Sample records for ugt1 gene complex

  1. Differences in UGT1A1, UGT1A7, and UGT1A9 polymorphisms between Uzbek and Japanese populations.

    PubMed

    Maeda, Hiromichi; Hazama, Shoichi; Shavkat, Abdiev; Okamoto, Ken; Oba, Koji; Sakamoto, Junichi; Takahashi, Kenichi; Oka, Masaki; Nakamura, Daisuke; Tsunedomi, Ryouichi; Okayama, Naoko; Mishima, Hideyuki; Kobayashi, Michiya

    2014-06-01

    Uridine-diphosphate glucuronosyltransferase 1A (UGT1A) is a key enzyme involved in irinotecan metabolism, and polymorphisms in the UGT1A gene are associated with irinotecan-induced toxicity. The aim of this study was to elucidate the allele frequencies of UGT1A polymorphisms in healthy Uzbek volunteers, and to compare them with those of the Japanese population. A total of 97 healthy volunteers from Uzbekistan were enrolled and blood samples were collected from each participant. Genotyping analysis was performed by fragment size analysis for UGT1A1*28, direct sequencing for UGT1A7*3 and UGT1A9*22, and TaqMan assays for UGT1A1*93, UGT1A1*6, UGT1A1*27, UGT1A1*60, and UGT1A7*12. The frequencies of polymorphisms were compared with the Japanese population by using the data previously reported from our study group. When the Uzbek and Japanese populations were compared, heterozygotes or homozygotes for UGT1A1*28, UGT1A1*60, and UGT1A1*93 were significantly more frequent in the Uzbek population (P < 0.01). The rate of UGT1A7*12 was not significantly different between the two populations, whereas UGT1A1*6 and UGT1A9*22 were significantly less frequent in the Uzbek population (P < 0.05). UGT1A7*1 were less prevalent in the Uzbek population than in the Japanese population (P < 0.01). The Uzbek population has different frequencies of polymorphisms in UGT1A genes compared with the Japanese population. A comprehensive study of the influence of UGT1A1 polymorphisms on the risk of irinotecan-induced toxicity is necessary for optimal use of irinotecan treatment.

  2. Genome-wide analysis of family-1 UDP glycosyltransferases (UGT) and identification of UGT genes for FHB resistance in wheat (Triticum aestivum L.).

    PubMed

    He, Yi; Ahmad, Dawood; Zhang, Xu; Zhang, Yu; Wu, Lei; Jiang, Peng; Ma, Hongxiang

    2018-04-19

    Fusarium head blight (FHB), a devastating disease in wheat worldwide, results in yield loses and mycotoxin, such as deoxynivalenol (DON), accumulation in infected grains. DON also facilitates the pathogen colonization and spread of FHB symptoms during disease development. UDP-glycosyltransferase enzymes (UGTs) are known to contribute to detoxification and enhance FHB resistance by glycosylating DON into DON-3-glucoside (D3G) in wheat. However, a comprehensive investigation of wheat (Triticum aestivum) UGT genes is still lacking. In this study, we carried out a genome-wide analysis of family-1 UDP glycosyltransferases in wheat based on the PSPG conserved box that resulted in the identification of 179 putative UGT genes. The identified genes were clustered into 16 major phylogenetic groups with a lack of phylogenetic group K. The UGT genes were invariably distributed among all the chromosomes of the 3 genomes. At least 10 intron insertion events were found in the UGT sequences, where intron 4 was observed as the most conserved intron. The expression analysis of the wheat UGT genes using both online microarray data and quantitative real-time PCR verification suggested the distinct role of UGT genes in different tissues and developmental stages. The expression of many UGT genes was up-regulated after Fusarium graminearum inoculation, and six of the genes were further verified by RT-qPCR. We identified 179 UGT genes from wheat using the available sequenced wheat genome. This study provides useful insight into the phylogenetic structure, distribution, and expression patterns of family-1 UDP glycosyltransferases in wheat. The results also offer a foundation for future work aimed at elucidating the molecular mechanisms underlying the resistance to FHB and DON accumulation.

  3. Enhanced UGT1A1 Gene and Protein Expression in Endometriotic Lesions.

    PubMed

    Piccinato, Carla A; Neme, Rosa M; Torres, Natália; da Silva Victor, Elivane; Brudniewski, Heloísa F; Rosa E Silva, Júlio C; Ferriani, Rui A

    2018-01-01

    The cellular function in endometriosis lesions depends on a highly estrogenic milieu. Lately, it is becoming evident that, besides the circulating levels of estrogens, the balance of synthesis versus inactivation (metabolism) of estrogens by intralesion steroid-metabolizing enzymes also determines the local net estrogen availability. In order to extend the knowledge of the role of estrogen-metabolizing enzymes in endometriosis, we investigated the gene and protein expression of a key uridine diphospho-glucuronosyltransferase (UGT) for estrogen glucuronidation, UGT1A1, in eutopic endometrial samples obtained from nonaffected and endometriosis-affected women and also from endometriotic lesions. Although UGT1A1 messenger RNA (mRNA) expression was detected at similar frequencies in endometriotic lesions and in eutopic endometrial samples, the levels of mRNA expression were greater in deep-infiltrating endometriotic lesions and in non-deep-infiltrating lesions when compared with either control endometrium or eutopic endometrium from women with endometriosis. Overall, we observed that protein expression of UGT1A1 was significantly more frequent in samples from endometriotic lesions in comparison with endometria. In addition, expression of UGT1A1 protein was greater in deep-infiltrating than in non-deep-infiltrating endometriotic lesions. We suggest that the finding of increased expression of UGT1A1 in lesions versus endometria might be related to impairment of regulatory mechanisms, in response to a highly estrogenic milieu, and that this enzyme may be a new target for therapy.

  4. Isothiocyanates induce UGT1A1 in humanized UGT1 mice in a CAR dependent fashion that is highly dependent upon oxidative stress.

    PubMed

    Yoda, Emiko; Paszek, Miles; Konopnicki, Camille; Fujiwara, Ryoichi; Chen, Shujuan; Tukey, Robert H

    2017-04-19

    Isothiocyanates, such as phenethyl isothiocyanate (PEITC), are formed following the consumption of cruciferous vegetables and generate reactive oxygen species (ROS) that lead to the induction of cytoprotective genes such as the UDP-glucuronosyltransferases (UGTs). The induction of ROS activates the Nrf2-Keap 1 pathway leading to the induction of genes through antioxidant response elements (AREs). UGT1A1, the sole enzyme responsible for the metabolism of bilirubin, can be induced following activation of Nrf2. When neonatal humanized UGT1 (hUGT1) mice, which exhibit severe levels of total serum bilirubin (TSB) because of a developmental delay in expression of the UGT1A1 gene, were treated with PEITC, TSB levels were reduced. Liver and intestinal UGT1A1 were induced, along with murine CYP2B10, a consensus CAR target gene. In both neonatal and adult hUGT1/Car -/- mice, PEITC was unable to induce CYP2B10. A similar result was observed following analysis of UGT1A1 expression in liver. However, TSB levels were still reduced in hUGT1/Car -/- neonatal mice because of ROS induction of intestinal UGT1A1. When oxidative stress was blocked by exposing mice to N-acetylcysteine, induction of liver UGT1A1 and CYP2B10 by PEITC was prevented. Thus, new findings in this report link an important role in CAR activation that is dependent upon oxidative stress.

  5. Genetic variations in UGT2B28, UGT2B17, UGT2B15 genes and the risk of prostate cancer: A case-control study.

    PubMed

    Habibi, Mohsen; Mirfakhraie, Reza; Khani, Maryam; Rakhshan, Azadeh; Azargashb, Eznollah; Pouresmaeili, Farkhondeh

    2017-11-15

    Glucuronidation is a major pathway for elimination of exogenous and endogenous compounds such as environmental carcinogens and androgens from the body. This biochemical pathway is mediated by enzymes called uridine diphosphoglucuronosyltransferases (UGTs). Null (del/del) genes polymorphisms in UGT2B17, and UGT2B28 and D85Y single-nucleotide polymorphism (SNP) of UGT2B15 have been reported to increase the risk of prostate cancer. The goal of this study was to determine the association of mentioned genetic variants with the risk of prostate cancer. We investigated the copy number variations (CNVs) of UGT2B17 and UGT2B28 loci and the association between rs1902023 polymorphism of UGT2B15 gene in 360 subjects consisted of 120 healthy controls, 120 prostate cancer (PC) patients and 120 benign prostatic hyperplasia (BPH) patients. No association was detected for the mentioned polymorphisms and the risk of PC. However, a significant association was detected between UGT2B17 copy number variation and BPH risk (OR=2.189; 95% CI, 1.303-3.675; p=0.003). Furthermore, we observed that the D85Y polymorphism increases the risk of BPH when analyzed in combination with the copy number variation of UGT2B17 gene (OR=0.135; 95% CI, 0.036-0.512; p=0.003). Our findings suggest that the D85Y polymorphism of UGT2B15 and CNVs in UGT2B28 and UGT2B17 genes is not associated with prostate cancer risk in Iranian patients. To our knowledge, this is the first report that implicates the role of CNV of UGT2B17 gene in BPH. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Glucuronidation of OTS167 in Humans Is Catalyzed by UDP-Glucuronosyltransferases UGT1A1, UGT1A3, UGT1A8, and UGT1A10

    PubMed Central

    Ramírez, Jacqueline; Mirkov, Snezana; House, Larry K.

    2015-01-01

    OTS167 is a potent maternal embryonic leucine zipper kinase inhibitor undergoing clinical testing as antineoplastic agent. We aimed to identify the UDP-glucuronosyltransferases (UGTs) involved in OTS167 metabolism, study the relationship between UGT genetic polymorphisms and hepatic OTS167 glucuronidation, and investigate the inhibitory potential of OTS167 on UGTs. Formation of a single OTS167-glucuronide (OTS167-G) was observed in pooled human liver (HLM) (Km = 3.4 ± 0.2 µM), intestinal microsomes (HIM) (Km = 1.7 ± 0.1 µM), and UGTs. UGT1A1 (64 µl/min/mg) and UGT1A8 (72 µl/min/mg) exhibited the highest intrinsic clearances (CLint) for OTS167, followed by UGT1A3 (51 µl/min/mg) and UGT1A10 (47 µl/min/mg); UGT1A9 was a minor contributor. OTS167 glucuronidation in HLM was highly correlated with thyroxine glucuronidation (r = 0.91, P < 0.0001), SN-38 glucuronidation (r = 0.79, P < 0.0001), and UGT1A1 mRNA (r = 0.72, P < 0.0001). Nilotinib (UGT1A1 inhibitor) and emodin (UGT1A8 and UGT1A10 inhibitor) exhibited the highest inhibitory effects on OTS167-G formation in HLM (68%) and HIM (47%). We hypothesize that OTS167-G is an N-glucuronide according to mass spectrometry. A significant association was found between rs6706232 and reduced OTS167-G formation (P = 0.03). No or weak UGT inhibition (range: 0–21%) was observed using clinically relevant OTS167 concentrations (0.4–2 µM). We conclude that UGT1A1 and UGT1A3 are the main UGTs responsible for hepatic formation of OTS167-G. Intestinal UGT1A1, UGT1A8, and UGT1A10 may contribute to first-pass OTS167 metabolism after oral administration. PMID:25870101

  7. Glucuronidation of OTS167 in Humans Is Catalyzed by UDP-Glucuronosyltransferases UGT1A1, UGT1A3, UGT1A8, and UGT1A10.

    PubMed

    Ramírez, Jacqueline; Mirkov, Snezana; House, Larry K; Ratain, Mark J

    2015-07-01

    OTS167 is a potent maternal embryonic leucine zipper kinase inhibitor undergoing clinical testing as antineoplastic agent. We aimed to identify the UDP-glucuronosyltransferases (UGTs) involved in OTS167 metabolism, study the relationship between UGT genetic polymorphisms and hepatic OTS167 glucuronidation, and investigate the inhibitory potential of OTS167 on UGTs. Formation of a single OTS167-glucuronide (OTS167-G) was observed in pooled human liver (HLM) (Km = 3.4 ± 0.2 µM), intestinal microsomes (HIM) (Km = 1.7 ± 0.1 µM), and UGTs. UGT1A1 (64 µl/min/mg) and UGT1A8 (72 µl/min/mg) exhibited the highest intrinsic clearances (CLint) for OTS167, followed by UGT1A3 (51 µl/min/mg) and UGT1A10 (47 µl/min/mg); UGT1A9 was a minor contributor. OTS167 glucuronidation in HLM was highly correlated with thyroxine glucuronidation (r = 0.91, P < 0.0001), SN-38 glucuronidation (r = 0.79, P < 0.0001), and UGT1A1 mRNA (r = 0.72, P < 0.0001). Nilotinib (UGT1A1 inhibitor) and emodin (UGT1A8 and UGT1A10 inhibitor) exhibited the highest inhibitory effects on OTS167-G formation in HLM (68%) and HIM (47%). We hypothesize that OTS167-G is an N-glucuronide according to mass spectrometry. A significant association was found between rs6706232 and reduced OTS167-G formation (P = 0.03). No or weak UGT inhibition (range: 0-21%) was observed using clinically relevant OTS167 concentrations (0.4-2 µM). We conclude that UGT1A1 and UGT1A3 are the main UGTs responsible for hepatic formation of OTS167-G. Intestinal UGT1A1, UGT1A8, and UGT1A10 may contribute to first-pass OTS167 metabolism after oral administration. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Expression of the human UDP-galactose transporter gene hUGT1 in tobacco plants' enhanced plant hardness.

    PubMed

    Abedi, Tayebeh; Khalil, Mohamed Farouk Mohamed; Koike, Kanae; Hagura, Yoshio; Tazoe, Yuma; Ishida, Nobuhiro; Kitamura, Kenji; Tanaka, Nobukazu

    2018-04-09

    We reported previously that tobacco plants transformed with the human UDP-galactose transporter 1 gene (hUGT1) had enhanced growth, displayed characteristic traits, and had an increased proportion of galactose (hyper-galactosylation) in the cell wall matrix polysaccharides. Here, we report that hUGT1-transgenic plants have an enhanced hardness. As determined by breaking and bending tests, the leaves and stems of hUGT1-transgenic plants were harder than those of control plants. Transmission electron microscopy revealed that the cell walls of palisade cells in leaves, and those of cortex cells and xylem fibers in stems of hUGT1-transgenic plants, were thicker than those of control plants. The increased amounts of total cell wall materials extracted from the leaves and stems of hUGT1-transgenic plants supported the increased cell wall thickness. In addition, the cell walls of the hUGT1-transgenic plants showed an increased lignin contents, which was supported by the up-regulation of lignin biosynthetic genes. Thus, the heterologous expression of hUGT1 enhanced the accumulation of cell wall materials, which was accompanied by the increased lignin content, resulting in the increased hardness of the leaves and stems of hUGT1-trangenic plants. The enhanced accumulation of cell wall materials might be related to the hyper-galactosylation of cell wall matrix polysaccharides, most notably arabinogalactan, because of the enhanced UDP-galactose transport from the cytosol to the Golgi apparatus by hUGT1, as suggested in our previous report. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Serum Bilirubin Levels and Promoter Variations in HMOX1 and UGT1A1 Genes in Patients with Fabry Disease.

    PubMed

    Jirásková, Alena; Bortolussi, Giulia; Dostálová, Gabriela; Eremiášová, Lenka; Golaň, Lubor; Danzig, Vilém; Linhart, Aleš; Vítek, Libor

    2017-01-01

    The aim of our study was to assess the possible relationships among heme oxygenase (HMOX), bilirubin UDP-glucuronosyl transferase (UGT1A1) promoter gene variations, serum bilirubin levels, and Fabry disease (FD). The study included 56 patients with FD (M : F ratio = 0.65) and 185 healthy individuals. Complete standard laboratory and clinical work-up was performed on all subjects, together with the determination of total peroxyl radical-scavenging capacity. The (GT)n and (TA)n dinucleotide variations in the HMOX1 and UGT1A1 gene promoters, respectively, were determined by DNA fragment analysis. Compared to controls, patients with FD had substantially lower serum bilirubin levels (12.0 versus 8.85  μ mol/L, p = 0.003) and also total antioxidant capacity ( p < 0.05), which showed a close positive relationship with serum bilirubin levels ( p = 0.067) and the use of enzyme replacement therapy ( p = 0.036). There was no association between HMOX1 gene promoter polymorphism and manifestation of FD. However, the presence of the TA 7 allele UGT1A1 gene promoter, responsible for higher systemic bilirubin levels, was associated with a twofold lower risk of manifestation of FD (OR = 0.51, 95% CI = 0.27-0.97, p = 0.038). Markedly lower serum bilirubin levels in FD patients seem to be due to bilirubin consumption during increased oxidative stress, although UGT1A1 promoter gene polymorphism may modify the manifestation of FD as well.

  10. Bilirubin UDP-Glucuronosyltransferase 1A1 (UGT1A1) Gene Promoter Polymorphisms and HPRT, Glycophorin A, and Micronuclei Mutant Frequencies in Human Blood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, D; Hall, I J; Eastmond, D

    2004-10-06

    A dinucleotide repeat polymorphism (5-, 6-, 7-, or 8-TA units) has been identified within the promoter region of UDP-glucuronosyltransferase 1A1 gene (UGT1A1). The 7-TA repeat allele has been associated with elevated serum bilirubin levels that cause a mild hyperbilirubinemia (Gilbert's syndrome). Studies suggest that promoter transcriptional activity of UGT1A1 is inversely related to the number of TA repeats and that unconjugated bilirubin concentration increases directly with the number of TA repeat elements. Because bilirubin is a known antioxidant, we hypothesized that UGT1A1 repeats associated with higher bilirubin may be protective against oxidative damage. We examined the effect of UGT1A1 genotypemore » on somatic mutant frequency in the hypoxanthine-guanine phosphoribosyl-transferase (HPRT) gene in human lymphocytes and the glycophorin A (GPA) gene of red blood cells (both N0, NN mutants), and the frequency of lymphocyte micronuclei (both kinetochore (K) positive or micronuclei K negative) in 101 healthy smoking and nonsmoking individuals. As hypothesized, genotypes containing 7-TA and 8-TA displayed marginally lower GPA{_}NN mutant frequency relative to 5/5, 5/6, 6/6 genotypes (p<0.05). In contrast, our analysis showed that lower expressing UGT1A1 alleles (7-TA and 8-TA) were associated with modestly increased HPRT mutation frequency (p<0.05) while the same low expression genotypes were not significantly associated with micronuclei frequencies (K-positive or K-negative) when compared to high expression genotypes (5-TA and 6-TA). We found weak evidence that UGT1A1 genotypes containing 7-TA and 8-TA were associated with increased GPA{_}N0 mutant frequency relative to 5/5, 5/6, 6/6 genotypes (p<0.05). These data suggest that UGT1A1 genotype may modulate somatic mutation of some types, in some cell lineages, by a mechanism not involving bilirubin antioxidant activity. More detailed studies examining UGT1A1 promoter variation, oxidant/antioxidant balance and

  11. Impacts of the Glucuronidase Genotypes UGT1A4, UGT2B7, UGT2B15 and UGT2B17 on Tamoxifen Metabolism in Breast Cancer Patients

    PubMed Central

    Romero-Lorca, Alicia; Novillo, Apolonia; Gaibar, María; Bandrés, Fernando; Fernández-Santander, Ana

    2015-01-01

    Tamoxifen is used to prevent and treat estrogen-dependent breast cancer. It is described as a prodrug since most of its antiestrogen effects are exerted through its hydroxylated metabolites 4-OH-tamoxifen and endoxifen. In prior work, we correlated optimal plasma levels of these metabolites with certain genotypes of CYP2D6 and SULT1A2. This descriptive study examines correlations between concentrations of tamoxifen's glucuronide metabolites and genotypes UGT1A4 Pro24Thr, UGT1A4 Leu48Val, UGT2B7 His268Tyr, UGT2B15 Asp85YTyr UGT2B15 Lys523Thr and UGT2B17del in 132 patients with estrogen receptor-positive breast cancer under treatment with tamoxifen. Patients were genotyped by real-time and conventional PCR-RFLP. The glucuronides 4-OH-tamoxifen-N-glucuronide, 4-OH-tamoxifen-O-glucuronide and endoxifen-O-glucuronide were isolated from blood plasma and quantified using a high-pressure liquid chromatography-tandem mass spectrometry system. Individuals who were homozygous for UGT1A448VAL showed significantly lower mean concentrations of both glucuronide metabolites compared to subjects genotyped as wt/wt plus wt/48Val (p=0.037 and p=0.031, respectively). Women homozygous for UGT2B7268Tyr also showed mean substrate/product ratios of 4-OH-tamoxifen/4-OH-tamoxifen-O-glucuronide and 4-OH-tamoxifen/4-OH-tamoxifen-N-glucuronide indicative of reduced glucuronidase activity compared to wt homozygotes or to heterozygotes for the polymorphism (p=0.005 and p=0.003, respectively). In contrast, UGT2B15 Lys523Thr and UGT2B17del were associated with possibly increased enzyme activity. Patients with at least one variant allele UGT2B15523Thr showed significantly higher 4-OH-tamoxifen-O-glucuronide and endoxifen-glucuronide levels (p=0.023 and p=0.025, respectively) indicating a variant gene-dose effect. Higher 4-OH-tamoxifen-N-glucuronide levels observed in UGT2B17del genotypes (p=0.042) could be attributed to a mechanism that compensates for the greater expression of other genes in UGT2B

  12. UGT74S1 is the key player in controlling secoisolariciresinol diglucoside (SDG) formation in flax.

    PubMed

    Fofana, Bourlaye; Ghose, Kaushik; McCallum, Jason; You, Frank M; Cloutier, Sylvie

    2017-02-02

    Flax lignan, commonly known as secoisolariciresinol (SECO) diglucoside (SDG), has recently been reported with health-promoting activities, including its positive impact in metabolic diseases. However, not much was reported on the biosynthesis of SDG and its monoglucoside (SMG) until lately. Flax UGT74S1 was recently reported to sequentially glucosylate SECO into SMG and SDG in vitro. However, whether this gene is the only UGT achieving SECO glucosylation in flax was not known. Flax genome-wide mining for UGTs was performed. Phylogenetic and gene duplication analyses, heterologous gene expression and enzyme assays were conducted to identify family members closely related to UGT74S1 and to establish their roles in SECO glucosylation. A total of 299 different UGTs were identified, of which 241 (81%) were duplicated. Flax UGTs diverged 2.4-153.6 MYA and 71% were found to be under purifying selection pressure. UGT74S1, a single copy gene located on chromosome 7, displayed no evidence of duplication and was deemed to be under positive selection pressure. The phylogenetic analysis identified four main clusters where cluster 4, which included UGT74S1, was the most diverse. The duplicated UGT74S4 and UGT74S3, located on chromosomes 8 and 14, respectively, were the most closely related to UGT74S1 and were differentially expressed in different tissues. Heterologous expression levels of UGT74S1, UGT74S4 and UGT74S3 proteins were similar but UGT74S4 and UGT74S3 glucosylation activity towards SECO was seven fold less than UGT74S1. In addition, they both failed to produce SDG, suggesting neofunctionalization following their divergence from UGT74S1. We showed that UGT74S1 is closely related to two duplicated genes, UGT74S4 and UGT74S3 which, unlike UGT74S1, failed to glucosylate SMG into SDG. The study suggests that UGT74S1 may be the key player in controlling SECO glucosylation into SDG in flax although its closely related genes may also contribute to a minor extent in supplying

  13. UGT2B17 and SULT1A1 gene copy number variation (CNV) detection by LabChip microfluidic technology.

    PubMed

    Gaedigk, Andrea; Gaedigk, Roger; Leeder, J Steven

    2010-05-01

    Gene copy number variations (CNVs) are increasingly recognized to play important roles in the expression of genes and hence on their respective enzymatic activities. This has been demonstrated for a number of drug metabolizing genes, such as UDP-glucuronosyltransferases 2B17 (UGT2B17) and sulfotransferase 1A1 (SULT1A1), which are subject to genetic heterogeneity, including CNV. Quantitative assays to assess gene copy number are therefore becoming an integral part of accurate genotype assessment and phenotype prediction. In this study, we evaluated a microfluidics-based system, the Bio-Rad Experion system, to determine the power and utility of this platform to detect UGT2B17 and SULT1A1 CNV in DNA samples derived from blood and tissue. UGT2B17 is known to present with 0, 1 or 2 and SULT1A1 with up to 5 gene copies. Distinct clustering (p<0.001) into copy number groups was achieved for both genes. DNA samples derived from blood exhibited less inter-run variability compared to DNA samples obtained from liver tissue. This variability may be caused by tissue-specific PCR inhibitors as it could be overcome by using DNA from another tissue, or after the DNA had undergone whole genome amplification. This method produced results comparable to those reported for other quantitative test platforms.

  14. Exome-Wide Association Study Identifies New Low-Frequency and Rare UGT1A1 Coding Variants and UGT1A6 Coding Variants Influencing Serum Bilirubin in Elderly Subjects

    PubMed Central

    Oussalah, Abderrahim; Bosco, Paolo; Anello, Guido; Spada, Rosario; Guéant-Rodriguez, Rosa-Maria; Chery, Céline; Rouyer, Pierre; Josse, Thomas; Romano, Antonino; Elia, Maurizzio; Bronowicki, Jean-Pierre; Guéant, Jean-Louis

    2015-01-01

    Abstract Genome-wide association studies (GWASs) have identified loci contributing to total serum bilirubin level. However, no exome-wide approaches have been performed to address this question. Using exome-wide approach, we assessed the influence of protein-coding variants on unconjugated, conjugated, and total serum bilirubin levels in a well-characterized cohort of 773 ambulatory elderly subjects from Italy. Coding variants were replicated in 227 elderly subjects from the same area. We identified 4 missense rare (minor allele frequency, MAF < 0.5%) and low-frequency (MAF, 0.5%–5%) coding variants located in the first exon of the UGT1A1 gene, which encodes for the substrate-binding domain (rs4148323 [MAF = 0.06%; p.Gly71Arg], rs144398951 [MAF = 0.06%; p.Ile215Val], rs35003977 [MAF = 0.78%; p.Val225Gly], and rs57307513 [MAF = 0.06%; p.Ser250Pro]). These variants were in strong linkage disequilibrium with 3 intronic UGT1A1 variants (rs887829, rs4148325, rs6742078), which were significantly associated with total bilirubin level (P = 2.34 × 10−34, P = 7.02 × 10−34, and P = 8.27 × 10−34), as well as unconjugated, and conjugated bilirubin levels. We also identified UGT1A6 variants in association with total (rs6759892, p.Ser7Ala, P = 1.98 × 10−26; rs2070959, p.Thr181Ala, P = 2.87 × 10−27; and rs1105879, p.Arg184Ser, P = 3.27 × 10−29), unconjugated, and conjugated bilirubin levels. All UGT1A1 intronic variants (rs887829, rs6742078, and rs4148325) and UGT1A6 coding variants (rs6759892, rs2070959, and rs1105879) were significantly associated with gallstone-related cholecystectomy risk. The UGT1A6 variant rs2070959 (p.Thr181Ala) was associated with the highest risk of gallstone–related cholecystectomy (OR, 4.58; 95% CI, 1.58–13.28; P = 3.21 × 10−3). Using an exome-wide approach we identified coding variants on UGT1A1 and UGT1A6 genes in association with serum bilirubin

  15. Studies on induction of lamotrigine metabolism in transgenic UGT1 mice

    PubMed Central

    Argikar, U. A.; Senekeo-Effenberger, K.; Larson, E. E.; Tukey, R. H.; Remmel, R. P.

    2010-01-01

    A transgenic ‘knock-in’ mouse model expressing a human UGT1 locus (Tg-UGT1) was recently developed and validated. Although these animals express mouse UGT1A proteins, UGT1A4 is a pseudo-gene in mice. Therefore, Tg-UGT1 mice serve as a ‘humanized’ UGT1A4 animal model.Lamotrigine (LTG) is primarily metabolized to its N-glucuronide (LTGG) by hUGT1A4. This investigation aimed at examining the impact of pregnane X receptor (PXR), constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor (PPAR) activators on LTG glucuronidation in vivo and in vitro. Tg-UGT1 mice were administered the inducers phenobarbital (CAR), pregnenolone-16α-carbonitrile (PXR), WY-14643 (PPAR-α), ciglitazone (PPAR-γ), or L-165041 (PPAR-β), once daily for 3 or 4 days. Thereafter, LTG was administered orally and blood samples were collected over 24 h. LTG was measured in blood and formation of LTGG was measured in pooled microsomes made from the livers of treated animals.A three-fold increase in in vivo LTG clearance was seen after phenobarbital administration. In microsomes prepared from phenobarbital-treated Tg-UGT1 animals, 13-fold higher CLint (Vmax/Km) value was observed as compared with the untreated transgenic mice. A trend toward induction of catalytic activity in vitro and in vivo was also observed following pregnenolone-16α-carbonitrile and WY-14643 treatment. This study demonstrates the successful application of Tg-UGT1 mice as a novel tool to study the impact of induction and regulation on metabolism of UGT1A4 substrates. PMID:19845433

  16. UGT1A1*6 and UGT1A1*28 polymorphisms are correlated with irinotecan-induced toxicity: A meta-analysis.

    PubMed

    Yang, Yuwei; Zhou, MengMeng; Hu, Mingjun; Cui, Yanjie; Zhong, Qi; Liang, Ling; Huang, Fen

    2018-06-22

    Previous articles explored the role of UGT1A1 polymorphism on predicting irinotecan-induced toxicity, but the conclusions were still inconsistent and not comprehensive. We performed this meta-analysis to investigate the association between UGT1A1 polymorphism and irinotecan-induced toxicity. PubMed and Web of Science were searched for articles before July 2017. Inclusion and exclusion criteria were set to select eligible articles, and corresponding data were extracted from those articles. Subgroup analyses based on different cancer categories, doses and races were carried out to achieve comprehensive results. Statistical analyses were conducted using STATA 11.0. A total of 38 studies with 6742 cases were included after reading full text. Both UGT1A1*6 and UGT1A1*28 polymorphism are significantly associated with severe irinotecan-induced toxicity. Both Asian and Caucasian cancer patients with UGT1A1*28 variant had an increased risk. Compared with heterozygous variant, patients with homozygous variant suffered from a higher risk of toxicity. The effect of UGT1A1*28 polymorphism on diarrhea was less than on neutropenia. Subgroup analysis exhibited that for UGT1A1*6 polymorphism, patients treated with low-dose irinotecan were at a notable risk of toxicity. Moreover, the association between UGT1A1*6 polymorphism and irinotecan-induced toxicity was found in patients suffering from respiratory system cancers. Both UGT1A1*6 and UGT1A1*28 polymorphisms can be considered as predictors of irinotecan-induced toxicity, with effect varying by race, cancer type and irinotecan dose. © 2018 John Wiley & Sons Australia, Ltd.

  17. UGT1A1 gene polymorphism: Impact on toxicity and efficacy of irinotecan-based regimens in metastatic colorectal cancer

    PubMed Central

    Schulz, Christoph; Heinemann, Volker; Schalhorn, Andreas; Moosmann, Nikolas; Zwingers, Thomas; Boeck, Stefan; Giessen, Clemens; Stemmler, Hans-Joachim

    2009-01-01

    AIM: To investigate the correlation between uridine diphosphate glucuronosyl transferase 1A1 (UGT1A1) gene polymorphisms and irinotecan-associated side effects and parameters of drug efficacy in patients with metastatic colorectal cancer (mCRC) receiving a low-dose weekly irinotecan chemotherapeutic regimen. METHODS: Genotypes were retrospectively evaluated by gene scan analysis on the ABI 310 sequencer of the TATAA box in the promoter region of the UGT1A1 gene in blood samples from 105 patients who had received 1st line irinotecan-based chemotherapy for mCRC. RESULTS: The distribution of the genotypes was as follows: wild type genotype (WT) (6/6) 39.0%, heterozygous genotype (6/7) 49.5%, and homozygous genotype (7/7) 9.5%. The overall response rate (OR) was similar between patients carrying the (6/7, 7/7) or the WT genotype (6/6) (44.3% vs 43.2%, P = 0.75). Neither time to progression [(TTP) 8.1 vs 8.2 mo, P = 0.97] nor overall survival [(OS) 21.2 vs 18.9 mo, P = 0.73] differed significantly in patients who carried the (6/6) when compared to the (6/7, 7/7) genotype. No significant differences in toxicity were observed: Grade 3 and 4 delayed diarrhoea [(6/7, 7/7) vs (6/6); 13.0% vs 6.2%, P = 0.08], treatment delays [(6/7, 7/7) vs (6/6); 25.1% vs 19.3%, P =0.24] or dose reductions [(6/7, 7/7) vs (6/6); 21.5% vs 27.2%, P = 0.07]. CONCLUSION: This analysis demonstrates the non-significant influence of the UGT1A1 gene polymorphism on efficacy and rate of irinotecan-associated toxicity in mCRC patients receiving low-dose irinotecan based chemotherapy. PMID:19859999

  18. Correlation between plasma concentration ratios of SN-38 glucuronide and SN-38 and neutropenia induction in patients with colorectal cancer and wild-type UGT1A1 gene

    PubMed Central

    HIROSE, KOICHI; KOZU, CHIHIRO; YAMASHITA, KOSHIRO; MARUO, EIJI; KITAMURA, MIZUHO; HASEGAWA, JUNICHI; OMODA, KEI; MURAKAMI, TERUO; MAEDA, YORINOBU

    2011-01-01

    In irinotecan (CPT-11)-based chemotherapy, neutropenia and diarrhea are often induced. In the present study, the clinical significance of the concentration ratios of 7-ethyl-10-hydroxycamptothecin (SN-38) glucuronide (SN-38G) and SN-38 in the plasma in predicting CPT-11-induced neutropenia was examined. A total of 17 patients with colorectal cancer and wild-type UDP-glucuronosyltransferase (UGT)1A1 gene were enrolled and treated with CPT-11 as part of the FOLFIRI regimen [CPT-11 and fluorouracil (5-FU)]. Blood was taken exactly 15 min following a 2-h continuous infusion of CPT-11. Plasma concentrations of SN-38, SN-38G and CPT-11 were determined by a modified high-performance liquid chromatography (HPLC) method. The median, maximum and minimum values of plasma SN-38G/SN-38 ratios were 4.25, 7.09 and 1.03, respectively, indicating that UGT activities are variable among patients with the wild-type UGT1A1 gene. The plasma SN-38G/SN-38 ratios decreased with an increase in the trial numbers of chemotherapy (r=0.741, p=0.000669), suggesting that CPT-11 treatment suppresses UGT activity, and the low plasma SN-38G/SN-38 ratios resulted in the induction of greater neutropenia. However, in this analysis, 2 clearly separated regression lines were observed between plasma SN-38G/SN-38 ratios and neutropenia induction. In conclusion, UGT activity involved in SN-38 metabolism is variable among patients with the wild-type UGT1A1 gene, and each CPT-11 treatment suppresses UGT activity. One-point determination of the plasma SN-38G/SN-38 ratio may provide indications for the prediction of CPT-11-induced neutropenia and adjustment of the optimal dose, although further studies are required. PMID:22740978

  19. UGT1A1*6 polymorphism is most predictive of severe neutropenia induced by irinotecan in Japanese cancer patients.

    PubMed

    Onoue, Masahide; Terada, Tomohiro; Kobayashi, Masahiko; Katsura, Toshiya; Matsumoto, Shigemi; Yanagihara, Kazuhiro; Nishimura, Takafumi; Kanai, Masashi; Teramukai, Satoshi; Shimizu, Akira; Fukushima, Masanori; Inui, Ken-ichi

    2009-04-01

    Gene polymorphisms of the UDP-glucuronosyltransferase 1 family, polypeptide A1 (UGT1A1) contribute to individual variations in adverse events among patients administered irinotecan, and the distribution of the polymorphisms shows large interethnic differences. Variation in the solute carrier organic anion-transporter family, member 1B1 (SLCO1B1) gene also has a significant effect on the disposition of irinotecan in Asian cancer patients. In the present study, we evaluated the association of genetic polymorphisms of UGT1A1 and SLCO1B1 with irinotecanrelated neutropenia in Japanese cancer patients. One hundred and thirty-five consecutive patients treated with irinotecan were enrolled. Genotypes of UGT1A1 (*60, *28, *6, and *27) and SLCO1B1 (*1b, *5, and haplotype *15) were determined by direct sequencing. Severe neutropenia refers to events observed during the first cycle of irinotecan treatment. Severe neutropenia was observed in 29 patients (22%). Six patients were homozygous and 48 heterozygous for UGT1A1*6. Only 1 patient was homozygous for UGT1A1*28. Homozygosity for UGT1A1*6 was associated with a high risk of severe neutropenia (odds ratio [OR], 7.78; 95% confidence interval [CI], 1.36 to 44.51). No significant association was found between severe neutropenia and other UGT1A1 polymorphisms or SLCO1B1 polymorphisms. These findings suggest that the UGT1A1*6 polymorphism is a potential predictor of severe neutropenia caused by irinotecan in Japanese cancer patients.

  20. Induced Mutagenesis in UGT74S1 Gene Leads to Stable New Flax Lines with Altered Secoisolariciresinol Diglucoside (SDG) Profiles.

    PubMed

    Fofana, Bourlaye; Ghose, Kaushik; Somalraju, Ashok; McCallum, Jason; Main, David; Deyholos, Michael K; Rowland, Gordon G; Cloutier, Sylvie

    2017-01-01

    Flax secoisolariciresinol (SECO) diglucoside (SDG) lignan is an emerging natural product purported to prevent chronic diseases in humans. SECO, the aglycone form of SDG, has shown higher intestinal cell absorption but it is not accumulated naturally in planta . Recently, we have identified and characterized a UDP-glucosyltransferase gene, UGT74S1 , that glucosylates SECO into its monoglucoside (SMG) and SDG forms when expressed in yeast. However, whether this gene is unique in controlling SECO glucosylation into SDG in planta is unclear. Here, we report on the use of UGT74S1 in reverse and forward genetics to characterize an ethyl methane sulfonate (EMS) mutagenized flax population from cultivar CDC Bethune and consisting of 1996 M2 families. EMS mutagenesis generated 73 SNP variants causing 79 mutational events in the UGT74S1 exonic regions of 93 M2 families. The mutation frequency in the exonic regions was determined to be one per 28 Kb. Of these mutations, 13 homozygous missense mutations and two homozygous nonsense mutations were observed and all were transmitted into the M3 and M4 generations. Forward genetics screening of the population showed homozygous nonsense mutants completely lacking SDG biosynthesis while the production of SMG was observed only in a subset of the M4 lines. Heterozygous or homozygous M4 missense mutants displayed a wide range of SDG levels, some being greater than those of CDC Bethune. No additional deleterious mutations were detected in these mutant lines using a panel of 10 other genes potentially involved in the lignan biosynthesis. This study provides further evidence that UGT74S1 is unique in controlling SDG formation from SECO and this is the first report of non-transgenic flax germplasm with simultaneous knockout of SDG and presence of SMG in planta .

  1. Induced Mutagenesis in UGT74S1 Gene Leads to Stable New Flax Lines with Altered Secoisolariciresinol Diglucoside (SDG) Profiles

    PubMed Central

    Fofana, Bourlaye; Ghose, Kaushik; Somalraju, Ashok; McCallum, Jason; Main, David; Deyholos, Michael K.; Rowland, Gordon G.; Cloutier, Sylvie

    2017-01-01

    Flax secoisolariciresinol (SECO) diglucoside (SDG) lignan is an emerging natural product purported to prevent chronic diseases in humans. SECO, the aglycone form of SDG, has shown higher intestinal cell absorption but it is not accumulated naturally in planta. Recently, we have identified and characterized a UDP-glucosyltransferase gene, UGT74S1, that glucosylates SECO into its monoglucoside (SMG) and SDG forms when expressed in yeast. However, whether this gene is unique in controlling SECO glucosylation into SDG in planta is unclear. Here, we report on the use of UGT74S1 in reverse and forward genetics to characterize an ethyl methane sulfonate (EMS) mutagenized flax population from cultivar CDC Bethune and consisting of 1996 M2 families. EMS mutagenesis generated 73 SNP variants causing 79 mutational events in the UGT74S1 exonic regions of 93 M2 families. The mutation frequency in the exonic regions was determined to be one per 28 Kb. Of these mutations, 13 homozygous missense mutations and two homozygous nonsense mutations were observed and all were transmitted into the M3 and M4 generations. Forward genetics screening of the population showed homozygous nonsense mutants completely lacking SDG biosynthesis while the production of SMG was observed only in a subset of the M4 lines. Heterozygous or homozygous M4 missense mutants displayed a wide range of SDG levels, some being greater than those of CDC Bethune. No additional deleterious mutations were detected in these mutant lines using a panel of 10 other genes potentially involved in the lignan biosynthesis. This study provides further evidence that UGT74S1 is unique in controlling SDG formation from SECO and this is the first report of non-transgenic flax germplasm with simultaneous knockout of SDG and presence of SMG in planta. PMID:28983308

  2. UGT1A and UGT2B genetic variation alters nicotine and nitrosamine glucuronidation in european and african american smokers.

    PubMed

    Wassenaar, Catherine A; Conti, David V; Das, Soma; Chen, Peixian; Cook, Edwin H; Ratain, Mark J; Benowitz, Neal L; Tyndale, Rachel F

    2015-01-01

    Identifying sources of variation in the nicotine and nitrosamine metabolic inactivation pathways is important to understanding the relationship between smoking and cancer risk. Numerous UGT1A and UGT2B enzymes are implicated in nicotine and nitrosamine metabolism in vitro; however, little is known about their roles in vivo. Within UGT1A1, UGT1A4, UGT1A9, UGT2B7, UGT2B10, and UGT2B17, 47 variants were genotyped, including UGT2B10*2 and UGT2B17*2. The association between variation in these UGTs and glucuronidation activity within European and African American current smokers (n = 128), quantified as urinary ratios of the glucuronide over unconjugated compound for nicotine, cotinine, trans-3'-hydroxycotinine, and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), was investigated in regression models assuming a dominant effect of variant alleles. Correcting for multiple testing, three UGT2B10 variants were associated with cotinine glucuronidation, rs2331559 and rs11726322 in European Americans and rs835309 in African Americans (P ≤ 0.0002). Additional variants predominantly in UGT2B10 were nominally associated with nicotine (P = 0.008-0.04) and cotinine (P = <0.001-0.02) glucuronidation in both ethnicities in addition to UGT2B10*2 in European Americans (P = 0.01, P < 0.001). UGT2B17*2 (P = 0.03) in European Americans and UGT2B7 variants (P = 0.02-0.04) in African Americans were nominally associated with 3HC glucuronidation. UGT1A (P = 0.007-0.01), UGT2B10 (P = 0.02), and UGT2B7 (P = 0.02-0.03) variants in African Americans were nominally associated with NNAL glucuronidation. Findings from this initial in vivo study support a role for multiple UGTs in the glucuronidation of tobacco-related compounds in vivo, in particular UGT2B10 and cotinine glucuronidation. Findings also provide insight into ethnic differences in glucuronidation activity, which could be contributing to ethnic disparities in the risk for smoking-related cancers. Cancer Epidemiol Biomarkers Prev

  3. [Detection of UGT1A1*28 Polymorphism Using Fragment Analysis].

    PubMed

    Huang, Ying; Su, Jian; Huang, Xiaosui; Lu, Danxia; Xie, Zhi; Yang, Suqing; Guo, Weibang; Lv, Zhiyi; Wu, Hongsui; Zhang, Xuchao

    2017-12-20

    Uridine-diphosphoglucuronosyl transferase 1A1 (UGT1A1), UGT1A1*28 polymorphism can reduce UGT1A1 enzymatic activity, which may lead to severe toxicities in patients who receive irinotecan. This study tries to build a fragment analysis method to detect UGT1A1*28 polymorphism. A total of 286 blood specimens from the lung cancer patients who were hospitalized in Guangdong General Hospital between April 2014 to May 2015 were detected UGT1A1*28 polymorphism by fragment analysis method. Comparing with Sanger sequencing, precision and accuracy of the fragment analysis method were 100%. Of the 286 patients, 236 (82.5% harbored TA6/6 genotype, 48 (16.8%) TA 6/7 genotype and 2 (0.7%) TA7/7 genotype. Our data suggest hat the fragment analysis method is robust for detecting UGT1A1*28 polymorphism in clinical practice. It's simple, time-saving, and easy-to-carry.

  4. Prolonged neutropenia after irinotecan-based chemotherapy in a child with polymorphisms of UGT1A1 and SLCO1B1.

    PubMed

    Sakaguchi, S; Garcia-Bournissen, F; Kim, R; Schwarz, U I; Nathan, P C; Ito, S

    2009-12-01

    Genetic polymorphisms of uridine diphosphate glucuronosyl transferase 1A1 (UGT1A1), and SLCO1B1 coding organic anion-transporter polypeptide 1B1, are independent risk factors known to increase irinotecan toxicity in adults. Although combined occurrence of polymorphisms in these 2 genes is likely to influence susceptibility to irinotecan toxicity, data are scarce, especially in children. We report an 11-year-old female with severe and prolonged neutropenia after irinotecan-based chemotherapy. The patient's genotyping revealed polymorphisms in both UGT1A1 and SLCO1B1. To our knowledge, this is the first case report of combined genotyping of both UGT1A1 and SLCO1B1 in a child with severe irinotecan toxicity.

  5. Effect of UGT1A1, UGT1A3, DIO1 and DIO2 polymorphisms on L-thyroxine doses required for TSH suppression in patients with differentiated thyroid cancer.

    PubMed

    Santoro, Ana B; Vargens, Daniela D; Barros Filho, Mateus de Camargo; Bulzico, Daniel A; Kowalski, Luiz Paulo; Meirelles, Ricardo M R; Paula, Daniela P; Neves, Ronaldo R S; Pessoa, Cencita N; Struchine, Claudio J; Suarez-Kurtz, Guilherme

    2014-11-01

    To evaluate the impact of genetic polymorphisms in uridine 5'-glucuronosylytansferases UGT1A1 and UGT1A3 and iodothyronine-deiodinases types 1 and 2 on levothyroxine (T4 ; 3,5,3',5'-triiodo-L-thyronine) dose requirement for suppression of thyrotropin (TSH) secretion in patients with differentiated thyroid cancer (DTC). Patients (n = 268) submitted to total thyroidectomy and ablation by (131) I, under T4 therapy for at least 6 months were recruited in three public institutions in Brazil. Multivariate regression modelling was applied to assess the association of T4 dosing with polymorphisms in UGT1A1 (rs8175347), UGT1A3 (rs3806596 and rs1983023), DIO1 (rs11206244 and rs2235544) and DIO2 (rs225014 and rs12885300), demographic and clinical variables. A regression model including UGT1A haplotypes, age, gender, body weight and serum TSH concentration accounted for 39% of the inter-individual variation in the T4 dosage. The association of T4 dose with UGT1A haplotype is attributed to reduced UGT1A1 expression and T4 glucuronidation in liver of carriers of low expression UGT1A1 rs8175347 alleles. The DIO1 and DIO2 genotypes had no influence of T4 dosage. UGT1A haplotypes associate with T4 dosage in DTC patients, but the effect accounts for only 2% of the total variability and recommendation of pre-emptive UGT1A genotyping is not warranted. © 2014 The British Pharmacological Society.

  6. Effect of UGT1A1, UGT1A3, DIO1 and DIO2 polymorphisms on L-thyroxine doses required for TSH suppression in patients with differentiated thyroid cancer

    PubMed Central

    Santoro, Ana B; Vargens, Daniela D; Barros Filho, Mateus de Camargo; Bulzico, Daniel A; Kowalski, Luiz Paulo; Meirelles, Ricardo M R; Paula, Daniela P; Neves, Ronaldo R S; Pessoa, Cencita N; Struchine, Claudio J; Suarez-Kurtz, Guilherme

    2014-01-01

    Aim To evaluate the impact of genetic polymorphisms in uridine 5′-glucuronosylytansferases UGT1A1 and UGT1A3 and iodothyronine-deiodinases types 1 and 2 on levothyroxine (T4; 3,5,3′,5′-triiodo-L-thyronine) dose requirement for suppression of thyrotropin (TSH) secretion in patients with differentiated thyroid cancer (DTC). Methods Patients (n = 268) submitted to total thyroidectomy and ablation by 131I, under T4 therapy for at least 6 months were recruited in three public institutions in Brazil. Multivariate regression modelling was applied to assess the association of T4 dosing with polymorphisms in UGT1A1 (rs8175347), UGT1A3 (rs3806596 and rs1983023), DIO1 (rs11206244 and rs2235544) and DIO2 (rs225014 and rs12885300), demographic and clinical variables. Results A regression model including UGT1A haplotypes, age, gender, body weight and serum TSH concentration accounted for 39% of the inter-individual variation in the T4 dosage. The association of T4 dose with UGT1A haplotype is attributed to reduced UGT1A1 expression and T4 glucuronidation in liver of carriers of low expression UGT1A1 rs8175347 alleles. The DIO1 and DIO2 genotypes had no influence of T4 dosage. Conclusion UGT1A haplotypes associate with T4 dosage in DTC patients, but the effect accounts for only 2% of the total variability and recommendation of pre-emptive UGT1A genotyping is not warranted. PMID:24910925

  7. Base substitution mutations in uridinediphosphate-dependent glycosyltransferase 76G1 gene of Stevia rebaudiana causes the low levels of rebaudioside A: mutations in UGT76G1, a key gene of steviol glycosides synthesis.

    PubMed

    Yang, Yong-Heng; Huang, Su-Zhen; Han, Yu-Lin; Yuan, Hai-Yan; Gu, Chun-Sun; Zhao, Yan-Hai

    2014-07-01

    Steviol glycosides, extracted from the leaves of Stevia rebaudiana (Bert) Bertoni, are calorie-free sugar substitute of natural origin with intensely sweet (Boileau et al., 2012). Stevioside and rebaudioside A are the two main kinds of the diterpenic glycosides. We analyzed the concentration of stevioside and rebaudioside A in Stevia leaves of about 500 samples (hybrid progenies) and discovered a mutation plant "Z05" with very low levels of rebaudioside A. Because UGT76G1, a uridinediphosphate-dependent glycosyltransferases, is responsible for the conversion from stevioside to rebaudioside A (Richman et al., 2005), so mutation identification was done by sequencing the candidate gene, UGT76G1. In this study molecular analysis of two strains revealed a heterozygotic nonsense mutation of c.389T > G (p.L121X) in UGT76G1. Meanwhile, we found some amino acid substitutions significant change the protein structure. And the difference of enzyme activity between two strains proved the lack of functionality of UGT76G1 of the mutation "Z05". So the nonsense mutation and amino acid substitution mutation resulted in the low levels of rebaudioside A. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. The impact of the UGT1A1*60 allele on bilirubin serum concentrations.

    PubMed

    Pasternak, Amy L; Crews, Kristine R; Caudle, Kelly E; Smith, Colton; Pei, Deqing; Cheng, Cheng; Broeckel, Ulrich; Gaur, Aditya H; Hankins, Jane; Relling, Mary V; Haidar, Cyrine E

    2017-01-01

    Identify the functional status of the uridine-diphosphate glucuronyl transferase 1A1 (UGT1A1) -3279T>G (*60) variant. Retrospective review of clinically obtained serum bilirubin concentrations in pediatric patients to evaluate the association of the UGT1A1 -3279T>G (*60) variant with bilirubin concentrations and assessed linkage disequilibrium of the UGT1A1 -3279T>G (*60) and A(TA)7TAA (*28) variants. Total bilirubin concentration did not differ between patients who had a UGT1A1*1/*1 diplotype and patients homozygous for the UGT1A1 -3279T>G (*60/*60) variant. Total bilirubin concentration was lower in patients homozygous for the UGT1A1 -3279T>G (*60/*60) variant than in patients homozygous for the UGT1A1 A(TA)7TAA (*28/*28) variant (p < 0.01). The -3279T>G (*60) and A(TA)7TAA (*28) variants were in strong incomplete linkage disequilibrium in both black and white patients. The presence of the UGT1A1 -3279T>G (*60) variant is not associated with increased bilirubin concentrations.

