Sample records for udp-n-acetyl-d-galactosamine polypeptide n-acetylgalactosaminyltransferase-t4

  1. Characterization of ppGalNAc-T18, a member of the vertebrate-specific Y subfamily of UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferases.

    PubMed

    Li, Xing; Wang, Jing; Li, Wei; Xu, Yingjiao; Shao, Dong; Xie, Yinyin; Xie, Wenxian; Kubota, Tomomi; Narimatsu, Hisashi; Zhang, Yan

    2012-05-01

    The first step of mucin-type O-glycosylation is catalyzed by members of the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase (ppGalNAc-T; EC 2.4.1.41) family. Each member of this family has unique substrate specificity and expression profiles. In this report, we describe a new subfamily of ppGalNAc-Ts, designated the Y subfamily. The Y subfamily consists of four members, ppGalNAc-T8, -T9, -T17 and -T18, in which the conserved YDX(5)WGGENXE sequence in the Gal/GalNAc-T motif of ppGalNAc-Ts is mutated to LDX(5)YGGENXE. Phylogenetic analysis revealed that the Y subfamily members only exist in vertebrates. All four Y subfamily members lack in vitro GalNAc-transferase activity toward classical substrates possibly because of the UDP-GalNAc-binding pocket mutants. However, ppGalNAc-T18, the newly identified defining member, was localized in the endoplasmic reticulum rather than the Golgi apparatus in lung carcinoma cells. The knockdown of ppGalNAc-T18 altered cell morphology, proliferation potential and changed cell O-glycosylation. ppGalNAc-T18 can also modulate the in vitro GalNAc-transferase activity of ppGalNAc-T2 and -T10, suggesting that it may be a chaperone-like protein. These findings suggest that the new Y subfamily of ppGalNAc-Ts plays an important role in protein glycosylation; characterizing their functions will provide new insight into the role of ppGalNAc-Ts.

  2. Overexpression of Galnt3 in chondrocytes resulted in dwarfism due to the increase of mucin-type O-glycans and reduction of glycosaminoglycans.

    PubMed

    Yoshida, Carolina Andrea; Kawane, Tetsuya; Moriishi, Takeshi; Purushothaman, Anurag; Miyazaki, Toshihiro; Komori, Hisato; Mori, Masako; Qin, Xin; Hashimoto, Ayako; Sugahara, Kazuyuki; Yamana, Kei; Takada, Kenji; Komori, Toshihisa

    2014-09-19

    Galnt3, UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 3, transfers N-acetyl-D-galactosamine to serine and threonine residues, initiating mucin type O-glycosylation of proteins. We searched the target genes of Runx2, which is an essential transcription factor for chondrocyte maturation, in chondrocytes and found that Galnt3 expression was up-regulated by Runx2 and severely reduced in Runx2(-/-) cartilaginous skeletons. To investigate the function of Galnt3 in chondrocytes, we generated Galnt3(-/-) mice and chondrocyte-specific Galnt3 transgenic mice under the control of the Col2a1 promoter-enhancer. Galnt3(-/-) mice showed a delay in endochondral ossification and shortened limbs at embryonic day 16.5, suggesting that Galnt3 is involved in chondrocyte maturation. Galnt3 transgenic mice presented dwarfism, the chondrocyte maturation was retarded, the cell cycle in chondrocytes was accelerated, premature chondrocyte apoptosis occurred, and the growth plates were disorganized. The binding of Vicia villosa agglutinin, which recognizes the Tn antigen (GalNAc-O-Ser/Thr), was drastically increased in chondrocytes, and aggrecan (Acan) was highly enriched with Tn antigen. However, safranin O staining, which recognizes glycosaminoglycans (GAGs), and Acan were severely reduced. Chondroitin sulfate was reduced in amount, but the elongation of chondroitin sulfate chains had not been severely disturbed in the isolated GAGs. These findings indicate that overexpression of Galnt3 in chondrocytes caused dwarfism due to the increase of mucin-type O-glycans and the reduction of GAGs, probably through competition with xylosyltransferases, which initiate GAG chains by attaching O-linked xylose to serine residues, suggesting a negative effect of Galnt family proteins on Acan deposition in addition to the positive effect of Galnt3 on chondrocyte maturation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Overexpression of Galnt3 in Chondrocytes Resulted in Dwarfism Due to the Increase of Mucin-type O-Glycans and Reduction of Glycosaminoglycans*

    PubMed Central

    Yoshida, Carolina Andrea; Kawane, Tetsuya; Moriishi, Takeshi; Purushothaman, Anurag; Miyazaki, Toshihiro; Komori, Hisato; Mori, Masako; Qin, Xin; Hashimoto, Ayako; Sugahara, Kazuyuki; Yamana, Kei; Takada, Kenji; Komori, Toshihisa

    2014-01-01

    Galnt3, UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase 3, transfers N-acetyl-d-galactosamine to serine and threonine residues, initiating mucin type O-glycosylation of proteins. We searched the target genes of Runx2, which is an essential transcription factor for chondrocyte maturation, in chondrocytes and found that Galnt3 expression was up-regulated by Runx2 and severely reduced in Runx2−/− cartilaginous skeletons. To investigate the function of Galnt3 in chondrocytes, we generated Galnt3−/− mice and chondrocyte-specific Galnt3 transgenic mice under the control of the Col2a1 promoter-enhancer. Galnt3−/− mice showed a delay in endochondral ossification and shortened limbs at embryonic day 16.5, suggesting that Galnt3 is involved in chondrocyte maturation. Galnt3 transgenic mice presented dwarfism, the chondrocyte maturation was retarded, the cell cycle in chondrocytes was accelerated, premature chondrocyte apoptosis occurred, and the growth plates were disorganized. The binding of Vicia villosa agglutinin, which recognizes the Tn antigen (GalNAc-O-Ser/Thr), was drastically increased in chondrocytes, and aggrecan (Acan) was highly enriched with Tn antigen. However, safranin O staining, which recognizes glycosaminoglycans (GAGs), and Acan were severely reduced. Chondroitin sulfate was reduced in amount, but the elongation of chondroitin sulfate chains had not been severely disturbed in the isolated GAGs. These findings indicate that overexpression of Galnt3 in chondrocytes caused dwarfism due to the increase of mucin-type O-glycans and the reduction of GAGs, probably through competition with xylosyltransferases, which initiate GAG chains by attaching O-linked xylose to serine residues, suggesting a negative effect of Galnt family proteins on Acan deposition in addition to the positive effect of Galnt3 on chondrocyte maturation. PMID:25107907

  4. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis

    PubMed Central

    Ichikawa, Shoji; Imel, Erik A.; Kreiter, Mary L.; Yu, Xijie; Mackenzie, Donald S.; Sorenson, Andrea H.; Goetz, Regina; Mohammadi, Moosa; White, Kenneth E.; Econs, Michael J.

    2007-01-01

    Familial tumoral calcinosis is characterized by ectopic calcifications and hyperphosphatemia due to inactivating mutations in FGF23 or UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3). Herein we report a homozygous missense mutation (H193R) in the KLOTHO (KL) gene of a 13-year-old girl who presented with severe tumoral calcinosis with dural and carotid artery calcifications. This patient exhibited defects in mineral ion homeostasis with marked hyperphosphatemia and hypercalcemia as well as elevated serum levels of parathyroid hormone and FGF23. Mapping of H193R mutation onto the crystal structure of myrosinase, a plant homolog of KL, revealed that this histidine residue was at the base of the deep catalytic cleft and mutation of this histidine to arginine should destabilize the putative glycosidase domain (KL1) of KL, thereby attenuating production of membrane-bound and secreted KL. Indeed, compared with wild-type KL, expression and secretion of H193R KL were markedly reduced in vitro, resulting in diminished ability of FGF23 to signal via its cognate FGF receptors. Taken together, our findings provide what we believe to be the first evidence that loss-of-function mutations in human KL impair FGF23 bioactivity, underscoring the essential role of KL in FGF23-mediated phosphate and vitamin D homeostasis in humans. PMID:17710231

  5. Production of N-acetylgalactosaminyl-transferase 2 (GalNAc-T2) fused with secretory signal Igκ in insect cells.

    PubMed

    Horynová, Milada; Takahashi, Kazuo; Hall, Stacy; Renfrow, Matthew B; Novak, Jan; Raška, Milan

    2012-02-01

    The human UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyl-transferase 2 (GalNAc-T2) is one of the key enzymes that initiate synthesis of hinge-region O-linked glycans of human immunoglobulin A1 (IgA1). We designed secreted soluble form of human GalNAc-T2 as a fusion protein containing mouse immunoglobulin light chain kappa secretory signal and expressed it using baculovirus and mammalian expression vectors. The recombinant protein was secreted by insect cells Sf9 and human HEK 293T cells in the culture medium. The protein was purified from the media using affinity Ni-NTA chromatography followed by stabilization of purified protein in 50mM Tris-HCl buffer at pH 7.4. Although the purity of recombinant GalNAc-T2 was comparable in both expression systems, the yield was higher in Sf9 insect expression system (2.5mg of GalNAc-T2 protein per 1L culture medium). The purified soluble recombinant GalNAc-T2 had an estimated molecular mass of 65.8kDa and its amino-acid sequence was confirmed by mass-spectrometric analysis. The enzymatic activity of Sf9-produced recombinant GalNAc-T2 was determined by the quantification of enzyme-mediated attachment of GalNAc to synthetic IgA1 hinge-region peptide as the acceptor and UDP-GalNAc as the donor. In conclusion, murine immunoglobulin kappa secretory signal was used for production of secreted enzymatically active GalNAc-T2 in insect baculovirus expression system. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Novel GALNT3 mutations causing hyperostosis-hyperphosphatemia syndrome result in low intact fibroblast growth factor 23 concentrations.

    PubMed

    Ichikawa, Shoji; Guigonis, Vincent; Imel, Erik A; Courouble, Mélanie; Heissat, Sophie; Henley, John D; Sorenson, Andrea H; Petit, Barbara; Lienhardt, Anne; Econs, Michael J

    2007-05-01

    Hyperostosis-hyperphosphatemia syndrome (HHS) is a rare metabolic disorder characterized by hyperphosphatemia and localized hyperostosis. HHS is caused by mutations in GALNT3, which encodes UDP-N-acetyl-alpha-D-galactosamine:polypeptide N- acetylgalactosaminyltransferase 3. Familial tumoral calcinosis (TC), characterized by ectopic calcifications and hyperphosphatemia, is caused by mutations in the GALNT3 or fibroblast growth factor 23 (FGF23) genes. Our objective was to identify mutations in FGF23 or GALNT3 and determine serum FGF23 levels in an HHS patient. Mutation detection in FGF23 and GALNT3 was performed by DNA sequencing, and serum FGF23 concentrations were measured by ELISA. A 5-year-old French boy with HHS and his family members participated. The patient presented with painful cortical lesions in his leg. Radiographs of the affected bone showed diaphyseal hyperostosis. The lesional tissue comprised trabeculae of immature, woven bone surrounded by fibrous tissue. Biochemistry revealed elevated phosphate, tubular maximum rate for phosphate reabsorption per deciliter of glomerular filtrate, and 1,25-dihydroxyvitamin D levels. The patient was a compound heterozygote for two novel GALNT3 mutations. His parents and brother were heterozygous for one of the mutations and had no biochemical abnormalities. Intact FGF23 level in the patient was low normal, whereas C-terminal FGF23 was elevated, a pattern similar to TC. The presence of GALNT3 mutations and elevated C-terminal, but low intact serum FGF23, levels in HHS resemble those seen in TC, suggesting that HHS and TC are different manifestations of the same disorder. The absence of biochemical abnormalities in the heterozygous individuals suggests that one normal allele is sufficient for secretion of intact FGF23.

  7. Lectins discriminate between pathogenic and nonpathogenic South American trypanosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Miranda Santos, I.K.; Pereira, M.E.

    1984-09-01

    Cell surface carbohydrates of Trypanosoma cruzi, Trypanosoma rangeli, and Trypanosoma conorhini were analyzed by a micro-agglutination assay employing 27 highly purified lectins and by binding assays using various /sup 125/I-labeled lectins. The following seven lectins discriminated between the trypanosomes: 1) tomato lectin (an N-acetyl-D-glucosamine-binding protein), both in purified form and as crude tomato juice; 2) Bauhinea purpurea and Sophora japonica lectins (both N-acetyl-D-galactosamine-binding proteins), which selectively agglutinated T. cruzi; 3) Vicia villosa (an N-acetyl-D-galactosamine-binding protein) which was specific for T. rangeli; 4) peanut lectin (a D-galactose-binding protein) both in purified form and as crude saline extract; and 5) Ulex europaeusmore » and Lotus tetragonolobus (both L-fucose-binding proteins) lectins which reacted only with T. conorhini. Binding studies with 125I-labeled lectins were performed to find whether unagglutinated cells of the three different species of trypanosomes might have receptors for these lectins, in which case absence of agglutination could be due to a peculiar arrangement of the receptors. These assays essentially confirmed the agglutination experiments.« less

  8. Glycoconjugate sugar residues in the chick embryo developing lung: a lectin histochemical study.

    PubMed

    Gheri, G; Sgambati, E; Bryk, S G

    2000-03-01

    A lectin histochemical study was performed to investigate the distribution and changes of the oligosaccharidic component of the glycoconjugates in the lung of chick embryos, of 1-day-old chick, and of the adult animal. For this purpose, a battery of seven horseradish peroxidase-conjugated lectins (PNA, SBA, DBA, WGA, Con A, LTA, and UEA I) were employed. During the first phase of parabronchi and atria formation, D-galactose-(beta1-->3)-N-acetyl-D-galactosamine, beta-N-acetyl-D-galactosamine, D-glucosamine, alpha-D-mannose, and sialic acid, present at the level of the surface and of cytoplasmic granules of the lining epithelial cells, seem to play a role in regulating morphogenetic phenomena. In the subsequent phases, the parabronchial lumen and the atrial cavities were characterized by the presence of lectin-reactive material rich in terminal D-galactose-(beta1-->3)-N-acetyl-D-galactosamine, beta-N-acetyl-D-galactosamine, D-glucosamine and alpha-D-mannose. From day 18 onwards and immediately after hatching, the free border of the cells lining the air capillaries was characterized by the presence of beta-N-acetyl-D-galactosamine and alpha-D-mannose. The appearance of these sugar residues was concomitant with the beginning of respiratory activity. Copyright 2000 Wiley-Liss, Inc.

  9. A common sugar-nucleotide-mediated mechanism of inhibition of (glycosamino)glycan biosynthesis, as evidenced by 6F-GalNAc (Ac3)

    PubMed Central

    van Wijk, Xander M.; Lawrence, Roger; Thijssen, Victor L.; van den Broek, Sebastiaan A.; Troost, Ran; van Scherpenzeel, Monique; Naidu, Natasha; Oosterhof, Arie; Griffioen, Arjan W.; Lefeber, Dirk J.; van Delft, Floris L.; van Kuppevelt, Toin H.

    2015-01-01

    Glycosaminoglycan (GAG) polysaccharides have been implicated in a variety of cellular processes, and alterations in their amount and structure have been associated with diseases such as cancer. In this study, we probed 11 sugar analogs for their capacity to interfere with GAG biosynthesis. One analog, with a modification not directly involved in the glycosidic bond formation, 6F-N-acetyl-d-galactosamine (GalNAc) (Ac3), was selected for further study on its metabolic and biologic effect. Treatment of human ovarian carcinoma cells with 50 μM 6F-GalNAc (Ac3) inhibited biosynthesis of GAGs (chondroitin/dermatan sulfate by ∼50–60%, heparan sulfate by ∼35%), N-acetyl-d-glucosamine (GlcNAc)/GalNAc containing glycans recognized by the lectins Datura stramonium and peanut agglutinin (by ∼74 and ∼43%, respectively), and O-GlcNAc protein modification. With respect to function, 6F-GalNAc (Ac3) treatment inhibited growth factor signaling and reduced in vivo angiogenesis by ∼33%. Although the analog was readily transformed in cells into the uridine 5′-diphosphate (UDP)-activated form, it was not incorporated into GAGs. Rather, it strongly reduced cellular UDP-GalNAc and UDP-GlcNAc pools. Together with data from the literature, these findings indicate that nucleotide sugar depletion without incorporation is a common mechanism of sugar analogs for inhibiting GAG/glycan biosynthesis.—Van Wijk, X. M., Lawrence, R., Thijssen, V. L., van den Broek, S. A., Troost, R., van Scherpenzeel, M., Naidu, N., Oosterhof, A., Griffioen, A. W., Lefeber, D. J., van Delft, F. L., van Kuppevelt, T. H. A common sugar-nucleotide-mediated mechanism of inhibition of (glycosamino)glycan biosynthesis, as evidenced by 6F-GalNAc (Ac3). PMID:25868729

  10. Identification and expression analysis of zebrafish polypeptide α-N-acetylgalactosaminyltransferase Y-subfamily genes during embryonic development.

    PubMed

    Nakayama, Yoshiaki; Nakamura, Naosuke; Kawai, Tamiko; Kaneda, Eiichi; Takahashi, Yui; Miyake, Ayumi; Itoh, Nobuyuki; Kurosaka, Akira

    2014-09-01

    Mucin-type glycosylation is one of the most common posttranslational modifications of secretory and membrane proteins and has diverse physiological functions. The initial biosynthesis of mucin-type carbohydrates is catalyzed by UDP-GalNAc: polypeptide α-N-acetylgalactosaminyltransferases (GalNAc-Ts) encoded by GALNT genes. Among these, GalNAc-T8, -T9, -T17, and -T18 form a characteristic subfamily called "Y-subfamily" and have no or very low in vitro transferase activities when assayed with typical mucin peptides as acceptor substrates. Although the Y-subfamily isozymes have been reported to be possibly involved in various diseases, their in vivo functions have not been reported. Here, we isolated zebrafish Y-subfamily galnt genes, and determined their spatial and temporal expressions during the early development of zebrafish. Our study demonstrated that all the Y-subfamily isozymes were well conserved in zebrafish with GalNAc-T18 having two orthologs, galnt18a and galnt18b, and with the other three isozymes each having a corresponding ortholog, galnt8, galnt9, and galnt17. The galnt8 was expressed in the cephalic mesoderm and hatching gland during early developmental stages, and differently expressed in the head, somatic muscles, and liver in the later stages. The other three orthologs also exhibited the characteristic expression patterns, although their expressions were generally strong in the nervous systems. In addition to the expression in the brain, galnt17 and galnt18a were expressed in the somitic muscles, and galnt18a and galnt18b in the notochord. These expression patterns may contribute to the functional analysis of the Y-subfamily, whose physiological roles still remain to be elucidated. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Engineering of N. benthamiana L. plants for production of N-acetylgalactosamine-glycosylated proteins--towards development of a plant-based platform for production of protein therapeutics with mucin type O-glycosylation.

    PubMed

    Daskalova, Sasha M; Radder, Josiah E; Cichacz, Zbigniew A; Olsen, Sam H; Tsaprailis, George; Mason, Hugh; Lopez, Linda C

    2010-08-24

    Mucin type O-glycosylation is one of the most common types of post-translational modifications that impacts stability and biological functions of many mammalian proteins. A large family of UDP-GalNAc polypeptide:N-acetyl-α-galactosaminyltransferases (GalNAc-Ts) catalyzes the first step of mucin type O-glycosylation by transferring GalNAc to serine and/or threonine residues of acceptor polypeptides. Plants do not have the enzyme machinery to perform this process, thus restricting their use as bioreactors for production of recombinant therapeutic proteins. The present study demonstrates that an isoform of the human GalNAc-Ts family, GalNAc-T2, retains its localization and functionality upon expression in N. benthamiana L. plants. The recombinant enzyme resides in the Golgi as evidenced by the fluorescence distribution pattern of the GalNAc-T2:GFP fusion and alteration of the fluorescence signature upon treatment with Brefeldin A. A GalNAc-T2-specific acceptor peptide, the 113-136 aa fragment of chorionic gonadotropin β-subunit, is glycosylated in vitro by the plant-produced enzyme at the "native" GalNAc attachment sites, Ser-121 and Ser-127. Ectopic expression of GalNAc-T2 is sufficient to "arm" tobacco cells with the ability to perform GalNAc-glycosylation, as evidenced by the attachment of GalNAc to Thr-119 of the endogenous enzyme endochitinase. However, glycosylation of highly expressed recombinant glycoproteins, like magnICON-expressed E. coli enterotoxin B subunit:H. sapiens mucin 1 tandem repeat-derived peptide fusion protein (LTBMUC1), is limited by the low endogenous UDP-GalNAc substrate pool and the insufficient translocation of UDP-GalNAc to the Golgi lumen. Further genetic engineering of the GalNAc-T2 plants by co-expressing Y. enterocolitica UDP-GlcNAc 4-epimerase gene and C. elegans UDP-GlcNAc/UDP-GalNAc transporter gene overcomes these limitations as indicated by the expression of the model LTBMUC1 protein exclusively as a glycoform. Plant bioreactors can be engineered that are capable of producing Tn antigen-containing recombinant therapeutics.

  12. Ablation of the Galnt3 gene leads to low-circulating intact fibroblast growth factor 23 (Fgf23) concentrations and hyperphosphatemia despite increased Fgf23 expression.

    PubMed

    Ichikawa, Shoji; Sorenson, Andrea H; Austin, Anthony M; Mackenzie, Donald S; Fritz, Timothy A; Moh, Akira; Hui, Siu L; Econs, Michael J

    2009-06-01

    Familial tumoral calcinosis is characterized by ectopic calcifications and hyperphosphatemia. The disease is caused by inactivating mutations in fibroblast growth factor 23 (FGF23), Klotho (KL), and uridine diphosphate-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3). In vitro studies indicate that GALNT3 O-glycosylates a phosphaturic hormone, FGF23, and prevents its proteolytic processing, thereby allowing secretion of intact FGF23. In this study we generated mice lacking the Galnt3 gene, which developed hyperphosphatemia without apparent calcifications. In response to hyperphosphatemia, Galnt3-deficient mice had markedly increased Fgf23 expression in bone. However, compared with wild-type and heterozygous littermates, homozygous mice had only about half of circulating intact Fgf23 levels and higher levels of C-terminal Fgf23 fragments in bone. Galnt3-deficient mice also exhibited an inappropriately normal 1,25-dihydroxyvitamin D level and decreased alkaline phosphatase activity. Furthermore, renal expression of sodium-phosphate cotransporters and Kl were elevated in Galnt3-deficient mice. Interestingly, there were sex-specific phenotypes; only Galnt3-deficient males showed growth retardation, infertility, and significantly increased bone mineral density. In summary, ablation of Galnt3 impaired secretion of intact Fgf23, leading to decreased circulating Fgf23 and hyperphosphatemia, despite increased Fgf23 expression. Our findings indicate that Galnt3-deficient mice have a biochemical phenotype of tumoral calcinosis and provide in vivo evidence that Galnt3 plays an essential role in proper secretion of Fgf23 in mice.

  13. In Vitro Biosynthesis and Chemical Identification of UDP-N-acetyl-d-quinovosamine (UDP-d-QuiNAc)*

    PubMed Central

    Li, Tiezheng; Simonds, Laurie; Kovrigin, Evgenii L.; Noel, K. Dale

    2014-01-01

    N-acetyl-d-quinovosamine (2-acetamido-2,6-dideoxy-d-glucose, QuiNAc) occurs in the polysaccharide structures of many Gram-negative bacteria. In the biosynthesis of QuiNAc-containing polysaccharides, UDP-QuiNAc is the hypothetical donor of the QuiNAc residue. Biosynthesis of UDP-QuiNAc has been proposed to occur by 4,6-dehydration of UDP-N-acetyl-d-glucosamine (UDP-GlcNAc) to UDP-2-acetamido-2,6-dideoxy-d-xylo-4-hexulose followed by reduction of this 4-keto intermediate to UDP-QuiNAc. Several specific dehydratases are known to catalyze the first proposed step. A specific reductase for the last step has not been demonstrated in vitro, but previous mutant analysis suggested that Rhizobium etli gene wreQ might encode this reductase. Therefore, this gene was cloned and expressed in Escherichia coli, and the resulting His6-tagged WreQ protein was purified. It was tested for 4-reductase activity by adding it and NAD(P)H to reaction mixtures in which 4,6-dehydratase WbpM had acted on the precursor substrate UDP-GlcNAc. Thin layer chromatography of the nucleotide sugars in the mixture at various stages of the reaction showed that WbpM converted UDP-GlcNAc completely to what was shown to be its 4-keto-6-deoxy derivative by NMR and that addition of WreQ and NADH led to formation of a third compound. Combined gas chromatography-mass spectrometry analysis of acid hydrolysates of the final reaction mixture showed that a quinovosamine moiety had been synthesized after WreQ addition. The two-step reaction progress also was monitored in real time by NMR. The final UDP-sugar product after WreQ addition was purified and determined to be UDP-d-QuiNAc by one-dimensional and two-dimensional NMR experiments. These results confirmed that WreQ has UDP-2-acetamido-2,6-dideoxy-d-xylo-4-hexulose 4-reductase activity, completing a pathway for UDP-d-QuiNAc synthesis in vitro. PMID:24817117

  14. The directed migration of gonadal distal tip cells in Caenorhabditis elegans requires NGAT-1, a ß1,4-N-acetylgalactosaminyltransferase enzyme

    PubMed Central

    Veyhl, Joseph; Dunn, Robert J.; Johnston, Wendy L.; Bennett, Alexa; Zhang, Lijia W.; Dennis, James W.; Schachter, Harry

    2017-01-01

    Glycoproteins such as growth factor receptors and extracellular matrix have well-known functions in development and cancer progression, however, the glycans at sites of modification are often heterogeneous molecular populations which makes their functional characterization challenging. Here we provide evidence for a specific, discrete, well-defined glycan modification and regulation of a stage-specific cell migration in Caenorhabditis elegans. We show that a chain-terminating, putative null mutation in the gene encoding a predicted β1,4-N-acetylgalactosaminyltransferase, named ngat-1, causes a maternally rescued temperature sensitive (ts) defect in the second phase of the three phase migration pattern of the posterior, but not the anterior, hermaphrodite Distal Tip Cell (DTC). An amino-terminal partial deletion of ngat-1 causes a similar but lower penetrance ts phenotype. The existence of multiple ts alleles with distinctly different molecular DNA lesions, neither of which is likely to encode a ts protein, indicates that NGAT-1 normally prevents innate temperature sensitivity for phase 2 DTC pathfinding. Temperature shift analyses indicate that the ts period for the ngat-1 mutant defect ends by the beginning of post-embryonic development–nearly 3 full larval stages prior to the defective phase 2 migration affected by ngat-1 mutations. NGAT-1 homologs generate glycan-terminal GalNAc-β1-4GlcNAc, referred to as LacdiNAc modifications, on glycoproteins and glycolipids. We also found that the absence of the GnT1/Mgat1 activity [UDP-N-acetyl-D-glucosamine:α-3-D-mannoside β-1,2-N-acetylglucosaminyltransferase 1 (encoded by C. elegans gly-12, gly-13, and gly-14 and homologous to vertebrate GnT1/Mgat1)], causes a similar spectrum of DTC phenotypes as ngat-1 mutations–primarily affecting posterior DTC phase 2 migration and preventing manifestation of the same innate ts period as ngat-1. GnT1/Mgat1 is a medial Golgi enzyme known to modify mannose residues and initiate N-glycan branching, an essential step in the biosynthesis of hybrid, paucimannose and complex-type N-glycans. Quadruple mutant animals bearing putative null mutations in ngat-1 and the three GnT genes (gly-12, gly-13, gly-14) were not enhanced for DTC migration defects, suggesting NGAT-1 and GnT1 act in the same pathway. These findings suggest that GnTI generates an N-glycan substrate for NGAT-1 modification, which is required at restrictive temperature (25°C) to prevent, stabilize, reverse or compensate a perinatal thermo-labile process (or structure) causing late larval stage DTC phase 2 migration errors. PMID:28817611

  15. Crystal structure of product-bound complex of UDP-N-acetyl-D-mannosamine dehydrogenase from Pyrococcus horikoshii OT3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pampa, K.J., E-mail: sagarikakj@gmail.com; Lokanath, N.K.; Girish, T.U.

    Highlights: • Determined the structure of UDP-D-ManNAcADH to a resolution of 1.55 Å. • First complex structure of PhUDP-D-ManNAcADH with UDP-D-ManMAcA. • The monomeric structure consists of three distinct domains. • Cys258 acting as catalytic nucleophilic and Lys204 acts as acid/base catalyst. • Oligomeric state plays an important role for the catalytic function. - Abstract: UDP-N-acetyl-D-mannosamine dehydrogenase (UDP-D-ManNAcDH) belongs to UDP-glucose/GDP-mannose dehydrogenase family and catalyzes Uridine-diphospho-N-acetyl-D-mannosamine (UDP-D-ManNAc) to Uridine-diphospho-N-acetyl-D-mannosaminuronic acid (UDP-D-ManNAcA) through twofold oxidation of NAD{sup +}. In order to reveal the structural features of the Pyrococcus horikoshii UDP-D-ManNAcADH, we have determined the crystal structure of the product-bound enzyme bymore » X-ray diffraction to resolution of 1.55 Å. The protomer folds into three distinct domains; nucleotide binding domain (NBD), substrate binding domain (SBD) and oligomerization domain (OD, involved in the dimerization). The clear electron density of the UDP-D-ManNAcA is observed and the residues binding are identified for the first time. Crystal structures reveal a tight dimeric polymer chains with product-bound in all the structures. The catalytic residues Cys258 and Lys204 are conserved. The Cys258 acts as catalytic nucleophile and Lys204 as acid/base catalyst. The product is directly interacts with residues Arg211, Thr249, Arg244, Gly255, Arg289, Lys319 and Arg398. In addition, the structural parameters responsible for thermostability and oligomerization of the three dimensional structure are analyzed.« less

  16. Histochemical study of lymphocystis disease in skin of gilthead seabream, Sparus aurata L.

    PubMed

    Sarasquete, C; González de Canales, M L; Arellano, J; Pérez-Prieto, S; García-Rosado, E; Borrego, J J

    1998-01-01

    A battery of horseradish peroxidase-conjugated lectins (Con A, WGA and DBA), as well as conventional histochemical techniques (PAS, saponification, Alcian Blue pH 0.1, 1, 2.5, chlorhydric hydrolisis, sialidase, Bromophenol blue, Tioglycollate reduction and Ferric-ferricyanide-FeIII) were used to study the content and distribution of carbohydrates, proteins and glycoconjugate sugar residues on the skin and on the lymphocystis-infected cells of gilthead seabream, Sparus aurata. Variable amounts of glycoproteins containing sialic acid, N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, mannose and/or glucose residues were observed in the cuticle and mucous cells of the corporal skin, tails and fins. Germinative and epithelial cells of the epidermis contained glycogen, proteins, carboxylated groups, as well as glycoproteins with mannose and/or glucose and N-acetyl-D-galactosamine residues. Hyaline capsule of the mature lymphocystis-infected cells was strongly stained with PAS, Alcian Blue (pH 0.5 and 2.5) and weakly positive with Alcian Blue (pH 1). Con A reacted with the granular cytoplasm, specially around hyaline capsule, and with the basophilic intracytoplasmic inclusions developed in mature lymphocystis-infected cells of Sparus aurata skin. These sugar residues (mannose and/or glucose), as well as N-acetyl-D-glucosamine and/or sialic acid and N-acetyl-D-galactosamine were not detected in the hyaline capsule of the lymphocystis disease.

  17. [beta]-Glucan Synthesis in the Cotton Fiber (III. Identification of UDP-Glucose-Binding Subunits of [beta]-Glucan Synthases by Photoaffinity Labeling with [[beta]-32P]5[prime]-N3-UDP-Glucose.

    PubMed Central

    Li, L.; Drake, R. R.; Clement, S.; Brown, R. M.

    1993-01-01

    Using differential product entrapment and photolabeling under specifying conditions, we identifIed a 37-kD polypeptide as the best candidate among the UDP-glucose-binding polypeptides for the catalytic subunit of cotton (Gossypium hirsutum) cellulose synthase. This polypeptide is enriched by entrapment under conditions favoring [beta]-1,4-glucan synthesis, and it is magnesium dependent and sensitive to unlabeled UDP-glucose. A 52-kD polypeptide was identified as the most likely candidate for the catalytic subunit of [beta]-1,3-glucan synthase because this polypeptide is the most abundant protein in the entrapment fraction obtained under conditions favoring [beta]-1,3-glucan synthesis, is coincident with [beta]-1,3-glucan synthase activity, and is calcium dependent. The possible involvement of other polypeptides in the synthesis of [beta]-1,3-glucan is discussed. PMID:12231766

  18. A Core Facility for the Study of Neurotoxins of Biological Origin

    DTIC Science & Technology

    1992-02-15

    a somewhat different approach was used. TVL was incubated with or without N-acetyl-g- glucosamine (1 x 10-1 M) for 30 min. This mixture was then...galactosamine, N-acetyl-0-galactosamine, N-acetyl-cz ,lucosamine and N-acetyl-3- glucosamine . None of these lectins was a potent antagonist of botulinum...sialic acid, whereas TVL has affinity for both N-acetyl-,6- glucosamine and N-acetyl-a-sialic acid. However, the fact that the lectin from Datora

  19. Identification of a Direct Biosynthetic Pathway for UDP-N-Acetylgalactosamine from Glucosamine-6-Phosphate in Thermophilic Crenarchaeon Sulfolobus tokodaii.

    PubMed

    Dadashipour, Mohammad; Iwamoto, Mariko; Hossain, Mohammad Murad; Akutsu, Jun-Ichi; Zhang, Zilian; Kawarabayasi, Yutaka

    2018-05-15

    Most organisms, from Bacteria to Eukarya , synthesize UDP- N -acetylglucosamine (UDP-GlcNAc) from fructose-6-phosphate via a four-step reaction, and UDP- N -acetylgalactosamine (UDP-GalNAc) can only be synthesized from UDP-GlcNAc by UDP-GlcNAc 4-epimerase. In Archaea , the bacterial-type UDP-GlcNAc biosynthetic pathway was reported for Methanococcales. However, the complete biosynthetic pathways for UDP-GlcNAc and UDP-GalNAc present in one archaeal species are unidentified. Previous experimental analyses on enzymatic activities of the ST0452 protein, identified from the thermophilic crenarchaeon Sulfolobus tokodaii , predicted the presence of both a bacterial-type UDP-GlcNAc and an independent UDP-GalNAc biosynthetic pathway in this archaeon. In the present work, functional analyses revealed that the recombinant ST2186 protein possessed an glutamine:fructose-6-phosphate amidotransferase activity and that the recombinant ST0242 protein possessed a phosphoglucosamine-mutase activity. Along with the acetyltransferase and uridyltransferase activities of the ST0452 protein, the activities of the ST2186 and ST0242 proteins confirmed the presence of a bacterial-type UDP-GlcNAc biosynthetic pathway in S. tokodaii In contrast, the UDP-GlcNAc 4-epimerase homologue gene was not detected within the genomic data. Thus, it was expected that galactosamine-1-phosphate or galactosamine-6-phosphate (GalN-6-P) was provided by conversion of glucosamine-1-phosphate or glucosamine-6-phosphate (GlcN-6-P). A novel epimerase converting GlcN-6-P to GalN-6-P was detected in a cell extract of S. tokodaii , and the N-terminal sequence of the purified protein indicated that the novel epimerase was encoded by the ST2245 gene. Along with the ST0242 phosphogalactosamine-mutase activity, this observation confirmed the presence of a novel UDP-GalNAc biosynthetic pathway from GlcN-6-P in S. tokodaii Discovery of the novel pathway provides a new insight into the evolution of nucleotide sugar metabolic pathways. IMPORTANCE In this work, a novel protein capable of directly converting glucosamine-6-phosphate to galactosamine-6-phosphate was successfully purified from a cell extract of the thermophilic crenarchaeon Sulfolobus tokodaii Confirmation of this novel activity using the recombinant protein indicates that S. tokodaii possesses a novel UDP-GalNAc biosynthetic pathway derived from glucosamine-6-phosphate. The distributions of this and related genes indicate the presence of three different types of UDP-GalNAc biosynthetic pathways: a direct pathway using a novel enzyme and two conversion pathways from UDP-GlcNAc using known enzymes. Additionally, Crenarchaeota species lacking all three pathways were found, predicting the presence of one more unknown pathway. Identification of these novel proteins and pathways provides important insights into the evolution of nucleotide sugar biosynthesis, as well as being potentially important industrially. Copyright © 2018 American Society for Microbiology.

  20. Biosynthetic elongation of isolated teichuronic acid polymers via glucosyl- and N-acetylmannosaminuronosyltransferases from solubilized cytoplasmic membrane fragments of Micrococcus luteus.

    PubMed Central

    Hildebrandt, K M; Anderson, J S

    1990-01-01

    Cytoplasmic membrane fragments of Micrococcus luteus catalyze in vitro biosynthesis of teichuronic acid from uridine diphosphate D-glucose (UDP-glucose), uridine diphosphate N-acetyl-D-mannosaminuronic acid (UDP-ManNAcA), and uridine diphosphate N-acetyl-D-glucosamine. Membrane fragments solubilized with Thesit (dodecyl alcohol polyoxyethylene ether) can utilize UDP-glucose and UDP-ManNAcA to effect elongation of teichuronic acid isolated from native cell walls. When UDP-glucose is the only substrate supplied, the detergent-solubilized glucosyltransferase incorporates a single glucosyl residue onto each teichuronic acid acceptor. When both UDP-glucose and UDP-ManNAcA are supplied, the glucosyltransferase and the N-acetylmannosaminuronosyltransferase act cooperatively to elongate the teichuronic acid acceptor by multiple additions of the disaccharide repeat unit. As shown by polyacrylamide gel electrophoresis, low-molecular-weight fractions of teichuronic acid are converted to higher-molecular-weight polymers by the addition of as many as 17 disaccharide repeat units. Images PMID:2118507

  1. Analysis of nucleotide diphosphate sugar dehydrogenases reveals family and group-specific relationships.

    PubMed

    Freas, Nicholas; Newton, Peter; Perozich, John

    2016-01-01

    UDP-glucose dehydrogenase (UDPGDH), UDP-N-acetyl-mannosamine dehydrogenase (UDPNAMDH) and GDP-mannose dehydrogenase (GDPMDH) belong to a family of NAD (+)-linked 4-electron-transfering oxidoreductases called nucleotide diphosphate sugar dehydrogenases (NDP-SDHs). UDPGDH is an enzyme responsible for converting UDP-d-glucose to UDP-d-glucuronic acid, a product that has different roles depending on the organism in which it is found. UDPNAMDH and GDPMDH convert UDP-N-acetyl-mannosamine to UDP-N-acetyl-mannosaminuronic acid and GDP-mannose to GDP-mannuronic acid, respectively, by a similar mechanism to UDPGDH. Their products are used as essential building blocks for the exopolysaccharides found in organisms like Pseudomonas aeruginosa and Staphylococcus aureus. Few studies have investigated the relationships between these enzymes. This study reveals the relationships between the three enzymes by analysing 229 amino acid sequences. Eighteen invariant and several other highly conserved residues were identified, each serving critical roles in maintaining enzyme structure, coenzyme binding or catalytic function. Also, 10 conserved motifs that included most of the conserved residues were identified and their roles proposed. A phylogenetic tree demonstrated relationships between each group and verified group assignment. Finally, group entropy analysis identified novel conservations unique to each NDP-SDH group, including residue positions critical to NDP-sugar substrate interaction, enzyme structure and intersubunit contact. These positions may serve as targets for future research. UDP-glucose dehydrogenase (UDPGDH, EC 1.1.1.22).

  2. FGF23 AND SYNDROMES OF ABNORMAL RENAL PHOSPHATE HANDLING

    PubMed Central

    Bergwitz, Clemens; Jüppner, Harald

    2016-01-01

    Fibroblast growth factor 23 (FGF23) is part of a previously unrecognized hormonal bone-parathyroid-kidney axis, which is modulated by 1,25(OH)2-vitamin D (1,25(OH)2D), dietary and circulating phosphate and possibly PTH. FGF23 was discovered as the humoral factor in tumors that causes hypophosphatemia and osteomalacia and through the identification of a mutant form of FGF23 that leads to autosomal dominant hypophosphatemic rickets (ADHR), a rare genetic disorder. FGF23 appears to be mainly secreted by osteocytes where its expression is up-regulated by 1,25(OH)2D and probably by increased serum phosphate levels. Its synthesis and secretion is reduced through yet unknown mechanisms that involve the phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX), dentin matrix protein 1 (DMP1) and ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1). Consequently, loss-of-function mutations in these genes underlie hypophosphatemic disorders that are either X-linked or autosomal recessive. Impaired O-glycosylation of FGF23 due to the lack of UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyl-transferase 3 (GALNT3) or due to certain homozygous FGF23 mutations results in reduced secretion of intact FGF23 and leads to familial hypophosphatemic tumoral calcinosis. FGF23 acts through FGF-receptors and the coreceptor Klotho to reduce 1,25(OH)2D synthesis in the kidney and probably the synthesis of parathyroid hormone (PTH) by the parathyroid glands. It furthermore synergizes with PTH to increase renal phosphate excretion by reducing expression of the sodium-phosphate cotransporters NaPi-IIa and NaPi-IIc in the proximal tubules. Loss-of-function mutations in these two transporters lead to autosomal recessive Fanconi syndrome or to hereditary hypophosphatemic rickets with hypercalciuria, respectively. PMID:22396161

  3. The oligosaccharidic content of the glycoconjugates of the prepubertal descended and undescended testis: lectin histochemical study.

    PubMed

    Gheri, Gherardo; Sgambati, Eleonora; Thyrion, Giorgia D Zappoli; Vichi, Debora; Orlandini, Giovanni E

    2004-01-01

    The saccharidic content of the glycoconjugates has been studied in the descended the undescended testes of a 8 years old boy. For this purpose, a battery of seven HRP-conjugated lectins (SBA, DBA,PNA,WGA,UEAI, LTA and ConA) was used. D-galactose-N-acetyl-D-galactosamine and alpha-L-fucose sugar residues, which were present in the cytoplasm of the Sertoli cells of the normally positioned prepubertal testis, were not detected in the same cells of the undescended testis. The Leydig's cells of the descended testis appeared characterized by N-acetyl-D-glucosamine which was absent in the rare and atrophic Leydig's cells of the cryptorchid testis. Differences in sugar residues distribution between the descended and the undescended testis were also detected in the lamina propria of the seminiferous tubules. Peritubular myoid cells in the undescended testis only reacted with PNA, after neuraminidase digestion, thus revealing the presence of D-galactose (beta1-->3)-N-acetyl-D-galactosamine and sialic acid. In this study a complete distributional map of the sugar residues of the glycoconjugates in the descended and undescended prepubertal testis is reported.

  4. Concise chemical synthesis of a tetrasaccharide repeating unit of the O-antigen of Hafnia alvei 10457.

    PubMed

    Kumar, Rishi; Maulik, Prakas R; Misra, Anup Kumar

    2008-08-01

    Concise chemical synthesis of a tetrasaccharide repeating unit of the O-antigen of Hafnia alvei 10457 is reported. Construction of the tetrasaccharide as its 4-methoxyphenyl glycoside was achieved by condensation of less abundant monosaccharide units such as, D-galactofuranose, N-acetyl-D-galactosamine and N-acetylneuraminic acid. The synthetic strategy consists of the preparation of suitably protected required monosaccharide intermediates from the commercially available reducing sugars and high yielding glycosylation reactions.

  5. New structures and composition of cell wall teichoic acids from Nocardiopsis synnemataformans, Nocardiopsis halotolerans, Nocardiopsis composta and Nocardiopsis metallicus: a chemotaxonomic value.

    PubMed

    Tul'skaya, Elena M; Shashkov, Alexander S; Streshinskaya, Galina M; Potekhina, Natalia V; Evtushenko, Ludmila I

    2014-12-01

    The structures of the cell wall teichoic acids (TA) from some species of the genus Nocardiopsis were established by chemical and NMR spectroscopic methods. The cell walls of Nocardiopsis synnemataformans VKM Ac-2518(T) and Nocardiopsis halotolerans VKM Ac-2519(T) both contain two TA with unique structures-poly(polyol phosphate-glycosylpolyol phosphate)-belonging to the type IV TA. In both organisms, the minor TA have identical structures: poly(glycerol phosphate-N-acetyl-β-galactosaminylglycerol phosphate) with the phosphodiester bond between C-3 of glycerol and C-4 of the amino sugar. This structure is found for the first time. The major TA of N. halotolerans has a hitherto unknown structure: poly(glycerol phosphate-N-acetyl-β-galactosaminylglycerol phosphate), the N-acetyl-β-galactosamine being acetalated with pyruvic acid at positions 4 and 6. The major TA of N. synnemataformans is a poly(glycerol phosphate-N-acetyl-β-galactosaminylglycerol phosphate) with the phosphodiester bond between C-3 of glycerol and C-3 of the amino sugar. The cell walls of Nocardiopsis composta VKM Ac-2520 and N. composta VKM Ac-2521(T) contain only one TA, namely 1,3-poly(glycerol phosphate) partially substituted with N-acetyl-α-glucosamine. The cell wall of Nocardiopsis metallicus VKM Ac-2522(T) contains two TA. The major TA is 1,5-poly(ribitol phosphate), each ribitol unit carrying a pyruvate ketal group at positions 2 and 4. The structure of the minor TA is the same as that of N. composta. The results presented correlate well with the phylogenetic grouping of strains and confirm the species and strain specific features of cell wall TA in members of the genus Nocardiopsis.

  6. Association of the GALNT2 gene polymorphisms and several environmental factors with serum lipid levels in the Mulao and Han populations.

    PubMed

    Li, Qing; Yin, Rui-Xing; Yan, Ting-Ting; Miao, Lin; Cao, Xiao-Li; Hu, Xi-Jiang; Aung, Lynn Htet Htet; Wu, Dong-Feng; Wu, Jin-Zhen; Lin, Wei-Xiong

    2011-09-20

    The association of UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase 2 gene (GALNT2) single nucleotide polymorphisms (SNPs) and serum lipid profiles in the general population is not well known. The present study was undertaken to detect the association of GALNT2 polymorphisms and several environmental factors with serum lipid levels in the Guangxi Mulao and Han populations. A total of 775 subjects of Mulao nationality and 699 participants of Han nationality were randomly selected from our stratified randomized cluster samples. Genotyping of the GALNT2 rs2144300 and rs4846914 SNPs was performed by polymerase chain reaction and restriction fragment length polymorphism combined with gel electrophoresis, and then confirmed by direct sequencing. There were no significant differences in the genotypic and allelic frequencies of both SNPs between the two ethnic groups, or between the males and females. The subjects with TT genotype of rs2144300 in Mulao had lower serum triglyceride (TG) levels than the subjects with CC genotype in females (P < 0.01). The participants with CT/TT genotype of rs2144300 in Han had lower TG and apolipoprotein (Apo) B levels, and higher high-density lipoprotein cholesterol (HDL-C), ApoA1 levels and the ratio of ApoA1 to ApoB in males; and higher low-density lipoprotein cholesterol (LDL-C) and ApoB levels in females than the participants with CC genotype (P < 0.05-0.001). The individuals with GA/AA genotype of rs4846914 in Mulao had higher total cholesterol (TC) and LDL-C levels than the individuals with GG genotype in males (P < 0.05 for each). The subjects with AA genotype of rs4846914 in Han had higher LDL-C and ApoB levels, and lower HDL-C levels and the ratio of ApoA1 to ApoB than the subjects with GG genotype (P < 0.05 for each). The levels of TC in Mulao were correlated with the genotypes of rs4846914 in males (P < 0.05). The levels of ApoA1 in Han were correlated with the genotypes of both SNPs, and the levels of HDL-C and ApoB and the ratio of ApoA1 to ApoB were associated with the genotypes of rs2144300 in males (P < 0.05-0.001). The levels of LDL-C in Han were correlated with the genotypes of rs4846914 in females (P < 0.05). Serum lipid parameters were also correlated with several enviromental factors. The associations of both GALNT2 rs2144300 and rs4846914 SNPs and serum lipid levels are different in the Mulao and Han populations. These discrepancies might partly result from different GALNT2 gene-enviromental interactions.

  7. In vitro synthesis of intermediates involved in the assembly of enterobacterial common antigen (ECA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barr, K.; Wolski, S.; Kroto, J.

    1986-05-01

    ECA is a cell surface antigen found in all bacteria belonging to the family Enterobacteriaceae. The serological specificity of ECA is determined by a linear heteropolysaccharide comprised of trisaccharide repeat units; the component sugars are N-acetyl-D-glucosamine (GlcNAc), N-acetyl-D-mannosaminuronic acid (ManNAcUA), and 4-acetamido-D-fucose (Fuc4NAc). In vivo studies have suggested that GlcNAc-pyrophosphorylundecaprenol (GlcNAc-PP-lipid) is an intermediate in ECA synthesis. More recently, they have demonstrated UDP-GlcNAc:undecaprenylphosphate GlcNAc-1-phosphate transferase activity in cell envelope preparations of E. coli. Radioactivity from UDP-(/sup 3/H)Glc-NAc was incorporated into endogenous lipid acceptor, and the labeled product was characterized as GlcNAc-PP-lipid (lipid I). Transferase activity was inhibited by tunicamycin andmore » UMP, but it was unaffected by UDP. The reaction was reversible, and the synthesis of UDP-(/sup 3/H)GlcNAc from UMP and (/sup 3/H)GlcNAc-PP-lipid was also sensitive to tunicamycin. The simultaneous addition of UDP-(/sup 14/C)ManNAcUA and UDP-(/sup 3/H)GlcNAc to cell envelope preparations resulted in the synthesis of a more polar lipid (lipid II) that contained both labeled sugars in equimolar amounts. Synthesis of lipid II was dependent on prior synthesis of lipid I. Accordingly, (/sup 3/H)GlcNAc-PP-lipid that had been synthesized in vivo served as an acceptor in vitro of ManNAcUA residues from UDP-ManNAcUA. Lipid II has been tentatively identified as ManNAcUA-GlcNAc-pyrophosphorylundecaprenol.« less

  8. Glucose-1-phosphate uridylyltransferase from Erwinia amylovora: Activity, structure and substrate specificity.

    PubMed

    Benini, Stefano; Toccafondi, Mirco; Rejzek, Martin; Musiani, Francesco; Wagstaff, Ben A; Wuerges, Jochen; Cianci, Michele; Field, Robert A

    2017-11-01

    Erwinia amylovora, a Gram-negative plant pathogen, is the causal agent of Fire Blight, a contagious necrotic disease affecting plants belonging to the Rosaceae family, including apple and pear. E. amylovora is highly virulent and capable of rapid dissemination in orchards; effective control methods are still lacking. One of its most important pathogenicity factors is the exopolysaccharide amylovoran. Amylovoran is a branched polymer made by the repetition of units mainly composed of galactose, with some residues of glucose, glucuronic acid and pyruvate. E. amylovora glucose-1-phosphate uridylyltransferase (UDP-glucose pyrophosphorylase, EC 2.7.7.9) has a key role in amylovoran biosynthesis. This enzyme catalyses the production of UDP-glucose from glucose-1-phosphate and UTP, which the epimerase GalE converts into UDP-galactose, the main building block of amylovoran. We determined EaGalU kinetic parameters and substrate specificity with a range of sugar 1-phosphates. At time point 120min the enzyme catalysed conversion of the sugar 1-phosphate into the corresponding UDP-sugar reached 74% for N-acetyl-α-d-glucosamine 1-phosphate, 28% for α-d-galactose 1-phosphate, 0% for α-d-galactosamine 1-phosphate, 100% for α-d-xylose 1-phosphate, 100% for α-d-glucosamine 1-phosphate, 70% for α-d-mannose 1-phosphate, and 0% for α-d-galacturonic acid 1-phosphate. To explain our results we obtained the crystal structure of EaGalU and augmented our study by docking the different sugar 1-phosphates into EaGalU active site, providing both reliable models for substrate binding and enzyme specificity, and a rationale that explains the different activity of EaGalU on the sugar 1-phosphates used. These data demonstrate EaGalU potential as a biocatalyst for biotechnological purposes, as an alternative to the enzyme from Escherichia coli, besides playing an important role in E. amylovora pathogenicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. High Resolution Structures of the Human ABO(H) Blood Group Enzymes in Complex with Donor Analogs Reveal That the Enzymes Utilize Multiple Donor Conformations to Bind Substrates in a Stepwise Manner*

    PubMed Central

    Gagnon, Susannah M. L.; Meloncelli, Peter J.; Zheng, Ruixiang B.; Haji-Ghassemi, Omid; Johal, Asha R.; Borisova, Svetlana N.; Lowary, Todd L.; Evans, Stephen V.

    2015-01-01

    Homologous glycosyltransferases α-(1→3)-N-acetylgalactosaminyltransferase (GTA) and α-(1→3)-galactosyltransferase (GTB) catalyze the final step in ABO(H) blood group A and B antigen synthesis through sugar transfer from activated donor to the H antigen acceptor. These enzymes have a GT-A fold type with characteristic mobile polypeptide loops that cover the active site upon substrate binding and, despite intense investigation, many aspects of substrate specificity and catalysis remain unclear. The structures of GTA, GTB, and their chimeras have been determined to between 1.55 and 1.39 Å resolution in complex with natural donors UDP-Gal, UDP-Glc and, in an attempt to overcome one of the common problems associated with three-dimensional studies, the non-hydrolyzable donor analog UDP-phosphono-galactose (UDP-C-Gal). Whereas the uracil moieties of the donors are observed to maintain a constant location, the sugar moieties lie in four distinct conformations, varying from extended to the “tucked under” conformation associated with catalysis, each stabilized by different hydrogen bonding partners with the enzyme. Further, several structures show clear evidence that the donor sugar is disordered over two of the observed conformations and so provide evidence for stepwise insertion into the active site. Although the natural donors can both assume the tucked under conformation in complex with enzyme, UDP-C-Gal cannot. Whereas UDP-C-Gal was designed to be “isosteric” with natural donor, the small differences in structure imposed by changing the epimeric oxygen atom to carbon appear to render the enzyme incapable of binding the analog in the active conformation and so preclude its use as a substrate mimic in GTA and GTB. PMID:26374898

  10. Structural and Functional Studies of WlbA: A Dehydrogenase Involved in the Biosynthesis of 2,3-Diacetamido-2,3-dideoxy-d-mannuronic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thoden, James B.; Holden, Hazel M.

    2010-09-08

    2,3-Diacetamido-2,3-dideoxy-D-mannuronic acid (ManNAc3NAcA) is an unusual dideoxy sugar first identified nearly 30 years ago in the lipopolysaccharide of Pseudomonas aeruginosa O:3a,d. It has since been observed in other organisms, including Bordetella pertussis, the causative agent of whooping cough. Five enzymes are required for the biosynthesis of UDP-ManNAc3NAcA starting from UDP-N-acetyl-D-glucosamine. Here we describe a structural study of WlbA, the NAD-dependent dehydrogenase that catalyzes the second step in the pathway, namely, the oxidation of the C-3{prime} hydroxyl group on the UDP-linked sugar to a keto moiety and the reduction of NAD{sup +} to NADH. This enzyme has been shown to usemore » {alpha}-ketoglutarate as an oxidant to regenerate the oxidized dinucleotide. For this investigation, three different crystal structures were determined: the enzyme with bound NAD(H), the enzyme in a complex with NAD(H) and {alpha}-ketoglutarate, and the enzyme in a complex with NAD(H) and its substrate (UDP-N-acetyl-D-glucosaminuronic acid). The tetrameric enzyme assumes an unusual quaternary structure with the dinucleotides positioned quite closely to one another. Both {alpha}-ketoglutarate and the UDP-linked sugar bind in the WlbA active site with their carbon atoms (C-2 and C-3{prime}, respectively) abutting the re face of the cofactor. They are positioned {approx}3 {angstrom} from the nicotinamide C-4. The UDP-linked sugar substrate adopts a highly unusual curved conformation when bound in the WlbA active site cleft. Lys 101 and His 185 most likely play key roles in catalysis.« less

  11. Polymorphism in the GALNT1 Gene and Epithelial Ovarian Cancer in Non-Hispanic White Women: The Ovarian Cancer Association Consortium

    PubMed Central

    Phelan, Catherine M.; Tsai, Ya-Yu; Goode, Ellen L.; Vierkant, Robert A.; Fridley, Brooke L.; Beesley, Jonathan; Chen, Xiao Qing; Webb, Penelope M.; Chanock, Stephen; Cramer, Daniel W.; Moysich, Kirsten; Edwards, Robert P.; Chang-Claude, Jenny; Garcia-Closas, Montserrat; Yang, Hannah; Wang-Gohrke, Shan; Hein, Rebecca; Green, Adele C.; Lissowska, Jolanta; Carney, Michael E.; Lurie, Galina; Wilkens, Lynne R.; Ness, Roberta B.; Pearce, Celeste Leigh; Wu, Anna H.; Van Den Berg, David J.; Stram, Daniel O.; Terry, Kathryn L.; Whiteman, David C.; Whittemore, Alice S.; DiCioccio, Richard A.; McGuire, Valerie; Doherty, Jennifer A.; Rossing, Mary Anne; Anton-Culver, Hoda; Ziogas, Argyrios; Hogdall, Claus; Hogdall, Estrid; Kjaer, Susanne Krüger; Blaakaer, Jan; Quaye, Lydia; Ramus, Susan J.; Jacobs, Ian; Song, Honglin; Pharoah, Paul D.P.; Iversen, Edwin S.; Marks, Jeffrey R.; Pike, Malcolm C.; Gayther, Simon A.; Cunningham, Julie M.; Goodman, Marc T.; Schildkraut, Joellen M.; Chenevix-Trench, Georgia; Berchuck, Andrew; Sellers, Thomas A.

    2010-01-01

    Aberrant glycosylation is a well-described hallmark of cancer. In a previous ovarian cancer case control study that examined polymorphisms in 26 glycosylation-associated genes, we found strong statistical evidence (P = 0.00017) that women who inherited two copies of a single-nucleotide polymorphism in the UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferase, GALNT1, had decreased ovarian cancer risk. The current study attempted to replicate this observation. The GALNT1 single-nucleotide polymorphism rs17647532 was genotyped in 6,965 cases and 8,377 controls from 14 studies forming the Ovarian Cancer Association Consortium. The fixed effects estimate per rs17647532 allele was null (odds ratio, 0.99; 95% confidence interval, 0.92–1.07). When a recessive model was fit, the results were unchanged. Test for hetero geneity of the odds ratios revealed consistency across the 14 replication sites but significant differences compared with the original study population (P = 0.03). This study underscores the need for replication of putative findings in genetic association studies. PMID:20142253

  12. Molecular Structure of WlbB, a Bacterial N-Acetyltransferase Involved in the Biosynthesis of 2,3-Diacetamido-2,3-dideoxy-d-mannuronic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thoden, James B.; Holden, Hazel M.

    2010-09-08

    The pathogenic bacteria Pseudomonas aeruginosa and Bordetella pertussis contain in their outer membranes the rare sugar 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid. Five enzymes are required for the biosynthesis of this sugar starting from UDP-N-acetylglucosamine. One of these, referred to as WlbB, is an N-acetyltransferase that converts UDP-2-acetamido-3-amino-2,3-dideoxy-D-glucuronic acid (UDP-GlcNAc3NA) to UDP-2,3-diacetamido-2,3-dideoxy-D-glucuronic acid (UDP-GlcNAc3NAcA). Here we report the three-dimensional structure of WlbB from Bordetella petrii. For this analysis, two ternary structures were determined to 1.43 {angstrom} resolution: one in which the protein was complexed with acetyl-CoA and UDP and the second in which the protein contained bound CoA and UDP-GlcNAc3NA. WlbB adopts a trimericmore » quaternary structure and belongs to the L{beta}H superfamily of N-acyltransferases. Each subunit contains 27 {beta}-strands, 23 of which form the canonical left-handed {beta}-helix. There are only two hydrogen bonds that occur between the protein and the GlcNAc3NA moiety, one between O{sup {delta}1} of Asn 84 and the sugar C-3{prime} amino group and the second between the backbone amide group of Arg 94 and the sugar C-5{prime} carboxylate. The sugar C-3{prime} amino group is ideally positioned in the active site to attack the si face of acetyl-CoA. Given that there are no protein side chains that can function as general bases within the GlcNAc3NA binding pocket, a reaction mechanism is proposed for WlbB whereby the sulfur of CoA ultimately functions as the proton acceptor required for catalysis.« less

  13. The participation of ribosomes in protein glycosylation. Interaction of the ribosome-UDP-N-acetyl-glucosamine complex with dolichol phosphate.

    PubMed

    Paszkiewicz-Gadek, A; Porowska, H; Gałasiński, W

    1992-01-01

    UDP-N-acetylglucosamine can be bound by pure ribosomes. The part of N-acetylglucosamine-1-P can be transferred from the complex ribosome-UDP-N-acetylglucosamine onto dolichol phosphate. Evidence is presented that N-acetylglucosamine bound to dolichol phosphate can be transferred to the nascent peptide synthesized on the ribosome.

  14. Lectin activity in mycelial extracts of Fusarium species.

    PubMed

    Bhari, Ranjeeta; Kaur, Bhawanpreet; Singh, Ram S

    2016-01-01

    Lectins are non-immunogenic carbohydrate-recognizing proteins that bind to glycoproteins, glycolipids, or polysaccharides with high affinity and exhibit remarkable ability to agglutinate erythrocytes and other cells. In the present study, ten Fusarium species previously not explored for lectins were screened for the presence of lectin activity. Mycelial extracts of F. fujikuroi, F. beomiformii, F. begoniae, F. nisikadoi, F. anthophilum, F. incarnatum, and F. tabacinum manifested agglutination of rabbit erythrocytes. Neuraminidase treatment of rabbit erythrocytes increased lectin titers of F. nisikadoi and F. tabacinum extracts, whereas the protease treatment resulted in a significant decline in agglutination by most of the lectins. Results of hapten inhibition studies demonstrated unique carbohydrate specificity of Fusarium lectins toward O-acetyl sialic acids. Activity of the majority of Fusarium lectins exhibited binding affinity to d-ribose, l-fucose, d-glucose, l-arabinose, d-mannitol, d-galactosamine hydrochloride, d-galacturonic acid, N-acetyl-d-galactosamine, N-acetyl-neuraminic acid, 2-deoxy-d-ribose, fetuin, asialofetuin, and bovine submaxillary mucin. Melibiose and N-glycolyl neuraminic acid did not inhibit the activity of any of the Fusarium lectins. Mycelial extracts of F. begoniae, F. nisikadoi, F. anthophilum, and F. incarnatum interacted with most of the carbohydrates tested. F. fujikuroi and F. anthophilum extracts displayed strong interaction with starch. The expression of lectin activity as a function of culture age was investigated. Most species displayed lectin activity on the 7th day of cultivation, and it varied with progressing of culture age. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  15. Association of the GALNT2 gene polymorphisms and several environmental factors with serum lipid levels in the Mulao and Han populations

    PubMed Central

    2011-01-01

    Background The association of UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase 2 gene (GALNT2) single nucleotide polymorphisms (SNPs) and serum lipid profiles in the general population is not well known. The present study was undertaken to detect the association of GALNT2 polymorphisms and several environmental factors with serum lipid levels in the Guangxi Mulao and Han populations. Method A total of 775 subjects of Mulao nationality and 699 participants of Han nationality were randomly selected from our stratified randomized cluster samples. Genotyping of the GALNT2 rs2144300 and rs4846914 SNPs was performed by polymerase chain reaction and restriction fragment length polymorphism combined with gel electrophoresis, and then confirmed by direct sequencing. Results There were no significant differences in the genotypic and allelic frequencies of both SNPs between the two ethnic groups, or between the males and females. The subjects with TT genotype of rs2144300 in Mulao had lower serum triglyceride (TG) levels than the subjects with CC genotype in females (P < 0.01). The participants with CT/TT genotype of rs2144300 in Han had lower TG and apolipoprotein (Apo) B levels, and higher high-density lipoprotein cholesterol (HDL-C), ApoA1 levels and the ratio of ApoA1 to ApoB in males; and higher low-density lipoprotein cholesterol (LDL-C) and ApoB levels in females than the participants with CC genotype (P < 0.05-0.001). The individuals with GA/AA genotype of rs4846914 in Mulao had higher total cholesterol (TC) and LDL-C levels than the individuals with GG genotype in males (P < 0.05 for each). The subjects with AA genotype of rs4846914 in Han had higher LDL-C and ApoB levels, and lower HDL-C levels and the ratio of ApoA1 to ApoB than the subjects with GG genotype (P < 0.05 for each). The levels of TC in Mulao were correlated with the genotypes of rs4846914 in males (P < 0.05). The levels of ApoA1 in Han were correlated with the genotypes of both SNPs, and the levels of HDL-C and ApoB and the ratio of ApoA1 to ApoB were associated with the genotypes of rs2144300 in males (P < 0.05-0.001). The levels of LDL-C in Han were correlated with the genotypes of rs4846914 in females (P < 0.05). Serum lipid parameters were also correlated with several enviromental factors. Conclusions The associations of both GALNT2 rs2144300 and rs4846914 SNPs and serum lipid levels are different in the Mulao and Han populations. These discrepancies might partly result from different GALNT2 gene-enviromental interactions. PMID:21933382

  16. Applications of site-specific labeling to study HAMLET, a tumoricidal complex of α-lactalbumin and oleic acid.

    PubMed

    Mercer, Natalia; Ramakrishnan, Boopathy; Boeggeman, Elizabeth; Qasba, Pradman K

    2011-01-01

    Alpha-lactalbumin (α-LA) is a calcium-bound mammary gland-specific protein that is found in milk. This protein is a modulator of β1,4-galactosyltransferase enzyme, changing its acceptor specificity from N-acetyl-glucosamine to glucose, to produce lactose, milk's main carbohydrate. When calcium is removed from α-LA, it adopts a molten globule form, and this form, interestingly, when complexed with oleic acid (OA) acquires tumoricidal activity. Such a complex made from human α-LA (hLA) is known as HAMLET (Human A-lactalbumin Made Lethal to Tumor cells), and its tumoricidal activity has been well established. In the present work, we have used site-specific labeling, a technique previously developed in our laboratory, to label HAMLET with biotin, or a fluoroprobe for confocal microscopy studies. In addition to full length hLA, the α-domain of hLA (αD-hLA) alone is also included in the present study. We have engineered these proteins with a 17-amino acid C-terminal extension (hLA-ext and αD-hLA-ext). A single Thr residue in this extension is glycosylated with 2-acetonyl-galactose (C2-keto-galactose) using polypeptide-α-N-acetylgalactosaminyltransferase II (ppGalNAc-T2) and further conjugated with aminooxy-derivatives of fluoroprobe or biotin molecules. We found that the molten globule form of hLA and αD-hLA proteins, with or without C-terminal extension, and with and without the conjugated fluoroprobe or biotin molecule, readily form a complex with OA and exhibits tumoricidal activity similar to HAMLET made with full-length hLA protein. The confocal microscopy studies with fluoroprobe-labeled samples show that these proteins are internalized into the cells and found even in the nucleus only when they are complexed with OA. The HAMLET conjugated with a single biotin molecule will be a useful tool to identify the cellular components that are involved with it in the tumoricidal activity.

  17. Immobilization of sugars in supermacroporous cryogels for the purification of lectins by affinity chromatography.

    PubMed

    Gonçalves, Gabriel Ramos Ferreira; Gandolfi, Olga Reinert Ramos; Santos, Leandro Soares; Bonomo, Renata Cristina Ferreira; Veloso, Cristiane Martins; Veríssimo, Lizzy Ayra Alcântara; Fontan, Rafael da Costa Ilhéu

    2017-11-15

    Lectins are glycoproteins that bind to carbohydrates or glycoconjugates by specific interactions. The specificity of lectins to various carbohydrates is a determinant factor in the choice of ligand for the chromatographic matrix when using chromatography as a lectin purification technique. In this work, the immobilization of three different aminated carbohydrates on the surface of macroporous polymeric cryogels was evaluated. Carbohydrates were immobilized on cryogel surfaces via the glutaraldehyde method to create spacer arms, reducing steric hindrance. The immobilized N-acetyl-d-glucosamine and N-acetyl-d-mannosamine concentrations contained approximately 130mg of carbohydrate/g dehydrated cryogel, while the N-acetyl-d-galactosamine contained 105mg of carbohydrate/g dehydrated cryogel. Scanning electron microscopy showed that the physical structure and porosity of the chromatographic columns were not affected by the immobilization process, maintaining an elevated hydration capacity and the macroporous structure of the cryogels. Adsorption of concanavalin A on cryogels functionalized with N-acetyl-d-glucosamine (cryo-d-GlcNAc) was tested, as well as its reuse capability. After 5 cycles of use, cryo-d-GlcNAc was shown to be stable, with an adsorptive capacity of around 50mg/g. Carbohydrate immobilization in polyacrylamide cryogels was satisfactory, with promise for applications in lectin purification processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Functional characterization of Gne (UDP-N-acetylglucosamine-4-epimerase), Wzz (chain length determinant), and Wzy (O-antigen polymerase) of Yersinia enterocolitica serotype O:8.

    PubMed

    Bengoechea, José Antonio; Pinta, Elise; Salminen, Tiina; Oertelt, Clemens; Holst, Otto; Radziejewska-Lebrecht, Joanna; Piotrowska-Seget, Zofia; Venho, Reija; Skurnik, Mikael

    2002-08-01

    The lipopolysaccharide (LPS) O-antigen of Yersinia enterocolitica serotype O:8 is formed by branched pentasaccharide repeat units that contain N-acetylgalactosamine (GalNAc), L-fucose (Fuc), D-galactose (Gal), D-mannose (Man), and 6-deoxy-D-gulose (6d-Gul). Its biosynthesis requires at least enzymes for the synthesis of each nucleoside diphosphate-activated sugar precursor; five glycosyltransferases, one for each sugar residue; a flippase (Wzx); and an O-antigen polymerase (Wzy). As this LPS shows a characteristic preferred O-antigen chain length, the presence of a chain length determinant protein (Wzz) is also expected. By targeted mutagenesis, we identify within the O-antigen gene cluster the genes encoding Wzy and Wzz. We also present genetic and biochemical evidence showing that the gene previously called galE encodes a UDP-N-acetylglucosamine-4-epimerase (EC 5.1.3.7) required for the biosynthesis of the first sugar of the O-unit. Accordingly, the gene was renamed gne. Gne also has some UDP-glucose-4-epimerase (EC 5.1.3.2) activity, as it restores the core production of an Escherichia coli K-12 galE mutant. The three-dimensional structure of Gne was modeled based on the crystal structure of E. coli GalE. Detailed structural comparison of the active sites of Gne and GalE revealed that additional space is required to accommodate the N-acetyl group in Gne and that this space is occupied by two Tyr residues in GalE whereas the corresponding residues present in Gne are Leu136 and Cys297. The Gne Leu136Tyr and Cys297Tyr variants completely lost the UDP-N-acetylglucosamine-4-epimerase activity while retaining the ability to complement the LPS phenotype of the E. coli galE mutant. Finally, we report that Yersinia Wzx has relaxed specificity for the translocated oligosaccharide, contrary to Wzy, which is strictly specific for the O-unit to be polymerized.

  19. In vitro Studies of Sandfly Fever Viruses and Their Potential Significance for Vaccine Development.

    DTIC Science & Technology

    1980-02-01

    more 14C-canavanine (DL-guanido-1LC-canavanine hydrochloride , Research Products International, Elk Grove, Illinois) than other viral proteins (data not...several laboratories have suggested that N-acetyl- glucosamine , glucose, and mannose residues are preassembled on dolichol phosphate (an isoprenoid...described below. Unlike the 0-glycosidic linkage between galactosamine and serine, the N-glycosidic linkage between N-acetyl glucosamine and asparagine

  20. Structure and Active Stie Residues of Pg1D, an N-Acetyltransferase from the Bacillosamine Synthetic Pathway Required for N-Glycan Synthesis in Campylobacter jejuni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rangarajan,E.; Ruane, K.; Sulea, T.

    2008-01-01

    Campylobacter jejuni is highly unusual among bacteria in forming N-linked glycoproteins. The heptasaccharide produced by its pgl system is attached to protein Asn through its terminal 2, 4-diacetamido-2, 4,6-trideoxy-d-Glc (QuiNAc4NAc or N, N'-diacetylbacillosamine) moiety. The crucial, last part of this sugar's synthesis is the acetylation of UDP-2-acetamido-4-amino-2, 4,6-trideoxy-d-Glc by the enzyme PglD, with acetyl-CoA as a cosubstrate. We have determined the crystal structures of PglD in CoA-bound and unbound forms, refined to 1.8 and 1.75 Angstroms resolution, respectively. PglD is a trimer of subunits each comprised of two domains, an N-terminal {alpha}/{beta}-domain and a C-terminal left-handed {beta}-helix. Few structural differencesmore » accompany CoA binding, except in the C-terminal region following the {beta}-helix (residues 189-195), which adopts an extended structure in the unbound form and folds to extend the {beta}-helix upon binding CoA. Computational molecular docking suggests a different mode of nucleotide-sugar binding with respect to the acetyl-CoA donor, with the molecules arranged in an 'L-shape', compared with the 'in-line' orientation in related enzymes. Modeling indicates that the oxyanion intermediate would be stabilized by the NH group of Gly143', with His125' the most likely residue to function as a general base, removing H+ from the amino group prior to nucleophilic attack at the carbonyl carbon of acetyl-CoA. Site-specific mutations of active site residues confirmed the importance of His125', Glu124', and Asn118. We conclude that Asn118 exerts its function by stabilizing the intricate hydrogen bonding network within the active site and that Glu124' may function to increase the pKa of the putative general base, His125'.« less

  1. Expression of the functional recombinant human glycosyltransferase GalNAcT2 in Escherichia coli.

    PubMed

    Lauber, Jennifer; Handrick, René; Leptihn, Sebastian; Dürre, Peter; Gaisser, Sabine

    2015-01-13

    Recombinant protein-based therapeutics have become indispensable for the treatment of many diseases. They are produced using well-established expression systems based on bacteria, yeast, insect and mammalian cells. The majority of therapeutic proteins are glycoproteins and therefore the post-translational attachment of sugar residues is required. The development of an engineered Escherichia coli-based expression system for production of human glycoproteins could potentially lead to increased yields, as well as significant decreases in processing time and costs. This work describes the expression of functional human-derived glycosyltransferase UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 2 (GalNAcT2) in a recombinant E. coli strain. For expression, a codon-optimised gene encoding amino acids 52-571 of GalNAcT2 lacking the transmembrane N-terminal domain was inserted into a pET-23 derived vector encoding a polyhistidine-tag which was translationally fused to the N-terminus of the glycosyltransferase (HisDapGalNAcT2). The glycosyltransferase was produced in E. coli using a recently published expression system. Soluble HisDapGalNAcT2 produced in SHuffle® T7 host cells was purified using nickel affinity chromatography and was subsequently analysed by size exclusion chromatography coupled to multi-angle light scattering (SEC-MALS) and circular dichroism spectroscopy to determine molecular mass, folding state and thermal transitions of the protein. The activity of purified HisDapGalNAcT2 was monitored using a colorimetric assay based on the release of phosphate during transfer of glycosyl residues to a model acceptor peptide or, alternatively, to the granulocyte-colony stimulating growth factor (G-CSF). Modifications were assessed by Matrix Assisted Laser Desorption Ionization Time-of-flight Mass Spectrometry analysis (MALDI-TOF-MS) and Electrospray Mass Spectrometry analysis (ESI-MS). The results clearly indicate the glycosylation of the acceptor peptide and of G-CSF. In the present work, we isolated a human-derived glycosyltransferase by expressing soluble HisDapGalNAcT2 in E. coli. The functional activity of the enzyme was shown in vitro. Further investigations are needed to assess the potential of in vivo glycosylation in E. coli.

  2. MurD ligase from E. coli: Tetrahedral intermediate formation study by hybrid quantum mechanical/molecular mechanical replica path method.

    PubMed

    Perdih, Andrej; Hodoscek, Milan; Solmajer, Tom

    2009-02-15

    MurD (UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase), a three-domain bacterial protein, catalyses a highly specific incorporation of D-glutamate to the cytoplasmic intermediate UDP-N-acetyl-muramoyl-L-alanine (UMA) utilizing ATP hydrolysis to ADP and P(i). This reaction is part of a biosynthetic path yielding bacterial peptidoglycan. On the basis of structural studies of MurD complexes, a stepwise catalytic mechanism was proposed that commences with a formation of the acyl-phosphate intermediate, followed by a nucleophilic attack of D-glutamate that, through the formation of a tetrahedral reaction intermediate and subsequent phosphate dissociation, affords the final product, UDP-N-acetyl-muramoyl-L-alanine-D-glutamate (UMAG). A hybrid quantum mechanical/molecular mechanical (QM/MM) molecular modeling approach was utilized, combining the B3LYP QM level of theory with empirical force field simulations to evaluate three possible reaction pathways leading to tetrahedral intermediate formation. Geometries of the starting structures based on crystallographic experimental data and tetrahedral intermediates were carefully examined together with a role of crucial amino acids and water molecules. The replica path method was used to generate the reaction pathways between the starting structures and the corresponding tetrahedral reaction intermediates, offering direct comparisons with a sequential kinetic mechanism and the available structural data for this enzyme. The acquired knowledge represents new and valuable information to assist in the ongoing efforts leading toward novel inhibitors of MurD as potential antibacterial drugs. (c) 2008 Wiley-Liss, Inc.

  3. [The structure of the glycerophosphate-containing O-specific polysaccharide from Escherichia coli 0130].

    PubMed

    Perepelov, A V; Lu, B; Sebchenkova, S N; Shevelev, S D; Wang, V; Shashkov, A S; Feng, L; Wang, L; Knirel', Iu A

    2007-01-01

    A phosphorylated O-specific polysaccharide was obtained by mild acidic degradation of the lipopolysaccharide from the intestinal bacterium Escherichia coli 0130 and characterized by the methods of chemical analysis, including dephosphorylation, and 1H and 13C NMR spectroscopy. The polysaccharide was shown to be composed of branched tetrasaccharide repeating units containing two N-acetyl-D-galactosamine residues, D-galactose, D-glucose, and glycerophosphate residues (one of each). The polysaccharide has the following structure, which is unique among the known bacterial polysaccharides.

  4. Polypeptide N-acetylgalactosaminyltransferase-6 expression in gastric cancer

    PubMed Central

    Guo, Yan; Shi, Jingjing; Zhang, Jun; Li, Haixin; Liu, Ben; Guo, Hua

    2017-01-01

    Gastric cancer (GC) is one of the leading causes of cancer-related deaths, with limited improvement in its clinical outcome worldwide. Aberrant mucin-type O-glycosylation is a critical event widespread in the development of GC. Polypeptide N-acetylgalactosaminyltransferases (GALNTs) regulate the initial step and determine the sites of mucin-type O-glycoprotein bio-synthesis. GALNT6 has considerable potential as a biomarker in various cancers. The roles of GALNT6 in GC were analyzed, and the results showed that GALNT6 expression markedly increased in GC tissues compared with those in adjacent gastric tissues. High intratumoral GALNT6 density was associated with the clinicopathological parameters of TNM stage and distant metastasis. GALNT6 was identified as an independent prognosticator for the poor prognosis of GC patients. Moreover, the high expression level of GALNT6 was significantly associated with the low expression levels of E-cadherin and β-catenin and the high expression levels of MMP9. These findings indicated that GALNT6 could provide new insights into the characterization of GC as well as contribute to the development of an efficient prognostic indicator and novel therapeutic modalities for GC. PMID:28744137

  5. Cloning and expression of a novel UDP-GlcNAc:alpha-D-mannoside beta1,2-N-acetylglucosaminyltransferase homologous to UDP-GlcNAc:alpha-3-D-mannoside beta1,2-N-acetylglucosaminyltransferase I.

    PubMed Central

    Zhang, Wenli; Betel, Doron; Schachter, Harry

    2002-01-01

    A TBLASTN search with human UDP-GlcNAc:alpha-3-d-mannoside beta-1,2-N-acetylglucosaminyltransferase I (GnT I; EC 2.4.1.101) as a probe identified human and mouse Unigenes encoding a protein similar to human GnT I (34% identity over 340 amino acids). The recombinant protein converted Man(alpha1-6)[Man(alpha1-3)]Man(beta1-)O-octyl to Man(alpha1-6)[GlcNAc(beta1-2)Man(alpha1-3)]Man(beta1-)O-octyl, the reaction catalysed by GnT I. The enzyme also added GlcNAc to Man(alpha1-6)[GlcNAc(beta1-2)Man(alpha1-3)]Man(beta1-)O-octyl (the substrate for beta-1,2-N-acetylglucosaminyltransferase II), Man(alpha1-)O-benzyl [with K(m) values of approximately 0.3 and >30 mM for UDP-GlcNAc and Man(alpha1-)O-benzyl respectively] and the glycopeptide CYA[Man(alpha1-)O-T]AV (K(m) approximately 12 mM). The product formed with Man(alpha1-)O-benzyl was identified as GlcNAc(beta1-2)Man(alpha1-)O-benzyl by proton NMR spectroscopy. The enzyme was named UDP-GlcNAc:alpha-d-mannoside beta-1,2-N-acetylglucosaminyltransferase I.2 (GnT I.2). The human gene mapped to chromosome 1. Northern-blot analysis showed a 3.3 kb message with a wide tissue distribution. The cDNA has a 1980 bp open reading frame encoding a 660 amino acid protein with a type-2 domain structure typical of glycosyltransferases. Man(beta1-)O-octyl, Man(beta1-)O-p-nitrophenyl and GlcNAc(beta1-2)Man(alpha1-6)[GlcNAc(beta1-2)Man(alpha1-3)]Man(beta1-4)GlcNAc(beta1-4)GlcNAc(beta1-)O-Asn were not acceptors, indicating that GnT I.2 is specific for alpha-linked terminal Man and does not have N-acetylglucosaminyltransferase III, IV, V, VII or VIII activities. CYA[Man(alpha1-)O-T]AV was between three and seven times more effective as an acceptor than the other substrates, suggesting that GnT I.2 may be responsible for the synthesis of the GlcNAc(beta1-2)Man(alpha1-)O-Ser/Thr moiety on alpha-dystroglycan and other O-mannosylated proteins. PMID:11742540

  6. Molecular dissection of placental malaria protein VAR2CSA interaction with a chemo-enzymatically synthesized chondroitin sulfate library.

    PubMed

    Sugiura, Nobuo; Clausen, Thomas Mandel; Shioiri, Tatsumasa; Gustavsson, Tobias; Watanabe, Hideto; Salanti, Ali

    2016-12-01

    Placental malaria, a serious infection caused by the parasite Plasmodium falciparum, is characterized by the selective accumulation of infected erythrocytes (IEs) in the placentas of the pregnant women. Placental adherence is mediated by the malarial VAR2CSA protein, which interacts with chondroitin sulfate (CS) proteoglycans present in the placental tissue. CS is a linear acidic polysaccharide composed of repeating disaccharide units of D-glucuronic acid and N-acetyl-D-galactosamine that are modified by sulfate groups at different positions. Previous reports have shown that placental-adhering IEs were associated with an unusually low sulfated form of chondroitin sulfate A (CSA) and that a partially sulfated dodecasaccharide is the minimal motif for the interaction. However, the fine molecular structure of this CS chain remains unclear. In this study, we have characterized the CS chain that interacts with a recombinant minimal CS-binding region of VAR2CSA (rVAR2) using a CS library of various defined lengths and sulfate compositions. The CS library was chemo-enzymatically synthesized with bacterial chondroitin polymerase and recombinant CS sulfotransferases. We found that C-4 sulfation of the N-acetyl-D-galactosamine residue is critical for supporting rVAR2 binding, whereas no other sulfate modifications showed effects. Interaction of rVAR2 with CS is highly correlated with the degree of C-4 sulfation and CS chain length. We confirmed that the minimum structure binding to rVAR2 is a tri-sulfated CSA dodecasaccharide, and found that a highly sulfated CSA eicosasaccharide is a more potent inhibitor of rVAR2 binding than the dodecasaccharides. These results suggest that CSA derivatives may potentially serve as targets in therapeutic strategies against placental malaria.

  7. Structural analysis of PseH, the Campylobacter jejuni N-acetyltransferase involved in bacterial O-linked glycosylation.

    PubMed

    Song, Wan Seok; Nam, Mi Sun; Namgung, Byeol; Yoon, Sung-il

    2015-03-20

    Campylobacter jejuni is a bacterium that uses flagella for motility and causes worldwide acute gastroenteritis in humans. The C. jejuni N-acetyltransferase PseH (cjPseH) is responsible for the third step in flagellin O-linked glycosylation and plays a key role in flagellar formation and motility. cjPseH transfers an acetyl group from an acetyl donor, acetyl coenzyme A (AcCoA), to the amino group of UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine to produce UDP-2,4-diacetamido-2,4,6-trideoxy-β-L-altropyranose. To elucidate the catalytic mechanism of cjPseH, crystal structures of cjPseH alone and in complex with AcCoA were determined at 1.95 Å resolution. cjPseH folds into a single-domain structure of a central β-sheet decorated by four α-helices with two continuously connected grooves. A deep groove (groove-A) accommodates the AcCoA molecule. Interestingly, the acetyl end of AcCoA points toward an open space in a neighboring shallow groove (groove-S), which is occupied by extra electron density that potentially serves as a pseudosubstrate, suggesting that the groove-S may provide a substrate-binding site. Structure-based comparative analysis suggests that cjPseH utilizes a unique catalytic mechanism of acetylation that has not been observed in other glycosylation-associated acetyltransferases. Thus, our studies on cjPseH will provide valuable information for the design of new antibiotics to treat C. jejuni-induced gastroenteritis. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Crystal structure of Helicobacter pylori pseudaminic acid biosynthesis N-acetyltransferase PseH: implications for substrate specificity and catalysis.

    PubMed

    Ud-Din, Abu I; Liu, Yu C; Roujeinikova, Anna

    2015-01-01

    Helicobacter pylori infection is the common cause of gastroduodenal diseases linked to a higher risk of the development of gastric cancer. Persistent infection requires functional flagella that are heavily glycosylated with 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic acid (pseudaminic acid). Pseudaminic acid biosynthesis protein H (PseH) catalyzes the third step in its biosynthetic pathway, producing UDP-2,4-diacetamido-2,4,6-trideoxy-β-L-altropyranose. It belongs to the GCN5-related N-acetyltransferase (GNAT) superfamily. The crystal structure of the PseH complex with cofactor acetyl-CoA has been determined at 2.3 Å resolution. This is the first crystal structure of the GNAT superfamily member with specificity to UDP-4-amino-4,6-dideoxy-β-L-AltNAc. PseH is a homodimer in the crystal, each subunit of which has a central twisted β-sheet flanked by five α-helices and is structurally homologous to those of other GNAT superfamily enzymes. Interestingly, PseH is more similar to the GNAT enzymes that utilize amino acid sulfamoyl adenosine or protein as a substrate than a different GNAT-superfamily bacterial nucleotide-sugar N-acetyltransferase of the known structure, WecD. Analysis of the complex of PseH with acetyl-CoA revealed the location of the cofactor-binding site between the splayed strands β4 and β5. The structure of PseH, together with the conservation of the active-site general acid among GNAT superfamily transferases, are consistent with a common catalytic mechanism for this enzyme that involves direct acetyl transfer from AcCoA without an acetylated enzyme intermediate. Based on structural homology with microcin C7 acetyltransferase MccE and WecD, the Michaelis complex can be modeled. The model suggests that the nucleotide- and 4-amino-4,6-dideoxy-β-L-AltNAc-binding pockets form extensive interactions with the substrate and are thus the most significant determinants of substrate specificity. A hydrophobic pocket accommodating the 6'-methyl group of the altrose dictates preference to the methyl over the hydroxyl group and thus to contributes to substrate specificity of PseH.

  9. Design and synthesis of unnatural heparosan and chondroitin building blocks

    PubMed Central

    Bera, Smritilekha; Linhardt, Robert J.

    2011-01-01

    Triazole linked heparosan and chondroitin disaccharide and tetrasaccharide building blocks were synthesized in a stereoselective manner by applying a very efficient Copper Catalyzed Azide-Alkyne Cycloadditions (CuAAC) reaction of appropriately substituted azido-glucuronic acid and propargyluted N-acetyl glucosamine and N-acetyl galactosamine derivative respectively. The resulting suitably substituted tetrasaccharide analogs can be easily converted into azide and alkyne unit for further synthesis of higher oligosaccharide analogs. PMID:21438620

  10. Site-specific O-Glycosylation by Polypeptide N-Acetylgalactosaminyltransferase 2 (GalNAc-transferase T2) Co-regulates β1-Adrenergic Receptor N-terminal Cleavage*

    PubMed Central

    Goth, Christoffer K.; Tuhkanen, Hanna E.; Khan, Hamayun; Lackman, Jarkko J.; Wang, Shengjun; Narimatsu, Yoshiki; Hansen, Lasse H.; Overall, Christopher M.; Clausen, Henrik; Schjoldager, Katrine T.; Petäjä-Repo, Ulla E.

    2017-01-01

    The β1-adrenergic receptor (β1AR) is a G protein-coupled receptor (GPCR) and the predominant adrenergic receptor subtype in the heart, where it mediates cardiac contractility and the force of contraction. Although it is the most important target for β-adrenergic antagonists, such as β-blockers, relatively little is yet known about its regulation. We have shown previously that β1AR undergoes constitutive and regulated N-terminal cleavage participating in receptor down-regulation and, moreover, that the receptor is modified by O-glycosylation. Here we demonstrate that the polypeptide GalNAc-transferase 2 (GalNAc-T2) specifically O-glycosylates β1AR at five residues in the extracellular N terminus, including the Ser-49 residue at the location of the common S49G single-nucleotide polymorphism. Using in vitro O-glycosylation and proteolytic cleavage assays, a cell line deficient in O-glycosylation, GalNAc-T-edited cell line model systems, and a GalNAc-T2 knock-out rat model, we show that GalNAc-T2 co-regulates the metalloproteinase-mediated limited proteolysis of β1AR. Furthermore, we demonstrate that impaired O-glycosylation and enhanced proteolysis lead to attenuated receptor signaling, because the maximal response elicited by the βAR agonist isoproterenol and its potency in a cAMP accumulation assay were decreased in HEK293 cells lacking GalNAc-T2. Our findings reveal, for the first time, a GPCR as a target for co-regulatory functions of site-specific O-glycosylation mediated by a unique GalNAc-T isoform. The results provide a new level of β1AR regulation that may open up possibilities for new therapeutic strategies for cardiovascular diseases. PMID:28167537

  11. The genes and enzymes for the catabolism of galactitol, D-tagatose, and related carbohydrates in Klebsiella oxytoca M5a1 and other enteric bacteria display convergent evolution.

    PubMed

    Shakeri-Garakani, A; Brinkkötter, A; Schmid, K; Turgut, S; Lengeler, J W

    2004-07-01

    Enteric bacteria (Enteriobacteriaceae) carry on their single chromosome about 4000 genes that all strains have in common (referred to here as "obligatory genes"), and up to 1300 "facultative" genes that vary from strain to strain and from species to species. In closely related species, obligatory and facultative genes are orthologous genes that are found at similar loci. We have analyzed a set of facultative genes involved in the degradation of the carbohydrates galactitol, D-tagatose, D-galactosamine and N-acetyl-galactosamine in various pathogenic and non-pathogenic strains of these bacteria. The four carbohydrates are transported into the cell by phosphotransferase (PTS) uptake systems, and are metabolized by closely related or even identical catabolic enzymes via pathways that share several intermediates. In about 60% of Escherichia coli strains the genes for galactitol degradation map to a gat operon at 46.8 min. In strains of Salmonella enterica, Klebsiella pneumoniae and K. oxytoca, the corresponding gat genes, although orthologous to their E. coli counterparts, are found at 70.7 min, clustered in a regulon together with three tag genes for the degradation of D-tagatose, an isomer of D-fructose. In contrast, in all the E. coli strains tested, this chromosomal site was found to be occupied by an aga/kba gene cluster for the degradation of D-galactosamine and N-acetyl-galactosamine. The aga/kba and the tag genes were paralogous either to the gat cluster or to the fru genes for degradation of D-fructose. Finally, in more then 90% of strains of both Klebsiella species, and in about 5% of the E. coli strains, two operons were found at 46.8 min that comprise paralogous genes for catabolism of the isomers D-arabinitol (genes atl or dal) and ribitol (genes rtl or rbt). In these strains gat genes were invariably absent from this location, and they were totally absent in S. enterica. These results strongly indicate that these various gene clusters and metabolic pathways have been subject to convergent evolution among the Enterobacteriaceae. This apparently involved recent horizontal gene transfer and recombination events, as indicated by major chromosomal rearrangements found in their immediate vicinity.

  12. Identification of the Molecular and Genetic Basis of PX2, a Glycosphingolipid Blood Group Antigen Lacking on Globoside-deficient Erythrocytes*

    PubMed Central

    Westman, Julia S.; Benktander, John; Storry, Jill R.; Peyrard, Thierry; Hult, Annika K.; Hellberg, Åsa; Teneberg, Susann; Olsson, Martin L.

    2015-01-01

    The x2 glycosphingolipid is expressed on erythrocytes from individuals of all common blood group phenotypes and elevated on cells of the rare P/P1/Pk-negative p blood group phenotype. Globoside or P antigen is synthesized by UDP-N-acetylgalactosamine:globotriaosyl-ceramide 3-β-N-acetylgalactosaminyltransferase encoded by B3GALNT1. It is the most abundant non-acid glycosphingolipid on erythrocytes and displays the same terminal disaccharide, GalNAcβ3Gal, as x2. We encountered a patient with mutations in B3GALNT1 causing the rare P-deficient P1k phenotype and whose pretransfusion plasma was unexpectedly incompatible with p erythrocytes. The same phenomenon was also noted in seven other unrelated P-deficient individuals. Thin-layer chromatography, mass spectrometry, and flow cytometry were used to show that the naturally occurring antibodies made by p individuals recognize x2 and sialylated forms of x2, whereas x2 is lacking on P-deficient erythrocytes. Overexpression of B3GALNT1 resulted in synthesis of both P and x2. Knockdown experiments with siRNA against B3GALNT1 diminished x2 levels. We conclude that x2 fulfills blood group criteria and is synthesized by UDP-N-acetylgalactosamine: globotriaosylceramide 3-β-N-acetylgalactosaminyltransferase. Based on this linkage, we proposed that x2 joins P in the GLOB blood group system (ISBT 028) and is renamed PX2 (GLOB2). Thus, in the absence of a functional P synthase, neither P nor PX2 are formed. As a consequence, naturally occurring anti-P and anti-PX2 can be made. Until the clinical significance of anti-PX2 is known, we also recommend that rare P1k or P2k erythrocyte units are preferentially selected for transfusion to Pk patients because p erythrocytes may pose a risk for hemolytic transfusion reactions due to their elevated PX2 levels. PMID:26055721

  13. A novel member of the GCN5-related N-acetyltransferase superfamily from Caenorhabditis elegans preferentially catalyses the N-acetylation of thialysine [S-(2-aminoethyl)-L-cysteine

    PubMed Central

    2004-01-01

    The putative diamine N-acetyltransferase D2023.4 has been cloned from the model nematode Caenorhabditis elegans. The 483 bp open reading frame of the cDNA encodes a deduced polypeptide of 18.6 kDa. Accordingly, the recombinantly expressed His6-tagged protein forms an enzymically active homodimer with a molecular mass of approx. 44000 Da. The protein belongs to the GNAT (GCN5-related N-acetyltransferase) superfamily, and its amino acid sequence exhibits considerable similarity to mammalian spermidine/spermine-N1-acetyltransferases. However, neither the polyamines spermidine and spermine nor the diamines putrescine and cadaverine were efficiently acetylated by the protein. The smaller diamines diaminopropane and ethylenediamine, as well as L-lysine, represent better substrates, but, surprisingly, the enzyme most efficiently catalyses the N-acetylation of amino acids analogous with L-lysine. As determined by the kcat/Km values, the C. elegans N-acetyltransferase prefers thialysine [S-(2-aminoethyl)-L-cysteine], followed by O-(2-aminoethyl)-L-serine and S-(2-aminoethyl)-D,L-homocysteine. Reversed-phase HPLC and mass spectrometric analyses revealed that N-acetylation of L-lysine and L-thialysine occurs exclusively at the amino moiety of the side chain. Remarkably, heterologous expression of C. elegans N-acetyltransferase D2023.4 in Escherichia coli, which does not possess a homologous gene, results in a pronounced resistance against the anti-metabolite thialysine. Furthermore, C. elegans N-acetyltransferase D2023.4 exhibits the highest homology with a number of GNATs found in numerous genomes from bacteria to mammals that have not been biochemically characterized so far, suggesting a novel group of GNAT enzymes closely related to spermidine/spermine-N1-acetyltransferase, but with a distinct substrate specificity. Taken together, we propose to name the enzyme ‘thialysine Nε-acetyltransferase’. PMID:15283700

  14. Expression of N-acetyl-D-galactosamine associated epitope in synovium: a potential marker of glycoprotein production.

