4 is minimally expressed and is not required for the synthesis of galactose-containing exopolysaccharides or galactose metabolism. Uge5 is the dominant UDP-glucose 4-epimerase in A. fumigatus and is essential for normal growth in galactose-based medium. Uge5 is required for synthesis of the galactofuranose (Galf) component of galactomannan and contributes galactose to the synthesis of galactosaminogalactan. Uge3 can mediate production of both UDP-galactose and UDP-N-acetylgalactosamine (GalNAc) and is required for the production of galactosaminogalactan but not galactomannan. In the absence of Uge5, Uge3 activity is sufficient for growth on galactose and the synthesis of galactosaminogalactan containing lower levels of galactose but not the synthesis of Galf. A double deletion of uge5 and uge3 blocked growth on galactose and synthesis of both Galf and galactosaminogalactan. This study is the first survey of glucose epimerases in A. fumigatus and contributes to our understanding of the role of these enzymes in metabolism and cell wall synthesis.

  1. Crystal structures of active fully assembled substrate- and product-bound complexes of UDP-N-acetylmuramic acid:L-alanine ligase (MurC) from Haemophilus influenzae.

    PubMed

    Mol, Clifford D; Brooun, Alexei; Dougan, Douglas R; Hilgers, Mark T; Tari, Leslie W; Wijnands, Robert A; Knuth, Mark W; McRee, Duncan E; Swanson, Ronald V

    2003-07-01

    UDP-N-acetylmuramic acid:L-alanine ligase (MurC) catalyzes the addition of the first amino acid to the cytoplasmic precursor of the bacterial cell wall peptidoglycan. The crystal structures of Haemophilus influenzae MurC in complex with its substrate UDP-N-acetylmuramic acid (UNAM) and Mg(2+) and of a fully assembled MurC complex with its product UDP-N-acetylmuramoyl-L-alanine (UMA), the nonhydrolyzable ATP analogue AMPPNP, and Mn(2+) have been determined to 1.85- and 1.7-A resolution, respectively. These structures reveal a conserved, three-domain architecture with the binding sites for UNAM and ATP formed at the domain interfaces: the N-terminal domain binds the UDP portion of UNAM, and the central and C-terminal domains form the ATP-binding site, while the C-terminal domain also positions the alanine. An active enzyme structure is thus assembled at the common domain interfaces when all three substrates are bound. The MurC active site clearly shows that the gamma-phosphate of AMPPNP is positioned between two bound metal ions, one of which also binds the reactive UNAM carboxylate, and that the alanine is oriented by interactions with the positively charged side chains of two MurC arginine residues and the negatively charged alanine carboxyl group. These results indicate that significant diversity exists in binding of the UDP moiety of the substrate by MurC and the subsequent ligases in the bacterial cell wall biosynthesis pathway and that alterations in the domain packing and tertiary structure allow the Mur ligases to bind sequentially larger UNAM peptide substrates.

  2. Carbohydrate metabolism changes in Prunus persica gummosis infected with Lasiodiplodia theobromae.

    PubMed

    Li, Z; Gao, L; Wang, Y T; Zhu, W; Ye, J L; Li, G H

    2014-05-01

    Peach gummosis represents a significant global disease of stone fruit trees and a major disease in the south peach production area of the Yangtze River of China. In this study, the carbohydrate composition of peach shoots during infection by Lasiodiplodia theobromae was examined. The expression of genes related to metabolic enzymes was also investigated. Control wounded and noninoculated tissue, lesion tissue, and wounded and inoculated surrounding lesion tissue of peach shoots were analyzed. Soluble sugars, glucose, mannose, arabinose, and xylose significantly increased in inoculated tissues of peach shoots compared with control tissues at different times after inoculation. Accumulation of polysaccharides was also observed by section observation and periodic acid Schiff's reagent staining during infection. Analysis using quantitative reverse-transcription polymerase chain reaction revealed that the abundance of key transcripts on the synthesis pathway of uridine diphosphate (UDP)-D-glucuronate, UDP-D-galactose, and UDP-D-arabinose increased but the synthesis of L-galactose and guanosine diphosphate-L-galactose were inhibited. After inoculation, the transcript levels of sugar transport-related genes (namely, SUT, SOT, GMT, and UGT) was induced. These changes in sugar content and gene expression were directly associated with peach gum polysaccharide formation and may be responsible for the symptoms of peach gummosis.

  3. Association between UGT2B7 gene polymorphisms and fentanyl sensitivity in patients undergoing painful orthognathic surgery

    PubMed Central

    Muraoka, Wataru; Nishizawa, Daisuke; Fukuda, Kenichi; Kasai, Shinya; Hasegawa, Junko; Wajima, Koichi; Nakagawa, Taneaki

    2016-01-01

    Background Fentanyl is often used instead of morphine for the treatment of pain because it has fewer side effects. The metabolism of morphine by glucuronidation is known to be influenced by polymorphisms of the UGT2B7 gene. Some metabolic products of fentanyl are reportedly metabolized by glucuronate conjugation. The genes that are involved in the metabolic pathway of fentanyl may also influence fentanyl sensitivity. We analyzed associations between fentanyl sensitivity and polymorphisms of the UGT2B7 gene to clarify the hereditary determinants of individual differences in fentanyl sensitivity. Results This study examined whether single-nucleotide polymorphisms (SNPs) of the UGT2B7 gene affect cold pain sensitivity and the analgesic effects of fentanyl, evaluated by a standardized pain test and fentanyl requirements in healthy Japanese subjects who underwent uniform surgical procedures. The rs7439366 SNP of UGT2B7 is reportedly associated with the metabolism and analgesic effects of morphine. We found that this SNP is also associated with the analgesic effects of fentanyl in the cold pressor-induced pain test. It suggested that the C allele of the rs7439366 SNP may enhance analgesic efficacy. Two SNPs of UGT2B7, rs4587017 and rs1002849, were also found to be novel SNPs that may influence the analgesic effects of fentanyl in the cold pressor-induced pain test. Conclusions Fentanyl sensitivity for cold pressor-induced pain was associated with the rs7439366, rs4587017, and rs1002849 SNPs of the UGT2B7 gene. Our findings may provide valuable information for achieving satisfactory pain control and open to new avenues for personalized pain treatment. PMID:28256933

  4. Deletion of the Lymantria dispar multicapsid nucleopolyhedrovirus ecdysteroid UDP-glucosyl transferase gene enhances viral killing speed in the last instar of the gypsy moth

    Treesearch

    James M. Slavicek; Holly J.R. Popham; C.I. Riegel

    1999-01-01

    The Lymantria dispar multicapsid nucleopolyhedrovirus (LdMNPV) is used on a limited basis as a gypsy moth (L. dispar) control agent. In an effort to improve the efficacy (i.e., killing speed) of the LdMNPV, we generated a recombinant viral strain (vEGT-) that does not produce the enzyme ecdysteroid UDP-glucosyltransferase (EGT). We...

  5. Regorafenib induced severe toxic hepatitis: characterization and discussion.

    PubMed

    Sacré, Anne; Lanthier, Nicolas; Dano, Hélène; Aydin, Selda; Leggenhager, Daniela; Weber, Achim; Dekairelle, Anne-France; De Cuyper, Astrid; Gala, Jean-Luc; Humblet, Yves; Sempoux, Christine; Van den Eynde, Marc

    2016-11-01

    Regorafenib is the first small-molecule multikinase inhibitor which showed survival benefits in pretreated metastatic colorectal cancer (mCRC) patients. Besides classical adverse events of this drug class, hepatotoxicity has been described as a frequent side effect. Patients with refractory mCRC treated with regorafenib in our institution were reviewed. Severe treatment-related liver toxicity was investigated. Clinical history, liver histology and genetic assessment (sequence analysis) of cytochrome P3A4 (CYP3A4) and uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) involved in regorafenib metabolization were here reported for patients with severe hepatotoxicity. Among the 93 reviewed patients, 3 presented severe and icteric toxic hepatitis which was fatal for 1 patient. Histopathological liver lesions were different depending on the onset of hepatotoxicity (acute or subacute): acinar zone 3 necrosis in case of acute symptoms, and portal tract inflammation with porto-central bridging and fibrosis in the delayed presentation. None of the patients had CYP3A4 gene mutations. Similar polymorphisms in UGT1A9 gene promoter region (UGT1A9 variant -118T 9>10 [rs3832043]) were found in both patients who presented acute hepatitis. Moreover, it appears retrospectively that both of them already experienced significant toxicity under irinotecan-based chemotherapy. This is the first report of severe hepatotoxicity with available liver histology and genetic assessment of enzymes involved in regorafenib metabolization. This report also reminds the importance of close liver tests monitoring during regorafenib treatment. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Vitamin C. Biosynthesis, recycling and degradation in mammals.

    PubMed

    Linster, Carole L; Van Schaftingen, Emile

    2007-01-01

    Vitamin C, a reducing agent and antioxidant, is a cofactor in reactions catalyzed by Cu(+)-dependent monooxygenases and Fe(2+)-dependent dioxygenases. It is synthesized, in vertebrates having this capacity, from d-glucuronate. The latter is formed through direct hydrolysis of uridine diphosphate (UDP)-glucuronate by enzyme(s) bound to the endoplasmic reticulum membrane, sharing many properties with, and most likely identical to, UDP-glucuronosyltransferases. Non-glucuronidable xenobiotics (aminopyrine, metyrapone, chloretone and others) stimulate the enzymatic hydrolysis of UDP-glucuronate, accounting for their effect to increase vitamin C formation in vivo. Glucuronate is converted to l-gulonate by aldehyde reductase, an enzyme of the aldo-keto reductase superfamily. l-Gulonate is converted to l-gulonolactone by a lactonase identified as SMP30 or regucalcin, whose absence in mice leads to vitamin C deficiency. The last step in the pathway of vitamin C synthesis is the oxidation of l-gulonolactone to l-ascorbic acid by l-gulonolactone oxidase, an enzyme associated with the endoplasmic reticulum membrane and deficient in man, guinea pig and other species due to mutations in its gene. Another fate of glucuronate is its conversion to d-xylulose in a five-step pathway, the pentose pathway, involving identified oxidoreductases and an unknown decarboxylase. Semidehydroascorbate, a major oxidation product of vitamin C, is reconverted to ascorbate in the cytosol by cytochrome b(5) reductase and thioredoxin reductase in reactions involving NADH and NADPH, respectively. Transmembrane electron transfer systems using ascorbate or NADH as electron donors serve to reduce semidehydroascorbate present in neuroendocrine secretory vesicles and in the extracellular medium. Dehydroascorbate, the fully oxidized form of vitamin C, is reduced spontaneously by glutathione, as well as enzymatically in reactions using glutathione or NADPH. The degradation of vitamin C in mammals is

  7. [Examination of UGT1A1 polymorphisms and irinotecan-induced neutropenia in patients with Colorectal cancer].

    PubMed

    Teruya, Tsuyoshi; Nakachi, Atsushi; Shimabukuro, Nobuhiro; Toritsuka, Daisuke; Azuma, Yasuharu; Hanashiro, Kiyotoshi; Nishiki, Takehiro; Ota, Morihito; Shimabuku, Masamori; Shiroma, Hiroshi

    2015-05-01

    Irinotecan is an effective drug in the treatment of colorectal cancer. However, there are reports of an association between certain UGT1A1 genetic polymorphisms and the development of adverse reactions(such as neutropenia)related to irinotecan metabolism. We retrospectively investigated UGT1A1 genetic polymorphisms and the occurrences of irinotecan-induced neutropenia in 25 patients of colorectal cancer at our hospital. Analysis of UGT1A1 genetic polymorphisms in these patients yielded the following classifications: a wild-type group( *1/*1)comprising 13 patients(52%), a heterozygous group(*1/ *28, *1/*6)of 10 patients(40%), and a homozygous group(*28/*28, *6/*6)of 2 patients(8%). The frequency of neutropenia was 15.4%(2/13)in the wild-type group, 30%(3/10)in the heterozygous group, and 100%(2/2)in the homozygous group. Grade 4 neutropenia only occurred in the homozygous group. These results suggest that a dose reduction of irinotecan should be considered for patients who fall into the homozygous group upon analysis of their UGT1A1 genetic polymorphisms, as such patients might be susceptible to grade 4 neutropenia.

  8. Body Fat Percentage Is a Major Determinant of Total Bilirubin Independently of UGT1A1*28 Polymorphism in Young Obese

    PubMed Central

    Kohlova, Michaela; Bronze-da-Rocha, Elsa; Fernandes, João; Costa, Elísio; Catarino, Cristina; Aires, Luísa; Mansilha, Helena Ferreira; Rocha-Pereira, Petronila; Quintanilha, Alexandre; Rêgo, Carla; Santos-Silva, Alice

    2014-01-01

    Objectives Bilirubin has potential antioxidant and anti-inflammatory properties. The UGT1A1*28 polymorphism (TA repeats in the promoter region) is a major determinant of bilirubin levels and recent evidence suggests that raised adiposity may also be a contributing factor. We aimed to study the interaction between UGT1A1 polymorphism, hematological and anthropometric variables with total bilirubin levels in young individuals. Methods 350 obese (mean age of 11.6 years; 52% females) and 79 controls (mean age of 10.5 years; 59% females) were included. Total bilirubin and C-reactive protein (CRP) plasma levels, hemogram, anthropometric data and UGT1A1 polymorphism were determined. In a subgroup of 74 obese and 40 controls body composition was analyzed by dual-energy X-ray absorptiometry. Results The UGT1A1 genotype frequencies were 49.9%, 42.7% and 7.5% for 6/6, 6/7 and 7/7 genotypes, respectively. Patients with 7/7 genotype presented the highest total bilirubin levels, followed by 6/7 and 6/6 genotypes. Compared to controls, obese patients presented higher erythrocyte count, hematocrit, hemoglobin and CRP levels, but no differences in bilirubin or in UGT1A1 genotype distribution. Body fat percentage was inversely correlated with bilirubin in obese patients but not in controls. This inverse association was observed either in 6/7 or 6/6 genotype obese patients. UGT1A1 polymorphism and body fat percentage were the main factors affecting bilirubin levels within obese patients (linear regression analysis). Conclusion In obese children and adolescents, body fat composition and UGT1A1 polymorphism are independent determinants of total bilirubin levels. Obese individuals with 6/6 UGT1A1 genotype and higher body fat mass may benefit from a closer clinical follow-up. PMID:24901842

  9. Crystal Structures of Active Fully Assembled Substrate- and Product-Bound Complexes of UDP-N-Acetylmuramic Acid:l-Alanine Ligase (MurC) from Haemophilus influenzae

    PubMed Central

    Mol, Clifford D.; Brooun, Alexei; Dougan, Douglas R.; Hilgers, Mark T.; Tari, Leslie W.; Wijnands, Robert A.; Knuth, Mark W.; McRee, Duncan E.; Swanson, Ronald V.

    2003-01-01

    UDP-N-acetylmuramic acid:l-alanine ligase (MurC) catalyzes the addition of the first amino acid to the cytoplasmic precursor of the bacterial cell wall peptidoglycan. The crystal structures of Haemophilus influenzae MurC in complex with its substrate UDP-N-acetylmuramic acid (UNAM) and Mg2+ and of a fully assembled MurC complex with its product UDP-N-acetylmuramoyl-l-alanine (UMA), the nonhydrolyzable ATP analogue AMPPNP, and Mn2+ have been determined to 1.85- and 1.7-Å resolution, respectively. These structures reveal a conserved, three-domain architecture with the binding sites for UNAM and ATP formed at the domain interfaces: the N-terminal domain binds the UDP portion of UNAM, and the central and C-terminal domains form the ATP-binding site, while the C-terminal domain also positions the alanine. An active enzyme structure is thus assembled at the common domain interfaces when all three substrates are bound. The MurC active site clearly shows that the γ-phosphate of AMPPNP is positioned between two bound metal ions, one of which also binds the reactive UNAM carboxylate, and that the alanine is oriented by interactions with the positively charged side chains of two MurC arginine residues and the negatively charged alanine carboxyl group. These results indicate that significant diversity exists in binding of the UDP moiety of the substrate by MurC and the subsequent ligases in the bacterial cell wall biosynthesis pathway and that alterations in the domain packing and tertiary structure allow the Mur ligases to bind sequentially larger UNAM peptide substrates. PMID:12837790

  10. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions.

    PubMed

    Ismail, Hanafy M; O'Neill, Paul M; Hong, David W; Finn, Robert D; Henderson, Colin J; Wright, Aaron T; Cravatt, Benjamin F; Hemingway, Janet; Paine, Mark J I

    2013-12-03

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or "pyrethrome." Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of unique tools for disease control.

  11. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions

    PubMed Central

    Ismail, Hanafy M.; O’Neill, Paul M.; Hong, David W.; Finn, Robert D.; Henderson, Colin J.; Wright, Aaron T.; Cravatt, Benjamin F.; Hemingway, Janet; Paine, Mark J. I.

    2013-01-01

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or “pyrethrome.” Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450–insecticide interactions and aiding the development of unique tools for disease control. PMID:24248381

  12. Cloning and expression of a novel UDP-GlcNAc:alpha-D-mannoside beta1,2-N-acetylglucosaminyltransferase homologous to UDP-GlcNAc:alpha-3-D-mannoside beta1,2-N-acetylglucosaminyltransferase I.

    PubMed Central

    Zhang, Wenli; Betel, Doron; Schachter, Harry

    2002-01-01

    A TBLASTN search with human UDP-GlcNAc:alpha-3-d-mannoside beta-1,2-N-acetylglucosaminyltransferase I (GnT I; EC 2.4.1.101) as a probe identified human and mouse Unigenes encoding a protein similar to human GnT I (34% identity over 340 amino acids). The recombinant protein converted Man(alpha1-6)[Man(alpha1-3)]Man(beta1-)O-octyl to Man(alpha1-6)[GlcNAc(beta1-2)Man(alpha1-3)]Man(beta1-)O-octyl, the reaction catalysed by GnT I. The enzyme also added GlcNAc to Man(alpha1-6)[GlcNAc(beta1-2)Man(alpha1-3)]Man(beta1-)O-octyl (the substrate for beta-1,2-N-acetylglucosaminyltransferase II), Man(alpha1-)O-benzyl [with K(m) values of approximately 0.3 and >30 mM for UDP-GlcNAc and Man(alpha1-)O-benzyl respectively] and the glycopeptide CYA[Man(alpha1-)O-T]AV (K(m) approximately 12 mM). The product formed with Man(alpha1-)O-benzyl was identified as GlcNAc(beta1-2)Man(alpha1-)O-benzyl by proton NMR spectroscopy. The enzyme was named UDP-GlcNAc:alpha-d-mannoside beta-1,2-N-acetylglucosaminyltransferase I.2 (GnT I.2). The human gene mapped to chromosome 1. Northern-blot analysis showed a 3.3 kb message with a wide tissue distribution. The cDNA has a 1980 bp open reading frame encoding a 660 amino acid protein with a type-2 domain structure typical of glycosyltransferases. Man(beta1-)O-octyl, Man(beta1-)O-p-nitrophenyl and GlcNAc(beta1-2)Man(alpha1-6)[GlcNAc(beta1-2)Man(alpha1-3)]Man(beta1-4)GlcNAc(beta1-4)GlcNAc(beta1-)O-Asn were not acceptors, indicating that GnT I.2 is specific for alpha-linked terminal Man and does not have N-acetylglucosaminyltransferase III, IV, V, VII or VIII activities. CYA[Man(alpha1-)O-T]AV was between three and seven times more effective as an acceptor than the other substrates, suggesting that GnT I.2 may be responsible for the synthesis of the GlcNAc(beta1-2)Man(alpha1-)O-Ser/Thr moiety on alpha-dystroglycan and other O-mannosylated proteins. PMID:11742540

  13. Enhanced absorption and inhibited metabolism of emodin by 2, 3, 5, 4'-tetrahydroxystilbene-2-O-β-D-glucopyranoside: Possible mechanisms for Polygoni Multiflori Radix-induced liver injury.

    PubMed

    Yu, Qiong; Jiang, Li-Long; Luo, Na; Fan, Ya-Xi; Ma, Jiang; Li, Ping; Li, Hui-Jun

    2017-06-01

    Polygoni Multiflori Radix (PMR) has been commonly used as a tonic in China for centuries. However, PMR-associated hepatotoxicity is becoming a safety issue. In our previous in vivo study, an interaction between stilbenes and anthraquinones has been discovered and a hypothesis is proposed that the interaction between stilbene glucoside-enriching fraction and emodin may contribute to the side effects of PMR. To further support our previous in vivo results in rats, the present in vitro study was designed to evaluate the effects of 2, 3, 5, 4'-tetrahydroxystilbene-2-O-β-D-glucopyranoside (TSG) on the cellular absorption and human liver microsome metabolism of emodin. The obtained results indicated that the absorption of emodin in Caco-2 cells was enhanced and the metabolism of emodin in human liver microsomes was inhibited after TSG treatment. The effects of the transport inhibitors on the cellular emodin accumulation were also examined. Western blot assay suggested that the depressed metabolism of emodin could be attributed to the down-regulation of UDP-glucuronosyltransferases (UGTs) 1A8, 1A10, and 2B7. These findings definitively demonstrated the existence of interaction between TSG and emodin, which provide a basis for a better understanding of the underlying mechanism for PMR-induced liver injury. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  14. Underlying mechanism of drug-drug interaction between pioglitazone and gemfibrozil: Gemfibrozil acyl-glucuronide is a mechanism-based inhibitor of CYP2C8.

    PubMed

    Takagi, Motoi; Sakamoto, Masaya; Itoh, Tomoo; Fujiwara, Ryoichi

    2015-08-01

    While co-administered gemfibrozil can increase the area under the concentration/time curve (AUC) of pioglitazone more than 3-fold, the underlying mechanism of the drug-drug interaction between gemfibrozil and pioglitazone has not been fully understood. In the present study, gemfibrozil preincubation time-dependently inhibited the metabolism of pioglitazone in the cytochrome P450 (CYP)- and UDP-glucuronosyltransferase (UGT)-activated human liver microsomes. We estimated the kinact and K'app values, which are the maximum inactivation rate constant and the apparent dissociation constant, of gemfibrozil to be 0.071 min(-1) and 57.3 μM, respectively. In this study, the kobs, in vivo value was defined as a parameter that indicates the potency of the mechanism-based inhibitory effect at the blood drug concentration in vivo. The kobs, in vivo values of potent mechanism-based inhibitors, clarithromycin and erythromycin, were estimated to be 0.0096 min(-1) and 0.0051 min(-1), respectively. The kobs, in vivo value of gemfibrozil was 0.0060 min(-1), which was comparable to those of clarithromycin and erythromycin, suggesting that gemfibrozil could be a mechanism-based inhibitor as potent as clarithromycin and erythromycin in vivo. Copyright © 2015 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  15. Biochemical characterization of an inhibitor of Escherichia coli UDP-N-acetylmuramyl-l-alanine ligase.

    PubMed

    Ehmann, David E; Demeritt, Julie E; Hull, Kenneth G; Fisher, Stewart L

    2004-05-06

    UDP-N-acetylmuramyl-l-alanine ligase (MurC) is an essential bacterial enzyme involved in peptidoglycan biosynthesis and a target for the discovery of novel antibacterial agents. As a result of a high-throughput screen (HTS) against a chemical library for inhibitors of MurC, a series of benzofuran acyl-sulfonamides was identified as potential leads. One of these compounds, Compound A, inhibited Escherichia coli MurC with an IC(50) of 2.3 microM. Compound A exhibited time-dependent, partially reversible inhibition of E. coli MurC. Kinetic studies revealed a mode of inhibition consistent with the compound acting competitively with the MurC substrates ATP and UDP-N-acetyl-muramic acid (UNAM) with a K(i) of 4.5 microM against ATP and 6.3 microM against UNAM. Fluorescence binding experiments yielded a K(d) of 3.1 microM for the compound binding to MurC. Compound A also exhibited high-affinity binding to bovine serum albumin (BSA) as evidenced by a severe reduction in MurC inhibition upon addition of BSA. This finding is consistent with the high lipophilicity of the compound. Advancement of this compound series for further drug development will require reduction of albumin binding.

  16. Evaluation of UDP-GlcN derivatives for selective labeling of 5-(hydroxymethyl)cytosine.

    PubMed

    Dai, Nan; Bitinaite, Jurate; Chin, Hang-Gyeong; Pradhan, Sriharsa; Corrêa, Ivan R

    2013-11-04

    5-(hydroxymethyl)cytosine (5-hmC) is a newly identified oxidative product of 5-methylcytosine (5-mC) in the mammalian genome, and is believed to be an important epigenetic marker influencing a variety of biological processes. In addition to its relatively low abundance, the fluctuation of 5-hmC levels over time during cell development poses a formidable challenge for its accurate mapping and quantification. Here we describe a specific chemoenzymatic approach to 5-hmC detection in DNA samples by using new uridine 5'-diphosphoglucosamine (UDP-GlcN) probes. Our approach requires modification of the glucose moiety of UDP-Glc with small amino groups and transfer of these glucose derivatives to the hydroxy moiety of 5-hmC by using T4 phage glucosyltransferases. We evaluated the transfer efficiencies of three glucosyltransferases (wild-type α- and β-GTs and a Y261L mutant β-GT) with five different UDP-Glc derivatives containing functionalized groups for subsequent bioconjugation and detection. Our results indicate that UDP-6-N3 -Glc, UDP-6-GlcN, and UDP-2-GlcN can be transferred by β-GT with efficiencies similar to that seen with the native UDP-Glc cofactor. 6-N3 -Glc- and 6-GlcN-containing oligonucleotides were selectively labeled with reactive fluorescent probes. In addition, a 2 kb DNA fragment modified with 2-GlcN groups was specifically detected by use of a commercially available antiglucosamine antibody. Alternative substrates for β-GT and correlated glycosyltransferases might prove useful for the study of the function and dynamics of 5-hmC and other modified nucleotides, as well as for multiplex analysis. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Structure of Escherichia coli UDP-N-acetylmuramoyl:L-alanine ligase (MurC).

    PubMed

    Deva, Taru; Baker, Edward N; Squire, Christopher J; Smith, Clyde A

    2006-12-01

    The bacterial cell wall provides essential protection from the external environment and confers strength and rigidity to counteract internal osmotic pressure. Without this layer the cell would be easily ruptured and it is for this reason that biosynthetic pathways leading to the formation of peptidoglycan have for many years been a prime target for effective antibiotics. Central to this pathway are four similar ligase enzymes which add peptide groups to glycan moieties. As part of a program to better understand the structure-function relationships in these four enzymes, the crystal structure of Escherichia coli UDP-N-acetylmuramoyl:L-alanine ligase (MurC) has been determined to 2.6 A resolution. The structure was solved by multiwavelength anomalous diffraction methods from a single selenomethionine-substituted crystal and refined to a crystallographic R factor of 0.212 (R(free) = 0.259). The enzyme has a modular multi-domain structure very similar to those of other members of the mur family of ATP-dependent amide-bond ligases. Detailed comparison of these four enzymes shows that considerable conformational changes are possible. These changes, together with the recruitment of two different N-terminal domains, allow this family of enzymes to bind a substrate which is identical at one end and at the other has the growing peptide tail which will ultimately become part of the rigid bacterial cell wall. Comparison of the E. coli and Haemophilus influenzae structures and analysis of the sequences of known MurC enzymes indicate the presence of a ;dimerization' motif in almost 50% of the MurC enzymes and points to a highly conserved loop in domain 3 that may play a key role in amino-acid ligand specificity.

  18. Structure and Mechanism of ArnA: Conformational Change Implies Ordered Dehydrogenase Mechanism in Key Enzyme for Polymyxin Resistance

    PubMed Central

    Gatzeva-Topalova, Petia Z.; May, Andrew P.; Sousa, Marcelo C.