  9. Characterization of Arabidopsis sterol glycosyltransferase TTG15/UGT80B1 role during freeze and heat stress

    PubMed Central

    Mishra, Manoj K; Singh, Gaurav; Tiwari, Shalini; Singh, Ruchi; Kumari, Nishi; Misra, Pratibha

    2015-01-01

    Sterol glycosyltransferases regulate the properties of sterols by catalyzing the transfer of carbohydrate molecules to the sterol moiety for the synthesis of steryl glycosides and acyl steryl glycosides. We have analyzed the functional role of TTG15/UGT80B1 gene of Arabidopsis thaliana in freeze/thaw and heat shock stress using T-DNA insertional sgt knockout mutants. Quantitative study of spatial as well as temporal gene expression showed tissue-specific and dynamic expression patterns throughout the growth stages. Comparative responses of Col-0, TTG15/UGT80B1 knockout mutant and p35S:TTG15/UGT80B1 restored lines were analyzed under heat and freeze stress conditions. Heat tolerance was determined by survival of plants at 42°C for 3 h, MDA analysis and chlorophyll fluorescence image (CFI) analysis. Freezing tolerance was determined by survival of the plants at -1°C temperature in non-acclimatized (NA) and cold acclimatized (CA) conditions and also by CFI analysis, which revealed that, p35S:TTG15/UGT80B1 restored plants were more adapted to freeze stress than TTG15/UGT80B1 knockout mutant under CA condition. HPLC analysis of the plants showed reduced sterol glycoside in mutant seedlings as compared to other genotypes. Following CA condition, both β-sitosterol and sitosterol glycoside quantity was more in Col-0 and p35S:TTG15/UGT80B1 restored lines, whereas it was significantly less in TTG15/UGT80B1 knockout mutants. From these results, it may be concluded that due to low content of free sterols and sterol glycosides, the physiology of mutant plants was more affected during both, the chilling and heat stress. PMID:26382564

  10. Association between UGT2B7 gene polymorphisms and fentanyl sensitivity in patients undergoing painful orthognathic surgery

    PubMed Central

    Muraoka, Wataru; Nishizawa, Daisuke; Fukuda, Kenichi; Kasai, Shinya; Hasegawa, Junko; Wajima, Koichi; Nakagawa, Taneaki

    2016-01-01

    Background Fentanyl is often used instead of morphine for the treatment of pain because it has fewer side effects. The metabolism of morphine by glucuronidation is known to be influenced by polymorphisms of the UGT2B7 gene. Some metabolic products of fentanyl are reportedly metabolized by glucuronate conjugation. The genes that are involved in the metabolic pathway of fentanyl may also influence fentanyl sensitivity. We analyzed associations between fentanyl sensitivity and polymorphisms of the UGT2B7 gene to clarify the hereditary determinants of individual differences in fentanyl sensitivity. Results This study examined whether single-nucleotide polymorphisms (SNPs) of the UGT2B7 gene affect cold pain sensitivity and the analgesic effects of fentanyl, evaluated by a standardized pain test and fentanyl requirements in healthy Japanese subjects who underwent uniform surgical procedures. The rs7439366 SNP of UGT2B7 is reportedly associated with the metabolism and analgesic effects of morphine. We found that this SNP is also associated with the analgesic effects of fentanyl in the cold pressor-induced pain test. It suggested that the C allele of the rs7439366 SNP may enhance analgesic efficacy. Two SNPs of UGT2B7, rs4587017 and rs1002849, were also found to be novel SNPs that may influence the analgesic effects of fentanyl in the cold pressor-induced pain test. Conclusions Fentanyl sensitivity for cold pressor-induced pain was associated with the rs7439366, rs4587017, and rs1002849 SNPs of the UGT2B7 gene. Our findings may provide valuable information for achieving satisfactory pain control and open to new avenues for personalized pain treatment. PMID:28256933

  11. Role of UGT1A1*6, UGT1A1*28 and ABCG2 c.421C>A polymorphisms in irinotecan-induced neutropenia in Asian cancer patients.

    PubMed

    Jada, Srinivasa Rao; Lim, Robert; Wong, Chiung Ing; Shu, Xiaochen; Lee, Soo Chin; Zhou, Qingyu; Goh, Boon Cher; Chowbay, Balram

    2007-09-01

    The objectives of the present study were (i) to study the pharmacogenetics of UGT1A1*6, UGT1A1*28 and ABCG2 c.421C>A in three distinct healthy Asian populations (Chinese, Malays and Indians), and (ii) to investigate the polygenic influence of these polymorphic variants in irinotecan-induced neutropenia in Asian cancer patients. Pharmacokinetic and pharmacogenetic analyses were done after administration of irinotecan as a 90-min intravenous infusion of 375 mg/m(2) once every 3 weeks (n = 45). Genotypic-phenotypic correlates showed a non-significant influence of UGT1A1*28 and ABCG2 c.421C>A polymorphisms on the pharmacokinetics of SN-38 (P > 0.05), as well as severity of neutropenia (P > 0.05). Significantly higher exposure levels to SN-38 (P = 0.018), lower relative extent of glucuronidation (REG; P = 0.006) and higher biliary index (BI; P = 0.003) were found in cancer patients homozygous for the UGT1A1*6 allele compared with patients harboring the reference genotype. The mean absolute neutrophil count (ANC) was 85% lower and the prevalence of grade 4 neutropenia (ANC < or = 500/microL) was 27% in patients homozygous for UGT1A1*6 compared with the reference group. Furthermore, the presence of the UGT1A1*6 allele was associated with an approximately 3-fold increased risk of developing severe grade 4 neutropenia compared with patients harboring the reference genotype. These exploratory findings suggest that homozygosity for UGT1A1*6 allele may be associated with altered SN-38 disposition and may increase the risk of severe neutropenia in Asian cancer patients, particularly in the Chinese cancer patients who comprised 80% (n = 36) of the patient population in the present study.

  12. Ectopic expression of UGT84A2 delayed flowering by indole-3-butyric acid-mediated transcriptional repression of ARF6 and ARF8 genes in Arabidopsis.

    PubMed

    Zhang, Gui-Zhi; Jin, Shang-Hui; Li, Pan; Jiang, Xiao-Yi; Li, Yan-Jie; Hou, Bing-Kai

    2017-12-01

    Ectopic expression of auxin glycosyltransferase UGT84A2 in Arabidopsis can delay flowering through increased indole-3-butyric acid and suppressed transcription of ARF6, ARF8 and flowering-related genes FT, SOC1, AP1 and LFY. Auxins are critical regulators for plant growth and developmental processes. Auxin homeostasis is thus an important issue for plant biology. Here, we identified an indole-3-butyric acid (IBA)-specific glycosyltransferase, UGT84A2, and characterized its role in Arabidopsis flowering development. UGT84A2 could catalyze the glycosylation of IBA, but not indole-3-acetic acid (IAA). UGT84A2 transcription expression was clearly induced by IBA. When ectopically expressing in Arabidopsis, UGT84A2 caused obvious delay in flowering. Correspondingly, the increase of IBA level, the down-regulation of AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8, and the down-regulation of flowering-related genes such as FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CO1(SOC1), APETALA1 (AP1), and LEAFY(LFY) were observed in transgenic plants. When exogenously applying IBA to wild-type plants, the late flowering phenotype, the down-regulation of ARF6, ARF8 and flowering-related genes recurred. We examined the arf6arf8 double mutants and found that the expression of flowering-related genes was also substantially decreased in these mutants. Together, our results suggest that glycosyltransferase UGT84A2 may be involved in flowering regulation through indole-3-butyric acid-mediated transcriptional repression of ARF6, ARF8 and downstream flowering pathway genes.

  13. Association of UGT2B7 and UGT1A4 Polymorphisms with Serum Concentration of Antiepileptic Drugs in Children.

    PubMed

    Du, Zhongliang; Jiao, Yukun; Shi, Lianting

    2016-10-31

    BACKGROUND This study aimed to analyze the relationship of UGT2B7 and UGT1A4 polymorphisms with metabolism of valproic acid (VPA) and lamotrigine (LTG) in epileptic children. MATERIAL AND METHODS We administered VPA (102) and LTG (102) to 204 children with epilepsy. Blood samples were collected before the morning dose. Serum concentration of LTG was measured by high-performance liquid chromatography (HPLC). Serum VPA concentration was tested by fluorescence polarization immunoassay. UGT2B7 A268G, C802T, and G211T polymorphisms, as well as UGT1A4 L48V polymorphism, were assayed by direct automated DNA sequencing after PCR. Evaluation of efficacy was conducted using the Engel method. RESULTS The adjusted serum concentration of VPA was 4.26 μg/mL per mg/kg and LTG was 1.56 μg/mL per mg/kg. Multiple linear regression analysis revealed that VPA or LTG adjusted concentration showed a good linear relation with sex and age. UGT2B7 A268G and C802T polymorphisms were demonstrated to affect the serum concentration of VPA (F=3.147, P=0.047; F=22.754, P=0.000). UGT1A4 L48V polymorphism was not related with the serum concentration of LTG (F=5.328, P=0.006). In the efficacy analysis, we found that C802T polymorphism exerted strong effects on efficacy of VPA (χ²=9.265, P=0.010). L48V polymorphism also showed effects on efficacy of LTG (χ²=17.397, P=0.001). CONCLUSIONS UGT2B7, UGT1A4 polymorphisms play crucial roles in metabolism of VPA and LTG.

  14. Hepatic expression of transcription factors affecting developmental regulation of UGT1A1 in the Han Chinese population.

    PubMed

    Nie, Ya-Li; He, Hang; Li, Jiang-Feng; Meng, Xiang-Guang; Yan, Liang; Wang, Pei; Wang, Shu-Jie; Bi, Hong-Zheng; Zhang, Li-Rong; Kan, Quan-Cheng

    2017-01-01

    Complete or partial inactivity of UGT1A1, the unique enzyme responsible for bilirubin glucuronidation, is commonly associated with hyperbilirubinemia. We investigated the dynamic expression of UGT1A1, and that of the transcription factors (TFs) involved in its developmental regulation, during human hepatic growth in Han Chinese individuals. Eighty-eight prenatal, pediatric, and adult liver samples were obtained from Han Chinese individuals. Quantitative real-time polymerase chain reaction was used to evaluate mRNA expression of UGT1A1 and TFs including PXR, CAR, HNF1A, HNF4A, PPARA, etc. UGT1A1 protein levels and metabolic activity were determined by western blotting and high-performance liquid chromatography. Direct sequencing was employed to genotype UGT1A1*6 (211G˃A) and UGT1A1*28 (TA6˃TA7) polymorphisms. UGT1A1 expression was minimal in prenatal samples, but significantly elevated during pediatric and adult stages. mRNA and protein levels and metabolic activity were prominently increased (120-, 20-, and 10-fold, respectively) in pediatric and adult livers compared to prenatal samples. Furthermore, expression did not differ appreciably between pediatric and adult periods. Dynamic expression of TFs, including PXR, CAR, HNF1A, HNF4A, and PPARA, was consistent with UGT1A1 levels at each developmental stage. A pronounced correlation between expression of these TFs and that of UGT1A1 (P < 0.001) was observed. Moreover, UGT1A1*6 and UGT1A1*28 polymorphisms reduced levels of UGT1A1 by up to 40-60 %. Hepatic expression of transcription factors is associated with developmental regulation of UGT1A1 in the Han Chinese population. Moreover, UGT1A1 polymorphisms are associated with reduced expression of UGT1A1 mRNA and protein, as well as enzyme activity.

  15. UGT1A1*6 polymorphisms are correlated with irinotecan-induced neutropenia: a systematic review and meta-analysis.

    PubMed

    Zhang, Xue; Yin, Jia-Fu; Zhang, Jiao; Kong, Shu-Jia; Zhang, Hong-Yin; Chen, Xue-Mei

    2017-07-01

    Irinotecan (IRI) chemotherapy toxicities can be severe, and may result in treatment delay, morbidity and in some rare cases death. Neutropenia is a life-threatening side effect of irinotecan, and UDP glucuronosyltransferases (UGTs) gene polymorphisms could predict the side effects in cancer patients and then reduce IRI-induced toxicity by preventative treatment or a decrease in dose. Both UGT1A1*6 and *28 were reliably demonstrated to be risk factors for IRI-induced neutropenia, with tests for both polymorphisms potentially being particularly useful in Asian cancer patients. However, some researchers reported that UGT1A1*6 could predict IRI-induced toxicities in Asian populations, controversial conclusions still remained. Thus, the association between UGT1A1*6 polymorphisms and IRI-induced severe toxicity in cancer patients is still needed to be explored. Therefore, this study aims to investigate the association between UGT1A1*6 polymorphisms and IRI-related severe neutropenia in cancer patients on a large scale. A total of 12 studies that included 746 wild genotype (G/G) cases and 394 variant genotype (G/A and A/A) cases were included on the basis of inclusion criteria. Then we assessed the methodologies quality; odds ratio (OR), risk difference (RD) and 95% confidence intervals (95% CI) were used to assess the strength of association. Overall, an increased risk of severe neutropenia in cancer patients with UGT1A1*6 polymorphisms was found. Patients with recessive models (GA + AA vs. GG) of UGT1A1*6 showed an increased risk (OR 2.03, 95% CI 1.54-2.68; RD = 0.11, P < 0.001). Specifically, the heterozygous variant of UGT1A1*6 showed an increased risk (OR 1.83, 95% CI 1.36-2.46; RD = 0.09, P < 0.001), and homozygous mutation showed also high risk (OR 2.95, 95% CI 1.83-4.75; RD = 0.18, P < 0.001) for severe neutropenia. Subgroup meta-analysis revealed that for patients harboring both heterozygous and homozygous variants, cancer types, low dose of IRI and

  16. Potent and selective inhibition of magnolol on catalytic activities of UGT1A7 and 1A9.

    PubMed

    Zhu, Liangliang; Ge, Guangbo; Liu, Yong; He, Guiyuan; Liang, Sicheng; Fang, Zhongze; Dong, Peipei; Cao, Yunfeng; Yang, Ling

    2012-10-01

    1. Human exposure to magnolol can reach a high dose in daily life. Our previous studies indicated that magnolol showed high affinities to several UDP-glucuronosyltransferases (UGTs) This study was designed to examine the in vitro inhibitory effects of magnolol on UGTs, and further to evaluate the possibility of the in vivo inhibition that might happen. 2. Assays with recombinant UGTs and human liver microsomes (HLM) indicated that magnolol (10 µM) can selectively inhibit activities of UGT1A9 and extra-hepatic UGT1A7. Inhibition of magnolol on UGT1A7 followed competitive inhibition mechanism, while the inhibition on UGT1A9 obeyed either competitive or mixed inhibition mechanism, depending on substrates. The K(i) values for UGT1A7 and 1A9 are all in nanomolar ranges, lower than possible magnolol concentrations in human gut lumen and blood, indicating the in vivo inhibition on these two enzymes would likely occur. 3. In conclusion, UGT1A7 and 1A9 can be strongly inhibited by magnolol, raising the alarm for safe application of magnolol and traditional Chinese medicines containing magnolol. Additionally, given that UGT1A7 is an extra-hepatic enzyme, magnolol can serve as a selective UGT1A9 inhibitor that will act as a new useful tool in future hepatic glucuronidation phenotyping.

  17. The UDP-Glucuronosyltransferase (UGT) 1A Polymorphism c.2042C>G (rs8330) Is Associated with Increased Human Liver Acetaminophen Glucuronidation, Increased UGT1A Exon 5a/5b Splice Variant mRNA Ratio, and Decreased Risk of Unintentional Acetaminophen-Induced Acute Liver FailureS⃞

    PubMed Central

    Freytsis, Marina; Wang, Xueding; Peter, Inga; Guillemette, Chantal; Hazarika, Suwagmani; Duan, Su X.; Greenblatt, David J.; Lee, William M.

    2013-01-01

    Acetaminophen is cleared primarily by hepatic glucuronidation. Polymorphisms in genes encoding the acetaminophen UDP-glucuronosyltransferase (UGT) enzymes could explain interindividual variability in acetaminophen glucuronidation and variable risk for liver injury after acetaminophen overdose. In this study, human liver bank samples were phenotyped for acetaminophen glucuronidation activity and genotyped for the major acetaminophen-glucuronidating enzymes (UGTs 1A1, 1A6, 1A9, and 2B15). Of these, only three linked single nucleotide polymorphisms (SNPs) located in the shared UGT1A-3′UTR region (rs10929303, rs1042640, rs8330) were associated with acetaminophen glucuronidation activity, with rs8330 consistently showing higher acetaminophen glucuronidation at all the tested concentrations of acetaminophen. Mechanistic studies using luciferase-UGT1A-3′UTR reporters indicated that these SNPs do not alter mRNA stability or translation efficiency. However, there was evidence for allelic imbalance and a gene-dose proportional increase in the amount of exon 5a versus exon 5b containing UGT1A mRNA spliced transcripts in livers with the rs8330 variant allele. Cotransfection studies demonstrated an inhibitory effect of exon 5b containing cDNAs on acetaminophen glucuronidation by UGT1A1 and UGT1A6 cDNAs containing exon 5a. In silico analysis predicted that rs8330 creates an exon splice enhancer site that could favor exon 5a (over exon 5b) utilization during splicing. Finally, the prevalence of rs8330 was significantly lower (P = 0.027, χ2 test) in patients who had acute liver failure from unintentional acetaminophen overdose compared with patients with acute liver failure from other causes or a race- or ethnicity-matched population. Together, these findings suggest that rs8330 is an important determinant of acetaminophen glucuronidation and could affect an individual’s risk for acetaminophen-induced liver injury. PMID:23408116

  18. The effects of clobazam treatment in rats on the expression of genes and proteins encoding glucronosyltransferase 1A/2B (UGT1A/2B) and multidrug resistance‐associated protein-2 (MRP2), and development of thyroid follicular cell hypertrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyawaki, Izuru, E-mail: izuru-miyawaki@ds-pharma.co.jp; Tamura, Akitoshi; Matsumoto, Izumi

    Clobazam (CLB) is known to increase hepatobiliary thyroxine (T4) clearance in Sprague–Dawley (SD) rats, which results in hypothyroidism followed by thyroid follicular cell hypertrophy. However, the mechanism of the acceleration of T4-clearance has not been fully investigated. In the present study, we tried to clarify the roles of hepatic UDP-glucronosyltransferase (UGT) isoenzymes (UGT1A and UGT2B) and efflux transporter (multidrug resistance–associated protein-2; MRP2) in the CLB-induced acceleration of T4-clearance using two mutant rat strains, UGT1A-deficient mutant (Gunn) and MRP2-deficient mutant (EHBR) rats, especially focusing on thyroid morphology, levels of circulating hormones (T4 and triiodothyronine (T3)) and thyroid-stimulating hormone (TSH), and mRNAmore » or protein expressions of UGTs (Ugt1a1, Ugt1a6, and Ugt2b1/2) and MRP2 (Mrp). CLB induced thyroid morphological changes with increases in TSH in SD and Gunn rats, but not in EHBR rats. T4 was slightly decreased in SD and Gunn rats, and T3 was decreased in Gunn rats, whereas these hormones were maintained in EHBR rats. Hepatic Ugt1a1, Ugt1a6, Ugt2b1/2, and Mrp2 mRNAs were upregulated in SD rats. In Gunn rats, UGT1A mRNAs (Ugt1a1/6) and protein levels were quite low, but UGT2B mRNAs (Ugt2b1/2) and protein were prominently upregulated. In SD and Gunn rats, MRP2 mRNA and protein were upregulated to the same degree. These results suggest that MRP2 is an important contributor in development of the thyroid cellular hypertrophy in CLB-treated rats, and that UGT1A and UGT2B work in concert with MRP2 in the presence of MRP2 function to enable the effective elimination of thyroid hormones. -- Highlights: ► Role of UGT and MRP2 in thyroid pathology was investigated in clobazam-treated rats. ► Clobazam induced thyroid cellular hypertrophy in SD and Gunn rats, but not EHBR rats. ► Hepatic Mrp2 gene and protein were upregulated in SD and Gunn rats, but not EHBR rats. ► Neither serum thyroid hormones

  19. Inhibition of UDP-glucuronosyltransferases (UGTs) by phthalate monoesters.

    PubMed

    Du, Zuo; Cao, Yun-Feng; Li, Sai-Nan; Hu, Cui-Min; Fu, Zhi-Wei; Huang, Chun-Ting; Sun, Xiao-Yu; Liu, Yong-Zhe; Yang, Kun; Fang, Zhong-Ze

    2018-04-01

    Phthalate monoesters are important metabolites of phthalate esters (PAEs) which have been extensively utilized in industry. This study aims to investigate the inhibition of phthalate monoesters on the activity of various isoforms of UDP-glucuronosyltransferases (UGTs), trying to elucidate the toxicity mechanism of environmental endocrine disruptors from the new perspectives. In vitro recombinant UGTs-catalyzed glucuronidation of 4-methylumbelliferone (4-MU) was employed to evaluate 8 kinds of phthalate monoesters on 11 sorts of main human UGT isoforms. 100 μM phthalate monoesters exhibited negligible inhibition towards the activity of UGT1A1, UGT1A3, UGT1A6, UGT1A8, UGT1A10, UGT2B4, UGT2B7, UGT2B15 and UGT2B17. The activity of UGT1A7 was strongly inhibited by monoethylhexyl phthalate (MEHP), but slightly inhibited by all the other phthalate monoesters. UGT1A9 was broadly inhibited by monobenzyl phthalate (MBZP), monocyclohexyl phthalate (MCHP), MEHP, monohexyl phthalate (MHP) and monooctyl phthalate (MOP), respectively. MEHP exhibited competitive inhibition towards UGT1A7, and MBZP, MCHP, MEHP, MHP and MOP showed competitive inhibition towards UGT1A9. The inhibition kinetic parameters (K i ) were calculated to be 11.25 μM for MEHP-UGT1A7, and 2.13, 0.09, 1.17, 7.47, 0.16 μM for MBZP-UGT1A9, MCHP-UGT1A9, MEHP-UGT1A9, MHP-UGT1A9, MOP-UGT1A9, respectively. Molecular docking indicated that both hydrogen bonds formation and hydrophobic interactions significantly contributed to the interaction between phthalate monoesters and UGT isoforms. All these information will be beneficial for understanding the adverse effects of PAEs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Modulation of bilirubin neurotoxicity by the Abcb1 transporter in the Ugt1-/- lethal mouse model of neonatal hyperbilirubinemia.

    PubMed

    Bockor, Luka; Bortolussi, Giulia; Vodret, Simone; Iaconcig, Alessandra; Jašprová, Jana; Zelenka, Jaroslav; Vitek, Libor; Tiribelli, Claudio; Muro, Andrés F

    2017-01-01

    Moderate neonatal jaundice is the most common clinical condition during newborn life. However, a combination of factors may result in acute hyperbilirubinemia, placing infants at risk of developing bilirubin encephalopathy and death by kernicterus. While most risk factors are known, the mechanisms acting to reduce susceptibility to bilirubin neurotoxicity remain unclear. The presence of modifier genes modulating the risk of developing bilirubin-induced brain damage is increasingly being recognised. The Abcb1 and Abcc1 members of the ABC family of transporters have been suggested to have an active role in exporting unconjugated bilirubin from the central nervous system into plasma. However, their role in reducing the risk of developing neurological damage and death during neonatal development is still unknown.To this end, we mated Abcb1a/b-/- and Abcc1-/- strains with Ugt1-/- mice, which develop severe neonatal hyperbilirubinemia. While about 60% of Ugt1-/- mice survived after temporary phototherapy, all Abcb1a/b-/-/Ugt1-/- mice died before postnatal day 21, showing higher cerebellar levels of unconjugated bilirubin. Interestingly, Abcc1 role appeared to be less important.In the cerebellum of Ugt1-/- mice, hyperbilirubinemia induced the expression of Car and Pxr nuclear receptors, known regulators of genes involved in the genotoxic response.We demonstrated a critical role of Abcb1 in protecting the cerebellum from bilirubin toxicity during neonatal development, the most clinically relevant phase for human babies, providing further understanding of the mechanisms regulating bilirubin neurotoxicity in vivo. Pharmacological treatments aimed to increase Abcb1 and Abcc1 expression, could represent a therapeutic option to reduce the risk of bilirubin neurotoxicity. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. UGT-29 protein expression and localization during bacterial infection in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Wong, Rui-Rui; Lee, Song-Hua; Nathan, Sheila

    2014-09-01

    The nematode Caenorhabditis elegans is routinely used as an animal model to delineate complex molecular mechanisms involved in the host response to pathogen infection. Following up on an earlier study on host-pathogen interaction, we constructed a ugt-29::GFP transcriptional fusion transgenic worm strain to examine UGT-29 protein expression and localization upon bacterial infection. UGT-29 orthologs can be found in higher organisms including humans and is proposed as a member of the UDP-Glucoronosyl Transferase family of proteins which are involved in phase II detoxification of compounds detrimental to the host organism. Under uninfected conditions, UGT-29::GFP fusion protein was highly expressed in the C. elegans anterior pharynx and intestine, two major organs involved in detoxification. We further evaluated the localization of the enzyme in worms infected with the bacterial pathogen, Burkholderia pseudomallei. The infected ugt-29::GFP transgenic strain exhibited increased fluorescence in the pharynx and intestine with pronounced fluorescence also extending to body wall muscle. This transcriptional fusion GFP transgenic worm is a convenient and direct tool to provide information on UGT detoxification enzyme gene expression and could be a useful tool for a number of diverse applications.

  2. SCN1A, ABCC2 and UGT2B7 gene polymorphisms in association with individualized oxcarbazepine therapy.

    PubMed

    Ma, Chun-Lai; Wu, Xun-Yi; Jiao, Zheng; Hong, Zhen; Wu, Zhi-Yuan; Zhong, Ming-Kang

    2015-01-01

    Associations between the effects of SCN1A, SCN2A, ABCC2 and UGT2B7 genetic polymorphisms and oxcarbazepine (OXC) maintenance doses in Han Chinese epileptic patients were investigated. Genetic polymorphisms were detected in 184 epileptic patients receiving OXC monotherapy by high-resolution melting curve and TaqMan method. Carriers of the SCN1A IVS5-91G>A, UGT2B7 c.802T>C and ABCC2 c.1249G>A variant alleles required significantly higher OXC maintenance doses than noncarriers (p < 0.05). Corresponding relative ln (concentration-dose ratios) values for SCN1A IVS5-91 variants differed by the genotypic order GG > GA > AA. SCN1A, UGT2B7 and ABCC2 genetic polymorphisms are associated with OXC maintenance doses and may be useful for the personalization of OXC therapy in epileptic patients. Further studies are needed. Original submitted 6 June 2014; Revision submitted 5 September 2014.

  3. [Hepatotoxicity of emodin based on UGT1A1 enzyme-mediated bilirubin in liver microsomes].

    PubMed

    Wang, Qi; Dai, Zhong; Zhang, Yu-Jie; Ma, Shuang-Cheng

    2016-12-01

    To study the hepatotoxicity of emodin based on bilirubin metabolism mediated by glucuronidation of UGT1A1 enzyme. In this study, three different incubation systems were established by using RLM, HLM, and rUGT1A1, with bilirubin as the substrate. Different concentrations of bilirubin and emodin were added in the incubation systems. The double reciprocal Michaelis equation was drawn based on the total amount of bilirubin glucuronidation. The apparent inhibition constant Ki was then calculated with the slope curve to predict the hepatotoxicity. The results indicated that emodin had a significant inhibition to the UGT1A1 enzyme in all of the three systems, with Ki=5.400±0.956(P<0.05) in HLM system, Ki =10.020±0.611(P<0.05) in RLM system, Ki=4.850±0.528(P<0.05) in rUGT1A1 system. Meanwhile, emodin had no significant difference between rat and human in terms of inhibition of UGT1A1 enzyme. Emodin had a potential risk of the hepatotoxicity by inhibiting the UGT1A1 enzyme activity. And the method established in this study provides a new thought and new method to evaluate hepatotoxicity and safety of traditional Chinese medicines. Copyright© by the Chinese Pharmaceutical Association.

  4. Effect of UGT2B10, UGT2B17, FMO3, and OCT2 Genetic Variation on Nicotine and Cotinine Pharmacokinetics and Smoking in African Americans

    PubMed Central

    Taghavi, Taraneh; St. Helen, Gideon; Benowitz, Neal L.; Tyndale, Rachel F.

    2017-01-01

    OBJECTIVES Nicotine metabolism rates differ greatly among individuals, even after controlling for variation in the major nicotine metabolizing enzyme, CYP2A6. In this study, the impact of genetic variation in alternative metabolic enzymes and transporters on nicotine and cotinine pharmacokinetics and smoking was investigated. METHODS We examined the impact of UGT2B10, UGT2B17, FMO3, NAT1, and OCT2 variation on pharmacokinetics and smoking (total nicotine equivalents and topography), before and after stratifying by CYP2A6 genotype in 60 African American smokers who received a simultaneous intravenous infusion of deuterium-labeled nicotine and cotinine. RESULTS Variants in UGT2B10 and UGT2B17 were associated with urinary glucuronidation ratios (glucuronide/free substrate). UGT2B10 rs116294140 was associated with significant alterations in cotinine and modest alterations in nicotine pharmacokinetics. These alterations, however, were not sufficient to change nicotine intake or topography. Neither UGT2B10 rs61750900, UGT2B17*2, FMO3 rs2266782, nor NAT1 rs13253389 altered nicotine or cotinine pharmacokinetics among all subjects (n=60); or among individuals with reduced CYP2A6 activity (n=23). The organic cation transporter OCT2 rs316019 significantly increased nicotine and cotinine Cmax (p=0.005, p=0.02, respectively) and decreased nicotine clearance (p=0.05). UGT2B10 rs116294140 had no significant impact on the plasma or urinary trans-3’-hydroxycotinine/cotinine ratio, commonly used as a biomarker of CYP2A6 activity. CONCLUSIONS We demonstrated that polymorphisms in genes other than CYP2A6 represent minor sources of variation in nicotine pharmacokinetics, insufficient to alter smoking in African Americans. The change in cotinine pharmacokinetics with UGT2B10 rs116294140 highlights the UGT2B10 gene as a source of variability in cotinine as a biomarker of tobacco exposure among African American smokers. PMID:28178031

  5. Correlation of UGT1A1(*)28 and (*)6 polymorphisms with irinotecan-induced neutropenia in Thai colorectal cancer patients.

    PubMed

    Atasilp, Chalirmporn; Chansriwong, Pichai; Sirachainan, Ekapob; Reungwetwattana, Thanyanan; Chamnanphon, Montri; Puangpetch, Apichaya; Wongwaisayawan, Sansanee; Sukasem, Chonlaphat

    2016-02-01

    UDP-glucuronosyltransferase1A1 (UGT1A1) polymorphisms have been related with irinotecan toxicity. The purpose of this study was to determine the associations between UGT1A1(*)28 and (*)6 polymorphisms and irinotecan toxicity in Thai patients with metastatic colorectal cancer. 44 metastatic colorectal cancer patients received irinotecan-based chemotherapy. Hematologic toxicities were determined in the first and second cycles of treatment. The genotypes of UGT1A1(*)28 and (*)6 were analyzed by pyrosequencing technique. The frequencies of genetic testing for UGT1A1(*)28 and (*)6 polymorphisms were 22.8% (TA6/TA7; 20.5%, TA7/TA7; 2.3%) and 15.9% (GA), respectively. No patients had the homozygous UGT1A1(*)6 (AA). Neither UGT1A1(*)28 nor UGT1A1(*)6 polymorphisms were significantly associated with severe hematologic toxicities. However, analysis of UGT1A1(*)28 and (*)6 in combination revealed an association with severe neutropenia in the first and second cycles (P = 0.044, P = 0.017, respectively). Both UGT1A1(*)28 and (*)6 polymorphisms may have an increased risk of irinotecan-induced neutropenia in Thai colorectal cancer patients. Copyright © 2015 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  6. Prognostic Significance of ESR1 Amplification and ESR1 PvuII, CYP2C19*2, UGT2B15*2 Polymorphisms in Breast Cancer Patients

    PubMed Central

    Markiewicz, Aleksandra; Wełnicka-Jaśkiewicz, Marzena; Skokowski, Jarosław; Jaśkiewicz, Janusz; Szade, Jolanta; Jassem, Jacek; Żaczek, Anna J.

    2013-01-01

    Introduction Amplification of the ESR1 gene, coding for estrogen receptor alpha, was shown to predict responsiveness to tamoxifen, however its prognostic impact in breast cancer patients has not been thoroughly investigated. Other factors that could contribute to responsiveness to tamoxifen treatment are polymorphisms in ESR1 gene and genes involved in tamoxifen metabolism. The aim of this study was to assess the prognostic role of ESR1 gene dosage in a consecutive group of breast cancer patients and to correlate this feature with clinico-pathological factors. Additionally, ESR1 PvuII, CYP2C19*2 and UGT2B15*2 polymorphisms were analyzed in the tamoxifen-treated subgroup of patients. Materials and Methods Primary tumor samples from 281 stage I-III consecutive breast cancer patients were analyzed for ESR1 gene dosage using real-time PCR with locked nucleic acids hydrolysis probes. In the tamoxifen-treated subgroup of patients, ESR1 PvuII, CYP2C19*2 and UGT2B15*2 polymorphism in leukocytes genomic DNA were analyzed. Results were correlated with clinico-pathological factors and with disease-free survival (DFS) and overall survival (OS). Results ESR1 amplification (with a cut-off level of 2.0) was found in 12% of the entire group of breast cancer patients, and in 18% of the ER-negative subgroup. This feature was associated with decreased DFS both in the entire group (P=0.007) and in the ER-negative subgroup (P=0.03), but not in the tamoxifen-treated patients. Patients with ESR1 PvuII wt/wt genotype and at least one UGT2B15 wt allele had a worse DFS (P=0.03) and showed a trend towards decreased Os (P=0.08) in comparison to patients with ESR1 PvuII wt/vt or vt/vt genotype and UGT2B15 *2/*2 genotype. Conclusions ESR1 amplification can occur in ER-negative tumors and may carry poor prognosis. In the tamoxifen-treated subgroup, poor prognosis was related to the combined presence of ESR1 PvuII wt/wt and UGT2B15wt/wt or wt/*2 genotype. PMID:23951298

  7. Prognostic significance of ESR1 amplification and ESR1 PvuII, CYP2C19*2, UGT2B15*2 polymorphisms in breast cancer patients.

    PubMed

    Markiewicz, Aleksandra; Wełnicka-Jaśkiewicz, Marzena; Skokowski, Jarosław; Jaśkiewicz, Janusz; Szade, Jolanta; Jassem, Jacek; Zaczek, Anna J

    2013-01-01

    Amplification of the ESR1 gene, coding for estrogen receptor alpha, was shown to predict responsiveness to tamoxifen, however its prognostic impact in breast cancer patients has not been thoroughly investigated. Other factors that could contribute to responsiveness to tamoxifen treatment are polymorphisms in ESR1 gene and genes involved in tamoxifen metabolism. The aim of this study was to assess the prognostic role of ESR1 gene dosage in a consecutive group of breast cancer patients and to correlate this feature with clinico-pathological factors. Additionally, ESR1 PvuII, CYP2C19*2 and UGT2B15*2 polymorphisms were analyzed in the tamoxifen-treated subgroup of patients. Primary tumor samples from 281 stage I-III consecutive breast cancer patients were analyzed for ESR1 gene dosage using real-time PCR with locked nucleic acids hydrolysis probes. In the tamoxifen-treated subgroup of patients, ESR1 PvuII, CYP2C19*2 and UGT2B15*2 polymorphism in leukocytes genomic DNA were analyzed. Results were correlated with clinico-pathological factors and with disease-free survival (DFS) and overall survival (OS). ESR1 amplification (with a cut-off level of 2.0) was found in 12% of the entire group of breast cancer patients, and in 18% of the ER-negative subgroup. This feature was associated with decreased DFS both in the entire group (P=0.007) and in the ER-negative subgroup (P=0.03), but not in the tamoxifen-treated patients. Patients with ESR1 PvuII wt/wt genotype and at least one UGT2B15 wt allele had a worse DFS (P=0.03) and showed a trend towards decreased Os (P=0.08) in comparison to patients with ESR1 PvuII wt/vt or vt/vt genotype and UGT2B15 *2/*2 genotype. ESR1 amplification can occur in ER-negative tumors and may carry poor prognosis. In the tamoxifen-treated subgroup, poor prognosis was related to the combined presence of ESR1 PvuII wt/wt and UGT2B15wt/wt or wt/*2 genotype.

  8. UGT2B17 gene deletion associated with an increase in bone mineral density similar to the effect of hormone replacement in postmenopausal women.

    PubMed

    Giroux, S; Bussières, J; Bureau, A; Rousseau, F

    2012-03-01

    UGT2B17 is one of the most important enzymes for androgen metabolism. In addition, the UGT2B17 gene is one of the most commonly deleted regions of the human genome. The deletion was previously found associated with higher femoral bone density in men and women, and we replicated this association in a sample of postmenopausal who never used hormone therapy. Deletion of the UGT2B17 gene was previously shown to be associated with a higher hip bone mineral density (BMD). Using a PCR assay, we tried to replicate the association among a large group of 2,379 women. We examined the effect of the deletion on femoral neck BMD and lumbar spine BMD according to the menopausal status and hormone replacement therapy (HRT). We used a high-throughput PCR assay to identify the gene and the deletion in a population of well-characterized women. Two additional polymorphisms, UGT2B28 deletion and UGT2B15 rs1902023 G > T were also investigated. Only UGT2B17 deletion was associated with LS and FN BMD. Furthermore, the association was seen only among postmenopausal women who had never used hormone replacement as in the first reported association. We confirmed the association between UGT2B17 deletion and a higher LS and FN BMD. In addition, we show that the association is observed among postmenopausal women who never used HRT consistent with the enzymatic function of UGT2B17. The analysis shows that those having one or two UGT2B17 alleles benefit from HRT, which is not the case for null carriers.

  9. Characterization of raloxifene glucuronidation. Potential role of UGT1A8 genotype on raloxifene metabolism in vivo

    PubMed Central

    Sun, Dongxiao; Jones, Nathan R; Manni, Andrea; Lazarus, Philip

    2014-01-01

    Raloxifene is a 2nd-generation selective estrogen receptor modulator used for the prevention and treatment of osteoporosis and the prevention of breast cancer in postmenopausal women. Raloxifene is extensively metabolized by glucuronidation to form raloxifene-6-glucuronide (ral-6-Gluc) and raloxifene-4′-glucuronide (ral-4′-Gluc). The goal of the present study was to determine whether functional polymorphisms in active UGTs could play a role in altered raloxifene glucuronidation in vivo. Using homogenates from HEK293 UGT-overexpressing cell lines, raloxifene was shown to be glucuronidated primarily by the hepatic UGTs 1A1 and 1A9 and the extra-hepatic UGTs 1A8 and 1A10; no detectable raloxifene glucuronidation activity was found for UGT2B enzymes. Functional UGT1A1 transcriptional promoter genotypes were significantly (ptrend=0.005) associated with ral-6-Gluc formation in human liver microsomes, and, consistent with the decreased raloxifene glucuronidation activities observed in vitro with cell line over-expressing UGT1A8 variants, the UGT1A8*2 variant was significantly (p=0.023) correlated with total raloxifene glucuronide formation in human jejunum homogenates. While ral-4′-Gluc exhibited 1/100th the anti-estrogenic activity of raloxifene itself as measured by binding to the estrogen receptor, raloxifene glucuronides comprised ∼99% of the circulating raloxifene dose in raloxifene-treated subjects, with ral-4′-Gluc comprising ∼70% of raloxifene glucuronides. Plasma ral-6-Gluc (ptrend=0.0025), ral-4′-Gluc (ptrend=0.001), and total raloxifene glucuronides (ptrend=0.001) were increased in raloxifene-treated subjects who were predicted slow metabolizers [UGT1A8 (*1/*3)] vs intermediate metabolizers [UGT1A8 (*1/*1) or UGT1A8 (*1/*2)] vs fast metabolizers [UGT1A8 (*2/*2). These data suggest that raloxifene metabolism may be dependent on UGT1A8 genotype and that UGT1A8 genotype may play an important role in overall response to raloxifene. PMID:23682072

  10. Preparation of reference material for UGT1A1 (TA)n polymorphism genotyping.

    PubMed

    Mlakar, Vid; Mlakar, Simona Jurković; Marc, Janja; Ostanek, Barbara

    2014-08-05

    Gilbert's syndrome is one of the most common metabolic syndromes in the human population characterised by mild unconjugated hyperbilirubinemia resulting from reduced activity of the bilirubin conjugating enzyme UDP-glucuronosyltransferase (UGT1A1). Although Gilbert's syndrome is usually quite benign UGT1A1(TA)n genotyping is important in exclusion of more serious causes of hyperbilirubinemia and since it has significant implications for personalised medicine. The aim of our study was to develop plasmid based reference materials which could be used for UGT1A1(TA)n genotyping. Plasmids were generated using recombinant DNA technology and their number of repeats as well as the entire sequence verified by Sanger sequencing. Their suitability as reference materials was tested using sizing by capillary electrophoresis and denaturing high performance liquid chromatography. Plasmids containing all four different alleles (TA)5, (TA)6, (TA)7 and (TA)8 that are present in the human population as well as a plasmid with (TA)4 repeats were successfully generated. Prepared plasmid reference materials allow the creation of all possible UGT1A1(TA)n polymorphism genotypes and can serve as an efficient substitute for the human genomic DNA reference material in routine genotyping and in the development of new genotyping tests. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Glycyrrhetinic acid exhibits strong inhibitory effects towards UDP-glucuronosyltransferase (UGT) 1A3 and 2B7.

    PubMed

    Huang, Yin-Peng; Cao, Yun-Feng; Fang, Zhong-Ze; Zhang, Yan-Yan; Hu, Cui-Min; Sun, Xiao-Yu; Yu, Zhen-Wen; Zhu, Xu; Hong, Mo; Yang, Lu; Sun, Hong-Zhi

    2013-09-01

    The aim of the present study is to evaluate the inhibitory effects of liver UDP-glucuronosyltransferases (UGTs) by glycyrrhizic acid and glycyrrhetinic acid, which are the bioactive ingredients isolated from licorice. The results showed that glycyrrhetinic acid exhibited stronger inhibition towards all the tested UGT isoforms, indicating that the deglycosylation process played an important role in the inhibitory potential towards UGT isoforms. Furthermore, the inhibition kinetic type and parameters were determined for the inhibition of glycyrrhetinic acid towards UGT1A3 and UGT2B7. Data fitting using Dixon and Lineweaver-Burk plots demonstrated that the inhibition of UGT1A3 and UGT2B7 by glycyrrhetinic acid was best fit to competitive and noncompetitive type, respectively. The second plot using the slopes from Lineweaver-Burk plots versus glycyrrhetinic acid concentrations was employed to calculate the inhibition kinetic parameters (K(i)), and the values were calculated to be 0.2 and 1.7 μM for UGT1A3 and UGT2B7, respectively. All these results remind us the possibility of UGT inhibition-based herb-drug interaction. However, the explanation of these in vitro parameters should be paid more caution due to complicated factors, including the probe substrate-dependent UGT inhibition behaviour, environmental factors affecting the abundance of herbs' ingredients, and individual difference of pharmacokinetic factors. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Identification of UGT2B9*2 and UGT2B33 isolated from female rhesus monkey liver.

    PubMed

    Dean, Brian; Arison, Byron; Chang, Steve; Thomas, Paul E; King, Christopher

    2004-06-01

    Two UDP-glucuronosyltransferases (UGT2B9(*)2 and UGT2B33) have been isolated from female rhesus monkey liver. Microsomal preparations of the cell lines expressing the UGTs catalyzed the glucuronidation of the general substrate 7-hydroxy-4-(trifluoromethyl)coumarin in addition to selected estrogens (beta-estradiol and estriol) and opioids (morphine, naloxone, and naltrexone). UGT2B9(*)2 displayed highest efficiency for beta-estradiol-17-glucuronide production and did not catalyze the glucuronidation of naltrexone. UGT2B33 displayed highest efficiency for estriol and did not catalyze the glucuronidation of beta-estradiol. UGT2B9(*)2 was found also to catalyze the glucuronidation of 4-hydroxyestrone, 16-epiestriol, and hyodeoxycholic acid, while UGT2B33 was capable of conjugating 4-hydroxyestrone, androsterone, diclofenac, and hyodeoxycholic acid. Three glucocorticoids (cortisone, cortisol, and corticosterone) were not substrates for glucuronidation by liver or kidney microsomes or any expressed UGTs. Our current data suggest the use of beta-estradiol-3-glucuronidation, beta-estradiol-17-glucuronidation, and estriol-17-glucuronidation to assay UGT1A01, UGT2B9(*)2, and UGT2B33 activity in rhesus liver microsomes, respectively.

  13. Chirality Influence of Zaltoprofen Towards UDP-Glucuronosyltransferases (UGTs) Inhibition Potential.

    PubMed

    Jia, Lin; Hu, Cuimin; Wang, Haina; Liu, Yongzhe; Liu, Xin; Zhang, Yan-Yan; Li, Wei; Wang, Li-Xuan; Cao, Yun-Feng; Fang, Zhong-Ze

    2015-06-01

    Zaltoprofen (ZLT) is a nonsteroidal antiinflammation drug, and has been clinically employed to treat rheumatoid arthritis, osteoarthritis, and other chronic inflammatory pain conditions. The present study aims to investigate the chirality influence of zaltoprofen towards the inhibition potential towards UDP-glucuronosyltransferases (UGTs) isoforms. In vitro a recombinant UGT isoforms-catalyzed 4-methylumbelliferone (4-MU) glucuronidation incubation system was employed to investigate the inhibition of (R)-zaltoprofen and (S)-zaltoprofen towards UGT isoforms. The inhibition difference capability was observed for the inhibition of (R)-zaltoprofen and (S)-zaltoprofen towards UGT1A8 and UGT2B7, but not for other tested UGT isoforms. (R)-zaltoprofen exhibited noncompetitive inhibition towards UGT1A8 and competitive inhibition towards UGT2B7. The inhibition kinetic parameters were calculated to be 35.3 μM and 19.2 μM for UGT1A8 and UGT2B7. (R)-zaltoprofen and (S)-zaltoprofen exhibited a different inhibition type towards UGT1A7. Based on the reported maximum plasma concentration of (R)-zaltoprofen in vivo, a high drug-drug interaction between (R)-zaltoprofen and the drugs mainly undergoing UGT1A7, UGT1A8, and UGT2B7-catalyzed glucuronidation was indicated. © 2015 Wiley Periodicals, Inc.

  14. [Examination of UGT1A1 polymorphisms and irinotecan-induced neutropenia in patients with Colorectal cancer].

    PubMed

    Teruya, Tsuyoshi; Nakachi, Atsushi; Shimabukuro, Nobuhiro; Toritsuka, Daisuke; Azuma, Yasuharu; Hanashiro, Kiyotoshi; Nishiki, Takehiro; Ota, Morihito; Shimabuku, Masamori; Shiroma, Hiroshi

    2015-05-01

    Irinotecan is an effective drug in the treatment of colorectal cancer. However, there are reports of an association between certain UGT1A1 genetic polymorphisms and the development of adverse reactions(such as neutropenia)related to irinotecan metabolism. We retrospectively investigated UGT1A1 genetic polymorphisms and the occurrences of irinotecan-induced neutropenia in 25 patients of colorectal cancer at our hospital. Analysis of UGT1A1 genetic polymorphisms in these patients yielded the following classifications: a wild-type group( *1/*1)comprising 13 patients(52%), a heterozygous group(*1/ *28, *1/*6)of 10 patients(40%), and a homozygous group(*28/*28, *6/*6)of 2 patients(8%). The frequency of neutropenia was 15.4%(2/13)in the wild-type group, 30%(3/10)in the heterozygous group, and 100%(2/2)in the homozygous group. Grade 4 neutropenia only occurred in the homozygous group. These results suggest that a dose reduction of irinotecan should be considered for patients who fall into the homozygous group upon analysis of their UGT1A1 genetic polymorphisms, as such patients might be susceptible to grade 4 neutropenia.

  15. DPD and UGT1A1 deficiency in colorectal cancer patients receiving triplet chemotherapy with fluoropyrimidines, oxaliplatin and irinotecan

    PubMed Central

    Falvella, Felicia Stefania; Cheli, Stefania; Martinetti, Antonia; Mazzali, Cristina; Iacovelli, Roberto; Maggi, Claudia; Gariboldi, Manuela; Pierotti, Marco Alessandro; Di Bartolomeo, Maria; Sottotetti, Elisa; Mennitto, Roberta; Bossi, Ilaria; de Braud, Filippo; Clementi, Emilio; Pietrantonio, Filippo

    2015-01-01

    Aims Triplet chemotherapy with fluoropyrimidines, oxaliplatin and irinotecan is a standard therapy for metastatic colorectal cancer (CRC). Single nucleotide polymorphisms (SNPs) in DPYD and UGT1A1 influence fluoropyrimdines and irinotecan adverse events (AEs). Low frequency DPYD variants (c.1905 + 1G > A, c.1679 T > G, c.2846A > T) are validated but more frequent ones (c.496A > G, c.1129-5923C > G and c.1896 T > C) are not. rs895819 T > C polymorphism in hsa-mir-27a is associated with reduced DPD activity. In this study, we evaluated the clinical usefulness of a pharmacogenetic panel for patients receiving triplet combinations. Methods Germline DNA was available from 64 CRC patients enrolled between 2008 and 2013 in two phase II trials of capecitabine, oxaliplatin and irinotecan plus bevacizumab or cetuximab. SNPs were determined by Real-Time PCR. We evaluated the functional variants in DPYD (rare: c.1905 + 1G > A, c.1679 T > G, c.2846A > T; most common: c.496A > G, c.1129-5923C > G, c.1896 T > C), hsa-mir-27a (rs895819) and UGT1A1 (*28) genes to assess their association with grade 3–4 AEs. Results None of the patients carried rare DPYD variants. We found DPYD c.496A > G, c.1129-5923C > G, c.1896 T > C in heterozygosity in 19%, 5% and 8%, respectively, homozygous rs895819 in hsa-mir-27a in 9% and homozygous UGT1A1*28 in 8%. Grade 3–4 AEs were observed in 36% patients and were associated with DPYD c.496A > G (odds ratio (OR) 4.93, 95% CI 1.29, 18.87; P = 0.021) and homozygous rs895819 in hsa-mir-27a (OR 11.11, 95% CI 1.21, 102.09; P = 0.020). Carriers of DPYD c.1896 T > C and homozygous UGT1A1*28 showed an OR of 8.42 (95% CI 0.88, 80.56; P = 0.052). Multivariate analysis confirmed an independent value for DPYD c.496A > G and c.1896 T > C. Conclusions Concomitant assessment of DPYD variants and the UGT1A1*28 allele is a promising strategy needing further validation for dose personalization. PMID:25782327

  16. Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns.

    PubMed

    Barvkar, Vitthal T; Pardeshi, Varsha C; Kale, Sandip M; Kadoo, Narendra Y; Gupta, Vidya S

    2012-05-08

    The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT) family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L.) is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans. Identification and characterization of UDP glycosyltransferase (UGT) genes from flax could provide valuable basic information about this important gene family and help to explain the seed specific glycosylated metabolite accumulation and other processes in plants. Plant genome sequencing projects are useful to discover complexity within this gene family and also pave way for the development of functional genomics approaches. Taking advantage of the newly assembled draft genome sequence of flax, we identified 137 UDP glycosyltransferase (UGT) genes from flax using a conserved signature motif. Phylogenetic analysis of these protein sequences clustered them into 14 major groups (A-N). Expression patterns of these genes were investigated using publicly available expressed sequence tag (EST), microarray data and reverse transcription quantitative real time PCR (RT-qPCR). Seventy-three per cent of these genes (100 out of 137) showed expression evidence in 15 tissues examined and indicated varied expression profiles. The RT-qPCR results of 10 selected genes were also coherent with the digital expression analysis. Interestingly, five duplicated UGT genes were identified, which showed differential expression in various tissues. Of the seven intron loss/gain positions detected, two intron positions were conserved among most of the UGTs, although a clear relationship about the evolution of these genes could not be established. Comparison of the flax UGTs with orthologs from four other sequenced dicot genomes indicated that seven UGTs were

  17. Bilirubin glucuronidation revisited: proper assay conditions to estimate enzyme kinetics with recombinant UGT1A1.

    PubMed

    Zhou, Jin; Tracy, Timothy S; Remmel, Rory P

    2010-11-01

    Bilirubin, an end product of heme catabolism, is primarily eliminated via glucuronic acid conjugation by UGT1A1. Impaired bilirubin conjugation, caused by inhibition of UGT1A1, can result in clinical consequences, including jaundice and kernicterus. Thus, evaluation of the ability of new drug candidates to inhibit UGT1A1-catalyzed bilirubin glucuronidation in vitro has become common practice. However, the instability of bilirubin and its glucuronides presents substantial technical challenges to conduct in vitro bilirubin glucuronidation assays. Furthermore, because bilirubin can be diglucuronidated through a sequential reaction, establishment of initial rate conditions can be problematic. To address these issues, a robust high-performance liquid chromatography assay to measure both bilirubin mono- and diglucuronide conjugates was developed, and the incubation conditions for bilirubin glucuronidation by human embryonic kidney 293-expressed UGT1A1 were carefully characterized. Our results indicated that bilirubin glucuronidation should be assessed at very low protein concentrations (0.05 mg/ml protein) and over a short incubation time (5 min) to assure initial rate conditions. Under these conditions, bilirubin total glucuronide formation exhibited a hyperbolic (Michaelis-Menten) kinetic profile with a K(m) of ∼0.2 μM. In addition, under these initial rate conditions, the relative proportions between the total monoglucuronide and the diglucuronide product were constant across the range of bilirubin concentration evaluated (0.05-2 μM), with the monoglucuronide being the predominant species (∼70%). In conclusion, establishment of appropriate incubation conditions (i.e., very low protein concentrations and short incubation times) is necessary to properly characterize the kinetics of bilirubin glucuronidation in a recombinant UGT1A1 system.