    PubMed

    El-Gabalawy, H; King, R; Bernstein, C; Ma, G; Mou, Y; Alguacil-Garcia, A; Fritzler, M; Wilkins, J

    1997-07-01

    To investigate synovial glycoprotein production in situ, a novel monoclonal antibody (Mab), A13D8, was used to evaluate the expression of an epitope containing N-acetyl-D-galactosamine (GalNAc) in normal and pathological synovium. Immunohistological and cytochemical analysis of synovial tissue samples was undertaken with single and double staining techniques using the A13D8 Mab, anti-CD68, vascular cell adhesion molecule-1 (VCAM-1), the hyaluronan associated enzyme uridine diphosphoglucose dehydrogenase (UDPGD), and the anti-Golgi Mab SSN/HR-1992. The specificity of the A13D8 Mab was established through blocking studies using carbohydrate residues, including GalNAc and N-acetylglucosamine (GlcNAc). A13D8 is expressed intensely in the cytoplasm of normal type B lining cells, which coexpress VCAM-1 and UDPGD, and is not expressed by CD68+ type A lining cells. In the lining layer of RA synovium, there is a negative correlation between A13D8 expression and the level of lymphocytic infiltration in the sublining areas (r = -0.43, p < 0.001). The endothelium of a subset of venules, typically in lymphocyte-rich aggregates, also stains intensely for A13D8. Pretreatment of the Mab with GalNAc completely eliminates the tissue staining, as well as the 110 kDa band seen on immunoblot, whereas pretreatment of A13D8 with GlcNAc and lactose has no effect. Double staining of HEp-2 cells with A13D8 and the anti-Golgi Mab SSN/HR-1992 reveals co-localization of the A13D8 epitope to the Golgi apparatus. Type B synovial lining cells and selected synovial endothelium express GalNAc containing epitope identified by Mab A13D8. Marked reduction in the expression of this epitope in the lining layer of inflamed RA synovium suggests that the synovial production of GalNAc containing glycoproteins, such as mucins, may be altered in this disorder.

  15. A Second β-Hexosaminidase Encoded in the Streptococcus pneumoniae Genome Provides an Expanded Biochemical Ability to Degrade Host Glycans*

    PubMed Central

    Robb, Melissa; Robb, Craig S.; Higgins, Melanie A.; Hobbs, Joanne K.; Paton, James C.; Boraston, Alisdair B.

    2015-01-01

    An important facet of the interaction between the pathogen Streptococcus pneumoniae (pneumococcus) and its human host is the ability of this bacterium to process host glycans. To achieve cleavage of the glycosidic bonds in host glycans, S. pneumoniae deploys a wide array of glycoside hydrolases. Here, we identify and characterize a new family 20 glycoside hydrolase, GH20C, from S. pneumoniae. Recombinant GH20C possessed the ability to hydrolyze the β-linkages joining either N-acetylglucosamine or N-acetylgalactosamine to a wide variety of aglycon residues, thus revealing this enzyme to be a generalist N-acetylhexosaminidase in vitro. X-ray crystal structures were determined for GH20C in a ligand-free form, in complex with the N-acetylglucosamine and N-acetylgalactosamine products of catalysis and in complex with both gluco- and galacto-configured inhibitors O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino N-phenyl carbamate (PUGNAc), O-(2-acetamido-2-deoxy-d-galactopyranosylidene)amino N-phenyl carbamate (GalPUGNAc), N-acetyl-d-glucosamine-thiazoline (NGT), and N-acetyl-d-galactosamine-thiazoline (GalNGT) at resolutions from 1.84 to 2.7 Å. These structures showed N-acetylglucosamine and N-acetylgalactosamine to be recognized via identical sets of molecular interactions. Although the same sets of interaction were maintained with the gluco- and galacto-configured inhibitors, the inhibition constants suggested preferred recognition of the axial O4 when an aglycon moiety was present (Ki for PUGNAc > GalPUGNAc) but preferred recognition of an equatorial O4 when the aglycon was absent (Ki for GalNGT > NGT). Overall, this study reveals GH20C to be another tool that is unique in the arsenal of S. pneumoniae and that it may implement the effort of the bacterium to utilize and/or destroy the wide array of host glycans that it may encounter. PMID:26491009

  16. THE PRESENCE OF A GROUP A VARIANT-LIKE ANTIGEN IN STREPTOCOCCI OF OTHER GROUPS WITH SPECIAL REFERENCE TO GROUP N

    PubMed Central

    Elliott, S. D.; Hayward, John; Liu, T. Y.

    1971-01-01

    A Group A variant-like antigen has been detected in streptococci belonging to Groups D, E, G, M, and N. In Groups D and N the variant-like antigen was located in the streptococcal cell walls. In two strains of Group N streptococci (C559 and B209) the cell walls were chemically different and serologically distinct. In strain C559 N-acetylgalactosamine, and in strain B209, N-acetylglucosamine were the major determinants of serological specificity. The cell walls of strain C559 contained at least three serologically reactive components: a rhamnose-containing fraction that precipitated with an antiserum to Group A-variant carbohydrate; a strain-specific polysaccharide composed of galactosamine and glucosamine, both in the N-acetylated form and probably polymerized with an unidentified phosphorylated substance; and a component of unknown composition serologically related to a Group D streptococcus strain C3 (S. durans). An analogy is drawn between the cell wall structure in streptococcus and Salmonella. PMID:5111438

  17. Synthesis and characterization of natural and modified antifreeze glycopeptides: glycosylated foldamers.

    PubMed

    Nagel, Lilly; Plattner, Carolin; Budke, Carsten; Majer, Zsuzsanna; DeVries, Arthur L; Berkemeier, Thomas; Koop, Thomas; Sewald, Norbert

    2011-08-01

    In Arctic and Antarctic marine regions, where the temperature declines below the colligative freezing point of physiological fluids, efficient biological antifreeze agents are crucial for the survival of polar fish. One group of such agents is classified as antifreeze glycoproteins (AFGP) that usually consist of a varying number (n = 4-55) of [AAT]( n )-repeating units. The threonine side chain of each unit is glycosidically linked to β-D: -galactosyl-(1 → 3)-α-N-acetyl-D: -galactosamine. These biopolymers can be considered as biological antifreeze foldamers. A preparative route for stepwise synthesis of AFGP allows for efficient synthesis. The diglycosylated threonine building block was introduced into the peptide using microwave-enhanced solid phase synthesis. By this versatile solid phase approach, glycosylated peptides of varying sequences and lengths could be obtained. Conformational studies of the synthetic AFGP analogs were performed by circular dichroism experiments (CD). Furthermore, the foldamers were analysed microphysically according to their inhibiting effect on ice recrystallization and influence on the crystal habit.

  18. [Prophylactic and therapeutic effect of oxymatrine on D-galactosamine-induced rat liver fibrosis].

    PubMed

    Yang, Wenzhuo; Zeng, Minde; Fan, Zhuping; Mao, Yimin; Song, Yulin; Jia, Yitao; Lu, Lungen; Chen, Cheng Wei; Peng, Yan Shen; Zhu, Hong Yin

    2002-06-01

    To investigate the prophylactic and therapeutic effect of oxymatrine on experimental liver fibrosis and to reveal its mechanism. By establishing D-galactosamine-induced rat liver fibrosis model, we observed the effect of oxymatrine on serum and tissue biochemical indexes, content of liver hydroxyline, expression of TGF?1 mRNA and changes of tissue pathology. There was a decline of liver hydroxyline and serum AST and ALT in oxymatrine group compared to those of the D-GalN group. The hydroxyline content in oxymatrine pretreatment group was (0.50 0.11)mug/mg compared with (0.99 0.14)mug/mg in D-GalN group (t=8.366, P<0.01). The content in oxymatrine treatment group was (0.44 0.04)mug/mg compared with 0.70 0.06 in D-GalN group (t=9.839, P<0.01). The SOD activity was (149.81 15.28) NU/mg in oxymatrine pretreatment group and (95.22 16.33) NU/mg in the model group (t=7.309, P<0.01); (157.68 19.54) NU/mg in the treatment group compared with (119.88 14.94) NU/mg in the model group (t=4.348, P<0.01). MDA in the pretreatment group was (2.06 0.17) nmol/mg, lower than (4.57 0.37) nmol/mg in the model group (t=17.529, P<0.01). In the treatment group, it was (1.76 0.24)nmol/mg, lower than (3.10 0.17) nmol/mg in the model group (t=12.697, P<0.01). TGF?1 mRNA reduced in the pretreatment and treatment groups as compared with that in the model group (0.21 0.01 vs 0.50 0.01, t=48.665, P<0.01; 0.18 0.02 vs 0.38 0.01, t=22.464, P<0.01). Electron microscopy showed that oxymatrine group had milder hepatocyte degeneration and less fibrosis accumulation than did the model group. Microscopy revealed wide septa expansion from the portal area to the central venous, piecemeal and confluent necrosis and pseudo-nodular formation in part of the lobular in the model group. While in oxymatrine group these lesions were much improved. Oxymatrine shows prophylactic and therapeutic effect in D-galactosamine induced rat liver fibrosis. This is partly by protecting hepatocyte and suppressing fibrosis accumulation through anti-lipoperoxidation.

  19. Biochemical characterization of an inhibitor of Escherichia coli UDP-N-acetylmuramyl-l-alanine ligase.

    PubMed

    Ehmann, David E; Demeritt, Julie E; Hull, Kenneth G; Fisher, Stewart L

    2004-05-06

    UDP-N-acetylmuramyl-l-alanine ligase (MurC) is an essential bacterial enzyme involved in peptidoglycan biosynthesis and a target for the discovery of novel antibacterial agents. As a result of a high-throughput screen (HTS) against a chemical library for inhibitors of MurC, a series of benzofuran acyl-sulfonamides was identified as potential leads. One of these compounds, Compound A, inhibited Escherichia coli MurC with an IC(50) of 2.3 microM. Compound A exhibited time-dependent, partially reversible inhibition of E. coli MurC. Kinetic studies revealed a mode of inhibition consistent with the compound acting competitively with the MurC substrates ATP and UDP-N-acetyl-muramic acid (UNAM) with a K(i) of 4.5 microM against ATP and 6.3 microM against UNAM. Fluorescence binding experiments yielded a K(d) of 3.1 microM for the compound binding to MurC. Compound A also exhibited high-affinity binding to bovine serum albumin (BSA) as evidenced by a severe reduction in MurC inhibition upon addition of BSA. This finding is consistent with the high lipophilicity of the compound. Advancement of this compound series for further drug development will require reduction of albumin binding.

  20. Long range molecular dynamics study of interactions of the eukaryotic glucosamine-6-phosphate synthase with fructose-6-phosphate and UDP-GlcNAc.

    PubMed

    Miszkiel, Aleksandra; Wojciechowski, Marek

    2017-11-01

    Glucosamine-6-phosphate synthase (EC 2.6.1.16) is responsible for catalysis of the first and practically irreversible step in hexosamine metabolism. The final product of this pathway, uridine 5' diphospho N-acetyl-d-glucosamine (UDP-GlcNAc), is an essential substrate for assembly of bacterial and fungal cell walls. Moreover, the enzyme is involved in phenomenon of hexosamine induced insulin resistance in type II diabetes, which makes of it a potential target for anti-fungal, anti-bacterial and anti-diabetic therapy. The crystal structure of isomerase domain from human pathogenic fungus Candida albicans has been solved recently but it doesn't reveal the molecular mechanism details of inhibition taking place under UDP-GlcNAc influence, the unique feature of eukaryotic enzyme. The following study is a continuation of the previous research based on comparative molecular dynamics simulations of the structures with and without the enzyme's physiological inhibitor (UDP-GlcNAc) bound. The models used for this study included fructose-6-phosphate, one of the enzyme's substrates in its binding pocket. The simulation results studies demonstrated differences in mobility of the compared structures. Some amino acid residues were determined, for which flexibility is evidently different between the models. Importantly, it has been confirmed that the most fixed residues are related to the inhibitor binding process and to the catalysis reaction. The obtained results constitute an important step towards understanding of the inhibition that GlcN-6-P synthase is subjected by UDP-GlcNAc molecule. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Comparative study of substrate and product binding to the human ABO(H) blood group glycosyltransferases.

    PubMed

    Soya, Naoto; Shoemaker, Glen K; Palcic, Monica M; Klassen, John S

    2009-11-01

    The first comparative thermodynamic study of the human blood group glycosyltransferases, alpha-(1-->3)-N-acetylgalactosaminyltransferase (GTA) and alpha-(1-->3)-galactosyltransferase (GTB), interacting with donor substrates, donor and acceptor analogs, and trisaccharide products in vitro is reported. The binding constants, measured at 24 degrees C with the direct electrospray ionization mass spectrometry (ES-MS) assay, provide new insights into these model GTs and their interactions with substrate and product. Notably, the recombinant forms of GTA and GTB used in this study are shown to exist as homodimers, stabilized by noncovalent interactions at neutral pH. In the absence of divalent metal ion, neither GTA nor GTB exhibits any appreciable affinity for its native donors (UDP-GalNAc, UDP-Gal). Upon introduction of Mn(2+), both donors undergo enzyme-catalyzed hydrolysis in the presence of either GTA or GTB. Hydrolysis of UDP-GalNAc in the presence of GTA proceeds very rapidly under the solution conditions investigated and a binding constant could not be directly measured. In contrast, the rate of hydrolysis of UDP-Gal in the presence of GTB is significantly slower and, utilizing a modified approach to analyze the ES-MS data, a binding constant of 2 x 10(4) M(-1) was established. GTA and GTB bind the donor analogs UDP-GlcNAc, UDP-Glc with affinities similar to those measured for UDP-Gal and UDP-GalNAc (GTB only), suggesting that the native donors and donor analogs bind to the GTA and GTB through similar interactions. The binding constant determined for GTA and UDP-GlcNAc (approximately 1 x 10(4) M(-1)), therefore, provides an estimate for the binding constant for GTA and UDP-GalNAc. Binding of GTA and GTB with the A and B trisaccharide products was also investigated for the first time. In the absence of UDP and Mn(2+), both GTA and GTB recognize their respective trisaccharide products but with a low affinity approximately 10(3) M(-1); the presence of UDP and Mn(2+) has no effect on A trisaccharide binding but precludes B-trisaccharide binding.

  2. Characterization of the carbohydrate components of Taenia solium oncosphere proteins and their role in the antigenicity.

    PubMed

    Arana, Yanina; Verastegui, Manuela; Tuero, Iskra; Grandjean, Louis; Garcia, Hector H; Gilman, Robert H

    2013-10-01

    This study examines the carbohydrate composition of Taenia solium whole oncosphere antigens (WOAs), in order to improve the understanding of the antigenicity of the T. solium. Better knowledge of oncosphere antigens is crucial to accurately diagnose previous exposure to T. solium eggs and thus predict the development of neurocysticercosis. A set of seven lectins conjugates with wide carbohydrate specificity were used on parasite fixations and somatic extracts. Lectin fluorescence revealed that D-mannose, D-glucose, D-galactose and N-acetyl-D-galactosamine residues were the most abundant constituents of carbohydrate chains on the surface of T. solium oncosphere. Lectin blotting showed that posttranslational modification with N-glycosylation was abundant while little evidence of O-linked carbohydrates was observed. Chemical oxidation and enzymatic deglycosylation in situ were performed to investigate the immunoreactivity of the carbohydrate moieties. Linearizing or removing the carbohydrate moieties from the protein backbones did not diminish the immunoreactivity of these antigens, suggesting that a substantial part of the host immune response against T. solium oncosphere is directed against the peptide epitopes on the parasite antigens. Finally, using carbohydrate probes, we demonstrated for the first time that the presence of several lectins on the surface of the oncosphere was specific to carbohydrates found in intestinal mucus, suggesting a possible role in initial attachment of the parasite to host cells.

  3. CHARACTERIZATION OF THE CARBOHYDRATE COMPONENTS OF Taenia solium ONCOSPHERE PROTEINS AND THEIR ROLE IN THE ANTIGENICITY

    PubMed Central

    Arana, Yanina; Verastegui, Manuela; Tuero, Iskra; Grandjean, Louis; Garcia, Hector H.; Gilman, Robert H.

    2015-01-01

    This study examines the carbohydrate composition of Taenia solium whole oncosphere antigens (WOAs), in order to improve the understanding of the antigenicity of the T. solium. Better knowledge of oncosphere antigens is crucial to accurately diagnose previous exposure to T. solium eggs and thus predict the development of neurocysticercosis. A set of seven lectins conjugates with wide carbohydrate specificity were used on parasite fixations and somatic extracts. Lectin fluorescence revealed that D-mannose, D-glucose, D-galactose and N-acetyl-D-galactosamine residues were the most abundant constituents of carbohydrate chains on the surface of T. solium oncosphere. Lectin blotting showed that post-translational modification with N-glycosylation was abundant while little evidence of O-linked carbohydrates was observed. Chemical oxidation and enzymatic deglycosylation in situ were performed to investigate the immunoreactivity of the carbohydrate moieties. Linearizing or removing the carbohydrate moieties from the protein backbones did not diminish the immunoreactivity of these antigens, suggesting that a substantial part of the host immune response against T. solium oncosphere is directed against the peptide epitopes on the parasite antigens. Finally, using carbohydrate probes, we demonstrated for the first time that the presence of several lectins on the surface of the oncosphere was specific to carbohydrates found in intestinal mucus, suggesting a possible role in initial attachment of the parasite to host cells. PMID:23982308

  4. Comparison of the UDP-N-Acetylmuramate:l-Alanine Ligase Enzymes from Mycobacterium tuberculosis and Mycobacterium leprae

    PubMed Central

    Mahapatra, Sebabrata; Crick, Dean C.; Brennan, Patrick J.

    2000-01-01

    In the peptidoglycan of Mycobacterium leprae, l-alanine of the side chain is replaced by glycine. When expressed in Escherichia coli, MurC (UDP-N-acetyl-muramate:l-alanine ligase) of M. leprae showed Km and Vmax for l-alanine and glycine similar to those of Mycobacterium tuberculosis MurC, suggesting that another explanation should be sought for the presence of glycine. PMID:11073931

  5. Cell Penetrating Polymers Containing Guanidinium Trigger Apoptosis in Human Hepatocellular Carcinoma Cells unless Conjugated to a Targeting N-Acetyl-Galactosamine Block.

    PubMed

    Tan, Zhe; Dhande, Yogesh K; Reineke, Theresa M

    2017-12-20

    A series of 3-guanidinopropyl methacrylamide (GPMA)-based polymeric gene delivery vehicles were developed via aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymers have been evaluated for their cellular internalization ability, transfection efficiency, and cytotoxicity. Two homopolymers: P(GPMA 20 ), P(GPMA 34 ), were synthesized to study the effect of guanidium polymer length on delivery efficiency and toxicity. In addition, an N-acetyl-d-galactosamine (GalNAc)-based hydrophilic block was incorporated to produce diblock polymers, which provides a neutral hydrophilic block that sterically protects plasmid-polymer complexes (polyplexes) from colloidal aggregation and aids polyplex targeting to hepatocytes via binding to asialoglycoprotein receptors (ASGPRs). Polyplexes formed with P(GPMA x ) (x = 20, 34) homopolymers were shown to be internalized via both energy-dependent and independent pathways, whereas polyplexes formed with block polymers were internalized through endocytosis. Notably, P(GPMA x ) polyplexes enter cells very efficiently but are also very toxic to human hepatocellular carcinoma (HepG2) cells and triggered cell apoptosis. In comparison, the presence of a carbohydrate block in the polymer structures reduced the cytotoxicity of the polyplex formulations and increased gene delivery efficiency with HepG2 cells. Transfection efficiency and toxicity studies were also carried out with HEK 293T (human embryonic kidney) cells for comparison. Results showed that polyplexes formed with the P(GPMA x ) homopolymers exhibit much higher transfection efficiency and lower toxicity with HEK 293T cells. The presence of the carbohydrate block did not further increase transfection efficiency in comparison to the homopolymers with HEK 293T cells, likely due to the lack of ASGPRs on the HEK 293T cell line. This study revealed that although guanidinium-based polymers have high membrane permeability, their application as plasmid delivery vehicles may be limited by their high cytotoxicity to certain cell types. Thus, the use of cell penetrating structures in polyplex formulations should be used with caution and carefully tailored toward individual cell/tissue types.

  6. Crystal Structure of the Catalytic Domain of Drosophila [beta]1,4-Galactosyltransferase-7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakrishnan, Boopathy; Qasba, Pradman K.

    2010-11-03

    The {beta}1,4-galactosyltransferase-7 ({beta}4Gal-T7) enzyme, one of seven members of the {beta}4Gal-T family, transfers in the presence of manganese Gal from UDP-Gal to an acceptor sugar (xylose) that is attached to a side chain hydroxyl group of Ser/Thr residues of proteoglycan proteins. It exhibits the least protein sequence similarity with the other family members, including the well studied family member {beta}4Gal-T1, which, in the presence of manganese, transfers Gal from UDP-Gal to GlcNAc. We report here the crystal structure of the catalytic domain of {beta}4Gal-T7 from Drosophila in the presence of manganese and UDP at 1.81 {angstrom} resolution. In the crystalmore » structure, a new manganese ion-binding motif (HXH) has been observed. Superposition of the crystal structures of {beta}4Gal-T7 and {beta}4Gal-T1 shows that the catalytic pocket and the substrate-binding sites in these proteins are similar. Compared with GlcNAc, xylose has a hydroxyl group (instead of an N-acetyl group) at C2 and lacks the CH{sub 2}OH group at C5; thus, these protein structures show significant differences in their acceptor-binding site. Modeling of xylose in the acceptor-binding site of the {beta}4Gal-T7 crystal structure shows that the aromatic side chain of Tyr{sup 177} interacts strongly with the C5 atom of xylose, causing steric hindrance to any additional group at C5. Because Drosophila Cd7 has a 73% protein sequence similarity to human Cd7, the present crystal structure offers a structure-based explanation for the mutations in human Cd7 that have been linked to Ehlers-Danlos syndrome.« less

  7. Structural analysis of PseH, the Campylobacter jejuni N-acetyltransferase involved in bacterial O-linked glycosylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Wan Seok; Nam, Mi Sun; Namgung, Byeol

    2015-03-20

    Campylobacter jejuni is a bacterium that uses flagella for motility and causes worldwide acute gastroenteritis in humans. The C. jejuni N-acetyltransferase PseH (cjPseH) is responsible for the third step in flagellin O-linked glycosylation and plays a key role in flagellar formation and motility. cjPseH transfers an acetyl group from an acetyl donor, acetyl coenzyme A (AcCoA), to the amino group of UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine to produce UDP-2,4-diacetamido-2,4,6-trideoxy-β-L-altropyranose. To elucidate the catalytic mechanism of cjPseH, crystal structures of cjPseH alone and in complex with AcCoA were determined at 1.95 Å resolution. cjPseH folds into a single-domain structure of a central β-sheet decorated by four α-helicesmore » with two continuously connected grooves. A deep groove (groove-A) accommodates the AcCoA molecule. Interestingly, the acetyl end of AcCoA points toward an open space in a neighboring shallow groove (groove-S), which is occupied by extra electron density that potentially serves as a pseudosubstrate, suggesting that the groove-S may provide a substrate-binding site. Structure-based comparative analysis suggests that cjPseH utilizes a unique catalytic mechanism of acetylation that has not been observed in other glycosylation-associated acetyltransferases. Thus, our studies on cjPseH will provide valuable information for the design of new antibiotics to treat C. jejuni-induced gastroenteritis. - Highlights: • cjPseH adopts a single-domain structure of a central β-sheet decorated by α-helices. • cjPseH features two continuously connected grooves on the protein surface. • Acetyl coenzyme A (AcCoA) binds into a deep groove of cjPseH in an ‘L’ shape. • The acetyl end of AcCoA points to a wide groove, a potential substrate-binding site.« less

  8. Substrate Specificity and Inhibitor Sensitivity of Plant UDP-Sugar Producing Pyrophosphorylases.

    PubMed

    Decker, Daniel; Kleczkowski, Leszek A

    2017-01-01

    UDP-sugars are essential precursors for glycosylation reactions producing cell wall polysaccharides, sucrose, glycoproteins, glycolipids, etc. Primary mechanisms of UDP sugar formation involve the action of at least three distinct pyrophosphorylases using UTP and sugar-1-P as substrates. Here, substrate specificities of barley and Arabidopsis (two isozymes) UDP-glucose pyrophosphorylases (UGPase), Arabidopsis UDP-sugar pyrophosphorylase (USPase) and Arabidopsis UDP- N -acetyl glucosamine pyrophosphorylase2 (UAGPase2) were investigated using a range of sugar-1-phosphates and nucleoside-triphosphates as substrates. Whereas all the enzymes preferentially used UTP as nucleotide donor, they differed in their specificity for sugar-1-P. UGPases had high activity with D-Glc-1-P, but could also react with Fru-1-P and Fru-2-P ( K m values over 10 mM). Contrary to an earlier report, their activity with Gal-1-P was extremely low. USPase reacted with a range of sugar-1-phosphates, including D-Glc-1-P, D-Gal-1-P, D-GalA-1-P ( K m of 1.3 mM), β-L-Ara-1-P and α-D-Fuc-1-P ( K m of 3.4 mM), but not β-L-Fuc-1-P. In contrast, UAGPase2 reacted only with D-GlcNAc-1-P, D-GalNAc-1-P ( K m of 1 mM) and, to some extent, D-Glc-1-P ( K m of 3.2 mM). Generally, different conformations/substituents at C2, C4, and C5 of the pyranose ring of a sugar were crucial determinants of substrate specificity of a given pyrophosphorylase. Homology models of UDP-sugar binding to UGPase, USPase and UAGPase2 revealed more common amino acids for UDP binding than for sugar binding, reflecting differences in substrate specificity of these proteins. UAGPase2 was inhibited by a salicylate derivative that was earlier shown to affect UGPase and USPase activities, consistent with a common structural architecture of the three pyrophosphorylases. The results are discussed with respect to the role of the pyrophosphorylases in sugar activation for glycosylated end-products.

  9. Substrate Specificity and Inhibitor Sensitivity of Plant UDP-Sugar Producing Pyrophosphorylases

    PubMed Central

    Decker, Daniel; Kleczkowski, Leszek A.

    2017-01-01

    UDP-sugars are essential precursors for glycosylation reactions producing cell wall polysaccharides, sucrose, glycoproteins, glycolipids, etc. Primary mechanisms of UDP sugar formation involve the action of at least three distinct pyrophosphorylases using UTP and sugar-1-P as substrates. Here, substrate specificities of barley and Arabidopsis (two isozymes) UDP-glucose pyrophosphorylases (UGPase), Arabidopsis UDP-sugar pyrophosphorylase (USPase) and Arabidopsis UDP-N-acetyl glucosamine pyrophosphorylase2 (UAGPase2) were investigated using a range of sugar-1-phosphates and nucleoside-triphosphates as substrates. Whereas all the enzymes preferentially used UTP as nucleotide donor, they differed in their specificity for sugar-1-P. UGPases had high activity with D-Glc-1-P, but could also react with Fru-1-P and Fru-2-P (Km values over 10 mM). Contrary to an earlier report, their activity with Gal-1-P was extremely low. USPase reacted with a range of sugar-1-phosphates, including D-Glc-1-P, D-Gal-1-P, D-GalA-1-P (Km of 1.3 mM), β-L-Ara-1-P and α-D-Fuc-1-P (Km of 3.4 mM), but not β-L-Fuc-1-P. In contrast, UAGPase2 reacted only with D-GlcNAc-1-P, D-GalNAc-1-P (Km of 1 mM) and, to some extent, D-Glc-1-P (Km of 3.2 mM). Generally, different conformations/substituents at C2, C4, and C5 of the pyranose ring of a sugar were crucial determinants of substrate specificity of a given pyrophosphorylase. Homology models of UDP-sugar binding to UGPase, USPase and UAGPase2 revealed more common amino acids for UDP binding than for sugar binding, reflecting differences in substrate specificity of these proteins. UAGPase2 was inhibited by a salicylate derivative that was earlier shown to affect UGPase and USPase activities, consistent with a common structural architecture of the three pyrophosphorylases. The results are discussed with respect to the role of the pyrophosphorylases in sugar activation for glycosylated end-products. PMID:28970843

  10. Serine and alanine racemase activities of VanT: a protein necessary for vancomycin resistance in Enterococcus gallinarum BM4174.

    PubMed

    Arias, C A; Weisner, J; Blackburn, J M; Reynolds, P E

    2000-07-01

    Vancomycin resistance in Enterococcus gallinarum results from the production of UDP-MurNAc-pentapeptide[D-Ser]. VanT, a membrane-bound serine racemase, is one of three proteins essential for this resistance. To investigate the selectivity of racemization of L-Ser or L-Ala by VanT, a strain of Escherichia coli TKL-10 that requires D-Ala for growth at 42 degrees C was used as host for transformation experiments using plasmids containing the full-length vanT from Ent. gallinarum or the alanine racemase gene (alr) of Bacillus stearothermophilus: both plasmids were able to complement E. coli TKL-10 at 42 degrees C. No alanine or serine racemase activities were detected in the host strain E. coli TKL-10 grown at 30, 34 or 37 degrees C. Serine and alanine racemase activities were found almost exclusively (96%) in the membrane fraction of E. coli TKL-10/pCA4(vanT): the alanine racemase activity of VanT was 14% of the serine racemase activity in both E. coli TKL-10/pCA4(vanT) and E. coli XL-1 Blue/pCA4(vanT). Alanine racemase activity was present mainly (95%) in the cytoplasmic fraction of E. coli TKL-10/pJW40(alr), with a trace (1.6%) of serine racemase activity. Additionally, DNA encoding the soluble domain of VanT was cloned and expressed in E. coli M15 as a His-tagged polypeptide and purified: this polypeptide also exhibited both serine and alanine racemase activities; the latter was approximately 18% of the serine racemase activity, similar to that of the full-length, membrane-bound enzyme. N-terminal sequencing of the purified His-tagged polypeptide revealed a single amino acid sequence, indicating that the formation of heterodimers between subunits of His-tagged C-VanT and endogenous alanine racemases from E. coli was unlikely. The authors conclude that the membrane-bound serine racemase VanT also has alanine racemase activity but is able to racemize serine more efficiently than alanine, and that the cytoplasmic domain is responsible for the racemase activity.

  11. Walnut polyphenols prevent liver damage induced by carbon tetrachloride and d-galactosamine: hepatoprotective hydrolyzable tannins in the kernel pellicles of walnut.

    PubMed

    Shimoda, Hiroshi; Tanaka, Junji; Kikuchi, Mitsunori; Fukuda, Toshiyuji; Ito, Hideyuki; Hatano, Tsutomu; Yoshida, Takashi

    2008-06-25

    The polyphenol-rich fraction (WP, 45% polyphenol) prepared from the kernel pellicles of walnuts was assessed for its hepatoprotective effect in mice. A single oral administration of WP (200 mg/kg) significantly suppressed serum glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) elevation in liver injury induced by carbon tetrachloride (CCl 4), while it did not suppress d-galactosamine (GalN)-induced liver injury. In order to identify the active principles in WP, we examined individual constituents for the protective effect on cell damage induced by CCl 4 and d-GalN in primary cultured rat hepatocytes. WP was effective against both CCl 4- and d-GalN-induced hepatocyte damages. Among the constituents, only ellagitannins with a galloylated glucopyranose core, such as tellimagrandins I, II, and rugosin C, suppressed CCl 4-induced hepatocyte damage significantly. Most of the ellagitannins including tellimagrandin I and 2,3- O-hexahydroxydiphenoylglucose exhibited remarkable inhibitory effect against d-GalN-induced damage. Telliamgrandin I especially completely suppressed both CCl 4- and d-GalN-induced cell damage, and thus is likely the principal constituent for the hepatoprotective effect of WP.

  12. Site-specific O-Glycosylation by Polypeptide N-Acetylgalactosaminyltransferase 2 (GalNAc-transferase T2) Co-regulates β1-Adrenergic Receptor N-terminal Cleavage.

    PubMed

    Goth, Christoffer K; Tuhkanen, Hanna E; Khan, Hamayun; Lackman, Jarkko J; Wang, Shengjun; Narimatsu, Yoshiki; Hansen, Lasse H; Overall, Christopher M; Clausen, Henrik; Schjoldager, Katrine T; Petäjä-Repo, Ulla E

    2017-03-17

    The β 1 -adrenergic receptor (β 1 AR) is a G protein-coupled receptor (GPCR) and the predominant adrenergic receptor subtype in the heart, where it mediates cardiac contractility and the force of contraction. Although it is the most important target for β-adrenergic antagonists, such as β-blockers, relatively little is yet known about its regulation. We have shown previously that β 1 AR undergoes constitutive and regulated N-terminal cleavage participating in receptor down-regulation and, moreover, that the receptor is modified by O -glycosylation. Here we demonstrate that the polypeptide GalNAc-transferase 2 (GalNAc-T2) specifically O -glycosylates β 1 AR at five residues in the extracellular N terminus, including the Ser-49 residue at the location of the common S49G single-nucleotide polymorphism. Using in vitro O -glycosylation and proteolytic cleavage assays, a cell line deficient in O -glycosylation, GalNAc-T-edited cell line model systems, and a GalNAc-T2 knock-out rat model, we show that GalNAc-T2 co-regulates the metalloproteinase-mediated limited proteolysis of β 1 AR. Furthermore, we demonstrate that impaired O -glycosylation and enhanced proteolysis lead to attenuated receptor signaling, because the maximal response elicited by the βAR agonist isoproterenol and its potency in a cAMP accumulation assay were decreased in HEK293 cells lacking GalNAc-T2. Our findings reveal, for the first time, a GPCR as a target for co-regulatory functions of site-specific O -glycosylation mediated by a unique GalNAc-T isoform. The results provide a new level of β 1 AR regulation that may open up possibilities for new therapeutic strategies for cardiovascular diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Distributional map of the terminal and sub-terminal sugar residues of the glycoconjugates in the prepubertal and postpubertal testis of a subject affected by complete androgen insensitivity syndrome (Morris's syndrome): lectin histochemical study.

    PubMed

    Gheri, G; Vannelli, G B; Marini, M; Zappoli Thyrion, G D; Gheri, R G; Sgambati, E

    2004-01-01

    In the present research we have investigated the distribution of the sugar residues of the glycoconjugates in the prepubertal and postpubertal testes of a subject with Morris's syndrome (CAIS, Complete Androgen Insensitivity Syndrome). For this purpose a battery of six horseradish peroxidase-conjugated lectins was used (SBA, PNA, WGA, ConA, LTA and UEAI). We have obtained a complete distributional map of the terminal and sub-terminal oligosaccharides in the tunica albuginea, interstitial tissue, lamina propria of the seminiferous tubules, Leydig cells, Sertoli cells, spermatogonia, mastocytes and endothelial cells. Furthermore the present study has shown that a large amount of sugar residues were detectable in the prepubertal and postpubertal testes but that some differences exist with particular regard to the Sertoli cells. The Sertoli cells and the Leydig cells of the retained prepubertal testis of the patient affected by Morris's syndrome were characterized by the presence of alpha-L-fucose, which was absent in the retained prepubertal testis of the normal subjects. Comparing the results on the postpubertal testis with those obtained on the same aged testis of healthy subjects we have demonstrated that alpha-L-fucose in the Sertoli and Leydig cells and D-galactose-N-acetyl-D-galactosamine in the Leydig cells are a unique feature of the subject affected by Morris's syndrome. D-galactose (ss1,3)-N-acetyl-D-galactosamine and sialic acid, which are present in the Leydig cells of the normal testis were never observed in the same cells of the postpubertal testis of the CAIS patient.

  14. Evaluation of drug-induced tissue injury by measuring alanine aminotransferase (ALT) activity in silkworm hemolymph

    PubMed Central

    2012-01-01

    Background Our previous studies suggest silkworms can be used as model animals instead of mammals in pharmacologic studies to develop novel therapeutic medicines. We examined the usefulness of the silkworm larvae Bombyx mori as an animal model for evaluating tissue injury induced by various cytotoxic drugs. Drugs that induce hepatotoxic effects in mammals were injected into the silkworm hemocoel, and alanine aminotransferase (ALT) activity was measured in the hemolymph 1 day later. Results Injection of CCl4 into the hemocoel led to an increase in ALT activity. The increase in ALT activity was attenuated by pretreatment with N-acetyl-L-cysteine. Injection of benzoic acid derivatives, ferric sulfate, sodium valproate, tetracycline, amiodarone hydrochloride, methyldopa, ketoconazole, pemoline (Betanamin), N-nitroso-fenfluramine, and D-galactosamine also increased ALT activity. Conclusions These findings indicate that silkworms are useful for evaluating the effects of chemicals that induce tissue injury in mammals. PMID:23137391

  15. A sensitive and efficient method for determination of N-acetylhexosamines and N-acetylneuraminic acid in breast milk and milk-based products by high-performance liquid chromatography via UV detection and mass spectrometry identification.

    PubMed

    Chuanxiang, Wu; Lian, Xia; Lijie, Liu; Fengli, Qu; Zhiwei, Sun; Xianen, Zhao; Jinmao, You

    2016-02-01

    A sensitive and efficient method of high performance liquid chromatography using 1-(2-naphthyl)-3-methyl-5-pyrazolone (NMP) as pre-column derivatization reagent coupled with UV detection (HPLC-UV) and online mass spectrometry identification was established for determination of the most common N-Acetylhexosamines (N-acetyl-d-glucosamine (GlcNAc) and N-acetyl-d-galactosamine (GalNAc)) and N-acetylneuraminic acid (Neu5Ac). In order to obtain the highest liberation level of the three monosaccharides without destruction of Neu5Ac or conversion of GlcNAc/GalNAc to GlcN/GalN in the hydrolysis procedure, the pivotal parameters affecting the liberation of N-acetylhexosamines/Neu5Ac from sample were investigated with response surface methodology (RSM). Under the optimized condition, maximum yield was obtained. The effects of key parameters on derivatization, separation and detection were also investigated. At optimized conditions, three monosaccharides were labeled fast and entirely, and all derivatives exhibited a good baseline resolution and high detection sensitivity. The developed method was linear over the calibration range 0.25-12μM, with R(2)>0.9991. The detection limits of the method were between 0.48 and 2.01pmol. Intra- and inter-day precisions for the three monosaccharides (GlcNAc, GalNAc and Neu5Ac) were found to be in the range of 3.07-4.02% and 3.69-4.67%, respectively. Individual monosaccharide recovery from spiked milk was in the range of 81%-97%. The sensitivity of the method, the facility of the derivatization procedure and the reliability of the hydrolysis conditions suggest the proposed method has a high potential for utilization in routine trace N-acetylhexosamines and Neu5Ac analysis in biological samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. UDP-Glucosyltransferases from Rice, Brachypodium, and Barley: Substrate Specificities and Synthesis of Type A and B Trichothecene-3-O-β-d-glucosides

    PubMed Central

    Malachová, Alexandra; Piątkowska, Marta; Hametner, Christian; Šofrová, Jana; Jaunecker, Günther; Häubl, Georg; Lemmens, Marc

    2018-01-01

    Trichothecene toxins are confirmed or suspected virulence factors of various plant-pathogenic Fusarium species. Plants can detoxify these to a variable extent by glucosylation, a reaction catalyzed by UDP-glucosyltransferases (UGTs). Due to the unavailability of analytical standards for many trichothecene-glucoconjugates, information on such compounds is limited. Here, the previously identified deoxynivalenol-conjugating UGTs HvUGT13248 (barley), OsUGT79 (rice) and Bradi5g03300 (Brachypodium), were expressed in E. coli, affinity purified, and characterized towards their abilities to glucosylate the most relevant type A and B trichothecenes. HvUGT13248, which prefers nivalenol over deoxynivalenol, is also able to conjugate C-4 acetylated trichothecenes (e.g., T-2 toxin) to some degree while OsUGT79 and Bradi5g03300 are completely inactive with C-4 acetylated derivatives. The type A trichothecenes HT-2 toxin and T-2 triol are the kinetically preferred substrates in the case of HvUGT13248 and Bradi5g03300. We glucosylated several trichothecenes with OsUGT79 (HT-2 toxin, T-2 triol) and HvUGT13248 (T-2 toxin, neosolaniol, 4,15-diacetoxyscirpenol, fusarenon X) in the preparative scale. NMR analysis of the purified glucosides showed that exclusively β-d-glucosides were formed regio-selectively at position C-3-OH of the trichothecenes. These synthesized standards can be used to investigate the occurrence and toxicological properties of these modified mycotoxins. PMID:29509722

  17. UDP-Glucosyltransferases from Rice, Brachypodium, and Barley: Substrate Specificities and Synthesis of Type A and B Trichothecene-3-O-β-d-glucosides.

    PubMed

    Michlmayr, Herbert; Varga, Elisabeth; Malachová, Alexandra; Fruhmann, Philipp; Piątkowska, Marta; Hametner, Christian; Šofrová, Jana; Jaunecker, Günther; Häubl, Georg; Lemmens, Marc; Berthiller, Franz; Adam, Gerhard

    2018-03-06

    Trichothecene toxins are confirmed or suspected virulence factors of various plant-pathogenic Fusarium species. Plants can detoxify these to a variable extent by glucosylation, a reaction catalyzed by UDP-glucosyltransferases (UGTs). Due to the unavailability of analytical standards for many trichothecene-glucoconjugates, information on such compounds is limited. Here, the previously identified deoxynivalenol-conjugating UGTs HvUGT13248 (barley), OsUGT79 (rice) and Bradi5g03300 ( Brachypodium ), were expressed in E. coli , affinity purified, and characterized towards their abilities to glucosylate the most relevant type A and B trichothecenes. HvUGT13248, which prefers nivalenol over deoxynivalenol, is also able to conjugate C-4 acetylated trichothecenes (e.g., T-2 toxin) to some degree while OsUGT79 and Bradi5g03300 are completely inactive with C-4 acetylated derivatives. The type A trichothecenes HT-2 toxin and T-2 triol are the kinetically preferred substrates in the case of HvUGT13248 and Bradi5g03300. We glucosylated several trichothecenes with OsUGT79 (HT-2 toxin, T-2 triol) and HvUGT13248 (T-2 toxin, neosolaniol, 4,15-diacetoxyscirpenol, fusarenon X) in the preparative scale. NMR analysis of the purified glucosides showed that exclusively β-D-glucosides were formed regio-selectively at position C-3-OH of the trichothecenes. These synthesized standards can be used to investigate the occurrence and toxicological properties of these modified mycotoxins.

  18. Combined effects of EPS and HRT enhanced biofouling on a submerged and hybrid PAC-MF membrane bioreactor.

    PubMed

    Khan, Mohiuddin Md Taimur; Takizawa, Satoshi; Lewandowski, Zbigniew; Habibur Rahman, M; Komatsu, Kazuhiro; Nelson, Sara E; Kurisu, Futoshi; Camper, Anne K; Katayama, Hiroyuki; Ohgaki, Shinichiro

    2013-02-01

    The goal of this study was to quantify and demonstrate the dynamic effects of hydraulic retention time (HRT), organic carbon and various components of extracellular polymeric substances (EPS) produced by microorganisms on the performance of submersed hollow-fiber microfiltration (MF) membrane in a hybrid powdered activated carbon (PAC)-MF membrane bioreactor (MBR). The reactors were operated continuously for 45 days to treat surface (river) water before and after pretreatment using a biofiltration unit. The real-time levels of organic carbon and the major components of EPS including five different carbohydrates (D(+) glucose and D(+) mannose, D(+) galactose, N-acetyl-D-galactosamine and D-galactose, oligosaccharides and L(-) fucose), proteins, and polysaccharides were quantified in the influent water, foulants, and in the bulk phases of different reactors. The presence of PAC extended the filtration cycle and enhanced the organic carbon adsorption and removal more than two fold. Biological filtration improved the filtrate quality and decreased membrane fouling. However, HRT influenced the length of the filtration cycle and had less effect on organic carbon and EPS component removal and/or biodegradation. The abundance of carbohydrates in the foulants on MF surfaces was more than 40 times higher than in the bulk phase, which demonstrates that the accumulation of carbohydrates on membrane surfaces contributed to the increase in transmembrane pressure significantly and PAC was not a potential adsorbent of carbohydrates. The abundance of N-acetyl-d-galactosamine and d-galactose was the highest in the foulants on membranes receiving biofilter-treated river water. Most of the biological fouling compounds were produced inside the reactors due to biodegradation. PAC inside the reactor enhanced the biodegradation of polysaccharides up to 97% and that of proteins by more than 95%. This real-time extensive and novel study demonstrates that the PAC-MF hybrid MBR is a sustainable technology for treating river water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Discovery of β-1,4-D-mannosyl-N-acetyl-D-glucosamine phosphorylase involved in the metabolism of N-glycans.

    PubMed

    Nihira, Takanori; Suzuki, Erika; Kitaoka, Motomitsu; Nishimoto, Mamoru; Ohtsubo, Ken'ichi; Nakai, Hiroyuki

    2013-09-20

    A gene cluster involved in N-glycan metabolism was identified in the genome of Bacteroides thetaiotaomicron VPI-5482. This gene cluster encodes a major facilitator superfamily transporter, a starch utilization system-like transporter consisting of a TonB-dependent oligosaccharide transporter and an outer membrane lipoprotein, four glycoside hydrolases (α-mannosidase, β-N-acetylhexosaminidase, exo-α-sialidase, and endo-β-N-acetylglucosaminidase), and a phosphorylase (BT1033) with unknown function. It was demonstrated that BT1033 catalyzed the reversible phosphorolysis of β-1,4-D-mannosyl-N-acetyl-D-glucosamine in a typical sequential Bi Bi mechanism. These results indicate that BT1033 plays a crucial role as a key enzyme in the N-glycan catabolism where β-1,4-D-mannosyl-N-acetyl-D-glucosamine is liberated from N-glycans by sequential glycoside hydrolase-catalyzed reactions, transported into the cell, and intracellularly converted into α-D-mannose 1-phosphate and N-acetyl-D-glucosamine. In addition, intestinal anaerobic bacteria such as Bacteroides fragilis, Bacteroides helcogenes, Bacteroides salanitronis, Bacteroides vulgatus, Prevotella denticola, Prevotella dentalis, Prevotella melaninogenica, Parabacteroides distasonis, and Alistipes finegoldii were also suggested to possess the similar metabolic pathway for N-glycans. A notable feature of the new metabolic pathway for N-glycans is the more efficient use of ATP-stored energy, in comparison with the conventional pathway where β-mannosidase and ATP-dependent hexokinase participate, because it is possible to directly phosphorylate the D-mannose residue of β-1,4-D-mannosyl-N-acetyl-D-glucosamine to enter glycolysis. This is the first report of a metabolic pathway for N-glycans that includes a phosphorylase. We propose 4-O-β-D-mannopyranosyl-N-acetyl-D-glucosamine:phosphate α-D-mannosyltransferase as the systematic name and β-1,4-D-mannosyl-N-acetyl-D-glucosamine phosphorylase as the short name for BT1033.

  20. 1-methylmalate from camu-camu (Myrciaria dubia) suppressed D-galactosamine-induced liver injury in rats.

    PubMed

    Akachi, Toshiyuki; Shiina, Yasuyuki; Kawaguchi, Takumi; Kawagishi, Hirokazu; Morita, Tatsuya; Sugiyama, Kimio

    2010-01-01

    To evaluate the protective effects of fruit juices against D-galactosamine (GalN)-induced liver injury, lyophilized fruit juices (total 12 kinds) were fed to rats for 7 d, and then we evoked liver injury by injecting GalN. The juice of camu-camu (Myrciaria dubia) significantly suppressed GalN-induced liver injury when the magnitude of liver injury was assessed by plasma alanine aminotransferase and aspartate aminotransferase activities, although some other juices (acerola, dragon fruit, shekwasha, and star fruit) also tended to have suppressive effects. An active compound was isolated from camu-camu juice by solvent fractionation and silica gel column chromatography. The structure was determined to be 1-methylmalate. On the other hand, malate, 1,4-dimethylmalate, citrate, and tartrate had no significant effect on GalN-induced liver injury. It is suggested that 1-methylmalate might be a rather specific compound among organic acids and their derivatives in fruit juices in suppressing GalN-induced liver injury.

  1. Genetic analysis of the roles of agaA, agaI, and agaS genes in the N-acetyl-D-galactosamine and D-galactosamine catabolic pathways in Escherichia coli strains O157:H7 and C

    PubMed Central

    2013-01-01

    Background The catabolic pathways of N-acetyl-D-galactosamine (Aga) and D-galactosamine (Gam) in E. coli were proposed from bioinformatic analysis of the aga/gam regulon in E. coli K-12 and later from studies using E. coli C. Of the thirteen genes in this cluster, the roles of agaA, agaI, and agaS predicted to code for Aga-6-P-deacetylase, Gam-6-P deaminase/isomerase, and ketose-aldolase isomerase, respectively, have not been experimentally tested. Here we study their roles in Aga and Gam utilization in E. coli O157:H7 and in E. coli C. Results Knockout mutants in agaA, agaI, and agaS were constructed to test their roles in Aga and Gam utilization. Knockout mutants in the N-acetylglucosamine (GlcNAc) pathway genes nagA and nagB coding for GlcNAc-6-P deacetylase and glucosamine-6-P deaminase/isomerase, respectively, and double knockout mutants ΔagaA ΔnagA and ∆agaI ∆nagB were also constructed to investigate if there is any interplay of these enzymes between the Aga/Gam and the GlcNAc pathways. It is shown that Aga utilization was unaffected in ΔagaA mutants but ΔagaA ΔnagA mutants were blocked in Aga and GlcNAc utilization. E. coli C ΔnagA could not grow on GlcNAc but could grow when the aga/gam regulon was constitutively expressed. Complementation of ΔagaA ΔnagA mutants with either agaA or nagA resulted in growth on both Aga and GlcNAc. It was also found that ΔagaI, ΔnagB, and ∆agaI ΔnagB mutants were unaffected in utilization of Aga and Gam. Importantly, ΔagaS mutants were blocked in Aga and Gam utilization. Expression analysis of relevant genes in these strains with different genetic backgrounds by real time RT-PCR supported these observations. Conclusions Aga utilization was not affected in ΔagaA mutants because nagA was expressed and substituted for agaA. Complementation of ΔagaA ΔnagA mutants with either agaA or nagA also showed that both agaA and nagA can substitute for each other. The ∆agaI, ∆nagB, and ∆agaI ∆nagB mutants were not affected in Aga and Gam utilization indicating that neither agaI nor nagB is involved in the deamination and isomerization of Gam-6-P. We propose that agaS codes for Gam-6-P deaminase/isomerase in the Aga/Gam pathway. PMID:23634833

  2. The envelopes of amphibian oocytes: physiological modifications in Bufo arenarum.

    PubMed

    Barisone, Gustavo A; Albertali, Isabel E; Sánchez, Mercedes; Cabada, Marcelo O

    2003-02-11

    A characterization of the Amphibian Bufo arenarum oocyte envelope is presented. It was made in different functional conditions of the oocyte: 1) when it has been released into the coelomic cavity during ovulation (surrounded by the coelomic envelope, (CE), 2) after it has passed through the oviduct and is deposed (surrounded by the viteline envelope, (VE), and 3) after oocyte activation (surrounded by the fertilization envelope, (FE). The characterization was made by SDS-PAGE followed by staining for protein and glycoproteins. Labeled lectins were used to identify glycosidic residues both in separated components on nitrocellulose membranes or in intact oocytes and embryos. Proteolytic properties of the content of the cortical granules were also analyzed. After SDS-PAGE of CE and VE, a different protein pattern was observed. This is probably due to the activity of a protease present in the pars recta of the oviduct. Comparison of the SDS-PAGE pattern of VE and FE showed a different mobility for one of the glycoproteins, gp75. VE and FE proved to have different sugar residues in their oligosaccharide chains. Mannose residues are only present in gp120 of the three envelopes. N-acetyl-galactosamine residues are present in all of the components, except for gp69 in the FE. Galactose residues are present mainly in gp120 of FE. Lectin-binding assays indicate the presence of glucosamine, galactose and N-acetyl galactosamine residues and the absence (or non-availability) of N-acetyl-glucosamine or fucose residues on the envelopes surface. The cortical granule product (CGP) shows proteolytic activity on gp75 of the VE.

  3. The envelopes of amphibian oocytes: physiological modifications in Bufo arenarum

    PubMed Central

    Barisone, Gustavo A; Albertali, Isabel E; Sánchez, Mercedes; Cabada, Marcelo O

    2003-01-01

    A characterization of the Amphibian Bufo arenarum oocyte envelope is presented. It was made in different functional conditions of the oocyte: 1) when it has been released into the coelomic cavity during ovulation (surrounded by the coelomic envelope, (CE), 2) after it has passed through the oviduct and is deposed (surrounded by the viteline envelope, (VE), and 3) after oocyte activation (surrounded by the fertilization envelope, (FE). The characterization was made by SDS-PAGE followed by staining for protein and glycoproteins. Labeled lectins were used to identify glycosidic residues both in separated components on nitrocellulose membranes or in intact oocytes and embryos. Proteolytic properties of the content of the cortical granules were also analyzed. After SDS-PAGE of CE and VE, a different protein pattern was observed. This is probably due to the activity of a protease present in the pars recta of the oviduct. Comparison of the SDS-PAGE pattern of VE and FE showed a different mobility for one of the glycoproteins, gp75. VE and FE proved to have different sugar residues in their oligosaccharide chains. Mannose residues are only present in gp120 of the three envelopes. N-acetyl-galactosamine residues are present in all of the components, except for gp69 in the FE. Galactose residues are present mainly in gp120 of FE. Lectin-binding assays indicate the presence of glucosamine, galactose and N-acetyl galactosamine residues and the absence (or non-availability) of N-acetyl-glucosamine or fucose residues on the envelopes surface. The cortical granule product (CGP) shows proteolytic activity on gp75 of the VE. PMID:12694627

  4. Structural characterization of an all-aminosugar-containing capsular polysaccharide from Colwellia psychrerythraea 34H

    PubMed Central

    Casillo, Angela; Ståhle, Jonas; Parrilli, Ermenegilda; Sannino, Filomena; Mitchell, Daniel E.; Pieretti, Giuseppina; Gibson, Matthew I.; Marino, Gennaro; Lanzetta, Rosa; Parrilli, Michelangelo; Widmalm, Göran; Tutino, Maria L.; Corsaro, Maria M.

    2017-01-01

    Colwellia psychrerythraea strain 34H, a Gram-negative bacterium isolated from Arctic marine sediments, is considered a model to study the adaptation to cold environments. Recently, we demonstrated that C. psychrerythraea 34H produces two different extracellular polysaccharides, a capsular polysaccharide and a medium released polysaccharide, which confer cryoprotection to the bacterium. In this study, we report the structure of an additional capsular polysaccharide produced by Colwellia grown at a different temperature. The structure was determined using chemical methods, and one- and two-dimensional NMR spectroscopy. The results showed a trisaccharide repeating unit made up of only amino-sugar residues: N-acetyl-galactosamine, 2,4-diacetamido-2,4,6-trideoxy-glucose (bacillosamine), and 2-acetamido-2-deoxyglucuronic acid with the following structure: →4)-β-d-GlcpNAcA-(1→3)-β-d-QuipNAc4NAc-(1→3)-β-d-GalpNAc-(1→. The 3D model, generated in accordance with 1H,1H-NOE NMR correlations and consisting of ten repeating units, shows a helical structure. In contrast with the other extracellular polysaccharides produced from Colwellia at 4 °C, this molecule displays only a low ice recrystallization inhibition activity. PMID:28161737

  5. RAPID TEST FOR CHITINASE ACTIVITY THAT USES 4-METHYLUMBELLIFERYL-NU-ACETYL-BETA-D-GLUCOSAMINIDE

    EPA Science Inventory

    One hundred and one strains of bacteria from environmental and clinical sources, most of which were Gram negative, were tested for n-acetyl-Beta-D-glucosaminidase activity using a filter paper spot test with 4-methylumbelliferyl-N-acetyl-Beta-D-glucosaminide (4-MNABetaG) as subst...

  6. Evaluation of UDP-GlcN derivatives for selective labeling of 5-(hydroxymethyl)cytosine.

    PubMed

    Dai, Nan; Bitinaite, Jurate; Chin, Hang-Gyeong; Pradhan, Sriharsa; Corrêa, Ivan R

    2013-11-04

    5-(hydroxymethyl)cytosine (5-hmC) is a newly identified oxidative product of 5-methylcytosine (5-mC) in the mammalian genome, and is believed to be an important epigenetic marker influencing a variety of biological processes. In addition to its relatively low abundance, the fluctuation of 5-hmC levels over time during cell development poses a formidable challenge for its accurate mapping and quantification. Here we describe a specific chemoenzymatic approach to 5-hmC detection in DNA samples by using new uridine 5'-diphosphoglucosamine (UDP-GlcN) probes. Our approach requires modification of the glucose moiety of UDP-Glc with small amino groups and transfer of these glucose derivatives to the hydroxy moiety of 5-hmC by using T4 phage glucosyltransferases. We evaluated the transfer efficiencies of three glucosyltransferases (wild-type α- and β-GTs and a Y261L mutant β-GT) with five different UDP-Glc derivatives containing functionalized groups for subsequent bioconjugation and detection. Our results indicate that UDP-6-N3 -Glc, UDP-6-GlcN, and UDP-2-GlcN can be transferred by β-GT with efficiencies similar to that seen with the native UDP-Glc cofactor. 6-N3 -Glc- and 6-GlcN-containing oligonucleotides were selectively labeled with reactive fluorescent probes. In addition, a 2 kb DNA fragment modified with 2-GlcN groups was specifically detected by use of a commercially available antiglucosamine antibody. Alternative substrates for β-GT and correlated glycosyltransferases might prove useful for the study of the function and dynamics of 5-hmC and other modified nucleotides, as well as for multiplex analysis. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Low susceptibility of NC/Nga mice to the lipopolysaccharide-mediated lethality with D-galactosamine sensitization and the involvement of fewer natural killer T cells.

    PubMed

    Koide, Naoki; Morikawa, Akiko; Odkhuu, Erdenezaya; Haque, Abedul; Badamtseren, Battuvshin; Naiki, Yoshikazu; Komatsu, Takayuki; Yoshida, Tomoaki; Yokochi, Takashi

    2012-02-01

    The LPS-mediated lethality of NC/Nga mice, having fewer NKT cells, was examined by using d-galactosamine (d-GalN)-sensitization. The NC/Nga mice were not killed by a simultaneous administration of d-GalN and LPS whereas all C57BL/6 (B6) control mice were killed. The injection of d-GalN and LPS failed to elevate the levels of serum alanine aminotransferase and caspase 3 in the liver tissues of NC/Nga mice. Further, the nitric oxide (NO) level of the d-GalN- and LPS-injected NC/Nga mice was much lower than those of the B6 mice. The expression of an inducible NO synthase (iNOS) was significantly reduced in the livers of NC/Nga mice. However, there was no significant difference in LPS-induced TNF-α production between B6 mice and NC/Nga mice. The NC/Nga mice had an impaired expression of IFN-γ protein and mRNA in response to d-GalN and LPS. The pretreatment with α-galactosylceramide (α-GalCer), which activates Vα14(+) NKT cells and induces the production of IFN-γ, rendered NC/Nga mice more susceptible to the LPS-mediated lethality. The livers of NC/Nga mice had fewer NKT cells compared to B6 mice. Taken together, it is suggested that the resistance of NC/Nga mice to the LPS-mediated lethality with d-GalN sensitization depended on the impaired IFN-γ production caused by fewer NKT cells and reduced NO production that followed.

  8. Influence of sequential modifications and carbohydrate variations in synthetic AFGP analogues on conformation and antifreeze activity.

    PubMed

    Nagel, Lilly; Budke, Carsten; Erdmann, Roman S; Dreyer, Axel; Wennemers, Helma; Koop, Thomas; Sewald, Norbert

    2012-10-01

    Certain Arctic and Antarctic ectotherm species have developed strategies for survival under low temperature conditions that, among others, consist of antifreeze glycopeptides (AFGP). AFGP form a class of biological antifreeze agents that exhibit the ability to inhibit ice growth in vitro and in vivo and, hence, enable life at temperatures below the freezing point. AFGP usually consist of a varying number of (Ala-Ala-Thr)(n) units (n=4-55) with the disaccharide β-D-galactosyl-(1→3)-α-N-acetyl-D-galactosamine glycosidically attached to every threonine side chain hydroxyl group. AFGP have been shown to adopt polyproline II helical conformation. Although this pattern is highly conserved among different species, microheterogeneity concerning the amino acid composition usually occurs; for example, alanine is occasionally replaced by proline in smaller AFGP. The influence of minor and major sequence mutations on conformation and antifreeze activity of AFGP analogues was investigated by replacement of alanine by proline and glycosylated threonine by glycosylated hydroxyproline. The target compounds were prepared by using microwave-enhanced solid phase peptide synthesis. Furthermore, artificial analogues were obtained by copper-catalyzed azide-alkyne cycloaddition (CuAAC): propargyl glycosides were treated with polyproline helix II-forming peptides comprising (Pro-Azp-Pro)(n) units (n=2-4) that contained 4-azidoproline (Azp). The conformations of all analogues were examined by circular dichroism (CD). In addition, microphysical analysis was performed to provide information on their inhibitory effect on ice recrystallization. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Purification and characterization of a novel thermostable mycelial lectin from Aspergillus terricola.

    PubMed

    Singh, Ram Sarup; Bhari, Ranjeeta; Kaur, Hemant Preet; Vig, Monika

    2010-11-01

    Lectin has been isolated from mycelia of Aspergillus terricola by single step purification on porcine stomach mucin-Sepharose 4B affinity column. Lectin could be effectively purified with 75% recovery and 4.47-fold increase in specific activity. Lectin migrated as a single band on SDS-PAGE with an apparent molecular mass of 32.5 kDa. Sugar inhibition assay revealed that the lectin did not strongly interact with most carbohydrates and their derivatives tested while strong binding affinity to D-glucose, D-sucrose, N-acetyl-D-galactosamine, asialofetuin, porcine stomach mucin, and bovine submaxillary mucin was indicated. Neuraminidase and protease treatment to erythrocytes enhanced lectin titre. Lectin activity was stable within the pH range of 7.0-10.5. A. terricola lectin displayed remarkable thermostability and remained unaffected upon incubation at 70 degrees C for 2.5 h. Lectin did not require metal ions for its activity. Incubation with denaturants (urea, thiourea, and guanidine-HCl) substantially reduced lectin activity. Carbohydrate analysis revealed that it is a glycoprotein with 9.76% total sugars.

  10. Role of UDP-N-Acetylglucosamine (GlcNAc) and O-GlcNAcylation of Hyaluronan Synthase 2 in the Control of Chondroitin Sulfate and Hyaluronan Synthesis*

    PubMed Central

    Vigetti, Davide; Deleonibus, Sara; Moretto, Paola; Karousou, Eugenia; Viola, Manuela; Bartolini, Barbara; Hascall, Vincent C.; Tammi, Markku; De Luca, Giancarlo; Passi, Alberto

    2012-01-01

    Hyaluronan (HA) is a glycosaminoglycan present in most tissue microenvironments that can modulate many cell behaviors, including proliferation, migration, and adhesive proprieties. In contrast with other glycosaminoglycans, which are synthesized in the Golgi, HA is synthesized at the plasma membrane by one or more of the three HA synthases (HAS1–3), which use cytoplasmic UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates. Previous studies revealed the importance of UDP-sugars for regulating HA synthesis. Therefore, we analyzed the effect of UDP-GlcNAc availability and protein glycosylation with O-linked N-acetylglucosamine (O-GlcNAcylation) on HA and chondroitin sulfate synthesis in primary human aortic smooth muscle cells. Glucosamine treatment, which increases UDP-GlcNAc availability and protein O-GlcNAcylation, increased synthesis of both HA and chondroitin sulfate. However, increasing O-GlcNAcylation by stimulation with O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate without a concomitant increase of UDP-GlcNAc increased only HA synthesis. We found that HAS2, the main synthase in aortic smooth muscle cells, can be O-GlcNAcylated on serine 221, which strongly increased its activity and its stability (t½ >5 h versus ∼17 min without O-GlcNAcylation). S221A mutation prevented HAS2 O-GlcNAcylation, which maintained the rapid turnover rate even in the presence of GlcN and increased UDP-GlcNAc. These findings could explain the elevated matrix HA observed in diabetic vessels that, in turn, could mediate cell dedifferentiation processes critical in vascular pathologies. PMID:22887999

  11. Identification and Partial Characterization of a Novel UDP-N-Acetylenolpyruvoylglucosamine Reductase/UDP-N-Acetylmuramate:l-Alanine Ligase Fusion Enzyme from Verrucomicrobium spinosum DSM 4136(T).

    PubMed

    Naqvi, Kubra F; Patin, Delphine; Wheatley, Matthew S; Savka, Michael A; Dobson, Renwick C J; Gan, Han Ming; Barreteau, Hélène; Blanot, Didier; Mengin-Lecreulx, Dominique; Hudson, André O

    2016-01-01

    The enzymes involved in synthesizing the bacterial cell wall are attractive targets for the design of antibacterial compounds, since this pathway is essential for bacteria and is absent in animals, particularly humans. A survey of the genome of a bacterium that belongs to the phylum Verrucomicrobia, the closest free-living relative to bacteria from the Chlamydiales phylum, shows genetic evidence that Verrucomicrobium spinosum possesses a novel fusion open reading frame (ORF) annotated by the locus tag (VspiD_010100018130). The ORF, which is predicted to encode the enzymes UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) and UDP-N-acetylmuramate:l-alanine ligase (MurC) that are involved in the cytoplasmic steps of peptidoglycan biosynthesis, was cloned. In vivo analyses using functional complementation showed that the fusion gene was able to complement Escherichia coli murB and murC temperature sensitive mutants. The purified recombinant fusion enzyme (MurB/C Vs ) was shown to be endowed with UDP-N-acetylmuramate:l-alanine ligase activity. In vitro analyses demonstrated that the latter enzyme had a pH optimum of 9.0, a magnesium optimum of 10 mM and a temperature optimum of 44-46°C. Its apparent K m values for ATP, UDP-MurNAc, and l-alanine were 470, 90, and 25 μM, respectively. However, all attempts to demonstrate an in vitro UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) activity were unsuccessful. Lastly, Hidden Markov Model-based similarity search and phylogenetic analysis revealed that this fusion enzyme could only be identified in specific lineages within the Verrucomicrobia phylum.

  12. Identification and Partial Characterization of a Novel UDP-N-Acetylenolpyruvoylglucosamine Reductase/UDP-N-Acetylmuramate:l-Alanine Ligase Fusion Enzyme from Verrucomicrobium spinosum DSM 4136T

    PubMed Central

    Naqvi, Kubra F.; Patin, Delphine; Wheatley, Matthew S.; Savka, Michael A.; Dobson, Renwick C. J.; Gan, Han Ming; Barreteau, Hélène; Blanot, Didier; Mengin-Lecreulx, Dominique; Hudson, André O.

    2016-01-01

    The enzymes involved in synthesizing the bacterial cell wall are attractive targets for the design of antibacterial compounds, since this pathway is essential for bacteria and is absent in animals, particularly humans. A survey of the genome of a bacterium that belongs to the phylum Verrucomicrobia, the closest free-living relative to bacteria from the Chlamydiales phylum, shows genetic evidence that Verrucomicrobium spinosum possesses a novel fusion open reading frame (ORF) annotated by the locus tag (VspiD_010100018130). The ORF, which is predicted to encode the enzymes UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) and UDP-N-acetylmuramate:l-alanine ligase (MurC) that are involved in the cytoplasmic steps of peptidoglycan biosynthesis, was cloned. In vivo analyses using functional complementation showed that the fusion gene was able to complement Escherichia coli murB and murC temperature sensitive mutants. The purified recombinant fusion enzyme (MurB/CVs) was shown to be endowed with UDP-N-acetylmuramate:l-alanine ligase activity. In vitro analyses demonstrated that the latter enzyme had a pH optimum of 9.0, a magnesium optimum of 10 mM and a temperature optimum of 44–46°C. Its apparent Km values for ATP, UDP-MurNAc, and l-alanine were 470, 90, and 25 μM, respectively. However, all attempts to demonstrate an in vitro UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) activity were unsuccessful. Lastly, Hidden Markov Model-based similarity search and phylogenetic analysis revealed that this fusion enzyme could only be identified in specific lineages within the Verrucomicrobia phylum. PMID:27047475

  13. Glycoprotein biosynthesis in animal cells grown in suspension culture. Assembly of lipid-linked saccharides and formation of protein-bound 'high-mannose' oligosaccharides.

    PubMed Central

    Bailey, D S; Burke, J; Sinclair, R; Mukherjee, B B

    1981-01-01

    Glycoprotein biosynthesis was studied with mouse L-cells grown in suspension culture. Glucose-deprived cells incorporated [3H]mannose into 'high-mannose' protein-bound oligosaccharides and a few relatively high-molecular-weight lipid-linked oligosaccharides. The latter were retained by DEAE-cellulose and turned over quite slowly during pulse--chase experiments. Increased heterogeneity in size of lipid-linked oligosaccharides developed during prolonged glucose deprivation. Sequential elongation of lipid-linked oligosaccharides was also observed, and conditions that prevented the assembly of the higher lipid-linked oligosaccharides also prevented the formation of the larger protein-bound 'high-mannose' oligosaccharides. In parallel experiments, [3H]mannose was incorporated into a total polyribosome fraction, suggesting that mannose residues were transferred co-translationally to nascent protein. Membrane preparations from these cells catalysed the assembly from UDP-N-acetyl-D-[6-3H]glucosamine and GDP-D-[U-14C]mannose of polyisoprenyl diphosphate derivatives whose oligosaccharide moieties were heterogeneous in size. Elongation of the N-acetyl-D-[6-3H]glucosamine-initiated glycolipids with mannose residues produced several higher lipid-linked oligosaccharides similar to those seen during glucose deprivation in vivo. Glucosylation of these mannose-containing oligosaccharides from UDP-D-[6-3H]glucose was restricted to those of a relatively high molecular weight. Protein-bound saccharides formed in vitro were mainly smaller in size than those assembled on the lipid acceptors. These results support the involvement of lipid-linked saccharides in the synthesis of asparagine-linked glycoproteins, but show both in vivo and in vitro that protein-bound 'high-mannose' oligosaccharide formation can occur independently of higher lipid-linked oligosaccharide synthesis. PMID:7306042

  14. Structural Elucidation and Biological Activity of a Highly Regular Fucosylated Glycosaminoglycan from the Edible Sea Cucumber Stichopus herrmanni.

    PubMed

    Li, Xiaomei; Luo, Lan; Cai, Ying; Yang, Wenjiao; Lin, Lisha; Li, Zi; Gao, Na; Purcell, Steven W; Wu, Mingyi; Zhao, Jinhua

    2017-10-25

    Edible sea cucumbers are widely used as a health food and medicine. A fucosylated glycosaminoglycan (FG) was purified from the high-value sea cucumber Stichopus herrmanni. Its physicochemical properties and structure were analyzed and characterized by chemical and instrumental methods. Chemical analysis indicated that this FG with a molecular weight of ∼64 kDa is composed of N-acetyl-d-galactosamine, d-glucuronic acid (GlcA), and l-fucose. Structural analysis clarified that the FG contains the chondroitin sulfate E-like backbone, with mostly 2,4-di-O-sulfated (85%) and some 3,4-di-O-sulfated (10%) and 4-O-sulfated (5%) fucose side chains that link to the C3 position of GlcA. This FG is structurally highly regular and homogeneous, differing from the FGs of other sea cucumbers, for its sulfation patterns are simpler. Biological activity assays indicated that it is a strong anticoagulant, inhibiting thrombin and intrinsic factor Xase. Our results expand the knowledge on structural types of FG and illustrate its biological activity as a functional food material.

  15. A lectin histochemical study on carbohydrate moieties of the gonadotropin-like substance in the epithelial cells of Hatschek's pit of Branchiostoma belcheri

    NASA Astrophysics Data System (ADS)

    Fang, Y. Q.; Welsch, U.

    1997-03-01

    The present light microscopic lectin, histochemical study suggests for the first time that the vertebrate gonadotropin-like substance in the basal part of the epithelial cells of Hatschek's pit is a sialic acid-containing glycoprotein. The binding intensity of the epithelial cells in Hatschek's pit to 6 lectins ( Limulus polyphemus agglutinin (LPA), Wheat germ agglutinin (WGA), Helix pomatia agglutinin (HPA), Concanavalin A (Con A), Ulex europaeus agglutinin I (UEA I) and Ricinus communis agglutinin I (RCA I)) indicate that the carbohydrate composition of the gonadotrophic glycoprotein is similar to that of mammals and fish, and that N-acetyl-D-galactosamine, sialic acid, glucosamine, D-mannose and L-fucose are components of the carbohydrate portion.

  16. Human acetyl-CoA:glucosamine-6-phosphate N-acetyltransferase 1 has a relaxed donor specificity and transfers acyl groups up to four carbons in length.

    PubMed

    Brockhausen, Inka; Nair, Dileep G; Chen, Min; Yang, Xiaojing; Allingham, John S; Szarek, Walter A; Anastassiades, Tassos

    2016-04-01

    Glucosamine-6-phosphate N-acetyltransferase1 (GNA1) catalyses the transfer of an acetyl group from acetyl coenzyme A (AcCoA) to glucosamine-6-phosphate (GlcN6P) to form N-acetylglucosamine-6-phosphate (GlcNAc6P), which is an essential intermediate in UDP-GlcNAc biosynthesis. An analog of GlcNAc, N-butyrylglucosamine (GlcNBu) has shown healing properties for bone and articular cartilage in animal models of arthritis. The goal of this work was to examine whether GNA1 has the ability to transfer a butyryl group from butyryl-CoA to GlcN6P to form GlcNBu6P, which can then be converted to GlcNBu. We developed fluorescent and radioactive assays and examined the donor specificity of human GNA1. Acetyl, propionyl, n-butyryl, and isobutyryl groups were all transferred to GlcN6P, but isovaleryl-CoA and decanoyl-CoA did not serve as donor substrates. Site-specific mutants were produced to examine the role of amino acids potentially affecting the size and properties of the AcCoA binding pocket. All of the wild type and mutant enzymes showed activities of both acetyl and butyryl transfer and can therefore be used for the enzymatic synthesis of GlcNBu for biomedical applications.

  17. Effects of plasma glycosyltransferase on the ABO(H) blood group antigens of human von Willebrand factor.

    PubMed

    Kano, Taiki; Kondo, Kazunao; Hamako, Jiharu; Matsushita, Fumio; Sakai, Kazuya; Matsui, Taei

    2018-04-04

    Von Willebrand factor (VWF) is one of the plasma protein carrying ABO(H) blood group antigens, but the combining process of these antigens is not clear. In the present study, we examined whether plasma glycosyltransferase affects the blood group antigens on VWF. VWF expressing H-antigen (H-VWF) from blood group O and bovine serum albumin conjugated with H-antigen (H-BSA) were incubated with recombinant α1-3-N-acetylgalactosaminyltransferase (rA-transferase) and A-plasma with or without an additional UDP-GalNAc. Transformed antigens were detected by western blotting and ELISA, using an anti-A antibody. Both H-VWF and H-BSA acquired the A-antigen after incubation with rA-transferase and UDP-GalNAc. Incubation with A-plasma very weakly converted the H-antigen on BSA and VWF to A-antigen only in the presence of supplemented UDP-GalNAc. This conversion was enhanced on desialylation of H-VWF. These results indicate that sugar chains of plasma VWF can be modified by the external glycosyltransferase, but that plasma glycosyltransferase has no effect on the blood group antigens of VWF due to its low activity and the lack of donor sugars. Further, sialic acid residues of VWF may exert a protective effect against post-translational glycosylation. Our results clearly exclude the possibility that blood group antigens of VWF are constructed extracellularly in plasma.

  18. Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice.

    PubMed

    Prakash, Thazha P; Graham, Mark J; Yu, Jinghua; Carty, Rick; Low, Audrey; Chappell, Alfred; Schmidt, Karsten; Zhao, Chenguang; Aghajan, Mariam; Murray, Heather F; Riney, Stan; Booten, Sheri L; Murray, Susan F; Gaus, Hans; Crosby, Jeff; Lima, Walt F; Guo, Shuling; Monia, Brett P; Swayze, Eric E; Seth, Punit P

    2014-07-01

    Triantennary N-acetyl galactosamine (GalNAc, GN3: ), a high-affinity ligand for the hepatocyte-specific asialoglycoprotein receptor (ASGPR), enhances the potency of second-generation gapmer antisense oligonucleotides (ASOs) 6-10-fold in mouse liver. When combined with next-generation ASO designs comprised of short S-cEt (S-2'-O-Et-2',4'-bridged nucleic acid) gapmer ASOs, ∼ 60-fold enhancement in potency relative to the parent MOE (2'-O-methoxyethyl RNA) ASO was observed. GN3: -conjugated ASOs showed high affinity for mouse ASGPR, which results in enhanced ASO delivery to hepatocytes versus non-parenchymal cells. After internalization into cells, the GN3: -ASO conjugate is metabolized to liberate the parent ASO in the liver. No metabolism of the GN3: -ASO conjugate was detected in plasma suggesting that GN3: acts as a hepatocyte targeting prodrug that is detached from the ASO by metabolism after internalization into the liver. GalNAc conjugation also enhanced potency and duration of the effect of two ASOs targeting human apolipoprotein C-III and human transthyretin (TTR) in transgenic mice. The unconjugated ASOs are currently in late stage clinical trials for the treatment of familial chylomicronemia and TTR-mediated polyneuropathy. The ability to translate these observations in humans offers the potential to improve therapeutic index, reduce cost of therapy and support a monthly dosing schedule for therapeutic suppression of gene expression in the liver using ASOs. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. N-Terminal Acetylation Inhibits Protein Targeting to the Endoplasmic Reticulum

    PubMed Central

    Forte, Gabriella M. A.; Pool, Martin R.; Stirling, Colin J.

    2011-01-01

    Amino-terminal acetylation is probably the most common protein modification in eukaryotes with as many as 50%–80% of proteins reportedly altered in this way. Here we report a systematic analysis of the predicted N-terminal processing of cytosolic proteins versus those destined to be sorted to the secretory pathway. While cytosolic proteins were profoundly biased in favour of processing, we found an equal and opposite bias against such modification for secretory proteins. Mutations in secretory signal sequences that led to their acetylation resulted in mis-sorting to the cytosol in a manner that was dependent upon the N-terminal processing machinery. Hence N-terminal acetylation represents an early determining step in the cellular sorting of nascent polypeptides that appears to be conserved across a wide range of species. PMID:21655302

  20. Biosynthesis of UDP-GlcNAc, UndPP-GlcNAc and UDP-GlcNAcA Involves Three Easily Distinguished 4-Epimerase Enzymes, Gne, Gnu and GnaB

    PubMed Central

    Cunneen, Monica M.; Liu, Bin; Wang, Lei; Reeves, Peter R.

    2013-01-01

    We have undertaken an extensive survey of a group of epimerases originally named Gne, that were thought to be responsible for inter-conversion of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc). The analysis builds on recent work clarifying the specificity of some of these epimerases. We find three well defined clades responsible for inter-conversion of the gluco- and galacto-configuration at C4 of different N-acetylhexosamines. Their major biological roles are the formation of UDP-GalNAc, UDP-N-acetylgalactosaminuronic acid (UDP-GalNAcA) and undecaprenyl pyrophosphate-N-acetylgalactosamine (UndPP-GalNAc) from the corresponding glucose forms. We propose that the clade of UDP-GlcNAcA epimerase genes be named gnaB and the clade of UndPP-GlcNAc epimerase genes be named gnu, while the UDP-GlcNAc epimerase genes retain the name gne. The Gne epimerases, as now defined after exclusion of those to be named GnaB or Gnu, are in the same clade as the GalE 4-epimerases for inter-conversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal). This work brings clarity to an area that had become quite confusing. The identification of distinct enzymes for epimerisation of UDP-GlcNAc, UDP-GlcNAcA and UndPP-GlcNAc will greatly facilitate allocation of gene function in polysaccharide gene clusters, including those found in bacterial genome sequences. A table of the accession numbers for the 295 proteins used in the analysis is provided to enable the major tree to be regenerated with the inclusion of additional proteins of interest. This and other suggestions for annotation of 4-epimerase genes will facilitate annotation. PMID:23799153

  1. Inter vs. intraglycosidic acetal linkages control sulfation pattern in semi-synthetic chondroitin sulfate.

    PubMed

    Laezza, Antonio; De Castro, Cristina; Parrilli, Michelangelo; Bedini, Emiliano

    2014-11-04

    Microbial-sourced unsulfated chondroitin could be converted into chondroitin sulfate (CS) polysaccharide by a multi-step strategy relying upon benzylidenation and acetylation reactions as key-steps for its regioselective protection. By conducting the two reactions one- or two-pots, CSs with different sulfation patterns could be obtained at the end of the semi-synthesis. In particular, a CS polysaccharide possessing sulfate groups randomly distributed between positions 4 and 6 of N-acetyl-galactosamine (GalNAc) units could be obtained through the two-pots route, whereas the one-pot pathway allowed an additional sulfation at position 3 of some glucuronic acid (GlcA) units. This difference was ascribed to the stabilization of a labile interglycosidic benzylidene acetal involving positions O-3 and O-6 of some GlcA and GalNAc, respectively, when the benzylidene-acetylation reactions were conducted in a one-pot fashion. Isolation and characterization of a polysaccharide intermediate showing interglycosidic acetal moieties was accomplished. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Tn (N-acetyl-d-galactosamine-O-serine/threonine) immunization protects against hyperoxia-induced lung injury in adult mice through inhibition of the nuclear factor kappa B activity.

    PubMed

    Chen, Chung-Ming; Hwang, Jaulang; Chou, Hsiu-Chu; Shiah, Her-Shyong

    2018-06-01

    Prolonged hyperoxia exposure leads to inflammation and acute lung injury. Since hyperoxia activates nuclear factor kappa B (NF-κB) and proinflammatory mediators in lung fibroblasts and murine lungs, and proinflammatory cytokines upregulate Tn (N-acetyl-d-galactosamine-O-serine/threonine) expression in human gingival fibroblasts. We hypothesized connections exist between Tn expression and inflammation regulation. Thus, we immunized adult mice with Tn antigen to examine whether Tn vaccine can protect against hyperoxia-induced lung injury by inhibiting NF-κB activity and cytokine expression through the action of anti-Tn antibodies. Five-week-old female C57BL/6NCrlBltw mice were subcutaneously immunized with Tn antigen four times at biweekly intervals, and one additional immunization was performed at 1 week after the fourth immunization. Four days after the last immunization, mice were exposed to room air (RA) or hyperoxia (100% O 2 ) for up to 96 h. Four study groups were examined: carrier protein + RA (n = 6), Tn vaccine + RA (n = 6), carrier protein + O 2 (n = 6), and Tn vaccine + O 2 (n = 5). We observed that hyperoxia exposure reduced body weight, increased alveolar protein and cytokine (interleukin-6 and tumor necrosis factor-α) levels, increased mean linear intercept (MLI) values and lung injury scores, and increased lung NF-κB activity. By contrast, Tn immunization increased serum anti-Tn antibody titers and reduced the cytokine levels, MLI values, and lung injury scores. Furthermore, the alleviation of lung injury was accompanied by a reduction in NF-κB activity. Therefore, we proposed that Tn immunization attenuates hyperoxia-induced lung injury in adult mice by inhibiting the NF-κB activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Regulatory insights into the production of UDP-N-acetylglucosamine by Lactobacillus casei

    PubMed Central

    Rodríguez-Díaz, Jesús; Rubio-del-Campo, Antonio; Yebra, María J.

    2012-01-01

    UDP-N-acetylglucosamine (UDP-GlcNAc) is an important sugar nucleotide used as a precursor of cell wall components in bacteria, and as a substrate in the synthesis of oligosaccharides in eukaryotes. In bacteria UDP-GlcNAc is synthesized from the glycolytic intermediate D-fructose-6-phosphate (fructose-6P) by four successive reactions catalyzed by three enzymes: glucosamine-6-phosphate synthase (GlmS), phosphoglucosamine mutase (GlmM) and the bi-functional enzyme glucosamine-1-phosphate acetyltransferase/ N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). We have previously reported a metabolic engineering strategy in Lactobacillus casei directed to increase the intracellular levels of UDP-GlcNAc by homologous overexpression of the genes glmS, glmM and glmU. One of the most remarkable features regarding the production of UDP-GlcNAc in L. casei was to find multiple regulation points on its biosynthetic pathway: (1) regulation by the NagB enzyme, (2) glmS RNA specific degradation through the possible participation of a glmS riboswitch mechanism, (3) regulation of the GlmU activity probably by end product inhibition and (4) transcription of glmU. PMID:22825354

  4. Catalytic properties and heat stabilities of novel recombinant human N-acetyltransferase 2 allozymes support existence of genetic heterogeneity within the slow acetylator phenotype.

    PubMed

    Hein, David W; Doll, Mark A

    2017-08-01

    Human N-acetyltransferase 2 (NAT2) catalyzes the N-acetylation of numerous aromatic amine drugs such as sulfamethazine (SMZ) and hydrazine drugs such as isoniazid (INH). NAT2 also catalyzes the N-acetylation of aromatic amine carcinogens such as 2-aminofluorene and the O- and N,O-acetylation of aromatic amine and heterocyclic amine metabolites. Genetic polymorphism in NAT2 modifies drug efficacy and toxicity as well as cancer risk. Acetyltransferase catalytic activities and heat stability associated with six novel NAT2 haplotypes (NAT2*6C, NAT2*14C, NAT2*14D, NAT2*14E, NAT2*17, and NAT2*18) were compared with that of the reference NAT2*4 haplotype following recombinant expression in Escherichia coli. N-acetyltransferase activities towards SMZ and INH were significantly (p < 0.0001) lower when catalyzed by the novel recombinant human NAT2 allozymes compared to NAT2 4. SMZ and INH N-acetyltransferase activities catalyzed by NAT2 14C and NAT2 14D were significantly lower (p < 0.001) than catalyzed by NAT2 6C and NAT2 14E. N-Acetylation catalyzed by recombinant human NAT2 17 was over several hundred-fold lower than by recombinant NAT2 4 precluding measurement of its kinetic or heat inactivation constants. Similar results were observed for the O-acetylation of N-hydroxy-2-aminofluorene and N-hydroxy-2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine and the intramolecular N,O-acetylation of N-hydroxy-N-acetyl-2-aminofluorene. The apparent V max of the novel recombinant NAT2 allozymes NAT2 6C, NAT2 14C, NAT2 14D, and NAT2 14E towards AF, 4-aminobiphenyl (ABP), and 3,2'-dimethyl-4-aminobiphenyl (DMABP) were each significantly (p < 0.001) lower while their apparent K m values did not differ significantly (p > 0.05) from recombinant NAT2 4. The apparent V max catalyzed by NAT2 14C and NAT2 14D were significantly lower (p < 0.05) than the apparent V max catalyzed by NAT2 6C and NAT2 14E towards AF, ABP, and DMABP. Heat inactivation rate constants for recombinant human NAT2 14C, 14D, 14E, and 18 were significantly (p < 0.05) higher than NAT2 4. These results provide further evidence of genetic heterogeneity within the NAT2 slow acetylator phenotype.

  5. Utilization of carbon sources by clinical isolates of Aeromonas.

    PubMed

    Prediger, Karoline C; Surek, Monica; Dallagassa, Cibelle B; Assis, Flávia E A; Piantavini, Mario S; Souza, Emanuel M; Pedrosa, Fábio O; Farah, Sônia M S S; Alberton, Dayane; Fadel-Picheth, Cyntia M T

    2017-04-01

    Bacteria in the genus Aeromonas are primarily aquatic organisms; however, some species can cause diseases in humans, ranging from wound infections to septicemia, of which diarrhea is the most common condition. The ability to use a variety of carbon substrates is advantageous for pathogenic bacteria. Therefore, we used Biolog GN2 microplates to analyze the ability of 103 clinical, predominantly diarrheal, isolates of Aeromonas to use various carbon sources, and we verified whether, among the substrates metabolized by these strains, there were some endogenous to the human intestine. The results indicate that Aeromonas present great diversity in the utilization of carbon sources, and that they preferentially use carbohydrates and amino acids as carbon sources. Among the carbon sources metabolized by Aeromonas in vitro, some were found to be components of intestinal mucin, including aspartic acid, glutamic acid, l-serine, galactose, N-acetyl-glucosamine, and glucose, which were used by all strains tested. Additionally, mannose, d-serine, proline, threonine, and N-acetyl-galactosamine were used by several strains. The potential to metabolize substrates endogenous to the intestine may contribute to Aeromonas' capacity to grow in and colonize the intestine. We speculate that this may help explain the ability of Aeromonas to cause diarrhea.

  6. Hepatoprotective activity of Tridax procumbens against d-galactosamine/lipopolysaccharide-induced hepatitis in rats.

    PubMed

    Ravikumar, Vilwanathan; Shivashangari, Kanchi Subramanian; Devaki, Thiruvengadam

    2005-10-03

    The hepatoprotective activity of aerial parts of Tridax procumbens was investigated against d-Galactosamine/Lipopolysaccharide (d-GalN/LPS) induced hepatitis in rats. d-GalN/LPS (300 mg/kg body weight/30 microg/kg body weight)-induced hepatic damage was manifested by a significant increase in the activities of marker enzymes (aspartate transaminase, alanine transaminase, alkaline phosphatase, lactate dehydrogenase and gamma glutamyl transferase) and bilirubin level in serum and lipids both in serum and liver. Pretreatment of rats with a chloroform insoluble fraction from ethanolic extract of Tridax procumbens reversed these altered parameters to normal values. The biochemical observations were supplemented by histopathological examination of liver sections. Results of this study revealed that Tridax procumbens could afford a significant protection in the alleviation of d-GalN/LPS-induced hepatocellular injury.

  7. Beneficial effect of garlic on D-galactosamine and lipopolysaccharide-induced acute hepatic failure in male albino rats.

    PubMed

    Abdel-Salam, Bahaa K A; Sayed, Abd-Alla A A

    2012-01-01

    Activation of the pro-inflammatory and anti-inflammatory cytokine cascade, including tumour necrosis factor (TNF)-alpha and interleukin (IL)-4, is considered to play an important role in severe liver injury. Kupffer cells, resident macrophages of the liver, activated with lipopolysaccharide (LPS) release pro-inflammatory cytokine. D-Galactosamine (D-GalN), a hepatocyte-specific inhibitor of RNA synthesis, is known to sensitise animals to the lethal effects of LPS. In the present study we seek to reverse some altered parameters, immunological and histopathological, to normal values of rats pre-treated with garlic. Acute hepatic failure was induced in male albino rats by the intraperitoneal injection of 500 mg D-GalN and 50 μg LPS/kg body weight. Expression levels of TNF-α and IL-4 were detected by ELISA. Leukocytes proliferation was carried out by differential count. For histopathology, liver sections were stained with haematoxylin and eosin. Data were analysed by SPSS program version 13.0. The data showed significant increase in the numbers of granulocytes, but with significant decreases in lymphocyte and monocytes proliferation and the TNF-alpha and IL-4 levels in D-GalN/LPS-induced group. Garlic pre-treatment of liver-injured rats induced significant amelioration in the numbers of monocytes and lymphocytes, with significant increase in granulocytes numbers, TNF-α level and IL-4 level. Results of this study revealed that garlic could afford a significant protection in the alleviation of D-GalN/LPS-induced hepatocellular injury. Copyright © 2011 SEICAP. Published by Elsevier Espana. All rights reserved.

  8. Fluorescent molecularly imprinted polymers as plastic antibodies for selective labeling and imaging of hyaluronan and sialic acid on fixed and living cells.

    PubMed

    Panagiotopoulou, Maria; Kunath, Stephanie; Medina-Rangel, Paulina Ximena; Haupt, Karsten; Tse Sum Bui, Bernadette

    2017-02-15

    Altered glycosylation levels or distribution of sialic acids (SA) or hyaluronan in animal cells are indicators of pathological conditions like infection or malignancy. We applied fluorescently-labeled molecularly imprinted polymer (MIP) particles for bioimaging of fixed and living human keratinocytes, to localize hyaluronan and sialylation sites. MIPs were prepared with the templates D-glucuronic acid (GlcA), a substructure of hyaluronan, and N-acetylneuraminic acid (NANA), the most common member of SA. Both MIPs were found to be highly selective towards their target monosaccharides, as no cross-reactivity was observed with other sugars like N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, D-glucose and D-galactose, present on the cell surface. The dye rhodamine and two InP/ZnS quantum dots (QDs) emitting in the green and in the red regions were used as fluorescent probes. Rhodamine-MIPGlcA and rhodamine-MIPNANA were synthesized as monodispersed 400nm sized particles and were found to bind selectively their targets located in the extracellular region, as imaged by epifluorescence and confocal microscopy. In contrast, when MIP-GlcA and MIP-NANA particles with a smaller size (125nm) were used, the MIPs being synthesized as thin shells around green and red emitting QDs respectively, it was possible to stain the intracellular and pericellular regions as well. In addition, simultaneous dual-color imaging with the two different colored QDs-MIPs was demonstrated. Importantly, the MIPs were not cytotoxic and did not affect cell viability; neither was the cells morphology affected as demonstrated by live cell imaging. These synthetic receptors could offer a new and promising imaging tool to monitor disease progression. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Design and synthesis of novel N-benzylidenesulfonohydrazide inhibitors of MurC and MurD as potential antibacterial agents.

    PubMed

    Frlan, Rok; Kovac, Andreja; Blanot, Didier; Gobec, Stanislav; Pecar, Slavko; Obreza, Ales

    2008-01-11

    A series of novel N-benzylidenesulfonohydrazide compounds were designed and synthesized as inhibitors of UDP-N-acetylmuramic acid: L-alanine ligase (MurC) and UDP-N-acetylmuramoyl-L-alanine: D-glutamate ligase (MurD) from E. coli, involved in the biosynthesis of bacterial cell-walls. Some compounds possessed inhibitory activity against both enzymes with IC(50) values as low as 30 microM. In addition, a new, one-pot synthesis of amidobenzaldehydes is reported.

  10. CRISPR/Cas9-Mediated Genomic Deletion of the Beta-1, 4 N-acetylgalactosaminyltransferase 1 Gene in Murine P19 Embryonal Carcinoma Cells Results in Low Sensitivity to Botulinum Neurotoxin Type C.

    PubMed

    Tsukamoto, Kentaro; Ozeki, Chikako; Kohda, Tomoko; Tsuji, Takao

    2015-01-01

    Botulinum neurotoxins produced by Clostridium botulinum cause flaccid paralysis by inhibiting neurotransmitter release at peripheral nerve terminals. Previously, we found that neurons derived from the murine P19 embryonal carcinoma cell line exhibited high sensitivity to botulinum neurotoxin type C. In order to prove the utility of P19 cells for the study of the intracellular mechanism of botulinum neurotoxins, ganglioside-knockout neurons were generated by deletion of the gene encoding beta-1,4 N-acetylgalactosaminyltransferase 1 in P19 cells using the clustered regularly interspaced short palindromic repeats combined with Cas9 (CRISPR/Cas9) system. By using this system, knockout cells could be generated more easily than with previous methods. The sensitivity of the generated beta-1,4 N-acetylgalactosaminyltransferase 1-depleted P19 neurons to botulinum neurotoxin type C was decreased considerably, and the exogenous addition of the gangliosides GD1a, GD1b, and GT1b restored the susceptibility of P19 cells to botulinum neurotoxin type C. In particular, addition of a mixture of these three ganglioside more effectively recovered the sensitivity of knockout cells compared to independent addition of GD1a, GD1b, or GT1b. Consequently, the genome-edited P19 cells generated by the CRISPR/Cas9 system were useful for identifying and defining the intracellular molecules involved in the toxic action of botulinum neurotoxins.

  11. Identification and Functional Characterization of N-Terminally Acetylated Proteins in Drosophila melanogaster

    PubMed Central

    Gerrits, Bertran; Roschitzki, Bernd; Mohanty, Sonali; Niederer, Eva M.; Laczko, Endre; Timmerman, Evy; Lange, Vinzenz; Hafen, Ernst; Aebersold, Ruedi; Vandekerckhove, Joël; Basler, Konrad; Ahrens, Christian H.; Gevaert, Kris; Brunner, Erich

    2009-01-01

    Protein modifications play a major role for most biological processes in living organisms. Amino-terminal acetylation of proteins is a common modification found throughout the tree of life: the N-terminus of a nascent polypeptide chain becomes co-translationally acetylated, often after the removal of the initiating methionine residue. While the enzymes and protein complexes involved in these processes have been extensively studied, only little is known about the biological function of such N-terminal modification events. To identify common principles of N-terminal acetylation, we analyzed the amino-terminal peptides from proteins extracted from Drosophila Kc167 cells. We detected more than 1,200 mature protein N-termini and could show that N-terminal acetylation occurs in insects with a similar frequency as in humans. As the sole true determinant for N-terminal acetylation we could extract the (X)PX rule that indicates the prevention of acetylation under all circumstances. We could show that this rule can be used to genetically engineer a protein to study the biological relevance of the presence or absence of an acetyl group, thereby generating a generic assay to probe the functional importance of N-terminal acetylation. We applied the assay by expressing mutated proteins as transgenes in cell lines and in flies. Here, we present a straightforward strategy to systematically study the functional relevance of N-terminal acetylations in cells and whole organisms. Since the (X)PX rule seems to be of general validity in lower as well as higher eukaryotes, we propose that it can be used to study the function of N-terminal acetylation in all species. PMID:19885390

  12. Effect of Tridax procumbens on liver antioxidant defense system during lipopolysaccharide-induced hepatitis in D-galactosamine sensitised rats.

    PubMed

    Ravikumar, Vilwanathan; Shivashangari, Kanchi Subramanian; Devaki, Thiruvengadam

    2005-01-01

    The present study was carried out to assess the effect of chloroform insoluble fraction of ethanolic extract of Tridax procumbens (TP) against D-Galactosamine/Lipopolysaccharide (D-GalN/LPS)-induced hepatitis in rats. Induction of rats with D-GalN/LPS (300 mg/kg body weight/30 microg/kg body weight) led to a marked increase in lipid peroxidation as measured by thiobarbituric acid reactive substances (TBARS) in liver. Further there was a decline in the activities of enzymic antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, glutathione s-transferase and the levels of non-enzymic antioxidants namely reduced glutathione, vitamin C and vitamin E. These biochemical alterations were normalised upon pretreatment with TP extract. Thus, the above results suggest that TP (300 mg/kg body weight orally for 10 days) is very effective in allievating the D-GalN/LPS-induced oxidative stress suggesting its antioxidant property.