    2010-01-01

    Summary The modification of lipid A with 4-amino-4-deoxy-L-arabinose (Ara4N) allows gram-negative bacteria to resist the antimicrobial activity of cationic antimicrobial peptides and antibiotics such as polymyxin. ArnA is the first enzyme specific to the lipid A-Ara4N pathway. It contains two functionally and physically separable domains: a dehydrogenase domain (ArnA_DH) catalyzing the NAD+-dependent oxidative decarboxylation of UDP-Glucuronic acid (UDP-GlcA), and a transformylase domain that formylates UDP-Ara4N. Here, we describe the crystal structure of the full-length bifunctional ArnA with UDP-GlcA and ATP bound to the dehydrogenase domain. Binding of UDP-GlcA triggers a 17 Å conformational change in ArnA_DH that opens the NAD+ binding site while trapping UDP-GlcA. We propose an ordered mechanism of substrate binding and product release. Mutation of residues R619 and S433 demonstrates their importance in catalysis and suggests that R619 functions as a general acid in catalysis. The proposed mechanism for ArnA_DH has important implications for the design of selective inhibitors. PMID:15939024

  19. Biochemical and Structural Characterization of WlbA from Bordetella pertussis and Chromobacterium violaceum: Enzymes Required for the Biosynthesis of 2,3-Diacetamido-2,3-dideoxy-d-mannuronic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thoden, James B.; Holden, Hazel M.

    2011-12-22

    The unusual sugar 2,3-diacetamido-2,3-dideoxy-d-mannuronic acid, or ManNAc3NAcA, has been observed in the lipopolysaccharides of both pathogenic and nonpathogenic Gram-negative bacteria. It is added to the lipopolysaccharides of these organisms by glycosyltransferases that use as substrates UDP-ManNAc3NAcA. Five enzymes are ultimately required for the biosynthesis of UDP-ManNAc3NAcA starting from UDP-N-acetylglucosamine. The second enzyme in the pathway, encoded by the wlba gene and referred to as WlbA, catalyzes the NAD-dependent oxidation of the C-3' hydroxyl group of the UDP-linked sugar. Here we describe a combined structural and functional investigation of the WlbA enzymes from Bordetella pertussis and Chromobacterium violaceum. For this investigation,more » ternary structures were determined in the presence of NAD(H) and substrate to 2.13 and 1.5 {angstrom} resolution, respectively. Both of the enzymes display octameric quaternary structures with their active sites positioned far apart. The octamers can be envisioned as tetramers of dimers. Kinetic studies demonstrate that the reaction mechanisms for these enzymes are sequential and that they do not require {alpha}-ketoglutarate for activity. These results are in sharp contrast to those recently reported for the WlbA enzymes from Pseudomonas aeruginosa and Thermus thermophilus, which function via ping-pong mechanisms that involve {alpha}-ketoglutarate. Taken together, the results reported here demonstrate that there are two distinct families of WlbA enzymes, which differ with respect to amino acid sequences, quaternary structures, active site architectures, and kinetic mechanisms.« less

  20. Biochemical and Structural Characterization of WlbA from Bordetella pertussis and Chromobacterium violaceum: Enzymes Required for the Biosynthesis of 2,3-Diacetamido-2,3-Dideoxy-d-Mannuronic Acid¶

    PubMed Central

    Thoden, James B.; Holden, Hazel M.

    2011-01-01

    The unusual sugar 2,3-diacetamido-2,3-dideoxy-d-mannuronic acid, or ManNAc3NAcA1, has been observed in the lipopolysaccharides of both pathogenic and nonpathogenic Gram-negative bacteria. It is added to the lipopolysaccharides of these organisms by glycosyltransferases that use as substrates, UDP-ManNAc3NAcA. Five enzymes are ultimately required for the biosynthesis of UDP-ManNAc3NAcA starting from UDP-N-acetylglucosamine. The second enzyme in the pathway, encoded by the wlba gene and referred to as WlbA, catalyzes the NAD-dependent oxidation of the C-3' hydroxyl group of the UDP-linked sugar. Here we describe a combined structural and functional investigation of the WlbA enzymes from Bordetella pertussis and Chromobacterium violaceum. For this investigation, ternary structures were determined in the presence of NAD(H) and substrate to 2.13 Å and 1.5 Å resolution, respectively. Both of the enzymes display octameric quaternary structures with their active sites positioned far apart. The octamers can be envisioned as tetramers of dimers. Kinetic studies demonstrate that the reaction mechanisms for these enzymes are sequential and that they do not require α-ketoglutarate for activity. These results are in sharp contrast to those recently reported for the WlbA enzymes from Pseudomonas aeruginosa and Thermus thermophilus, which function via ping-pong mechanisms that involve α-ketoglutarate. Taken together the results reported here demonstrate that there are two distinct families of WlbA enzymes, which differ with respect to amino acid sequences, quaternary structures, active site architectures, and kinetic mechanisms. PMID:21241053

  1. Biotransformation of anthelmintics and the activity of drug-metabolizing enzymes in the tapeworm Moniezia expansa.

    PubMed

    Prchal, Lukáš; Bártíková, Hana; Bečanová, Aneta; Jirásko, Robert; Vokřál, Ivan; Stuchlíková, Lucie; Skálová, Lenka; Kubíček, Vladimír; Lamka, Jiří; Trejtnar, František; Szotáková, Barbora

    2015-04-01

    The sheep tapeworm Moniezia expansa is very common parasite, which affects ruminants such as sheep, goats as well as other species. The benzimidazole anthelmintics albendazole (ABZ), flubendazole (FLU) and mebendazole (MBZ) are often used to treat the infection. The drug-metabolizing enzymes of helminths may alter the potency of anthelmintic treatment. The aim of our study was to assess the activity of the main drug-metabolizing enzymes and evaluate the metabolism of selected anthelmintics (ABZ, MBZ and FLU) in M. expansa. Activities of biotransformation enzymes were determined in subcellular fractions. Metabolites of the anthelmintics were detected and identified using high performance liquid chromatography/ultra-violet/VIS/fluorescence or ultra-high performance liquid chromatography/mass spectrometry. Reduction of MBZ, FLU and oxidation of ABZ were proved as well as activities of various metabolizing enzymes. Despite the fact that the conjugation enzymes glutathione S-transferase, UDP-glucuronosyl transferase and UDP-glucosyl transferase were active in vitro, no conjugated metabolites of anthelmintics were identified either ex vivo or in vitro. The obtained results indicate that sheep tapeworm is able to deactivate the administered anthelmintics, and thus protects itself against their action.

  2. Development of radiometric assays for quantification of enzyme activities of the key enzymes of thyroid hormones metabolism.

    PubMed

    Pavelka, S

    2014-01-01

    We newly elaborated and adapted several radiometric enzyme assays for the determination of activities of the key enzymes engaged in the biosynthesis (thyroid peroxidase, TPO) and metabolic transformations (conjugating enzymes and iodothyronine deiodinases, IDs) of thyroid hormones (THs) in the thyroid gland and in peripheral tissues, especially in white adipose tissue (WAT). We also elaborated novel, reliable radiometric methods for extremely sensitive determination of enzyme activities of IDs of types 1, 2 and 3 in microsomal fractions of different rat and human tissues, as well as in homogenates of cultured mammalian cells. The use of optimized TLC separation of radioactive products from the unconsumed substrates and film-less autoradiography of radiochromatograms, taking advantage of storage phosphor screens, enabled us to determine IDs enzyme activities as low as 10(-18) katals. In studies of the interaction of fluoxetine (Fluox) with the metabolism of THs, we applied adapted radiometric enzyme assays for iodothyronine sulfotransferases (ST) and uridine 5'-diphospho-glucuronyltransferase (UDP-GT). Fluox is the most frequently used representative of a new group of non-tricyclic antidepressant drugs--selective serotonin re-uptake inhibitors. We used the elaborated assays for quantification the effects of Fluox and for the assessment of the degree of potential induction of rat liver ST and/or UDP-GT enzyme activities by Fluox alone or in combination with T(3). Furthermore, we studied possible changes in IDs activities in murine adipose tissue under the conditions that promoted either tissue hypertrophy (obesogenic treatment) or involution (caloric restriction), and in response to leptin, using our newly developed radiometric enzyme assays for IDs. Our results suggest that deiodinase D1 has a functional role in WAT, with D1 possibly being involved in the control of adipose tissue metabolism and/or accumulation of the tissue. Significant positive correlation between

  3. Identification and characterization of UDP-glucose:Phloretin 4'-O-glycosyltransferase from Malus x domestica Borkh.

    PubMed

    Yahyaa, Mosaab; Davidovich-Rikanati, Rachel; Eyal, Yoram; Sheachter, Alona; Marzouk, Sally; Lewinsohn, Efraim; Ibdah, Mwafaq

    2016-10-01

    Apples (Malus x domestica Brokh.) are among the world's most important food crops with nutritive and medicinal importance. Many of the health beneficial properties of apple fruit are suggested to be due to (poly)phenolic metabolites, including various dihydrochalcones. Although many of the genes and enzymes involved in polyphenol biosynthesis are known in many plant species, the specific reactions that lead to the biosynthesis of the sweet tasting dihydrochalcones, such as trilobatin, are unknown. To identify candidate genes for involvement in the glycosylation of dihydrochalcones, existing genome databases of the Rosaceae were screened for apple genes with significant sequence similarity to Bacillus subtilis phloretin glycosyltransferase. Herein reported is the identification and functional characterization of a Malus x domestica gene encoding phloretin-4'-O-glycosyltransferase designated MdPh-4'-OGT. Recombinant MdPh-4'-OGT protein glycosylates phloretin in the presence of UDP-glucose into trilobatin in vitro. Its apparent Km values for phloretin and UDP-glucose were 26.1 μM and 1.2 mM, respectively. Expression analysis of the MdPh-4'-OGT gene indicated that its transcript levels showed significant variation in apple tissues of different developmental stages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. UUAT1 Is a Golgi-Localized UDP-Uronic Acid Transporter That Modulates the Polysaccharide Composition of Arabidopsis Seed Mucilage

    DOE PAGES

    Saez-Aguayo, Susana; Rautengarten, Carsten; Temple, Henry; ...

    2017-01-01

    UDP-glucuronic acid (UDP-GlcA) is the precursor of many plant cell wall polysaccharides and is required for production of seed mucilage. Following synthesis in the cytosol, it is transported into the lumen of the Golgi apparatus, where it is converted to UDP-galacturonic acid (UDP-GalA), UDP-arabinose, and UDP-xylose. To identify the Golgi-localized UDP-GlcA transporter, we screened Arabidopsis thaliana mutants in genes coding for putative nucleotide sugar transporters for altered seed mucilage, a structure rich in the GalA-containing polysaccharide rhamnogalacturonan I. As a result, we identified UUAT1, which encodes a Golgi-localized protein that transports UDP-GlcA and UDP-GalA in vitro. The seed coat ofmore » uuat1 mutants had less GalA, rhamnose, and xylose in the soluble mucilage, and the distal cell walls had decreased arabinan content. Cell walls of other organs and cells had lower arabinose levels in roots and pollen tubes, but no differences were observed in GalA or xylose contents. Furthermore, the GlcA content of glucuronoxylan in the stem was not affected in the mutant. Interestingly, the degree of homogalacturonan methylation increased in uuat1. These results suggest that this UDP-GlcA transporter plays a key role defining the seed mucilage sugar composition and that its absence produces pleiotropic effects in this component of the plant extracellular matrix.« less

  5. UUAT1 Is a Golgi-Localized UDP-Uronic Acid Transporter That Modulates the Polysaccharide Composition of Arabidopsis Seed Mucilage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saez-Aguayo, Susana; Rautengarten, Carsten; Temple, Henry

    UDP-glucuronic acid (UDP-GlcA) is the precursor of many plant cell wall polysaccharides and is required for production of seed mucilage. Following synthesis in the cytosol, it is transported into the lumen of the Golgi apparatus, where it is converted to UDP-galacturonic acid (UDP-GalA), UDP-arabinose, and UDP-xylose. To identify the Golgi-localized UDP-GlcA transporter, we screened Arabidopsis thaliana mutants in genes coding for putative nucleotide sugar transporters for altered seed mucilage, a structure rich in the GalA-containing polysaccharide rhamnogalacturonan I. As a result, we identified UUAT1, which encodes a Golgi-localized protein that transports UDP-GlcA and UDP-GalA in vitro. The seed coat ofmore » uuat1 mutants had less GalA, rhamnose, and xylose in the soluble mucilage, and the distal cell walls had decreased arabinan content. Cell walls of other organs and cells had lower arabinose levels in roots and pollen tubes, but no differences were observed in GalA or xylose contents. Furthermore, the GlcA content of glucuronoxylan in the stem was not affected in the mutant. Interestingly, the degree of homogalacturonan methylation increased in uuat1. These results suggest that this UDP-GlcA transporter plays a key role defining the seed mucilage sugar composition and that its absence produces pleiotropic effects in this component of the plant extracellular matrix.« less

  6. Investigation of miR-136-5p key target genes and pathways in lung squamous cell cancer based on TCGA database and bioinformatics analysis.

    PubMed

    Xie, Zu-Cheng; Li, Tian-Tian; Gan, Bin-Liang; Gao, Xiang; Gao, Li; Chen, Gang; Hu, Xiao-Hua

    2018-05-01

    Lung squamous cell cancer (LUSC) is a common but challenging malignancy. It is important to illuminate the molecular mechanism of LUSC. Thus, we aim to explore the molecular mechanism of miR-136-5p in relation to LUSC. We used the Cancer Genome Atlas (TCGA) database to investigate the expression of miR-136-5p in relation to LUSC. Then, we identified the possible miR-136-5p target genes through intersection of the predicted miR-136-5p target genes and LUSC upregulated genes from TCGA. Bioinformatics analysis was performed to determine the key miR-136-5p targets and pathways associated with LUSC. Finally, the expression of hub genes, correlation between miR-136-5p and hub genes, and expected significance of hub genes were evaluated via the TCGA and Genotype-Tissue Expression (GTEx) project. MiR-136-5p was significantly downregulated in LUSC patients. Glucuronidation, glucuronosyltransferase, and the retinoic acid metabolic process were the most enriched metabolic interactions in LUSC patients. Ascorbate and aldarate metabolism, pentose and glucuronate interconversions, and retinol metabolism were identified as crucial pathways. Seven hub genes (UGT1A1, UGT1A3, UGT1A6, UGT1A7, UGT1A10, SRD5A1, and ADH7) were found to be upregulated, and UGT1A1, UGT1A3, UGT1A6, UGT1A7, and ADH7 were negatively correlated with miR-136-5p. UGT1A7 and ADH7 were the most significantly involved miR-136-5p target genes, and high expression of these genes was correlated with better overall survival and disease-free survival of LUSC patients. Downregulated miR-136-5p may target UGT1A7 and ADH7 and participate in ascorbate and aldarate metabolism, pentose and glucuronate interconversions, and retinol metabolism. High expression of UGT1A7 and ADH7 may indicate better prognosis of LUSC patients. Copyright © 2018. Published by Elsevier GmbH.

  7. UUAT1 Is a Golgi-Localized UDP-Uronic Acid Transporter That Modulates the Polysaccharide Composition of Arabidopsis Seed Mucilage[OPEN

    PubMed Central

    Saez-Aguayo, Susana; Rautengarten, Carsten; Temple, Henry; Sanhueza, Dayan; Ejsmentewicz, Troy; Sandoval-Ibañez, Omar; Parra-Rojas, Juan Pablo; Ebert, Berit; Reyes, Francisca C.

    2017-01-01

    UDP-glucuronic acid (UDP-GlcA) is the precursor of many plant cell wall polysaccharides and is required for production of seed mucilage. Following synthesis in the cytosol, it is transported into the lumen of the Golgi apparatus, where it is converted to UDP-galacturonic acid (UDP-GalA), UDP-arabinose, and UDP-xylose. To identify the Golgi-localized UDP-GlcA transporter, we screened Arabidopsis thaliana mutants in genes coding for putative nucleotide sugar transporters for altered seed mucilage, a structure rich in the GalA-containing polysaccharide rhamnogalacturonan I. As a result, we identified UUAT1, which encodes a Golgi-localized protein that transports UDP-GlcA and UDP-GalA in vitro. The seed coat of uuat1 mutants had less GalA, rhamnose, and xylose in the soluble mucilage, and the distal cell walls had decreased arabinan content. Cell walls of other organs and cells had lower arabinose levels in roots and pollen tubes, but no differences were observed in GalA or xylose contents. Furthermore, the GlcA content of glucuronoxylan in the stem was not affected in the mutant. Interestingly, the degree of homogalacturonan methylation increased in uuat1. These results suggest that this UDP-GlcA transporter plays a key role defining the seed mucilage sugar composition and that its absence produces pleiotropic effects in this component of the plant extracellular matrix. PMID:28062750

  8. Preliminary study on Emodin alleviating alpha-naphthylisothiocyanate-induced intrahepatic cholestasis by regulation of liver farnesoid X receptor pathway.

    PubMed

    Ding, Yan; Xiong, Xiao-Li; Zhou, Li-Shan; Yan, Su-Qi; Qin, Huan; Li, Hua-Rong; Zhang, Ling-Ling; Chen, Peng; Yao, Cong; Jiang, Zhi-Xia; Zhao, Lei

    2016-12-01

    The aim of this study is to investigate Emodin on alleviating intrahepatic cholestasis by regulation of liver farnesoid X receptor (FXR) pathway. Cell and animal models of intrahepatic cholestatis were established. Biochemical tests and histomorphology were performed. The messenger RNA (mRNA) and protein expression of FXR, small heterodimer partner (SHP), uridine diphosphate glucuronosyltransferase 2 family polypeptide B4 (UGT2B4), and bile salt export pump (BSEP) was detected. As a result, compared with the model group, the serum levels of biochemical test were significantly lower in the Emodin group (P <0.01). The histopathological changes were remitted significantly by Emodin treatment. In the model group, the mRNA and protein expression of FXR, SHP, UGT2B4, and BSEP was significantly lower than in the normal group in cell models (P <0.05). With Emodin intervention, the expression of FXR, SHP, UGT2B4, and BSEP was notably increased (P <0.05). In conclusion, Emodin plays a protective role in intrahepatic cholestasis by promoting FXR signal pathways. © The Author(s) 2016.

  9. A Conserved UDP-Glucose Dehydrogenase Encoded outside the hasABC Operon Contributes to Capsule Biogenesis in Group A Streptococcus

    PubMed Central

    Cole, Jason N.; Aziz, Ramy K.; Kuipers, Kirsten; Timmer, Anjuli M.; Nizet, Victor

    2012-01-01

    Group A Streptococcus (GAS) is a human-specific bacterial pathogen responsible for serious morbidity and mortality worldwide. The hyaluronic acid (HA) capsule of GAS is a major virulence factor, contributing to bloodstream survival through resistance to neutrophil and antimicrobial peptide killing and to in vivo pathogenicity. Capsule biosynthesis has been exclusively attributed to the ubiquitous hasABC hyaluronan synthase operon, which is highly conserved across GAS serotypes. Previous reports indicate that hasA, encoding hyaluronan synthase, and hasB, encoding UDP-glucose 6-dehydrogenase, are essential for capsule production in GAS. Here, we report that precise allelic exchange mutagenesis of hasB in GAS strain 5448, a representative of the globally disseminated M1T1 serotype, did not abolish HA capsule synthesis. In silico whole-genome screening identified a putative HasB paralog, designated HasB2, with 45% amino acid identity to HasB at a distant location in the GAS chromosome. In vitro enzymatic assays demonstrated that recombinant HasB2 is a functional UDP-glucose 6-dehydrogenase enzyme. Mutagenesis of hasB2 alone slightly decreased capsule abundance; however, a ΔhasB ΔhasB2 double mutant became completely acapsular. We conclude that HasB is not essential for M1T1 GAS capsule biogenesis due to the presence of a newly identified HasB paralog, HasB2, which most likely resulted from gene duplication. The identification of redundant UDP-glucose 6-dehydrogenases underscores the importance of HA capsule expression for M1T1 GAS pathogenicity and survival in the human host. PMID:22961854

  10. Metabolic fate of desomorphine elucidated using rat urine, pooled human liver preparations, and human hepatocyte cultures as well as its detectability using standard urine screening approaches.

    PubMed

    Richter, Lilian H J; Kaminski, Yeda Rumi; Noor, Fozia; Meyer, Markus R; Maurer, Hans H

    2016-09-01

    Desomorphine is an opioid misused as "crocodile", a cheaper alternative to heroin. It is a crude synthesis product homemade from codeine with toxic byproducts. The aim of the present work was to investigate the metabolic fate of desomorphine in vivo using rat urine and in vitro using pooled human liver microsomes and cytosol as well as human liver cell lines (HepG2 and HepaRG) by Orbitrap-based liquid chromatography-high resolution-tandem mass spectrometry or hydrophilic interaction liquid chromatography. According to the identified metabolites, the following metabolic steps could be proposed: N-demethylation, hydroxylation at various positions, N-oxidation, glucuronidation, and sulfation. The cytochrome P450 (CYP) initial activity screening revealed CYP3A4 to be the only CYP involved in all phase I steps. UDP-glucuronyltransferase (UGT) initial activity screening showed that UGT1A1, UGT1A8, UGT1A9, UGT1A10, UGT2B4, UGT2B7, UGT2B15, and UGT2B17 formed desomorphine glucuronide. Among the tested in vitro models, HepaRG cells were identified to be the most suitable tool for prediction of human hepatic phase I and II metabolism of drugs of abuse. Finally, desomorphine (crocodile) consumption should be detectable by all standard urine screening approaches mainly via the parent compound and/or its glucuronide assuming similar kinetics in rats and humans.

  11. Both UDP N-acetylglucosamine pyrophosphorylases of Tribolium castaneum are critical for molting, survival, and fecundity

    USDA-ARS?s Scientific Manuscript database

    A bioinformatics search of the genome of the red flour beetle, Tribolium castaneum, resulted in the identification of two genes encoding proteins closely related to UDP-N-acetylglucosamine pyrophosphorylases (UAP), which provide the activated precursor, UDP-N-acetylglucosamine, for the synthesis of ...

  12. Elucidation and functional characterization of CsPSY and CsUGT promoters in Crocus sativus L.

    PubMed Central

    Bhat, Archana; Mishra, Sonal; Kaul, Sanjana

    2018-01-01

    The dried stigmas of Crocus sativus constitute the saffron, which is considered to be the costliest spice of the world. Saffron is valuable for its constituents, which are mainly apocarotenoids. In order to enhance the production of apocarotenoids, it is imperative to understand the regulation of apocarotenoid biosynthetic pathway. In C. sativus, although the pathway has been elucidated, the information regarding the regulation of the pathwaygenes is scanty. During the present investigation, the characterization of promoters regulating the expression of two important genes i.e. CsPSY and CsUGT was performed. We successfully cloned the promoters of both the genes, which were functionally characterized in Crocus sativus and Nicotiana tabaccum. In silico analysis of the promoters demonstrated the presence of several important cis regulatory elements responding tolight, hormonesand interaction with transcription factors (TFs). Further analysis suggested the regulation of CsPSY promoter by Abscisic acid (ABA) and that of CsUGT by Gibberellic acid (GA). In addition, we also observed ABA and GA mediated modulation in the expression of significant TFs and CsPSY and CsUGT transcripts. Overall, the study addresses issues related to regulation of key genes of apocarotenoid pathway in C.sativus. PMID:29634744

  13. Elucidation and functional characterization of CsPSY and CsUGT promoters in Crocus sativus L.

    PubMed

    Bhat, Archana; Mishra, Sonal; Kaul, Sanjana; Dhar, Manoj K

    2018-01-01

    The dried stigmas of Crocus sativus constitute the saffron, which is considered to be the costliest spice of the world. Saffron is valuable for its constituents, which are mainly apocarotenoids. In order to enhance the production of apocarotenoids, it is imperative to understand the regulation of apocarotenoid biosynthetic pathway. In C. sativus, although the pathway has been elucidated, the information regarding the regulation of the pathwaygenes is scanty. During the present investigation, the characterization of promoters regulating the expression of two important genes i.e. CsPSY and CsUGT was performed. We successfully cloned the promoters of both the genes, which were functionally characterized in Crocus sativus and Nicotiana tabaccum. In silico analysis of the promoters demonstrated the presence of several important cis regulatory elements responding tolight, hormonesand interaction with transcription factors (TFs). Further analysis suggested the regulation of CsPSY promoter by Abscisic acid (ABA) and that of CsUGT by Gibberellic acid (GA). In addition, we also observed ABA and GA mediated modulation in the expression of significant TFs and CsPSY and CsUGT transcripts. Overall, the study addresses issues related to regulation of key genes of apocarotenoid pathway in C.sativus.

  14. Molecular cloning and tissue-specific transcriptional regulation of the first peroxidase family member, Udp1, in stinging nettle (Urtica dioica).

    PubMed

    Douroupi, Triantafyllia G; Papassideri, Issidora S; Stravopodis, Dimitrios J; Margaritis, Lukas H

    2005-12-05

    A full-length cDNA clone, designated Udp1, was isolated from Urtica dioica (stinging nettle), using a polymerase chain reaction based strategy. The putative Udp1 protein is characterized by a cleavable N-terminal signal sequence, likely responsible for the rough endoplasmic reticulum entry and a 310 amino acids mature protein, containing all the important residues, which are evolutionary conserved among different members of the plant peroxidase family. A unique structural feature of the Udp1 peroxidase is defined into the short carboxyl-terminal extension, which could be associated with the vacuolar targeting process. Udp1 peroxidase is differentially regulated at the transcriptional level and is specifically expressed in the roots. Interestingly, wounding and ultraviolet radiation stress cause an ectopic induction of the Udp1 gene expression in the aerial parts of the plant. A genomic DNA fragment encoding the Udp1 peroxidase was also cloned and fully sequenced, revealing a structural organization of three exons and two introns. The phylogenetic relationships of the Udp1 protein to the Arabidopsis thaliana peroxidase family members were also examined and, in combination with the homology modelling approach, dictated the presence of distinct structural elements, which could be specifically involved in the determination of substrate recognition and subcellular localization of the Udp1 peroxidase.

  15. Mycophenolic acid AUC in Thai kidney transplant recipients receiving low dose mycophenolate and its association with UGT2B7 polymorphisms.

    PubMed

    Pithukpakorn, Manop; Tiwawanwong, Tiwat; Lalerd, Yupaporn; Assawamakin, Anunchai; Premasathian, Nalinee; Tasanarong, Adis; Thongnoppakhun, Wanna; Vongwiwatana, Attapong

    2014-01-01

    Despite use of a lower mycophenolate dose in Thai kidney transplant patients, acceptable graft and patient outcomes can be achieved. We therefore examined the pharmacokinetics of mycophenolic acid (MPA) by area under the curve (AUC) and investigated genetic contribution in mycophenolate metabolism in this population. Kidney transplant recipients with stable graft function who were receiving mycophenolate mofetil 1,000 mg/d in combination with either cyclosporine or tacrolimus, and prednisolone were studied. The MPA concentration was measured by fluorescence polarization immunoassay (FPIA), at predose and 1, 1.5, 2, 4, 6, 8, 10, and 12 hours after dosing. Genetic polymorphisms in UGT1A8, UGT1A9, and UGT2B7 were examined by denaturing high-performance liquid chromatography (DHPLC)-based single-base extension (SBE) analysis. A total 138 patients were included in study. The mean AUC was 39.49 mg-h/L (28.39-89.58 mg-h/L), which was in the therapeutic range. The correlation between the predose MPA concentration and AUC was poor. The mean AUC in the tacrolimus group was higher than that in the cyclosporine group. Polymorphisms in UGT2B7 showed significant association with AUC. Most of our patients with reduced mycophenolate dose had the AUC within the therapeutic range. Genetic polymorphisms in UGT2B7 may play a role in MPA metabolism in Thai kidney transplant patients.

  16. UGT74AN1, a Permissive Glycosyltransferase from Asclepias curassavica for the Regiospecific Steroid 3-O-Glycosylation.

    PubMed

    Wen, Chao; Huang, Wei; Zhu, Xue-Lin; Li, Xiao-San; Zhang, Fan; Jiang, Ren-Wang

    2018-02-02

    A permissive steroid glycosyltransferase (UGT74AN1) from Asclepias curassavica exhibited robust capabilities for the regiospecific C3 glycosylation of cardiotonic steroids and C 21 steroid precursors, and unprecedented promiscuity toward 53 structurally diverse natural and unnatural compounds to form O-, N-, and S-glycosides, along with the catalytic reversibility for a one-pot transglycosylation reaction. These findings highlight UGT74AN1 as the first regiospecific catalyst for cardiotonic steroid C3 glycosylation and exhibit significant potential for glycosylation of diverse bioactive molecules in drug discovery.