  18. Screening of recombinant glycosyltransferases reveals the broad acceptor specificity of stevia UGT-76G1.

    PubMed

    Dewitte, Griet; Walmagh, Maarten; Diricks, Margo; Lepak, Alexander; Gutmann, Alexander; Nidetzky, Bernd; Desmet, Tom

    2016-09-10

    UDP-glycosyltransferases (UGTs) are a promising class of biocatalysts that offer a sustainable alternative for chemical glycosylation of natural products. In this study, we aimed to characterize plant-derived UGTs from the GT-1 family with an emphasis on their acceptor promiscuity and their potential application in glycosylation processes. Recombinant expression in E. coli provided sufficient amounts of enzyme for the in-depth characterization of the salicylic acid UGT from Capsella rubella (UGT-SACr) and the stevia UGT from Stevia rebaudiana (UGT-76G1Sr). The latter was found to have a remarkably broad specificity with activities on a wide diversity of structures, from aliphatic and branched alcohols, over small phenolics to larger flavonoids, terpenoids and even higher glycoside compounds. As an example for its industrial potential, the glycosylation of curcumin was thoroughly evaluated. Under optimized conditions, 96% of curcumin was converted within 24h into the corresponding curcumin β-glycosides. In addition, the reaction was performed in a coupled system with sucrose synthase from Glycine max, to enable the cost-efficient (re)generation of UDP-Glc from sucrose as abundant and renewable resource. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Use Of Transgenic Mice In UDP-Glucuronosyltransferase (UGT) Studies

    PubMed Central

    Ou, Zhimin; Huang, Min; Zhao, Lizi; Xie, Wen

    2009-01-01

    Transgenic mouse models are useful to understand the function and regulation of drug metabolizing enzymes in vivo. This article is intended to describe the general strategies and to discuss specific examples on how to use transgenic, gene knockout, and humanized mice to study the function as well as genetic and pharmacological regulation of UDP-glucuronosyltransferases (UGTs). The physiological and pharmacological implications of transcription factor-mediated UGT regulation will also be discussed. The UGT-regulating transcription factors to be discussed in this article include nuclear hormone receptors (NRs), aryl hydrocarbon receptor (AhR), and nuclear factor erythroid 2-related factor 2 (Nrf2). PMID:20070245

  20. Body Fat Percentage Is a Major Determinant of Total Bilirubin Independently of UGT1A1*28 Polymorphism in Young Obese

    PubMed Central

    Kohlova, Michaela; Bronze-da-Rocha, Elsa; Fernandes, João; Costa, Elísio; Catarino, Cristina; Aires, Luísa; Mansilha, Helena Ferreira; Rocha-Pereira, Petronila; Quintanilha, Alexandre; Rêgo, Carla; Santos-Silva, Alice

    2014-01-01

    Objectives Bilirubin has potential antioxidant and anti-inflammatory properties. The UGT1A1*28 polymorphism (TA repeats in the promoter region) is a major determinant of bilirubin levels and recent evidence suggests that raised adiposity may also be a contributing factor. We aimed to study the interaction between UGT1A1 polymorphism, hematological and anthropometric variables with total bilirubin levels in young individuals. Methods 350 obese (mean age of 11.6 years; 52% females) and 79 controls (mean age of 10.5 years; 59% females) were included. Total bilirubin and C-reactive protein (CRP) plasma levels, hemogram, anthropometric data and UGT1A1 polymorphism were determined. In a subgroup of 74 obese and 40 controls body composition was analyzed by dual-energy X-ray absorptiometry. Results The UGT1A1 genotype frequencies were 49.9%, 42.7% and 7.5% for 6/6, 6/7 and 7/7 genotypes, respectively. Patients with 7/7 genotype presented the highest total bilirubin levels, followed by 6/7 and 6/6 genotypes. Compared to controls, obese patients presented higher erythrocyte count, hematocrit, hemoglobin and CRP levels, but no differences in bilirubin or in UGT1A1 genotype distribution. Body fat percentage was inversely correlated with bilirubin in obese patients but not in controls. This inverse association was observed either in 6/7 or 6/6 genotype obese patients. UGT1A1 polymorphism and body fat percentage were the main factors affecting bilirubin levels within obese patients (linear regression analysis). Conclusion In obese children and adolescents, body fat composition and UGT1A1 polymorphism are independent determinants of total bilirubin levels. Obese individuals with 6/6 UGT1A1 genotype and higher body fat mass may benefit from a closer clinical follow-up. PMID:24901842

  1. A tandem array of UDP-glycosyltransferases from the UGT73C subfamily glycosylate sapogenins, forming a spectrum of mono- and bisdesmosidic saponins.

    PubMed

    Erthmann, Pernille Østerbye; Agerbirk, Niels; Bak, Søren

    2018-05-01

    This study identifies six UGT73Cs all able to glucosylate sapogenins at positions 3 and/or 28 which demonstrates that B. vulgaris has a much richer arsenal of UGTs involved in saponin biosynthesis than initially anticipated. The wild cruciferous plant Barbarea vulgaris is resistant to some insects due to accumulation of two monodesmosidic triterpenoid saponins, oleanolic acid 3-O-β-cellobioside and hederagenin 3-O-β-cellobioside. Insect resistance depends on the structure of the sapogenin aglycone and the glycosylation pattern. The B. vulgaris saponin profile is complex with at least 49 saponin-like metabolites, derived from eight sapogenins and including up to five monosaccharide units. Two B. vulgaris UDP-glycosyltransferases, UGT73C11 and UGT73C13, O-glucosylate sapogenins at positions 3 and 28, forming mainly 3-O-β-D-glucosides. The aim of this study was to identify UGTs responsible for the diverse saponin oligoglycoside moieties observed in B. vulgaris. Twenty UGT genes from the insect resistant genotype were selected and heterologously expressed in Nicotiana benthamiana and/or Escherichia coli. The extracts were screened for their ability to glycosylate sapogenins (oleanolic acid, hederagenin), the hormone 24-epibrassinolide and sapogenin monoglucosides (hederagenin and oleanolic acid 3-O-β-D-glucosides). Six UGTs from the UGT73C subfamily were able to glucosylate both sapogenins and both monoglucosides at positions 3 and/or 28. Some UGTs formed bisdesmosidic saponins efficiently. At least four UGT73C genes were localized in a tandem array with UGT73C11 and possibly UGT73C13. This organization most likely reflects duplication events followed by sub- and neofunctionalization. Indeed, signs of positive selection on several amino acid sites were identified and modelled to be localized on the UGT protein surface. This tandem array is proposed to initiate higher order bisdesmosidic glycosylation of B. vulgaris saponins, leading to the recently discovered

  2. Effect of UDP-Glucuronosyltransferase (UGT) 1A Polymorphism (rs8330 and rs10929303) on Glucuronidation Status of Acetaminophen

    PubMed Central

    Tahir, Imtiaz Mahmood; Iqbal, Tahira; Saleem, Sadaf; Perveen, Sofia; Farooqi, Aboubakker

    2017-01-01

    Interindividual variability in polymorphic uridine diphosphate-glucuronosyltransferase 1A1 (UGT1A1) ascribed to genetic diversity is associated with relative glucuronidation level among individuals. The present research was aimed to study the effect of 2 important single nucleotide polymorphisms (SNPs; rs8330 and rs10929303) of UGT1A1 gene on glucuronidation status of acetaminophen in healthy volunteers (n = 109). Among enrolled volunteers, 54.13% were male (n = 59) and 45.87% were female (n = 50). The in vivo activity of UGT1A1 was investigated by high-performance liquid chromatography-based analysis of glucuronidation status (ie, acetaminophen and acetaminophen glucuronide) in human volunteers after oral intake of a single dose (1000 mg) of acetaminophen. The TaqMan SNP genotyping assay was used for UGT1A1 genotyping. The wild-type genotype (C/C) was observed the most frequent one for both SNPs (rs8330 and rs10929303) and associated with fast glucuronidator phenotypes. The distribution of variant genotype (G/G) for SNP rs8330 was observed in 5% of male and 8% of the female population; however, for SNP rs10929303, the G/G genotype was found in 8% of both genders. A trimodal distribution (fast, intermediate, and slow) based on phenotypes was observed. Among the male participants, the glucuronidation phenotypes were observed as 7% slow, 37% intermediate, and 56% fast glucuronidators; however, these findings for the females were slightly different as 8%, 32%, and 60% respectively. The k-statistics revealed a compelling evidence for good concordance between phenotype and genotype with a k value of 1.00 for SNP rs8330 and 0.966 for SNP rs10929303 in our population. PMID:28932176

  3. Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns

    PubMed Central

    2012-01-01

    Background The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT) family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L.) is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans. Identification and characterization of UDP glycosyltransferase (UGT) genes from flax could provide valuable basic information about this important gene family and help to explain the seed specific glycosylated metabolite accumulation and other processes in plants. Plant genome sequencing projects are useful to discover complexity within this gene family and also pave way for the development of functional genomics approaches. Results Taking advantage of the newly assembled draft genome sequence of flax, we identified 137 UDP glycosyltransferase (UGT) genes from flax using a conserved signature motif. Phylogenetic analysis of these protein sequences clustered them into 14 major groups (A-N). Expression patterns of these genes were investigated using publicly available expressed sequence tag (EST), microarray data and reverse transcription quantitative real time PCR (RT-qPCR). Seventy-three per cent of these genes (100 out of 137) showed expression evidence in 15 tissues examined and indicated varied expression profiles. The RT-qPCR results of 10 selected genes were also coherent with the digital expression analysis. Interestingly, five duplicated UGT genes were identified, which showed differential expression in various tissues. Of the seven intron loss/gain positions detected, two intron positions were conserved among most of the UGTs, although a clear relationship about the evolution of these genes could not be established. Comparison of the flax UGTs with orthologs from four other sequenced dicot genomes indicated that

  4. The Implication of the Polymorphisms of COX-1, UGT1A6, and CYP2C9 among Cardiovascular Disease (CVD) Patients Treated with Aspirin.

    PubMed

    Jalil, Nur Jalinna Abdul; Bannur, Zakaria; Derahman, A; Maskon, O; Darinah, Noor; Hamidi, Hamat; Gunasekaran, Osama Ali; Rafizi, Mohd; Azreen, Nur Izatul; Kek, Teh Lay; Salleh, Mohd Zaki

    2015-01-01

      Enzymes potentially responsible for the pharmacokinetic variations of aspirin include cyclooxygenase-1 (COX-1), UDP-glucuronosyltransferase (UGT1A6) and P450 (CYP) (CYP2C9). We therefore aimed to determine the types and frequencies of variants of COX-1 (A-842G), UGT1A6 (UGT1A6*2; A541G and UGT1A6*3; A522C) and CYP2C9 (CYP2C9*3; A1075C) in the three major ethnic groups in Malaysia. In addition, the role of these polymorphisms on aspirin-induced gastritis among the patients was investigated. A total of 165 patients with cardiovascular disease who were treated with 75-150 mg daily dose of aspirin and 300 healthy volunteers were recruited. DNA was extracted from the blood samples and genotyped for COX-1 (A-842G), UGT1A6 (UGT1A6*2 and UGT1A6*3) and CYP2C9 (CYP2C9*3; A1075C) using allele specific polymerase chain reaction (AS-PCR). Variants UGT1A6*2,*3 and CYP2C9*3 were detected in relatively high percentage of 22.83%, 30.0% and 6.50%, respectively; while COX-1 (A-842G) was absent. The genotype frequencies for UGT1A6*2 and *3 were significantly different between Indians and Malays or Chinese. The level of bilirubin among patients with different genotypes of UGT1A6 was significantly different (p-value < 0.05). In addition, CYP2C9*3 was found to be associated with gastritis with an odd ratio of 6.8 (95 % Cl OR: 1.39 - 33.19; P = 0.033). Screening of patients with defective genetic variants of UGT1A6 and CYP2C9*3 helps in identifying patients at risk of aspirin induced gastritis. However, a randomised clinical study of bigger sample size would be needed before it is translated to clinical use.

  5. Statin Lactonization by Uridine 5'-Diphospho-glucuronosyltransferases (UGTs).

    PubMed

    Schirris, Tom J J; Ritschel, Tina; Bilos, Albert; Smeitink, Jan A M; Russel, Frans G M

    2015-11-02

    Statins are cholesterol-lowering drugs that have proven to be effective in lowering the risk of major cardiovascular events. Although well tolerated, statin-induced myopathies are the most common side effects. Compared to their pharmacologically active acid form, statin lactones are more potent inducers of toxicity. They can be formed by glucuronidation mediated by uridine 5'-diphospho-glucuronosyltransferases (UGTs), but a systematic characterization of subtype specificity and kinetics of lactonization is lacking. Here, we demonstrate for six clinically relevant statins that only UGT1A1, 1A3, and 2B7 contribute significantly to their lactonization. UGT1A3 appeared to have the highest lactonization capacity with marked differences in statin conversion rates: pitavastatin ≫ atorvastatin > cerivastatin > lovastatin > rosuvastatin (simvastatin not converted). Using in silico modeling we could identify a probable statin interaction region in the UGT binding pocket. Polymorphisms in these regions of UGT1A1, 1A3, and 2B7 may be a contributing factor in statin-induced myopathies, which could be used in personalization of statin therapy with improved safety.

  6. Structure–inhibition relationship of ginsenosides towards UDP-glucuronosyltransferases (UGTs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zhong-Ze; Joint Center for Translational Medicine, Dalian Institute of Chemical Physics Chinese Academy of Sciences and The first Affiliated Hospital of Liaoning Medical University, No.457, Zhongshan Road, Dalian 116023; Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892

    The wide utilization of ginseng provides the high risk of herb–drug interaction (HDI) with many clinical drugs. The inhibition of ginsenosides towards drug-metabolizing enzymes (DMEs) has been regarded as an important reason for herb–drug interaction (HDI). Compared with the deep studies on the ginsenosides' inhibition towards cytochrome P450 (CYP), the inhibition of ginsenosides towards the important phase II enzymes UDP-glucuronosyltransferases (UGTs) remains to be unclear. The present study aims to evaluate the inhibition behavior of ginsenosides towards important UGT isoforms located in the liver and intestine using in vitro methods. The recombinant UGT isoform-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction was employedmore » as in vitro probe reaction. The results showed that structure-dependent inhibition existed for the inhibition of ginsenosides towards UGT isoforms. To clarify the possibility of in vivo herb–drug interaction induced by this kind of inhibition, the ginsenoside Rg{sub 3} was selected as an example, and the inhibition kinetic type and parameters (K{sub i}) were determined. Rg{sub 3} competitively inhibited UGT1A7, 2B7 and 2B15-catalyzed 4-MU glucuronidation reaction, and exerted noncompetitive inhibition towards UGT1A8-catalyzed 4-MU glucuronidation. The inhibition parameters (K{sub i} values) were calculated to be 22.6, 7.9, 1.9, and 2.0 μM for UGT1A7, 1A8, 2B7 and 2B15. Using human maximum plasma concentration of Rg{sub 3} (400 ng/ml (0.5 μM)) after intramuscular injection of 60 mg Rg{sub 3}, the area under the plasma concentration-time curve (AUC) was extrapolated to increase by 2.2%, 6.3%, 26.3%, and 25% for the co-administered drugs completely undergoing the metabolism catalyzed by UGT1A7, 1A8, 2B7 and 2B15, respectively. All these results indicated that the ginsenosides' inhibition towards UGT isoforms might be an important reason for ginseng–drug interaction. - Highlights: ► Structure-dependent inhibition

  7. S-Naproxen and desmethylnaproxen glucuronidation by human liver microsomes and recombinant human UDP-glucuronosyltransferases (UGT): role of UGT2B7 in the elimination of naproxen

    PubMed Central

    Bowalgaha, Kushari; Elliot, David J; Mackenzie, Peter I; Knights, Kathleen M; Swedmark, Stellan; Miners, John O

    2005-01-01

    Aims To characterize the kinetics of S-naproxen (‘naproxen’) acyl glucuronidation and desmethylnaproxen acyl and phenolic glucuronidation by human liver microsomes and identify the human UGT isoform(s) catalysing these reactions. Methods Naproxen and desmethylnaproxen glucuronidation were investigated using microsomes from six and five livers, respectively. Human recombinant UGTs were screened for activity towards naproxen and desmethylnaproxen. Where significant activity was observed, kinetic parameters were determined. Naproxen and desmethylnaproxen glucuronides were measured by separate high-performance liquid chromatography methods. Results Naproxen acyl glucuronidation by human liver microsomes followed biphasic kinetics. Mean apparent Km values (±SD, with 95% confidence interval in parentheses) for the high- and low-affinity components were 29 ± 13 µm (16, 43) and 473 ± 108 µm (359, 587), respectively. UGT 1A1, 1A3, 1A6, 1A7, 1A8, 1A9, 1A10 and 2B7 glucuronidated naproxen. UGT2B7 exhibited an apparent Km (72 µm) of the same order as the high-affinity human liver microsomal activity, which was inhibited by the UGT2B7 selective ‘probe’ fluconazole. Although data for desmethylnaproxen phenolic glucuronidation by human liver microsomes were generally adequately fitted to either the single- or two-enzyme Michaelis–Menten equation, model fitting was inconclusive for desmethylnaproxen acyl glucuronidation. UGT 1A1, 1A7, 1A9 and 1A10 catalysed both the phenolic and acyl glucuronidation of desmethylnaproxen, while UGT 1A3, 1A6 and 2B7 formed only the acyl glucuronide. Atypical glucuronidation kinetics were variably observed for naproxen and desmethylnaproxen glucuronidation by the recombinant UGTs. Conclusion UGT2B7 is responsible for human hepatic naproxen acyl glucuronidation, which is the primary elimination pathway for this drug. PMID:16187975

  8. Selective Detoxification of Phenols by Pichia pastoris and Arabidopsis thaliana Heterologously Expressing the PtUGT72B1 from Populus trichocarpa

    PubMed Central

    Xu, Zhi-Sheng; Lin, Ya-Qiu; Xu, Jing; Zhu, Bo; Zhao, Wei; Peng, Ri-He; Yao, Quan-Hong

    2013-01-01

    Phenols are present in the environment and commonly in contact with humans and animals because of their wide applications in many industries. In a previous study, we reported that uridine diphosphate-glucose-dependent glucosyltransferase PtUGT72B1 from Populus trichocarpa has high activity in detoxifying trichlorophenol by conjugating glucose. In this study, more experiments were performed to determine the substrate specificity of PtUGT72B1 towards phenolic compounds. Among seven phenols tested, three were glucosylated by PtUGT72B1 including phenol, hydroquinone, and catechol. Transgenic Arabidopsis plants expressing the enzyme PtUGT72B1 showed higher resistance to hydroquinone and catechol but more sensitivity to phenol than wild type plants. Transgenic Pichia pastoris expressing PtUGT72B1 showed enhanced resistance to all three phenols. Compared with wild type Arabidopsis plants, transgenic Arabidopsis plants showed higher removal efficiencies and exported more glucosides of phenol, phenyl β-D-glucopyranoside, to the medium after cultured with the three phenols. Protein extracts from transgenic Arabidopsis plants showed enhanced conjugating activity towards phenol, hydroquinone and catechol. PtUGT72B1 showed much higher expression level in Pichia pastoris than in Arabidopsis plants. Kinetic analysis of the PtUGT72B1 was also performed. PMID:23840543

  9. Epidemiological investigation of the UGT2B17 polymorphism in doping control urine samples and its correlation to T/E ratios.

    PubMed

    Anielski, Patricia; Simmchen, Juliane; Wassill, Lars; Ganghofner, Dirk; Thieme, Detlef

    2011-10-01

    The deletion polymorphism of the enzyme UGT2B17 is known to correlate with the level of the testosterone to epitestosterone (T/E) ratio in urine specimen. Due to the importance of the T/E ratio to detect testosterone abuse in doping analysis, a PCR-ELISA system (Genotype® UGT test, AmplexDiagnostics) was established to identify the UGT2B17 phenotype in urine samples. Epidemiological investigations in a set of 674 routine doping controls (in- and out-of-competition) resulted in 22.8% homozygote gene-deleted and 74.5% UGT2B17-positive athletes. The validated test system has shown to be robust and sensitive: in only 18 cases (2.7%) isolation of cell material from urine failed. Following hydrolysis of glucuronidated conjugates, steroids were analyzed as bis-TMS derivatives by gas chromatography-mass spectrometry (GC-MS), for example, testosterone (T) and epitestosterone (E). Additionally, isotope ration mass spectrometry (IRMS) analysis and luteinizing hormone (LH) measurement were applied. Mean T/E ratios significantly correlated with the UGT2B17 phenotype (del: T/E 0.9; pos: 1.7), however the values did not differ as distinctive as reported in previous studies. Additionally, the T/E ratios in the gene-deleted group did not show a normal curve of distribution (median of T/E 0.5). Obviously, beside the UGT2B17 deletion further influences have to be taken into account, for example, polymorphisms or induction of other metabolizing enzymes. Our results indicate that the UGT2B17 polymorphism might be insufficient when utilized solely as a crucial parameter for individual interpretation of T/E in urine. Nevertheless, the detection of the UGT2B17-gene deletion in urine samples would provide additional information important for gathering evidence in analysis of steroids in doping control. Copyright © 2011 John Wiley & Sons, Ltd.

  10. Role of the UGT2B17 deletion in exemestane pharmacogenetics

    PubMed Central

    Luo, Shaman; Chen, Gang; Truica, Cristina; Baird, Cynthia C.; Leitzel, Kim; Lazarus, Philip

    2017-01-01

    Exemestane (EXE) is an aromatase inhibitor used for the prevention and treatment of breast cancer. The major metabolic pathway for EXE is reduction to form the active 17β-dihydro-EXE (17β-DHE) and subsequent glucuronidation to 17β-hydroxy-EXE-17-O-β-D-glucuronide (17β-DHE-Gluc) by UGT2B17. The aim of the present study was to determine the effects of UGT2B17 copy number variation on the levels of urinary and plasma 17β-DHE-Gluc and 17β-DHE in patients taking EXE. Ninety-six post-menopausal Caucasian breast cancer patients with ER+ breast tumors taking 25 mg EXE daily were recruited into this study. UGT2B17 copy number was determined by a real-time PCR copy number variant assay and the levels of EXE, 17β-DHE and 17β-DHE-Gluc were quantified by UPLC/MS in patients’ urine and plasma. A 39-fold decrease (P<0.0001) in the levels of creatinine-adjusted urinary 17β-DHE-Gluc was observed among UGT2B17 (*2/*2) subjects vs. subjects with the UGT2B17 (*1/*1) genotype. The plasma levels of 17β-DHE-Gluc was decreased 29-fold (P<0.0001) in subjects with the UGT2B17 (*2/*2) genotype vs. subjects with UGT2B17 (*1/*1) genotype. The levels of plasma EXE-adjusted 17β-DHE was 28% higher (P=0.04) in subjects with the UGT2B17 (*2/*2) genotype vs. subjects with the UGT2B17 (*1/*1) genotype. These data indicate that UGT2B17 is the major enzyme responsible for 17β-DHE-Gluc formation in vivo and that the UGT2B17 copy number variant may play a role in inter-individual variability in 17β-DHE levels in vivo. PMID:28534527

  11. Role of the UGT2B17 deletion in exemestane pharmacogenetics.

    PubMed

    Luo, S; Chen, G; Truica, C; Baird, C C; Leitzel, K; Lazarus, P

    2018-04-01

    Exemestane (EXE) is an aromatase inhibitor used for the prevention and treatment of breast cancer. The major metabolic pathway for EXE is reduction to form the active 17β-dihydro-EXE (17β-DHE) and subsequent glucuronidation to 17β-hydroxy-EXE-17-O-β-D-glucuronide (17β-DHE-Gluc) by UGT2B17. The aim of the present study was to determine the effects of UGT2B17 copy number variation on the levels of urinary and plasma 17β-DHE-Gluc and 17β-DHE in patients taking EXE. Ninety-six post-menopausal Caucasian breast cancer patients with ER+ breast tumors taking 25 mg EXE daily were recruited into this study. UGT2B17 copy number was determined by a real-time PCR copy number variant assay and the levels of EXE, 17β-DHE and 17β-DHE-Gluc were quantified by UPLC/MS in patients' urine and plasma. A 39-fold decrease (P<0.0001) in the levels of creatinine-adjusted urinary 17β-DHE-Gluc was observed among UGT2B17 (*2/*2) subjects vs subjects with the UGT2B17 (*1/*1) genotype. The plasma levels of 17β-DHE-Gluc was decreased 29-fold (P<0.0001) in subjects with the UGT2B17 (*2/*2) genotype vs subjects with UGT2B17 (*1/*1) genotype. The levels of plasma EXE-adjusted 17β-DHE was 28% higher (P=0.04) in subjects with the UGT2B17 (*2/*2) genotype vs subjects with the UGT2B17 (*1/*1) genotype. These data indicate that UGT2B17 is the major enzyme responsible for 17β-DHE-Gluc formation in vivo and that the UGT2B17 copy number variant may play a role in inter-individual variability in 17β-DHE levels in vivo.

  12. UGT2B17 minor histocompatibility mismatch and clinical outcome after HLA-identical sibling donor stem cell transplantation.

    PubMed

    Santos, N; Rodríguez-Romanos, R; Nieto, J B; Buño, I; Vallejo, C; Jiménez-Velasco, A; Brunet, S; Buces, E; López-Jiménez, J; González, M; Ferrá, C; Sampol, A; de la Cámara, R; Martínez, C; Gallardo, D

    2016-01-01

    Minor histocompatibility Ags (mHags) have been implicated in the pathogenesis of GVHD after allogeneic hematopoietic stem cell transplantation (HSCT). Uridine diphospho-glucuronosyltransferase 2B17 (UGT2B17) gene deletion may act as a mHag and its association with acute GVHD (aGVHD) has been described. We retrospectively studied the clinical impact of a UGT2B17 mismatch in a cohort of 1127 patients receiving a HSCT from an HLA-identical sibling donor. UGT2B17 mismatch was present in 69 cases (6.1%). Incidence of severe aGVHD was higher in the UGT2B17 mismatched pairs (22.7% vs 14.6%), but this difference was not statistically significant (P: 0.098). We did not detect differences in chronic GVHD, overall survival, relapse-free survival, transplant-related mortality or relapse. Nevertheless, when we analyzed only those patients receiving grafts from a male donor (616 cases), aGVHD was significantly higher in the UGT2B17 mismatched group (25.1% vs 12.8%; P: 0.005) and this association was confirmed by the multivariate analysis (P: 0.043; hazard ratio: 2.16, 95% confidence interval: 1.03-4.57). Overall survival was worse for patients mismatched for UGT2B17 (P: 0.005). We conclude that UGT2B17 mismatch has a negative clinical impact in allogeneic HSCT from HLA-identical sibling donors only when a male donor is used. These results should be confirmed by other studies.

  13. Bisphenol-A glucuronidation in human liver and breast: identification of UDP-glucuronosyltransferases (UGTs) and influence of genetic polymorphisms.

    PubMed

    Street, Christina M; Zhu, Zhaohui; Finel, Moshe; Court, Michael H

    2017-01-01

    1. Bisphenol-A is a ubiquitous environmental contaminant that is primarily metabolized by glucuronidation and associated with various human diseases including breast cancer. Here we identified UDP-glucuronosyltransferases (UGTs) and genetic polymorphisms responsible for interindividual variability in bisphenol-A glucuronidation in human liver and breast. 2. Hepatic UGTs showing the highest bisphenol-A glucuronidation activity included UGT2B15 and UGT1A9. Relative activity factor normalization indicated that UGT2B15 contributes >80% of activity at bisphenol-A concentrations under 5 μM, while UGT1A9 contributes up to 50% of activity at higher concentrations. 3. Bisphenol-A glucuronidation by liver microsomes (46 donors) ranged from 0.25 to 4.3 nmoles/min/mg protein. Two-fold higher glucuronidation (p = 0.018) was observed in UGT1A9 *22/*22 livers compared with *1/*1 and *1/*22 livers. However, no associations were observed for UGT2B15*2 or UGT1A1*28 genotypes. 4. Bisphenol-A glucuronidation by breast microsomes (15 donors) ranged from <0.2 to 56 fmoles/min/mg protein. Breast mRNA expression of UGTs capable of glucuronidating bisphenol-A was highest for UGT1A1, followed by UGT2B4, UGT1A9, UGT1A10, UGT2B7 and UGT2B15. Bisphenol-A glucuronidation was over 10-fold lower in breast tissues with the UGT1A1*28 allele compared with tissues without this allele (p = 0.006). 5. UGT2B15 and UGT1A9 contribute to glucuronidation variability in liver, while UGT1A1 is important in breast.

  14. Establishment and Use of New MDCK II Cells Overexpressing Both UGT1A1 and MRP2 to Characterize Flavonoid Metabolism via the Glucuronidation Pathway

    PubMed Central

    Wang, Meifang; Yang, Guangyi; He, Yu; Xu, Beibei; Zeng, Min; Yin, Taijun; Gao, Song; Hu, Ming

    2017-01-01

    Scope The purpose of this study is to characterize how overexpression of an efflux transporter and an UDP-glucuronosyltransferase (UGT) affects the cellular kinetics of glucuronidation processes. Methods and Results A new MDCK II cell line overexpressing both MRP2 and UGT1A1 (MDCKII-UGT1A1/MRP2 cells) was developed and used to determine how overexpression of an efflux transporter affects the kinetics of cellular flavonoid glucuronide production. The results showed that most model flavonoids (from a total of 13) were mainly metabolized into glucuronides in the MDCKII-UGT1A1/MRP2 cells and the glucuronides were rapidly excreted. Flavonoids with three or fewer hydroxyl group at 7, 3′ or 6 hydroxyl group were also metabolized into sulfates. Mechanistic studies using 7-hydroxylflavone showed that its glucuronide was mainly (90%) effluxed by BCRP with a small (10%) but significant contribution from MRP2. Maximal velocity of glucuronide production MDCK-MRP2/UGT1A1 cells showed a fairly good correlation (R2 >0.8) with those derived using UGT1A1 microsomes, but other kinetic parameters (e.g., Km) did not correlate. Conclusion Overexpression of a second efficient efflux transporter did not significantly change the fact that BCRP is the dominant transporter for flavonoid glucuronide nor did it diminish the influence of the efflux transporter as the “gate keeper” of glucuronidation process. PMID:26833852

  15. Comparison of inhibition capability of scutellarein and scutellarin towards important liver UDP-glucuronosyltransferase (UGT) isoforms.

    PubMed

    Ma, Guang-You; Cao, Yun-Feng; Hu, Cui-Min; Fang, Zhong-Ze; Sun, Xiao-Yu; Hong, Mo; Zhu, Zhi-Tu

    2014-03-01

    Scutellarin is an important bioactive flavonoid extracted from Erigeron breviscapus (Vant.) Hand-Mazz, and scutellarein is the corresponding aglycone of scutellarin. The present study aims to compare the inhibition potential of scutellarin and scutellarein towards several important UDP-glucuronosyltransferase (UGT) isoforms, including UGT1A1, UGT1A6, UGT1A9 and UGT2B7. It was demonstrated that scutellarein exerted stronger inhibition towards the tested UGT isoforms than scutellarin. Furthermore, the inhibition kinetic type and parameters (Ki ) were determined for the scutellarein's inhibition towards these UGT isoforms. Competitive inhibition of scutellarein towards all these UGT isoforms was demonstrated, and the Ki values were calculated to be 0.02, 5.0, 5.8 and 35.9 μM for UGT1A1, 1A6, 1A9 and 2B7, respectively. Using in vivo maximum plasma concentration of scutellarein in rat, the in vitro-in vivo extrapolation was performed to predict in vivo situation, indicating the most possible in vivo adverse effects due to the inhibition of scutellarein towards UGT1A1. All these results remind us to monitor the utilization of scutellarin and scutellarein, and the herbs containing these two components. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Effects of Andrographis paniculata and Orthosiphon stamineus extracts on the glucuronidation of 4-methylumbelliferone in human UGT isoforms.

    PubMed

    Ismail, Sabariah; Hanapi, Nur Aziah; Ab Halim, Mohd Rohaimi; Uchaipichat, Verawan; Mackenzie, Peter I

    2010-05-14

    The effects of Andrographis paniculata and Orthosiphon stamineus extracts on the in vitro glucuronidation of 4-methylumbelliferone (4MU) by recombinant human UGTs, UGT1A1, UGT1A3, UGT1A6, UGT1A7, UGT1A8, UGT1A10, UGT2B7 and UGT2B15 were determined. The potential inhibitory effects of both of the extracts on the activity of each of the UGT isoforms were investigated using 4MU as the substrate. Incubations contained UDP-glucuronic acid (UDPGA) as the cofactor, MgCl(2), cell lysate of respective isoform, and 4MU at the approximate apparent K(m) or S(50) value of each isoform. Final concentrations of Andrographis paniculata and Orthosiphon stamineus extracts used were 0.025, 0.25, 2.5, 25 and 50 microg/mL and 0.01, 0.10, 1.0, 10 and 50 microg/mL respectively. Both extracts variably inhibited the activity of most of the isoforms in a concentration dependent manner. Andrographis paniculata extract was the better inhibitor of all the isoforms studied (IC(50) 1.70 microg/mL for UGT1A3, 2.57 microg/mL for UGT1A8, 2.82 microg/mL for UGT2B7, 5.00 micorg/mL for UGT1A1, 5.66 microg/mL for UGT1A6, 9.88 microg/mL for UGT1A7 and 15.66 microg/mL for UGT1A10). Both extracts showed less than 70% inhibition of UGT2B15, so the IC(50) values were >50 microg/mL. The inhibition of human UGTs by Andrographis paniculata and Orthosiphon stamineus extracts in vitro suggests a potential for drug-herbal extract interactions in the therapeutic setting.

  17. Identification of drugs and drug metabolites as substrates of multidrug resistance protein 2 (MRP2) using triple-transfected MDCK-OATP1B1-UGT1A1-MRP2 cells

    PubMed Central

    Fahrmayr, C; König, J; Auge, D; Mieth, M; Fromm, MF

    2012-01-01

    BACKGROUND AND PURPOSE The coordinate activity of hepatic uptake transporters [e.g. organic anion transporting polypeptide 1B1 (OATP1B1)], drug-metabolizing enzymes [e.g. UDP-glucuronosyltransferase 1A1 (UGT1A1)] and efflux pumps (e.g. MRP2) is a crucial determinant of drug disposition. However, limited data are available on transport of drugs (e.g. ezetimibe, etoposide) and their glucuronidated metabolites by human MRP2 in intact cell systems. EXPERIMENTAL APPROACH Using monolayers of newly established triple-transfected MDCK-OATP1B1-UGT1A1-MRP2 cells as well as MDCK control cells, single- (OATP1B1) and double-transfected (OATP1B1-UGT1A1, OATP1B1-MRP2) MDCK cells, we therefore studied intracellular concentrations and transcellular transport after administration of ezetimibe or etoposide to the basal compartment. KEY RESULTS Intracellular accumulation of ezetimibe was significantly lower in MDCK-OATP1B1-UGT1A1-MRP2 triple-transfected cells compared with all other cell lines. Considerably higher amounts of ezetimibe glucuronide were found in the apical compartment of MDCK-OATP1B1-UGT1A1-MRP2 monolayers compared with all other cell lines. Using HEK cells, etoposide was identified as a substrate of OATP1B1. Intracellular concentrations of etoposide equivalents (i.e. parent compound plus metabolites) were affected only to a minor extent by the absence or presence of OATP1B1/UGT1A1/MRP2. In contrast, apical accumulation of etoposide equivalents was significantly higher in monolayers of both cell lines expressing MRP2 (MDCK-OATP1B1-MRP2, MDCK-OATP1B1-UGT1A1-MRP2) compared with the single-transfected (OATP1B1) and the control cell line. CONCLUSIONS AND IMPLICATIONS Ezetimibe glucuronide is a substrate of human MRP2. Moreover, etoposide and possibly also its glucuronide are substrates of MRP2. These data demonstrate the functional interplay between transporter-mediated uptake, phase II metabolism and export by hepatic proteins involved in drug disposition. PMID:21923755

  18. Over-expression of UDP-glycosyltransferase gene UGT2B17 is involved in chlorantraniliprole resistance in Plutella xylostella (L.).

    PubMed

    Li, Xiuxia; Zhu, Bin; Gao, Xiwu; Liang, Pei

    2017-07-01

    UDP-glycosyltransferases (UGTs) are phase II detoxification enzymes widely distributed within living organisms. Their involvement in the biotransformation of various lipophilic endogenous compounds and phytoalexins in insects has been documented. However, the roles of this enzyme family in insecticide resistance have rarely been reported. Here, the functions of UGTs in chlorantraniliprole resistance in Plutella xylostella were investigated. Treatment with sulfinpyrazone and 5-nitrouracil (both inhibitors of UGT enzymes) significantly increased the toxicity of chlorantraniliprole against the third instar larvae of P. xylostella. Among the 23 UGT transcripts examined, only UGT2B17 was found to be over-expressed (with a range from 30.7- to 77.3-fold) in all four chlorantraniliprole-resistant populations compared to the susceptible one (CHS). The knock-down of UGT2B17 by RNA interference (RNAi) dramatically increased the toxicity of chlorantraniliprole by 27.4% and 29.8% in the CHS and CHR (resistant) populations, respectively. In contrast, exposure to phenobarbital significantly increased the relative expression of UGT2B17 while decreasing the toxicity of chlorantraniliprole to the larvae by 14.0%. UGT2B17 is involved in the detoxification of chlorantraniliprole, and its over-expression may play an important role in chlorantraniliprole resistance in P. xylostella. These results shed some light upon and further our understanding of the mechanisms of diamide insecticide resistance in insects. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Enantioselective inhibition of carprofen towards UDP-glucuronosyltransferase (UGT) 2B7.

    PubMed

    Fang, Zhong-Ze; Wang, Haina; Cao, Yun-Feng; Sun, Dong-Xue; Wang, Li-Xuan; Hong, Mo; Huang, Ting; Chen, Jian-Xing; Zeng, Jia

    2015-03-01

    UDP-glucuronosyltransferases (UGTs)-catalyzed glucuronidation conjugation reaction plays an important role in the elimination of many important clinical drugs and endogenous substances. The present study aims to investigate the enantioselective inhibition of carprofen towards UGT isoforms. In vitro a recombinant UGT isoforms-catalyzed 4-methylumbelliferone (4-MU) glucuronidation incubation mixture was used to screen the inhibition potential of (R)-carprofen and (S)-carprofen towards multiple UGT isoforms. The results showed that (S)-carprofen exhibited stronger inhibition potential than (R)-carprofen towards UGT2B7. However, no significant difference was observed for the inhibition of (R)-carprofen and (S)-carprofen towards other UGT isoforms. Furthermore, the inhibition kinetic behavior was compared for the inhibition of (S)-carprofen and (R)-carprofen towards UGT2B7. A Lineweaver-Burk plot showed that both (S)-carprofen and (R)-carprofen exhibited competitive inhibition towards UGT2B7-catalyzed 4-MU glucuronidation. The inhibition kinetic parameter (Ki ) was calculated to be 7.0 μM and 31.1 μM for (S)-carprofen and (R)-carprofen, respectively. Based on the standard for drug-drug interaction, the threshold for (S)-carprofen and (R)-carprofen to induce a drug-drug interaction is 0.7 μM and 3.1 μM, respectively. In conclusion, enantioselective inhibition of carprofen towards UDP-glucuronosyltransferase (UGT) 2B7 was demonstrated in the present study. Using the in vitro inhibition kinetic parameter, the concentration threshold of (S)-carprofen and (R)-carprofen to possibly induce the drug-drug interaction was obtained. Therefore, clinical monitoring of the plasma concentration of (S)-carprofen is more important than (R)-carprofen to avoid a possible drug-drug interaction between carprofen and the drugs mainly undergoing UGT2B7-catalyzed metabolism. © 2014 Wiley Periodicals, Inc.

  20. Association of UGT1A1 variants and hyperbilirubinemia in breast-fed full-term Chinese infants.

    PubMed

    Zhou, Youyou; Wang, San-nan; Li, Hong; Zha, Weifeng; Wang, Xuli; Liu, Yuanyuan; Sun, Jian; Peng, Qianqian; Li, Shilin; Chen, Ying; Jin, Li

    2014-01-01

    A retrospective case control study of breast-fed full-term infants was carried out to determine whether variants in Uridine Diphosphate Glucuronosyl Transferase 1A1 (UGT1A1) and Heme Oxygenase-1 (HMOX1) were associated with neonatal hyperbilirubinemia. Eight genetic variants of UGT1A1 and 3 genetic variants of HMOX1 were genotyped in 170 hyperbilirubinemic newborns and 779 controls. Five significant associations with breast-fed hyperbilirubinemia were detected after adjusting for gender, birth season, birth weight, delivery mode, gestational age and False Discovery Rate (FDR) correction: the dominant effect of rs887829 (c-364t) (Odds Ratio (OR): 0.55; 95% Confidence Interval (CI): 0.34-0.89; p = 0.014), the additive effect of (TA)n repeat (OR: 0.59; 95%CI: 0.38-0.91; p = 0.017), the dominant effect of rs4148323 (Gly71Arg, G211A) (OR: 2.02; 95%CI: 1.44-2.85; p = 5.0×10-5), the recessive effect of rs6717546 (g+914a) (OR: 0.30; 95%CI: 0.11-0.83; p = 0.021) and rs6719561 (t+2558c) (OR: 0.38; 95%CI: 0.20-0.75; p = 0.005). Neonates carrying the minor allele of rs887829 (TA)n repeat had significantly lower peak bilirubin than wild types, while the minor allele carriers of rs4148323 had significantly higher peak bilirubin than wild types. No association was found in HMOX1. Our findings added to the understanding of the significance of UGT1A1 in association with neonatal hyperbilirubinemia in East Asian population. Additional studies were required to investigate the mechanisms of the protective effects.

  1. Predicting Flavonoid UGT Regioselectivity

    PubMed Central

    Jackson, Rhydon; Knisley, Debra; McIntosh, Cecilia; Pfeiffer, Phillip

    2011-01-01

    Machine learning was applied to a challenging and biologically significant protein classification problem: the prediction of avonoid UGT acceptor regioselectivity from primary sequence. Novel indices characterizing graphical models of residues were proposed and found to be widely distributed among existing amino acid indices and to cluster residues appropriately. UGT subsequences biochemically linked to regioselectivity were modeled as sets of index sequences. Several learning techniques incorporating these UGT models were compared with classifications based on standard sequence alignment scores. These techniques included an application of time series distance functions to protein classification. Time series distances defined on the index sequences were used in nearest neighbor and support vector machine classifiers. Additionally, Bayesian neural network classifiers were applied to the index sequences. The experiments identified improvements over the nearest neighbor and support vector machine classifications relying on standard alignment similarity scores, as well as strong correlations between specific subsequences and regioselectivities. PMID:21747849

  2. Involvement of three putative glucosyltransferases from the UGT72 family in flavonol glucoside/rhamnoside biosynthesis in Lotus japonicus seeds

    PubMed Central

    Yin, Qinggang; Shen, Guoan; Chang, Zhenzhan; Tang, Yuhong; Gao, Hongwen

    2017-01-01

    Abstract Flavonols are one of the largest groups of flavonoids that confer benefits for the health of plants and animals. Flavonol glycosides are the predominant flavonoids present in the model legume Lotus japonicus. The molecular mechanisms underlying the biosynthesis of flavonol glycosides as yet remain unknown in L. japonicus. In the present study, we identified a total of 188 UDP-glycosyltransferases (UGTs) in L. japonicus by genome-wide searching. Notably, 12 UGTs from the UGT72 family were distributed widely among L. japonicus chromosomes, expressed in all tissues, and showed different docking scores in an in silico bioinformatics docking analysis. Further enzymatic assays showed that five recombinant UGTs (UGT72AD1, UGT72AF1, UGT72AH1, UGT72V3, and UGT72Z2) exhibit activity toward flavonol, flavone, and isoflavone aglycones. In particular, UGT72AD1, UGT72AH1, and UGT72Z2 are flavonol-specific UGTs with different kinetic properties. In addition, the overexpression of UGT72AD1 and UGT72Z2 led to increased accumulation of flavonol rhamnosides in L. japonicus and Arabidopsis thaliana. Moreover, the increase of kaempferol 3-O-rhamnoside-7-O-rhamnoside in transgenic A. thaliana inhibited root growth as compared with the wild-type control. These results highlight the significance of the UGT72 family in flavonol glycosylation and the role of flavonol rhamnosides in plant growth. PMID:28204516

  3. Cremophor EL-based nanoemulsion enhances transcellular permeation of emodin through glucuronidation reduction in UGT1A1-overexpressing MDCKII cells.

    PubMed

    Zhang, Tianpeng; Dong, Dong; Lu, Danyi; Wang, Shuai; Wu, Baojian

    2016-03-30

    Oral emodin, a natural anthraquinone and active component of many herbal medicines, is poorly bioavailable because of extensive first-pass glucuronidation. Here we aimed to prepare emodin nanoemulsion (EMO-NE) containing cremophor EL, and to assess its potential for enhancing transcellular absorption of emodin using UGT1A1-overexpressing MDCKII cells (or MDCK1A1 cells). EMO-NE was prepared using a modified emulsification technique and subsequently characterized by particle size, morphology, stability, and drug release. MDCKII cells were stably transfected with UGT1A1 using the lentiviral transfection approach. Emodin transport and metabolism were evaluated in Transwell-cultured MDCK1A1 cells after apical dosing of EMO-NE or control solution. The obtained EMO-NE (116 ± 6.5 nm) was spherical and stable for at least 2 months. Emodin release in vitro was a passive diffusion-driven process. EMO-NE administration increased the apparent permeability of emodin by a 2.3-fold (p<0.001) compared to the pure emodin solution (1.2 × 10(-5) cm/s vs 5.3 × 10(-6) cm/s). Further, both apical and basolateral excretion of emodin glucuronide (EMO-G) were significantly decreased (≥56.5%, p<0.001) in EMO-NE group. This was accompanied by a marked reduction (57.4%, p<0.001) in total emodin glucuronidation. It was found that the reduced glucuronidation was due to inhibition of cellular metabolism by cremophor EL. Cremophor EL inhibited UGT1A1-mediated glucuronidation of emodin using the mixed-type inhibition mechanism. In conclusion, cremophor EL-based nanoemulsion greatly enhanced transcellular permeation of emodin through inhibition of UGT metabolism. This cremophor EL-based nanoformulation may be a promising strategy to improve the oral bioavailability of emodin. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Inhibition of UDP-Glucuronosyltransferase (UGT) Isoforms by Arctiin and Arctigenin.

    PubMed

    Zhang, Hui; Zhao, Zhenying; Wang, Tao; Wang, Yijia; Cui, Xiao; Zhang, Huijuan; Fang, Zhong-Ze

    2016-07-01

    Arctiin is the major pharmacological ingredient of Fructus Arctii, and arctigenin is the metabolite of arctiin formed via the catalysis of human intestinal bacteria. The present study aims to investigate the inhibition profile of arctiin and arctigenin on important phase II drug-metabolizing enzymes UDP-glucuronosyltransferases (UGTs), indicating the possible herb-drug interaction. In vitro screening experiment showed that 100 μM of arctiin and arctigenin inhibited the activity of UGT1A3, 1A9, 2B7, and 2B15. Homology modeling-based in silico docking of arctiin and arctigenin into the activity cavity of UGT2B15 showed that hydrogen bonds and hydrophobic interactions contributed to the strong binding free energy of arctiin (-8.14 kcal/mol) and arctigenin (-8.43 kcal/mol) with UGT2B15. Inhibition kinetics study showed that arctiin and arctigenin exerted competitive and noncompetitive inhibition toward UGT2B15, respectively. The inhibition kinetic parameters (Ki ) were calculated to be 16.0 and 76.7 μM for the inhibition of UGT2B15 by arctiin and arctigenin, respectively. Based on the plasma concentration of arctiin and arctigenin after administration of 100 mg/kg of arctiin, the [I]/Ki values were calculated to be 0.3 and 0.007 for arctiin and arctigenin, respectively. Based on the inhibition evaluation standard ([I]/Ki  < 0.1, low possibility; 0.1 < [I]/Ki  < 1, medium possibility; [I]/Ki  > 1, high possibility), arctiin might induce drug-drug interaction with medium possibility. Based on these results, clinical monitoring the utilization of Fructus Arctii is very important and necessary. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Glucuronidation of trans-resveratrol by human liver and intestinal microsomes and UGT isoforms.

    PubMed

    Brill, Shirley S; Furimsky, Anna M; Ho, Mark N; Furniss, Michael J; Li, Yi; Green, Adam G; Bradford, Wallace W; Green, Carol E; Kapetanovic, Izet M; Iyer, Lalitha V

    2006-04-01

    Resveratrol (trans-resveratrol, trans-3,5,4'-trihydroxystilbene) is a naturally occurring stilbene analogue found in high concentrations in red wine. There is considerable research interest to determine the therapeutic potential of resveratrol, as it has been shown to have tumour inhibitory and antioxidant properties. This study was performed to investigate the glucuronidation of resveratrol and possible drug interactions via glucuronidation. Two glucuronide conjugates, resveratrol 3-O-glucuronide and resveratrol 4'-O-glucuronide, were formed by human liver and intestinal microsomes. UGT1A1 and UGT1A9 were predominantly responsible for the formation of the 3-O-glucuronide (Km = 149 microM) and 4'-O-glucuronide (Km = 365 microM), respectively. The glucuronide conjugates were formed at higher levels (up to 10-fold) by intestinal rather than liver microsomes. Resveratrol was co-incubated with substrates of UGT1A1 (bilirubin and 7-ethyl-10-hydroxycamptothecin (SN-38)) and UGT1A9 (7-hydroxytrifluoromethyl coumarin (7-HFC)). No major changes were noted in bilirubin glucuronidation in the presence of resveratrol. Resveratrol significantly inhibited the glucuronidation of SN-38 (Ki = 6.2 +/- 2.1 microM) and 7-HFC (Ki = 0.6 +/- 0.2 microM). Hence, resveratrol has the potential to inhibit the glucuronidation of concomitantly administered therapeutic drugs or dietary components that are substrates of UGT1A1 and UGT1A9.

  6. Introducing the "TCDD-inducible AhR-Nrf2 gene battery".

    PubMed

    Yeager, Ronnie L; Reisman, Scott A; Aleksunes, Lauren M; Klaassen, Curtis D

    2009-10-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces genes via the transcription factor aryl hydrocarbon receptor (AhR), including Cyp1a1, NAD(P)H:quinone oxidoreductase 1 (Nqo1), UDP-glucuronosyltransferase 1a6 (Ugt1a6), and glutathione S-transferase a1 (Gsta1). These genes are referred to as the "AhR gene battery." However, Nqo1 is also considered a prototypical target gene of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). In mice, TCDD induction of Nrf2 and Nrf2 target, Nqo1, is dependent on AhR, and thus TCDD induction of drug-processing genes may be routed through an AhR-Nrf2 sequence. There has been speculation that Nrf2 may be involved in the TCDD induction of drug-processing genes; however, the data are not definitive. Therefore, to address whether TCDD induction of Nqo1, Ugts, and Gsts is dependent on Nrf2, we conducted the definitive experiment by administering TCDD (50 mug/kg, ip) to Nrf2-null and wild-type (WT) mice and collecting livers 24 h later to quantify the mRNA of drug-processing genes. TCDD induction of Cyp1a1 and Ugt1a1 was similar in WT and Nrf2-null mice, whereas TCDD induction of Ugt1a5 and 1a9 was blunted in Nrf2-null mice. TCDD induced Nqo1, Ugt1a6, 2b34, 2b35, 2b36, UDP-glucuronic acid-synthesizing gene UDP-glucose dehydrogenase, and Gsta1, m1, m2, m3, m6, p2, t2, and microsomal Gst1 in WT mice but not in Nrf2-null mice. Therefore, the present study demonstrates the novel finding that Nrf2 is required for TCDD induction of classical AhR battery genes Nqo1, Ugt1a6, and Gsta1, as well as most Ugt and Gst isoforms in livers of mice.