  13. Identification of the uridine 5'-diphosphoglucose (UDP-Glc) binding subunit of cellulose synthase in Acetobacter xylinum using the photoaffinity probe 5-azido-UDP-Glc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, F.C.; Brown, R.M. Jr.; Drake, R.R. Jr.

    1990-03-25

    Photoaffinity labeling of purified cellulose synthase with (beta-32P)5-azidouridine 5'-diphosphoglucose (UDP-Glc) has been used to identify the UDP-Glc binding subunit of the cellulose synthase from Acetobacter xylinum strain ATCC 53582. The results showed exclusive labeling of an 83-kDa polypeptide. Photoinsertion of (beta-32P)5-azido-UDP-Glc is stimulated by the cellulose synthase activator, bis-(3'----5') cyclic diguanylic acid. Addition of increasing amounts of UDP-Glc prevents photolabeling of the 83-kDa polypeptide. The reversible and photocatalyzed binding of this photoprobe also showed saturation kinetics. These studies demonstrate that the 83-kDa polypeptide is the catalytic subunit of the cellulose synthase in A. xylinum strain ATCC 53582.

  14. Characterization and expression analysis of Galnts in developing Strongylocentrotus purpuratus embryos

    PubMed Central

    Famiglietti, Amber L.; Wei, Zheng; Beres, Thomas M.; Milac, Adina L.; Tran, Duy T.; Patel, Divya; Angerer, Robert C.; Angerer, Lynne M.

    2017-01-01

    Mucin-type O-glycosylation is a ubiquitous posttranslational modification in which N-Acetylgalactosamine (GalNAc) is added to the hydroxyl group of select serine or threonine residues of a protein by the family of UDP-GalNAc:Polypeptide N-Acetylgalactosaminyltransferases (GalNAc-Ts; EC 2.4.1.41). Previous studies demonstrate that O-glycosylation plays essential roles in protein function, cell-cell interactions, cell polarity and differentiation in developing mouse and Drosophila embryos. Although this type of protein modification is highly conserved among higher eukaryotes, little is known about this family of enzymes in echinoderms, basal deuterostome relatives of the chordates. To investigate the potential role of GalNAc-Ts in echinoderms, we have begun the characterization of this enzyme family in the purple sea urchin, S. purpuratus. We have fully or partially cloned a total of 13 genes (SpGalnts) encoding putative sea urchin SpGalNAc-Ts, and have confirmed enzymatic activity of five recombinant proteins. Amino acid alignments revealed high sequence similarity among sea urchin and mammalian glycosyltransferases, suggesting the presence of putative orthologues. Structural models underscored these similarities and helped reconcile some of the substrate preferences observed. Temporal and spatial expression of SpGalnt transcripts, was studied by whole-mount in situ hybridization. We found that many of these genes are transcribed early in developing embryos, often with restricted expression to the endomesodermal region. Multicolor fluorescent in situ hybridization (FISH) demonstrated that transcripts encoding SpGalnt7-2 co-localized with both Endo16 (a gene expressed in the endoderm), and Gcm (a gene expressed in secondary mesenchyme cells) at the early blastula stage, 20 hours post fertilization (hpf). At late blastula stage (28 hpf), SpGalnt7-2 message co-expresses with Gcm, suggesting that it may play a role in secondary mesenchyme development. We also discovered that morpholino-mediated knockdown of SpGalnt13 transcripts, results in a deficiency of embryonic skeleton and neurons, suggesting that mucin-type O-glycans play essential roles during embryonic development in S. purpuratus. PMID:28448610

  15. Clostridium botulinum serotype D neurotoxin and toxin complex bind to bovine aortic endothelial cells via sialic acid.

    PubMed

    Yoneyama, Tohru; Miyata, Keita; Chikai, Tomoyuki; Mikami, Akifumi; Suzuki, Tomonori; Hasegawa, Kimiko; Ikeda, Toshihiko; Watanabe, Toshihiro; Ohyama, Tohru; Niwa, Koichi

    2008-12-01

    Botulinum neurotoxin (BoNT) is produced as a large toxin complex (L-TC) associated with nontoxic nonhemagglutinin (NTNHA) and three hemagglutinin subcomponents (HA-70, -33 and -17). The binding properties of BoNT to neurons and L-TC to intestinal epithelial cells are well documented, while those to other tissues are largely unknown. Here, to obtain novel insights into the pathogenesis of foodborne botulism, we examine whether botulinum toxins bind to vascular endothelial cells. BoNT and 750 kDa L-TC (a complex of BoNT, NTNHA and HAs) of Clostridium botulinum serotype D were incubated with bovine aortic endothelial cells (BAECs), and binding to the cells was assessed using sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blot. Both BoNT and L-TC bound to BAECs, with L-TC showing stronger binding. Binding of BoNT and L-TC to BAECs was significantly inhibited by N-acetyl neuraminic acid in the cell culture medium or by treatment of the cells with neuraminidase. However, galactose, lactose or N-acetyl galactosamine did not significantly inhibit toxin binding to the cells. This is the first report demonstrating that BoNT and L-TC bind to BAECs via sialic acid, and this mechanism may be important in the trafficking pathway of BoNT in foodborne botulism.

  16. Characterization and mutational analysis of the UDP-Glc(NAc) 4-epimerase from Marinithermus hydrothermalis.

    PubMed

    Beerens, Koen; Soetaert, Wim; Desmet, Tom

    2013-09-01

    UDP-hexose 4-epimerases are important enzymes that play key roles in various biological pathways, including lipopolysaccharide biosynthesis, galactose metabolism through the Leloir pathway, and biofilm formation. Unfortunately, the determinants of their substrate specificity are not yet fully understood. They can be classified into three groups, with groups 1 and 3 preferring non-acetylated and acetylated UDP-hexoses, respectively, whereas members of group 2 are equally active on both types of substrates. In this study, the UDP-Glc(NAc) 4-epimerase from Marinithermus hydrothermalis (mGalE) was functionally expressed in Escherichia coli and thoroughly characterized. The enzyme was found to be thermostable, displaying its highest activity at 70 °C and having a half-life of 23 min at 60 °C. Activity could be detected on both acetylated and non-acetylated UDP-hexoses, meaning that this epimerase belongs to group 2. This observation correlates well with the identity of the so-called "gatekeeper" residue (Ser279), which has previously been suggested to influence substrate specificity (Schulz et al., J Biol Chem 279:32796-32803, 2004). Furthermore, substituting this serine to a tyrosine brings about a significant preference for non-acetylated sugars, thereby demonstrating that a single residue can determine substrate specificity among type 1 and type 2 epimerases. In addition, two consecutive glycine residues (Gly118 and Gly119) were identified as a unique feature of GalE enzymes from Thermus species, and their importance for activity as well as affinity was confirmed by mutagenesis. Finally, homology modeling and mutational analysis has revealed that the enzyme's catalytic triad contains a threonine residue (Thr117) instead of the usual serine.

  17. Protective effects of ginsenoside Rg1 against lipopolysaccharide/d-galactosamine-induced acute liver injury in mice through inhibiting toll-like receptor 4 signaling pathway.

    PubMed

    Ning, Chenqing; Gao, Xiaoguang; Wang, Changyuan; Huo, Xiaokui; Liu, Zhihao; Sun, Huijun; Yang, Xiaobo; Sun, Pengyuan; Ma, Xiaodong; Meng, Qiang; Liu, Kexin

    2018-06-11

    Acute liver injury (ALI) is a dramatic liver disease characterized by large areas of inflammation in the liver. This study aimed to investigate the protective effects of ginsenoside Rg1 (Rg1), a biologically active component in Panax ginseng, on lipopolysaccharide/d-galactosamine (LPS/D-GalN)-induced ALI in mice, and meanwhile explore the molecular mechanism in vivo and in vitro. Mice were pretreated with Rg1 for three days prior to LPS (40 μg/kg)/D-GalN (700 mg/kg) administration. The results showed that Rg1 improved the survival rate and reduced the liver to body weight ratios in mice. Rg1 also reduced the production of oxidative markers such as MDA and MPO induced by LPS/D-GalN. In addition, Rg1 significantly decreased the production of inflammatory cytokines including TNF-α, IL-6, IL-1β, Mip-2, Mcp-1, iNOS, and increased the activity of anti-inflammatory cytokine IL-10. Moreover, Rg1 inhibited the protein expression of TLR4 and its downstream genes including NF-κB and MAPKs, which are involved in inflammatory response. Rg1 dramatically reduced oxidative stress by regulating the expression of efflux transporters Mrp2 and various enzymes including GCLC, GCLM, HO-1 and NQO1. However, the changes in these genes and protein induced by Rg1 were abrogated by TLR4 antagonist TAK-242 in vitro. In conclusion, Rg1 had hepatoprotective effect on LPS/D-GalN-induced ALI in mice. The protection may be associated with the inhibition of TLR4. These findings suggest that Rg1 may be a promising agent for prevention against ALI. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Antifreeze glycopeptide analogues: microwave-enhanced synthesis and functional studies.

    PubMed

    Heggemann, Carolin; Budke, Carsten; Schomburg, Benjamin; Majer, Zsuzsa; Wissbrock, Marco; Koop, Thomas; Sewald, Norbert

    2010-01-01

    Antifreeze glycoproteins enable life at temperatures below the freezing point of physiological solutions. They usually consist of the repetitive tripeptide unit (-Ala-Ala-Thr-) with the disaccharide alpha-D-galactosyl-(1-3)-beta-N-acetyl-D-galactosamine attached to each hydroxyl group of threonine. Monoglycosylated analogues have been synthesized from the corresponding monoglycosylated threonine building block by microwave-assisted solid phase peptide synthesis. This method allows the preparation of analogues containing sequence variations which are not accessible by other synthetic methods. As antifreeze glycoproteins consist of numerous isoforms they are difficult to obtain in pure form from natural sources. The synthetic peptides have been structurally analyzed by CD and NMR spectroscopy in proton exchange experiments revealing a structure as flexible as reported for the native peptides. Microphysical recrystallization tests show an ice structuring influence and ice growth inhibition depending on the concentration, chain length and sequence of the peptides.

  19. Crystal Structure of TDP-Fucosamine Acetyl Transferase (WECD) from Escherichia Coli, an Enzyme Required for Enterobacterial Common Antigen Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung,M.; Rangarajan, E.; Munger, C.

    2006-01-01

    Enterobacterial common antigen (ECA) is a polysaccharide found on the outer membrane of virtually all gram-negative enteric bacteria and consists of three sugars, N-acetyl-D-glucosamine, N-acetyl-D-mannosaminuronic acid, and 4-acetamido-4,6-dideoxy-D-galactose, organized into trisaccharide repeating units having the sequence {yields}(3)-{alpha}-D-Fuc4NAc-(1{yields}4)-{beta}-D-ManNAcA-(1{yields}4)-{alpha}-D-GlcNAc-(1{yields}). While the precise function of ECA is unknown, it has been linked to the resistance of Shiga-toxin-producing Escherichia coli (STEC) O157:H7 to organic acids and the resistance of Salmonella enterica to bile salts. The final step in the synthesis of 4-acetamido-4,6-dideoxy-D-galactose, the acetyl-coenzyme A (CoA)-dependent acetylation of the 4-amino group, is carried out by TDP-fucosamine acetyltransferase (WecD). We have determined the crystal structuremore » of WecD in apo form at a 1.95-Angstroms resolution and bound to acetyl-CoA at a 1.66-Angstroms resolution. WecD is a dimeric enzyme, with each monomer adopting the GNAT N-acetyltransferase fold, common to a number of enzymes involved in acetylation of histones, aminoglycoside antibiotics, serotonin, and sugars. The crystal structure of WecD, however, represents the first structure of a GNAT family member that acts on nucleotide sugars. Based on this cocrystal structure, we have used flexible docking to generate a WecD-bound model of the acetyl-CoA-TDP-fucosamine tetrahedral intermediate, representing the structure during acetyl transfer. Our structural data show that WecD does not possess a residue that directly functions as a catalytic base, although Tyr208 is well positioned to function as a general acid by protonating the thiolate anion of coenzyme A.« less

  20. Annotating Enzymes of Uncertain Function: The Deacylation of d-Amino Acids by Members of the Amidohydrolase Superfamily

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cummings, J.; Fedorov, A; Xu, C

    The catalytic activities of three members of the amidohydrolase superfamily were discovered using amino acid substrate libraries. Bb3285 from Bordetella bronchiseptica, Gox1177 from Gluconobacter oxidans, and Sco4986 from Streptomyces coelicolor are currently annotated as d-aminoacylases or N-acetyl-d-glutamate deacetylases. These three enzymes are 22-34% identical to one another in amino acid sequence. Substrate libraries containing nearly all combinations of N-formyl-d-Xaa, N-acetyl-d-Xaa, N-succinyl-d-Xaa, and l-Xaa-d-Xaa were used to establish the substrate profiles for these enzymes. It was demonstrated that Bb3285 is restricted to the hydrolysis of N-acyl-substituted derivatives of d-glutamate. The best substrates for this enzyme are N-formyl-d-glutamate (k{sub cat}/K{sub m} =more » 5.8 x 10{sup 6} M{sup -1} s{sup -1}), N-acetyl-d-glutamate (k{sub cat}/K{sub m} = 5.2 x 10{sup 6} M{sup -1} s{sup -1}), and l-methionine-d-glutamate (k{sub cat}/K{sub m} = 3.4 x 10{sup 5} M{sup -1} s{sup -1}). Gox1177 and Sco4986 preferentially hydrolyze N-acyl-substituted derivatives of hydrophobic d-amino acids. The best substrates for Gox1177 are N-acetyl-d-leucine (k{sub cat}/K{sub m} = 3.2 x 104 M{sup -1} s-1), N-acetyl-d-tryptophan (kcat/Km = 4.1 x 104 M-1 s-1), and l-tyrosine-d-leucine (kcat/Km = 1.5 x 104 M-1 s-1). A fourth protein, Bb2785 from B. bronchiseptica, did not have d-aminoacylase activity. The best substrates for Sco4986 are N-acetyl-d-phenylalanine and N-acetyl-d-tryptophan. The three-dimensional structures of Bb3285 in the presence of the product acetate or a potent mimic of the tetrahedral intermediate were determined by X-ray diffraction methods. The side chain of the d-glutamate moiety of the inhibitor is ion-paired to Arg-295, while the {alpha}-carboxylate is ion-paired with Lys-250 and Arg-376. These results have revealed the chemical and structural determinants for substrate specificity in this protein. Bioinformatic analyses of an additional {approx}250 sequences identified as members of this group suggest that there are no simple motifs that allow prediction of substrate specificity for most of these unknowns, highlighting the challenges for computational annotation of some groups of homologous proteins.« less

  1. Synthesis, evaluation, and mechanism of N,N,N-trimethyl-D-glucosamine-(1→4)-chitooligosaccharides as selective inhibitors of glycosyl hydrolase family 20 β-N-acetyl-D-hexosaminidases.

    PubMed

    Yang, You; Liu, Tian; Yang, Yongliang; Wu, Qingyue; Yang, Qing; Yu, Biao

    2011-02-11

    GH20 β-N-acetyl-D-hexosaminidases are enzymes involved in many vital processes. Inhibitors that specifically target GH20 enzymes in pests are of agricultural and economic importance. Structural comparison has revealed that the bacterial chitindegrading β-N-acetyl-D-hexosaminidases each have an extra +1 subsite in the active site; this structural difference could be exploited for the development of selective inhibitors. N,N,Ntrimethyl-D-glucosamine (TMG)-chitotriomycin, which contains three GlcNAc residues, is a natural selective inhibitor against bacterial and insect β-N-acetyl-D-hexosaminidases. However, our structural alignment analysis indicated that the two GlcNAc residues at the reducing end might be unnecessary. To prove this hypothesis, we designed and synthesized a series of TMG-chitotriomycin analogues containing one to four GlcNAc units. Inhibitory kinetics and molecular docking showed that TMG-(GlcNAc)(2), is as active as TMG-chitotriomycin [TMG-(GlcNAc)(3)]. The selective inhibition mechanism of TMG-chitotriomycin was also explained. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Determination of the glycosylation-pattern of the middle ear mucosa in guinea pigs.

    PubMed

    Engleder, Elisabeth; Demmerer, Elisabeth; Wang, Xueyan; Honeder, Clemens; Zhu, Chengjing; Studenik, Christian; Wirth, Michael; Arnoldner, Christoph; Gabor, Franz

    2015-04-30

    In the present study the glycosylation pattern of the middle ear mucosa (MEM) of guinea pigs, an approved model for middle ear research, was characterized with the purpose to identify bioadhesive ligands which might prolong the contact time of drug delivery systems with the middle ear mucosa (MEM). To assess the utility of five fluorescein labeled plant lectins with different carbohydrate specificities as bioadhesive ligands, viable MEM specimens were incubated at 4°C and the lectin binding capacities were calculated from the MEM-associated relative fluorescence intensities. Among all lectins under investigation, fluorescein-labeled wheat germ agglutinin (F-WGA) emerged as the highest bioadhesive lectin. In general, the accessibility of carbohydrate moieties of the MEM followed the order: sialic acid and N-acetyl-d-glucosamine (WGA)>mannose and galactosamine (Lensculinaris agglutinin)>N-acetyl-d-glucosamine (Solanumtuberosum agglutinin)>fucose (Ulexeuropaeus isoagglutinin I)>terminal mannose α-(1,3)-mannose (Galanthusnivalis agglutinin). Competitive inhibition studies with the corresponding carbohydrate revealed that F-WGA-binding was inhibited up to 90% confirming specificity of the F-WGA-MEM interaction. The cilia of the MEM were identified as F-WGA binding sites by fluorescence imaging as well as a z-stack of overlays of transmission, F-WGA- and nuclei-stained images of the MEM. Additionally, co-localisation experiments revealed that F-WGA bound to acidic mucopolysaccharides of the MEM. All in all, lectin-mediated bioadhesion to the MEM is proposed as a new concept for drug delivery to prolong the residence time of the drug in the tympanic cavity especially for successful therapy for difficult-to-treat diseases such as otitis media. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Chondroitin Sulfate N-Acetylgalactosaminyltransferase 1 Is Necessary for Normal Endochondral Ossification and Aggrecan Metabolism*

    PubMed Central

    Sato, Takashi; Kudo, Takashi; Ikehara, Yuzuru; Ogawa, Hiroyasu; Hirano, Tomoko; Kiyohara, Katsue; Hagiwara, Kozue; Togayachi, Akira; Ema, Masatsugu; Takahashi, Satoru; Kimata, Koji; Watanabe, Hideto; Narimatsu, Hisashi

    2011-01-01

    Chondroitin sulfate (CS) is a glycosaminoglycan, consisting of repeating disaccharide units of N-acetylgalactosamine and glucuronic acid residues, and plays important roles in development and homeostasis of organs and tissues. Here, we generated and analyzed mice lacking chondroitin sulfate N-acetylgalactosaminyltransferase 1 (CSGalNAcT-1). Csgalnact1−/− mice were viable and fertile but exhibited slight dwarfism. Biochemically, the level of CS in Csgalnact1−/− cartilage was reduced to ∼50% that of wild-type cartilage, whereas its chain length was similar to wild-type mice, indicating that CSGalNAcT-1 participates in the CS chain initiation as suggested in the previous study (Sakai, K., Kimata, K., Sato, T., Gotoh, M., Narimatsu, H., Shinomiya, K., and Watanabe, H. (2007) J. Biol. Chem. 282, 4152–4161). Histologically, the growth plate of Csgalnact1−/− mice contained shorter and slightly disorganized chondrocyte columns with a reduced volume of the extracellular matrix principally in the proliferative layer. Immunohistochemical analysis revealed that the level of both aggrecan and link protein 1 were decreased in Csgalnact1−/− cartilage. Western blot analysis demonstrated an increase in processed forms of aggrecan core protein. These results suggest that CSGalNAcT-1 is required for normal levels of CS biosynthesis in cartilage. Our observations suggest that CSGalNAcT-1 is necessary for normal levels of endochondral ossification, and the decrease in CS amount in the growth plate by its absence causes a rapid catabolism of aggrecan. PMID:21148564

  4. Radiolysis of N-acetyl amino acids as model compounds for radiation degradation of polypeptides

    NASA Astrophysics Data System (ADS)

    Wayne Garrett, R.; Hill, David J. T.; Ho, Sook-Ying; O'Donnell, James H.; O'Sullivan, Paul W.; Pomery, Peter J.

    Radiation chemical yields of (i) the volatile radiolysis products and (ii) the trapped free radicals from the y-radiolysis of the N-acetyl derivatives of glycine, L-valine, L-phenylalanine and L-tyrosine in the polycrystalline state have been determined at room temperature (303 K). Carbon dioxide was found to be the major molecular product for all these compounds with G(CO 2) varying from 0.36 for N-acetyl-L-tyrosine to 8 for N-acetyl-L-valine. There was evidence for some scission of the N-C α bond, indicated by the production of acetamide and the corresponding aliphatic acid, but the determination reaction was found to be of much lesser importance than the decarboxylation reaction. A protective effect of the aromatic ring in N-acetyl-L-phenylalanine and in N-acetyl-L-tyrosine was indicated by the lower yields of volatile products for these compounds. The yields of trapped free radicals were found to vary with the nature of the amino acid side chain, increasing with chain length and chain branching. The radical yields were decreased by incorporation of an aromatic moiety in the side chain, this effect being greater for the tyrosyl side chain than for the phenyl side chain. The G(R·) values showed a good correlation with G(CO 2) indicating that a common reaction may be involved in radical production and carbon dioxide formation.

  5. Reduced hepatic injury in Toll-like receptor 4-deficient mice following D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure.

    PubMed

    Ben Ari, Ziv; Avlas, Orna; Pappo, Orit; Zilbermints, Veacheslav; Cheporko, Yelena; Bachmetov, Larissa; Zemel, Romy; Shainberg, Asher; Sharon, Eran; Grief, Franklin; Hochhauser, Edith

    2012-01-01

    Liver transplantation is the only therapy of proven benefit in fulminant hepatic failure (FHF). Lipopolysaccharide (LPS), D-galactosamine (GalN)-induced FHF is a well established model of liver injury in mice. Toll-Like Receptor 4 (TLR4) has been identified as a receptor for LPS. The aim of this study was to investigate the role of TLR4 in FHF induced by D-GalN/LPS administration in mice. Wild type (WT) and TLR4 deficient (TLR4ko) mice were studied in vivo in a fulminant model induced by GalN/LPS. Hepatic TLR4 expression, serum liver enzymes, hepatic and serum TNF-α and interleukin-1β levels were determined. Apoptotic cells were identified by immunohistochemistry for caspase-3. Nuclear factor-kappaβ (NF-κ β) and phosphorylated c-Jun hepatic expression were studied using Western blot analysis. All WT mice died within 24 hours after administration of GalN/LPS while all TLR4ko mice survived. Serum liver enzymes, interleukin-1β, TNF-α level, TLR4 mRNA expression, hepatic injury and hepatocyte apoptosis all significantly decreased in TLR4ko mice compared with WT mice. A significant decrease in hepatic c-Jun and IκB signaling pathway was noted in TLR4ko mice compared with WT mice. In conclusion, following induction of FHF, the inflammatory response and the liver injury in TLR4ko mice was significantly attenuated through decreased hepatic c-Jun and NF-κB expression and thus decreased TNF-α level. Down-regulation of TLR4 expression plays a pivotal role in GalN/LPS induced FHF. These findings might have important implications for the use of the anti TLR4 protein signaling as a potential target for therapeutic intervention in FHF. Copyright © 2012 S. Karger AG, Basel.

  6. Lactose-egg yolk diluent supplemented with N-acetyl-D-glucosamine affect acrosome morphology and motility of frozen-thawed boar sperm.

    PubMed

    Yi, Y J; Im, G S; Park, C S

    2002-12-16

    These experiments were carried out to investigate the effect of N-acetyl-D-glucosamine, and to obtain additional information about the effect of orvus es paste (OEP) and egg yolk concentration in the freezing of boar sperm in the maxi-straw. The highest post-thaw acrosomes of normal apical ridge (NAR) and motility were obtained with 0.025 or 0.05% N-acetyl-D-glucosamine concentration in the first diluent. However, there were no effects of N-acetyl-D-glucosamine among the diluents with or without N-acetyl-D-glucosamine at the second dilution. The N-acetyl-D-glucosamine in the first and second diluents was added at room temperatures (20-23 degrees C) and 5 degrees C, respectively. It is suggested that the temperature of N-acetyl-D-glucosamine addition is important for the effect of boar sperm protection during freezing and thawing. When the 0.05% N-acetyl-D-glucosamine was supplemented in the first diluent, the optimum final OEP content was 0.5%. The optimum content of egg yolk in the diluent with 0.05% N-acetyl-D-glucosamine concentration was 20% and egg yolk was one of the main cryoprotective agents. In conclusion, we found out that the diluent with 0.025 or 0.05% soluble N-acetyl-D-glucosamine in the first diluent, 0.5% final orvus es paste concentration and 20% egg yolk concentration significantly enhanced NAR acrosomes and motility of boar sperm after freezing and thawing. Copyright 2002 Elsevier Science B.V.

  7. Purification and properties of an N-acetylglucosamine-specific lectin from Psathyrella velutina mushroom.

    PubMed

    Kochibe, N; Matta, K L

    1989-01-05

    A lectin in the fruiting bodies of Psathyrella velutina was purified by affinity chromatography on a chitin column and subsequent ion-exchange chromatography. P. velutina lectin (PVL) tends to aggregate irreversibly in buffered saline, but the addition of glycerol (10%, v/v) to lectin solutions was found to prevent aggregate formation. PVL is assumed to occur as a monomer of a polypeptide of Mr = 40,000 as determined by gel filtration and by gel electrophoresis in the presence of sodium dodecyl sulfate. PVL is specific for N-acetylglucosamine (GlcNAc). It was determined by equilibrium dialysis to have four binding sites/polypeptide molecule showing an average intrinsic association constant of K0 = 6.4 x 10(3) M-1 toward this sugar. The binding specificity of the lectin was studied by hemagglutination inhibition assays and by avidin-biotin-mediated enzyme immunoassays using various GlcNAc-containing saccharides. The results indicate that methyl N-acetyl beta-glucosaminide was a slightly better inhibitor than the corresponding alpha-anomer. PVL binds well to oligosaccharides bearing nonreducing terminal beta-GlcNAc linked 1----6 or 1----3 but poorly to those having a 1----4 linkage, such as N-acetylated chito-oligosaccharides. It also binds to the subterminal GlcNAc moiety when it is substituted at the C-6 position but does not interact with the moiety when substituted either at C-3 or C-4. Thus, these results show that PVL is quite different in its binding specificity from other GlcNAc-binding lectins of higher plants since they bind preferentially to beta-GlcNAc in 1----4 linkage and they have a high affinity for chitin oligosaccharides.

  8. Enrichment of gilthead seabream (Sparus aurata L.) diet with palm fruit extracts and probiotics: Effects on skin mucosal immunity.

    PubMed

    Cerezuela, Rebeca; Guardiola, Francisco A; Cuesta, Alberto; Esteban, M Ángeles

    2016-02-01

    Fish skin mucus contains numerous immune substances still poorly studied. To date, there are no studies regarding the possible influence of dietary supplements on such important substances. In the present work, a commercial diet used as control diet was enriched with: 1) probiotic Shewanella putrefaciens (Pdp11 diet, 10(9) cfu g(-1)); 2) probiotic Bacillus sp. (Bacillus diet, 10(9) ufc g(-1)); 3) aqueous date palm fruits extracts (DPE diet, 4%), and 4) a combination of Pdp11 + Bacillus sp + aqueous DPE (Mix diet). After 2 and 4 weeks of the feeding trial, enzymatic activities (proteases, antiproteases and peroxidases), IgM levels and terminal carbohydrates abundance were determined in skin mucus. In addition, the expression of certain immune related genes was evaluated in the skin. Our results demonstrated the significant alteration of the terminal carbohydrate abundance in skin mucus. Carbohydrates more affected by experimental diets were N-acetyl-galactosamine, N-acetyl-glucosamine, galactose, mannose, glucose and fucose. IgM, peroxidase activity and protease were also significantly higher in fish fed enriched diets. For last, an important up-regulation on the immune related gene studied on the skin was also detected. Present findings provide robust evidence that fish skin mucosal immunity can be improved by the diet. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Evidence for the Adhesive Function of the Exopolysaccharide of Hyphomonas Strain MHS-3 in Its Attachment to Surfaces

    PubMed Central

    Quintero, E. J.; Weiner, R. M.

    1995-01-01

    Hyphomonas strain MHS-3 (MHS-3) is a marine procaryote with a biphasic life cycle and which has prosthecate stages that adhere to submerged substrata. We found that adherent forms produced an exopolysaccharide (EPS) capsule that bound Glycine max lectin, Arachis hypogaea lectin, and Bauhinia purpurea lectin (BPA), each having affinity for N-acetyl-d-galactosamine. It also bound the dye Calcofluor. BPA and Calcofluor were tested for the ability to hinder MHS-3 adhesion to glass surfaces; they reduced attachment by >50 and >85%, respectively. Periodate treatment also reduced attachment (by >80%), but pronase treatment did not. Furthermore, an EPS(sup-) variant, Hyphomonas strain MHS-3 rad, did not attach well to surfaces. These results suggest that the MHS-3 EPS capsule is an adhesin. PMID:16535028

  10. Synthesis and biological evaluation of sialyl-oligonucleotide conjugates targeting leukocyte B trans-membranal receptor CD22 as delivery agents for nucleic acid drugs.

    PubMed

    St-Pierre, Gabrielle; Pal, Sudip; Østergaard, Michael E; Zhou, Tianyuan; Yu, Jinghua; Tanowitz, Michael; Seth, Punit P; Hanessian, Stephen

    2016-06-01

    Antisense oligonucleotides (ASOs) modified with ligands which target cell surface receptors have the potential to significantly improve potency in the target tissue. This has recently been demonstrated using triantennary N-acetyl d-galactosamine conjugated ASOs. CD22 is a cell surface receptor expressed exclusively on B cells thus presenting an attractive target for B cell specific delivery of drugs. Herein, we reported the synthesis of monovalent and trivalent ASO conjugates with biphenylcarbonyl (BPC) modified sialic acids and their study as ASO delivery agents into B cells. CD22 positive cells exhibited reduced potency when treated with ligand modified ASOs and mechanistic examination suggested reduced uptake into cells potentially as a result of sequestration of ASO by other cell-surface proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Myxospore Coat Synthesis in Myxococcus xanthus: In Vivo Incorporation of Acetate and Glycine

    PubMed Central

    Filer, D.; White, D.; Kindler, S. H.; Rosenberg, E.

    1977-01-01

    Myxospore coat synthesis in Myxococcus xanthus was studied by incorporation of [14C]acetate into intermediates in the biosynthesis of coat polysaccharide and into acid-insoluble material during vegetative growth and after glycerol induction of myxospores. During short labeling periods at 27°C, the radioactivity was shown to be located primarily in N-acetyl groups rather than sugar moieties. Two hours after glycerol induction, the pools of N-acetylglucosamine 6-phosphate and uridine 5′-diphosphate-N-acetylgalactosamine (UDPGalNAc) plus uridine 5′-diphosphate-N-glucosamine increased about twofold and were labeled at twice the rate measured for vegetative cells. The increased rate of synthesis of UDPGalNAc and its precursors could be correlated with increased enzyme activities measured in vitro. Controlled acid hydrolysis revealed that the galactosamine portion of the myxospore coat was N-acetylated. After glycerol induction, the incorporation of acetate into acid-insoluble material increased threefold. This enhanced incorporation was sensitive to neither penicillin nor d-cycloserine. In contrast, bacitracin inhibited the incorporation of [14C]acetate into acid-insoluble material more effectively 2 h after myxospore induction than during vegetative growth. Chloramphenicol added to cells 90 min after induction blocked further increase in the rate of [14C]acetate incorporation. Since the myxospore coat contains glycine, polymer synthesis was also measured by chloramphenicol-insensitive [14C]glycine incorporation into acid-insoluble material. Although protein synthesis decreased after glycerol induction, glycine incorporation increased. Two hours after induction, glycine incorporation was only 75% inhibited by chloramphenicol and rifampin. The chloramphenicol-insensitive rate of incorporation of [14C]glycine increased during the first hour after myxospore induction and reached a peak rate after 2 to 3 h. The chloramphenicol-resistant incorporation of [14C]glycine was resistant to penicillin but sensitive to bacitracin. PMID:408325

  12. Synthesis of novel ganglioside GM4 analogues containing N-deacetylated and lactamized sialic acid: probes for searching new ligand structures for human L-selectin.

    PubMed

    Otsubo, N; Ishida, H; Kiso, M

    2001-01-15

    Novel ganglioside GM4 analogues, which contain N-deacetylated or lactamized sialic acid instead of usual N-acetylneuraminic acid, were synthesized in a highly efficient manner. (Methyl 4,7,8,9-tetra-O-acetyl-3,5-dideoxy-5-trifluoroacetamido-D-glycero-alpha-D-galacto-2-nonulopyranosylonate)-(2-->3)-4,6-di-O-acetyl-2-O-benzoyl-D-galactopyranosyl trichloroacetimidate was coupled with 2-(tetradecyl)hexadecanol to give the desired beta-glycoside in high yield. Successive O- and N-deacylation, and saponification of the methyl ester group afforded the N-deacetylated sialyl derivative that was converted by treatment with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride in Me2SO into the lactamized sialic acid-containing ganglioside GM4 analogue.

  13. Mangiferin alleviates lipopolysaccharide and D-galactosamine-induced acute liver injury by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation.

    PubMed

    Pan, Chen-wei; Pan, Zhen-zhen; Hu, Jian-jian; Chen, Wei-lai; Zhou, Guang-yao; Lin, Wei; Jin, Ling-xiang; Xu, Chang-long

    2016-01-05

    Mangiferin, a glucosylxanthone from Mangifera indica, has been reported to have anti-inflammatory effects. However, the protective effects and mechanisms of mangiferin on liver injury remain unclear. This study aimed to determine the protective effects and mechanisms of mangiferin on lipopolysaccharide (LPS) and D-galactosamine (D-GalN)-induced acute liver injury. Mangiferin was given 1h after LPS and D-GalN treatment. The results showed that mangiferin inhibited the levels of serum ALT, AST, IL-1β, TNF-α, MCP-1, and RANTES, as well as hepatic malondialdehyde (MDA) and ROS levels. Moreover, mangiferin significantly inhibited IL-1β and TNF-α production in LPS-stimulated primary hepatocytes. Mangiferin was found to up-regulate the expression of Nrf2 and HO-1 in a dose-dependent manner. Furthermore, mangiferin inhibited LPS/d-GalN-induced hepatic NLRP3, ASC, caspase-1, IL-1β and TNF-α expression. In conclusion, mangiferin protected against LPS/GalN-induced liver injury by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Pseudoephedrine/ephedrine shows potent anti-inflammatory activity against TNF-α-mediated acute liver failure induced by lipopolysaccharide/D-galactosamine.

    PubMed

    Wu, Zhongping; Kong, Xiangliang; Zhang, Tong; Ye, Jin; Fang, Zhaoqin; Yang, Xuejun

    2014-02-05

    The anti-inflammatory effects of pseudoephedrine/ephedrine were investigated using the experimental model of lipopolysaccharide (LPS)-induced acute liver failure in D-galactosamine (D-GalN)-sensitised male rats in order to elucidate effects other than sympathomimetic effects. Rats were intraperitoneally injected with D-GalN (400 mg/kg) and LPS (40 μg/kg) to induce acute liver failure. The treatment groups were then intraperitoneally administered pseudoephedrine/ephedrine at 0 h and 4 h after induction and the activation induced by treatment with pseudoephedrine and/or LPS on the primary Kupffer cells (KCs) was monitored. Compared with controls induced by GalN/LPS alone, pseudoephedrine dramatically reduced the infiltration of inflammatory cells and bile ductular hyperplasia and hepatic necrosis observed in liver sections. It inhibited both hepatocellular apoptosis and the expression of monocyte chemotactic protein-1. It lowered the production of tumour necrosis factor-α (TNF-α) in the beginning of acute liver failure induced by D-GalN/LPS. Correspondingly, levels of alanine aminotransferase (ALT), total bilirubin (TBIL) and malondialdehyde were attenuated. Ephedrine demonstrated all these identical protective effects as well. In addition, pseudoephedrine significantly suppressed the production of p-IκB-α, reducing the degradation of sequestered nuclear factor kappa B (NF-κB) in the cytoplasm, and inhibited the translocation of NF-κB/p65 to the nucleus, the transcription of TNF-α mRNA and the production of TNF-α in primary KCs. These results suggest that pseudoephedrine and ephedrine have a potent anti-inflammatory activity against D-GalN/LPS-induced acute liver failure in rats, and this comprehensive anti-inflammatory effect may result from the inhibition of TNF-α production. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Internalization and desensitization of the human glucose-dependent-insulinotropic receptor is affected by N-terminal acetylation of the agonist.

    PubMed

    Ismail, Sadek; Dubois-Vedrenne, Ingrid; Laval, Marie; Tikhonova, Irina G; D'Angelo, Romina; Sanchez, Claire; Clerc, Pascal; Gherardi, Marie-Julie; Gigoux, Véronique; Magnan, Remi; Fourmy, Daniel

    2015-10-15

    How incretins regulate presence of their receptors at the cell surface and their activity is of paramount importance for the development of therapeutic strategies targeting these receptors. We have studied internalization of the human Glucose-Insulinotropic Polypeptide receptor (GIPR). GIP stimulated rapid robust internalization of the GIPR, the major part being directed to lysosomes. GIPR internalization involved mainly clathrin-coated pits, AP-2 and dynamin. However, neither GIPR C-terminal region nor β-arrestin1/2 was required. Finally, N-acetyl-GIP recognized as a dipeptidyl-IV resistant analogue, fully stimulated cAMP production with a ∼15-fold lower potency than GIP and weakly stimulated GIPR internalization and desensitization of cAMP response. Furthermore, docking N-acetyl-GIP in the binding site of modeled GIPR showed slighter interactions with residues of helices 6 and 7 of GIPR compared to GIP. Therefore, incomplete or partial activity of N-acetyl-GIP on signaling involved in GIPR desensitization and internalization contributes to the enhanced incretin activity of this peptide. Copyright © 2015. Published by Elsevier Ireland Ltd.

  16. Structure and Mechanism of ArnA: Conformational Change Implies Ordered Dehydrogenase Mechanism in Key Enzyme for Polymyxin Resistance

    PubMed Central

    Gatzeva-Topalova, Petia Z.; May, Andrew P.; Sousa, Marcelo C.

    2010-01-01

    Summary The modification of lipid A with 4-amino-4-deoxy-L-arabinose (Ara4N) allows gram-negative bacteria to resist the antimicrobial activity of cationic antimicrobial peptides and antibiotics such as polymyxin. ArnA is the first enzyme specific to the lipid A-Ara4N pathway. It contains two functionally and physically separable domains: a dehydrogenase domain (ArnA_DH) catalyzing the NAD+-dependent oxidative decarboxylation of UDP-Glucuronic acid (UDP-GlcA), and a transformylase domain that formylates UDP-Ara4N. Here, we describe the crystal structure of the full-length bifunctional ArnA with UDP-GlcA and ATP bound to the dehydrogenase domain. Binding of UDP-GlcA triggers a 17 Å conformational change in ArnA_DH that opens the NAD+ binding site while trapping UDP-GlcA. We propose an ordered mechanism of substrate binding and product release. Mutation of residues R619 and S433 demonstrates their importance in catalysis and suggests that R619 functions as a general acid in catalysis. The proposed mechanism for ArnA_DH has important implications for the design of selective inhibitors. PMID:15939024

  17. Glycosidases in Brachionus plicatilis (Rotifera).

    PubMed

    Kühle, K; Kleinow, W

    1990-01-01

    1. Tests for glycosidases were performed in homogenates of Brachionus plicatilis. 2. Hydrolytic activity was detected with the following substrates: (a) with synthetic substrates (NP = 4-nitrophenyl): NP-alpha- and NP-beta-D-glucopyranoside, NP-alpha- and NP-beta-D-galactopyranoside, NP-N-acetyl-beta-D-glucosaminide, NP-N-acetyl-beta-D-galactosaminide, NP-alpha- and NP-beta-D-mannopyranoside and NP-alpha-L-fucopyranoside; (b) with disaccharides: sucrose, maltose, trehalose, isomaltose, cellobiose, gentiobiose and lactose; (c) with polysaccharides: laminarine, carboxymethyl-cellulose, avicel, Micrococcus luteus (for lysozyme) and 4-nitrophenyl-alpha-D-maltoheptaoside (for amylase). 3. The pH dependence of the glycosidase activities was determined. 4. The distribution of enzyme activities within fractions from the homogenate was studied in order to localize them within the cell. 5. Proteins from Brachionus homogenate were separated by SDS-gel electrophoresis and the positions of the following glycosidase activities were detected by assays performed on the gels (estimated molecular weights in parentheses): alpha-glucosidase (250,000); beta-glucosidase (200,000); beta-galactosidase (70,000); N-acetyl-beta-glucosaminidase (60,000).

  18. Mir-24 regulates hepatocyte apoptosis via BIM during acute liver failure.

    PubMed

    Feng, Zhiwen; Li, Zhi; Zhu, Deming; Ling, Wei; Zheng, Lei; Pu, Liyong; Kong, Lianbao

    2017-01-01

    Acuteliver failure (ALF) has a high mortality rate and is characterized by massive hepatocyte destruction. Although microRNAs (miRNAs) play an important role in manyliver diseases, the role of miRNAs in ALF development is unknown. In this study, the murine ALF model was induced by intraperitoneal injection of D-galactosamine/lipopolysaccharide (D-GalN/LPS). Compared with saline-treated mice, miR-24 was distinctly down-regulated post D-GalN/LPS challenge in vivo and D-galactosamine/tumor necrosis factor (D-GalN/TNF) challenge in vitro , which was confirmed by quantitative real-time polymerase chain reaction. Meanwhile, the mRNA and protein levels of the BH3-only-domain-containing protein BIM were upregulated after challenge both in vivo and in vitro . Previous studies have demonstrated that hepatocyte apoptosis is a distinguishing feature of D-GalN/LPS-associated liver failure. In this study, D-GalN/LPS-challenged mice showed higher alanine aminotransferase and aspartate aminotransferase levels, more severe liver damage, increased numbers of apoptotic hepatocytes and higher levels of caspase-3 compared with saline-treated mice. In D-GalN/TNF-treated BNLCL2 cells, miR-24 overexpression attenuated apoptosis.Furthermore, miR-24 overexpression reduced BIM mRNA and protein levels in vitro . Taken together, these findings demonstrate that miR-24 regulates hepatocyte apoptosis via BIM during ALF development, suggesting that miR-24 is a novel onco-miRNA that may provide potential therapeutic targets for ALF.

  19. Highly sulfated hexasaccharide sequences isolated from chondroitin sulfate of shark fin cartilage: insights into the sugar sequences with bioactivities.

    PubMed

    Mizumoto, Shuji; Murakoshi, Saori; Kalayanamitra, Kittiwan; Deepa, Sarama Sathyaseelan; Fukui, Shigeyuki; Kongtawelert, Prachya; Yamada, Shuhei; Sugahara, Kazuyuki

    2013-02-01

    Chondroitin sulfate (CS) chains regulate the development of the central nervous system in vertebrates and are linear polysaccharides consisting of variously sulfated repeating disaccharides, [-4GlcUAβ1-3GalNAcβ1-](n), where GlcUA and GalNAc represent D-glucuronic acid and N-acetyl-D-galactosamine, respectively. CS chains containing D-disaccharide units [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)] are involved in the development of cerebellar Purkinje cells and neurite outgrowth-promoting activity through interaction with a neurotrophic factor, pleiotrophin, resulting in the regulation of signaling. In this study, to obtain further structural information on the CS chains containing d-disaccharide units involved in brain development, oligosaccharides containing D-units were isolated from a shark fin cartilage. Seven novel hexasaccharide sequences, ΔO-D-D, ΔA-D-D, ΔC-D-D, ΔE-A-D, ΔD-D-C, ΔE-D-D and ΔA-B-D, in addition to three previously reported sequences, ΔC-A-D, ΔC-D-C and ΔA-D-A, were isolated from a CS preparation of shark fin cartilage after exhaustive digestion with chondroitinase AC-I, which cannot act on the galactosaminidic linkages bound to D-units. The symbol Δ stands for a 4,5-unsaturated bond of uronic acids, whereas A, B, C, D, E and O represent [GlcUA-GalNAc(4-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(4-O-sulfate)], [GlcUA-GalNAc(6-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)], [GlcUA-GalNAc(4-O-, 6-O-sulfate)] and [GlcUA-GalNAc], respectively. In binding studies using an anti-CS monoclonal antibody, MO-225, the epitopes of which are involved in cerebellar development in mammals, novel epitope structures, ΔA-D-A, ΔA-D-D and ΔA-B-D, were revealed. Hexasaccharides containing two consecutive D-units or a B-unit will be useful for the structural and functional analyses of CS chains particularly in the neuroglycobiological fields.

  20. Effect of Piper betle on plasma antioxidant status and lipid profile against D-galactosamine-induced hepatitis in rats.

    PubMed

    Pushpavalli, Ganesan; Veeramani, Chinnadurai; Pugalendi, Kodukkur Viswanathan

    2009-01-01

    Betle leaf chewing is an old traditional practice in India and other countries of East Asia. We have investigated the antioxidant and antihyperlipidaemic potential of an alcoholic leaf-extract of Piper betle against D-galactosamine (D-GalN; 400 mg/kg body weight, i.p. single dose) intoxication in male albino Wistar rats. Rats were treated with leaf-extract (200 mg/kg body weight) by intragastric intubations daily for 20 days. The animals were divided randomly into five groups of six animals each as control, control plus extract, D-GalN control, D-GalN-rats on treatment with extract or silymarin, a standard drug. We observed an increase in the plasma levels of thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides, and a decrease in vitamin C, vitamin E and reduced glutathione concentrations. Very low density lipoprotein cholesterol and low density lipoprotein cholesterol increased significantly while high density lipoprotein cholesterol decreased. Further, increase in the levels of total cholesterol, phospholipids, triglycerides, free fatty acids in the plasma and tissues of liver and kidney were observed in D-GalN-treated rats. Administration of P. betle leaf-extract prevented the increase or decrease of these parameters and brought towards normality. These results suggest that P. betle could afford a significant antioxidant and antihyperlipidaemic effect against D-GalN-intoxication.

  1. Low susceptibility of NC/Nga mice to tumor necrosis factor-alpha-mediated lethality and hepatocellular damage with D-galactosamine sensitization.

    PubMed

    Koide, Naoki; Morikawa, Akiko; Naiki, Yoshikazu; Tumurkhuu, Gantsetseg; Yoshida, Tomoaki; Ikeda, Hiroshi; Yokochi, Takashi

    2009-02-01

    The susceptibility of NC/Nga mice to tumor necrosis factor (TNF)-alpha was examined by using sensitization with d-galactosamine (d-GalN). Administration of TNF-alpha and d-GalN killed none of the NC/Nga mice, whereas it killed all of the BALB/c mice. Treatment with TNF-alpha and d-GalN caused few hepatic lesions in NC/Nga mice but massive hepatocellular apoptosis in BALB/c mice. Unlike BALB/c mice, there was no elevation in caspase 3 and 8 activities in the livers of NC/Nga mice receiving TNF-alpha and d-GalN. On the other hand, administration of anti-Fas antibody definitely killed both NC/Nga and BALB/c mice via activation of caspases 3 and 8. Treatment with TNF-alpha and d-GalN led to translocation of nuclear factor (NF)-kappaB in NC/Nga and BALB/c mice. However, NF-kappaB translocation was sustained in NC/Nga mice, although it disappeared in BALB/c mice 7 h after the treatment. NF-kappaB inhibitors activated caspases 3 and 8, and enhanced TNF-alpha-mediated lethality in NC/Nga. Taken together, the low susceptibility of NC/Nga mice to TNF-alpha-mediated lethality was suggested to be responsible for the sustained NF-kappaB activation.

  2. Hepatoprotective role of Ricinus communis leaf extract against d-galactosamine induced acute hepatitis in albino rats.

    PubMed

    Babu, Pappithi Ramesh; Bhuvaneswar, Cherukupalle; Sandeep, Gandham; Ramaiah, Chintha Venkata; Rajendra, Wudayagiri

    2017-04-01

    Ricinus communis (RC) is a traditional medicinal plant which has been used by Chenchu and Yerukula tribes for treating their liver ailments. The present work is aimed to explore the hepatoprotective efficacy of Ricinus communis against d-galactosamine (D-GalN) induced hepatitis rat model and its therapeutic potential compared with standard drug, silymarin (100mg/kg.bw). In vitro antioxidant activity of Methanolic extract of Ricinus communis leaves (MERCL) was assayed through DPPH and H 2 O 2 free radical scavenging activity. Qualitative and quantitative analysis of MERCL using HPLC, demonstrated that Rutin was found to be predominant bioactive compound in the extract. Hepatitis was induced by treating the rats with D-GalN at a single intraperitoneal dose of 800mg/kg.bw. Serum markers viz, Alanine aminotransferase (ALT), Aspartate aminotransferase (AST), Alkaline phosphatase (ALP) and Malondialdehyde (MDA) levels were significantly increased and the activity levels of antioxidant enzymes such as Superoxide dismutase (SOD),Catalase (CAT), Glutathione reductase (GR), Glutathione peroxidase (GPx), non-enzymatic antioxidant Glutathione (GSH) levels were decreased in the liver of hepatitis induced rats when compared to controls. Pre and post treatment with MERCL significantly altered the enzyme activities, GSH and MDA to normal levels. Histopathological observations also showed protective and curative effects of MERCL against D-GalN intoxication. These results demonstrated that MERCL significantly protected the liver from d-galactosamine induced hepatitis, improved the curative effect in the liver and hence, MERCL can be used as a potent hepatoprotective drug in future. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Ultrastructure and Glycoconjugate Pattern of the Foot Epithelium of the Abalone Haliotis tuberculata (Linnaeus, 1758) (Gastropoda, Haliotidae)

    PubMed Central

    Bravo Portela, I.; Martinez-Zorzano, V. S.; Molist- Perez, I.; Molist García, P.

    2012-01-01

    The foot epithelium of the gastropod Haliotis tuberculata is studied by light and electron microscopy in order to contribute to the understanding of the anatomy and functional morphology of the mollusks integument. Study of the external surface by scanning electron microscopy reveals that the side foot epithelium is characterized by a microvillus border with a very scant presence of small ciliary tufts, but the sole foot epithelium bears a dense field of long cilia. Ultrastructural examination by transmission electron microscopy of the side epithelial cells shows deeply pigmented cells with high electron-dense granular content which are not observed in the epithelial sole cells. Along the pedal epithelium, seven types of secretory cells are present; furthermore, two types of subepithelial glands are located just in the sole foot. The presence and composition of glycoconjugates in the secretory cells and subepithelial glands are analyzed by conventional and lectin histochemistry. Subepithelial glands contain mainly N-glycoproteins rich in fucose and mannose whereas secretory cells present mostly acidic sulphated glycoconjugates such as glycosaminoglycans and mucins, which are rich in galactose, N-acetyl-galactosamine, and N-acetyl-glucosamine. No sialic acid is present in the foot epithelium. PMID:22645482

  4. Polysaccharides of Aloe vera induce MMP-3 and TIMP-2 gene expression during the skin wound repair of rat.

    PubMed

    Tabandeh, Mohammad Reza; Oryan, Ahmad; Mohammadalipour, Adel

    2014-04-01

    Polysaccharides are the main macromolecules of Aloe vera gel but no data about their effect on extracellular matrix (ECM) elements are available. Here, mannose rich Aloe vera polysaccharides (AVP) with molecular weight between 50 and 250 kDa were isolated and characterized. Open cutaneous wounds on the back of 45 rats (control and treated) were daily treated with 25mg (n=15) and 50 mg (n=15) AVP for 30 days. The levels of MMP-3 and TIMP-2 gene expression were analyzed using real time PCR. The levels of n-acetyl glucosamine (NAGA), n-acetyl galactosamine (NAGLA) and collagen contents were also measured using standard biochemical methods. Faster wound closure was observed at day 15 post wounding in AVP treated animals in comparison with untreated group. At day 10 post wounding, AVP inhibited MMP-3 gene expression, while afterwards MMP-3 gene expression was upregulated. AVP enhanced TIMP-2 gene expression, collagen, NAGLA and NAGA synthesis in relation to untreated wounds. Our results suggest that AVP has positive effects on the regulation of ECM factor synthesis, which open up new perspectives for the wound repair activity of Aloe vera polysaccharide at molecular level. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Structural basis for the glycosyltransferase activity of the Salmonella effector SseK3.

    PubMed

    Esposito, Diego; Günster, Regina A; Martino, Luigi; El Omari, Kamel; Wagner, Armin; Thurston, Teresa L M; Rittinger, Katrin

    2018-04-06

    The Salmonella -secreted effector SseK3 translocates into host cells, targeting innate immune responses, including NF-κB activation. SseK3 is a glycosyltransferase that transfers an N -acetylglucosamine (GlcNAc) moiety onto the guanidino group of a target arginine, modulating host cell function. However, a lack of structural information has precluded elucidation of the molecular mechanisms in arginine and GlcNAc selection. We report here the crystal structure of SseK3 in its apo form and in complex with hydrolyzed UDP-GlcNAc. SseK3 possesses the typical glycosyltransferase type-A (GT-A)-family fold and the metal-coordinating D X D motif essential for ligand binding and enzymatic activity. Several conserved residues were essential for arginine GlcNAcylation and SseK3-mediated inhibition of NF-κB activation. Isothermal titration calorimetry revealed SseK3's preference for manganese coordination. The pattern of interactions in the substrate-bound SseK3 structure explained the selection of the primary ligand. Structural rearrangement of the C-terminal residues upon ligand binding was crucial for SseK3's catalytic activity, and NMR analysis indicated that SseK3 has limited UDP-GlcNAc hydrolysis activity. The release of free N -acetyl α-d-glucosamine, and the presence of the same molecule in the SseK3 active site, classified it as a retaining glycosyltransferase. A glutamate residue in the active site suggested a double-inversion mechanism for the arginine N -glycosylation reaction. Homology models of SseK1, SseK2, and the Escherichia coli orthologue NleB1 reveal differences in the surface electrostatic charge distribution, possibly accounting for their diverse activities. This first structure of a retaining GT-A arginine N -glycosyltransferase provides an important step toward a better understanding of this enzyme class and their roles as bacterial effectors. © 2018 Esposito et al.

  6. Thermostable, salt tolerant, wide pH range novel chitobiase from Vibrio parahemolyticus: isolation, characterization, molecular cloning, and expression.

    PubMed

    Zhu, B C; Lo, J Y; Li, Y T; Li, S C; Jaynes, J M; Gildemeister, O S; Laine, R A; Ou, C Y

    1992-07-01

    A chitobiase gene from Vibrio parahemolyticus was cloned into plasmid pUC18 in Escherichia coli strain DH5 alpha. The plasmid construct, pC120, contained a 6.4 kb Vibrio DNA insert. The recombinant gene expressed chitobiase [EC 3.2.1.30] activity similar to that found in the native Vibrio. The enzyme was purified by ion exchange, hydroxylapatite and gel permeation chromatographies, and exhibited an apparent molecular weight of 80 kDa on SDS-polyacrylamide gel electrophoresis. Chitobiose and 6 more substrates, including beta-N-acetyl galactosamine glycosides, were hydrolyzed by the recombinant chitobiase, indicating its putative classification as an hexosaminidase [EC 3.2.1.52]. The enzyme was resistant to denaturation by 2 M NaCl, thermostable at 45 degrees C and active over a very unusual (for glycosyl hydrolases) pH range, from 4 to 10. The purified cloned chitobiase gave 4 closely focussed bands on an isoelectric focusing gel, at pH 4 to 6.5. The N-terminal 43 amino acid sequence shows no homology with other proteins in commercial databanks or in the literature, and from its N-terminal sequence, appears to be a novel protein, unrelated in sequence to chitobiases from other Vibrios reported and unrelated to hexosaminidases from other organisms.

  7. A convenient synthesis of 6-amino-1-beta-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4-one and related 4,6-disubstituted pyrazolopyrimidine nucleosides.

    PubMed Central

    Cottam, H B; Revankar, G R; Robins, R K

    1983-01-01

    The glycosylation of 4,6-dichloropyrazolo[3,4-d]pyrimidine and 4-chloro-6-methylthiopyrazolo[3,4-d]pyrimidine via the corresponding trimethylsilyl intermediate and tetra-O-acetyl-beta-D-ribofuranose in the presence of trimethylsilyl triflate as a catalyst, gave selective glycosylation at N1 as the only nucleoside product. The intermediates 4,6-dichloro-1-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl)pyrazolo [3,4-d]pyrimidine 7 and 4-chloro-6-methylthio-1-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl)pyrazolo [3,4-d]pyrimidine 13 gave new and convenient synthetic routes to the inosine analog 1, the guanosine analog 2, the adenosine analog 3, and the isoguanosine analog 16. Glycosylation of the trimethylsilyl derivative of 6-chloropyrazolo[3,4-d]pyrimidine-4-one unexpectedly gave the N2-glycosyl isomer 20 as the major product. A number of new 4,6-disubstituted pyrazolo[3,4-d]pyrimidine nucleosides were prepared from these glycosyl intermediates. PMID:6835838

  8. Cordyceps sinensis prevents apoptosis in mouse liver with D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure.

    PubMed

    Cheng, Yu-Jung; Cheng, Shiu-Min; Teng, Yi-Hsien; Shyu, Woei-Cherng; Chen, Hsiu-Ling; Lee, Shin-Da

    2014-01-01

    Cordyceps sinensis (C. sinensis) has long been considered to be an herbal medicine and has been used in the treatment of various inflammatory diseases. The present study examined the cytoprotective properties of C. sinensis on D(+)-galactosamine (GalN)/lipopolysaccharide (LPS)-induced fulminant hepatic failure. Mice were randomly assigned into control, GalN/LPS, CS 20 mg and CS 40 mg groups (C. sinensis, oral gavage, five days/week, four weeks). After receiving saline or C. sinensis, mice were intraperitoneally given GalN (800 mg/kg)/LPS (10 μg/kg). The effects of C. sinensis on TNF-α, IL-10, AST, NO, SOD, and apoptoticrelated proteins after the onset of endotoxin intoxication were determined. Data demonstrated that GalN/LPS increased hepatocyte degeneration, circulating AST, TNF-α, IL-10, and hepatic apoptosis and caspase activity. C. sinensis pre-treatment reduced AST, TNF-α, and NO and increased IL-10 and SOD in GalN/LPS induced fulminant hepatic failure. C. sinensis attenuated the apoptosis of hepatocytes, as evidenced by the TUNEL and capase-3, 6 activity analyses. In summary, C. sinensis alleviates GalN/LPS-induced liver injury by modulating the cytokine response and inhibiting apoptosis.

  9. Flow cytometric analysis of lectin binding to in vitro-cultured Perkinsus marinus surface carbohydrates

    USGS Publications Warehouse

    Gauthier, J.D.; Jenkins, J.A.; La Peyre, Jerome F.

    2004-01-01

    Parasite surface glycoconjugates are frequently involved in cellular recognition and colonization of the host. This study reports on the identification of Perkinsus marinus surface carbohydrates by flow cytometric analyses of fluorescein isothiocyanate-conjugated lectin binding. Lectin-binding specificity was confirmed by sugar inhibition and Kolmogorov-Smirnov statistics. Clear, measurable fluorescence peaks were discriminated, and no parasite autofluorescence was observed. Parasites (GTLA-5 and Perkinsus-1 strains) harvested during log and stationary phases of growth in a protein-free medium reacted strongly with concanavalin A and wheat germ agglutinin, which bind to glucose-mannose and N-acetyl-D-glucosamine (GlcNAc) moieties, respectively. Both P. marinus strains bound with lower intensity to Maclura pomifera agglutinin, Bauhinia purpurea agglutinin, soybean agglutinin (N-acetyl-D-galactosamine-specific lectins), peanut agglutinin (PNA) (terminal galactose specific), and Griffonia simplicifolia II (GlcNAc specific). Only background fluorescence levels were detected with Ulex europaeus agglutinin I (L-fucose specific) and Limulus polyphemus agglutinin (sialic acid specific). The lectin-binding profiles were similar for the 2 strains except for a greater relative binding intensity of PNA for Perkinsus-1 and an overall greater lectin-binding capacity of Perkinsus-1 compared with GTLA-5. Growth stage comparisons revealed increased lectin-binding intensities during stationary phase compared with log phase of growth. This is the first report of the identification of surface glycoconjugates on a Perkinsus spp. by flow cytometry and the first to demonstrate that differential surface sugar expression is growth phase and strain dependent. ?? American Society of Parasitologists 2004.

  10. Advanced Processing for Biomedical Informatics (APBI)

    DTIC Science & Technology

    2009-10-01

    phosphatidic acid phosphatase type 2 domain containing 1A PPAPDC1A 1 96051 2.71E-06 4.39E-05 4.55 8.14 12.1 205030_at fatty acid binding protein 7...W81XWH‐06‐2‐0072    Principal Investigator: Craig D. Shriver, COL MC    54    209355_s_at phosphatidic acid phosphatase type 2B PPAP2B 8613 1.62E-06...Investigator: Craig D. Shriver, COL MC    24    209711_at solute carrier family 35 (UDP- glucuronic acid /UDP-N- acetylgalactosamine dual transporter), member

  11. Acetylation of aromatic cysteine conjugates by recombinant human N-acetyltransferase 8.

    PubMed

    Deol, Reema; Josephy, P David

    2017-03-01

    1. The mercapturic acid (MA) pathway is a metabolic route for the processing of glutathione conjugates to MA (N-acetylcysteine conjugates). An N-acetyltransferase enzyme, NAT8, catalyzes the transfer of an acetyl group from acetyl-CoA to the cysteine amino group, producing a MA, which is excreted in the urine. We expressed human NAT8 in HEK293T cells and developed an HPLC-MS method for the quantitation of the S-aryl-substituted cysteine conjugates and their MA. 2. We measured the activity of the enzyme for acetylation of benzyl-, 4-nitrobenzyl-, and 1-menaphthylcysteine substrates. 3. NAT8 catalyzed the acetylation of all three cysteine conjugates with similar Michaelis-Menten kinetics.

  12. Immunization of fucose-containing polysaccharides from Reishi mushroom induces antibodies to tumor-associated Globo H-series epitopes

    PubMed Central

    Liao, Shih-Fen; Liang, Chi-Hui; Hsu, Tsui-Ling; Tsai, Tsung-I; Hsieh, Yves S.-Y.; Tsai, Chih-Ming; Li, Shiou-Ting; Cheng, Yang-Yu; Tsao, Shu-Ming; Lin, Tung-Yi; Lin, Zong-Yan; Yang, Wen-Bin; Ren, Chien-Tai; Lin, Kuo-I; Khoo, Kay-Hooi; Lin, Chun-Hung; Hsu, Hsien-Yeh; Wu, Chung-Yi; Wong, Chi-Huey

    2013-01-01

    Carbohydrate-based vaccines have shown therapeutic efficacy for infectious disease and cancer. The mushroom Ganoderma lucidum (Reishi) containing complex polysaccharides has been used as antitumor supplement, but the mechanism of immune response has rarely been studied. Here, we show that the mice immunized with a l-fucose (Fuc)-enriched Reishi polysaccharide fraction (designated as FMS) induce antibodies against murine Lewis lung carcinoma cells, with increased antibody-mediated cytotoxicity and reduced production of tumor-associated inflammatory mediators (in particular, monocyte chemoattractant protein-1). The mice showed a significant increase in the peritoneal B1 B-cell population, suggesting FMS-mediated anti-glycan IgM production. Furthermore, the glycan microarray analysis of FMS-induced antisera displayed a high specificity toward tumor-associated glycans, with the antigenic structure located in the nonreducing termini (i.e., Fucα1-2Galβ1-3GalNAc-R, where Gal, GalNAc, and R represent, respectively, D-galactose, D-N-acetyl galactosamine, and reducing end), typically found in Globo H and related tumor antigens. The composition of FMS contains mainly the backbone of 1,4-mannan and 1,6-α-galactan and through the Fucα1-2Gal, Fucα1-3/4Man, Fucα1-4Xyl, and Fucα1-2Fuc linkages (where Man and Xyl represent d-mannose and d-xylose, respectively), underlying the molecular basis of the FMS-induced IgM antibodies against tumor-specific glycans. PMID:23908400

  13. Immunization of fucose-containing polysaccharides from Reishi mushroom induces antibodies to tumor-associated Globo H-series epitopes.

    PubMed

    Liao, Shih-Fen; Liang, Chi-Hui; Ho, Ming-Yi; Hsu, Tsui-Ling; Tsai, Tsung-I; Hsieh, Yves S-Y; Tsai, Chih-Ming; Li, Shiou-Ting; Cheng, Yang-Yu; Tsao, Shu-Ming; Lin, Tung-Yi; Lin, Zong-Yan; Yang, Wen-Bin; Ren, Chien-Tai; Lin, Kuo-I; Khoo, Kay-Hooi; Lin, Chun-Hung; Hsu, Hsien-Yeh; Wu, Chung-Yi; Wong, Chi-Huey

    2013-08-20

    Carbohydrate-based vaccines have shown therapeutic efficacy for infectious disease and cancer. The mushroom Ganoderma lucidum (Reishi) containing complex polysaccharides has been used as antitumor supplement, but the mechanism of immune response has rarely been studied. Here, we show that the mice immunized with a l-fucose (Fuc)-enriched Reishi polysaccharide fraction (designated as FMS) induce antibodies against murine Lewis lung carcinoma cells, with increased antibody-mediated cytotoxicity and reduced production of tumor-associated inflammatory mediators (in particular, monocyte chemoattractant protein-1). The mice showed a significant increase in the peritoneal B1 B-cell population, suggesting FMS-mediated anti-glycan IgM production. Furthermore, the glycan microarray analysis of FMS-induced antisera displayed a high specificity toward tumor-associated glycans, with the antigenic structure located in the nonreducing termini (i.e., Fucα1-2Galβ1-3GalNAc-R, where Gal, GalNAc, and R represent, respectively, D-galactose, D-N-acetyl galactosamine, and reducing end), typically found in Globo H and related tumor antigens. The composition of FMS contains mainly the backbone of 1,4-mannan and 1,6-α-galactan and through the Fucα1-2Gal, Fucα1-3/4Man, Fucα1-4Xyl, and Fucα1-2Fuc linkages (where Man and Xyl represent d-mannose and d-xylose, respectively), underlying the molecular basis of the FMS-induced IgM antibodies against tumor-specific glycans.

  14. Protective effects of coffee-derived compounds on lipopolysaccharide/D-galactosamine induced acute liver injury in rats.

    PubMed

    Akashi, Iwao; Kagami, Keisuke; Hirano, Toshihiko; Oka, Kitaro

    2009-04-01

    The protective effects of coffee-derived compounds on lipopolysaccharide/D-galactosamine (LPS/D-GalN) induced acute liver injury in rats were investigated. Wistar rats were orally administered saline (control) or one of the test compounds (caffeine, chlorogenic acid, trigonelline, nicotinic acid or eight pyrazinoic acids) at a dose of 100 mg/kg, respectively. This was followed by intraperitoneal injection with LPS (100 mug/kg)/D-GalN (250 mg/kg) 1 h after administration of the test compounds. Blood samples were collected up to 12 h after LPS/D-GalN injection, followed by determination of plasma aspartate aminotransferase, alanine aminotransferase, tumour necrosis factor alpha (TNF-alpha) and interleukin 10 (IL-10) levels. Plasma aspartate aminotransferase and alanine aminotransferase levels were significantly increased after LPS/D-GalN-treatment, but were suppressed by pretreatment with caffeine (n = 5), nicotinic acid, non-substituted pyrazinoic acid or 5-methylpyrazinoic acid (n = 6, respectively) 12 h after LPS/D-GalN-treatment (P < 0.01, respectively). Moreover, the animals pretreated with these test compounds showed significantly higher survival rates (83-100%) compared with the control (23%). Only pretreatment with caffeine significantly suppressed the LPS/D-GalN induced elevation of plasma TNF-alpha levels 1 and 2 h after LPS/D-GalN-treatment (P < 0.01, respectively). Pretreatment with caffeine, nicotinic acid or non-substituted pyrazinoic acid activated the LPS/D-GalN induced elevation of plasma IL-10 levels at 1 and 2 h, although there were no statistically significant differences in IL-10 levels between control and nicotinic acid or non-substituted pyrazinoic acid treated rats. The results suggest that caffeine, nicotinic acid, non-substituted pyrazinoic acid and 5-methylpyrazinoic acid can protect against LPS/D-GalN induced acute liver injury, which may be mediated by the reduction of TNF-alpha production and/or increasing IL-10 production.

  15. Linking Bacillus cereus Genotypes and Carbohydrate Utilization Capacity.

    PubMed

    Warda, Alicja K; Siezen, Roland J; Boekhorst, Jos; Wells-Bennik, Marjon H J; de Jong, Anne; Kuipers, Oscar P; Nierop Groot, Masja N; Abee, Tjakko

    2016-01-01

    We characterised carbohydrate utilisation of 20 newly sequenced Bacillus cereus strains isolated from food products and food processing environments and two laboratory strains, B. cereus ATCC 10987 and B. cereus ATCC 14579. Subsequently, genome sequences of these strains were analysed together with 11 additional B. cereus reference genomes to provide an overview of the different types of carbohydrate transporters and utilization systems found in B. cereus strains. The combined application of API tests, defined growth media experiments and comparative genomics enabled us to link the carbohydrate utilisation capacity of 22 B. cereus strains with their genome content and in some cases to the panC phylogenetic grouping. A core set of carbohydrates including glucose, fructose, maltose, trehalose, N-acetyl-glucosamine, and ribose could be used by all strains, whereas utilisation of other carbohydrates like xylose, galactose, and lactose, and typical host-derived carbohydrates such as fucose, mannose, N-acetyl-galactosamine and inositol is limited to a subset of strains. Finally, the roles of selected carbohydrate transporters and utilisation systems in specific niches such as soil, foods and the human host are discussed.

  16. Linking Bacillus cereus Genotypes and Carbohydrate Utilization Capacity

    PubMed Central

    Warda, Alicja K.; Siezen, Roland J.; Boekhorst, Jos; Wells-Bennik, Marjon H. J.; de Jong, Anne; Kuipers, Oscar P.; Nierop Groot, Masja N.; Abee, Tjakko

    2016-01-01

    We characterised carbohydrate utilisation of 20 newly sequenced Bacillus cereus strains isolated from food products and food processing environments and two laboratory strains, B. cereus ATCC 10987 and B. cereus ATCC 14579. Subsequently, genome sequences of these strains were analysed together with 11 additional B. cereus reference genomes to provide an overview of the different types of carbohydrate transporters and utilization systems found in B. cereus strains. The combined application of API tests, defined growth media experiments and comparative genomics enabled us to link the carbohydrate utilisation capacity of 22 B. cereus strains with their genome content and in some cases to the panC phylogenetic grouping. A core set of carbohydrates including glucose, fructose, maltose, trehalose, N-acetyl-glucosamine, and ribose could be used by all strains, whereas utilisation of other carbohydrates like xylose, galactose, and lactose, and typical host-derived carbohydrates such as fucose, mannose, N-acetyl-galactosamine and inositol is limited to a subset of strains. Finally, the roles of selected carbohydrate transporters and utilisation systems in specific niches such as soil, foods and the human host are discussed. PMID:27272929

  17. Helicobacter pylori β1,3-N-acetylglucosaminyltransferase for versatile synthesis of type 1 and type 2 poly-LacNAcs on N-linked, O-linked and I-antigen glycans

    PubMed Central

    Peng, Wenjie; Pranskevich, Jennifer; Nycholat, Corwin; Gilbert, Michel; Wakarchuk, Warren; Paulson, James C; Razi, Nahid

    2012-01-01

    Poly-N-acetyllactosamine extensions on N- and O-linked glycans are increasingly recognized as biologically important structural features, but access to these structures has not been widely available. Here, we report a detailed substrate specificity and catalytic efficiency of the bacterial β3-N-acetylglucosaminyltransferase (β3GlcNAcT) from Helicobacter pylori that can be adapted to the synthesis of a rich diversity of glycans with poly-LacNAc extensions. This glycosyltransferase has surprisingly broad acceptor specificity toward type-1, -2, -3 and -4 galactoside motifs on both linear and branched glycans, found commonly on N-linked, O-linked and I-antigen glycans. This finding enables the production of complex ligands for glycan-binding studies. Although the enzyme shows preferential activity for type 2 (Galβ1-4GlcNAc) acceptors, it is capable of transferring N-acetylglucosamine (GlcNAc) in β1-3 linkage to type-1 (Galβ1-3GlcNAc) or type-3/4 (Galβ1-3GalNAcα/β) sequences. Thus, by alternating the use of the H. pylori β3GlcNAcT with galactosyltransferases that make the β1-4 or β1-3 linkages, various N-linked, O-linked and I-antigen acceptors could be elongated with type-2 and type-1 LacNAc repeats. Finally, one-pot incubation of di-LacNAc biantennary N-glycopeptide with the β3GlcNAcT and GalT-1 in the presence of uridine diphosphate (UDP)-GlcNAc and UDP-Gal, yielded products with 15 additional LacNAc units on the precursor, which was seen as a series of sequential ion peaks representing alternative additions of GlcNAc and Gal residues, on matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Overall, our data demonstrate a broader substrate specificity for the H. pylori β3GlcNAcT than previously recognized and demonstrate its ability as a potent resource for preparative chemo-enzymatic synthesis of complex glycans. PMID:22786570

  18. Role of N-acetyltransferase 2 acetylation polymorphism in 4, 4'-methylene bis (2-chloroaniline) biotransformation.

    PubMed

    Hein, David W; Zhang, Xiaoyan; Doll, Mark A

    2018-02-01

    Arylamine N-acetyltransferase 1 (NAT1) and 2 (NAT2) catalyze the acetylation of arylamine carcinogens. Single nucleotide polymorphisms in the NAT2 coding exon present in NAT2 haplotypes encode allozymes with reduced N-acetyltransferase activity towards the N-acetylation of arylamine carcinogens and the O-acetylation of their N-hydroxylated metabolites. NAT2 acetylator phenotype modifies urinary bladder cancer risk following exposures to arylamine carcinogens such as 4-aminobiphenyl. 4, 4'-methylene bis (2-chloroaniline) (MOCA) is a Group 1 carcinogen for which a role of the NAT2 acetylation polymorphism on cancer risk is unknown. We investigated the role of NAT2 and the genetic acetylation polymorphism on both MOCA N-acetylation and N-hydroxy-MOCA O-acetylation. MOCA N-acetylation exhibited a robust gene dose response in rabbit liver cytosol and in cryopreserved human hepatocytes derived from individuals of rapid, intermediate and slow acetylator NAT2 genotype. MOCA exhibited about 4-fold higher affinity for recombinant human NAT2 than NAT1. Recombinant human NAT2*4 (reference) and 15 variant recombinant human NAT2 allozymes catalyzed both the N-acetylation of MOCA and the O-acetylation of N-hydroxy-MOCA. Human NAT2 5, NAT2 6, NAT2 7 and NAT2 14 allozymes catalyzed MOCA N-acetylation and N-hydroxy-O-acetylation at rates much lower than the reference NAT2 4 allozyme. In conclusion, our results show that NAT2 acetylator genotype has an important role in MOCA metabolism and suggest that risk assessments related to MOCA exposures consider accounting for NAT2 acetylator phenotype in the analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Isofuranodiene, the main volatile constituent of wild celery (Smyrnium olusatrum L.), protects d-galactosamin/lipopolysacchride-induced liver injury in rats.

    PubMed

    Li, Wenping; Shi, Jingshan; Papa, Fabrizio; Maggi, Filippo; Chen, Xiuping

    2016-01-01

    Isofuranodiene is a natural sesquiterpene rich occurring in Smyrnium olusatrum, a forgotten culinary herb which was marginalised after the domestication of the improved form of celery. Our recent data showed that isofuranodiene inhibited the proliferation and induced apoptosis in cancer cells. In this study, we investigated its protective effect on d-galactosamine/lipopolysacchride (GalN/LPS)-induced liver injury in SD rats. Oral administration of isofuranodiene (20 and 50 mg/kg) dramatically inhibited GalN/LPS-induced serum elevation of aspartate aminotransferase, alanine aminotransferase and malondialdehyde levels, and significantly ameliorated liver injury as evidenced by the histological improvement in H&E staining. Furthermore, isofuranodiene treatment significantly inhibited GalN/LPS-induced mRNA expression of IL-1β, IL-6 and inducible nitric oxide synthase in liver tissues. The results from this study showed that isofuranodiene protects GalN/LPS-induced liver injury in SD rats and suggested that it may be a potential functional food ingredient for the prevention and treatment of liver diseases.

  20. Human Leukocyte Antigen Class II Transgenic Mouse Model Unmasks the Significant Extrahepatic Pathology in Toxic Shock Syndrome

    PubMed Central

    Tilahun, Ashenafi Y.; Marietta, Eric V.; Wu, Tsung-Teh; Patel, Robin; David, Chella S.; Rajagopalan, Govindarajan

    2011-01-01

    Among the exotoxins produced by Staphylococcus aureus and Streptococcus pyogenes, the superantigens (SAgs) are the most potent T-cell activators known to date. SAgs are implicated in several serious diseases including toxic shock syndrome (TSS), Kawasaki disease, and sepsis. However, the immunopathogenesis of TSS and other diseases involving SAgs are still not completely understood. The commonly used conventional laboratory mouse strains do not respond robustly to SAgs in vivo. Therefore, they must be artificially rendered susceptible to TSS by using sensitizing agents such as d-galactosamine (d-galN), which skews the disease exclusively to the liver and, hence, is not representative of the disease in humans. SAg-induced TSS was characterized using transgenic mice expressing HLA class II molecules that are extremely susceptible to TSS without d-galN. HLA-DR3 transgenic mice recapitulated TSS in humans with extensive multiple-organ inflammation affecting the lung, liver, kidneys, heart, and small intestines. Heavy infiltration with T lymphocytes (both CD4+ and CD8+), neutrophils, and macrophages was noted. In particular, the pathologic changes in the small intestines were extensive and accompanied by significantly altered absorptive functions of the enterocytes. In contrast to massive liver failure alone in the d-galN sensitization model of TSS, findings of the present study suggest that gut dysfunction might be a key pathogenic event that leads to high morbidity and mortality in humans with TSS. PMID:21641398

  1. Crystallization and identification of the glycosylated moieties of two isoforms of the main allergen Hev b 2 and preliminary X-ray analysis of two polymorphs of isoform II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuentes-Silva, D.; Mendoza-Hernández, G.; Stojanoff, V.

    2007-09-01

    Crystallization of important glycoenzymes involved in IgE-mediated latex allergy. Latex from Hevea brasiliensis contains several allergenic proteins that are involved in type I allergy. One of them is Hev b 2, which is a β-1,3-glucanase enzyme that exists in different isoforms with variable glycosylation content. Two glucanase isoforms were isolated from trees of the GV-42 clone by gel filtration, affinity and ion-exchange chromatography. Isoform I had a carbohydrate content of about 20%, with N-linked N-acetyl-glucosamine, N-acetyl-galactosamine, fucose and galactose residues as the main sugars, while isoform II showed 6% carbohydrate content constisting of N-acetyl-glucosamine, fucose, mannose and xylose. Both isoformsmore » were crystallized by the hanging-drop vapour-diffusion method. Isoform I crystals were grown using 0.2 M trisodium citrate dihydrate, 0.1 M Na HEPES pH 7.5 and 20%(v/v) 2-propanol, but these crystals were not appropriate for data collection. Isoform II crystals were obtained under two conditions and X-ray diffraction data were collected from both. In the first condition (0.2 M trisodium citrate, 0.1 M sodium cacodylate pH 6.5, 30% 2-propanol), crystals belonging to the tetragonal space group P4{sub 1} with unit-cell parameters a = b = 150.17, c = 77.41 Å were obtained. In the second condition [0.2 M ammonium acetate, 0.1 M trisodium citrate dihydrate pH 5.6, 30%(w/v) polyethylene glycol 4000] the isoform II crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 85.08, b = 89.67, c = 101.80 Å, β = 113.6°. Preliminary analysis suggests that there are four molecules of isoform II in both asymmetric units.« less

  2. Hyaluronan synthase assembles hyaluronan on a [GlcNAc(β1,4)]n-GlcNAc(α1→)UDP primer and hyaluronan retains this residual chitin oligomer as a cap at the nonreducing end

    PubMed Central

    Baggenstoss, Bruce A; Washburn, Jennifer L

    2017-01-01

    Abstract Class I hyaluronan synthases (HAS) assemble [GlcNAc(β1,4)GlcUA(β1,3)]n-UDP at the reducing end and also make chitin. Streptococcus equisimilis HAS (SeHAS) also synthesizes chitin-UDP oligosaccharides, (GlcNAc-β1,4)n-GlcNAc(α1→)UDP (Weigel et al. 2015). Here we determined if HAS uses chitin-UDPs as primers to initiate HA synthesis, leaving the non-HA primer at the nonreducing (NR) end. HA made by SeHAS membranes was purified, digested with streptomyces lyase, and hydrophobic oligomers were enriched by solid phase extraction and analyzed by MALDI-TOF MS. Jack bean hexosaminidase (JBH) and MS/MS were used to analyze 19 m/z species of possible GnHn ions with clustered GlcNAc (G) residues attached to disaccharide units (H): (GlcNAcβ1,4)2–5[GlcUA(β1,3)GlcNAc]2–6. JBH digestion sequentially removed GlcNAc from the NR-end of GnHn oligomers, producing successively smaller GnH2–3 series members. Since lyase releases dehydro-oligos (dHn; M−18), only the unique NR-end oligo lacks dehydro-GlcUA. Hn oligomers were undetectable in lyase digests, whereas JBH treatment created new H2–6m/z peaks (i.e. HA tetra- through dodeca-oligomers). MS/MS of larger GnHn species produced chitin (2–5 GlcNAcs), HA oligomers and multiple smaller series members with fewer GlcNAcs. All NR-ends (97%) started with GlcNAc, as a chitin trimer (three GlcNAcs), indicating that GlcNAc(β1,4)2GlcNAc(α1→)-UDP may be optimal for initiation of HA synthesis. Also, HA made by live S. pyogenes cells had G4Hn chitin-oligo NR-ends. We conclude that chitin-UDP functions in vitro and in live cells as a primer to initiate synthesis of all HA chains and these primers remain at the NR-ends of HA chains as residual chitin caps [(GlcNAc-β1,4)3–4]. PMID:28138013

  3. Hyaluronan synthase assembles hyaluronan on a [GlcNAc(β1,4)]n-GlcNAc(α1→)UDP primer and hyaluronan retains this residual chitin oligomer as a cap at the nonreducing end.

    PubMed

    Weigel, Paul H; Baggenstoss, Bruce A; Washburn, Jennifer L

    2017-06-01

    Class I hyaluronan synthases (HAS) assemble [GlcNAc(β1,4)GlcUA(β1,3)]n-UDP at the reducing end and also make chitin. Streptococcus equisimilis HAS (SeHAS) also synthesizes chitin-UDP oligosaccharides, (GlcNAc-β1,4)n-GlcNAc(α1→)UDP (Weigel et al. 2015). Here we determined if HAS uses chitin-UDPs as primers to initiate HA synthesis, leaving the non-HA primer at the nonreducing (NR) end. HA made by SeHAS membranes was purified, digested with streptomyces lyase, and hydrophobic oligomers were enriched by solid phase extraction and analyzed by MALDI-TOF MS. Jack bean hexosaminidase (JBH) and MS/MS were used to analyze 19 m/z species of possible GnHn ions with clustered GlcNAc (G) residues attached to disaccharide units (H): (GlcNAcβ1,4)2-5[GlcUA(β1,3)GlcNAc]2-6. JBH digestion sequentially removed GlcNAc from the NR-end of GnHn oligomers, producing successively smaller GnH2-3 series members. Since lyase releases dehydro-oligos (dHn; M-18), only the unique NR-end oligo lacks dehydro-GlcUA. Hn oligomers were undetectable in lyase digests, whereas JBH treatment created new H2-6m/z peaks (i.e. HA tetra- through dodeca-oligomers). MS/MS of larger GnHn species produced chitin (2-5 GlcNAcs), HA oligomers and multiple smaller series members with fewer GlcNAcs. All NR-ends (97%) started with GlcNAc, as a chitin trimer (three GlcNAcs), indicating that GlcNAc(β1,4)2GlcNAc(α1→)-UDP may be optimal for initiation of HA synthesis. Also, HA made by live S. pyogenes cells had G4Hn chitin-oligo NR-ends. We conclude that chitin-UDP functions in vitro and in live cells as a primer to initiate synthesis of all HA chains and these primers remain at the NR-ends of HA chains as residual chitin caps [(GlcNAc-β1,4)3-4]. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Characterization of the N-Acetyl-[alpha]-d-glucosaminyl l-Malate Synthase and Deacetylase Functions for Bacillithiol Biosynthesis in Bacillus anthracis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsonage, Derek; Newton, Gerald L.; Holder, Robert C.

    2012-02-21

    Bacillithiol (Cys-GlcN-malate, BSH) has recently been identified as a novel low-molecular weight thiol in Bacillus anthracis, Staphylococcus aureus, and several other Gram-positive bacteria lacking glutathione and mycothiol. We have now characterized the first two enzymes for the BSH biosynthetic pathway in B. anthracis, which combine to produce {alpha}-D-glucosaminyl L-malate (GlcN-malate) from UDP-GlcNAc and L-malate. The structure of the GlcNAc-malate intermediate has been determined, as have the kinetic parameters for the BaBshA glycosyltransferase ({yields}GlcNAc-malate) and the BaBshB deacetylase ({yields}GlcN-malate). BSH is one of only two natural products reported to contain a malyl glycoside, and the crystal structure of the BaBshA-UDP-malate ternarymore » complex, determined in this work at 3.3 {angstrom} resolution, identifies several active-site interactions important for the specific recognition of L-malate, but not other {alpha}-hydroxy acids, as the acceptor substrate. In sharp contrast to the structures reported for the GlcNAc-1-D-myo-inositol-3-phosphate synthase (MshA) apo and ternary complex forms, there is no major conformational change observed in the structures of the corresponding BaBshA forms. A mutant strain of B. anthracis deficient in the BshA glycosyltransferase fails to produce BSH, as predicted. This B. anthracis bshA locus (BA1558) has been identified in a transposon-site hybridization study as required for growth, sporulation, or germination [Day, W. A., Jr., Rasmussen, S. L., Carpenter, B. M., Peterson, S. N., and Friedlander, A. M. (2007) J. Bacteriol. 189, 3296-3301], suggesting that the biosynthesis of BSH could represent a target for the development of novel antimicrobials with broad-spectrum activity against Gram-positive pathogens like B. anthracis. The metabolites that function in thiol redox buffering and homeostasis in Bacillus are not well understood, and we present a composite picture based on this and other recent work.« less

  5. Synthesis of methyl 3-O-alpha-D-mannopyranosyl-alpha-D-talopyranoside and methyl 3-O-alpha-D-talopyranosyl-alpha-D-talopyranoside.

    PubMed

    Dubey, R; Jain, R K; Abbas, S A; Matta, K L

    1987-08-01

    Methyl 2-O-benzyl-3-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)-alpha- D-mannopyranoside (4) and methyl 2-O-benzyl-3-O-alpha-D-mannopyranosyl-alpha-D-mannopyranoside (6) were prepared from a common intermediate, namely, methyl 2-O-benzyl-4,6-O-benzylidene-3-O-(2,3,4,6-tetra-O-acetyl-alpha-D- mannopyranosyl)-alpha-D-mannopyranoside. On treatment with tert-butylchlorodiphenylsilane, in N,N-dimethylformamide in the presence of imidazole, 4 and 6 afforded methyl 2-O-benzyl-6-O-tert-butyldiphenylsilyl-3-O-(2,3,4,6-tetra-O-acetyl -alpha-D- mannopyranosyl)-alpha-D-mannopyranoside (7), and methyl 2-O-benzyl-6-O-tert-butyldiphenylsilyl-3-O-(6-O-tert- butyldiphenylsilyl-alpha-D-mannopyranosyl)-alpha-D-mannopyranoside (8), respectively. Compound 8 was converted into its 2,3-O-isopropylidene derivative (9), and oxidation of 7 and 9 with pyridinium chlorochromate, and reduction of the resulting carbonyl intermediates gave methyl 2-O-benzyl-6-O-tert-butyldiphenylsilyl-3-O-(2,3,4,6-tetra-O-acetyl -alpha-D- mannopyranosyl)-alpha-D-talopyranoside and methyl 2-O-benzyl-6-O-tert-butyldiphenylsilyl-3-O-(6-O-tert-butyldiphe nylsilyl- 2,3-O-isopropylidene-alpha-D-talopyranosyl)-alpha-D-talopyranoside , respectively. Removal of the protecting groups furnished the title disaccharides.

  6. Mucin glycan foraging in the human gut microbiome

    PubMed Central

    Tailford, Louise E.; Crost, Emmanuelle H.; Kavanaugh, Devon; Juge, Nathalie

    2015-01-01

    The availability of host and dietary carbohydrates in the gastrointestinal (GI) tract plays a key role in shaping the structure-function of the microbiota. In particular, some gut bacteria have the ability to forage on glycans provided by the mucus layer covering the GI tract. The O-glycan structures present in mucin are diverse and complex, consisting predominantly of core 1-4 mucin-type O-glycans containing α- and β- linked N-acetyl-galactosamine, galactose and N-acetyl-glucosamine. These core structures are further elongated and frequently modified by fucose and sialic acid sugar residues via α1,2/3/4 and α2,3/6 linkages, respectively. The ability to metabolize these mucin O-linked oligosaccharides is likely to be a key factor in determining which bacterial species colonize the mucosal surface. Due to their proximity to the immune system, mucin-degrading bacteria are in a prime location to influence the host response. However, despite the growing number of bacterial genome sequences available from mucin degraders, our knowledge on the structural requirements for mucin degradation by gut bacteria remains fragmented. This is largely due to the limited number of functionally characterized enzymes and the lack of studies correlating the specificity of these enzymes with the ability of the strain to degrade and utilize mucin and mucin glycans. This review focuses on recent findings unraveling the molecular strategies used by mucin-degrading bacteria to utilize host glycans, adapt to the mucosal environment, and influence human health. PMID:25852737

  7. A Computational Framework for High-Throughput Isotopic Natural Abundance Correction of Omics-Level Ultra-High Resolution FT-MS Datasets

    PubMed Central

    Carreer, William J.; Flight, Robert M.; Moseley, Hunter N. B.

    2013-01-01

    New metabolomics applications of ultra-high resolution and accuracy mass spectrometry can provide thousands of detectable isotopologues, with the number of potentially detectable isotopologues increasing exponentially with the number of stable isotopes used in newer isotope tracing methods like stable isotope-resolved metabolomics (SIRM) experiments. This huge increase in usable data requires software capable of correcting the large number of isotopologue peaks resulting from SIRM experiments in a timely manner. We describe the design of a new algorithm and software system capable of handling these high volumes of data, while including quality control methods for maintaining data quality. We validate this new algorithm against a previous single isotope correction algorithm in a two-step cross-validation. Next, we demonstrate the algorithm and correct for the effects of natural abundance for both 13C and 15N isotopes on a set of raw isotopologue intensities of UDP-N-acetyl-D-glucosamine derived from a 13C/15N-tracing experiment. Finally, we demonstrate the algorithm on a full omics-level dataset. PMID:24404440

  8. Comparative analysis of pharmacological treatments with N-acetyl-DL-leucine (Tanganil) and its two isomers (N-acetyl-L-leucine and N-acetyl-D-leucine) on vestibular compensation: Behavioral investigation in the cat.

    PubMed

    Tighilet, Brahim; Leonard, Jacques; Bernard-Demanze, Laurence; Lacour, Michel

    2015-12-15

    Head roll tilt, postural imbalance and spontaneous nystagmus are the main static vestibular deficits observed after an acute unilateral vestibular loss (UVL). In the UVL cat model, these deficits are fully compensated over 6 weeks as the result of central vestibular compensation. N-Acetyl-dl-leucine is a drug prescribed in clinical practice for the symptomatic treatment of acute UVL patients. The present study investigated the effects of N-acetyl-dl-leucine on the behavioral recovery after unilateral vestibular neurectomy (UVN) in the cat, and compared the effects of each of its two isomers N-acetyl-L-leucine and N-acetyl-D-leucine. Efficacy of these three drug treatments has been evaluated with respect to a placebo group (UVN+saline water) on the global sensorimotor activity (observation grids), the posture control (support surface measurement), the locomotor balance (maximum performance at the rotating beam test), and the spontaneous vestibular nystagmus (recorded in the light). Whatever the parameters tested, the behavioral recovery was strongly and significantly accelerated under pharmacological treatments with N-acetyl-dl-leucine and N-acetyl-L-leucine. In contrast, the N-acetyl-D-leucine isomer had no effect at all on the behavioral recovery, and animals of this group showed the same recovery profile as those receiving a placebo. It is concluded that the N-acetyl-L-leucine isomer is the active part of the racemate component since it induces a significant acceleration of the vestibular compensation process similar (and even better) to that observed under treatment with the racemate component only. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Genetically Epilepsy-Prone Rats Have Increased Brain Regional Activity of an Enzyme Which Liberates Glutamate from N-acetyl-aspartyl-glutamate

    DTIC Science & Technology

    1992-01-01

    DISTRIBUTION C OOt .APPROVED FOR PUPLIC RELEASE: DISTRIBUTION UNLIMITED Ii. A STRA T (Minls.m200oids N-Acetylated-a- 1 n (’ed acidic dip cpL,2ase (N...aspartate (NAA) and the excitatory amino acid , glutamate (CLU). Although there is evidence that NAAG might be a neurotransmitter, this dipoptide could...Genetics; Itippocampus: E-ctlsatlltmt pilepsy-, Glutamate: N-Acetylated-o-1 inked acidic dipeptidasc-: Enrniatic: IIrosz:NAAG: Aspartalc N-Acetylated-a

  10. Skin metabolism of aminophenols: Human keratinocytes as a suitable in vitro model to qualitatively predict the dermal transformation of 4-amino-2-hydroxytoluene in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goebel, C.; Hewitt, N.J.; Kunze, G.

    2009-02-15

    4-Amino-2-hydroxytolune (AHT) is an aromatic amine ingredient in oxidative hair colouring products. As skin contact occurs during hair dyeing, characterisation of dermal metabolism is important for the safety assessment of this chemical class. We have compared the metabolism of AHT in the human keratinocyte cell line HaCaT with that observed ex-vivo in human skin and in vivo (topical application versus oral (p.o.) and intravenous (i.v.) route). Three major metabolites of AHT were excreted, i.e. N-acetyl-AHT, AHT-sulfate and AHT-glucuronide. When 12.5 mg/kg AHT was applied topically, the relative amounts of each metabolite were altered such that N-acetyl-AHT product was the majormore » metabolite (66% of the dose in comparison with 37% and 32% of the same applied dose after i.v. and p.o. administration, respectively). N-acetylated products were the only metabolites detected in HaCaT cells and ex-vivo whole human skin discs for AHT and p-aminophenol (PAP), an aromatic amine known to undergo N-acetylation in vivo. Since N-acetyltransferase 1 (NAT1) is the responsible enzyme, kinetics of AHT was further compared to the standard NAT1 substrate p-aminobenzoic acid (PABA) in the HaCaT model revealing similar values for K{sub m} and V{sub max}. In conclusion NAT1 dependent dermal N-acetylation of AHT represents a 'first-pass' metabolism effect in the skin prior to entering the systemic circulation. Since the HaCaT cell model represents a suitable in vitro assay for addressing the qualitative contribution of the skin to the metabolism of topically-applied aromatic amines it may contribute to a reduction in animal testing.« less

  11. Effective atomic number and electron density of amino acids within the energy range of 0.122-1.330 MeV

    NASA Astrophysics Data System (ADS)

    More, Chaitali V.; Lokhande, Rajkumar M.; Pawar, Pravina P.

    2016-08-01

    Photon attenuation coefficient calculation methods have been widely used to accurately study the properties of amino acids such as n-acetyl-L-tryptophan, n-acetyl-L-tyrosine, D-tryptophan, n-acetyl-L-glutamic acid, D-phenylalanine, and D-threonine. In this study, mass attenuation coefficients (μm) of these amino acids for 0.122-, 0.356-, 0.511-, 0.662-, 0.884-, 1.170, 1.275-, 1.330-MeV photons are determined using the radio-nuclides Co57, Ba133, Cs137, Na22, Mn54, and Co60. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The calculated attenuation coefficient values were then used to determine total atomic cross sections (σt), molar extinction coefficients (ε), electronic cross sections (σe), effective atomic numbers (Zeff), and effective electron densities (Neff) of the amino acids. Theoretical values were calculated based on the XCOM data. Theoretical and experimental values are found to be in a good agreement (error<5%). The variations of μm, σt, ε, σe, Zeff, and Neff with energy are shown graphically. The values of μm, σt, ε, σe are higher at lower energies, and they decrease sharply as energy increases; by contrast, Zeff and Neff were found to be almost constant.