  17. SCN1A, ABCC2 and UGT2B7 gene polymorphisms in association with individualized oxcarbazepine therapy.

    PubMed

    Ma, Chun-Lai; Wu, Xun-Yi; Jiao, Zheng; Hong, Zhen; Wu, Zhi-Yuan; Zhong, Ming-Kang

    2015-01-01

    Associations between the effects of SCN1A, SCN2A, ABCC2 and UGT2B7 genetic polymorphisms and oxcarbazepine (OXC) maintenance doses in Han Chinese epileptic patients were investigated. Genetic polymorphisms were detected in 184 epileptic patients receiving OXC monotherapy by high-resolution melting curve and TaqMan method. Carriers of the SCN1A IVS5-91G>A, UGT2B7 c.802T>C and ABCC2 c.1249G>A variant alleles required significantly higher OXC maintenance doses than noncarriers (p < 0.05). Corresponding relative ln (concentration-dose ratios) values for SCN1A IVS5-91 variants differed by the genotypic order GG > GA > AA. SCN1A, UGT2B7 and ABCC2 genetic polymorphisms are associated with OXC maintenance doses and may be useful for the personalization of OXC therapy in epileptic patients. Further studies are needed. Original submitted 6 June 2014; Revision submitted 5 September 2014.

  18. Binding of decomposition products of UDP-galactose to the microsomes and polyribosomes isolated from rat liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopacz-Jodczyk, T.; Galasinski, W.

    1987-10-01

    UDP-D-(U-/sup 14/C)galactose is decomposed to (U-/sup 14/C)galactose-1-phosphate and (U-/sup 14/C)galactose by rat liver microsomal and crude polyribosomal fractions, under conditions commonly used to assay of glycosyltransferase activities. UDP-D-(U-/sup 14/C)galactose, at neutral pH, is also chemically degraded to the (U-/sup 14/C)galactose-1,2-cyclic phosphate. The 1,2-cyclic phosphate derivative of galactose also exists in the commercial UDP-D-(U-/sup 14/C)galactose. It is a very important finding that products of the UDP-D-(U-/sup 14/C)galactose decomposition are tightly, although nonenzymatically, bound to tested subcellular fractions and may create a false impression of protein glycosylation. The application of controls containing all radioactive substances present in suitable samples is recommended inmore » order to avoid incorrect interpretations of the results.« less

  19. Bisphenol A-Associated Alterations in the Expression and Epigenetic Regulation of Genes Encoding Xenobiotic Metabolizing Enzymes in Human Fetal Liver

    PubMed Central

    Nahar, Muna S.; Kim, Jung H.; Sartor, Maureen A.; Dolinoy, Dana C.

    2014-01-01

    Alterations in xenobiotic metabolizing enzyme (XME) expression across the life course, along with genetic, nutritional, and environmental regulation, can influence how organisms respond to toxic insults. In this study, we investigated the hypothesis that in utero exposure to the endocrine active compound, bisphenol A (BPA), influences expression and epigenetic regulation of phase I and II XME genes during development. Using healthy 1st to 2nd trimester human fetal liver specimens quantified for internal BPA levels, we examined XME gene expression using PCR Array (n =8) and RNA-sequencing (n =12) platforms. Of the greater than 160 XME genes assayed, 2 phase I and 12 phase II genes exhibited significantly reduced expression with higher BPA levels, including isoforms from the carboxylesterase, catechol O-methyltransferase, glutathione S-transferase, sulfotransferase, and UDP-glucuronosyltransferase families. When the promoters of these candidate genes were evaluated in silico, putative binding sites for the E-twenty-six (ETS) and activator protein1 (AP1) related transcription factor families were identified and unique to 97% of all candidate transcripts. Interestingly, many ETS binding sites contain cytosine-guanine dinucleotides (CpGs) within their consensus sequences. Thus, quantitative analysis of CpG methylation of three candidate genes was conducted across n =50 samples. Higher BPA levels were associated with increased site-specific methylation at COMT (P <0.005) and increased average methylation at SULT2A1 (P <0.020) promoters. While toxicological studies have traditionally focused on high-dose effects and hormonal receptor mediated regulation, our findings suggest the importance of low-dose effects and nonclassical mechanisms of endocrine disruption during development. PMID:24214726

  20. Characterization of a Glucosyltransferase Enzyme Involved in the Formation of Kaempferol and Quercetin Sophorosides in Crocus sativus1[C][W

    PubMed Central

    Trapero, Almudena; Ahrazem, Oussama; Rubio-Moraga, Angela; Jimeno, Maria Luisa; Gómez, Maria Dolores; Gómez-Gómez, Lourdes

    2012-01-01

    UGT707B1 is a new glucosyltransferase isolated from saffron (Crocus sativus) that localizes to the cytoplasm and the nucleus of stigma and tepal cells. UGT707B1 transcripts were detected in the stigma tissue of all the Crocus species analyzed, but expression analysis of UGT707B1 in tepals revealed its absence in certain species. The analysis of the glucosylated flavonoids present in Crocus tepals reveals the presence of two major flavonoid compounds in saffron: kaempferol-3-O-β-d-glucopyranosyl-(1-2)-β-d-glucopyranoside and quercetin-3-O-β-d-glucopyranosyl-(1-2)-β-d-glucopyranoside, both of which were absent from the tepals of those Crocus species that did not express UGT707B1. Transgenic Arabidopsis (Arabidopsis thaliana) plants constitutively expressing UGT707B1 under the control of the cauliflower mosaic virus 35S promoter have been constructed and their phenotype analyzed. The transgenic lines displayed a number of changes that resembled those described previously in lines where flavonoid levels had been altered. The plants showed hyponastic leaves, a reduced number of trichomes, thicker stems, and flowering delay. Levels of flavonoids measured in extracts of the transgenic plants showed changes in the composition of flavonols when compared with wild-type plants. The major differences were observed in the extracts from stems and flowers, with an increase in 3-sophoroside flavonol glucosides. Furthermore, a new compound not detected in ecotype Columbia wild-type plants was detected in all the tissues and identified as kaempferol-3-O-sophoroside-7-O-rhamnoside. These data reveal the involvement of UGT707B1 in the biosynthesis of flavonol-3-O-sophorosides and how significant changes in flavonoid homeostasis can be caused by the overproduction of a flavonoid-conjugating enzyme. PMID:22649274

  1. Identification and replication of the interplay of four genetic high-risk variants for urinary bladder cancer

    PubMed Central

    Selinski, Silvia; Blaszkewicz, Meinolf; Ickstadt, Katja; Gerullis, Holger; Otto, Thomas; Roth, Emanuel; Volkert, Frank; Ovsiannikov, Daniel; Moormann, Oliver; Banfi, Gergely; Nyirady, Peter; Vermeulen, Sita H; Garcia-Closas, Montserrat; Figueroa, Jonine D; Johnson, Alison; Karagas, Margaret R; Kogevinas, Manolis; Malats, Nuria; Schwenn, Molly; Silverman, Debra T; Koutros, Stella; Rothman, Nathaniel; Kiemeney, Lambertus A; Hengstler, Jan G; Golka, Klaus

    2017-01-01

    Abstract Little is known whether genetic variants identified in genome-wide association studies interact to increase bladder cancer risk. Recently, we identified two- and three-variant combinations associated with a particular increase of bladder cancer risk in a urinary bladder cancer case–control series (Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), 1501 cases, 1565 controls). In an independent case–control series (Nijmegen Bladder Cancer Study, NBCS, 1468 cases, 1720 controls) we confirmed these two- and three-variant combinations. Pooled analysis of the two studies as discovery group (IfADo-NBCS) resulted in sufficient statistical power to test up to four-variant combinations by a logistic regression approach. The New England and Spanish Bladder Cancer Studies (2080 cases and 2167 controls) were used as a replication series. Twelve previously identified risk variants were considered. The strongest four-variant combination was obtained in never smokers. The combination of rs1014971[AA] near apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3A (APOBEC3A) and chromobox homolog 6 (CBX6), solute carrier family 1s4 (urea transporter), member 1 (Kidd blood group) (SLC14A1) exon single nucleotide polymorphism (SNP) rs1058396[AG, GG], UDP glucuronosyltransferase 1 family, polypeptide A complex locus (UGT1A) intron SNP rs11892031[AA] and rs8102137[CC, CT] near cyclin E1 (CCNE1) resulted in an unadjusted odds ratio (OR) of 2.59 (95% CI = 1.93–3.47; P = 1.87 × 10−10), while the individual variant ORs ranged only between 1.11 and 1.30. The combination replicated in the New England and Spanish Bladder Cancer Studies (ORunadjusted = 1.60, 95% CI = 1.10–2.33; P = 0.013). The four-variant combination is relatively frequent, with 25% in never smoking cases and 11% in never smoking controls (total study group: 19% cases, 14% controls). In conclusion, we show that four high-risk variants can statistically

  2. Prolonged neutropenia after irinotecan-based chemotherapy in a child with polymorphisms of UGT1A1 and SLCO1B1.

    PubMed

    Sakaguchi, S; Garcia-Bournissen, F; Kim, R; Schwarz, U I; Nathan, P C; Ito, S

    2009-12-01

    Genetic polymorphisms of uridine diphosphate glucuronosyl transferase 1A1 (UGT1A1), and SLCO1B1 coding organic anion-transporter polypeptide 1B1, are independent risk factors known to increase irinotecan toxicity in adults. Although combined occurrence of polymorphisms in these 2 genes is likely to influence susceptibility to irinotecan toxicity, data are scarce, especially in children. We report an 11-year-old female with severe and prolonged neutropenia after irinotecan-based chemotherapy. The patient's genotyping revealed polymorphisms in both UGT1A1 and SLCO1B1. To our knowledge, this is the first case report of combined genotyping of both UGT1A1 and SLCO1B1 in a child with severe irinotecan toxicity.

  3. Dietary moderately oxidized oil activates the Nrf2 signaling pathway in the liver of pigs.

    PubMed

    Varady, Juliane; Gessner, Denise K; Most, Erika; Eder, Klaus; Ringseis, Robert

    2012-02-24

    Previous studies have shown that administration of oxidized oils increases gene expression and activities of various enzymes involved in xenobiotic metabolism and stress response in the liver of rats and guinea pigs. As these genes are controlled by nuclear factor erythroid-derived 2-like 2 (Nrf2), we investigated the hypothesis that feeding of oxidized fats causes an activation of that transcription factor in the liver which in turn activates the expression of antioxidant, cytoprotective and detoxifying genes. Twenty four crossbred pigs were allocated to two groups of 12 pigs each and fed nutritionally adequate diets with either fresh rapeseed oil (fresh fat group) or oxidized rapeseed oil prepared by heating at a temperature of 175°C for 72 h (oxidized fat group). After 29 days of feeding, pigs of the oxidized fat group had a markedly increased nuclear concentration of the transcription factor Nrf2 and a higher activity of cellular superoxide dismutase and T4-UDP glucuronosyltransferase in liver than the fresh fat group (P < 0.05). In addition, transcript levels of antioxidant and phase II genes in liver, like superoxide dismutase 1, heme oxygenase 1, glutathione peroxidase 1, thioredoxin reductase 1, microsomal glutathione-S-transferase 1, UDP glucuronosyltransferase 1A1 and NAD(P)H:quinone oxidoreductase 1 in the liver were higher in the oxidized fat group than in the fresh fat group (P < 0.05). Moreover, pigs of the oxidized fat group had an increased hepatic nuclear concentration of the transcription factor NF-κB which is also an important transcription factor mediating cellular stress response. The present study shows for the first time that administration of an oxidized fat activates the Nrf2 in the liver of pigs which likely reflects an adaptive mechanism to prevent cellular oxidative damage. Activation of the NF-κB pathway might also contribute to this effect of oxidized fat.

  4. The molecular dynamics of Trypanosoma brucei UDP-galactose 4'-epimerase: a drug target for African sleeping sickness.

    PubMed

    Friedman, Aaron J; Durrant, Jacob D; Pierce, Levi C T; McCorvie, Thomas J; Timson, David J; McCammon, J Andrew

    2012-08-01

    During the past century, several epidemics of human African trypanosomiasis, a deadly disease caused by the protist Trypanosoma brucei, have afflicted sub-Saharan Africa. Over 10 000 new victims are reported each year, with hundreds of thousands more at risk. As current drug treatments are either highly toxic or ineffective, novel trypanocides are urgently needed. The T. brucei galactose synthesis pathway is one potential therapeutic target. Although galactose is essential for T. brucei survival, the parasite lacks the transporters required to intake galactose from the environment. UDP-galactose 4'-epimerase (TbGalE) is responsible for the epimerization of UDP-glucose to UDP-galactose and is therefore of great interest to medicinal chemists. Using molecular dynamics simulations, we investigate the atomistic motions of TbGalE in both the apo and holo states. The sampled conformations and protein dynamics depend not only on the presence of a UDP-sugar ligand, but also on the chirality of the UDP-sugar C4 atom. This dependence provides important insights into TbGalE function and may help guide future computer-aided drug discovery efforts targeting this protein. © 2012 John Wiley & Sons A/S.

  5. The binding of decomposition products of UDP-galactose to the microsomes and polyribosomes isolated from rat liver.

    PubMed

    Kopacz-Jodczyk, T; Gałasiński, W

    1987-10-01

    UDP-D-[U-14C]galactose is decomposed to [U-14C]galactose-1-phosphate and [U-14C]galactose by rat liver microsomal and crude polyribosomal fractions, under conditions commonly used to assay of glycosyltransferase activities. UDP-D-[U-14C]galactose, at neutral pH, is also chemically degraded to the [U-14C]galactose-1,2-cyclic phosphate. The 1,2-cyclic phosphate derivative of galactose also exists in the commercial UDP-D-[U-14C]galactose. It is a very important finding that products of the UDP-D-[U-14C]galactose decomposition are tightly, although nonenzymatically, bound to tested subcellular fractions and may create a false impression of protein glycosylation. The application of controls containing all radioactive substances present in suitable samples is recommended in order to avoid incorrect interpretations of the results.

  6. Agrobacterium Mediated Transient Gene Silencing (AMTS) in Stevia rebaudiana: Insights into Steviol Glycoside Biosynthesis Pathway

    PubMed Central

    Guleria, Praveen; Yadav, Sudesh Kumar

    2013-01-01

    Background Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi) based Agrobacterium mediated transient gene silencing (AMTS) approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1) genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins. Methodology/Principal Findings RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3) content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes. Conclusions SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route. PMID:24023961

  7. Methadone inhibits CYP2D6 and UGT2B7/2B4 in vivo: a study using codeine in methadone- and buprenorphine-maintained subjects

    PubMed Central

    Gelston, Eloise A; Coller, Janet K; Lopatko, Olga V; James, Heather M; Schmidt, Helmut; White, Jason M; Somogyi, Andrew A

    2012-01-01

    AIMS To compare the O-demethylation (CYP2D6-mediated), N-demethylation (CYP3A4-mediated) and 6-glucuronidation (UGT2B4/7-mediated) metabolism of codeine between methadone- and buprenorphine-maintained CYP2D6 extensive metabolizer subjects. METHODS Ten methadone- and eight buprenorphine-maintained subjects received a single 60 mg dose of codeine phosphate. Blood was collected at 3 h and urine over 6 h and assayed for codeine, norcodeine, morphine, morphine-3- and -6-glucuronides and codeine-6-glucuronide. RESULTS The urinary metabolic ratio for O-demethylation was significantly higher (P = 0.0044) in the subjects taking methadone (mean ± SD, 2.8 ± 3.1) compared with those taking buprenorphine (0.60 ± 0.43), likewise for 6-glucuronide formation (0.31 ± 0.24 vs. 0.053 ± 0.027; P < 0.0002), but there was no significant difference (P = 0.36) in N-demethylation. Similar changes in plasma metabolic ratios were also found. In plasma, compared with those maintained on buprenorphine, the methadone-maintained subjects had increased codeine and norcodeine concentrations (P < 0.004), similar morphine (P = 0.72) and lower morphine-3- and -6- and codeine-6-glucuronide concentrations (P < 0.008). CONCLUSION Methadone is associated with inhibition of CYP2D6 and UGTs 2B4 and 2B7 reactions in vivo, even though it is not a substrate for these enzymes. Plasma morphine was not altered, owing to the opposing effects of inhibition of both formation and elimination; however, morphine-6-glucuronide (analgesically active) concentrations were substantially reduced. Drug interactions with methadone are likely to include drugs metabolized by various UGTs and CYP2D6. PMID:22092298

  8. Histone 2A stimulates glucose-6-phosphatase activity by permeabilization of liver microsomes.

    PubMed

    Benedetti, Angelo; Fulceri, Rosella; Allan, Bernard B; Houston, Pamela; Sukhodub, Andrey L; Marcolongo, Paola; Ethell, Brian; Burchell, Brian; Burchell, Ann

    2002-10-15

    Histone 2A increases glucose-6-phosphatase activity in liver microsomes. The effect has been attributed either to the conformational change of the enzyme, or to the permeabilization of microsomal membrane that allows the free access of substrate to the intraluminal glucose-6-phosphatase catalytic site. The aim of the present study was the critical reinvestigation of the mechanism of action of histone 2A. It has been found that the dose-effect curve of histone 2A is different from that of detergents and resembles that of the pore-forming alamethicin. Inhibitory effects of EGTA on glucose-6-phosphatase activity previously reported in histone 2A-treated microsomes have been also found in alamethicin-permeabilized vesicles. The effect of EGTA cannot therefore simply be an antagonization of the effect of histone 2A. Histone 2A stimulates the activity of another latent microsomal enzyme, UDP-glucuronosyltransferase, which has an intraluminal catalytic site. Finally, histone 2A renders microsomal vesicles permeable to non-permeant compounds. Taken together, the results demonstrate that histone 2A stimulates glucose-6-phosphatase activity by permeabilizing the microsomal membrane.

  9. Histone 2A stimulates glucose-6-phosphatase activity by permeabilization of liver microsomes.

    PubMed Central

    Benedetti, Angelo; Fulceri, Rosella; Allan, Bernard B; Houston, Pamela; Sukhodub, Andrey L; Marcolongo, Paola; Ethell, Brian; Burchell, Brian; Burchell, Ann

    2002-01-01

    Histone 2A increases glucose-6-phosphatase activity in liver microsomes. The effect has been attributed either to the conformational change of the enzyme, or to the permeabilization of microsomal membrane that allows the free access of substrate to the intraluminal glucose-6-phosphatase catalytic site. The aim of the present study was the critical reinvestigation of the mechanism of action of histone 2A. It has been found that the dose-effect curve of histone 2A is different from that of detergents and resembles that of the pore-forming alamethicin. Inhibitory effects of EGTA on glucose-6-phosphatase activity previously reported in histone 2A-treated microsomes have been also found in alamethicin-permeabilized vesicles. The effect of EGTA cannot therefore simply be an antagonization of the effect of histone 2A. Histone 2A stimulates the activity of another latent microsomal enzyme, UDP-glucuronosyltransferase, which has an intraluminal catalytic site. Finally, histone 2A renders microsomal vesicles permeable to non-permeant compounds. Taken together, the results demonstrate that histone 2A stimulates glucose-6-phosphatase activity by permeabilizing the microsomal membrane. PMID:12097138

  10. Indole-3-acetic acid UDP-glucosyltransferase from immature seeds of pea is involved in modification of glycoproteins.

    PubMed

    Ostrowski, Maciej; Hetmann, Anna; Jakubowska, Anna

    2015-09-01

    The glycosylation of auxin is one of mechanisms contributing to hormonal homeostasis. The enzyme UDPG: indole-3-ylacetyl-β-D-glucosyltransferase (IAA glucosyltransferase, IAGlc synthase) catalyzes the reversible reaction: IAA+UDPG↔1-O-IA-glucose+UDP, which is the first step in the biosynthesis of IAA-ester conjugates in monocotyledonous plants. In this study, we report IAA-glucosyltransferase isolated using a biochemical approach from immature seed of pea (Pisum sativum). The enzyme was purified by PEG fractionation, DEAE-Sephacel anion-exchange chromatography and preparative PAGE. LC-MS/MS analysis of tryptic peptides of the enzyme revealed the high identity with maize IAGlc synthase, but lack of homology with other IAA-glucosyltransferases from dicots. Biochemical characterization showed that of several acyl acceptors tested, the enzyme had the highest activity on IAA as the glucosyl acceptor (Km=0.52 mM, Vmax=161 nmol min(-1), kcat/Km=4.36 mM s(-1)) and lower activity on indole-3-propionic acid and 1-naphthalene acetic acid. Whereas indole-3-butyric acid and indole-3-propionic acid were competitive inhibitors of IAGlc synthase, D-gluconic acid lactone, an inhibitor of β-glucosidase activity, potentiated the enzyme activity at the optimal concentration of 0.3mM. Moreover, we demonstrated that the 1-O-IA-glucose synthesized by IAGlc synthase is the substrate for IAA labeling of glycoproteins from pea seeds indicating a possible role of this enzyme in the covalent modification of a class of proteins by a plant hormone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The Lifetime of UDP-galactose:Ceramide Galactosyltransferase Is Controlled by a Distinct Endoplasmic Reticulum-associated Degradation (ERAD) Regulated by Sigma-1 Receptor Chaperones*

    PubMed Central

    Hayashi, Teruo; Hayashi, Eri; Fujimoto, Michiko; Sprong, Hein; Su, Tsung-Ping

    2012-01-01

    The glycosphingolipid biosynthesis is initiated by monoglycosylation of ceramides, the action of which is catalyzed either by UDP-glucose:ceramide glucosyltransferase or by UDP-galactose:ceramide galactosyltransferase (CGalT). CGalT is expressed predominantly at the endoplasmic reticulum (ER) of oligodendrocytes and is responsible for synthesizing galactosylceramides (GalCer) that play an important role in regulation of axon conductance. However, despite the importance of ceramide monoglycosylation enzymes in a spectrum of cellular functions, the mechanism that fine tunes activities of those enzymes is largely unknown. In the present study, we demonstrated that the sigma-1 receptor (Sig-1R) chaperone, the mammalian homologue of a yeast C8-C7 sterol isomerase, controls the protein level and activity of the CGalT enzyme via a distinct ER-associated degradation system involving Insig. The Sig-1R forms a complex with Insig via its transmembrane domain partly in a sterol-dependent manner and associates with CGalT at the ER. The knockdown of Sig-1Rs dramatically prolonged the lifetime of CGalT without affecting the trimming of N-linked oligosaccharides at CGalT. The increased lifetime leads to the up-regulation of CGalT protein as well as elevated enzymatic activity in CHO cells stably expressing CGalT. Knockdown of Sig-1Rs also decreased CGalT degradation endogenously expressed in D6P2T-schwannoma cells. Our data suggest that Sig-1Rs negatively regulate the activity of GalCer synthesis under physiological conditions by enhancing the degradation of CGalT through regulation of the dynamics of Insig in the lipid-activated ER-associated degradation system. The GalCer synthesis may thus be influenced by sterols at the ER. PMID:23105111

  12. Cell wall composition and digestibility alterations in Brachypodium distachyon acheived through reduced expression of the UDP-arabinopyranose mutase

    USDA-ARS?s Scientific Manuscript database

    Plant cell-wall polysaccharide biosynthesis requires nucleotide-activated sugars. The prominent grass cell wall sugars, glucose (Glc), xylose (Xyl), and arabinose (Ara), are biosynthetically related via the UDP-sugar interconversion pathway. RNA-seq analysis of Brachypodium distachyon UDP-sugar inte...

  13. Regioselective formation of quercetin 5-O-glucoside from orally administered quercetin in the silkworm, Bombyx mori.

    PubMed

    Hirayama, Chikara; Ono, Hiroshi; Tamura, Yasumori; Konno, Kotaro; Nakamura, Masatoshi

    2008-03-01

    The cocoons of some races of the silkworm, Bombyx mori, have been shown to contain 5-O-glucosylated flavonoids, which do not occur naturally in the leaves of their host plant, mulberry (Morus alba). Thus, dietary flavonoids could be biotransformed in this insect. In this study, we found that after feeding silkworms a diet rich in the flavonol quercetin, quercetin 5-O-glucoside was the predominant metabolite in the midgut tissue, while quercetin 5,4'-di-O-glucoside was the major constituent in the hemolymph and silk glands. UDP-glucosyltransferase (UGT) in the midgut could transfer glucose to each of the hydroxyl groups of quercetin, with a preference for formation of 5-O-glucoside, while quercetin 5,4'-di-O-glucoside was predominantly produced if the enzyme extracts of either the fat body or silk glands were incubated with quercetin 5-O-glucoside and UDP-glucose. These results suggest that dietary quercetin was glucosylated at the 5-O position in the midgut as the first-pass metabolite of quercetin after oral absorption, then glucosylated at the 4'-O position in the fat body or silk glands. The 5-O-glucosylated flavonoids retained biological activity in the insect, since the total free radical scavenging capacity of several tissues increased after oral administration of quercetin.

  14. Short communication: expression of transporters and metabolizing enzymes in the female lower genital tract: implications for microbicide research.

    PubMed

    Zhou, Tian; Hu, Minlu; Cost, Marilyn; Poloyac, Samuel; Rohan, Lisa

    2013-11-01

    Topical vaginal microbicides have been considered a promising option for preventing the male-to-female sexual transmission of HIV; however, clinical trials to date have not clearly demonstrated robust and reproducible effectiveness results. While multiple approaches may help enhance product effectiveness observed in clinical trials, increasing the drug exposure in lower genital tract tissues is a compelling option, given the difficulty in achieving sufficient drug exposure and positive correlation between tissue exposure and microbicide efficacy. Since many microbicide drug candidates are substrates of transporters and/or metabolizing enzymes, there is emerging interest in improving microbicide exposure and efficacy through local modulation of transporters and enzymes in the female lower genital tract. However, no systematic information on transporter/enzyme expression is available for ectocervical and vaginal tissues of premenopausal women, the genital sites most relevant to microbicide drug delivery. The current study utilized reverse transcriptase polymerase chain reaction (RT-PCR) to examine the mRNA expression profile of 22 transporters and 19 metabolizing enzymes in premenopausal normal human ectocervix and vagina. Efflux and uptake transporters important for antiretroviral drugs, such as P-gp, BCRP, OCT2, and ENT1, were found to be moderately or highly expressed in the lower genital tract as compared to liver. Among the metabolizing enzymes examined, most CYP isoforms were not detected while a number of UGTs such as UGT1A1 were highly expressed. Moderate to high expression of select transporters and enzymes was also observed in mouse cervix and vagina. The implications of this information on microbicide research is also discussed, including microbicide pharmacokinetics, the utilization of the mouse model in microbicide screening, as well as the in vivo functional studies of cervicovaginal transporters and enzymes.

  15. Short Communication: Expression of Transporters and Metabolizing Enzymes in the Female Lower Genital Tract: Implications for Microbicide Research

    PubMed Central

    Zhou, Tian; Hu, Minlu; Cost, Marilyn; Poloyac, Samuel

    2013-01-01

    Abstract Topical vaginal microbicides have been considered a promising option for preventing the male-to-female sexual transmission of HIV; however, clinical trials to date have not clearly demonstrated robust and reproducible effectiveness results. While multiple approaches may help enhance product effectiveness observed in clinical trials, increasing the drug exposure in lower genital tract tissues is a compelling option, given the difficulty in achieving sufficient drug exposure and positive correlation between tissue exposure and microbicide efficacy. Since many microbicide drug candidates are substrates of transporters and/or metabolizing enzymes, there is emerging interest in improving microbicide exposure and efficacy through local modulation of transporters and enzymes in the female lower genital tract. However, no systematic information on transporter/enzyme expression is available for ectocervical and vaginal tissues of premenopausal women, the genital sites most relevant to microbicide drug delivery. The current study utilized reverse transcriptase polymerase chain reaction (RT-PCR) to examine the mRNA expression profile of 22 transporters and 19 metabolizing enzymes in premenopausal normal human ectocervix and vagina. Efflux and uptake transporters important for antiretroviral drugs, such as P-gp, BCRP, OCT2, and ENT1, were found to be moderately or highly expressed in the lower genital tract as compared to liver. Among the metabolizing enzymes examined, most CYP isoforms were not detected while a number of UGTs such as UGT1A1 were highly expressed. Moderate to high expression of select transporters and enzymes was also observed in mouse cervix and vagina. The implications of this information on microbicide research is also discussed, including microbicide pharmacokinetics, the utilization of the mouse model in microbicide screening, as well as the in vivo functional studies of cervicovaginal transporters and enzymes. PMID:23607746

  16. Ectopic expression of UGT84A2 delayed flowering by indole-3-butyric acid-mediated transcriptional repression of ARF6 and ARF8 genes in Arabidopsis.