  7. Elucidation and functional characterization of CsPSY and CsUGT promoters in Crocus sativus L.

    PubMed Central

    Bhat, Archana; Mishra, Sonal; Kaul, Sanjana

    2018-01-01

    The dried stigmas of Crocus sativus constitute the saffron, which is considered to be the costliest spice of the world. Saffron is valuable for its constituents, which are mainly apocarotenoids. In order to enhance the production of apocarotenoids, it is imperative to understand the regulation of apocarotenoid biosynthetic pathway. In C. sativus, although the pathway has been elucidated, the information regarding the regulation of the pathwaygenes is scanty. During the present investigation, the characterization of promoters regulating the expression of two important genes i.e. CsPSY and CsUGT was performed. We successfully cloned the promoters of both the genes, which were functionally characterized in Crocus sativus and Nicotiana tabaccum. In silico analysis of the promoters demonstrated the presence of several important cis regulatory elements responding tolight, hormonesand interaction with transcription factors (TFs). Further analysis suggested the regulation of CsPSY promoter by Abscisic acid (ABA) and that of CsUGT by Gibberellic acid (GA). In addition, we also observed ABA and GA mediated modulation in the expression of significant TFs and CsPSY and CsUGT transcripts. Overall, the study addresses issues related to regulation of key genes of apocarotenoid pathway in C.sativus. PMID:29634744

  8. Elucidation and functional characterization of CsPSY and CsUGT promoters in Crocus sativus L.

    PubMed

    Bhat, Archana; Mishra, Sonal; Kaul, Sanjana; Dhar, Manoj K

    2018-01-01

    The dried stigmas of Crocus sativus constitute the saffron, which is considered to be the costliest spice of the world. Saffron is valuable for its constituents, which are mainly apocarotenoids. In order to enhance the production of apocarotenoids, it is imperative to understand the regulation of apocarotenoid biosynthetic pathway. In C. sativus, although the pathway has been elucidated, the information regarding the regulation of the pathwaygenes is scanty. During the present investigation, the characterization of promoters regulating the expression of two important genes i.e. CsPSY and CsUGT was performed. We successfully cloned the promoters of both the genes, which were functionally characterized in Crocus sativus and Nicotiana tabaccum. In silico analysis of the promoters demonstrated the presence of several important cis regulatory elements responding tolight, hormonesand interaction with transcription factors (TFs). Further analysis suggested the regulation of CsPSY promoter by Abscisic acid (ABA) and that of CsUGT by Gibberellic acid (GA). In addition, we also observed ABA and GA mediated modulation in the expression of significant TFs and CsPSY and CsUGT transcripts. Overall, the study addresses issues related to regulation of key genes of apocarotenoid pathway in C.sativus.

  9. UGT74AN1, a Permissive Glycosyltransferase from Asclepias curassavica for the Regiospecific Steroid 3-O-Glycosylation.

    PubMed

    Wen, Chao; Huang, Wei; Zhu, Xue-Lin; Li, Xiao-San; Zhang, Fan; Jiang, Ren-Wang

    2018-02-02

    A permissive steroid glycosyltransferase (UGT74AN1) from Asclepias curassavica exhibited robust capabilities for the regiospecific C3 glycosylation of cardiotonic steroids and C 21 steroid precursors, and unprecedented promiscuity toward 53 structurally diverse natural and unnatural compounds to form O-, N-, and S-glycosides, along with the catalytic reversibility for a one-pot transglycosylation reaction. These findings highlight UGT74AN1 as the first regiospecific catalyst for cardiotonic steroid C3 glycosylation and exhibit significant potential for glycosylation of diverse bioactive molecules in drug discovery.

  10. Magnetic Flyer Facility Correlation and UGT Simulation

    DTIC Science & Technology

    1978-05-01

    AND UGT SIMULATION (U) Kaman Sciences Corporation L ~ P.O. Box 7463 I Colorado Springs, Colcerado 80933 ý4 May 1978DC Final Report CONTRACT No. DNA O01...selected underground test ( UGT ) environment on 3DQP; and, (2) To correlate the magnetically driven flyer plate facilities of VKSC with those of the...tailored to matcb the pressure vs. time anid total impulse measurements obtained on UGT events. This matching of experi- mental data required considerable

  11. Investigation of miR-136-5p key target genes and pathways in lung squamous cell cancer based on TCGA database and bioinformatics analysis.

    PubMed

    Xie, Zu-Cheng; Li, Tian-Tian; Gan, Bin-Liang; Gao, Xiang; Gao, Li; Chen, Gang; Hu, Xiao-Hua

    2018-05-01

    Lung squamous cell cancer (LUSC) is a common but challenging malignancy. It is important to illuminate the molecular mechanism of LUSC. Thus, we aim to explore the molecular mechanism of miR-136-5p in relation to LUSC. We used the Cancer Genome Atlas (TCGA) database to investigate the expression of miR-136-5p in relation to LUSC. Then, we identified the possible miR-136-5p target genes through intersection of the predicted miR-136-5p target genes and LUSC upregulated genes from TCGA. Bioinformatics analysis was performed to determine the key miR-136-5p targets and pathways associated with LUSC. Finally, the expression of hub genes, correlation between miR-136-5p and hub genes, and expected significance of hub genes were evaluated via the TCGA and Genotype-Tissue Expression (GTEx) project. MiR-136-5p was significantly downregulated in LUSC patients. Glucuronidation, glucuronosyltransferase, and the retinoic acid metabolic process were the most enriched metabolic interactions in LUSC patients. Ascorbate and aldarate metabolism, pentose and glucuronate interconversions, and retinol metabolism were identified as crucial pathways. Seven hub genes (UGT1A1, UGT1A3, UGT1A6, UGT1A7, UGT1A10, SRD5A1, and ADH7) were found to be upregulated, and UGT1A1, UGT1A3, UGT1A6, UGT1A7, and ADH7 were negatively correlated with miR-136-5p. UGT1A7 and ADH7 were the most significantly involved miR-136-5p target genes, and high expression of these genes was correlated with better overall survival and disease-free survival of LUSC patients. Downregulated miR-136-5p may target UGT1A7 and ADH7 and participate in ascorbate and aldarate metabolism, pentose and glucuronate interconversions, and retinol metabolism. High expression of UGT1A7 and ADH7 may indicate better prognosis of LUSC patients. Copyright © 2018. Published by Elsevier GmbH.

  12. Prostate cancer and polymorphism D85Y in gene for dihydrotestosterone degrading enzyme UGT2B15: Frequency of DD homozygotes increases with Gleason Score.

    PubMed

    Hajdinjak, Tine; Zagradisnik, Boris

    2004-06-01

    Although, a functional rationale for influence of polymorphism D85Y in gene UGT2B15 on prostate cancer (PCa) exists (different V(max) of enzyme), conflicting results have been reported. DNA from 178 controls and 206 PCa patients with known Gleason score were genotyped using a newly developed RFLP assay, which allowed the detection of both alleles in an individual after single PCR amplification. 16% DD, 52% DY; PCa patients: 23% DD, 49% DY. Subgroups of PCa: well differentiated: 11% DD, 37% DY; moderately differentiated: 22% DD, 50% DY; poorly differentiated: 34% DD, 50% DY. Correlation was confirmed between Gleason score and number of D alleles (P = 0.018) and persisted after age adjustment. When comparing controls to patients with a Gleason score of 7 or more, difference for the frequency of homozygosity DD was significant between the groups (P = 0.032, OR = 2.04). Polymorphism D85Y in gene UGT2B15 correlates with differentiation of PCa. Copyright 2004 Wiley-Liss, Inc.

  13. Characterization of UDP-glucuronosyltransferase genes and their possible roles in multi-insecticide resistance in Plutella xylostella (L.).

    PubMed

    Li, Xiuxia; Shi, Haiyan; Gao, Xiwu; Liang, Pei

    2018-03-01

    Uridine diphosphate-glucuronosyltransferases (UGTs), as multifunctional detoxification enzymes, play important roles in the biotransformation of various compounds. However, their roles in insecticide resistance are still unclear. This study presents a genome-wide identification of the UGTs in diamondback moth, Plutella xylostella (L.), a notorious insect pest of cruciferous crops worldwide. The possible roles of these UGTs in insecticide resistance were evaluated. A total of 21 putative UGTs in P. xylostella were identified. Quantitative real-time polymerase chain reaction (PCR)-based analyses showed that all the UGT genes were expressed in all tested developmental stages and tissues. Bioassay results indicated that a field-collected population (BL) was resistant to 9 of 10 commonly used insecticides, and 10 of 21 UGT mRNAs were upregulated in the BL population. Exposure to the LC 50 of each insecticide affected the expression of most UGT genes. Among these, the expression levels of UGT40V1, UGT45B1 and UGT33AA4 were induced by more than five insecticides, whereas indoxacarb and metaflumizone significantly repressed the expression of most UGT genes. UGTs may play important roles in the metabolism of commonly used insecticides in P. xylostella. These findings provide valuable information for further research on the physiological and toxicological functions of specific UGT genes in P. xylostella. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. UDP-Glycosyltransferases from the UGT73C Subfamily in Barbarea vulgaris Catalyze Sapogenin 3-O-Glucosylation in Saponin-Mediated Insect Resistance1[W][OA

    PubMed Central

    Augustin, Jörg M.; Drok, Sylvia; Shinoda, Tetsuro; Sanmiya, Kazutsuka; Nielsen, Jens Kvist; Khakimov, Bekzod; Olsen, Carl Erik; Hansen, Esben Halkjær; Kuzina, Vera; Ekstrøm, Claus Thorn; Hauser, Thure; Bak, Søren

    2012-01-01

    Triterpenoid saponins are bioactive metabolites that have evolved recurrently in plants, presumably for defense. Their biosynthesis is poorly understood, as is the relationship between bioactivity and structure. Barbarea vulgaris is the only crucifer known to produce saponins. Hederagenin and oleanolic acid cellobioside make some B. vulgaris plants resistant to important insect pests, while other, susceptible plants produce different saponins. Resistance could be caused by glucosylation of the sapogenins. We identified four family 1 glycosyltransferases (UGTs) that catalyze 3-O-glucosylation of the sapogenins oleanolic acid and hederagenin. Among these, UGT73C10 and UGT73C11 show highest activity, substrate specificity and regiospecificity, and are under positive selection, while UGT73C12 and UGT73C13 show lower substrate specificity and regiospecificity and are under purifying selection. The expression of UGT73C10 and UGT73C11 in different B. vulgaris organs correlates with saponin abundance. Monoglucosylated hederagenin and oleanolic acid were produced in vitro and tested for effects on P. nemorum. 3-O-β-d-Glc hederagenin strongly deterred feeding, while 3-O-β-d-Glc oleanolic acid only had a minor effect, showing that hydroxylation of C23 is important for resistance to this herbivore. The closest homolog in Arabidopsis thaliana, UGT73C5, only showed weak activity toward sapogenins. This indicates that UGT73C10 and UGT73C11 have neofunctionalized to specifically glucosylate sapogenins at the C3 position and demonstrates that C3 monoglucosylation activates resistance. As the UGTs from both the resistant and susceptible types of B. vulgaris glucosylate sapogenins and are not located in the known quantitative trait loci for resistance, the difference between the susceptible and resistant plant types is determined at an earlier stage in saponin biosynthesis. PMID:23027665

  15. DPYD and UGT1A1 genotyping to predict adverse events during first-line FOLFIRI or FOLFOXIRI plus bevacizumab in metastatic colorectal cancer.

    PubMed

    Cremolini, Chiara; Del Re, Marzia; Antoniotti, Carlotta; Lonardi, Sara; Bergamo, Francesca; Loupakis, Fotios; Borelli, Beatrice; Marmorino, Federica; Citi, Valentina; Cortesi, Enrico; Moretto, Roberto; Ronzoni, Monica; Tomasello, Gianluca; Zaniboni, Alberto; Racca, Patrizia; Buonadonna, Angela; Allegrini, Giacomo; Ricci, Vincenzo; Di Donato, Samantha; Zagonel, Vittorina; Boni, Luca; Falcone, Alfredo; Danesi, Romano

    2018-01-30

    Our study addresses the issue of the clinical reliability of three candidate DPYD and one UGT single nucleotide polymorphisms in predicting 5-fluorouracil- and irinotecan-related adverse events. To this purpose, we took advantage of a large cohort of metastatic colorectal cancer patients treated with first-line 5-fluorouracil- and irinotecan-based chemotherapy regimens (i.e., FOLFIRI or FOLFOXIRI) plus bevacizumab in the randomized clinical trial TRIBE by GONO (clinicaltrials.gov: NCT00719797), in which adverse events were carefully and prospectively collected at each treatment cycle. Here we show that patients bearing DPYD c.1905+1G/A and c.2846A/T genotypes, together with UGT1A1*28 variant carriers, have an increased risk of experiencing clinically relevant toxicities, including hematological AEs and stomatitis. No carrier of the DPYD c.1679T>G minor allele was identified. Present results support the preemptive screening of mentioned DPYD and UGT1A1 variants to identify patients at risk of clinically relevant 5-fluoruracil- and irinotecan-related AEs, in order to improve treatments' safety through a "genotype-guided" approach.

  16. Development of a new DHPLC assay for genotyping UGT1A (TA)n polymorphism associated with Gilbert's syndrome.

    PubMed

    Mlakar, Simona Jurkovic; Ostanek, Barbara

    2011-01-01

    Gilbert's syndrome is the most common hereditary disorder of bilirubin metabolism. The causative mutation in Caucasians is almost exclusively a (TA) dinucleotide insertion in the UGT1A1 promoter. Affected individuals are homozygous for the variant promoter and have 7 TA repeats instead of 6. Promoters with 5 and 8 TA repeats also exist but are extremely rare in Caucasians. The aim of our study was to develop denaturing high-performance liquid chromatography (DHPLC) assay for genotyping UGT1A1(TA)n polymorphism and to compare it with a previously described single-strand conformation polymorphism (SSCP) assay. Fifty DNA samples with common genotypes ((TA)6/6, (TA)6/7, (TA)7/7) as well as 7 samples with one of the following rare genotypes- (TA)5/6, (TA)5/7, (TA)6/8 or (TA)7/8 were amplified by polymerase chain reaction (PCR) and genotyped by DHPLC using sizing mode. All samples were previously genotyped by SSCP assay which was validated by sequencing analysis. All samples with either common or rare genotypes showed completely concordant results between DHPLC and SSCP assays. Our results show that sizing DHPLC assay is more efficient compared to classical SSCP assay due to shorter time of genotyping analysis, ability of genotyping increased number of samples per day, higher robustness, reproducibility and cost-effectiveness with no loss of accuracy in detection of all UGT1A1(TA)n genotypes. We developed a new DHPLC assay which is suitable for accurate, automated, highthroughput, robust genotyping of all UGT1A1(TA)n polymorphism variants, compared to a labour intensive and time-consuming SSCP assay.

  17. Effects of UDP-glucuronosyltransferase (UGT) polymorphisms on the pharmacokinetics of febuxostat in healthy Chinese volunteers.

    PubMed

    Lin, Meihua; Liu, Jian; Zhou, Huili; Wu, Minglan; Lv, Duo; Huang, Yujie; Zheng, Yunliang; Shentu, Jianzhong; Wu, Lihua

    2017-02-01

    The pharmacokinetics (PKs) of febuxostat varies among individuals, while the main causes are still unknown. We investigated whether the polymorphisms of UGT1A1 and UGT1A3 played an important role in the disposition of the drug after oral administration of febuxostat tablet in Chinese subjects. A total of 42 healthy subjects were from two previous independent clinical bioequivalence (BE) trials of febuxostat, in which the same reference formulation (ULORIC ® tablet, 80 mg) was taken, and thus the PK data were combined for the evaluation of pharmacogenomic effect on febuxostat PKs. Our study clearly indicated that the area under the plasma concentration-time curve (AUC) in the heterozygote and homozygote of UGT1A1*6 (c.211G > A, rs4148323) was significantly higher than that in the wild-type. Meanwhile, the clearance (CL/F) exhibited a significant reduction by 22.2%. Interestingly, UGT1A1*28, in perfect linkage disequilibrium (LD) with UGT1A3*2a, significantly increased its clearance. These results indicate that UGT1A1*6 was an important factor influencing the drug disposition, thus providing a probable explanation for interindividual variation of febuxostat PKs in Chinese subjects. In addition, by considering of the different allele distribution of UGT1A1*6 and *28 in Eastern and Western populations, these findings might further interpret the ethnic difference of febuxostat PKs. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  18. Agrobacterium Mediated Transient Gene Silencing (AMTS) in Stevia rebaudiana: Insights into Steviol Glycoside Biosynthesis Pathway

    PubMed Central

    Guleria, Praveen; Yadav, Sudesh Kumar

    2013-01-01

    Background Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi) based Agrobacterium mediated transient gene silencing (AMTS) approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1) genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins. Methodology/Principal Findings RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3) content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes. Conclusions SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route. PMID:24023961

  19. Reversible grade 4 hyperbilirubinemia in a patient with UGT1A1 7/7 genotype treated with irinotecan and cetuximab.

    PubMed

    Gupta, Bhavna; LeVea, Charles; Litwin, Alan; Fakih, Marwan G

    2007-03-01

    Irinotecan-induced gastrointestinal toxicities are common and typically present in the form of diarrhea or nausea and vomiting. However, severe hyperbilirubinemia (grade 3/4) has not been previously reported in association with this chemotherapeutic agent. We report a case of prolonged grade 4 hyperbilirubinemia after a single dose of irinotecan at 125 mg/m(2). This severe toxicity was attributed to a UGT1A1 7/7 genotype and resolved to grade 2 after 8 weeks of supportive care. This case outlines the possibility of severe hepatic toxicity with moderate doses of irinotecan in patients with a UGT1A1 7/7 genotype. Despite the severity and prolonged duration of the associated irinotecan-induced hepatic toxicity, the management of similar cases should focus on intensive supportive measures because the toxicity is likely to resolve eventually.

  20. Association between the low-dose irinotecan regimen-induced occurrence of grade 4 neutropenia and genetic variants of UGT1A1 in patients with gynecological cancers

    PubMed Central

    MORIYA, HIROYUKI; SAITO, KATSUHIKO; HELSBY, NUALA; SUGINO, SHIGEKAZU; YAMAKAGE, MICHIAKI; SAWAGUCHI, TAKERU; TAKASAKI, MASAHIKO; KATO, HIDENORI; KUROSAWA, NAHOKO

    2014-01-01

    The occurrence of severe neutropenia during treatment with irinotecan (CPT-11) is associated with the *6 and *28 alleles of uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1). However, the correlation between these variants and the occurrence of severe neutropenia in a low-dose CPT-11 regimen for the treatment of gynecological cancers has not been extensively studied. There are also no studies regarding the association between the 421C>A mutation in ATP-binding cassette sub-family G member 2 (ABCG2) and the occurrence of severe neutropenia in CPT-11-treated patients with gynecological cancers. The present study was designed to determine the factors associated with the occurrence of grade 4 neutropenia during chemotherapy for gynecological cancers with combinations of CPT-11 and cisplatin or mitomycin C. In total, 44 patients with gynecological cancer were enrolled in the study. The association between the absolute neutrophil count (ANC) nadir values, the total dose of CPT-11 and the genotypes of UGT1A1 or ABCG2 was studied. No correlation was observed between the ANC nadir values and the total dose of CPT-11. The ANC nadir values in the UGT1A1*6/*28 and *6/*6 groups were significantly lower compared with those in the *1/*1 group (P<0.01). Univariate analysis showed no association between the occurrence of grade 4 neutropenia and the ABCG2 421C>A mutation. Subsequent to narrowing the factors by univariate analysis, multivariate logistic regression analysis only detected significant correlations between the occurrence of grade 4 neutropenia and the UGT1A1*6/*6 and *6/*28 groups (P=0.029; odds ratio, 6.90; 95% confidence interval, 1.22–38.99). No associations were detected between the occurrence of grade 4 neutropenia and the heterozygous variant (*1/*6 or *1/*28) genotype, type of regimen or age. In conclusion, the UGT1A1*6/*28 and *6/*6 genotypes were found to be associated with the occurrence of severe neutropenia in the low-dose CPT-11 regimen for

  1. Characterization of three terpenoid glycosyltransferase genes in 'Valencia' sweet orange (Citrus sinensis L. Osbeck).

    PubMed

    Fan, Jing; Chen, Chunxian; Yu, Qibin; Li, Zheng-Guo; Gmitter, Frederick G

    2010-10-01

    Three putative terpenoid UDP-glycosyltransferase (UGT) genes, designated CsUGT1, CsUGT2, and CsUGT3, were isolated and characterized in 'Valencia' sweet orange (Citrus sinensis L. Osbeck). CsUGT1 consisted of 1493 nucleotides with an open reading frame encoding 492 amino acids, CsUGT2 consisted of 1727 nucleotides encoding 504 amino acids, and CsUGT3 consisted of 1705 nucleotides encoding 468 amino acids. CsUGT3 had a 145 bp intron at 730-874, whereas CsUGT1 and CsUGT2 had none. The three deduced glycosyltransferase proteins had a highly conserved plant secondary product glycosyltransferase motif in the C terminus. Phylogenetic analysis showed that CsUGT1 and CsUGT3 were classified into group L of glycosyltransferase family 1, and CsUGT2 was classified into group D. Through Southern blotting analysis, CsUGT1 was found to have two copies in the sweet orange genome, whereas CsUGT2 and CsUGT3 had at least seven and nine copies, respectively. CsUGT1, CsUGT2, and CsUGT3 were constitutively expressed in leaf, flower, and fruit tissues. The results facilitate further investigation of the function of terpenoid glycosyltransferases in citrus and the biosynthesis of terpenoid glycosides in vitro.

  2. In vitro inhibition of human UGT isoforms by ritonavir and cobicistat.

    PubMed

    Algeelani, Sara; Alam, Novera; Hossain, Md Amin; Mikus, Gerd; Greenblatt, David J

    2018-08-01

    1. Ritonavir and cobicistat are pharmacokinetic boosting agents used to increase systemic exposure to other antiretroviral therapies. The manufacturer's data suggests that cobicistat is a more selective CYP3A4 inhibitor than ritonavir. However, the inhibitory effect of ritonavir and cobicistat on human UDP glucuronosyltransferase (UGT) enzymes in Phase II metabolism is not established. This study evaluated the inhibition of human UGT isoforms by ritonavir versus cobicistat. 2. Acetaminophen and ibuprofen were used as substrates to evaluate the metabolic activity of the principal human UGTs. Metabolite formation rates were determined by HPLC analysis of incubates following in vitro incubation of index substrates with human liver microsomes (HLMs) at different concentrations of ritonavir or cobicistat. Probenecid and estradiol served as positive control inhibitors. 3. The 50% inhibitory concentrations (IC 50 ) of cobicistat and ritonavir were at least 50 µM, which substantially exceeds usual clinical plasma concentrations. Probenecid inhibited the glucuronidation of acetaminophen (IC 50 0.7 mM), but not glucuronidation of ibuprofen. At relatively high concentrations, estradiol inhibited ibuprofen glucuronidation (IC 50 17 µM). 4. Ritonavir and cobicistat are unlikely to produce clinically important drug interactions involving drugs metabolized to glucuronide conjugates by UGT1A1, 1A3, 1A6, 1A9, 2B4 and 2B7.

  3. Two UGT84 Family Glycosyltransferases Catalyze a Critical Reaction of Hydrolyzable Tannin Biosynthesis in Pomegranate (Punica granatum)

    PubMed Central

    Ono, Nadia N.; Qin, Xiaoqiong; Wilson, Alexander E.; Li, Gang

    2016-01-01

    Hydrolyzable tannins (HTs) play important roles in plant herbivore deterrence and promotion of human health. A critical step in HT production is the formation of 1-O-galloyl-β-D-glucopyranoside (β-glucogallin, ester-linked gallic acid and glucose) by a UDP-glucosyltransferase (UGT) activity. We cloned and biochemically characterized four candidate UGTs from pomegranate (Punica granatum), of which only UGT84A23 and UGT84A24 exhibited β-glucogallin forming activities in enzyme assays. Although overexpression and single RNAi knockdown pomegranate hairy root lines of UGT84A23 or UGT84A24 did not lead to obvious alterations in punicalagin (the prevalent HT in pomegranate) accumulation, double knockdown lines of the two UGTs resulted in largely reduced levels of punicalagins and bis-hexahydroxydiphenyl glucose isomers. An unexpected accumulation of galloyl glucosides (ether-linked gallic acid and glucose) was also detected in the double knockdown lines, suggesting that gallic acid was utilized by an unidentified UGT activity for glucoside formation. Transient expression in Nicotiana benthamiana leaves and immunogold labeling in roots of pomegranate seedlings collectively indicated cytosolic localization of UGT84A23 and UGT84A24. Overall, functional characterization and localization of UGT84A23 and UGT84A24 open up opportunities for further understanding the regulatory control of HT metabolism in plants and its coordination with other biochemical pathways in the metabolic network. PMID:27227328

  4. Two UGT84 Family Glycosyltransferases Catalyze a Critical Reaction of Hydrolyzable Tannin Biosynthesis in Pomegranate (Punica granatum).

    PubMed

    Ono, Nadia N; Qin, Xiaoqiong; Wilson, Alexander E; Li, Gang; Tian, Li

    2016-01-01

    Hydrolyzable tannins (HTs) play important roles in plant herbivore deterrence and promotion of human health. A critical step in HT production is the formation of 1-O-galloyl-β-D-glucopyranoside (β-glucogallin, ester-linked gallic acid and glucose) by a UDP-glucosyltransferase (UGT) activity. We cloned and biochemically characterized four candidate UGTs from pomegranate (Punica granatum), of which only UGT84A23 and UGT84A24 exhibited β-glucogallin forming activities in enzyme assays. Although overexpression and single RNAi knockdown pomegranate hairy root lines of UGT84A23 or UGT84A24 did not lead to obvious alterations in punicalagin (the prevalent HT in pomegranate) accumulation, double knockdown lines of the two UGTs resulted in largely reduced levels of punicalagins and bis-hexahydroxydiphenyl glucose isomers. An unexpected accumulation of galloyl glucosides (ether-linked gallic acid and glucose) was also detected in the double knockdown lines, suggesting that gallic acid was utilized by an unidentified UGT activity for glucoside formation. Transient expression in Nicotiana benthamiana leaves and immunogold labeling in roots of pomegranate seedlings collectively indicated cytosolic localization of UGT84A23 and UGT84A24. Overall, functional characterization and localization of UGT84A23 and UGT84A24 open up opportunities for further understanding the regulatory control of HT metabolism in plants and its coordination with other biochemical pathways in the metabolic network.

  5. Effects of UGT1A9 genetic polymorphisms on monohydroxylated derivative of oxcarbazepine concentrations and oxcarbazepine monotherapeutic efficacy in Chinese patients with epilepsy.

    PubMed

    Lu, Yao; Fang, Youxin; Wu, Xunyi; Ma, Chunlai; Wang, Yue; Xu, Lan

    2017-03-01

    The human UDP-glucuronosyltransferase which is genetically polymorphic catalyzes glucuronidations of various drugs. The interactions among UGT1A4, UGT1A6, UGT1A9, and UGT2B15 genetic polymorphisms, monohydroxylated derivative (MHD) of oxcarbazepine (OXC) plasma concentrations, and OXC monotherapeutic efficacy were explored in 124 Chinese patients with epilepsy receiving OXC monotherapy. MHD is the major active metabolite of OXC, and its plasma concentration was measured using high-performance liquid chromatography when patients reached their maintenance dose of OXC. Genomic DNA was extracted from whole blood and SNP genotyping performed using PCR followed by dideoxy chain termination sequencing. We followed the patients for at least 1 year to evaluate the OXC monotherapy efficacy. Patients were divided into two groups according to their therapeutic outcome: group 1, seizure free; group 2, not seizure free. The data were analyzed using T test, one-way analysis of variance (ANOVA), Kruskal-Wallis test, chi-square test, Fisher's exact test, correlation analysis, and multivariate regression analysis. T test analysis showed that MHD plasma concentrations were significantly different between the two groups (p = 0.002). One-way ANOVA followed by Bonferroni post hoc testing of four candidate SNPs revealed that carriers of the UGT1A9 variant allele I399 C > T (TT 13.28 ± 7.44 mg/L, TC 16.41 ± 6.53 mg/L) had significantly lower MHD plasma concentrations and poorer seizure control than noncarriers (CC 22.24 ± 8.49 mg/L, p < 0.05). In our study, we have demonstrated the effects of UGT1A9 genetic polymorphisms on MHD plasma concentrations and OXC therapeutic efficacy. Through MHD monitoring, we can predict OXC therapeutic efficacy, which may be useful for the personalization of OXC therapy in epileptic patients.

  6. High Expression of UGT1A1/1A6 in Monkey Small Intestine: Comparison of Protein Expression Levels of Cytochromes P450, UDP-Glucuronosyltransferases, and Transporters in Small Intestine of Cynomolgus Monkey and Human.

    PubMed

    Akazawa, Takanori; Uchida, Yasuo; Miyauchi, Eisuke; Tachikawa, Masanori; Ohtsuki, Sumio; Terasaki, Tetsuya

    2018-01-02

    Cynomolgus monkeys have been widely used for the prediction of drug absorption in humans. The purpose of this study was to clarify the regional protein expression levels of cytochromes P450 (CYPs), UDP-glucuronosyltransferases (UGTs), and transporters in small intestine of cynomolgus monkey using liquid chromatography-tandem mass spectrometry, and to compare them with the corresponding levels in human. UGT1A1 in jejunum and ileum were >4.57- and >3.11-fold and UGT1A6 in jejunum and ileum were >16.1- and >8.57-fold, respectively, more highly expressed in monkey than in human. Also, jejunal expression of monkey CYP3A8 (homologue of human CYP3A4) was >3.34-fold higher than that of human CYP3A4. Among apical drug efflux transporters, BCRP showed the most abundant expression in monkey and human, and the expression levels of BCRP in monkey and human were >1.74- and >1.25-fold greater than those of P-gp and >2.76- and >4.50-fold greater than those of MRP2, respectively. These findings should be helpful to understand species differences of the functions of CYPs, UGTs, and transporters between monkey and human. The UGT1A1/1A6 data would be especially important because it is difficult to identify isoforms responsible for species differences of intestinal glucuronidation by means of functional studies due to overlapping substrate specificity.

  7. Novel associations of UDP-glucuronosyltransferase 2B gene variants with prostate cancer risk in a multiethnic study.

    PubMed

    Vidal, Adriana C; Tucker, Cocoa; Schildkraut, Joellen M; Richardson, Ricardo M; McPhail, Megan; Freedland, Stephen J; Hoyo, Cathrine; Grant, Delores J

    2013-11-22

    We have previously shown that a functional polymorphism of the UGT2B15 gene (rs1902023) was associated with increased risk of prostate cancer (PC). Novel functional polymorphisms of the UGT2B17 and UGT2B15 genes have been recently characterized by in vitro assays but have not been evaluated in epidemiologic studies. Fifteen functional SNPs of the UGT2B17 and UGT2B15 genes, including cis-acting UGT2B gene SNPs, were genotyped in African American and Caucasian men (233 PC cases and 342 controls). Regression models were used to analyze the association between SNPs and PC risk. After adjusting for race, age and BMI, we found that six UGT2B15 SNPs (rs4148269, rs3100, rs9994887, rs13112099, rs7686914 and rs7696472) were associated with an increased risk of PC in log-additive models (p < 0.05). A SNP cis-acting on UGT2B17 and UGT2B15 expression (rs17147338) was also associated with increased risk of prostate cancer (OR = 1.65, 95% CI = 1.00-2.70); while a stronger association among men with high Gleason sum was observed for SNPs rs4148269 and rs3100. Although small sample size limits inference, we report novel associations between UGT2B15 and UGT2B17 variants and PC risk. These associations with PC risk in men with high Gleason sum, more frequently found in African American men, support the relevance of genetic differences in the androgen metabolism pathway, which could explain, in part, the high incidence of PC among African American men. Larger studies are required.

  8. Use of Isoform-Specific UGT Metabolism to Determine and Describe Rates and Profiles of Glucuronidation of Wogonin and Oroxylin A by Human Liver and Intestinal Microsomes

    PubMed Central

    Zhou, Qiong; Zheng, Zhijie; Xia, Bijun; Tang, Lan; Lv, Chang; Liu, Wei; Liu, Zhongqiu; Hu, Ming

    2010-01-01

    Purposes Glucuronidation via UDP-glucuronosyltransferases (or UGTs) is a major metabolic pathway. The purposes of this study are to determine the UGT-isoform specific metabolic fingerprint (or GSMF) of wogonin and oroxylin A, and to use isoform-specific metabolism rates and kinetics to determine and describe their glucuronidation behaviors in tissue microsomes. Methods In vitro glucuronidation rates and profiles were measured using expressed UGTs and human intestinal and liver microsomes. Results GSMF experiments indicated that both flavonoids were metabolized mainly by UGT1As, with major contributions from UGT1A3 and UGT1A7-1A10. Isoform-specific metabolism showed that kinetic profiles obtained using expressed UGT1A3 and UGT1A7-1A10 could fit to known kinetic models. Glucuronidation of both flavonoids in human intestinal and liver microsomes followed simple Michaelis-Menten kinetics. A comparison of the kinetic parameters and profiles suggests that UGT1A9 is likely the main isoform responsible for liver metabolism. In contrast, a combination of UGT1As with a major contribution from UGT1A10 contributed to their intestinal metabolism. Correlation studies clearly showed that UGT isoform-specific metabolism could describe their metabolism rates and profiles in human liver and intestinal microsomes. Conclusion GSMF and isoform-specific metabolism profiles can determine and describe glucuronidation rates and profiles in human tissue microsomes. PMID:20411407

  9. Grouping and characterization of putative glycosyltransferase genes from Panax ginseng Meyer.

    PubMed

    Khorolragchaa, Altanzul; Kim, Yu-Jin; Rahimi, Shadi; Sukweenadhi, Johan; Jang, Moon-Gi; Yang, Deok-Chun

    2014-02-15

    Glycosyltransferases are members of the multigene family of plants that can transfer single or multiple activated sugars to a range of plant molecules, resulting in the glycosylation of plant compounds. Although the activities of many glycosyltransferases and their products have been recognized for a long time, only in recent years were some glycosyltransferase genes identified and few have been functionally characterized in detail. Korean ginseng (Panax ginseng Meyer), belonging to Araliaceae, has been well known as a popular mysterious medicinal herb in East Asia for over 2,000 years. A total of 704 glycosyltransferase unique sequences have been found from a ginseng expressed sequence tag (EST) library, and these sequences encode enzymes responsible for the secondary metabolite biosynthesis. Finally, twelve UDP glycosyltransferases (UGTs) were selected as the candidates most likely to be involved in triterpenoid synthesis. In this study, we classified the candidate P. ginseng UGTs (PgUGTs) into proper families and groups, which resulted in eight UGT families and six UGT groups. We also investigated those gene candidates encoding for glycosyltransferases by analysis of gene expression in methyl jasmonate (MeJA)-treated ginseng adventitious roots and different tissues from four-year-old ginseng using quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). For organ-specific expression, most of PgUGT transcription levels were higher in leaves and roots compared with flower buds and stems. The transcription of PgUGTs in adventitious roots treated with MeJA increased as compared with the control. PgUGT1 and PgUGT2, which belong to the UGT71 family genes expressed in MeJA-treated adventitious roots, were especially sensitive, showing 33.32 and 38.88-fold expression increases upon 24h post-treatments, respectively. © 2013 Elsevier B.V. All rights reserved.

  10. Polycomb repressive complex 1 modifies transcription of active genes

    PubMed Central

    Pherson, Michelle; Misulovin, Ziva; Gause, Maria; Mihindukulasuriya, Kathie; Swain, Amanda; Dorsett, Dale

    2017-01-01

    This study examines the role of Polycomb repressive complex 1 (PRC1) at active genes. The PRC1 and PRC2 complexes are crucial for epigenetic silencing during development of an organism. They are recruited to Polycomb response elements (PREs) and establish silenced domains over several kilobases. Recent studies show that PRC1 is also directly recruited to active genes by the cohesin complex. Cohesin participates broadly in control of gene transcription, but it is unknown whether cohesin-recruited PRC1 also plays a role in transcriptional control of active genes. We address this question using genome-wide RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq). The results show that PRC1 influences transcription of active genes, and a significant fraction of its effects are likely direct. The roles of different PRC1 subunits can also vary depending on the gene. Depletion of PRC1 subunits by RNA interference alters phosphorylation of RNA polymerase II (Pol II) and occupancy by the Spt5 pausing-elongation factor at most active genes. These effects on Pol II phosphorylation and Spt5 are likely linked to changes in elongation and RNA processing detected by nascent RNA-seq, although the mechanisms remain unresolved. The experiments also reveal that PRC1 facilitates association of Spt5 with enhancers and PREs. Reduced Spt5 levels at these regulatory sequences upon PRC1 depletion coincide with changes in Pol II occupancy and phosphorylation. Our findings indicate that, in addition to its repressive roles in epigenetic gene silencing, PRC1 broadly influences transcription of active genes and may suppress transcription of nonpromoter regulatory sequences. PMID:28782042

  11. Novel associations of UDP-glucuronosyltransferase 2B gene variants with prostate cancer risk in a multiethnic study

    PubMed Central

    2013-01-01

    Background We have previously shown that a functional polymorphism of the UGT2B15 gene (rs1902023) was associated with increased risk of prostate cancer (PC). Novel functional polymorphisms of the UGT2B17 and UGT2B15 genes have been recently characterized by in vitro assays but have not been evaluated in epidemiologic studies. Methods Fifteen functional SNPs of the UGT2B17 and UGT2B15 genes, including cis-acting UGT2B gene SNPs, were genotyped in African American and Caucasian men (233 PC cases and 342 controls). Regression models were used to analyze the association between SNPs and PC risk. Results After adjusting for race, age and BMI, we found that six UGT2B15 SNPs (rs4148269, rs3100, rs9994887, rs13112099, rs7686914 and rs7696472) were associated with an increased risk of PC in log-additive models (p < 0.05). A SNP cis-acting on UGT2B17 and UGT2B15 expression (rs17147338) was also associated with increased risk of prostate cancer (OR = 1.65, 95% CI = 1.00-2.70); while a stronger association among men with high Gleason sum was observed for SNPs rs4148269 and rs3100. Conclusions Although small sample size limits inference, we report novel associations between UGT2B15 and UGT2B17 variants and PC risk. These associations with PC risk in men with high Gleason sum, more frequently found in African American men, support the relevance of genetic differences in the androgen metabolism pathway, which could explain, in part, the high incidence of PC among African American men. Larger studies are required. PMID:24267955

  12. Herb–drug interaction prediction based on the high specific inhibition of andrographolide derivatives towards UDP-glucuronosyltransferase (UGT) 2B7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Hai-Ying, E-mail: cmu4h-mhy@126.com; Sun, Dong-Xue; Cao, Yun-Feng

    2014-05-15

    Herb–drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (K{sub i}) were determined for themore » compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsome (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behavior. In combination of inhibition parameters (K{sub i}) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb–drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7. - Highlights: • Specific inhibition of andrographolide derivatives towards UGT2B7. • Herb-drug interaction related withAndrographis paniculata. • Guidance for design of UGT2B7 specific inhibitors.« less

  13. UGT1A1 (TA)n genotyping in sickle-cell disease: high resolution melting (HRM) curve analysis or direct sequencing, what is the best way?

    PubMed

    Thomas, Vincent; Mazard, Blandine; Garcia, Caroline; Lacan, Philippe; Gagnieu, Marie-Claude; Joly, Philippe

    2013-09-23

    Minucci et al. have proposed in 2010 a rapid, simple and cost-effective HRM method on the LightCycler 480® apparatus (Roche) for the determination of the 6/6, 6/7 and 7/7 genotypes of the (TA)n UGT1A1 promoter polymorphism. However, they have not studied the n=5 and n=8 alleles which can be quite frequent in sickle-cell disease patients. The aim of our study was to test this HRM protocol to all the 10 possible (TA)n UGT1A1 genotypes (i.e. 5/5, 5/6, 5/7, 5/8, 6/6, 6/7, 6/8, 7/7, 7/8 and 8/8) by using our SCD cohort of patients. All genotypes could be unambiguously identified except 6/7 and 6/8 which give a similar HRM profile. For those two genotypes, the differentiation necessitates either a direct Sanger sequencing or a second PCR protocol followed by a 3% agarose gel migration. For the (TA)n UGT1A1 promoter genotyping of African patients, each lab has to wonder what is the best way between (i) direct Sanger sequencing of all patients and (ii) HRM protocol for all patients followed by a complementary analysis to differentiate the 6/7 and 6/8 genotypes. © 2013. Published by Elsevier B.V. All rights reserved.

  14. Regioselectivity of Human UDP-Glucuronosyltransferase Isozymes in Flavonoid Biotransformation by Metal Complexation and Tandem Mass Spectrometry

    PubMed Central

    Robotham, Scott A.; Brodbelt, Jennifer S.

    2011-01-01

    Based on reactions with five flavonoids, the regioselectivities of twelve human UDP-glucuronosyltransferase (UGT) isozymes were elucidated. The various flavonoid glucuronides were differentiated based on LC-MS/MS fragmentation patterns of [Co(II)(flavonoid – H)(4,7-diphenyl-1,10-phenanthroline)2]+ complexes generated upon post-column complexation. Glucuronide distributions were evaluated to allow a systematic assessment of the regioselectivity of each isozyme. The various UGT enzymes, including eight UGT1A and four UGT2B, displayed a remarkable range of selectivities, both in terms of the positions of glucuronidation and relative reactivity with flavanones versus flavonols. PMID:21889496

  15. Association of breast-fed neonatal hyperbilirubinemia with UGT1A1 polymorphisms: 211G>A (G71R) mutation becomes a risk factor under inadequate feeding.

    PubMed

    Sato, Hiroko; Uchida, Toshihiko; Toyota, Kentaro; Kanno, Miyako; Hashimoto, Taeko; Watanabe, Masashi; Nakamura, Tomohiro; Tamiya, Gen; Aoki, Kuraaki; Hayasaka, Kiyoshi

    2013-01-01

    Breastfeeding jaundice is a well-known phenomenon, but its pathogenesis is still unclear. Increased production of bilirubin, impaired hepatic uptake and metabolism of bilirubin, and increased enterohepatic circulation of bilirubin account for most cases of pathological neonatal hyperbilirubinemia. We previously reported that 211G>A (G71R) mutation of the UGT1A1 gene is prevalent in East Asians and is associated with the development of neonatal hyperbilirubinemia. Recently, significant association of G71R mutation with hyperbilirubinemia in breast-fed neonates was reported. We enrolled 401 full-term Japanese infants, who were exclusively breast-fed without supplementation of formula before developing hyperbilirubinemia, and classified them into two groups based on the degree of maximal body weight loss during the neonatal period. We analyzed the sex, gestational age, delivery mode, body weight at birth, maximal body weight loss and genotypes of G71R and (TA)(7) polymorphic mutations of UGT1A1. Statistical analysis revealed that maximal body weight loss during the neonatal period is the only independent risk factor for the development of neonatal hyperbilirubinemia. The effect of G71R mutation on neonatal hyperbilirubinemia is significant in neonates with 5% or greater maximal body weight loss and its influence increases in parallel with the degree of maximal body weight loss. Our study indicates that G71R mutation is a risk factor for neonatal hyperbilirubinemia only in infants with inadequate breastfeeding and suggests that adequate breastfeeding may overcome the genetic predisposing factor, G71R mutation, for the development of neonatal hyperbilirubinemia.

  16. Impairment of enzymatic antioxidant defenses is associated with bilirubin-induced neuronal cell death in the cerebellum of Ugt1 KO mice

    PubMed Central

    Bortolussi, G; Codarin, E; Antoniali, G; Vascotto, C; Vodret, S; Arena, S; Cesaratto, L; Scaloni, A; Tell, G; Muro, A F

    2015-01-01

    Severe hyperbilirubinemia is toxic during central nervous system development. Prolonged and uncontrolled high levels of unconjugated bilirubin lead to bilirubin-induced encephalopathy and eventually death by kernicterus. Despite extensive studies, the molecular and cellular mechanisms of bilirubin toxicity are still poorly defined. To fill this gap, we investigated the molecular processes underlying neuronal injury in a mouse model of severe neonatal jaundice, which develops hyperbilirubinemia as a consequence of a null mutation in the Ugt1 gene. These mutant mice show cerebellar abnormalities and hypoplasia, neuronal cell death and die shortly after birth because of bilirubin neurotoxicity. To identify protein changes associated with bilirubin-induced cell death, we performed proteomic analysis of cerebella from Ugt1 mutant and wild-type mice. Proteomic data pointed-out to oxidoreductase activities or antioxidant processes as important intracellular mechanisms altered during bilirubin-induced neurotoxicity. In particular, they revealed that down-representation of DJ-1, superoxide dismutase, peroxiredoxins 2 and 6 was associated with hyperbilirubinemia in the cerebellum of mutant mice. Interestingly, the reduction in protein levels seems to result from post-translational mechanisms because we did not detect significant quantitative differences in the corresponding mRNAs. We also observed an increase in neuro-specific enolase 2 both in the cerebellum and in the serum of mutant mice, supporting its potential use as a biomarker of bilirubin-induced neurological damage. In conclusion, our data show that different protective mechanisms fail to contrast oxidative burst in bilirubin-affected brain regions, ultimately leading to neurodegeneration. PMID:25950469

  17. Impairment of enzymatic antioxidant defenses is associated with bilirubin-induced neuronal cell death in the cerebellum of Ugt1 KO mice.

    PubMed

    Bortolussi, G; Codarin, E; Antoniali, G; Vascotto, C; Vodret, S; Arena, S; Cesaratto, L; Scaloni, A; Tell, G; Muro, A F

    2015-05-07

    Severe hyperbilirubinemia is toxic during central nervous system development. Prolonged and uncontrolled high levels of unconjugated bilirubin lead to bilirubin-induced encephalopathy and eventually death by kernicterus. Despite extensive studies, the molecular and cellular mechanisms of bilirubin toxicity are still poorly defined. To fill this gap, we investigated the molecular processes underlying neuronal injury in a mouse model of severe neonatal jaundice, which develops hyperbilirubinemia as a consequence of a null mutation in the Ugt1 gene. These mutant mice show cerebellar abnormalities and hypoplasia, neuronal cell death and die shortly after birth because of bilirubin neurotoxicity. To identify protein changes associated with bilirubin-induced cell death, we performed proteomic analysis of cerebella from Ugt1 mutant and wild-type mice. Proteomic data pointed-out to oxidoreductase activities or antioxidant processes as important intracellular mechanisms altered during bilirubin-induced neurotoxicity. In particular, they revealed that down-representation of DJ-1, superoxide dismutase, peroxiredoxins 2 and 6 was associated with hyperbilirubinemia in the cerebellum of mutant mice. Interestingly, the reduction in protein levels seems to result from post-translational mechanisms because we did not detect significant quantitative differences in the corresponding mRNAs. We also observed an increase in neuro-specific enolase 2 both in the cerebellum and in the serum of mutant mice, supporting its potential use as a biomarker of bilirubin-induced neurological damage. In conclusion, our data show that different protective mechanisms fail to contrast oxidative burst in bilirubin-affected brain regions, ultimately leading to neurodegeneration.

  18. Effect of sucrose concentrations on Stevia rebaudiana Bertoni tissue culture and gene expression.

    PubMed

    Ghorbani, T; Kahrizi, D; Saeidi, M; Arji, I

    2017-08-30

    Stevia rebaudiana (Bert.) Bertoni is known as sweet plant which it contains a high level of steviol glycosides in the leaves.  This plant has been used from centuries ago as a sweetener for tea. One of the most important steviol glycosides is stevioside that is attractive for diabetic persons. Tissue culture is the only rapid process for the mass propagation of stevia. One of the most important factors in the medium is sucrose that is a necessary for plant growth. In the present study, we use nodal segments of the stem as explants in mediums with different sucrose concentration (50 mM, 100mM and 150mM). Several morphological traits were measured in a 28 day period. Results analysis showed a significant variation between treatments. The highest growth rate, rooting and leaf production was obtained in medium with 100mM sucrose. The correlation between measured traits was significant at the 0.01 level. To investigation of UGT74G1, UGT76G1, UGT85C2 and KS genes expression that are involved in the synthesis of SGs, RT- PCR was done with the housekeeping gene of as internal control. There were significant differences between all media. The results showed thatsucrose 100 mM containing media was more desirable than others for expression of UGT76G1 and UGT85C2 genes. Whereas, the best medium for expression of UGT74G1 was sucrose 150 mM and sucrose 50 mM for KS gene. Totally, it seems that sucrose at a concentration of 100 mMprovides the best condition for stevia growth and steviol glycosides production.

  19. Role of UDP-Glucuronosyltransferase (UGT) 2B2 in Metabolism of Triiodothyronine: Effect of Microsomal Enzyme Inducers in Sprague Dawley and UGT2B2-Deficient Fischer 344 Rats

    PubMed Central

    Richardson, Terrilyn A.; Klaassen, Curtis D.

    2010-01-01

    Microsomal enzyme inducers (MEI) that increase UDP-glucuronosyltransferases (UGTs) can impact thyroid hormone homeostasis in rodents. Increased glucuronidation can result in reduction of serum thyroid hormone and a concomitant increase in thyroid-stimulating hormone (TSH). UGT2B2 is thought to glucuronidate triiodothyronine (T3). The purposes of this study were to determine the role of UGT2B2 in T3 glucuronidation and whether increased T3 glucuronidation mediates the increased TSH observed after MEI treatment. Sprague Dawley (SD) and UGT2B2-deficient Fischer 344 (F344) rats were fed a control diet or diet containing pregnenolone-16α-carbonitrile (PCN; 800 ppm), 3-methylcholanthrene (3-MC; 200 ppm), or Aroclor 1254 (PCB; 100 ppm) for 7 days. Serum thyroxine (T4), T3, and TSH concentrations, hepatic androsterone/T4/T3 glucuronidation, and thyroid follicular cell proliferation were determined. In both SD and F344 rats, MEI treatments decreased serum T4, whereas serum T3 was maintained (except with PCB treatment). Hepatic T4 glucuronidation increased significantly after MEI in both rat strains. Compared with the other MEI, only PCN treatment significantly increased T3 glucuronidation (281 and 497%) in both SD and UGT2B2-deficient F344 rats, respectively, and increased both serum TSH and thyroid follicular cell proliferation. These data demonstrate an association among increases in T3 glucuronidation, TSH, and follicular cell proliferation after PCN treatment, suggesting that T3 is glucuronidated by other PCN-inducible UGTs in addition to UGT2B2. These data also suggest that PCN (rather than 3-MC or PCB) promotes thyroid tumors through excessive TSH stimulation of the thyroid gland. PMID:20421340

  20. Preclinical discovery of candidate genes to guide pharmacogenetics during phase I development: the example of the novel anticancer agent ABT-751

    PubMed Central

    Innocenti, Federico; Ramírez, Jacqueline; Obel, Jennifer; Xiong, Julia; Mirkov, Snezana; Chiu, Yi-Lin; Katz, David A.; Carr, Robert A.; Zhang, Wei; Das, Soma; Adjei, Araba; Moyer, Ann M.; Chen, Pei Xian; Krivoshik, Andrew; Medina, Diane; Gordon, Gary B.; Ratain, Mark J.; Sahelijo, Leonardo; Weinshilboum, Richard M.; Fleming, Gini F.; Bhathena, Anahita

    2013-01-01

    Objective ABT-751, a novel orally available antitubulin agent, is mainly eliminated as inactive glucuronide (ABT-751G) and sulfate (ABT-751S) conjugates. We performed a pharmacogenetic investigation of ABT-751 pharmacokinetics using in-vitro data to guide the selection of genes for genotyping in a phase I trial of ABT-751. Methods UDP-glucuronosyltransferase (UGT) and sulfotransferase (SULT) enzymes were screened for ABT-751 metabolite formation in vitro. Forty-seven cancer patients treated with ABT-751 were genotyped for 21 variants in these genes. Results UGT1A1, UGT1A4, UGT1A8, UGT2B7, and SULT1A1 were found to be involved in the formation of inactive ABT-751 glucuronide (ABT-751G) and sulfate (ABT-751S). SULT1A1 copy number (> 2) was associated with an average 34% increase in ABT-751 clearance (P= 0.044), an 18% reduction in ABT-751 AUC (P = 0.045), and a 50% increase in sulfation metabolic ratios (P=0.025). UGT1A8 rs6431558 was associated with a 28% increase in glucuronidation metabolic ratios (P =0.022), and UGT1A4*2 was associated with a 65% decrease in ABT-751 Ctrough (P = 0.009). Conclusion These results might represent the first example of a clinical pharmacokinetic effect of the SULT1A1 copy number variant on the clearance of a SULT1A1 substrate. A-priori selection of candidate genes guided by in-vitro metabolic screening enhanced our ability to identify genetic determinants of interpatient pharmacokinetic variability. PMID:23670235

  1. Effects of ABCB1, ABCC2, UGT2B7 and HNF4α genetic polymorphisms on oxcarbazepine concentrations and therapeutic efficacy in patients with epilepsy.