  12. Isolation and Characterization of a Sex-Specific Lectin in a Marine Red Alga, Aglaothamnion oosumiense Itono

    PubMed Central

    Han, Jong Won; Klochkova, Tatyana A.; Shim, Jun Bo; Yoon, Kangsup

    2012-01-01

    In red algae, spermatial binding to female trichogynes is mediated by a lectin-carbohydrate complementary system. Aglaothamnion oosumiense is a microscopic filamentous red alga. The gamete recognition and binding occur at the surface of the hairlike trichogyne on the female carpogonium. Male spermatia are nonmotile. Previous studies suggested the presence of a lectin responsible for gamete recognition on the surface of female trychogynes. A novel N-acetyl-d-galactosamine-specific protein was isolated from female plants of A. oosumiense by affinity chromatography and named AOL1. The lectin was monomeric and did not agglutinate horse blood or human erythrocytes. The N-terminal amino acid sequence of the protein was analyzed, and degenerate primers were designed. A full-length cDNA encoding the lectin was obtained using rapid amplification of cDNA ends-PCR (RACE-PCR). The cDNA was 1,095 bp in length and coded for a protein of 259 amino acids with a deduced molecular mass of 21.4 kDa, which agreed well with the protein data. PCR analysis using genomic DNA showed that both male and female plants have this gene. However, Northern blotting and two-dimensional electrophoresis showed that this protein was expressed 12 to 15 times more in female plants. The lectin inhibited spermatial binding to the trichogynes when preincubated with spermatia, suggesting its involvement in gamete binding. PMID:22865077

  13. Making Home Sweet and Sturdy: Toxoplasma gondii ppGalNAc-Ts Glycosylate in Hierarchical Order and Confer Cyst Wall Rigidity

    PubMed Central

    Tomita, Tadakimi; Sugi, Tatsuki; Yakubu, Rama; Tu, Vincent; Ma, Yanfen

    2017-01-01

    ABSTRACT The protozoan intracellular parasite Toxoplasma gondii forms latent cysts in the central nervous system (CNS) and persists for the lifetime of the host. This cyst is cloaked with a glycosylated structure called the cyst wall. Previously, we demonstrated that a mucin-like glycoprotein, CST1, localizes to the cyst wall and confers structural rigidity on brain cysts in a mucin-like domain-dependent manner. The mucin-like domain of CST1 is composed of 20 units of threonine-rich tandem repeats that are O-GalNAc glycosylated. A family of enzymes termed polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts) initiates O-GalNAc glycosylation. To identify which isoforms of ppGalNAc-Ts are responsible for the glycosylation of the CST1 mucin-like domain and to evaluate the function of each ppGalNAc-T in the overall glycosylation of the cyst wall, all five ppGalNAc-T isoforms were deleted individually from the T. gondii genome. The ppGalNAc-T2 and -T3 deletion mutants produced various glycosylation defects on the cyst wall, implying that many cyst wall glycoproteins are glycosylated by T2 and T3. Both T2 and T3 glycosylate the CST1 mucin-like domain, and this glycosylation is necessary for CST1 to confer structural rigidity on the cyst wall. We established that T2 is required for the initial glycosylation of the mucin-like domain and that T3 is responsible for the sequential glycosylation on neighboring acceptor sites, demonstrating hierarchical glycosylation by two distinct initiating and filling-in ppGalNAc-Ts in an intact organism. PMID:28074022

  14. 4-O-Acetyl-sialic acid (Neu4,5Ac2) in acidic milk oligosaccharides of the platypus (Ornithorhynchus anatinus) and its evolutionary significance.

    PubMed

    Urashima, Tadasu; Inamori, Hiroaki; Fukuda, Kenji; Saito, Tadao; Messer, Michael; Oftedal, Olav T

    2015-06-01

    Monotremes (echidnas and platypus) retain an ancestral form of reproduction: egg-laying followed by secretion of milk onto skin and hair in a mammary patch, in the absence of nipples. Offspring are highly immature at hatching and depend on oligosaccharide-rich milk for many months. The primary saccharide in long-beaked echidna milk is an acidic trisaccharide Neu4,5Ac2(α2-3)Gal(β1-4)Glc (4-O-acetyl 3'-sialyllactose), but acidic oligosaccharides have not been characterized in platypus milk. In this study, acidic oligosaccharides purified from the carbohydrate fraction of platypus milk were characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and (1)H-nuclear magnetic resonance spectroscopy. All identified structures, except Neu5Ac(α2-3)Gal(β1-4)Glc (3'-sialyllactose) contained Neu4,5Ac2 (4-O-acetyl-sialic acid). These include the trisaccharide 4-O-acetyl 3'-sialyllactose, the pentasaccharide Neu4,5Ac2(α2-3)Gal(β1-4)GlcNAc(β1-3)Gal(β1-4)Glc (4-O-acetyl-3'-sialyllacto-N-tetraose d) and the hexasaccharide Neu4,5Ac2(α2-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-3)Gal(β1-4)Glc (4-O-acetyl-3'-sialyllacto-N-fucopentaose III). At least seven different octa- to deca-oligosaccharides each contained a lacto-N-neohexaose core (LNnH) and one or two Neu4,5Ac2 and one to three fucose residues. We conclude that platypus milk contains a diverse (≥ 20) array of neutral and acidic oligosaccharides based primarily on lactose, lacto-N-neotetraose (LNnT) and LNnH structural cores and shares with echidna milk the unique feature that all identified acidic oligosaccharides (other than 3'-sialyllactose) contain the 4-O-acetyl-sialic acid moiety. We propose that 4-O-acetylation of sialic acid moieties protects acidic milk oligosaccharides secreted onto integumental surfaces from bacterial hydrolysis via steric interference with bacterial sialidases. This may be of evolutionary significance since taxa ancestral to monotremes and other mammals are thought to have secreted milk, or a milk-like fluid containing oligosaccharides, onto skin surfaces. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Structural Basis for the De-N-acetylation of Poly-β-1,6-N-acetyl-d-glucosamine in Gram-positive Bacteria*

    PubMed Central

    Little, Dustin J.; Bamford, Natalie C.; Pokrovskaya, Varvara; Robinson, Howard; Nitz, Mark; Howell, P. Lynne

    2014-01-01

    Exopolysaccharides are required for the development and integrity of biofilms produced by a wide variety of bacteria. In staphylococci, partial de-N-acetylation of the exopolysaccharide poly-β-1,6-N-acetyl-d-glucosamine (PNAG) by the extracellular protein IcaB is required for biofilm formation. To understand the molecular basis for PNAG de-N-acetylation, the structure of IcaB from Ammonifex degensii (IcaBAd) has been determined to 1.7 Å resolution. The structure of IcaBAd reveals a (β/α)7 barrel common to the family four carbohydrate esterases (CE4s) with the canonical motifs circularly permuted. The metal dependence of IcaBAd is similar to most CE4s showing the maximum rates of de-N-acetylation with Ni2+, Co2+, and Zn2+. From docking studies with β-1,6-GlcNAc oligomers and structural comparison to PgaB from Escherichia coli, the Gram-negative homologue of IcaB, we identify Arg-45, Tyr-67, and Trp-180 as key residues for PNAG binding during catalysis. The absence of these residues in PgaB provides a rationale for the requirement of a C-terminal domain for efficient deacetylation of PNAG in Gram-negative species. Mutational analysis of conserved active site residues suggests that IcaB uses an altered catalytic mechanism in comparison to other characterized CE4 members. Furthermore, we identified a conserved surface-exposed hydrophobic loop found only in Gram-positive homologues of IcaB. Our data suggest that this loop is required for membrane association and likely anchors IcaB to the membrane during polysaccharide biosynthesis. The work presented herein will help guide the design of IcaB inhibitors to combat biofilm formation by staphylococci. PMID:25359777

  16. Oligosaccharide composition is similar in drusen and dense deposits in membranoproliferative glomerulonephritis type II.

    PubMed

    D'souza, Yvonne B; Jones, Carolyn J P; Short, Colin D; Roberts, Ian S D; Bonshek, Richard E

    2009-04-01

    Drusen are a feature of age-related macular degeneration (AMD). Lesions similar in appearance to drusen are also found in the fundi of patients with membranoproliferative glomerulonephritis type II (dense deposit disease, DDD). The lamina densa of the glomerular basement membrane, in DDD, is transformed into an electron-dense structure by deposition of microscopically homogeneous material. Our study sought to compare the saccharide composition of drusen and dense deposits in the formalin-fixed, paraffin-embedded tissue from the eye and kidney. Six eye specimens were obtained from patients diagnosed with AMD but another eye was obtained from a patient with partial lipodystrophy, who died after renal failure presumably because of DDD. The kidney specimens were from three biopsy-proven cases of DDD. Glycosylation patterns were measured by the binding of 19 biotinylated lectins before and after neuraminidase pre-treatment. High mannose, bi/tri-antennary non-bisected and bisected complex N-glycan, N-acetyl glucosamine, galactose, and sialic acid residues were found in both drusen and dense deposits. Treatment with neuraminidase exposed subterminal galactose in both sites and sparse N-acetyl galactosamine residues in drusen alone. Our study found similar pathologic oligosaccharide structures in the eye and kidney, suggesting that drusen may be a common end result of retinal and glomerular disease.

  17. Nature and mechanisms of hepatocyte apoptosis induced by D-galactosamine/lipopolysaccharide challenge in mice.

    PubMed

    Wu, Yi-Hang; Hu, Shao-Qing; Liu, Jun; Cao, Hong-Cui; Xu, Wei; Li, Yong-Jun; Li, Lan-Juan

    2014-06-01

    Apoptosis plays a role in the normal development of liver. However, overactivation thereof may lead to hepatocellular damage. The aim of this study was to assess D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced hepatocyte apoptotic changes in mice and clarify the mechanisms involved in this process. DNA ladder detection was employed to determine the induction condition of hepatic apoptosis. An initial test indicated that typical hepatocyte apoptosis was observed at 6-10 h after the intraperitoneal injection of D-GalN (700 mg/kg) and LPS (10 µg/kg). Subsequently, we evaluated hepatocyte apoptosis at 8 h after administering D-GalN/LPS by histopathological analysis, terminal deoxynucleotidyl transferase-mediated dUTP nick end‑labeling (TUNEL) detection, flow cytometry and electron microscopy analysis. To clarify the apoptosis-related gene expression, the expression levels of tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), caspase-3, and Fas/Fas ligand (FasL) were determined by serum enzyme immunoassay, immunohistochemistry and western blot analysis. Strong apoptotic positive signals following D-GalN/LPS injection were observed from the results of the serum analysis, histopathological and immunohistochemical analyses, DNA ladder detection, TUNEL detection, flow cytometry and electron microscopy analysis. Additionally, apoptotic hepatocytes were mainly at the late stage of cell apoptosis. The expression of TNF-α, TGF-β1, caspase-3 and Fas/FasL was significantly increased. In conclusion, this study evaluated the D-GalN/LPS-induced hepatocyte apoptotic changes and clarified the apoptosis-related gene expression in mice. The hepatocyte apoptosis induced by D-GalN/LPS may be mainly regulated by the death receptor pathway. TGF-β signaling pathway may also play a vital role in this process of hepatocyte apoptosis.

  18. Structure of human O-GlcNAc transferase and its complex with a peptide substrate

    PubMed Central

    Lazarus, Michael B.; Nam, Yunsun; Jiang, Jiaoyang; Sliz, Piotr; Walker, Suzanne

    2010-01-01

    O-GlcNAc transferase (OGT) is an essential mammalian enzyme that couples metabolic status to the regulation of a wide variety of cellular signaling pathways by acting as a nutrient sensor1. OGT catalyzes the transfer of N-acetyl-glucosamine from UDP-GlcNAc to serines and threonines of cytoplasmic, nuclear and mitochondrial proteins2,3, including numerous transcription factors4, tumor suppressors, kinases5, phosphatases1, and histone-modifying proteins6. Aberrant O-GlcNAcylation by OGT has been linked to insulin resistance7, diabetic complications8, cancer9 and neurodegenerative diseases including Alzheimer’s10. Despite the importance of OGT, the details of how it recognizes and glycosylates its protein substrates are largely unknown. We report here two crystal structures of human OGT, as a binary complex with UDP (2.8 A) and a ternary complex with UDP and a peptide substrate (1.95 A). The structures provide clues to the enzyme mechanism, show how OGT recognizes target peptide sequences, and reveal the fold of the unique domain between the two halves of the catalytic region. This information will accelerate the rational design of biological experiments to investigate OGT’s functions and the design of inhibitors for use as cellular probes and to assess its potential as a therapeutic target. PMID:21240259

  19. RNA Interference of Endochitinases in the Sugarcane Endophyte Trichoderma virens 223 Reduces Its Fitness as a Biocontrol Agent of Pineapple Disease

    PubMed Central

    Romão-Dumaresq, Aline S.; de Araújo, Welington Luiz; Talbot, Nicholas J.; Thornton, Christopher R.

    2012-01-01

    The sugarcane root endophyte Trichoderma virens 223 holds enormous potential as a sustainable alternative to chemical pesticides in the control of sugarcane diseases. Its efficacy as a biocontrol agent is thought to be associated with its production of chitinase enzymes, including N-acetyl-ß-D-glucosaminidases, chitobiosidases and endochitinases. We used targeted gene deletion and RNA-dependent gene silencing strategies to disrupt N-acetyl-ß-D-glucosaminidase and endochitinase activities of the fungus, and to determine their roles in the biocontrol of soil-borne plant pathogens. The loss of N-acetyl-ß-D-glucosaminidase activities was dispensable for biocontrol of the plurivorous damping-off pathogens Rhizoctonia solani and Sclerotinia sclerotiorum, and of the sugarcane pathogen Ceratocystis paradoxa, the causal agent of pineapple disease. Similarly, suppression of endochitinase activities had no effect on R. solani and S. sclerotiorum disease control, but had a pronounced effect on the ability of T. virens 223 to control pineapple disease. Our work demonstrates a critical requirement for T. virens 223 endochitinase activity in the biocontrol of C. paradoxa sugarcane disease, but not for general antagonism of other soil pathogens. This may reflect its lifestyle as a sugarcane root endophyte. PMID:23110120

  20. TNF-α dependent production of inducible nitric oxide is involved in PGE1 protection against acute liver injury

    PubMed Central

    Muntane, J; Rodriguez, F; Segado, O; Quintero, A; Lozano, J; Siendones, E; Pedraza, C; Delgado, M; O'Valle, F; Garcia, R; Montero, J; De la Mata, M; Mino, G

    2000-01-01

    BACKGROUND—Tumour necrosis factor α (TNF-α) and nitric oxide modulate damage in several experimental models of liver injury. We have previously shown that protection against D-galactosamine (D-GalN) induced liver injury by prostaglandin E1 (PGE1) was accompanied by an increase in TNF-α and nitrite/nitrate in serum.
AIMS—The aim of the present study was to evaluate the role of TNF-α and nitric oxide during protection by PGE1 of liver damage induced by D-GalN.
METHODS—Liver injury was induced in male Wistar rats by intraperitoneal injection of 1 g/kg of D-GalN. PGE1 was administered 30 minutes before D-GalN. Inducible nitric oxide synthase (iNOS) was inhibited by methylisothiourea (MT), and TNF-α concentration in serum was lowered by administration of anti-TNF-α antibodies. Liver injury was evaluated by alanine aminotransferase activity in serum, and histological examination and DNA fragmentation in liver. TNF-α and nitrite/nitrate concentrations were determined in serum. Expression of TNF-α and iNOS was also assessed in liver sections.
RESULTS—PGE1 decreased liver injury and increased TNF-α and nitrite/nitrate concentrations in serum of rats treated with D-GalN. PGE1 protection was related to enhanced expression of TNF-α and iNOS in hepatocytes. Administration of anti-TNF-α antibodies or MT blocked the protection by PGE1 of liver injury induced by D-GalN.
CONCLUSIONS—This study suggests that prior administration of PGE1 to D-GalN treated animals enhanced expression of TNF-α and iNOS in hepatocytes, and that this was causally related to protection by PGE1 against D-GalN induced liver injury.


Keywords: tumour necrosis factor α; nitric oxide; prostaglandin E1; methylisothiourea; D-galactosamine; liver injury PMID:10986217

  1. Chondroitin sulfatases differentially regulate Wnt signaling in prostate stem cells through effects on SHP2, phospho-ERK1/2, and Dickkopf Wnt signaling pathway inhibitor (DKK3)

    PubMed Central

    Bhattacharyya, Sumit; Feferman, Leo; Tobacman, Joanne K.

    2017-01-01

    The chondroitin sulfatases N-acetylgalactosamine-4-sulfatase (ARSB) and galactosamine-N-acetyl-6-sulfatase (GALNS) remove either the 4-sulfate group at the non-reducing end of chondroitin 4-sulfate (C4S) and dermatan sulfate, or the 6-sulfate group of chondroitin 6-sulfate, chondroitin 4,6-disulfate (chondroitin sulfate E), or keratan sulfate. In human prostate cancer tissues, the ARSB activity was reduced and the GALNS activity was increased, compared to normal prostate tissue. In human prostate stem cells, when ARSB was reduced by silencing or GALNS was increased by overexpression, activity of SHP2, the ubiquitous non-receptor tyrosine phosphatase, declined, attributable to increased binding of SHP2 with C4S. This led to increases in phospho-ERK1/2, Myc/Max nuclear DNA binding, DNA methyltransferase (DNMT) activity and expression, and methylation of the Dickkopf Wnt signaling pathway inhibitor (DKK)3 promoter and to reduced DKK3 expression. Since DKK3 negatively regulates Wnt/β-catenin signaling, silencing of ARSB or overexpression of GALNS disinhibited (increased) Wnt/β-catenin signaling. These findings indicate that the chondroitin sulfatases can exert profound effects on Wnt-mediated processes, due to epigenetic effects that modulate Wnt signaling. PMID:29245974

  2. Purification, crystallization and preliminary X-ray analysis of the glucosamine-6-phosphate N-acetyltransferase from human liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Juan; Zhou, Yan-Feng; Li, Lan-Fen

    2006-11-01

    Glucosamine-6-phosphate N-acetyltransferase from human liver was expressed, purified and crystallized. Diffraction data have been collected to 2.6 Å resolution. Glucosamine-6-phosphate N-acetyltransferase from human liver, which catalyzes the transfer of an acetyl group from acetyl coenzyme A (AcCoA) to the primary amine of d-glucosamine 6-phosphate to form N-acetyl-d-glucosamine 6-phosphate, was expressed in a soluble form from Escherichia coli strain BL21 (DE3). The protein was purified to homogeneity using Ni{sup 2+}-chelating chromatography followed by size-exclusion chromatography. Crystals of the protein were obtained by the hanging-drop vapour-diffusion method and diffracted to 2.6 Å resolution. The crystals belonged to space group P4{sub 1}2{sub 1}2more » or P4{sub 3}2{sub 1}2, with unit-cell parameters a = b = 50.08, c = 142.88 Å.« less

  3. Protective effects of agmatine against D-galactosamine and lipopolysaccharide-induced fulminant hepatic failure in mice.

    PubMed

    El-Agamy, Dina S; Makled, Mirhan N; Gamil, Nareman M

    2014-06-01

    Fulminant hepatic failure (FHF) is a life-threatening syndrome characterized by massive hepatic necrosis and high mortality. There is no effective therapy for the disease other than liver transplantation. This study aimed to investigate the effect of agmatine, inducible nitric oxide synthase (iNOS) inhibitor, on D-galactosamine and lipopolysaccharide (GalN/LPS)-induced FHF in mice and explore its possible mechanism(s). Male Swiss albino mice were injected with a single dose agmatine (14 mg/kg, IP) 8 h prior to challenge with a single intraperitoneal injection of both GalN (800 mg/kg) and LPS (50 μg/kg). Agmatine significantly attenuated all GalN/LPS-induced biochemical and pathological changes in liver. It prevented the increase of serum transaminases and alkaline phosphatase (ALP). In addition, agmatine markedly attenuated GalN/LPS-induced necrosis and inflammation. Agmatine significantly reduced oxidative stress and enhanced antioxidant enzymes. Importantly, agmatine decreased total nitric oxide (NO) and pro-inflammatory cytokine, tumor necrosis factor-alpha (TNF-α). These findings reveal that agmatine has hepatoprotective effects against GalN/LPS-induced FHF in mice that may be related to its ability to suppress oxidative stress, NO synthesis and TNF-α production. Therefore, agmatine may serve as a novel therapeutic strategy for hepatic inflammatory diseases.

  4. Some further studies on the synthesis of glycopeptide derivatives: 2-acetamido-2-deoxy-β-d-glucopyranosylamine derivatives

    PubMed Central

    Bolton, C. H.; Hough, L.; Khan, M. Y.

    1966-01-01

    1. The isolation, characterization and properties of two by-products in the preparation of 2-acetamido-3,4,6-tri-O- acetyl-2-deoxy-β-d-glucopyranosylamine are described. They are bis(2-acetamido-2-deoxy-d-glucopyranosyl)amines. 2. An independent synthesis of the bis-glycopyranosylamines is reported and conditions are given for their preparation in high yield. 3. Further improvements are given for the synthesis of 2-acetamido-1-N-(β-l- aspartyl)-2-deoxy-β-d-glucopyranosylamine and the α-l-aspartyl isomer. 4. The synthesis of 2-acetamido-1-N-acetyl-2-deoxy-β-d-glucopyranosylamine is described. PMID:5971780

  5. [Human drug metabolizing enzymes. II. Conjugation enzymes].

    PubMed

    Vereczkey, L; Jemnitz, K; Gregus, Z

    1998-09-01

    In this review we focus on human conjugation enzymes (UDP-glucuronyltransferases, methyl-trasferases, N-acetyl-transferases, O-acetyl-transferases, Amidases/carboxyesterases, sulfotransferases, Glutation-S-transferases and the enzymes involved in the conjugation with amino acids) that participate in the metabolism of xenobiotics. Although conjugation reactions in most of the cases result in detoxication, more and more publications prove that the reactions catalysed by these enzymes very often lead to activated molecules that may attack macromolecules (proteins, RNAs, DNAs), resulting in toxicity (liver, neuro-, embryotoxicity, allergy, carcinogenecity). We have summarised the data available on these enzymes concerning their catalytic profile and specificity, inhibition, induction properties, their possible role in the generation of toxic compounds, their importance in clinical practice and drug development.

  6. Glycyrrhetinic acid attenuates lipopolysaccharide-induced fulminant hepatic failure in d-galactosamine-sensitized mice by up-regulating expression of interleukin-1 receptor-associated kinase-M.

    PubMed

    Yin, Xinru; Gong, Xia; Zhang, Li; Jiang, Rong; Kuang, Ge; Wang, Bin; Chen, Xinyu; Wan, Jingyuan

    2017-04-01

    Glycyrrhetinic acid (GA), the main active ingredient of licorice, reportedly has anti-inflammatory and hepatoprotective properties, but its molecular mechanisms remain be elusive. In the present study, Balb/c mice were pretreated with GA (10, 30, or 100mg/kg) 1h before lipopolysaccharide (LPS)/d-galactosamine (D-GalN) administration. In other in vitro experiment, RAW264.7 macrophages were pretreated with GA before LPS exposure. The mortality, hepatic tissue histology, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were analyzed. Toll like receptor 4 (TLR4), interleukin-1 receptor-associated kinases (IRAKs), activation of mitogen-activated protein kinases (MAPKs) and NF-κB, and production of TNF-α were assessed by flow cytometry, western blotting, and enzyme-linked immunosorbent assay (ELISA), respectively. Our results showed that pretreatment with GA protected mice against LPS/D-GalN-induced fulminant hepatic failure (FHF), including a dose-dependent alleviation of mortality and ALT/AST elevation, ameliorating hepatic pathological damage, and decreasing TNF-α release. Moreover, GA inhibited LPS-induced activation of MAPKs and NF-κB in response to LPS, but the expression of TLR4 was not affected in vivo and in vitro. Notably, GA pretreatment in vivo suppressed IRAK-1 activity while inducing IRAK-M expression. Silencing of IRAK-M expression with siRNA blocked these beneficial effects of GA on the activation of MAPKs and NF-κB as well as TNF-α production in LPS-primed macrophages. Taken together, we conclude that GA could prevent LPS/D-GalN-induced FHF. The underlying mechanisms may be related to up-regulation of IRAK-M, which in turn caused deactivation of IRAK-1 and subsequent MAPKs and NF-κB, resulting in inhibiting TNF-α production. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. N-Acetyl-4-aminophenol (paracetamol), N-acetyl-2-aminophenol and acetanilide in urine samples from the general population, individuals exposed to aniline and paracetamol users.

    PubMed

    Dierkes, Georg; Weiss, Tobias; Modick, Hendrik; Käfferlein, Heiko Udo; Brüning, Thomas; Koch, Holger M

    2014-01-01

    Epidemiological studies suggest associations between the use of N-acetyl-4-aminophenol (paracetamol) during pregnancy and increased risks of reproductive disorders in the male offspring. Previously we have reported a ubiquitous urinary excretion of N-acetyl-4-aminophenol in the general population. Possible sources are (1) direct intake of paracetamol through medication, (2) paracetamol residues in the food chain and (3) environmental exposure to aniline or related substances that are metabolized into N-acetyl-4-aminophenol. In order to elucidate the origins of the excretion of N-acetyl-4-aminophenol in urine and to contribute to the understanding of paracetamol and aniline metabolism in humans we developed a rapid, turbulent-flow HPLC-MS/MS method with isotope dilution for the simultaneous quantification of N-acetyl-4-aminophenol and two other aniline related metabolites, N-acetyl-2-aminophenol and acetanilide. We applied this method to three sets of urine samples: (1) individuals with no known exposure to aniline and also no recent paracetamol medication; (2) individuals after occupational exposure to aniline but no paracetamol medication and (3) paracetamol users. We confirmed the omnipresent excretion of N-acetyl-4-aminophenol. Additionally we revealed an omnipresent excretion of N-acetyl-2-aminophenol. In contrast, acetanilide was only found after occupational exposure to aniline, not in the general population or after paracetamol use. The results lead to four preliminary conclusions: (1) other sources than aniline seem to be responsible for the major part of urinary N-acetyl-4-aminophenol in the general population; (2) acetanilide is a metabolite of aniline in man and a valuable biomarker for aniline in occupational settings; (3) aniline baseline levels in the general population measured after chemical hydrolysis do not seem to originate from acetanilide and hence not from a direct exposure to aniline itself and (4) N-acetyl-2-aminophenol does not seem to be related to aniline nor to N-acetyl-4-aminophenol in man. Copyright © 2013 Elsevier GmbH. All rights reserved.

  8. Borate-aided anion exchange high-performance liquid chromatography of uridine diphosphate-sugars in brain, heart, adipose and liver tissues.

    PubMed

    Oikari, Sanna; Venäläinen, Tuula; Tammi, Markku

    2014-01-03

    In this paper we describe a method optimized for the purification of uridine diphosphate (UDP)-sugars from liver, adipose tissue, brain, and heart, with highly reproducible up to 85% recoveries. Rapid tissue homogenization in cold ethanol, lipid removal by butanol extraction, and purification with a graphitized carbon column resulted in isolation of picomolar quantities of the UDP-sugars from 10 to 30mg of tissue. The UDP-sugars were baseline separated from each other, and from all major nucleotides using a CarboPac PA1 anion exchange column eluted with a gradient of acetate and borate buffers. The extraction and purification protocol produced samples with few unidentified peaks. UDP-N-acetylglucosamine was a dominant UDP-sugar in all the rat tissues studied. However, brain and adipose tissue showed high UDP-glucose levels, equal to that of UDP-N-acetylglucosamine. The UDP-N-acetylglucosamine showed 2.3-2.7 times higher levels than UDP-N-acetylgalactosamine in all tissues, and about the same ratio was found between UDP-glucose and UDP-galactose in adipose tissue and brain (2.6 and 2.8, respectively). Interestingly, the UDP-glucose/UDP-galactose ratio was markedly lower in liver (1.1) and heart (1.7). The UDP-N-acetylglucosamine/UDP-glucuronic acid ratio was also constant, between 9.7 and 7.7, except in liver with the ratio as low as 1.8. The distinct UDP-glucose/galactose ratio, and the abundance of UDP-glucuronic acid may reflect the specific role of liver in glycogen synthesis, and metabolism of hormones and xenobiotics, respectively, using these UDP-sugars as substrates. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Chiral discrimination in cyclodextrin complexes of amino acid derivatives: beta-cyclodextrin/N-acetyl-L-phenylalanine and N-acetyl-D-phenylalanine complexes.

    PubMed

    Alexander, Jennifer M; Clark, Joanna L; Brett, Tom J; Stezowski, John J

    2002-04-16

    In a systematic study of molecular recognition of amino acid derivatives in solid-state beta-cyclodextrin (beta-CD) complexes, we have determined crystal structures for complexes of beta-cyclodextrin/N-acetyl-L-phenylalanine at 298 and 20 K and for N-acetyl-D-phenylalanine at 298 K. The crystal structures for the N-acetyl-L-phenylalanine complex present disordered inclusion complexes for which the distribution of guest molecules at room temperature is not resolvable; however, they can be located with considerable confidence at low temperature. In contrast, the complex with N-acetyl-D-phenylalanine is well ordered at room temperature. The latter complex presents an example of a complex in this series in which a water molecule is included deeply in the hydrophobic torus of the extended dimer host. In an effort to understand the mechanisms of molecular recognition giving rise to the dramatic differences in crystallographic order in these crystal structures, we have examined the intermolecular interactions in detail and have examined insertion of the enantiomer of the D-complex into the chiral beta-CD complex crystal lattice.

  10. Structure and Function of the First Full-Length Murein Peptide Ligase (Mpl) Cell Wall Recycling Protein

    PubMed Central

    Das, Debanu; Hervé, Mireille; Feuerhelm, Julie; Farr, Carol L.; Chiu, Hsiu-Ju; Elsliger, Marc-André; Knuth, Mark W.; Klock, Heath E.; Miller, Mitchell D.; Godzik, Adam; Lesley, Scott A.; Deacon, Ashley M.; Mengin-Lecreulx, Dominique; Wilson, Ian A.

    2011-01-01

    Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc). MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In Gram-negative bacteria, ∼30–60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl), which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl). Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters). Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships. PMID:21445265

  11. Structure and function of the first full-length murein peptide ligase (Mpl) cell wall recycling protein.

    PubMed

    Das, Debanu; Hervé, Mireille; Feuerhelm, Julie; Farr, Carol L; Chiu, Hsiu-Ju; Elsliger, Marc-André; Knuth, Mark W; Klock, Heath E; Miller, Mitchell D; Godzik, Adam; Lesley, Scott A; Deacon, Ashley M; Mengin-Lecreulx, Dominique; Wilson, Ian A

    2011-03-18

    Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc). MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In gram-negative bacteria, ∼30-60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl), which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl). Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters). Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships.

  12. Conformational studies of bacterial peptidoglycan: structure and stereochemistry of N-acetyl-β- D-glucosamine and N-acetyl-β- D-muramic acid

    NASA Astrophysics Data System (ADS)

    Yadav, P. N. S.; Rai, D. K.; Yadav, J. S.

    1989-03-01

    The energies of various conformations of N-acetyl-β- D-glucosamine (NAG) and its 3-O- D-lactic acid derivative N-acetyl-β- D-muramic acid (NAM) have been calculated by geometry optimization using the molecular mechanics program MM2. The geometries of these systems have been analyzed in the light of ring torsion, bond lengths, bond angles and conformational states of side groups of the pyranosyl ring and compared with available experimental data of similar pyranose derivatives. The present study indicates the presence of hydrogen bonds to stabilize the side group conformations. Discrepancies with experimental data that are seen in a few cases are ascribed to the nature of the side groups and their geometry.

  13. Characterizing the glycocalyx of poultry spermatozoa: I. Identification and distribution of carbohydrate residues using flow cytometry and epifluorescence microscopy.

    PubMed

    Peláez, Jesús; Long, Julie A

    2007-01-01

    The aim of the present work was to use a battery of lectins to 1) delineate the carbohydrate content of sperm glycocalyx in the turkey and chicken using flow cytometry analysis, and 2) evaluate the distribution of existing sugars over the sperm plasma membrane surface with epifluorescent microscopy. Carbohydrate groups (corresponding lectins) that were investigated included galactose (GS-I, Jacalin, RCA-I, PNA), glucose and/or mannose (Con A, PSA, GNA), N-acetyl-glucosamine (GS-II, s-WGA, STA), N-acetyl-galactosamine (SBA, WFA), fucose (Lotus, UEA-I), sialic acid (LFA, LPA), and N-acetyl-lactosamine (ECA). Spermatozoa were assessed before and after treatment with neuraminidase to remove sialic acid. Mean fluorescence intensity (MnFI) was used as indicator of lectin binding for flow cytometry analysis. Nontreated spermatozoa from both species showed high MnFI when incubated with RCA-I, Con A, LFA, and LPA, as did chicken spermatozoa incubated with s-WGA. Neuraminidase treatment increased the MnFI for most lectins except LFA and LPA, as expected. Differences in MnFI between species included higher values for s-WGA and ECA in chicken spermatozoa and for WFA in turkey spermatozoa. Microscopy revealed segregation of some sugar residues into membrane-specific domains; however, the 2 staining techniques (cell suspension vs fixed preparation) differed in identifying lectin binding patterns, with fixed preparations yielding a high degree of nonspecific binding. We conclude that 1) the glycocalyx of turkey and chicken spermatozoa contains a diversity of carbohydrate groups, 2) these residues are extensively masked by sialic acid, 3) the glycocalyx composition is species-specific, and 4) some glycoconjugates appear to be segregated into membrane-specific domains. Characterization of the poultry sperm glycocalyx is the first step in identifying the physiological impact of semen storage on sperm function.

  14. Closely related glycosylation patterns of recombinant human IL-2 expressed in a CHO cell line and natural IL-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vita, N.; Magazin, M.; Marchese, E.

    We report here the study of the glycosylation pattern of human recombinant (r) IL2 expressed in a Chinese hamster ovary (CHO) cell line. The human rIL2 secreted by this high-producing recombinant CHO cell line was metabolically radiolabelled with (35S)-methionine, or with (3H)-glucosamine and (3H)-galactose, purified to homogeneity, and then characterized. The electrophoretic analysis of the (35S)-methionine-labelled proteins present in the culture medium of the CHO cell line showed that the rIL2 represents approximately 12% of the total secreted proteins. Furthermore, pulse-chase experiments showed that the glycosylated rIL2 is synthesized and secreted within 30 min. The point of attachment and themore » structure of the carbohydrate moiety of the rIL2 was determined by: amino-terminal sequencing and fingerprint analysis of the 3H-labelled rIL2, mass spectroscopy of the amino-terminal tryptic octapeptide, and carbohydrate analysis after enzymatic (Vibrio cholerae neuraminidase and Aspergillus oryzae beta-galactosidase) or sulfuric acid hydrolysis. The results indicate that the recombinant protein possesses a sugar moiety O-linked to the threonine residue at position 3 of the polypeptide chain, and that sialic acid, galactose and N-acetyl galactosamine are components of this carbohydrate moiety. Taken together these results suggest that the recombinant molecule is identical to natural IL2.« less

  15. Identification of endoplasmic reticulum proteins involved in glycan assembly: synthesis and characterization of P3-(4-azidoanilido)uridine 5'-triphosphate, a membrane-topological photoaffinity probe for uridine diphosphate-sugar binding proteins.

    PubMed Central

    Rancour, D M; Menon, A K

    1998-01-01

    Much of the enzymic machinery required for the assembly of cell surface carbohydrates is located in the endoplasmic reticulum (ER) of eukaryotic cells. Structural information on these proteins is limited and the identity of the active polypeptide(s) is generally unknown. This paper describes the synthesis and characteristics of a photoaffinity reagent that can be used to identify and analyse members of the ER glycan assembly apparatus, specifically those glycosyltransferases, nucleotide phosphatases and nucleotide-sugar transporters that recognize uridine nucleotides or UDP-sugars. The photoaffinity reagent, P3-(4-azidoanilido)uridine 5'-triphosphate (AAUTP), was synthesized easily from commercially available precursors. AAUTP inhibited the activity of ER glycosyltransferases that utilize UDP-GlcNAc and UDP-Glc, indicating that it is recognized by UDP-sugar-binding proteins. In preliminary tests AAUTP[alpha-32P] labelled bovine milk galactosyltransferase, a model UDP-sugar-utilizing enzyme, in a UV-light-dependent, competitive and saturable manner. When incubated with rat liver ER vesicles, AAUTP[alpha-32P] labelled a discrete subset of ER proteins; labelling was light-dependent and metal ion-specific. Photolabelling of intact ER vesicles with AAUTP[alpha-32P] caused selective incorporation of radioactivity into proteins with cytoplasmically disposed binding sites; UDP-Glc:glycoprotein glucosyltransferase, a lumenal protein, was labelled only when the vesicle membrane was disrupted. These data indicate that AAUTP is a membrane topological probe of catalytic sites in target proteins. Strategies for using AAUTP to identify and study novel ER proteins involved in glycan assembly are discussed. PMID:9677326

  16. Evaluating the best time to intervene acute liver failure in rat models induced by d-galactosamine.

    PubMed

    Éboli, Lígia Patrícia de Carvalho Batista; Netto, Alcides Augusto Salzedas; Azevedo, Ramiro Antero de; Lanzoni, Valéria Pereira; Paula, Tatiana Sugayama de; Goldenberg, Alberto; Gonzalez, Adriano Miziara

    2016-12-01

    To describe an animal model for acute liver failure by intraperitoneal d-galactosamine injections in rats and to define when is the best time to intervene through King's College and Clichy´s criteria evaluation. Sixty-one Wistar female rats were distributed into three groups: group 1 (11 rats received 1.4 g/kg of d-galactosamine intraperitoneally and were observed until they died); group 2 (44 rats received a dose of 1.4 g/kg of d-galactosamine and blood and histological samples were collected for analysis at 12 , 24, 48 , 72 and 120 hours after the injection); and the control group as well (6 rats) . Twelve hours after applying d-galactosamine, AST/ALT, bilirubin, factor V, PT and INR were already altered. The peak was reached at 48 hours. INR > 6.5 was found 12 hours after the injection and factor V < 30% after 24 hours. All the laboratory variables presented statistical differences, except urea (p = 0.758). There were statistical differences among all the histological variables analyzed. King's College and Clichy´s criteria were fulfilled 12 hours after the d-galactosamine injection and this time may represent the best time to intervene in this acute liver failure animal model.

  17. Partial purification and characterization of an inducible indole-3-acetyl-L-aspartic acid hydrolase from Enterobacter agglomerans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Jyh-Ching; Cohen, J.D.; Mulbry, W.W.

    1996-11-01

    Indole-3-acetyl-amino acid conjugate hydrolases are believed to be important in the regulation of indole-3-acetic acid (IAA) metabolism in plants and therefore have potential uses for the alteration of plant IAA metabolism. To isolate bacterial strains exhibiting significant indole-3-acetyl-aspartate (IAA-Asp) hydrolase activity, a sewage sludge inoculation was cultured under conditions in which IAA-Asp served as the sole source of carbon and nitrogen. One isolate, Enterobacter agglomerans, showed hydrolase activity inducible by IAA-L-Asp or N-acetyl-L-Asp but not by IAA, (NH{sub 4}){sub 2}SO{sub 4}, urea, or indoleacetamide. Among a total of 17 IAA conjugates tested as potential substrates, the enzyme had an exclusivelymore » high substrate specificity for IAA-L-Asp of 13.5 mM. The optimal pH for this enzyme was between 8.0 and 8.5. In extraction buffer containing 0.8 mM Mg{sup 2+} the hydrolase activity was inhibited to 80% by 1 mM dithiothreitol and to 60% by 1 mm CuSO{sub 4}; the activity was increased by 40% with 1mM MnSO{sub 4}. However, in extraction buffer with no trace elements, the hydrolase activity was inhibited to 50% by either 1 mM dithiothreitol or 1% Triton X-100 (Sigma). These results suggest that disulfide bonding might be essential for enzyme activity. Purification of the hydrolase by hydroxyapatite and TSK-phenyl (HP-Genenchem, South San Francisco, CA) preparative high-performance liquid chromatography yielded a major 45-kD polypeptide as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. 45 refs., 5 figs., 3 tabs.« less

  18. N-Acetyl-L-Leucine Accelerates Vestibular Compensation after Unilateral Labyrinthectomy by Action in the Cerebellum and Thalamus

    PubMed Central

    Xiong, Guoming; Potschka, Heidrun; Jahn, Klaus; Bartenstein, Peter; Brandt, Thomas; Dutia, Mayank; Dieterich, Marianne; Strupp, Michael; la Fougère, Christian; Zwergal, Andreas

    2015-01-01

    An acute unilateral vestibular lesion leads to a vestibular tone imbalance with nystagmus, head roll tilt and postural imbalance. These deficits gradually decrease over days to weeks due to central vestibular compensation (VC). This study investigated the effects of i.v. N-acetyl-DL-leucine, N-acetyl-L-leucine and N-acetyl-D-leucine on VC using behavioural testing and serial [18F]-Fluoro-desoxyglucose ([18F]-FDG)-μPET in a rat model of unilateral chemical labyrinthectomy (UL). Vestibular behavioural testing included measurements of nystagmus, head roll tilt and postural imbalance as well as sequential whole-brain [18F]-FDG-μPET was done before and on days 1,3,7 and 15 after UL. A significant reduction of postural imbalance scores was identified on day 7 in the N-acetyl-DL-leucine (p < 0.03) and the N-acetyl-L-leucine groups (p < 0.01), compared to the sham treatment group, but not in the N-acetyl-D-leucine group (comparison for applied dose of 24 mg i.v. per rat, equivalent to 60 mg/kg body weight, in each group). The course of postural compensation in the DL- and L-group was accelerated by about 6 days relative to controls. The effect of N-acetyl-L-leucine on postural compensation depended on the dose: in contrast to 60 mg/kg, doses of 15 mg/kg and 3.75 mg/kg had no significant effect. N-acetyl-L-leucine did not change the compensation of nystagmus or head roll tilt at any dose. Measurements of the regional cerebral glucose metabolism (rCGM) by means of μPET revealed that only N-acetyl-L-leucine but not N-acetyl-D-leucine caused a significant increase of rCGM in the vestibulocerebellum and a decrease in the posterolateral thalamus and subthalamic region on days 3 and 7. A similar pattern was found when comparing the effect of N-acetyl-L-leucine on rCGM in an UL-group and a sham UL-group without vestibular damage. In conclusion, N-acetyl-L-leucine improves compensation of postural symptoms after UL in a dose-dependent and specific manner, most likely by activating the vestibulocerebellum and deactivating the posterolateral thalamus. PMID:25803613

  19. N-acetyl-L-leucine accelerates vestibular compensation after unilateral labyrinthectomy by action in the cerebellum and thalamus.

    PubMed

    Günther, Lisa; Beck, Roswitha; Xiong, Guoming; Potschka, Heidrun; Jahn, Klaus; Bartenstein, Peter; Brandt, Thomas; Dutia, Mayank; Dieterich, Marianne; Strupp, Michael; la Fougère, Christian; Zwergal, Andreas

    2015-01-01

    An acute unilateral vestibular lesion leads to a vestibular tone imbalance with nystagmus, head roll tilt and postural imbalance. These deficits gradually decrease over days to weeks due to central vestibular compensation (VC). This study investigated the effects of i.v. N-acetyl-DL-leucine, N-acetyl-L-leucine and N-acetyl-D-leucine on VC using behavioural testing and serial [18F]-Fluoro-desoxyglucose ([18F]-FDG)-μPET in a rat model of unilateral chemical labyrinthectomy (UL). Vestibular behavioural testing included measurements of nystagmus, head roll tilt and postural imbalance as well as sequential whole-brain [18F]-FDG-μPET was done before and on days 1,3,7 and 15 after UL. A significant reduction of postural imbalance scores was identified on day 7 in the N-acetyl-DL-leucine (p < 0.03) and the N-acetyl-L-leucine groups (p < 0.01), compared to the sham treatment group, but not in the N-acetyl-D-leucine group (comparison for applied dose of 24 mg i.v. per rat, equivalent to 60 mg/kg body weight, in each group). The course of postural compensation in the DL- and L-group was accelerated by about 6 days relative to controls. The effect of N-acetyl-L-leucine on postural compensation depended on the dose: in contrast to 60 mg/kg, doses of 15 mg/kg and 3.75 mg/kg had no significant effect. N-acetyl-L-leucine did not change the compensation of nystagmus or head roll tilt at any dose. Measurements of the regional cerebral glucose metabolism (rCGM) by means of μPET revealed that only N-acetyl-L-leucine but not N-acetyl-D-leucine caused a significant increase of rCGM in the vestibulocerebellum and a decrease in the posterolateral thalamus and subthalamic region on days 3 and 7. A similar pattern was found when comparing the effect of N-acetyl-L-leucine on rCGM in an UL-group and a sham UL-group without vestibular damage. In conclusion, N-acetyl-L-leucine improves compensation of postural symptoms after UL in a dose-dependent and specific manner, most likely by activating the vestibulocerebellum and deactivating the posterolateral thalamus.

  20. C-Terminal Domain of Hemocyanin, a Major Antimicrobial Protein from Litopenaeus vannamei: Structural Homology with Immunoglobulins and Molecular Diversity

    PubMed Central

    Zhang, Yue-Ling; Peng, Bo; Li, Hui; Yan, Fang; Wu, Hong-Kai; Zhao, Xian-Liang; Lin, Xiang-Min; Min, Shao-Ying; Gao, Yuan-Yuan; Wang, San-Ying; Li, Yuan-You; Peng, Xuan-Xian

    2017-01-01

    Invertebrates rely heavily on immune-like molecules with highly diversified variability so as to counteract infections. However, the mechanisms and the relationship between this variability and functionalities are not well understood. Here, we showed that the C-terminal domain of hemocyanin (HMC) from shrimp Litopenaeus vannamei contained an evolutionary conserved domain with highly variable genetic sequence, which is structurally homologous to immunoglobulin (Ig). This domain is responsible for recognizing and binding to bacteria or red blood cells, initiating agglutination and hemolysis. Furthermore, when HMC is separated into three fractions using anti-human IgM, IgG, or IgA, the subpopulation, which reacted with anti-human IgM (HMC-M), showed the most significant antimicrobial activity. The high potency of HMC-M is a consequence of glycosylation, as it contains high abundance of α-d-mannose relative to α-d-glucose and N-acetyl-d-galactosamine. Thus, the removal of these glycans abolished the antimicrobial activity of HMC-M. Our results present a comprehensive investigation of the role of HMC in fighting against infections through genetic variability and epigenetic modification. PMID:28659912

  1. Properties of selected S-nitrosothiols compared to nitrosylated WR-1065.

    PubMed

    Whiteside, William Michael; Sears, Devin N; Young, Paul R; Rubin, David B

    2002-05-01

    WR-1065 ([N-mercaptoethyl]-1-3-diaminopropane), the active form of the aminothiol drug Ethyol/Amifostine, protects against toxicity caused by radiation, chemotherapy and endotoxin. Because WR-1065 and other thiols readily bind nitric oxide (NO), injurious conditions or therapies that induce the production or mobilization of NO could alter the effects of WR-1065. S-Nitrosothiols were prepared from various thiols by a standard method to compare properties and stability. Heteromolecular quantum correlation 2D nuclear magnetic resonance was used to characterize nitrosylated glutathione (GSH) and WR-1065; both S- and N-nitrosothiols were observed, depending on the experimental conditions. Three categories of S-nitrosothiol stability were observed: (1) highly stable, with t(1/2) > 8 h, N-acetyl-L-cysteine nitrosothiol (t(1/2) 15 h) > GSH nitrosothiol (t(1/2) 8 h); (2) intermediate stability, t(1/2) approximately 2 h, cysteamine nitrosothiol and WR-1065 nitrosothiol; and (3) low stability, t(1/2) < 1 h, cysteine nitrosothiol and Captopril nitrosothiol. Similar relative rates were observed for Hg(+2)-induced denitrosylation: WR-1065 reacted faster than GSH nitrosothiol, while GSH nitrosothiol reacted faster than N-acetyl-L-cysteine nitrosothiol. Mostly mediated by mixed-NPSH disulfide formation, the activity of the redox-sensitive cysteine protease, cathepsin H, was inhibited by the S-nitrosothiols, with WR-1065 nitrosothiol > cysteine nitrosothiol > N-acetyl-L-cysteine nitrosothiol and GSH nitrosothiol. These observations indicate that, relative to other nitrosylated non-protein thiols, the S-nitrosothiol of WR-1065 is an unstable non-protein S-nitrosothiols with a high reactive potential in the modification of protein thiols.

  2. N-(2-hydroxy) propyl-3-trimethylammonium chitosan chloride: An immune-enhancing adjuvant for hepatitis E virus recombinant polypeptide vaccine in mice.

    PubMed

    Tao, Wei; Zheng, Hai-Qun; Fu, Ting; He, Zhuo-Jing; Hong, Yan

    2017-08-03

    Adjuvants are essential for enhancing vaccine potency by improving the humoral and/or cell-mediated immune response to vaccine antigens. This study was performed to evaluate the immuno-enhancing characteristic of N-(2-hydroxy) propyl-3-trimethylammonium chitosan chloride (HTCC), the cationically modified chitosan, as an adjuvant for hepatitis E virus (HEV) recombinant polypeptide vaccine. Animal experiments showed that HTCC provides adjuvant activity when co-administered with HEV recombinant polypeptide vaccine by intramuscularly route. Vaccination using HTCC as an adjuvant was associated with increases of the serum HEV-specific IgG antibodies, splenocytes proliferation and the growths of CD4 + CD8 - T lymphocytes and IFN-γ-secreting T lymphocytes in peripheral blood. These findings suggested that HTCC had strong immuno-enhancing effect. Our findings are the first to demonstrate that HTCC is safe and effective in inducing a good antibody response and stimulating Th1-biased immune responses for HEV recombinant polypeptide vaccine.

  3. Purification, crystallization and preliminary X-ray diffraction studies of N-acetylglucosamine-phosphate mutase from Candida albicans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishitani, Yuichi; Maruyama, Daisuke; Nonaka, Tsuyoshi

    2006-04-01

    Preliminary X-ray diffraction studies on N-acetylglucosamine-phosphate mutase from C. albicans are reported. N-acetylglucosamine-phosphate mutase (AGM1) is an essential enzyme in the synthesis of UDP-N-acetylglucosamine (UDP-GlcNAc) in eukaryotes and belongs to the α-d-phosphohexomutase superfamily. AGM1 from Candida albicans (CaAGM1) was purified and crystallized by the sitting-drop vapour-diffusion method. The crystals obtained belong to the primitive monoclinic space group P2{sub 1}, with unit-cell parameters a = 60.2, b = 130.2, c = 78.0 Å, β = 106.7°. The crystals diffract X-rays to beyond 1.8 Å resolution using synchrotron radiation.

  4. SENIEUR status of the originating cell donor negates certain 'anti-immunosenescence' effects of ebselen and N-acetyl cysteine in human T cell clone cultures.

    PubMed

    Marthandan, Shiva; Freeburn, Robin; Steinbrecht, Susanne; Pawelec, Graham; Barnett, Yvonne

    2014-01-01

    Damage to T cells of the immune system by reactive oxygen species may result in altered cell function or cell death and thereby potentially impact upon the efficacy of a subsequent immune response. Here, we assess the impact of the antioxidants Ebselen and N-acetyl cysteine on a range of biological markers in human T cells derived from a SENIEUR status donor. In addition, the impact of these antioxidants on different MAP kinase pathways in T cells from donors of different ages was also examined. T cell clones were derived from healthy 26, 45 and SENIEUR status 80 year old people and the impact of titrated concentrations of Ebselen or N-acetyl cysteine on their proliferation and in vitro lifespan, GSH:GSSG ratio as well as levels of oxidative DNA damage and on MAP kinase signaling pathways was examined. In this investigation neither Ebselen nor N-acetyl cysteine supplementation had any impact on the biological endpoints examined in the T cells derived from the SENIEUR status 80 year old donor. This is in contrast to the anti-immunosenescent effects of these antioxidants on T cells from donors of 26 or 45 years of age. The analysis of MAP kinases showed that pro-apoptotic pathways become activated in T cells with increasing in vitro age and that Ebselen or N-acetyl cysteine could decrease activation (phosphorylation) in T cells from 26 or 45 year old donors, but not from the SENIEUR status 80 year old donor. The results of this investigation demonstrate that the biological phenotype of SENIEUR status derived human T cells negates the anti-immunosenescence effects of Ebselen and also N-acetyl cysteine. The results highlight the importance of pre-antioxidant intervention evaluation to determine risk-benefit.

  5. Arylamine N-acetyltransferase 1 in situ N-acetylation on CD3+ peripheral blood mononuclear cells correlate with NATb mRNA and NAT1 haplotype.

    PubMed

    Salazar-González, Raúl A; Turiján-Espinoza, Eneida; Hein, David W; Niño-Moreno, Perla C; Romano-Moreno, Silvia; Milán-Segovia, Rosa C; Portales-Pérez, Diana P

    2018-02-01

    Human arylamine N-acetyltransferase 1 (NAT1) is responsible for the activation and elimination of xenobiotic compounds and carcinogens. Genetic polymorphisms in NAT1 modify both drug efficacy and toxicity. Previous studies have suggested a role for NAT1 in the development of several diseases. The aim of the present study was to evaluate NAT1 protein expression and in situ N-acetylation capacity in peripheral blood mononuclear cells (PBMC), as well as their possible associations with the expression of NAT1 transcript and NAT1 genotype. We report NAT1 protein, mRNA levels, and N-acetylation in situ activity for PBMC obtained from healthy donors. NAT1-specific protein expression was higher in CD3+ cells than other major immune cell subtypes (CD19 or CD56 cells). N-acetylation of pABA varied markedly among the PBMC of participants, but correlated very significantly with levels of NAT1 transcripts. NAT1*4 subjects showed significantly (p = 0.017) higher apparent pABA V max of 71.3 ± 3.7 versus the NAT1*14B subjects apparent V max of 58.5 ± 2.5 nmoles Ac-pABA/24 h/million cells. Levels of pABA N-acetylation activity at each concentration of substrate evaluated also significantly correlated with NAT1 mRNA levels for all samples (p < 0.0001). This highly significant correlation was maintained for samples with the NAT1*4 (p = 0.002) and NAT1*14B haplotypes (p = 0.0106). These results provide the first documentation that NAT1-catalyzed N-acetylation in PBMC is higher in T cell than in other immune cell subtypes and that individual variation in N-acetylation capacity is dependent upon NAT1 mRNA and NAT1 haplotype.

  6. Characterizing the glycocalyx of poultry spermatozoa: III. Semen cryopreservation methods alter the carbohydrate component of rooster sperm membrane glycoconjugates.

    PubMed

    Peláez, J; Bongalhardo, D C; Long, J A

    2011-02-01

    The carbohydrate-rich zone on the sperm surface is essential for inmunoprotection in the female tract and early gamete interactions. We recently have shown the glycocalyx of chicken sperm to be extensively sialylated and to contain residues of mannose, glucose, galactose, fucose, N-acetyl-galactosamine, N-acetyl-glucosamine, and N-acetyl-lactosamine. Our objective here was to evaluate the effects of 3 different cryopreservation methods on the sperm glycocalyx. Semen from roosters was pooled, diluted, cooled to 5°C, and aliquoted for cryopreservation using 6% dimethylacetamide (DMA), 11% dimethylsulfoxide (DMSO), or 11% glycerol (GOH). For the DMA method, semen was equilibrated for 1 min with cryoprotectant and rapidly frozen by dropping 25-µL aliquots into liquid nitrogen. For the other methods, semen was equilibrated for either 1 min (DMSO) or 20 min (GOH), loaded into straws, and frozen with a programmable freezer. Thawing rates mimicked the freezing rates (e.g., rapid for DMA; moderate for DMSO and GOH). Aliquots of thawed and fresh, unfrozen semen were incubated with 1 of 12 fluorescein isothiocyanate-conjugated lectins and counterstained with propidium iodide, and mean fluorescence intensity (MFI) was assessed by flow cytometry. For each lectin, the MFI of propidium iodide-negative (viable sperm) was compared among the fresh and frozen-thawed treatments (n = 5). For sperm frozen with GOH and DMA, the MFI of most lectins was similar (P > 0.05) to that of fresh sperm, whereas only 5 of 12 lectins were similar between fresh and DMSO-frozen sperm. Sperm from all 3 methods had higher (P < 0.05) MFI for lectins specific for N-acetyl-glucosamine and β-galactose than did fresh sperm. Fewer sperm were damaged (P < 0.001) with GOH than with DMA or DMSO, and membrane integrity was correlated with MFI for 9 of 12 lectins (P < 0.05). These data indicate that surface carbohydrates are altered during cryopreservation, and that cryoprotectant type and freezing-thawing rates affect the degree of modification. Although the glycoconjugates have not yet been identified, it is likely that these cryopreservation-induced changes contribute to the reduced fertility of frozen-thawed chicken semen.

  7. Slow acetylator mutations in the human polymorphic N-acetyltransferase gene in 786 Asians, blacks, Hispanics, and whites: Application to metabolic epidemiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, H.J.; Chunya Han; Lin, B.K.

    1993-04-01

    The aim was to determine the population frequencies of the major slow acetylator alleles of the polymorphic N-acetyltransferase (NA T2) gene, whose locus maps to chromosome 8. The authors used allele-specific PCR amplification on 786 dried blood spots obtained from Hong Kong Chinese, US Koreans, US blacks, US Hispanics, Germans, and US whites. Their results show that four slow acetylator alleles can be detected as mutations at positions 481, 590, and 857 in the NA T2 gene. Recognized base substitutions at positions 341 and 803 need not be determined, because they were almost always associated with the 481T mutation. Themore » known mutation at position 282 was strongly associated with the 590A mutation. The 481T, 590A, and 857A mutations accounted for virtually all of the slow acetylator alleles in Asian and white populations. The 857A mutation proved to be an Asiatic allele. The results will be useful in large-scale epidemiologic studies of cancer and other conditions potentially associated with the acetylator polymorphism. 20 refs., 3 figs., 4 tabs.« less

  8. Oxidative peptide /and amide/ formation from Schiff base complexes

    NASA Technical Reports Server (NTRS)

    Strehler, B. L.; Li, M. P.; Martin, K.; Fliss, H.; Schmid, P.

    1982-01-01

    One hypothesis of the origin of pre-modern forms of life is that the original replicating molecules were specific polypeptides which acted as templates for the assembly of poly-Schiff bases complementary to the template, and that these polymers were then oxidized to peptide linkages, probably by photo-produced oxidants. A double cycle of such anti-parallel complementary replication would yield the original peptide polymer. If this model were valid, the Schiff base between an N-acyl alpha mino aldehyde and an amino acid should yield a dipeptide in aqueous solution in the presence of an appropriate oxidant. In the present study it is shown that the substituted dipeptide, N-acetyl-tyrosyl-tyrosine, is produced in high yield in aqueous solution at pH 9 through the action of H2O2 on the Schiff-base complex between N-acetyl-tyrosinal and tyrosine and that a great variety of N-acyl amino acids are formed from amino acids and aliphatic aldehydes under similar conditions.

  9. Add-on therapy with anagliptin in Japanese patients with type-2 diabetes mellitus treated with metformin and miglitol can maintain higher concentrations of biologically active GLP-1/total GIP and a lower concentration of leptin.

    PubMed

    Osonoi, Takeshi; Saito, Miyoko; Hariya, Natsuyo; Goto, Moritaka; Mochizuki, Kazuki

    2016-12-01

    Metformin, α-glucosidase inhibitors (α-GIs), and dipeptidyl peptidase 4 inhibitors (DPP-4Is) reduce hyperglycemia without excessive insulin secretion, and enhance postprandial plasma concentration of glucagon-like peptide-1 (GLP-1) in type-2 diabetes mellitus (T2DM) patients. We assessed add-on therapeutic effects of DPP-4I anagliptin in Japanese T2DM patients treated with metformin, an α-GI miglitol, or both drugs on postprandial responses of GLP-1 and glucose-dependent insulinotropic polypeptide (GIP), and on plasma concentration of the appetite-suppressing hormone leptin. Forty-two Japanese T2DM patients with inadequately controlled disease (HbA1c: 6.5%-8.0%) treated with metformin (n=14), miglitol (n=14) or a combination of the two drugs (n=14) received additional treatment with anagliptin (100mg, p.o., b.i.d.) for 52 weeks. We assessed glycemic control, postprandial responses of GLP-1 and glucose-dependent insulinotropic polypeptide (GIP), and on plasma concentration of leptin in those patients. Add-on therapy with anagliptin for 52 weeks improved glycemic control and increased the area under the curve of biologically active GLP-1 concentration without altering obesity indicators. Total GIP concentration at 52 weeks was reduced by add-on therapy in groups treated with miglitol compared with those treated with metformin. Add-on therapy reduced leptin concentrations. Add-on therapy with anagliptin in Japanese T2DM patients treated with metformin and miglitol for 52 weeks improved glycemic control and enhanced postprandial concentrations of active GLP-1/total GIP, and reduce the leptin concentration. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Glycyrrhetinic acid attenuates lipopolysaccharide-induced fulminant hepatic failure in D-galactosamine-sensitized mice by up-regulating expression of interleukin-1 receptor-associated kinase-M

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Xinru

    Glycyrrhetinic acid (GA), the main active ingredient of licorice, reportedly has anti-inflammatory and hepatoprotective properties, but its molecular mechanisms remain be elusive. In the present study, Balb/c mice were pretreated with GA (10, 30, or 100 mg/kg) 1 h before lipopolysaccharide (LPS)/D-galactosamine (D-GalN) administration. In other in vitro experiment, RAW264.7 macrophages were pretreated with GA before LPS exposure. The mortality, hepatic tissue histology, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were analyzed. Toll like receptor 4 (TLR4), interleukin-1 receptor-associated kinases (IRAKs), activation of mitogen-activated protein kinases (MAPKs) and NF-κB, and production of TNF-α were assessed by flow cytometry, westernmore » blotting, and enzyme-linked immunosorbent assay (ELISA), respectively. Our results showed that pretreatment with GA protected mice against LPS/D-GalN-induced fulminant hepatic failure (FHF), including a dose-dependent alleviation of mortality and ALT/AST elevation, ameliorating hepatic pathological damage, and decreasing TNF-α release. Moreover, GA inhibited LPS-induced activation of MAPKs and NF-κB in response to LPS, but the expression of TLR4 was not affected in vivo and in vitro. Notably, GA pretreatment in vivo suppressed IRAK-1 activity while inducing IRAK-M expression. Silencing of IRAK-M expression with siRNA blocked these beneficial effects of GA on the activation of MAPKs and NF-κB as well as TNF-α production in LPS-primed macrophages. Taken together, we conclude that GA could prevent LPS/D-GalN-induced FHF. The underlying mechanisms may be related to up-regulation of IRAK-M, which in turn caused deactivation of IRAK-1 and subsequent MAPKs and NF-κB, resulting in inhibiting TNF-α production. - Highlights: • Glycyrrhetinic acid protected from LPS/D-GalN-induced liver injury in mice. • Glycyrrhetinic acid inhibited LPS-induced TNF-α production in vivo and in vitro. • Glycyrrhetinic acid alleviated LPS-activated TLR4 signal pathway in vivo and in vitro. • Glycyrrhetinic acid upregulated the expression of IRAK-M in vivo and in vitro. • IRAK-M mediated the protective effect of Glycyrrhetinic acid on LPS-induced inflammation.« less

  11. Expression, purification, and characterization of human acetyl-CoA carboxylase 2.

    PubMed

    Kim, Ki Won; Yamane, Harvey; Zondlo, James; Busby, James; Wang, Minghan

    2007-05-01

    The full-length human acetyl-CoA carboxylase 1 (ACC1) was expressed and purified to homogeneity by two separate groups (Y.G. Gu, M. Weitzberg, R.F. Clark, X. Xu, Q. Li, T. Zhang, T.M. Hansen, G. Liu, Z. Xin, X. Wang, T. McNally, H. Camp, B.A. Beutel, H.I. Sham, Synthesis and structure-activity relationships of N-{3-[2-(4-alkoxyphenoxy)thiazol-5-yl]-1-methylprop-2-ynyl}carboxy derivatives as selective acetyl-CoA carboxylase 2 inhibitors, J. Med. Chem. 49 (2006) 3770-3773; D. Cheng, C.H. Chu, L. Chen, J.N. Feder, G.A. Mintier, Y. Wu, J.W. Cook, M.R. Harpel, G.A. Locke, Y. An, J.K. Tamura, Expression, purification, and characterization of human and rat acetyl coenzyme A carboxylase (ACC) isozymes, Protein Expr. Purif., in press). However, neither group was successful in expressing the full-length ACC2 due to issues of solubility and expression levels. The two versions of recombinant human ACC2 in these reports are either truncated (lacking 1-148 aa) or have the N-terminal 275 aa replaced with the corresponding ACC1 region (1-133 aa). Despite the fact that ACC activity was observed in both cases, these constructs are not ideal because the N-terminal region of ACC2 could be important for the correct folding of the catalytic domains. Here, we report the high level expression and purification of full-length human ACC2 that lacks only the N-terminal membrane attachment sequence (1-20 and 1-26 aa, respectively) in Trichoplusia ni cells. In addition, we developed a sensitive HPLC assay to analyze the kinetic parameters of the recombinant enzyme. The recombinant enzyme is a soluble protein and has a K(m) value of 2 microM for acetyl-CoA, almost 30-fold lower than that reported for the truncated human ACC2. Our recombinant enzyme also has a lower K(m) value for ATP (K(m)=52 microM). Although this difference could be ascribed to different assay conditions, our data suggest that the longer human ACC2 produced in our system may have higher affinities for the substrates and could be more similar to the native enzyme.

  12. Effects of various kinds of edible seaweeds in diets on the development of D-galactosamine-induced hepatopathy in rats.

    PubMed

    Kawano, Naoko; Egashira, Yukari; Sanada, Hiroo

    2007-08-01

    In the present study we investigated the effects of 11 kinds of edible seaweeds (6 brown and 5 red algae) which contain characteristic seaweed dietary fibers on the induction of D-GalN (D-galactosamine)-hepatopathy in rats (Exps. 1 and 2). Then, the efficacy of various components prepared from Gelidium sp., which was found to alleviate the hepatopathy in Exps. 1 and 2, was examined (Exp. 3). The rats were fed the diets containing various kinds of seaweeds (Exps. 1 and 2), or several components of Gelidium sp. such as total dietary fiber (TDF), soluble dietary fiber (SDF), insoluble dietary fiber (IDF) and dietary fiber-free components (DFFC) (Exp. 3), for 8 d. The rats in all experiments were injected with D-GalN (800 mg/kg body weight) intraperitoneally at the 7th day to induce liver injury and were sacrificed 24 h after the injection of D-GalN. The serum transaminase activities (ALT and AST) and lactate dehydrogenase (LDH) were determined to evaluate the levels of hepatopathy. In Exp. 3, the total GSH concentration in the liver, plasma and cecal contents and organic acid concentration in cecal contents were also evaluated. In Exps. 1 and 2, repressive effects against D-GalN-hepatopathy were shown by four seaweeds Laminaria sp., Gelidium sp., Sargassum fulvellum and Eisenia bicyclis. In Exp. 3, it was found that protective activity in Gelidium sp. against D-GalN-hepatopathy existed not only in the SDF but also in the DFFC fraction. The results in Exp. 3 also indicated that the total GSH but not organic acid concentration in the cecal contents were significantly correlated with serum AST activity, suggesting that the protective effect of Gelidium sp. on D-GalN-hepatopathy in rats is related to GSH metabolism in the intestine.

  13. Attachment of UDP-hexosamines to the ribosomes isolated from rat liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopacz-Jodczyk, T.; Paszkiewicz-Gadek, A.; Galasinski, W.

    1988-06-01

    The binding of UDP-N-acetylhexosamines with purified ribosomes was studied and it was found that the radioactive nucleotides can be attached to these particles. The radioactivity of the purified ribosomal pellet depends on the amounts of ribosomes and UDP-N-acetylhexosamines. Some characteristics of the binding system indicate that the attachment of UDP-sugar to ribosome does not require the participation of glycosyltransferases. The results of the competition experiment would suggest that there are specific sites on ribosomes for the binding of UDP-N-acetylglucosamine.

  14. The attachment of UDP-hexosamines to the ribosomes isolated from rat liver.

    PubMed

    Kopacz-Jodczyk, T; Paszkiewicz-Gadek, A; Gałasiński, W

    1988-06-01

    The binding of UDP-N-acetylhexosamines with purified ribosomes was studied and it was found that the radioactive nucleotides can be attached to these particles. The radioactivity of the purified ribosomal pellet depends on the amounts of ribosomes and UDP-N-acetylhexosamines. Some characteristics of the binding system indicate that the attachment of UDP-sugar to ribosome does not require the participation of glycosyltransferases. The results of the competition experiment would suggest that there are specific sites on ribosomes for the binding of UDP-N-acetylglucosamine.

  15. Genistein modulates the expression of NF-κB and MAPK (p-38 and ERK1/2), thereby attenuating D-Galactosamine induced fulminant hepatic failure in Wistar rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganai, Ajaz A., E-mail: ganaikashmir@gmail.com; Khan, Athar A., E-mail: atharbiotech@gmail.com; Malik, Zainul A., E-mail: mzabdin@rediffmail.com

    2015-03-01

    Genistein is an isoflavanoid abundantly found in soy. It has been found to play an important role in the prevention of various chronic diseases including cancer. In this study, we evaluated potential therapeutic properties of Genistein against D-Galactosamine (D-GalN) induced inflammation and hepatotoxicity in male Wistar rats. Fulminant hepatic failure (FHF) was induced in rats by intraperitoneal injection of D-GalN (700 mg/kgBW). Genistein (5 mg/kgBW/day) was given as pre-treatment for 30 days via intra-gastric route followed by D-GalN (700 mg/kgBW) injection. The hepatoprotective and curative effects of Genistein were evident from a significant decrease in the serum aspartate aminotransferase (AST)more » and alanine aminotransferase (ALT) levels as well as prevention of histological damage by pre-treatment of Genistein. Genistein pre-treatment significantly inhibited the increased protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), thereby reducing nitric oxide (NO) and prostaglandin-E2 (PGE) levels, respectively. In addition Genistein significantly suppressed the production of D-GalN-induced proinflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β. These inhibitory effects were associated with the suppression of nuclear factor-kappa B (NF-ĸB) activation, IKKα/β and Mitogen activated protein kinase (MAPK) phosphorylation by Genistein in D-GalN-treated animals. In conclusion, our results suggest that Genistein may serve as a potential supplement in the prevention of hepatic and inflammatory diseases. Furthermore Genistein is able to maintain the redox potential and strengthens the antioxidant defense system of a cell. - Highlights: • First study to evaluate hepatoprotective effect of Genistein against D-GalN • Genistein prevents oxidative damage induced by D-GalN. • Genistein blunts iNOS, COX-2, NF-ĸB, IKKα/β and MAPK expression. • Genistein prevents D-GalN induced apoptosis and necrosis.« less

  16. Biotransformation of Trichoderma spp. and their tolerance to aromatic amines, a major class of pollutants.

    PubMed

    Cocaign, Angélique; Bui, Linh-Chi; Silar, Philippe; Chan Ho Tong, Laetitia; Busi, Florent; Lamouri, Aazdine; Mougin, Christian; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Dairou, Julien

    2013-08-01

    Trichoderma spp. are cosmopolitan soil fungi that are highly resistant to many toxic compounds. Here, we show that Trichoderma virens and T. reesei are tolerant to aromatic amines (AA), a major class of pollutants including the highly toxic pesticide residue 3,4-dichloroaniline (3,4-DCA). In a previous study, we provided proof-of-concept remediation experiments in which another soil fungus, Podospora anserina, detoxifies 3,4-DCA through its arylamine N-acetyltransferase (NAT), a xenobiotic-metabolizing enzyme that enables acetyl coenzyme A-dependent detoxification of AA. To assess whether the N-acetylation pathway enables AA tolerance in Trichoderma spp., we cloned and characterized NATs from T. virens and T. reesei. We characterized recombinant enzymes by determining their catalytic efficiencies toward several toxic AA. Through a complementary approach, we also demonstrate that both Trichoderma species efficiently metabolize 3,4-DCA. Finally, we provide evidence that NAT-independent transformation is solely (in T. virens) or mainly (in T. reesei) responsible for the observed removal of 3,4-DCA. We conclude that T. virens and, to a lesser extent, T. reesei likely utilize another, unidentified, metabolic pathway for the detoxification of AA aside from acetylation. This is the first molecular and functional characterization of AA biotransformation in Trichoderma spp. Given the potential of Trichoderma for cleanup of contaminated soils, these results reveal new possibilities in the fungal remediation of AA-contaminated soil.

  17. Biotransformation of Trichoderma spp. and Their Tolerance to Aromatic Amines, a Major Class of Pollutants

    PubMed Central

    Cocaign, Angélique; Bui, Linh-Chi; Silar, Philippe; Chan Ho Tong, Laetitia; Busi, Florent; Lamouri, Aazdine; Mougin, Christian; Rodrigues-Lima, Fernando

    2013-01-01

    Trichoderma spp. are cosmopolitan soil fungi that are highly resistant to many toxic compounds. Here, we show that Trichoderma virens and T. reesei are tolerant to aromatic amines (AA), a major class of pollutants including the highly toxic pesticide residue 3,4-dichloroaniline (3,4-DCA). In a previous study, we provided proof-of-concept remediation experiments in which another soil fungus, Podospora anserina, detoxifies 3,4-DCA through its arylamine N-acetyltransferase (NAT), a xenobiotic-metabolizing enzyme that enables acetyl coenzyme A-dependent detoxification of AA. To assess whether the N-acetylation pathway enables AA tolerance in Trichoderma spp., we cloned and characterized NATs from T. virens and T. reesei. We characterized recombinant enzymes by determining their catalytic efficiencies toward several toxic AA. Through a complementary approach, we also demonstrate that both Trichoderma species efficiently metabolize 3,4-DCA. Finally, we provide evidence that NAT-independent transformation is solely (in T. virens) or mainly (in T. reesei) responsible for the observed removal of 3,4-DCA. We conclude that T. virens and, to a lesser extent, T. reesei likely utilize another, unidentified, metabolic pathway for the detoxification of AA aside from acetylation. This is the first molecular and functional characterization of AA biotransformation in Trichoderma spp. Given the potential of Trichoderma for cleanup of contaminated soils, these results reveal new possibilities in the fungal remediation of AA-contaminated soil. PMID:23728813

  18. Both UDP N-acetylglucosamine pyrophosphorylases of Tribolium castaneum are critical for molting, survival, and fecundity

    USDA-ARS?s Scientific Manuscript database

    A bioinformatics search of the genome of the red flour beetle, Tribolium castaneum, resulted in the identification of two genes encoding proteins closely related to UDP-N-acetylglucosamine pyrophosphorylases (UAP), which provide the activated precursor, UDP-N-acetylglucosamine, for the synthesis of ...

  19. Development of Elastomeric Polypeptide BIomaterials.

    DTIC Science & Technology

    1998-01-01

    FUNDING NUMBERS N00014-89-J-1970 8. PERFORMING ORGANIZATION REPORT NUMBER 10. SPONSORING / MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY...nr.£ nh ?r fnlfH-n! and assembly, can be argued to be a more efficient mechanism ®7>r f?ee enerev trlns2uct!§n thin the more commonly, considered...Strabismus Surgery ," J. Pedia.tr. Ophthalmol. Strabismus 29, 284-286, 1992. 6O.Dan W. Urry, C.-H. Luan, S. Q. Peng, T. M. Parker and D. C. Gowda

  20. The protective effect of total phenolics from Oenanthe Javanica on acute liver failure induced by D-galactosamine.

    PubMed

    Ai, Guo; Huang, Zheng-Ming; Liu, Qing-Chuan; Han, Yan-Quan; Chen, Xi

    2016-06-20

    Water dropwort [Oenanthe javanica (O. javanica)] is an aquatic perennial herb cultivated in East Asian countries. It has been popularly used in traditional Chinese medicine which is beneficial for the treatment of many diseases, including jaundice and various types of chronic and acute hepatitis. In the present study, we investigated the hepatoprotective effect of total phenolics from O. javanica (TPOJ) against D-galactosamine (D-GalN) induced liver injury in mice. The hepatoprotective activity of TPOJ (125, 250 and 500mg/kg) was investigated on D-GalN (800mg/kg)-induced liver damages in mice. Blood and liver were collected for biochemical and microscopic analysis. RT-PCR was used to determine the changes in hepatic nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Protein levels of iNOS, COX-2, superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were determined by western blotting. In the animal studies, TPOJ could improve the survival of acute liver failure model significantly and prevente the D-GalN-induced elevation of the serum enzymatic markers and nonenzymatic markers levels significantly. Meanwhile, TPOJ-treatment decreased the malondialdehyde (MDA) level and elevated the content of glutathione (GSH) in the liver as compared to those in the D-GalN group. Hepatic activities and protein expressions of antioxidative enzymes, including SOD, GPx, and CAT were enhanced dose dependently with TPOJ. At the same time, application of TPOJ effectively suppressed the D-GalN-induced proinflammatory mRNA and protein expression of iNOS and COX-2. Subsequently, the serum levels of proinflammatory mediators, nitric oxide (NO) and prostaglandin E2 (PGE2) were reduced. Additionally, histological analyses also showed that TPOJ reduced the extent of liver lesions induced by D-GalN. Our investigation demonstrated the hepatoprotective activity of TPOJ and revealed that TPOJ attributed its significance in the traditional use for treating liver diseases. Copyright © 2016. Published by Elsevier Ireland Ltd.

  1. Evaluation of the Effects of S-Allyl-L-cysteine, S-Methyl-L-cysteine, trans-S-1-Propenyl-L-cysteine, and Their N-Acetylated and S-Oxidized Metabolites on Human CYP Activities.

    PubMed

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji

    2016-01-01

    Three major organosulfur compounds of aged garlic extract, S-allyl-L-cysteine (SAC), S-methyl-L-cysteine (SMC), and trans-S-1-propenyl-L-cysteine (S1PC), were examined for their effects on the activities of five major isoforms of human CYP enzymes: CYP1A2, 2C9, 2C19, 2D6, and 3A4. The metabolite formation from probe substrates for the CYP isoforms was examined in human liver microsomes in the presence of organosulfur compounds at 0.01-1 mM by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Allicin, a major component of garlic, inhibited CYP1A2 and CYP3A4 activity by 21-45% at 0.03 mM. In contrast, a CYP2C9-catalyzed reaction was enhanced by up to 1.9 times in the presence of allicin at 0.003-0.3 mM. SAC, SMC, and S1PC had no effect on the activities of the five isoforms, except that S1PC inhibited CYP3A4-catalyzed midazolam 1'-hydroxylation by 31% at 1 mM. The N-acetylated metabolites of the three compounds inhibited the activities of several isoforms to a varying degree at 1 mM. N-Acetyl-S-allyl-L-cysteine and N-acetyl-S-methyl-L-cysteine inhibited the reactions catalyzed by CYP2D6 and CYP1A2, by 19 and 26%, respectively, whereas trans-N-acetyl-S-1-propenyl-L-cysteine showed weak to moderate inhibition (19-49%) of CYP1A2, 2C19, 2D6, and 3A4 activities. On the other hand, both the N-acetylated and S-oxidized metabolites of SAC, SMC, and S1PC had little effect on the reactions catalyzed by the five isoforms. These results indicated that SAC, SMC, and S1PC have little potential to cause drug-drug interaction due to CYP inhibition or activation in vivo, as judged by their minimal effects (IC 50 >1 mM) on the activities of five major isoforms of human CYP in vitro.

  2. Codominant Expression of N-Acetylation and O-Acetylation Activities Catalyzed by N-Acetyltransferase 2 in Human Hepatocytes

    PubMed Central

    Doll, Mark A.; Zang, Yu; Moeller, Timothy

    2010-01-01

    Human populations exhibit genetic polymorphism in N-acetylation capacity, catalyzed by N-acetyltransferase 2 (NAT2). We investigated the relationship between NAT2 acetylator genotype and phenotype in cryopreserved human hepatocytes. NAT2 genotypes determined in 256 human samples were assigned as rapid (two rapid alleles), intermediate (one rapid and one slow allele), or slow (two slow alleles) acetylator phenotypes based on functional characterization of the NAT2 alleles reported previously in recombinant expression systems. A robust and significant relationship was observed between deduced NAT2 phenotype (rapid, intermediate, or slow) and N-acetyltransferase activity toward sulfamethazine (p < 0.0001) and 4-aminobiphenyl (p < 0.0001) and for O-acetyltransferase-catalyzed metabolic activation of N-hydroxy-4-aminobiphenyl (p < 0.0001), N-hydroxy-2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (p < 0.01), and N-hydroxy-2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (p < 0.0001). NAT2-specific protein levels also significantly associated with the rapid, intermediate, and slow NAT2 acetylator phenotypes (p < 0.0001). As a negative control, p-aminobenzoic acid (an N-acetyltransferase 1-selective substrate) N-acetyltransferase activities from the same samples did not correlate with the three NAT2 acetylator phenotypes (p > 0.05). These results clearly document codominant expression of human NAT2 alleles resulting in rapid, intermediate, and slow acetylator phenotypes. The three phenotypes reflect levels of NAT2 protein catalyzing both N- and O-acetylation. Our results suggest a significant role of NAT2 acetylation polymorphism in arylamine-induced cancers and are consistent with differential cancer risk and/or drug efficacy/toxicity in intermediate compared with rapid or slow NAT2 acetylator phenotypes. PMID:20430842

  3. Synthesis of aryl azide derivatives of UDP-GlcNAc and UDP-GalNAc and their use for the affinity labeling of glycosyltransferases and the UDP-HexNAc pyrophosphorylase.

    PubMed

    Zeng, Y; Shabalin, Y; Szumilo, T; Pastuszak, I; Drake, R R; Elbein, A D

    1996-07-15

    The chemical synthesis and utilization of two photoaffinity analogs, 125I-labeled 5-[3-(p-azidosalicylamido)-1-propenyl]-UDP-GlcNAc and -UDP-GalNAc, is described. Starting with either UDP-GlcNAc or UDP-GalNAc, the synthesis involved the preparation of the 5-mercuri-UDP-HexNAc and then attachment of an allylamine to the 5 position to give 5-(3-amino)allyl-UDP-HexNAc. This was followed by acylation with N-hydroxysuccinimide p-aminosalicylic acid to form the final product, i.e., 5-[3-(p-azidosalicylamido)-1-propenyl]-UDP-GlcNAc or UDP-GalNAc. These products could then be iodinated with chloramine T to give the 125I-derivatives. Both the UDP-GlcNAc and the UDP-GalNAc derivatives reacted in a concentration-dependent manner with a highly purified UDP-HexNAc pyrophosphorylase, and both specifically labeled the subunit(s) of this protein. The labeling of the protein by the UDP-GlcNAc derivative was inhibited in dose-dependent fashion by either unlabeled UDP-GlcNAc or unlabeled UDP-GalNAc. Likewise, labeling with the UDP-GalNAc probe was blocked by either UDP-GlcNAc or UDP-GalNAc. The UDP-GlcNAc probe also specifically labeled a partially purified preparation of GlcNAc transferase I.

  4. Determinants and Expansion of Specificity in a Trichothecene UDP-Glucosyltransferase from Oryza sativa.

    PubMed

    Wetterhorn, Karl M; Gabardi, Kaitlyn; Michlmayr, Herbert; Malachova, Alexandra; Busman, Mark; McCormick, Susan P; Berthiller, Franz; Adam, Gerhard; Rayment, Ivan

    2017-12-19

    Family 1 UDP-glycosyltransferases (UGTs) in plants primarily form glucose conjugates of small molecules and, besides other functions, play a role in detoxification of xenobiotics. Indeed, overexpression of a barley UGT in wheat has been shown to control Fusarium head blight, which is a plant disease of global significance that leads to reduced crop yields and contamination with trichothecene mycotoxins such as deoxynivalenol (DON), T-2 toxin, and many other structural variants. The UGT Os79 from rice has emerged as a promising candidate for inactivation of mycotoxins because of its ability to glycosylate DON, nivalenol, and hydrolyzed T-2 toxin (HT-2). However, Os79 is unable to modify T-2 toxin (T-2), produced by pathogens such as Fusarium sporotrichioides and Fusarium langsethii. Activity toward T-2 is desirable because it would allow a single UGT to inactivate co-occurring mycotoxins. Here, the structure of Os79 in complex with the products UDP and deoxynivalenol 3-O-glucoside is reported together with a kinetic analysis of a broad range of trichothecene mycotoxins. Residues associated with the trichothecene binding pocket were examined by site-directed mutagenesis that revealed that trichothecenes substituted at the C4 position, which are not glycosylated by wild-type Os79, can be accommodated in the binding pocket by increasing its volume. The H122A/L123A/Q202L triple mutation, which increases the volume of the active site and attenuates polar contacts, led to strong and equivalent activity toward trichothecenes with C4 acetyl groups. This mutant enzyme provides the broad specificity required to control multiple toxins produced by different Fusarium species and chemotypes.

  5. Quantitative determination of sulfisoxazole and its three N-acetylated metabolites using HPLC-MS/MS, and the saturable pharmacokinetics of sulfisoxazole in mice.

    PubMed

    Oh, Kyungsoo; Baek, Moon-Chang; Kang, Wonku

    2016-09-10

    Sulfisoxazole (SFX) is still used in combination with trimethoprim in cattle despite adverse drug reactions (e.g., urolithiasis). Recently, SFX is known to be a promising repositioned drug candidate for pulmonary hypertension and cancer. We developed a simultaneous determination method of SFX and its N-acetylated metabolites (N(1)-acetyl SFX, N1AS; N(4)-acetyl SFX, N4AS; diacetyl SFX, DAS) using HPLC-MS/MS for the first time, and examined the pharmacokinetics of SFX in mice. N1AS and DAS were converted rapidly to SFX and N4AS, respectively, in mouse plasma. The time courses of plasma SFX and N4AS concentrations were well-characterised following the oral administration of SFX to mice. The absorption, metabolism, and/or excretion of SFX given at >700mg/kg may be saturable, and in contrast to humans and rats, the extent of systemic exposure of mice to N4AS was much greater than that of SFX. Interestingly, the acetyl groups at both N1- and N4-positions were degraded during the ionisation required to generate precursor ions. In additional experiments the carboxyl group of N-acetyl-5-aminosalicylic acid (NA5AS) was lost instead of the acetyl group during the ionisation, and acetaminophen (AAP) appeared. As the acetyl and carboxyl groups of some substances can be degraded during ionisation in the mass spectrometer, caution is appropriate when it is sought to simultaneously quantify similar structures containing these moieties; chromatographic separation is essential. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. NeuA sialic acid O-acetylesterase activity modulates O-acetylation of capsular polysaccharide in group B Streptococcus.

    PubMed

    Lewis, Amanda L; Cao, Hongzhi; Patel, Silpa K; Diaz, Sandra; Ryan, Wesley; Carlin, Aaron F; Thon, Vireak; Lewis, Warren G; Varki, Ajit; Chen, Xi; Nizet, Victor

    2007-09-21

    Group B Streptococcus (GBS) is a common cause of neonatal sepsis and meningitis. A major GBS virulence determinant is its sialic acid (Sia)-capped capsular polysaccharide. Recently, we discovered the presence and genetic basis of capsular Sia O-acetylation in GBS. We now characterize a GBS Sia O-acetylesterase that modulates the degree of GBS surface O-acetylation. The GBS Sia O-acetylesterase operates cooperatively with the GBS CMP-Sia synthetase, both part of a single polypeptide encoded by the neuA gene. NeuA de-O-acetylation of free 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac(2)) was enhanced by CTP and Mg(2+), the substrate and co-factor, respectively, of the N-terminal GBS CMP-Sia synthetase domain. In contrast, the homologous bifunctional NeuA esterase from Escherichia coli K1 did not display cofactor dependence. Further analyses showed that in vitro, GBS NeuA can operate via two alternate enzymatic pathways: de-O-acetylation of Neu5,9Ac(2) followed by CMP activation of Neu5Ac or activation of Neu5,9Ac(2) followed by de-O-acetylation of CMP-Neu5,9Ac(2). Consistent with in vitro esterase assays, genetic deletion of GBS neuA led to accumulation of intracellular O-acetylated Sias, and overexpression of GBS NeuA reduced O-acetylation of Sias on the bacterial surface. Site-directed mutagenesis of conserved asparagine residue 301 abolished esterase activity but preserved CMP-Sia synthetase activity, as evidenced by hyper-O-acetylation of capsular polysaccharide Sias on GBS expressing only the N301A NeuA allele. These studies demonstrate a novel mechanism regulating the extent of capsular Sia O-acetylation in intact bacteria and provide a genetic strategy for manipulating GBS O-acetylation in order to explore the role of this modification in GBS pathogenesis and immunogenicity.

  7. N-terminus conservation in the anchor polypeptide of a prokaryotic and eukaryotic alga. [Nostoc; Porphydium cruentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gantt, E.; Lipschultz, C.A.; Cunningham, F.X. Jr.

    1987-04-01

    Energy flow between the extrinsic phycobilisomes and the photosystems within thylakoids, is probably mediated by a blue anchor polypeptide. Polypeptides in the 94 kD range, purified by LiDS-PAGE from phycobilisomes of Nostoc and Porphyrdium cruentum, crossreacted with anti-Nostoc-94 (although weakly with the latter). Though rich in ASP and GLU, the polypeptides were very hydrophobic, and low in MET, CYS, and HIS. Partial sequence of the N-terminus shows considerable homology 1 - 5 - 10 - 15 - 20 N: (S)-V-K-A-S-G-G-S-S-V-A-(R)-P-Q-L-Y-Q-(G)-L-(A)-V- P: V-()-K-A-S-G-G-S-P-V-V-K-P-Q-L-Y-(K)-()-A-(S)- between the species. There is a lack of homology when compared with ..cap alpha.. and ..beta.. polypeptides ofmore » allophycocyanin with rod linkers of phycobilisomes and other phycobiliproteins. Polypeptides of 94 and 92 kD from thylakoids of Nostoc, also immunoreactive with anti-94, were blocked at the N-terminus.« less

  8. Apigenin inhibits d-galactosamine/LPS-induced liver injury through upregulation of hepatic Nrf-2 and PPARγ expressions in mice.

    PubMed

    Zhou, Rui-Jun; Ye, Hua; Wang, Feng; Wang, Jun-Long; Xie, Mei-Lin

    2017-11-04

    Apigenin is a natural flavonoid compound widely distributed in a variety of vegetables, medicinal plants and health foods. This study aimed to examine the protective effect of apigenin against d-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced mouse liver injury and to investigate the potential biochemical mechanisms. The results showed that after oral administration of apigenin 100-200 mg/kg for 7 days, the levels of serum alanine aminotransferase and aspartate aminotransferase were decreased, and the severity of liver injury was alleviated. Importantly, apigenin pretreatment increased the levels of hepatic nuclear factor erythroid 2-related factor 2 (Nrf-2) and peroxisome proliferator-activated receptor γ (PPARγ) protein expressions as well as superoxide dismutase, catalase, glutathione S-transferase and glutathione reductase activities, decreased the levels of hepatic nuclear factor-κB (NF-κB) protein expression and tumor necrosis factor-α. These findings demonstrated that apigenin could prevent the D-GalN/LPS-induced liver injury in mice, and its mechanisms might be associated with the increments of Nrf-2-mediated antioxidative enzymes and modulation of PPARγ/NF-κB-mediated inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Metabolic changes in the anterior and posterior cingulate cortices of the normal aging brain: proton magnetic resonance spectroscopy study at 3 T.

    PubMed

    Chiu, Pui-Wai; Mak, Henry Ka-Fung; Yau, Kelvin Kai-Wing; Chan, Queenie; Chang, Raymond Chuen-Chung; Chu, Leung-Wing

    2014-02-01

    Magnetic resonance spectroscopy (MRS) can explore aging at a molecular level. In this study, we investigated the relationships between regional concentrations of metabolites (such as choline, creatine, myo-inositol, and N-acetyl-aspartate) and normal aging in 30 cognitively normal subjects (15 women and 15 men, age range 22-82, mean = 49.9 ± 18.3 years) using quantitative proton magnetic resonance spectroscopy. All MR scans were performed using a 3 T scanner. Point resolved spectroscopy was used as the volume selection method for the region-of-interest and the excitation method for water suppression. Single voxel spectroscopy with short echo time of 39 ms and repetition time of 2,000 ms was employed. Single voxels were placed in the limbic regions, i.e., anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and left and right hippocampi. Cerebrospinal fluid normalization and T1 and T2 correction factors were implemented in the calculation of absolute metabolite concentrations. A standardized T1W 3D volumetric fast field echo and axial T2-weighted fast spin-echo images were also acquired. Our results showed significant positive correlation of choline (r = 0.545, p = 0.002), creatine (r = 0.571, p = 0.001), and N-acetyl-aspartate (r = 0.674, p < 0.001) in the ACC; choline (r = 0.614, p < 0.001), creatine (r = 0.670, p < 0.001), and N-acetyl-aspartate (r = 0.528, p = 0.003) in the PCC; and NAA (r = 0.409, p = 0.025) in the left hippocampus, with age. No significant gender effect on metabolite concentrations was found. In aging, increases in choline and creatine might suggest glial proliferation, and an increase in N-acetyl-aspartate might indicate neuronal hypertrophy. Such findings highlight the metabolic changes of ACC and PCC with age, which could be compensatory to an increased energy demand coupled with a lower cerebral blood flow.

  10. N-Acetylchitooligosaccharide is a potent angiogenic inhibitor both in vivo and in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zheng; Graduate School of the Chinese Academy of Sciences, Beijing 100039; Zheng, Lanhong

    2007-05-25

    N-Acetylchitooligosaccharide (N-acetyl-COs) was prepared by N-acetylation of chitooligosaccharide (COs). In vitro study using human umbilical vein endothelial cells (HUVECs) revealed that both N-acetyl-COs and COs inhibited the proliferation of HUVECs by inducing apoptosis. Treatment of HUVECs by N-acetyl-COs resulted in a significant reduction of density of the migration cells and repressed tubulogenesis process. The antiangiogenic effects of the oligosaccharides were further evaluated using in vivo zebrafish angiogenesis model, and the results showed that both oligosaccharides inhibited the growth of subintestinal vessels (SIV) of zebrafish embryos in a dose-dependent manner, as observed by endogenous alkaline phosphatase (EAP) staining assay. In contrast,more » no cytotoxicity was found when treating the NIH3T3 and several other cancer cells with the oligosaccharides. Our results also confirmed the antiangiogenic activity of N-acetyl-COs was significantly stronger than the parent oligosaccharide, COs.« less

  11. N-acetyl-L-tryptophan, a substance-P receptor antagonist attenuates aluminum-induced spatial memory deficit in rats.

    PubMed

    Fernandes, Joylee; Mudgal, Jayesh; Rao, Chamallamudi Mallikarjuna; Arora, Devinder; Basu Mallik, Sanchari; Pai, K S R; Nampoothiri, Madhavan

    2018-06-01

    Neuroinflammation plays an important role in the pathophysiology of Alzheimer's disease. Neurokinin substance P is a key mediator which modulates neuroinflammation through neurokinin receptor. Involvement of substance P in Alzheimer's disease is still plausible and various controversies exist in this hypothesis. Preventing the deleterious effects of substance P using N-acetyl-L-tryptophan, a substance P antagonist could be a promising therapeutic strategy. This study was aimed to evaluate the effect of N-acetyl-L-tryptophan on aluminum induced spatial memory alterations in rats. Memory impairment was induced using aluminum chloride (AlCl 3 ) at a dose of 10 mg/kg for 42 d. After induction of dementia, rats were exposed to 30 and 50 mg/kg of N-acetyl-L-tryptophan for 28 d. Spatial memory alterations were measured using Morris water maze. Acetylcholinesterase activity and antioxidant enzyme glutathione level were assessed in hippocampus, frontal cortex and striatum. The higher dose of N-acetyl-L-tryptophan (50 mg/kg) significantly improved the aluminum induced memory alterations. N-acetyl-L-tryptophan exposure resulted in significant increase in acetylcholinesterase activity and glutathione level in hippocampus. The neuroprotective effect of N-acetyl-L-tryptophan could be due to its ability to block substance P mediated neuroinflammation, reduction in oxidative stress and anti-apoptotic properties. To conclude, N-acetyl-L-tryptophan may be considered as a novel neuroprotective therapy in Alzheimer's disease.

  12. gp160 of HIV-I synthesized by persistently infected Molt-3 cells is terminally glycosylated: evidence that cleavage of gp160 occurs subsequent to oligosaccharide processing.

    PubMed

    Merkle, R K; Helland, D E; Welles, J L; Shilatifard, A; Haseltine, W A; Cummings, R D

    1991-10-01

    The envelope glycoprotein of HIV-I in infected, cultured human T cells is synthesized as a precursor of apparent Mr 160 kDa (gp160) and is cleaved to two glycoproteins, gp120 and gp41, which are the mature envelope glycoproteins in the virus. Neither the temporal and spatial features of glycosylation nor the oligosaccharide processing and proteolytic cleavage of the envelope glycoprotein are well understood. To understand more about these events, we investigated the glycosylation and cleavage of the envelope glycoproteins in the CD4+ human cell line, Molt-3, persistently infected with HIV-I (HTLV IIIB). The carbohydrate analysis of gp160 and gp120 and the behavior of the glycoproteins and glycopeptides derived from them on immobilized lectins demonstrate that both of these glycoproteins contain complex- and high-mannose-type Asn-linked oligosaccharides. In addition, the N-glycanase-resistant oligosaccharides of gp120 were found to contain N-acetyl-galactosamine, a common constituent of Ser/Thr-linked oligosaccharides. Pulse-chase analysis of the conversion of [35S]cysteine-labeled gp160 showed that in Molt-3 cells it takes about 2 h for gp120 to arise with a half-time of conversion of about 5 h. At its earliest detectable occurrence, gp120 was found to contain complex-type Asn-linked oligosaccharides. Taken together, these results indicate that proteolytic cleavage of gp160 to gp120 and gp41 occurs either within the trans-Golgi or in a distal compartment.

  13. Syntheses and Immunological Evaluation of Self-Adjuvanting Clustered N-Acetyl and N-Propionyl Sialyl-Tn Combined with A T-helper Cell Epitope as Antitumor Vaccine Candidates.