    PubMed

    Zhang, Gui-Zhi; Jin, Shang-Hui; Li, Pan; Jiang, Xiao-Yi; Li, Yan-Jie; Hou, Bing-Kai

    2017-12-01

    Ectopic expression of auxin glycosyltransferase UGT84A2 in Arabidopsis can delay flowering through increased indole-3-butyric acid and suppressed transcription of ARF6, ARF8 and flowering-related genes FT, SOC1, AP1 and LFY. Auxins are critical regulators for plant growth and developmental processes. Auxin homeostasis is thus an important issue for plant biology. Here, we identified an indole-3-butyric acid (IBA)-specific glycosyltransferase, UGT84A2, and characterized its role in Arabidopsis flowering development. UGT84A2 could catalyze the glycosylation of IBA, but not indole-3-acetic acid (IAA). UGT84A2 transcription expression was clearly induced by IBA. When ectopically expressing in Arabidopsis, UGT84A2 caused obvious delay in flowering. Correspondingly, the increase of IBA level, the down-regulation of AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8, and the down-regulation of flowering-related genes such as FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CO1(SOC1), APETALA1 (AP1), and LEAFY(LFY) were observed in transgenic plants. When exogenously applying IBA to wild-type plants, the late flowering phenotype, the down-regulation of ARF6, ARF8 and flowering-related genes recurred. We examined the arf6arf8 double mutants and found that the expression of flowering-related genes was also substantially decreased in these mutants. Together, our results suggest that glycosyltransferase UGT84A2 may be involved in flowering regulation through indole-3-butyric acid-mediated transcriptional repression of ARF6, ARF8 and downstream flowering pathway genes.

  17. Development of a new DHPLC assay for genotyping UGT1A (TA)n polymorphism associated with Gilbert's syndrome.

    PubMed

    Mlakar, Simona Jurkovic; Ostanek, Barbara

    2011-01-01

    Gilbert's syndrome is the most common hereditary disorder of bilirubin metabolism. The causative mutation in Caucasians is almost exclusively a (TA) dinucleotide insertion in the UGT1A1 promoter. Affected individuals are homozygous for the variant promoter and have 7 TA repeats instead of 6. Promoters with 5 and 8 TA repeats also exist but are extremely rare in Caucasians. The aim of our study was to develop denaturing high-performance liquid chromatography (DHPLC) assay for genotyping UGT1A1(TA)n polymorphism and to compare it with a previously described single-strand conformation polymorphism (SSCP) assay. Fifty DNA samples with common genotypes ((TA)6/6, (TA)6/7, (TA)7/7) as well as 7 samples with one of the following rare genotypes- (TA)5/6, (TA)5/7, (TA)6/8 or (TA)7/8 were amplified by polymerase chain reaction (PCR) and genotyped by DHPLC using sizing mode. All samples were previously genotyped by SSCP assay which was validated by sequencing analysis. All samples with either common or rare genotypes showed completely concordant results between DHPLC and SSCP assays. Our results show that sizing DHPLC assay is more efficient compared to classical SSCP assay due to shorter time of genotyping analysis, ability of genotyping increased number of samples per day, higher robustness, reproducibility and cost-effectiveness with no loss of accuracy in detection of all UGT1A1(TA)n genotypes. We developed a new DHPLC assay which is suitable for accurate, automated, highthroughput, robust genotyping of all UGT1A1(TA)n polymorphism variants, compared to a labour intensive and time-consuming SSCP assay.

  18. Differences in response of glucuronide and glutathione conjugating enzymes to aflatoxin B/sub 1/ and N-acetylaminofluorene in underfed rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajpurohit, R.; Krishnaswamy, K.

    Changes in the hepatic drug/xenobiotic-metabolizing enzymes in underfed rats exposed to aflatoxin B/sub 1/ and N-acetylaminofluorene were investigated. Neither carcinogen, fed at the level of 10 ..mu..g and 0.667 mg per 100 g body weight, respectively, over a period of 3 wk, had any significant influence on cytochrome P-450 and aryl hydrocarbon hydroxylase in the undernourished rats. Significantly low activities of UDP-glucuronyltransferase and glutathione S-transferase were observed in food-restricted animals fed on aflatoxin B/sub 1/. N-acetylaminofluorene, on the other hand stimulated both the enzyme activities in the underfed group, to as much observed in the respective well-fed treated group. UDP-Glucuronyltransferasemore » and glutathione S-transferase in undernutrition seem to respond differently to aflatoxin B/sub 1/ and N-acetylaminofluorene. Further studies are needed to assess the possible consequences of such alterations.« less

  19. Crystal Structure of a UDP-glucose-specific Glycosyltransferase from a Mycobacterium Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulton, Zara; McAlister, Adrian; Wilce, Matthew C.J.

    2008-10-24

    Glycosyltransferases (GTs) are a large and ubiquitous family of enzymes that specifically transfer sugar moieties to a range of substrates. Mycobacterium tuberculosis contains a large number of GTs, many of which are implicated in cell wall synthesis, yet the majority of these GTs remain poorly characterized. Here, we report the high resolution crystal structures of an essential GT (MAP2569c) from Mycobacterium avium subsp. paratuberculosis (a close homologue of Rv1208 from M. tuberculosis) in its apo- and ligand-bound forms. The structure adopted the GT-A fold and possessed the characteristic DXD motif that coordinated an Mn{sup 2+} ion. Atypical of most GTsmore » characterized to date, MAP2569c exhibited specificity toward the donor substrate, UDP-glucose. The structure of this ligated complex revealed an induced fit binding mechanism and provided a basis for this unique specificity. Collectively, the structural features suggested that MAP2569c may adopt a 'retaining' enzymatic mechanism, which has implications for the classification of other GTs in this large superfamily.« less

  20. Severe neonatal hyperbilirubinemia in Crigler‐Najjar syndrome model mice can be reversed with zinc protoporphyrin

    PubMed Central

    Mitsugi, Ryo; Uemura, Asuka; Itoh, Tomoo; Tukey, Robert H.

    2017-01-01

    Neurotoxic bilirubin is solely conjugated by UDP‐glucuronosyltransferase (UGT) 1A1. Due to an inadequate function of UGT1A1, human neonates develop mild to severe physiological hyperbilirubinemia. Accumulation of bilirubin in the brain leads to the onset of irreversible brain damage called kernicterus. Breastfeeding is one of the most significant factors that increase the risk of developing kernicterus in infants. Why does the most natural way of feeding increase the risk of brain damage or even death? This question leads to the hypothesis that breast milk‐induced neonatal hyperbilirubinemia might bring certain benefits to the body. One of the barriers to answering the above question is the lack of animal models that display mild to severe neonatal hyperbilirubinemia. A mouse model that develops neonatal hyperbilirubinemia was previously developed by a knockout of the Ugt1 locus. Deletion of Ugt1a1 results in neonatal lethality from bilirubin neurotoxicity. Bilirubin is the end product of heme catabolism in which heme oxygenase‐I is largely involved. When zinc protoporphyrin, an inhibitor of heme oxygenase I, was administered to newborn Ugt1 −/− mice, serum bilirubin levels dropped dramatically, rescuing the mice from bilirubin‐induced neonatal lethality. Zinc protoporphyrin‐treated Ugt1 −/− mice developed normally as adults capable of reproducing, but their newborns showed even more severe hyperbilirubinemia. Microarray analysis of the hyperbilirubinemic livers indicated that a number of genes associated with nucleotide, transport, and immune response were significantly down‐regulated in a serum bilirubin level‐dependent manner. Conclusion: Our study provides an opportunity to advance the development of effective therapeutics to effectively and rapidly prevent bilirubin‐induced toxicity. Neonatal hyperbilirubinemia has various impacts on the body that could be driven by the antioxidant property of bilirubin. (Hepatology Communications 2017

  1. In vitro metabolism of a novel JNK inhibitor tanzisertib: interspecies differences in oxido-reduction and characterization of enzymes involved in metabolism.

    PubMed

    Atsriku, Christian; Hoffmann, Matthew; Moghaddam, Mehran; Kumar, Gondi; Surapaneni, Sekhar

    2015-01-01

    1. In vitro metabolism of Tanzisertib [(1S,4R)-4-(9-((S)tetrahydrofuran-3-yl)-8-(2,4,6-trifluorophenylamino)-9H-purin-2-ylamino) cyclohexanol], a potent, selective c-Jun amino-terminal kinase (JNK) inhibitor, was investigated in mouse, rat, rabbit, dog, monkey and human hepatocytes over 4 h. The extent of metabolism of [(14)C]tanzisertib was variable, with <10% metabolized in dog and human, <20% metabolized in rabbit and monkey and >75% metabolized in rat and mouse. Primary metabolic pathways in human and dog hepatocytes, were direct glucuronidation and oxidation of cyclohexanol to a keto metabolite, which was subsequently reduced to parent or cis-isomer, followed by glucuronidation. Rat and mouse produced oxidative metabolites and cis-isomer, including direct glucuronides and sulfates of tanzisertib and cis-isomer. 2. Enzymology of oxido-reductive pathways revealed that human aldo-keto reductases AKR1C1, 1C2, 1C3 and 1C4 were responsible for oxido-reduction of tanzisertib, CC-418424 and keto tanzisertib. Characterizations of enzyme kinetics revealed that AKR1C4 had a high affinity for reduction of keto tanzisertib to tanzisertib compared to other isoforms. These results demonstrate unique stereoselectivity of the reductive properties documented by human AKR1C enzymes for the same substrate. 3. Characterization of UGT isoenzymes in glucuronidation of tanzisertib and CC-418424 revealed that, tanzisertib glucuronide was catalyzed by: UGT1A1, 1A4, 1A10 and 2B4, while CC-418424 glucuronidation was catalyzed by UGT2B4 and 2B7.

  2. Cellulose Microfibril Formation by Surface-Tethered Cellulose Synthase Enzymes.

    PubMed

    Basu, Snehasish; Omadjela, Okako; Gaddes, David; Tadigadapa, Srinivas; Zimmer, Jochen; Catchmark, Jeffrey M

    2016-02-23

    Cellulose microfibrils are pseudocrystalline arrays of cellulose chains that are synthesized by cellulose synthases. The enzymes are organized into large membrane-embedded complexes in which each enzyme likely synthesizes and secretes a β-(1→4) glucan. The relationship between the organization of the enzymes in these complexes and cellulose crystallization has not been explored. To better understand this relationship, we used atomic force microscopy to visualize cellulose microfibril formation from nickel-film-immobilized bacterial cellulose synthase enzymes (BcsA-Bs), which in standard solution only form amorphous cellulose from monomeric BcsA-B complexes. Fourier transform infrared spectroscopy and X-ray diffraction techniques show that surface-tethered BcsA-Bs synthesize highly crystalline cellulose II in the presence of UDP-Glc, the allosteric activator cyclic-di-GMP, as well as magnesium. The cellulose II cross section/diameter and the crystal size and crystallinity depend on the surface density of tethered enzymes as well as the overall concentration of substrates. Our results provide the correlation between cellulose microfibril formation and the spatial organization of cellulose synthases.

  3. Double layer zinc-UDP coordination polymers: structure and properties.

    PubMed

    Qiu, Qi-Ming; Gu, Leilei; Ma, Hongwei; Yan, Li; Liu, Minghua; Li, Hui

    2018-05-17

    A homochiral Zn-UDP coordination polymer with an alternating parallel ABAB sequence was constructed and studied by X-ray single crystal diffraction analysis. Its crystal structure shows that there are potentially open sites in the 2D layers. The activation of the sites makes the coordination polymer a fluorescent sensor for novel heterogeneous detection of amino acids.

  4. Identification of an inhibitor of the MurC enzyme, which catalyzes an essential step in the peptidoglycan precursor synthesis pathway.

    PubMed

    Zawadzke, Laura E; Norcia, Michael; Desbonnet, Charlene R; Wang, Hong; Freeman-Cook, Kevin; Dougherty, Thomas J

    2008-02-01

    The pathway for synthesis of the peptidoglycan precursor UDP-N-acetylmuramyl pentapeptide is essential in Gram-positive and Gram-negative bacteria. This pathway has been exploited in the recent past to identify potential new antibiotics as inhibitors of one or more of the Mur enzymes. In the present study, a high-throughput screen was employed to identify potential inhibitors of the Escherichia coli MurC (UDP-N-acetylmuramic acid:L-alanine ligase), the first of four paralogous amino acid-adding enzymes. Inhibition of ATP consumed during the MurC reaction, using an adaptation of a kinase assay format, identified a number of potential inhibitory chemotypes. After nonspecific inhibition testing and chemical attractiveness were assessed, C-1 emerged as a compound for further characterization. The inhibition of MurC by this compound was confirmed in both a kinetic-coupled enzyme assay and a direct nuclear magnetic resonance product detection assay. C-1 was found to be a low micromolar inhibitor of the E. coli MurC reaction, with preferential inhibition by one of two enantiomeric forms. Experiments indicated that it was a competitive inhibitor of ATP binding to the MurC enzyme. Further work with MurC enzymes from several bacterial sources revealed that while the compound was equally effective at inhibiting MurC from genera (Proteus mirabilis and Klebsiella pneumoniae) closely related to E. coli, MurC enzymes from more distant Gram-negative species such as Haemophilus influenzae, Acinetobacter baylyi, and Pseudomonas aeruginosa were not inhibited.

  5. The participation of ribosomes in protein glycosylation. Interaction of the ribosome-UDP-N-acetyl-glucosamine complex with dolichol phosphate.

    PubMed

    Paszkiewicz-Gadek, A; Porowska, H; Gałasiński, W

    1992-01-01

    UDP-N-acetylglucosamine can be bound by pure ribosomes. The part of N-acetylglucosamine-1-P can be transferred from the complex ribosome-UDP-N-acetylglucosamine onto dolichol phosphate. Evidence is presented that N-acetylglucosamine bound to dolichol phosphate can be transferred to the nascent peptide synthesized on the ribosome.

  6. Effect of various alanine analogues on the L-alanine-adding enzyme from Escherichia coli.

    PubMed

    Liger, D; Blanot, D; van Heijenoort, J

    1991-05-01

    An extract from Escherichia coli containing the L-alanine-adding enzyme with a high specific activity was prepared. Several compounds structurally related to L-alanine were tested as inhibitors of this activity. Intact amino and carboxyl groups were necessary for an interaction with the enzyme. Certain halogenated (haloalanines) or unsaturated (L-vinylglycine, L-propargylglycine, 3-cyano-L-alanine) amino acids were good inhibitors. Radioactive glycine, serine and 1-aminoethylphosphonic acid were tested as substrates. Whereas glycine or L-serine gave rise to the formation of the corresponding nucleotide product, no synthesis of UDP-N-acetylmuramyl-L-1-aminoethylphosphonic acid could be detected.

  7. Modulation of bilirubin neurotoxicity by the Abcb1 transporter in the Ugt1-/- lethal mouse model of neonatal hyperbilirubinemia.

    PubMed

    Bockor, Luka; Bortolussi, Giulia; Vodret, Simone; Iaconcig, Alessandra; Jašprová, Jana; Zelenka, Jaroslav; Vitek, Libor; Tiribelli, Claudio; Muro, Andrés F

    2017-01-01

    Moderate neonatal jaundice is the most common clinical condition during newborn life. However, a combination of factors may result in acute hyperbilirubinemia, placing infants at risk of developing bilirubin encephalopathy and death by kernicterus. While most risk factors are known, the mechanisms acting to reduce susceptibility to bilirubin neurotoxicity remain unclear. The presence of modifier genes modulating the risk of developing bilirubin-induced brain damage is increasingly being recognised. The Abcb1 and Abcc1 members of the ABC family of transporters have been suggested to have an active role in exporting unconjugated bilirubin from the central nervous system into plasma. However, their role in reducing the risk of developing neurological damage and death during neonatal development is still unknown.To this end, we mated Abcb1a/b-/- and Abcc1-/- strains with Ugt1-/- mice, which develop severe neonatal hyperbilirubinemia. While about 60% of Ugt1-/- mice survived after temporary phototherapy, all Abcb1a/b-/-/Ugt1-/- mice died before postnatal day 21, showing higher cerebellar levels of unconjugated bilirubin. Interestingly, Abcc1 role appeared to be less important.In the cerebellum of Ugt1-/- mice, hyperbilirubinemia induced the expression of Car and Pxr nuclear receptors, known regulators of genes involved in the genotoxic response.We demonstrated a critical role of Abcb1 in protecting the cerebellum from bilirubin toxicity during neonatal development, the most clinically relevant phase for human babies, providing further understanding of the mechanisms regulating bilirubin neurotoxicity in vivo. Pharmacological treatments aimed to increase Abcb1 and Abcc1 expression, could represent a therapeutic option to reduce the risk of bilirubin neurotoxicity. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. The Apicomplexa-specific glucosamine-6-phosphate N-acetyltransferase gene family encodes a key enzyme for glycoconjugate synthesis with potential as therapeutic target.

    PubMed

    Cova, Marta; López-Gutiérrez, Borja; Artigas-Jerónimo, Sara; González-Díaz, Aida; Bandini, Giulia; Maere, Steven; Carretero-Paulet, Lorenzo; Izquierdo, Luis

    2018-03-05

    Apicomplexa form a phylum of obligate parasitic protozoa of great clinical and veterinary importance. These parasites synthesize glycoconjugates for their survival and infectivity, but the enzymatic steps required to generate the glycosylation precursors are not completely characterized. In particular, glucosamine-phosphate N-acetyltransferase (GNA1) activity, needed to produce the essential UDP-N-acetylglucosamine (UDP-GlcNAc) donor, has not been identified in any Apicomplexa. We scanned the genomes of Plasmodium falciparum and representatives from six additional main lineages of the phylum for proteins containing the Gcn5-related N-acetyltransferase (GNAT) domain. One family of GNAT-domain containing proteins, composed by a P. falciparum sequence and its six apicomplexan orthologs, rescued the growth of a yeast temperature-sensitive GNA1 mutant. Heterologous expression and in vitro assays confirmed the GNA1 enzymatic activity in all lineages. Sequence, phylogenetic and synteny analyses suggest an independent origin of the Apicomplexa-specific GNA1 family, parallel to the evolution of a different GNA1 family in other eukaryotes. The inability to disrupt an otherwise modifiable gene target suggests that the enzyme is essential for P. falciparum growth. The relevance of UDP-GlcNAc for parasite viability, together with the independent evolution and unique sequence features of Apicomplexa GNA1, highlights the potential of this enzyme as a selective therapeutic target against apicomplexans.

  9. DPD and UGT1A1 deficiency in colorectal cancer patients receiving triplet chemotherapy with fluoropyrimidines, oxaliplatin and irinotecan

    PubMed Central

    Falvella, Felicia Stefania; Cheli, Stefania; Martinetti, Antonia; Mazzali, Cristina; Iacovelli, Roberto; Maggi, Claudia; Gariboldi, Manuela; Pierotti, Marco Alessandro; Di Bartolomeo, Maria; Sottotetti, Elisa; Mennitto, Roberta; Bossi, Ilaria; de Braud, Filippo; Clementi, Emilio; Pietrantonio, Filippo

    2015-01-01

    Aims Triplet chemotherapy with fluoropyrimidines, oxaliplatin and irinotecan is a standard therapy for metastatic colorectal cancer (CRC). Single nucleotide polymorphisms (SNPs) in DPYD and UGT1A1 influence fluoropyrimdines and irinotecan adverse events (AEs). Low frequency DPYD variants (c.1905 + 1G > A, c.1679 T > G, c.2846A > T) are validated but more frequent ones (c.496A > G, c.1129-5923C > G and c.1896 T > C) are not. rs895819 T > C polymorphism in hsa-mir-27a is associated with reduced DPD activity. In this study, we evaluated the clinical usefulness of a pharmacogenetic panel for patients receiving triplet combinations. Methods Germline DNA was available from 64 CRC patients enrolled between 2008 and 2013 in two phase II trials of capecitabine, oxaliplatin and irinotecan plus bevacizumab or cetuximab. SNPs were determined by Real-Time PCR. We evaluated the functional variants in DPYD (rare: c.1905 + 1G > A, c.1679 T > G, c.2846A > T; most common: c.496A > G, c.1129-5923C > G, c.1896 T > C), hsa-mir-27a (rs895819) and UGT1A1 (*28) genes to assess their association with grade 3–4 AEs. Results None of the patients carried rare DPYD variants. We found DPYD c.496A > G, c.1129-5923C > G, c.1896 T > C in heterozygosity in 19%, 5% and 8%, respectively, homozygous rs895819 in hsa-mir-27a in 9% and homozygous UGT1A1*28 in 8%. Grade 3–4 AEs were observed in 36% patients and were associated with DPYD c.496A > G (odds ratio (OR) 4.93, 95% CI 1.29, 18.87; P = 0.021) and homozygous rs895819 in hsa-mir-27a (OR 11.11, 95% CI 1.21, 102.09; P = 0.020). Carriers of DPYD c.1896 T > C and homozygous UGT1A1*28 showed an OR of 8.42 (95% CI 0.88, 80.56; P = 0.052). Multivariate analysis confirmed an independent value for DPYD c.496A > G and c.1896 T > C. Conclusions Concomitant assessment of DPYD variants and the UGT1A1*28 allele is a promising strategy needing further validation for dose personalization. PMID:25782327

  10. Selective reduction in the expression of UGTs and SULTs, a novel mechanism by which piperine enhances the bioavailability of curcumin in rat.

    PubMed

    Zeng, Xiaohui; Cai, Dake; Zeng, Qiaohuang; Chen, Zhao; Zhong, Guoping; Zhuo, Juncheng; Gan, Haining; Huang, Xuejun; Zhao, Ziming; Yao, Nan; Huang, Dane; Zhang, Chengzhe; Sun, Dongmei; Chen, Yuxing

    2017-01-01

    Curcumin (CUR) is known to exert numerous health-promoting effects in pharmacological studies, but its low bioavailability hinders the development of curcumin as a feasible therapeutic agent. Piperine (PIP) has been reported to enhance the bioavailability of curcumin, but the underlying mechanism remains poorly understood. In an attempt to find the mechanism by which piperine enhances the bioavailability of curcumin, the dosage ratio (CUR: PIP) and pre-treatment with piperine were hypothesized as key factors for improving the bioavailability in this combination. Therefore, combining curcumin with piperine at various dose ratios (1:1 to 100:1) and pre-dosing with piperine (0.5-8 h prior to curcumin) were designed to investigate their contributions to the pharmacokinetic parameters of curcumin in rats and their effects on the expression of UGT and SULT isoforms. It was shown that the C max and AUC 0-t of curcumin were slightly increased by 1.29 and 1.67 fold at a ratio of 20:1, while curcumin exposure was enhanced significantly in all the piperine pre-treated rats (0.5-8 h), peaking at 6 h (a 6.09-fold and 5.97-fold increase in C max and AUC 0-t , p < 0.01), regardless of the unchanged t 1/2 and T max . Also observed was a time-dependent inhibition of the hepatic expression of UGT1A6, 1A8, SULT1A1, 1A3, and the colonic expression of UGT1A6 that occurred within 6 h of piperine pre-treatment but was reversed at 8 h, which correlated with the changes in curcumin exposure. Similarly, the inhibitory effect of piperine on most of the UGTs and SULTs are time-dependent in Caco-2 and HepG2 cells. It is concluded that piperine pre-treatment time-dependently improves the bioavailability of curcumin through the reversible and selective inhibition of UGTs and SULTs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Downregulation of a UDP-Arabinomutase Gene in Switchgrass (Panicum virgatum L.) Results in Increased Cell Wall Lignin While Reducing Arabinose-Glycans

    DOE PAGES

    Willis, Jonathan D.; Smith, James A.; Mazarei, Mitra; ...