    PubMed

    Shen, Chunhong; Zhang, Bijun; Liu, Zhirong; Tang, Yelei; Zhang, Yinxi; Wang, Shan; Guo, Yi; Ding, Yao; Wang, Shuang; Ding, Meiping

    2017-10-01

    The aim of the study is to investigate the effects of ABCB1, ABCC2, UGT2B7 and HNF4α genetic polymorphisms on plasma oxcarbazepine (OXC) concentrations and therapeutic efficacy in Han Chinese patients with epilepsy. We recruited 116 Han Chinese patients with epilepsy who were receiving OXC monotherapy. Blood samples were taken and OXC levels were measured. The polymorphisms of ABCB1 rs1045642, ABCC2 rs2273697, UGT2B7 rs7439366, and HNF4α rs2071197 were determined. The therapeutic efficacy of OXC at the 1-year time-point was assessed. Data analysis was performed using IBM SPSS Statistics 22.0. The genetic polymorphism of ABCB1 rs1045642 was found to be associated with normalized OXC concentration and therapeutic efficacy in patients with epilepsy (P<0.05). As for UGT2B7 rs7439366, the allele polymorphism exhibited a correlation with treatment outcome, but not OXC concentration. The polymorphisms of ABCC2 rs2273697 and HNF4α rs2071197 was not associated with OXC concentrations and therapeutic efficacy. These results suggested that ABCB1 rs1045642 and UGT2B7 rs7439366 may affect OXC pharmacokinetics and therapeutic efficacy in Han Chinese patients with epilepsy. However, further studies in larger populations and other ethnic groups are required. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  2. PBPK Model of Morphine Incorporating Developmental Changes in Hepatic OCT1 and UGT2B7 Proteins to Explain the Variability in Clearances in Neonates and Small Infants.

    PubMed

    Emoto, Chie; Johnson, Trevor N; Neuhoff, Sibylle; Hahn, David; Vinks, Alexander A; Fukuda, Tsuyoshi

    2018-06-19

    Morphine has large pharmacokinetic variability, which is further complicated by developmental changes in neonates and small infants. The impacts of organic cation transporter 1 (OCT1) genotype and changes in blood-flow on morphine clearance (CL) were previously demonstrated in children, whereas changes in UDP-glucuronosyltransferase 2B7 (UGT2B7) activity showed a small effect. This study, targeting neonates and small infants, was designed to assess the influence of developmental changes in OCT1 and UGT2B7 protein expression and modified blood-flow on morphine CL using physiologically based pharmacokinetic (PBPK) modeling. The implementation of these three age-dependent factors into the pediatric system platform resulted in reasonable prediction for an age-dependent increase in morphine CL in these populations. Sensitivity of morphine CL to changes in cardiac output increased with age up to 3 years, whereas sensitivity to changes in UGT2B7 activity decreased. This study suggests that morphine exhibits age-dependent extraction, likely due to the developmental increase in OCT1 and UGT2B7 protein expression/activity and hepatic blood-flow. © 2018 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  3. Genetic polymorphism of UDP-glucuronosyltransferase (UGT2B15) and glucuronidation of paracetamol in healthy population.

    PubMed

    Mehboob, Huma; Iqbal, Tahira; Jamil, Amer; Khaliq, Tanweer

    2016-05-01

    Inter individual variability in polymorphic UDP-glucuronosyltransferase (UGT2B15) has been associated with varied glucuronidation level. The present project was designed to determine the genetic polymorphism of UDP-glucuronosyltransferase (UGT2B15) and glucuronidation of paracetamol in healthy (male=59 and female=50) population. The association between genotype (UGT2B15) and phenotype (paracetamol glucuronidation) has been evaluated. According to trimodal model, genotypes and phenotypes were categorized as fast, intermediate and slow glucuronidators. Presence of wild type allele illustrated a UGT2B15 genotype as fast glucuronidator. The glucuronidation status was investigated by HPLC analysis of paracetamol. Ratio of paracetamol glucuronide to paracetamol was determined with two antimodes at glucuronidation ratio of 0.3 and 1.8. In our study, 7% and 12% of population was distributed as slow glucuronidators by phenotype and genotype, respectively and association between phenotype and genotype was good for analysis of glucuronidation status as displayed by kappa value (0.792).

  4. Investigation of different concentrations of MS media effects on gene expression and steviol glycosides accumulation in Stevia rebaudiana Bertoni.

    PubMed

    Kahrizi, Danial; Ghaheri, Matin; Yari, Zahra; Yari, Khirollah; Bahraminejad, Sohbat

    2018-02-10

    Stevia rebaudiana Bertoni is one of two species that contains steviol glycosides. Among steviol glycosides that extracted from leaves, stevioside and rebaudioside A are the two major and the sweetest glycosides that are about 200-300 times sweeter than sucrose with zero calories. The best method for stevia propagation is tissue culture. So, for investigation of nutrients in medium, we studied the effect of different concentrations of MS media (MS, 0.5 MS, 0.25 MS, 0 MS) on morphological traits, UGT74G1 and UGT76G1 genes expression and accumulation of steviol glycosides in stevia leaves. The best growth rate (0.472 mm/d) has occurred in plants grown in MS media. Also, the highest gene expression of UGT74G1 gene (1.000 Total lab unit) was seen under MS treatment. However, the highest expression level of UGT76G1 gene (1.701 Total lab unit) was observed at plants grown in 0 MS. The highest amount of both Stevioside and Rebaudioside A (14.23 and 8.12, respectively) were accumulated in plants under MS treatment. Obviously, dilution of MS media associated with decreasing in both expression of the intended genes and accumulation of steviol glycosides.

  5. Red wine and component flavonoids inhibit UGT2B17 in vitro

    PubMed Central

    2012-01-01

    Background The metabolism and excretion of the anabolic steroid testosterone occurs by glucuronidation to the conjugate testosterone glucuronide which is then excreted in urine. Alterations in UGT glucuronidation enzyme activity could alter the rate of testosterone excretion and thus its bioavailability. The aim of this study is to investigate if red wine, a common dietary substance, has an inhibitory effect on UGT2B17. Methods Testosterone glucuronidation was assayed using human UGT2B17 supersomes with quantification of unglucuronidated testosterone over time using HPLC with DAD detection. The selected red wine was analyzed using HPLC; and the inhibitory effects of the wine and phenolic components were tested independently in a screening assay. Further analyses were conducted for the strongest inhibitors at physiologically relevant concentrations. Control experiments were conducted to determine the effects of the ethanol on UGT2B17. Results Over the concentration range of 2 to 8%, the red wine sample inhibited the glucuronidation of testosterone by up to 70% over 2 hours. The ethanol content had no significant effect. Three red wine phenolics, identified by HPLC analyses, also inhibited the enzyme by varying amounts in the order of quercetin (72%), caffeic acid (22%) and gallic acid (9%); using a ratio of phenolic:testosterone of 1:2.5. In contrast p-coumaric acid and chlorogenic acid had no effect on the UGT2B17. The most active phenolic was selected for a detailed study at physiologically relevant concentrations, and quercetin maintained inhibitory activity of 20% at 2 μM despite a ten-fold excess of testosterone. Conclusion This study reports that in an in vitro supersome-based assay, the key steroid-metabolizing enzyme UGT2B17 is inhibited by a number of phenolic dietary substances and therefore may reduce the rate of testosterone glucuronidation in vivo. These results highlight the potential interactions of a number of common dietary compounds on

  6. Expression levels of uridine 5'-diphospho-glucuronosyltransferase genes in breast tissue from healthy women are associated with mammographic density.

    PubMed

    Haakensen, Vilde D; Biong, Margarethe; Lingjærde, Ole Christian; Holmen, Marit Muri; Frantzen, Jan Ole; Chen, Ying; Navjord, Dina; Romundstad, Linda; Lüders, Torben; Bukholm, Ida K; Solvang, Hiroko K; Kristensen, Vessela N; Ursin, Giske; Børresen-Dale, Anne-Lise; Helland, Aslaug

    2010-01-01

    Mammographic density (MD), as assessed from film screen mammograms, is determined by the relative content of adipose, connective and epithelial tissue in the female breast. In epidemiological studies, a high percentage of MD confers a four to six fold risk elevation of developing breast cancer, even after adjustment for other known breast cancer risk factors. However, the biologic correlates of density are little known. Gene expression analysis using whole genome arrays was performed on breast biopsies from 143 women; 79 women with no malignancy (healthy women) and 64 newly diagnosed breast cancer patients, both included from mammographic centres. Percent MD was determined using a previously validated, computerized method on scanned mammograms. Significance analysis of microarrays (SAM) was performed to identify genes influencing MD and a linear regression model was used to assess the independent contribution from different variables to MD. SAM-analysis identified 24 genes differentially expressed between samples from breasts with high and low MD. These genes included three uridine 5'-diphospho-glucuronosyltransferase (UGT) genes and the oestrogen receptor gene (ESR1). These genes were down-regulated in samples with high MD compared to those with low MD. The UGT gene products, which are known to inactivate oestrogen metabolites, were also down-regulated in tumour samples compared to samples from healthy individuals. Several single nucleotide polymorphisms (SNPs) in the UGT genes associated with the expression of UGT and other genes in their vicinity were identified. Three UGT enzymes were lower expressed both in breast tissue biopsies from healthy women with high MD and in biopsies from newly diagnosed breast cancers. The association was strongest amongst young women and women using hormonal therapy. UGT2B10 predicts MD independently of age, hormone therapy and parity. Our results indicate that down-regulation of UGT genes in women exposed to female sex hormones is

  7. Expression levels of uridine 5'-diphospho-glucuronosyltransferase genes in breast tissue from healthy women are associated with mammographic density

    PubMed Central

    2010-01-01

    Introduction Mammographic density (MD), as assessed from film screen mammograms, is determined by the relative content of adipose, connective and epithelial tissue in the female breast. In epidemiological studies, a high percentage of MD confers a four to six fold risk elevation of developing breast cancer, even after adjustment for other known breast cancer risk factors. However, the biologic correlates of density are little known. Methods Gene expression analysis using whole genome arrays was performed on breast biopsies from 143 women; 79 women with no malignancy (healthy women) and 64 newly diagnosed breast cancer patients, both included from mammographic centres. Percent MD was determined using a previously validated, computerized method on scanned mammograms. Significance analysis of microarrays (SAM) was performed to identify genes influencing MD and a linear regression model was used to assess the independent contribution from different variables to MD. Results SAM-analysis identified 24 genes differentially expressed between samples from breasts with high and low MD. These genes included three uridine 5'-diphospho-glucuronosyltransferase (UGT) genes and the oestrogen receptor gene (ESR1). These genes were down-regulated in samples with high MD compared to those with low MD. The UGT gene products, which are known to inactivate oestrogen metabolites, were also down-regulated in tumour samples compared to samples from healthy individuals. Several single nucleotide polymorphisms (SNPs) in the UGT genes associated with the expression of UGT and other genes in their vicinity were identified. Conclusions Three UGT enzymes were lower expressed both in breast tissue biopsies from healthy women with high MD and in biopsies from newly diagnosed breast cancers. The association was strongest amongst young women and women using hormonal therapy. UGT2B10 predicts MD independently of age, hormone therapy and parity. Our results indicate that down-regulation of UGT genes

  8. Correlations between polymorphisms in the uridine diphosphate-glucuronosyltransferase 1A and C-C motif chemokine receptor 5 genes and infection with the hepatitis B virus in three ethnic groups in China.

    PubMed

    Zhang, Chan; He, Yan; Shan, Ke-Ren; Tan, Kui; Zhang, Ting; Wang, Chan-Juan; Guan, Zhi-Zhong

    2018-02-01

    Objective To determine whether genetic polymorphisms in the uridine diphosphate-glucuronosyltransferase 1A ( UGT1A) and the C-C motif chemokine receptor 5 ( CCR5) genes are associated with hepatitis B virus (HBV) infection in Yi, Yao and Han ethnic groups in the Guizhou Province of China. Methods The study enrolled subjects with and without HBV infection. Whole blood was used for DNA genotyping using standard techniques. The study determined the frequencies of several polymorphic alleles ( UGT1A6 [rs2070959], UGT1A1 [rs8175347], CCR5-59029 [rs1799987] and CCR5Δ32 [rs333]) and then characterized their relationship with HBV infection. Results A total of 404 subjects were enrolled in the study: 138 from the Yao group, 101 from the Yi group and 165 from the Han group. There was a significant difference in the frequency of UGT1A1 rs8175347 polymorphisms among the three groups. The rates of 7TA carriers of UGT1A1 rs8175347 in all three groups were significantly higher than the other genotypes. Individuals with genotype AA of UGT1A6 rs2070959 in the Yi group had a higher risk for HBV infection than in the Yao and Han groups. The frequency of genotype GG in CCR5-59029 in the Yao group was significantly higher than in the Yi group. The genotypes of CCR5Δ32 were not associated with HBV infection. Conclusion These findings provide genetic and epidemiological evidence for an association of UGT1A and CCR5-59029 polymorphisms with HBV infection in Chinese Yi and Yao populations.

  9. Complexity and Entropy Analysis of DNMT1 Gene

    USDA-ARS?s Scientific Manuscript database

    Background: The application of complexity information on DNA sequence and protein in biological processes are well established in this study. Available sequences for DNMT1 gene, which is a maintenance methyltransferase is responsible for copying DNA methylation patterns to the daughter strands durin...

  10. Mycophenolic acid AUC in Thai kidney transplant recipients receiving low dose mycophenolate and its association with UGT2B7 polymorphisms.

    PubMed

    Pithukpakorn, Manop; Tiwawanwong, Tiwat; Lalerd, Yupaporn; Assawamakin, Anunchai; Premasathian, Nalinee; Tasanarong, Adis; Thongnoppakhun, Wanna; Vongwiwatana, Attapong

    2014-01-01

    Despite use of a lower mycophenolate dose in Thai kidney transplant patients, acceptable graft and patient outcomes can be achieved. We therefore examined the pharmacokinetics of mycophenolic acid (MPA) by area under the curve (AUC) and investigated genetic contribution in mycophenolate metabolism in this population. Kidney transplant recipients with stable graft function who were receiving mycophenolate mofetil 1,000 mg/d in combination with either cyclosporine or tacrolimus, and prednisolone were studied. The MPA concentration was measured by fluorescence polarization immunoassay (FPIA), at predose and 1, 1.5, 2, 4, 6, 8, 10, and 12 hours after dosing. Genetic polymorphisms in UGT1A8, UGT1A9, and UGT2B7 were examined by denaturing high-performance liquid chromatography (DHPLC)-based single-base extension (SBE) analysis. A total 138 patients were included in study. The mean AUC was 39.49 mg-h/L (28.39-89.58 mg-h/L), which was in the therapeutic range. The correlation between the predose MPA concentration and AUC was poor. The mean AUC in the tacrolimus group was higher than that in the cyclosporine group. Polymorphisms in UGT2B7 showed significant association with AUC. Most of our patients with reduced mycophenolate dose had the AUC within the therapeutic range. Genetic polymorphisms in UGT2B7 may play a role in MPA metabolism in Thai kidney transplant patients.

  11. Three-dimensional quantitative structure-activity relationship studies on UGT1A9-mediated 3-O-glucuronidation of natural flavonols using a pharmacophore-based comparative molecular field analysis model.

    PubMed

    Wu, Baojian; Morrow, John Kenneth; Singh, Rashim; Zhang, Shuxing; Hu, Ming

    2011-02-01

    Glucuronidation is often recognized as one of the rate-determining factors that limit the bioavailability of flavonols. Hence, design and synthesis of more bioavailable flavonols would benefit from the establishment of predictive models of glucuronidation using kinetic parameters [e.g., K(m), V(max), intrinsic clearance (CL(int)) = V(max)/K(m)] derived for flavonols. This article aims to construct position (3-OH)-specific comparative molecular field analysis (CoMFA) models to describe UDP-glucuronosyltransferase (UGT) 1A9-mediated glucuronidation of flavonols, which can be used to design poor UGT1A9 substrates. The kinetics of recombinant UGT1A9-mediated 3-O-glucuronidation of 30 flavonols was characterized, and kinetic parameters (K(m), V(max), CL(int)) were obtained. The observed K(m), V(max), and CL(int) values of 3-O-glucuronidation ranged from 0.04 to 0.68 μM, 0.04 to 12.95 nmol/mg/min, and 0.06 to 109.60 ml/mg/min, respectively. To model UGT1A9-mediated glucuronidation, 30 flavonols were split into the training (23 compounds) and test (7 compounds) sets. These flavonols were then aligned by mapping the flavonols to specific common feature pharmacophores, which were used to construct CoMFA models of V(max) and CL(int), respectively. The derived CoMFA models possessed good internal and external consistency and showed statistical significance and substantive predictive abilities (V(max) model: q(2) = 0.738, r(2) = 0.976, r(pred)(2) = 0.735; CL(int) model: q(2) = 0.561, r(2) = 0.938, r(pred)(2) = 0.630). The contour maps derived from CoMFA modeling clearly indicate structural characteristics associated with rapid or slow 3-O-glucuronidation. In conclusion, the approach of coupling CoMFA analysis with a pharmacophore-based structural alignment is viable for constructing a predictive model for regiospecific glucuronidation rates of flavonols by UGT1A9.

  12. Significantly decreased and more variable expression of major CYPs and UGTs in liver microsomes prepared from HBV-positive human hepatocellular carcinoma and matched pericarcinomatous tissues determined using an isotope label-free UPLC-MS/MS method.

    PubMed

    Yan, Tongmeng; Gao, Song; Peng, Xiaojuan; Shi, Jian; Xie, Cong; Li, Qiang; Lu, Linlin; Wang, Ying; Zhou, Fuyuan; Liu, Zhongqiu; Hu, Ming

    2015-03-01

    To determine the liver expression of cytochrome P450 (CYPs) and uridine 5'-diphosphate-glucuronosyltransferases (UGTs), the major phase I and II metabolism enzymes responsible for clearance and detoxification of drugs, xenobiotic and endogenous substances. A validated isotope label-free method was established for absolute and simultaneous quantification of 9 CYPs (1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D, 2E1 and 3A4) and 5 UGTs (1A1, 1A4, 1A6, 1A9 and 2B7) in human liver microsomes using LC-MS/MS. The LC-MS/MS method displayed excellent dynamic range (at least 250-fold) and high sensitivity for each of the signature peptides with acceptable recovery, accuracy and precision. The protein expression profile of CYP and UGT isoforms were then determined in match microsomes samples prepared from patients with HBV-positive human hepatocellular carcinoma (HCC). In the tumor microsomes, the average absolute amounts of 8 major CYP isoforms (except CYP2C19) and 3 UGT isoforms (UGT1A1, UGT1A4 and UGT2B7) were decreased significantly (p < 0.05), whereas UGT1A6 and UGT1A9 levels were unchanged (p > 0.05). In addition, among isoforms with altered expression, 6 of 8 CYP isoforms and all three UGT isoforms were much more variable in tumor microsomes. Lastly, the importance of CYP3A4 was greatly diminished whereas the importance of UGT1A6 was enhanced in tumor microsomes. The use of an isotope label-free absolute quantification method for the simultaneous determination of 9 CYPs and 5 UGTs in human liver microsomes reveals that expression levels of CYPs and UGTs in human liver are severely impact by HCC, which could impact drug metabolism, disposition and pharmacotherapy.

  13. Functional regulation of ginsenoside biosynthesis by RNA interferences of a UDP-glycosyltransferase gene in Panax ginseng and Panax quinquefolius.

    PubMed

    Lu, Chao; Zhao, Shoujing; Wei, Guanning; Zhao, Huijuan; Qu, Qingling

    2017-02-01

    Panax ginseng (Asian ginseng) and Panax quinquefolius (American ginseng) have been used as medicinal and functional herbal remedies worldwide. Different properties of P. ginseng and P. quinquefolius were confirmed not only in clinical findings, but also at cellular and molecular levels. The major pharmacological ingredients of P. ginseng and P. quinquefolius are the triterpene saponins known as ginsenosides. The P. ginseng roots contain a higher ratio of ginsenoside Rg1:Rb1 than that in P. quinquefolius. In ginseng plants, various ginsenosides are synthesized via three key reactions: cyclization, hydroxylation and glycosylation. To date, several genes including dammarenediol synthase (DS), protopanaxadiol synthase and protopanaxatriol synthase have been isolated in P. ginseng and P. quinquefolius. Although some glycosyltransferase genes have been isolated and identified association with ginsenoside synthesis in P. ginseng, little is known about the glycosylation mechanism in P. quinquefolius. In this paper, we cloned and identified a UDP-glycosyltransferase gene named Pq3-O-UGT2 from P. quinquefolius (GenBank accession No. KR106207). In vitro enzymatic activity experiments biochemically confirmed that Pq3-O-UGT2 catalyzed the glycosylation of Rh2 and F2 to produce Rg3 and Rd, and the chemical structure of the products were confirmed susing high performance liquid chromatography electrospray ionization mass spectrometry (HPLC/ESI-MS). High sequence similarity between Pq3-O-UGT2 and PgUGT94Q2 indicated a close evolutionary relationship between P. ginseng and P. quinquefolius. Moreover, we established both P. ginseng and P. quinquefolius RNAi transgenic roots lines. RNA interference of Pq3-O-UGT2 and PgUGT94Q2 led to reduce levels of ginsenoside Rd, protopanaxadiol-type and total ginsenosides. Expression of key genes including protopanaxadiol and protopanaxatriol synthases was up-regulated in RNAi lines, while expression of dammarenediol synthase gene

  14. Albumin Stimulates the Activity of the Human UDP-Glucuronosyltransferases 1A7, 1A8, 1A10, 2A1 and 2B15, but the Effects Are Enzyme and Substrate Dependent

    PubMed Central

    Svaluto-Moreolo, Paolo; Dziedzic, Klaudyna; Yli-Kauhaluoma, Jari; Finel, Moshe

    2013-01-01

    Human UDP-glucuronosyltransferases (UGTs) are important enzymes in metabolic elimination of endo- and xenobiotics. It was recently shown that addition of fatty acid free bovine serum albumin (BSA) significantly enhances in vitro activities of UGTs, a limiting factor in in vitro–in vivo extrapolation. Nevertheless, since only few human UGT enzymes were tested for this phenomenon, we have now performed detailed enzyme kinetic analysis on the BSA effects in six previously untested UGTs, using 2–4 suitable substrates for each enzyme. We also examined some of the previously tested UGTs, but using additional substrates and a lower BSA concentration, only 0.1%. The latter concentration allows the use of important but more lipophilic substrates, such as estradiol and 17-epiestradiol. In five newly tested UGTs, 1A7, 1A8, 1A10, 2A1, and 2B15, the addition of BSA enhanced, to a different degree, the in vitro activity by either decreasing reaction’s K m, increasing its V max, or both. In contrast, the activities of UGT2B17, another previously untested enzyme, were almost unaffected. The results of the assays with the previously tested UGTs, 1A1, 1A6, 2B4, and 2B7, were similar to the published BSA only as far as the BSA effects on the reactions’ K m are concerned. In the cases of V max values, however, our results differ significantly from the previously published ones, at least with some of the substrates. Hence, the magnitude of the BSA effects appears to be substrate dependent, especially with respect to V max increases. Additionally, the BSA effects may be UGT subfamily dependent since K m decreases were observed in members of subfamilies 1A, 2A and 2B, whereas large V max increases were only found in several UGT1A members. The results shed new light on the complexity of the BSA effects on the activity and enzyme kinetics of the human UGTs. PMID:23372764

  15. Optimized UDP-glucuronosyltransferase (UGT) activity assay for trout liver S9 fractions

    EPA Pesticide Factsheets

    This publication provides an optimized UGT assay for trout liver S9 fractions which can be used to perform in vitro-in vivo extrapolations of measured UGT activityThis dataset is associated with the following publication:Ladd, M., P. Fitzsimmons , and J. Nichols. Optimization of a UDP-glucuronosyltransferase assay for trout liver S9 fractions: Activity enhancement by alamethicin, a pore-forming peptide. XENOBIOTICA. Taylor & Francis, Inc., Philadelphia, PA, USA, 46(12): 1066-1075, (2016).

  16. Conditional immortalization of Gunn rat hepatocytes: an ex vivo model for evaluating methods for bilirubin-UDP-glucuronosyltransferase gene transfer.

    PubMed

    Fox, I J; Chowdhury, N R; Gupta, S; Kondapalli, R; Schilsky, M L; Stockert, R J; Chowdhury, J R

    1995-03-01

    Viral vectors and protein carriers utilizing asialoglycoprotein receptor (ASGR)-mediated endocytosis are being developed to transfer genes for the correction of bilirubin-UDP-glucuronosyltransferase (bilirubin-UGT) deficiency. Ex vivo evaluation of these gene transfer vectors would be facilitated by a cell system that lacks bilirubin-UGT, but expresses differentiated liver functions, including ASGR. We immortalized primary Gunn rat hepatocytes by transduction with a recombinant Moloney murine leukemia virus expressing a thermolabile mutant SV40 large T antigen (tsA58). At 33 degrees C, the immortalized hepatocyte clones expressed SV40 large T antigen, synthesized DNA, and doubled in number every 2 to 3 days. At this temperature, differentiated hepatocyte markers, e.g., albumin, ASGR, and androsterone-UGT, were expressed at 5% to 10% of the levels found in primary hepatocytes maintained in culture for 24 hours. Glutathione-S-transferase Yp (GST-Yp), an oncofetal protein, was expressed in these cells at 33 degrees C, but was undetectable in primary hepatocytes. In contrast, when the cells were cultured at 39 degrees C or 37 degrees C, the large T antigen was degraded, DNA synthesis and cell growth stopped, and morphologic characteristics of differentiated hepatocytes were observed. The expression of albumin, ASGR, and androsterone-UGT, and their corresponding mRNAs, increased to 25% to 40% of the level in primary hepatocytes, whereas GST-Yp expression decreased. Functionality of ASGR was demonstrated by internalization of Texas red-labeled asialoorosomucoid, and binding and degradation of 125I-asialoorosomucoid. After liposome-mediated transfer of a plasmid containing the coding region of human bilirubin-UGT1, driven by the SV40 large T promoter, active human bilirubin-UGT1 was expressed in these cells. The immortalized cells were not tumorigenic after transplantation into severe combined immunodeficiency mice. These conditionally immortalized cells will be useful

  17. Networking of differentially expressed genes in human cancer cells resistant to methotrexate

    PubMed Central

    2009-01-01

    Background The need for an integrated view of data obtained from high-throughput technologies gave rise to network analyses. These are especially useful to rationalize how external perturbations propagate through the expression of genes. To address this issue in the case of drug resistance, we constructed biological association networks of genes differentially expressed in cell lines resistant to methotrexate (MTX). Methods Seven cell lines representative of different types of cancer, including colon cancer (HT29 and Caco2), breast cancer (MCF-7 and MDA-MB-468), pancreatic cancer (MIA PaCa-2), erythroblastic leukemia (K562) and osteosarcoma (Saos-2), were used. The differential expression pattern between sensitive and MTX-resistant cells was determined by whole human genome microarrays and analyzed with the GeneSpring GX software package. Genes deregulated in common between the different cancer cell lines served to generate biological association networks using the Pathway Architect software. Results Dikkopf homolog-1 (DKK1) is a highly interconnected node in the network generated with genes in common between the two colon cancer cell lines, and functional validations of this target using small interfering RNAs (siRNAs) showed a chemosensitization toward MTX. Members of the UDP-glucuronosyltransferase 1A (UGT1A) family formed a network of genes differentially expressed in the two breast cancer cell lines. siRNA treatment against UGT1A also showed an increase in MTX sensitivity. Eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) was overexpressed among the pancreatic cancer, leukemia and osteosarcoma cell lines, and siRNA treatment against EEF1A1 produced a chemosensitization toward MTX. Conclusions Biological association networks identified DKK1, UGT1As and EEF1A1 as important gene nodes in MTX-resistance. Treatments using siRNA technology against these three genes showed chemosensitization toward MTX. PMID:19732436

  18. Effects of various glutamine concentrations on gene expression and steviol glycosides accumulation in Stevia rebaudiana Bertoni.

    PubMed

    Esmaeili, Fatemeh; Ghaheri, Matin; Kahrizi, Danial; Mansouri, Mohsen; Safavi, Seyed Mehdi; Ghorbani, Tayebeh; Muhammadi, Sarre; Rahmanian, Elham; Vaziri, Siavash

    2018-02-10

    Stevia rebaudiana Bertoni is one of the most important biologically sourced and low-calorie sweeteners that contains a lots of Steviol glycosides. Tissue culture is the best method for propagation of stevia and micro nutrients can affect both morphological traits and steviol glycosides production. In the present study, we investigated the effect of different concentrations of glutamine (10, 20, 30 and 40 g/l) on expression of UGT74G1 and UGT76G1 genes and stevioside and rebaudioside A accumulation in the leaves of stevia under in vitro conditions. The highest level of expression for UGT74G1 (1.000 Total lab unit) was seen at plants grown in MS media without glutamine and the highest gene expression level for UGT76G1 (1.321 Total lab unit) was observed at plants grown in 2% glutamine. Based on HPLC results, the highest amount of stevioside (22.74) was accumulated in plants which were under 3% glutamine treatment and the lowest production level of stevioside (16.19) was resulted under MS (0 glutamine) medium. The highest rebaudioside A (12.19) accumulation was observed under 2% glutamine treatment and the lowest accumulation of rebaudioside A (8.41) was seen at plants grown in MS medium.

  19. Effect of the β-glucuronidase inhibitor saccharolactone on glucuronidation by human tissue microsomes and recombinant UDP-glucuronosyltransferases (UGTs)

    PubMed Central

    Oleson, Lauren; Court, Michael H.

    2009-01-01

    Glucuronidation studies using microsomes and recombinant UDP-glucuronosyltransferases (rUGTs) can be complicated by the presence of endogenous β-glucuronidases leading to underestimation of glucuronide formation rates. Saccharolactone is the most frequently used β-glucuronidase inhibitor, although as of yet it is not clear whether this reagent should be routinely added to glucuronidation incubations. Here we determined the effect of saccharolactone on eight different UGT probe activities using pooled human liver microsomes (pHLMs) and rUGTs. Despite the use of buffered incubation solutions it was necessary to adjust the pH of saccharolactone solutions to avoid effects (enhancement or inhibition) of lowered pH on UGT activity. Saccharolactone at concentrations ranging from 1 to 20 mM failed to show enhancement of any of the glucuronidation activities evaluated that could be considered consistent with inhibition of β-glucuronidase. However, for most activities, higher saccharolactone concentrations resulted in a modest degree of inhibition. The greatest inhibitory effect was observed for 5-hydroxytryptamine and estradiol glucuronidation by pHLMs with 35% decrease at 20 mM saccharolactone concentration. Endogenous β-glucuronidase activities were also measured using various human tissue microsomes and rUGTs with estradiol-3-glucuronide and estradiol-17-glucuronide as substrates. Glucuronide hydrolysis was observed for pHLMs, lung microsomes, and insect-cell expressed rUGTs, but not for kidney or intestinal microsomes, or HEK293 microsomes. However, the extent of hydrolysis was relatively small representing only 9 to 19% of the glucuronide formation rate measured in the same preparations. Consequently, these data do not support the routine inclusion of saccharolactone in glucuronidation incubations and, if used, saccharolactone concentrations should be titrated to achieve activity enhancement without inhibition. PMID:18718121

  20. Green cocoons in silkworm Bombyx mori resulting from the quercetin 5-O-glucosyltransferase of UGT86, is an evolved response to dietary toxins.

    PubMed

    Xu, Xu; Wang, Meng; Wang, Ying; Sima, Yanghu; Zhang, Dayan; Li, Juan; Yin, Weiming; Xu, Shiqing

    2013-05-01

    The glycosylation of UDP-glucosyltransferases (UGTs) is of great importance in the control and elimination of both endogenous and exogenous toxins. Bm-UGT10286 (UGT86) is the sole provider of UGT activity against the 5-O position of quercetin and directly influences the formation of green pigment in the Bombyx cocoon. To evaluate whether cocoon coloration evolved for mimetic purposes, we concentrated on the expression pattern of Ugt86 and the activities of the enzyme substrates. The expression of Ugt86 was not only detected in the cocoon absorbing and accumulating tissues such as the digestive tube and silk glands, but also in quantity in the detoxification tissues of the malpighian tubes and fat body, as well as in the gonads. As in the green cocoon strains, Ugt86 was clearly expressed in the yellow and white cocoon strains. In vitro, the fusion protein of UGT86 showed quercetin metabolic activity. Nevertheless, Ugt86 expression of 5th instar larvae was not up-regulated in the silk gland by exogenous quercetin. However, it was significantly up-regulated in the digestive tube and gonads (P < 0.05). A similar result was observed in experiments where larvae were exposed to rutin, an insect resistance inducer and growth inhibitor typically found in plants, and to 20-hydroxylecdysone (20E), an insect endocrine and plant source hormone. On the contrary, up-regulated Ugt86 expression was almost nil in larvae exposed to juvenile hormone III (P > 0.05). The results of HPLC revealed that a new substance was formed by mixing 20E with the recombinant UGT86 protein in vitro, indicating that the effect of Ugt86 on 20E was similar to that on exogenous quercetin derived from plant food, and that the effect probably initiated the detoxification reaction against rutin. The conclusion is that the reaction of Ugt86 on the silkworm cocoon pigment quercetin is not the result of active mimetic ecogenesis, but derives from the detoxification of UGTs.

  1. Synthesis of Mono- and Di-Glucosides of Zearalenone and α-/β-Zearalenol by Recombinant Barley Glucosyltransferase HvUGT14077

    PubMed Central

    Michlmayr, Herbert; Varga, Elisabeth; Lupi, Francesca; Malachová, Alexandra; Hametner, Christian; Berthiller, Franz; Adam, Gerhard

    2017-01-01

    Zearalenone (ZEN) is an estrogenic mycotoxin occurring in Fusarium-infected cereals. Glucosylation is an important plant defense mechanism and generally reduces the acute toxicity of mycotoxins to humans and animals. Toxicological information about ZEN-glucosides is limited due to the unavailability of larger amounts required for animal studies. HvUGT14077, a recently-validated ZEN-conjugating barley UDP-glucosyltransferase was expressed in Escherichia coli, affinity purified, and characterized. HvUGT14077 possesses high affinity (Km = 3 µM) and catalytic efficiency (kcat/Km = 190 s−1·mM−1) with ZEN. It also efficiently glucosylates the phase-I ZEN-metabolites α-zearalenol and β-zearalenol, with kcat/Km of 40 and 74 s−1·mM−1, respectively. HvUGT14077 catalyzes O-glucosylation at C-14 and C-16 with preference of 14-glucoside synthesis. Furthermore, relatively slow consecutive formation of 14,16-di-glucosides was observed; their structures were tentatively identified by mass spectrometry and for ZEN-14,16-di-glucoside confirmed by nuclear magnetic resonance spectroscopy. Recombinant HvUGT14077 allowed efficient preparative synthesis of ZEN-glucosides, yielding about 90% ZEN-14-glucoside and 10% ZEN-16-glucoside. The yield of ZEN-16-glucoside could be increased to 85% by co-incubation with a β-glucosidase highly selective for ZEN-14-glucoside. Depletion of the co-substrate UDP-glucose was counteracted by a sucrose synthase based regeneration system. This strategy could also be of interest to increase the yield of minor glucosides synthesized by other glucosyltransferases. PMID:28208765

  2. Inhibitory Effects of Commonly Used Herbal Extracts on UDP-Glucuronosyltransferase 1A4, 1A6, and 1A9 Enzyme Activities

    PubMed Central

    Mohamed, Mohamed-Eslam F.

    2011-01-01

    The aim of this study was to investigate the effect of commonly used botanicals on UDP-glucuronosyltransferase (UGT) 1A4, UGT1A6, and UGT1A9 activities in human liver microsomes. The extracts screened were black cohosh, cranberry, echinacea, garlic, ginkgo, ginseng, milk thistle, saw palmetto, and valerian in addition to the green tea catechin epigallocatechin gallate (EGCG). Formation of trifluoperazine glucuronide, serotonin glucuronide, and mycophenolic acid phenolic glucuronide was used as an index reaction for UGT1A4, UGT1A6, and UGT1A9 activities, respectively, in human liver microsomes. Inhibition potency was expressed as the concentration of the inhibitor at 50% activity (IC50) and the volume in which the dose could be diluted to generate an IC50-equivalent concentration [volume/dose index (VDI)]. Potential inhibitors were EGCG for UGT1A4, milk thistle for both UGT1A6 and UGT1A9, saw palmetto for UGT1A6, and cranberry for UGT1A9. EGCG inhibited UGT1A4 with an IC50 value of (mean ± S.E.) 33.8 ± 3.1 μg/ml. Milk thistle inhibited both UGT1A6 and UGT1A9 with IC50 values of 59.5 ± 3.6 and 33.6 ± 3.1 μg/ml, respectively. Saw palmetto and cranberry weakly inhibited UGT1A6 and UGT1A9, respectively, with IC50 values >100 μg/ml. For each inhibition, VDI was calculated to determine the potential of achieving IC50-equivalent concentrations in vivo. VDI values for inhibitors indicate a potential for inhibition of first-pass glucuronidation of UGT1A4, UGT1A6, and UGT1A9 substrates. These results highlight the possibility of herb-drug interactions through modulation of UGT enzyme activities. Further clinical studies are warranted to investigate the in vivo extent of the observed interactions. PMID:21632963

  3. Gene replacement therapy for genetic hepatocellular jaundice.

    PubMed

    van Dijk, Remco; Beuers, Ulrich; Bosma, Piter J

    2015-06-01

    Jaundice results from the systemic accumulation of bilirubin, the final product of the catabolism of haem. Inherited liver disorders of bilirubin metabolism and transport can result in reduced hepatic uptake, conjugation or biliary secretion of bilirubin. In patients with Rotor syndrome, bilirubin (re)uptake is impaired due to the deficiency of two basolateral/sinusoidal hepatocellular membrane proteins, organic anion-transporting polypeptide 1B1 (OATP1B1) and OATP1B3. Dubin-Johnson syndrome is caused by a defect in the ATP-dependent canalicular transporter, multidrug resistance-associated protein 2 (MRP2), which mediates the export of conjugated bilirubin into bile. Both disorders are benign and not progressive and are characterised by elevated serum levels of mainly conjugated bilirubin. Uridine diphospho-glucuronosyl transferase 1A1 (UGT1A1) is responsible for the glucuronidation of bilirubin; deficiency of this enzyme results in unconjugated hyperbilirubinaemia. Gilbert syndrome is the mild and benign form of inherited unconjugated hyperbilirubinaemia and is mostly caused by reduced promoter activity of the UGT1A1 gene. Crigler-Najjar syndrome is the severe inherited form of unconjugated hyperbilirubinaemia due to mutations in the UGT1A1 gene, which can cause kernicterus early in life and can be even lethal when left untreated. Due to major disadvantages of the current standard treatments for Crigler-Najjar syndrome, phototherapy and liver transplantation, new effective therapeutic strategies are under development. Here, we review the clinical features, pathophysiology and genetic background of these inherited disorders of bilirubin metabolism and transport. We also discuss the upcoming treatment option of viral gene therapy for genetic disorders such as Crigler-Najjar syndrome and the possible immunological consequences of this therapy.

  4. Studies on the flavonoid substrates of human UDP-glucuronosyl transferase (UGT) 2B7.

    PubMed

    Xie, Shenggu; You, Linya; Zeng, Su

    2007-08-01

    Flavonoids are found in fruits, vegetables, nuts, seeds, herbs, spices, stems and flowers, as well as in tea and red wine. They are prominent components of citrus fruits and other food sources, are consumed regularly with the human diet, and have been shown to have many biological functions, including antioxidant and chelating properties. This study suggests features of the flavonoid structure necessary for it to act as a substrate of human UGT2B7. Generally speaking, flavonol has higher glucuronidation activity than flavones and isoflavones. Differences in C3' position have an important effect on UGT2B7 glucuronidation activity, and the various substituents have different influences on glucuronidation activity. For flavonol, the bulky group at C4' can enhance glucuronidation activity. Increasing the number of hydroxyl groups of flavonoids will increase their glucuronidation activity towards UGT2B7, while conjugation of glycon will weaken the activity, and hydroxyl position can also have an important role in activity. The high glucuronidation efficiency observed with many flavonoids suggests that the contribution of UGT2B7 to the metabolism of flavonoids may be significant. The results suggest that we should not only pay attention to glucuronidation activity, but should also attach importance to the regioselectivity of glucuronidation.

  5. Meta-analysis diagnostic accuracy of SNP-based pathogenicity detection tools: a case of UTG1A1 gene mutations.

    PubMed

    Galehdari, Hamid; Saki, Najmaldin; Mohammadi-Asl, Javad; Rahim, Fakher

    2013-01-01

    Crigler-Najjar syndrome (CNS) type I and type II are usually inherited as autosomal recessive conditions that result from mutations in the UGT1A1 gene. The main objective of the present review is to summarize results of all available evidence on the accuracy of SNP-based pathogenicity detection tools compared to published clinical result for the prediction of in nsSNPs that leads to disease using prediction performance method. A comprehensive search was performed to find all mutations related to CNS. Database searches included dbSNP, SNPdbe, HGMD, Swissvar, ensemble, and OMIM. All the mutation related to CNS was extracted. The pathogenicity prediction was done using SNP-based pathogenicity detection tools include SIFT, PHD-SNP, PolyPhen2, fathmm, Provean, and Mutpred. Overall, 59 different SNPs related to missense mutations in the UGT1A1 gene, were reviewed. Comparing the diagnostic OR, PolyPhen2 and Mutpred have the highest detection 4.983 (95% CI: 1.24 - 20.02) in both, following by SIFT (diagnostic OR: 3.25, 95% CI: 1.07 - 9.83). The highest MCC of SNP-based pathogenicity detection tools, was belong to SIFT (34.19%) followed by Provean, PolyPhen2, and Mutpred (29.99%, 29.89%, and 29.89%, respectively). Hence the highest SNP-based pathogenicity detection tools ACC, was fit to SIFT (62.71%) followed by PolyPhen2, and Mutpred (61.02%, in both). Our results suggest that some of the well-established SNP-based pathogenicity detection tools can appropriately reflect the role of a disease-associated SNP in both local and global structures.

  6. The SET1 Complex Selects Actively Transcribed Target Genes via Multivalent Interaction with CpG Island Chromatin.

    PubMed

    Brown, David A; Di Cerbo, Vincenzo; Feldmann, Angelika; Ahn, Jaewoo; Ito, Shinsuke; Blackledge, Neil P; Nakayama, Manabu; McClellan, Michael; Dimitrova, Emilia; Turberfield, Anne H; Long, Hannah K; King, Hamish W; Kriaucionis, Skirmantas; Schermelleh, Lothar; Kutateladze, Tatiana G; Koseki, Haruhiko; Klose, Robert J

    2017-09-05

    Chromatin modifications and the promoter-associated epigenome are important for the regulation of gene expression. However, the mechanisms by which chromatin-modifying complexes are targeted to the appropriate gene promoters in vertebrates and how they influence gene expression have remained poorly defined. Here, using a combination of live-cell imaging and functional genomics, we discover that the vertebrate SET1 complex is targeted to actively transcribed gene promoters through CFP1, which engages in a form of multivalent chromatin reading that involves recognition of non-methylated DNA and histone H3 lysine 4 trimethylation (H3K4me3). CFP1 defines SET1 complex occupancy on chromatin, and its multivalent interactions are required for the SET1 complex to place H3K4me3. In the absence of CFP1, gene expression is perturbed, suggesting that normal targeting and function of the SET1 complex are central to creating an appropriately functioning vertebrate promoter-associated epigenome. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Selective reduction in the expression of UGTs and SULTs, a novel mechanism by which piperine enhances the bioavailability of curcumin in rat.

    PubMed

    Zeng, Xiaohui; Cai, Dake; Zeng, Qiaohuang; Chen, Zhao; Zhong, Guoping; Zhuo, Juncheng; Gan, Haining; Huang, Xuejun; Zhao, Ziming; Yao, Nan; Huang, Dane; Zhang, Chengzhe; Sun, Dongmei; Chen, Yuxing

    2017-01-01

    Curcumin (CUR) is known to exert numerous health-promoting effects in pharmacological studies, but its low bioavailability hinders the development of curcumin as a feasible therapeutic agent. Piperine (PIP) has been reported to enhance the bioavailability of curcumin, but the underlying mechanism remains poorly understood. In an attempt to find the mechanism by which piperine enhances the bioavailability of curcumin, the dosage ratio (CUR: PIP) and pre-treatment with piperine were hypothesized as key factors for improving the bioavailability in this combination. Therefore, combining curcumin with piperine at various dose ratios (1:1 to 100:1) and pre-dosing with piperine (0.5-8 h prior to curcumin) were designed to investigate their contributions to the pharmacokinetic parameters of curcumin in rats and their effects on the expression of UGT and SULT isoforms. It was shown that the C max and AUC 0-t of curcumin were slightly increased by 1.29 and 1.67 fold at a ratio of 20:1, while curcumin exposure was enhanced significantly in all the piperine pre-treated rats (0.5-8 h), peaking at 6 h (a 6.09-fold and 5.97-fold increase in C max and AUC 0-t , p < 0.01), regardless of the unchanged t 1/2 and T max . Also observed was a time-dependent inhibition of the hepatic expression of UGT1A6, 1A8, SULT1A1, 1A3, and the colonic expression of UGT1A6 that occurred within 6 h of piperine pre-treatment but was reversed at 8 h, which correlated with the changes in curcumin exposure. Similarly, the inhibitory effect of piperine on most of the UGTs and SULTs are time-dependent in Caco-2 and HepG2 cells. It is concluded that piperine pre-treatment time-dependently improves the bioavailability of curcumin through the reversible and selective inhibition of UGTs and SULTs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Suppression of abnormal morphology and extracytoplasmic function sigma activity in Bacillus subtilis ugtP mutant cells by expression of heterologous glucolipid synthases from Acholeplasma laidlawii.

    PubMed

    Matsuoka, Satoshi; Seki, Takahiro; Matsumoto, Kouji; Hara, Hiroshi

    2016-12-01

    Glucolipids in Bacillus subtilis are synthesized by UgtP processively transferring glucose from UDP-glucose to diacylglycerol. Here we conclude that the abnormal morphology of a ugtP mutant is caused by lack of glucolipids, since the same morphology arises after abolition of glucolipid production by disruption of pgcA and gtaB, which are involved in UDP-glucose synthesis. Conversely, expression of a monoglucosyldiacylglycerol (MGlcDG) produced by 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii (alMGS) almost completely suppressed the ugtP disruptant phenotype. Activation of extracytoplasmic function (ECF) sigmas (SigM, SigV, and SigX) in the ugtP mutant was decreased by alMGS expression, and was suppressed to low levels by MgSO 4 addition. When alMGS and alDGS (A. laidlawii 1,2-diacylglycerol-3-glucose (1-2)-glucosyltransferase producing diglucosyldiacylglycerol (DGlcDG)) were simultaneously expressed, SigX activation was repressed to wild type level. These observations suggest that MGlcDG molecules are required for maintenance of B. subtilis cell shape and regulation of ECF sigmas, and DGlcDG regulates SigX activity.

  9. Leigh syndrome associated with mitochondrial complex I deficiency due to a novel mutation in the NDUFS1 gene.

    PubMed

    Martín, Miguel A; Blázquez, Alberto; Gutierrez-Solana, Luis G; Fernández-Moreira, Daniel; Briones, Paz; Andreu, Antoni L; Garesse, Rafael; Campos, Yolanda; Arenas, Joaquín

    2005-04-01

    Mutations in the nuclear-encoded subunits of complex I of the mitochondrial respiratory chain are a recognized cause of Leigh syndrome (LS). Recently, 6 mutations in the NDUFS1 gene were identified in 3 families. To describe a Spanish family with LS, complex I deficiency in muscle, and a novel mutation in the NDUFS1 gene. Using molecular genetic approaches, we identified the underlying molecular defect in a patient with LS with a complex I defect. The proband was a child who displayed the clinical features of LS. Muscle biochemistry results showed a complex I defect of the mitochondrial respiratory chain. Sequencing analysis of the mitochondrial DNA-encoded ND genes, the nuclear DNA-encoded NDUFV1, NDUFS1, NDUFS2, NDUFS4, NDUFS6, NDUFS7, NDUFS8, and NDUFAB1 genes, and the complex I assembly factor CIA30 gene revealed a novel homozygous L231V mutation (c.691C-->G) in the NDUFS1 gene. The parents were heterozygous carriers of the L231V mutation. Identifying nuclear mutations as a cause of respiratory chain disorders will enhance the possibility of prenatal diagnosis and help us understand how molecular defects can lead to complex I deficiency.

  10. Cloning and characterization of soybean gene Fg1 encoding flavonol 3-O-glucoside/galactoside (1→6) glucosyltransferase.

    PubMed

    Rojas Rodas, Felipe; Di, Shaokang; Murai, Yoshinori; Iwashina, Tsukasa; Sugawara, Satoko; Mori, Tetsuya; Nakabayashi, Ryo; Yonekura-Sakakibara, Keiko; Saito, Kazuki; Takahashi, Ryoji

    2016-11-01

    Flavonoids are important secondary metabolites in plants. Sugar-sugar glycosyltransferases are involved in the final step of flavonoid biosynthesis and contribute to the structural diversity of flavonoids. This manuscript describes the first cloning of a sugar-sugar glucosyltransferase gene in the UGT family that attaches glucose to the 6″-position of sugar bound to a flavonol. The results provide a glimpse on the possible evolution of sugar-sugar glycosyltransferase genes and identify putative amino acids responsible for the recognition of the hydroxyl group of the sugar moiety and specification of sugar. A scheme for the genetic control of flavonol glycoside biosynthesis is proposed. Flavonol glycosides (FGs) are predominant in soybean leaves and they show substantial differences among genotypes. In previous studies, we identified two flavonoid glycoside glycosyltransferase genes that segregated in recombinant inbred lines developed from a cross between cultivars Nezumisaya and Harosoy; one was responsible for the attachment of glucose to the 2″-position of glucose or galactose that is bound to the 3-position of kaempferol and the other was involved in the attachment of glucose to the 6″-position. This study was conducted to clone and characterize the 6″-glucosyltransferase gene. Linkage mapping indicated that the gene was located in the molecular linkage group I (chromosome 20). Based on the genome sequence, we cloned a candidate cDNA, GmF3G6"Gt from Harosoy but the corresponding cDNA could not be amplified by PCR from Nezumisaya. The coding region of GmF3G6″Gt in Harosoy is 1386 bp long encoding 462 amino acids. This gene was not expressed in leaves of Nezumisaya. The GmF3G6″Gt recombinant protein converted UDP-glucose and kaempferol 3-O-glucoside or kaempferol 3-O-galactoside to kaempferol 3-O-glucosyl-(1→6)-glucoside or kaempferol 3-O-glucosyl-(1→6)-galactoside, respectively. These results indicate that GmF3G6″Gt encodes a flavonol 3-O

  11. Identification and functional characterization of a flax UDP-glycosyltransferase glucosylating secoisolariciresinol (SECO) into secoisolariciresinol monoglucoside (SMG) and diglucoside (SDG).

    PubMed

    Ghose, Kaushik; Selvaraj, Kumarakurubaran; McCallum, Jason; Kirby, Chris W; Sweeney-Nixon, Marva; Cloutier, Sylvie J; Deyholos, Michael; Datla, Raju; Fofana, Bourlaye

    2014-03-28

    Lignans are a class of diphenolic nonsteroidal phytoestrogens often found glycosylated in planta. Flax seeds are a rich source of secoisolariciresinol diglucoside (SDG) lignans. Glycosylation is a process by which a glycosyl group is covalently attached to an aglycone substrate and is catalyzed by uridine diphosphate glycosyltransferases (UGTs). Until now, very little information was available on UGT genes that may play a role in flax SDG biosynthesis. Here we report on the identification, structural and functional characterization of 5 putative UGTs potentially involved in secoisolariciresinol (SECO) glucosylation in flax. Five UGT genes belonging to the glycosyltransferases' family 1 (EC 2.4.x.y) were cloned and characterized. They fall under four UGT families corresponding to five sub-families referred to as UGT74S1, UGT74T1, UGT89B3, UGT94H1, UGT712B1 that all display the characteristic plant secondary product glycosyltransferase (PSPG) conserved motif. However, diversity was observed within this 44 amino acid sequence, especially in the two peptide sequences WAPQV and HCGWNS known to play a key role in the recognition and binding of diverse aglycone substrates and in the sugar donor specificity. In developing flax seeds, UGT74S1 and UGT94H1 showed a coordinated gene expression with that of pinoresinol-lariciresinol reductase (PLR) and their gene expression patterns correlated with SDG biosynthesis. Enzyme assays of the five heterologously expressed UGTs identified UGT74S1 as the only one using SECO as substrate, forming SECO monoglucoside (SMG) and then SDG in a sequential manner. We have cloned and characterized five flax UGTs and provided evidence that UGT74S1 uses SECO as substrate to form SDG in vitro. This study allowed us to propose a model for the missing step in SDG lignan biosynthesis.