    PubMed

    Chang, Tsung-Che; Manabe, Yoshiyuki; Fujimoto, Yukari; Ohshima, Shino; Kametani, Yoshie; Kabayama, Kazuya; Nimura, Yuka; Lin, Chun-Cheng; Fukase, Koichi

    2018-05-16

    Sialyl-Tn (STn) is a tumor-associated carbohydrate antigen (TACA) rarely observed on healthy tissues. We synthesized two fully synthetic N-acetyl and N-propionyl STn trimer (triSTn) vaccines possessing a T-helper epitope and a TLR2 agonist, since the clustered STn antigens are highly expressed on many cancer cells. Immunization of both vaccines in mice induced the anti-triSTn IgG antibodies, which recognized triSTn-expressing cell lines PANC-1 and HepG2. The N-propionyl triSTn vaccine induced the triSTn-specific IgGs, while IgGs induced by the N-acetyl triSTn vaccine were less specific. These results illustrated that N-propionyl triSTn is a valuable unnatural TACA for anticancer vaccines. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Biochemical characterization of a phosphinate inhibitor of Escherichia coli MurC.

    PubMed

    Marmor, S; Petersen, C P; Reck, F; Yang, W; Gao, N; Fisher, S L

    2001-10-09

    The bacterial UDP-N-acetylmuramyl-L-alanine ligase (MurC) from Escherichia coli, an essential, cytoplasmic peptidoglycan biosynthetic enzyme, catalyzes the ATP-dependent ligation of L-alanine (Ala) and UDP-N-acetylmuramic acid (UNAM) to form UDP-N-acetylmuramyl-L-alanine (UNAM-Ala). The phosphinate inhibitor 1 was designed and prepared as a multisubstrate/transition state analogue. The compound exhibits mixed-type inhibition with respect to all three enzyme substrates (ATP, UNAM, Ala), suggesting that this compound forms dead-end complexes with multiple enzyme states. Results from isothermal titration calorimetry (ITC) studies supported these findings as exothermic binding was observed under conditions with free enzyme (K(d) = 1.80-2.79 microM, 95% CI), enzyme saturated with ATP (K(d) = 0.097-0.108 microM, 95% CI), and enzyme saturated with the reaction product ADP (K(d) = 0.371-0.751 microM, 95% CI). Titrations run under conditions of saturating UNAM or the product UNAM-Ala did not show heat effects consistent with competitive compound binding to the active site. The potent binding affinity observed in the presence of ATP is consistent with the inhibitor design and the proposed Ordered Ter-Ter mechanism for this enzyme; however, the additional binding pathways suggest that the inhibitor can also serve as a product analogue.

  15. Cytoplasmic peptidoglycan intermediate levels in Staphylococcus aureus.

    PubMed

    Vemula, Harika; Ayon, Navid J; Gutheil, William G

    2016-02-01

    Intracellular cytoplasmic peptidoglycan (PG) intermediate levels were determined in Staphylococcus aureus during log-phase growth in enriched media. Levels of UDP-linked intermediates were quantitatively determined using ion pairing LC-MS/MS in negative mode, and amine intermediates were quantitatively determined stereospecifically as their Marfey's reagent derivatives in positive mode. Levels of UDP-linked intermediates in S. aureus varied from 1.4 μM for UDP-GlcNAc-Enolpyruvyate to 1200 μM for UDP-MurNAc. Levels of amine intermediates (L-Ala, D-Ala, D-Ala-D-Ala, L-Glu, D-Glu, and L-Lys) varied over a range of from 860 μM for D-Ala-D-Ala to 30-260 mM for the others. Total PG was determined from the D-Glu content of isolated PG, and used to estimate the rate of PG synthesis (in terms of cytoplasmic metabolite flux) as 690 μM/min. The total UDP-linked intermediates pool (2490 μM) is therefore sufficient to sustain growth for 3.6 min. Comparison of UDP-linked metabolite levels with published pathway enzyme characteristics demonstrates that enzymes on the UDP-branch range from >80% saturation for MurA, Z, and C, to <5% saturation for MurB. Metabolite levels were compared with literature values for Escherichia coli, with the major difference in UDP-intermediates being the level of UDP-MurNAc, which was high in S. aureus (1200 μM) and low in E. coli (45 μM). Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  16. Evidence that biosynthesis of the second and third sugars of the archaellin Tetrasaccharide in the archaeon Methanococcus maripaludis occurs by the same pathway used by Pseudomonas aeruginosa to make a di-N-acetylated sugar.

    PubMed

    Siu, Sarah; Robotham, Anna; Logan, Susan M; Kelly, John F; Uchida, Kaoru; Aizawa, Shin-Ichi; Jarrell, Ken F

    2015-05-01

    Methanococcus maripaludis has two surface appendages, archaella and type IV pili, which are composed of glycoprotein subunits. Archaellins are modified with an N-linked tetrasaccharide with the structure Sug-1,4-β-ManNAc3NAmA6Thr-1,4-β-GlcNAc3NAcA-1,3-β-GalNAc, where Sug is (5S)-2-acetamido-2,4-dideoxy-5-O-methyl-α-L-erythro-hexos-5-ulo-1,5-pyranose. The pilin glycan has an additional hexose attached to GalNAc. In this study, genes located in two adjacent, divergently transcribed operons (mmp0350-mmp0354 and mmp0359-mmp0355) were targeted for study based on annotations suggesting their involvement in biosynthesis of N-glycan sugars. Mutants carrying deletions in mmp0350, mmp0351, mmp0352, or mmp0353 were nonarchaellated and synthesized archaellins modified with a 1-sugar glycan, as estimated from Western blots. Mass spectroscopy analysis of pili purified from the Δmmp0352 strain confirmed a glycan with only GalNAc, suggesting mmp0350 to mmp0353 were all involved in biosynthesis of the second sugar (GlcNAc3NAcA). The Δmmp0357 mutant was archaellated and had archaellins with a 2-sugar glycan, as confirmed by mass spectroscopy of purified archaella, indicating a role for MMP0357 in biosynthesis of the third sugar (ManNAc3NAmA6Thr). M. maripaludis mmp0350, mmp0351, mmp0352, mmp0353, and mmp0357 are proposed to be functionally equivalent to Pseudomonas aeruginosa wbpABEDI, involved in converting UDP-N-acetylglucosamine to UDP-2,3-diacetamido-2,3-dideoxy-d-mannuronic acid, an O5-specific antigen sugar. Cross-domain complementation of the final step of the P. aeruginosa pathway with mmp0357 supports this hypothesis. This work identifies a series of genes in adjacent operons that are shown to encode the enzymes that complete the entire pathway for generation of the second and third sugars of the N-linked tetrasaccharide that modifies archaellins of Methanococcus maripaludis. This posttranslational modification of archaellins is important, as it is necessary for archaellum assembly. Pilins are modified with a different N-glycan consisting of the archaellin tetrasaccharide but with an additional hexose attached to the linking sugar. Mass spectrometry analysis of the pili of one mutant strain provided insight into how this different glycan might ultimately be assembled. This study includes a rare example of an archaeal gene functionally replacing a bacterial gene in a complex sugar biosynthesis pathway. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Evidence that Biosynthesis of the Second and Third Sugars of the Archaellin Tetrasaccharide in the Archaeon Methanococcus maripaludis Occurs by the Same Pathway Used by Pseudomonas aeruginosa To Make a Di-N-Acetylated Sugar

    PubMed Central

    Siu, Sarah; Robotham, Anna; Logan, Susan M.; Kelly, John F.; Uchida, Kaoru; Aizawa, Shin-Ichi

    2015-01-01

    ABSTRACT Methanococcus maripaludis has two surface appendages, archaella and type IV pili, which are composed of glycoprotein subunits. Archaellins are modified with an N-linked tetrasaccharide with the structure Sug-1,4-β-ManNAc3NAmA6Thr-1,4-β-GlcNAc3NAcA-1,3-β-GalNAc, where Sug is (5S)-2-acetamido-2,4-dideoxy-5-O-methyl-α-l-erythro-hexos-5-ulo-1,5-pyranose. The pilin glycan has an additional hexose attached to GalNAc. In this study, genes located in two adjacent, divergently transcribed operons (mmp0350-mmp0354 and mmp0359-mmp0355) were targeted for study based on annotations suggesting their involvement in biosynthesis of N-glycan sugars. Mutants carrying deletions in mmp0350, mmp0351, mmp0352, or mmp0353 were nonarchaellated and synthesized archaellins modified with a 1-sugar glycan, as estimated from Western blots. Mass spectroscopy analysis of pili purified from the Δmmp0352 strain confirmed a glycan with only GalNAc, suggesting mmp0350 to mmp0353 were all involved in biosynthesis of the second sugar (GlcNAc3NAcA). The Δmmp0357 mutant was archaellated and had archaellins with a 2-sugar glycan, as confirmed by mass spectroscopy of purified archaella, indicating a role for MMP0357 in biosynthesis of the third sugar (ManNAc3NAmA6Thr). M. maripaludis mmp0350, mmp0351, mmp0352, mmp0353, and mmp0357 are proposed to be functionally equivalent to Pseudomonas aeruginosa wbpABEDI, involved in converting UDP-N-acetylglucosamine to UDP-2,3-diacetamido-2,3-dideoxy-d-mannuronic acid, an O5-specific antigen sugar. Cross-domain complementation of the final step of the P. aeruginosa pathway with mmp0357 supports this hypothesis. IMPORTANCE This work identifies a series of genes in adjacent operons that are shown to encode the enzymes that complete the entire pathway for generation of the second and third sugars of the N-linked tetrasaccharide that modifies archaellins of Methanococcus maripaludis. This posttranslational modification of archaellins is important, as it is necessary for archaellum assembly. Pilins are modified with a different N-glycan consisting of the archaellin tetrasaccharide but with an additional hexose attached to the linking sugar. Mass spectrometry analysis of the pili of one mutant strain provided insight into how this different glycan might ultimately be assembled. This study includes a rare example of an archaeal gene functionally replacing a bacterial gene in a complex sugar biosynthesis pathway. PMID:25733616

  18. N-acetylglucosamine 6-Phosphate Deacetylase (nagA) Is Required for N-acetyl Glucosamine Assimilation in Gluconacetobacter xylinus

    PubMed Central

    Yadav, Vikas; Panilaitis, Bruce; Shi, Hai; Numuta, Keiji; Lee, Kyongbum; Kaplan, David L.

    2011-01-01

    Metabolic pathways for amino sugars (N-acetylglucosamine; GlcNAc and glucosamine; Gln) are essential and remain largely conserved in all three kingdoms of life, i.e., microbes, plants and animals. Upon uptake, in the cytoplasm these amino sugars undergo phosphorylation by phosphokinases and subsequently deacetylation by the enzyme N-acetylglucosamine 6-phosphate deacetylase (nagA) to yield glucosamine-6-phosphate and acetate, the first committed step for both GlcNAc assimilation and amino-sugar-nucleotides biosynthesis. Here we report the cloning of a DNA fragment encoding a partial nagA gene and its implications with regard to amino sugar metabolism in the cellulose producing bacterium Glucoacetobacter xylinus (formally known as Acetobacter xylinum). For this purpose, nagA was disrupted by inserting tetracycline resistant gene (nagA::tetr; named as ΔnagA) via homologous recombination. When compared to glucose fed conditions, the UDP-GlcNAc synthesis and bacterial growth (due to lack of GlcNAc utilization) was completely inhibited in nagA mutants. Interestingly, that inhibition occured without compromising cellulose production efficiency and its molecular composition under GlcNAc fed conditions. We conclude that nagA plays an essential role for GlcNAc assimilation by G. xylinus thus is required for the growth and survival for the bacterium in presence of GlcNAc as carbon source. Additionally, G. xylinus appears to possess the same molecular machinery for UDP-GlcNAc biosynthesis from GlcNAc precursors as other related bacterial species. PMID:21655093

  19. N-acetylglucosamine 6-phosphate deacetylase (nagA) is required for N-acetyl glucosamine assimilation in Gluconacetobacter xylinus.

    PubMed

    Yadav, Vikas; Panilaitis, Bruce; Shi, Hai; Numuta, Keiji; Lee, Kyongbum; Kaplan, David L

    2011-01-01

    Metabolic pathways for amino sugars (N-acetylglucosamine; GlcNAc and glucosamine; Gln) are essential and remain largely conserved in all three kingdoms of life, i.e., microbes, plants and animals. Upon uptake, in the cytoplasm these amino sugars undergo phosphorylation by phosphokinases and subsequently deacetylation by the enzyme N-acetylglucosamine 6-phosphate deacetylase (nagA) to yield glucosamine-6-phosphate and acetate, the first committed step for both GlcNAc assimilation and amino-sugar-nucleotides biosynthesis. Here we report the cloning of a DNA fragment encoding a partial nagA gene and its implications with regard to amino sugar metabolism in the cellulose producing bacterium Glucoacetobacter xylinus (formally known as Acetobacter xylinum). For this purpose, nagA was disrupted by inserting tetracycline resistant gene (nagA::tet(r); named as ΔnagA) via homologous recombination. When compared to glucose fed conditions, the UDP-GlcNAc synthesis and bacterial growth (due to lack of GlcNAc utilization) was completely inhibited in nagA mutants. Interestingly, that inhibition occured without compromising cellulose production efficiency and its molecular composition under GlcNAc fed conditions. We conclude that nagA plays an essential role for GlcNAc assimilation by G. xylinus thus is required for the growth and survival for the bacterium in presence of GlcNAc as carbon source. Additionally, G. xylinus appears to possess the same molecular machinery for UDP-GlcNAc biosynthesis from GlcNAc precursors as other related bacterial species.

  20. Rapid measurement of 3J(H N-H alpha) and 3J(N-H beta) coupling constants in polypeptides.

    PubMed

    Barnwal, Ravi Pratap; Rout, Ashok K; Chary, Kandala V R; Atreya, Hanudatta S

    2007-12-01

    We present two NMR experiments, (3,2)D HNHA and (3,2)D HNHB, for rapid and accurate measurement of 3J(H N-H alpha) and 3J(N-H beta) coupling constants in polypeptides based on the principle of G-matrix Fourier transform NMR spectroscopy and quantitative J-correlation. These experiments, which facilitate fast acquisition of three-dimensional data with high spectral/digital resolution and chemical shift dispersion, will provide renewed opportunities to utilize them for sequence specific resonance assignments, estimation/characterization of secondary structure with/without prior knowledge of resonance assignments, stereospecific assignment of prochiral groups and 3D structure determination, refinement and validation. Taken together, these experiments have a wide range of applications from structural genomics projects to studying structure and folding in polypeptides.

  1. Novel Peak Assignments of in Vivo 13C MRS in Human Brain at 1.5 T

    NASA Astrophysics Data System (ADS)

    Blüml, Stefan; Hwang, Jong-Hee; Moreno, Angel; Ross, Brian D.

    2000-04-01

    13C MRS studies at natural abundance and after intravenous 1-13C glucose infusion were performed on a 1.5-T clinical scanner in four subjects. Localization to the occipital cortex was achieved by a surface coil. In natural abundance spectra glucose C3β,5β, myo-inositol, glutamate C1,2,5, glutamine C1,2,5, N-acetyl-aspartate C1-4,Cdbnd O, creatine CH2, CH3, and CCdbnd N, taurine C2,3, bicarbonate HCO-3 were identified. After glucose infusion 13C enrichment of glucose C1α,1β, glutamate C1-4, glutamine C1-4, aspartate C2,3, N-acetyl-aspartate C2,3, lactate C3, alanine C3, and HCO-3 were observed. The observation of 13C enrichment of resonances resonating at >150 ppm is an extension of previously published studies and will provide a more precise determination of metabolic rates and substrate decarboxylation in human brain.

  2. Identification of Bacillus anthracis by Using Monoclonal Antibody to Cell Wall Galactose-N-Acetylglucosamine Polysaccharide

    DTIC Science & Technology

    1990-02-01

    which appear to be directed to an epitope associated with the galactose-N-acetyl-D- glucosamine polysaccharide. Both demonstrated specificity in their...liquid composed primarily of D-galactose and N-acetyl-D-glu - R medium (28) buffered with 50 mM Tris hydrochloride , pH cosamine (12, 13) (Gal-NAG...Ascites fluid (5 ml) was dialyzed (Cel-Line Associates, Inc., Newfield, N.J.). Suspensions against 20 mM Tris hydrochloride (pH 8.0) for 18 to 20 h, were

  3. Adenosine 5'-monophosphate ameliorates D-galactosamine/lipopolysaccharide-induced liver injury through an adenosine receptor-independent mechanism in mice.

    PubMed

    Zhan, Y; Wang, Z; Yang, P; Wang, T; Xia, L; Zhou, M; Wang, Y; Wang, S; Hua, Z; Zhang, J

    2014-01-09

    D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5'-monophosphate (5'-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5'-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5'-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5'-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5'-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury.

  4. Adenosine 5′-monophosphate ameliorates D-galactosamine/lipopolysaccharide-induced liver injury through an adenosine receptor-independent mechanism in mice

    PubMed Central

    Zhan, Y; Wang, Z; Yang, P; Wang, T; Xia, L; Zhou, M; Wang, Y; Wang, S; Hua, Z; Zhang, J

    2014-01-01

    D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5′-monophosphate (5′-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5′-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5′-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5′-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5′-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury. PMID:24407238

  5. Synthesis of a D-Glucopyranosyl Azide: Spectroscopic Evidence for Stereochemical Inversion in the S[subscript N]2 Reaction

    ERIC Educational Resources Information Center

    Adesoye, Olumuyiwa G.; Mills, Isaac N.; Temelkoff, David P.; Jackson, John A.; Norris, Peter

    2012-01-01

    Stereospecific S[subscript N]2 conversion of configurationally pure acetobromoglucose (2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl bromide) to the corresponding beta-D-glucopyranosyl azide is a useful exercise in the advanced organic undergraduate teaching laboratory. The procedure is safe and suitable for small-scale implementation, and firm…

  6. Characterization of a Glucosamine/Glucosaminide N-Acetyltransferase of Clostridium acetobutylicum▿†

    PubMed Central

    Reith, Jan; Mayer, Christoph

    2011-01-01

    Many bacteria, in particular Gram-positive bacteria, contain high proportions of non-N-acetylated amino sugars, i.e., glucosamine (GlcN) and/or muramic acid, in the peptidoglycan of their cell wall, thereby acquiring resistance to lysozyme. However, muramidases with specificity for non-N-acetylated peptidoglycan have been characterized as part of autolytic systems such as of Clostridium acetobutylicum. We aim to elucidate the recovery pathway for non-N-acetylated peptidoglycan fragments and present here the identification and characterization of an acetyltransferase of novel specificity from C. acetobutylicum, named GlmA (for glucosamine/glucosaminide N-acetyltransferase). The enzyme catalyzes the specific transfer of an acetyl group from acetyl coenzyme A to the primary amino group of GlcN, thereby generating N-acetylglucosamine. GlmA is also able to N-acetylate GlcN residues at the nonreducing end of glycosides such as (partially) non-N-acetylated peptidoglycan fragments and β-1,4-glycosidically linked chitosan oligomers. Km values of 114, 64, and 39 μM were determined for GlcN, (GlcN)2, and (GlcN)3, respectively, and a 3- to 4-fold higher catalytic efficiency was determined for the di- and trisaccharides. GlmA is the first cloned and biochemically characterized glucosamine/glucosaminide N-acetyltransferase and a member of the large GCN5-related N-acetyltransferases (GNAT) superfamily of acetyltransferases. We suggest that GlmA is required for the recovery of non-N-acetylated muropeptides during cell wall rescue in C. acetobutylicum. PMID:21784938

  7. Electronic structure calculations toward new potentially AChE inhibitors

    NASA Astrophysics Data System (ADS)

    de Paula, A. A. N.; Martins, J. B. L.; Gargano, R.; dos Santos, M. L.; Romeiro, L. A. S.

    2007-10-01

    The main purpose of this study was the use of natural non-isoprenoid phenolic lipid of cashew nut shell liquid from Anacardium occidentale as lead material for generating new potentially candidates of acetylcholinesterase inhibitors. Therefore, we studied the electronic structure of 15 molecules derivatives from the cardanol using the following groups: methyl, acetyl, N, N-dimethylcarbamoyl, N, N-dimethylamine, N, N-diethylamine, piperidine, pyrrolidine, and N-benzylamine. The calculations were performed at RHF level using 6-31G, 6-31G(d), 6-31+G(d) and 6-311G(d,p) basis functions. Among the proposed compounds we found that the structures with substitution by acetyl, N, N-dimethylcarbamoyl, N, N-dimethylamine, and pyrrolidine groups were better correlated to rivastigmine indicating possible activity.

  8. 4-Aminobiphenyl Downregulation of NAT2 Acetylator Genotype–Dependent N- and O-acetylation of Aromatic and Heterocyclic Amine Carcinogens in Primary Mammary Epithelial Cell Cultures from Rapid and Slow Acetylator Rats

    PubMed Central

    Jefferson, Felicia A.; Xiao, Gong H.; Hein, David W.

    2009-01-01

    Aromatic and heterocyclic amine carcinogens present in the diet and in cigarette smoke induce breast tumors in rats. N-acetyltransferase 1 (NAT1) and N-acetyltransferase 2 (NAT2) enzymes have important roles in their metabolic activation and deactivation. Human epidemiological studies suggest that genetic polymorphisms in NAT1 and/or NAT2 modify breast cancer risk in women exposed to these carcinogens. p-Aminobenzoic acid (selective for rat NAT2) and sulfamethazine (SMZ; selective for rat NAT1) N-acetyltransferase catalytic activities were both expressed in primary cultures of rat mammary epithelial cells. PABA, 2-aminofluorene, and 4-aminobiphenyl N-acetyltransferase and N-hydroxy-2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine and N-hydroxy-2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline O-acetyltransferase activities were two- to threefold higher in mammary epithelial cell cultures from rapid than slow acetylator rats. In contrast, SMZ (a rat NAT1-selective substrate) N-acetyltransferase activity did not differ between rapid and slow acetylators. Rat mammary cells cultured in the medium supplemented 24 h with 10μM ABP showed downregulation in the N-and O-acetylation of all substrates tested except for the NAT1-selective substrate SMZ. This downregulation was comparable in rapid and slow NAT2 acetylators. These studies clearly show NAT2 acetylator genotype–dependent N- and O-acetylation of aromatic and heterocyclic amine carcinogens in rat mammary epithelial cell cultures to be subject to downregulation by the arylamine carcinogen ABP. PMID:18842621

  9. Rabbit N-acetyltransferase 2 genotyping method to investigate role of acetylation polymorphism on N- and O-acetylation of aromatic and heterocyclic amine carcinogens.

    PubMed

    Hein, David W; Doll, Mark A

    2017-09-01

    The rabbit was the initial animal model to investigate the acetylation polymorphism expressed in humans. Use of the rabbit model is compromised by lack of a rapid non-invasive method for determining acetylator phenotype. Slow acetylator phenotype in the rabbit results from deletion of the N-acetyltransferase 2 (NAT2) gene. A relatively quick and non-invasive method for identifying the gene deletion was developed and acetylator phenotypes confirmed by measurement of N- and O-acetyltransferase activities in hepatic cytosols. Rabbit liver cytosols catalyzed the N-acetylation of sulfamethazine (p = 0.0014), benzidine (p = 0.0257), 4-aminobiphenyl (p = 0.0012), and the O-acetylation of N-hydroxy-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-OH-PhIP; p = 0.002) at rates significantly higher in rabbits possessing NAT2 gene than rabbits with NAT2 gene deleted. In contrast, hepatic cytosols catalyzed the N-acetylation of p-aminobenzoic acid (an N-acetyltransferase 1 selective substrate) at rates that did not differ significantly (p > 0.05) between rabbits positive and negative for NAT2. The new NAT2 genotyping method facilitates use of the rabbit model to investigate the role of acetylator polymorphism in the metabolism of aromatic and heterocyclic amine drugs and carcinogens.

  10. Low-dose D-methionine and N-acetyl-L-cysteine for protection from permanent noise-induced hearing loss in chinchillas.

    PubMed

    Clifford, Royce E; Coleman, John K M; Balough, Ben J; Liu, Jianzhong; Kopke, Richard D; Jackson, Ronald L

    2011-12-01

    Despite efforts at public health awareness and stringent industrial standards for hearing protection, noise-induced hearing loss (NIHL) remains a formidable public health concern. Although many antioxidants have proven to be beneficial in the laboratory for prevention of permanent NIHL, low-dose combinations of compounds with different biochemical mechanisms of action may allow long-term administration with fewer side effects and equal efficacy. The mixture of D-methionine and N-acetyl-L-cysteine administered at levels less than 10% of standard dosing has not been previously reported. Twenty-six female adult Chinchilla laniger were placed in 4 study groups, consisting of (1) a group receiving combination 12.5 mg/kg each D-methionine and N-acetyl-L-cysteine (DMET/NAC group), (2) a group receiving 12.5 mg/kg D-methionine (DMET-only group), (3) a group receiving 12.5 mg/kg N-acetyl-L-cysteine (NAC-only group), and (4) saline controls. Laboratory. All groups received twice-daily intraperitoneal injections 2 days prior to noise exposure, 1 hour before and after exposure on day 3, and for 2 days subsequently, totaling 10 doses of 125 mg/kg for each antioxidant over 5 days. Although NAC-only animals paralleled saline control recovery during 3 weeks, the DMET-only group revealed gradual improvement with statistically significant recovery in the middle frequencies. The DMET/NAC group showed significant improvement at most frequencies compared with controls (P < .001 and P < .05). Significant recovery of hearing was observed following continuous noise exposure with either DMET only or a combination of low-dose DMET/NAC, demonstrating a considerably lower dose of antioxidants required than previously reported for hearing recovery following acoustic trauma.

  11. Enzymatic synthesis of novel quercetin sialyllactoside derivatives.

    PubMed

    Darsandhari, Sumangala; Bae, Jae Yoon; Shrestha, Biplav; Yamaguchi, Tokutaro; Jung, Hye Jin; Han, Jang Mi; Rha, Chan-Su; Pandey, Ramesh Prasad; Sohng, Jae Kyung

    2018-06-06

    Quercetin and its derivatives are important flavonols that show diverse biological activity, such as antioxidant, anticarcinogenic, anti-inflammatory, and antiviral activities. Adding different substituents to quercetin may change the biochemical activity and bioavailability of molecules, when compared to the aglycone. Here, we have synthesised two novel derivatives of quercetin, quercetin-3-O-β-d-glucopyranosyl, 4''-O-d-galactopyranosyl 3'''-O-α-N-acetyl neuraminic acid i.e. 3'-sialyllactosyl quercetin (3'SL-Q) and quercetin-3-O-β-d-glucopyranosyl, 4''-O-β-d-galactopyranosyl 6'''-O-α-N-acetyl neuraminic acid i.e. 6'-sialyllactosyl quercetin (6'SL-Q) with the use of glycosyltransferases and sialyltransferases enzymes. These derivatives of quercetin were characterised by high-resolution quadrupole-time-of-flight electrospray ionisation mass spectrometry (HR-QTOF-ESI/MS) and 1 H and 13 C nuclear magnetic resonance (NMR) analyses.

  12. New antagonists of LHRH. II. Inhibition and potentiation of LHRH by closely related analogues.

    PubMed

    Bajusz, S; Csernus, V J; Janaky, T; Bokser, L; Fekete, M; Schally, A V

    1988-12-01

    Modifications of the previously described LHRH antagonists, [Ac-D-Nal(2)1, D-Phe(4Cl)2, D-Trp3, D-Cit6, D-Ala10]LHRH and the corresponding D-Hci6 analogue, have been made to alter the hydrophobicity of the N-terminal acetyl-tripeptide portion. Substitution of D-Trp3 with the less hydrophobic D-Pal(3) had only marginal effects on the antagonistic activities and receptor binding potencies of the D-Cit/D-Hci6 analogues, but it appeared to further improve the toxicity lowering effect of D-Cit/D-Hci6 substitution. Antagonists containing D-Pal(3)3 and D-Cit/D-Hci6 residues, i.e. [Ac-D-Nal(2)1, D-Phe(4Cl)2, D-Pal(3)3, D-Cit6, D-Ala10]LHRH (SB-75) and [Ac-D-Nal(2)1, D-Phe(4Cl)2, D-Pal(3)3, D-Hci6, D-Ala10]LHRH (SB-88), were completely free of the toxic effects, such as cyanosis and respiratory depression leading to death, which have been observed in rats with the D-Trp3, D-Arg6 antagonist and related antagonists. Replacement of the N-acetyl group with the hydrophilic carbamoyl group caused a slight decrease in antagonistic activities, particularly in vitro. Introduction of urethane type acyl group such as methoxycarbonyl (Moc) or t-butoxycarbonyl (Boc) led to analogues that showed LHRH-potentiating effect. The increase in potency induced by these analogues, e.g. [Moc-D-Nal(2)1, D-Phe(4Cl)2, D-Trp3, D-Cit6, D-Ala10]LHRH and [Boc-D-Phe1, D-Phe(4Cl)2, D-Pal(3)3, D-Cit6, D-Ala10]LHRH, was 170-260% and persisted for more than 2 h when studied in a superfused rat pituitary system.

  13. The Lifetime of UDP-galactose:Ceramide Galactosyltransferase Is Controlled by a Distinct Endoplasmic Reticulum-associated Degradation (ERAD) Regulated by Sigma-1 Receptor Chaperones*

    PubMed Central

    Hayashi, Teruo; Hayashi, Eri; Fujimoto, Michiko; Sprong, Hein; Su, Tsung-Ping

    2012-01-01

    The glycosphingolipid biosynthesis is initiated by monoglycosylation of ceramides, the action of which is catalyzed either by UDP-glucose:ceramide glucosyltransferase or by UDP-galactose:ceramide galactosyltransferase (CGalT). CGalT is expressed predominantly at the endoplasmic reticulum (ER) of oligodendrocytes and is responsible for synthesizing galactosylceramides (GalCer) that play an important role in regulation of axon conductance. However, despite the importance of ceramide monoglycosylation enzymes in a spectrum of cellular functions, the mechanism that fine tunes activities of those enzymes is largely unknown. In the present study, we demonstrated that the sigma-1 receptor (Sig-1R) chaperone, the mammalian homologue of a yeast C8-C7 sterol isomerase, controls the protein level and activity of the CGalT enzyme via a distinct ER-associated degradation system involving Insig. The Sig-1R forms a complex with Insig via its transmembrane domain partly in a sterol-dependent manner and associates with CGalT at the ER. The knockdown of Sig-1Rs dramatically prolonged the lifetime of CGalT without affecting the trimming of N-linked oligosaccharides at CGalT. The increased lifetime leads to the up-regulation of CGalT protein as well as elevated enzymatic activity in CHO cells stably expressing CGalT. Knockdown of Sig-1Rs also decreased CGalT degradation endogenously expressed in D6P2T-schwannoma cells. Our data suggest that Sig-1Rs negatively regulate the activity of GalCer synthesis under physiological conditions by enhancing the degradation of CGalT through regulation of the dynamics of Insig in the lipid-activated ER-associated degradation system. The GalCer synthesis may thus be influenced by sterols at the ER. PMID:23105111

  14. The effect of D-galactosamine on plasma protein synthesis by the perfused rat liver from turpentine-stimulated donors.

    PubMed Central

    Koj, A.; Dubin, A.

    1978-01-01

    D-galactosamine (100 mg) was added to the reconstituted blood during 4h perfusion of livers isolated either from control rats or those injected with turpentine 20 h or 5 h earlier. This dose of galactosamine administered 30 min before [3H]lysine significantly inhibited the incorporation of the label into liver proteins, and even more into plasma proteins, but albumin and acute-phase reactants (fibrinogen, seromucoid fraction, Concanavalin A-adsorbed glycoproteins) were all similarly affected. When galactosamine was administered in vivo simultaneously with turpentine, and the liver was isolated 5 h later, trauma-induced fibrinogen synthesis was selectively inhibited. This can be explained either by a differential control of synthesis of various acute-phase reactants, or by augmentation of catabolism of fibrinogen in galactosamine-treated rats. Crossed immunoelectrophoresis of the full perfusate or Concanavalin A-adsorbed glycoproteins did not reveal any significant effect of galactosamine on the protein pattern obtained from control or turpentine-stimulated liver donors. Images Fig. 1 PMID:718802

  15. Minority Human Immunodeficiency Virus Type 1 Variants in Antiretroviral-Naive Persons with Reverse Transcriptase Codon 215 Revertant Mutations▿ †

    PubMed Central

    Mitsuya, Yumi; Varghese, Vici; Wang, Chunlin; Liu, Tommy F.; Holmes, Susan P.; Jayakumar, Prerana; Gharizadeh, Baback; Ronaghi, Mostafa; Klein, Daniel; Fessel, W. Jeffrey; Shafer, Robert W.

    2008-01-01

    T215 revertant mutations such as T215C/D/E/S that evolve from the nucleoside reverse transcriptase (RT) inhibitor mutations T215Y/F have been found in about 3% of human immunodeficiency virus type 1 (HIV-1) isolates from newly diagnosed HIV-1-infected persons. We used a newly developed sequencing method—ultradeep pyrosequencing (UDPS; 454 Life Sciences)—to determine the frequency with which T215Y/F or other RT inhibitor resistance mutations could be detected as minority variants in samples from untreated persons that contain T215 revertants (“revertant” samples) compared with samples from untreated persons that lack such revertants (“control” samples). Among the 22 revertant and 29 control samples, UDPS detected a mean of 3.8 and 4.8 additional RT amino acid mutations, respectively. In 6 of 22 (27%) revertant samples and in 4 of 29 control samples (14%; P = 0.4), UDPS detected one or more RT inhibitor resistance mutations. T215Y or T215F was not detected in any of the revertant or control samples; however, 4 of 22 revertant samples had one or more T215 revertants that were detected by UDPS but not by direct PCR sequencing. The failure to detect viruses with T215Y/F in the 22 revertant samples in this study may result from the overwhelming replacement of transmitted T215Y variants by the more fit T215 revertants or from the primary transmission of a T215 revertant in a subset of persons with T215 revertants. PMID:18715933

  16. Acute Liver Injury Induces Nucleocytoplasmic Redistribution of Hepatic Methionine Metabolism Enzymes

    PubMed Central

    Delgado, Miguel; Garrido, Francisco; Pérez-Miguelsanz, Juliana; Pacheco, María; Partearroyo, Teresa; Pérez-Sala, Dolores

    2014-01-01

    Abstract Aims: The discovery of methionine metabolism enzymes in the cell nucleus, together with their association with key nuclear processes, suggested a putative relationship between alterations in their subcellular distribution and disease. Results: Using the rat model of d-galactosamine intoxication, severe changes in hepatic steady-state mRNA levels were found; the largest decreases corresponded to enzymes exhibiting the highest expression in normal tissue. Cytoplasmic protein levels, activities, and metabolite concentrations suffered more moderate changes following a similar trend. Interestingly, galactosamine treatment induced hepatic nuclear accumulation of methionine adenosyltransferase (MAT) α1 and S-adenosylhomocysteine hydrolase tetramers, their active assemblies. In fact, galactosamine-treated livers showed enhanced nuclear MAT activity. Acetaminophen (APAP) intoxication mimicked most galactosamine effects on hepatic MATα1, including accumulation of nuclear tetramers. H35 cells that overexpress tagged-MATα1 reproduced the subcellular distribution observed in liver, and the changes induced by galactosamine and APAP that were also observed upon glutathione depletion by buthionine sulfoximine. The H35 nuclear accumulation of tagged-MATα1 induced by these agents correlated with decreased glutathione reduced form/glutathione oxidized form ratios and was prevented by N-acetylcysteine (NAC) and glutathione ethyl ester. However, the changes in epigenetic modifications associated with tagged-MATα1 nuclear accumulation were only prevented by NAC in galactosamine-treated cells. Innovation: Cytoplasmic and nuclear changes in proteins that regulate the methylation index follow opposite trends in acute liver injury, their nuclear accumulation showing potential as disease marker. Conclusion: Altogether these results demonstrate galactosamine- and APAP-induced nuclear accumulation of methionine metabolism enzymes as active oligomers and unveil the implication of redox-dependent mechanisms in the control of MATα1 subcellular distribution. Antioxid. Redox Signal. 20, 2541–2554. PMID:24124652

  17. Genetic heterogeneity among slow acetylator N-acetyltransferase 2 phenotypes in cryopreserved human hepatocytes.

    PubMed

    Doll, Mark A; Hein, David W

    2017-07-01

    Genetic polymorphisms in human N-acetyltransferase 2 (NAT2) modify the metabolism of numerous drugs and carcinogens. These genetic polymorphisms modify both drug efficacy and toxicity and cancer risk associated with carcinogen exposure. Previous studies have suggested phenotypic heterogeneity among different NAT2 slow acetylator genotypes. NAT2 phenotype was investigated in vitro and in situ in samples of human hepatocytes obtained from various NAT2 slow and intermediate NAT2 acetylator genotypes. NAT2 gene dose response (NAT2*5B/*5B > NAT2*5B/*6A > NAT2*6A/*6A) was observed towards the N-acetylation of the NAT2-specific drug sulfamethazine by human hepatocytes both in vitro and in situ. N-acetylation of 4-aminobiphenyl, an arylamine carcinogen substrate for both N-acetyltransferase 1 and NAT2, showed the same trend both in vitro and in situ although the differences were not significant (p > 0.05). The N-acetylation of the N-acetyltransferase 1-specific substrate p-aminobenzoic acid did not follow this trend. In comparisons of NAT2 intermediate acetylator genotypes, differences in N-acetylation between NAT2*4/*5B and NAT2*4/*6B hepatocytes were not observed in vitro or in situ towards any of these substrates. These results further support phenotypic heterogeneity among NAT2 slow acetylator genotypes, consistent with differential risks of drug failure or toxicity and cancer associated with carcinogen exposure.

  18. Oral Administration of N-Acetyl-D Glucosamine Polymer Particles Down-Regulates Airway Allergic Responses

    DTIC Science & Technology

    2005-03-01

    detection with flow cytometry. Cancer . 85:2359-67. 18. Justice JP, Shibata Y, Sur S, Mustafa J, Fan M, Van Scott MR. 2001. IL-10 gene knockout attenuates...primed donors. Regional Immunol., 2, 169-175. 7. Druker, B. J., Wepsic, H. T. (1983) BCG-induced macrophages as suppressor cells. Cancer Investig. 1:151...however, have significantly lower binding affinities to de-acetylated glucosamine sugar residues (31). Dectin-1/[3- glucan CLR, on the other hand

  19. Novel Inhibitors of Protein-Protein Interaction for Prostate Cancer Therapy

    DTIC Science & Technology

    2011-04-01

    medical need. 7 REFERENCES 1. Babbar N, Hacker A, Huang Y, Casero RA Jr. Tumor necrosis factor alpha induces spermidine /spermine N-acetyl...PCa development and progression. We have published that activated androgen receptor (AR)-JunD complex induces spermidine /spermine N1-acetyl transferase

  20. Innervation pattern of the preocular human central retinal artery.

    PubMed

    Bergua, Antonio; Kapsreiter, Markus; Neuhuber, Winfried L; Reitsamer, Herbert A; Schrödl, Falk

    2013-05-01

    The central retinal artery (CRA) is the main vessel for inner retinal oxygen and nutrition supply. While the intraocular branches lack autonomic innervation, the innervation pattern of the extra-ocular part of this vessel along its course within the optic nerve is poorly investigated. This part however is essential for maintenance of retinal blood supply, in physiological and pathological conditions. Therefore, the aim of this study was the characterization of the autonomic innervation of the preocular CRA in humans with morphological methods. Meeting the Declaration of Helsinki, eyes of body or cornea donors were processed for single or double immunohistochemistry against tyrosine hydroxilase (TH), dopamine-β-hydroxylase (DBH), choline acetyl-transferase (ChAT), vesicular acetylcholine transporter (VAChT), neuronal nitric oxide synthase (nNOS), calcitonin gene-related peptide (CGRP), substance P (SP), vasoactive intestinal polypeptide (VIP), and cytochemistry for NADPH-diaphorase (NADPH-d). For documentation, light-, fluorescence-, and confocal laser-scanning microscopy were used. TH and DBH immunoreactive nerve fibres were detected in the CRA vessel wall, although a distinct perivascular plexus was missing. Further, nerve fibres immunoreactive for ChAT and VAChT were found, while CGRP, SP, and VIP were not detected. NADPH-d staining revealed scattered nerve fibres in the adventitia of the CRA and in close vicinity; however, nNOS-immunostaining could not confirm this finding. The CRA receives adrenergic and cholinergic innervations, indicating sympathetic and parasympathetic components, respectively. Remarkably, a peptidergic primary afferent innervation was missing. Since clinical results suggest an autoregulation of intraretinal vessels, further studies are needed to clarify the impact of CRA innervation for retinal perfusion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Detection of occupational lead nephropathy using early renal markers.

    PubMed

    Kumar, B D; Krishnaswamy, K

    1995-01-01

    Automotive use of leaded gasoline continues to be an important source of occupational exposure to lead in India and other countries. The present study assessed the renal function and markers of early renal damage of 22 mechanics at three automobile garages. Urinary N-acetyl-3-D-glucosaminidase activity and beta-2-microglobulin levels were significantly increased in auto garage mechanics with blood leads of 30-69 micrograms/dL. A significant correlation was observed between blood lead levels and urinary N-acetyl-3-D-glucosaminidase activity but not with urine beta-2-microglobulin levels. A marginal impairment in creatinine clearance was not statistically significant. Urinary N-acetyl-3-D-glucosaminidase activity offers a sensitive monitor of blood lead and renal tubular injury.

  2. General Aviation Activity and Avionics Survey

    DTIC Science & Technology

    1988-01-01

    tD to U) C’) m’ %0 V al Cm r. %0 H1 2:) ) C’) H 1; 1; U) 0 0) a; 0 N H; U; ) C) 0 H 0 0 Cl) CD M’ tD U) H1 r- U) U) A N N wD 0m w H...8217 r- w N - - H H N O z fz 4 OO O CO CO N 0 O fU D (A w’ r- tD 0 1 r4 (n 0 (0D CO t- m Hl -0 r D CO H4 N) N1 D C N it) N o 0A P4 E-4 H Hl ’r - ol u COC...l) ChH U) ’’ ’ 0H W) ) U) H- H N ON r o 1 tp 𔃺 Ne’ WW (󈧘 00 Oo U ChL ’I](N tD ca N C% O U)U 0(1 M~’ OW U) 1W N CIN40N H 020 L 00l’ C,, ’I 4 01IH’

  3. The Use of Drugs to Reduce Hearing Loss Following Acute Acoustic Trama

    DTIC Science & Technology

    2012-07-01

    noise exposure: (1) L-N- acetylcysteine (L-NAC); (2) D-Methionine (D-MET); (3) Ebselen SPI-1005; (4) Acetyl-L-carnitine (ALCAR) and (5) Src-PTK inhibitor...exposed to a 4.0 kHz octave band of noise for 6 hours at 105 dB SPL: (1) L-N- acetylcysteine (L-NAC); (2) D-Methionine (D-MET); (3) Ebselen SPI-1005...effectively absent or severely depressed from 2 kHz and above (Figs. 14 & 15). Individual cochleograms for this group are shown in Figure 16. The

  4. Biotechnological engineering of heparin/heparan sulphate: a novel area of multi-target drug discovery.

    PubMed

    Rusnati, Marco; Oreste, Pasqua; Zoppetti, Giorgio; Presta, Marco

    2005-01-01

    Heparin is a sulphated glycosaminoglycan currently used as an anticoagulant and antithrombotic drug. It consists largely of 2-O-sulphated IdoA not l&r arrow N, 6-O-disulphated GlcN disaccharide units. Other disaccharides containing unsulphated IdoA or GlcA and N-sulphated or N-acetylated GlcN are also present as minor components. This heterogeneity is more pronounced in heparan sulphate (HS), where the low-sulphated disaccharides are the most abundant. Heparin/HS bind to a variety of biologically active polypeptides, including enzymes, growth factors and cytokines, and viral proteins. This capacity can be exploited to design multi-target heparin/HS-derived drugs for pharmacological interventions in a variety of pathologic conditions besides coagulation and thrombosis, including neoplasia and viral infection. The capsular K5 polysaccharide from Escherichia coli has the same structure as the heparin precursor N-acetyl heparosan. The possibility of producing K5 polysaccharide derivatives by chemical and enzymatic modifications, thus generating heparin/HS-like compounds, has been demonstrated. These K5 polysaccharide derivatives are endowed with different biological properties, including anticoagulant/antithrombotic, antineoplastic, and anti-AIDS activities. Here, the literature data are discussed and the possible therapeutic implications for this novel class of multi-target "biotechnological heparin/HS" molecules are outlined.

  5. A fluorescence-based method for direct measurement of submicrosecond intramolecular contact formation in biopolymers: an exploratory study with polypeptides.

    PubMed

    Hudgins, Robert R; Huang, Fang; Gramlich, Gabriela; Nau, Werner M

    2002-01-30

    A fluorescent amino acid derivative (Fmoc-DBO) has been synthesized, which contains 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) as a small, hydrophilic fluorophore with an extremely long fluorescence lifetime (325 ns in H2O and 505 ns in D2O under air). Polypeptides containing both the DBO residue and an efficient fluorescence quencher allow the measurement of rate constants for intramolecular end-to-end contact formation. Bimolecular quenching experiments indicated that Trp, Cys, Met, and Tyr are efficient quenchers of DBO (k(q) = 20, 5.1, 4.5, and 3.6 x 10(8) M(-1) x s(-1) in D2O), while the other amino acids are inefficient. The quenching by Trp, which was selected as an intrinsic quencher, is presumed to involve exciplex-induced deactivation. Flexible, structureless polypeptides, Trp-(Gly-Ser)n-DBO-NH2, were prepared by standard solid-phase synthesis, and the rates of contact formation were measured through the intramolecular fluorescence quenching of DBO by Trp with time-correlated single-photon counting, laser flash photolysis, and steady-state fluorometry. Rate constants of 4.1, 6.8, 4.9, 3.1, 2.0, and 1.1 x 10(7) s(-1) for n = 0, 1, 2, 4, 6, and 10 were obtained. Noteworthy was the relatively slow quenching for the shortest peptide (n = 0). The kinetic data are in agreement with recent transient absorption studies of triplet probes for related peptides, but the rate constants are significantly larger. In contrast to the flexible structureless Gly-Ser polypeptides, the polyproline Trp-Pro4-DBO-NH2 showed insignificant fluorescence quenching, suggesting that a high polypeptide flexibility and the possibility of probe-quencher contact is essential to induce quenching. Advantages of the new fluorescence-based method for measuring contact formation rates in biopolymers include high accuracy, fast time range (100 ps-1 micros), and the possibility to perform measurements in water under air.

  6. Galactinol synthase from kidney bean cotyledon and zucchini leaf. Purification and N-terminal sequences.

    PubMed Central

    Liu, J J; Odegard, W; de Lumen, B O

    1995-01-01

    Galactinol synthase (GS) was purified 1591-fold with a 3.9% recovery from the cotyledon of kidney bean (Phaseolus vulgaris) by a novel scheme consisting of ammonium sulfate fractionation followed by diethylaminoethyl, Affi-Gel Blue, and UDP-hexanolamine affinity chromatography. The purified enzyme had a specific activity of 8.75 mumol mg-1 min-1, a pH optimum of 7.0, and requirements for manganese ion and DTT. The enzyme exhibited a Km = 0.4 mM for UDP-galactose and a Km = 4.5 mM for myo-inositol. It was identified as a 38-kD peptide that co-purified with a 41- and a 43-kD peptide as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Purification to homogeneity was achieved by isolating the 38-kD peptide from the SDS-PAGE gel. To clarify conflicting reports in the literature about the relative molecular mass of purified GS from zucchini leaf (Cucurbita pepo), a similar scheme with modified eluting conditions was used to purify GS from this source. Zucchini leaf GS was purified to homogeneity and identified as a 36-kD peptide on SDS-PAGE. Partial N-terminal sequences of the 38-kD peptide from kidney bean cotyledon and the 36-kD peptide from zucchini leaf were obtained. To facilitate identification of GS during the purification, an assay utilizing thin-layer chromatography and an isotopic analytic imaging scanner was developed. PMID:7480343

  7. Protective effects of sea buckthorn polysaccharide extracts against LPS/d-GalN-induced acute liver failure in mice via suppressing TLR4-NF-κB signaling.

    PubMed

    Liu, Huan; Zhang, Wei; Dong, Shichao; Song, Liang; Zhao, Shimin; Wu, Chunyan; Wang, Xue; Liu, Fang; Xie, Jiming; Wang, Jinling; Wang, Yuzhen

    2015-12-24

    Sea buckthorn (Hippophae rhamnoides L.) berries have been traditionally used to treat gastric disorders, cardiovascular problems, and liver injuries in oriental medicinal system. This study aimed to explore the protective effects and mechanisms of the polysaccharide extracts of Sea buckthorn (HRP) berries against lipopolysaccharide (LPS) and d-galactosamine hydrochloride (d-GalN)-induced acute liver failure in mice. HRP was isolated by hot-water extraction and characterized by HPLC and infrared spectrum analysis. The total carbohydrate, uronic acid and protein contents of HRP were measured by a spectrophotometric method. Mice were orally administrated with HRP (50, 100, 200mg/kg) once daily for 14 consecutive days prior to the challenge with LPS (50 μg/kg) and d-GalN (300 mg/kg). Animals of positive control group were intraperitoneally injected with dexamethasone (10mg/kg). Mice were sacrificed at 8h after LPS/d-GalN injection. Pretreatment with HRP significantly inhibited LPS/d-GalN-induced increases in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, which were accompanied by alleviated liver injuries and reduced production of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). HRP was also found to reduce malondialdehyde (MDA) content and to restore superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities. Furthermore, HRP supplementation dose-dependently inhibited the expression of Toll-like receptor 4 (TLR4), phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated c-Jun N-terminal kinase (p-JNK), and phosphorylated mitogen activated protein kinase 38 (p-p38 MAPK) in the liver of LPS/d-GalN challenged mice. Pretreatment with HRP also inhibited LPS/d-GalN-induced activation and translocation of nuclear factor-κB (NF-κB). This study indicates that pretreatment with HRP protects against LPS/d-GalN-induced liver injury in mice via suppressing the TLR4-NF-κB signaling pathway. Sea buckthorn may be a hopeful drug for prevention of acute live injury. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Synthesis of methyl 2-O-alpha-D-mannopyranosyl-alpha-D-talopyranoside and methyl 2-O-alpha-D-talopyranosyl-alpha-D-talopyranoside.

    PubMed

    Jain, R K; Dubey, R; Abbas, S A; Matta, K L

    1987-03-15

    Treatment of methyl 3-O-benzyl-2-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)-alpha-D- mannopyranoside (1) with tert-butyldiphenylsilyl chloride in N,N-dimethylformamide afforded methyl 3-O-benzyl-6-O-tert-butyldiphenylsilyl-2-O-(2,3,4,6-tetra-O-acetyl -alpha-D- mannopyranosyl)-alpha-D-mannopyranoside (2). Oxidation of 2 with pyridinium chlorochromate, followed by reduction of the carbonyl group, and subsequent O-deacetylation afforded methyl 3-O-benzyl-6-O-tert-butyldiphenylsilyl-2-O-alpha-D-mannopyranosyl- alpha-D- talopyranoside (5). Cleavage of the tert-butyldiphenylsilyl group of 5 with tetrabutylammonium fluoride in oxolane, followed by hydrogenolysis, gave methyl 2-O-alpha-D-mannopyranosyl-alpha-D-talopyranoside (7). O-Deacetylation of 1 gave methyl 3-O-benzyl-2-O-alpha-D-mannopyranosyl-alpha-D-mannopyranoside (8). Treatment of 8 with tert-butyldiphenylsilyl chloride afforded a 6,6'-disilyl derivative, which was converted into a 2',3'-O-isopropylidene derivative, and then further oxidized with pyridinium chlorochromate. The resulting diketone was reduced and removal of the protecting groups gave methyl 2-O-alpha-D-talopyranosyl-alpha-D-talopyranoside (15). The structures of both 7 and 15 were established by 13C-n.m.r. spectroscopy.

  9. Synthesis, characterization and properties of uridine 5'-( -D-apio-D-furanosyl pyrophosphate).

    PubMed

    Kindel, P K; Watson, R R

    1973-06-01

    1. A method was developed for synthesizing UDP-apiose [uridine 5'-(alpha-d-apio-d-furanosyl pyrophosphate)] from UDP-glucuronic acid [uridine 5'-(alpha-d-glucopyranosyluronic acid pyrophosphate)] in 62% yield with the enzyme UDP-glucuronic acid cyclase. 2. UDP-apiose had the same mobility as uridine 5'-(alpha-d-xylopyranosyl pyrophosphate) when chromatographed on paper and when subjected to paper electrophoresis at pH5.8. When [(3)H]UDP-[U-(14)C]glucuronic acid was used as the substrate for UDP-glucuronic acid cyclase, the (3)H/(14)C ratio in the reaction product was that expected if d-apiose remained attached to the uridine. In separate experiments doubly labelled reaction product was: (a) hydrolysed at pH2 and 100 degrees C for 15min; (b) degraded at pH8.0 and 100 degrees C for 3min; (c) used as a substrate in the enzymic synthesis of [(14)C]apiin. In each type of experiment the reaction products were isolated and identified and were found to be those expected if [(3)H]UDP-[U-(14)C]apiose was the starting compound. 3. Chemical characterization established that the product containing d-[U-(14)C]apiose and phosphate formed on alkaline degradation of UDP-[U-(14)C]apiose was alpha-d-[U-(14)C]apio-d-furanosyl 1:2-cyclic phosphate. 4. Chemical characterization also established that the product containing d-[U-(14)C]apiose and phosphate formed on acid hydrolysis of alpha-d-[U-(14)C]apio-d-furanosyl 1:2-cyclic phosphate was d-[U-(14)C]apiose 2-phosphate. 5. The half-life periods for the degradation of UDP-[U-(14)C]apiose to alpha-d-[U-(14)C]apio-d-furanosyl 1:2-cyclic phosphate and UMP at pH8.0 and 80 degrees C, at pH8.0 and 25 degrees C and at pH8.0 and 4 degrees C were 31.6s, 97.2min and 16.5h respectively. The half-life period for the hydrolysis of UDP-[U-(14)C]-apiose to d-[U-(14)C]apiose and UDP at pH3.0 and 40 degrees C was 4.67min. After 20 days at pH6.2-6.6 and 4 degrees C, 17% of the starting UDP-[U-(14)C]apiose was degraded to alpha-d-[U-(14)C]apio-d-furanosyl 1:2-cyclic phosphate and UMP and 23% was hydrolysed to d-[U-(14)C]apiose and UDP. After 120 days at pH6.4 and -20 degrees C 2% of the starting UDP-[U-(14)C]apiose was degraded and 4% was hydrolysed.

  10. Synthesis, characterization and properties of uridine 5′-(α-d-apio-d-furanosyl pyrophosphate)

    PubMed Central

    Kindel, Paul K.; Watson, Ronald R.

    1973-01-01

    1. A method was developed for synthesizing UDP-apiose [uridine 5′-(α-d-apio-d-furanosyl pyrophosphate)] from UDP-glucuronic acid [uridine 5′-(α-d-glucopyranosyluronic acid pyrophosphate)] in 62% yield with the enzyme UDP-glucuronic acid cyclase. 2. UDP-apiose had the same mobility as uridine 5′-(α-d-xylopyranosyl pyrophosphate) when chromatographed on paper and when subjected to paper electrophoresis at pH5.8. When [3H]UDP-[U-14C]glucuronic acid was used as the substrate for UDP-glucuronic acid cyclase, the 3H/14C ratio in the reaction product was that expected if d-apiose remained attached to the uridine. In separate experiments doubly labelled reaction product was: (a) hydrolysed at pH2 and 100°C for 15min; (b) degraded at pH8.0 and 100°C for 3min; (c) used as a substrate in the enzymic synthesis of [14C]apiin. In each type of experiment the reaction products were isolated and identified and were found to be those expected if [3H]UDP-[U-14C]apiose was the starting compound. 3. Chemical characterization established that the product containing d-[U-14C]apiose and phosphate formed on alkaline degradation of UDP-[U-14C]apiose was α-d-[U-14C]apio-d-furanosyl 1:2-cyclic phosphate. 4. Chemical characterization also established that the product containing d-[U-14C]apiose and phosphate formed on acid hydrolysis of α-d-[U-14C]apio-d-furanosyl 1:2-cyclic phosphate was d-[U-14C]apiose 2-phosphate. 5. The half-life periods for the degradation of UDP-[U-14C]apiose to α-d-[U-14C]apio-d-furanosyl 1:2-cyclic phosphate and UMP at pH8.0 and 80°C, at pH8.0 and 25°C and at pH8.0 and 4°C were 31.6s, 97.2min and 16.5h respectively. The half-life period for the hydrolysis of UDP-[U-14C]-apiose to d-[U-14C]apiose and UDP at pH3.0 and 40°C was 4.67min. After 20 days at pH6.2–6.6 and 4°C, 17% of the starting UDP-[U-14C]apiose was degraded to α-d-[U-14C]apio-d-furanosyl 1:2-cyclic phosphate and UMP and 23% was hydrolysed to d-[U-14C]apiose and UDP. After 120 days at pH6.4 and −20°C 2% of the starting UDP-[U-14C]apiose was degraded and 4% was hydrolysed. PMID:4723773

  11. Transcriptional Analysis of the vanC Cluster from Enterococcus gallinarum Strains with Constitutive and Inducible Vancomycin Resistance

    PubMed Central

    Panesso, Diana; Abadía-Patiño, Lorena; Vanegas, Natasha; Reynolds, Peter E.; Courvalin, Patrice; Arias, Cesar A.

    2005-01-01

    The vanC glycopeptide resistance gene cluster encodes enzymes required for synthesis of peptidoglycan precursors ending in d-Ala-d-Ser. Enterococcus gallinarum BM4174 and SC1 are constitutively and inducibly resistant to vancomycin, respectively. Analysis of peptidoglycan precursors in both strains indicated that UDP-MurNAc-tetrapeptide and UDP-MurNAc-pentapeptide[d-Ser] were synthesized in E. gallinarum SC1 only in the presence of vancomycin (4 μg/ml), whereas the “resistance” precursors accumulated in the cytoplasm of BM4174 cells under both inducing and noninducing conditions. Northern hybridization and reverse transcription-PCR experiments revealed that all the genes from the cluster, vanC-1, vanXYC, vanT, vanRC, and vanSC, were transcribed from a single promoter. In the inducible SC1 isolate, transcriptional regulation appeared to be responsible for inducible expression of resistance. Promoter mapping in E. gallinarum BM4174 revealed that the transcriptional start site was located 30 nucleotides upstream from vanC-1 and that the −10 promoter consensus sequence had high identity with that of the vanA cluster. Comparison of the deduced sequence of the vanSC genes from isolates with constitutive and inducible resistance revealed several amino acid substitutions located in the X box (R200L) and in the region between the F and G2 boxes (D312N, D312A, and G320S) of the putative sensor kinase proteins from isolates with constitutive resistance. PMID:15728903

  12. Biobreeding rat islets exhibit reduced antioxidative defense and N-acetyl cysteine treatment delays type 1 diabetes

    PubMed Central

    Bogdani, Marika; Henschel, Angela M.; Kansra, Sanjay; Fuller, Jessica M.; Geoffrey, Rhonda; Jia, Shuang; Kaldunski, Mary L.; Pavletich, Scott; Prosser, Simon; Chen, Yi-Guang; Lernmark, Åke; Hessner, Martin J.

    2014-01-01

    Islet-level oxidative stress has been proposed as a trigger for type 1 diabetes (T1D), and release of cytokines by infiltrating immune cells further elevates reactive oxygen species (ROS), exacerbating β cell duress. To identify genes/mechanisms involved with diabeto-genesis at the β cell level, gene expression profiling and targeted follow-up studies were used to investigate islet activity in the biobreeding (BB) rat. Forty-day-old spontaneously diabetic lymphopenic BB DRlyp/lyp rats (before T cell insulitis) as well as nondiabetic BB DR+/+ rats, nondiabetic but lymphopenic F344lyp/lyp rats, and healthy Fischer (F344) rats were examined. Gene expression profiles of BB rat islets were highly distinct from F344 islets and under-expressed numerous genes involved in ROS metabolism, including glutathione S-transferase (GST) family members (Gstm2, Gstm4, Gstm7, Gstt1, Gstp1, and Gstk1), superoxide dismutases (Sod2 and Sod3), peroxidases, and peroxiredoxins. This pattern of under-expression was not observed in brain, liver, or muscle. Compared with F344 rats, BB rat pancreata exhibited lower GST protein levels, while plasma GST activity was found significantly lower in BB rats. Systemic administration of the antioxidant N-acetyl cysteine to DRlyp/lyp rats altered abundances of peripheral eosinophils, reduced severity of insulitis, and significantly delayed but did not prevent diabetes onset. We find evidence of β cell dysfunction in BB rats independent of T1D progression, which includes lower expression of genes related to antioxidative defense mechanisms during the pre-onset period that may contribute to overall T1D susceptibility. PMID:23111281

  13. Dual effects of phloretin and phloridzin on the glycation induced by methylglyoxal in model systems.

    PubMed

    Ma, Jinyu; Peng, Xiaofang; Zhang, Xinchen; Chen, Feng; Wang, Mingfu

    2011-08-15

    In the present study, the dual effects of phloretin and phloridzin on methylglyoxal (MGO)-induced glycation were investigated in three N(α)-acetyl amino acid (arginine, cysteine, and lysine) models and three N-terminal polypeptide (PP01, PP02, and PP03 containing arginine, cysteine, and lysine, respectively) models. In both N(α)-acetyl amino acids and N-terminal polypeptides models, the arginine residue was confirmed as the major target for modification induced by MGO. Meanwhile, MGO modification was significantly inhibited by the addition of phloretin or phloridzin via their MGO-trapping abilities, with phloretin being more effective. Interestingly, the cysteine residue was intact when solely incubated with MGO, whereas the consumption of N(α)-acetylcysteine and PP02 was promoted by the addition of phloretin. Additional adducts, [N(α)-acetylcysteine + 2MGO + phloretin-H(2)O] and [2N(α)-acetylcysteine + 2MGO + phloretin-2H(2)O] were formed in the model composed of N(α)-acetylcysteine, MGO, and phloretin. Another adduct, [PP02 + 2MGO + phloretin-H(2)O] was observed in the model composed of PP02, MGO, and phloretin. The generation of adducts indicates that phloretin could directly participate in the modification of the cysteine residue in the presence of MGO. When creatine kinase (model protein) was exposed to MGO, the addition of phloridzin did not show a significant effect on retaining the activity of creatine kinase impaired by MGO, whereas the addition of phloretin completely inactivated creatine kinase. Results of the mass spectrometric analysis of intact creatine kinase in different models demonstrated that phloretin could directly participate in the reaction between creatine kinase and MGO, which would lead to the inactivation of creatine kinase. Furthermore, the addition of N(α)-acetylcysteine was found to maintain the activity of creatine kinase incubated with phloretin and MGO. These results showed that phloretin and phloridzin could inhibit the modification of the arginine residue by MGO and that phloretin could directly participate in the reaction between the thiol group and MGO.

  14. Identification of the mpl gene encoding UDP-N-acetylmuramate: L-alanyl-gamma-D-glutamyl-meso-diaminopimelate ligase in Escherichia coli and its role in recycling of cell wall peptidoglycan.

    PubMed Central

    Mengin-Lecreulx, D; van Heijenoort, J; Park, J T

    1996-01-01

    A gene, mpl, encoding UDP-N-acetylmuramate:L-alanyl-gamma-D-glutamyl-meso-diaminopimelat e ligase was recognized by its amino acid sequence homology with murC as the open reading frame yjfG present at 96 min on the Escherichia coli map. The existence of such an enzymatic activity was predicted from studies indicating that reutilization of the intact tripeptide L-alanyl-gamma-D-glutamyl-meso-diaminopimelate occurred and accounted for well over 30% of new cell wall synthesis. Murein tripeptide ligase activity could be demonstrated in crude extracts, and greatly increased activity was produced when the gene was cloned and expressed under control of the trc promoter. A null mutant totally lacked activity but was viable, showing that the enzyme is not essential for growth. PMID:8808921

  15. Peracetylated 4-Fluoro-glucosamine Reduces the Content and Repertoire of N- and O-Glycans without Direct Incorporation*

    PubMed Central

    Barthel, Steven R.; Antonopoulos, Aristotelis; Cedeno-Laurent, Filiberto; Schaffer, Lana; Hernandez, Gilberto; Patil, Shilpa A.; North, Simon J.; Dell, Anne; Matta, Khushi L.; Neelamegham, Sriram; Haslam, Stuart M.; Dimitroff, Charles J.

    2011-01-01

    Prior studies have shown that treatment with the peracetylated 4-fluorinated analog of glucosamine (4-F-GlcNAc) elicits anti-skin inflammatory activity by ablating N-acetyllactosamine (LacNAc), sialyl Lewis X (sLeX), and related lectin ligands on effector leukocytes. Based on anti-sLeX antibody and lectin probing experiments on 4-F-GlcNAc-treated leukocytes, it was hypothesized that 4-F-GlcNAc inhibited sLeX formation by incorporating into LacNAc and blocking the addition of galactose or fucose at the carbon 4-position of 4-F-GlcNAc. To test this hypothesis, we determined whether 4-F-GlcNAc is directly incorporated into N- and O-glycans released from 4-F-GlcNAc-treated human sLeX (+) T cells and leukemic KG1a cells. At concentrations that abrogated galectin-1 (Gal-1) ligand and E-selectin ligand expression and related LacNAc and sLeX structures, MALDI-TOF and MALDI-TOF/TOF mass spectrometry analyses showed that 4-F-GlcNAc 1) reduced content and structural diversity of tri- and tetra-antennary N-glycans and of O-glycans, 2) increased biantennary N-glycans, and 3) reduced LacNAc and sLeX on N-glycans and on core 2 O-glycans. Moreover, MALDI-TOF MS did not reveal any m/z ratios relating to the presence of fluorine atoms, indicating that 4-F-GlcNAc did not incorporate into glycans. Further analysis showed that 4-F-GlcNAc treatment had minimal effect on expression of 1200 glycome-related genes and did not alter the activity of LacNAc-synthesizing enzymes. However, 4-F-GlcNAc dramatically reduced intracellular levels of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc), a key precursor of LacNAc synthesis. These data show that Gal-1 and E-selectin ligand reduction by 4-F-GlcNAc is not caused by direct 4-F-GlcNAc glycan incorporation and consequent chain termination but rather by interference with UDP-GlcNAc synthesis. PMID:21493714

  16. Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes

    PubMed Central

    Nag, Ambarish; St. John, Peter C.; Crowley, Michael F.

    2018-01-01

    Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes the biosynthetic pathways for the main components of biomass—namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-α-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production. PMID:29381705

  17. Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes.

    PubMed

    Nag, Ambarish; St John, Peter C; Crowley, Michael F; Bomble, Yannick J

    2018-01-01

    Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes the biosynthetic pathways for the main components of biomass-namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-α-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production.

  18. 1H-NMR, 1H-NMR T2-edited, and 2D-NMR in bipolar disorder metabolic profiling.

    PubMed

    Sethi, Sumit; Pedrini, Mariana; Rizzo, Lucas B; Zeni-Graiff, Maiara; Mas, Caroline Dal; Cassinelli, Ana Cláudia; Noto, Mariane N; Asevedo, Elson; Cordeiro, Quirino; Pontes, João G M; Brasil, Antonio J M; Lacerda, Acioly; Hayashi, Mirian A F; Poppi, Ronei; Tasic, Ljubica; Brietzke, Elisa

    2017-12-01

    The objective of this study was to identify molecular alterations in the human blood serum related to bipolar disorder, using nuclear magnetic resonance (NMR) spectroscopy and chemometrics. Metabolomic profiling, employing 1 H-NMR, 1 H-NMR T 2 -edited, and 2D-NMR spectroscopy and chemometrics of human blood serum samples from patients with bipolar disorder (n = 26) compared with healthy volunteers (n = 50) was performed. The investigated groups presented distinct metabolic profiles, in which the main differential metabolites found in the serum sample of bipolar disorder patients compared with those from controls were lipids, lipid metabolism-related molecules (choline, myo-inositol), and some amino acids (N-acetyl-L-phenyl alanine, N-acetyl-L-aspartyl-L-glutamic acid, L-glutamine). In addition, amygdalin, α-ketoglutaric acid, and lipoamide, among other compounds, were also present or were significantly altered in the serum of bipolar disorder patients. The data presented herein suggest that some of these metabolites differentially distributed between the groups studied may be directly related to the bipolar disorder pathophysiology. The strategy employed here showed significant potential for exploring pathophysiological features and molecular pathways involved in bipolar disorder. Thus, our findings may contribute to pave the way for future studies aiming at identifying important potential biomarkers for bipolar disorder diagnosis or progression follow-up.

  19. Peer Ratings: Scoring Strategy Development and Reliability Demonstration on Air Force Basic Trainees

    DTIC Science & Technology

    1980-09-01

    C5 co 00. I~ O O 0D,~Oo w0%0%v%0 ooD o to tD ~o % % D otvi i..I.0. N P.% . N.NP IV o0 ;% o0 4 0*0c 20. 6.z w) m"w t w ma +i f f f osaV 0Vc 4 Gc 44Nq u o...IN -~ 0 v , ( 6 I ft CS alo K1 0 .4-4 .4 -4N fIN I NNN JNN NN N N N iN N N10% JAJ N CJN N NN IJ Wb S -t m.mŘ 00 0 NPN o em O m w ti .S 0...444 .4 .4...no o n o m1 " o 4 ~ a. T onl W* W)in I CID.,N JM M M *. A tD ~ 0~@ ~ ~ ~ s. co44%fJ N U M *S4 IIELAA~ N .*C C#SG’ U~l.. a 0j 0A I~MAI l~Al AlMt M MM M

  20. Crystal Structure of Human [Beta]-Hexosaminidase B: Understanding the Molecular Basis of Sandhoff and Tay-Sachs Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark, Brian L.; Mahuran, Don J.; Cherney, Maia M.

    2010-12-01

    In humans, two major {beta}-hexosaminidase isoenzymes exist: Hex A and Hex B. Hex A is a heterodimer of subunits {alpha} and {beta} (60% identity), whereas Hex B is a homodimer of {beta}-subunits. Interest in human {beta}-hexosaminidase stems from its association with Tay-Sachs and Sandhoff disease; these are prototypical lysosomal storage disorders resulting from the abnormal accumulation of G{sub M2}-ganglioside (G{sub M2}). Hex A degrades G{sub M2} by removing a terminal N-acetyl-D-galactosamine ({beta}-GalNAc) residue, and this activity requires the G{sub M2}-activator, a protein which solubilizes the ganglioside for presentation to Hex A. We present here the crystal structure of human Hexmore » B, alone (2.4 {angstrom}) and in complex with the mechanistic inhibitors GalNAc-isofagomine (2.2 {angstrom}) or NAG-thiazoline (2.5 {angstrom}). From these, and the known X-ray structure of the G{sub M2}-activator, we have modeled Hex A in complex with the activator and ganglioside. Together, our crystallographic and modeling data demonstrate how {alpha} and {beta}-subunits dimerize to form either Hex A or Hex B, how these isoenzymes hydrolyze diverse substrates, and how many documented point mutations cause Sandhoff disease ({beta}-subunit mutations) and Tay-Sachs disease ({alpha}-subunit mutations).« less

  1. Constituents of ophiuroidea. 1. Isolation and structure of three ganglioside molecular species from the brittle star Ophiocoma scolopendrina.

    PubMed

    Inagaki, M; Shibai, M; Isobe, R; Higuchi, R

    2001-12-01

    Three ganglioside molecular species, OSG-0 (1), OSG-1 (2), and OSG-2 (3) have been obtained from the polar lipid fraction of the chloroform/methanol extract of the brittle star Ophiocoma scolopendrina. The structures of these gangliosides have been determined on the basis of chemical and spectroscopic evidence as 1-O-[(N-glycolyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (1), 1-O-[8-O-sulfo-(N-acetyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyll-ceramide (2) and 1-O-[(N-glycolyl-alpha-D-neuraminosyl)-(2-->8)-(N-acetyl- and N-glycolyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (3). The ceramide moieties were composed of heterogeneous unsubstituted fatty acid, 2-hydroxy fatty acid and phytosphingosine units. Compounds 2 and 3 represent new ganglioside molecular species.

  2. Acetylation of NDPK-D Regulates Its Subcellular Localization and Cell Survival

    PubMed Central

    Fujita, Yuki; Fujiwara, Kei; Zenitani, Shigetake; Yamashita, Toshihide

    2015-01-01

    Nucleoside diphosphate kinases (NDPK) are ubiquitous enzymes that catalyze the reversible phosphotransfer of γ-phosphates between di- and triphosphonucleosides. NDPK-D (Nm23-H4) is the only member of the NDPK family with a mitochondrial targeting sequence. Despite the high expression of NDPK-D in the developing central nervous system, its function remains to be determined. In this study, we show that NDPK-D knockdown induces apoptosis in neuroblastoma cells as well as in mouse cortex, suggesting that NDPK-D is required for neuronal survival. We identified NDPK-D as a binding partner of NAD+-dependent histone deacetylase, SIRT1, by yeast two-hybrid screening. NDPK-D co-localized with SIRT1, and the association of these molecules was confirmed by co-immunoprecipitation. Inhibition of SIRT1 increases the acetylation of NDPK-D. Overexpression of NDPK-D along with SIRT1, or mutation in the acetylated lysine residues in NDPK-D, increases its nuclear accumulation. Furthermore, the NDPK-D acetylation-mimic mutant increased apoptosis in N1E-115 cells. Our data demonstrate that acetylation regulates the shuttling of NDPK-D between nucleus and cytoplasm, and increased acetylation of NDPK-D causes apoptosis. PMID:26426123

  3. Biosynthesis of a (1. -->. 4)-. beta. -D-glucan. [Lupinus albus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brummond, D.O.

    1983-01-01

    An enzymatic activity isolated from Lupinus albus that produced an insoluble (1..-->..4)-..beta..-D-glucan from UDP-D-glucose has been solubilized and partially purified. Some of the properties of the enzyme system have been characterized. A proposed sequence of reactions between UDP-D-glucose and the final dextran may involve a (1..-->..4)-..beta..-linked polysaccharide bonded to UDP.

  4. Expression and immunogenic analysis of recombinant polypeptides derived from capsid protein VP1 for developing subunit vaccine material against hepatitis A virus.

    PubMed

    Jang, Kyoung Ok; Park, Jong-Hwa; Lee, Hyun Ho; Chung, Dae Kyun; Kim, Wonyong; Chung, In Sik

    2014-08-01

    Three recombinant polypeptides, VP1-His, VP1-3N-His, and 3D2-His, were produced by Escherichia coli expression system. Recombinant VP1-His, VP1-3N-His, and 3D2-His were expressed as bands with molecular weights of 32, 38, and 30 kDa, respectively. These were purified by affinity chromatography using Ni-NTA Fast-flow resin and/or ion-exchange chromatography using DEAE-Sepharose Fast-flow resin. Intraperitoneal immunizations of recombinant polypeptides successfully elicited the productions of VP1-His, VP1-3N-His, and 3D2-His specific IgG antibodies (IgG subclass distribution of IgG1>IgG2a>IgG2b>IgG3) in sera and induced the secretions of cytokines IFN-γ and IL-6 in spleen cells. Sera from recombinant VP1-His-, VP1-3N-His-, and 3D2-His-immunized mice neutralized the propagation of HAV. The highest neutralizing activity was shown in sera from recombinant VP1-3N-His-immunized mice. These results suggest that recombinant VP1-3N-His can be a useful source for developing hepatitis A virus (HAV) subunit vaccine candidates. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Blocking an N-terminal acetylation–dependent protein interaction inhibits an E3 ligase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Daniel C.; Hammill, Jared T.; Min, Jaeki

    N-terminal acetylation is an abundant modification influencing protein functions. Because ~80% of mammalian cytosolic proteins are N-terminally acetylated, this modification is potentially an untapped target for chemical control of their functions. Structural studies have revealed that, like lysine acetylation, N-terminal acetylation converts a positively charged amine into a hydrophobic handle that mediates protein interactions; hence, this modification may be a druggable target. We report the development of chemical probes targeting the N-terminal acetylation–dependent interaction between an E2 conjugating enzyme (UBE2M or UBC12) and DCN1 (DCUN1D1), a subunit of a multiprotein E3 ligase for the ubiquitin-like protein NEDD8. The inhibitors aremore » highly selective with respect to other protein acetyl-amide–binding sites, inhibit NEDD8 ligation in vitro and in cells, and suppress anchorage-independent growth of a cell line with DCN1 amplification. Overall, our data demonstrate that N-terminal acetyl-dependent protein interactions are druggable targets and provide insights into targeting multiprotein E2–E3 ligases.« less

  6. Global Distribution of Invasive Serotype 35D Streptococcus pneumoniae Isolates following Introduction of 13-Valent Pneumococcal Conjugate Vaccine.

    PubMed

    Lo, Stephanie W; Gladstone, Rebecca A; van Tonder, Andries J; Hawkins, Paulina A; Kwambana-Adams, Brenda; Cornick, Jennifer E; Madhi, Shabir A; Nzenze, Susan A; du Plessis, Mignon; Kandasamy, Rama; Carter, Philip E; Eser, Özgen Köseoglu; Ho, Pak Leung; Elmdaghri, Naima; Shakoor, Sadia; Clarke, Stuart C; Antonio, Martin; Everett, Dean B; von Gottberg, Anne; Klugman, Keith P; McGee, Lesley; Breiman, Robert F; Bentley, Stephen D

    2018-07-01

    A newly recognized pneumococcal serotype, 35D, which differs from the 35B polysaccharide in structure and serology by not binding to factor serum 35a, was recently reported. The genetic basis for this distinctive serology is due to the presence of an inactivating mutation in wciG , which encodes an O-acetyltransferase responsible for O-acetylation of a galactofuranose. Here, we assessed the genomic data of a worldwide pneumococcal collection to identify serotype 35D isolates and understand their geographical distribution, genetic background, and invasiveness potential. Of 21,980 pneumococcal isolates, 444 were originally typed as serotype 35B by PneumoCaT. Analysis of the wciG gene revealed 23 isolates from carriage ( n = 4) and disease ( n = 19) with partial or complete loss-of-function mutations, including mutations resulting in premature stop codons ( n = 22) and an in-frame mutation ( n = 1). These were selected for further analysis. The putative 35D isolates were geographically widespread, and 65.2% (15/23) of them was recovered after the introduction of pneumococcal conjugate vaccine 13 (PCV13). Compared with serotype 35B isolates, putative serotype 35D isolates have higher invasive disease potentials based on odds ratios (OR) (11.58; 95% confidence interval[CI], 1.42 to 94.19 versus 0.61; 95% CI, 0.40 to 0.92) and a higher prevalence of macrolide resistance mediated by mefA (26.1% versus 7.6%; P = 0.009). Using the Quellung reaction, 50% (10/20) of viable isolates were identified as serotype 35D, 25% (5/20) as serotype 35B, and 25% (5/20) as a mixture of 35B/35D. The discrepancy between phenotype and genotype requires further investigation. These findings illustrated a global distribution of an invasive serotype, 35D, among young children post-PCV13 introduction and underlined the invasive potential conferred by the loss of O-acetylation in the pneumococcal capsule. Copyright © 2018 Lo et al.

  7. Synthesis of antifungal vaccines by conjugation of β-1,2 trimannosides with T-cell peptides and covalent anchoring of neoglycopeptide to tetanus toxoid.

    PubMed

    Cartmell, Jonathan; Paszkiewicz, Eugenia; Dziadek, Sebastian; Tam, Pui-Hang; Luu, Thanh; Sarkar, Susmita; Lipinski, Tomasz; Bundle, David R

    2015-02-11

    Selective strategies for the construction of novel three component glycoconjugate vaccines presenting Candida albicans cell wall glycan (β-1,2 mannoside) and polypeptide fragments on a tetanus toxoid carrier are described. The first of two conjugation strategies employed peptides bearing an N-terminal thiopropionyl residue for conjugation to a trisaccharide equipped with an acrylate linker and a C-terminal S-acetyl thioglycolyl moiety for subsequent linking of neoglycopeptide to bromoacetylated tetanus toxoid. Michael addition of acrylate trisaccharides to peptide thiol under mildly basic conditions gave a mixture of N- and C- terminal glyco-peptide thioethers. An adaptation of this strategy coordinated S-acyl protection with anticipated thioester exchange equilibria. This furnished a single chemically defined fully synthetic neoglycopeptide conjugate that could be anchored to a tetanus toxoid carrier and avoids the introduction of exogenous antigenic groups. The second strategy retained the N-terminal thiopropionyl residue but replaced the C-terminal S-acetate functionality with an azido group that allowed efficient, selective formation of neoglycopeptide thioethers and subsequent conjugation of these with propargylated tetanus toxoid, but introduced potentially antigenic triazole linkages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Soil CO2 CH4 and N2O fluxes from an afforested lowland raised peatbog in Scotland: implications for drainage and restoration

    NASA Astrophysics Data System (ADS)

    Yamulki, S.; Anderson, R.; Peace, A.; Morison, J. I. L.

    2013-02-01

    The effect of tree (lodgepole pine) planting with and without intensive drainage on soil greenhouse gas (GHG) fluxes was assessed after 45 yr at a raised peatbog in West Flanders Moss, central Scotland. Fluxes of CO2 CH4 and N2O from the soil were monitored over a 2-yr period every 2 to 4 weeks using the static opaque chamber method in a randomised experimental block trial with the following treatments: drained and planted (DP), undrained and planted (uDP), undrained and unplanted (uDuP) and for reference also from an adjoining near-pristine area of bog at East Flanders Moss (n-pris). There was a strong seasonal pattern in both CO2 and CH4 effluxes which were significantly higher in late spring and summer months because of warmer temperatures. Effluxes of N2O were low and no significant differences were observed between the treatments. Annual CH4 emissions increased with the proximity of the water table to the soil surface across treatments in the order: DP < uDP < uDuP < n-pris with mean annual effluxes over the 2-yr monitoring period of 0.15, 0.64, 7.70 and 22.63 g CH4 m-2 yr-1, respectively. For CO2, effluxes increased in the order uDP < DP< n-pris < uDuP, with mean annual effluxes of 1.23, 1.66, 1.82 and 2.55 kg CO2 m-2 yr-1, respectively. CO2 effluxes dominated the total net GHG emission, calculated using the global warming potential (GWP) of the three GHGs for each treatment (76-98%), and only in the n-pris site was CH4 a substantial contribution (23%). Based on soil effluxes only, the near pristine (n-pris) peatbog had 43% higher total net GHG emission compared with the DP treatment because of high CH4 effluxes and the DP treatment had 33% higher total net emission compared with the uDP because drainage increased CO2 effluxes. Restoration is likely to increase CH4 emissions, but reduce CO2 effluxes. Our study suggests that if estimates of CO2 uptake by vegetation from similar peatbog sites were included, the total net GHG emission of restored peatbog would still be higher than that of the peatbog with trees.

  9. Isolation and structures of glycoprotein-derived free oligosaccharides from the unfertilized eggs of Scyliorhinus caniculus. Characterization of the sequences galactose(alpha 1-4)galactose(beta 1-3)-N-acetylglucosamine and N-acetylneuraminic acid(alpha 2-6)galactose(beta 1-3)-N-acetylglucosamine.

    PubMed

    Plancke, Y; Delplace, F; Wieruszeski, J M; Maes, E; Strecker, G

    1996-01-15

    As previously reported [Ishii, K., Iwasaki, M., Inoue, S., Kenny, P. T. M., Komura, H. & Inoue, Y. (1989) J. Biol. Chem. 264, 1623-1630; Inoue, S., Iwasaki, M., Ishii, K., Kitajima, K. & Inoue, Y. (1989) J. Biol. Chem. 264, 18520-185261, the unfertilized eggs of two different species of fresh-water fish, Plecoglossus altivelis and Tribodolon hakonensis, contain relatively large amounts of free sialooligosaccharides. These oligosaccharides were found to derive from glycophosphoproteins, owing to the activity of a peptide - N4-(N-acetyl-beta-D-glucosaminyl)asparagine amidase [Iwasaki, M., Seko, A., Kitajima, K., Inoue, Y. & Inoue, S. (1992) J. Biol. Chem. 267, 24287-24296; Seko, A., Kitajima, K., Inoue, Y. & Inoue, S. (1991) J. Biol. Chem. 266, 22110-22114]. Here we describe a new type of free oligosaccharides, isolated from unfertilized eggs of Scyliorhinus caniculus. From the structural analysis, based upon 1H-NMR spectroscopy, the following glycan units are proposed.[Formula: see text

  10. A bioinformatics-based overview of protein Lys-Ne-acetylation

    USDA-ARS?s Scientific Manuscript database

    Among posttranslational modifications, there are some conceptual similarities between Lys-N'-acetylation and Ser/Thr/Tyr O-phosphorylation. Herein we present a bioinformatics-based overview of reversible protein Lys-acetylation, including some comparisons with reversible protein phosphorylation. T...

  11. Pharmacokinetics and N-acetylation metabolism of S-methyl-l-cysteine and trans-S-1-propenyl-l-cysteine in rats and dogs.

    PubMed

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji

    2016-11-01

    1. Pharmacokinetics and N-acetylation metabolism of S-methyl-L-cysteine (SMC) and trans-S-1-propenyl-L-cysteine (S1PC) were examined in rats and dogs. SMC and S1PC (2-5 mg/kg) were well absorbed in both species with high bioavailability (88-100%). 2. SMC and S1PC were excreted only to a small extent in the urine of rats and dogs. The small renal clearance values (<0.03 l/h/kg) indicated the extensive renal reabsorption of SMC and S1PC, which potentially contributed to their long elimination half-lives (>5 h) in dogs. 3. S1PC, but not SMC, underwent N-acetylation extensively in vivo, which can be explained by the relative activities of N-acetylation of S1PC/SMC and deacetylation of their N-acetylated forms, N-acetyl-S1PC/N-acetyl-SMC, in the liver and kidney in vitro. The activities for S1PC N-acetylation were similar to or higher than those for N-acetyl-S1PC deacetylation in liver S9 fractions of rat and dog, whereas liver and kidney S9 fractions of rat and dog had little activity for SMC N-acetylation or considerably higher activities for N-acetyl-SMC deacetylation. 4. Our study demonstrated that the pharmacokinetics of SMC and S1PC in rats and dogs was characterized by high bioavailability and extensive renal reabsorption; however, the extent of undergoing the N-acetylation metabolism was extremely different between SMC and S1PC.

  12. Effect of the Ratio of Non-fibrous Carbohydrates to Neutral Detergent Fiber and Protein Structure on Intake, Digestibility, Rumen Fermentation, and Nitrogen Metabolism in Lambs

    PubMed Central

    Ma, T.; Tu, Y.; Zhang, N. F.; Deng, K. D.; Diao, Q. Y.

    2015-01-01

    This study aimed to investigate the effect of the ratio of non-fibrous carbohydrates to neutral detergent fibre (NFC/NDF) and undegraded dietary protein (UDP) on rumen fermentation and nitrogen metabolism in lambs. Four Dorper×thin-tailed Han crossbred lambs, averaging 62.3±1.9 kg of body weight and 10 mo of age, were randomly assigned to four dietary treatments of combinations of two levels of NFC/NDF (1.0 and 1.7) and two levels of UDP (35% and 50% of crude protein [CP]). Duodenal nutrient flows were measured with dual markers of Yb and Co, and microbial N (MN) synthesis was estimated using 15N. High UDP decreased organic matter (OM) intake (p = 0.002) and CP intake (p = 0.005). Ruminal pH (p<0.001), ammonia nitrogen (NH3-N; p = 0.008), and total volatile fatty acids (p<0.001) were affected by dietary NFC/NDF. The ruminal concentration of NH3-N was also affected by UDP (p<0.001). The duodenal flow of total MN (p = 0.007) was greater for lambs fed the high NFC/NDF diet. The amount of metabolisable N increased with increasing dietary NFC:NDF (p = 0.02) or UDP (p = 0.04). In conclusion, the diets with high NFC/NDF (1.7) and UDP (50% of CP) improved metabolisable N supply to lambs. PMID:26323398

  13. Effect of the Ratio of Non-fibrous Carbohydrates to Neutral Detergent Fiber and Protein Structure on Intake, Digestibility, Rumen Fermentation, and Nitrogen Metabolism in Lambs.

    PubMed

    Ma, T; Tu, Y; Zhang, N F; Deng, K D; Diao, Q Y

    2015-10-01

    This study aimed to investigate the effect of the ratio of non-fibrous carbohydrates to neutral detergent fibre (NFC/NDF) and undegraded dietary protein (UDP) on rumen fermentation and nitrogen metabolism in lambs. Four Dorper×thin-tailed Han crossbred lambs, averaging 62.3±1.9 kg of body weight and 10 mo of age, were randomly assigned to four dietary treatments of combinations of two levels of NFC/NDF (1.0 and 1.7) and two levels of UDP (35% and 50% of crude protein [CP]). Duodenal nutrient flows were measured with dual markers of Yb and Co, and microbial N (MN) synthesis was estimated using (15)N. High UDP decreased organic matter (OM) intake (p = 0.002) and CP intake (p = 0.005). Ruminal pH (p<0.001), ammonia nitrogen (NH3-N; p = 0.008), and total volatile fatty acids (p<0.001) were affected by dietary NFC/NDF. The ruminal concentration of NH3-N was also affected by UDP (p<0.001). The duodenal flow of total MN (p = 0.007) was greater for lambs fed the high NFC/NDF diet. The amount of metabolisable N increased with increasing dietary NFC:NDF (p = 0.02) or UDP (p = 0.04). In conclusion, the diets with high NFC/NDF (1.7) and UDP (50% of CP) improved metabolisable N supply to lambs.

  14. FUNCTIONAL CHARACTERIZATION OF THE A411T (L137F) and G364A (D122N) GENETIC POLYMORPHISMS IN HUMAN N-ACETYLTRANSFERASE 2

    PubMed Central

    Zang, Yu; Zhao, Shuang; Doll, Mark A.; States, J Christopher; Hein, David W.

    2007-01-01

    Human N-acetyltransferase 2 (NAT2) genetic polymorphisms may modify drug efficacy and toxicity and individual cancer susceptibility from carcinogen exposure. A411T (L137F) and G364A (D122N) are two single nucleotide polymorphisms (SNPs) that coexist with other SNPs in human NAT2 alleles NAT2*5I and NAT2*12D, respectively. Cloning and expression in COS-1 cells showed that both A411T and G364A reduced NAT2 immunoreactive protein to an undetectable level without causing changes in mRNA level. Missense mutants displayed different effects on sulfamethazine N-acetylation activity for both L137 (wild-type: 70.2±5.2; L137F: 1.34±0.03; L137W: non-detectable; L137I: 34.2±2.0; L137G: 0.52±0.04 nmol/min/mg) and D122 (wildtype: 70.2±5.2; D122R: non-detectable; D122Q: non-detectable; D122E: 1.72±0.24 nmol/min/mg). To further test our hypothesis that A411T (L137F) and G364A (D122N) accelerate protein degradation, various NAT2 alleles were cloned and expressed in E. coli, which does not possess the ubiquitin-mediated degradation pathway. In contrast to the expression in mammalian cells, recombinant NAT2 possessing either of these two SNPs showed no reduction in immunoreactive NAT2 level when expressed in E. coli. These findings suggest that both A411T (L137F) and G364A (D122N) enhance NAT2 degradation, resulting in reduced NAT2 protein and catalytic activity for NAT2 5I and NAT2 12D. PMID:17264801

  15. Genetic variation in aryl N-acetyltransferase results in significant differences in the pharmacokinetic and safety profiles of amifampridine (3,4-diaminopyridine) phosphate.

    PubMed

    Haroldsen, Peter E; Garovoy, Marvin R; Musson, Donald G; Zhou, Huiyu; Tsuruda, Laurie; Hanson, Boyd; O'Neill, Charles A

    2015-02-01

    The clinical use of amifampridine phosphate for neuromuscular junction disorders is increasing. The metabolism of amifampridine occurs via polymorphic aryl N-acetyltransferase (NAT), yet its pharmacokinetic (PK) and safety profiles, as influenced by this enzyme system, have not been investigated. The objective of this study was to assess the effect of NAT phenotype and genotype on the PK and safety profiles of amifampridine in healthy volunteers (N = 26). A caffeine challenge test and NAT2 genotyping were used to delineate subjects into slow and fast acetylators for PK and tolerability assessment of single, escalating doses of amifampridine (up to 30 mg) and in multiple daily doses (20 mg QID) of amifampridine. The results showed that fast acetylator phenotypes displayed significantly lower C max, AUC, and shorter t 1/2 for amifampridine than slow acetylators. Plasma concentrations of the N-acetyl metabolite were approximately twofold higher in fast acetylators. Gender differences were not observed. Single doses of amifampridine demonstrated dose linear PKs. Amifampridine achieved steady state plasma levels within 1 day of dosing four times daily. No accumulation or time-dependent changes in amifampridine PK parameters occurred. Overall, slow acetylators reported 73 drug-related treatment-emergent adverse events versus 6 in fast acetylators. Variations in polymorphic NAT corresponding with fast and slow acetylator phenotypes significantly affects the PK and safety profiles of amifampridine.

  16. Structural and Biochemical Characterization of a Bifunctional Ketoisomerase/N-acetyltransferase from Shewanella denitrificans¶

    PubMed Central

    Chantigian, Daniel P.; Thoden, James B.; Holden, Hazel M.

    2014-01-01

    Unusual N-acetylated sugars have been observed on the O-antigens of some Gram-negative bacteria and on the S-layers of both Gram-positive and Gram-negative bacteria. One such sugar is 3-acetamido-3,6-dideoxy-α-d-galactose or Fuc3NAc. The pathway for its production requires five enzymes with the first step involving the attachment of dTMP to glucose-1-phosphate. Here we report a structural and biochemical characterization of a bifunctional enzyme from Shewanella denitificans thought to be involved in the biosynthesis of dTDP-Fuc3NAc. On the basis of a bioinformatics analysis, the enzyme, hereafter referred to as FdtD, has been postulated to catalyze the third and fifth steps in the pathway, namely a 3,4-keto isomerization and an N-acetyltransferase reaction. For the X-ray analysis reported here, the enzyme was crystallized in the presence of dTDP and CoA. The crystal structure shows that FdtD adopts a hexameric quaternary structure with 322 symmetry. Each subunit of the hexamer folds into two distinct domains connected by a flexible loop. The N-terminal domain adopts a left-handed β-helix motif and is responsible for the N-acetylation reaction. The C-terminal domain folds into an antiparallel flattened β-barrel that harbors the active site responsible for the isomerization reaction. Biochemical assays verify the two proposed catalytic activities of the enzyme and reveal that the 3,4-keto isomerization event leads to inversion of configuration about the hexose C-4' carbon. PMID:24128043

  17. Making Home Sweet and Sturdy: Toxoplasma gondii ppGalNAc-Ts Glycosylate in Hierarchical Order and Confer Cyst Wall Rigidity.

    PubMed

    Tomita, Tadakimi; Sugi, Tatsuki; Yakubu, Rama; Tu, Vincent; Ma, Yanfen; Weiss, Louis M

    2017-01-10

    The protozoan intracellular parasite Toxoplasma gondii forms latent cysts in the central nervous system (CNS) and persists for the lifetime of the host. This cyst is cloaked with a glycosylated structure called the cyst wall. Previously, we demonstrated that a mucin-like glycoprotein, CST1, localizes to the cyst wall and confers structural rigidity on brain cysts in a mucin-like domain-dependent manner. The mucin-like domain of CST1 is composed of 20 units of threonine-rich tandem repeats that are O-GalNAc glycosylated. A family of enzymes termed polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts) initiates O-GalNAc glycosylation. To identify which isoforms of ppGalNAc-Ts are responsible for the glycosylation of the CST1 mucin-like domain and to evaluate the function of each ppGalNAc-T in the overall glycosylation of the cyst wall, all five ppGalNAc-T isoforms were deleted individually from the T. gondii genome. The ppGalNAc-T2 and -T3 deletion mutants produced various glycosylation defects on the cyst wall, implying that many cyst wall glycoproteins are glycosylated by T2 and T3. Both T2 and T3 glycosylate the CST1 mucin-like domain, and this glycosylation is necessary for CST1 to confer structural rigidity on the cyst wall. We established that T2 is required for the initial glycosylation of the mucin-like domain and that T3 is responsible for the sequential glycosylation on neighboring acceptor sites, demonstrating hierarchical glycosylation by two distinct initiating and filling-in ppGalNAc-Ts in an intact organism. Toxoplasma gondii is an obligate intracellular parasite that infects a third of the world's population. It can cause severe congenital disease and devastating encephalitis in immunocompromised individuals. We identified two glycosyltransferases, ppGalNAc-T2 and -T3, which are responsible for glycosylating cyst wall proteins in a hierarchical fashion. This glycosylation confers structural rigidity on the brain cyst. Our studies provide new insights into the mechanisms of O-GalNAc glycosylation in T. gondii. Copyright © 2017 Tomita et al.