    2016-10-26

    Switchgrass (Panicum virgatum L.) is a C 4 perennial prairie grass and a dedicated feedstock for lignocellulosic biofuels. Saccharification and biofuel yields are inhibited by the plant cell wall's natural recalcitrance against enzymatic degradation. Plant hemicellulose polysaccharides such as arabinoxylans structurally support and cross-link other cell wall polymers. Grasses predominately have Type II cell walls that are abundant in arabinoxylan, which comprise nearly 25% of aboveground biomass. A primary component of arabinoxylan synthesis is uridine diphosphate (UDP) linked to arabinofuranose (Araf). A family of UDP-arabinopyranose mutase (UAM)/reversible glycosylated polypeptides catalyze the interconversion between UDP-arabinopyranose (UDP-Arap) and UDP-Araf. The expression ofmore » a switchgrass arabinoxylan biosynthesis pathway gene, PvUAM1, was decreased via RNAi to investigate its role in cell wall recalcitrance in the feedstock. PvUAM1 encodes a switchgrass homolog of UDP-arabinose mutase, which converts UDP-Arap to UDP-Araf. Southern blot analysis revealed each transgenic line contained between one to at least seven T-DNA insertions, resulting in some cases, a 95% reduction of native PvUAM1 transcript in stem internodes. Transgenic plants had increased pigmentation in vascular tissues at nodes, but were otherwise similar in morphology to the non-transgenic control. Cell wall-associated arabinose was decreased in leaves and stems by over 50%, but there was an increase in cellulose. In addition, there was a commensurate change in arabinose side chain extension. Cell wall lignin composition was altered with a concurrent increase in lignin content and transcript abundance of lignin biosynthetic genes in mature tillers. Enzymatic saccharification efficiency was unchanged in the transgenic plants relative to the control. Plants with attenuated PvUAM1 transcript had increased cellulose and lignin in cell walls. A decrease in cell wall-associated arabinose was

  12. Downregulation of a UDP-Arabinomutase Gene in Switchgrass (Panicum virgatum L.) Results in Increased Cell Wall Lignin While Reducing Arabinose-Glycans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, Jonathan D.; Smith, James A.; Mazarei, Mitra

    Switchgrass (Panicum virgatum L.) is a C 4 perennial prairie grass and a dedicated feedstock for lignocellulosic biofuels. Saccharification and biofuel yields are inhibited by the plant cell wall's natural recalcitrance against enzymatic degradation. Plant hemicellulose polysaccharides such as arabinoxylans structurally support and cross-link other cell wall polymers. Grasses predominately have Type II cell walls that are abundant in arabinoxylan, which comprise nearly 25% of aboveground biomass. A primary component of arabinoxylan synthesis is uridine diphosphate (UDP) linked to arabinofuranose (Araf). A family of UDP-arabinopyranose mutase (UAM)/reversible glycosylated polypeptides catalyze the interconversion between UDP-arabinopyranose (UDP-Arap) and UDP-Araf. The expression ofmore » a switchgrass arabinoxylan biosynthesis pathway gene, PvUAM1, was decreased via RNAi to investigate its role in cell wall recalcitrance in the feedstock. PvUAM1 encodes a switchgrass homolog of UDP-arabinose mutase, which converts UDP-Arap to UDP-Araf. Southern blot analysis revealed each transgenic line contained between one to at least seven T-DNA insertions, resulting in some cases, a 95% reduction of native PvUAM1 transcript in stem internodes. Transgenic plants had increased pigmentation in vascular tissues at nodes, but were otherwise similar in morphology to the non-transgenic control. Cell wall-associated arabinose was decreased in leaves and stems by over 50%, but there was an increase in cellulose. In addition, there was a commensurate change in arabinose side chain extension. Cell wall lignin composition was altered with a concurrent increase in lignin content and transcript abundance of lignin biosynthetic genes in mature tillers. Enzymatic saccharification efficiency was unchanged in the transgenic plants relative to the control. Plants with attenuated PvUAM1 transcript had increased cellulose and lignin in cell walls. A decrease in cell wall-associated arabinose was

  13. Cloning, Expression and Characterization of UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA) from Wolbachia Endosymbiont of Human Lymphatic Filarial Parasite Brugia malayi

    PubMed Central

    Shahab, Mohd; Verma, Meenakshi; Pathak, Manisha; Mitra, Kalyan; Misra-Bhattacharya, Shailja

    2014-01-01

    Wolbachia, an endosymbiont of filarial nematode, is considered a promising target for treatment of lymphatic filariasis. Although functional characterization of the Wolbachia peptidoglycan assembly has not been fully explored, the Wolbachia genome provides evidence for coding all of the genes involved in lipid II biosynthesis, a part of peptidoglycan biosynthesis pathway. UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is one of the lipid II biosynthesis pathway enzymes and it has inevitably been recognized as an antibiotic target. In view of the vital role of MurA in bacterial viability and survival, MurA ortholog from Wolbachia endosymbiont of Brugia malayi (wBm-MurA) was cloned, expressed and purified for further molecular characterization. The enzyme kinetics and inhibition studies were undertaken using fosfomycin. wBm-MurA was found to be expressed in all the major life stages of B. malayi and was immunolocalized in Wolbachia within the microfilariae and female adults by the confocal microscopy. Sequence analysis suggests that the amino acids crucial for enzymatic activity are conserved. The purified wBm-MurA was shown to possess the EPSP synthase (3-phosphoshikimate 1-carboxyvinyltransferase) like activity at a broad pH range with optimal activity at pH 7.5 and 37°C temperature. The apparent affinity constant (K m) for the substrate UDP-N-acetylglucosamine was found to be 0.03149 mM and for phosphoenolpyruvate 0.009198 mM. The relative enzymatic activity was inhibited ∼2 fold in presence of fosfomycin. Superimposition of the wBm-MurA homology model with the structural model of Haemophilus influenzae (Hi-MurA) suggests binding of fosfomycin at the same active site. The findings suggest wBm-MurA to be a putative antifilarial drug target for screening of novel compounds. PMID:24941309

  14. Prediction of reacting atoms for the major biotransformation reactions of organic xenobiotics.

    PubMed

    Rudik, Anastasia V; Dmitriev, Alexander V; Lagunin, Alexey A; Filimonov, Dmitry A; Poroikov, Vladimir V

    2016-01-01

    The knowledge of drug metabolite structures is essential at the early stage of drug discovery to understand the potential liabilities and risks connected with biotransformation. The determination of the site of a molecule at which a particular metabolic reaction occurs could be used as a starting point for metabolite identification. The prediction of the site of metabolism does not always correspond to the particular atom that is modified by the enzyme but rather is often associated with a group of atoms. To overcome this problem, we propose to operate with the term "reacting atom", corresponding to a single atom in the substrate that is modified during the biotransformation reaction. The prediction of the reacting atom(s) in a molecule for the major classes of biotransformation reactions is necessary to generate drug metabolites. Substrates of the major human cytochromes P450 and UDP-glucuronosyltransferases from the Biovia Metabolite database were divided into nine groups according to their reaction classes, which are aliphatic and aromatic hydroxylation, N- and O-glucuronidation, N-, S- and C-oxidation, and N- and O-dealkylation. Each training set consists of positive and negative examples of structures with one labelled atom. In the positive examples, the labelled atom is the reacting atom of a particular reaction that changed adjacency. Negative examples represent non-reacting atoms of a particular reaction. We used Labelled Multilevel Neighbourhoods of Atoms descriptors for the designation of reacting atoms. A Bayesian-like algorithm was applied to estimate the structure-activity relationships. The average invariant accuracy of prediction obtained in leave-one-out and 20-fold cross-validation procedures for five human isoforms of cytochrome P450 and all isoforms of UDP-glucuronosyltransferase varies from 0.86 to 0.99 (0.96 on average). We report that reacting atoms may be predicted with reasonable accuracy for the major classes of metabolic reactions

  15. Cremophor EL-based nanoemulsion enhances transcellular permeation of emodin through glucuronidation reduction in UGT1A1-overexpressing MDCKII cells.

    PubMed

    Zhang, Tianpeng; Dong, Dong; Lu, Danyi; Wang, Shuai; Wu, Baojian

    2016-03-30

    Oral emodin, a natural anthraquinone and active component of many herbal medicines, is poorly bioavailable because of extensive first-pass glucuronidation. Here we aimed to prepare emodin nanoemulsion (EMO-NE) containing cremophor EL, and to assess its potential for enhancing transcellular absorption of emodin using UGT1A1-overexpressing MDCKII cells (or MDCK1A1 cells). EMO-NE was prepared using a modified emulsification technique and subsequently characterized by particle size, morphology, stability, and drug release. MDCKII cells were stably transfected with UGT1A1 using the lentiviral transfection approach. Emodin transport and metabolism were evaluated in Transwell-cultured MDCK1A1 cells after apical dosing of EMO-NE or control solution. The obtained EMO-NE (116 ± 6.5 nm) was spherical and stable for at least 2 months. Emodin release in vitro was a passive diffusion-driven process. EMO-NE administration increased the apparent permeability of emodin by a 2.3-fold (p<0.001) compared to the pure emodin solution (1.2 × 10(-5) cm/s vs 5.3 × 10(-6) cm/s). Further, both apical and basolateral excretion of emodin glucuronide (EMO-G) were significantly decreased (≥56.5%, p<0.001) in EMO-NE group. This was accompanied by a marked reduction (57.4%, p<0.001) in total emodin glucuronidation. It was found that the reduced glucuronidation was due to inhibition of cellular metabolism by cremophor EL. Cremophor EL inhibited UGT1A1-mediated glucuronidation of emodin using the mixed-type inhibition mechanism. In conclusion, cremophor EL-based nanoemulsion greatly enhanced transcellular permeation of emodin through inhibition of UGT metabolism. This cremophor EL-based nanoformulation may be a promising strategy to improve the oral bioavailability of emodin. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Panax ginseng genome examination for ginsenoside biosynthesis.

    PubMed

    Xu, Jiang; Chu, Yang; Liao, Baosheng; Xiao, Shuiming; Yin, Qinggang; Bai, Rui; Su, He; Dong, Linlin; Li, Xiwen; Qian, Jun; Zhang, Jingjing; Zhang, Yujun; Zhang, Xiaoyan; Wu, Mingli; Zhang, Jie; Li, Guozheng; Zhang, Lei; Chang, Zhenzhan; Zhang, Yuebin; Jia, Zhengwei; Liu, Zhixiang; Afreh, Daniel; Nahurira, Ruth; Zhang, Lianjuan; Cheng, Ruiyang; Zhu, Yingjie; Zhu, Guangwei; Rao, Wei; Zhou, Chao; Qiao, Lirui; Huang, Zhihai; Cheng, Yung-Chi; Chen, Shilin

    2017-11-01

    Ginseng, which contains ginsenosides as bioactive compounds, has been regarded as an important traditional medicine for several millennia. However, the genetic background of ginseng remains poorly understood, partly because of the plant's large and complex genome composition. We report the entire genome sequence of Panax ginseng using next-generation sequencing. The 3.5-Gb nucleotide sequence contains more than 60% repeats and encodes 42 006 predicted genes. Twenty-two transcriptome datasets and mass spectrometry images of ginseng roots were adopted to precisely quantify the functional genes. Thirty-one genes were identified to be involved in the mevalonic acid pathway. Eight of these genes were annotated as 3-hydroxy-3-methylglutaryl-CoA reductases, which displayed diverse structures and expression characteristics. A total of 225 UDP-glycosyltransferases (UGTs) were identified, and these UGTs accounted for one of the largest gene families of ginseng. Tandem repeats contributed to the duplication and divergence of UGTs. Molecular modeling of UGTs in the 71st, 74th, and 94th families revealed a regiospecific conserved motif located at the N-terminus. Molecular docking predicted that this motif captures ginsenoside precursors. The ginseng genome represents a valuable resource for understanding and improving the breeding, cultivation, and synthesis biology of this key herb. © The Author 2017. Published by Oxford University Press.

  17. Role of UDP-N-Acetylglucosamine (GlcNAc) and O-GlcNAcylation of Hyaluronan Synthase 2 in the Control of Chondroitin Sulfate and Hyaluronan Synthesis*

    PubMed Central

    Vigetti, Davide; Deleonibus, Sara; Moretto, Paola; Karousou, Eugenia; Viola, Manuela; Bartolini, Barbara; Hascall, Vincent C.; Tammi, Markku; De Luca, Giancarlo; Passi, Alberto

    2012-01-01

    Hyaluronan (HA) is a glycosaminoglycan present in most tissue microenvironments that can modulate many cell behaviors, including proliferation, migration, and adhesive proprieties. In contrast with other glycosaminoglycans, which are synthesized in the Golgi, HA is synthesized at the plasma membrane by one or more of the three HA synthases (HAS1–3), which use cytoplasmic UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates. Previous studies revealed the importance of UDP-sugars for regulating HA synthesis. Therefore, we analyzed the effect of UDP-GlcNAc availability and protein glycosylation with O-linked N-acetylglucosamine (O-GlcNAcylation) on HA and chondroitin sulfate synthesis in primary human aortic smooth muscle cells. Glucosamine treatment, which increases UDP-GlcNAc availability and protein O-GlcNAcylation, increased synthesis of both HA and chondroitin sulfate. However, increasing O-GlcNAcylation by stimulation with O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate without a concomitant increase of UDP-GlcNAc increased only HA synthesis. We found that HAS2, the main synthase in aortic smooth muscle cells, can be O-GlcNAcylated on serine 221, which strongly increased its activity and its stability (t½ >5 h versus ∼17 min without O-GlcNAcylation). S221A mutation prevented HAS2 O-GlcNAcylation, which maintained the rapid turnover rate even in the presence of GlcN and increased UDP-GlcNAc. These findings could explain the elevated matrix HA observed in diabetic vessels that, in turn, could mediate cell dedifferentiation processes critical in vascular pathologies. PMID:22887999

  18. Seasonal alteration in amounts of lignans and their glucosides and gene expression of the relevant biosynthetic enzymes in the Forsythia suspense leaf.

    PubMed

    Morimoto, Kinuyo; Satake, Honoo

    2013-01-01

    Lignans of Forsythia spp. are essential components of various Chinese medicines and health diets. However, the seasonal alteration in lignan amounts and the gene expression profile of lignan-biosynthetic enzymes has yet to be investigated. In this study, we have assessed seasonal alteration in amounts of major lignans, such as pinoresinol, matairesinol, and arctigenin, and examined the gene expression profile of pinoresinol/lariciresinol reductase (PLR), pinoresinol-glucosylating enzyme (UGT71A18), and secoisolariciresinol dehydrogenase (SIRD) in the leaf of Forsythia suspense from April to November. All of the lignans in the leaf continuously increased from April to June, reached the maximal level in June, and then decreased. Ninety percent of pinoresinol and matairesinol was converted into glucosides, while approximately 50% of arctigenin was aglycone. PLR was stably expressed from April to August, whereas the PLR expression was not detected from September to November. In contrast, the UGT71A18 expression was found from August to November, but not from April to July. The SIRD expression was prominent from April to May, not detected in June to July, and then increased again from September to November. These expression profiles of the lignan-synthetic enzymes are largely compatible with the alteration in lignan contents. Furthermore, such seasonal lignan profiles are in good agreement with the fact that the Forsythia leaves for Chinese medicinal tea are harvested in June. This is the first report on seasonal alteration in lignans and the relevant biosynthetic enzyme genes in the leaf of Forsythia species.

  19. Bilirubin as a potential causal factor in type 2 diabetes risk: a Mendelian randomization study

    PubMed Central

    Abbasi, Ali; Deetman, Petronella E.; Corpeleijn, Eva; Gansevoort, Ron T.; Gans, Rijk O.B.; Hillege, Hans L.; van der Harst, Pim; Stolk, Ronald P.; Navis, Gerjan; Alizadeh, Behrooz Z.; Bakker, Stephan J.L.

    2014-01-01

    Circulating bilirubin, a natural antioxidant, is associated with decreased risk of type 2 diabetes (T2D), but the nature of the relationship remains unknown. We performed Mendelian randomization in a prospective cohort of 3,381 participants free of diabetes at baseline (aged 28-75 years; women, 52.6%). We used rs6742078 located in UDP-glucuronosyltransferase (UGT1A1) locus as instrumental variable (IV) to study a potential causal effect of serum total bilirubin on T2D risk. T2D developed in a total of 210 (6.2%) participants during a median follow-up of 7.8 years. In adjusted analyses, rs6742078, which explained 19.5% of bilirubin variation, was strongly associated with total bilirubin (a 0.68-SD increase in bilirubin levels per T allele; P<1×10−122) and was also associated with T2D risk (OR 0.69 [95%CI, 0.54-0.90]; P=0.006). Per 1-SD increase in log-transformed bilirubin levels, we observed a 25% (OR 0.75 [95%CI, 0.62-0.92]; P=0.004) lower risk of T2D. In Mendelian randomization analysis, the causal risk reduction for T2D was estimated to be 42% (causal ORIVestimation per 1-SD increase in log-transformed bilirubin 0.58 [95%CI, 0.39-0.84]; P=0.005), which was comparable to the observational estimate (Durbin-Wu-Hausman chi-square test Pfor difference =0.19). These novel results provide evidence that elevated bilirubin is causally associated with risk of T2D and support its role as a protective determinant. PMID:25368098

  20. Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease.

    PubMed

    Ferrer, Isidro; Garcia-Esparcia, Paula; Carmona, Margarita; Carro, Eva; Aronica, Eleonora; Kovacs, Gabor G; Grison, Alice; Gustincich, Stefano

    2016-01-01

    Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells' own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson's disease (PD), Alzheimer's disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain.

  1. Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease

    PubMed Central

    Ferrer, Isidro; Garcia-Esparcia, Paula; Carmona, Margarita; Carro, Eva; Aronica, Eleonora; Kovacs, Gabor G.; Grison, Alice; Gustincich, Stefano

    2016-01-01

    Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells’ own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain. PMID:27458372

  2. DPYD and UGT1A1 genotyping to predict adverse events during first-line FOLFIRI or FOLFOXIRI plus bevacizumab in metastatic colorectal cancer.

    PubMed

    Cremolini, Chiara; Del Re, Marzia; Antoniotti, Carlotta; Lonardi, Sara; Bergamo, Francesca; Loupakis, Fotios; Borelli, Beatrice; Marmorino, Federica; Citi, Valentina; Cortesi, Enrico; Moretto, Roberto; Ronzoni, Monica; Tomasello, Gianluca; Zaniboni, Alberto; Racca, Patrizia; Buonadonna, Angela; Allegrini, Giacomo; Ricci, Vincenzo; Di Donato, Samantha; Zagonel, Vittorina; Boni, Luca; Falcone, Alfredo; Danesi, Romano

    2018-01-30

    Our study addresses the issue of the clinical reliability of three candidate DPYD and one UGT single nucleotide polymorphisms in predicting 5-fluorouracil- and irinotecan-related adverse events. To this purpose, we took advantage of a large cohort of metastatic colorectal cancer patients treated with first-line 5-fluorouracil- and irinotecan-based chemotherapy regimens (i.e., FOLFIRI or FOLFOXIRI) plus bevacizumab in the randomized clinical trial TRIBE by GONO (clinicaltrials.gov: NCT00719797), in which adverse events were carefully and prospectively collected at each treatment cycle. Here we show that patients bearing DPYD c.1905+1G/A and c.2846A/T genotypes, together with UGT1A1*28 variant carriers, have an increased risk of experiencing clinically relevant toxicities, including hematological AEs and stomatitis. No carrier of the DPYD c.1679T>G minor allele was identified. Present results support the preemptive screening of mentioned DPYD and UGT1A1 variants to identify patients at risk of clinically relevant 5-fluoruracil- and irinotecan-related AEs, in order to improve treatments' safety through a "genotype-guided" approach.

  3. Effects of UGTs on the ionosphere

    NASA Astrophysics Data System (ADS)

    Argo, P. E.; Fitzgerald, T. J.

    The processes that propagate local effects of underground nuclear tests from the ground into the upper atmosphere, and produce a detectable signal in the ionosphere are described. Initially, the blast wave from a underground test (UGT) radially expands, until it reaches the surface of the earth. The wave is both reflected and transmitted at this sharp discontinuity in propagation media. Tne reflected wave combines with the incident wave to form an 'Airy surface,' at which very strong ripping forces tear the earth apart. This broken region is called the 'spat zone,' and is launched into ballistic motion. The resultant ground motion launches an acoustical wave into the atmosphere. This acoustic wave, with overpressures of a few tenths of one percent, propagates upwards at the speed of sound. Assuming purely linear propagation, the path of the acoustic energy can be tracked using raytracing models. Most of the wave energy, which is radiated nearly vertically, tends to propagate into the upper atmosphere, while wave energy radiated at angles greater than about 30 degrees to the vertical will be reflected back to earth and is probably what is seen by most infrasonde measurements.

  4. Retention of glucose units added by the UDP-GLC:glycoprotein glucosyltransferase delays exit of glycoproteins from the endoplasmic reticulum

    PubMed Central

    1995-01-01

    It has been proposed that the UDP-Glc:glycoprotein glucosyltransferase, an endoplasmic reticulum enzyme that only glucosylates improperly folded glycoproteins forming protein-linked Glc1Man7-9-GlcNAc2 from the corresponding unglucosylated species, participates together with lectin- like chaperones that recognize monoglucosylated oligosaccharides in the control mechanism by which cells only allow passage of properly folded glycoproteins to the Golgi apparatus. Trypanosoma cruzi cells were used to test this model as in trypanosomatids addition of glucosidase inhibitors leads to the accumulation of only monoglucosylated oligosaccharides, their formation being catalyzed by the UDP- Glc:glycoprotein glucosyltransferase. In all other eukaryotic cells the inhibitors produce underglycosylation of proteins and/or accumulation of oliogosaccharides containing two or three glucose units. Cruzipain, a lysosomal proteinase having three potential N-glycosylation sites, two at the catalytic domain and one at the COOH-terminal domain, was isolated in a glucosylated form from cells grown in the presence of the glucosidase II inhibitor 1-deoxynojirimycin. The oligosaccharides present at the single glycosylation site of the COOH-terminal domain were glucosylated in some cruzipain molecules but not in others, this result being consistent with an asynchronous folding of glycoproteins in the endoplasmic reticulum. In spite of not affecting cell growth rate or the cellular general metabolism in short and long term incubations, 1-deoxynojirimycin caused a marked delay in the arrival of cruzipain to lysosomes. These results are compatible with the model proposed by which monoglucosylated glycoproteins may be transiently retained in the endoplasmic reticulum by lectin-like anchors recognizing monoglucosylated oligosaccharides. PMID:7642696

  5. Association of UGT1A1 variants and hyperbilirubinemia in breast-fed full-term Chinese infants.

    PubMed

    Zhou, Youyou; Wang, San-nan; Li, Hong; Zha, Weifeng; Wang, Xuli; Liu, Yuanyuan; Sun, Jian; Peng, Qianqian; Li, Shilin; Chen, Ying; Jin, Li

    2014-01-01

    A retrospective case control study of breast-fed full-term infants was carried out to determine whether variants in Uridine Diphosphate Glucuronosyl Transferase 1A1 (UGT1A1) and Heme Oxygenase-1 (HMOX1) were associated with neonatal hyperbilirubinemia. Eight genetic variants of UGT1A1 and 3 genetic variants of HMOX1 were genotyped in 170 hyperbilirubinemic newborns and 779 controls. Five significant associations with breast-fed hyperbilirubinemia were detected after adjusting for gender, birth season, birth weight, delivery mode, gestational age and False Discovery Rate (FDR) correction: the dominant effect of rs887829 (c-364t) (Odds Ratio (OR): 0.55; 95% Confidence Interval (CI): 0.34-0.89; p = 0.014), the additive effect of (TA)n repeat (OR: 0.59; 95%CI: 0.38-0.91; p = 0.017), the dominant effect of rs4148323 (Gly71Arg, G211A) (OR: 2.02; 95%CI: 1.44-2.85; p = 5.0×10-5), the recessive effect of rs6717546 (g+914a) (OR: 0.30; 95%CI: 0.11-0.83; p = 0.021) and rs6719561 (t+2558c) (OR: 0.38; 95%CI: 0.20-0.75; p = 0.005). Neonates carrying the minor allele of rs887829 (TA)n repeat had significantly lower peak bilirubin than wild types, while the minor allele carriers of rs4148323 had significantly higher peak bilirubin than wild types. No association was found in HMOX1. Our findings added to the understanding of the significance of UGT1A1 in association with neonatal hyperbilirubinemia in East Asian population. Additional studies were required to investigate the mechanisms of the protective effects.

  6. [beta]-Glucan Synthesis in the Cotton Fiber (III. Identification of UDP-Glucose-Binding Subunits of [beta]-Glucan Synthases by Photoaffinity Labeling with [[beta]-32P]5[prime]-N3-UDP-Glucose.

    PubMed Central

    Li, L.; Drake, R. R.; Clement, S.; Brown, R. M.

    1993-01-01

    Using differential product entrapment and photolabeling under specifying conditions, we identifIed a 37-kD polypeptide as the best candidate among the UDP-glucose-binding polypeptides for the catalytic subunit of cotton (Gossypium hirsutum) cellulose synthase. This polypeptide is enriched by entrapment under conditions favoring [beta]-1,4-glucan synthesis, and it is magnesium dependent and sensitive to unlabeled UDP-glucose. A 52-kD polypeptide was identified as the most likely candidate for the catalytic subunit of [beta]-1,3-glucan synthase because this polypeptide is the most abundant protein in the entrapment fraction obtained under conditions favoring [beta]-1,3-glucan synthesis, is coincident with [beta]-1,3-glucan synthase activity, and is calcium dependent. The possible involvement of other polypeptides in the synthesis of [beta]-1,3-glucan is discussed. PMID:12231766

  7. The Sg-1 Glycosyltransferase Locus Regulates Structural Diversity of Triterpenoid Saponins of Soybean[W][OA

    PubMed Central

    Sayama, Takashi; Ono, Eiichiro; Takagi, Kyoko; Takada, Yoshitake; Horikawa, Manabu; Nakamoto, Yumi; Hirose, Aya; Sasama, Hiroko; Ohashi, Mihoko; Hasegawa, Hisakazu; Terakawa, Teruhiko; Kikuchi, Akio; Kato, Shin; Tatsuzaki, Nana; Tsukamoto, Chigen; Ishimoto, Masao

    2012-01-01

    Triterpene saponins are a diverse group of biologically functional products in plants. Saponins usually are glycosylated, which gives rise to a wide diversity of structures and functions. In the group A saponins of soybean (Glycine max), differences in the terminal sugar species located on the C-22 sugar chain of an aglycone core, soyasapogenol A, were observed to be under genetic control. Further genetic analyses and mapping revealed that the structural diversity of glycosylation was determined by multiple alleles of a single locus, Sg-1, and led to identification of a UDP-sugar–dependent glycosyltransferase gene (Glyma07g38460). Although their sequences are highly similar and both glycosylate the nonacetylated saponin A0-αg, the Sg-1a allele encodes the xylosyltransferase UGT73F4, whereas Sg-1b encodes the glucosyltransferase UGT73F2. Homology models and site-directed mutagenesis analyses showed that Ser-138 in Sg-1a and Gly-138 in Sg-1b proteins are crucial residues for their respective sugar donor specificities. Transgenic complementation tests followed by recombinant enzyme assays in vitro demonstrated that sg-10 is a loss-of-function allele of Sg-1. Considering that the terminal sugar species in the group A saponins are responsible for the strong bitterness and astringent aftertastes of soybean seeds, our findings herein provide useful tools to improve commercial properties of soybean products. PMID:22611180

  8. Glycosylation Is a Major Regulator of Phenylpropanoid Availability and Biological Activity in Plants

    PubMed Central

    Le Roy, Julien; Huss, Brigitte; Creach, Anne; Hawkins, Simon; Neutelings, Godfrey

    2016-01-01

    The phenylpropanoid pathway in plants is responsible for the biosynthesis of a huge amount of secondary metabolites derived from phenylalanine and tyrosine. Both flavonoids and lignins are synthesized at the end of this very diverse metabolic pathway, as well as many intermediate molecules whose precise biological functions remain largely unknown. The diversity of these molecules can be further increased under the action of UDP-glycosyltransferases (UGTs) leading to the production of glycosylated hydroxycinnamates and related aldehydes, alcohols and esters. Glycosylation can change phenylpropanoid solubility, stability and toxic potential, as well as influencing compartmentalization and biological activity. (De)-glycosylation therefore represents an extremely important regulation point in phenylpropanoid homeostasis. In this article we review recent knowledge on the enzymes involved in regulating phenylpropanoid glycosylation status and availability in different subcellular compartments. We also examine the potential link between monolignol glycosylation and lignification by exploring co-expression of lignin biosynthesis genes and phenolic (de)glycosylation genes. Of the different biological roles linked with their particular chemical properties, phenylpropanoids are often correlated with the plant's stress management strategies that are also regulated by glycosylation. UGTs can for instance influence the resistance of plants during infection by microorganisms and be involved in the mechanisms related to environmental changes. The impact of flavonoid glycosylation on the color of flowers, leaves, seeds and fruits will also be discussed. Altogether this paper underlies the fact that glycosylation and deglycosylation are powerful mechanisms allowing plants to regulate phenylpropanoid localisation, availability and biological activity. PMID:27303427

  9. Modulatory Effect of Taurine on 7,12-Dimethylbenz(a)Anthracene-Induced Alterations in Detoxification Enzyme System, Membrane Bound Enzymes, Glycoprotein Profile and Proliferative Cell Nuclear Antigen in Rat Breast Tissue.

    PubMed

    Vanitha, Manickam Kalappan; Baskaran, Kuppusamy; Periyasamy, Kuppusamy; Selvaraj, Sundaramoorthy; Ilakkia, Aruldoss; Saravanan, Dhiravidamani; Venkateswari, Ramachandran; Revathi Mani, Balasundaram; Anandakumar, Pandi; Sakthisekaran, Dhanapal

    2016-08-01

    The modulatory effect of taurine on 7,12-dimethylbenz(a)anthracene (DMBA)-induced breast cancer in rats was studied. DMBA (25 mg/kg body weight) was administered to induce breast cancer in rats. Protein carbonyl levels, activities of membrane bound enzymes (Na(+) /K(+) ATPase, Ca(2+) ATPase, and Mg(2+) ATPase), phase I drug metabolizing enzymes (cytochrome P450, cytochrome b5, NADPH cytochrome c reductase), phase II drug metabolizing enzymes (glutathione-S-transferase and UDP-glucuronyl transferase), glycoprotein levels, and proliferative cell nuclear antigen (PCNA) were studied. DMBA-induced breast tumor bearing rats showed abnormal alterations in the levels of protein carbonyls, activities of membrane bound enzymes, drug metabolizing enzymes, glycoprotein levels, and PCNA protein expression levels. Taurine treatment (100 mg/kg body weight) appreciably counteracted all the above changes induced by DMBA. Histological examination of breast tissue further supported our biochemical findings. The results of the present study clearly demonstrated the chemotherapeutic effect of taurine in DMBA-induced breast cancer. © 2016 Wiley Periodicals, Inc.

  10. Pharmacokinetic drug interactions of morphine, codeine, and their derivatives: theory and clinical reality, part I.

    PubMed

    Armstrong, Scott C; Cozza, Kelly L

    2003-01-01

    Pharmacokinetic drug-drug interactions with morphine, hydromorphone, and oxymorphone are reviewed in this column. Morphine is a naturally occurring opiate that is metabolized chiefly through glucuronidation by uridine diphosphate glucuronosyl transferase (UGT) enzymes in the liver. These enzymes produce an active analgesic metabolite and a potentially toxic metabolite. In vivo drug-drug interaction studies with morphine are few, but they do suggest that inhibition or induction of UGT enzymes could alter morphine and its metabolite levels. These interactions could change analgesic efficacy. Hydromorphone and oxymorphone, close synthetic derivatives of morphine, are also metabolized primarily by UGT enzymes. Hydromorphone may have a toxic metabolite similar to morphine. In vivo drug-drug interaction studies with hydromorphone and oxymorphone have not been done, so it is difficult to make conclusions with these drugs.