  12. Identification and functional characterization of a flax UDP-glycosyltransferase glucosylating secoisolariciresinol (SECO) into secoisolariciresinol monoglucoside (SMG) and diglucoside (SDG)

    PubMed Central

    2014-01-01

    Background Lignans are a class of diphenolic nonsteroidal phytoestrogens often found glycosylated in planta. Flax seeds are a rich source of secoisolariciresinol diglucoside (SDG) lignans. Glycosylation is a process by which a glycosyl group is covalently attached to an aglycone substrate and is catalyzed by uridine diphosphate glycosyltransferases (UGTs). Until now, very little information was available on UGT genes that may play a role in flax SDG biosynthesis. Here we report on the identification, structural and functional characterization of 5 putative UGTs potentially involved in secoisolariciresinol (SECO) glucosylation in flax. Results Five UGT genes belonging to the glycosyltransferases’ family 1 (EC 2.4.x.y) were cloned and characterized. They fall under four UGT families corresponding to five sub-families referred to as UGT74S1, UGT74T1, UGT89B3, UGT94H1, UGT712B1 that all display the characteristic plant secondary product glycosyltransferase (PSPG) conserved motif. However, diversity was observed within this 44 amino acid sequence, especially in the two peptide sequences WAPQV and HCGWNS known to play a key role in the recognition and binding of diverse aglycone substrates and in the sugar donor specificity. In developing flax seeds, UGT74S1 and UGT94H1 showed a coordinated gene expression with that of pinoresinol-lariciresinol reductase (PLR) and their gene expression patterns correlated with SDG biosynthesis. Enzyme assays of the five heterologously expressed UGTs identified UGT74S1 as the only one using SECO as substrate, forming SECO monoglucoside (SMG) and then SDG in a sequential manner. Conclusion We have cloned and characterized five flax UGTs and provided evidence that UGT74S1 uses SECO as substrate to form SDG in vitro. This study allowed us to propose a model for the missing step in SDG lignan biosynthesis. PMID:24678929

  13. Dose-Finding and Pharmacokinetic Study to Optimize the Dosing of Irinotecan According to the UGT1A1 Genotype of Patients With Cancer

    PubMed Central

    Innocenti, Federico; Schilsky, Richard L.; Ramírez, Jacqueline; Janisch, Linda; Undevia, Samir; House, Larry K.; Das, Soma; Wu, Kehua; Turcich, Michelle; Marsh, Robert; Karrison, Theodore; Maitland, Michael L.; Salgia, Ravi; Ratain, Mark J.

    2014-01-01

    Purpose The risk of severe neutropenia from treatment with irinotecan is related in part to UGT1A1*28, a variant that reduces the elimination of SN-38, the active metabolite of irinotecan. We aimed to identify the maximum-tolerated dose (MTD) and dose-limiting toxicity (DLT) of irinotecan in patients with advanced solid tumors stratified by the *1/*1, *1/*28, and *28/*28 genotypes. Patients and Methods Sixty-eight patients received an intravenous flat dose of irinotecan every 3 weeks. Forty-six percent of the patients had the *1/*1 genotype, 41% had the *1/*28 genotype, and 13% had the *28/*28 genotype. The starting dose of irinotecan was 700 mg in patients with the *1/*1 and *1/*28 genotypes and 500 mg in patients with the *28/*28 genotype. Pharmacokinetic evaluation was performed at cycle 1. Results In patients with the *1/*1 genotype, the MTD was 850 mg (four DLTs per 16 patients), and 1,000 mg was not tolerated (two DLTs per six patients). In patients with the *1/*28 genotype, the MTD was 700 mg (five DLTs per 22 patients), and 850 mg was not tolerated (four DLTs per six patients). In patients with the *28/*28 genotype, the MTD was 400 mg (one DLT per six patients), and 500 mg was not tolerated (three DLTs per three patients). The DLTs were mainly myelosuppression and diarrhea. Irinotecan clearance followed linear kinetics. At the MTD for each genotype, dosing by genotype resulted in similar SN-38 areas under the curve (AUCs; r2 = 0.0003; P = .97), but the irinotecan AUC was correlated with the actual dose (r2 = 0.39; P < .001). Four of 48 patients with disease known to be responsive to irinotecan achieved partial response. Conclusion The UGT1A1*28 genotype can be used to individualize dosing of irinotecan. Additional studies should evaluate the effect of genotype-guided dosing on efficacy in patients receiving irinotecan. PMID:24958824

  14. Hepatic expression patterns of aryl hydrocarbon receptor, pregnane X receptor, two cytochrome P450s and five phase II metabolism genes responsive to 17alpha-methyltestosterone in rare minnow Gobiocypris rarus.

    PubMed

    Gao, Jiancao; Liu, Shaozhen; Zhang, Yingying; Yuan, Cong; Yang, Yanping; Wang, Zaizhao

    2014-05-01

    17Alpha-methyltestosterone (MT), a synthetic androgen, is widely used in aquaculture. Aquatic organisms can receive continuous exposure to residual MT throughout their lives. Aiming to evaluate the effects of MT on genes involved in biotransformation pathway, meanwhile attempting to unravel the MT metabolic pathway at the transcriptional level in fish, here we isolated the cDNAs of previously unreported AHR2, Sult1 st1, Ugt2a1 and Ugt2b6 in rare minnow, and predominantly investigated the hepatic transcriptional patterns of AHR2, PXR and five biotransformation genes after MT exposure in both genders adult rare minnow Gobiocypris rarus. The present findings suggest that AHR2 and PXR should play important roles in regulating biotransformation enzymes related to MT catabolism, moreover, CYP1A, CYP3A, SULT1 ST4, SULT1 ST6 and UGT2A1 may play certain roles in catabolism of MT in adult G. rarus. Additionally, UGT2A1 may make greater contribution than SULT1 ST4 and SULT1 ST6 in MT catabolism in males. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. GA binding protein augments autophagy via transcriptional activation of BECN1-PIK3C3 complex genes

    PubMed Central

    Zhu, Wan; Swaminathan, Gayathri; Plowey, Edward D

    2014-01-01

    Macroautophagy is a vesicular catabolic trafficking pathway that is thought to protect cells from diverse stressors and to promote longevity. Recent studies have revealed that transcription factors play important roles in the regulation of autophagy. In this study, we have identified GA binding protein (GABP) as a transcriptional regulator of the combinatorial expression of BECN1-PIK3C3 complex genes involved in autophagosome initiation. We performed bioinformatics analyses that demonstrated highly conserved putative GABP sites in genes that encode BECN1/Beclin 1, several BECN1 interacting proteins, and downstream autophagy proteins including the ATG12–ATG5-ATG16L1 complex. We demonstrate that GABP binds to the promoter regions of BECN1-PIK3C3 complex genes and activates their transcriptional activities. Knockdown of GABP reduced BECN1-PIK3C3 complex transcripts, BECN1-PIK3C3 complex protein levels and autophagy in cultured cells. Conversely, overexpression of GABP increased autophagy. Nutrient starvation increased GABP-dependent transcriptional activity of BECN1-PIK3C3 complex gene promoters and increased the recruitment of GABP to the BECN1 promoter. Our data reveal a novel function of GABP in the regulation of autophagy via transcriptional activation of the BECN1-PIK3C3 complex. PMID:25046113

  16. An Association Between Functional Polymorphisms of the Interleukin 1 Gene Complex and Schizophrenia Using Transmission Disequilibrium Test.

    PubMed

    Kapelski, Pawel; Skibinska, Maria; Maciukiewicz, Malgorzata; Pawlak, Joanna; Dmitrzak-Weglarz, Monika; Szczepankiewicz, Aleksandra; Zaremba, Dorota; Twarowska-Hauser, Joanna

    2016-12-01

    IL1 gene complex has been implicated in the etiology of schizophrenia. To assess whether IL1 gene complex is associated with susceptibility to schizophrenia in Polish population we conducted family-based study. Functional polymorphisms from IL1A (rs1800587, rs17561, rs11677416), IL1B (rs1143634, rs1143643, rs16944, rs4848306, rs1143623, rs1143633, rs1143627) and IL1RN (rs419598, rs315952, rs9005, rs4251961) genes were genotyped in 143 trio with schizophrenia. Statistical analysis was performed using transmission disequilibrium test. We have found a trend toward an association of rs1143627, rs16944, rs1143623 in IL1B gene with the risk of schizophrenia. Our results show a protective effect of allele T of rs4251961 in IL1RN against schizophrenia. We also performed haplotype analysis of IL1 gene complex and found a trend toward an association with schizophrenia of GAGG haplotype (rs1143627, rs16944, rs1143623, rs4848306) in IL1B gene, haplotypes: TG (rs315952, rs9005) and TT (rs4251961, rs419598) in IL1RN. Haplotype CT (rs4251961, rs419598) in IL1RN was found to be associated with schizophrenia. After correction for multiple testing associations did not reach significance level. Our results might support theory that polymorphisms of interleukin 1 complex genes (rs1143627, rs16944, rs1143623, rs4848306 in IL1B gene and rs4251961, rs419598, rs315952, rs9005 in IL1RN gene) are involved in the pathogenesis of schizophrenia, however, none of the results reach significance level after correction for multiple testing.

  17. Regiospecificity of Human UDP-glucuronosyltransferase Isoforms in Chalcone and Flavanone Glucuronidation Determined by Metal Complexation and Tandem Mass Spectrometry

    PubMed Central

    Niemeyer, Emily D.; Brodbelt, Jennifer S.

    2013-01-01

    The glucuronidation of a series of chalcones (2'-hydroxychalcone, 2',4'-dihydroxychalcone, 3,2'-dihydroxychalcone, 4,2'-dihydroxychalcone, and cardamonin) and their corresponding cyclized flavanones (7-hydroxyflavanone, 3'-hydroxyflavanone, 4'-hydroxyflavanone, and alpinetin) by nine human UDP-glucuronosyltransferase (UGT) 1A enzymes was evaluated. A post-column metal complexation LC-MS/MS strategy was used successfully to produce characteristic mass spectrometric product ions that were utilized in combination with elution order trends to identify chalcone and flavanone monoglucuronides unambiguously, thus allowing determination of the regioselectivities of the UGT1A isoforms. The presence of hydroxy groups on the A or B-ring had a significant effect on the glucuronide product yield and the site where glucuronidation occurred. For example, for reaction with UGT1A9, formation of the 2'-O-glucuronide was increased for dihydroxychalcones with A-ring hydroxy substituents. In contrast, although UGT1A8 reacted with 3,2'-dihydroxychalcone and 4,2'-dihydroxychalcone to yield 2'-O-glucuronide products, the presence of a B-ring hydroxy group at the 4' position on cardamonin and 2',4'-dihydroxychalcone quenched the reaction at the OH-2' position. Moreover, the A-ring OH-4 group promoted glucuronidation at the 2' position for the reaction of 4,2'-dihydroxychalcone with UGT1A1 and 1A3. For UGT1A7, hydroxy group substituents on the chalcone A-ring also promoted cyclization and formation of the corresponding flavanone glucuronide. PMID:23713759

  18. Regiospecificity of human UDP-glucuronosyltransferase isoforms in chalcone and flavanone glucuronidation determined by metal complexation and tandem mass spectrometry.

    PubMed

    Niemeyer, Emily D; Brodbelt, Jennifer S

    2013-06-28

    The glucuronidation of a series of chalcones (2'-hydroxychalcone, 2',4'-dihydroxychalcone, 3,2'-dihydroxychalcone, 4,2'-dihydroxychalcone, and cardamonin) and their corresponding cyclized flavanones (7-hydroxyflavanone, 3'-hydroxyflavanone, 4'-hydroxyflavanone, and alpinetin) by eight human UDP-glucuronosyltransferase (UGT) 1A enzymes was evaluated. A postcolumn metal complexation LC-MS/MS strategy was used successfully to produce characteristic mass spectrometric product ions that were utilized in combination with elution order trends to identify chalcone and flavanone monoglucuronides unambiguously, thus allowing determination of the regioselectivities of the UGT1A isoforms. The presence of hydroxy groups on the A- or B-ring had a significant effect on the glucuronide product yield and the site where glucuronidation occurred. For example, for reaction with UGT1A9, formation of the 2'-O-glucuronide was increased for dihydroxychalcones with A-ring hydroxy substituents. In contrast, although UGT1A8 reacted with 3,2'-dihydroxychalcone and 4,2'-dihydroxychalcone to yield 2'-O-glucuronide products, the presence of a B-ring hydroxy group at the 4' position on cardamonin and 2',4'-dihydroxychalcone quenched the reaction at the OH-2' position. Moreover, the A-ring OH-4 group promoted glucuronidation at the 2' position for the reaction of 4,2'-dihydroxychalcone with UGT1A1 and 1A3. For UGT1A7, hydroxy group substituents on the chalcone A-ring also promoted cyclization and formation of the corresponding flavanone glucuronide.

  19. Gene-Gene and Gene-Environment Interactions in the Etiology of Breast Cancer

    DTIC Science & Technology

    2007-06-01

    When you eat fried or baked pork or beef , you normally prefer that: Entire surface is brown with a slight burnt flavor 1...Uridine diphospho-glucuronosyltransferase 1A1 (UGT1A1) is involved in catalyzing estrogen, the hormone that plays a central role in the etiology of...relationship of UGT1A1 genotypes with plasma levels of estrone, estrone sulfate, estradiol, testosterone, and sex hormone binding globulins (SHBG

  20. Characterization of 137 Genomic DNA Reference Materials for 28 Pharmacogenetic Genes

    PubMed Central

    Pratt, Victoria M.; Everts, Robin E.; Aggarwal, Praful; Beyer, Brittany N.; Broeckel, Ulrich; Epstein-Baak, Ruth; Hujsak, Paul; Kornreich, Ruth; Liao, Jun; Lorier, Rachel; Scott, Stuart A.; Smith, Chingying Huang; Toji, Lorraine H.; Turner, Amy; Kalman, Lisa V.

    2017-01-01

    Pharmacogenetic testing is increasingly available from clinical laboratories. However, only a limited number of quality control and other reference materials are currently available to support clinical testing. To address this need, the Centers for Disease Control and Prevention–based Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing community and the Coriell Cell Repositories, has characterized 137 genomic DNA samples for 28 genes commonly genotyped by pharmacogenetic testing assays (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, CYP4F2, DPYD, GSTM1, GSTP1, GSTT1, NAT1, NAT2, SLC15A2, SLC22A2, SLCO1B1, SLCO2B1, TPMT, UGT1A1, UGT2B7, UGT2B15, UGT2B17, and VKORC1). One hundred thirty-seven Coriell cell lines were selected based on ethnic diversity and partial genotype characterization from earlier testing. DNA samples were coded and distributed to volunteer testing laboratories for targeted genotyping using a number of commercially available and laboratory developed tests. Through consensus verification, we confirmed the presence of at least 108 variant pharmacogenetic alleles. These samples are also being characterized by other pharmacogenetic assays, including next-generation sequencing, which will be reported separately. Genotyping results were consistent among laboratories, with most differences in allele assignments attributed to assay design and variability in reported allele nomenclature, particularly for CYP2D6, UGT1A1, and VKORC1. These publicly available samples will help ensure the accuracy of pharmacogenetic testing. PMID:26621101

  1. Cosegregation of intragenic markers with a novel mutation that causes Crigler-Najjar syndrome type I: implication in carrier detection and prenatal diagnosis.

    PubMed Central

    Moghrabi, N; Clarke, D J; Burchell, B; Boxer, M

    1993-01-01

    Crigler-Najjar syndrome type 1 (CN-1) is a familial disorder characterized by severe unconjugated hyperbilirubinemia and jaundice and leads to kernicterus, neurological damage, and eventual death unless treated with liver transplantation. Previous reports identified mutations in the UGT1 gene complex to be the cause of the disease. The total absence of all phenol/bilirubin UGT proteins and their activities in liver homogenate of a CN-1 patient was determined by enzymological and immunochemical analysis. A novel homozygous nonsense mutation (CGA-->TGA) was identified in the patient by the combined techniques of PCR and direct sequencing. This mutation was located in exon 3 of the constant region in the gene complex which is common to all phenol and bilirubin UGTs. The segregation of the mutation in the patient's family was analyzed and confirmed the recessive nature of the disease. Newly developed intragenic polymorphic probes (UGT1* 4 and UGT-Const) were used on Southern blots of MspI-digested genomic DNA of the patient and his family. The segregation of individual alleles within the family was observed from haplotypes generated. Comparison of the segregation of haplotypes with the mutation for the patient and his family revealed the allele identified by the A1-B1-C2 haplotype to be carrying the mutation. The risk of recombination occurring is negligible, because of the intragenic nature of the probes. This study demonstrates the potential usefulness of these probes in carrier detection and prenatal/presymptomatic diagnosis. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:8102509

  2. Unraveling the Mechanism Underlying the Glycosylation and Methylation of Anthocyanins in Peach1[C][W

    PubMed Central

    Cheng, Jun; Wei, Guochao; Zhou, Hui; Gu, Chao; Vimolmangkang, Sornkanok; Liao, Liao; Han, Yuepeng

    2014-01-01

    Modification of anthocyanin plays an important role in increasing its stability in plants. Here, six anthocyanins were identified in peach (Prunus persica), and their structural diversity is attributed to glycosylation and methylation. Interestingly, peach is quite similar to the wild species Prunus ferganensis but differs from both Prunus davidiana and Prunus kansueasis in terms of anthocyanin composition in flowers. This indicates that peach is probably domesticated from P. ferganensis. Subsequently, genes responsible for both methylation and glycosylation of anthocyanins were identified, and their spatiotemporal expression results in different patterns of anthocyanin accumulation in flowers, leaves, and fruits. Two tandem-duplicated genes encoding flavonoid 3-O-glycosyltransferase (F3GT) in peach, PpUGT78A1 and PpUGT78A2, showed different activity toward anthocyanin, providing an example of divergent evolution of F3GT genes in plants. Two genes encoding anthocyanin O-methyltransferase (AOMT), PpAOMT1 and PpAOMT2, are expressed in leaves and flowers, but only PpAOMT2 is responsible for the O-methylation of anthocyanins at the 3′ position in peach. In addition, our study reveals a novel branch of UGT78 genes in plants that lack the highly conserved intron 2 of the UGT gene family, with a great variation of the amino acid residue at position 22 of the plant secondary product glycosyltransferase box. Our results not only provide insights into the mechanisms underlying anthocyanin glycosylation and methylation in peach but will also aid in future attempts to manipulate flavonoid biosynthesis in peach as well as in other plants. PMID:25106821

  3. The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: Animal-plant arms-race and co-evolution.

    PubMed

    Bock, Karl Walter

    2016-01-01

    UDP-glycosyltransferases (UGTs) are major phase II enzymes of a detoxification system evolved in all kingdoms of life. Lipophilic endobiotics such as hormones and xenobiotics including phytoalexins and drugs are conjugated by vertebrates mainly with glucuronic acid, by invertebrates and plants mainly with glucose. Plant-herbivore arms-race has been the major driving force for evolution of large UGT and other enzyme superfamilies. The UGT superfamily is defined by a common protein structure and signature sequence of 44 amino acids responsible for binding the UDP moiety of the sugar donor. Plants developed toxic phytoalexins stored as glucosides. Upon herbivore attack these conjugates are converted to highly reactive compounds. In turn, animals developed large families of UGTs in their intestine and liver to detoxify these phytoalexins. Interestingly, phytoalexins, exemplified by quercetin glucuronides and glucosinolate-derived isocyanates, are known insect attractant pigments in plants, and antioxidants, anti-inflammatory and chemopreventive compounds of humans. It is to be anticipated that phytochemicals may provide a rich source in beneficial drugs. Copyright © 2015. Published by Elsevier Inc.

  4. Upregulation of UDP-Glucuronosyltransferases 1a1 and 1a7 Are Involved in Altered Puerarin Pharmacokinetics in Type II Diabetic Rats.

    PubMed

    Dong, Songtao; Zhang, Maofan; Niu, Huimin; Jiang, Kunyu; Jiang, Jialei; Ma, Yinglin; Wang, Xin; Meng, Shengnan

    2018-06-20

    Puerarin is an isoflavonoid extracted from Pueraria lobata roots, and displays a broad range of pharmacological activities, including antidiabetic activity. However, information about the pharmacokinetics of puerarin in diabetics is scarce. This study was conducted to investigate the difference in pharmacokinetic effects of puerarin in normal rats and rats with diabetes mellitus (DM), and the mechanism involved. DM was induced by a combined high-fat diet (HFD) and streptozotocin (STZ) injection. Plasma concentrations of puerarin in DM, HFD, and control rats were determined after intravenous (20 mg/kg) and oral administration (500 mg/kg) of puerarin, and pharmacokinetic parameters were estimated. The messenger RNA (mRNA) and protein expression levels of Ugt1a1 and Ugt1a7 in rat livers and intestines were measured using qRT-PCR and western blot, respectively. The area under the concentration⁻time curve and the clearance of puerarin in the DM rats statistically differed from those in the control rats ( p <0.05) with both administration routes. The hepatic and intestinal gene and protein expressions of Ugt1a1 and Ugt1a7 were significantly increased in the DM rats ( p <0.05). Therefore, the metabolic changes in diabetes could alter the pharmacokinetics of puerarin. This change could be caused by upregulated uridine diphosphate (UDP)-glucuronosyltransferase activity, which may enhance puerarin clearance, and alter its therapeutic effects.

  5. Inhibition of UDP-glucuronosyltransferase (UGT)-mediated glycyrrhetinic acid 3-O-glucuronidation by polyphenols and triterpenoids.

    PubMed

    Koyama, Mayuko; Shirahata, Tatsuya; Hirashima, Rika; Kobayashi, Yoshinori; Itoh, Tomoo; Fujiwara, Ryoichi

    2017-08-01

    Glycyrrhetinic acid (GA) is an active metabolite of glycyrrhizin, which is a main constituent in licorice (Glycyrrhiza glabra). While GA exhibits a wide variety of pharmacological activities in the body, it is converted to a toxic metabolite GA 3-O-glucuronide by hepatic UDP-glucuronosyltransferases (UGTs). To avoid the development of the toxic metabolite-induced pseudohyperaldosteronism (pseudoaldosteronism), there is a limitation in maximum daily dosage of licorice and in combined usage of other glycyrrhizin-containing natural medicine. In this study, we investigated the inhibitory effects of various polyphenols and triterpenoids on the UGT-mediated GA 3-O-glucuronidation. In human liver microsomes, UGT-mediated GA glucuronidation was significantly inhibited by protopanaxadiol with an IC 50 value of 59.2 μM. Isoliquiritigenin, rosmarinic acid, alisol B, alisol acetate, and catechin moderately inhibited the GA glucuronidation with IC 50 values of 96.4 μM, 125 μM, 160 μM, 163 μM, and 164 μM. Other tested 19 polyphenols and triterpenoids, including liquiritigenin, did not inhibit UGT-mediated GA glucuronidation in human liver microsomes. Our data indicate that relatively higher dosage of licorice can be used without a risk of developing pseudohyperaldosteronism in combination of natural medicine containing protopanaxadiol such as Panax ginseng. Furthermore, supplemental protopanaxadiol and isoliquiritigenin might be useful in preventing licorice-inducing pseudoaldosteronism. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  6. Rescue of bilirubin-induced neonatal lethality in a mouse model of Crigler-Najjar syndrome type I by AAV9-mediated gene transfer

    PubMed Central

    Bortolussi, Giulia; Zentilin, Lorena; Baj, Gabriele; Giraudi, Pablo; Bellarosa, Cristina; Giacca, Mauro; Tiribelli, Claudio; Muro, Andrés F.

    2012-01-01

    Crigler-Najjar type I (CNI) syndrome is a recessively inherited disorder characterized by severe unconjugated hyperbilirubinemia caused by uridine diphosphoglucuronosyltransferase 1A1 (UGT1A1) deficiency. The disease is lethal due to bilirubin-induced neurological damage unless phototherapy is applied from birth. However, treatment becomes less effective during growth, and liver transplantation is required. To investigate the pathophysiology of the disease and therapeutic approaches in mice, we generated a mouse model by introducing a premature stop codon in the UGT1a1 gene, which results in an inactive enzyme. Homozygous mutant mice developed severe jaundice soon after birth and died within 11 d, showing significant cerebellar alterations. To rescue neonatal lethality, newborns were injected with a single dose of adeno-associated viral vector 9 (AAV9) expressing the human UGT1A1. Gene therapy treatment completely rescued all AAV-treated mutant mice, accompanied by lower plasma bilirubin levels and normal brain histology and motor coordination. Our mouse model of CNI reproduces genetic and phenotypic features of the human disease. We have shown, for the first time, the full recovery of the lethal effects of neonatal hyperbilirubinemia. We believe that, besides gene-addition-based therapies, our mice could represent a very useful model to develop and test novel technologies based on gene correction by homologous recombination.—Bortolussi, G., Zentilin, L., Baj, G., Giraudi, P., Bellarosa, C., Giacca, M., Tiribelli, C., Muro, A. F. Rescue of bilirubin-induced neonatal lethality in a mouse model of Crigler-Najjar syndrome type I by AAV9-mediated gene transfer. PMID:22094718

  7. The Mediator Complex MED15 Subunit Mediates Activation of Downstream Lipid-Related Genes by the WRINKLED1 Transcription Factor.

    PubMed

    Kim, Mi Jung; Jang, In-Cheol; Chua, Nam-Hai

    2016-07-01

    The Mediator complex is known to be a master coordinator of transcription by RNA polymerase II, and this complex is recruited by transcription factors (TFs) to target promoters for gene activation or repression. The plant-specific TF WRINKLED1 (WRI1) activates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. However, no Mediator subunit has yet been identified that mediates WRI1 transcriptional activity. Promoter-β-glucuronidase fusion experiments showed that MEDIATOR15 (MED15) is expressed in the same cells in the embryo as WRI1. We found that the Arabidopsis (Arabidopsis thaliana) MED15 subunit of the Mediator complex interacts directly with WRI1 in the nucleus. Overexpression of MED15 or WRI1 increased transcript levels of WRI1 target genes involved in glycolysis and fatty acid biosynthesis; these genes were down-regulated in wild-type or WRI1-overexpressing plants by silencing of MED15 However, overexpression of MED15 in the wri1 mutant also increased transcript levels of WRI1 target genes, suggesting that MED15 also may act with other TFs to activate downstream lipid-related genes. Chromatin immunoprecipitation assays confirmed the association of MED15 with six WRI1 target gene promoters. Additionally, silencing of MED15 resulted in reduced fatty acid content in seedlings and mature seeds, whereas MED15 overexpression increased fatty acid content in both developmental stages. Similar results were found in wri1 mutant and WRI1 overexpression lines. Together, our results indicate that the WRI1/MED15 complex transcriptionally regulates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. © 2016 American Society of Plant Biologists. All Rights Reserved.

  8. The NSL Complex Regulates Housekeeping Genes in Drosophila

    PubMed Central

    Raja, Sunil Jayaramaiah; Holz, Herbert; Luscombe, Nicholas M.; Manke, Thomas; Akhtar, Asifa

    2012-01-01

    MOF is the major histone H4 lysine 16-specific (H4K16) acetyltransferase in mammals and Drosophila. In flies, it is involved in the regulation of X-chromosomal and autosomal genes as part of the MSL and the NSL complexes, respectively. While the function of the MSL complex as a dosage compensation regulator is fairly well understood, the role of the NSL complex in gene regulation is still poorly characterized. Here we report a comprehensive ChIP–seq analysis of four NSL complex members (NSL1, NSL3, MBD-R2, and MCRS2) throughout the Drosophila melanogaster genome. Strikingly, the majority (85.5%) of NSL-bound genes are constitutively expressed across different cell types. We find that an increased abundance of the histone modifications H4K16ac, H3K4me2, H3K4me3, and H3K9ac in gene promoter regions is characteristic of NSL-targeted genes. Furthermore, we show that these genes have a well-defined nucleosome free region and broad transcription initiation patterns. Finally, by performing ChIP–seq analyses of RNA polymerase II (Pol II) in NSL1- and NSL3-depleted cells, we demonstrate that both NSL proteins are required for efficient recruitment of Pol II to NSL target gene promoters. The observed Pol II reduction coincides with compromised binding of TBP and TFIIB to target promoters, indicating that the NSL complex is required for optimal recruitment of the pre-initiation complex on target genes. Moreover, genes that undergo the most dramatic loss of Pol II upon NSL knockdowns tend to be enriched in DNA Replication–related Element (DRE). Taken together, our findings show that the MOF-containing NSL complex acts as a major regulator of housekeeping genes in flies by modulating initiation of Pol II transcription. PMID:22723752

  9. Recruitment by the Repressor Freud-1 of Histone Deacetylase-Brg1 Chromatin Remodeling Complexes to Strengthen HTR1A Gene Repression.

    PubMed

    Souslova, Tatiana; Mirédin, Kim; Millar, Anne M; Albert, Paul R

    2017-12-01

    Five-prime repressor element under dual repression binding protein-1 (Freud-1)/CC2D1A is genetically linked to intellectual disability and implicated in neuronal development. Freud-1 represses the serotonin-1A (5-HT1A) receptor gene HTR1A by histone deacetylase (HDAC)-dependent or HDAC-independent mechanisms in 5-HT1A-negative (e.g., HEK-293) or 5-HT1A-expressing cells (SK-N-SH), respectively. To identify the underlying mechanisms, Freud-1-associated proteins were affinity-purified from HEK-293 nuclear extracts and members of the Brg1/SMARCCA chromatin remodeling and Sin3A-HDAC corepressor complexes were identified. Pull-down assays using recombinant proteins showed that Freud-1 interacts directly with the Brg1 carboxyl-terminal domain; interaction with Brg1 required the carboxyl-terminal of Freud-1. Freud-1 complexes in HEK-293 and SK-N-SH cells differed, with low levels of BAF170/SMARCC2 and BAF57/SMARCE1 in HEK-293 cells and low-undetectable BAF155/SMARCC1, Sin3A, and HDAC1/2 in SK-N-SH cells. Similarly, by quantitative chromatin immunoprecipitation, Brg1-BAF170/57 and Sin3A-HDAC complexes were observed at the HTR1A promoter in HEK-293 cells, whereas in SK-N-SH cells, Sin3A-HDAC proteins were not detected. Quantifying 5-HT1A receptor mRNA levels in cells treated with siRNA to Freud-1, Brg1, or both RNAs addressed the functional role of the Freud-1-Brg1 complex. In HEK-293 cells, 5-HT1A receptor mRNA levels were increased only when both Freud-1 and Brg1 were depleted, but in SK-N-SH cells, depletion of either protein upregulated 5-HT1A receptor RNA. Thus, recruitment by Freud-1 of Brg1, BAF155, and Sin3A-HDAC complexes appears to strengthen repression of the HTR1A gene to prevent its expression inappropriate cell types, while recruitment of the Brg1-BAF170/57 complex is permissive to 5-HT1A receptor expression. Alterations in Freud-1-Brg1 interactions in mutants associated with intellectual disability could impair gene repression leading to altered neuronal

  10. Recruitment by the Repressor Freud-1 of Histone Deacetylase-Brg1 Chromatin Remodeling Complexes to Strengthen HTR1A Gene Repression

    PubMed Central

    Souslova, Tatiana; Mirédin, Kim; Millar, Anne M.

    2017-01-01

    Five-prime repressor element under dual repression binding protein-1 (Freud-1)/CC2D1A is genetically linked to intellectual disability and implicated in neuronal development. Freud-1 represses the serotonin-1A (5-HT1A) receptor gene HTR1A by histone deacetylase (HDAC)-dependent or HDAC-independent mechanisms in 5-HT1A-negative (e.g., HEK-293) or 5-HT1A-expressing cells (SK-N-SH), respectively. To identify the underlying mechanisms, Freud-1-associated proteins were affinity-purified from HEK-293 nuclear extracts and members of the Brg1/SMARCCA chromatin remodeling and Sin3A-HDAC corepressor complexes were identified. Pull-down assays using recombinant proteins showed that Freud-1 interacts directly with the Brg1 carboxyl-terminal domain; interaction with Brg1 required the carboxyl-terminal of Freud-1. Freud-1 complexes in HEK-293 and SK-N-SH cells differed, with low levels of BAF170/SMARCC2 and BAF57/SMARCE1 in HEK-293 cells and low-undetectable BAF155/SMARCC1, Sin3A, and HDAC1/2 in SK-N-SH cells. Similarly, by quantitative chromatin immuno-precipitation, Brg1-BAF170/57 and Sin3A-HDAC complexes were observed at the HTR1A promoter in HEK-293 cells, whereas in SK-N-SH cells, Sin3A-HDAC proteins were not detected. Quantifying 5-HT1A receptor mRNA levels in cells treated with siRNA to Freud-1, Brg1, or both RNAs addressed the functional role of the Freud-1-Brg1 complex. In HEK-293 cells, 5-HT1A receptor mRNA levels were increased only when both Freud-1 and Brg1 were depleted, but in SK-N-SH cells, depletion of either protein upregulated 5-HT1A receptor RNA. Thus, recruitment by Freud-1 of Brg1, BAF155, and Sin3A-HDAC complexes appears to strengthen repression of the HTR1A gene to prevent its expression inappropriate cell types, while recruitment of the Brg1-BAF170/57 complex is permissive to 5-HT1A receptor expression. Alterations in Freud-1-Brg1 interactions in mutants associated with intellectual disability could impair gene repression leading to altered neuronal

  11. Comparison of the inhibition potentials of icotinib and erlotinib against human UDP-glucuronosyltransferase 1A1.

    PubMed

    Cheng, Xuewei; Lv, Xia; Qu, Hengyan; Li, Dandan; Hu, Mengmeng; Guo, Wenzhi; Ge, Guangbo; Dong, Ruihua

    2017-11-01

    UDP-glucuronosyltransferase 1A1 (UGT1A1) plays a key role in detoxification of many potentially harmful compounds and drugs. UGT1A1 inhibition may bring risks of drug-drug interactions (DDIs), hyperbilirubinemia and drug-induced liver injury. This study aimed to investigate and compare the inhibitory effects of icotinib and erlotinib against UGT1A1, as well as to evaluate their potential DDI risks via UGT1A1 inhibition. The results demonstrated that both icotinib and erlotinib are UGT1A1 inhibitors, but the inhibitory effect of icotinib on UGT1A1 is weaker than that of erlotinib. The IC 50 values of icotinib and erlotinib against UGT1A1-mediated NCHN- O -glucuronidation in human liver microsomes (HLMs) were 5.15 and 0.68 μmol/L, respectively. Inhibition kinetic analyses demonstrated that both icotinib and erlotinib were non-competitive inhibitors against UGT1A1-mediated glucuronidation of NCHN in HLMs, with the K i values of 8.55 and 1.23 μmol/L, respectively. Furthermore, their potential DDI risks via UGT1A1 inhibition were quantitatively predicted by the ratio of the areas under the concentration-time curve (AUC) of NCHN. These findings are helpful for the medicinal chemists to design and develop next generation tyrosine kinase inhibitors with improved safety, as well as to guide reasonable applications of icotinib and erlotinib in clinic, especially for avoiding their potential DDI risks via UGT1A1 inhibition.

  12. Genetic variation of genes involved in dihydrotestosterone metabolism and the risk of prostate cancer.

    PubMed

    Setlur, Sunita R; Chen, Chen X; Hossain, Ruhella R; Ha, Jung Sook; Van Doren, Vanessa E; Stenzel, Birgit; Steiner, Eberhard; Oldridge, Derek; Kitabayashi, Naoki; Banerjee, Samprit; Chen, Jin Yun; Schäfer, Georg; Horninger, Wolfgang; Lee, Charles; Rubin, Mark A; Klocker, Helmut; Demichelis, Francesca

    2010-01-01

    Dihydrotestosterone (DHT) is an important factor in prostate cancer (PCA) genesis and disease progression. Given PCA's strong genetic component, we evaluated the possibility that variation in genes involved in DHT metabolism influence PCA risk. We investigated copy number variants (CNV) and single nucleotide polymorphisms (SNP). We explored associations between CNV of uridine diphospho-glucuronosyltransferase (UGT) genes from the 2B subclass, given their prostate specificity and/or involvement in steroid metabolism and PCA risk. We also investigated associations between SNPs in genes (HSD3B1, SRD5A1/2, and AKR1C2) involved in the conversion of testosterone to DHT, and in DHT metabolism and PCA risk. The population consisted of 426 men (205 controls and 221 cases) who underwent prostate-specific antigen screening as part of a PCA early detection program in Tyrol, Austria. No association between CNV in UGT2B17 and UGT2B28 and PCA risk was identified. Men carrying the AA genotype at SNP rs6428830 (HSD3B1) had an odds ratio (OR) of 2.0 [95% confidence intervals (95% CI), 1.1-4.1] compared with men with GG, and men with AG or GG versus AA in rs1691053 (SRD5A1) had an OR of 1.8 (95% CI, 1.04-3.13). Individuals carrying both risk alleles had an OR of 3.1 (95% CI, 1.4-6.7) when compared with men carrying neither (P = 0.005). Controls with the AA genotype on rs7594951 (SRD5A2) tended toward higher serum DHT levels (P = 0.03). This is the first study to implicate the 5alpha-reductase isoform 1 (SRD5A1) and PCA risk, supporting the rationale of blocking enzymatic activity of both isoforms of 5alpha-reductase for PCA chemoprevention.

  13. RNA-Seq profiling reveals novel hepatic gene expression pattern in aflatoxin B1 treated rats.

    PubMed

    Merrick, B Alex; Phadke, Dhiral P; Auerbach, Scott S; Mav, Deepak; Stiegelmeyer, Suzy M; Shah, Ruchir R; Tice, Raymond R

    2013-01-01

    Deep sequencing was used to investigate the subchronic effects of 1 ppm aflatoxin B1 (AFB1), a potent hepatocarcinogen, on the male rat liver transcriptome prior to onset of histopathological lesions or tumors. We hypothesized RNA-Seq would reveal more differentially expressed genes (DEG) than microarray analysis, including low copy and novel transcripts related to AFB1's carcinogenic activity compared to feed controls (CTRL). Paired-end reads were mapped to the rat genome (Rn4) with TopHat and further analyzed by DESeq and Cufflinks-Cuffdiff pipelines to identify differentially expressed transcripts, new exons and unannotated transcripts. PCA and cluster analysis of DEGs showed clear separation between AFB1 and CTRL treatments and concordance among group replicates. qPCR of eight high and medium DEGs and three low DEGs showed good comparability among RNA-Seq and microarray transcripts. DESeq analysis identified 1,026 differentially expressed transcripts at greater than two-fold change (p<0.005) compared to 626 transcripts by microarray due to base pair resolution of transcripts by RNA-Seq, probe placement within transcripts or an absence of probes to detect novel transcripts, splice variants and exons. Pathway analysis among DEGs revealed signaling of Ahr, Nrf2, GSH, xenobiotic, cell cycle, extracellular matrix, and cell differentiation networks consistent with pathways leading to AFB1 carcinogenesis, including almost 200 upregulated transcripts controlled by E2f1-related pathways related to kinetochore structure, mitotic spindle assembly and tissue remodeling. We report 49 novel, differentially-expressed transcripts including confirmation by PCR-cloning of two unique, unannotated, hepatic AFB1-responsive transcripts (HAfT's) on chromosomes 1.q55 and 15.q11, overexpressed by 10 to 25-fold. Several potentially novel exons were found and exon refinements were made including AFB1 exon-specific induction of homologous family members, Ugt1a6 and Ugt1a7c. We find the

  14. CRTC1 Nuclear Translocation Following Learning Modulates Memory Strength via Exchange of Chromatin Remodeling Complexes on the Fgf1 Gene.

    PubMed

    Uchida, Shusaku; Teubner, Brett J W; Hevi, Charles; Hara, Kumiko; Kobayashi, Ayumi; Dave, Rutu M; Shintaku, Tatsushi; Jaikhan, Pattaporn; Yamagata, Hirotaka; Suzuki, Takayoshi; Watanabe, Yoshifumi; Zakharenko, Stanislav S; Shumyatsky, Gleb P

    2017-01-10

    Memory is formed by synapse-to-nucleus communication that leads to regulation of gene transcription, but the identity and organizational logic of signaling pathways involved in this communication remain unclear. Here we find that the transcription cofactor CRTC1 is a critical determinant of sustained gene transcription and memory strength in the hippocampus. Following associative learning, synaptically localized CRTC1 is translocated to the nucleus and regulates Fgf1b transcription in an activity-dependent manner. After both weak and strong training, the HDAC3-N-CoR corepressor complex leaves the Fgf1b promoter and a complex involving the translocated CRTC1, phosphorylated CREB, and histone acetyltransferase CBP induces transient transcription. Strong training later substitutes KAT5 for CBP, a process that is dependent on CRTC1, but not on CREB phosphorylation. This in turn leads to long-lasting Fgf1b transcription and memory enhancement. Thus, memory strength relies on activity-dependent changes in chromatin and temporal regulation of gene transcription on specific CREB/CRTC1 gene targets. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. The Contribution of Common UGT2B10 and CYP2A6 Alleles to Variation in Nicotine Glucuronidation among European Americans

    PubMed Central

    Bloom, A. Joseph; von Weymarn, Linda B.; Martinez, Maribel; Bierut, Laura J.; Goate, Alison; Murphy, Sharon E.

    2014-01-01

    UDP-glucuronosytransferase-2B10 (UGT2B10) is the primary catalyst of nicotine glucuronidation. To develop a predictive genetic model of nicotine metabolism, the conversion of deuterated (D2)-nicotine to D2-nicotine-glucuronide, D2-cotinine, D2-cotinine-glucuronide, and D2-trans-3'-hydroxycotinine were quantified in 188 European Americans, and the contribution of UGT2B10 genotype to variability in first-pass nicotine glucuronidation assessed, following a procedure previously applied to nicotine C-oxidation. The proportion of total nicotine converted to nicotine-glucuronide (D2-nicotine-glucuronide/ (D2-nicotine +D2-nicotine-glucuronide +D2-cotinine +D2-cotinine-glucuronide +D2-trans-3'-hydroxycotinine)) was the primary phenotype. The variant, rs61750900T (D67Y) (minor allele frequency (MAF) = 10%), is confirmed to abolish nicotine glucuronidation activity. Another variant, rs112561475G (N397D) (MAF = 2%), is significantly associated with enhanced glucuronidation. rs112561475G is the ancestral allele of a well-conserved amino acid, indicating that the majority of human UGT2B10 alleles are derived hypomorphic alleles. CYP2A6 and UGT2B10 genotype explain 53% of the variance in oral nicotine glucuronidation in this sample. CYP2A6 and UGT2B10 genetic variants are also significantly associated with un-deuterated (D0) nicotine glucuronidation in subjects smoking ad libitum. We find no evidence for further common variation markedly influencing hepatic UGT2B10 expression in European Americans. PMID:24192532

  16. Effects of life cycle and leaves location on gene expression and glycoside biosynthesis pathway in Stevia rebaudiana Bertoni.

    PubMed

    Ghaheri, Matin; Adibrad, Elaheh; Safavi, Seyed Mehdi; Kahrizi, Danial; Soroush, Ali; Muhammadi, Saare; Ghorbani, Tayebeh; Sabzevari, Ali; Ansarypour, Zahra; Rahmanian, Elham

    2018-02-10

    Stevia rebaudiana Bertoni is One of the most important biologically sourced and low-calorie sweeteners that known as "Sweet Weed". It contains steviol glycosides that they are about 200-300 times sweeter than sucrose. Tissue culture is the best method with high efficiency that can overcome to problems of traditional methods, and it is the most useful tools for studying stress tolerance mechanisms under in vitro conditions to obtain drought tolerance. In the present research, we investigated the impact of life cycle, leaves location and the harvesting time on expression of UGT74G1 and UGT76G1 as well as steviol glycosides accumulation. The highest gene expression of both UGT74G1 and UGT76G1 (207.677 and 208.396 Total Lab unit, respectively) was observed in young leaves in the second vegetative year. Also, the highest amount of stevioside accumulation (13.04) was due to the old leaves in vegetative stage which had significant differences with other effects whereas the lowest accumulation (7.47) was seen at young leaves at vegetative stage. Interestingly, the highest level of rebaudioside a production (15.74) was occurred at the young leaves at vegetative stage. There was significant differences between life cycle and leaves location on steviol glycoside production in stevia.

  17. Identification of UDP-glucuronosyltransferases 1A1, 1A3 and 2B15 as the main contributors to glucuronidation of bakuchiol, a natural biologically active compound.

    PubMed

    Li, Feng; Wang, Shuai; Lu, Danyi; Wang, Yifei; Dong, Dong; Wu, Baojian

    2017-05-01

    1. Bakuchiol, one of the main active compounds of Psoralea corylifolia, possesses a variety of pharmacological activities such as anti-tumor and anti-aging effects. Here, we aimed to characterize the glucuronidation of bakuchiol using human liver microsomes (HLM) and expressed UDP-glucuronosyltransferase (UGT) enzymes. 2. The glucuronide of bakuchiol was confirmed by liquid chromatography-mass spectrometry (LC-MS) and β-glucuronidase hydrolysis assay. Glucuronidation rates and kinetic parameters were derived by enzymatic incubation and model fitting. Activity correlation analyses were performed to identify the main UGT isoforms contributing to hepatic metabolism of bakuchiol. 3. Among the three UGT enzymes (i.e., UGT1A1, UGT1A3 and UGT2B15) capable of catalyzing bakuchiol glucuronidation, UGT2B15 showed the highest activity with a CL int value of 100 μl/min/nmol. Bakuchiol glucuronidation was strongly correlated with glucuronidation of 5-hydroxyrofecoxib (r = 0.933; p < 0.001), 3-O-glucuronidation of β-estradiol (r = 0.719; p < 0.01) and significantly correlated with 24-O-glucuronidation of CDCA (r = 0.594; p < 0.05). In addition, a marked species difference existed in hepatic glucuronidation of bakuchiol. 4. In conclusion, UGT1A1, UGT1A3 and UGT2B15 were identified as the main contributors to glucuronidation of bakuchiol.

  18. Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase.

    PubMed

    Jackson, R G; Lim, E K; Li, Y; Kowalczyk, M; Sandberg, G; Hoggett, J; Ashford, D A; Bowles, D J

    2001-02-09

    Biochemical characterization of recombinant gene products following a phylogenetic analysis of the UDP-glucosyltransferase (UGT) multigene family of Arabidopsis has identified one enzyme (UGT84B1) with high activity toward the plant hormone indole-3-acetic acid (IAA) and three related enzymes (UGT84B2, UGT75B1, and UGT75B2) with trace activities. The identity of the IAA conjugate has been confirmed to be 1-O-indole acetyl glucose ester. A sequence annotated as a UDP-glucose:IAA glucosyltransferase (IAA-UGT) in the Arabidopsis genome and expressed sequence tag data bases given its similarity to the maize iaglu gene sequence showed no activity toward IAA. This study describes the first biochemical analysis of a recombinant IAA-UGT and provides the foundation for future genetic approaches to understand the role of 1-O-indole acetyl glucose ester in Arabidopsis.

  19. The Chlamydomonas Dhc1 gene encodes a dynein heavy chain subunit required for assembly of the I1 inner arm complex.

    PubMed Central

    Myster, S H; Knott, J A; O'Toole, E; Porter, M E

    1997-01-01

    Multiple members of the dynein heavy chain (Dhc) gene family have been recovered in several organisms, but the relationships between these sequences and the Dhc isoforms that they encode are largely unknown. To identify Dhc loci and determine the specific functions of the individual Dhc isoforms, we have screened a collection of motility mutants generated by insertional mutagenesis in Chlamydomonas. In this report, we characterize one strain, pf9-3, in which the insertion event was accompanied by a deletion of approximately 13 kb of genomic DNA within the transcription unit of the Dhc1 gene. Northern blot analysis confirms that pf9-3 is a null mutation. Biochemical and structural studies of isolated axonemes demonstrate that the pf9-3 mutant fails to assemble the I1 inner arm complex, a two-headed dynein isoform composed of two Dhcs (1 alpha and 1 beta) and three intermediate chains. To determine if the Dhc1 gene product corresponds to one of the Dhcs of the I1 complex, antibodies were generated against a Dhc1-specific peptide sequence. Immunoblot analysis reveals that the Dhc1 gene encodes the 1 alpha Dhc subunit. These studies thus, identify the first inner arm Dhc locus to be described in any organism and further demonstrate that the 1 alpha Dhc subunit plays an essential role in the assembly of the I1 inner arm complex. Images PMID:9247642

  20. Candidate gene polymorphisms in patients with acetaminophen-induced acute liver failure.

    PubMed

    Court, Michael H; Peter, Inga; Hazarika, Suwagmani; Vasiadi, Magdalini; Greenblatt, David J; Lee, William M

    2014-01-01

    Acetaminophen is a leading cause of acute liver failure (ALF). Genetic differences might predispose some individuals to develop ALF. In this exploratory study, we evaluated genotype frequency differences among patients enrolled by the ALF Study Group who had developed ALF either intentionally from a single-time-point overdose of acetaminophen (n = 78), unintentionally after chronic high doses of acetaminophen (n = 79), or from causes other than acetaminophen (n = 103). The polymorphisms evaluated included those in genes encoding putative acetaminophen-metabolizing enzymes (UGT1A1, UGT1A6, UGT1A9, UGT2B15, SULT1A1, CYP2E1, and CYP3A5) as well as CD44 and BHMT1. Individuals carrying the CYP3A5 rs776746 A allele were overrepresented among ALF patients who had intentionally overdosed with acetaminophen, with an odds ratio of 2.3 (95% confidence interval, 1.1-4.9; P = 0.034) compared with all other ALF patients. This finding is consistent with the enhanced bioactivation of acetaminophen by the CYP3A5 enzyme. Persons homozygous for the CD44 rs1467558 A allele were also overrepresented among patients who had unintentionally developed ALF from chronic acetaminophen use, with an odds ratio of 4.0 (1.0-17.2, P = 0.045) compared with all other ALF subjects. This finding confirms a prior study that found elevated serum liver enzyme levels in healthy volunteers with the CD44 rs1467558 AA genotype who had consumed high doses of acetaminophen for up to 2 weeks. However, both genetic associations were considered relatively weak, and they were not statistically significant after adjustment for multiple comparisons testing. Nevertheless, both CYP3A5 rs776746 and CD44 rs1467558 warrant further investigation as potential genomic markers of enhanced risk of acetaminophen-induced ALF.

  1. Microarray gene expression analysis of uterosacral ligaments in uterine prolapse.

    PubMed

    Ak, Handan; Zeybek, Burak; Atay, Sevcan; Askar, Niyazi; Akdemir, Ali; Aydin, Hikmet Hakan

    2016-11-01

    Pelvic organ prolapse (POP) is a major health problem that impairs the quality of life with a wide clinical spectrum. Since the uterosacral ligaments provide primary support for the uterus and the upper vagina, we hypothesize that the disruption of these ligaments may lead to a loss of support and eventually contribute to POP. In this study, we therefore investigated whether there are any differences in the transcription profile of uterosacral ligaments in patients with POP when compared to those of the control samples. Seventeen women with POP and 8 non-POP controls undergoing hysterectomy for benign conditions were included in the study. Affymetrix® Gene Chip microarrays (Human Hu 133 plus 2.0) were used for whole genome gene expression profiling analysis. There was 1 significantly down-regulated gene, NKX2-3 in patients with POP compared to the controls (p=4.28464e-013). KIF11 gene was found to be significantly down-regulated in patients with ≥3 deliveries compared to patients with <3 deliveries (p=0.0156237). UGT1A1 (p=2.43388e-005), SCARB1 (p=1.19001e-006) and NKX2-3 (p=2.17966e-013) genes were found to be significantly down-regulated in the premenopausal patients compared to the premenopausal controls. UGT1A1 gene was also found to be significantly down-regulated in the post menopausal patients compared to the postmenopausal controls (p=0.0005). This study provides evidence for a significant down-regulation of the genes that take role in cell cycle, proliferation and embryonic development along with cell adhesion process on the development of POP for the first time. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  2. Identification and characterization of naturally occurring inhibitors against UDP-glucuronosyltransferase 1A1 in Fructus Psoraleae (Bu-gu-zhi)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin-Xin; Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023; Lv, Xia

    As an edible traditional Chinese herb, Fructus psoraleae (FP) has been widely used in Asia for the treatment of vitiligo, bone fracture and osteoporosis. Several cases on markedly elevated bilirubin and acute liver injury following administration of FP and its related proprietary medicine have been reported, but the mechanism in FP-associated toxicity has not been well investigated yet. This study aimed to investigate the inhibitory effects of FP extract and its major constituents against human UDP-glucuronosyltransferase 1A1 (UGT1A1), the key enzyme responsible for metabolic elimination of bilirubin. To this end, N-(3-carboxy propyl)-4-hydroxy-1,8-naphthalimide (NCHN), a newly developed specific fluorescent probe formore » UGT1A1, was used to evaluate the inhibitory effects of FP extract or its fractions in human liver microsomes (HLM), while LC-UV fingerprint and UGT1A1 inhibition profile were combined to identity and characterize the naturally occurring inhibitors of UGT1A1 in FP. Our results demonstrated that both the extract of FP and five major components of FP displayed evident inhibitory effects on UGT1A1 in HLM. Among these five identified naturally occurring inhibitors, bavachin and corylifol A were found to be strong inhibitors of UGT1A1 with the inhibition kinetic parameters (K{sub i}) values lower than 1 μM, while neobavaisoflavone, isobavachalcone, and bavachinin displayed moderate inhibitory effects against UGT1A1 in HLM, with the K{sub i} values ranging from 1.61 to 9.86 μM. These findings suggested that FP contains natural compounds with potent inhibitory effects against human UGT1A1, which may be one of the important reasons for triggering FP-associated toxicity, including elevated bilirubin levels and liver injury. - Graphical abstract: LC-UV fingerprint and UGT1A1 inhibition profiles were combined to identity and characterize the natural inhibitors of UGT1A1 in F. psoraleae for the first time. Five major components in F. psoraleae were

  3. A novel gene, MdSSK1, as a component of the SCF complex rather than MdSBP1 can mediate the ubiquitination of S-RNase in apple.