  18. N-acetyl-L-cysteine combined with mesalamine in the treatment of ulcerative colitis: Randomized, placebo-controlled pilot study

    PubMed Central

    Guijarro, Luis G; Mate, Jose; Gisbert, Javier P; Perez-Calle, Jose Luis; Marín-Jimenez, Ignacio; Arriaza, Encarna; Olleros, Tomás; Delgado, Mario; Castillejo, Maria S; Prieto-Merino, David; Lara, Venancio Gonzalez; Peña, Amado Salvador

    2008-01-01

    AIM: To evaluate the effectiveness and safety of oral N-acetyl-L-cysteine (NAC) co-administration with mesalamine in ulcerative colitis (UC) patients. METHODS: Thirty seven patients with mild to moderate UC were randomized to receive a four-wk course of oral mesalamine (2.4 g/d) plus N-acetyl-L-cysteine (0.8 g/d) (group A) or mesalamine plus placebo (group B). Patients were monitored using the Modified Truelove-Witts Severity Index (MTWSI). The primary endpoint was clinical remission (MTWSI ≤ 2) at 4 wk. Secondary endpoints were clinical response (defined as a reduction from baseline in the MTWSI of ≥ 2 points) and drug safety. The serum TNF-α, interleukin-6, interleukin-8 and MCP-1 were evaluated at baseline and at 4 wk of treatment. RESULTS: Analysis per-protocol criteria showed clinical remission rates of 63% and 50% after 4 wk treatment with mesalamine plus N-acetyl-L-cysteine (group A) and mesalamine plus placebo (group B) respectively (OR = 1.71; 95% CI: 0.46 to 6.36; P = 0.19; NNT = 7.7). Analysis of variance (ANOVA) of data indicated a significant reduction of MTWSI in group A (P = 0.046) with respect to basal condition without significant changes in the group B (P = 0.735) during treatment. Clinical responses were 66% (group A) vs 44% (group B) after 4 wk of treatment (OR = 2.5; 95% CI: 0.64 to 9.65; P = 0.11; NNT = 4.5). Clinical improvement in group A correlated with a decrease of IL-8 and MCP-1. Rates of adverse events did not differ significantly between both groups. CONCLUSION: In group A (oral NAC combined with mesalamine) contrarily to group B (mesalamine alone), the clinical improvement correlates with a decrease of chemokines such as MCP-1 and IL-8. NAC addition not produced any side effects. PMID:18473409

  19. Genipin protects d-galactosamine and lipopolysaccharide-induced hepatic injury through suppression of the necroptosis-mediated inflammasome signaling.

    PubMed

    Seo, Min-Jong; Hong, Jeong-Min; Kim, Seok-Joo; Lee, Sun-Mee

    2017-10-05

    Acute liver failure (ALF) is a life-threatening syndrome resulting from massive inflammation and hepatocyte death. Necroptosis, a programmed cell death controlled by receptor-interacting protein kinase (RIP) 1 and RIP3, has been shown to play an important role in regulating inflammation via crosstalk between other intracellular signaling. The inflammasome is a major intracellular multiprotein that induces inflammatory responses by mediating immune cell infiltration, thus potentiating injury. Genipin, a major active compound of the gardenia fruit, exhibits anti-inflammatory, antioxidant, and anti-apoptotic properties. This study investigated the hepatoprotective mechanisms of genipin on d-galactosamine (GalN) and lipopolysaccharide (LPS)-induced ALF, particularly focusing on interaction between necroptosis and inflammasome. Mice were given an intraperitoneal injection of genipin (25, 50, and 100mg/kg) or necrostatin-1 (Nec-1, a necroptosis inhibitor; 1.8mg/kg) 1h prior to GalN (800mg/kg)/LPS (40μg/kg) injection and were killed 3h after GalN/LPS injection. Genipin improved the survival rate and attenuated increases in serum aminotransferase activities and inflammatory cytokines after GalN/LPS injection. Genipin reduced GalN/LPS-induced increases in RIP3, phosphorylated RIP1 and RIP3 protein expression, and RIP1/RIP3 necrosome complex, similar to the effects of Nec-1. GalN/LPS significantly increased serum levels of high-mobility group box 1 and interleukin (IL)-33, which were attenuated by genipin and Nec-1. Moreover, similar to Nec-1, genipin attenuated GalN/LPS-induced increases in the protein expression levels of NLRP3, ASC, and caspase-1, inflammasome components, and levels of liver and serum IL-1β. Taken together, our findings suggest that genipin ameliorates GalN/LPS-induced hepatocellular damage by suppressing necroptosis-mediated inflammasome signaling. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Structural and Enzymatic Analysis of MshA from Corynebacterium glutamicum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vetting,M.; Frantom, P.; Blanchard, J.

    2008-01-01

    The glycosyltransferase termed MshA catalyzes the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to 1-l-myo-inositol-1-phosphate in the first committed step of mycothiol biosynthesis. The structure of MshA from Corynebacterium glutamicum was determined both in the absence of substrates and in a complex with UDP and 1-l-myo-inositol-1-phosphate. MshA belongs to the GT-B structural family whose members have a two-domain structure with both domains exhibiting a Rossman-type fold. Binding of the donor sugar to the C-terminal domain produces a 97 rotational reorientation of the N-terminal domain relative to the C-terminal domain, clamping down on UDP and generating the binding site for 1-l-myo-inositol-1-phosphate. The structuremore » highlights the residues important in binding of UDP-N-acetylglucosamine and 1-l-myo-inositol-1-phosphate. Molecular models of the ternary complex suggest a mechanism in which the {beta}-phosphate of the substrate, UDP-N-acetylglucosamine, promotes the nucleophilic attack of the 3-hydroxyl group of 1-l-myo-inositol-1-phosphate while at the same time promoting the cleavage of the sugar nucleotide bond.« less

  1. A precursor to the beta-pyranosides of 3-amino-3,6-dideoxy-D-mannose (mycosamine).

    PubMed

    Alais, J; David, S

    1992-06-04

    SN2-type reaction of 3-O-(1-imidazyl)sulfonyl-1,2:5,6-di-O-isopropylidene-alpha-D-gluco furanose with benzoate gave the 3-O-benzoyl-alpha-D-allo derivative 2, which was hydrolysed to give the 5,6-diol 3. Compound 3 was converted into the 6-deoxy-6-iodo derivative 4 which was reduced with tributylstannane, and then position 5 was protected by benzyloxymethylation, to give 3-O-benzoyl-5-O-benzyloxymethyl-6-deoxy-1,2-O-isopropylidene-alpha -D- allofuranose (6). Debenzoylation of 6 gave 7, (1-imidazyl)sulfonylation gave 8, and azide displacement gave 3-azido-5-O-benzyloxymethyl-3,6-dideoxy- 1,2-O-isopropylidene-alpha-D-glucofuranose (9, 85%). Acetolysis of 9 gave 1,2,4-tri-O-acetyl-3-azido-3,6-dideoxy-alpha,beta-D-glucopyranose (10 and 11). Selective hydrolysis of AcO-1 in the mixture of 10 and 11 with hydrazine acetate (----12), followed by conversion into the pyranosyl chloride 13, treatment with N,N-dimethylformamide dimethyl acetal in the presence of tetrabutylammonium bromide, and benzylation gave 3-azido-4-O-benzyl-3,6-dideoxy-1,2-O-(1-methoxyethylidene)-alpha-D -glucopyranose (15). Treatment of 15 with dry acetic acid gave 1,2-di-O-acetyl-3-azido-4-O-benzyl-3,6-dideoxy-beta-D-glucopyranose (16, 86% yield) that was an excellent glycosyl donor in the presence of trimethylsilyl triflate, allowing the synthesis of cyclohexyl 2-O-acetyl-3-azido-4-O-benzyl-3,6-dideoxy-beta-D-glucopyranoside (17, 90%).(ABSTRACT TRUNCATED AT 250 WORDS)

  2. 3-Acetyl-8-methoxy-2[H]-chromen-2-one derived Schiff bases as potent antiproliferative agents: Insight into the influence of 4(N)-substituents on the in vitro biological activity

    NASA Astrophysics Data System (ADS)

    Kalaiarasi, G.; Rex Jeya Rajkumar, S.; Aswini, G.; Dharani, S.; Fronczek, Frank R.; Prabhakaran, R.

    2018-07-01

    A series of 3-acetyl-8-methoxycoumarin appended thiosemicarbazones (1-4) was prepared from the reaction of 3-acetyl-8-methoxycoumarin with 4(N)-substituted thiosemicarbazides in a view of ascertaining their biological properties with the change of N-terminal substitution in the thiosemicarbazide moiety. Comprehensive characterization was brought about by various spectral and analytical methods. The molecular structures of all the compounds were determined by single crystal X-ray diffraction analysis. Binding studies with Calf thymus DNA (CT-DNA) and proteins such as Bovine Serum Albumin (BSA) and Human Serum Albumin (HSA) indicated an intercalative mode of binding with DNA and static quenching mechanism with proteins. The compounds cleaved plasmid DNA (pBR322) and acted well as free radical scavengers. A good spectrum of antimicrobial activity was observed against four bacterial and five fungal pathogens. The compounds exhibited profound antiproliferative activity on MCF-7 (human breast cancer) and A549 (human lung carcinoma) cell lines. Assay on human normal keratinocyte cell line HaCaT showed that the compounds were non-toxic to normal cells.

  3. Structure and mechanism of human UDP-xylose synthase: evidence for a promoting role of sugar ring distortion in a three-step catalytic conversion of UDP-glucuronic acid.

    PubMed

    Eixelsberger, Thomas; Sykora, Sabine; Egger, Sigrid; Brunsteiner, Michael; Kavanagh, Kathryn L; Oppermann, Udo; Brecker, Lothar; Nidetzky, Bernd

    2012-09-07

    UDP-xylose synthase (UXS) catalyzes decarboxylation of UDP-D-glucuronic acid to UDP-xylose. In mammals, UDP-xylose serves to initiate glycosaminoglycan synthesis on the protein core of extracellular matrix proteoglycans. Lack of UXS activity leads to a defective extracellular matrix, resulting in strong interference with cell signaling pathways. We present comprehensive structural and mechanistic characterization of the human form of UXS. The 1.26-Å crystal structure of the enzyme bound with NAD(+) and UDP reveals a homodimeric short-chain dehydrogenase/reductase (SDR), belonging to the NDP-sugar epimerases/dehydratases subclass. We show that enzymatic reaction proceeds in three chemical steps via UDP-4-keto-D-glucuronic acid and UDP-4-keto-pentose intermediates. Molecular dynamics simulations reveal that the D-glucuronyl ring accommodated by UXS features a marked (4)C(1) chair to B(O,3) boat distortion that facilitates catalysis in two different ways. It promotes oxidation at C(4) (step 1) by aligning the enzymatic base Tyr(147) with the reactive substrate hydroxyl and it brings the carboxylate group at C(5) into an almost fully axial position, ideal for decarboxylation of UDP-4-keto-D-glucuronic acid in the second chemical step. The protonated side chain of Tyr(147) stabilizes the enolate of decarboxylated C(4) keto species ((2)H(1) half-chair) that is then protonated from the Si face at C(5), involving water coordinated by Glu(120). Arg(277), which is positioned by a salt-link interaction with Glu(120), closes up the catalytic site and prevents release of the UDP-4-keto-pentose and NADH intermediates. Hydrogenation of the C(4) keto group by NADH, assisted by Tyr(147) as catalytic proton donor, yields UDP-xylose adopting the relaxed (4)C(1) chair conformation (step 3).

  4. A modeling study for structure features of β-N-acetyl-D-hexosaminidase from Ostrinia furnacalis and its novel inhibitor allosamidin: species selectivity and multi-target characteristics.

    PubMed

    Wang, Yanli; Liu, Tian; Yang, Qing; Li, Zhong; Qian, Xuhong

    2012-04-01

    Insect β-N-acetyl-D-hexosaminidase, a chitin degrading enzyme, is physiologically important during the unique life cycle of the insect. OfHex1, a β-N-acetyl-D-hexosaminidase from the insect, Ostrinia furna, which was obtained by our laboratory (Gen Bank No.: ABI81756.1), was studied by molecular modeling as well as by molecular docking with its inhibitor, allosamidin. 3D model of OfHex1 was built through the ligand-supported homology modeling approach. The binding modes of its substrate and inhibitor were proposed through docking and cluster analysis. The pocket's size and shape of OfHex1 differ from that of human β-N-acetyl-D-hexosaminidase, which determined that allosamidin can selectively inhibit OfHex1 instead of human β-N-acetyl-D-hexosaminidase. Moreover, the multi-target characteristics of allosamidin that inhibit enzymes from different families, OfHex1 (EC 3.2.1.52; GH20) and chitinase (EC 3.2.1.14; GH18), were compared. The common -1/+1 sugar-binding site of chitinase and OfHex1, and the -2/-3 sugar-binding site in chitinase contribute to the binding of allosamidin. This work, at molecular level, proved that OfHex1 could be a potential species-specific target for novel green pesticide design and also provide the possibility to develop allosamidin or its derivatives as a new type of insecticide to 'hit two birds with one stone', which maybe become a novel strategy in pest control. © 2011 John Wiley & Sons A/S.

  5. List of Inspected Tank Barges and Tankships

    DTIC Science & Technology

    1980-01-01

    C) CC’ L-4 I-I. tD w V) 8.L T 4 I-I a 0 7 z 70 70 z7 ab 2! 7.I in -9 00 M T 0 x 0 0 t0 0 t3 M wA (0 a a ty m 0 0 LA UN U 0 C3 U’N C; N; ’ ’ ’ - N C...4 0 4 4C 13&; 51 a 2I x~ -i wt W tD . w3 9 1 0& C) 1 w I U4 ox’. 94. 0: .5 It o 5A (Z it CorI.- .5L LD D w U) N-CLPp0l 0w . 0 a. ts. m5. t49- -1 0...7IL a,& 1 -j & I m 7’ en.I.1 . 4. co 4 m I f r.) ’N a, 𔃺 a, U. U. N4.’ ,sL a .4 r .47 . 󈧭u 1. X- D2 4.. a. t. x 43 N P. tD Il ’DX 03 P X tm. I V , r

  6. A Global Optimization Algorithm Using Stochastic Differential Equations.

    DTIC Science & Technology

    1985-02-01

    Bari (Italy).2Istituto di Fisica, 2 UniversitA di Roma "Tor Vergata", Via Orazio Raimondo, 00173 ( La Romanina) Roma (Italy). 3Istituto di Matematica ...4T N C -- 4 z L -4 Ln o n C en r-4 C14 fl r- " u-4~ - t*, - r- te - ~ ~ I vt ON 00 c tA R3𔃺 ’r LA tL 32 Cl C) CDC Q 0 C 0 C D 0000000000"CDOA0 00 c...LD ’l O V 0 to -4 -4 N n tA . L Vt -4) 0) IA\\o ., D = t) 4-r 1-4 Cf) -44 0 V-4 N n \\0 N- 00 m~ 0l N- " A r4 LA 𔃺 N-N N N~~r n NtA el ~At t~A t .. 0) 33

  7. N-(3-azidophenyl)-N-methyl-N'-([4-1H]- and [4-3H]-1-naphthyl)guanidine. A potent and selective ligand designed as a photoaffinity label for the phencyclidine site of the N-methyl-D-aspartate receptor.

    PubMed

    Gee, K R; Durant, G J; Holmes, D L; Magar, S S; Weber, E; Wong, S T; Keana, J F

    1993-01-01

    A novel radiolabeled photoaffinity ligand has been synthesized for the phencyclidine (PCP) site of the N-methyl-D-aspartate (NMDA) receptor. N-(3-Azidophenyl)-N-methyl-N'-([4-3H]-1-naphthyl)guanidine (13) was prepared with a specific activity of 25 Ci/mmol by diazotization of N-(3-aminophenyl)-N-methyl-N'-([4-3H]-1-naphthyl)guanidine (12) followed by treatment with sodium azide. Guanidine 12 was obtained by catalytic tritiation of N-(4-bromo-1-naphthyl)-N'-methyl-N'-(3-nitrophenyl)guanidine (11). The nontritiated analog 5 of 13 was prepared beginning with N-methyl-N'-1-naphthyl-N-(3-nitrophenyl)guanidine (9). The guanidines 9 and 11 were prepared in moderate yield by the aluminum chloride-catalyzed reaction of N-methyl-3-nitroaniline hydrochloride with 1-naphthylcyanamide and 4-bromo-1-naphthylcyanamide, respectively. Azide 5 showed high selectivity and affinity (IC50 = 100 nM vs [3H]MK801; 3000 nM vs [3H]ditolylguanidine) for the PCP site of the NMDA receptor in guinea pig brain homogenate. Photolabeling experiments with 13, however, failed to radiolabel a significant amount of receptor polypeptide.

  8. Characterization of the Biosynthesis, Processing and Kinetic Mechanism of Action of the Enzyme Deficient in Mucopolysaccharidosis IIIC

    PubMed Central

    Fan, Xiaolian; Tkachyova, Ilona; Sinha, Ankit; Rigat, Brigitte; Mahuran, Don

    2011-01-01

    Heparin acetyl-CoA:alpha-glucosaminide N-acetyltransferase (N-acetyltransferase, EC 2.3.1.78) is an integral lysosomal membrane protein containing 11 transmembrane domains, encoded by the HGSNAT gene. Deficiencies of N-acetyltransferase lead to mucopolysaccharidosis IIIC. We demonstrate that contrary to a previous report, the N-acetyltransferase signal peptide is co-translationally cleaved and that this event is required for its intracellular transport to the lysosome. While we confirm that the N-acetyltransferase precursor polypeptide is processed in the lysosome into a small amino-terminal alpha- and a larger ß- chain, we further characterize this event by identifying the mature amino-terminus of each chain. We also demonstrate this processing step(s) is not, as previously reported, needed to produce a functional transferase, i.e., the precursor is active. We next optimize the biochemical assay procedure so that it remains linear as N-acetyltransferase is purified or protein-extracts containing N-acetyltransferase are diluted, by the inclusion of negatively charged lipids. We then use this assay to demonstrate that the purified single N-acetyltransferase protein is both necessary and sufficient to express transferase activity, and that N-acetyltransferase functions as a monomer. Finally, the kinetic mechanism of action of purified N-acetyltransferase was evaluated and found to be a random sequential mechanism involving the formation of a ternary complex with its two substrates; i.e., N-acetyltransferase does not operate through a ping-pong mechanism as previously reported. We confirm this conclusion by demonstrating experimentally that no acetylated enzyme intermediate is formed during the reaction. PMID:21957468

  9. Purification, crystallization and preliminary X-ray diffraction studies of UDP-N-acetylglucosamine pyrophosphorylase from Candida albicans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, Daisuke; Nishitani, Yuichi; Nonaka, Tsuyoshi

    2006-12-01

    UDP-N-acetylglucosamine pyrophosphorylase was purified and crystallized and X-ray diffraction data were collected to 2.3 Å resolution. UDP-N-acetylglucosamine pyrophosphorylase (UAP) is an essential enzyme in the synthesis of UDP-N-acetylglucosamine. UAP from Candida albicans was purified and crystallized by the sitting-drop vapour-diffusion method. The crystals of the substrate and product complexes both diffract X-rays to beyond 2.3 Å resolution using synchrotron radiation. The crystals of the substrate complex belong to the triclinic space group P1, with unit-cell parameters a = 47.77, b = 62.89, c = 90.60 Å, α = 90.01, β = 97.72, γ = 92.88°, whereas those of the productmore » complex belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 61.95, b = 90.87, c = 94.88 Å.« less

  10. Alteration of cell wall polysaccharides through transgenic expression of UDP-Glc 4-epimerase-encoding genes in potato tubers.

    PubMed

    Huang, Jie-Hong; Kortstee, Anne; Dees, Dianka C T; Trindade, Luisa M; Schols, Henk A; Gruppen, Harry

    2016-08-01

    Uridine diphosphate (UDP)-glucose 4-epimerase (UGE) catalyzes the conversion of UDP-glucose to UDP-galactose. Cell wall materials from the cv. Kardal (wild-type, background) and two UGE transgenic lines (UGE 45-1 and UGE 51-16) were isolated and fractionated. The galactose (Gal) content (mg/100g tuber) from UGE 45-1 transgenic line was 38% higher than that of wild-type, and resulted in longer pectin side chains. The Gal content present in UGE 51-16 was 17% lower than that of wild-type, although most pectin populations maintained the same level of Gal. Both UGE transgenic lines showed unexpectedly a decrease in acetylation and an increase in methyl-esterification of pectin. Both UGE transgenic lines showed similar proportions of homogalacturonan and rhamnogalacturonan I within pectin backbone as the wild-type, except for the calcium-bound pectin fraction exhibiting relatively less rhamnogalacturonan I. Next to pectin modification, xyloglucan populations from both transgenic lines were altered resulting in different XSGG and XXGG proportion in comparison to wild-type. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Attachment and internalization of a Chlamydia trachomatis lymphogranuloma venereum strain by McCoy cells: kinetics of infectivity and effect of lectins and carbohydrates.

    PubMed Central

    Söderlund, G; Kihlström, E

    1983-01-01

    The kinetics of attachment and ingestion of Chlamydia trachomatis serotype L1 by monolayers of McCoy cells were studied by using a method that discriminated between attachment and uptake. When about 1% of the McCoy cells was infected, the proteinase K-resistant chlamydial fraction, regarded as ingested chlamydiae, reached a constant value after about 3 h of incubation at 37 degrees C. Uptake of chlamydiae at 4 degrees C could not be demonstrated. The attached and ingested chlamydial fractions were constant over an eightfold increase in chlamydial inoculum. Chitobiose and chitotriose, the di- and trisaccharides of N-acetyl-D-glucosamine, reduced the association of C. trachomatis serotype L1 with McCoy cells. Higher concentrations of chitobiose also selectively inhibited ingestion of chlamydiae. A corresponding effect of chitobiose was also observed on the number of chlamydial inclusions. Wheat germ agglutinin, specific for N-acetyl-D-glucosamine residues, reduced the association of chlamydiae when incubated at 4 degrees C, but not at 37 degrees C. A small inhibiting effect of concanavalin A on association of chlamydiae, but no effect of the corresponding carbohydrates, indicates a nonspecific effect on chlamydial attachment of this lectin. These results suggest that beta 1 leads to 4-linked oligomers of N-acetyl-D-glucosamine are important in the specificity of attachment of C. trachomatis to McCoy cells. PMID:6642670

  12. Synthesis and biological characterization of novel charge-deficient spermine analogues.

    PubMed

    Weisell, Janne; Hyvönen, Mervi T; Häkkinen, Merja R; Grigorenko, Nikolay A; Pietilä, Marko; Lampinen, Anita; Kochetkov, Sergey N; Alhonen, Leena; Vepsäläinen, Jouko; Keinänen, Tuomo A; Khomutov, Alex R

    2010-08-12

    Biogenic polyamines, spermidine and spermine, are positively charged at physiological pH. They are present in all cells and essential for their growth and viability. Here we synthesized three novel derivatives of the isosteric charge-deficient spermine analogue 1,12-diamino-3,6,9-triazadodecane (SpmTrien, 5a) that are N(1)-Ac-SpmTrien (5c), N(12)-Ac-SpmTrien (5b), and N(1),N(12)-diethyl-1,12-diamino-3,6,9-triazadodecane (N(1),N(12)-Et(2)-SpmTrien, 5d). 5a and 5d readily accumulated in DU145 cells at the same concentration range as natural polyamines and moderately competed for the uptake with putrescine (1) but not with spermine (4a) or spermidine (2). 5a efficiently down-regulated ornithine decarboxylase and decreased polyamine levels, while 5d proved to be inefficient, compared with N(1),N(11)-diethylnorspermine (6). None of the tested analogues were substrates for human recombinant spermine oxidase, but those having free aminoterminus, including 1,8-diamino-3,6-diazaoctane (Trien, 3a), were acetylated by mouse recombinant spermidine/spermine N(1)-acetyltransferase. 5a was acetylated to 5c and 5b, and the latter was further metabolized by acetylpolyamine oxidase to 3a, a drug used to treat Wilson's disease. Thus, 5a is a bioactive precursor of 3a with enhanced bioavailability.

  13. Metal-Arc Welded Ti-6Al-4V, Ti-4Al-4V, and Ti-5Al-2 and 1/2 SN Titanium Alloys

    DTIC Science & Technology

    1959-05-01

    x . 7 8 8 - x 2 . 1 2 i n c h ) V n o t c h Charpy i m p a c t spec imen . MATERIALS COHN* .25 . 2 3 The m a t e r i a l s u s e d d...i e d V n o t c h Charpy i m p a c t spec imen i n a s t a n d a r d i m p a c t machine w i th anvi l s modified so t h a t the center...of percussion of the pendulum coincided with the center of the impact specimen, This FIGURE 3: SUBSIZE T E N S I L E SPECIMEN FIGURE 4

  14. Downregulation of a UDP-Arabinomutase Gene in Switchgrass (Panicum virgatum L.) Results in Increased Cell Wall Lignin While Reducing Arabinose-Glycans

    DOE PAGES

    Willis, Jonathan D.; Smith, James A.; Mazarei, Mitra; ...

    2016-10-26

    Switchgrass (Panicum virgatum L.) is a C 4 perennial prairie grass and a dedicated feedstock for lignocellulosic biofuels. Saccharification and biofuel yields are inhibited by the plant cell wall's natural recalcitrance against enzymatic degradation. Plant hemicellulose polysaccharides such as arabinoxylans structurally support and cross-link other cell wall polymers. Grasses predominately have Type II cell walls that are abundant in arabinoxylan, which comprise nearly 25% of aboveground biomass. A primary component of arabinoxylan synthesis is uridine diphosphate (UDP) linked to arabinofuranose (Araf). A family of UDP-arabinopyranose mutase (UAM)/reversible glycosylated polypeptides catalyze the interconversion between UDP-arabinopyranose (UDP-Arap) and UDP-Araf. The expression ofmore » a switchgrass arabinoxylan biosynthesis pathway gene, PvUAM1, was decreased via RNAi to investigate its role in cell wall recalcitrance in the feedstock. PvUAM1 encodes a switchgrass homolog of UDP-arabinose mutase, which converts UDP-Arap to UDP-Araf. Southern blot analysis revealed each transgenic line contained between one to at least seven T-DNA insertions, resulting in some cases, a 95% reduction of native PvUAM1 transcript in stem internodes. Transgenic plants had increased pigmentation in vascular tissues at nodes, but were otherwise similar in morphology to the non-transgenic control. Cell wall-associated arabinose was decreased in leaves and stems by over 50%, but there was an increase in cellulose. In addition, there was a commensurate change in arabinose side chain extension. Cell wall lignin composition was altered with a concurrent increase in lignin content and transcript abundance of lignin biosynthetic genes in mature tillers. Enzymatic saccharification efficiency was unchanged in the transgenic plants relative to the control. Plants with attenuated PvUAM1 transcript had increased cellulose and lignin in cell walls. A decrease in cell wall-associated arabinose was expected, which was likely caused by fewer Araf residues in the arabinoxylan. The decrease in arabinoxylan may cause a compensation response to maintain cell wall integrity by increasing cellulose and lignin biosynthesis. In cases in which increased lignin is desired, e.g., feedstocks for carbon fiber production, downregulated UAM1 coupled with altered expression of other arabinoxylan biosynthesis genes might result in even higher production of lignin in biomass.« less

  15. Downregulation of a UDP-Arabinomutase Gene in Switchgrass (Panicum virgatum L.) Results in Increased Cell Wall Lignin While Reducing Arabinose-Glycans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, Jonathan D.; Smith, James A.; Mazarei, Mitra

    Switchgrass (Panicum virgatum L.) is a C 4 perennial prairie grass and a dedicated feedstock for lignocellulosic biofuels. Saccharification and biofuel yields are inhibited by the plant cell wall's natural recalcitrance against enzymatic degradation. Plant hemicellulose polysaccharides such as arabinoxylans structurally support and cross-link other cell wall polymers. Grasses predominately have Type II cell walls that are abundant in arabinoxylan, which comprise nearly 25% of aboveground biomass. A primary component of arabinoxylan synthesis is uridine diphosphate (UDP) linked to arabinofuranose (Araf). A family of UDP-arabinopyranose mutase (UAM)/reversible glycosylated polypeptides catalyze the interconversion between UDP-arabinopyranose (UDP-Arap) and UDP-Araf. The expression ofmore » a switchgrass arabinoxylan biosynthesis pathway gene, PvUAM1, was decreased via RNAi to investigate its role in cell wall recalcitrance in the feedstock. PvUAM1 encodes a switchgrass homolog of UDP-arabinose mutase, which converts UDP-Arap to UDP-Araf. Southern blot analysis revealed each transgenic line contained between one to at least seven T-DNA insertions, resulting in some cases, a 95% reduction of native PvUAM1 transcript in stem internodes. Transgenic plants had increased pigmentation in vascular tissues at nodes, but were otherwise similar in morphology to the non-transgenic control. Cell wall-associated arabinose was decreased in leaves and stems by over 50%, but there was an increase in cellulose. In addition, there was a commensurate change in arabinose side chain extension. Cell wall lignin composition was altered with a concurrent increase in lignin content and transcript abundance of lignin biosynthetic genes in mature tillers. Enzymatic saccharification efficiency was unchanged in the transgenic plants relative to the control. Plants with attenuated PvUAM1 transcript had increased cellulose and lignin in cell walls. A decrease in cell wall-associated arabinose was expected, which was likely caused by fewer Araf residues in the arabinoxylan. The decrease in arabinoxylan may cause a compensation response to maintain cell wall integrity by increasing cellulose and lignin biosynthesis. In cases in which increased lignin is desired, e.g., feedstocks for carbon fiber production, downregulated UAM1 coupled with altered expression of other arabinoxylan biosynthesis genes might result in even higher production of lignin in biomass.« less

  16. Evolution in Action: N and C Termini of Subunits in Related T=4 Viruses Exchange Roles as Molecular Switches

    PubMed Central

    Speir, Jeffrey A.; Taylor, Derek J.; Natarajan, Padmaja; Pringle, Fiona M.; Ball, L. Andrew; Johnson, John E.

    2010-01-01

    Summary The T=4 tetravirus and T=3 nodavirus capsid proteins undergo closely similar autoproteolysis to produce the N-terminal ß and C-terminal, lipophilic γ polypeptides. The γ peptides and N-termini of ß also act as molecular switches that determine their quasi-equivalent capsid structures. The crystal structure of Providence virus (PrV), only the second of a tetravirus (the first was NωV), reveals conserved folds and cleavage sites, but the protein termini have completely different structures and the opposite functions of those in N⌉V. N-termini of ß form the molecular switch in PrV, while γ peptides have this role in N⌉V. PrV γ peptides instead interact with packaged RNA at the particle 2-folds using a repeating sequence pattern found in only four other RNA or membrane binding proteins. The disposition of peptide termini in PrV is closely related to those in nodaviruses suggesting that PrV may be closer to the primordial T=4 particle than NωV. PMID:20541507

  17. Bathymetric Atlas of the Northcentral Pacific Ocean,

    DTIC Science & Technology

    1971-03-01

    tD - fn O ) .4p coo 10~~ ob, o o -o 10- (0 00" 0% n ... .... x~ T’ CD ZD v aq *V)~ C’ 0O’ 0~ II tD C A 0 CD 7 -0 (CD 00., J...1I 2 I ~ N- * * * - I I I ~ I ci It * 2 At - ~* 0 I -1 o 0~ .................................... N- ’~ .~ __ 0 0 0 0 0 9 90 N - 0 - N 90 0 tD t4 C>C...9 . N- (D if) oo - - ’T~ / 0 7 ~ I ~’ ~.- -~ - j,~l ~ dz (0 I -d 2 09 ~-~-~--~ N -~ ~ JAJ 0 * (0 N ~ 0 -1 (0~ 0 𔃼~ ~q )A

  18. Specific Binding of Protoporphyrin IX to a Membrane-Bound 63 Kilodalton Polypeptide in Cucumber Cotyledons Treated with Diphenyl Ether-Type Herbicides.

    PubMed

    Sato, R; Oshio, H; Koike, H; Inoue, Y; Yoshida, S; Takahashi, N

    1991-06-01

    Porphyrin accumulation in excised cucumber cotyledons (Cucumis sativus L.) treated with a N-phenylimide S-23142 (N-[4-chloro-2-fluoro-5-propargyloxyphenyl]-3,4,5,6- tetrahydrophthalimide) and a diphenylether acifluorfen-ethyl (ethyl-5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitro benzoic acid) was studied. Most of the accumulated porphyrins were found in the membrane fractions of 6,000g and 30,000g pellets, forming a complex with a membrane polypeptide. The complex was solubilized with 1% n-dodecyl beta-d-maltoside and its molecular mass was estimated to be 63,000 and 66,000 daltons by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel permeation high performance liquid chromatography (HPLC), respectively. The polypeptide also existed in untreated cotyledons but had little protoporphyrin IX. The complex was also formed in vitro by mixing the 30,000g pellets from untreated cotyledons and authentic protoporphyrin IX. However, protoporphyrin IX formed the complex specifically with the 63,000 dalton polypeptide and not with the other proteins both in vivo and in vitro. At least four fluorescent porphyrins, including protoporphyrin IX, were found in the acetone extract of the cotyledons by HPLC using a reversed phase column. Protoporphyrin IX was one of the two porphyrins that formed the complex. These results suggest that S-23142 and acifluorfenethyl enhance the accumulation of protoporphyrin IX, which forms the complex with the membrane protein.

  19. Oncoprotein protein kinase

    DOEpatents

    Karin, M.; Hibi, M.; Lin, A.

    1997-02-25

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE is disclosed. The polypeptide has serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences. The method of detection of JNK is also provided. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites. 44 figs.

  20. A Review of Parametric Oscillators and Mixers and an Evaluation of Materials for 2 - 6 micrometer Applications

    DTIC Science & Technology

    1974-07-01

    44 ’a N -1 - ’ O𔃺 0 IU U O hl af f T o 8 N0 N 0!I .II . I N tD . N - -- N" N c00 0 ’~ 0 t4 .W 1 A 0 0 40 Q, Z.- 4 cc I n In m-" In w) ’n 41 N z0...Id 36 - 12 (Ref 39) Ref. 39,40 Id 14 I Id36 td Jsine (Type I) _____1 36__ _ _ _ _ __ _ _ _ _ _ _ 36 AgGaSe 2 T2m Negative Id 36 = 3 (Ref 41) Ref...4~~C’.-4.4 ’-tCl -40 (4C’J’J.l00 .-4.I.- 00 H. 04MrIrI"c) ý - 2- td Ln oo N o 0 NC 4’.OC4 V- N-: - C4 ~s ~~ NV.%D a 0t- 4 - n &nIfVl r cN O 1t N

  1. Study of the overproduced uridine-diphosphate-N-acetylmuramate:L-alanine ligase from Escherichia coli.

    PubMed

    Liger, D; Masson, A; Blanot, D; van Heijenoort, J; Parquet, C

    1996-01-01

    The UDP-N-acetylmuramate:L-alanine ligase of Escherichia coli is responsible for the addition of the first amino acid of the peptide moiety in the assembly of the monomer unit of peptidoglycan. It catalyzes the formation of the amide bond between UDP-N-acetylmuramic acid (UDP-MurNAc) and L-alanine. The UDP-MurNAc-L-alanine ligase was overproduced 2000-fold in a strain harboring a recombinant plasmid (pAM1005) with the murC gene under the control of the inducible promoter trc. The murC gene product appears as a 50-kDa protein accounting for ca. 50% of total cell proteins. A two-step purification led to 1 g of a homogeneous protein from an 8-liter culture. The N-terminal sequence of the purified protein correlated with the nucleotide sequence of the gene. The stability of the enzymatic activity is strictly dependent on the presence of 2-mercaptoethanol. The K(m) values for substrates UDP-N-acetylmuramic acid, L-alanine, and ATP were estimated; 100, 20, and 450 microM, respectively. The specificity of the enzyme for its substrates was investigated with various analogues. Preliminary experiments attempting to elucidate the enzymatic mechanism were consistent with the formation of an acylphosphate intermediate.

  2. Functional effects of single nucleotide polymorphisms in the coding region of human N-acetyltransferase 1

    PubMed Central

    Zhu, Yuanqi; Hein, David W.

    2007-01-01

    Genetic variants of human N-acetyltransferase 1 (NAT1) are associated with cancer and birth defects. N- and O-acetyltransferase catalytic activities, Michaelis-Menten kinetic constants (Km & Vmax), and steady state expression levels of NAT1-specific mRNA and protein were determined for the reference NAT1*4 and variant human NAT1 haplotypes possessing single nucleotide polymorphisms (SNPs) in the open reading frame. Although none of the SNPs caused a significant effect on steady state levels of NAT1-specific mRNA, C97T(R33stop), C190T(R64W), C559T (R187stop) and A752T(D251V) each reduced NAT1 protein level and/or N- and O-acetyltransferase catalytic activities to levels below detection. G560A(R187Q) substantially reduced NAT1 protein level and catalytic activities and increased substrate Km. The G445A(V149I), G459A(synonymous) and T640G(S214A) haplotype present in NAT1*11 significantly (p<0.05) increased NAT1 protein level and catalytic activity. Neither T21G(synonymous), T402C(synonymous), A613G(M205V), T777C(synonymous), G781A(E261K), or A787G(I263V) significantly affected Km, catalytic activity, mRNA or protein level. These results suggest heterogeneity among slow NAT1 acetylator phenotypes. PMID:17909564

  3. Neutralization of Staphylococcal Enterotoxin B by an Aptamer Antagonist

    PubMed Central

    Wang, Kaiyu; Gan, Longjie; Jiang, Li; Zhang, Xianhui; Yang, Xiangyue; Chen, Min

    2015-01-01

    Staphylococcal enterotoxin B (SEB) is a major virulence factor for staphylococcal toxic shock syndrome (TSS). SEB activates a large subset of the T lymphocytic population, releasing proinflammatory cytokines. Blocking SEB-initiated toxicity may be an effective strategy for treating TSS. Using a process known as systematic evolution of ligands by exponential enrichment (SELEX), we identified an aptamer that can antagonize SEB with nanomolar binding affinity (Kd = 64 nM). The aptamer antagonist effectively inhibits SEB-mediated proliferation and cytokine secretion in human peripheral blood mononuclear cells. Moreover, a PEGylated aptamer antagonist significantly reduced mortality in a “double-hit” mouse model of SEB-induced TSS, established via sensitization with d-galactosamine followed by SEB challenge. Therefore, our novel aptamer antagonist may offer potential therapeutic efficacy against SEB-mediated TSS. PMID:25624325

  4. Quantification of N-Acetyl Aspartyl Glutamate in Human Brain using Proton Magnetic Resonance Spectroscopy at 7 T

    NASA Astrophysics Data System (ADS)

    Elywa, M.

    2015-07-01

    The separation of N-acetyl aspartyl glutamate (NAAG) from N-acetyl aspartate (NAA) and other metabolites, such as glutamate, by in vivo proton magnetic resonance spectroscopy at 7 T is described. This method is based on the stimulated echo acquisition mode (STEAM), with short and long echo time (TE) and allows quantitative measurements of NAAG in the parietal and pregenual anterior cingulate cortex (pgACC) of human brain. Two basesets for the LCModel have been established using nuclear magnetic resonance simulator software (NMR-SIM). Six healthy volunteers (age 25-35 years) have been examined at 7 T. It has been established that NAAG can be separated and quantified in the parietal location and does not get quantified in the pgACC location when using a short echo time, TE = 20 ms. On the other hand, by using a long echo time, TE = 74 ms, NAAG can be quantified in pgACC structures.

  5. Evidence for tyrosine-linked glycosaminoglycan in a bacterial surface protein.

    PubMed

    Peters, J; Rudolf, S; Oschkinat, H; Mengele, R; Sumper, M; Kellermann, J; Lottspeich, F; Baumeister, W

    1992-04-01

    The S-layer protein of Acetogenium kivui was subjected to proteolysis with different proteases and several high molecular mass glycosaminoglycan peptides containing glucose, galactosamine and an unidentified sugar-related component were separated by molecular sieve chromatography and reversed-phase HPLC and subjected to N-terminal sequence analysis. By methylation analysis glucose was found to be uniformly 1,6-linked, whereas galactosamine was exclusively 1,4-linked. Hydrazinolysis and subsequent amino-acid analysis as well as two-dimensional NMR spectroscopy were used to demonstrate that in these peptides carbohydrate was covalently linked to tyrosine. As all of the four Tyr-glycosylation sites were found to be preceded by valine, a new recognition sequence for glycosylation is suggested.

  6. The cuticular localization of integument peptides from particular routing categories.

    PubMed

    Locke, M; Kiss, A; Sass, M

    1994-10-01

    The distribution of integument peptides in relation to chitin and structural features has been studied in the surface epidermis of the caterpillar of Calpodes ethlius by immunoblotting and immunogold labelling using antibodies prepared to peptides isolated from lamellate endocuticle or from hemolymph. The intermoult cuticle consists of an epicuticle, an endocuticle of many chitin containing lamellae, and a chitin containing assembly zone directly above the apical epidermal microvilli and the perimicrovillar space. During the intermoult, the epidermis secretes peptides constitutively, that is, secretory vesicles containing peptides exocytose without accumulating, traverse the perimicrovillar space and form lamellae in the assembly zone. At moulting, the epidermis deposits ecdysial droplets in addition. These interrupt the last few lamellae which later go on to become the perforated ecdysial membrane. The integument is involved with four routing classes of peptide. Secretion is apical into the cuticle (C), basal into the hemolymph (H), bidirectional (BD), or transported to the cuticle across the epidermis from the hemolymph (T). Some peptides change their routing at moulting. There are several patterns of localization. (1) C and BD cuticular peptides occur mainly in chitin containing lamellate cuticle. (2) Some are also present in epicuticle, and are therefore not obligatorily linked to chitin or matrix between chitin fibers. Cuticular peptides that also occur in the hemolymph are glycosylated, whereas most that are only secreted apically into the cuticle are not. All BD but few C peptides carry alpha-D-glucose/alpha-D-mannose. Some C and BD peptides carry N-acetyl glucosamine. (3) C36 extracted from cuticle has most N-acetyl glucosamine and colocalizes with chitin rather than the protein matrix. It is therefore probably the main link between chitin fibers and the matrix. (4) H235 is barely detectable at the apical cell surface during the intermoult but is abundant at moulting around and below the ecdysial droplets. (5) T66 occurs in intermoult lamellate cuticle. At moulting, alone among the peptides examined, it is in ecdysial droplets. Intermoult C and BD peptides are not in ecdysial droplets but continue to be present in the ecdysial membrane, suggesting that constitutive secretion is independent from the exocytosis of transported moult peptides. T66 differs from most hemolymph peptides in that it does not carry N-acetyl glucosamine or alpha-D-glucose/alpha-D-mannose. (6) Weakly reacting BD peptides (and some H peptides barely detectable in cuticle) localize near the apical surface. Their distribution therefore favours apical secretion and retrieval as a mechanism for basal secretion.

  7. Putrescine catabolism in mammalian brain

    PubMed Central

    Seiler, N.; Al-Therib, M. J.

    1974-01-01

    In contrast with putrescine (1,4-diaminobutane), which is a substrate of diamine oxidase, monoacetylputrescine is oxidatively deaminated both in vitro and in vivo by monoamine oxidase. The product of this reaction is N-acetyl-γ-aminobutyrate. The existence of a degradative pathway in mammalian brain for putrescine is shown, which comprises acetylation of putrescine, oxidative deamination of monoacetylputrescine to N-acetyl-γ-aminobutyrate, transformation of N-acetyl-γ-aminobutyrate to γ-aminobutyrate and degradation of γ-aminobutyrate to CO2 via the tricarboxylic acid cycle. PMID:4156831

  8. N-Acetyltransferase 2 (NAT2) polymorphism as a risk modifier of susceptibility to pediatric acute lymphoblastic leukemia.

    PubMed

    Kamel, Azza M; Ebid, Gamal T A; Moussa, Heba S

    2015-08-01

    N-Acetyltransferases (NAT) have been known to modify the risk to a variety of solid tumors. However, the role of NAT2 polymorphism in risk susceptibility to childhood acute lymphoblastic leukemia (ALL) is still not well known. We performed a case-control study to determine if the common NAT2 polymorphisms play a role in altering susceptibility to pediatric ALL. DNA of 92 pediatric ALL patients and 312 healthy controls was analyzed for the NAT2 polymorphisms using the PCR-RFLP method. The wild-type NAT2*4 was encountered in 8.6 % of patients versus 11.8 % of controls (P = 0.23). The rapid acetylators NAT2*12 803A>G, AG, GG, and AG/GG were overrepresented in controls (P = 0.0001; odds ratio (OR) 0.22, 0.19, and 0.21 respectively). NAT2*5D 341T>C and NAT2*11A 481C>T were of comparable frequencies. For their combination, NAT2*5A, a slow acetylator, both TCTT and CCCT were overrepresented in patients (P < 0.001; OR 15.8 and 17.9 respectively). NAT2*5B (803A>G, 341T>C, 481C>T) was overrepresented in controls (P < 0.001; OR 0.12). Apparently, 803A>G ameliorated the combined effect of 341T>C and 481C>T. A similar effect was obtained with NAT2*5C (341T>A, 803A>G) (P < 0.0001; OR 0.11). For slow acetylator NAT2*7A 857G>A, GA and GA/AA were overrepresented in patients (P = 0.009 and 0.01; OR 2.74 and 2.72 respectively). NAT2*13 282C>T, NAT2*6B 590G>A, and NAT2*14A 191G>A were of comparable frequencies. NAT2 282C>A in combination with NAT2 857G>A (NAT2*7B) showed a synergistic effect in patients versus controls (P < 0.0001; OR 3.51). In conclusion, NAT2 gene polymorphism(s) with slow acetylator phenotype is generally associated with the risk of development of ALL in children.

  9. Purification and Pore Forming Activity of Two Hydrophobic Polypeptides from the Secretion of the Red Sea Moses Sole (Pardachirus marmoratus)

    DTIC Science & Technology

    1986-11-01

    Uppsala, Sweden. Ovalbumin, bovine albumin fractio n V, soybean lecithin , sodium cnolate, gramicidin D and Dowex 50 x 8 (50-100 mesh) were obtained from...A-,.ino acid analysis 50 ug duplIcate samples of PXI and PXII, from reverse phase HPLC, were dissolved in 0.4 ml of 6 N HCI and hydrolyzed ocr 24 hr

  10. Dibenzoyl and isoflavonoid glycosides from Sophora flavescens: inhibition of the cytotoxic effect of D-galactosamine on human hepatocyte HL-7702.

    PubMed

    Shen, Yi; Feng, Zi-Ming; Jiang, Jian-Shuang; Yang, Ya-Nan; Zhang, Pei-Cheng

    2013-12-27

    Twelve new dibenzoyl derivatives sophodibenzoside A-L (1-12) and five new isoflavone glycosides (13-17) have been isolated from the roots of Sophora flavescens together with eight known compounds (18-25). Notably, the use of acetic acid-d4 was required to enable identification of the dibenzoyl glycoside structures. Compounds 1, 2, 13, 14, and 19 exhibited weak inhibition of the cytotoxic effect of d-galactosamine on the human hepatic cell line HL-7702.

  11. Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nag, Ambarish; St. John, Peter C.; Crowley, Michael F.

    Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes themore » biosynthetic pathways for the main components of biomass - namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-a-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production.« less

  12. Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes

    DOE PAGES

    Nag, Ambarish; St. John, Peter C.; Crowley, Michael F.; ...

    2018-01-30

    Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes themore » biosynthetic pathways for the main components of biomass - namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-a-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production.« less

  13. The Traveling Wave Amplifier as a Bistable Oscillator

    DTIC Science & Technology

    1956-01-01

    2n)t + 5/4 e V m Vtt Cos(m-2n)t + 5/16 e vm VA Gos(m+4n)t + 5/16 e vm Vtt Cos(m-4n)t Again Collecting Terms E 0 = 1/2 b Vrt +l/2bVfi + 3/8 d Vrft...3 ( ~ c V ft + 5/8 e VA + 15/4 e V ~ V J ’ + 15/8 e V in V n) + Cos2mt (1/2 b Vfn + 1/2 d Vrt + 3/2 d V~ V~) III-3 Again Collecting Terms (Cont’d

  14. Flow-cytometric monitoring of disease-associated expression of 9-O-acetylated sialoglycoproteins in combination with known CD antigens, as an index for MRD in children with acute lymphoblastic leukaemia: a two-year longitudinal follow-up study

    PubMed Central

    Chowdhury, Suchandra; Bandyopadhyay, Suman; Mandal, Chandan; Chandra, Sarmila; Mandal, Chitra

    2008-01-01

    Background Over expression of 9-O-acetylated sialoglycoproteins (Neu5,9Ac2-GPs, abbreviated as OAcSGP) has been demonstrated as a disease-associated antigen on the lymphoblasts of childhood acute lymphoblastic leukaemia (ALL). Achatinin-H, a lectin, has selective affinity towards terminal 9-O-acetylated sialic acids-α2-6-Nacetylated galactosamine. Exploring this affinity, enhanced expression of OAcSGP was observed, at the onset of disease, followed by its decrease with chemotherapy and reappearance with relapse. In spite of treatment, patients retain the diseased cells referred to as minimal residual disease (MRD) responsible for relapse. Our aim was to select a suitable template by using the differential expression of OAcSGP along with other known CD antigens to monitor MRD in peripheral blood (PB) and bone marrow (BM) of Indian patients with B- or T-ALL during treatment and correlate it with the disease status. Methods A two-year longitudinal follow-up study was done with 109 patients from the onset of the disease till the end of chemotherapy, treated under MCP841protocol. Paired samples of PB (n = 1667) and BM (n = 999) were monitored by flow cytometry. Three templates selected for this investigation were OAcSGP+CD10+CD19+ or OAcSGP+CD34+CD19+ for B-ALL and OAcSGP+CD7+CD3+ for T-ALL. Results Using each template the level of MRD detection reached 0.01% for a patient in clinical remission (CR). 81.65% of the patients were in CR during these two years while the remaining relapsed. Failure in early clearance of lymphoblasts, as indicated by higher MRD, implied an elevated risk of relapse. Soaring MRD during the chemotherapeutic regimen predicted clinical relapse, at least a month before medical manifestation. Irrespective of B- or T-lineage ALL, the MRD in PB and BM correlated well. Conclusion A range of MRD values can be predicted for the patients in CR, irrespective of their lineage, being 0.03 ± 0.01% (PB) and 0.05 ± 0.015% (BM). These patients may not be stated as normal with respect to the presence of MRD. Hence, MRD study beyond two-years follow-up is necessary to investigate further reduction in MRD, thereby ensuring their disease-free survival. Therefore, we suggest use of these templates for MRD detection, during and post-chemotherapy for proper patient management strategies, thereby helping in personalizing the treatment. PMID:18241334

  15. Metabolomic Analysis of Blood Plasma after Oral Administration of N-acetyl-d-Glucosamine in Dogs

    PubMed Central

    Osaki, Tomohiro; Kurozumi, Seiji; Sato, Kimihiko; Terashi, Taro; Azuma, Kazuo; Murahata, Yusuke; Tsuka, Takeshi; Ito, Norihiko; Imagawa, Tomohiro; Minami, Saburo; Okamoto, Yoshiharu

    2015-01-01

    N-acetyl-d-glucosamine (GlcNAc) is a monosaccharide that polymerizes linearly through (1,4)-β-linkages. GlcNAc is the monomeric unit of the polymer chitin. GlcNAc is a basic component of hyaluronic acid and keratin sulfate found on the cell surface. The aim of this study was to examine amino acid metabolism after oral GlcNAc administration in dogs. Results showed that plasma levels of ectoine were significantly higher after oral administration of GlcNAc than prior to administration (p < 0.001). To our knowledge, there have been no reports of increased ectoine concentrations in the plasma. The mechanism by which GlcNAc administration leads to increased ectoine plasma concentration remains unclear; future studies are required to clarify this mechanism. PMID:26262626

  16. Identification of the urinary metabolites of 4-bromoaniline and 4-bromo-[carbonyl-13C]-acetanilide in rat.

    PubMed

    Scarfe, G B; Nicholson, J K; Lindon, J C; Wilson, I D; Taylor, S; Clayton, E; Wright, B

    2002-04-01

    1. The urinary excretion of 4-bromoaniline and its [carbonyl-(13)C]-labelled N-acetanilide, together with their corresponding metabolites, have been investigated in the rat following i.p. administration at 50 mg kg(-1). 2. Metabolite profiling was performed by reversed-phase HPLC with UV detection, whilst identification was performed using a combination of enzymic hydrolysis and directly coupled HPLC-NMR-MS analysis. The urinary metabolite profile was quantitatively and qualitatively similar for both compounds with little of either excreted unchanged. 3. The major metabolite present in urine was 2-amino-5-bromophenylsulphate, but, in addition, a number of metabolites with modification of the N-acetyl moiety were identified (from both the [(13)C]-acetanilide or produced following acetylation of the free bromoaniline). 4. For 4-bromoacetanilide, N-deacetylation was a major route of metabolism, but despite the detection of the acetanilide following the administration of the free aniline, there was no evidence of reacetylation (futile deacetylation). 5. Metabolites resulting from the oxidation of the acetyl group included a novel glucuronide of an N-glycolanilide, an unusual N-oxanilic acid and a novel N-acetyl cysteine conjugate.

  17. N-Acetyl cysteine and clomiphene citrate for induction of ovulation in polycystic ovary syndrome: a cross-over trial.

    PubMed

    Badawy, Ahmed; State, Omnia; Abdelgawad, Soma

    2007-01-01

    To compare clomiphene citrate plus N-acetyl cysteine versus clomiphene citrate for inducing ovulation in patients with polycystic ovary syndrome. Prospective cross-over trial. University teaching hospital and a private practice setting. Five hundred and seventy-three patients were treated with clomiphene citrate for one menstrual cycle among which 470 patients were treated with clomiphene citrate plus N-acetyl cysteine for another cycle. All women suffered from polycystic ovary syndrome. Patients had clomiphene citrate 50-mg tablets twice daily alone or with N-acetyl cysteine 1,200 mg/day orally for 5 days starting on day 3 of the menstrual cycle. Primary outcomes were number of mature follicles, serum E2, serum progesterone, and endometrial thickness. Secondary outcome was the occurrence of pregnancy. Ovulation rate improved significantly after the addition of N-acetyl cysteine (17.9% versus 52.1%). Although the number of mature follicles was more in the N-acetyl cysteine group (2.1+/-0.88 versus 3.2+/-0.93), the difference was not statistically significant. The mean E2 levels (pg/ml) at the time of human chorionic gonadotropine injection, serum progesterone levels (ng/ml) on days 21-23 of the cycle, and the endometrial thickness were significantly improved in the N-acetyl cysteine group. The overall pregnancy rate was 11.5% in the N-acetyl cysteine group. Insulin resistance occurred in 260 patients (55.4%). There was no significant difference between the insulin resistance group (n = 260) and non-insulin resistance group (n = 210) as regards ovulation rate, number of follicles, serum E2 (pg/ml), serum progesterone (ng/ml), endometrial thickness (mm), or pregnancy rate. N-Acetyl cysteine is proved effective in inducing or augmenting ovulation in polycystic ovary patients.

  18. Mass Isotopomer Analysis of Metabolically Labeled Nucleotide Sugars and N- and O-Glycans for Tracing Nucleotide Sugar Metabolisms*

    PubMed Central

    Nakajima, Kazuki; Ito, Emi; Ohtsubo, Kazuaki; Shirato, Ken; Takamiya, Rina; Kitazume, Shinobu; Angata, Takashi; Taniguchi, Naoyuki

    2013-01-01

    Nucleotide sugars are the donor substrates of various glycosyltransferases, and an important building block in N- and O-glycan biosynthesis. Their intercellular concentrations are regulated by cellular metabolic states including diseases such as cancer and diabetes. To investigate the fate of UDP-GlcNAc, we developed a tracing method for UDP-GlcNAc synthesis and use, and GlcNAc utilization using 13C6-glucose and 13C2-glucosamine, respectively, followed by the analysis of mass isotopomers using LC-MS. Metabolic labeling of cultured cells with 13C6-glucose and the analysis of isotopomers of UDP-HexNAc (UDP-GlcNAc plus UDP-GalNAc) and CMP-NeuAc revealed the relative contributions of metabolic pathways leading to UDP-GlcNAc synthesis and use. In pancreatic insulinoma cells, the labeling efficiency of a 13C6-glucose motif in CMP-NeuAc was lower compared with that in hepatoma cells. Using 13C2-glucosamine, the diversity of the labeling efficiency was observed in each sugar residue of N- and O-glycans on the basis of isotopomer analysis. In the insulinoma cells, the low labeling efficiencies were found for sialic acids as well as tri- and tetra-sialo N-glycans, whereas asialo N-glycans were found to be abundant. Essentially no significant difference in secreted hyaluronic acids was found among hepatoma and insulinoma cell lines. This indicates that metabolic flows are responsible for the low sialylation in the insulinoma cells. Our strategy should be useful for systematically tracing each stage of cellular GlcNAc metabolism. PMID:23720760

  19. PLA Naval Aviation Training and Operations

    DTIC Science & Technology

    2017-12-20

    cr aft Ty p es,” Re n mi n H aij u n , 1 6 A pril 2 0 1 3, p. 3. 3 3 I bi d. 3 4 K o u Yo n g qi a n g, Li Yi mi n, a n d Li X u ef e n g, “ Ta k e...6 a e 4 d 0 d 6 c 1.s ht ml. C h e n Z h e, Z h u Weij u n, a n d Z h u Ya, “ Yo u n g Offi c ers a n d E nlist e d Pers o n n el i n a N ort h S e a...ct o b er 2 0 1 4 , p. 3. MI S SI O N S, O R G A NI Z A TI O N A L S T R U C T U R E, A N D T R AI NI N G ( 2 0 1 3- 1 5) 8 5 K o u Yo n g qi a n g

  20. Fluorescence probe of polypeptide conformational dynamics in gas phase and in solution

    NASA Astrophysics Data System (ADS)

    Iavarone, Anthony T.; Meinen, Jan; Schulze, Susanne; Parks, Joel H.

    2006-07-01

    Fluorescence measurements of polypeptides derivatized with the fluorescent dye BODIPY TMR have been used to probe the polypeptide conformational dynamics as a function of temperature and charge state. Measurements of (BODIPY TMR)-[Pro]n-Arg-Trp and (BODIPY TMR)-[Gly-Ser]m-Arg-Trp have been performed for charge states 1+ and 2+ of n = 4 and 10 and m = 2 and 5. The 2+ charge states of both of these polypeptides exhibit similar temperature dependences for equal chain lengths (n = 4, m = 2 and n = 10, m = 5) and suggest conformations dominated by Coulomb repulsion. In the absence of such Coulomb repulsion, the 1+ charge state conformations appear to be characterized by the flexibility of the polypeptide chain for which [Gly-Ser]m > [Pro]n. Comparisons of these gas phase polypeptide measurements with corresponding measurements in solution provide a direct measure of the effects of solvent on the conformational dynamics. The change in fluorescence as a function of temperature in the gas phase is two orders of magnitude greater than that in solution, a dramatic result we attribute to the restrictions on intramolecular dynamics imposed by diffusion-limited kinetics and the lack of shielding by solvent. Measurements were also made of unsolvated Pron peptides without the tryptophan (Trp) residue to isolate the interaction of the fluorescent dye with charges.

  1. Heterogeneity of the neuropeptide Y (NPY) contractile and relaxing receptors in horse penile small arteries.

    PubMed

    Prieto, Dolores; Arcos, Luis Rivera de Los; Martínez, Pilar; Benedito, Sara; García-Sacristán, Albino; Hernández, Medardo

    2004-12-01

    The distribution of neuropeptide Y (NPY)-immunorective nerves and the receptors involved in the effects of NPY upon electrical field stimulation (EFS)- and noradrenaline (NA)-elicited contractions were investigated in horse penile small arteries. NPY-immunoreactive nerves were widely distributed in the erectile tissues with a particularly high density around penile intracavernous small arteries. In small arteries isolated from the proximal part of the corpora cavernosa, NPY (30 nM) produced a variable modest enhancement of the contractions elicited by both EFS and NA. At the same concentration, the NPY Y(1) receptor agonist, [Leu(31), Pro(34)]NPY, markedly potentiated responses to EFS and NA, whereas the NPY Y(2) receptor agonist, NPY(13-36), enhanced exogenous NA-induced contractions. In arteries precontracted with NA, NPY, peptide YY (PYY), [Leu(31), Pro(34)]NPY and the NPY Y(2) receptor agonists, N-acetyl[Leu(28,31)]NPY (24-36) and NPY(13-36), elicited concentration-dependent contractile responses. Human pancreatic polypeptide (hPP) evoked a biphasic response consisting of a relaxation followed by contraction. NPY(3-36), the compound 1229U91 (Ile-Glu-Pro-Dapa-Tyr-Arg-Leu-Arg-Tyr-NH2, cyclic(2,4')diamide) and eventually NPY(13-36) relaxed penile small arteries. The selective NPY Y(1) receptor antagonist BIBP3226 ((R)-N(2)-(diphenacetyl)-N-[(4-hydroxyphenyl)methyl]D-arginineamide) (0.3 microM) shifted to the right the concentration-response curves to both NPY and [Leu(31), Pro(34)]NPY and inhibited the contractions induced by the highest concentrations of hPP but not the relaxations observed at lower doses. In the presence of the selective NPY Y(2) receptor antagonist BIIE0246 ((S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6h)-oxodibenz[b,e]azepin-11-y1]-1-piperazinyl]-2-oxoethyl]cyclo-pentyl-N-[2-[1,2-dihydro-3,5 (4H)-dioxo-1,2-diphenyl-3H-1,2, 4-triazol-4-yl]ethyl]-argininamide) (0.3 microM), the Y(2) receptor agonists NPY(13-36) and N-acetyl[Leu(28,31)]NPY (24-36) evoked potent slow relaxations in NA-precontracted arteries, under conditions of nitric oxide (NO) synthase blockade. Mechanical removal of the endothelium markedly enhanced contractions of NPY on NA-precontracted arteries, whereas blockade of the neuronal voltage-dependent Ca(2+) channels did not alter NPY responses. These results demonstrate that NPY can elicit dual contractile/relaxing responses in penile small arteries through a heterogeneous population of postjunctional NPY receptors. Potentiation of the contractions evoked by NA involve both NPY Y(1) and NPY Y(2) receptors. An NO-independent relaxation probably mediated by an atypical endothelial NPY receptor is also shown and unmasked in the presence of selective antagonists of the NPY contractile receptors.

  2. Carbohydrate Recognition by an Architecturally Complex α-N-Acetylglucosaminidase from Clostridium perfringens

    PubMed Central

    Ficko-Blean, Elizabeth; Stuart, Christopher P.; Suits, Michael D.; Cid, Melissa; Tessier, Matthew; Woods, Robert J.; Boraston, Alisdair B.

    2012-01-01

    CpGH89 is a large multimodular enzyme produced by the human and animal pathogen Clostridium perfringens. The catalytic activity of this exo-α-d-N-acetylglucosaminidase is directed towards a rare carbohydrate motif, N-acetyl-β-d-glucosamine-α-1,4-d-galactose, which is displayed on the class III mucins deep within the gastric mucosa. In addition to the family 89 glycoside hydrolase catalytic module this enzyme has six modules that share sequence similarity to the family 32 carbohydrate-binding modules (CBM32s), suggesting the enzyme has considerable capacity to adhere to carbohydrates. Here we suggest that two of the modules, CBM32-1 and CBM32-6, are not functional as carbohydrate-binding modules (CBMs) and demonstrate that three of the CBMs, CBM32-3, CBM32-4, and CBM32-5, are indeed capable of binding carbohydrates. CBM32-3 and CBM32-4 have a novel binding specificity for N-acetyl-β-d-glucosamine-α-1,4-d-galactose, which thus complements the specificity of the catalytic module. The X-ray crystal structure of CBM32-4 in complex with this disaccharide reveals a mode of recognition that is based primarily on accommodation of the unique bent shape of this sugar. In contrast, as revealed by a series of X-ray crystal structures and quantitative binding studies, CBM32-5 displays the structural and functional features of galactose binding that is commonly associated with CBM family 32. The functional CBM32s that CpGH89 contains suggest the possibility for multivalent binding events and the partitioning of this enzyme to highly specific regions within the gastrointestinal tract. PMID:22479408

  3. Catabolism and Detoxification of 1-Aminoalkylphosphonic Acids: N-Acetylation by the phnO Gene Product

    PubMed Central

    Hove-Jensen, Bjarne; McSorley, Fern R.; Zechel, David L.

    2012-01-01

    In Escherichia coli uptake and catabolism of organophosphonates are governed by the phnCDEFGHIJKLMNOP operon. The phnO cistron is shown to encode aminoalkylphosphonate N-acetyltransferase, which utilizes acetylcoenzyme A as acetyl donor and aminomethylphosphonate, (S)- and (R)-1-aminoethylphosphonate, 2-aminoethyl- and 3-aminopropylphosphonate as acetyl acceptors. Aminomethylphosphonate, (S)-1-aminoethylphosphonate, 2-aminoethyl- and 3-aminopropylphosphonate are used as phosphate source by E. coli phn+ strains. 2-Aminoethyl- or 3-aminopropylphosphonate but not aminomethylphosphonate or (S)-1-aminoethylphosphonate is used as phosphate source by phnO strains. Neither phn+ nor phnO strains can use (R)-1-aminoethylphosphonate as phosphate source. Utilization of aminomethylphosphonate or (S)-1-aminoethylphosphonate requires the expression of phnO. In the absence of phnO-expression (S)-1-aminoethylphosphonate is bacteriocidal and rescue of phnO strains requires the simultaneous addition of d-alanine and phosphate. An intermediate of the carbon-phosphorus lyase pathway, 5′-phospho-α-d-ribosyl 1′-(2-N-acetamidoethylphosphonate), a substrate for carbon-phosphorus lyase, was found to accumulate in cultures of a phnP mutant strain. The data show that the physiological role of N-acetylation by phnO-specified aminoalkylphosphonate N-acetyltransferase is to detoxify (S)-1-aminoethylphosphonate, an analog of d-alanine, and to prepare (S)-1-aminoethylphosphonate and aminomethylphosphonate for utilization of the phosphorus-containing moiety. PMID:23056305

  4. Semi-synthesis of unusual chondroitin sulfate polysaccharides containing GlcA(3-O-sulfate) or GlcA(2,3-di-O-sulfate) units.

    PubMed

    Bedini, Emiliano; De Castro, Cristina; De Rosa, Mario; Di Nola, Annalida; Restaino, Odile F; Schiraldi, Chiara; Parrilli, Michelangelo

    2012-02-13

    The extraction from natural sources of Chondroitin sulfate (CS), a polysaccharide used for management of osteoarthritis, leads to very complex mixtures. The synthesis of CS by chemical modification of other polysaccharides has seldom been reported due to the intrinsic complexity that arises from fine chemical modifications of the polysaccharide structure. In view of the growing interest in expanding the application of CS to pharmacological fields other than osteoarthritis treatment, we launched a program to find new sources of known or even unprecedented CS polysaccharides. As part of this program, we report herein on an investigation of the use of a cyclic orthoester group to selectively protect the 4,6-diol of N-acetyl-galactosamine residues in chondroitin (obtained from a microbial source), thereby facilitating its transformation into CSs. In particular, three CS polysaccharides were obtained and demonstrated to possess rare or hitherto unprecedented sulfation patterns by 2D NMR spectroscopy characterization. Two of them contained disaccharide subunits characterized by glucuronic acid residues selectively sulfated at position 3 (GlcA(3S)), the biological functions of which are known but have yet to be fully investigated. This first semi-synthetic access to GlcA(3S)-containing CS could greatly expedite such studies, since it can easily furnish considerable amounts of these polysaccharides, which are usually isolated with difficulty and in very low quantity from natural sources. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Study to elucidate formation pathways of selected roast-smelling odorants upon extrusion cooking.

    PubMed

    Davidek, Tomas; Festring, Daniel; Dufossé, Thierry; Novotny, Ondrej; Blank, Imre

    2013-10-30

    The formation pathways of the N-containing roast-smelling compounds 2-acetyl-1-pyrroline, 2-acetyl-1(or 3),4,5,6-tetrahydropyridine, and their structural analogues 2-propionyl-1-pyrroline and 2-propionyl-1(or 3),4,5,6-tetrahydropyridine were studied upon extrusion cooking using the CAMOLA approach. The samples were produced under moderate extrusion conditions (135 °C, 20% moisture, 400 rpm) employing a rice-based model recipe enriched with flavor precursors ([U-(13)C6]-D-glucose, D-glucose, glycine, L-proline, and L-ornithine). The obtained data indicate that the formation of these compounds upon extrusion follows pathways similar to those reported for nonsheared model systems containing D-glucose and L-proline. 2-Acetyl-1-pyrroline is formed (i) by acylation of 1-pyrroline via C2 sugar fragments (major pathway) and (ii) via ring-opening of 1-pyrroline incorporating C3 sugar fragments (minor pathway), whereas 2-propionyl-1-pyrroline incorporates exclusively C3 sugar fragments. 2-Acetyl-1(or 3),4,5,6-tetrahydropyridine and the corresponding propionyl analogue incorporate C3 and C4 sugar fragments, respectively. In addition, it has been shown that the formation of 2-acetyl-1-pyrroline in low-moisture systems depends on the pH value of the reaction mixture.

  6. De Novo Assembly of Mud Loach (Misgurnus anguillicaudatus) Skin Transcriptome to Identify Putative Genes Involved in Immunity and Epidermal Mucus Secretion

    PubMed Central

    Long, Yong; Li, Qing; Zhou, Bolan; Song, Guili; Li, Tao; Cui, Zongbin

    2013-01-01

    Fish skin serves as the first line of defense against a wide variety of chemical, physical and biological stressors. Secretion of mucus is among the most prominent characteristics of fish skin and numerous innate immune factors have been identified in the epidermal mucus. However, molecular mechanisms underlying the mucus secretion and immune activities of fish skin remain largely unclear due to the lack of genomic and transcriptomic data for most economically important fish species. In this study, we characterized the skin transcriptome of mud loach using Illumia paired-end sequencing. A total of 40364 unigenes were assembled from 86.6 million (3.07 gigabases) filtered reads. The mean length, N50 size and maximum length of assembled transcripts were 387, 611 and 8670 bp, respectively. A total of 17336 (43.76%) unigenes were annotated by blast searches against the NCBI non-redundant protein database. Gene ontology mapping assigned a total of 108513 GO terms to 15369 (38.08%) unigenes. KEGG orthology mapping annotated 9337 (23.23%) unigenes. Among the identified KO categories, immune system is the largest category that contains various components of multiple immune pathways such as chemokine signaling, leukocyte transendothelial migration and T cell receptor signaling, suggesting the complexity of immune mechanisms in fish skin. As for mucin biosynthesis, 37 unigenes were mapped to 7 enzymes of the mucin type O-glycan biosynthesis pathway and 8 members of the polypeptide N-acetylgalactosaminyltransferase family were identified. Additionally, 38 unigenes were mapped to 23 factors of the SNARE interactions in vesicular transport pathway, indicating that the activity of this pathway is required for the processes of epidermal mucus storage and release. Moreover, 1754 simple sequence repeats (SSRs) were detected in 1564 unigenes and dinucleotide repeats represented the most abundant type. These findings have laid the foundation for further understanding the secretary processes and immune functions of loach skin mucus. PMID:23437293

  7. De novo assembly of mud loach (Misgurnus anguillicaudatus) skin transcriptome to identify putative genes involved in immunity and epidermal mucus secretion.

    PubMed

    Long, Yong; Li, Qing; Zhou, Bolan; Song, Guili; Li, Tao; Cui, Zongbin

    2013-01-01

    Fish skin serves as the first line of defense against a wide variety of chemical, physical and biological stressors. Secretion of mucus is among the most prominent characteristics of fish skin and numerous innate immune factors have been identified in the epidermal mucus. However, molecular mechanisms underlying the mucus secretion and immune activities of fish skin remain largely unclear due to the lack of genomic and transcriptomic data for most economically important fish species. In this study, we characterized the skin transcriptome of mud loach using Illumia paired-end sequencing. A total of 40364 unigenes were assembled from 86.6 million (3.07 gigabases) filtered reads. The mean length, N50 size and maximum length of assembled transcripts were 387, 611 and 8670 bp, respectively. A total of 17336 (43.76%) unigenes were annotated by blast searches against the NCBI non-redundant protein database. Gene ontology mapping assigned a total of 108513 GO terms to 15369 (38.08%) unigenes. KEGG orthology mapping annotated 9337 (23.23%) unigenes. Among the identified KO categories, immune system is the largest category that contains various components of multiple immune pathways such as chemokine signaling, leukocyte transendothelial migration and T cell receptor signaling, suggesting the complexity of immune mechanisms in fish skin. As for mucin biosynthesis, 37 unigenes were mapped to 7 enzymes of the mucin type O-glycan biosynthesis pathway and 8 members of the polypeptide N-acetylgalactosaminyltransferase family were identified. Additionally, 38 unigenes were mapped to 23 factors of the SNARE interactions in vesicular transport pathway, indicating that the activity of this pathway is required for the processes of epidermal mucus storage and release. Moreover, 1754 simple sequence repeats (SSRs) were detected in 1564 unigenes and dinucleotide repeats represented the most abundant type. These findings have laid the foundation for further understanding the secretary processes and immune functions of loach skin mucus.

  8. T-T Neutron Spectrum from Inertial Confinement Implosions

    NASA Astrophysics Data System (ADS)

    Bacher, A. D.; Casey, D. T.; Frenje, J. A.; Gatu Johnson, M. J.; Manuel, M.; Sinenian, N.; Zylstra, A. B.; Séguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu; Radha, P. B.; Meyerhofer, D. D.; Sangster, T. C.; McNabb, D. P.; Amendt, P. A.; Boyd, R. N.; Caggiano, J. A.; Hatchett, S. P.; Pino, J. E.; Quaglioni, S.; Rygg, J. R.; Thompson, I. J.; Herrmann, H. W.; Kim, Y. H.

    2013-08-01

    A new technique that uses inertial confinement implosions for measuring low-energy nuclear reactions important to nuclear astrophysics is described. Simultaneous measurements of n-D and n-T elastic scattering at 14.1 MeV using deuterium-tritium gas-filled capsules provide a proof of principle for this technique. Measurements have been made of D(d,p)T (dd) and T(t,2n)4He (tt) reaction yields relative to the D(t,n)4He (dt) reaction yield for deuterium-tritium mixtures with f T / f D between 0.62 and 0.75 and for a wide range of ion temperatures to test our understanding of the implosion processes. Measurements of the shape of the neutron spectrum from the T(t,2n)4He reaction have been made for each of these target configurations.

  9. Terminal Area Forecasts, FY 1993-2005

    DTIC Science & Technology

    1993-07-01

    0 td U) ~ 4-) 4.J.4 0 J~ :s 0- -"C4 4o U ).4CO ) 0 u *Wý44 o 41C kdQ(n v 00 UrC~ 4) -4 0 M 0~ 4j > (D M kca 41 Ř b bO CA -A~ ..O 0 .0 Cd~ bl ~ - k...o tD ~ Hr- Nr,- `4v oH f n% oM 0( ON %D ~H w H LnODH (1 O O D DO ODG OD 00 OhOh(T ma % m %0 HC4.Ch h %Ch( i % )d% HN 4J H 1-0 %D- O M (NWN DU VO D...I ~ J)I C1 F "H OD ,- V 1 D ( -r r -4 Ch’. ON 00 -4 c,4 mu) n( (n A;1 m tD b r-4 rJ’q~~ I Nr-W L o 0 ( O HM N~ - I- IV N- M M O ’ rI % NN . OD U NCh0

  10. Early Urinary Markers of Diabetic Kidney Disease: A Nested Case-Control Study From the Diabetes Control and Complications Trial (DCCT)

    PubMed Central

    Kern, Elizabeth O; Erhard, Penny; Sun, Wanjie; Genuth, Saul; Weiss, Miriam F

    2010-01-01

    Background Urinary markers were tested as predictors of macroalbuminuria or microalbuminuria in type 1 diabetes. Study Design Nested case:control of participants in the Diabetes Control and Complications Trial (DCCT) Setting & Participants Eighty-seven cases of microalbuminuria were matched to 174 controls in a 1:2 ratio, while 4 cases were matched to 4 controls in a 1:1 ratio, resulting in 91 cases and 178 controls for microalbuminuria. Fifty-five cases of macroalbuminuria were matched to 110 controls in a 1:2 ratio. Controls were free of micro/macroalbuminuria when their matching case first developed micro/macroalbuminuria. Predictors Urinary N-acetyl-β-D-glucosaminidase, pentosidine, AGE fluorescence, albumin excretion rate (AER) Outcomes Incident microalbuminuria (two consecutive annual AER > 40 but <= 300 mg/day), or macroalbuminuria (AER > 300 mg/day) Measurements Stored urine samples from DCCT entry, and 1–9 years later when macroalbuminuria or microalbuminuria occurred, were measured for the lysosomal enzyme, N-acetyl-β-D-glucosaminidase, and the advanced glycosylation end-products (AGEs) pentosidine and AGE-fluorescence. AER and adjustor variables were obtained from the DCCT. Results Sub-microalbuminuric levels of AER at baseline independently predicted microalbuminuria (adjusted OR 1.83; p<.001) and macroalbuminuria (adjusted OR 1.82; p<.001). Baseline N-acetyl-β-D-glucosaminidase independently predicted macroalbuminuria (adjusted OR 2.26; p<.001), and microalbuminuria (adjusted OR 1.86; p<.001). Baseline pentosidine predicted macroalbuminuria (adjusted OR 6.89; p=.002). Baseline AGE fluorescence predicted microalbuminuria (adjusted OR 1.68; p=.02). However, adjusted for N-acetyl-β-D-glucosaminidase, pentosidine and AGE-fluorescence lost predictive association with macroalbuminuria and microalbuminuria, respectively. Limitations Use of angiotensin converting-enzyme inhibitors was not directly ascertained, although their use was proscribed during the DCCT. Conclusions Early in type 1 diabetes, repeated measurements of AER and urinary NAG may identify individuals susceptible to future diabetic nephropathy. Combining the two markers may yield a better predictive model than either one alone. Renal tubule stress may be more severe, reflecting abnormal renal tubule processing of AGE-modified proteins, among individuals susceptible to diabetic nephropathy. PMID:20138413

  11. Biologically active cannabinoids from high-potency Cannabis sativa.

    PubMed

    Radwan, Mohamed M; Elsohly, Mahmoud A; Slade, Desmond; Ahmed, Safwat A; Khan, Ikhlas A; Ross, Samir A

    2009-05-22

    Nine new cannabinoids (1-9) were isolated from a high-potency variety of Cannabis sativa. Their structures were identified as (+/-)-4-acetoxycannabichromene (1), (+/-)-3''-hydroxy-Delta((4'',5''))-cannabichromene (2), (-)-7-hydroxycannabichromane (3), (-)-7R-cannabicoumarononic acid A (4), 5-acetyl-4-hydroxycannabigerol (5), 4-acetoxy-2-geranyl-5-hydroxy-3-n-pentylphenol (6), 8-hydroxycannabinol (7), 8-hydroxycannabinolic acid A (8), and 2-geranyl-5-hydroxy-3-n-pentyl-1,4-benzoquinone (9) through 1D and 2D NMR spectroscopy, GC-MS, and HRESIMS. The known sterol beta-sitosterol-3-O-beta-d-glucopyranosyl-6'-acetate was isolated for the first time from cannabis. Compounds 6 and 7 displayed significant antibacterial and antifungal activities, respectively, while 5 displayed strong antileishmanial activity.

  12. Photoaffinity Labeling of Developing Jojoba Seed Microsomal Membranes with a Photoreactive Analog of Acyl-Coenzyme A (Acyl-CoA) (Identification of a Putative Acyl-CoA:Fatty Alcohol Acyltransferase.

    PubMed Central

    Shockey, J. M.; Rajasekharan, R.; Kemp, J. D.

    1995-01-01

    Jojoba (Simmondsia chinensis, Link) is the only plant known that synthesizes liquid wax. The final step in liquid wax biosynthesis is catalyzed by an integral membrane enzyme, fatty acyl-coenzyme A (CoA):fatty alcohol acyltransferase, which transfers an acyl chain from acyl-CoA to a fatty alcohol to form the wax ester. To purify the acyltransferase, we have labeled the enzyme with a radioiodinated, photoreactive analog of acyl-CoA, 12-[N-(4-azidosalicyl)amino] dodecanoyl-CoA (ASD-CoA). This molecule acts as an inhibitor of acyltransferase activity in the dark and as an irreversible inhibitor upon exposure to ultraviolet light. Oleoyl-CoA protects enzymatic activity in a concentration-dependent manner. Photolysis of microsomal membranes with labeled ASD-CoA resulted in strong labeling of two polypeptides of 57 and 52 kD. Increasing concentrations of oleoyl-CoA reduced the labeling of the 57-kD polypeptide dramatically, whereas the labeling of the 52-kD polypeptide was much less responsive to oleoyl-CoA. Also, unlike the other polypeptide, the labeling of the 57-kD polypeptide was enhanced considerably when photolyzed in the presence of dodecanol. These results suggest that a 57-kD polypeptide from jojoba microsomes may be the acyl-CoA:fatty alcohol acyltransferase. PMID:12228351

  13. Photoaffinity Labeling of Developing Jojoba Seed Microsomal Membranes with a Photoreactive Analog of Acyl-Coenzyme A (Acyl-CoA) (Identification of a Putative Acyl-CoA:Fatty Alcohol Acyltransferase.

    PubMed

    Shockey, J. M.; Rajasekharan, R.; Kemp, J. D.

    1995-01-01

    Jojoba (Simmondsia chinensis, Link) is the only plant known that synthesizes liquid wax. The final step in liquid wax biosynthesis is catalyzed by an integral membrane enzyme, fatty acyl-coenzyme A (CoA):fatty alcohol acyltransferase, which transfers an acyl chain from acyl-CoA to a fatty alcohol to form the wax ester. To purify the acyltransferase, we have labeled the enzyme with a radioiodinated, photoreactive analog of acyl-CoA, 12-[N-(4-azidosalicyl)amino] dodecanoyl-CoA (ASD-CoA). This molecule acts as an inhibitor of acyltransferase activity in the dark and as an irreversible inhibitor upon exposure to ultraviolet light. Oleoyl-CoA protects enzymatic activity in a concentration-dependent manner. Photolysis of microsomal membranes with labeled ASD-CoA resulted in strong labeling of two polypeptides of 57 and 52 kD. Increasing concentrations of oleoyl-CoA reduced the labeling of the 57-kD polypeptide dramatically, whereas the labeling of the 52-kD polypeptide was much less responsive to oleoyl-CoA. Also, unlike the other polypeptide, the labeling of the 57-kD polypeptide was enhanced considerably when photolyzed in the presence of dodecanol. These results suggest that a 57-kD polypeptide from jojoba microsomes may be the acyl-CoA:fatty alcohol acyltransferase.

  14. Functional involvement of TMF/ARA160 in Rab6-dependent retrograde membrane traffic.

    PubMed

    Yamane, Junko; Kubo, Akiharu; Nakayama, Kazuhisa; Yuba-Kubo, Akiko; Katsuno, Tatsuya; Tsukita, Shoichiro; Tsukita, Sachiko

    2007-10-01

    The small GTPase Rab6 regulates retrograde membrane traffic from endosomes to the Golgi apparatus and from the Golgi to the endoplasmic reticulum (ER). We examined the role of a Rab6-binding protein, TMF/ARA160 (TATA element modulatory factor/androgen receptor-coactivator of 160 kDa), in this process. High-resolution immunofluorescence imaging revealed that TMF signal surrounded Rab6-positive Golgi structures and immunoelectron microscopy revealed that TMF is concentrated at the budding structures localized at the tips of cisternae. The knockdown of either TMF or Rab6 by RNA interference blocked retrograde transport of endocytosed Shiga toxin from early/recycling endosomes to the trans-Golgi network, causing missorting of the toxin to late endosomes/lysosomes. However, the TMF knockdown caused Rab6-dependent displacement of N-acetylgalactosaminyltransferase-2 (GalNAc-T2), but not beta1,4-galactosyltransferase (GalT), from the Golgi. Analyses using chimeric proteins, in which the cytoplasmic regions of GalNAc-T2 and GalT were exchanged, revealed that the cytoplasmic region of GalNAc-T2 plays a crucial role in its TMF-dependent Golgi retention. These observations suggest critical roles for TMF in two Rab6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER.

  15. A polysaccharide isolated from the liquid culture of Lentinus edodes (Shiitake) mushroom mycelia containing black rice bran protects mice against a Salmonella lipopolysaccharide-induced endotoxemia.

    PubMed

    Kim, Sung Phil; Park, Sun Ok; Lee, Sang Jong; Nam, Seok Hyun; Friedman, Mendel

    2013-11-20

    Endotoxemia (sepsis, septic shock) is an inflammatory, virulent disease that results mainly from bacterial infection. The present study investigates the inhibitory effect of a bioprocessed polysaccharide (BPP) isolated from the edible Lentinus edodes liquid mycelial mushroom culture supplemented with black rice bran against murine endotoxemia induced by the Salmonella lipopolysaccharide and d-galactosamine (LPS/GalN). BPP was obtained after dialysis against water using a cellulose tube with a molecular weight cutoff of 10000. BPP eluted as a single peak on an HPLC chromatogram. Acid hydrolysis of BPP showed the presence of the following sugars: fucose, galactose, galactosamine, glucose, glucosamine, mannose, rhamnose, and xylose. Treatment of BPP with β-glucanase reduced its immunostimulating activity, suggesting that the polysaccharide has a β-glucan structure. Pretreatment of mice with BPP via oral or intraperitoneal (ip) administration for 2 weeks resulted in the suppression of LPS/GalN-induced catalase, superoxide dismutase (SOD), and transaminase (GOT/GPT) liver enzymes, amelioration of necrotic liver lesions, and reduction of tumor necrosis factor α (TNF-α) and nitrite serum levels as well as myeloperoxidase (MPO) activity, an index of necrotic injury. Immunostimulating macrophage activity was up to 5.4-fold greater than that observed with the culture without the rice bran. BPP also extended the lifespan of the toxemic mice. These positive results with inflammation biomarkers and lifespan studies suggest that the BPP can protect mice against LPS/GalN-induced liver, lung, and kidney injuries and inflammation by blocking oxidative stress and TNF-α production, thus increasing the survival of the toxic shock-induced mice. The polysaccharide has the potential to serve as a new functional food.

  16. Influence of Piper betle on hepatic marker enzymes and tissue antioxidant status in D-galactosamine-induced hepatotoxic rats.

    PubMed

    Pushpavalli, Ganesan; Veeramani, Chinnadurai; Pugalendi, Kodukkur Viswanathan

    2008-01-01

    D-galactosamine is a well-established hepatotoxicant that induces a diffuse type of liver injury closely resembling human viral hepatitis. D-galactosamine by its property of generating free radicals causes severe damage to the membrane and affects almost all organs of the human body. The leaves of Piper betle L., a commonly used masticatory in Asian countries, possess several biological properties. Our aim is to investigate the in vivo antioxidant potential of P. betle leaf-extract against oxidative stress induced by D-galactosamine intoxication in male albino Wistar rats. Toxicity was induced by an intraperitoneal injection of D-galactosamine, 400 mg/kg body weight (BW) for 21 days. Rats were treated with P. betle extract (200 mg/kg BW) via intragastric intubations. We assessed the activities of liver marker enzymes (aspartate amino-transferase, alanine aminotransferase, alkaline phosphatase, gamma glutamyl transpeptidase) and levels of thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides, superoxide dismutase, catalase, glutathione peroxidase, vitamin C, vitamin E, and reduced glutathione. The extract significantly improved the status of antioxidants and decreased TBARS, hydroperoxides, and liver marker enzymes when compared with the D-galactosamine treated group, demonstrating its hepatoprotective and antioxidant properties.

  17. Anthropometric Survey of the Imperial Iranian Armed Forces. Volume 2. Statistical Data

    DTIC Science & Technology

    1971-03-01

    nI JIni D D 0c41 1. 4n Lk MN ~ LAMO NOO’O-0’r4 -4 ’t 4 ~ ý N-*I4Lr- -44 o.L .4 - o N"-4 0 4lA in0. coN -4. -4 . 41 Go N- -4 0 - 0 0LINA .4 4 P.4LA...m -4 0r o40 r4 C4 N 0 - -n 0 ’-40 t . . 41 .-. 4, d O - .0tiI-P .- A -n 0 N m a,4( 0 gao Mr .’m00 < OD r- mo N~ m,- (314- 0 0.0C l i O ~ j - 000 04 m

  18. Prime Contract Awards by State or Country, Place and Contractor. Part 7 (Lake Park, Georgia - New Haven, Indiana), FY1991

    DTIC Science & Technology

    1991-01-01

    4 N3- 4 U n t -C 1.U.00 00L00 * 0Goa oCI LAdo .C000 4 G-4 00 -4 WW4 L.4000 0L o 30 U in0(Y) U, 0 -4-4-4-4-4.4CF 0 0M - 00 0 M f 044- (Dcu4 01 UI (U0...m rfin In in tri j3li I M) 1 16-1-4 N-4 - 00 enC 0 -4- m-N N N4-4- 1 - 4- - 4- -4 --4-4 4- dI 6) I I Im~ 1 4 1I -N 0 -4 CL 4 - 4 -0 ccw r-t- 1" w 0 m...4 -4NN4N4C UN4 uD U-1 -4- 4-IN .4- 4 O -4 1 0 K 1, () 4 0 C. l u ) i N4 0 -in 000 = - =D mN 31 Pi-.- -4 ENC - 0D K 0. 1 04t Km -0 1- .1 -0Cl 1- 0 1-0

  19. [Establishment of a D-galactosamine/lipopolysaccharide induced acute-on-chronic liver failure model in rats].

    PubMed

    Liu, Xu-hua; Chen, Yu; Wang, Tai-ling; Lu, Jun; Zhang, Li-jie; Song, Chen-zhao; Zhang, Jing; Duan, Zhong-ping

    2007-10-01

    To establish a practical and reproducible animal model of human acute-on-chronic liver failure for further study of the pathophysiological mechanism of acute-on-chronic liver failure and for drug screening and evaluation in its treatment. Immunological hepatic fibrosis was induced by human serum albumin in Wistar rats. In rats with early-stage cirrhosis (fibrosis stage IV), D-galactosamine and lipopolysaccharide were administered. Mortality and survival time were recorded in 20 rats. Ten rats were sacrificed at 4, 8, and 12 hours. Liver function tests and plasma cytokine levels were measured after D-galactosamine/lipopolysaccharide administration and liver pathology was studied. Cell apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. Most of the rats treated with human albumin developed cirrhosis and fibrosis, and 90% of them died from acute liver failure after administration of D-galactosamine/lipopolysaccharide, with a mean survival time of (16.1+/-3.7) hours. Liver histopathology showed massive or submassive necrosis of the regenerated nodules, while fibrosis septa were intact. Liver function tests were compatible with massive necrosis of hepatocytes. Plasma level of TNFalpha increased significantly, parallel with the degree of the hepatocytes apoptosis. Plasma IL-10 levels increased similarly as seen in patients with acute-on-chronic liver failure. We established an animal model of acute-on-chronic liver failure by treating rats with human serum albumin and later with D-galactosamine and lipopolysaccharide. TNFalpha-mediated liver cell apoptoses plays a very important role in the pathogenesis of acute liver failure.

  20. High-resolution crystal structures and STD NMR mapping of human ABO(H) blood group glycosyltransferases in complex with trisaccharide reaction products suggest a molecular basis for product release.

    PubMed

    Gagnon, Susannah M L; Legg, Max S G; Sindhuwinata, Nora; Letts, James A; Johal, Asha R; Schuman, Brock; Borisova, Svetlana N; Palcic, Monica M; Peters, Thomas; Evans, Stephen V

    2017-10-01

    The human ABO(H) blood group A- and B-synthesizing glycosyltransferases GTA and GTB have been structurally characterized to high resolution in complex with their respective trisaccharide antigen products. These findings are particularly timely and relevant given the dearth of glycosyltransferase structures collected in complex with their saccharide reaction products. GTA and GTB utilize the same acceptor substrates, oligosaccharides terminating with α-l-Fucp-(1→2)-β-d-Galp-OR (where R is a glycolipid or glycoprotein), but use distinct UDP donor sugars, UDP-N-acetylgalactosamine and UDP-galactose, to generate the blood group A (α-l-Fucp-(1→2)[α-d-GalNAcp-(1→3)]-β-d-Galp-OR) and blood group B (α-l-Fucp-(1→2)[α-d-Galp-(1→3)]-β-d-Galp-OR) determinant structures, respectively. Structures of GTA and GTB in complex with their respective trisaccharide products reveal a conflict between the transferred sugar monosaccharide and the β-phosphate of the UDP donor. Mapping of the binding epitopes by saturation transfer difference NMR measurements yielded data consistent with the X-ray structural results. Taken together these data suggest a mechanism of product release where monosaccharide transfer to the H-antigen acceptor induces active site disorder and ejection of the UDP leaving group prior to trisaccharide egress. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Thyroid hormone deiodinases D1, D2, and D3 are expressed in human endothelial dermal microvascular line: effects of thyroid hormones.

    PubMed

    Sabatino, Laura; Lubrano, Valter; Balzan, Silvana; Kusmic, Claudia; Del Turco, Serena; Iervasi, Giorgio

    2015-01-01

    Endothelial system acts as a large endocrine organ in the human body; however, little is still known about the regulative role of THs on endothelial cells. Aim of the present study was to investigate the expression of the TH deiodinases (D1, D2, and D3) and TH receptors (TRα1, TRα2, and TRβ1) in an endothelial microvascular cultured cell model (HMEC-1), after stimulation with triiodothyronine (T3, 10-100 nM), thyroxine (T4, 10-100 nM), and reverse T3 (rT3, 1-10 nM). DIO1 was significantly inhibited by T4 at 10 and 100 nM (p < 0.001). rT3 significantly inhibited DIO1 at 1 nM concentration (p < 0.01) and stimulated DIO1 at 10 nM dosage (p < 0.001). T4 and rT3 significantly inhibited DIO2 at all concentrations. DIO3 was induced at 100 nM T3 (p < 0.05) and 100 nM rT3 (p < 0.01), and TRα1 and TRα2 mRNAs were significantly increased after 100 nM T3 treatment (p < 0.05) and decreased after 1 and 10 nM rT3 (p < 0.05). TRβ1 was significantly increased by all THs at different concentrations: 10 nM T3 and 100 nM T3 (p < 0.05), 1 nM rT3 (p < 0.001), and 100 nM T4 (p < 0.01). D1 and D2 protein levels were evaluated, but no significant difference was observed for any hormonal treatment. For the first time, we found that the TH deiodinases and receptors are expressed in endothelial HMEC-1 cells. These findings might be of significant clinical relevance, given the important regulatory role of the endothelium as first barrier to the bloodstream.

  2. The folding of acetyl(Ala)28NH2 and acetyl(Ala)40NH2 extended strand peptides into antiparallel β-sheets. A density functional theory study of β-sheets with β-turns.

    PubMed

    Ali-Torres, Jorge; Dannenberg, J J

    2012-12-06

    We report ONIOM calculations using B3LYP/D95** and AM1 on β-sheet formation from acetyl(Ala)(N)NH(2) (N = 28 or 40). The sheets contain from one to four β-turns for N = 28 and up to six for N = 40. We have obtained four types of geometrically optimized structures. All contain only β-turns. They differ from each other in the types of β-turns formed. The unsolvated sheets containing two turns are most stable. Aqueous solvation (using the SM5.2 and CPCM methods) reduces the stabilities of the folded structures compared to the extended strands.

  3. Comparison of dynamics of wildtype and V94M human UDP-galactose 4-epimerase-A computational perspective on severe epimerase-deficiency galactosemia.

    PubMed

    Timson, David J; Lindert, Steffen

    2013-09-10

    UDP-galactose 4'-epimerase (GALE) catalyzes the interconversion of UDP-galactose and UDP-glucose, an important step in galactose catabolism. Type III galactosemia, an inherited metabolic disease, is associated with mutations in human GALE. The V94M mutation has been associated with a very severe form of type III galactosemia. While a variety of structural and biochemical studies have been reported that elucidate differences between the wildtype and this mutant form of human GALE, little is known about the dynamics of the protein and how mutations influence structure and function. We performed molecular dynamics simulations on the wildtype and V94M enzyme in different states of substrate and cofactor binding. In the mutant, the average distance between the substrate and both a key catalytic residue (Tyr157) and the enzyme-bound NAD+ cofactor and the active site dynamics are altered making substrate binding slightly less stable. However, overall stability or dynamics of the protein is not altered. This is consistent with experimental findings that the impact is largely on the turnover number (kcat), with less substantial effects on Km. Active site fluctuations were found to be correlated in enzyme with substrate bound to just one of the subunits in the homodimer suggesting inter-subunit communication. Greater active site loop mobility in human GALE compared to the equivalent loop in Escherichia coli GALE explains why the former can catalyze the interconversion of UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine while the bacterial enzyme cannot. This work illuminates molecular mechanisms of disease and may inform the design of small molecule therapies for type III galactosemia. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Crystal Structures of Active Fully Assembled Substrate- and Product-Bound Complexes of UDP-N-Acetylmuramic Acid:l-Alanine Ligase (MurC) from Haemophilus influenzae

    PubMed Central

    Mol, Clifford D.; Brooun, Alexei; Dougan, Douglas R.; Hilgers, Mark T.; Tari, Leslie W.; Wijnands, Robert A.; Knuth, Mark W.; McRee, Duncan E.; Swanson, Ronald V.

    2003-01-01

    UDP-N-acetylmuramic acid:l-alanine ligase (MurC) catalyzes the addition of the first amino acid to the cytoplasmic precursor of the bacterial cell wall peptidoglycan. The crystal structures of Haemophilus influenzae MurC in complex with its substrate UDP-N-acetylmuramic acid (UNAM) and Mg2+ and of a fully assembled MurC complex with its product UDP-N-acetylmuramoyl-l-alanine (UMA), the nonhydrolyzable ATP analogue AMPPNP, and Mn2+ have been determined to 1.85- and 1.7-Å resolution, respectively. These structures reveal a conserved, three-domain architecture with the binding sites for UNAM and ATP formed at the domain interfaces: the N-terminal domain binds the UDP portion of UNAM, and the central and C-terminal domains form the ATP-binding site, while the C-terminal domain also positions the alanine. An active enzyme structure is thus assembled at the common domain interfaces when all three substrates are bound. The MurC active site clearly shows that the γ-phosphate of AMPPNP is positioned between two bound metal ions, one of which also binds the reactive UNAM carboxylate, and that the alanine is oriented by interactions with the positively charged side chains of two MurC arginine residues and the negatively charged alanine carboxyl group. These results indicate that significant diversity exists in binding of the UDP moiety of the substrate by MurC and the subsequent ligases in the bacterial cell wall biosynthesis pathway and that alterations in the domain packing and tertiary structure allow the Mur ligases to bind sequentially larger UNAM peptide substrates. PMID:12837790

  5. Crystal structures of active fully assembled substrate- and product-bound complexes of UDP-N-acetylmuramic acid:L-alanine ligase (MurC) from Haemophilus influenzae.