  11. A multi-port 10GbE PCIe NIC featuring UDP offload and GPUDirect capabilities.

    NASA Astrophysics Data System (ADS)

    Ammendola, Roberto; Biagioni, Andrea; Frezza, Ottorino; Lamanna, Gianluca; Lo Cicero, Francesca; Lonardo, Alessandro; Martinelli, Michele; Stanislao Paolucci, Pier; Pastorelli, Elena; Pontisso, Luca; Rossetti, Davide; Simula, Francesco; Sozzi, Marco; Tosoratto, Laura; Vicini, Piero

    2015-12-01

    NaNet-10 is a four-ports 10GbE PCIe Network Interface Card designed for low-latency real-time operations with GPU systems. To this purpose the design includes an UDP offload module, for fast and clock-cycle deterministic handling of the transport layer protocol, plus a GPUDirect P2P/RDMA engine for low-latency communication with NVIDIA Tesla GPU devices. A dedicated module (Multi-Stream) can optionally process input UDP streams before data is delivered through PCIe DMA to their destination devices, re-organizing data from different streams guaranteeing computational optimization. NaNet-10 is going to be integrated in the NA62 CERN experiment in order to assess the suitability of GPGPU systems as real-time triggers; results and lessons learned while performing this activity will be reported herein.

  12. The effect of steroids and nucleotides on solubilized bilirubin uridine diphosphate glucuronyltransferase

    PubMed Central

    Adlard, B. P. F.; Lathe, G. H.

    1970-01-01

    1. It was confirmed that bilirubin glucuronyltransferase can be obtained in solubilized form from rat liver microsomes. 2. Michaelis–Menten kinetics were not followed by the enzyme with bilirubin as substrate when the bilirubin/albumin ratio was varied. High concentrations of bilirubin were inhibitory. 3. The Km for UDP-glucuronic acid at the optimum bilirubin concentration was 0.46mm. 4. Low concentrations of Ca2+ were inhibitory in the absence of Mg2+ but stimulatory in its presence; the converse applied for EDTA. 5. UDP-N-acetylglucosamine and UDP-glucose enhanced conjugation by untreated, but not by solubilized microsomes. 6. The apparent 9.5-fold increase in activity after solubilization was probably due to the absence of UDP-glucuronic acid pyrophosphatase activity in the solubilized preparation. 7. The activation of solubilized enzyme activity by ATP was considered to be a result of chelation of inhibitory metal ions. 8. The solubilized enzyme activity was inhibited by UMP and UDP. The effect of UMP was not competitive with respect to UDP-glucuronic acid. 9. A number of steroids inhibited the solubilized enzyme activity. The competitive effects of stilboestrol, oestrone sulphate and 3β-hydroxyandrost-5-en-17-one, with respect to UDP-glucuronic acid, may be explained on an allosteric basis. PMID:4251180

  13. Phosphorylated hydroxyethylamines as novel inhibitors of the bacterial cell wall biosynthesis enzymes MurC to MurF.

    PubMed

    Sova, Matej; Kovac, Andreja; Turk, Samo; Hrast, Martina; Blanot, Didier; Gobec, Stanislav

    2009-12-01

    Enzymes involved in the biosynthesis of bacterial peptidoglycan represent important targets for development of new antibacterial drugs. Among them, Mur ligases (MurC to MurF) catalyze the formation of the final cytoplasmic precursor UDP-N-acetylmuramyl-pentapeptide from UDP-N-acetylmuramic acid. We present the design, synthesis and biological evaluation of a series of phosphorylated hydroxyethylamines as new type of small-molecule inhibitors of Mur ligases. We show that the phosphate group attached to the hydroxyl moiety of the hydroxyethylamine core is essential for good inhibitory activity. The IC(50) values of these inhibitors were in the micromolar range, which makes them a promising starting point for the development of multiple inhibitors of Mur ligases as potential antibacterial agents. In addition, 1-(4-methoxyphenylsulfonamido)-3-morpholinopropan-2-yl dihydrogen phosphate 7a was discovered as one of the best inhibitors of MurE described so far.

  14. Pharmacokinetic drug interactions of morphine, codeine, and their derivatives: theory and clinical reality, Part II.

    PubMed

    Armstrong, Scott C; Cozza, Kelly L

    2003-01-01

    Pharmacokinetic drug-drug interactions with codeine, dihydrocodeine, hydrocodone, oxycodone, and buprenorphine are reviewed in this column. These compounds have a very similar chemical structure to morphine. Unlike morphine, which is metabolized chiefly through conjugation reactions with uridine diphosphate glucuronosyl transferase (UGT) enzymes, these five drugs are metabolized both through oxidative reactions by the cytochrome P450 (CYP450) enzyme and conjugation by UGT enzymes. There is controversy as to whether codeine, dihydrocodeine, and hydrocodone are actually prodrugs requiring activation by the CYP450 2D6 enzyme or UGT enzymes. Oxycodone and buprenorphine, however, are clearly not prodrugs and are metabolized by the CYP450 2D6 and 3A4 enzymes, respectively. Knowledge of this metabolism assists in the understanding for the potential of drug-drug interactions with these drugs. This understanding is important so that clinicians can choose the proper dosages for analgesia and anticipate potential drug-drug interactions.

  15. Effects of ABCB1, ABCC2, UGT2B7 and HNF4α genetic polymorphisms on oxcarbazepine concentrations and therapeutic efficacy in patients with epilepsy.

    PubMed

    Shen, Chunhong; Zhang, Bijun; Liu, Zhirong; Tang, Yelei; Zhang, Yinxi; Wang, Shan; Guo, Yi; Ding, Yao; Wang, Shuang; Ding, Meiping

    2017-10-01

    The aim of the study is to investigate the effects of ABCB1, ABCC2, UGT2B7 and HNF4α genetic polymorphisms on plasma oxcarbazepine (OXC) concentrations and therapeutic efficacy in Han Chinese patients with epilepsy. We recruited 116 Han Chinese patients with epilepsy who were receiving OXC monotherapy. Blood samples were taken and OXC levels were measured. The polymorphisms of ABCB1 rs1045642, ABCC2 rs2273697, UGT2B7 rs7439366, and HNF4α rs2071197 were determined. The therapeutic efficacy of OXC at the 1-year time-point was assessed. Data analysis was performed using IBM SPSS Statistics 22.0. The genetic polymorphism of ABCB1 rs1045642 was found to be associated with normalized OXC concentration and therapeutic efficacy in patients with epilepsy (P<0.05). As for UGT2B7 rs7439366, the allele polymorphism exhibited a correlation with treatment outcome, but not OXC concentration. The polymorphisms of ABCC2 rs2273697 and HNF4α rs2071197 was not associated with OXC concentrations and therapeutic efficacy. These results suggested that ABCB1 rs1045642 and UGT2B7 rs7439366 may affect OXC pharmacokinetics and therapeutic efficacy in Han Chinese patients with epilepsy. However, further studies in larger populations and other ethnic groups are required. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  16. Analysis of nucleotide diphosphate sugar dehydrogenases reveals family and group-specific relationships.

    PubMed

    Freas, Nicholas; Newton, Peter; Perozich, John

    2016-01-01

    UDP-glucose dehydrogenase (UDPGDH), UDP-N-acetyl-mannosamine dehydrogenase (UDPNAMDH) and GDP-mannose dehydrogenase (GDPMDH) belong to a family of NAD (+)-linked 4-electron-transfering oxidoreductases called nucleotide diphosphate sugar dehydrogenases (NDP-SDHs). UDPGDH is an enzyme responsible for converting UDP-d-glucose to UDP-d-glucuronic acid, a product that has different roles depending on the organism in which it is found. UDPNAMDH and GDPMDH convert UDP-N-acetyl-mannosamine to UDP-N-acetyl-mannosaminuronic acid and GDP-mannose to GDP-mannuronic acid, respectively, by a similar mechanism to UDPGDH. Their products are used as essential building blocks for the exopolysaccharides found in organisms like Pseudomonas aeruginosa and Staphylococcus aureus. Few studies have investigated the relationships between these enzymes. This study reveals the relationships between the three enzymes by analysing 229 amino acid sequences. Eighteen invariant and several other highly conserved residues were identified, each serving critical roles in maintaining enzyme structure, coenzyme binding or catalytic function. Also, 10 conserved motifs that included most of the conserved residues were identified and their roles proposed. A phylogenetic tree demonstrated relationships between each group and verified group assignment. Finally, group entropy analysis identified novel conservations unique to each NDP-SDH group, including residue positions critical to NDP-sugar substrate interaction, enzyme structure and intersubunit contact. These positions may serve as targets for future research. UDP-glucose dehydrogenase (UDPGDH, EC 1.1.1.22).

  17. Reversible grade 4 hyperbilirubinemia in a patient with UGT1A1 7/7 genotype treated with irinotecan and cetuximab.

    PubMed

    Gupta, Bhavna; LeVea, Charles; Litwin, Alan; Fakih, Marwan G

    2007-03-01

    Irinotecan-induced gastrointestinal toxicities are common and typically present in the form of diarrhea or nausea and vomiting. However, severe hyperbilirubinemia (grade 3/4) has not been previously reported in association with this chemotherapeutic agent. We report a case of prolonged grade 4 hyperbilirubinemia after a single dose of irinotecan at 125 mg/m(2). This severe toxicity was attributed to a UGT1A1 7/7 genotype and resolved to grade 2 after 8 weeks of supportive care. This case outlines the possibility of severe hepatic toxicity with moderate doses of irinotecan in patients with a UGT1A1 7/7 genotype. Despite the severity and prolonged duration of the associated irinotecan-induced hepatic toxicity, the management of similar cases should focus on intensive supportive measures because the toxicity is likely to resolve eventually.

  18. Modulation of porcine biotransformation enzymes by anthelmintic therapy with fenbendazole and flubendazole.

    PubMed

    Savlík, M; Fimanová, K; Szotáková, B; Lamka, J; Skálová, L

    2006-06-01

    Fenbendazole (FEN) and flubendazole (FLU) are benzimidazole anthelmintics often used in pig management for the control of nematodoses. The in vivo study presented here was designed to test the influence of FLU and FEN on cytochrome P4501A and other cytochrome P450 (CYP) isoforms, UDP-glucuronosyl transferase and several carbonyl reducing enzymes. The results indicated that FEN (in a single therapeutic dose as well as in repeated therapeutic doses) caused significant induction of pig CYP1A, while FLU did not show an inductive effect towards this isoform. Some of the other hepatic and intestinal biotransformation enzymes that were assayed were moderately influenced by FEN or FLU. Strong CYP1A induction following FEN therapy in pigs may negatively affect the efficacy and pharmacokinetics of FEN itself or other simultaneously or consecutively administered drugs. From the perspective of biotransformation enzyme modulation, FLU would appear to be a more convenient anthelmintic therapy of pigs than FEN.

  19. Functional characterization of Gne (UDP-N-acetylglucosamine-4-epimerase), Wzz (chain length determinant), and Wzy (O-antigen polymerase) of Yersinia enterocolitica serotype O:8.

    PubMed

    Bengoechea, José Antonio; Pinta, Elise; Salminen, Tiina; Oertelt, Clemens; Holst, Otto; Radziejewska-Lebrecht, Joanna; Piotrowska-Seget, Zofia; Venho, Reija; Skurnik, Mikael

    2002-08-01

    The lipopolysaccharide (LPS) O-antigen of Yersinia enterocolitica serotype O:8 is formed by branched pentasaccharide repeat units that contain N-acetylgalactosamine (GalNAc), L-fucose (Fuc), D-galactose (Gal), D-mannose (Man), and 6-deoxy-D-gulose (6d-Gul). Its biosynthesis requires at least enzymes for the synthesis of each nucleoside diphosphate-activated sugar precursor; five glycosyltransferases, one for each sugar residue; a flippase (Wzx); and an O-antigen polymerase (Wzy). As this LPS shows a characteristic preferred O-antigen chain length, the presence of a chain length determinant protein (Wzz) is also expected. By targeted mutagenesis, we identify within the O-antigen gene cluster the genes encoding Wzy and Wzz. We also present genetic and biochemical evidence showing that the gene previously called galE encodes a UDP-N-acetylglucosamine-4-epimerase (EC 5.1.3.7) required for the biosynthesis of the first sugar of the O-unit. Accordingly, the gene was renamed gne. Gne also has some UDP-glucose-4-epimerase (EC 5.1.3.2) activity, as it restores the core production of an Escherichia coli K-12 galE mutant. The three-dimensional structure of Gne was modeled based on the crystal structure of E. coli GalE. Detailed structural comparison of the active sites of Gne and GalE revealed that additional space is required to accommodate the N-acetyl group in Gne and that this space is occupied by two Tyr residues in GalE whereas the corresponding residues present in Gne are Leu136 and Cys297. The Gne Leu136Tyr and Cys297Tyr variants completely lost the UDP-N-acetylglucosamine-4-epimerase activity while retaining the ability to complement the LPS phenotype of the E. coli galE mutant. Finally, we report that Yersinia Wzx has relaxed specificity for the translocated oligosaccharide, contrary to Wzy, which is strictly specific for the O-unit to be polymerized.

  20. Validation of murine and human placental explant cultures for use in sex steroid and phase II conjugation toxicology studies

    PubMed Central

    Sato, Brittany L.; Ward, Monika A.; Astern, Joshua M.; Kendal-Wright, Claire E.; Collier, Abby C.

    2014-01-01

    Human primary placental explant culture is well established for cytokine signaling and toxicity, but has not been validated for steroidogenic or metabolic toxicology. The technique has never been investigated in the mouse. We characterized human and mouse placental explants for up to 96hr in culture. Explant viability (Lactate dehydrogenase) and sex steroid levels were measured in media using spectrophotometry and ELISA, respectively. Expression and activities of the steroidogenic (3β-hydroxysteroid dehydrogenase, Cytochrome P45017A1, Cytochrome P45019), conjugation (UDP-glucuronosyltransferase, sulfotransferase (SULT)), and regeneration (β-glucuronidase, arylsulfatase C (ASC)) enzymes were determined biochemically in tissues with fluorimetric and spectrophotometric assays, and western blot. Explants were viable up to 96hr, but progesterone, estrone, and 17β-estradiol secretion decreased. Steroidogenic enzyme expression and activities were stable in mouse explants and similar to levels in freshly isolated tissues, but were lower in human explants than in fresh tissue (P<0.01). Human and mouse explants exhibited significantly less conjugation after 96hr, SULT was not detected in the mouse, and neither explants had active ASC, although proteins were expressed. Mouse explants may be useful for steroid biochemistry and endocrine disruption studies, but not metabolic conjugation. In contrast, human explants may be useful for studying conjugation for <48hr, but not for steroid/endocrine studies. PMID:25283089

  1. Alteration of cell wall polysaccharides through transgenic expression of UDP-Glc 4-epimerase-encoding genes in potato tubers.

    PubMed

    Huang, Jie-Hong; Kortstee, Anne; Dees, Dianka C T; Trindade, Luisa M; Schols, Henk A; Gruppen, Harry

    2016-08-01

    Uridine diphosphate (UDP)-glucose 4-epimerase (UGE) catalyzes the conversion of UDP-glucose to UDP-galactose. Cell wall materials from the cv. Kardal (wild-type, background) and two UGE transgenic lines (UGE 45-1 and UGE 51-16) were isolated and fractionated. The galactose (Gal) content (mg/100g tuber) from UGE 45-1 transgenic line was 38% higher than that of wild-type, and resulted in longer pectin side chains. The Gal content present in UGE 51-16 was 17% lower than that of wild-type, although most pectin populations maintained the same level of Gal. Both UGE transgenic lines showed unexpectedly a decrease in acetylation and an increase in methyl-esterification of pectin. Both UGE transgenic lines showed similar proportions of homogalacturonan and rhamnogalacturonan I within pectin backbone as the wild-type, except for the calcium-bound pectin fraction exhibiting relatively less rhamnogalacturonan I. Next to pectin modification, xyloglucan populations from both transgenic lines were altered resulting in different XSGG and XXGG proportion in comparison to wild-type. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Development and application of test methods for the detection of dietary constituents which protect against heterocyclic aromatic amines.

    PubMed

    Kassie, Fekadu; Sundermann, Volker Mersch; Edenharder, R; Platt, Karl L; Darroudi, F; Lhoste, Evelyne; Humbolt, C; Muckel, Eva; Uhl, Maria; Kundi, Michael; Knasmüller, Siegfried

    2003-01-01

    This article describes the development and use of assay models in vitro (genotoxicity assay with genetically engineered cells and human hepatoma (HepG2) cells) and in vivo (genotoxicity and short-term carcinogenicity assays with rodents) for the identification of dietary constituents which protect against the genotoxic and carcinogenic effects of heterocyclic aromatic amines (HAs). The use of genetically engineered cells expressing enzymes responsible for the bioactivation of HAs enables the detection of dietary factors that inhibit the metabolic activation of HAs. Human derived hepatoma (HepG2) cells are sensitive towards HAs and express several enzymes [glutathione S-transferase (GST), N-acetyltransferase (NAT), sulfotransferase (SULT), UDP-glucuronosyltransferase (UDPGT), and cytochrome P450 isozymes] involved in the biotransformation of HAs. Hence these cells may reflect protective effects, which are due to inhibition of activating enzymes and/or induction of detoxifying enzymes. The SCGE assay with rodent cells has the advantage that HA-induced DNA damage can be monitored in a variety of organs which are targets for tumor induction by HAs. ACF and GST-P(+) foci constitute preneoplastic lesions that may develop into tumors. Therefore, agents that prevent the formation of these lesions may be anticarcinogens. The foci yield and the sensitivity of the system could be substantially increased by using a modified diet. The predictive value of the different in vitro and in vivo assays described here for the identification of HA-protective dietary substances relevant for humans is probably better than that of conventional in vitro test methods with enzyme homogenates. Nevertheless, the new test methods are not without shortcomings and these issues are critically discussed in the present article. Copyright 2002 Elsevier Science B.V.

  3. Fluoride caused thyroid endocrine disruption in male zebrafish (Danio rerio).

    PubMed

    Jianjie, Chen; Wenjuan, Xue; Jinling, Cao; Jie, Song; Ruhui, Jia; Meiyan, Li

    2016-02-01

    Excessive fluoride in natural water ecosystem has the potential to detrimentally affect thyroid endocrine system, but little is known of such effects or underlying mechanisms in fish. In the present study, we evaluated the effects of fluoride on growth performance, thyroid histopathology, thyroid hormone levels, and gene expressions in the HPT axis in male zebrafish (Danio rerio) exposed to different determined concentrations of 0.1, 0.9, 2.0 and 4.1 M of fluoride to investigate the effects of fluoride on thyroid endocrine system and the potential toxic mechanisms caused by fluoride. The results indicated that the growth of the male zebrafish used in the experiments was significantly inhibited, the thyroid microtrastructure was changed, and the levels of T3 and T4 were disturbed in fluoride-exposed male fish. In addition, the expressional profiles of genes in HPT axis displayed alteration. The expressions of all studied genes were significantly increased in all fluoride-exposed male fish after exposure for 45 days. The transcriptional levels of corticotrophin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroglobulin (TG), sodium iodide symporter (NIS), iodothyronine I (DIO1), and thyroid hormone receptor alpha (TRα) were also elevated in all fluoride-exposed male fish after 90 days of exposure, while the inconsistent expressions were found in the mRNA of iodothyronineⅡ (DIO2), UDP glucuronosyltransferase 1 family a, b (UGT1ab), transthyretin (TTR), and thyroid hormone receptor beta (TRβ). These results demonstrated that fluoride could notably inhibit the growth of zebrafish, and significantly affect thyroid endocrine system by changing the microtrastructure of thyroid, altering thyroid hormone levels and endocrine-related gene expressions in male zebrafish. All above indicated that fluoride could pose a great threat to thyroid endocrine system, thus detrimentally affected the normal function of thyroid of male zebrafish. Copyright © 2015

  4. A possible mechanism for the decrease in serum thyroxine level by phenobarbital in rodents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Yoshihisa, E-mail: kato@kph.bunri-u.ac.jp; Suzuki, Hiroshi; Haraguchi, Koichi

    2010-12-15

    Effects of phenobarbital (PB) on the levels of serum thyroid hormones such as total thyroxine (T{sub 4}) and triiodothyronine were examined in male mice, hamsters, rats, and guinea pigs. One day after the final administration of PB (80 mg/kg, intraperitoneal, once daily for 4 days), significant decreases in the levels of the serum total T{sub 4} and free T{sub 4} occurred in mice, hamsters, and rats, while a significant decrease in the level of serum triiodothyronine was observed in hamsters and rats among the animals examined. In addition, a significant decrease in the level of serum thyroid-stimulating hormone was observedmore » in only hamsters among the rodents examined. Significant increases in the level and activity of hepatic T{sub 4}-UDP-glucuronosyltransferase (UGT1A) after the PB administration occurred in mice, hamsters, and rats, while the increase in the amount of biliary [{sup 125}I]T{sub 4}-glucuronide after an intravenous injection of [{sup 125}I]T{sub 4} to the PB-pretreated animals occurred only in rats. In mice, rats, and hamsters, but not guinea pigs, PB pretreatment promoted the clearance of [{sup 125}I]T{sub 4} from the serum, led to a significant increase in the steady-state distribution volumes of [{sup 125}I]T{sub 4}, and raised the concentration ratio (Kp value) of the liver to serum and the liver distribution of [{sup 125}I]T{sub 4}. The present findings indicate that the PB-mediated decreases in the serum T{sub 4} level in mice, hamsters, and rats, but not guinea pigs, occur mainly through an increase in the accumulation level of T{sub 4} in the liver.« less

  5. MurD enzymes: some recent developments.

    PubMed

    Šink, Roman; Barreteau, Hélène; Patin, Delphine; Mengin-Lecreulx, Dominique; Gobec, Stanislav; Blanot, Didier

    2013-12-01

    The synthesis of the peptide stem of bacterial peptidoglycan involves four enzymes, the Mur ligases (MurC, D, E and F). Among them, MurD is responsible for the ATP-dependent addition of d-glutamic acid to UDP-MurNAc-l-Ala, a reaction which involves acyl-phosphate and tetrahedral intermediates. Like most enzymes of peptidoglycan biosynthesis, MurD constitutes an attractive target for the design and synthesis of new antibacterial agents. Escherichia coli MurD has been the first Mur ligase for which the tridimensional (3D) structure was solved. Thereafter, several co-crystal structures with different ligands or inhibitors were released. In the present review, we will deal with work performed on substrate specificity, reaction mechanism and 3D structure of E. coli MurD. Then, a part of the review will be devoted to recent work on MurD orthologs from species other than E. coli and to cellular organization of Mur ligases and in vivo regulation of the MurD activity. Finally, we will review the different classes of MurD inhibitors that have been designed and assayed to date with the hope of obtaining new antibacterial compounds.

  6. Extending hepatocyte functionality for drug-testing applications using high-viscosity alginate-encapsulated three-dimensional cultures in bioreactors.

    PubMed

    Miranda, Joana P; Rodrigues, Armanda; Tostões, Rui M; Leite, Sofia; Zimmerman, Heiko; Carrondo, Manuel J T; Alves, Paula M

    2010-12-01

    uridine diphosphate glucuronosyltransferases (UGT) activities, respectively. For all parameters, but for UGT activity, the bioreactor system resulted better than the spinner vessels; for UGT activity no difference was observed between the two. Furthermore, both encapsulated and nonencapsulated 3D culture systems were inducible by 3-methylcholanthrene and dexamethasone. The encapsulated systems consistently showed improved performance over the nonencapsulated cells, indicating that the protection conferred by the alginate matrix plays a relevant role in maintaining the hepatocyte functionalities in vitro.

  7. Identification of novel inhibitors of Pseudomonas aeruginosa MurC enzyme derived from phage-displayed peptide libraries.

    PubMed

    El Zoeiby, Ahmed; Sanschagrin, François; Darveau, André; Brisson, Jean-Robert; Levesque, Roger C

    2003-03-01

    The machinery of peptidoglycan biosynthesis is an ideal site at which to look for novel antimicrobial targets. Phage display was used to develop novel peptide inhibitors for MurC, an essential enzyme involved in the early steps of biosynthesis of peptidoglycan monomer. We cloned and overexpressed the murA, -B and -C genes from Pseudomonas aeruginosa in the pET expression vector, adding a His-tag to their C termini. The three proteins were overproduced in Escherichia coli and purified to homogeneity in milligram quantities. MurA and -B were combinatorially used to synthesize the MurC substrate UDP-N-acetylmuramate, the identity of which was confirmed by mass spectrometry and nuclear magnetic resonance analysis. Two phage-display libraries were screened against MurC in order to identify peptide ligands to the enzyme. Three rounds of biopanning were carried out, successively increasing elution specificity from round 1 to 3. The third round was accomplished with both non-specific elution and competitive elution with each of the three MurC substrates, UDP-N-acetylmuramic acid (UNAM), ATP and L-alanine. The DNA of 10 phage, selected randomly from each group, was extracted and sequenced, and consensus peptide sequences were elucidated. Peptides were synthesized and tested for inhibition of the MurC-catalysed reaction, and two peptides were shown to be inhibitors of MurC activity with IC(50)s of 1.5 and 0.9 mM, respectively. The powerful selection technique of phage display allowed us to identify two peptide inhibitors of the essential bacterial enzyme MurC. The peptide sequences represent the basis for the synthesis of inhibitory peptidomimetic molecules.

  8. Prognostic Significance of ESR1 Amplification and ESR1 PvuII, CYP2C19*2, UGT2B15*2 Polymorphisms in Breast Cancer Patients

    PubMed Central

    Markiewicz, Aleksandra; Wełnicka-Jaśkiewicz, Marzena; Skokowski, Jarosław; Jaśkiewicz, Janusz; Szade, Jolanta; Jassem, Jacek; Żaczek, Anna J.

    2013-01-01

    Introduction Amplification of the ESR1 gene, coding for estrogen receptor alpha, was shown to predict responsiveness to tamoxifen, however its prognostic impact in breast cancer patients has not been thoroughly investigated. Other factors that could contribute to responsiveness to tamoxifen treatment are polymorphisms in ESR1 gene and genes involved in tamoxifen metabolism. The aim of this study was to assess the prognostic role of ESR1 gene dosage in a consecutive group of breast cancer patients and to correlate this feature with clinico-pathological factors. Additionally, ESR1 PvuII, CYP2C19*2 and UGT2B15*2 polymorphisms were analyzed in the tamoxifen-treated subgroup of patients. Materials and Methods Primary tumor samples from 281 stage I-III consecutive breast cancer patients were analyzed for ESR1 gene dosage using real-time PCR with locked nucleic acids hydrolysis probes. In the tamoxifen-treated subgroup of patients, ESR1 PvuII, CYP2C19*2 and UGT2B15*2 polymorphism in leukocytes genomic DNA were analyzed. Results were correlated with clinico-pathological factors and with disease-free survival (DFS) and overall survival (OS). Results ESR1 amplification (with a cut-off level of 2.0) was found in 12% of the entire group of breast cancer patients, and in 18% of the ER-negative subgroup. This feature was associated with decreased DFS both in the entire group (P=0.007) and in the ER-negative subgroup (P=0.03), but not in the tamoxifen-treated patients. Patients with ESR1 PvuII wt/wt genotype and at least one UGT2B15 wt allele had a worse DFS (P=0.03) and showed a trend towards decreased Os (P=0.08) in comparison to patients with ESR1 PvuII wt/vt or vt/vt genotype and UGT2B15 *2/*2 genotype. Conclusions ESR1 amplification can occur in ER-negative tumors and may carry poor prognosis. In the tamoxifen-treated subgroup, poor prognosis was related to the combined presence of ESR1 PvuII wt/wt and UGT2B15wt/wt or wt/*2 genotype. PMID:23951298

  9. Prognostic significance of ESR1 amplification and ESR1 PvuII, CYP2C19*2, UGT2B15*2 polymorphisms in breast cancer patients.