    PubMed

    Yuan, Hui; Meng, Dong; Gu, Zhaoyu; Li, Wei; Wang, Aide; Yang, Qing; Zhu, Yuandi; Li, Tianzhong

    2014-07-01

    As a core factor in S-RNase-based gametophytic self-incompatibility (GSI), the SCF (SKP1-Cullin1-F-box-Rbx1) complex (including pollen determinant SLF, S-locus-F-box) functions as an E3 ubiquitin ligase on non-self S-RNase. The SCF complex is formed by SKP1 bridging between SLF, CUL1, and Rbx1; however, it is not known whether an SCF complex lacking SKP1 can mediate the ubiquitination of S-RNase. Three SKP1-like genes from pollen were cloned based on the structural features of the SLF-interacting-SKP1-like (SSK) gene and the 'Golden Delicious' apple genome. These genes have a motif of five amino acids following the standard 'WAFE' at the C terminal and, in addition, contain eight sheets and two helices. All three genes were expressed exclusively in pollen. In the yeast two-hybrid and pull-down assays only one was found to interact with MdSFBB and MdCUL1, suggesting it is the SLF-interacting SKP1-like gene in apple which was named MdSSK1. In vitro experiments using MdSSK1, S2-MdSFBB1 (S2-Malus domestica S-locus-F-box brother) and MdCUL1 proteins incubated with S 2-RNase and ubiquitin revealed that the SCF complex ubiquitinylates S-RNase in vitro, while MdSBP1 (Malus domestica S-RNase binding protein 1) could not functionally replace MdSSK1 in the SCF complex in ubiquitinylating S-RNase. According to the above experiments, MdSBP1 is probably the only factor responsible for recognition with S-RNase, while not a component of the SCF complex, and an SCF complex containing MdSSK1 is required for mediating the ubiquitination of S-RNase. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Effect of NET-1 siRNA conjugated sub-micron bubble complex combined with low-frequency ultrasound exposure in gene transfection

    PubMed Central

    Wu, Bolin; Liang, Xitian; Jing, Hui; Han, Xue; Sun, Yixin; Guo, Cunli; Liu, Ying; Cheng, Wen

    2018-01-01

    The present study evaluated the effect of NET-1 siRNA-conjugated sub-micron bubble (SMB) complexes combined with low-frequency ultrasound exposure in gene transfection. The NET-1 gene was highly expressed level in SMMC-7721 human hepatocellular carcinoma cell line. The cells were divided into seven groups and treated with different conditions. The groups with or without low-frequency ultrasound exposure, groups of adherent cells, and suspension cells were separated. The NET-1 siRNA-conjugated SMB complexes were made in the laboratory and tested by Zetasizer Nano ZS90 analyzer. Flow cytometry was used to estimate the transfection efficiency and cellular apoptosis. Western blot and quantitative real-time polymerase chain reaction (qPCR) were used for the estimation of the protein and mRNA expressions, respectively. Transwell analysis determined the migration and invasion capacities of the tumor cells. The results did not show any difference in the transfection efficiency between adherent and suspension cells. However, the NET-1 siRNA-SMB complexes combined with low-frequency ultrasound exposure could enhance the gene transfection effectively. In summary, the NET-1 siRNA-SMB complexes appeared to be promising gene vehicle. PMID:29423111

  5. RNA-Seq Profiling Reveals Novel Hepatic Gene Expression Pattern in Aflatoxin B1 Treated Rats

    PubMed Central

    Merrick, B. Alex; Phadke, Dhiral P.; Auerbach, Scott S.; Mav, Deepak; Stiegelmeyer, Suzy M.; Shah, Ruchir R.; Tice, Raymond R.

    2013-01-01

    Deep sequencing was used to investigate the subchronic effects of 1 ppm aflatoxin B1 (AFB1), a potent hepatocarcinogen, on the male rat liver transcriptome prior to onset of histopathological lesions or tumors. We hypothesized RNA-Seq would reveal more differentially expressed genes (DEG) than microarray analysis, including low copy and novel transcripts related to AFB1’s carcinogenic activity compared to feed controls (CTRL). Paired-end reads were mapped to the rat genome (Rn4) with TopHat and further analyzed by DESeq and Cufflinks-Cuffdiff pipelines to identify differentially expressed transcripts, new exons and unannotated transcripts. PCA and cluster analysis of DEGs showed clear separation between AFB1 and CTRL treatments and concordance among group replicates. qPCR of eight high and medium DEGs and three low DEGs showed good comparability among RNA-Seq and microarray transcripts. DESeq analysis identified 1,026 differentially expressed transcripts at greater than two-fold change (p<0.005) compared to 626 transcripts by microarray due to base pair resolution of transcripts by RNA-Seq, probe placement within transcripts or an absence of probes to detect novel transcripts, splice variants and exons. Pathway analysis among DEGs revealed signaling of Ahr, Nrf2, GSH, xenobiotic, cell cycle, extracellular matrix, and cell differentiation networks consistent with pathways leading to AFB1 carcinogenesis, including almost 200 upregulated transcripts controlled by E2f1-related pathways related to kinetochore structure, mitotic spindle assembly and tissue remodeling. We report 49 novel, differentially-expressed transcripts including confirmation by PCR-cloning of two unique, unannotated, hepatic AFB1-responsive transcripts (HAfT’s) on chromosomes 1.q55 and 15.q11, overexpressed by 10 to 25-fold. Several potentially novel exons were found and exon refinements were made including AFB1 exon-specific induction of homologous family members, Ugt1a6 and Ugt1a7c. We find

  6. Complex phylogeny and gene expression patterns of members of the NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) in wheat

    PubMed Central

    Buchner, Peter; Hawkesford, Malcolm J.

    2014-01-01

    NPF (formerly referred to as low-affinity NRT1) and ‘high-affinity’ NRT2 nitrate transporter genes are involved in nitrate uptake by the root, and transport and distribution of nitrate within the plant. The NPF gene family consists of 53 members in Arabidopsis thaliana, however only 11 of these have been functionally characterized. Although homologous genes have been identified in genomes of different plant species including some cereals, there is little information available for wheat (Triticum aestivum). Sixteen genes were identified in wheat homologous to characterized Arabidopsis low-affinity nitrate transporter NPF genes, suggesting a complex wheat NPF gene family. The regulation of wheat NFP genes by plant N-status indicated involvement of these transporters in substrate transport in relation to N-metabolism. The complex expression pattern in relation to tissue specificity, nitrate availability and senescence may be associated with the complex growth patterns of wheat depending on sink/source demands, as well as remobilization during grain filling. PMID:24913625

  7. Characterization of 137 Genomic DNA Reference Materials for 28 Pharmacogenetic Genes: A GeT-RM Collaborative Project.

    PubMed

    Pratt, Victoria M; Everts, Robin E; Aggarwal, Praful; Beyer, Brittany N; Broeckel, Ulrich; Epstein-Baak, Ruth; Hujsak, Paul; Kornreich, Ruth; Liao, Jun; Lorier, Rachel; Scott, Stuart A; Smith, Chingying Huang; Toji, Lorraine H; Turner, Amy; Kalman, Lisa V

    2016-01-01

    Pharmacogenetic testing is increasingly available from clinical laboratories. However, only a limited number of quality control and other reference materials are currently available to support clinical testing. To address this need, the Centers for Disease Control and Prevention-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing community and the Coriell Cell Repositories, has characterized 137 genomic DNA samples for 28 genes commonly genotyped by pharmacogenetic testing assays (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, CYP4F2, DPYD, GSTM1, GSTP1, GSTT1, NAT1, NAT2, SLC15A2, SLC22A2, SLCO1B1, SLCO2B1, TPMT, UGT1A1, UGT2B7, UGT2B15, UGT2B17, and VKORC1). One hundred thirty-seven Coriell cell lines were selected based on ethnic diversity and partial genotype characterization from earlier testing. DNA samples were coded and distributed to volunteer testing laboratories for targeted genotyping using a number of commercially available and laboratory developed tests. Through consensus verification, we confirmed the presence of at least 108 variant pharmacogenetic alleles. These samples are also being characterized by other pharmacogenetic assays, including next-generation sequencing, which will be reported separately. Genotyping results were consistent among laboratories, with most differences in allele assignments attributed to assay design and variability in reported allele nomenclature, particularly for CYP2D6, UGT1A1, and VKORC1. These publicly available samples will help ensure the accuracy of pharmacogenetic testing. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  8. Expression of UDP-glucuronosyltransferase 1A4 in human placenta at term

    PubMed Central

    Østby, Lene; Stuen, Ina; Sundby, Eirik

    2010-01-01

    The placenta contains a large variety of metabolizing enzymes, among them UDP-glucuronosyltransferase (UGT). Several UGT2B isozymes have so far been detected in human placenta, but little is known on placental expression of UGT1A isozymes. The antiepileptic drug lamotrigine (LTG) is a UGT1A4-substrate, and its serum concentration falls by over 50% during pregnancy, leading to impaired seizure control. The placenta may be involved in this. Microsomes from term placentas of 4 LTG-users and 10 healthy control subjects were prepared. Western blot analysis detected UGT1A proteins in all placentas. The presence of UGT1A4 in placenta from LTG users was confirmed with UGT1A4 commercial standard and a specific UGT1A4 primary antibody. Since LTG is primarily metabolized by UGT1A4 and this isozyme is shown to be present in placenta at term, it may be hypothesized that the placenta is involved in the fall of LTG serum concentrations during pregnancy. PMID:21302032

  9. Influence of Genetic Ancestry on INDEL Markers of NFKβ1, CASP8, PAR1, IL4 and CYP19A1 Genes in Leprosy Patients.

    PubMed

    Pinto, Pablo; Salgado, Claudio; Santos, Ney Pereira Carneiro; Santos, Sidney; Ribeiro-dos-Santos, Ândrea

    2015-01-01

    Leprosy is an insidious infectious disease caused by the obligate intracellular bacteria Mycobacterium leprae, and host genetic factors can modulate the immune response and generate distinct categories of leprosy susceptibility that are also influenced by genetic ancestry. We investigated the possible effects of CYP19A1 [rs11575899], NFKβ1 [rs28362491], IL1α [rs3783553], CASP8 [rs3834129], UGT1A1 [rs8175347], PAR1 [rs11267092], CYP2E1 [INDEL 96pb] and IL4 [rs79071878] genes in a group of 141 leprosy patients and 180 healthy individuals. The INDELs were typed by PCR Multiplex in ABI PRISM 3130 and analyzed with GeneMapper ID v3.2. The NFKβ1, CASP8, PAR1 and IL4 INDELs were associated with leprosy susceptibility, while NFKβ1, CASP8, PAR1 and CYP19A1 were associated with the MB (Multibacilary) clinical form of leprosy. NFKβ1 [rs28362491], CASP8 [rs3834129], PAR1 [rs11267092] and IL4 [rs79071878] genes are potential markers for susceptibility to leprosy development, while the INDELs in NFKβ1, CASP8, PAR1 and CYP19A1 (rs11575899) are potential markers for the severe clinical form MB. Moreover, all of these markers are influenced by genetic ancestry, and European contribution increases the risk to leprosy development, in other hand an increase in African contribution generates protection against leprosy.

  10. Evolution of a Major Drug Metabolizing Enzyme Defect in the Domestic Cat and Other Felidae: Phylogenetic Timing and the Role of Hypercarnivory

    PubMed Central

    Shrestha, Binu; Reed, J. Michael; Starks, Philip T.; Kaufman, Gretchen E.; Goldstone, Jared V.; Roelke, Melody E.; O'Brien, Stephen J.; Koepfli, Klaus-Peter; Frank, Laurence G.; Court, Michael H.

    2011-01-01

    The domestic cat (Felis catus) shows remarkable sensitivity to the adverse effects of phenolic drugs, including acetaminophen and aspirin, as well as structurally-related toxicants found in the diet and environment. This idiosyncrasy results from pseudogenization of the gene encoding UDP-glucuronosyltransferase (UGT) 1A6, the major species-conserved phenol detoxification enzyme. Here, we established the phylogenetic timing of disruptive UGT1A6 mutations and explored the hypothesis that gene inactivation in cats was enabled by minimal exposure to plant-derived toxicants. Fixation of the UGT1A6 pseudogene was estimated to have occurred between 35 and 11 million years ago with all extant Felidae having dysfunctional UGT1A6. Out of 22 additional taxa sampled, representative of most Carnivora families, only brown hyena (Parahyaena brunnea) and northern elephant seal (Mirounga angustirostris) showed inactivating UGT1A6 mutations. A comprehensive literature review of the natural diet of the sampled taxa indicated that all species with defective UGT1A6 were hypercarnivores (>70% dietary animal matter). Furthermore those species with UGT1A6 defects showed evidence for reduced amino acid constraint (increased dN/dS ratios approaching the neutral selection value of 1.0) as compared with species with intact UGT1A6. In contrast, there was no evidence for reduced amino acid constraint for these same species within UGT1A1, the gene encoding the enzyme responsible for detoxification of endogenously generated bilirubin. Our results provide the first evidence suggesting that diet may have played a permissive role in the devolution of a mammalian drug metabolizing enzyme. Further work is needed to establish whether these preliminary findings can be generalized to all Carnivora. PMID:21464924

  11. Glucuronidation of Drugs and Drug-Induced Toxicity in Humanized UDP-Glucuronosyltransferase 1 Mice

    PubMed Central

    Kutsuno, Yuki; Itoh, Tomoo; Tukey, Robert H.

    2014-01-01

    UDP-glucuronosyltransferases (UGTs) are phase II drug-metabolizing enzymes that catalyze glucuronidation of various drugs. Although experimental rodents are used in preclinical studies to predict glucuronidation and toxicity of drugs in humans, species differences in glucuronidation and drug-induced toxicity have been reported. Humanized UGT1 mice in which the original Ugt1 locus was disrupted and replaced with the human UGT1 locus (hUGT1 mice) were recently developed. In this study, acyl-glucuronidations of etodolac, diclofenac, and ibuprofen in liver microsomes of hUGT1 mice were examined and compared with those of humans and regular mice. The kinetics of etodolac, diclofenac, and ibuprofen acyl-glucuronidation in hUGT1 mice were almost comparable to those in humans, rather than in mice. We further investigated the hepatotoxicity of ibuprofen in hUGT1 mice and regular mice by measuring serum alanine amino transferase (ALT) levels. Because ALT levels were increased at 6 hours after dosing in hUGT1 mice and at 24 hours after dosing in regular mice, the onset pattern of ibuprofen-induced liver toxicity in hUGT1 mice was different from that in regular mice. These data suggest that hUGT1 mice can be valuable tools for understanding glucuronidations of drugs and drug-induced toxicity in humans. PMID:24764149

  12. Nicotine N-glucuronidation relative to N-oxidation and C-oxidation and UGT2B10 genotype in five ethnic/racial groups

    PubMed Central

    Murphy, Sharon E.; Park, Sung-Shim L.; Thompson, Elizabeth F.; Wilkens, Lynne R.; Patel, Yesha; Stram, Daniel O.; Le Marchand, Loic

    2014-01-01

    Nicotine metabolism influences smoking behavior and differences in metabolism probably contribute to ethnic variability in lung cancer risk. We report here on the proportion of nicotine metabolism by cytochrome P450 2A6-catalyzed C-oxidation, UDP-glucuronosyl transferase 2B10 (UGT2B10)-catalyzed N-glucuronidation and flavin monooxygenase 3-catalyzed N-oxidation in five ethnic/racial groups and the role of UGT2B10 genotype on the metabolic patterns observed. Nicotine and its metabolites were quantified in urine from African American (AA, n = 364), Native Hawaiian (NH, n = 311), White (n = 437), Latino (LA, n = 453) and Japanese American (JA, n = 674) smokers. Total nicotine equivalents, the sum of nicotine and six metabolites, and nicotine metabolism phenotypes were calculated. The relationship of UGT2B10 genotype to nicotine metabolic pathways was determined for each group; geometric means were computed and adjusted for age, sex, creatinine, and body mass index. Nicotine metabolism patterns were unique across the groups, C-oxidation was lowest in JA and NH (P < 0.0001), and N-glucuronidation lowest in AA (P < 0.0001). There was no difference in C-oxidation among Whites and AA and LA. Nicotine and cotinine glucuronide ratios were 2- and 3-fold lower in AA compared with Whites. Two UGT variants, a missense mutation (Asp67Tyr, rs61750900) and a splice variant (rs116294140) accounted for 33% of the variation in glucuronidation. In AA, the splice variant accounted for the majority of the reduced nicotine glucuronidation. UGT2B10 variant allele carriers had increased levels of C-oxidation (P = 0.0099). Our data indicate that the relative importance of nicotine metabolic pathways varies by ethnicity, and all pathways should be considered when characterizing the role of nicotine metabolism on smoking behavior and cancer risk. PMID:25233931

  13. Cytokinin-Specific Glycosyltransferases Possess Different Roles in Cytokinin Homeostasis Maintenance.

    PubMed

    Šmehilová, Mária; Dobrůšková, Jana; Novák, Ondřej; Takáč, Tomáš; Galuszka, Petr

    2016-01-01

    Plant hormones cytokinins (CKs) are one of the major mediators of physiological responses throughout plant life span. Therefore, a proper homeostasis is maintained by regulation of their active levels. Besides degradation, CKs are deactivated by uridine diphosphate glycosyltransferases (UGTs). Physiologically, CKs active levels decline in senescing organs, providing a signal to nutrients that a shift to reproductive tissues has begun. In this work, we show CK glucosides distribution in Arabidopsis leaves during major developmental transition phases. Besides continuous accumulation of N-glucosides we detected sharp maximum of the glucosides in senescence. This is caused prevalently by N7-glucosides followed by N9-glucosides and specifically also by trans-zeatin-O-glucoside (tZOG). Interestingly, we observed a similar trend in response to exogenously applied CK. In Arabidopsis, only three UGTs deactivate CKs in vivo: UGT76C1, UGT76C2 and UGT85A1. We thereby show that UGT85A1 is specifically expressed in senescent leaves whereas UGT76C2 is activated rapidly in response to exogenously applied CK. To shed more light on the UGTs physiological roles, we performed a comparative study on UGTs loss-of-function mutants, characterizing a true ugt85a1-1 loss-of-function mutant for the first time. Although no altered phenotype was detected under standard condition we observed reduced chlorophyll degradation with increased anthocyanin accumulation in our experiment on detached leaves accompanied by senescence and stress related genes modulated expression. Among the mutants, ugt76c2 possessed extremely diminished CK N-glucosides levels whereas ugt76c1 showed some specificity toward cis-zeatin (cZ). Besides tZOG, a broader range of CK glucosides was decreased in ugt85a1-1. Performing CK metabolism gene expression profiling, we revealed that activation of CK degradation pathway serves as a general regulatory mechanism of disturbed CK homeostasis followed by decreased CK signaling in

  14. Identification of UDP glucosyltransferases from the aluminum-resistant tree Eucalyptus camaldulensis forming β-glucogallin, the precursor of hydrolyzable tannins.

    PubMed

    Tahara, Ko; Nishiguchi, Mitsuru; Frolov, Andrej; Mittasch, Juliane; Milkowski, Carsten

    2018-08-01

    In the highly aluminum-resistant tree Eucalyptus camaldulensis, hydrolyzable tannins are proposed to play a role in internal detoxification of aluminum, which is a major factor inhibiting plant growth on acid soils. To understand and modulate the molecular mechanisms of aluminum detoxification by hydrolyzable tannins, the biosynthetic genes need to be identified. In this study, we identified and characterized genes encoding UDP-glucose:gallate glucosyltransferase, which catalyzes the formation of 1-O-galloyl-β-d-glucose (β-glucogallin), the precursor of hydrolyzable tannins. By homology-based cloning, seven full-length candidate cDNAs were isolated from E. camaldulensis and expressed in Escherichia coli as recombinant N-terminal His-tagged proteins. Phylogenetic analysis classified four of these as UDP glycosyltransferase (UGT) 84A subfamily proteins (UGT84A25a, -b, UGT84A26a, -b) and the other three as UGT84J subfamily proteins (UGT84J3, -4, -5). In vitro enzyme assays showed that the UGT84A proteins catalyzed esterification of UDP-glucose and gallic acid to form 1-O-galloyl-β-d-glucose, whereas the UGT84J proteins were inactive. Further analyses with UGT84A25a and -26a indicated that they also formed 1-O-glucose esters of other structurally related hydroxybenzoic and hydroxycinnamic acids with a preference for hydroxybenzoic acids. The UGT84A genes were expressed in leaves, stems, and roots of E. camaldulensis, regardless of aluminum stress. Taken together, our results suggest that the UGT84A subfamily enzymes of E. camaldulensis are responsible for constitutive production of 1-O-galloyl-β-d-glucose, which is the first step of hydrolyzable tannin biosynthesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. [Induction of uridine 5'-diphosphate-glucuronosyltransferase gene expression by sulforaphane and its mechanism: experimental study in human colon cancel cells].

    PubMed

    Wang, Min; Li, Yan-Qing; Zhong, Ning; Chen, Jian; Xu, Xiao-Qun; Yuan, Meng-Biao

    2005-03-30

    To study the induction of expression of uridine 5'-diphosphate (UDP)-glucuronosyltransferase (UGT) 1A in colon cancer cells by sulforaphane (SFN) and its possible mechanism. Human colon cancer cells of the line Caco-2 were cultured and added with SFN of different terminal concentrations, all below the concentration of IC(50). RT-PCR was used to examine the expression of UGT1A mRNA induced by SFN. Western blotting was used to detect the expression of UGT1A protein. The glucuronidation rate of N-hydroxy-PhIP was measured by high performance liquid chromatography (HPLC). The nuclear localization of transcription factor Nrf2 was observed by confocal laser microscopy. (1) Expression of UGT1A mRNA was observed in the Cac0-2 cells induced by SFN of the concentrations of 10 micromol/L approximately 35 micromol/L in a dose-independent manner (P < 0.05). Sulforaphane of the concentration of 25 micromol/L induced the UGT1A mRNA expression time-dependently. The levels of UGT1A1, UGT1A8, and UGT1A10 mRNA expression were significantly increased in the cells treated with 25 micromol/L sulforaphane compared to that in the controls (P = 0.006, P = 0.017, and P = 0.008 respectively). (2) The UGT1A protein band intensity increased significantly in the Coco-2 cells treated with sulforaphane of the concentrations 10 micromol/L approximately 30 micromol/L for 24 h in comparison with the control cells. (3) When the microsomes from the untreated Caco-2 cells were incubated with N-hydroxy-PhIP there was a minor HPLC peak at the expected retention time for N-hydroxy-PhIP-N2-glucuronide. This peak was dramatically increased in the sulforaphane-treated cells, suggesting higher activities of glucuronidation of N-hydroxy-PhIP. (4) Cytoplasmic labeling of NF-E2-related factor 2 (Nrf2), a transcription factor, with no nuclear staining was observed in the non-stimulated cells, whereas an intense nuclear labeling was observed in the sulforaphane-treated cells, indicating the induction of nuclear

  16. Influence of substrates on the in vitro kinetics of steviol glucuronidation and interaction between steviol glycosides metabolites and UGT2B7.

    PubMed

    Chen, Jun-Ming; Xia, Yong-Mei; Zhang, Yan-Dong; Zhang, Tong-Tong; Peng, Qing-Rui; Fang, Yun

    2018-06-01

    Steviol glycosides, a natural sweetener, may perform bioactivities via steviol, their main metabolite in human digestion. The metabolising kinetics, i.e. glucuronidation kinetics and interaction between steviol glycosides or their metabolites and metabolising enzyme, are important for understanding the bioactivity and cytotoxicity. The present study investigated kinetics of steviol glucuronidation in human liver microsome and a recombinant human UDP-glucuronosyltransferases isomer, UGT2B7, along with molecular docking to analyse interaction between UGT2B7 and steviol or glucose. The active pocket of UGT2B7 is consisted of Arg352, Leu347, Lys343, Phe339, Tyr354, Lys355 and Leu353. The influence of stevioside, rebaudioside A, glucose and some chemotherapy reagents on the glucuronidation was also studied. The predicted hepatic clearence suggested that steviol could be classified as high-clearence drug. The steviol glycosides did not affect the glucuronidation of steviol notably.

  17. Panax ginseng genome examination for ginsenoside biosynthesis.

    PubMed

    Xu, Jiang; Chu, Yang; Liao, Baosheng; Xiao, Shuiming; Yin, Qinggang; Bai, Rui; Su, He; Dong, Linlin; Li, Xiwen; Qian, Jun; Zhang, Jingjing; Zhang, Yujun; Zhang, Xiaoyan; Wu, Mingli; Zhang, Jie; Li, Guozheng; Zhang, Lei; Chang, Zhenzhan; Zhang, Yuebin; Jia, Zhengwei; Liu, Zhixiang; Afreh, Daniel; Nahurira, Ruth; Zhang, Lianjuan; Cheng, Ruiyang; Zhu, Yingjie; Zhu, Guangwei; Rao, Wei; Zhou, Chao; Qiao, Lirui; Huang, Zhihai; Cheng, Yung-Chi; Chen, Shilin

    2017-11-01

    Ginseng, which contains ginsenosides as bioactive compounds, has been regarded as an important traditional medicine for several millennia. However, the genetic background of ginseng remains poorly understood, partly because of the plant's large and complex genome composition. We report the entire genome sequence of Panax ginseng using next-generation sequencing. The 3.5-Gb nucleotide sequence contains more than 60% repeats and encodes 42 006 predicted genes. Twenty-two transcriptome datasets and mass spectrometry images of ginseng roots were adopted to precisely quantify the functional genes. Thirty-one genes were identified to be involved in the mevalonic acid pathway. Eight of these genes were annotated as 3-hydroxy-3-methylglutaryl-CoA reductases, which displayed diverse structures and expression characteristics. A total of 225 UDP-glycosyltransferases (UGTs) were identified, and these UGTs accounted for one of the largest gene families of ginseng. Tandem repeats contributed to the duplication and divergence of UGTs. Molecular modeling of UGTs in the 71st, 74th, and 94th families revealed a regiospecific conserved motif located at the N-terminus. Molecular docking predicted that this motif captures ginsenoside precursors. The ginseng genome represents a valuable resource for understanding and improving the breeding, cultivation, and synthesis biology of this key herb. © The Author 2017. Published by Oxford University Press.

  18. MUC1-C activates polycomb repressive complexes and downregulates tumor suppressor genes in human cancer cells.

    PubMed

    Rajabi, Hasan; Hiraki, Masayuki; Kufe, Donald

    2018-04-01

    The PRC2 and PRC1 complexes are aberrantly expressed in human cancers and have been linked to decreases in patient survival. MUC1-C is an oncoprotein that is also overexpressed in diverse human cancers and is associated with a poor prognosis. Recent studies have supported a previously unreported function for MUC1-C in activating PRC2 and PRC1 in cancer cells. In the regulation of PRC2, MUC1-C (i) drives transcription of the EZH2 gene, (ii) binds directly to EZH2, and (iii) enhances occupancy of EZH2 on target gene promoters with an increase in H3K27 trimethylation. Regarding PRC1, which is recruited to PRC2 sites in the hierarchical model, MUC1-C induces BMI1 transcription, forms a complex with BMI1, and promotes H2A ubiquitylation. MUC1-C thereby contributes to the integration of PRC2 and PRC1-mediated repression of tumor suppressor genes, such as CDH1, CDKN2A, PTEN and BRCA1. Like PRC2 and PRC1, MUC1-C is associated with the epithelial-mesenchymal transition (EMT) program, cancer stem cell (CSC) state, and acquisition of anticancer drug resistance. In concert with these observations, targeting MUC1-C downregulates EZH2 and BMI1, inhibits EMT and the CSC state, and reverses drug resistance. These findings emphasize the significance of MUC1-C as a therapeutic target for inhibiting aberrant PRC function and reprogramming the epigenome in human cancers.

  19. Rsp5-Bul1/2 complex is necessary for the HSE-mediated gene expression in budding yeast.

    PubMed

    Kaida, Daisuke; Toh-e, Akio; Kikuchi, Yoshiko

    2003-07-11

    Rsp5 is an essential ubiquitin ligase in Saccharomyces cerevisiae and is concerned with many functions such as endocytosis and transcription through ubiquitination of various substrates. Bul1 or its homologue Bul2 binds to Rsp5 through the PY-motif and the bul1 bul2 double mutant is sensitive to various stresses. We demonstrate here that heat shock element (HSE)-mediated gene expression was defective in both rsp5-101 and bul1 bul2 mutants under high temperature condition. The bul1 gene containing mutations in the PY motif region did not recover this defective gene expression of the bul1 bul2 mutant. The protein level and phosphorylation state of the HSE-binding transcription factor, Hsf1, was not affected by these mutations. Thus, the Rsp5-Bul1/2 complex has a new function for the HSE-mediated gene expression and may regulate it through other factors than Hsf1.

  20. TAPBPR bridges UDP-glucose:glycoprotein glucosyltransferase 1 onto MHC class I to provide quality control in the antigen presentation pathway

    PubMed Central

    Neerincx, Andreas; Hermann, Clemens; Antrobus, Robin; van Hateren, Andy; Cao, Huan; Trautwein, Nico; Stevanović, Stefan; Elliott, Tim; Deane, Janet E; Boyle, Louise H

    2017-01-01

    Recently, we revealed that TAPBPR is a peptide exchange catalyst that is important for optimal peptide selection by MHC class I molecules. Here, we asked whether any other co-factors associate with TAPBPR, which would explain its effect on peptide selection. We identify an interaction between TAPBPR and UDP-glucose:glycoprotein glucosyltransferase 1 (UGT1), a folding sensor in the calnexin/calreticulin quality control cycle that is known to regenerate the Glc1Man9GlcNAc2 moiety on glycoproteins. Our results suggest the formation of a multimeric complex, dependent on a conserved cysteine at position 94 in TAPBPR, in which TAPBPR promotes the association of UGT1 with peptide-receptive MHC class I molecules. We reveal that the interaction between TAPBPR and UGT1 facilities the reglucosylation of the glycan on MHC class I molecules, promoting their recognition by calreticulin. Our results suggest that in addition to being a peptide editor, TAPBPR improves peptide optimisation by promoting peptide-receptive MHC class I molecules to associate with the peptide-loading complex. DOI: http://dx.doi.org/10.7554/eLife.23049.001 PMID:28425917

  1. Fli1 Represses Transcription of the Human α2(I) Collagen Gene by Recruitment of the HDAC1/p300 Complex

    PubMed Central

    Asano, Yoshihide; Trojanowska, Maria

    2013-01-01

    Fli1, a member of the Ets transcription factor family, is a key repressor of the human α2(I) collagen (COL1A2) gene. Although our previous studies have delineated that TGF-β induces displacement of Fli1 from the COL1A2 promoter through sequential post-translational modifications, the detailed mechanism by which Fli1 functions as a potent transcriptional repressor of the COL1A2 gene has not been fully investigated. To address this issue, we carried out a series of experiments especially focusing on protein-protein interaction and epigenetic transcriptional regulation. The combination of tandem affinity purification and mass spectrometry identified HDAC1 as a Fli1 interacting protein. Under quiescent conditions, HDAC1 induced deacetylation of Fli1 resulting in an increase of Fli1 DNA binding ability and p300 enhanced this process by promoting the formation of a Fli1-HDAC1-p300 complex. TGF-β-induced phosphorylation of Fli1 at threonine 312 led to disassembly of this protein complex. In quiescent dermal fibroblasts Fli1, HDAC1, and p300 occupied the −404 to −237 region, including the Fli1 binding site, of the COL1A2 promoter. TGF-β induced Fli1 and HDAC1 dissociation from the COL1A2 promoter, while promoting Ets1 and p300 recruitment. Furthermore, acetylation levels of histone H3 around the Fli1 binding site in the COL1A2 promoter inversely correlated with the DNA occupancy of Fli1 and HDAC1, while positively correlating with that of Ets1 and p300. In the functional studies, HDAC1 overexpression magnified the inhibitory effect of Fli1 on the COL1A2 promoter. Moreover, pharmacological blockade of HDAC1 by entinostat enhanced collagen production in dermal fibroblasts. Collectively, these results indicate that under quiescent conditions Fli1 recruits HDAC1/p300 to the COL1A2 promoter and suppresses the expression of the COL1A2 gene by chromatin remodeling through histone deacetylation. TGF-β-dependent phosphorylation of Fli1 at threonine 312 is a critical step

  2. Role of UDP-Glucuronosyltransferase 1A1 in the Metabolism and Pharmacokinetics of Silymarin Flavonolignans in Patients with HCV and NAFLD.

    PubMed

    Xie, Ying; Miranda, Sonia R; Hoskins, Janelle M; Hawke, Roy L

    2017-01-15

    Silymarin is the most commonly used herbal medicine by patients with chronic liver disease. Silymarin flavonolignans undergo rapid first-pass metabolism primarily by glucuronidation. The aims of this investigation were: (1) to determine the association of UGT1A1*28 polymorphism with the area under the plasma concentration-time curves (AUCs) for silybin A (SA) and silybin B (SB); (2) to evaluate the effect of UGT1A1*28 polymorphism on the profile of flavonolignan glucuronide conjugates found in the plasma; and (3) to investigate the role of UGT1A1 enzyme kinetics on the pharmacokinetics of SA and SB. AUCs and metabolic ratios for thirty-three patients with chronic liver disease administered oral doses of silymarin were compared between different UGT1A1*28 genotypes. The AUCs, metabolic ratios, and the profiles of major SA and SB glucuronides did not differ significantly among the three UGT1A1 genotypes. In contrast, an increase in the proportion of sulfated flavonolignan conjugates in plasma was observed in subjects with UGT1A1*28/*28 genotype compared to subjects carrying wild type alleles. Differences in SA and SB in vitro intrinsic clearance estimates for UGTIA1 correlated inversely with SA and SB exposures observed in vivo indicating a major role for UGT1A1 in silymarin metabolism. In addition, a significant difference in the metabolic ratio observed between patients with NAFLD and HCV suggests that any effect of UGT1A1 polymorphism may be obscured by a greater effect of liver disease on the pharmacokinetics of silymarin. Taken together, these results suggest the presence of the UGT1A1*28 allele does not contribute significantly to a large inter-subject variability in the pharmacokinetics of silybin A and silybin B which may obscure the ability to detect beneficial effects of silymarin in patients with liver disease.

  3. Mutations in the gene encoding the Sigma 2 subunit of the adaptor protein 1 complex, AP1S2, cause X-linked mental retardation.

    PubMed

    Tarpey, Patrick S; Stevens, Claire; Teague, Jon; Edkins, Sarah; O'Meara, Sarah; Avis, Tim; Barthorpe, Syd; Buck, Gemma; Butler, Adam; Cole, Jennifer; Dicks, Ed; Gray, Kristian; Halliday, Kelly; Harrison, Rachel; Hills, Katy; Hinton, Jonathon; Jones, David; Menzies, Andrew; Mironenko, Tatiana; Perry, Janet; Raine, Keiran; Richardson, David; Shepherd, Rebecca; Small, Alexandra; Tofts, Calli; Varian, Jennifer; West, Sofie; Widaa, Sara; Yates, Andy; Catford, Rachael; Butler, Julia; Mallya, Uma; Moon, Jenny; Luo, Ying; Dorkins, Huw; Thompson, Deborah; Easton, Douglas F; Wooster, Richard; Bobrow, Martin; Carpenter, Nancy; Simensen, Richard J; Schwartz, Charles E; Stevenson, Roger E; Turner, Gillian; Partington, Michael; Gecz, Jozef; Stratton, Michael R; Futreal, P Andrew; Raymond, F Lucy

    2006-12-01

    In a systematic sequencing screen of the coding exons of the X chromosome in 250 families with X-linked mental retardation (XLMR), we identified two nonsense mutations and one consensus splice-site mutation in the AP1S2 gene on Xp22 in three families. Affected individuals in these families showed mild-to-profound mental retardation. Other features included hypotonia early in life and delay in walking. AP1S2 encodes an adaptin protein that constitutes part of the adaptor protein complex found at the cytoplasmic face of coated vesicles located at the Golgi complex. The complex mediates the recruitment of clathrin to the vesicle membrane. Aberrant endocytic processing through disruption of adaptor protein complexes is likely to result from the AP1S2 mutations identified in the three XLMR-affected families, and such defects may plausibly cause abnormal synaptic development and function. AP1S2 is the first reported XLMR gene that encodes a protein directly involved in the assembly of endocytic vesicles.

  4. Rifampin modulation of xeno- and endobiotic conjugating enzyme mRNA expression and associated microRNAs in human hepatocytes.

    PubMed

    Gufford, Brandon T; Robarge, Jason D; Eadon, Michael T; Gao, Hongyu; Lin, Hai; Liu, Yunlong; Desta, Zeruesenay; Skaar, Todd C

    2018-04-01

    Rifampin is a pleiotropic inducer of multiple drug metabolizing enzymes and transporters. This work utilized a global approach to evaluate rifampin effects on conjugating enzyme gene expression with relevance to human xeno- and endo-biotic metabolism. Primary human hepatocytes from 7 subjects were treated with rifampin (10 μmol/L, 24 hours). Standard methods for RNA-seq library construction, EZBead preparation, and NextGen sequencing were used to measure UDP-glucuronosyl transferase UGT, sulfonyltransferase SULT, N acetyltransferase NAT, and glutathione-S-transferase GST mRNA expression compared to vehicle control (0.01% MeOH). Rifampin-induced (>1.25-fold) mRNA expression of 13 clinically important phase II drug metabolizing genes and repressed (>1.25-fold) the expression of 3 genes ( P  <   .05). Rifampin-induced miRNA expression changes correlated with mRNA changes and miRNAs were identified that may modulate conjugating enzyme expression. NAT2 gene expression was most strongly repressed (1.3-fold) by rifampin while UGT1A4 and UGT1A1 genes were most strongly induced (7.9- and 4.8-fold, respectively). Physiologically based pharmacokinetic modeling (PBPK) was used to simulate the clinical consequences of rifampin induction of CYP3A4- and UGT1A4-mediated midazolam metabolism. Simulations evaluating isolated UGT1A4 induction predicted increased midazolam N-glucuronide exposure (~4-fold) with minimal reductions in parent midazolam exposure (~10%). Simulations accounting for simultaneous induction of both CYP3A4 and UGT1A4 predicted a ~10-fold decrease in parent midazolam exposure with only a ~2-fold decrease in midazolam N-glucuronide metabolite exposure. These data reveal differential effects of rifampin on the human conjugating enzyme transcriptome and potential associations with miRNAs that form the basis for future mechanistic studies to elucidate the interplay of conjugating enzyme regulatory elements.

  5. UDP-Glucuronosyltransferase 1A Compromises Intracellular Accumulation and Anti-Cancer Effect of Tanshinone IIA in Human Colon Cancer Cells

    PubMed Central

    Liu, Miao; Wang, Qiong; Liu, Fang; Cheng, Xuefang; Wu, Xiaolan; Wang, Hong; Wu, Mengqiu; Ma, Ying; Wang, Guangji; Hao, Haiping

    2013-01-01

    Background and Purpose NAD(P)H: quinone oxidoreductase 1 (NQO1) mediated quinone reduction and subsequent UDP-glucuronosyltransferases (UGTs) catalyzed glucuronidation is the dominant metabolic pathway of tanshinone IIA (TSA), a promising anti-cancer agent. UGTs are positively expressed in various tumor tissues and play an important role in the metabolic elimination of TSA. This study aims to explore the role of UGT1A in determining the intracellular accumulation and the resultant apoptotic effect of TSA. Experimental Approach We examined TSA intracellular accumulation and glucuronidation in HT29 (UGT1A positive) and HCT116 (UGT1A negative) human colon cancer cell lines. We also examined TSA-mediated reactive oxygen species (ROS) production, cytotoxicity and apoptotic effect in HT29 and HCT116 cells to investigate whether UGT1A levels are directly associated with TSA anti-cancer effect. UGT1A siRNA or propofol, a UGT1A9 competitive inhibitor, was used to inhibit UGT1A expression or UGT1A9 activity. Key Results Multiple UGT1A isoforms are positively expressed in HT29 but not in HCT116 cells. Cellular S9 fractions prepared from HT29 cells exhibit strong glucuronidation activity towards TSA, which can be inhibited by propofol or UGT1A siRNA interference. TSA intracellular accumulation in HT29 cells is much lower than that in HCT116 cells, which correlates with high expression levels of UGT1A in HT29 cells. Consistently, TSA induces less intracellular ROS, cytotoxicity, and apoptotic effect in HT29 cells than those in HCT116 cells. Pretreatment of HT29 cells with UGT1A siRNA or propofol can decrease TSA glucuronidation and simultaneously improve its intracellular accumulation, as well as enhance TSA anti-cancer effect. Conclusions and Implications UGT1A can compromise TSA cytotoxicity via reducing its intracellular exposure and switching the NQO1-triggered redox cycle to metabolic elimination. Our study may shed a light in understanding the cellular pharmacokinetic and

  6. Saponin Biosynthesis in Saponaria vaccaria. cDNAs Encoding β-Amyrin Synthase and a Triterpene Carboxylic Acid Glucosyltransferase1[OA

    PubMed Central

    Meesapyodsuk, Dauenpen; Balsevich, John; Reed, Darwin W.; Covello, Patrick S.

    2007-01-01

    Saponaria vaccaria (Caryophyllaceae), a soapwort, known in western Canada as cowcockle, contains bioactive oleanane-type saponins similar to those found in soapbark tree (Quillaja saponaria; Rosaceae). To improve our understanding of the biosynthesis of these saponins, a combined polymerase chain reaction and expressed sequence tag approach was taken to identify the genes involved. A cDNA encoding a β-amyrin synthase (SvBS) was isolated by reverse transcription-polymerase chain reaction and characterized by expression in yeast (Saccharomyces cerevisiae). The SvBS gene is predominantly expressed in leaves. A S. vaccaria developing seed expressed sequence tag collection was developed and used for the isolation of a full-length cDNA bearing sequence similarity to ester-forming glycosyltransferases. The gene product of the cDNA, classified as UGT74M1, was expressed in Escherichia coli, purified, and identified as a triterpene carboxylic acid glucosyltransferase. UGT74M1 is expressed in roots and leaves and appears to be involved in monodesmoside biosynthesis in S. vaccaria. PMID:17172290

  7. Cooperation of NAD(P)H:quinone oxidoreductase 1 and UDP-glucuronosyltransferases reduces menadione cytotoxicity in HEK293 cells.

    PubMed

    Nishiyama, Takahito; Izawa, Tadashi; Usami, Mami; Ohnuma, Tomokazu; Ogura, Kenichiro; Hiratsuka, Akira

    2010-04-09

    Previous studies have shown that NAD(P)H:quinone oxidoreductase 1 (NQO1) plays an important role in the detoxification of menadione (2-methyl-1,4-naphthoquinone, also known as vitamin K3). However, menadiol (2-methyl-1,4-naphthalenediol) formed from menadione by NQO1-mediated reduction continues to be an unstable substance, which undergoes the reformation of menadione with concomitant formation of reactive oxygen species (ROS). Hence, we focused on the roles of phase II enzymes, with particular attention to UDP-glucuronosyltransferases (UGTs), in the detoxification process of menadione. In this study, we established an HEK293 cell line stably expressing NQO1 (HEK293/NQO1) and HEK293/NQO1 cell lines with doxycycline (DOX)-regulated expression of UGT1A6 (HEK293/NQO1/UGT1A6) and UGT1A10 (HEK293/NQO1/UGT1A10), and evaluated the role of NQO1 and UGTs against menadione-induced cytotoxicity. Our results differed from those of previous studies. HEK293/NQO1 was the most sensitive cell line to menadione cytotoxicity among cell lines established in this study. These phenomena were also observed in HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells in which the expression of UGT was suppressed by DOX treatment. On the contrary, HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells without DOX treatment were resistant to menadione-induced cytotoxicity. These results demonstrated that NQO1 is not a detoxification enzyme for menadione and that UGT-mediated glucuronidation of menadiol is the most important detoxification process. Copyright 2009 Elsevier Inc. All rights reserved.

  8. HoxBlinc RNA recruits Set1/MLL complexes to activate Hox gene expression patterns and mesoderm lineage development

    PubMed Central

    Deng, Changwang; Li, Ying; Zhou, Lei; Cho, Joonseok; Patel, Bhavita; Terada, Nao; Li, Yangqiu; Bungert, Jörg; Qiu, Yi; Huang, Suming

    2015-01-01

    Summary Trithorax proteins and long-intergenic noncoding RNAs are critical regulators of embryonic stem cell pluripotency; however, how they cooperatively regulate germ layer mesoderm specification remains elusive. We report here that HoxBlinc RNA first specifies Flk1+ mesoderm and then promotes hematopoietic differentiation through regulating hoxb gene pathways. HoxBlinc binds to the hoxb genes, recruits Setd1a/MLL1 complexes, and mediates long-range chromatin interactions to activate transcription of the hoxb genes. Depletion of HoxBlinc by shRNA-mediated KD or CRISPR-Cas9-mediated genetic deletion inhibits expression of hoxb genes and other factors regulating cardiac/hematopoietic differentiation. Reduced hoxb gene expression is accompanied by decreased recruitment of Set1/MLL1 and H3K4me3 modification, as well as by reduced chromatin loop formation. Re-expression of hoxb2-b4 genes in HoxBlinc-depleted embryoid bodies rescues Flk1+ precursors that undergo hematopoietic differentiation. Thus, HoxBlinc plays an important role in controlling hoxb transcription networks that mediate specification of mesoderm-derived Flk1+ precursors and differentiation of Flk1+ cells into hematopoietic lineages. PMID:26725110

  9. The CRB1 Complex: Following the Trail of Crumbs to a Feasible Gene Therapy Strategy.

    PubMed

    Quinn, Peter M; Pellissier, Lucie P; Wijnholds, Jan

    2017-01-01

    Once considered science fiction, gene therapy is rapidly becoming scientific reality, targeting a growing number of the approximately 250 genes linked to hereditary retinal disorders such as retinitis pigmentosa and Leber's congenital amaurosis. Powerful new technologies have emerged, leading to the development of humanized models for testing and screening these therapies, bringing us closer to the goal of personalized medicine. These tools include the ability to differentiate human induced pluripotent stem cells (iPSCs) to create a "retina-in-a-dish" model and the self-formed ectodermal autonomous multi-zone, which can mimic whole eye development. In addition, highly specific gene-editing tools are now available, including the CRISPR/Cas9 system and the recently developed homology-independent targeted integration approach, which allows gene editing in non-dividing cells. Variants in the CRB1 gene have long been associated with retinopathies, and more recently the CRB2 gene has also been shown to have possible clinical relevance with respect to retinopathies. In this review, we discuss the role of the CRB protein complex in patients with retinopathy. In addition, we discuss new opportunities provided by stem cells and gene-editing tools, and we provide insight into how the retinal therapeutic pipeline can be improved. Finally, we discuss the current state of adeno-associated virus-mediated gene therapy and how it can be applied to treat retinopathies associated with mutations in CRB1 .

  10. Validation of variants in SLC28A3 and UGT1A6 as genetic markers predictive of anthracycline-induced cardiotoxicity in children.

    PubMed

    Visscher, H; Ross, C J D; Rassekh, S R; Sandor, G S S; Caron, H N; van Dalen, E C; Kremer, L C; van der Pal, H J; Rogers, P C; Rieder, M J; Carleton, B C; Hayden, M R

    2013-08-01

    The use of anthracyclines as effective antineoplastic drugs is limited by the occurrence of cardiotoxicity. Multiple genetic variants predictive of anthracycline-induced cardiotoxicity (ACT) in children were recently identified. The current study was aimed to assess replication of these findings in an independent cohort of children. . Twenty-three variants were tested for association with ACT in an independent cohort of 218 patients. Predictive models including genetic and clinical risk factors were constructed in the original cohort and assessed in the current replication cohort. . We confirmed the association of rs17863783 in UGT1A6 and ACT in the replication cohort (P = 0.0062, odds ratio (OR) 7.98). Additional evidence for association of rs7853758 (P = 0.058, OR 0.46) and rs885004 (P = 0.058, OR 0.42) in SLC28A3 was found (combined P = 1.6 × 10(-5) and P = 3.0 × 10(-5), respectively). A previously constructed prediction model did not significantly improve risk prediction in the replication cohort over clinical factors alone. However, an improved prediction model constructed using replicated genetic variants as well as clinical factors discriminated significantly better between cases and controls than clinical factors alone in both original (AUC 0.77 vs. 0.68, P = 0.0031) and replication cohort (AUC 0.77 vs. 0.69, P = 0.060). . We validated genetic variants in two genes predictive of ACT in an independent cohort. A prediction model combining replicated genetic variants as well as clinical risk factors might be able to identify high- and low-risk patients who could benefit from alternative treatment options. Copyright © 2013 Wiley Periodicals, Inc.

  11. Silencing of Agamma-globin gene expression during adult definitive erythropoiesis mediated by GATA-1-FOG-1-Mi2 complex binding at the -566 GATA site.

    PubMed

    Harju-Baker, Susanna; Costa, Flávia C; Fedosyuk, Halyna; Neades, Renee; Peterson, Kenneth R

    2008-05-01

    Autonomous silencing of gamma-globin transcription is an important developmental regulatory mechanism controlling globin gene switching. An adult stage-specific silencer of the (A)gamma-globin gene was identified between -730 and -378 relative to the mRNA start site. A marked copy of the (A)gamma-globin gene inserted between locus control region 5' DNase I-hypersensitive site 1 and the epsilon-globin gene was transcriptionally silenced in adult beta-globin locus yeast artificial chromosome (beta-YAC) transgenic mice, but deletion of the 352-bp region restored expression. This fragment reduced reporter gene expression in K562 cells, and GATA-1 was shown to bind within this sequence at the -566 GATA site. Further, the Mi2 protein, a component of the NuRD complex, was observed in erythroid cells with low gamma-globin levels, whereas only a weak signal was detected when gamma-globin was expressed. Chromatin immunoprecipitation of fetal liver tissue from beta-YAC transgenic mice demonstrated that GATA-1, FOG-1, and Mi2 were recruited to the (A)gamma-globin -566 or (G)gamma-globin -567 GATA site when gamma-globin expression was low (day 18) but not when gamma-globin was expressed (day 12). These data suggest that during definitive erythropoiesis, gamma-globin gene expression is silenced, in part, by binding a protein complex containing GATA-1, FOG-1, and Mi2 at the -566/-567 GATA sites of the proximal gamma-globin promoters.

  12. Downregulation of the expression of mitochondrial electron transport complex genes in autism brains.

    PubMed

    Anitha, Ayyappan; Nakamura, Kazuhiko; Thanseem, Ismail; Matsuzaki, Hideo; Miyachi, Taishi; Tsujii, Masatsugu; Iwata, Yasuhide; Suzuki, Katsuaki; Sugiyama, Toshiro; Mori, Norio

    2013-05-01

    Mitochondrial dysfunction (MtD) and abnormal brain bioenergetics have been implicated in autism, suggesting possible candidate genes in the electron transport chain (ETC). We compared the expression of 84 ETC genes in the post-mortem brains of autism patients and controls. Brain tissues from the anterior cingulate gyrus, motor cortex, and thalamus of autism patients (n = 8) and controls (n = 10) were obtained from Autism Tissue Program, USA. Quantitative real-time PCR arrays were used to quantify gene expression. We observed reduced expression of several ETC genes in autism brains compared to controls. Eleven genes of Complex I, five genes each of Complex III and Complex IV, and seven genes of Complex V showed brain region-specific reduced expression in autism. ATP5A1 (Complex V), ATP5G3 (Complex V) and NDUFA5 (Complex I) showed consistently reduced expression in all the brain regions of autism patients. Upon silencing ATP5A1, the expression of mitogen-activated protein kinase 13 (MAPK13), a p38 MAPK responsive to stress stimuli, was upregulated in HEK 293 cells. This could have been induced by oxidative stress due to impaired ATP synthesis. We report new candidate genes involved in abnormal brain bioenergetics in autism, supporting the hypothesis that mitochondria, critical for neurodevelopment, may play a role in autism. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  13. LHX3 interacts with inhibitor of histone acetyltransferase complex subunits LANP and TAF-1β to modulate pituitary gene regulation.