    PubMed

    Mol, Clifford D; Brooun, Alexei; Dougan, Douglas R; Hilgers, Mark T; Tari, Leslie W; Wijnands, Robert A; Knuth, Mark W; McRee, Duncan E; Swanson, Ronald V

    2003-07-01

    UDP-N-acetylmuramic acid:L-alanine ligase (MurC) catalyzes the addition of the first amino acid to the cytoplasmic precursor of the bacterial cell wall peptidoglycan. The crystal structures of Haemophilus influenzae MurC in complex with its substrate UDP-N-acetylmuramic acid (UNAM) and Mg(2+) and of a fully assembled MurC complex with its product UDP-N-acetylmuramoyl-L-alanine (UMA), the nonhydrolyzable ATP analogue AMPPNP, and Mn(2+) have been determined to 1.85- and 1.7-A resolution, respectively. These structures reveal a conserved, three-domain architecture with the binding sites for UNAM and ATP formed at the domain interfaces: the N-terminal domain binds the UDP portion of UNAM, and the central and C-terminal domains form the ATP-binding site, while the C-terminal domain also positions the alanine. An active enzyme structure is thus assembled at the common domain interfaces when all three substrates are bound. The MurC active site clearly shows that the gamma-phosphate of AMPPNP is positioned between two bound metal ions, one of which also binds the reactive UNAM carboxylate, and that the alanine is oriented by interactions with the positively charged side chains of two MurC arginine residues and the negatively charged alanine carboxyl group. These results indicate that significant diversity exists in binding of the UDP moiety of the substrate by MurC and the subsequent ligases in the bacterial cell wall biosynthesis pathway and that alterations in the domain packing and tertiary structure allow the Mur ligases to bind sequentially larger UNAM peptide substrates.

  6. Triterpene saponins from Vietnamese ginseng (Panax vietnamensis) and their hepatocytoprotective activity.

    PubMed

    Tran, Q L; Adnyana, I K; Tezuka, Y; Nagaoka, T; Tran, Q K; Kadota, S

    2001-04-01

    The methanol extract of Vietnamese ginseng (Panax vietnamensis) was found to possess hepatocytoprotective effects on D-galactosamine (D-GalN)/tumor necrosis factor-alpha (TNF-alpha)-induced cell death in primary cultured mouse hepatocytes. Further chemical investigation of the extract afforded two new dammarane-type triterpene saponins, ginsenoside Rh(5) (1) and vina-ginsenoside R(25) (2), as well as eight known dammarane-type triterpene saponins, majonoside R(2) (3), pseudo-ginsenoside RT(4) (4), vina-ginsenosides R(1) (5), R(2) (6), and R(10) (7), ginsenosides Rg(1) (8), Rh(1) (9), and Rh(4) (10), and a known sapogenin protopanaxatriol oxide II (11). Their structures were elucidated on the basis of spectral analysis. In addition, by the using LC-electrospray ionization (ESI)-MS method, five known saponins, ginsenosides Rb(1), Rb(2), Rc, Rd, and Re (12--16), were also identified in the extract. Among the compounds isolated, majonoside R(2) (3), the main saponin in Vietnamese ginseng, showed strong protective activity against D-GalN/TNF-alpha-induced cell death in primary cultured mouse hepatocytes. This demonstrates that the hepatocytoprotective effect of Vietnamese ginseng is due to dammarane-type triterpene saponins that have an ocotillol-type side chain, a characteristic constituent of Vietnamese ginseng.

  7. Comparative Effects of Fructose and Glucose on Lipogenic Gene Expression and Intermediary Metabolism in HepG2 Liver Cells

    PubMed Central

    Fiehn, Oliver; Adams, Sean H.

    2011-01-01

    Consumption of large amounts of fructose or sucrose increases lipogenesis and circulating triglycerides in humans. Although the underlying molecular mechanisms responsible for this effect are not completely understood, it is possible that as reported for rodents, high fructose exposure increases expression of the lipogenic enzymes fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC-1) in human liver. Since activation of the hexosamine biosynthesis pathway (HBP) is associated with increases in the expression of FAS and ACC-1, it raises the possibility that HBP-related metabolites would contribute to any increase in hepatic expression of these enzymes following fructose exposure. Thus, we compared lipogenic gene expression in human-derived HepG2 cells after incubation in culture medium containing glucose alone or glucose plus 5 mM fructose, using the HBP precursor 10 mM glucosamine (GlcN) as a positive control. Cellular metabolite profiling was conducted to analyze differences between glucose and fructose metabolism. Despite evidence for the active uptake and metabolism of fructose by HepG2 cells, expression of FAS or ACC-1 did not increase in these cells compared with those incubated with glucose alone. Levels of UDP-N-acetylglucosamine (UDP-GlcNAc), the end-product of the HBP, did not differ significantly between the glucose and fructose conditions. Exposure to 10 mM GlcN for 10 minutes to 24 hours resulted in 8-fold elevated levels of intracellular UDP-GlcNAc (P<0.001), as well as a 74–126% increase in FAS (P<0.05) and 49–95% increase in ACC-1 (P<0.01) expression above controls. It is concluded that in HepG2 liver cells cultured under standard conditions, sustained exposure to fructose does not result in an activation of the HBP or increased lipogenic gene expression. Should this scenario manifest in human liver in vivo, it would suggest that high fructose consumption promotes triglyceride synthesis primarily through its action to provide lipid precursor carbon and not by activating lipogenic gene expression. PMID:22096489

  8. Protective Role of Cannabinoid Receptor 2 Activation in Galactosamine/Lipopolysaccharide-Induced Acute Liver Failure through Regulation of Macrophage Polarization and MicroRNAs

    PubMed Central

    Tomar, Sunil; E. Zumbrun, Elizabeth; Nagarkatti, Mitzi

    2015-01-01

    Acute liver failure (ALF) is a potentially life-threatening disorder without any effective treatment strategies. d-Galactosamine (GalN)/lipopolysaccharide (LPS)–induced ALF is a widely used animal model to identify novel hepato-protective agents. In the present study, we investigated the potential of a cannabinoid receptor 2 (CB2) agonist, JWH-133 [(6aR,10aR)-3-(1,1-dimethylbutyl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran], in the amelioration of GalN/LPS-induced ALF. JWH-133 treatment protected the mice from ALF-associated mortality, mitigated alanine transaminase and proinflammatory cytokines, suppressed histopathological and apoptotic liver damage, and reduced liver infiltration of mononuclear cells (MNCs). Furthermore, JWH-133 pretreatment of M1/M2-polarized macrophages significantly increased the secretion of anti-inflammatory cytokine interleukin-10 (IL-10) in M1 macrophages and potentiated the expression of M2 markers in M2-polarized macrophages. In vivo, JWH-133 treatment also suppressed ALF-triggered expression of M1 markers in liver MNCs, while increasing the expression of M2 markers such as Arg1 and IL-10. microRNA (miR) microarray analysis revealed that JWH-133 treatment altered the expression of only a few miRs in the liver MNCs. Gene ontology analysis of the targets of miRs suggested that Toll-like receptor (TLR) signaling was among the most significantly targeted cellular pathways. Among the altered miRs, miR-145 was found to be the most significantly decreased. This finding correlated with concurrent upregulated expression of its predicted target gene, interleukin-1 receptor–associated kinase 3, a negative regulator of TLR4 signaling. Together, these data are the first to demonstrate that CB2 activation attenuates GalN/LPS-induced ALF by inducing an M1 to M2 shift in macrophages and by regulating the expression of unique miRs that target key molecules involved in the TLR4 pathway. PMID:25749929

  9. Effects of intensive cognitive-behavioral therapy on cingulate neurochemistry in obsessive–compulsive disorder

    PubMed Central

    O'Neill, Joseph; Gorbis, Eda; Feusner, Jamie D.; Yip, Jenny C.; Chang, Susanna; Maidment, Karron M.; Levitt, Jennifer G.; Salamon, Noriko; Ringman, John M.; Saxena, Sanjaya

    2013-01-01

    The neurophysiological bases of cognitive-behavioral therapy (CBT) for obsessive–compulsive disorder (OCD) are incompletely understood. Previous studies, though sparse, implicate metabolic changes in pregenual anterior cingulate cortex (pACC) and anterior middle cingulate cortex (aMCC) as neural correlates of response to CBT. The goal of this pilot study was to determine the relationship between levels of the neurochemically interlinked metabolites glutamate + glutamine (Glx) and N-acetyl-aspartate + N-acetyl-aspartyl-glutamate (tNAA) in pACC and aMCC to pretreatment OCD diagnostic status and OCD response to CBT. Proton magnetic resonance spectroscopic imaging (1H MRSI) was acquired from pACC and aMCC in 10 OCD patients at baseline, 8 of whom had a repeat scan after 4 weeks of intensive CBT. pACC was also scanned (baseline only) in 8 age-matched healthy controls. OCD symptoms improved markedly in 8/8 patients after CBT. In right pACC, tNAA was significantly lower in OCD patients than controls at baseline and then increased significantly after CBT. Baseline tNAA also correlated with post-CBT change in OCD symptom severity. In left aMCC, Glx decreased significantly after intensive CBT. These findings add to evidence implicating the pACC and aMCC as loci of the metabolic effects of CBT in OCD, particularly effects on glutamatergic and N-acetyl compounds. Moreover, these metabolic responses occurred after just 4 weeks of intensive CBT, compared to 3 months for standard weekly CBT. Baseline levels of tNAA in the pACC may be associated with response to CBT for OCD. Lateralization of metabolite effects of CBT, previously observed in subcortical nuclei and white matter, may also occur in cingulate cortex. Tentative mechanisms for these effects are discussed. Comorbid depressive symptoms in OCD patients may have contributed to metabolite effects, although baseline and post-CBT change in depression ratings varied with choline-compounds and myo-inositol rather than Glx or tNAA. PMID:23290560

  10. Biodiversity of Exopolysaccharides Produced by Streptococcus thermophilus Strains Is Reflected in Their Production and Their Molecular and Functional Characteristics

    PubMed Central

    Vaningelgem, Frederik; Zamfir, Medana; Mozzi, Fernanda; Adriany, Tom; Vancanneyt, Marc; Swings, Jean; De Vuyst, Luc

    2004-01-01

    Twenty-six lactic acid bacterium strains isolated from European dairy products were identified as Streptococcus thermophilus and characterized by bacterial growth and exopolysaccharide (EPS)-producing capacity in milk and enriched milk medium. In addition, the acidification rates of the different strains were compared with their milk clotting behaviors. The majority of the strains grew better when yeast extract and peptone were added to the milk medium, although the presence of interfering glucomannans was shown, making this medium unsuitable for EPS screening. EPS production was found to be strain dependent, with the majority of the strains producing between 20 and 100 mg of polymer dry mass per liter of fermented milk medium. Furthermore, no straightforward relationship between the apparent viscosity and EPS production could be detected in fermented milk medium. An analysis of the molecular masses of the isolated EPS by gel permeation chromatography revealed a large variety, ranging from 10 to >2,000 kDa. A distinction could be made between high-molecular-mass EPS (>1,000 kDa) and low-molecular-mass EPS (<1,000 kDa). Based on the molecular size of the EPS, three groups of EPS-producing strains were distinguished. Monomer analysis of the EPS by high-performance anion-exchange chromatography with amperometric detection was demonstrated to be a fast and simple method. All of the EPS from the S. thermophilus strains tested were classified into six groups according to their monomer compositions. Apart from galactose and glucose, other monomers, such as (N-acetyl)galactosamine, (N-acetyl)glucosamine, and rhamnose, were also found as repeating unit constituents. Three strains were found to produce EPS containing (N-acetyl)glucosamine, which to our knowledge was never found before in an EPS from S. thermophilus. Furthermore, within each group, differences in monomer ratios were observed, indicating possible novel EPS structures. Finally, large differences between the consistencies of EPS solutions from five different strains were assigned to differences in their molecular masses and structures. PMID:14766570

  11. Separation and purification of four flavonol diglucosides from the flower of Meconopsis integrifolia by high-speed counter-current chromatography.

    PubMed

    Huang, Yanfei; Han, Yatao; Chen, Keli; Huang, Bisheng; Liu, Yuan

    2015-12-01

    Flavonoids are the main components of Meconopsis integrifolia (Maxim.) Franch, which is a traditional Tibetan medicine. However, traditional chromatography separation requires a large quantity of raw M. integrifolia and is very time consuming. Herein, we applied high-speed counter-current chromatography in the separation and purification of flavonoids from the ethanol extracts of M. integrifolia flower. Ethyl acetate/n-butanol/water (2:3:5, v/v/v) was selected as the optimum solvent system to purify the four components, namely quercetin-3-O-β-d-glucopyrannosy-(1→6)-β-d-glucopyranoside (compound 1, 60 mg), quercetin 3-O-[2'''-O-acetyl-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (compound 2, 40 mg), quercetin 3-O-[3'''-O-acetyl-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (compound 3, 11 mg), and quercetin 3-O-[6'''-O-acetyl-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (compound 4, 16 mg). Among the four compounds, 3 and 4 were new acetylated flavonol diglucosides. After the high-speed counter-current chromatography separation, the purities of the four flavonol diglucosides were 98, 95, 90, and 92%, respectively. The structures of these compounds were identified by mass spectrometry and NMR spectroscopy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Purification, crystallization and preliminary X-ray analysis of Escherichia coli UDP-N-acetylmuramoyl:L-alanine ligase (MurC).

    PubMed

    Deva, Taru; Pryor, KellyAnn D; Leiting, Barbara; Baker, Edward N; Smith, Clyde A

    2003-08-01

    UDP-N-acetylmuramoyl:L-alanine ligase (MurC) is involved in the pathway leading from UDP-N-glucosamine to the UDP-N-acetylmuramoyl:pentapeptide unit, which is the building block for the peptidoglycan layer found in all bacterial cell walls. The pathways leading to the biosynthesis of the peptidoglycan layer are important targets for the development of novel antibiotics, since animal cells do not contain these pathways. MurC is the first of four similar ATP-dependent amide-bond ligases which share primary and tertiary structural similarities. The crystal structures of three of these have been determined by X-ray crystallography, giving insights into the binding of the carbohydrate substrate and the ATP. Diffraction-quality crystals of the enzyme MurC have been obtained in both native and selenomethionine forms and X-ray diffraction data have been collected at the Se edge at a synchrotron source. The crystals are orthorhombic, with unit-cell parameters a = 73.9, b = 93.6, c = 176.8 A, and diffraction has been observed to 2.6 A resolution.

  13. Mechanism of the lysosomal membrane enzyme acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bame, K.J.

    1986-01-01

    Acetyl-CoA:..cap alpha..-glucosaminide N-acetyltransferase is a lysosomal membrane enzyme, deficient in the genetic disease Sanfilippo C syndrome. The enzyme catalyzes the transfer of an acetyl group from cytoplasmic acetyl-CoA to terminal ..cap alpha..-glucosamine residues of heparan sulfate within the organelle. The reaction mechanism was examined using high purified lysosomal membranes from rat liver and human fibroblasts. The N-acetyltransferase reaction is optimal above pH 5.5 and a 2-3 fold stimulation of activity is observed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicate that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. The bindingmore » of acetyl-CoA to the enzyme is measured by exchange label from (/sup 3/H)CoA to acetyl-CoA, and is optimal at pH's above 7.0. The acetyl-enzyme intermediate is formed by incubating membranes with (/sup 3/H)acetyl-CoA. The acetyl group can be transferred to glucosamine, forming (/sup 3/H)N-acetylglucosamine; the transfer is optimal between pH 4 and 5. Lysosomal membranes from Sanfilippo C fibroblasts confirm that these half reactions carried out by the N-acetyltransferase. The enzyme is inactivated by N-bromosuccinimide and diethylpyrocarbonate, indicating that a histidine is involved in the reaction. These results suggest that the histidine residue is at the active site of the enzyme. The properties of the N-acetyltransferase in the membrane, the characterization of the enzyme kinetics, the chemistry of a histidine mediated acetylation and the pH difference across the lysosomal membrane all support a transmembrane acetylation mechanism.« less

  14. Structural characterization of ribT from Bacillus subtilis reveals it as a GCN5-related N-acetyltransferase.

    PubMed

    Srivastava, Ritika; Kaur, Amanpreet; Sharma, Charu; Karthikeyan, Subramanian

    2018-04-01

    In bacteria, biosynthesis of riboflavin occurs through a series of enzymatic steps starting with one molecule of GTP and two molecules of ribulose-5-phosphate. In Bacillus subtilis (B. subtilis) the genes (ribD/G, ribE, ribA, ribH and ribT) which are involved in riboflavin biosynthesis are organized in an operon referred as rib operon. All the genes of rib operon are characterized functionally except for ribT. The ribT gene with unknown function is found at the distal terminal of rib operon and annotated as a putative N-acetyltransferase. Here, we report the crystal structure of ribT from B. subtilis (bribT) complexed with coenzyme A (CoA) at 2.1 Å resolution determined by single wavelength anomalous dispersion method. Our structural study reveals that bribT is a member of GCN5-related N-acetyltransferase (GNAT) superfamily and contains all the four conserved structural motifs that have been in other members of GNAT superfamily. The members of GNAT family transfers the acetyl group from acetyl coenzyme A (AcCoA) to a variety of substrates. Moreover, the structural analysis reveals that the residues Glu-67 and Ser-107 are suitably positioned to act as a catalytic base and catalytic acid respectively suggesting that the catalysis by bribT may follow a direct transfer mechanism. Surprisingly, the mutation of a non-conserved amino acid residue Cys-112 to alanine or serine affected the binding of AcCoA to bribT, indicating a possible role of Cys-112 in the catalysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Reversible Lysine Acetylation Regulates Activity of Human Glycine N-Acyltransferase-like 2 (hGLYATL2)

    PubMed Central

    Waluk, Dominik P.; Sucharski, Filip; Sipos, Laszlo; Silberring, Jerzy; Hunt, Mary C.

    2012-01-01

    Lysine acetylation is a major post-translational modification of proteins and regulates many physiological processes such as metabolism, cell migration, aging, and inflammation. Proteomic studies have identified numerous lysine-acetylated proteins in human and mouse models (Kim, S. C., Sprung, R., Chen, Y., Xu, Y., Ball, H., Pei, J., Cheng, T., Kho, Y., Xiao, H., Xiao, L., Grishin, N. V., White, M., Yang, X. J., and Zhao, Y. (2006) Mol. Cell 23, 607–618). One family of proteins identified in this study was the murine glycine N-acyltransferase (GLYAT) enzymes, which are acetylated on lysine 19. Lysine 19 is a conserved residue in human glycine N-acyltransferase-like 2 (hGLYATL2) and in several other species, showing that this residue may be important for enzyme function. Mutation of lysine 19 in recombinant hGLYATL2 to glutamine (K19Q) and arginine (K19R) resulted in a 50–80% lower production of N-oleoyl glycine and N-arachidonoylglycine, indicating that lysine 19 is important for enzyme function. LC/MS/MS confirmed that Lys-19 is not acetylated in wild-type hGLYATL2, indicating that Lys-19 requires to be deacetylated for full activity. The hGLYATL2 enzyme conjugates medium- and long-chain saturated and unsaturated acyl-CoA esters to glycine, resulting in the production of N-oleoyl glycine and also N-arachidonoyl glycine. N-Oleoyl glycine and N-arachidonoyl glycine are structurally and functionally related to endocannabinoids and have been identified as signaling molecules that regulate functions like the perception of pain and body temperature and also have anti-inflammatory properties. In conclusion, acetylation of lysine(s) in hGLYATL2 regulates the enzyme activity, thus linking post-translational modification of proteins with the production of biological signaling molecules, the N-acyl glycines. PMID:22408254

  16. N1-acetyl substituted pyrrolidine derivative CIP-A5: a novel compound that could ameliorate liver cirrhosis through modulation of hepatic stellate cell activity.

    PubMed

    Wang, Xiao-Dan; Gao, Zu-Hua; Xue, Xia; Cheng, Yan-Na; Yue, Pan; Fang, Xu-Wen; Qu, Xian-Jun

    2011-06-01

    (2S,4R)-methyl 1-acetyl-4-(N-(4-bromophenyl)sulfamoyloxy)pyrrolidine-2-carboxylate (CIP-A5) is the N1-acetyl substituted pyrrolidine derivative which was designed against the structure of matrix metalloproteinase (MMP-2) and MMP-9. CIP-A5 has been considered as a candidate compound for treatment of liver cirrhosis. In this study, we evaluated the efficacy of CIP-A5 on the activity of hepatic stellate cells. CIP-A5 prevented the transforming growth factor β (TGF-β)-induced proliferation of hepatic stellate HSC-T6 cells as estimated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. CIP-A5 stimulated MMPs activity as evidenced by an increase of degradation of succinylated gelatin. Gelatin zymography analysis showed that CIP-A5 stimulated the secretion and activity of MMP-2 and MMP-9 in HSC-T6 cells. This stimulatory effect on MMPs was verified by the observation of increased expression of MMP-2 and MMP-9 as evaluated by Western blot assay. At the same time, a significant decrease of the expression of tissue inhibitors of matrix metalloproteinases-1 (TIMP-1) was observed, suggesting a modulation of the balance of MMPs/TIMPs in hepatic stellate cells. CIP-A5 treatment also resulted in suppression of the profibrogenic cytokines, such as TGF-β, tumor necrosis factor alpha (TNF-α) and connective tissue growth factor (CTGF) in HSC-T6 cells. CIP-A5 did not have cytotoxicity to human normal hepatic cells. These results implied that CIP-A5 could selectively ameliorate the process of liver cirrhosis through modulation of activated hepatic stellate cell activity, which offers hope for prevention and treatment of this devastating end-stage liver disease. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Synthesis and conformational studies of carrabiose and its 4'-sulphate and 2,4'-disulphate.

    PubMed

    Parra, E; Caro, H N; Jiménez-Barbero, J; Martín-Lomas, M; Bernabé, M

    1990-12-15

    Methyl alpha-carrabioside (13), and its 4-sulphate (19) and 2,4-disulphate (20) have been synthesised via glycosylation of methyl 3,6-anhydro-2-O-benzyl-alpha-D-galactopyranoside with 2,3,6-tri-O-acetyl-4-O-benzyl-beta-D-galactopyranosyl bromide and subsequent partial or complete debenzylation, sulphation, and deprotection of the resulting disaccharide derivatives. Conformational studies have been carried out on 13, 19, and 20 on the basis of 1D and 2D 1H-n.m.r. spectroscopy and molecular mechanics calculations.

  18. The fruRBA Operon Is Necessary for Group A Streptococcal Growth in Fructose and for Resistance to Neutrophil Killing during Growth in Whole Human Blood

    PubMed Central

    Valdes, Kayla M.; Sundar, Ganesh S.; Vega, Luis A.; Belew, Ashton T.; Islam, Emrul; Binet, Rachel; El-Sayed, Najib M.

    2016-01-01

    Bacterial pathogens rely on the availability of nutrients for survival in the host environment. The phosphoenolpyruvate-phosphotransferase system (PTS) is a global regulatory network connecting sugar uptake with signal transduction. Since the fructose PTS has been shown to impact virulence in several streptococci, including the human pathogen Streptococcus pyogenes (the group A Streptococcus [GAS]), we characterized its role in carbon metabolism and pathogenesis in the M1T1 strain 5448. Growth in fructose as a sole carbon source resulted in 103 genes affected transcriptionally, where the fru locus (fruRBA) was the most induced. Reverse transcriptase PCR showed that fruRBA formed an operon which was repressed by FruR in the absence of fructose, in addition to being under carbon catabolic repression. Growth assays and carbon utilization profiles revealed that although the entire fru operon was required for growth in fructose, FruA was the main transporter for fructose and also was involved in the utilization of three additional PTS sugars: cellobiose, mannitol, and N-acetyl-d-galactosamine. The inactivation of sloR, a fruA homolog that also was upregulated in the presence of fructose, failed to reveal a role as a secondary fructose transporter. Whereas the ability of both ΔfruR and ΔfruB mutants to survive in the presence of whole human blood or neutrophils was impaired, the phenotype was not reproduced in murine whole blood, and those mutants were not attenuated in a mouse intraperitoneal infection. Since the ΔfruA mutant exhibited no phenotype in the human or mouse assays, we propose that FruR and FruB are important for GAS survival in a human-specific environment. PMID:26787724

  19. The fruRBA Operon Is Necessary for Group A Streptococcal Growth in Fructose and for Resistance to Neutrophil Killing during Growth in Whole Human Blood.

    PubMed

    Valdes, Kayla M; Sundar, Ganesh S; Vega, Luis A; Belew, Ashton T; Islam, Emrul; Binet, Rachel; El-Sayed, Najib M; Le Breton, Yoann; McIver, Kevin S

    2016-04-01

    Bacterial pathogens rely on the availability of nutrients for survival in the host environment. The phosphoenolpyruvate-phosphotransferase system (PTS) is a global regulatory network connecting sugar uptake with signal transduction. Since the fructose PTS has been shown to impact virulence in several streptococci, including the human pathogen Streptococcus pyogenes(the group A Streptococcus[GAS]), we characterized its role in carbon metabolism and pathogenesis in the M1T1 strain 5448. Growth in fructose as a sole carbon source resulted in 103 genes affected transcriptionally, where the frulocus (fruRBA) was the most induced. Reverse transcriptase PCR showed that fruRBA formed an operon which was repressed by FruR in the absence of fructose, in addition to being under carbon catabolic repression. Growth assays and carbon utilization profiles revealed that although the entire fruoperon was required for growth in fructose, FruA was the main transporter for fructose and also was involved in the utilization of three additional PTS sugars: cellobiose, mannitol, and N-acetyl-D-galactosamine. The inactivation of sloR, a fruA homolog that also was upregulated in the presence of fructose, failed to reveal a role as a secondary fructose transporter. Whereas the ability of both ΔfruR and ΔfruB mutants to survive in the presence of whole human blood or neutrophils was impaired, the phenotype was not reproduced in murine whole blood, and those mutants were not attenuated in a mouse intraperitoneal infection. Since the ΔfruA mutant exhibited no phenotype in the human or mouse assays, we propose that FruR and FruB are important for GAS survival in a human-specific environment. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Differential release of cell-signaling metabolites by male and female bovine embryos cultured in vitro.

    PubMed

    Gómez, E; Carrocera, S; Martin, D; Herrero, P; Canela, N; Muñoz, M

    2018-07-01

    Male and female early bovine embryos show dimorphic transcription that impacts metabolism. Individual release of metabolites was examined in a 24h single culture medium from Day-6 male and female morulae that developed to Day-7 expanded blastocysts. Embryos were produced in vitro, fertilized with a single bull and cultured in SOFaaci+6  g/L BSA. The embryonic sex was identified (amelogenin gene amplification). Embryos (N = 10 males and N = 10 females) and N = 6 blank samples (i.e. SOFaaci+6  g/L BSA incubated with no embryos) were collected from 3 replicates. Metabolome was analyzed by UHPLC-TOF-MS in spent culture medium. After tentative identification, N = 13 metabolites significantly (P < 0.05; ANOVA) differed in their concentrations between male and female embryos, although N = 10 of these metabolites showed heterogeneity (Levene's test; P > 0.05). LysoPC(15:0) was the only metabolite found at higher concentration in females (fold change [FC] male to female = 0.766). FC of metabolites more abundant in male culture medium (N = 12) varied from 1.069 to 1.604. Chemical taxonomy grouped metabolites as amino-acids and related compounds (DL-2 aminooctanoic acid, arginine, 5-hydroxy-l-tryptophan, and palmitoylglycine); lipids (2-hexenoylcarnitine; Lauroyl diethanolamide; 5,6 dihydroxyprostaglandin F1a; LysoPC(15:0); DG(14:0/14:1(9Z)/0:0) and triterpenoid); endogenous amine ((S)-N-Methylsalsolinol/(R)-N-Methylsalsolinol); n-acyl-alpha-hexosamine (N-acetyl-alpha-d-galactosamine 1-phosphate); and dUMP, a product of pyrimidine metabolism. Among the compounds originally contained in CM, female embryos significantly depleted more arginine than males and blank controls (P < 0.001). Male and female embryos induce different concentrations of metabolites with potential signaling effects. The increased abundance of metabolites released from males is consistent with the higher metabolic activity attributed to such blastocysts. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Identification of UDP glucosyltransferases from the aluminum-resistant tree Eucalyptus camaldulensis forming β-glucogallin, the precursor of hydrolyzable tannins.

    PubMed

    Tahara, Ko; Nishiguchi, Mitsuru; Frolov, Andrej; Mittasch, Juliane; Milkowski, Carsten

    2018-08-01

    In the highly aluminum-resistant tree Eucalyptus camaldulensis, hydrolyzable tannins are proposed to play a role in internal detoxification of aluminum, which is a major factor inhibiting plant growth on acid soils. To understand and modulate the molecular mechanisms of aluminum detoxification by hydrolyzable tannins, the biosynthetic genes need to be identified. In this study, we identified and characterized genes encoding UDP-glucose:gallate glucosyltransferase, which catalyzes the formation of 1-O-galloyl-β-d-glucose (β-glucogallin), the precursor of hydrolyzable tannins. By homology-based cloning, seven full-length candidate cDNAs were isolated from E. camaldulensis and expressed in Escherichia coli as recombinant N-terminal His-tagged proteins. Phylogenetic analysis classified four of these as UDP glycosyltransferase (UGT) 84A subfamily proteins (UGT84A25a, -b, UGT84A26a, -b) and the other three as UGT84J subfamily proteins (UGT84J3, -4, -5). In vitro enzyme assays showed that the UGT84A proteins catalyzed esterification of UDP-glucose and gallic acid to form 1-O-galloyl-β-d-glucose, whereas the UGT84J proteins were inactive. Further analyses with UGT84A25a and -26a indicated that they also formed 1-O-glucose esters of other structurally related hydroxybenzoic and hydroxycinnamic acids with a preference for hydroxybenzoic acids. The UGT84A genes were expressed in leaves, stems, and roots of E. camaldulensis, regardless of aluminum stress. Taken together, our results suggest that the UGT84A subfamily enzymes of E. camaldulensis are responsible for constitutive production of 1-O-galloyl-β-d-glucose, which is the first step of hydrolyzable tannin biosynthesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Selected Electrical and Thermal Properties of Undoped Nickel Oxide

    DTIC Science & Technology

    1978-08-01

    ooooa aata, t at a, aWa Wo aOa) + + .......+ ..+ ......+ +...+.+.+4+.+4 4+4 ... 4 ..... o T, n.-A r~~.rato COw cC%(0 I~a n oenmfLr. NatO WN. 0nr 00 f. n C...Band Phenomena," Parks, R. D., ed. (Plenum, New York, 1977), p. 551-554. 23. Emin, D. and Holstein , T., Ann. Phys. (NY) 53, 439-520 (1969). Friedman,i...L. and Holstein , T., Ann. Phys. (NY) 21, 494-549 (1963). Emin, D., Ann. Phys. (NY) 64, 336-395 (1971). , 24. Kim, K. S. and Winograd, N., Surf. Sci

  3. A Txnrd1-dependent metabolic switch alters hepatic lipogenesis, glycogen storage, and detoxification

    PubMed Central

    Iverson, Sonya V.; Eriksson, Sofi; Xu, Jianqiang; Prigge, Justin R.; Talago, Emily A.; Meade, Tesia A.; Meade, Erin S.; Capecchi, Mario R.; Arnér, Elias S.J.; Schmidt, Edward E.

    2013-01-01

    Besides helping to maintain a reducing intracellular environment, the thioredoxin (Trx) system impacts bioenergetics and drug-metabolism. We show that hepatocyte-specific disruption of Txnrd1, encoding Trx reductase-1 (TrxR1), causes a metabolic switch in which lipogenic genes are repressed and periportal hepatocytes become engorged with glycogen. These livers also overexpress machinery for biosynthesis of glutathione and conversion of glycogen into UDP-glucuronate; they stockpile glutathione-S-transferases and UDP-glucuronyl-transferases; and they overexpress xenobiotic exporters. This realigned metabolic profile suggested that the mutant hepatocytes might be preconditioned to more effectively detoxify certain xenobiotic challenges. Hepatocytes convert the pro-toxin acetaminophen (APAP, paracetamol) into cytotoxic N-acetyl-p-benzoquinone imine (NAPQI). APAP defenses include glucuronidation of APAP or glutathionylation of NAPQI, allowing removal by xenobiotic exporters. We found that NAPQI directly inactivates TrxR1, yet Txnrd1-null livers were resistant to APAP-induced hepatotoxicity. Txnrd1-null livers did not have more effective gene expression responses to APAP challenge; however their constitutive metabolic state supported more robust GSH biosynthesis-, glutathionylation-, and glucuronidation-systems. Following APAP challenge, this effectively sustained the GSH system and attenuated damage. PMID:23743293

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jian, Siyang; Li, Jianwei; Chen, Ji

    Nitrogen (N) fertilization affects the rate of soil organic carbon (SOC) decomposition by regulating extracellular enzyme activities (EEA). Extracellular enzymes have not been represented in global biogeochemical models. Understanding the relationships among EEA and SOC, soil N (TN), and soil microbial biomass carbon (MBC) under N fertilization would enable modeling of the influence of EEA on SOC decomposition. Based on 65 published studies, we synthesized the activities of α-1,4-glucosidase (AG), β-1,4-glucosidase (BG), β-d-cellobiosidase (CBH), β-1,4-xylosidase (BX), β-1,4-N-acetyl-glucosaminidase (NAG), leucine amino peptidase (LAP), urease (UREA), acid phosphatase (AP), phenol oxidase (PHO), and peroxidase (PEO) in response to N fertilization. Here, themore » proxy variables for hydrolytic C acquisition enzymes (C-acq), N acquisition (N-acq), and oxidative decomposition (OX) were calculated as the sum of AG, BG, CBH and BX; AG and LAP; PHO and PEO, respectively.« less

  5. Molecular identification and functional characterization of the first Nα-acetyltransferase in plastids by global acetylome profiling.

    PubMed

    Dinh, Trinh V; Bienvenut, Willy V; Linster, Eric; Feldman-Salit, Anna; Jung, Vincent A; Meinnel, Thierry; Hell, Rüdiger; Giglione, Carmela; Wirtz, Markus

    2015-07-01

    Protein N(α) -terminal acetylation represents one of the most abundant protein modifications of higher eukaryotes. In humans, six N(α) -acetyltransferases (Nats) are responsible for the acetylation of approximately 80% of the cytosolic proteins. N-terminal protein acetylation has not been evidenced in organelles of metazoans, but in higher plants is a widespread modification not only in the cytosol but also in the chloroplast. In this study, we identify and characterize the first organellar-localized Nat in eukaryotes. A primary sequence-based search in Arabidopsis thaliana revealed seven putatively plastid-localized Nats of which AT2G39000 (AtNAA70) showed the highest conservation of the acetyl-CoA binding pocket. The chloroplastic localization of AtNAA70 was demonstrated by transient expression of AtNAA70:YFP in Arabidopsis mesophyll protoplasts. Homology modeling uncovered a significant conservation of tertiary structural elements between human HsNAA50 and AtNAA70. The in vivo acetylation activity of AtNAA70 was demonstrated on a number of distinct protein N(α) -termini with a newly established global acetylome profiling test after expression of AtNAA70 in E. coli. AtNAA70 predominately acetylated proteins starting with M, A, S and T, providing an explanation for most protein N-termini acetylation events found in chloroplasts. Like HsNAA50, AtNAA70 displays N(ε) -acetyltransferase activity on three internal lysine residues. All MS data have been deposited in the ProteomeXchange with identifier PXD001947 (http://proteomecentral.proteomexchange.org/dataset/PXD001947). © 2015 The Authors. PROTEOMICS Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Bridged bicyclic systems as acetylcholinesterase reactivators and pretreatment drugs. Annual report, 15 July 1988-14 July 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriarty, R.M.

    1990-03-30

    During the past year a large number substituted carbamates, thiocarbamates of various bridged aza bicyclic oximes and their methiodides and meth chlorides have been synthesized. Among these are: (i) O-(N-Substituted carbamoyl)-3-tropinone oxime methiodides and methchlorides, (ii) 0-(N-Substituted carbamoyl)-6-cyano trop-3-ene-2-one oxime methiodides, (iii) O-N-(2`,3`,4`, 6`-Tetra-0-acetyl- b-D-glucopyranosyl thiocarbamoyl)-3-tropinone oxime and its methiodide. Synthesis of 1,6-bis-N`,N`-dimethyl- 3`-oximino-0-carbamoyl tropanonium-N-y1 hexane diiodide and 2,5- bis-(N`N`-dimethyl- 3`-oximino-0-carbamoyl tropanonium-N-yl)-toluene diiodide have been achieved. From phencyclidine a series 4-phenyl-4-0-(N-substituted carbamoyl)-4`-piperidone oxime-1`-yl-1-methyl piperidone methiodides have been synthesized. Syntheses of 0-(N-substituted carbamoyl)-3-exo-dimethyl aminomethyl2-norbornone oximes and their methiodides have been accomplished.

  7. A novel synthesis of acyclonucleosides via allylation of 3-[1-(phenylhydrazono)-L-threo-2,3,4-trihydroxybut-1-yl]quinoxalin-2(1H)one.

    PubMed

    Hamid, Hamida Mohamed Abdel

    2003-10-31

    The allylation of 3-[1-(phenylhydrazono)-L-threo-2,3,4-trihydroxybut-1-yl]quinoxalin-2(1H)one (1) gave, in addition to the anticipated 1-N-allyl derivative (2), a dehydrative cyclized product, 1-N-allyl-3-[5-(hydroxymethyl)-1-phenylpyrazol-3-yl]quinoxalin-2-one (4) and its isomeric O-allyl derivative 3. The O-allyl group in 3 underwent acetolysis under acetylation conditions, in addition to the acetylation of the hydroxyl group, to afford 2-acetoxy-3-[5-(acetoxymethyl)-1-phenylpyrazol-3-yl]quinoxaline (8) instead of the O-acetyl derivative of 3. Allylation of the tri-O-acetyl derivative of 1 caused the elimination of a molecule of acetic acid in addition to N-allylation to give 1-N-allyl-3-[3,4-di-O-acetyl-2-deoxy-1-(phenylhydrazono)but-2-en-1-yl]quinoxalin-2-one (11). Hydroxylation of the allyl group gave a glycerol-1-yl acyclonucleoside which can be alternatively obtained by a displacement reaction of the tosyloxy group in 2,3-O-isopropylidene-1-O-(p-tolylsulfonyl)glycerol (14), followed by deisopropylidenation. 1-N-(2,3-Dibromopropyl)-3-[5-(hydroxymethyl)-1-(4-bromophenyl)pyrazol-3-yl]quinoxalin-2-one (15) underwent azidolysis to give a 2,3-diazido derivative. The assigned structures were based on spectral analysis. The activity of compounds 2, 4, 6, and 15 against hepatitis B virus was studied.

  8. Acetyl transfer in arylamine metabolism

    PubMed Central

    Booth, J.

    1966-01-01

    1. N-Hydroxyacetamidoaryl compounds (hydroxamic acids) are metabolites of arylamides, and an enzyme that transfers the acetyl group from these derivatives to arylamines has been found in rat tissues. The reaction products were identified by thin-layer chromatography and a spectrophotometric method, with 4-amino-azobenzene as acetyl acceptor, was used to measure enzyme activity. 2. The acetyltransferase was in the soluble fraction of rat liver, required a thiol for maximum activity and had a pH optimum between 6·0 and 7·5. 3. The soluble fractions of various rat tissues showed decreasing activity in the following order: liver, adrenal, kidney, lung, spleen, testis, heart; brain was inactive. 4. With the exception of aniline and aniline derivatives all the arylamines tested were effective as acetyl acceptors but aromatic compounds with side-chain amino groups were inactive. 5. The N-hydroxyacetamido derivatives of 2-naphthylamine, 4-amino-biphenyl and 2-aminofluorene were active acetyl donors but N-hydroxyacetanilide showed only slight activity. Acetyl-CoA was not a donor. 6. Some properties of the enzyme are compared with those of other acetyltransferases. PMID:5969287

  9. Cloning and expression of UDP-glucose: flavonoid 7-O-glucosyltransferase from hairy root cultures of Scutellaria baicalensis.

    PubMed

    Hirotani, M; Kuroda, R; Suzuki, H; Yoshikawa, T

    2000-05-01

    A cDNA encoding UDP-glucose: baicalein 7-O-glucosyltransferase (UBGT) was isolated from a cDNA library from hairy root cultures of Scutellaria baicalensis Georgi probed with a partial-length cDNA clone of a UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) from grape (Vitis vinifera L.). The heterologous probe contained a glucosyltransferase consensus amino acid sequence which was also present in the Scutellaria cDNA clones. The complete nucleotide sequence of the 1688-bp cDNA insert was determined and the deduced amino acid sequences are presented. The nucleotide sequence analysis of UBGT revealed an open reading frame encoding a polypeptide of 476 amino acids with a calculated molecular mass of 53,094 Da. The reaction product for baicalein and UDP-glucose catalyzed by recombinant UBGT in Escherichia coli was identified as authentic baicalein 7-O-glucoside using high-performance liquid chromatography and proton nuclear magnetic resonance spectroscopy. The enzyme activities of recombinant UBGT expressed in E. coli were also detected towards flavonoids such as baicalein, wogonin, apigenin, scutellarein, 7,4'-dihydroxyflavone and kaempferol, and phenolic compounds. The accumulation of UBGT mRNA in hairy roots was in response to wounding or salicylic acid treatments.

  10. Statistics on Aircraft Gas Turbine Engine Rotor Failures That Occurred in U.S. Commercial Aviation During 1989

    DTIC Science & Technology

    1992-06-01

    CF6 920 2.9464 5 2 3 10 1.70 0.68 1.02 3.39 P.8211 412 1.2878 6 0 6 12 4.66 0.00 4.66 9.32 PW2037/2040 218 0.4853 3 0 3 6 6.18 0.00 6.18 12.36 TFE731 ...SRAA L382 501 T N 7 N 4 S-90021200109 SRAA 1382 501 C N 3 N 3 S-890509033 NMO1 L35A TFE731 T B 7 C 5 S-891019049 EA21 135 TFE731 C N 2 N 5 S-890301001...BKXA L35A TFE731 T N 7 N 4 A-890818049979C CE03 DC9 JT8D/1 T B 7 NC 4 A-890624033059C EA27 B727 JT8D/2 C D 7 NC 3 A-890719023719B CE01 DCIO CF6/2 F D 7

  11. Establishing the synthetic origin of amphetamines by 2H NMR spectroscopy.

    PubMed

    Armellin, Silvia; Brenna, Elisabetta; Fronza, Giovanni; Fuganti, Claudio; Pinciroli, Matteo; Serra, Stefano

    2004-02-01

    Nine samples of N-acetyl-3,4-methylenedioxyamphetamine (N-acetyl-MDA), prepared according to the most common synthetic procedures, are submitted to (2)H NMR spectroscopy. The relative deuterium content at the various sites of the molecule is shown to depend on its synthetic history. The technique provides a chemical fingerprint of N-acetyl-MDAs and it can be used to trace back the precursor materials and the synthetic pathways employed in the preparation of the samples.

  12. Membrane topology and identification of key residues of EaDAcT, a plant MBOAT with unusual substrate specificity.

    PubMed

    Tran, Tam N T; Shelton, Jennifer; Brown, Susan; Durrett, Timothy P

    2017-10-01

    Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) catalyzes the transfer of an acetyl group from acetyl-CoA to the sn-3 position of diacylglycerol to form 3-acetyl-1,2-diacyl-sn-glycerol (acetyl-TAG). EaDAcT belongs to a small, plant-specific subfamily of the membrane bound O-acyltransferases (MBOAT) that acylate different lipid substrates. Sucrose gradient density centrifugation revealed that EaDAcT colocalizes to the same fractions as an endoplasmic reticulum (ER)-specific marker. By mapping the membrane topology of EaDAcT, we obtained an experimentally determined topology model for a plant MBOAT. The EaDAcT model contains four transmembrane domains (TMDs), with both the N- and C-termini orientated toward the lumen of the ER. In addition, there is a large cytoplasmic loop between the first and second TMDs, with the MBOAT signature region of the protein embedded in the third TMD close to the interface between the membrane and the cytoplasm. During topology mapping, we discovered two cysteine residues (C187 and C293) located on opposite sides of the membrane that are important for enzyme activity. In order to identify additional amino acid residues important for acetyltransferase activity, we isolated and characterized acetyltransferases from other acetyl-TAG-producing plants. Among them, the acetyltransferase from Euonymus fortunei possessed the highest activity in vivo and in vitro. Mutagenesis of conserved amino acids revealed that S253, H257, D258 and V263 are essential for EaDAcT activity. Alteration of residues unique to the acetyltransferases did not alter the unique acyl donor specificity of EaDAcT, suggesting that multiple amino acids are important for substrate recognition. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  13. Trapping of NAPQI, the intermediate toxic paracetamol metabolite, by aqueous sulfide (S²⁻) and analysis by GC-MS/MS.

    PubMed

    Trettin, Arne; Batkai, Sandor; Thum, Thomas; Jordan, Jens; Tsikas, Dimitrios

    2014-07-15

    NAPQI, i.e., N-acetyl-p-benzoquinone imine, is considered the toxic metabolite of the widely used analgesic drug paracetamol (acetaminophen, APAP). Due to its high reactivity towards nucleophiles both in low- and high-molecular-mass biomolecules, NAPQI is hardly detectable in its native form. Upon conjugation with glutathione, NAPQI is finally excreted in the urine as the paracetamol mercapturic acid. Thus, determination of paracetamol mercapturate may provide a measure of in vivo NAPQI formation. In this work, we propose the use of Na2S in aqueous solution to trap NAPQI and to analyze the reaction product, i.e., 3-thio-paracetamol, together with paracetamol by GC-MS/MS in the electron-capture negative-ion chemical ionization mode after solvent extraction with ethyl acetate and derivatization with pentafluorobenzyl bromide. In mechanistic studies, we used newly synthesized N-acetyl-p-[2,3,5,6-(2)H4]benzoquinone imine (d4-NAPQI). In quantitative analyses, N-(4-hydroxyphenyl)-[2,3,5,6-(2)H4]acetamide (d4-APAP) was used as the internal standard both for NAPQI and APAP. 3-Thio-d3-paracetamol, prepared from d4-NAPQI and Na2S, may also be useful as an internal standard. We showed NAPQI in vitro formation from APAP by recombinant cyclooxygenase-1 as well as by dog liver homogenate. In vivo formation of NAPQI was demonstrated in mice given paracetamol intraperitoneally (about 150 mg/kg). Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Simultaneous quantitation of 2-acetyl-4-tetrahydroxybutylimidazole, 2- and 4-methylimidazoles, and 5-hydroxymethylfurfural in beverages by ultrahigh-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Wang, Jinyuan; Schnute, William C

    2012-02-01

    An ultrahigh-performance liquid chromatography (UHPLC) tandem mass spectrometric (MS/MS) method was developed for the simultaneous quantification of 2-acetyl-4-tetrahydroxybutylimidazole (THI), 2- and 4-methylimidazoles (2-MI and 4-MI), and 5-hydroxymethylfurfural (HMF) in beverage samples. A C30 reversed-phase column was used in this method, providing sufficient retention and total resolution for all targeted analytes, with an MS/MS instrument operated in selected reaction monitoring (SRM) mode for sensitive and selective detection using isotope-labeled 4-methyl-d(3)-imidazole (4-MI-d(3)) as the internal standard (IS). This method demonstrates lower limit of quantification (LLOQ) at 1 ng/mL and coefficient of determination (r(2)) >0.999 for each analyte with a calibration range established from 1 to 500 ng/mL. This method also demonstrates excellent quantification accuracy (84.6-105% at 5 ng/mL, n = 7), precision (RSD < 7% at 5 ng/mL, n = 7), and recovery (88.8-99.5% at 10, 100, and 200 ng/mL, n = 3). Seventeen carbonated beverage samples were tested (n = 2) in this study including 13 dark-colored beverage samples with different flavors and varieties and 4 light-colored beverage samples. Three target analytes were quantified in these samples with concentrations in the range from 284 to 644 ng/mL for 4-MI and from 706 to 4940 ng/mL for HMF. THI was detected in only one sample at 6.35 ng/mL.

  15. CRACC-CRACC Interaction between Kupffer and NK Cells Contributes to Poly I:C/D-GalN Induced Hepatitis

    PubMed Central

    Li, Yangxi; Cao, Guoshuai; Zheng, Xiaodong; Wang, Jun; Wei, Haiming; Tian, Zhigang; Sun, Rui

    2013-01-01

    CD2-like receptor activating cytotoxic cells (CRACC) is known as a critical activating receptor of natural killer (NK) cells. We have previously reported that NK cells contribute to Poly I:C/D-galactosamine (D-GalN)-induced fulminant hepatitis. Since natural killer group 2, member D (NKG2D) is considered critical but not the only activating receptor for NK cells, we investigated the role of CRACC in this model. We found that CRACC was abundant on hepatic NK cells but with low expression levels on Kupffer cells under normal conditions. Expression of CRACC on NK cells and Kupffer cells was remarkably upregulated after poly I:C injection. Hepatic CRACC mRNA levels were also upregulated in Poly I:C/D-GalN-treated mice, and correlated positively with the serum alanine aminotransferase (ALT) levels. CRACC expression on Kupffer cells was specifically silenced by nano-particle encapsulated siRNA in vivo, which significantly reduced Poly I:C/D-GalN-induced liver injury. In co-culture experiments, it was further verified that silencing CRACC expression or blockade of CRACC activation by mAb reduced the production of interferon (IFN)-γ and tumor necrosis factor (TNF)-α. Collectively, our findings suggest that CRACC-CRACC interaction between NK cells and resident Kupffer cells contributes to Poly I:C/D-GalN-induced fulminant hepatitis. PMID:24098802

  16. Simultaneous Polymerization and Polypeptide Particle Production via Reactive Spray-Drying

    PubMed Central

    2016-01-01

    A method for producing polypeptide particles via in situ polymerization of N-carboxyanhydrides during spray-drying has been developed. This method was enabled by the development of a fast and robust synthetic pathway to polypeptides using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an initiator for the ring-opening polymerization of N-carboxyanhydrides. The polymerizations finished within 5 s and proved to be very tolerant toward impurities such as amino acid salts and water. The formed particles were prepared by mixing the monomer, N-carboxyanhydride of l-glutamic acid benzyl ester (NCAGlu) and the initiator (DBU) during the atomization process in the spray-dryer and were spherical with a size of ∼1 μm. This method combines two steps; making it a straightforward process that facilitates the production of polypeptide particles. Hence, it furthers the use of spray-drying and polypeptide particles in the pharmaceutical industry. PMID:27445061

  17. Simultaneous Polymerization and Polypeptide Particle Production via Reactive Spray-Drying.

    PubMed

    Glavas, Lidija; Odelius, Karin; Albertsson, Ann-Christine

    2016-09-12

    A method for producing polypeptide particles via in situ polymerization of N-carboxyanhydrides during spray-drying has been developed. This method was enabled by the development of a fast and robust synthetic pathway to polypeptides using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an initiator for the ring-opening polymerization of N-carboxyanhydrides. The polymerizations finished within 5 s and proved to be very tolerant toward impurities such as amino acid salts and water. The formed particles were prepared by mixing the monomer, N-carboxyanhydride of l-glutamic acid benzyl ester (NCAGlu) and the initiator (DBU) during the atomization process in the spray-dryer and were spherical with a size of ∼1 μm. This method combines two steps; making it a straightforward process that facilitates the production of polypeptide particles. Hence, it furthers the use of spray-drying and polypeptide particles in the pharmaceutical industry.

  18. Synthesis and macrophage activation of lentinan-mimic branched amino polysaccharides: curdlans having N-Acetyl-d-glucosamine branches.

    PubMed

    Kurita, Keisuke; Matsumura, Yuriko; Takahara, Hiroki; Hatta, Kiyoshige; Shimojoh, Manabu

    2011-06-13

    N-Acetyl-d-glucosamine branches were incorporated at the C-6 position of curdlan, a linear β-1,3-d-glucan, and the resulting nonnatural branched polysaccharides were evaluated in terms of the immunomodulation activities in comparison with lentinan, a β-1,3-d-glucan having d-glucose branches at C-6. To incorporate the amino sugar branches, we conducted a series of regioselective protection-deprotections of curdlan involving triphenylmethylation at C-6, phenylcarbamoylation at C-2 and C-4, and detriphenylmethylation. Subsequent glycosylation with a d-glucosamine-derived oxazoline, followed by deprotection gave rise to the branched curdlans with various substitution degrees. The products exhibited remarkable solubility in both organic solvents and water. Their immunomodulation activities were determined using mouse macrophagelike cells, and the secretions of both the tumor necrosis factor and nitric oxide proved to be significantly higher than those with lentinan. These results conclude that the amino sugar/curdlan hybrid materials are promising as a new type of polysaccharide immunoadjuvants useful for cancer chemotherapy.

  19. Interspecific variations in mangrove leaf litter decomposition are related to labile nitrogenous compounds

    NASA Astrophysics Data System (ADS)

    Nordhaus, Inga; Salewski, Tabea; Jennerjahn, Tim C.

    2017-06-01

    Mangrove leaves form a large pool of carbon, nitrogen and energy that is a major driver of element cycles and detrital food webs inside mangrove forests as well as in adjacent coastal waters. However, there are large gaps in knowledge on the transformation pathways and ultimate fate of leaf nitrogen. Therefore, the main objective of this study was to determine the amount and composition of nitrogenous organic matter and possible species-specific differences during the decomposition of mangrove leaf litter. For that purpose a three month decomposition experiment with litterbags was conducted using leaves of Aegiceras corniculatum, Avicennia alba, Ceriops decandra, Rhizophora apiculata, and Sonneratia caseolaris in the mangrove forest of the Segara Anakan Lagoon, Java, Indonesia. Detrital leaves were analyzed for bulk carbon and total nitrogen (N), stable carbon and nitrogen isotope composition (δ13C, δ15N), total hydrolyzable amino acids (THAA) and total hydrolyzable hexosamines (THHA). Decomposition rates (k d-1) were highest and tM50 values (when 50% of the original mass had been degraded) lowest in S. caseolaris (k = 0.0382 d-1; tM50 = 18 days), followed by A. alba, C. decandra, A. corniculatum, and R. apiculata (k = 0.0098 d-1; tM50 = 71 days). The biochemical composition of detrital leaves differed significantly among species and over time. S. caseolaris and A. alba had higher concentrations of N, THAA and THHA and a lower C/N ratio than the other three species. For most of the species concentrations of N, THAA and THHA increased during decomposition. The hexosamine galactosamine, indicative of bacterial cell walls, was first found in leaves after 5-7 days of decomposition and increased afterwards. Our findings suggest an increasing, but species-specific varying, portion of labile nitrogenous OM and total N in decomposing leaves over time that is partly related to the activity of leaf-colonizing bacteria. Despite a higher relative nitrogen content in the remaining litter of the fast decomposing S. caseolaris and A. alba as compared to the other three species, the total loss of nitrogen was even higher because of the much higher mass loss after three months of decomposition. It is inferred that the amount of labile nitrogenous organic matter plays a major role in determining the rate of decomposition of leaf litter in mangroves.

  20. Genomic Characterization of KIR2DL4 in Families and Unrelated Individuals Reveals Extensive Diversity in Exon and Intron Sequences Including a Common Frameshift Variation Occurring in Several Alleles

    DTIC Science & Technology

    2005-01-18

    r A L 1 3 3 4 1 4 ) w a s u s e d a s a re fe re n c e . D a s h e s in d ic a te id e n ti...le d th e tr a n s m e m b ra n e e xo n a s e xo n 7 in o rd e r to k e e p th e re la ti o n s h ip a m o n g K IR e xo n s in th e d if fe re n t...g e n e s c o n s is te n t. N u c le o ti d e p o s it io n s w e

  1. Statistics on Aircraft Gas Turbine Engine Rotor Failures That Occurred in U.S Commercial Aviation During 1988.

    DTIC Science & Technology

    1992-03-01

    1.7 5.1 RB211 384 1.2638 3 0 8 11 2.4 0.0 6.3 8.7 PW2037/2040 192 0.4090 7 1 3 11 17.1 2.4 7.3 26.8 SPEY 860 0.2774 1 1 2 4 63.6 3.6 7.2 14.4 TFE731 ...L382 501D22 T N 3 N 4 S-881017278 MRKA L382 501D22 C N 3 N 3 S-890207092 MRKA L382 501D22 C N 3 N 10 S-880112116 WP15 HS1257 TFE731 T B 7 C 4 S...880211030 EA21 LEAR35 TFE731 T B 7 C 5 S-880411043 EA21 LEAR36 TFE731 T B 7 C 1 S-880628013 EA17 BAE128 TFE731 T B 7 C 4 S-880906154 GL23 FALCON50 TFE731 T B

  2. Measurement of glucuronidation by isolated rat liver cells using [14C]fructose.

    PubMed

    Dawson, J; Knowles, R G; Pogson, C I

    1992-03-03

    We have developed a simple and sensitive method for the study of the relative rates of glucuronidation of compounds, in isolated liver cells, based on the incorporation of 14C from fructose into glucuronide conjugates. Liver cells from fasted rats are used to minimize any reduction of the specific activity by glycogenolysis. Although rates of glucuronidation are lower in isolated liver cells from fasted rats than in those from fed rats, because of a reduction in the concentration of UDP-glucuronic acid, it is possible to compare the rates of glucuronidation of different compounds. Radiolabelled glucuronides are separated from [14C]fructose and [14C]glucose, produced by the liver cells, by normal-phase HPLC on a polar amino-cyano column. The specific activity of the glucuronide was found to be approximately 50% of that of the [14C]fructose. Absolute amounts of glucuronide can be determined by measuring the specific activity of the [14C]glucose, also produced by liver cells from fructose, which reflects that of the glucose-6-phosphate and hence the UDP-glucuronic acid used for glucuronidation, although for the measurement of relative rates this would not be necessary. We have used this method to examine the kinetics of the glucuronidation of N-acetyl-p-aminophenol (acetaminophen), 4-nitrophenol and 1-naphthol in isolated rat liver cells. The method should be applicable to the study of the rates of glucuronidation of a range of aglycones and, unlike other methods, does not require glucuronide standards or radiolabelled aglycone.

  3. [Chaperon-like anticataract agents, the antiaggregants of lens crystallin. Communication 4. Study of the effect of a mixture of di- and tetrapeptides on a prolonged rat model of UV-induced cataract].

    PubMed

    Avetisov, S E; Polunin, G S; Sheremet, N L; Makarov, I A; Fedorov, A A; Karpova, O E; Muranov, K O; Dizhevskaia, A K; Soustov, L V; Chelnokov, E V; Bitiurin, N M; Sapogova, N V; Nemov, V V; Bodyrev, A A; Ostrovskiĭ, M A

    2008-01-01

    There is a potential of therapeutic action on certain stages of caractogenesis, in particular on the aggregation of water-soluble proteins of cytoplasmic lens fiber cells, giving rise to insoluble protein complexes. The effect of a combined preparation (N-acetyl carnosine and D-patethine), acting by the chaperon-like mechanism, was studied in vivo on a prolonged rat model of UV-induced cataract. The use of the combined preparation consisting of a mixture of peptides of N-acetyl carnosine and D-patethine in a ratio of 1:1 as ocular instillations and intraperitoneal injections could slow down the development of UV-induced cataract in vivo. Pathomorphological studies suggest that the combined preparation has a protective effect on lens tissue when the rat model of UV-induced cataract is employed.

  4. Inhalation Toxicity of Single Materials and Mixtures. Phase 2.

    DTIC Science & Technology

    1991-03-29

    vitro xenobiotic metabolism studies), and "optional" endpoints that could...82170 *t -1 - 1.- * ~0 0 2, W 4 0 ’ D 0 ’ 0. :9 C> 0 0D 0 0n 0 0CL L ~~’* 0 ( ’N ’N ’N ’N ’ ’ NjN ’ U ww 0 0 C. .0 0 0 LA 0 ull GO 0o o N. W 31k 00 0 0 L...I4 0f 0D 04 0 L L 0 0 c) LA LA 0j 02 N. 4 4 ’o 0 0a 0 0 LA t-L L AA L 02 >2 > 2 >- W- . c >17 (A ’N D ’N ’N ’N ’N ’N ’N ’N 0 - ~ .0 0 0 0 - 0 𔃺 N LA

  5. Increasing Regulatory Acceptance of Passive Samplers

    DTIC Science & Technology

    2010-12-01

    microextraction ( SPME ) • Accumulate freely-dissolved organic contaminants from surrounding water into a solid phase • Contaminant concentrations of the...based on SPME (pg/L) D i s s o l v e d C o n c e n t r a t i o n b a s e d o n M u s s e l s ( p g / L ) 4,4’-DDE 4,4’-DDD 4,4’-DDT 1:1 line

  6. Optimization of Clonazepam Therapy Adjusted to Patient’s CYP3A Status and NAT2 Genotype

    PubMed Central

    Tóth, Katalin; Csukly, Gábor; Sirok, Dávid; Belic, Ales; Kiss, Ádám; Háfra, Edit; Déri, Máté; Menus, Ádám; Bitter, István

    2016-01-01

    Background: The shortcomings of clonazepam therapy include tolerance, withdrawal symptoms, and adverse effects such as drowsiness, dizziness, and confusion leading to increased risk of falls. Inter-individual variability in the incidence of adverse events in patients partly originates from the differences in clonazepam metabolism due to genetic and nongenetic factors. Methods: Since the prominent role in clonazepam nitro-reduction and acetylation of 7-amino-clonazepam is assigned to CYP3A and N-acetyl transferase 2 enzymes, respectively, the association between the patients’ CYP3A status (CYP3A5 genotype, CYP3A4 expression) or N-acetyl transferase 2 acetylator phenotype and clonazepam metabolism (plasma concentrations of clonazepam and 7-amino-clonazepam) was evaluated in 98 psychiatric patients suffering from schizophrenia or bipolar disorders. Results: The patients’ CYP3A4 expression was found to be the major determinant of clonazepam plasma concentrations normalized by the dose and bodyweight (1263.5±482.9 and 558.5±202.4ng/mL per mg/kg bodyweight in low and normal expressers, respectively, P<.0001). Consequently, the dose requirement for the therapeutic concentration of clonazepam was substantially lower in low-CYP3A4 expresser patients than in normal expressers (0.029±0.011 vs 0.058±0.024mg/kg bodyweight, P<.0001). Furthermore, significantly higher (about 2-fold) plasma concentration ratio of 7-amino-clonazepam and clonazepam was observed in the patients displaying normal CYP3A4 expression and slower N-acetylation than all the others. Conclusion: Prospective assaying of CYP3A4 expression and N-acetyl transferase 2 acetylator phenotype can better identify the patients with higher risk of adverse reactions and can facilitate the improvement of personalized clonazepam therapy and withdrawal regimen. PMID:27639091

  7. Human metabolism and excretion kinetics of aniline after a single oral dose.

    PubMed

    Modick, Hendrik; Weiss, Tobias; Dierkes, Georg; Koslitz, Stephan; Käfferlein, Heiko Udo; Brüning, Thomas; Koch, Holger Martin

    2016-06-01

    Aniline is an important source material in the chemical industry (e.g., rubber, pesticides, and pharmaceuticals). The general population is known to be ubiquitously exposed to aniline. Thus, assessment of aniline exposure is of both occupational and environmental relevance. Knowledge on human metabolism of aniline is scarce. We orally dosed four healthy male volunteers (two fast and two slow acetylators) with 5 mg isotope-labeled aniline, consecutively collected all urine samples over a period of 2 days, and investigated the renal excretion of aniline and its metabolites by LS-MS/MS and GC-MS. After enzymatic hydrolysis of glucuronide and sulfate conjugates, N-acetyl-4-aminophenol was the predominant urinary aniline metabolite representing 55.7-68.9 % of the oral dose, followed by the mercapturic acid conjugate of N-acetyl-4-aminophenol accounting for 2.5-6.1 %. Acetanilide and free aniline were found only in minor amounts accounting for 0.14-0.36 % of the dose. Overall, these four biomarkers excreted in urine over 48 h post-dose represented 62.4-72.1 % of the oral aniline dose. Elimination half-times were 3.4-4.3 h for N-acetyl-4-aminophenol, 4.1-5.5 h for the mercapturic acid conjugate, and 1.3-1.6 and 0.6-1.2 h for acetanilide and free aniline, respectively. Urinary maximum concentrations of N-acetyl-4-aminophenol were reached after about 4 h and maximum concentrations of the mercapturic acid conjugate after about 6 h, whereas concentrations of acetanilide and free aniline peaked after about 1 h. The present study is one of the first to provide reliable urinary excretion factors for aniline and its metabolites in humans after oral dosage, including data on the predominant urinary metabolite N-acetyl-4-aminophenol, also known as an analgesic under the name paracetamol/acetaminophen.

  8. Hepatoprotective amide constituents from the fruit of Piper chaba: Structural requirements, mode of action, and new amides.

    PubMed

    Matsuda, Hisashi; Ninomiya, Kiyofumi; Morikawa, Toshio; Yasuda, Daisuke; Yamaguchi, Itadaki; Yoshikawa, Masayuki

    2009-10-15

    The 80% aqueous acetone extract from the fruit of Piper chaba (Piperaceae) was found to have hepatoprotective effects on D-galactosamine (D-GalN)/lipopolysaccharide-induced liver injury in mice. From the ethyl acetate-soluble fraction, three new amides, piperchabamides E, G, and H, 33 amides, and four aromatic constituents were isolated. Among the isolates, several amide constituents inhibited D-GalN/tumor necrosis factor-alpha (TNF-alpha)-induced death of hepatocytes, and the following structural requirements were suggested: (i) the amide moiety is essential for potent activity; and (ii) the 1,9-decadiene structure between the benzene ring and the amide moiety tended to enhance the activity. Moreover, a principal constituent, piperine, exhibited strong in vivo hepatoprotective effects at doses of 5 and 10 mg/kg, po and its mode of action was suggested to depend on the reduced sensitivity of hepatocytes to TNF-alpha.

  9. Inhibition of dipeptidyl-peptidase IV catalyzed peptide truncation by Vildagliptin ((2S)-{[(3-hydroxyadamantan-1-yl)amino]acetyl}-pyrrolidine-2-carbonitrile).

    PubMed

    Brandt, Inger; Joossens, Jurgen; Chen, Xin; Maes, Marie-Berthe; Scharpé, Simon; De Meester, Ingrid; Lambeir, Anne-Marie

    2005-07-01

    Vildagliptin (NVP-LAF237/(2S)-{[(3-hydroxyadamantan-1-yl)amino]acetyl}-pyrrolidine-2-carbonitrile) was described as a potent, selective and orally bio-available dipeptidyl-peptidase IV (DPP IV, EC 3.4.14.5) inhibitor [Villhauer EB, Brinkman JA, Naderi GB, Burkey BF, Dunning BE, Prasad K, et al.1-[[(3-Hydroxy-1-adamantyl)amino]acetyl]-2-cyano-(S)-pyrrolidine: a potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. J Med Chem 2003;46:2774-89]. Phase III clinical trials for the use of this compound in the treatment of Type 2 diabetes were started in the first quarter of 2004. In this paper, we report on (1) the kinetics of binding, (2) the type of inhibition, (3) the selectivity with respect to other peptidases, and (4) the inhibitory potency on the DPP IV catalyzed degradation of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and substance P. Vildagliptin behaved as a slow-binding DPP IV inhibitor with an association rate constant of 1.4x10(5)M(-1)s(-1) and a K(i) of 17nM. It is a micromolar inhibitor for dipeptidyl-peptidase 8 and does not significantly inhibit dipeptidyl-peptidase II (EC 3.4.11.2), prolyl oligopeptidase (EC 3.4.21.26), aminopeptidase P (EC 3.4.11.9) or aminopeptidase M (EC 3.4.11.2). There was no evidence for substrate specific inhibition of DPP IV by Vildagliptin or for important allosteric factors affecting the inhibition constant in presence of GIP and GLP-1.

  10. Chondroitin sulfate synthase-2 is necessary for chain extension of chondroitin sulfate but not critical for skeletal development.

    PubMed

    Ogawa, Hiroyasu; Hatano, Sonoko; Sugiura, Nobuo; Nagai, Naoko; Sato, Takashi; Shimizu, Katsuji; Kimata, Koji; Narimatsu, Hisashi; Watanabe, Hideto

    2012-01-01

    Chondroitin sulfate (CS) is a linear polysaccharide consisting of repeating disaccharide units of N-acetyl-D-galactosamine and D-glucuronic acid residues, modified with sulfated residues at various positions. Based on its structural diversity in chain length and sulfation patterns, CS provides specific biological functions in cell adhesion, morphogenesis, neural network formation, and cell division. To date, six glycosyltransferases are known to be involved in the biosynthesis of chondroitin saccharide chains, and a hetero-oligomer complex of chondroitin sulfate synthase-1 (CSS1)/chondroitin synthase-1 and chondroitin sulfate synthase-2 (CSS2)/chondroitin polymerizing factor is known to have the strongest polymerizing activity. Here, we generated and analyzed CSS2(-/-) mice. Although they were viable and fertile, exhibiting no overt morphological abnormalities or osteoarthritis, their cartilage contained CS chains with a shorter length and at a similar number to wild type. Further analysis using CSS2(-/-) chondrocyte culture systems, together with siRNA of CSS1, revealed the presence of two CS chain species in length, suggesting two steps of CS chain polymerization; i.e., elongation from the linkage region up to Mr ∼10,000, and further extension. There, CSS2 mainly participated in the extension, whereas CSS1 participated in both the extension and the initiation. Our study demonstrates the distinct function of CSS1 and CSS2, providing a clue in the elucidation of the mechanism of CS biosynthesis.

  11. Mechanistic and Structural Analysis of a Drosophila melanogaster Enzyme, Arylalkylamine N-Acetyltransferase Like 7, an Enzyme That Catalyzes the Formation of N-Acetylarylalkylamides and N-Acetylhistamine.

    PubMed

    Dempsey, Daniel R; Jeffries, Kristen A; Handa, Sumit; Carpenter, Anne-Marie; Rodriguez-Ospina, Santiago; Breydo, Leonid; Merkler, David J

    2015-04-28

    Arylalkylamine N-acetyltransferase like 7 (AANATL7) catalyzes the formation of N-acetylarylalkylamides and N-acetylhistamine from acetyl-CoA and the corresponding amine substrate. AANATL7 is a member of the GNAT superfamily of >10000 GCN5-related N-acetyltransferases, many members being linked to important roles in both human metabolism and disease. Drosophila melanogaster utilizes the N-acetylation of biogenic amines for the inactivation of neurotransmitters, the biosynthesis of melatonin, and the sclerotization of the cuticle. We have expressed and purified D. melanogaster AANATL7 in Escherichia coli and used the purified enzyme to define the substrate specificity for acyl-CoA and amine substrates. Information about the substrate specificity provides insight into the potential contribution made by AANATL7 to fatty acid amide biosynthesis because D. melanogaster has emerged as an important model system contributing to our understanding of fatty acid amide metabolism. Characterization of the kinetic mechanism of AANATL7 identified an ordered sequential mechanism, with acetyl-CoA binding first followed by histamine to generate an AANATL7·acetyl-CoA·histamine ternary complex prior to catalysis. Successive pH-activity profiling and site-directed mutagenesis experiments identified two ionizable groups: one with a pKa of 7.1 that is assigned to Glu-26 as a general base and a second pKa of 9.5 that is assigned to the protonation of the thiolate of the coenzyme A product. Using the data generated herein, we propose a chemical mechanism for AANATL7 and define functions for other important amino acid residues involved in substrate binding and regulation of catalysis.

  12. Antibiotic Effects on Methicillin-Resistant Staphylococcus aureus Cytoplasmic Peptidoglycan Intermediate Levels and Evidence for Potential Metabolite Level Regulatory Loops.

    PubMed

    Vemula, Harika; Ayon, Navid J; Burton, Alloch; Gutheil, William G

    2017-06-01

    Cytoplasmic peptidoglycan (PG) precursor levels were determined in methicillin-resistant Staphylococcus aureus (MRSA) after exposure to several cell wall-targeting antibiotics. Three experiments were performed: (i) exposure to 4× MIC levels (acute); (ii) exposure to sub-MIC levels (subacute); (iii) a time course experiment of the effect of vancomycin. In acute exposure experiments, fosfomycin increased UDP-GlcNAc, as expected, and resulted in substantially lower levels of total UDP-linked metabolite accumulation relative to other pathway inhibitors, indicating reduced entry into this pathway. Upstream inhibitors (fosfomycin, d-cycloserine, or d-boroalanine) reduced UDP-MurNAc-pentapeptide levels by more than fourfold. Alanine branch inhibitors (d-cycloserine and d-boroalanine) reduced d-Ala-d-Ala levels only modestly (up to 4-fold) but increased UDP-MurNAc-tripeptide levels up to 3,000-fold. Downstream pathway inhibitors (vancomycin, bacitracin, moenomycin, and oxacillin) increased UDP-MurNAc-pentapeptide levels up to 350-fold and UDP-MurNAc-l-Ala levels up to 80-fold, suggesting reduced MurD activity by downstream inhibitor action. Sub-MIC exposures demonstrated effects even at 1/8× MIC which strongly paralleled acute exposure changes. Time course data demonstrated that UDP-linked intermediate levels respond rapidly to vancomycin exposure, with several intermediates increasing three- to sixfold within minutes. UDP-linked intermediate level changes were also multiphasic, with some increasing, some decreasing, and some increasing and then decreasing. The total (summed) UDP-linked intermediate pool increased by 1,475 μM/min during the first 10 min after vancomycin exposure, providing a revised estimate of flux in this pathway during logarithmic growth. These observations outline the complexity of PG precursor response to antibiotic exposure in MRSA and indicate likely sites of regulation (entry and MurD). Copyright © 2017 American Society for Microbiology.

  13. Sorting by COP I-coated vesicles under interphase and mitotic conditions

    PubMed Central

    1996-01-01

    COP I-coated vesicles were analyzed for their content of resident Golgi enzymes (N-acetylgalactosaminyltransferase; N- acetylglucosaminyltransferase I; mannosidase II; galactosyltransferase), cargo (rat serum albumin; polyimmunoglobulin receptor), and recycling proteins (-KDEL receptor; ERGIC-53/p58) using biochemical and morphological techniques. The levels of these proteins were similar when the vesicles were prepared under interphase or mitotic conditions showing that sorting was unaffected. The average density relative to starting membranes for resident enzymes (14-30%), cargo (16-23%), and recycling proteins (81-125%) provides clues to the function of COP I vesicles in transport through the Golgi apparatus. PMID:8830771

  14. Hydrothermal conversion of N-acetyl-d-glucosamine to 5-hydroxymethylfurfural using ionic liquid as a recycled catalyst in a water-dimethyl sulfoxide mixture.

    PubMed

    Zang, Hongjun; Yu, Songbai; Yu, Pengfei; Ding, Hongying; Du, Yannan; Yang, Yuchan; Zhang, Yiwen

    2017-04-10

    Here, N-acetyl-d-glucosamine (GlcNAc), the monomer composing the second most abundant biopolymer, chitin, was efficiently converted into 5-hydroxymethylfurfural (5-HMF) using ionic liquid (IL) catalysts in a water/dimethyl sulfoxide (DMSO) mixture solvent. Various reaction parameters, including reaction temperature and time, DMSO/water mass ratios and catalyst dosage were optimized. A series of ILs with different structures were analyzed to explore their impact on GlcNAc conversion. The substrate scope was expanded from GlcNAc to d-glucosamine, chitin, chitosan and monosaccharides, although 5-HMF yields obtained from polymers and other monosaccharides were generally lower than those from GlcNAc. Moreover, the IL N-methylimidazolium hydrogen sulfate ([Hmim][HSO 4 ]) exhibited the best catalyst performance (64.6% yield) when GlcNAc was dehydrated in a DMSO/water mixture at 180 °C for 6 h without the addition of extra catalysts. To summarize, these results could provide knowledge essential to the production of valuable chemicals that are derived from renewable marine resources and benefit biofuel-related applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The concentration of N-acetyl aspartate, creatine + phosphocreatine, and choline in different parts of the brain in adulthood and senium.

    PubMed

    Christiansen, P; Toft, P; Larsson, H B; Stubgaard, M; Henriksen, O

    1993-01-01

    The fully relaxed water signal was used as an internal standard in a STEAM experiment to calculate the concentrations of the metabolites: N-acetyl aspartate (NAA), creatine + phosphocreatine (Cr + PCr), and choline (Cho) containing compounds in four different parts of the brain in two age groups of healthy volunteers (20-30 yr, n = 8) and (60-80 yr, n = 8). Furthermore, T1 and T2 relaxation time of the metabolites and signal ratios: NAA/Cho, NAA/Cr + PCr, and Cho/Cr + PCr at TE = 272 msec were calculated. The experiments were carried out using a Siemens Helicon SP 63/84 wholebody MR-scanner at 1.5 T. In the younger age group, the concentration of NAA was significantly higher in the occipital part than in the other three parts of the brain. No significant regional variation was found for any other metabolite concentration. There was a significantly higher concentration of NAA in the occipital part of the brain in the younger age group compared to the older one. No significant regional or age dependent variation was found concerning the T1 and T2 relaxation times.

  16. Thiolated chitosan nanoparticles as a delivery system for antisense therapy: evaluation against EGFR in T47D breast cancer cells

    PubMed Central

    Talaei, Fatemeh; Azizi, Ebrahim; Dinarvand, Rassoul; Atyabi, Fatemeh

    2011-01-01

    Thiolated chitosan has high transfection and mucoadhesive properties. We investigated the potential of two recently synthesized polymers: NAC-C (N-acetyl cysteine-chitosan) and NAP-C (N-acetyl penicillamine-chitosan) in anticancer drug delivery targeting epidermal growth factor receptor (EGFR). Doxorubicin (DOX) and antisense oligonucleotide (ASOND)-loaded polymer nanoparticles were prepared in water by a gelation process. Particle characterization, drug loading, and drug release were evaluated. To verify drug delivery efficiency in vitro experiments on a breast cancer cell line (T47D) were performed. EGFR gene and protein expression was analyzed by real time quantitative polymerase chain reaction and Western blotting, respectively. A loading percentage of 63% ± 5% for ASOND and 70% ± 5% for DOX was achieved. Drug release data after 15 hours showed that ASOND and DOX were completely released from chitosan-based particles while a lower and more sustained release of only 22% ± 8% was measured for thiolated particles. In a cytosol simulated release medium/reducing environment, such as found intracellularly, polymer-based nanoparticles dissociated, liberating approximately 50% of both active substances within 7 hours. ASOND-loaded polymer nanoparticles had higher stability and high mucoadhesive properties. The ASOND-loaded thiolated particles significantly suppressed EGFR gene expression in T47D cells compared with ASOND-loaded chitosan particles and downregulated EGFR protein expression in cells. This study could facilitate future investigations into the functionality of NAP-C and NAC-C polymers as an efficient ASOND delivery system in vitro and in vivo. PMID:21976973

  17. Thiolated chitosan nanoparticles as a delivery system for antisense therapy: evaluation against EGFR in T47D breast cancer cells.

    PubMed

    Talaei, Fatemeh; Azizi, Ebrahim; Dinarvand, Rassoul; Atyabi, Fatemeh

    2011-01-01

    Thiolated chitosan has high transfection and mucoadhesive properties. We investigated the potential of two recently synthesized polymers: NAC-C (N-acetyl cysteine-chitosan) and NAP-C (N-acetyl penicillamine-chitosan) in anticancer drug delivery targeting epidermal growth factor receptor (EGFR). Doxorubicin (DOX) and antisense oligonucleotide (ASOND)-loaded polymer nanoparticles were prepared in water by a gelation process. Particle characterization, drug loading, and drug release were evaluated. To verify drug delivery efficiency in vitro experiments on a breast cancer cell line (T47D) were performed. EGFR gene and protein expression was analyzed by real time quantitative polymerase chain reaction and Western blotting, respectively. A loading percentage of 63% ± 5% for ASOND and 70% ± 5% for DOX was achieved. Drug release data after 15 hours showed that ASOND and DOX were completely released from chitosan-based particles while a lower and more sustained release of only 22% ± 8% was measured for thiolated particles. In a cytosol simulated release medium/reducing environment, such as found intracellularly, polymer-based nanoparticles dissociated, liberating approximately 50% of both active substances within 7 hours. ASOND-loaded polymer nanoparticles had higher stability and high mucoadhesive properties. The ASOND-loaded thiolated particles significantly suppressed EGFR gene expression in T47D cells compared with ASOND-loaded chitosan particles and downregulated EGFR protein expression in cells. This study could facilitate future investigations into the functionality of NAP-C and NAC-C polymers as an efficient ASOND delivery system in vitro and in vivo.

  18. Glycoprofiling of Early Gastric Cancer Using Lectin Microarray Technology.

    PubMed

    Li, Taijie; Mo, Cuiju; Qin, Xue; Li, Shan; Liu, Yinkun; Liu, Zhiming

    2018-01-01

    Recently, studies have reported that protein glycosylation plays an important role in the occurrence and development of cancer. Gastric cancer is a common cancer with high morbidity and mortality owing to most gastric cancers are discovered only at an advanced stage. Here, we aim to discover novel specific serum glycanbased biomarkers for gastric cancer. A lectin microarray with 50 kinds of tumor-associated lectin was used to detect the glycan profiles of serum samples between early gastric cancer and healthy controls. Then lectin blot was performed to validate the differences. The result of the lectin microarray showed that the signal intensities of 13 lectins showed significant differences between the healthy controls and early gastric cancer. Compared to the healthy, the normalized fluorescent intensities of the lectins PWA, LEL, and STL were significantly increased, and it implied that their specifically recognized GlcNAc showed an especially elevated expression in early gastric cancer. Moreover, the binding affinity of the lectins EEL, RCA-II, RCA-I, VAL, DSA, PHA-L, UEA, and CAL were higher in the early gastric cancer than in healthy controls. These glycan structures containing GalNAc, terminal Galβ 1-4 GlcNAc, Tri/tetraantennary N-glycan, β-1, 6GlcNAc branching structure, α-linked fucose residues, and Tn antigen were elevated in gastric cancer. While the two lectins CFL GNL reduced their binding ability. In addition, their specifically recognized N-acetyl-D-galactosamine structure and (α-1,3) mannose residues were decreased in early gastric cancer. Furthermore, lectin blot results of LEL, STL, PHA-L, RCA-I were consistent with the results of the lectin microarray. The findings of our study clarify the specific alterations for glycosylation during the pathogenesis of gastric cancer. The specific high expression of GlcNAc structure may act as a potential early diagnostic marker for gastric cancer.

  19. Polypeptide having an amino acid replaced with N-benzylglycine

    DOEpatents

    Mitchell, Alexander R.; Young, Janis D.

    1996-01-01

    The present invention relates to one or more polypeptides having useful biological activity in a mammal, which comprise: a polypeptide related to bradykinin of four to ten amino acid residues wherein one or more specific amino acids in the polypeptide chain are replaced with achiral N-benzylglycine. These polypeptide analogues have useful potent agonist or antagonist pharmacological properties depending upon the structure. A preferred polypeptide is (N-benzylglycine.sup.7)-bradykinin.

  20. Alpha List of Prime Contract Awards. Oct 92-Sep 93. FY93. (Claude Ralph - Day Francis O Co. Inc.)

    DTIC Science & Technology

    1994-03-01

    4LLAA ( LU AC x 0 m LA (LA 0 x1 (1A)LALLCA(A( AcCA L A 0 ( tALALA01upIc (00.- U1 C(0 (D0 (0’.CD(0 (D (D (D (DW 00 0 (m (m (0CD(D0(m0w(0(20 (D0w Lo(1(0...COVcII N 44444444444 4444444444 N c04 II 44 4444 N 0041 caoacao acca 0i 0o cn I’ ID6 OOCNY 2 N4NrJNNNNNN0 NNNNNNNNNN C3 cO-4 11 L) U0 0 0 0 0 0c 0 0 0 0...0.4 .. 14൰*o0oo 00 0 0 - .4 N 4j H 4 I0cc WOO 004 INN C 10 10 100N04144443(300 t0 I0.4 ffM MN 14 100 N 0YMIn C 0 0 (1 H ma I (fl>( IIO N N NN N 0 4

  1. High-dynamic-range neutron time-of-flight detector used to infer the D(t,n){sup 4}He and D(d,n){sup 3}He reaction yield and ion temperature on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrest, C. J., E-mail: cforrest@lle.rochester.edu; Glebov, V. Yu.; Goncharov, V. N.

    Upgraded microchannel-plate–based photomultiplier tubes (MCP-PMT’s) with increased stability to signal-shape linearity have been implemented on the 13.4-m neutron time-of-flight (nTOF) detector at the Omega Laser Facility. This diagnostic uses oxygenated xylene doped with diphenyloxazole C{sub 15}H{sub 11}NO + p-bis-(o-methylstyryl)-benzene (PPO + bis-MSB) wavelength shifting dyes and is coupled through four viewing ports to fast-gating MCP-PMT’s, each with a different gain to allow one to measure the light output over a dynamic range of 1 × 10{sup 6}. With these enhancements, the 13.4-m nTOF can measure the D(t,n){sup 4}He and D(d,n){sup 3}He reaction yields and average ion temperatures in a singlemore » line of sight. Once calibrated for absolute neutron sensitivity, the nTOF detectors can be used to measure the neutron yield from 1 × 10{sup 9} to 1 × 10{sup 14} and the ion temperature with an accuracy approaching 5% for both the D(t,n){sup 4}He and D(d,n){sup 3}He reactions.« less

  2. Metabolism and elimination of benzocaine by rainbow-trout, Oncorhynchus mykiss

    USGS Publications Warehouse

    Meinertz, J.R.; Gingerich, W.H.; Allen, J.L.

    1991-01-01

    1. Branchial and urinary elimination of benzocaine residues was evaluated in adult rainbow trout, oncorhynchus mykiss, given a single dorsal aortic dose of c-14-benzocaine hydrochloride.^2. Branchial elimination of benzocaine residues was rapid and accounted for 59.2% Of the dose during the first 3 h after dosing. Renal elimination of radioactivity was considerably slower; the kidney excreted 2.7% Dose within 3 h and 9.0% Within 24 h. Gallbladder bile contained 2.0% Dose 24 h after injection.^3. Of the radioactivity in radiochromatograms from water taken 3 min after injection, 87.3% Was benzocaine and 12.7% Was n-acetylated benzocaine. After 60 min, 32.7% Was benzocaine and 67.3% Was n-acetylated benzocaine.^4. Of the radioactivity in radiochromatograms from urine taken 1 h after dosing, 7.6% Was para-aminobenzoic acid, 59.7% Was n-acetylated para-aminobenzoic acid, 19.5% Was benzocaine, and 8.0% Was n-acetylated benzocaine. The proportion of the radioactivity in urine changed with time so that by 20 h, 1.0% Was para-aminobenzoic acid and 96.6% Was n-acetylated para-aminobenzoic acid.^5. Benzocaine and a more hydrophobic metabolite, n-acetylated benzocaine, were eliminated primarily through the gills; renal and biliary pathways were less significant elimination routes for benzocaine residues.

  3. Mechanistic and Structural Analysis of Drosophila melanogaster Arylalkylamine N-Acetyltransferases

    PubMed Central

    2015-01-01

    Arylalkylamine N-acetyltransferase (AANAT) catalyzes the penultimate step in the biosynthesis of melatonin and other N-acetylarylalkylamides from the corresponding arylalkylamine and acetyl-CoA. The N-acetylation of arylalkylamines is a critical step in Drosophila melanogaster for the inactivation of the bioactive amines and the sclerotization of the cuticle. Two AANAT variants (AANATA and AANATB) have been identified in D. melanogaster, in which AANATA differs from AANATB by the truncation of 35 amino acids from the N-terminus. We have expressed and purified both D. melanogaster AANAT variants (AANATA and AANATB) in Escherichia coli and used the purified enzymes to demonstrate that this N-terminal truncation does not affect the activity of the enzyme. Subsequent characterization of the kinetic and chemical mechanism of AANATA identified an ordered sequential mechanism, with acetyl-CoA binding first, followed by tyramine. We used a combination of pH–activity profiling and site-directed mutagenesis to study prospective residues believed to function in AANATA catalysis. These data led to an assignment of Glu-47 as the general base in catalysis with an apparent pKa of 7.0. Using the data generated for the kinetic mechanism, structure–function relationships, pH–rate profiles, and site-directed mutagenesis, we propose a chemical mechanism for AANATA. PMID:25406072

  4. Projects in Computer Aided Climatology.

    DTIC Science & Technology

    1981-07-01

    LA 00 rn 0, LI) IT MA m ’N LA ) LA ) 4 ~’’ r~ M 6 LA ) 1.0 qT m o C: r- N r a 0 cc -4z ~~~ LA - 0 - 0 7n LA %D LALn’ m ’IT 0’ n’ LI co ID...8217. ’T co ff 41 N~ .C, r’ LAO 4o cr co Ln m m .i -IT 0’r-, Cm C.’Z ’.D 0 Q - LA LMA v’’ LnL NO - ’ LA N’ D ’..0 0’, 0 N1 N- D LA n LA 0 Ni𔄃 L A A 4 ~ L...and Class B data. The set of Class A observacions are characterized by

  5. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines.

    PubMed

    Zong, L; Yu, Q H; Du, Y X; Deng, X M

    2014-02-01

    Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis.

  6. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines

    PubMed Central

    Zong, L.; Yu, Q.H.; Du, Y.X.; Deng, X.M.

    2014-01-01

    Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis. PMID:24554039

  7. Alpha List of Prime Contract Awards. Oct 92-Sep 93. FY93. (Bt North America Inc. - Classified Location Domestic)

    DTIC Science & Technology

    1994-03-01

    V4,(41, Or,.in cri nN c >1r- 0 10 f tao oinon0 40 M-4 -4 td n -w toce, of IC 𔃺 0 ca I1-&n UO0 - qtY(DC -04N I- . 30 C S-i Ur’L) . L-M4 U -4~ C...d 0o II Nca( 0 CI400W000 CD 10) Ny It 4. ev MNN.P.P rn If CIL I co00t I’l -4 co0 00000 -00 0 00C) 0 CV 4.4 Me V DCo tD H11 10 004D11 Nm Oin 000000...CO -4 0 11 -2c z .- Z 11 1 CO 0 fm 11 C z 2c z ed C z zx If I ca a 00 11 1- ed tv (d I td III 11 1 00000 11 00-t .- !`ý- W M It r- Ln Ln 0 tma N -4 -4

  8. Conformational analysis of α-helical polypeptide included L-proline residue by high-resolution solid-state NMR measurement and quantum chemical calculation

    NASA Astrophysics Data System (ADS)

    Souma, Hiroyuki; Shoji, Akira; Kurosu, Hiromichi

    2008-10-01

    We challenged the problem about the stabilization mechanism of an α-helix formation for polypeptides containing L-proline (Pro) residue. We computed the optimized structure of α-helical poly( L-alanine) molecules including a Pro residue, H-(Ala) 8-Pro-(Ala) 9-OH, based on the molecular orbital calculation with density functional theory, B3LYP/6-31G(d) and the 13C and 15N chemical shift values based on the GIAO-CHF method with B3LYP/6-311G(d,p), respectively. It was found that two kinds of optimized structures, 'Bent structure' and 'Included α-helix structure', were preferred structures in H-(Ala) 8-Pro-(Ala) 9-OH. In addition, based on the precise 13C and 15N chemical shift data of the simple model, we successfully analyzed the secondary structure of well-defined synthetic polypeptide H-(Phe-Leu-Ala) 3-Phe C-Pro-Ala N-(Phe-Leu-Ala) 2-OH (FLA-11P), the secondary structure of which was proven to the 'Included α-helix structure'.

  9. The molecular dynamics of Trypanosoma brucei UDP-galactose 4'-epimerase: a drug target for African sleeping sickness.

    PubMed

    Friedman, Aaron J; Durrant, Jacob D; Pierce, Levi C T; McCorvie, Thomas J; Timson, David J; McCammon, J Andrew

    2012-08-01

    During the past century, several epidemics of human African trypanosomiasis, a deadly disease caused by the protist Trypanosoma brucei, have afflicted sub-Saharan Africa. Over 10 000 new victims are reported each year, with hundreds of thousands more at risk. As current drug treatments are either highly toxic or ineffective, novel trypanocides are urgently needed. The T. brucei galactose synthesis pathway is one potential therapeutic target. Although galactose is essential for T. brucei survival, the parasite lacks the transporters required to intake galactose from the environment. UDP-galactose 4'-epimerase (TbGalE) is responsible for the epimerization of UDP-glucose to UDP-galactose and is therefore of great interest to medicinal chemists. Using molecular dynamics simulations, we investigate the atomistic motions of TbGalE in both the apo and holo states. The sampled conformations and protein dynamics depend not only on the presence of a UDP-sugar ligand, but also on the chirality of the UDP-sugar C4 atom. This dependence provides important insights into TbGalE function and may help guide future computer-aided drug discovery efforts targeting this protein. © 2012 John Wiley & Sons A/S.

  10. Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate.

    PubMed

    Janik, Rafal; Thomason, Lynsie A M; Stanisz, Andrew M; Forsythe, Paul; Bienenstock, John; Stanisz, Greg J

    2016-01-15

    The gut microbiome has been shown to regulate the development and functions of the enteric and central nervous systems. Its involvement in the regulation of behavior has attracted particular attention because of its potential translational importance in clinical disorders, however little is known about the pathways involved. We previously have demonstrated that administration of Lactobacillus rhamnosus (JB-1) to healthy male BALB/c mice, promotes consistent changes in GABA-A and -B receptor sub-types in specific brain regions, accompanied by reductions in anxiety and depression-related behaviors. In the present study, using magnetic resonance spectroscopy (MRS), we quantitatively assessed two clinically validated biomarkers of brain activity and function, glutamate+glutamine (Glx) and total N-acetyl aspartate+N-acetyl aspartyl glutamic acid (tNAA), as well as GABA, the chief brain inhibitory neurotransmitter. Mice received 1×10(9) cfu of JB-1 per day for 4weeks and were subjected to MRS weekly and again 4weeks after cessation of treatment to ascertain temporal changes in these neurometabolites. Baseline concentrations for Glx, tNAA and GABA were equal to 10.4±0.3mM, 8.7±0.1mM, and 1.2±0.1mM, respectively. Delayed increases were first seen for Glx (~10%) and NAA (~37%) at 2weeks which persisted only to the end of treatment. However, Glx was still elevated 4weeks after treatment had ceased. Significantly elevated GABA (~25%) was only seen at 4weeks. These results suggest specific metabolic pathways in our pursuit of mechanisms of action of psychoactive bacteria. They also offer through application of standard clinical neurodiagnostic techniques, translational opportunities to assess biomarkers accompanying behavioral changes induced by alterations in the gut microbiome. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  11. In vivo production of non-glycosylated recombinant proteins in Nicotiana benthamiana plants by co-expression with Endo-β-N-acetylglucosaminidase H (Endo H) of Streptomyces plicatus

    PubMed Central

    Cicek, Kader; Gulec, Burcu; Ungor, Rifat; Hasanova, Gulnara

    2017-01-01

    A plant transient expression system, with eukaryotic post-translational modification machinery, offers superior efficiency, scalability, safety, and lower cost over other expression systems. However, due to aberrant N-glycosylation, this expression system may not be a suitable expression platform for proteins not carrying N-linked glycans in the native hosts. Therefore, it is crucial to develop a strategy to produce target proteins in a non-glycosylated form while preserving their native sequence, conformation and biological activity. Previously, we developed a strategy for enzymatic deglycosylation of proteins in planta by co-expressing bacterial peptide-N-glycosidase F (PNGase F). Though PNGase F removes oligosaccharides from glycosylated proteins, in so doing it causes an amino acid change due to the deamidation of asparagine to aspartate in the N-X-S/T site. Endo-β-N-acetylglucosaminidase (EC3.2.1.96, Endo H), another deglycosylating enzyme, catalyzes cleavage between two N-Acetyl-D-glucosamine residues of the chitobiose core of N-linked glycans, leaving a single N-Acetyl-D-glucosamine residue without the concomitant deamidation of asparagine. In this study, a method for in vivo deglycosylation of recombinant proteins in plants by transient co-expression with bacterial Endo H is described for the first time. Endo H was fully active in vivo. and successfully cleaved N-linked glycans from glycoproteins were tested. In addition, unlike the glycosylated form, in vivo Endo H deglycosylated Pfs48/45 was recognized by conformational specific Pfs48/45 monoclonal antibody, in a manner similar to its PNGase F deglycosylated counterpart. Furthermore, the deglycosylated PA83 molecule produced by Endo H showed better stability than a PNGase F deglycosylated counterpart. Thus, an Endo H in vivo deglycosylation approach provides another opportunity to develop vaccine antigens, therapeutic proteins, antibodies, and industrial enzymes. PMID:28827815

  12. Chemotheraphy, Neurotoxicity, and Cognitive Decline: Developing a Mouse Model and Potential Interventions

    DTIC Science & Technology

    2011-09-01

    dUTP nick-end labeling (TUNEL) as a function of pre & co-treatment with 1) N-acetyl cysteine (NAC) 2) Melatonin & 3) Fluoxetine . Saline Group...4 time points for a total of 20 C57BL/6J mice) 5-FU + Melatonin Group: (n=5 x 4 time points for a total of 20 C57BL/6J mice) 5-FU + Fluoxetine ...56 days, and 6 months after 5-FU treatment using Ki-67 as a function of pre & co-treatment with 1) NAC 2) Melatonin & 3) Fluoxetine . 1c

  13. Ecdysteroid-stimulated synthesis and secretion of an N-acetyl-D-glucosamine-rich glycopeptide in a lepidopteran cell line derived from imaginal discs.