    PubMed

    Markiewicz, Aleksandra; Wełnicka-Jaśkiewicz, Marzena; Skokowski, Jarosław; Jaśkiewicz, Janusz; Szade, Jolanta; Jassem, Jacek; Zaczek, Anna J

    2013-01-01

    Amplification of the ESR1 gene, coding for estrogen receptor alpha, was shown to predict responsiveness to tamoxifen, however its prognostic impact in breast cancer patients has not been thoroughly investigated. Other factors that could contribute to responsiveness to tamoxifen treatment are polymorphisms in ESR1 gene and genes involved in tamoxifen metabolism. The aim of this study was to assess the prognostic role of ESR1 gene dosage in a consecutive group of breast cancer patients and to correlate this feature with clinico-pathological factors. Additionally, ESR1 PvuII, CYP2C19*2 and UGT2B15*2 polymorphisms were analyzed in the tamoxifen-treated subgroup of patients. Primary tumor samples from 281 stage I-III consecutive breast cancer patients were analyzed for ESR1 gene dosage using real-time PCR with locked nucleic acids hydrolysis probes. In the tamoxifen-treated subgroup of patients, ESR1 PvuII, CYP2C19*2 and UGT2B15*2 polymorphism in leukocytes genomic DNA were analyzed. Results were correlated with clinico-pathological factors and with disease-free survival (DFS) and overall survival (OS). ESR1 amplification (with a cut-off level of 2.0) was found in 12% of the entire group of breast cancer patients, and in 18% of the ER-negative subgroup. This feature was associated with decreased DFS both in the entire group (P=0.007) and in the ER-negative subgroup (P=0.03), but not in the tamoxifen-treated patients. Patients with ESR1 PvuII wt/wt genotype and at least one UGT2B15 wt allele had a worse DFS (P=0.03) and showed a trend towards decreased Os (P=0.08) in comparison to patients with ESR1 PvuII wt/vt or vt/vt genotype and UGT2B15 *2/*2 genotype. ESR1 amplification can occur in ER-negative tumors and may carry poor prognosis. In the tamoxifen-treated subgroup, poor prognosis was related to the combined presence of ESR1 PvuII wt/wt and UGT2B15wt/wt or wt/*2 genotype.

  10. Developmentally regulated expression of ectonucleotidases NTPDase5 and NTPDase6 and UDP-responsive P2Y receptors in the rat cochlea.

    PubMed

    O'Keeffe, Mary G; Thorne, Peter R; Housley, Gary D; Robson, Simon C; Vlajkovic, Srdjan M

    2010-04-01

    Ectonucleoside triphosphate diphosphohydrolases (E-NTPDases) regulate complex extracellular P2 receptor signalling pathways in mammalian tissues by hydrolysing extracellular nucleotides to the respective nucleosides. All enzymes from this family (NTPDase1-8) are expressed in the adult rat cochlea. This study reports the changes in expression of NTPDase5 and NTPDase6 in the developing rat cochlea. These two intracellular members of the E-NTPDase family can be released in a soluble form and show preference for nucleoside 5'-diphosphates, such as UDP and GDP. Here, we demonstrate differential spatial and temporal patterns for NTPDase5 and NTPDase6 expression during cochlear development, which are indicative of both cytosolic and extracellular action via pyrimidines. NTPDase5 is noted during the early postnatal period in developing sensory hair cells and supporting Deiters' cells of the organ of Corti, and primary auditory neurons located in the spiral ganglion. In contrast, NTPDase6 is confined to the embryonic and early postnatal hair cell bundles. NTPDase6 immunolocalisation in the developing cochlea underpins its putative role in hair cell bundle development, probably via cytosolic action, whilst NTPDase5 may have a broader extracellular role in the development of sensory and neural tissues in the rat cochlea. Both NTPDase5 and NTPDase6 colocalize with UDP-preferring P2Y(4), P2Y(6) and P2Y(14) receptors during cochlear development, but this strong association was lost in the adult cochlea. Spatiotemporal topographic expression of NTPDase5 and NTPDase6 and P2Y receptors in adult and developing cochlear tissues provide strong support for the role of pyrimidinergic signalling in cochlear development.

  11. UGT1A1 gene polymorphism: Impact on toxicity and efficacy of irinotecan-based regimens in metastatic colorectal cancer

    PubMed Central

    Schulz, Christoph; Heinemann, Volker; Schalhorn, Andreas; Moosmann, Nikolas; Zwingers, Thomas; Boeck, Stefan; Giessen, Clemens; Stemmler, Hans-Joachim

    2009-01-01

    AIM: To investigate the correlation between uridine diphosphate glucuronosyl transferase 1A1 (UGT1A1) gene polymorphisms and irinotecan-associated side effects and parameters of drug efficacy in patients with metastatic colorectal cancer (mCRC) receiving a low-dose weekly irinotecan chemotherapeutic regimen. METHODS: Genotypes were retrospectively evaluated by gene scan analysis on the ABI 310 sequencer of the TATAA box in the promoter region of the UGT1A1 gene in blood samples from 105 patients who had received 1st line irinotecan-based chemotherapy for mCRC. RESULTS: The distribution of the genotypes was as follows: wild type genotype (WT) (6/6) 39.0%, heterozygous genotype (6/7) 49.5%, and homozygous genotype (7/7) 9.5%. The overall response rate (OR) was similar between patients carrying the (6/7, 7/7) or the WT genotype (6/6) (44.3% vs 43.2%, P = 0.75). Neither time to progression [(TTP) 8.1 vs 8.2 mo, P = 0.97] nor overall survival [(OS) 21.2 vs 18.9 mo, P = 0.73] differed significantly in patients who carried the (6/6) when compared to the (6/7, 7/7) genotype. No significant differences in toxicity were observed: Grade 3 and 4 delayed diarrhoea [(6/7, 7/7) vs (6/6); 13.0% vs 6.2%, P = 0.08], treatment delays [(6/7, 7/7) vs (6/6); 25.1% vs 19.3%, P =0.24] or dose reductions [(6/7, 7/7) vs (6/6); 21.5% vs 27.2%, P = 0.07]. CONCLUSION: This analysis demonstrates the non-significant influence of the UGT1A1 gene polymorphism on efficacy and rate of irinotecan-associated toxicity in mCRC patients receiving low-dose irinotecan based chemotherapy. PMID:19859999

  12. Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma.

    PubMed

    Mürdter, T E; Schroth, W; Bacchus-Gerybadze, L; Winter, S; Heinkele, G; Simon, W; Fasching, P A; Fehm, T; Eichelbaum, M; Schwab, M; Brauch, H

    2011-05-01

    The therapeutic effect of tamoxifen depends on active metabolites, e.g., cytochrome P450 2D6 (CYP2D6) mediated formation of endoxifen. To test for additional relationships, 236 breast cancer patients were genotyped for CYP2D6, CYP2C9, CYP2B6, CYP2C19, CYP3A5, UGT1A4, UGT2B7, and UGT2B15; also, plasma concentrations of tamoxifen and 22 of its metabolites, including the (E)-, (Z)-, 3-, and 4'-hydroxymetabolites as well as their glucuronides, were quantified using liquid chromatography-tandem mass spectrometry (MS). The activity levels of the metabolites were measured using an estrogen response element reporter assay; the strongest estrogen receptor inhibition was found for (Z)-endoxifen and (Z)-4-hydroxytamoxifen (inhibitory concentration 50 (IC50) 3 and 7 nmol/l, respectively). CYP2D6 genotypes explained 39 and 9% of the variability of steady-state concentrations of (Z)-endoxifen and (Z)-4-hydroxytamoxifen, respectively. Among the poor metabolizers, 93% had (Z)-endoxifen levels below IC90 values, underscoring the role of CYP2D6 deficiency in compromised tamoxifen bioactivation. For other enzymes tested, carriers of reduced-function CYP2C9 (*2, *3) alleles had lower plasma concentrations of active metabolites (P < 0.004), pointing to the role of additional pathways.

  13. Impact of edaphic factors and nutrient management on the hepatoprotective efficiency of Carlinoside purified from pigeon pea leaves: An evaluation of UGT1A1 activity in hepatitis induced organelles.

    PubMed

    Das, Subhasish; Teja, K Charan; Mukherjee, Sandip; Seal, Soma; Sah, Rajesh Kumar; Duary, Buddhadeb; Kim, Ki-Hyun; Bhattacharya, Satya Sundar

    2018-02-01

    Carlinoside is a unique compound well-known for its excellent curative potential in hepatitis. There is a substantial research gap regarding the medicinal use of carlinoside, as its concentrations are greatly variable (depending on locality). We cultivated Cajanus cajan using vermicompost as a major organic amendment at two locations (Sonitpur and Birbhum) with different soil types, but identical climate conditions. Sonitpur soils were richer in soil organic C (SOC), enzyme activation, and N/P content than Birbhum. However, vermi-treatment improved many soil properties (bulk density, water retention, pH, N/P/K, and enzyme activity) to narrow the locational gap in soil quality by 15-28%. We also recorded a many-fold increment in SOC storage capacities in both locations, which was significantly correlated with carlinoside, total phenol, and flavonoid contents in Cajanus leaves. This significantly up-regulated the carlinoside induced expression of the bilirubin-solubilizing UGT1A1enzyme in HepG2 cell and rat liver. Leaf extracts of vermicompost-aided plants could cure hepatitis in affected rat livers and in the HepG2 cell line. Accordingly, vermi-treatment is an effective route for the growth of Cajanus as a cash crop for biomedical applications and can produce a concurrent improvement in soil quality. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Molecular Cloning and Functional Characterization of a Novel (Iso)flavone 4′,7-O-diglucoside Glucosyltransferase from Pueraria lobata

    PubMed Central

    Wang, Xin; Fan, Rongyan; Li, Jia; Li, Changfu; Zhang, Yansheng

    2016-01-01

    Pueraria lobata roots accumulate a rich source of isoflavonoid glycosides, including 7-O- and 4′-O-mono-glucosides, and 4′,7-O-diglucosides, which have numerous human health benefits. Although, isoflavonoid 7-O-glucosyltranferases (7-O-UGTs) have been well-characterized at molecular levels in legume plants, genes, or enzymes that are required for isoflavonoid 4′-O- and 4′,7-O-glucosylation have not been identified in P. lobata to date. Especially for the 4′,7-O-di-glucosylations, the genetic control for this tailing process has never been elucidated from any plant species. Through transcriptome mining, we describe here the identification and characterization of a novel UGT (designated PlUGT2) governing the isoflavonoid 4′,7-O-di-glucosylations in P. lobata. Biochemical roles of PlUGT2 were assessed by in vitro assays with PlUGT2 protein produced in Escherichia coli and analyzed for its qualitative substrate specificity. PlUGT2 was active with various (iso)flavonoid acceptors, catalyzing consecutive glucosylation activities at their O-4′ and O-7 positions. PlUGT2 was most active with genistein, a general isoflavone in legume plants. Real-time PCR analysis showed that PlUGT2 is preferentially transcribed in roots relative to other organs of P. lobata, which is coincident with the accumulation pattern of 4′-O-glucosides and 4′,7-O-diglucosides in P. lobata. The identification of PlUGT2 would help to decipher the P. lobata isoflavonoid glucosylations in vivo and may provide a useful enzyme catalyst for an efficient biotransformation of isoflavones or other natural products for food or pharmacological purposes. PMID:27066037

  15. Enzymes and Inhibitors in Neonicotinoid Insecticide Metabolism

    PubMed Central

    Shi, Xueyan; Dick, Ryan A.; Ford, Kevin A.; Casida, John E.

    2009-01-01

    Neonicotinoid insecticide metabolism involves considerable substrate specificity and regioselectivity of the relevant CYP450, aldehyde oxidase, and phase II enzymes. Human CYP450 recombinant enzymes carry out the following conversions: CYP3A4, 2C19 and 2B6 for thiamethoxam (TMX) to clothianidin (CLO); 3A4, 2C19 and 2A6 for CLO to desmethyl-CLO; 2C19 for TMX to desmethyl-TMX. Human liver aldehyde oxidase reduces the nitro substituent of CLO to nitroso much more rapidly than that of TMX. Imidacloprid (IMI), CLO and several of their metabolites do not give detectable N-glucuronides but 5-hydroxy-IMI, 4,5-diol-IMI and 4-hydroxy-thiacloprid are converted to O-glucuronides in vitro with mouse liver microsomes and UDP-glucuronic acid or in vivo in mice. Mouse liver cytosol with S-adenosylmethionine converts desmethyl-CLO to CLO but not desmethyl-TMX to TMX. Two organophosphorus CYP450 inhibitors partially block IMI, thiacloprid and CLO metabolism in vivo in mice, elevating the brain and liver levels of the parent compounds while reducing amounts of the hydroxylated metabolites. PMID:19391582

  16. Impact of quercetin-induced changes in drug-metabolizing enzyme and transporter expression on the pharmacokinetics of cyclosporine in rats

    PubMed Central

    Liu, Yani; Luo, Xiaomei; Yang, Chunxiao; Yang, Tingyu; Zhou, Jiali; Shi, Shaojun

    2016-01-01

    The aim of the present study was to evaluate whether quercetin (Que) modulates the mRNA and protein expression levels of drug-metabolizing enzymes (DMEs) and drug transporters (DTs) in the small intestine and liver, and thus modifies the pharmacokinetic profile of cyclosporine (CsA) in rats. This two-part study evaluated the pharmacokinetic profiles of CsA in the presence or absence of Que (experiment I) and the involvement of DMEs and DTs (experiment II). In experiment I, 24 rats received single-dose CsA (10 mg/kg) on day 1, single-dose Que (25, 50 and 100 mg/kg/day; eight rats in each group) on days 3–8, and concomitant CsA/Que on day 9. In experiment II, the mRNA and protein expression levels of cytochrome P (CYP)3A1, CYP3A2, UDP glucuronosyltransferase family 1 member A complex locus, organic anion-transporting polypeptide (OATP)2B1, OATP1B2, P-glycoprotein, breast cancer resistance protein, and multidrug resistance-associated protein 2 in the small intestine and liver of rats were analyzed following oral administration of Que at 25, 50 and 100 mg/kg in the presence or absence of CsA (10 mg/kg) for seven consecutive days. Co-administration of Que (25,50 and 100 mg/kg) decreased the maximum serum concentration of CsA by 46, 50 and 47% in a dose-independent manner. In addition, the area under the curve to the last measurable concentration and area under the curve to infinite time were decreased, by 21 and 16%, 30 and 33%, and 33 and 34% (P<0.01), respectively. However, the mRNA and protein expression levels of the above-mentioned DMEs and DTs were inhibited by Que in a dose-dependent manner (P<0.01) to a similar extent in the small intestine and liver. It was demonstrated that Que was able to reduce the bioavailability of CsA following multiple concomitant doses in rats. Overlapping modulation of intestinal and hepatic DMEs and DTs, as well as the DME-DT interplay are potential explanations for these observations. PMID:27510982

  17. Exploring the functional significance of sterol glycosyltransferase enzymes.

    PubMed

    Singh, Gaurav; Dhar, Yogeshwar Vikram; Asif, Mehar Hasan; Misra, Pratibha

    2018-01-01

    Steroidal alkaloids (SAs) are widely synthesized and distributed in plants manifesting as natural produce endowed with potential for medicinal, pesticidal and other high-value usages. Glycosylation of these SAs raises complex and diverse glycosides in plant cells that indeed govern numerous functional aspects. During the glycosylation process of these valuable metabolites, the addition of carbohydrate molecule(s) is catalyzed by enzymes known as sterol glycosyltransferases (SGTs), commonly referred to as UGTs, leading to the production of steryl glycosides (SGs). The ratio of SGs and nonglyco-conjugated SAs are different in different plant species, however, their biosynthesis in the cell is controlled by different environmental factors. The aim of this review is to evaluate the current SGT enzyme research and the functional consequences of glycomodification of SAs on the physiology and plant development, which together are associated with the plant's primary processes. Pharmaceutical, industrial, and other potential uses of saponins have also been discussed and their use in therapeutics has been unveiled by in silico analysis. The field of biotransformation or conversion of nonglycosylated to glycosylated phytosterols by the activity of SGTs, making them soluble, available and more useful for humankind is the new field of interest towards drug therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Identification of sucrose synthase in nonphotosynthetic bacteria and characterization of the recombinant enzymes.

    PubMed

    Diricks, Margo; De Bruyn, Frederik; Van Daele, Paul; Walmagh, Maarten; Desmet, Tom

    2015-10-01

    Sucrose synthase (SuSy) catalyzes the reversible conversion of sucrose and a nucleoside diphosphate into fructose and nucleotide (NDP)-glucose. To date, only SuSy's from plants and cyanobacteria, both photosynthetic organisms, have been characterized. Here, four prokaryotic SuSy enzymes from the nonphotosynthetic organisms Nitrosomonas Europaea (SuSyNe), Acidithiobacillus caldus (SuSyAc), Denitrovibrio acetiphilus (SusyDa), and Melioribacter roseus (SuSyMr) were recombinantly expressed in Escherichia coli and thoroughly characterized. The purified enzymes were found to display high-temperature optima (up to 80 °C), high activities (up to 125 U/mg), and high thermostability (up to 15 min at 60 °C). Furthermore, SuSyAc, SuSyNe, and SuSyDa showed a clear preference for ADP as nucleotide, as opposed to plant SuSy's which prefer UDP. A structural and mutational analysis was performed to elucidate the difference in NDP preference between eukaryotic and prokaryotic SuSy's. Finally, the physiological relevance of this enzyme specificity is discussed in the context of metabolic pathways and genomic organization.

  19. Perinatal development of conjugative enzyme systems.

    PubMed Central

    Lucier, G W

    1976-01-01

    The problems and priorities involved in studying the role of conjugagive enzymes in developmental pharmacology are discussed and evaluated. The relative rates of UDP glucuronyltransferase and beta-glucuronidase were studied during perinatal development in hepatic and extrahepatic tissues to determine the net balance of glucuronidation or deglucuronidation at different developmental stages. In general, deglucuronidation predominated over glucuronidation in fetal tissues whereas the converse was evident in adults. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), an extremely toxic contaminant of some organochlorine compounds, was shown to be a potent inducer of some hepatic and extrahepatic drug-metabolizing enzymes. TCDD, administered during gestation, induced the postnatal activities of p-nitrophenol glucuronyltransferase and benzpyrene hydroxylase in rats. Foster mother experiments revealed that the postnatal induction was caused primarily by newborn exposure to TCDD in the mother's milk. Tissue distribution experiments with TCDD-14C confirmed these findings. Although TCDD induced non-steroid glucuronidation, no significant effects were evident on the postnatal development of steroid glucuronidation. The synthetic estrogen diethylstilbestrol (DES) is metabolized primarily by glucuronidation. The postnatal development of DES glucuronidation, like the steroid pathway, was not affected by gestational TCDD treatment. The fetal distribution of DES and DES-glucuronide, at different stages of development, correlated well with the perinatal development of steroid glucuronyltransferase activity. PMID:829487

  20. UGT1A1 (TA)n genotyping in sickle-cell disease: high resolution melting (HRM) curve analysis or direct sequencing, what is the best way?

    PubMed

    Thomas, Vincent; Mazard, Blandine; Garcia, Caroline; Lacan, Philippe; Gagnieu, Marie-Claude; Joly, Philippe

    2013-09-23

    Minucci et al. have proposed in 2010 a rapid, simple and cost-effective HRM method on the LightCycler 480® apparatus (Roche) for the determination of the 6/6, 6/7 and 7/7 genotypes of the (TA)n UGT1A1 promoter polymorphism. However, they have not studied the n=5 and n=8 alleles which can be quite frequent in sickle-cell disease patients. The aim of our study was to test this HRM protocol to all the 10 possible (TA)n UGT1A1 genotypes (i.e. 5/5, 5/6, 5/7, 5/8, 6/6, 6/7, 6/8, 7/7, 7/8 and 8/8) by using our SCD cohort of patients. All genotypes could be unambiguously identified except 6/7 and 6/8 which give a similar HRM profile. For those two genotypes, the differentiation necessitates either a direct Sanger sequencing or a second PCR protocol followed by a 3% agarose gel migration. For the (TA)n UGT1A1 promoter genotyping of African patients, each lab has to wonder what is the best way between (i) direct Sanger sequencing of all patients and (ii) HRM protocol for all patients followed by a complementary analysis to differentiate the 6/7 and 6/8 genotypes. © 2013. Published by Elsevier B.V. All rights reserved.

  1. Preliminary Investigation of the Contribution of CYP2A6, CYP2B6, and UGT1A9 Polymorphisms on Artesunate-Mefloquine Treatment Response in Burmese Patients with Plasmodium falciparum Malaria

    PubMed Central

    Phompradit, Papichaya; Muhamad, Poonuch; Cheoymang, Anurak; Na-Bangchang, Kesara

    2014-01-01

    CYP2A6, CYP2B6, and UGT1A9 genetic polymorphisms and treatment response after a three-day course of artesunate-mefloquine was investigated in 71 Burmese patients with uncomplicated Plasmodium falciparum malaria. Results provide evidence for the possible link between CYP2A6 and CYP2B6 polymorphisms and plasma concentrations of artesunate/dihydroartemisinin and treatment response. In one patient who had the CYP2A6*1A/*4C genotype (decreased enzyme activity), plasma concentration of artesunate at one hour appeared to be higher, and the concentration of dihydroartemisinin was lower than for those carrying other genotypes (415 versus 320 ng/mL). The proportion of patients with adequate clinical and parasitologic response who had the CYP2B6*9/*9 genotype (mutant genotype) was significantly lower compared with those with late parasitologic failure (14.0% versus 19.0%). Confirmation through a larger study in various malaria-endemic areas is required before a definite conclusion on the role of genetic polymorphisms of these drug-metabolizing enzymes on treatment response after artesunate-based combination therapy can be made. PMID:24891466

  2. SPIN1, negatively regulated by miR-148/152, enhances Adriamycin resistance via upregulating drug metabolizing enzymes and transporter in breast cancer.

    PubMed

    Chen, Xu; Wang, Ya-Wen; Gao, Peng

    2018-05-09

    Spindlin1 (SPIN1), a protein highly expressed in several human cancers, has been correlated with tumorigenesis and development. Alterations of drug metabolizing enzymes and drug transporters are major determinants of chemoresistance in tumor cells. However, whether the metabolizing enzymes and transporters are under the control of SPIN1 in breast cancer chemoresistance has not yet been defined. SPIN1 expression in breast cancer cells and tissues was detected by quantitative real-time PCR (qRT-PCR) and immunohistochemistry. Chemosensitivity assays in vitro and in vivo were performed to determine the effect of SPIN1 on Adriamycin resistance. Downstream effectors of SPIN1 were screened by microarray and confirmed by qRT-PCR and Western blot. Luciferase assay and Western blot were used to identify miRNAs regulating SPIN1. We showed that SPIN1 was significantly elevated in drug-resistant breast cancer cell lines and tissues, compared with the chemosensitive ones. SPIN1 enhanced Adriamycin resistance of breast cancer cells in vitro, and downregulation of SPIN1 by miRNA could decrease Adriamycin resistance in vivo. Mechanistically, drug metabolizing enzymes and transporter CYP2C8, UGT2B4, UGT2B17 and ABCB4 were proven to be downstream effectors of SPIN1. Notably, SPIN1 was identified as a direct target of the miR-148/152 family (miR-148a-3p, miR-148b-3p and miR-152-3p). As expected, miR-148a-3p, miR-148b-3p or miR-152-3p could increase Adriamycin sensitivity in breast cancer cells in vitro. Moreover, high expression of SPIN1 or low expression of the miR-148/152 family predicted poorer survival in breast cancer patients. Our results establish that SPIN1, negatively regulated by the miR-148/152 family, enhances Adriamycin resistance in breast cancer via upregulating the expression of drug metabolizing enzymes and drug transporter.

  3. Genetic polymorphisms in phase I and phase II enzymes and breast cancer risk associated with menopausal hormone therapy in postmenopausal women.

    PubMed

    2010-01-01

    Recent findings indicate a greater risk of postmenopausal breast cancer with estrogen-progestagen therapy than estrogen monotherapy, and more so for current than past use. Few studies have examined individual genetic susceptibility to the effects of menopausal hormone therapy. We used two population-based case-control studies with 3,155 postmenopausal breast cancer patients and 5,496 controls to evaluate modification of breast cancer risk associated with duration of hormone use by genes involved in hormone metabolism and detoxification. Twenty-eight polymorphisms in eight genes of phase I (CYP1A1, CYP1A2, CYP1B1, CYP2C9, CYP2C19, CYP3A4, CYP3A5, CYP3A7) and nine genes of phase II enzymes (COMT, GSTM1, GSTM3, GSTP1, GSTT1, SULT1A1, UGT1A1, UGT1A6, UGT2B7) were genotyped. The risk associated with duration of use of combined estrogen-progestagen therapy was significantly modified by genetic polymorphisms located in CYP1B1, GSTP1, and GSTT1. In homozygote carriers of the CYP1B1_142_G and the CYP1B1_355 _T variant alleles, adjusted odds ratios (OR) per year of use were 1.06 (95% confidence interval (CI) = 1.02-1.09) and 1.06 (95% CI = 1.03-1.09), respectively, compared with 1.02 (95% CI = 1.01-1.03) in non-carriers of either polymorphism (p(interaction) = 0.01). Carriers of the functional GSTT1 allele and the GSTP1_341_T allele were at significantly higher risks associated with hormone use compared with non-carriers (p(interaction) = 0.0001 and 0.02). CYP1A1_2452_C>A significantly reduced the risk associated with duration of use of estrogen monotherapy (p(interaction) = 0.01). The finding regarding GSTT1 was still statistically significant after corrections for multiple comparisons. Postmenopausal breast cancer risk associated with hormone therapy may be modified by genetically determined variations in phase I and II enzymes involved in steroid hormone metabolism.

  4. Structural and Functional Studies of WlbA: A Dehydrogenase Involved in the Biosynthesis of 2,3-Diacetamido-2,3-dideoxy-d-mannuronic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thoden, James B.; Holden, Hazel M.

    2010-09-08

    2,3-Diacetamido-2,3-dideoxy-D-mannuronic acid (ManNAc3NAcA) is an unusual dideoxy sugar first identified nearly 30 years ago in the lipopolysaccharide of Pseudomonas aeruginosa O:3a,d. It has since been observed in other organisms, including Bordetella pertussis, the causative agent of whooping cough. Five enzymes are required for the biosynthesis of UDP-ManNAc3NAcA starting from UDP-N-acetyl-D-glucosamine. Here we describe a structural study of WlbA, the NAD-dependent dehydrogenase that catalyzes the second step in the pathway, namely, the oxidation of the C-3{prime} hydroxyl group on the UDP-linked sugar to a keto moiety and the reduction of NAD{sup +} to NADH. This enzyme has been shown to usemore » {alpha}-ketoglutarate as an oxidant to regenerate the oxidized dinucleotide. For this investigation, three different crystal structures were determined: the enzyme with bound NAD(H), the enzyme in a complex with NAD(H) and {alpha}-ketoglutarate, and the enzyme in a complex with NAD(H) and its substrate (UDP-N-acetyl-D-glucosaminuronic acid). The tetrameric enzyme assumes an unusual quaternary structure with the dinucleotides positioned quite closely to one another. Both {alpha}-ketoglutarate and the UDP-linked sugar bind in the WlbA active site with their carbon atoms (C-2 and C-3{prime}, respectively) abutting the re face of the cofactor. They are positioned {approx}3 {angstrom} from the nicotinamide C-4. The UDP-linked sugar substrate adopts a highly unusual curved conformation when bound in the WlbA active site cleft. Lys 101 and His 185 most likely play key roles in catalysis.« less

  5. Association of antioxidant nutraceuticals and acetaminophen (paracetamol): Friend or foe?

    PubMed

    Abdel-Daim, Mohamed; Abushouk, Abdelrahman Ibrahim; Reggi, Raffaella; Yarla, Nagendra Sastry; Palmery, Maura; Peluso, Ilaria

    2018-04-01

    Acetaminophen (paracetamol or APAP) is an analgesic and antipyretic drug that can induce oxidative stress-mediated hepatotoxicity at high doses. Several studies reported that antioxidant nutraceuticals, in particular phenolic phytochemicals from dietary food, spices, herbs and algae have hepatoprotective effects. Others, however, suggested that they may negatively impact the metabolism, efficacy and toxicity of APAP. The aim of this review is to discuss the pros and cons of the association of antioxidant nutraceuticals and APAP by reviewing the in vivo evidence, with particular reference to APAP pharmacokinetics and hepatotoxicity. Results from the murine models of APAP-induced hepatotoxicity showed amelioration of liver damage with nutraceuticals coadministration, as well as reductions in tissue markers of oxidative stress, and serum levels of hepatic enzymes, bilirubin, cholesterol, triglycerides and inflammatory cytokines. On the other hand, both increased and decreased APAP plasma levels have been reported, depending on the nutraceutical type and route of administration. For example, studies showed that repeated administration of flavonoids causes down-regulation of cytochrome P450 enzymes and up-regulation of uridine diphosphate glucuronosyltransferases (UGT). Moreover, nutraceuticals can alter the levels of APAP metabolites, such as mercapturate glucuronide, sulfate and cysteine conjugates. Overall, the reviewed in vivo studies indicate that interactions between APAP and nutraceuticals or plant foods exist. However, the majority of data come from animal models with doses of phytochemicals far from dietary ones. Human studies should investigate gene-diet interactions, as well as ethnic variability in order to clarify the pros and cons of co-administering antioxidant nutraceuticals and APAP. Copyright © 2017. Published by Elsevier B.V.