    PubMed

    Porcheron, P; Morinière, M; Coudouel, N; Oberlander, H

    1991-01-01

    Hormone-regulated processing of N-acetyl-D-glucosamine was studied in an insect cell line derived from imaginal wing discs of the Indian meal moth, Plodia interpunctella (Hübner). The cell line, IAL-PID2, responded to treatment with 20-hydroxyecdysone with increased incorporation of GlcNAc into glycoproteins. Cycloheximide and tunicamycin counteracted the action of the hormone. In particular, treatment with 20-hydroxyecdysone resulted in the secretion of a 5,000 dalton N-acetyl-D-glucosamine-rich glycopeptide by the IAL-PID2 cells. Accumulation of this peptide was prevented by the use of teflubenzuron, a potent chitin synthesis inhibitor. A glycopeptide of similar molecular weight was observed in imaginal discs of P. interpunctella treated with 20-hydroxyecdysone in vitro, under conditions that induce chitin synthesis. Although the function of the 5,000 dalton glycopeptide is not known, we believe that the PID2 cell line is a promising model for molecular analysis of ecdysteroid-regulated processing of aminosugars by epidermal cells during insect development.

  14. Identification of N-(deoxyguanosin-8-yl)-4-azobiphenyl by (32)P-postlabeling analyses of DNA in human uroepithelial cells exposed to proximate metabolites of the environmental carcinogen 4-aminobiphenyl.

    PubMed

    Hatcher, James F; Swaminathan, Santhanam

    2002-01-01

    DNA adducts formed in human uroepithelial cells (HUC) following exposure to N-hydroxy-4-aminobiphenyl (N-OH-ABP), the proximate metabolite of the human bladder carcinogen 4-aminobiphenyl (ABP), were analyzed by the (32)P-postlabeling method. Two adducts detected by (32)P-postlabeling were previously identified as the 3',5'-bisphospho derivatives of N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP) and N-(deoxyadenosin-8-yl)-4-aminobiphenyl (dA-C8-ABP) (Frederickson S et al. [1992] Carcinogenesis 13: 955-961; Hatcher and Swaminathan [1995b] Carcinogenesis 16: 295-301). In contrast to the dG-C8-ABP adduct, which was 3'-dephosphorylated by nuclease P1, dA-C8-ABP was resistant to nuclease P1, thus providing an enrichment step before postlabeling. Autoradiography of the two-dimensional thin-layer chromatogram of the postlabeled products obtained following nuclease P1 digestion revealed several minor adducts, one of which has been identified in the present study. Postlabeling analyses following nuclease P1 digestion of the products obtained from the reaction of N-acetoxy-4-aminobiphenyl with deoxyguanosine-3'-monophosphate (dGp) demonstrated the presence of this minor adduct. The 3'-monophosphate derivative of the adduct was subsequently chromatographically purified and subjected to spectroscopic analyses. Based on proton NMR and mass spectroscopic analyses of the synthetic product, the chemical structure of the adduct has been identified as N-(deoxyguanosin-N(2)-yl)-4-azobiphenyl (dG-N==N-ABP). (32)P-Postlabeling analysis of the nuclease P1-enriched DNA hydrolysate of HUCs treated with N-OH-ABP or N-hydroxy-4-acetylaminobiphenyl (N-OH-AABP) showed the presence of the dG-N==N-ABP adduct. It was also detected in calf thymus DNA incubated with HUC cytosol and N-OH-ABP in the presence of acetyl-CoA, or incubated with HUC microsomes and N-OH-AABP. These results demonstrate that in the target cells for ABP carcinogenesis in vivo, N-OH-ABP and N-OH-AABP are bioactivated by acyltransferases to reactive arylnitrenium ions that covalently interact at the N2 position of deoxyguanosine in DNA. Copyright 2002 Wiley-Liss, Inc.

  15. Advanced drug delivery of N-acetylcarnosine (N-acetyl-beta-alanyl-L-histidine), carcinine (beta-alanylhistamine) and L-carnosine (beta-alanyl-L-histidine) in targeting peptide compounds as pharmacological chaperones for use in tissue engineering, human disease management and therapy: from in vitro to the clinic.

    PubMed

    Babizhayev, Mark A; Yegorov, Yegor E

    2010-11-01

    A pharmacological chaperone is a relatively new concept in the treatment of certain chronic disabling diseases. Cells maintain a complete set of functionally competent proteins normally and in the face of injury or environmental stress with the use of various mechanisms, including systems of proteins called molecular chaperones. Proteins that are denatured by any form of proteotoxic stress are cooperatively recognized by heat shock proteins (HSP) and directed for refolding or degradation. Under non-denaturing conditions HSP have important functions in cell physiology such as in transmembrane protein transport and in enabling assembly and folding of newly synthesized polypeptides. Besides cellular molecular chaperones, which are stress-induced proteins, there have been recently reported chemical, or so-called pharmacological chaperones with demonstrated ability to be effective in preventing misfolding of different disease causing proteins, specifically in the therapeutic management of sight-threatening eye diseases, essentially reducing the severity of several neurodegenerative disorders (such as age-related macular degeneration), cataract and many other protein-misfolding diseases. This work reviews the biological and therapeutic activities protected with the patents of the family of imidazole-containing peptidomimetics Carcinine (β-alanylhistamine), N-acetylcarnosine (N-acetyl-β-alanylhistidine) and Carnosine (β-alanyl-L-histidine) which are essential constituents possessing diverse biological and pharmacological chaperone properties in human tissues.

  16. Physiological role of D-amino acid-N-acetyltransferase of Saccharomyces cerevisiae: detoxification of D-amino acids.

    PubMed

    Yow, Geok-Yong; Uo, Takuma; Yoshimura, Tohru; Esaki, Nobuyoshi

    2006-03-01

    Saccharomyces cerevisiae is sensitive to D-amino acids: those corresponding to almost all proteinous L-amino acids inhibit the growth of yeast even at low concentrations (e.g. 0.1 mM). We have determined that D-amino acid-N-acetyltransferase (DNT) of the yeast is involved in the detoxification of D-amino acids on the basis of the following findings. When the DNT gene was disrupted, the resulting mutant was far less tolerant to D-amino acids than the wild type. However, when the gene was overexpressed with a vector plasmid p426Gal1 in the wild type or the mutant S. cerevisiae as a host, the recombinant yeast, which was found to show more than 100 times higher DNT activity than the wild type, was much more tolerant to D-amino acids than the wild type. We further confirmed that, upon cultivation with D-phenylalanine, N-acetyl-D-phenylalanine was accumulated in the culture but not in the wild type and hpa3Delta cells overproducing DNT cells. Thus, D-amino acids are toxic to S. cerevisiae but are detoxified with DNT by N-acetylation preceding removal from yeast cells.

  17. 2-acylamido analogues of N-acetylglucosamine prime formation of chitin oligosaccharides by yeast chitin synthase 2

    USDA-ARS?s Scientific Manuscript database

    Chitin, a polymer of beta-1,4-linked N-acetylglucosamine (GlcNAc), is a key component of the cell walls of fungi and the exoskeletons of arthropods. Chitin synthases (CSs) transfer GlcNAc from UDP-GlcNAc to pre-existing chitin chains in reactions that are typically stimulated by free GlcNAc. The eff...

  18. Administration of Lactobacillus salivarius LI01 or Pediococcus pentosaceus LI05 improves acute liver injury induced by D-galactosamine in rats.

    PubMed

    Lv, Long-Xian; Hu, Xin-Jun; Qian, Gui-Rong; Zhang, Hua; Lu, Hai-Feng; Zheng, Bei-Wen; Jiang, Li; Li, Lan-Juan

    2014-06-01

    This work investigated the effect of the intragastric administration of five lactic acid bacteria from healthy people on acute liver failure in rats. Sprague-Dawley rats were given intragastric supplements of Lactobacillus salivarius LI01, Lactobacillus salivarius LI02, Lactobacillus paracasei LI03, Lactobacillus plantarum LI04, or Pediococcus pentosaceus LI05 for 8 days. Acute liver injury was induced on the eighth day by intraperitoneal injection of 1.1 g/kg body weight D-galactosamine (D-GalN). After 24 h, samples were collected to determine the level of liver enzymes, liver function, histology of the terminal ileum and liver, serum levels of inflammatory cytokines, bacterial translocation, and composition of the gut microbiome. The results indicated that pretreatment with L. salivarius LI01 or P. pentosaceus LI05 significantly reduced elevated alanine aminotransferase and aspartate aminotransferase levels, prevented the increase in total bilirubin, reduced the histological abnormalities of both the liver and the terminal ileum, decreased bacterial translocation, increased the serum level of interleukin 10 and/or interferon-γ, and resulted in a cecal microbiome that differed from that of the liver injury control. Pretreatment with L. plantarum LI04 or L. salivarius LI02 demonstrated no significant effects during this process, and pretreatment with L. paracasei LI03 aggravated liver injury. To the best of our knowledge, the effects of the three species-L. paracasei, L. salivarius, and P. pentosaceus-on D-GalN-induced liver injury have not been previously studied. The excellent characteristics of L. salivarius LI01 and P. pentosaceus LI05 enable them to serve as potential probiotics in the prevention or treatment of acute liver failure.

  19. UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase in nuclei and rimmed vacuoles of muscle fibers in DMRV (distal myopathy with rimmed vacuoles).

    PubMed

    Ishihara, Shoichiro; Tomimitsu, Hiroyuki; Fujigasaki, Hiroto; Saito, Fumiaki; Mizusawa, Hidehiro

    2008-03-01

    UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) is a key molecule in the pathogenesis of distal myopathy with rimmed vacuoles (DMRV) and hereditary inclusion body myopathy (HIBM) and almost all such patients have some mutations in GNE. However, subcellular localization of GNE and the mechanism of muscular damage have not been clarified. A rabbit polyclonal antibody for GNE was prepared. Immunohistochemistry was performed using anti-GNE and anti-nuclear protein antibodies. Western blotting with subcellular fractionated proteins was performed to determine subcellular localization of GNE. The sizes of myonuclei were quantified in muscle biopsies from patients with DMRV and amyotrophic lateral sclerosis (ALS). In DMRV muscles, immunohistochemistry identified GNE in sarcoplasm and specifically in myonuclei and rimmed vacuoles (RV). Nuclear proteins were also found in RVs. Immunohistochemistry showed colocalization of GNE and emerin in C2C12 cells. Western blotting revealed the presence of GNE in nuclear fractions of human embryonic kidney (HEK) 293T cells. The mean size of myonuclei of DMRV was significantly larger than that of ALS. GNE is present in myonuclei near nuclear membrane. Our results suggest that myonuclei are involved in RV formation in DMRV, and that mutant GNE in myonuclei seems to play some role in this process.

  20. Characterization of two N-acetyl muramoylhydrolases of Streptococcus faecium ATCC 9790

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolinger, D.L.

    Purified muramidase-1 of S. faecium has been shown to contain a covalently attached nucleotide. The nucleotide was isolated and identified as 5-mercaptouridine monophosphate, and to occur as multiple monomeric substitutions on the polypeptide chain, via a phosphodiester bond. Exhaustive proteolytic hydrolysis of purified muramidase-1 yielded a peptide fragment consisting of 5-mercaptouridine, tyrosine, alanine, glycine, and leucine. A second peptidoglycan hydrolase (muramidase-2) has been purified to apparent homogeneity. The enzymatic activity has been shown to be consistent with that of a 3-1,4-N-acetylmuramoylhydrolase and differs in substrate specificity and possibility mechanism of hydrolysis from muramidase-1. Purified enzyme appears as two protein stainingmore » bands of molecular masses 125 and 75 kDa after sodium dodecylsulfate polyacrylamide gel ectrophoresis. Elution and renaturation of the protein bands showed that both proteins contain muramidase-2 activity. In addition both proteins have also been shown to specifically bind ({sup 14}C)penicillin G and been tentatively identified as penicillin binding proteins 1 and 5, respectively.« less

  1. Trichothecene 3-O-acetyltransferase protects both the producing organism and transformed yeast from related mycotoxins. Cloning and characterization of Tri101.

    PubMed

    Kimura, M; Kaneko, I; Komiyama, M; Takatsuki, A; Koshino, H; Yoneyama, K; Yamaguchi, I

    1998-01-16

    Trichothecene mycotoxins such as deoxynivalenol, 4,15-diacetoxyscirpenol, and T-2 toxin, are potent protein synthesis inhibitors for eukaryotic organisms. The 3-O-acetyl derivatives of these toxins were shown to reduce their in vitro activity significantly as assessed by assays using a rabbit reticulocyte translation system. The results suggested that the introduction of an O-acetyl group at the C-3 position in the biosynthetic pathway works as a resistance mechanism for Fusarium species that produce t-type trichothecenes (trichothecenes synthesized via the precursor trichotriol). A gene responsible for the 3-O-acetylation reaction, Tri101, has been successfully cloned from a Fusarium graminearum cDNA library that was designed to be expressed in Schizosaccharomyces pombe. Fission yeast transformants were selected for their ability to grow in the presence of T-2 toxin, and this strategy allowed isolation of 25 resistant clones, all of which contained a cDNA for Tri101. This is the first drug-inactivating O-acetyltransferase gene derived from antibiotic-producing organisms. The open reading frame of Tri101 codes for a polypeptide of 451 amino acid residues, which shows no similarity to any other proteins reported so far. TRI101 from recombinant Escherichia coli catalyzes O-acetylation of the trichothecene ring specifically at the C-3 position in an acetyl-CoA-dependent manner. By using the Tri101 cDNA as a probe, two least overlapping cosmid clones that cover a region of 70 kilobase pairs have been isolated from the genome of F. graminearum. Other trichothecene biosynthetic genes, Tri4, Tri5, and Tri6, were not clustered in the region covered by these cosmid clones. These new cosmid clones are considered to be located in other parts of the large biosynthetic gene cluster and might be useful for the study of trichothecene biosynthesis.

  2. Overlapping and distinct roles of Aspergillus fumigatus UDP-glucose 4-epimerases in galactose metabolism and the synthesis of galactose-containing cell wall polysaccharides.

    PubMed

    Lee, Mark J; Gravelat, Fabrice N; Cerone, Robert P; Baptista, Stefanie D; Campoli, Paolo V; Choe, Se-In; Kravtsov, Ilia; Vinogradov, Evgeny; Creuzenet, Carole; Liu, Hong; Berghuis, Albert M; Latgé, Jean-Paul; Filler, Scott G; Fontaine, Thierry; Sheppard, Donald C

    2014-01-17

    The cell wall of Aspergillus fumigatus contains two galactose-containing polysaccharides, galactomannan and galactosaminogalactan, whose biosynthetic pathways are not well understood. The A. fumigatus genome contains three genes encoding putative UDP-glucose 4-epimerases, uge3, uge4, and uge5. We undertook this study to elucidate the function of these epimerases. We found that uge4 is minimally expressed and is not required for the synthesis of galactose-containing exopolysaccharides or galactose metabolism. Uge5 is the dominant UDP-glucose 4-epimerase in A. fumigatus and is essential for normal growth in galactose-based medium. Uge5 is required for synthesis of the galactofuranose (Galf) component of galactomannan and contributes galactose to the synthesis of galactosaminogalactan. Uge3 can mediate production of both UDP-galactose and UDP-N-acetylgalactosamine (GalNAc) and is required for the production of galactosaminogalactan but not galactomannan. In the absence of Uge5, Uge3 activity is sufficient for growth on galactose and the synthesis of galactosaminogalactan containing lower levels of galactose but not the synthesis of Galf. A double deletion of uge5 and uge3 blocked growth on galactose and synthesis of both Galf and galactosaminogalactan. This study is the first survey of glucose epimerases in A. fumigatus and contributes to our understanding of the role of these enzymes in metabolism and cell wall synthesis.

  3. Shape Representation in V4: Investigating Position-Specific Tuning for Boundary Confirmation with the Standard Model of Object Recognition

    DTIC Science & Technology

    2004-11-01

    s s a c h u s e t t s i n s t ...i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 2 1 3 9 u s a — w w w . c s a i l . m i t . e d u m a ss a c h u se t t s i n...st i t u t e o f t e c h n o l o g y — co m p u t e r sc i e n ce a n d a r t i f ic ia l i n t e l l ig e n ce l a b o ra t o r y

  4. Structures of the N-acetyltransferase domain of Xylella fastidiosa N-acetyl-L-glutamate synthase/kinase with and without a His tag bound to N-acetyl-L-glutamate.

    PubMed

    Zhao, Gengxiang; Jin, Zhongmin; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2015-01-01

    Structures of the catalytic N-acetyltransferase (NAT) domain of the bifunctional N-acetyl-L-glutamate synthase/kinase (NAGS/K) from Xylella fastidiosa bound to N-acetyl-L-glutamate (NAG) with and without an N-terminal His tag have been solved and refined at 1.7 and 1.4 Å resolution, respectively. The NAT domain with an N-terminal His tag crystallized in space group P4(1)2(1)2, with unit-cell parameters a=b=51.72, c=242.31 Å. Two subunits form a molecular dimer in the asymmetric unit, which contains ∼41% solvent. The NAT domain without an N-terminal His tag crystallized in space group P21, with unit-cell parameters a=63.48, b=122.34, c=75.88 Å, β=107.6°. Eight subunits, which form four molecular dimers, were identified in the asymmetric unit, which contains ∼38% solvent. The structures with and without the N-terminal His tag provide an opportunity to evaluate how the His tag affects structure and function. Furthermore, multiple subunits in different packing environments allow an assessment of the plasticity of the NAG binding site, which might be relevant to substrate binding and product release. The dimeric structure of the X. fastidiosa N-acetytransferase (xfNAT) domain is very similar to that of human N-acetyltransferase (hNAT), reinforcing the notion that mammalian NAGS is evolutionally derived from bifunctional bacterial NAGS/K.

  5. Prime Contract Awards of $100,000 or More by Federal Supply Classification or Service Category and Purchasing Office. FY 87. Part 4. J095-S214.

    DTIC Science & Technology

    1987-01-01

    I- a V) 41z ,)C- C-’) C4 o r- a- > 4-) w < C: n~ z~~ <A 00C _ D. D0WM 0~~ 0 ,0"NC> 0 00 C> L.Ji~ N CJ 00C LC) (D m4- - -l~ af f ) 4 4-1 - -j Z 40...mt (9 l.....0 -.-. 4 T. L.J 1 .7 ~C) f-.u’ T Ln ,I V) 00)o (a0)r-wmm -cl)r= , 0 -J z p~- 4 - C- 0 .- 4C> (3) 0 U) C’ D aC𔃺 ~’ C>o o m- N- C> w CzT mN

  6. Proteomic response of the biological control fungus Trichoderma atroviride to growth on the cell walls of Rhizoctonia solani.

    PubMed

    Grinyer, Jasmine; Hunt, Sybille; McKay, Matthew; Herbert, Ben R; Nevalainen, Helena

    2005-06-01

    Trichoderma atroviride has a natural ability to parasitise phytopathogenic fungi such as Rhizoctonia solani and Botrytis cinerea, therefore providing an environmentally sound alternative to chemical fungicides in the management of these pathogens. Two-dimensional electrophoresis was used to display cellular protein patterns of T. atroviride (T. harzianum P1) grown on media containing either glucose or R. solani cell walls. Protein profiles were compared to identify T. atroviride proteins up-regulated in the presence of the R. solani cell walls. Twenty-four protein spots were identified using matrix-assisted laser desorption ionisation mass spectrometry, liquid chromatography mass spectrometry and N-terminal sequencing. Identified up-regulated proteins include known fungal cell wall-degrading enzymes such as N-acetyl-beta-D: -glucosaminidase and 42-kDa endochitinase. Three novel proteases of T. atroviride were identified, containing sequence similarity to vacuolar serine protease, vacuolar protease A and a trypsin-like protease from known fungal proteins. Eukaryotic initiation factor 4a, superoxide dismutase and a hypothetical protein from Neurospora crassa were also up-regulated as a response to R. solani cell walls. Several cell wall-degrading enzymes were identified from the T. atroviride culture supernatant, providing further evidence that a cellular response indicative of biological control had occurred.

  7. Synthesis of novel C-4'-spiro-oxetano-α-L-ribonucleosides.

    PubMed

    Kumar, Rajesh; Kumar, Manish; Singh, Ankita; Singh, Neetu; Maity, Jyotirmoy; Prasad, Ashok K

    2017-06-05

    The synthesis of novel C-4'-spiro-oxetano-α-L-ribonucleosides T and U in 39 and 45% overall yields have been achieved from 2',3',5'-tri-O-acetyl-4'-C-p-toluenesulfonyloxymethyl-β-D-xylofuranosylthymine and 2',3',5'-tri-O-acetyl-4'-C-p-toluenesulfonyloxymethyl-β-D-xylofuranosyluracil, respectively. Both the tosylated nucleoside precursors have been synthesized following recently developed Novozyme ® -435 catalyzed methodology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis

    DOE PAGES

    Jian, Siyang; Li, Jianwei; Chen, Ji; ...

    2016-07-08

    Nitrogen (N) fertilization affects the rate of soil organic carbon (SOC) decomposition by regulating extracellular enzyme activities (EEA). Extracellular enzymes have not been represented in global biogeochemical models. Understanding the relationships among EEA and SOC, soil N (TN), and soil microbial biomass carbon (MBC) under N fertilization would enable modeling of the influence of EEA on SOC decomposition. Based on 65 published studies, we synthesized the activities of α-1,4-glucosidase (AG), β-1,4-glucosidase (BG), β-d-cellobiosidase (CBH), β-1,4-xylosidase (BX), β-1,4-N-acetyl-glucosaminidase (NAG), leucine amino peptidase (LAP), urease (UREA), acid phosphatase (AP), phenol oxidase (PHO), and peroxidase (PEO) in response to N fertilization. Here, themore » proxy variables for hydrolytic C acquisition enzymes (C-acq), N acquisition (N-acq), and oxidative decomposition (OX) were calculated as the sum of AG, BG, CBH and BX; AG and LAP; PHO and PEO, respectively.« less

  9. A homogeneous, high-throughput-compatible, fluorescence intensity-based assay for UDP-N-acetylenolpyruvylglucosamine reductase (MurB) with nanomolar product detection.

    PubMed

    Shapiro, Adam B; Livchak, Stephania; Gao, Ning; Whiteaker, James; Thresher, Jason; Jahić, Haris; Huang, Jian; Gu, Rong-Fang

    2012-03-01

    A novel assay for the NADPH-dependent bacterial enzyme UDP-N-acetylenolpyruvylglucosamine reductase (MurB) is described that has nanomolar sensitivity for product formation and is suitable for high-throughput applications. MurB catalyzes an essential cytoplasmic step in the synthesis of peptidoglycan for the bacterial cell wall, reduction of UDP-N-acetylenolpyruvylglucosamine to UDP-N-acetylmuramic acid (UNAM). Interruption of this biosynthetic pathway leads to cell death, making MurB an attractive target for antibacterial drug discovery. In the new assay, the UNAM product of the MurB reaction is ligated to L-alanine by the next enzyme in the peptidoglycan biosynthesis pathway, MurC, resulting in hydrolysis of adenosine triphosphate (ATP) to adenosine diphosphate (ADP). The ADP is detected with nanomolar sensitivity by converting it to oligomeric RNA with polynucleotide phosphorylase and detecting the oligomeric RNA with a fluorescent dye. The product sensitivity of the new assay is 1000-fold greater than that of the standard assay that follows the absorbance decrease resulting from the conversion of NADPH to NADP(+). This sensitivity allows inhibitor screening to be performed at the low substrate concentrations needed to make the assay sensitive to competitive inhibition of MurB.

  10. Simulators for Mariner Training and Licensing. Phase 1. The Role of Simulators in the Mariner Training and Licensing Process. Volume II.

    DTIC Science & Technology

    1980-07-01

    imidi NZN V) 0& TI ds003 LU- C- j Ito *AI~I om Qu N V V V V V CJ~ ~ ~~ INWOA~ illsVV VVV 2~SMUW~ d V V...WYIA N .3DC- 4 .*4N N SOMMIM C1 UW.!!0Ŗ N 141 A-4 AINI ’ SU W (4N ri N .., N 34M4 CD) ’T" J " D N f NdN Mau N 4 0-44 C~~~ d 2-NIINF LI AA-4 LL),~, rimi...SI-M L) J * Mcd d _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ I’d (A~~~~ ~~~ -IN svm~ d

  11. F-111D, DT and E Evaluation of Environmental Control, Airframe, Flight Control, and Secondary Power Subsystems. Appendix 2

    DTIC Science & Technology

    1973-12-01

    la J\\ j ue J r •« t « i •••••• •••• O I Pt I A # «4 M f «I n # f^ A « | 19 «4«| # 4 K 4 N **tl 4 | «4 M ^ w...8217^•««40tV\\ lA ^n«o t𔃺«4 J ^ N- -n T» o *ma# j ra j- vO ŗ <<l ^ OfO ^ Lj ^ »/I «^ ^- O < - • • • •• • ••JJ-J-J...3 ’H i J J J -I -I • J O J\\ J- t i ^ lt) lA -*(T» »ft^lft-O^lÄO^AC» -■« Ift M «ft ♦ .fv n 3 J3 J) ^ .i> 0 J) to »O \\D iD

  12. Structures of exocyclic R,R- and S,S-N(6),N(6)-(2,3-dihydroxybutan-1,4-diyl)-2'-deoxyadenosine adducts induced by 1,2,3,4-diepoxybutane.

    PubMed

    Kowal, Ewa A; Seneviratne, Uthpala; Wickramaratne, Susith; Doherty, Kathleen E; Cao, Xiangkun; Tretyakova, Natalia; Stone, Michael P

    2014-05-19

    1,3-Butadiene (BD) is an industrial and environmental chemical present in urban air and cigarette smoke, and is classified as a human carcinogen. It is oxidized by cytochrome P450 to form 1,2,3,4-diepoxybutane (DEB); DEB bis-alkylates the N(6) position of adenine in DNA. Two enantiomers of bis-N(6)-dA adducts of DEB have been identified: R,R-N(6),N(6)-(2,3-dihydroxybutan-1,4-diyl)-2'-deoxyadenosine (R,R-DHB-dA), and S,S-N(6),N(6)-(2,3-dihydroxybutan-1,4-diyl)-2'-deoxyadenosine (S,S-DHB-dA) [ Seneviratne , U. , Antsypovich , S. , Dorr , D. Q. , Dissanayake , T. , Kotapati , S. , and Tretyakova , N. ( 2010 ) Chem. Res. Toxicol. 23 , 1556 -1567 ]. Herein, the R,R-DHB-dA and S,S-DHB-dA adducts have been incorporated into the 5'-d(C(1)G(2)G(3)A(4)C(5)X(6)A(7)G(8)A(9)A(10)G(11))-3':5'-d(C(12)T(13)T(14)C(15)T(16)T(17)G(18)T(19)C(20)C(21)G(22))-3' duplex [X(6) = R,R-DHB-dA (R(6)) or S,S-DHB-dA (S(6))]. The structures of the duplexes were determined by molecular dynamics calculations, which were restrained by experimental distances obtained from NMR data. Both the R,R- and S,S-DHB-dA adducts are positioned in the major groove of DNA. In both instances, the bulky 3,4-dihydroxypyrrolidine rings are accommodated by an out-of-plane rotation about the C6-N(6) bond of the bis-alkylated adenine. In both instances, the directionality of the dihydroxypyrrolidine ring is evidenced by the pattern of NOEs between the 3,4-dihydroxypyrrolidine protons and DNA. Also in both instances, the anti conformation of the glycosyl bond is maintained, which combined with the out-of-plane rotation about the C6-N(6) bond, allows the complementary thymine, T(17), to remain stacked within the duplex, and form one hydrogen bond with the modified base, between the imine nitrogen of the modified base and the T(17) N3H imino proton. The loss of the second Watson-Crick hydrogen bonding interaction at the lesion sites correlates with the lower thermal stabilities of the R,R- and S,S-DHB-dA duplexes, as compared to the corresponding unmodified duplex. The reduced base stacking at the adduct sites may also contribute to the thermal instability.

  13. Structures of Exocyclic R,R- and S,S-N6,N6-(2,3-Dihydroxybutan-1,4-diyl)-2′-Deoxyadenosine Adducts Induced by 1,2,3,4-Diepoxybutane

    PubMed Central

    2015-01-01

    1,3-Butadiene (BD) is an industrial and environmental chemical present in urban air and cigarette smoke, and is classified as a human carcinogen. It is oxidized by cytochrome P450 to form 1,2,3,4-diepoxybutane (DEB); DEB bis-alkylates the N6 position of adenine in DNA. Two enantiomers of bis-N6-dA adducts of DEB have been identified: R,R-N6,N6-(2,3-dihydroxybutan-1,4-diyl)-2′-deoxyadenosine (R,R-DHB-dA), and S,S-N6,N6-(2,3-dihydroxybutan-1,4-diyl)-2′-deoxyadenosine (S,S-DHB-dA) [SeneviratneU., AntsypovichS., DorrD. Q., DissanayakeT., KotapatiS., and TretyakovaN. (2010) Chem. Res. Toxicol.23, 1556−156720873715]. Herein, the R,R-DHB-dA and S,S-DHB-dA adducts have been incorporated into the 5′-d(C1G2G3A4C5X6A7G8A9A10G11)-3′:5′-d(C12T13T14C15T16T17G18T19C20C21G22)-3′ duplex [X6 = R,R-DHB-dA (R6) or S,S-DHB-dA (S6)]. The structures of the duplexes were determined by molecular dynamics calculations, which were restrained by experimental distances obtained from NMR data. Both the R,R- and S,S-DHB-dA adducts are positioned in the major groove of DNA. In both instances, the bulky 3,4-dihydroxypyrrolidine rings are accommodated by an out-of-plane rotation about the C6-N6 bond of the bis-alkylated adenine. In both instances, the directionality of the dihydroxypyrrolidine ring is evidenced by the pattern of NOEs between the 3,4-dihydroxypyrrolidine protons and DNA. Also in both instances, the anti conformation of the glycosyl bond is maintained, which combined with the out-of-plane rotation about the C6-N6 bond, allows the complementary thymine, T17, to remain stacked within the duplex, and form one hydrogen bond with the modified base, between the imine nitrogen of the modified base and the T17 N3H imino proton. The loss of the second Watson–Crick hydrogen bonding interaction at the lesion sites correlates with the lower thermal stabilities of the R,R- and S,S-DHB-dA duplexes, as compared to the corresponding unmodified duplex. The reduced base stacking at the adduct sites may also contribute to the thermal instability. PMID:24741991

  14. N-Acetyl and Glutamatergic Neurometabolites in Perisylvian Brain Regions of Methamphetamine Users.

    PubMed

    Tang, Jinsong; O'Neill, Joseph; Alger, Jeffry R; Shen, Zhiwei; Johnson, Maritza C; London, Edythe D

    2018-05-21

    Methamphetamine induces neuronal N-acetyl-aspartate synthesis in preclinical studies. In a preliminary human proton magnetic resonance spectroscopic imaging investigation, we also observed that N-acetyl-aspartate+N-acetyl-aspartyl-glutamate in right inferior frontal cortex correlated with years of heavy methamphetamine abuse. In the same brain region, glutamate+glutamine is lower in methamphetamine users than in controls and is negatively correlated with depression. N-acetyl and glutamatergic neurochemistries therefore merit further investigation in methamphetamine abuse and the associated mood symptoms. Magnetic resonance spectroscopic imaging was used to measure N-acetyl-aspartate+N-acetyl-aspartyl-glutamate and glutamate+glutamine in bilateral inferior frontal cortex and insula, a neighboring perisylvian region affected by methamphetamine, of 45 abstinent methamphetamine-dependent and 45 healthy control participants. Regional neurometabolite levels were tested for group differences and associations with duration of heavy methamphetamine use, depressive symptoms, and state anxiety. In right inferior frontal cortex, N-acetyl-aspartate+N-acetyl-aspartyl-glutamate correlated with years of heavy methamphetamine use (r = +0.45); glutamate+glutamine was lower in methamphetamine users than in controls (9.3%) and correlated negatively with depressive symptoms (r = -0.44). In left insula, N-acetyl-aspartate+N-acetyl-aspartyl-glutamate was 9.1% higher in methamphetamine users than controls. In right insula, glutamate+glutamine was 12.3% lower in methamphetamine users than controls and correlated negatively with depressive symptoms (r = -0.51) and state anxiety (r = -0.47). The inferior frontal cortex and insula show methamphetamine-related abnormalities, consistent with prior observations of increased cortical N-acetyl-aspartate in methamphetamine-exposed animal models and associations between cortical glutamate and mood in human methamphetamine users.

  15. Structure of N-acetyl-[beta]-D-glucosaminidase (GcnA) from the Endocarditis Pathogen Streptococcus gordonii and its Complex with the Mechanism-based Inhibitor NAG-thiazoline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langley, David B.; Harty, Derek W.S.; Jacques, Nicholas A.

    2008-09-17

    The crystal structure of GcnA, an N-acetyl-{beta}-D-glucosaminidase from Streptococcus gordonii, was solved by multiple wavelength anomalous dispersion phasing using crystals of selenomethionine-substituted protein. GcnA is a homodimer with subunits each comprised of three domains. The structure of the C-terminal {alpha}-helical domain has not been observed previously and forms a large dimerization interface. The fold of the N-terminal domain is observed in all structurally related glycosidases although its function is unknown. The central domain has a canonical ({beta}/{alpha}){sub 8} TIM-barrel fold which harbours the active site. The primary sequence and structure of this central domain identifies the enzyme as a familymore » 20 glycosidase. Key residues implicated in catalysis have different conformations in two different crystal forms, which probably represent active and inactive conformations of the enzyme. The catalytic mechanism for this class of glycoside hydrolase, where the substrate rather than the enzyme provides the cleavage-inducing nucleophile, has been confirmed by the structure of GcnA complexed with a putative reaction intermediate analogue, N-acetyl-{beta}-D-glucosamine-thiazoline. The catalytic mechanism is discussed in light of these and other family 20 structures.« less

  16. The Folding of Acetyl(Ala)28NH2 and Acetyl(Ala)40NH2 Extended Strand Peptides into Antiparallel β-Sheets. A Density Functional Theory Study of β-Sheets with β-Turns

    PubMed Central

    Ali-Torres, Jorge

    2012-01-01

    We report ONIOM calculations using B3LYP/D95** and AM1 on β-sheet formation from acetyl(Ala)NNH2 (N=28 or 40). The sheets contain from one to four β-turns for N=28 and up to six for N=40. We have obtained four types of geometrically optimized structures. All contain only β-turns. They differ from each other in the types of β-turns formed. The unsolvated sheets containing two turns are most stable. Aqueous solvation (using the SM5.2 and CPCM methods) reduces the stabilities of the folded structures compared to the extended strands. PMID:23157432

  17. Installation Restoration Program. Phase 2. Confirmation/Quantification. Stage 1. Air Force Plant 4, Fort Worth, Texas. Volume 2. Appendix A-1.

    DTIC Science & Technology

    1987-12-01

    N1 4. j -0 z0 Uc n 41 or tD D, C a z 4s -J’ - - -T. = 3 CL Ct UL Cfl a-4 CL c r- 0CL U 4 -40 0 CL - :r j3 :) c c 0 0.’ 0- 1- 0 j c D4 C 4) 4 M 48= u...Ii el ozi - - 1 2 1 * ~ ~ ~ ~ L I.) z T L F-, ~ ~ - - *~~~~~ ~~ 093. j ,U .) . C- i n- zi -7 CD Z- c c c c c I a D- do 0. CL C a- JaJ - LA a) IC= -=1 -4...w N M’ it ’.o r’. M O’ 0 td M ’ 3aW 0 00 0 00 0 0 .- - .4 14 LaJ4 W4V L" Z- Z C3 1=z C= CD U IS LL L W N m’ t U) M 0. 0 . ’-U> CDn I-0 00CSI-W0C S6

  18. Cysteine Supplementation May be Beneficial in a Subgroup of Mitochondrial Translation Deficiencies.

    PubMed

    Bartsakoulia, Marina; Mϋller, Juliane S; Gomez-Duran, Aurora; Yu-Wai-Man, Patrick; Boczonadi, Veronika; Horvath, Rita

    2016-08-30

    Mitochondrial encephalomyopathies are severe, relentlessly progressive conditions and there are very few effective therapies available to date. We have previously suggested that in two rare forms of reversible mitochondrial disease (reversible infantile respiratory chain deficiency and reversible infantile hepatopathy) supplementation with L-cysteine can improve mitochondrial protein synthesis, since cysteine is required for the 2-thiomodification of mitochondrial tRNAs. We studied whether supplementation with L-cysteine or N-acetyl-cysteine (NAC) results in any improvement of the mitochondrial function in vitro in fibroblasts of patients with different genetic forms of abnormal mitochondrial translation. We studied in vitro in fibroblasts of patients carrying the common m.3243A>G and m.8344A>G mutations or autosomal recessive mutations in genes affecting mitochondrial translation, whether L-cysteine or N-acetyl-cysteine supplementation have an effect on mitochondrial respiratory chain function. Here we show that supplementation with L-cysteine, but not with N-acetyl-cysteine partially rescues the mitochondrial translation defect in vitro in fibroblasts of patients carrying the m.3243A>G and m.8344A>G mutations. In contrast, N-acetyl-cysteine had a beneficial effect on mitochondrial translation in TRMU and MTO1 deficient fibroblasts. Our results suggest that L-cysteine or N-acetyl-cysteine supplementation may be a potential treatment for selected subgroups of patients with mitochondrial translation deficiencies. Further studies are needed to explore the full potential of cysteine supplementation as a treatment for patients with mitochondrial disease.

  19. Deployment Area Selection and Land Withdrawal/Acquisition. M-X/MPS (M-X/Multiple Protective Shelter) Environmental Technical Report. Regional Economic Analysis.

    DTIC Science & Technology

    1981-10-02

    nL a, (N LlwNn - O- N OQ cOCQO Oa C. ONN CC 001 nC 0O-TmoNnmm 0 -7 0’ n on o m f- w -14w- 0 aj (Nm 00 C) r C40M(o -w m 0 IN IN~O O T )’ C01 cO o~f o 0...0 ’IT 0 1 Oa ) -L o kS 1 r LrNx1 0 r C’. U0 m N(n ccN -W 00 m c 0) N - M0 ~ O N r- M L’ _j-MZ_ N. o N0 U- ZN N LLL LJ O)r N 00 7! t- r- (N0000O--OO(0...LO Lr’ nI C) 0 0 r oa D I 4 , 0 0 0 m .- trv C4~ W 4W- kI V)v-D L co c.i- l L) e V(j D I o I / I In~ M ZN 0 z a t~~* N-a (D coC~ If) M WI h/)m j UU Z

  20. Subcontracting Opportunities with DoD Major Prime Contractors

    DTIC Science & Technology

    1991-01-01

    W 0in W(wL W -4L-0 M I 0cr0 mix C/(/7 - I.- > ’-4 m 031 #-4W#-t uW <F-4"- ..J 1-107 1-- C4(/ 01 1--W1- zz1- -Zj x wJ3- w Z< c D~ MM-J -J=L0 -J I.-w...W) La4mN04 W C4 t- 24C𔃾 XɜN WZO) -c44 WI CCCC4 x--cc-W 4C-4 "e 5-4C- dC[Jo hLX-4 WZ.X 4 m0-I xx-Iq -X.-4 maC) kfC -M- >0CLo -Ji r n WOC CU O (nCl)Ut...zc U)C aJ 0 z U) -4 1-’CI 4 0. -4N C 0C 00 4 .0_4 004n cc -400 WI 2-’ o WI2W -Z- 0 =~ I)4 0 W n IdT M1 0 . 01-4 1 . 1 -4 W 3z) 1.41 I U) i 0-00 Mix

  1. Equivalence Measurement Studies (Sections 1 - 4)

    DTIC Science & Technology

    1975-04-01

    W ~ 4JJJ~4 $44 D-4C C - 4 0>N 01-a.O1- m .00 0 ca r4 ~V4) 14) 0 0 i4) 00 >... > Q)- 0 4) .ir 10 4 cc0 >%4 -,4 %4 . cI r.P 0 >t (0 4) la b 0 C)CU t4 2r...complicates some channel measurement 3-38 > 0. r~ri 04 c~0 CP co 0 Cft) 444 0 C a~ Q~ 0 0 w a. -0 40Cn I~F . " - 4, I 0 -- .2 C, W 4-J P- E -4 LA -- ý4...we readily find that ýi(t) T(F,t) y(t) +n (t) (4.15) where n(t) 77(t) ® h(t) (4.16) 4-6 4.) N. 4. ( C-7 Q) C14) La -4 4J- P4~ CNN P4 4.5 W4-4 P4 N N

  2. Biotechnology Process Engineering Center at MIT Home

    Science.gov Websites

    ; < N o r m a l CJ aJ mH sH tH D A@òÿ¡ D D e f a u l t P a r a g r a p h F o n t R i@óÿ³ R T a b l e N o r m a l ö 4Ö ; l 4Ö aö ( k@ôÿÁ ( N o L i s t º@ ¦ 

  3. Tracking polypeptide folds on the free energy surface: effects of the chain length and sequence.

    PubMed

    Brukhno, Andrey V; Ricchiuto, Piero; Auer, Stefan

    2012-07-26

    Characterization of the folding transition in polypeptides and assessing the thermodynamic stability of their structured folds are of primary importance for approaching the problem of protein folding. We use molecular dynamics simulations for a coarse grained polypeptide model in order to (1) obtain the equilibrium conformation diagram of homopolypeptides in a broad range of the chain lengths, N = 10, ..., 100, and temperatures, T (in a multicanonical ensemble), and (2) determine free energy profiles (FEPs) projected onto an optimal, so-called "natural", reaction coordinate that preserves the height of barriers and the diffusion coefficients on the underlying free energy hyper-surface. We then address the following fundamental questions. (i) How well does a kinetically determined free energy landscape of a single chain represent the polypeptide equilibrium (ensemble) behavior? In particular, under which conditions might the correspondence be lost, and what are the possible implications for the folding processes? (ii) How does the free energy landscape depend on the chain length (homopolypeptides) and the monomer interaction sequence (heteropolypeptides)? Our data reveal that at low T values equilibrium structures adopted by relatively short homopolypeptides (N < 60) are dominated by α-helical folds which correspond to the primary and secondary minima of the FEP. In contrast, longer homopolypeptides (N > 70), upon quasi-equilibrium cooling, fold preferentially in β-bundles with small helical portions, while the FEPs exhibit no distinct global minima. Moreover, subject to the choice of the initial configuration, at sufficiently low T, essentially metastable structures can be found and prevail far from the true thermodynamic equilibrium. We also show that, by sequence-enabling the polypeptide model, it is possible to restrict the chain to a very specific part of the configuration space, which results in substantial simplification and smoothing of the free energy landscape as compared to the case of the corresponding homopolypeptide.

  4. Cyclo[n]pyrroles: Size and Site Specific Binding to G-Quadruplexes

    PubMed Central

    Baker, Erin Shammel; Lee, Jeong T.

    2014-01-01

    Inhibiting the enzyme telomerase by stabilizing the G-quadruplex has potential in anticancer drug design. Diprotonated cyclo[n]pyrroles represent a set of expanded porphyrin analogues with structures similar to telomestatin, a natural product known to bind to and stabilize G-quadruplexes. As a first step towards testing whether cyclo[n]pyrroles display a similar function, a series of diprotonated cyclo[n]pyrroles (where n = 6, 7 and 8) was each added to the human telomere repeat sequence d(T2AG3)4 and examined with mass spectrometry, ion mobility and molecular dynamics calculations. Nano-ESI-MS indicated that the smaller the cyclo[n]pyrrole, the stronger it binds to the telomeric sequence. It was also found that cyclo[6]pyrrole bound to d(T2AG3)4 better than octaethylporphyrin, a finding rationalized by cyclo[6]pyrrole having a +2 charge, while octaethylporphyrin bears no charge. Ion mobility measurements were used to measure the collision cross section of each d(T2AG3)4/cyclo[n]pyrrole complex. Only one peak was observed in the arrival time distributions for all complexes and the experimental cross sections indicated that only structures with d(T2AG3)4 in an antiparallel G-quadruplex arrangement and each cyclo[n]pyrrole externally stacked below the G-quartets occur under these experimental conditions. When the cyclo[n]pyrroles were intercalated or nonspecifically bound to the quadruplex or if different conformations than antiparallel were considered for d(T2AG3)4, the theoretical cross sections did not match experiment. On this basis, it is inferred that 1) external stacking represents the dominant binding mode for the interaction of cyclo[n]pyrroles with d(T2AG3)4 and 2) the overall size and charge of the cyclo[n]pyrroles play important roles in defining the binding strength. PMID:16492050

  5. The influence of an intramolecular hydrogen bond in differential recognition of inhibitory acceptor analogs by human ABO(H) blood group A and B glycosyltransferases.

    PubMed

    Nguyen, Hoa P; Seto, Nina O L; Cai, Ye; Leinala, Eeva K; Borisova, Svetlana N; Palcic, Monica M; Evans, Stephen V

    2003-12-05

    Human ABO(H) blood group glycosyltransferases GTA and GTB catalyze the final monosaccharide addition in the biosynthesis of the human A and B blood group antigens. GTA and GTB utilize a common acceptor, the H antigen disaccharide alpha-l-Fucp-(1-->2)-beta-d-Galp-OR, but different donors, where GTA transfers GalNAc from UDP-GalNAc and GTB transfers Gal from UDP-Gal. GTA and GTB are two of the most homologous enzymes known to transfer different donors and differ in only 4 amino acid residues, but one in particular (Leu/Met-266) has been shown to dominate the selection between donor sugars. The structures of the A and B glycosyltransferases have been determined to high resolution in complex with two inhibitory acceptor analogs alpha-l-Fucp(1-->2)-beta-d-(3-deoxy)-Galp-OR and alpha-l-Fucp-(1-->2)-beta-d-(3-amino)-Galp-OR, in which the 3-hydroxyl moiety of the Gal ring has been replaced by hydrogen or an amino group, respectively. Remarkably, although the 3-deoxy inhibitor occupies the same conformation and position observed for the native H antigen in GTA and GTB, the 3-amino analog is recognized differently by the two enzymes. The 3-amino substitution introduces a novel intramolecular hydrogen bond between O2' on Fuc and N3' on Gal, which alters the minimum-energy conformation of the inhibitor. In the absence of UDP, the 3-amino analog can be accommodated by either GTA or GTB with the l-Fuc residue partially occupying the vacant UDP binding site. However, in the presence of UDP, the analog is forced to abandon the intramolecular hydrogen bond, and the l-Fuc residue is shifted to a less ordered conformation. Further, the residue Leu/Met-266 that was thought important only in distinguishing between donor substrates is observed to interact differently with the 3-amino acceptor analog in GTA and GTB. These observations explain why the 3-deoxy analog acts as a competitive inhibitor of the glycosyltransferase reaction, whereas the 3-amino analog displays complex modes of inhibition.

  6. Effect of drainage on CO2, CH4, and N2O fluxes from aquaculture ponds during winter in a subtropical estuary of China.

    PubMed

    Yang, Ping; Lai, Derrick Y F; Huang, Jia F; Tong, Chuan

    2018-03-01

    Aquaculture ponds are dominant features of the landscape in the coastal zone of China. Generally, aquaculture ponds are drained during the non-culture period in winter. However, the effects of such drainage on the production and flux of greenhouse gases (GHGs) from aquaculture ponds are largely unknown. In the present study, field-based research was performed to compare the GHG fluxes between one drained pond (DP, with a water depth of 0.05m) and one undrained pond (UDP, with a water depth of 1.16m) during one winter in the Min River estuary of southeast China. Over the entire study period, the mean CO 2 flux in the DP was (0.75±0.12) mmol/(m 2 ·hr), which was significantly higher than that in the UDP of (-0.49±0.09) mmol/(m 2 ·hr) (p<0.01). This indicates that drainage drastically transforms aquaculture ponds from a net sink to a net source of CO 2 in winter. Mean CH 4 and N 2 O emissions were significantly higher in the DP compared to those in the UDP (CH 4 =(0.66±0.31) vs. (0.07±0.06) mmol/(m 2 ·hr) and N 2 O=(19.54±2.08) vs. (0.01±0.04) µmol/(m 2 ·hr)) (p<0.01), suggesting that drainage would also significantly enhance CH 4 and N 2 O emissions. Changes in environmental variables (including sediment temperature, pH, salinity, redox status, and water depth) contributed significantly to the enhanced GHG emissions following pond drainage. Furthermore, analysis of the sustained-flux global warming and cooling potentials indicated that the combined global warming potentials of the GHG fluxes were significantly higher in the DP than in the UDP (p<0.01), with values of 739.18 and 26.46mgCO 2 -eq/(m 2 ·hr), respectively. Our findings suggested that drainage of aquaculture ponds can increase the emissions of potent GHGs from the coastal zone of China to the atmosphere during winter, further aggravating the problem of global warming. Copyright © 2017. Published by Elsevier B.V.

  7. Oral Administration of N-acetyl-D Glucosamine Polymer Particles Down-Regulates Airway Allergic Responses

    DTIC Science & Technology

    2008-05-01

    asthma in Cynomolgus monkeys. J Appl Physiol 96:1433-1444, 2003. Task 2. Shibata Y, A Nishiyama, H Ohata, J Gabbard , QN Myrvik, RA Henriksen...Proceeding of “International Symposium on Low-Dose Radiation Exposures and Bio-Defense System. Page 5, 2006. Task 2. Shibata Y, J Gabbard , M Yamashita...killed BCG. J Leukoc Biol 78:1281-1290. 4. Shibata, Y., J. Gabbard , M. Yamashita, S. Tsuji, M. Smith, A. Nishiyama, R. A. Henriksen, and Q. N. Myrvik

  8. Arylamine N-acetyltransferase (NAT2) mutations and their allelic linkage in unrelated caucasian individuals: Correlation with phenotypic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cascorbi, I.; Drakoulis, N.; Brockmoeller, J.

    1995-09-01

    The polymorphic arylamine N-acetyltransferase (NAT2; EC2.3.1.5) is supposed to be a susceptibility factor for several drug side effects and certain malignancies. A group of 844 unrelated German subjects was genotyped for their acetylation type, and 563 of them were also phenotyped. Seven mutations of the NAT2 gene were evaluated by allele-specific PCR (mutation 341C to T) and PCR-RFLP for mutations at nt positions 191, 282, 481, 590, 803, and 857. From the mutation pattern eight different alleles, including the wild type coding for rapid acetylation and seven alleles coding for slow phenotype, were determined. Four hundred ninety-seven subjects had amore » genotype of slow acetylation (58.9%; 95% confidence limits 55.5%-62.2%). Phenotypic acetylation capacity was expressed as the ratio of 5-acetylamino-6-formylamino-3-methyluracil and 1-methylxanthine in urine after caffeine intake. Some 6.7% of the cases deviated in genotype and phenotype, but sequencing DNA of these probands revealed no new mutations. Furthermore, linkage pattern of the mutations was always confirmed, as tested in 533 subjects. In vivo acetylation capacity of homozygous wild-type subjects (NAT2{sup *}4/{sup *}4) was significantly higher than in heterozygous genotypes (P = .001). All mutant alleles showed low in vivo acetylation capacities, including the previously not-yet-defined alleles {sup *}5A, {sup *}5C, and {sup *}13. Moreover, distinct slow genotypes differed significantly among each other, as reflected in lower acetylation capacity of {sup *}6A, {sup *}7B, and {sup *}13 alleles than the group of {sup *}5 alleles. The study demonstrated differential phenotypic activity of various NAT2 genes and gives a solid basis for clinical and molecular-epidemiological investigations. 34 refs., 4 figs., 7 tabs.« less

  9. The effect of steroids and nucleotides on solubilized bilirubin uridine diphosphate glucuronyltransferase

    PubMed Central

    Adlard, B. P. F.; Lathe, G. H.

    1970-01-01

    1. It was confirmed that bilirubin glucuronyltransferase can be obtained in solubilized form from rat liver microsomes. 2. Michaelis–Menten kinetics were not followed by the enzyme with bilirubin as substrate when the bilirubin/albumin ratio was varied. High concentrations of bilirubin were inhibitory. 3. The Km for UDP-glucuronic acid at the optimum bilirubin concentration was 0.46mm. 4. Low concentrations of Ca2+ were inhibitory in the absence of Mg2+ but stimulatory in its presence; the converse applied for EDTA. 5. UDP-N-acetylglucosamine and UDP-glucose enhanced conjugation by untreated, but not by solubilized microsomes. 6. The apparent 9.5-fold increase in activity after solubilization was probably due to the absence of UDP-glucuronic acid pyrophosphatase activity in the solubilized preparation. 7. The activation of solubilized enzyme activity by ATP was considered to be a result of chelation of inhibitory metal ions. 8. The solubilized enzyme activity was inhibited by UMP and UDP. The effect of UMP was not competitive with respect to UDP-glucuronic acid. 9. A number of steroids inhibited the solubilized enzyme activity. The competitive effects of stilboestrol, oestrone sulphate and 3β-hydroxyandrost-5-en-17-one, with respect to UDP-glucuronic acid, may be explained on an allosteric basis. PMID:4251180

  10. Gene expression patterns and catalytic properties of UDP-D-glucose 4-epimerases from barley (Hordeum vulgare L.).

    PubMed

    Zhang, Qisen; Hrmova, Maria; Shirley, Neil J; Lahnstein, Jelle; Fincher, Geoffrey B

    2006-02-15

    UGE (UDP-Glc 4-epimerase or UDP-Gal 4-epimerase; EC 5.1.3.2) catalyses the interconversion of UDP-Gal and UDP-Glc. Both nucleotide sugars act as activated sugar donors for the biosynthesis of cell wall polysaccharides such as cellulose, xyloglucans, (1,3;1,4)-beta-D-glucan and pectins, together with other biologically significant compounds including glycoproteins and glycolipids. Three members of the HvUGE (barley UGE) gene family, designated HvUGE1, HvUGE2 and HvUGE3, have been characterized. Q-PCR (quantitative real-time PCR) showed that HvUGE1 mRNA was most abundant in leaf tips and mature roots, but its expression levels were relatively low in basal leaves and root tips. The HvUGE2 gene was transcribed at significant levels in all organs examined, while HvUGE3 mRNA levels were very low in all the organs. Heterologous expression of a near full-length cDNA confirmed that HvUGE1 encodes a functional UGE. A non-covalently bound NAD+ was released from the enzyme after denaturing with aqueous ethanol and was identified by its spectrophotometric properties and by electrospray ionization MS. The K(m) values were 40 microM for UDP-Gal and 55 muM for UDP-Glc. HvUGE also catalyses the interconversion of UDP-GalNAc and UDP-GlcNAc, although it is not known if this has any biological significance. A three-dimensional model of the HvUGE revealed that its overall structural fold is highly conserved compared with the human UGE and provides a structural rationale for its ability to bind UDP-GlcNAc.

  11. Acetyl analogs of combretastatin A-4: synthesis and biological studies.

    PubMed

    Babu, Balaji; Lee, Megan; Lee, Lauren; Strobel, Raymond; Brockway, Olivia; Nickols, Alexis; Sjoholm, Robert; Tzou, Samuel; Chavda, Sameer; Desta, Dereje; Fraley, Gregory; Siegfried, Adam; Pennington, William; Hartley, Rachel M; Westbrook, Cara; Mooberry, Susan L; Kiakos, Konstantinos; Hartley, John A; Lee, Moses

    2011-04-01

    The combretastatins have received significant attention because of their simple chemical structures, excellent antitumor efficacy and novel antivascular mechanisms of action. Herein, we report the synthesis of 20 novel acetyl analogs of CA-4 (1), synthesized from 3,4,5-trimethoxyphenylacetone that comprises the A ring of CA-4 with different aromatic aldehydes as the B ring. Molecular modeling studies indicate that these new compounds possess a 'twisted' conformation similar to CA-4. The new analogs effectively inhibit the growth of human and murine cancer cells. The most potent compounds 6k, 6s and 6t, have IC(50) values in the sub-μM range. Analog 6t has an IC(50) of 182 nM in MDA-MB-435 cells and has advantages over earlier analogs due to its enhanced water solubility (456 μM). This compound initiates microtubule depolymerization with an EC(50) value of 1.8 μM in A-10 cells. In a murine L1210 syngeneic tumor model 6t had antitumor activity and no apparent toxicity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Lactobacillus gasseri OLL2809 and its RNA suppress proliferation of CD4(+) T cells through a MyD88-dependent signalling pathway.

    PubMed

    Yoshida, Ayako; Yamada, Kiyoshi; Yamazaki, Yasumasa; Sashihara, Toshihiro; Ikegami, Shuuji; Shimizu, Makoto; Totsuka, Mamoru

    2011-08-01

    Recent studies have shown that probiotics are beneficial in prevention and improvement of inflammatory diseases. Accumulating evidence indicates that probiotics can modulate immune cell responses, although the specific molecular mechanism by which probiotics work remains elusive. Because T cells express receptors for microbial components, we examined whether the probiotic strain Lactobacillus gasseri OLL2809 (LG2809) and its components regulate murine CD4(+) T-cell activation. LG2809, as well as two other Lactobacillus strains, inhibited proliferation of CD4(+) T cells; LG2809 had the strongest suppressive activity among them. RNA isolated from LG2809 was also shown to have suppressive activity. We observed this suppressive effect in the culture of CD4(+) T cells stimulated with anti-CD3/CD28 treatment, suggesting a direct effect on CD4(+) T cells. In contrast, the suppressive effect was not observed for CD4(+) T cells from myeloid differentiation primary response gene 88 (MyD88) protein-deficient mice, and was abrogated in the presence of an anti-oxidant reagent, N-acetyl-cysteine (NAC). These results demonstrate that the suppressive effect of LG2809 and its RNA occurred through a MyD88-dependent signalling pathway and suggest involvement of a reactive oxygen species-dependent mechanism. LG2809 RNA injected subcutaneously suppressed delayed-type-hypersensitivity response in DO11.10 mice, and the suppression was abrogated by treatment with NAC. Collectively, these results suggest that suppression of T-cell proliferation by RNA may be one of the mechanisms when a probiotic bacterial strain exerts suppressive effects on inflammatory responses. © 2011 The Authors. Immunology © 2011 Blackwell Publishing Ltd.

  13. Chemically Modified N-Acylated Hyaluronan Fragments Modulate Proinflammatory Cytokine Production by Stimulated Human Macrophages*

    PubMed Central

    Babasola, Oladunni; Rees-Milton, Karen J.; Bebe, Siziwe; Wang, Jiaxi; Anastassiades, Tassos P.

    2014-01-01

    Low molecular mass hyaluronans are known to induce inflammation. To determine the role of the acetyl groups of low molecular mass hyaluronan in stimulating the production of proinflammatory cytokines, partial N-deacetylation was carried out by hydrazinolysis. This resulted in 19.7 ± 3.5% free NH2 functional groups, which were then acylated by reacting with an acyl anhydride, including acetic anhydride. Hydrazinolysis resulted in bond cleavage of the hyaluronan chain causing a reduction of the molecular mass to 30–214 kDa. The total NH2 and N-acetyl moieties in the reacetylated hyaluronan were 0% and 98.7 ± 1.5% respectively, whereas for butyrylated hyaluronan, the total NH2, N-acetyl, and N-butyryl moieties were 0, 82.2 ± 4.6, and 22.7 ± 3.8%, respectively, based on 1H NMR. We studied the effect of these polymers on cytokine production by cultured human macrophages (THP-1 cells). The reacetylated hyaluronan stimulated proinflammatory cytokine production to levels similar to LPS, whereas partially deacetylated hyaluronan had no stimulatory effect, indicating the critical role of the N-acetyl groups in the stimulation of proinflammatory cytokine production. Butyrylated hyaluronan significantly reduced the stimulatory effect on cytokine production by the reacetylated hyaluronan or LPS but had no stimulatory effect of its own. The other partially N-acylated hyaluronan derivatives tested showed smaller stimulatory effects than reacetylated hyaluronan. Antibody and antagonist experiments suggest that the acetylated and partially butyrylated lower molecular mass hyaluronans exert their effects through the TLR-4 receptor system. Selectively N-butyrylated lower molecular mass hyaluronan shows promise as an example of a novel semisynthetic anti-inflammatory molecule. PMID:25053413

  14. Lifespan extension and increased resistance to environmental stressors by N-Acetyl-L-Cysteine in Caenorhabditis elegans

    PubMed Central

    Oh, Seung-Il; Park, Jin-Kook; Park, Sang-Kyu

    2015-01-01

    OBJECTIVE: This study was performed to determine the effect of N-acetyl-L-cysteine, a modified sulfur-containing amino acid that acts as a strong cellular antioxidant, on the response to environmental stressors and on aging in C. elegans. METHOD: The survival of worms under oxidative stress conditions induced by paraquat was evaluated with and without in vivo N-acetyl-L-cysteine treatment. The effect of N-acetyl-L-cysteine on the response to other environmental stressors, including heat stress and ultraviolet irradiation (UV), was also monitored. To investigate the effect on aging, we examined changes in lifespan, fertility, and expression of age-related biomarkers in C. elegans after N-acetyl-L-cysteine treatment. RESULTS: Dietary N-acetyl-L-cysteine supplementation significantly increased resistance to oxidative stress, heat stress, and UV irradiation in C. elegans. In addition, N-acetyl-L-cysteine supplementation significantly extended both the mean and maximum lifespan of C. elegans. The mean lifespan was extended by up to 30.5% with 5 mM N-acetyl-L-cysteine treatment, and the maximum lifespan was increased by 8 days. N-acetyl-L-cysteine supplementation also increased the total number of progeny produced and extended the gravid period of C. elegans. The green fluorescent protein reporter assay revealed that expression of the stress-responsive genes, sod-3 and hsp-16.2, increased significantly following N-acetyl-L-cysteine treatment. CONCLUSION: N-acetyl-L-cysteine supplementation confers a longevity phenotype in C. elegans, possibly through increased resistance to environmental stressors. PMID:26039957

  15. Electrode Potentials of l-Tryptophan, l-Tyrosine, 3-Nitro-l-tyrosine, 2,3-Difluoro-l-tyrosine, and 2,3,5-Trifluoro-l-tyrosine.

    PubMed

    Mahmoudi, Leila; Kissner, Reinhard; Nauser, Thomas; Koppenol, Willem H

    2016-05-24

    Electrode potentials for aromatic amino acid radical/amino acid couples were deduced from cyclic voltammograms and pulse radiolysis experiments. The amino acids investigated were l-tryptophan, l-tyrosine, N-acetyl-l-tyrosine methyl ester, N-acetyl-3-nitro-l-tyrosine ethyl ester, N-acetyl-2,3-difluoro-l-tyrosine methyl ester, and N-acetyl-2,3,5-trifluoro-l-tyrosine methyl ester. Conditional potentials were determined at pH 7.4 for all compounds listed; furthermore, Pourbaix diagrams for l-tryptophan, l-tyrosine, and N-acetyl-3-nitro-l-tyrosine ethyl ester were obtained. Electron transfer accompanied by proton transfer is reversible, as confirmed by detailed analysis of the current waves, and because the slopes of the Pourbaix diagrams obey Nernst's law. E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH) at pH 7 are 0.99 ± 0.01 and 0.97 ± 0.01 V, respectively. Pulse radiolysis studies of two dipeptides that contain both amino acids indicate a difference in E°' of approximately 0.06 V. Thus, in small peptides, we recommend values of 1.00 and 0.96 V for E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH), respectively. The electrode potential of N-acetyl-3-nitro-l-tyrosine ethyl ester is higher, while because of mesomeric stabilization of the radical, those of N-acetyl-2,3-difluoro-l-tyrosine methyl ester and N-acetyl-2,3,5-trifluoro-l-tyrosine methyl ester are lower than that of tyrosine. Given that the electrode potentials at pH 7 of E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH) are nearly equal, they would be, in principle, interchangeable. Proton-coupled electron transfer pathways in proteins that use TrpH and TyrOH are thus nearly thermoneutral.

  16. Heterotetrameric composition of aquaporin-4 water channels.

    PubMed

    Neely, J D; Christensen, B M; Nielsen, S; Agre, P

    1999-08-24

    Aquaporin (AQP) water channel proteins are tetrameric assemblies of individually active approximately 30 kDa subunits. AQP4 is the predominant water channel protein in brain, but immunoblotting of native tissues has previously yielded multiple poorly resolved bands. AQP4 is known to encode two distinct mRNAs with different translation initiating methionines, M1 or M23. Using SDS-PAGE urea gels and immunoblotting with anti-peptide antibodies, four polypeptides were identified in brain and multiple other rat tissues with the following levels of expression: 32 kDa > 34 kDa > 36 kDa > 38 kDa. The 34 and 38 kDa polypeptides react with an antibody specific for the N-terminus of the M1 isoform, and 32 and 36 kDa correspond to the shorter M23 isoform. Immunogold electron microscopic studies with rat cerebellum cryosections demonstrated that the 34 kDa polypeptide colocalizes in perivascular astrocyte endfeet where the 32 kDa polypeptide is abundantly expressed. Velocity sedimentation, cross-linking, and immunoprecipitation analyses of detergent-solubilized rat brain revealed that the 32 and 34 kDa polypeptides reside within heterotetramers. Immunoprecipitation of AQP4 expressed in Xenopus laevis oocytes demonstrated that heterotetramer formation reflects the relative expression levels of the 32 and 34 kDa polypeptides; however, tetramers containing different compositions of the two polypeptides exhibit similar water permeabilities. These studies demonstrate that AQP4 heterotetramers are formed from two overlapping polypeptides and indicate that the 22-amino acid sequence at the N-terminus of the 34 kDa polypeptide does not influence water permeability but may contribute to membrane trafficking or assembly of arrays.

  17. DNA demethylation and histone H3K9 acetylation determine the active transcription of the NKG2D gene in human CD8+ T and NK cells

    PubMed Central

    Fernández-Sánchez, Alba; Baragaño Raneros, Aroa; Carvajal Palao, Reyes; Sanz, Ana B.; Ortiz, Alberto; Ortega, Francisco; Suárez-Álvarez, Beatriz; López-Larrea, Carlos

    2013-01-01

    The human activating receptor NKG2D is mainly expressed by NK, NKT, γδ T and CD8+ T cells and, under certain conditions, by CD4+ T cells. This receptor recognizes a diverse family of ligands (MICA, MICB and ULBPs 1–6) leading to the activation of effector cells and triggering the lysis of target cells. The NKG2D receptor-ligand system plays an important role in the immune response to infections, tumors, transplanted graft and autoantigens. Elucidation of the regulatory mechanisms of NKG2D is therefore essential for therapeutic purposes. In this study, we speculate whether epigenetic mechanisms, such as DNA methylation and histone acetylation, participate in NKG2D gene regulation in T lymphocytes and NK cells. DNA methylation in the NKG2D gene was observed in CD4+ T lymphocytes and T cell lines (Jurkat and HUT78), while this gene was unmethylated in NKG2D-positive cells (CD8+ T lymphocytes, NK cells and NKL cell line) and associated with high levels of histone H3 lysine 9 acetylation (H3K9Ac). Treatment with the histone acetyltransferase (HAT) inhibitor curcumin reduces H3K9Ac levels in the NKG2D gene, downregulates NKG2D transcription and leads to a marked reduction in the lytic capacity of NKG2D-mediated NKL cells. These findings suggest that differential NKG2D expression in the different cell subsets is regulated by epigenetic mechanisms and that its modulation by epigenetic treatments might provide a new strategy for treating several pathologies. PMID:23235109

  18. Prime Contract Awards Alphabetically by Contractor, by State or Country, and Place. Part 1. (102 Construction, Inc.-American National Management)

    DTIC Science & Technology

    1989-01-01

    KTN M4 I- M MN 0 .1-4 4 r-ON- a N r-r- 00 ’- 400 N- cma 0C00 N PN- (0 *mm" 44)- I nI 40 4 , , , 1 -4 w - 1-4 m N -4 N~ Moo0 U, 0)IIO0 I ( -4 N C1) -40...0 -4 If 40M( II, 0. 0t 4 M 00m 0.-40-4 a- 0 C-4"ONNN00 - 400 4T Nl oil I 05( 1 C, 0 -. 1i 0D -4C >C -40 -4-4--4 -4 -4- 40 -40C>-J! 0-1 0 0>~I 51 I...0 40 If 0 10 M I I 0> InaO< < 4n 444U U’)nU"UU oU 40 CON ( D0a C>Q 0- r0 ?- NUn 11 < CO-4 II CI >0 0 - - 400 - "-4 - 4-0 4 0 >-0) O)N t I 41110 -4 If

  19. Optimization of Clonazepam Therapy Adjusted to Patient's CYP3A Status and NAT2 Genotype.

    PubMed

    Tóth, Katalin; Csukly, Gábor; Sirok, Dávid; Belic, Ales; Kiss, Ádám; Háfra, Edit; Déri, Máté; Menus, Ádám; Bitter, István; Monostory, Katalin

    2016-12-01

    The shortcomings of clonazepam therapy include tolerance, withdrawal symptoms, and adverse effects such as drowsiness, dizziness, and confusion leading to increased risk of falls. Inter-individual variability in the incidence of adverse events in patients partly originates from the differences in clonazepam metabolism due to genetic and nongenetic factors. Since the prominent role in clonazepam nitro-reduction and acetylation of 7-amino-clonazepam is assigned to CYP3A and N-acetyl transferase 2 enzymes, respectively, the association between the patients' CYP3A status (CYP3A5 genotype, CYP3A4 expression) or N-acetyl transferase 2 acetylator phenotype and clonazepam metabolism (plasma concentrations of clonazepam and 7-amino-clonazepam) was evaluated in 98 psychiatric patients suffering from schizophrenia or bipolar disorders. The patients' CYP3A4 expression was found to be the major determinant of clonazepam plasma concentrations normalized by the dose and bodyweight (1263.5±482.9 and 558.5±202.4ng/mL per mg/kg bodyweight in low and normal expressers, respectively, P<.0001). Consequently, the dose requirement for the therapeutic concentration of clonazepam was substantially lower in low-CYP3A4 expresser patients than in normal expressers (0.029±0.011 vs 0.058±0.024mg/kg bodyweight, P<.0001). Furthermore, significantly higher (about 2-fold) plasma concentration ratio of 7-amino-clonazepam and clonazepam was observed in the patients displaying normal CYP3A4 expression and slower N-acetylation than all the others. Prospective assaying of CYP3A4 expression and N-acetyl transferase 2 acetylator phenotype can better identify the patients with higher risk of adverse reactions and can facilitate the improvement of personalized clonazepam therapy and withdrawal regimen. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  20. AtaT blocks translation initiation by N-acetylation of the initiator tRNAfMet.

    PubMed

    Jurėnas, Dukas; Chatterjee, Sneha; Konijnenberg, Albert; Sobott, Frank; Droogmans, Louis; Garcia-Pino, Abel; Van Melderen, Laurence

    2017-06-01

    Toxin-antitoxin (TA) loci are prevalent in bacterial genomes. They are suggested to play a central role in dormancy and persister states. Under normal growth conditions, TA toxins are neutralized by their cognate antitoxins, and under stress conditions, toxins are freed and inhibit essential cellular processes using a variety of mechanisms. Here we characterize ataR-ataT, a novel TA system, from enterohemorrhagic Escherichia coli. We show that the toxin AtaT is a GNAT family enzyme that transfers an acetyl group from acetyl coenzyme A to the amine group of the methionyl aminoacyl moiety of initiator tRNA. AtaT specifically modifies Met-tRNA fMet , but no other aminoacyl-tRNAs, including the elongator Met-tRNA Met . We demonstrate that once acetylated, AcMet-tRNA fMet fails to interact with initiation factor-2 (IF2), resulting in disruption of the translation initiation complex. This work reveals a new mechanism of translation inhibition and confirms Met-tRNA fMet as a prime target to efficiently block cell growth.

  1. Modulation of Protein Phosphorylation, N-Glycosylation and Lys-Acetylation in Grape (Vitis vinifera) Mesocarp and Exocarp Owing to Lobesia botrana Infection*

    PubMed Central

    Melo-Braga, Marcella N.; Verano-Braga, Thiago; León, Ileana R.; Antonacci, Donato; Nogueira, Fábio C. S.; Thelen, Jay J.; Larsen, Martin R.; Palmisano, Giuseppe

    2012-01-01

    Grapevine (Vitis vinifera) is an economically important fruit crop that is subject to many types of insect and pathogen attack. To better elucidate the plant response to Lobesia botrana pathogen infection, we initiated a global comparative proteomic study monitoring steady-state protein expression as well as changes in N-glycosylation, phosphorylation, and Lys-acetylation in control and infected mesocarp and exocarp from V. vinifera cv Italia. A multi-parallel, large-scale proteomic approach employing iTRAQ labeling prior to three peptide enrichment techniques followed by tandem mass spectrometry led to the identification of a total of 3059 proteins, 1135 phosphorylation sites, 323 N-linked glycosylation sites and 138 Lys-acetylation sites. Of these, we could identify changes in abundance of 899 proteins. The occupancy of 110 phosphorylation sites, 10 N-glycosylation sites and 20 Lys-acetylation sites differentially changed during L. botrana infection. Sequence consensus analysis for phosphorylation sites showed eight significant motifs, two of which containing up-regulated phosphopeptides (X-G-S-X and S-X-X-D) and two containing down-regulated phosphopeptides (R-X-X-S and S-D-X-E) in response to pathogen infection. Topographical distribution of phosphorylation sites within primary sequences reveal preferential phosphorylation at both the N- and C termini, and a clear preference for C-terminal phosphorylation in response to pathogen infection suggesting induction of region-specific kinase(s). Lys-acetylation analysis confirmed the consensus X-K-Y-X motif previously detected in mammals and revealed the importance of this modification in plant defense. The importance of N-linked protein glycosylation in plant response to biotic stimulus was evident by an up-regulated glycopeptide belonging to the disease resistance response protein 206. This study represents a substantial step toward the understanding of protein and PTMs-mediated plant-pathogen interaction shedding light on the mechanisms underlying the grape infection. PMID:22778145

  2. Oncoprotein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2001-02-27

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  3. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1999-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  4. Structure and function of nucleotide sugar transporters: Current progress.

    PubMed

    Hadley, Barbara; Maggioni, Andrea; Ashikov, Angel; Day, Christopher J; Haselhorst, Thomas; Tiralongo, Joe

    2014-06-01

    The proteomes of eukaryotes, bacteria and archaea are highly diverse due, in part, to the complex post-translational modification of protein glycosylation. The diversity of glycosylation in eukaryotes is reliant on nucleotide sugar transporters to translocate specific nucleotide sugars that are synthesised in the cytosol and nucleus, into the endoplasmic reticulum and Golgi apparatus where glycosylation reactions occur. Thirty years of research utilising multidisciplinary approaches has contributed to our current understanding of NST function and structure. In this review, the structure and function, with reference to various disease states, of several NSTs including the UDP-galactose, UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine, GDP-fucose, UDP-N-acetylglucosamine/UDP-glucose/GDP-mannose and CMP-sialic acid transporters will be described. Little is known regarding the exact structure of NSTs due to difficulties associated with crystallising membrane proteins. To date, no three-dimensional structure of any NST has been elucidated. What is known is based on computer predictions, mutagenesis experiments, epitope-tagging studies, in-vitro assays and phylogenetic analysis. In this regard the best-characterised NST to date is the CMP-sialic acid transporter (CST). Therefore in this review we will provide the current state-of-play with respect to the structure-function relationship of the (CST). In particular we have summarised work performed by a number groups detailing the affect of various mutations on CST transport activity, efficiency, and substrate specificity.

  5. Changes in cell surface structure by viral transformation studied by binding of lectins differing in sugar specificity.

    PubMed

    Tsuda, M; Kurokawa, T; Takeuchi, M; Sugino, Y

    1975-10-01

    Changes in cell surface structure by viral transformation were studied by examining changes in the binding of various lectins differing in carbohydrate specificities. Binding of lectins was assayed directly using cells grown in coverslips. The following 125I-lectins were used: Concanavalin-A (specific for glucose and mannose), wheat germ agglutinin (specific for N-acetylglucosamine), castor bean agglutinin (specific for galactose), Wistaria floribunda agglutinin (specific for N-acetylgalactosamine), and soybean agglutinin (specific for N-acetyl-galactosamine). Cells for a clone, SS7, transformed by bovine adenovirus type-3, were found to bind 5 to 6 times more Wistaria floribunda agglutinin than the normal counterpart cells (clone C31, from C3H mouse kidney). In contrast, the binding of soybean agglutinin, which has a sugar specificity similar to Wistaria floribunda agglutinin, to normal and transformed cells was similar. The binding of wheat germ agglutinin and castor bean agglutinin, respectively, to normal and transformed cells was also similar. However, normal cells bound twice as much concanavalin-A as transformed cells. Only half as much Wistaria floribunda agglutinin was bound to transformed cells when they had been dispersed with EDTA. These changes in the number of lectin binding sites on transformation are thought to reflect alteration of the cell surface structure. The amount of lectins bound per cell decreased with increase in cell density, especially in the case of binding of Wistaria floribunda agglutinin to normal cells.

  6. All Prime Contract Awards by State or Country, Place and Contractor. Part 6. (Alachua, Florida-Winder, Georgia)

    DTIC Science & Technology

    1989-01-01

    0-4 N :: fIilNN N N N NNN N N N- N N N NQ’ C.-1-4 48 2 2 2 2 z z2 22 M 2 2 2 Zof 0-40 It 104 0 44 4 0 N 4L 0) M 8 It 000 filico!I 00 !d x zaW < K 011...1)2-4 -4 < tuN V)M-4 fl.11) ..- 42 1, (0N MM tcOC’)U)00-4mU)2-0 0) 00 0) i1 inC-U)N0) .4 It I N <Cj ifm-4U)’Lnw)(04) ON -44 4t00 0-4-4 -4-4 - 0 0...8217N N 4U-4.-4-4 tUN (UO) M 4-4.--4I-4-4 -4 dUO 0101 UN0I 0-4N00 11.0 0 -4 00000 --4 0 -hC A 0 _4(. 4 (A 000/00(000000() u ( , -0 ., r-at I M -4 4 C f

  7. Invariant amino acids in the Mur peptide synthetases of bacterial peptidoglycan synthesis and their modification by site-directed mutagenesis in the UDP-MurNAc:L-alanine ligase from Escherichia coli.

    PubMed

    Bouhss, A; Mengin-Lecreulx, D; Blanot, D; van Heijenoort, J; Parquet, C

    1997-09-30

    The comparison of the amino acid sequences of 20 cytoplasmic peptidoglycan synthetases (MurC, MurD, MurE, MurF, and Mpl) from various bacterial organisms has allowed us to detect common invariants: seven amino acids and the ATP-binding consensus sequence GXXGKT/S all at the same position in the alignment. The Mur synthetases thus appeared as a well-defined class of closely functionally related proteins. The conservation of a constant backbone length between certain invariants suggested common structural motifs. Among the other enzymes catalyzing a peptide bond formation driven by ATP hydrolysis to ADP and Pi, only folylpoly-gamma-l-glutamate synthetases presented the same common conserved amino acid residues, except for the most N-terminal invariant D50. Site-directed mutageneses were carried out to replace the K130, E174, H199, N293, N296, R327, and D351 residues by alanine in the MurC protein from Escherichia coli taken as model. For this purpose, plasmid pAM1005 was used as template, MurC being highly overproduced in this genetic setting. Analysis of the Vmax values of the mutated proteins suggested that residues K130, E174, and D351 are essential for the catalytic process whereas residues H199, N293, N296, and R327 were not. Mutations K130A, H199A, N293A, N296A, and R327A led to important variations of the Km values for one or more substrates, thereby indicating that these residues are involved in the structure of the active site and suggesting that the binding order of the substrates could be ATP, UDP-MurNAc, and alanine. The various mutated murC plasmids were tested for their effects on the growth, cell morphology, and peptidoglycan cell content of a murC thermosensitive strain at 42 degrees C. The observed effects (complementation, altered morphology, and reduced peptidoglycan content) paralleled more or less the decreased values of the MurC activity of each mutant.

  8. Inhibition of fungal plant pathogens by synergistic action of chito-oligosaccharides and commercially available fungicides.

    PubMed

    Rahman, Md Hafizur; Shovan, Latifur Rahman; Hjeljord, Linda Gordon; Aam, Berit Bjugan; Eijsink, Vincent G H; Sørlie, Morten; Tronsmo, Arne

    2014-01-01

    Chitosan is a linear heteropolymer consisting of β 1,4-linked N-acetyl-D-glucosamine (GlcNAc) and D-glucosamine (GlcN). We have compared the antifungal activity of chitosan with DPn (average degree of polymerization) 206 and FA (fraction of acetylation) 0.15 and of enzymatically produced chito-oligosaccharides (CHOS) of different DPn alone and in combination with commercially available synthetic fungicides, against Botrytis cinerea, the causative agent of gray mold in numerous fruit and vegetable crops. CHOS with DPn in the range of 15-40 had the greatest anti-fungal activity. The combination of CHOS and low dosages of synthetic fungicides showed synergistic effects on antifungal activity in both in vitro and in vivo assays. Our study shows that CHOS enhance the activity of commercially available fungicides. Thus, addition of CHOS, available as a nontoxic byproduct of the shellfish industry, may reduce the amounts of fungicides that are needed to control plant diseases.

  9. Inhibition of Fungal Plant Pathogens by Synergistic Action of Chito-Oligosaccharides and Commercially Available Fungicides

    PubMed Central

    Rahman, Md. Hafizur; Shovan, Latifur Rahman; Hjeljord, Linda Gordon; Aam, Berit Bjugan; Eijsink, Vincent G. H.; Sørlie, Morten; Tronsmo, Arne

    2014-01-01

    Chitosan is a linear heteropolymer consisting of β 1,4-linked N-acetyl-D-glucosamine (GlcNAc) and D-glucosamine (GlcN). We have compared the antifungal activity of chitosan with DPn (average degree of polymerization) 206 and F A (fraction of acetylation) 0.15 and of enzymatically produced chito-oligosaccharides (CHOS) of different DPn alone and in combination with commercially available synthetic fungicides, against Botrytis cinerea, the causative agent of gray mold in numerous fruit and vegetable crops. CHOS with DPn in the range of 15–40 had the greatest anti-fungal activity. The combination of CHOS and low dosages of synthetic fungicides showed synergistic effects on antifungal activity in both in vitro and in vivo assays. Our study shows that CHOS enhance the activity of commercially available fungicides. Thus, addition of CHOS, available as a nontoxic byproduct of the shellfish industry, may reduce the amounts of fungicides that are needed to control plant diseases. PMID:24770723

  10. Arylamine N-acetyltransferase 2 genotype-dependent N-acetylation of isoniazid in cryopreserved human hepatocytes.

    PubMed

    Doll, Mark A; Salazar-González, Raúl A; Bodduluri, Srineil; Hein, David W

    2017-07-01

    Cryopreserved human hepatocytes were used to investigate the role of arylamine N -acetyltransferase 2 (NAT2; EC 2.3.1.5) polymorphism on the N -acetylation of isoniazid (INH). NAT2 genotype was determined by Taqman allelic discrimination assay and INH N -acetylation was measured by high performance liquid chromatography. INH N -acetylation rates in vitro exhibited a robust and highly significant ( P <0.005) NAT2 phenotype-dependent metabolism. N -acetylation rates in situ were INH concentration- and time-dependent. Following incubation for 24 h with 12.5 or 100 µmol/L INH, acetyl-INH concentrations varied significantly ( P = 0.0023 and P = 0.0002) across cryopreserved human hepatocytes samples from rapid, intermediate, and slow acetylators, respectively. The clear association between NAT2 genotype and phenotype supports use of NAT2 genotype to guide INH dosing strategies in the treatment and prevention of tuberculosis.

  11. Planning, Programming, and Budgeting System (PPBS)/Multi-year Programming: Reading Guide

    DTIC Science & Technology

    2010-09-01

    51 B -4 Potter, Barry H ., and Jack Diamond. Guidelines for Public Expenditure...IS PA GE 1 9 b . TE LE P H ON E N U M B E R ( I n c l u d e A r e a C o d e ) U U U ...I N S T I T U T E F O R D E F E N S E A N A LY S E S IDA Document D-4057 Log: H 10-000982 September 2010 Planning, Programming, and Budgeting

  12. Infinitely many {N}=1 dualities from m + 1 - m = 1

    NASA Astrophysics Data System (ADS)

    Agarwal, Prarit; Intriligator, Kenneth; Song, Jaewon

    2015-10-01

    We discuss two infinite classes of 4d supersymmetric theories, T N ( m) and {U}_N^{(m)} , labelled by an arbitrary non-negative integer, m. The T N ( m) theory arises from the 6d, A N - 1 type N=(2,0) theory reduced on a 3-punctured sphere, with normal bundle given by line bundles of degree ( m + 1 , - m); the m = 0 case is the N=2 supersymmetric T N theory. The novelty is the negative-degree line bundle. The {U}_N^{(m)} theories likewise arise from the 6d N=(2,0) theory on a 4-punctured sphere, and can be regarded as gluing together two (partially Higgsed) T N ( m) theories. The T N ( m) and {U}_N^{(m)} theories can be represented, in various duality frames, as quiver gauge theories, built from T N components via gauging and nilpotent Higgsing. We analyze the RG flow of the {U}_N^{(m)} theories, and find that, for all integer m > 0, they end up at the same IR SCFT as SU( N) SQCD with 2 N flavors and quartic superpotential. The {U}_N^{(m)} theories can thus be regarded as an infinite set of UV completions, dual to SQCD with N f = 2 N c . The {U}_N^{(m)} duals have different duality frame quiver representations, with 2 m + 1 gauge nodes.

  13. Infinitely many $$ \\mathcal{N}=1 $$ dualities from m + 1 - m = 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Prarit; Intriligator, Kenneth; Song, Jaewon

    2015-10-06

    We discuss two infinite classes of 4d supersymmetric theories, T N (m) and Umore » $$(m)\\atop{N}$$, labelled by an arbitrary non-negative integer, m. The T N (m) theory arises from the 6d, A N-1 type N=(2,0) theory reduced on a 3-punctured sphere, with normal bundle given by line bundles of degree (m + 1, -m); the m = 0 case is the N=2 supersymmetric T N theory. The novelty is the negative-degree line bundle. The U$$(m)\\atop{N}$$ theories likewise arise from the 6d N=(2,0) theory on a 4-punctured sphere, and can be regarded as gluing together two (partially Higgsed) T N (m) theories. The T N (m) and U$$(m)\\atop{N}$$ theories can be represented, in various duality frames, as quiver gauge theories, built from T N components via gauging and nilpotent Higgsing. We analyze the RG flow of the U($$(m)\\atop{N}$$ theories, and find that, for all integer m > 0, they end up at the same IR SCFT as SU(N) SQCD with 2N flavors and quartic superpotential. The U$$(m)\\atop{N}$$ theories can thus be regarded as an infinite set of UV completions, dual to SQCD with N f = 2N c. The U$$(m)\\atop{N}$$ duals have different duality frame quiver representations, with 2m + 1 gauge nodes.« less

  14. Studies on N-Acetyltransferase (NAT2) Genotype Relationships in Emiratis: Confirmation of the Existence of Phenotype Variation among Slow Acetylators.

    PubMed

    Al-Ahmad, Mohammad M; Amir, Naheed; Dhanasekaran, Subramanian; John, Anne; Abdulrazzaq, Yousef M; Ali, Bassam R; Bastaki, Salim

    2017-09-01

    Individuals with slow N-acetylation phenotype often experience toxicity from drugs such as isoniazid, sulfonamides, procainamide, and hydralazine, whereas rapid acetylators may not respond to these medications. The highly polymorphic N-acetyltransferase 2 enzyme encoded by the NAT2 gene is one of the N-acetylators in humans with a clear impact on the metabolism of a significant number of important drugs. However, there are limited studies on N-acetylation phenotypes and NAT2 genotypes among Emiratis, and thus this study was carried out to fill this gap. Five hundred seventy-six Emirati subjects were asked to consume a soft drink containing caffeine (a nontoxic and reliable probe for predicting the acetylation phenotype) and then provide a buccal swab along with a spot urine sample. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used to determine the genotype of each individual. Phenotyping was carried out by analyzing the caffeine metabolites using high-performance liquid chromatography (HPLC) analysis. We found that 78.5%, 19.1%, and 2.4% of the Emirati subjects were slow, intermediate, and rapid acetylators, respectively. In addition, we found that 77.4% of the subjects were homozygous or heterozygous for two nonreference alleles, whereas 18.4% and 4.2% were heterozygous or homozygous for the reference allele (NAT2*4), respectively. The most common genotypes found were NAT2*5B/*7B, NAT2*5B/*6A, NAT2*7B/*14B, and NAT2*4/*5B, with frequencies of 0.255, 0.135, 0.105, and 0.09, respectively. The degree of phenotype/genotype concordance was 96.2%. The NAT2*6A/*6A, NAT2*6A/*7B, NAT2*7B/*7B, and NAT2*5A/*5B genotypes were found to be associated with the lowest 5-acetylamino-6-formylamino-3-methyluracil/1-methylxanthine (AFMU/1X) ratios. There is a high percentage of slow acetylators among Emiratis, which correlates with the presence of nonreference alleles for the NAT2 gene. Individuals who carried NAT2*6A/*6A, NAT2*6A/*7B, NAT2*7B/*7B, or NAT2*5A/*5B genotypes might be at higher risk of toxicity with some drugs and some diseases compared to others, as these genotypes are associated with the slowest acetylation status. © 2017 John Wiley & Sons Ltd/University College London.

  15. AglH, a thermophilic UDP-N-acetylglucosamine-1-phosphate:dolichyl phosphate GlcNAc-1-phosphotransferase initiating protein N-glycosylation pathway in Sulfolobus acidocaldarius, is capable of complementing the eukaryal Alg7.

    PubMed

    Meyer, Benjamin H; Shams-Eldin, Hosam; Albers, Sonja-Verena

    2017-01-01

    AglH, a predicted UDP-GlcNAc-1-phosphate:dolichyl phosphate GlcNAc-1-phosphotransferase, is initiating the protein N-glycosylation pathway in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. AglH successfully replaced the endogenous GlcNAc-1-phosphotransferase activity of Alg7 in a conditional lethal Saccharomyces cerevisiae strain, in which the first step of the eukaryal protein N-glycosylation process was repressed. This study is one of the few examples of cross-domain complementation demonstrating a conserved polyprenyl phosphate transferase reaction within the eukaryal and archaeal domain like it was demonstrated for Methanococcus voltae (Shams-Eldin et al. 2008). The topology prediction and the alignment of the AglH membrane protein with GlcNAc-1-phosphotransferases from the three domains of life show significant conservation of amino acids within the different proposed cytoplasmic loops. Alanine mutations of selected conserved amino acids in the putative cytoplasmic loops II (D 100 ), IV (F 220 ) and V (F 264 ) demonstrated the importance of these amino acids for cross-domain AlgH activity in in vitro complementation assays in S. cerevisiae. Furthermore, antibiotic treatment interfering directly with the activity of dolichyl phosphate GlcNAc-1-phosphotransferases confirmed the essentiality of N-glycosylation for cell survival.

  16. Purification and characterization of enantioselective N-acetyl-β-Phe acylases from Burkholderia sp. AJ110349.

    PubMed

    Imabayashi, Yuki; Suzuki, Shun'ichi; Kawasaki, Hisashi; Nakamatsu, Tsuyoshi

    2016-01-01

    For the production of enantiopure β-amino acids, enantioselective resolution of N-acyl β-amino acids using acylases, especially those recognizing N-acetyl-β-amino acids, is one of the most attractive methods. Burkholderia sp. AJ110349 had been reported to exhibit either (R)- or (S)-enantiomer selective N-acetyl-β-Phe amidohydrolyzing activity, and in this study, both (R)- and (S)-enantioselective N-acetyl-β-Phe acylases were purified to be electrophoretically pure and determined the sequences, respectively. They were quite different in terms of enantioselectivities and in their amino acids sequences and molecular weights. Although both the purified acylases were confirmed to catalyze N-acetyl hydrolyzing activities, neither of them show sequence similarities to the N-acetyl-α-amino acid acylases reported thus far. Both (R)- and (S)-enantioselective N-acetyl-β-Phe acylase were expressed in Escherichia coli. Using these recombinant strains, enantiomerically pure (R)-β-Phe (>99% ee) and (S)-β-Phe (>99% ee) were obtained from the racemic substrate.

  17. Official Guard and Reserve Manpower Strengths and Statistics. Fiscal Year 1982 Summary

    DTIC Science & Technology

    1982-01-01

    DI ’a D~ U.. O 14( 11) f.IF) U0 0F)Cn D.4- F- aIaDP iDC n l 4. wlU a’ ý w fN 0 n C K) T) -P" F CW a l ) Nn w) (’o F-4 o( C...CIn OW~I ;0 - 4MT 4i on 0. H WI l - 0 PI4 .4C) .4i 4 4 N W’)NNP) t .’ P2-iP I flD N 4I LL. (F L0 Di0C )t Di YW 0 4 O %W nll)ýP ON sý4 )"C I LP ,I N 6...8217 V) 4K 1L 6; - N In 4ý v4 w4 O0a vC l 4440 4K 6K1 I DI 4’ tflLi 4M 49 ii 4. ;c 4i 0 W 4 M. wIL In 0q x~ 4i w. cc 4 4j 64 6 w0 ~ 0’Ir 0 .4’ m 4 V 4

  18. Influence of Biochemical Features of Burkholderia pseudomallei Strains on Identification Reliability by Vitek 2 System.

    PubMed

    Zakharova, Irina B; Lopasteyskaya, Yana A; Toporkov, Andrey V; Viktorov, Dmitry V

    2018-01-01

    Burkholderia pseudomallei is a Gram-negative saprophytic soil bacterium that causes melioidosis, a potentially fatal disease endemic in wet tropical areas. The currently available biochemical identification systems can misidentify some strains of B. pseudomallei . The aim of the present study was to identify the biochemical features of B. pseudomallei , which can affect its correct identification by Vitek 2 system. The biochemical patterns of 40 B. pseudomallei strains were obtained using Vitek 2 GN cards. The average contribution of biochemical tests in overall dissimilarities between correctly and incorrectly identified strains was assessed using nonmetric multidimensional scaling. It was found ( R statistic of 0.836, P = 0.001) that a combination of negative N-acetyl galactosaminidase, β-N-acetyl glucosaminidase, phosphatase, and positive D-cellobiase (dCEL), tyrosine arylamidase (TyrA), and L-proline arylamidase (ProA) tests leads to low discrimination of B. pseudomallei , whereas a set of positive dCEL and negative N-acetyl galactosaminidase, TyrA, and ProA determines the wrong identification of B. pseudomallei as Burkholderia cepacia complex. The further expansion of the Vitek 2 identification keys is needed for correct identification of atypical or regionally distributed biochemical profiles of B. pseudomallei .

  19. The Nutrient-Sensing Hexosamine Biosynthetic Pathway as the Hub of Cancer Metabolic Rewiring.

    PubMed

    Chiaradonna, Ferdinando; Ricciardiello, Francesca; Palorini, Roberta

    2018-06-02

    Alterations in glucose and glutamine utilizing pathways and in fatty acid metabolism are currently considered the most significant and prevalent metabolic changes observed in almost all types of tumors. Glucose, glutamine and fatty acids are the substrates for the hexosamine biosynthetic pathway (HBP). This metabolic pathway generates the "sensing molecule" UDP- N -Acetylglucosamine (UDP-Glc N Ac). UDP-Glc N Ac is the substrate for the enzymes involved in protein N - and O -glycosylation, two important post-translational modifications (PTMs) identified in several proteins localized in the extracellular space, on the cell membrane and in the cytoplasm, nucleus and mitochondria. Since protein glycosylation controls several key aspects of cell physiology, aberrant protein glycosylation has been associated with different human diseases, including cancer. Here we review recent evidence indicating the tight association between the HBP flux and cell metabolism, with particular emphasis on the post-transcriptional and transcriptional mechanisms regulated by the HBP that may cause the metabolic rewiring observed in cancer. We describe the implications of both protein O - and N -glycosylation in cancer cell metabolism and bioenergetics; focusing our attention on the effect of these PTMs on nutrient transport and on the transcriptional regulation and function of cancer-specific metabolic pathways.

  20. Biosynthetic maturation of an ascites tumor cell surface sialomucin. Evidence for O-glycosylation of cell surface glycoprotein by the addition of new oligosaccharides during recycling.

    PubMed

    Hull, S R; Sugarman, E D; Spielman, J; Carraway, K L

    1991-07-25

    Previous biosynthetic studies of the ascites 13762 rat mammary adenocarcinoma cell surface sialomucin ASGP-1 (ascites sialoglycoprotein-1) showed that it is synthesized initially as a poorly glycosylated immature form, which is converted to a larger premature form (t1/2 30 min) and more slowly to the mature glycoprotein (t1/2 greater than 4 h). In the present study O-glycosylation of ASGP-1 polypeptide is shown to occur in two phases: an early phase complete in less than 30 min, which corresponds to the synthesis of the premature form, and a later phase that continues for hours and corresponds to the synthesis of the mature form. Pulse-chase labeling studies indicate that 95% of the ASGP-1 has moved to the cell surface in 2 h. Since transit to the cell surface is faster than the slow phase of addition of new oligosaccharides, some new oligosaccharides must be added after ASGP-1 has reached the cell surface. Initiation of new oligosaccharides on cell surface ASGP-1 was demonstrated directly using a biotinylation procedure to identify cell surface molecules. Glucosamine labeling of biotinylated ASGP-1 was shown to occur on galactosamine residues, which are linked to the polypeptide, establishing the addition of new oligosaccharides to the cell surface molecules. Finally, resialylation studies indicate that ASGP-1 rapidly recycles through a sialylating compartment. From these results we propose that ASGP-1 reaches the cell surface in an incompletely glycosylated state and that additional oligosaccharides are added to the glycoprotein in a second process involving recycling.

Top