  6. Characterization of the human UDP-galactose:ceramide galactosyltransferase gene promoter.

    PubMed

    Tencomnao, T; Yu, R K; Kapitonov, D

    2001-02-16

    UDP-galactose:ceramide galactosyltransferase (CGT, EC 2.4.1.45) is a key enzyme in the biosynthesis of galactocerebroside, the most abundant glycosphingolipid in the myelin sheath. An 8 kb fragment upstream from the transcription initiation site of CGT gene was isolated from a human genomic DNA library. Primer extension analysis revealed a single transcription initiation site 329 bp upstream from the ATG start codon. Neither a consensus TATA nor a CCAAT box was identified in the proximity to the transcription start site; however, this region contains a high GC content and multiple putative regulatory elements. To investigate the transcriptional regulation of CGT, a series of 5' deletion constructs of the 5'-flanking region were generated and cloned upstream from the luciferase reporter gene. By comparing promoter activity in the human oligodendroglioma (HOG) and human neuroblastoma (LAN-5) cell lines, we found that the CGT promoter functions in a cell type-specific manner. Three positive cis-acting regulatory regions were identified, including a proximal region at -292/-256 which contains the potential binding sites for known transcription factors (TFs) such as Ets and SP1 (GC box), a distal region at -747/-688 comprising a number of binding sites such as the ERE half-site, NF1-like, TGGCA-BP, and CRE, and a third positive cis-acting region distally localized at -1325/-1083 consisting of binding sites for TFs such as nitrogen regulatory, TCF-1, TGGCA-BP, NF-IL6, CF1, bHLH, NF1-like, GATA, and gamma-IRE. A negative cis-acting domain localized in a far distal region at -1594/-1326 was also identified. Our results suggest the presence of both positive and negative cis-regulatory regions essential for the cell-specific expression in the TATA-less promoter of the human CGT gene.

  7. Estimation of bisphenol A-Human toxicity by 3D cell culture arrays, high throughput alternatives to animal tests.

    PubMed

    Lee, Dong Woo; Oh, Woo-Yeon; Yi, Sang Hyun; Ku, Bosung; Lee, Moo-Yeal; Cho, Yoon Hee; Yang, Mihi

    2016-09-30

    Bisphenol A (BPA) has been widely used for manufacturing polycarbonate plastics and epoxy resins and has been extensively tested in animals to predict human toxicity. In order to reduce the use of animals for toxicity assessment and provide further accurate information on BPA toxicity in humans, we encapsulated Hep3B human hepatoma cells in alginate and cultured them in three dimensions (3D) on a micropillar chip coupled to a panel of metabolic enzymes on a microwell chip. As a result, we were able to assess the toxicity of BPA under various metabolic enzyme conditions using a high-throughput and micro assay; sample volumes were nearly 2,000 times less than that required for a 96-well plate. We applied a total of 28 different enzymes to each chip, including 10 cytochrome P450s (CYP450s), 10 UDP-glycosyltransferases (UGTs), 3 sulfotransferases (SULTs), alcohol dehydrogenase (ADH), and aldehyde dehydrogenase 2 (ALDH2). Phase I enzyme mixtures, phase II enzyme mixtures, and a combination of phase I and phase II enzymes were also applied to the chip. BPA toxicity was higher in samples containing CYP2E1 than controls, which contained no enzymes (IC50, 184±16μM and 270±25.8μM, respectively, p<0.01). However, BPA-induced toxicity was alleviated in the presence of ADH (IC50, 337±17.9μM), ALDH2 (335±13.9μM), and SULT1E1 (318±17.7μM) (p<0.05). CYP2E1-mediated cytotoxicity was confirmed by quantifying unmetabolized BPA using HPLC/FD. Therefore, we suggest the present micropillar/microwell chip platform as an effective alternative to animal testing for estimating BPA toxicity via human metabolic systems. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Bioactive terpenoids and flavonoids from ginkgo biloba extract induce the expression of hepatic drug-metabolizing enzymes through Pregnane X receptor, Constitutive androstane receptor, and Aryl hydrocarbon receptor-mediated pathways

    PubMed Central

    Li, Linhao; Stanton, Joseph D; Tolson, Antonia H; Luo, Yuan; Wang, Hongbing

    2008-01-01

    Purpose The objective of the current study is to investigate the hypothesis that bioactive terpenoids and flavonoids of Ginkgo biloba extract (GBE) induce human hepatic drug metabolizing enzymes (DMEs) and transporters through the selective activation of pregnane X receptor (PXR), constitutive androstane receptor (CAR), and aryl hydrocarbon receptor (AhR). Methods Human primary hepatocyte (HPH), and HepG2 cells are used as in vitro models for enzyme induction and nuclear receptor activation studies. A combination of real-time RT-PCR, transient transfection, and cell-based reporter assays were employed. Results In human primary hepatocytes, real-time PCR analysis showed induction of CYP2B6, CYP3A4, UGT1A1, MDR1, and MRP2 by EGb 761, ginkgolide A (GA) and ginkgolide B (GB), but not by bilobalide (BB) or the flavonoids (quercetin, kaempferol and tamarixetin) of GBE. Cell-based reporter assays in HepG2 revealed that GA and GB are potent activators of PXR; quercetin and kaempferol activate PXR, CAR, and AhR, whereas BB exerts no effects on these xenobiotic receptors. Notably, the flavonoids induced the expression of UGT1A1 and CYP1A2 in HepG2 cells but not in HPH. Conclusion Our results indicate that terpenoids and flavonoids of GBE exhibit differential induction of DMEs through the selective activation of PXR, CAR, and AhR. PMID:19034627

  9. Effects of kale ingestion on pharmacokinetics of acetaminophen in rats.

    PubMed

    Yamasaki, Izumi; Uotsu, Nobuo; Yamaguchi, Kohji; Takayanagi, Risa; Yamada, Yasuhiko

    2011-12-01

    Kale is a cruciferous vegetable (Brassicaceae) that contains a large amount of health-promoting phytochemicals. The chronic ingestion of cabbage of the same family is known to accelerate conjugating acetaminophen (AA) and decrease the plasma AA level. Therefore, we examined to clarify the effects of kale on the pharmacokinetics of AA, its glucuronide (AA-G) and sulfate (AA-S). AA was orally administered to rats pre-treated with kale or cabbage (2000 mg/kg/day) for one week. Blood samples were collected from the jugular vein, and the concentrations of AA, AA-G and AA-S were determined. In results, kale ingestion induced an increase in the area under the concentration-time curve (AUC) and a decrease in the clearance of AA, whereas cabbage had almost no influence. In addition, there were significant differences in the AUC of AA-G between the control and kale groups. mRNA expression levels of UDP-glucuronosyltransferases, the enzymes involved in glucuronidation, in the kale group were significantly higher than those in the control group. In conclusion, kale ingestion increased the plasma concentrations of both AA and AA-G. The results suggest that kale ingestion accelerates the glucuronidation of AA, but an increase of plasma AA levels has a different cause than the cause of glucuronidation.

  10. Enhanced thyroid hormone breakdown in hepatocytes by mutual induction of the constitutive androstane receptor (CAR, NR1I3) and arylhydrocarbon receptor by benzo[a]pyrene and phenobarbital.

    PubMed

    Schraplau, Anne; Schewe, Bettina; Neuschäfer-Rube, Frank; Ringel, Sebastian; Neuber, Corinna; Kleuser, Burkhard; Püschel, Gerhard P

    2015-02-03

    Xenobiotics may interfere with the hypothalamic-pituitary-thyroid endocrine axis by inducing enzymes that inactivate thyroid hormones and thereby reduce the metabolic rate. This induction results from an activation of xeno-sensing nuclear receptors. The current study shows that benzo[a]pyrene, a frequent contaminant of processed food and activator of the arylhydrocarbon receptor (AhR) activated the promoter and induced the transcription of the nuclear receptor constitutive androstane receptor (CAR, NR1I3) in rat hepatocytes. Likewise, phenobarbital induced the AhR transcription. This mutual induction of the nuclear receptors enhanced the phenobarbital-dependent induction of the prototypic CAR target gene Cyp2b1 as well as the AhR-dependent induction of UDP-glucuronosyltransferases. In both cases, the induction by the combination of both xenobiotics was more than the sum of the induction by either substance alone. By inducing the AhR, phenobarbital enhanced the benzo[a]pyrene-dependent reduction of thyroid hormone half-life and the benzo[a]pyrene-dependent increase in the rate of thyroid hormone glucuronide formation in hepatocyte cultures. CAR ligands might thus augment the endocrine disrupting potential of AhR activators by an induction of the AhR. Copyright © 2014. Published by Elsevier Ireland Ltd.

  11. Identification of the UDP-glucose-4-epimerase required for galactofuranose biosynthesis and galactose metabolism in A. niger.

    PubMed

    Park, Joohae; Tefsen, Boris; Arentshorst, Mark; Lagendijk, Ellen; van den Hondel, Cees Amjj; van Die, Irma; Ram, Arthur Fj

    2014-01-01

    Galactofuranose (Gal f )-containing glycoconjugates are important to secure the integrity of the cell wall of filamentous fungi. Mutations that prevent the biosynthesis of Gal f -containing molecules compromise cell wall integrity. In response to cell wall weakening, the cell wall integrity (CWI)-pathway is activated to reinforce the strength of the cell wall. Activation of CWI-pathway in Aspergillus niger is characterized by the specific induction of the agsA gene, which encodes a cell wall α-glucan synthase. In this study, we screened a collection of cell wall mutants with an induced expression of agsA for defects in Gal f biosynthesis using a with anti-Gal f antibody (L10). From this collection of mutants, we previously identified mutants in the UDP-galactopyranose mutase encoding gene ( ugmA ). Here, we have identified six additional UDP-galactopyranose mutase ( ugmA ) mutants and one mutant (named mutant #41) in an additional complementation group that displayed strongly reduced Gal f -levels in the cell wall. By using a whole genome sequencing approach, 21 SNPs in coding regions were identified between mutant #41 and its parental strain which changed the amino acid sequence of the encoded proteins. One of these mutations was in gene An14g03820, which codes for a putative UDP-glucose-4-epimerase (UgeA). The A to G mutation in this gene causes an amino acid change of Asn to Asp at position 191 in the UgeA protein. Targeted deletion of ugeA resulted in an even more severe reduction of Gal f in N-linked glucans, indicating that the UgeA protein in mutant #41 is partially active. The ugeA gene is also required for growth on galactose despite the presence of two UgeA homologs in the A. niger genome. By using a classical mutant screen and whole genome sequencing of a new Gal f -deficient mutant, the UDP-glucose-4-epimerase gene ( ugeA ) has been identified. UgeA is required for the biosynthesis of Gal f as well as for galactose metabolism in Aspergillus niger .

  12. Activity of xenobiotic-metabolizing enzymes in the liver of rats with multi-vitamin deficiency.

    PubMed

    Tutelyan, Victor A; Kravchenko, Lidia V; Aksenov, Ilya V; Trusov, Nikita V; Guseva, Galina V; Kodentsova, Vera M; Vrzhesinskaya, Oksana A; Beketova, Nina A

    2013-01-01

    The purpose of the study was to determine how multi-vitamin deficiency affects xenobiotic-metabolizing enzyme (XME) activities in the rat liver. Vitamin levels and XME activities were studied in the livers of male Wistar rats who were fed for 4 weeks with semi-synthetic diets containing either adequate (100 % of recommended vitamin intake) levels of vitamins (control), or decreased vitamin levels (50 % or 20 % of recommended vitamin intake). The study results have shown that moderate vitamin deficiency (50 %) leads to a decrease of vitamin A levels only, and to a slight increase, as compared with the control, in the following enzyme activities: methoxyresorufin O-dealkylase (MROD) activity of CYP1 A2 - by 34 % (p < 0.05), UDP-glucuronosyl transferase - by 26 % (p < 0.05), and quinone reductase - by 55 % (p < 0.05). Profound vitamin deficiency (20 %) led to a decrease of vitamins A, E, B1, B2, and C, and enzyme activities in the liver: MROD - to 78 % of the control level (p < 0.05), 4-nitrophenol hydroxylase - to 74 % (p < 0.05), heme oxygenase-1 - to 83 % (p < 0.05), and quinone reductase - to 60 % (p < 0.05). At the same time, the UDP-glucuronosyl transferase activity and ethoxyresorufin O-dealkylase activity of CYP1A1, pentoxyresorufin O-dealkylase activity of CYP2B1/2 and 6β-testosterone hydroxylase, as well as the total activity of glutathione transferase did not differ from the control levels. The study has demonstrated that profound multi-vitamin deficiency is associated with a decrease in the expression of CYP1A2 and CYP3A1 mRNAs to 62 % and 79 %, respectively. These data indicated that a short-term but profound multi-vitamin deficiency in rats leads to a decrease in the activities and expression of the some XME that play an important role in detoxification of xenobiotics and metabolism of drugs and antioxidant protection.

  13. Cloning of genes related to aliphatic glucosinolate metabolism and the mechanism of sulforaphane accumulation in broccoli sprouts under jasmonic acid treatment.

    PubMed

    Guo, Liping; Yang, Runqiang; Gu, Zhenxin

    2016-10-01

    Cytochrome P450 79F1 (CYP79F1), cytochrome P450 83A1 (CYP83A1), UDP-glucosyltransferase 74B1 (UGT74B1), sulfotransferase 18 (ST5b) and flavin-containing monooxygenase GS-OX1 (FMOGS - OX1 ) are important enzymes in aliphatic glucosinolate biosynthesis. In this study, their full-length cDNA in broccoli was firstly cloned, then the mechanism of sulforaphane accumulation under jasmonic acid (JA) treatment was investigated. The full-length cDNA of CYP79F1, CYP83A1, UGT74B1, ST5b and FMOGS - OX1 comprised 1980, 1652, 1592, 1378 and 1623 bp respectively. The increase in aliphatic glucosinolate accumulation in broccoli sprouts treated with JA was associated with elevated expression of genes in the aliphatic glucosinolate biosynthetic pathway. Application of 100 µmol L(-1) JA increased myrosinase (MYR) activity but did not affect epithiospecifier protein (ESP) activity in broccoli sprouts, which was supported by the expression of MYR and ESP. Sulforaphane formation in 7-day-old sprouts treated with 100 µmol L(-1) JA was 3.36 and 1.30 times that in the control and 300 µmol L(-1) JA treatment respectively. JA enhanced the accumulation of aliphatic glucosinolates in broccoli sprouts via up-regulation of related gene expression. Broccoli sprouts treated with 100 µmol L(-1) JA showed higher sulforphane formation than those treated with 300 µmol L(-1) JA owing to the higher glucoraphanin content and myrosinase activity under 100 µmol L(-1) JA treatment. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. New Insight into the Catalytic Mechanism of Bacterial MraY from Enzyme Kinetics and Docking Studies*

    PubMed Central

    Liu, Yao; Rodrigues, João P. G. L. M.; Bonvin, Alexandre M. J. J.; Zaal, Esther A.; Berkers, Celia R.; Heger, Michal; Gawarecka, Katarzyna; Swiezewska, Ewa; Breukink, Eefjan; Egmond, Maarten R.

    2016-01-01

    Phospho-MurNAc-pentapeptide translocase (MraY) catalyzes the synthesis of Lipid I, a bacterial peptidoglycan precursor. As such, MraY is essential for bacterial survival and therefore is an ideal target for developing novel antibiotics. However, the understanding of its catalytic mechanism, despite the recently determined crystal structure, remains limited. In the present study, the kinetic properties of Bacillus subtilis MraY (BsMraY) were investigated by fluorescence enhancement using dansylated UDP-MurNAc-pentapeptide and heptaprenyl phosphate (C35-P, short-chain homolog of undecaprenyl phosphate, the endogenous substrate of MraY) as second substrate. Varying the concentrations of both of these substrates and fitting the kinetics data to two-substrate models showed that the concomitant binding of both UDP-MurNAc-pentapeptide-DNS and C35-P to the enzyme is required before the release of the two products, Lipid I and UMP. We built a model of BsMraY and performed docking studies with the substrate C35-P to further deepen our understanding of how MraY accommodates this lipid substrate. Based on these modeling studies, a novel catalytic role was put forward for a fully conserved histidine residue in MraY (His-289 in BsMraY), which has been experimentally confirmed to be essential for MraY activity. Using the current model of BsMraY, we propose that a small conformational change is necessary to relocate the His-289 residue, such that the translocase reaction can proceed via a nucleophilic attack of the phosphate moiety of C35-P on bound UDP-MurNAc-pentapeptide. PMID:27226570

  15. Model-Assisted Analysis of Sugar Metabolism throughout Tomato Fruit Development Reveals Enzyme and Carrier Properties in Relation to Vacuole Expansion[W

    PubMed Central

    Beauvoit, Bertrand P.; Colombié, Sophie; Monier, Antoine; Andrieu, Marie-Hélène; Biais, Benoit; Bénard, Camille; Chéniclet, Catherine; Dieuaide-Noubhani, Martine; Nazaret, Christine; Mazat, Jean-Pierre; Gibon, Yves

    2014-01-01

    A kinetic model combining enzyme activity measurements and subcellular compartmentation was parameterized to fit the sucrose, hexose, and glucose-6-P contents of pericarp throughout tomato (Solanum lycopersicum) fruit development. The model was further validated using independent data obtained from domesticated and wild tomato species and on transgenic lines. A hierarchical clustering analysis of the calculated fluxes and enzyme capacities together revealed stage-dependent features. Cell division was characterized by a high sucrolytic activity of the vacuole, whereas sucrose cleavage during expansion was sustained by both sucrose synthase and neutral invertase, associated with minimal futile cycling. Most importantly, a tight correlation between flux rate and enzyme capacity was found for fructokinase and PPi-dependent phosphofructokinase during cell division and for sucrose synthase, UDP-glucopyrophosphorylase, and phosphoglucomutase during expansion, thus suggesting an adaptation of enzyme abundance to metabolic needs. In contrast, for most enzymes, flux rates varied irrespectively of enzyme capacities, and most enzymes functioned at <5% of their maximal catalytic capacity. One of the major findings with the model was the high accumulation of soluble sugars within the vacuole together with organic acids, thus enabling the osmotic-driven vacuole expansion that was found during cell division. PMID:25139005

  16. Microbial production of next-generation stevia sweeteners.

    PubMed

    Olsson, Kim; Carlsen, Simon; Semmler, Angelika; Simón, Ernesto; Mikkelsen, Michael Dalgaard; Møller, Birger Lindberg

    2016-12-07

    The glucosyltransferase UGT76G1 from Stevia rebaudiana is a chameleon enzyme in the targeted biosynthesis of the next-generation premium stevia sweeteners, rebaudioside D (Reb D) and rebaudioside M (Reb M). These steviol glucosides carry five and six glucose units, respectively, and have low sweetness thresholds, high maximum sweet intensities and exhibit a greatly reduced lingering bitter taste compared to stevioside and rebaudioside A, the most abundant steviol glucosides in the leaves of Stevia rebaudiana. In the metabolic glycosylation grid leading to production of Reb D and Reb M, UGT76G1 was found to catalyze eight different reactions all involving 1,3-glucosylation of steviol C 13 - and C 19 -bound glucoses. Four of these reactions lead to Reb D and Reb M while the other four result in formation of side-products unwanted for production. In this work, side-product formation was reduced by targeted optimization of UGT76G1 towards 1,3 glucosylation of steviol glucosides that are already 1,2-diglucosylated. The optimization of UGT76G1 was based on homology modelling, which enabled identification of key target amino acids present in the substrate-binding pocket. These residues were then subjected to site-saturation mutagenesis and a mutant library containing a total of 1748 UGT76G1 variants was screened for increased accumulation of Reb D or M, as well as for decreased accumulation of side-products. This screen was performed in a Saccharomyces cerevisiae strain expressing all enzymes in the rebaudioside biosynthesis pathway except for UGT76G1. Screening of the mutant library identified mutations with positive impact on the accumulation of Reb D and Reb M. The effect of the introduced mutations on other reactions in the metabolic grid was characterized. This screen made it possible to identify variants, such as UGT76G1 Thr146Gly and UGT76G1 His155Leu , which diminished accumulation of unwanted side-products and gave increased specific accumulation of the desired

  17. Characterization of the biotransformation pathways of clomiphene, tamoxifen and toremifene as assessed by LC-MS/(MS) following in vitro and excretion studies.

    PubMed

    Mazzarino, Monica; Biava, Mariangela; de la Torre, Xavier; Fiacco, Ilaria; Botrè, Francesco

    2013-06-01

    The use of selective oestrogen receptor modulators has been prohibited since 2005 by the World Anti-Doping Agency regulations. As they are extensively cleared by hepatic and intestinal metabolism via oxidative and conjugating enzymes, a complete investigation of their biotransformation pathways and kinetics of excretion is essential for the anti-doping laboratories to select the right marker(s) of misuse. This work was designed to characterize the chemical reactions and the metabolizing enzymes involved in the metabolic routes of clomiphene, tamoxifen and toremifene. To determine the biotransformation pathways of the substrates under investigation, urine samples were collected from six subjects (three females and three males) after oral administration of 50 mg of clomiphene citrate or 40 mg of tamoxifen or 60 mg of toremifene, whereas the metabolizing enzymes were characterized in vitro, using expressed cytochrome P450s and uridine diphosphoglucuronosyltransferases. The separation, identification and determination of the compounds formed in the in vivo and in vitro experiments were carried out by liquid chromatography coupled with mass spectrometry techniques using different acquisition modes. Clomiphene, tamoxifen and toremifene were biotransformed to 22, 23 and 18 metabolites respectively, these phase I reactions being catalyzed mainly by CYP3A4 and CYP2D6 isoforms and, to a lesser degree, by CYP3A5, CYP2B6, CYP2C9, CYP2C19 isoforms. The phase I metabolic reactions include hydroxylation in different positions, N-oxidation, dehalogenation, carboxylation, hydrogenation, methoxylation, N-dealkylation and combinations of them. In turn, most of the phase I metabolites underwent conjugation reaction to form the corresponding glucuro-conjugated mainly by UGT1A1, UGT1A3, UGT1A4, UGT2B7, UGT2B15 and UGT2B17 isoenzymes.

  18. Pharmacogenetics of drug-metabolizing enzymes in US Hispanics

    PubMed Central

    Duconge, Jorge; Cadilla, Carmen L.; Ruaño, Gualberto

    2015-01-01

    Although the Hispanic population is continuously growing in the United States, they are underrepresented in pharmacogenetic studies. This review addresses the need for compiling available pharmacogenetic data in US Hispanics, discussing the prevalence of clinically relevant polymorphisms in pharmacogenes encoding for drug-metabolizing enzymes. CYP3A5*3 (0.245–0.867) showed the largest frequency in a US Hispanic population. A higher prevalence of CYP2C9*3, CYP2C19*4, and UGT2B7 IVS1+985 A>Gwas observed in US Hispanic vs. non-Hispanic populations. We found interethnic and intraethnic variability in frequencies of genetic polymorphisms for metabolizing enzymes, which highlights the need to define the ancestries of participants in pharmacogenetic studies. New approaches should be integrated in experimental designs to gain knowledge about the clinical relevance of the unique combination of genetic variants occurring in this admixed population. Ethnic subgroups in the US Hispanic population may harbor variants that might be part of multiple causative loci or in linkage-disequilibrium with functional variants. Pharmacogenetic studies in Hispanics should not be limited to ascertain commonly studied polymorphisms that were originally identified in their parental populations. The success of the Personalized Medicine paradigm will depend on recognizing genetic diversity between and within US Hispanics and the uniqueness of their genetic backgrounds. PMID:25431893

  19. The genes and enzymes of sucrose metabolism in moderately thermophilic methanotroph Methylocaldum szegediense O12.

    PubMed

    But, Sergey Y; Solntseva, Natalia P; Egorova, Svetlana V; Mustakhimov, Ildar I; Khmelenina, Valentina N; Reshetnikov, Alexander; Trotsenko, Yuri A

    2018-05-01

    Four enzymes involved in sucrose metabolism: sucrose phosphate synthase (Sps), sucrose phosphate phosphatase (Spp), sucrose synthase (Sus) and fructokinase (FruK), were obtained as his-tagged proteins from the moderately thermophilic methanotroph Methylocaldum szegediense O12. Sps, Spp, FruK and Sus demonstrated biochemical properties similar to those of other bacterial counterparts, but the translated amino acid sequences of Sps and Spp displayed high divergence from the respective microbial enzymes. The Sus of M. szegediense O12 catalyzed the reversible reaction of sucrose cleavage in the presence of ADP or UDP and preferred ADP as a substrate, thus implying a connection between sucrose and glycogen metabolism. Sus-like genes were found only in a few methanotrophs, whereas amylosucrase was generally used in sucrose cleavage in this group of bacteria. Like other microbial fructokinases, FruK of M. szegediense O12 showed a high specificity to fructose.

  20. Defective Cytochrome P450-Catalysed Drug Metabolism in Niemann-Pick Type C Disease

    PubMed Central

    Wassif, Christopher A.; Gray, James; Burkert, Kathryn R.; Smith, David A.; Morris, Lauren; Cologna, Stephanie M.; Peer, Cody J.; Sissung, Tristan M.; Uscatu, Constantin-Daniel; Figg, William D.; Pavan, William J.; Vite, Charles H.; Porter, Forbes D.; Platt, Frances M.

    2016-01-01

    Niemann-Pick type C (NPC) disease is a neurodegenerative lysosomal storage disease caused by mutations in either the NPC1 or NPC2 gene. NPC is characterised by storage of multiple lipids in the late endosomal/lysosomal compartment, resulting in cellular and organ system dysfunction. The underlying molecular mechanisms that lead to the range of clinical presentations in NPC are not fully understood. While evaluating potential small molecule therapies in Npc1-/- mice, we observed a consistent pattern of toxicity associated with drugs metabolised by the cytochrome P450 system, suggesting a potential drug metabolism defect in NPC1 disease. Investigation of the P450 system in the context of NPC1 dysfunction revealed significant changes in the gene expression of many P450 associated genes across the full lifespan of Npc1-/- mice, decreased activity of cytochrome P450 reductase, and a global decrease of multiple cytochrome P450 catalysed dealkylation reactions. In vivo drug metabolism studies using a prototypic P450 metabolised drug, midazolam, confirmed dysfunction in drug clearance in the Npc1-/- mouse. Expression of the Phase II enzyme uridinediphosphate-glucuronosyltransferase (UGT) was also significantly reduced in Npc1-/- mice. Interestingly, reduced activity within the P450 system was also observed in heterozygous Npc1+/- mice. The reduced activity of P450 enzymes may be the result of bile acid deficiency/imbalance in Npc1-/- mice, as bile acid treatment significantly rescued P450 enzyme activity in Npc1-/- mice and has the potential to be an adjunctive therapy for NPC disease patients. The dysfunction in the cytochrome P450 system were recapitulated in the NPC1 feline model. Additionally, we present the first evidence that there are alterations in the P450 system in NPC1 patients. PMID:27019000