    PubMed

    Hunter, Chad S; Malik, Raleigh E; Witzmann, Frank A; Rhodes, Simon J

    2013-01-01

    LIM-homeodomain 3 (LHX3) is a transcription factor required for mammalian pituitary gland and nervous system development. Human patients and animal models with LHX3 gene mutations present with severe pediatric syndromes that feature hormone deficiencies and symptoms associated with nervous system dysfunction. The carboxyl terminus of the LHX3 protein is required for pituitary gene regulation, but the mechanism by which this domain operates is unknown. In order to better understand LHX3-dependent pituitary hormone gene transcription, we used biochemical and mass spectrometry approaches to identify and characterize proteins that interact with the LHX3 carboxyl terminus. This approach identified the LANP/pp32 and TAF-1β/SET proteins, which are components of the inhibitor of histone acetyltransferase (INHAT) multi-subunit complex that serves as a multifunctional repressor to inhibit histone acetylation and modulate chromatin structure. The protein domains of LANP and TAF-1β that interact with LHX3 were mapped using biochemical techniques. Chromatin immunoprecipitation experiments demonstrated that LANP and TAF-1β are associated with LHX3 target genes in pituitary cells, and experimental alterations of LANP and TAF-1β levels affected LHX3-mediated pituitary gene regulation. Together, these data suggest that transcriptional regulation of pituitary genes by LHX3 involves regulated interactions with the INHAT complex.

  14. LHX3 Interacts with Inhibitor of Histone Acetyltransferase Complex Subunits LANP and TAF-1β to Modulate Pituitary Gene Regulation

    PubMed Central

    Witzmann, Frank A.; Rhodes, Simon J.

    2013-01-01

    LIM-homeodomain 3 (LHX3) is a transcription factor required for mammalian pituitary gland and nervous system development. Human patients and animal models with LHX3 gene mutations present with severe pediatric syndromes that feature hormone deficiencies and symptoms associated with nervous system dysfunction. The carboxyl terminus of the LHX3 protein is required for pituitary gene regulation, but the mechanism by which this domain operates is unknown. In order to better understand LHX3-dependent pituitary hormone gene transcription, we used biochemical and mass spectrometry approaches to identify and characterize proteins that interact with the LHX3 carboxyl terminus. This approach identified the LANP/pp32 and TAF-1β/SET proteins, which are components of the inhibitor of histone acetyltransferase (INHAT) multi-subunit complex that serves as a multifunctional repressor to inhibit histone acetylation and modulate chromatin structure. The protein domains of LANP and TAF-1β that interact with LHX3 were mapped using biochemical techniques. Chromatin immunoprecipitation experiments demonstrated that LANP and TAF-1β are associated with LHX3 target genes in pituitary cells, and experimental alterations of LANP and TAF-1β levels affected LHX3-mediated pituitary gene regulation. Together, these data suggest that transcriptional regulation of pituitary genes by LHX3 involves regulated interactions with the INHAT complex. PMID:23861948

  15. Increased Transcript Complexity in Genes Associated with Chronic Obstructive Pulmonary Disease

    PubMed Central

    Lackey, Lela; McArthur, Evonne; Laederach, Alain

    2015-01-01

    Genome-wide association studies aim to correlate genotype with phenotype. Many common diseases including Type II diabetes, Alzheimer’s, Parkinson’s and Chronic Obstructive Pulmonary Disease (COPD) are complex genetic traits with hundreds of different loci that are associated with varied disease risk. Identifying common features in the genes associated with each disease remains a challenge. Furthermore, the role of post-transcriptional regulation, and in particular alternative splicing, is still poorly understood in most multigenic diseases. We therefore compiled comprehensive lists of genes associated with Type II diabetes, Alzheimer’s, Parkinson’s and COPD in an attempt to identify common features of their corresponding mRNA transcripts within each gene set. The SERPINA1 gene is a well-recognized genetic risk factor of COPD and it produces 11 transcript variants, which is exceptional for a human gene. This led us to hypothesize that other genes associated with COPD, and complex disorders in general, are highly transcriptionally diverse. We found that COPD-associated genes have a statistically significant enrichment in transcript complexity stemming from a disproportionately high level of alternative splicing, however, Type II Diabetes, Alzheimer’s and Parkinson’s disease genes were not significantly enriched. We also identified a subset of transcriptionally complex COPD-associated genes (~40%) that are differentially expressed between mild, moderate and severe COPD. Although the genes associated with other lung diseases are not extensively documented, we found preliminary data that idiopathic pulmonary disease genes, but not cystic fibrosis modulators, are also more transcriptionally complex. Interestingly, complex COPD transcripts are more often the product of alternative acceptor site usage. To verify the biological importance of these alternative transcripts, we used RNA-sequencing analyses to determine that COPD-associated genes are frequently

  16. Linkage mapping, molecular cloning and functional analysis of soybean gene Fg3 encoding flavonol 3-O-glucoside/galactoside (1 → 2) glucosyltransferase.

    PubMed

    Di, Shaokang; Yan, Fan; Rodas, Felipe Rojas; Rodriguez, Tito O; Murai, Yoshinori; Iwashina, Tsukasa; Sugawara, Satoko; Mori, Tetsuya; Nakabayashi, Ryo; Yonekura-Sakakibara, Keiko; Saito, Kazuki; Takahashi, Ryoji

    2015-05-23

    -glucoside/galactoside (1 → 2) glucosyltransferase and corresponds to the Fg3 gene. GmF3G2″Gt was designated as UGT79B30 by the UGT Nomenclature Committee. Based on substrate specificity of GmF3G2″Gt, 2″-glucosylation of flavonol 3-O-glycoside may be irreconcilable with 4″-glycosylation in soybean leaves.

  17. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk.

    PubMed

    Chornokur, Ganna; Lin, Hui-Yi; Tyrer, Jonathan P; Lawrenson, Kate; Dennis, Joe; Amankwah, Ernest K; Qu, Xiaotao; Tsai, Ya-Yu; Jim, Heather S L; Chen, Zhihua; Chen, Ann Y; Permuth-Wey, Jennifer; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V; Bean, Yukie T; Beckmann, Matthias W; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A; Brooks-Wilson, Angela; Bunker, Clareann H; Butzow, Ralf; Campbell, Ian G; Carty, Karen; Chang-Claude, Jenny; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Dicks, Ed; Doherty, Jennifer A; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F; Eccles, Diana M; Edwards, Robert P; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goodman, Marc T; Gronwald, Jacek; Harrington, Patricia; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Claus K; Hogdall, Estrid; Hosono, Satoyo; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kelemen, Linda E; Kellar, Mellissa; Kiemeney, Lambertus A; Krakstad, Camilla; Kjaer, Susanne K; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; McNeish, Iain; Menon, Usha; Milne, Roger L; Modugno, Francesmary; Moysich, Kirsten B; Ness, Roberta B; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste L; Pejovic, Tanja; Pelttari, Liisa M; Pike, Malcolm C; Poole, Elizabeth M; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Schernhammer, Eva; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C; Spiewankiewicz, Beata; Sucheston, Lara; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Thomsen, Lotte; Tangen, Ingvild L; Tworoger, Shelley S; van Altena, Anne M; Vierkant, Robert A; Vergote, Ignace; Walsh, Christine S; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Wu, Anna H; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Hasmad, Hanis N; Berchuck, Andrew; Iversen, Edwin S; Schildkraut, Joellen M; Ramus, Susan J; Goode, Ellen L; Monteiro, Alvaro N A; Gayther, Simon A; Narod, Steven A; Pharoah, Paul D P; Sellers, Thomas A; Phelan, Catherine M

    2015-01-01

    Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk. In total, DNA samples were obtained from 14,525 case subjects with invasive EOC and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC). Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS). SNP analyses were conducted using unconditional logistic regression under a log-additive model, and the FDR q<0.2 was applied to adjust for multiple comparisons. The most significant evidence of an association for all invasive cancers combined and for the serous subtype was observed for SNP rs17216603 in the iron transporter gene HEPH (invasive: OR = 0.85, P = 0.00026; serous: OR = 0.81, P = 0.00020); this SNP was also associated with the borderline/low malignant potential (LMP) tumors (P = 0.021). Other genes significantly associated with EOC histological subtypes (p<0.05) included the UGT1A (endometrioid), SLC25A45 (mucinous), SLC39A11 (low malignant potential), and SERPINA7 (clear cell carcinoma). In addition, 1785 SNPs in six genes (HEPH, MGST1, SERPINA, SLC25A45, SLC39A11 and UGT1A) were imputed from the 1000 Genomes Project and examined for association with INV EOC in white-European subjects. The most significant imputed SNP was rs117729793 in SLC39A11 (per allele, OR = 2.55, 95% CI = 1.5-4.35, p = 5.66x10-4). These results, generated on a large cohort of women, revealed associations between inherited cellular transport

  18. Role of extrahepatic UDP-glucuronosyltransferase 1A1: Advances in understanding breast milk-induced neonatal hyperbilirubinemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujiwara, Ryoichi, E-mail: fujiwarar@pharm.kitasato-u.ac.jp; Maruo, Yoshihiro; Chen, Shujuan

    Newborns commonly develop physiological hyperbilirubinemia (also known as jaundice). With increased bilirubin levels being observed in breast-fed infants, breast-feeding has been recognized as a contributing factor for the development of neonatal hyperbilirubinemia. Bilirubin undergoes selective metabolism by UDP-glucuronosyltransferase (UGT) 1A1 and becomes a water soluble glucuronide. Although several factors such as gestational age, dehydration and weight loss, and increased enterohepatic circulation have been associated with breast milk-induced jaundice (BMJ), deficiency in UGT1A1 expression is a known cause of BMJ. It is currently believed that unconjugated bilirubin is metabolized mainly in the liver. However, recent findings support the concept that extrahepaticmore » tissues, such as small intestine and skin, contribute to bilirubin glucuronidation during the neonatal period. We will review the recent advances made towards understanding biological and molecular events impacting BMJ, especially regarding the role of extrahepatic UGT1A1 expression. - Highlights: • Breast-feeding can be a factor for the development of neonatal hyperbilirubinemia. • UDP-glucuronosyltransferase (UGT) 1A1 is the sole bilirubin-metabolizing enzyme. • Extrahepatic UGT1A1 plays an important role in bilirubin metabolism. • We discuss the potential mechanism of breast milk-induced neonatal jaundice.« less

  19. Characterization of 107 Genomic DNA Reference Materials for CYP2D6, CYP2C19, CYP2C9, VKORC1, and UGT1A1

    PubMed Central

    Pratt, Victoria M.; Zehnbauer, Barbara; Wilson, Jean Amos; Baak, Ruth; Babic, Nikolina; Bettinotti, Maria; Buller, Arlene; Butz, Ken; Campbell, Matthew; Civalier, Chris; El-Badry, Abdalla; Farkas, Daniel H.; Lyon, Elaine; Mandal, Saptarshi; McKinney, Jason; Muralidharan, Kasinathan; Noll, LeAnne; Sander, Tara; Shabbeer, Junaid; Smith, Chingying; Telatar, Milhan; Toji, Lorraine; Vairavan, Anand; Vance, Carlos; Weck, Karen E.; Wu, Alan H.B.; Yeo, Kiang-Teck J.; Zeller, Markus; Kalman, Lisa

    2010-01-01

    Pharmacogenetic testing is becoming more common; however, very few quality control and other reference materials that cover alleles commonly included in such assays are currently available. To address these needs, the Centers for Disease Control and Prevention's Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing community and the Coriell Cell Repositories, have characterized a panel of 107 genomic DNA reference materials for five loci (CYP2D6, CYP2C19, CYP2C9, VKORC1, and UGT1A1) that are commonly included in pharmacogenetic testing panels and proficiency testing surveys. Genomic DNA from publicly available cell lines was sent to volunteer laboratories for genotyping. Each sample was tested in three to six laboratories using a variety of commercially available or laboratory-developed platforms. The results were consistent among laboratories, with differences in allele assignments largely related to the manufacturer's assay design and variable nomenclature, especially for CYP2D6. The alleles included in the assay platforms varied, but most were identified in the set of 107 DNA samples. Nine additional pharmacogenetic loci (CYP4F2, EPHX1, ABCB1, HLAB, KIF6, CYP3A4, CYP3A5, TPMT, and DPD) were also tested. These samples are publicly available from Coriell and will be useful for quality assurance, proficiency testing, test development, and research. PMID:20889555

  20. The complexity of gene expression dynamics revealed by permutation entropy

    PubMed Central

    2010-01-01

    Background High complexity is considered a hallmark of living systems. Here we investigate the complexity of temporal gene expression patterns using the concept of Permutation Entropy (PE) first introduced in dynamical systems theory. The analysis of gene expression data has so far focused primarily on the identification of differentially expressed genes, or on the elucidation of pathway and regulatory relationships. We aim to study gene expression time series data from the viewpoint of complexity. Results Applying the PE complexity metric to abiotic stress response time series data in Arabidopsis thaliana, genes involved in stress response and signaling were found to be associated with the highest complexity not only under stress, but surprisingly, also under reference, non-stress conditions. Genes with house-keeping functions exhibited lower PE complexity. Compared to reference conditions, the PE of temporal gene expression patterns generally increased upon stress exposure. High-complexity genes were found to have longer upstream intergenic regions and more cis-regulatory motifs in their promoter regions indicative of a more complex regulatory apparatus needed to orchestrate their expression, and to be associated with higher correlation network connectivity degree. Arabidopsis genes also present in other plant species were observed to exhibit decreased PE complexity compared to Arabidopsis specific genes. Conclusions We show that Permutation Entropy is a simple yet robust and powerful approach to identify temporal gene expression profiles of varying complexity that is equally applicable to other types of molecular profile data. PMID:21176199

  1. Food restriction increase the expression of mTORC1 complex genes in the skeletal muscle of juvenile pacu (Piaractus mesopotamicus)

    PubMed Central

    de Paula, Tassiana Gutierrez; Zanella, Bruna Tereza Thomazini; Fantinatti, Bruno Evaristo de Almeida; de Moraes, Leonardo Nazário; Duran, Bruno Oliveira da Silva; de Oliveira, Caroline Bredariol; Salomão, Rondinelle Artur Simões; da Silva, Rafaela Nunes; Padovani, Carlos Roberto; dos Santos, Vander Bruno; Mareco, Edson Assunção; Carvalho, Robson Francisco; Dal-Pai-Silva, Maeli

    2017-01-01

    Skeletal muscle is capable of phenotypic adaptation to environmental factors, such as nutrient availability, by altering the balance between muscle catabolism and anabolism that in turn coordinates muscle growth. Small noncoding RNAs, known as microRNAs (miRNAs), repress the expression of target mRNAs, and many studies have demonstrated that miRNAs regulate the mRNAs of catabolic and anabolic genes. We evaluated muscle morphology, gene expression of components involved in catabolism, anabolism and energetic metabolism and miRNAs expression in both the fast and slow muscle of juvenile pacu (Piaractus mesopotamicus) during food restriction and refeeding. Our analysis revealed that short periods of food restriction followed by refeeding predominantly affected fast muscle, with changes in muscle fiber diameter and miRNAs expression. There was an increase in the mRNA levels of catabolic pathways components (FBXO25, ATG12, BCL2) and energetic metabolism-related genes (PGC1α and SDHA), together with a decrease in PPARβ/δ mRNA levels. Interestingly, an increase in mRNA levels of anabolic genes (PI3K and mTORC1 complex: mTOR, mLST8 and RAPTOR) was also observed during food restriction. After refeeding, muscle morphology showed similar patterns of the control group; the majority of genes were slightly up- or down-regulated in fast and slow muscle, respectively; the levels of all miRNAs increased in fast muscle and some of them decreased in slow muscle. Our findings demonstrated that a short period of food restriction in juvenile pacu had a considerable impact on fast muscle, increasing the expression of anabolic (PI3K and mTORC1 complex: mTOR, mLST8 and RAPTOR) and energetic metabolism genes. The miRNAs (miR-1, miR-206, miR-199 and miR-23a) were more expressed during refeeding and while their target genes (IGF-1, mTOR, PGC1α and MAFbx), presented a decreased expression. The alterations in mTORC1 complex observed during fasting may have influenced the rates of protein

  2. Effects of UGTs on the ionosphere

    NASA Astrophysics Data System (ADS)

    Argo, P. E.; Fitzgerald, T. J.

    The processes that propagate local effects of underground nuclear tests from the ground into the upper atmosphere, and produce a detectable signal in the ionosphere are described. Initially, the blast wave from a underground test (UGT) radially expands, until it reaches the surface of the earth. The wave is both reflected and transmitted at this sharp discontinuity in propagation media. Tne reflected wave combines with the incident wave to form an 'Airy surface,' at which very strong ripping forces tear the earth apart. This broken region is called the 'spat zone,' and is launched into ballistic motion. The resultant ground motion launches an acoustical wave into the atmosphere. This acoustic wave, with overpressures of a few tenths of one percent, propagates upwards at the speed of sound. Assuming purely linear propagation, the path of the acoustic energy can be tracked using raytracing models. Most of the wave energy, which is radiated nearly vertically, tends to propagate into the upper atmosphere, while wave energy radiated at angles greater than about 30 degrees to the vertical will be reflected back to earth and is probably what is seen by most infrasonde measurements.

  3. A case of concomitant Gilbert's syndrome and hereditary spherocytosis

    PubMed Central

    Lee, Hee Jung; Moon, Hee Seok; Lee, Eaum Seok; Kim, Seok Hyun; Sung, Jae Kyu; Lee, Byung Seok; Jeong, Hyun Yong; Eu, Young Jae

    2010-01-01

    We describe moderate hyperbilirubinemia in a 28-year-old man who suffered from gallstones and splenomegaly, with combined disorders of hereditary spherocytosis (HS) and Gilbert's syndrome (GS). Since it is difficult to diagnose HS in the absence of signs of anemia, we evaluated both the genetic mutation in the UGT1A1 gene and abnormalities in the erythrocyte membrane protein; the former was heterozygous for a UGT1A1 allele with three mutations and the latter was partially deficient in ankyrin expression. This is the first report of the concomitance of HS and GS with three heterozygous mutations [T-3279G, A (TA)7TAA, and G211A] in the UGT1A1 gene. PMID:20924216

  4. Epigenetic involvement of Alien/ESET complex in thyroid hormone-mediated repression of E2F1 gene expression and cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Wei, E-mail: hongwei@tijmu.edu.cn; College of Basic Medicine, Tianjin Medical University, 300070 Tianjin; Li, Jinru

    Highlights: Black-Right-Pointing-Pointer Corepressor Alien interacts with histone methyltransferase ESET in vivo. Black-Right-Pointing-Pointer Alien/ESET complex is recruited to nTRE of T3-responsive gene by liganded TR{beta}1. Black-Right-Pointing-Pointer ESET-mediated H3K9 methylation is required for liganded TR{beta}1-repressed transcription. Black-Right-Pointing-Pointer ESET is involved in T3-repressed G1/S phase transition and proliferation. -- Abstract: The ligand-bound thyroid hormone receptor (TR) is known to repress via a negative TRE (nTRE) the expression of E2F1, a key transcription factor that controls the G1/S phase transition. Alien has been identified as a novel interacting factor of E2F1 and acts as a corepressor of E2F1. The detailed molecular mechanism by whichmore » Alien inhibits E2F1 gene expression remains unclear. Here, we report that the histone H3 lysine 9 (H3K9) methyltransferase (HMT) ESET is an integral component of the corepressor Alien complex and the Alien/ESET complex is recruited to both sites, the E2F1 and the nTRE site of the E2F1 gene while the recruitment to the negative thyroid hormone response element (nTRE) is induced by the ligand-bound TR{beta}1 within the E2F1 gene promoter. We show that, overexpression of ESET promotes, whereas knockdown of ESET releases, the inhibition of TR{beta}1-regulated gene transcription upon T3 stimulation; and H3K9 methylation is required for TR{beta}1-repressed transcription. Furthermore, depletion of ESET impairs thyroid hormone-repressed proliferation as well as the G1/S transition of the cell cycle. Taken together, our data indicate that ESET is involved in TR{beta}1-mediated transcription repression and provide a molecular basis of thyroid hormone-induced repression of proliferation.« less

  5. HoxBlinc RNA Recruits Set1/MLL Complexes to Activate Hox Gene Expression Patterns and Mesoderm Lineage Development.

    PubMed

    Deng, Changwang; Li, Ying; Zhou, Lei; Cho, Joonseok; Patel, Bhavita; Terada, Naohiro; Li, Yangqiu; Bungert, Jörg; Qiu, Yi; Huang, Suming

    2016-01-05

    Trithorax proteins and long-intergenic noncoding RNAs are critical regulators of embryonic stem cell pluripotency; however, how they cooperatively regulate germ layer mesoderm specification remains elusive. We report here that HoxBlinc RNA first specifies Flk1(+) mesoderm and then promotes hematopoietic differentiation through regulation of hoxb pathways. HoxBlinc binds to the hoxb genes, recruits Setd1a/MLL1 complexes, and mediates long-range chromatin interactions to activate transcription of the hoxb genes. Depletion of HoxBlinc by shRNA-mediated knockdown or CRISPR-Cas9-mediated genetic deletion inhibits expression of hoxb genes and other factors regulating cardiac/hematopoietic differentiation. Reduced hoxb expression is accompanied by decreased recruitment of Set1/MLL1 and H3K4me3 modification, as well as by reduced chromatin loop formation. Re-expression of hoxb2-b4 genes in HoxBlinc-depleted embryoid bodies rescues Flk1(+) precursors that undergo hematopoietic differentiation. Thus, HoxBlinc plays an important role in controlling hoxb transcription networks that mediate specification of mesoderm-derived Flk1(+) precursors and differentiation of Flk1(+) cells into hematopoietic lineages. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Impact of blue, red, and far-red light treatments on gene expression and steviol glycoside accumulation in Stevia rebaudiana.

    PubMed

    Yoneda, Yuki; Nakashima, Hiroshi; Miyasaka, Juro; Ohdoi, Katsuaki; Shimizu, Hiroshi

    2017-05-01

    Stevia rebaudiana (Bertoni) Bertoni is a plant that biosynthesizes a group of natural sweeteners that are up to approximately 400 times sweeter than sucrose. The sweetening components of S. rebaudiana are steviol glycosides (SGs) that partially share their biosynthesis pathway with gibberellins (GAs). However, the molecular mechanisms through which SGs levels can be improved have not been studied. Therefore, transcription levels of several SG biosynthesis-related genes were analyzed under several light treatments involved in GA biosynthesis. We detected higher transcription of UGT85C2, which is one of the UDP-glycosyltransferases (UGTs) involved in catalyzing the sugar-transfer reaction, under red/far-red (R/FR) 1.22 light-emitting diodes (LEDs) and blue LEDs treatment. In this study, it was demonstrated that transcription levels of SG-related genes and the SGs content are affected by light treatments known to affect the GA contents. It is expected that this approach could serve as a practical way to increase SG contents using specific light treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Plasmodium vivax Isolates from Cambodia and Thailand Show High Genetic Complexity and Distinct Patterns of P. vivax Multidrug Resistance Gene 1 (pvmdr1) Polymorphisms

    PubMed Central

    Lin, Jessica T.; Patel, Jaymin C.; Kharabora, Oksana; Sattabongkot, Jetsumon; Muth, Sinuon; Ubalee, Ratawan; Schuster, Anthony L.; Rogers, William O.; Wongsrichanalai, Chansuda; Juliano, Jonathan J.

    2013-01-01

    Plasmodium vivax accounts for an increasing fraction of malaria infections in Thailand and Cambodia. We compared P. vivax genetic complexity and antimalarial resistance patterns in the two countries. Use of a heteroduplex tracking assay targeting the merozoite surface protein 1 gene revealed that vivax infections in both countries are frequently polyclonal (84%), with parasites that are highly diverse (HE = 0.86) but closely related (GST = 0.18). Following a history of different drug policies in Thailand and Cambodia, distinct patterns of antimalarial resistance have emerged: most Cambodian isolates harbor the P. vivax multidrug resistance gene 1 (pvmdr1) 976F mutation associated with chloroquine resistance (89% versus 8%, P < 0.001), whereas Thai isolates more often display increased pvmdr1 copy number (39% versus 4%, P < 0.001). Finally, genotyping of paired isolates from individuals suspected of suffering relapse supports a complex scheme of relapse whereby recurrence of multiple identical variants is sometimes accompanied by the appearance of novel variants. PMID:23509126

  8. BDE-99, but not BDE-47, is a transient aryl hydrocarbon receptor agonist in zebrafish liver cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jie; Zhu, Jinyong; Chan, King Ming, E-mail:

    Polybrominated diphenyl ethers (PBDEs) are endocrine-disrupting chemicals that affect the environment and the health of humans and wildlife. In this study, the zebrafish liver (ZFL) cell line was used in vitro to investigate two major PBDE contaminants: 2, 2′, 4, 4′, 5-pentabromodiphenyl ether (BDE-99) and 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47). BDE-99 was found to significantly induce cytochrome P450 (CYP1A), uridine diphosphate glucuronosyl transferase 1 family a, b (ugt1ab), 7-ethoxyresorufin-O-deethylase activity and an aryl hydrocarbon receptor (Ahr) dependent xenobiotic response element luciferase reporter system, confirming the Ahr-mediated activation of CYP1A by BDE-99. The time-course effect indicated that the role ofmore » BDE-99 in Ahr-mediated signaling is likely to be transient and highly dependent on the ability of BDE-99 to induce CYP1A and ugt1ab, and presumably its metabolism. BDE-99 also exhibited a significant dose-response effect on a developed zebrafish pregnane X receptor luciferase reporter gene system. However, the other abundant contaminant under study, BDE-47, did not exhibit the above effects. Together, these results indicated that the molecular mechanism of PBDEs induced in ZFL cells is a chemically specific process that differs between members of the PBDE family. CYP1A induction derived by BDE-99 warrants further risk assessment as the humans, wildlife and environment are exposed to a complex mixture including dioxin-like compounds and carcinogenic compounds. - Highlights: • BDE-99 is an aryl hydrocarbon receptor (Ahr) agonist in zebrafish liver cell-line ZFL. • BDE-99 induced EROD activity, CYP1A and ugt1ab gene expression, in ZFL. • BDE-99 induced the pregnane X receptor (Pxr) luciferase reporter gene system in ZFL. • BDE-47 did not show any effects in ZFL to induce CYP1A, ugt1ab, and EROD. • BDE-47 and -99 showed no induction of Rxr and Pxr pathways in ZFL cells.« less

  9. Silencing of Aγ-Globin Gene Expression during Adult Definitive Erythropoiesis Mediated by GATA-1-FOG-1-Mi2 Complex Binding at the −566 GATA Site▿ †

    PubMed Central

    Harju-Baker, Susanna; Costa, Flávia C.; Fedosyuk, Halyna; Neades, Renee; Peterson, Kenneth R.

    2008-01-01

    Autonomous silencing of γ-globin transcription is an important developmental regulatory mechanism controlling globin gene switching. An adult stage-specific silencer of the Aγ-globin gene was identified between −730 and −378 relative to the mRNA start site. A marked copy of the Aγ-globin gene inserted between locus control region 5′ DNase I-hypersensitive site 1 and the ɛ-globin gene was transcriptionally silenced in adult β-globin locus yeast artificial chromosome (β-YAC) transgenic mice, but deletion of the 352-bp region restored expression. This fragment reduced reporter gene expression in K562 cells, and GATA-1 was shown to bind within this sequence at the −566 GATA site. Further, the Mi2 protein, a component of the NuRD complex, was observed in erythroid cells with low γ-globin levels, whereas only a weak signal was detected when γ-globin was expressed. Chromatin immunoprecipitation of fetal liver tissue from β-YAC transgenic mice demonstrated that GATA-1, FOG-1, and Mi2 were recruited to the Aγ-globin −566 or Gγ-globin −567 GATA site when γ-globin expression was low (day 18) but not when γ-globin was expressed (day 12). These data suggest that during definitive erythropoiesis, γ-globin gene expression is silenced, in part, by binding a protein complex containing GATA-1, FOG-1, and Mi2 at the −566/−567 GATA sites of the proximal γ-globin promoters. PMID:18347053

  10. Dose-dependent testosterone sensitivity of the steroidal passport and GC-C-IRMS analysis in relation to the UGT2B17 deletion polymorphism.

    PubMed

    Strahm, Emmanuel; Mullen, Jenny E; Gårevik, Nina; Ericsson, Magnus; Schulze, Jenny J; Rane, Anders; Ekström, Lena

    2015-01-01

    The newly implemented Steroid Module of the Athlete Biological Passport has improved doping tests for steroids. A biomarker included in this passport is the urinary testosterone glucuronide to epitestosterone glucuronide (T/E) ratio, a ratio greatly affected by a deletion polymorphism in UGT2B17. Suspect urine doping tests are further analyzed with gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) to determine the origin of the androgen. In this study, we investigated the sensitivity of the steroidal module and the IRMS analysis, in subjects administered with three doses of testosterone enanthate (500, 250, and 125 mg), in relation to the UGT2B17 polymorphism. All subjects carrying the UGT2B17 enzyme reached the traditionally used threshold, a T/E ratio of 4, after all three administered doses, whereas none of the subjects devoid of this enzyme reached a T/E of 4. On the other hand, using the athlete biological passport and IRMS analysis, all three doses could be detected to a high degree of sensitivity. The concentrations of all steroids included in the steroidal module were dose dependently increased, except for epitestosterone which decreased independent of dose. The decrease in epitestosterone was significantly associated with circulatory levels of testosterone post dose (rs =0.60 and p=0.007). In conclusion, these results demonstrate that administration of a single dose of 125-500 mg testosterone enanthate could be detected using the athlete biological passport, together with IRMS. Since IRMS is sensitive to testosterone doping independent of UGT2B17 genotype, also very small changes in the steroidal passport should be investigated with IRMS. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Estrogens and Progesterone Promote Persistent CCND1 Gene Activation during G1 by Inducing Transcriptional Derepression via c-Jun/c-Fos/Estrogen Receptor (Progesterone Receptor) Complex Assembly to a Distal Regulatory Element and Recruitment of Cyclin D1 to Its Own Gene Promoter

    PubMed Central

    Cicatiello, Luigi; Addeo, Raffaele; Sasso, Annarita; Altucci, Lucia; Petrizzi, Valeria Belsito; Borgo, Raphaelle; Cancemi, Massimo; Caporali, Simona; Caristi, Silvana; Scafoglio, Claudio; Teti, Diana; Bresciani, Francesco; Perillo, Bruno; Weisz, Alessandro

    2004-01-01

    Transcriptional activation of the cyclin D1 gene (CCND1) plays a pivotal role in G1-phase progression, which is thereby controlled by multiple regulatory factors, including nuclear receptors (NRs). Appropriate CCND1 gene activity is essential for normal development and physiology of the mammary gland, where it is regulated by ovarian steroids through a mechanism(s) that is not fully elucidated. We report here that CCND1 promoter activation by estrogens in human breast cancer cells is mediated by recruitment of a c-Jun/c-Fos/estrogen receptor α complex to the tetradecanoyl phorbol acetate-responsive element of the gene, together with Oct-1 to a site immediately adjacent. This process coincides with the release from the same DNA region of a transcriptional repressor complex including Yin-Yang 1 (YY1) and histone deacetylase 1 and is sufficient to induce the assembly of the basal transcription machinery on the promoter and to lead to initial cyclin D1 accumulation in the cell. Later on in estrogen stimulation, the cyclin D1/Cdk4 holoenzyme associates with the CCND1 promoter, where E2F and pRb can also be found, contributing to the long-lasting gene enhancement required to drive G1-phase completion. Interestingly, progesterone triggers similar regulatory events through its own NRs, suggesting that the gene regulation cascade described here represents a crossroad for the transcriptional control of G1-phase progression by different classes of NRs. PMID:15282324

  12. Environmental cues induce changes of steviol glycosides contents and transcription of corresponding biosynthetic genes in Stevia rebaudiana.

    PubMed

    Yang, Yongheng; Huang, Suzhen; Han, Yulin; Yuan, Haiyan; Gu, Chunsun; Wang, Zhongwei

    2015-01-01

    Plant growth and secondary metabolism are commonly regulated by external cues such as light, temperature and water availability. In this study, the influences of low and high temperatures, dehydration, photoperiods, and different growing stages on the changes of steviol glycosides (SGs) contents and transcription levels of fifteen genes involved in SGs biosynthesis of Stevia rebaudiana Bertoni were examined using HPLC and RT-PCR. The observations showed that the transcript levels of all the fifteen genes were maximum under 25 °C treatment, and the transcription of SrDXS, SrDXR, SrMCT, SrCMK, SrMDS, SrHDS, SrHDR, SrIDI, SrGGDPS, SrCPPS1, SrUGT85C2 and SrUGT76G1 were restrained both in low temperature (15 °C) and high temperature (35 °C). Most genes in SGs biosynthesis pathway exhibited down-regulation in dehydration. To elucidate the effect of photoperiods, the plants were treated by different simulated photoperiods (8 L/16 D, 1 0L/14 D, 14 L/10 D and 16 L/8 D), but no significant transcription changes were observed. In the study of growing stages, there were evident changes of SGs contents, and the transcript levels of all the fifteen genes were minimal in fast growing period, and exhibited evident increase both in flower-bud appearing stage and flowering stage. The obtained results strongly suggest that the effect of environmental cues on steviol glycosides contents and transcription of corresponding biosynthetic genes in S. rebaudiana is significant. It is worth to study deeply. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Integrating Gene Expression with Summary Association Statistics to Identify Genes Associated with 30 Complex Traits.

    PubMed

    Mancuso, Nicholas; Shi, Huwenbo; Goddard, Pagé; Kichaev, Gleb; Gusev, Alexander; Pasaniuc, Bogdan

    2017-03-02

    Although genome-wide association studies (GWASs) have identified thousands of risk loci for many complex traits and diseases, the causal variants and genes at these loci remain largely unknown. Here, we introduce a method for estimating the local genetic correlation between gene expression and a complex trait and utilize it to estimate the genetic correlation due to predicted expression between pairs of traits. We integrated gene expression measurements from 45 expression panels with summary GWAS data to perform 30 multi-tissue transcriptome-wide association studies (TWASs). We identified 1,196 genes whose expression is associated with these traits; of these, 168 reside more than 0.5 Mb away from any previously reported GWAS significant variant. We then used our approach to find 43 pairs of traits with significant genetic correlation at the level of predicted expression; of these, eight were not found through genetic correlation at the SNP level. Finally, we used bi-directional regression to find evidence that BMI causally influences triglyceride levels and that triglyceride levels causally influence low-density lipoprotein. Together, our results provide insight into the role of gene expression in the susceptibility of complex traits and diseases. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  14. Profiling serum bile acid glucuronides in humans: gender divergences, genetic determinants and response to fenofibrate

    PubMed Central

    Trottier, Jocelyn; Perreault, Martin; Rudkowska, Iwona; Levy, Cynthia; Dallaire-Theroux, Amélie; Verreault, Mélanie; Caron, Patrick; Staels, Bart; Vohl, Marie-Claude; Straka, Robert J.; Barbier, Olivier

    2014-01-01

    Glucuronidation, catalyzed by UDP-glucuronosyltransferase (UGT) enzymes detoxifies cholestatic bile acids (BAs). We aimed at i) characterizing the circulating BA-glucuronide (-G) pool composition in humans, ii) evaluating how sex and UGT polymorphisms influence this composition, and iii) analyzing the effects of lipid-lowering drug fenofibrate on the circulating BA-G profile in 300 volunteers and 5 cholestatic patients. Eleven BA-Gs were determined in pre- and post-fenofibrate samples. Men exhibited higher BA-G concentrations, and various genotype/BA-G associations were discovered in relevant UGT genes. The chenodeoxycholic acid-3G concentration was associated with the UGT2B7 802C>T polymorphism. Glucuronidation assays confirmed the predominant role of UGT2B7 and UGT1A4 in CDCA-3G formation. Fenofibrate exposure increased the serum levels of 5 BA-G species, including CDCA-3G, and up-regulated expression of UGT1A4, but not UGT2B7, in hepatic cells. This study demonstrates that fenofibrate stimulates BA glucuronidation in humans, and thus reduces bile acid toxicity in the liver. PMID:23756370

  15. Transcriptome analysis of Bupleurum chinense focusing on genes involved in the biosynthesis of saikosaponins

    PubMed Central

    2011-01-01

    Abstract Background Bupleurum chinense DC. is a widely used traditional Chinese medicinal plant. Saikosaponins are the major bioactive constituents of B. chinense, but relatively little is known about saikosaponin biosynthesis. The 454 pyrosequencing technology provides a promising opportunity for finding novel genes that participate in plant metabolism. Consequently, this technology may help to identify the candidate genes involved in the saikosaponin biosynthetic pathway. Results One-quarter of the 454 pyrosequencing runs produced a total of 195, 088 high-quality reads, with an average read length of 356 bases (NCBI SRA accession SRA039388). A de novo assembly generated 24, 037 unique sequences (22, 748 contigs and 1, 289 singletons), 12, 649 (52.6%) of which were annotated against three public protein databases using a basic local alignment search tool (E-value ≤1e-10). All unique sequences were compared with NCBI expressed sequence tags (ESTs) (237) and encoding sequences (44) from the Bupleurum genus, and with a Sanger-sequenced EST dataset (3, 111). The 23, 173 (96.4%) unique sequences obtained in the present study represent novel Bupleurum genes. The ESTs of genes related to saikosaponin biosynthesis were found to encode known enzymes that catalyze the formation of the saikosaponin backbone; 246 cytochrome P450 (P450s) and 102 glycosyltransferases (GTs) unique sequences were also found in the 454 dataset. Full length cDNAs of 7 P450s and 7 uridine diphosphate GTs (UGTs) were verified by reverse transcriptase polymerase chain reaction or by cloning using 5' and/or 3' rapid amplification of cDNA ends. Two P450s and three UGTs were identified as the most likely candidates involved in saikosaponin biosynthesis. This finding was based on the coordinate up-regulation of their expression with β-AS in methyl jasmonate-treated adventitious roots and on their similar expression patterns with β-AS in various B. chinense tissues. Conclusions A collection of high

  16. Species differences in drug glucuronidation: Humanized UDP-glucuronosyltransferase 1 mice and their application for predicting drug glucuronidation and drug-induced toxicity in humans

    PubMed Central

    Fujiwara, Ryoichi; Yoda, Emiko; Tukey, Robert H.

    2018-01-01

    More than 20% of clinically used drugs are glucuronidated by a microsomal enzyme UDP-glucuronosyltransferase (UGT). Inhibition or induction of UGT can result in an increase or decrease in blood drug concentration. To avoid drug-drug interactions and adverse drug reactions in individuals, therefore, it is important to understand whether UGTs are involved in metabolism of drugs and drug candidates. While most of glucuronides are inactive metabolites, acyl-glucuronides that are formed from compounds with a carboxylic acid group can be highly toxic. Animals such as mice and rats are widely used to predict drug metabolism and drug-induced toxicity in humans. However, there are marked species differences in the expression and function of drug-metabolizing enzymes including UGTs. To overcome the species differences, mice in which certain drug-metabolizing enzymes are humanized have been recently developed. Humanized UGT1 (hUGT1) mice were created in 2010 by crossing Ugt1-null mice with human UGT1 transgenic mice in a C57BL/6 background. hUGT1 mice can be promising tools to predict human drug glucuronidation and acyl-glucuronide-associated toxicity. In this review article, studies of drug metabolism and toxicity in the hUGT1 mice are summarized. We further discuss research and strategic directions to advance the understanding of drug glucuronidation in humans. PMID:29079228

  17. Effect of salinity on gene expression, morphological and biochemical characteristics of stevia rebaudiana Bertoni under in vitro conditions.

    PubMed

    Fallah, F; Nokhasi, F; Ghaheri, M; Kahrizi, D; Beheshti Ale Agha, A; Ghorbani, T; Kazemi, E; Ansarypour, Z

    2017-08-15

    Stevia rebaudiana Bertoni is a famous medicinal plant for its low calorific value compounds which are named steviol glycosides (SGs) and they are 150-300 times sweeter than sugar. Among various SGs, stevioside and rebaudioside A considered to be the main sweetening compounds.  Soil salinity is one of the most essential stress in the world. Salinity affects the survival and yield of crops. In current study the effects of salinity and osmotic stress caused by different concentration of NaCl (0, 20, 40, 60 and 80 mM) on morphological traits, genes expressionand amount of both stevioside and rebaudioside Aunder in vitro conditions has been investigated. The morphological traits such as bud numbers, root numbers, shoot length (after 15 and 30 days) were evaluated. With increasing salinity, the values of all studied morphological traits decreased. To investigation of UGT74G1 and UGT76G1 genes expression that are involved in the synthesis of SGs, RT-PCR was done and there were significant differences between all media. The highest expression of both genes was observed in plantlets grown on MS media (with NaCl-free). Also, the lowest amounts of gene expression of the both genes were seen in MS+ 60 mM NaCl. Based on HPLC results, the highest amount of both stevioside and rebaudioside A were observed in plantlets grown in MS media (with NaCl-free). Finally, it can be concluded that stevia can survive under salt stress, but it has the best performance in the lower salinity.

  18. Polymorphisms in heterocyclic aromatic amines metabolism-related genes are associated with colorectal adenoma risk

    PubMed Central

    Eichholzer, Monika; Rohrmann, Sabine; Barbir, Aline; Hermann, Silke; Teucher, Birgit; Kaaks, Rudolf; Linseisen, Jakob

    2012-01-01

    Colorectal adenoma (CRA) and colorectal cancer (CRC) risks have been linked to the intake of red and processed meat. Heterocyclic aromatic amines (HCA) formed herein during high temperature cooking, are metabolized by a variety of enzymes, and allelic variation in the coding genes could influence individual CRA risk. Associations of polymorphisms in NAT1, NAT2, GSTA1, SULT1A1, CYP1A2, UGT1A7, UGT1A9, GSTP1 genes with colorectal adenoma risk were investigated in a nested case-control study of the EPIC-Heidelberg cohort including 428 cases matched by age, sex and year of recruitment with one or two controls (n=828) with negative colonoscopy per case. Genoyping was preformed with the Sequenom MassArray system and the LightCycler 480. Conditional logistic regression was used to compute odds ratios (OR) and corresponding 95% confidence intervals (CI). For rs15561 (NAT1) and rs1057126 (NAT1), the rarer allel was significantly inversely associated with adenoma risk OR=0.80 (95% CI 0.65-0.97) and (OR=0.81 (95% CI 0.65-0.99) and, respectively). For the combined NAT2 alleles encoding for enzymes with medium (versus slow) activity we also observed a significantly inverse association with adenoma risk (OR=0.75; 95% CI 0.85-0.97). In addition, homozygous carriers of the A allele of rs3957357 (GSTA1), i.e., those with a decreased enzyme activity, had a decreased risk of colorectal adenoma with an OR of 0.68 (95% CI 0.50-0.92; AA versus GG/GA). Polymorphisms in the other tested genes did not modify the risk of colorectal adenomas. In conclusion, polymorphisms in NAT1, NAT2, and GSTA1 are related to colorectal adenoma risk in this German cohort. PMID:22724046

  19. Polymorphisms in heterocyclic aromatic amines metabolism-related genes are associated with colorectal adenoma risk.

    PubMed

    Eichholzer, Monika; Rohrmann, Sabine; Barbir, Aline; Hermann, Silke; Teucher, Birgit; Kaaks, Rudolf; Linseisen, Jakob

    2012-01-01

    Colorectal adenoma (CRA) and colorectal cancer (CRC) risks have been linked to the intake of red and processed meat. Heterocyclic aromatic amines (HCA) formed herein during high temperature cooking, are metabolized by a variety of enzymes, and allelic variation in the coding genes could influence individual CRA risk. Associations of polymorphisms in NAT1, NAT2, GSTA1, SULT1A1, CYP1A2, UGT1A7, UGT1A9, GSTP1 genes with colorectal adenoma risk were investigated in a nested case-control study of the EPIC-Heidelberg cohort including 428 cases matched by age, sex and year of recruitment with one or two controls (n=828) with negative colonoscopy per case. Genoyping was preformed with the Sequenom MassArray system and the LightCycler 480. Conditional logistic regression was used to compute odds ratios (OR) and corresponding 95% confidence intervals (CI). For rs15561 (NAT1) and rs1057126 (NAT1), the rarer allel was significantly inversely associated with adenoma risk OR=0.80 (95% CI 0.65-0.97) and (OR=0.81 (95% CI 0.65-0.99) and, respectively). For the combined NAT2 alleles encoding for enzymes with medium (versus slow) activity we also observed a significantly inverse association with adenoma risk (OR=0.75; 95% CI 0.85-0.97). In addition, homozygous carriers of the A allele of rs3957357 (GSTA1), i.e., those with a decreased enzyme activity, had a decreased risk of colorectal adenoma with an OR of 0.68 (95% CI 0.50-0.92; AA versus GG/GA). Polymorphisms in the other tested genes did not modify the risk of colorectal adenomas. In conclusion, polymorphisms in NAT1, NAT2, and GSTA1 are related to colorectal adenoma risk in this German cohort.

  20. Biogenesis of the yeast cytochrome bc1 complex.

    PubMed

    Zara, Vincenzo; Conte, Laura; Trumpower, Bernard L

    2009-01-01

    The mitochondrial respiratory chain is composed of four different protein complexes that cooperate in electron transfer and proton pumping across the inner mitochondrial membrane. The cytochrome bc1 complex, or complex III, is a component of the mitochondrial respiratory chain. This review will focus on the biogenesis of the bc1 complex in the mitochondria of the yeast Saccharomyces cerevisiae. In wild type yeast mitochondrial membranes the major part of the cytochrome bc1 complex was found in association with one or two copies of the cytochrome c oxidase complex. The analysis of several yeast mutant strains in which single genes or pairs of genes encoding bc1 subunits had been deleted revealed the presence of a common set of bc1 sub-complexes. These sub-complexes are represented by the central core of the bc1 complex, consisting of cytochrome b bound to subunit 7 and subunit 8, by the two core proteins associated with each other, by the Rieske protein associated with subunit 9, and by those deriving from the unexpected interaction of each of the two core proteins with cytochrome c1. Furthermore, a higher molecular mass sub-complex is that composed of cytochrome b, cytochrome c1, core protein 1 and 2, subunit 6, subunit 7 and subunit 8. The identification and characterization of all these sub-complexes may help in defining the steps and the molecular events leading to bc1 assembly in yeast mitochondria.

  1. Safety study and characterization of E1A-liposome complex gene-delivery protocol in an ovarian cancer model.

    PubMed

    Xing, X; Zhang, S; Chang, J Y; Tucker, S D; Chen, H; Huang, L; Hung, M C

    1998-11-01

    A phase I clinical trial of E1A-liposome complex is currently ongoing in patients with HER-2/neu-overexpressing breast or ovarian cancers. To optimize the E1A-liposome complex for a further stage of clinical trial, several aspects of the current protocol have been examined in an animal model. In the orthotopic ovarian cancer model, different doses of lipid in the the E1A-liposome complex, which is currently used in clinical trials, were tested for the in vivo gene-transfer efficacy and tumor-suppression function. A lowered lipid dose--1/13 of the previous amount--produced gene expression level and E1A tumor-suppression efficacy similar to that of the original protocol. Mini-E1A, an E1A construct without its immortalization domain and yet capable of repressing HER-2/neu, was proved to be as potent as E1A in suppressing tumor development in vivo. These changes in the E1A-liposome complex will significantly reduce any potential adverse effects caused by lipid vector and E1A DNA. To examine further whether residual E1A DNA may still exist in normal organs after the E1A-liposome treatment, PCR was used to detect E1A DNA in mice that survived for 1 1/2 years after the last treatment. E1A DNA was detected only in the lungs and kidneys, but not in livers, hearts, spleens, brains, uterus or the ovaries. Furthermore, resistance of the E1A DNA extracted from tissues to the digestion of Dpnl restriction enzyme, which can cleave the methylated E1A plasmid DNA generated by methylation-competent bacteria, suggested integration of E1A DNA into the chromosome of the lungs and kidneys. Experimental results presented here provide important information for safety concerns and for the design of future phase II and phase III trials.

  2. The intratumoral balance between metabolic and immunologic gene expression is associated with anti-PD-1 response in patients with renal cell carcinoma

    PubMed Central

    Ascierto, Maria Libera; McMiller, Tracee L.; Berger, Alan E.; Danilova, Ludmila; Anders, Robert A.; Netto, George J.; Xu, Haiying; Pritchard, Theresa S.; Fan, Jinshui; Cheadle, Chris; Cope, Leslie; Drake, Charles G.; Pardoll, Drew M.; Taube, Janis M.; Topalian, Suzanne L.

    2016-01-01

    Pretreatment tumor PD-L1 expression correlates with response to anti-PD-1/PD-L1 therapies. Yet, most patients with PD-L1+ tumors do not respond to treatment. The current study was undertaken to investigate mechanisms underlying the failure of PD-1–targeted therapies in patients with advanced renal cell carcinoma (RCC) whose tumors express PD-L1. Formalin-fixed, paraffin-embedded (FFPE) pretreatment tumor biopsies expressing PD-L1 were derived from 13 RCC patients. RNA was isolated from PD-L1+ regions and subjected to whole genome microarray and multiplex quantitative (q)RT-PCR gene expression analysis. A balance between gene expression profiles reflecting metabolic pathways and immune functions was associated with clinical outcomes following anti-PD-1 therapy. In particular, the expression of genes involved in metabolic and solute transport functions such as UGT1A family members, also found in kidney cancer cell lines, was associated with treatment failure in patients with PD-L1+ RCC. Conversely, tumors from responding patients overexpressed immune markers such as BACH2, a regulator of CD4+ T cell differentiation, and CCL3, involved in leukocyte migration. These findings suggest that tumor cell–intrinsic metabolic factors may contribute to treatment resistance in RCC, thus serving as predictive markers for treatment outcomes and potential new targets for combination therapy regimens with anti-PD-1. PMID:27491898

  3. Characterization of Panax ginseng UDP-Glycosyltransferases Catalyzing Protopanaxatriol and Biosyntheses of Bioactive Ginsenosides F1 and Rh1 in Metabolically Engineered Yeasts.

    PubMed

    Wei, Wei; Wang, Pingping; Wei, Yongjun; Liu, Qunfang; Yang, Chengshuai; Zhao, Guoping; Yue, Jianmin; Yan, Xing; Zhou, Zhihua

    2015-09-01

    Ginsenosides, the main pharmacologically active natural compounds in ginseng (Panax ginseng), are mostly the glycosylated products of protopanaxadiol (PPD) and protopanaxatriol (PPT). No uridine diphosphate glycosyltransferase (UGT), which catalyzes PPT to produce PPT-type ginsenosides, has yet been reported. Here, we show that UGTPg1, which has been demonstrated to regio-specifically glycosylate the C20-OH of PPD, also specifically glycosylates the C20-OH of PPT to produce bioactive ginsenoside F1. We report the characterization of four novel UGT genes isolated from P. ginseng, sharing high deduced amino acid identity (>84%) with UGTPg1. We demonstrate that UGTPg100 specifically glycosylates the C6-OH of PPT to produce bioactive ginsenoside Rh1, and UGTPg101 catalyzes PPT to produce F1, followed by the generation of ginsenoside Rg1 from F1. However, UGTPg102 and UGTPg103 were found to have no detectable activity on PPT. Through structural modeling and site-directed mutagenesis, we identified several key amino acids of these UGTs that may play important roles in determining their activities and substrate regio-specificities. Moreover, we constructed yeast recombinants to biosynthesize F1 and Rh1 by introducing the genetically engineered PPT-producing pathway and UGTPg1 or UGTPg100. Our study reveals the possible biosynthetic pathways of PPT-type ginsenosides in Panax plants, and provides a sound manufacturing approach for bioactive PPT-type ginsenosides in yeast via synthetic biology strategies. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  4. Acetylation of histone deacetylase 1 regulates NuRD corepressor complex activity.

    PubMed

    Yang, Tao; Jian, Wei; Luo, Yi; Fu, Xueqi; Noguchi, Constance; Bungert, Jörg; Huang, Suming; Qiu, Yi

    2012-11-23

    HDAC1-containing NuRD complex is required for GATA-1-mediated repression and activation. GATA-1 associated with acetylated HDAC1-containing NuRD complex, which has no deacetylase activity, for gene activation. Acetylated HDAC1 converts NuRD complex from a repressor to an activator during GATA-1-directed erythroid differentiation program. HDAC1 acetylation may function as a master regulator for the activity of HDAC1 containing complexes. Histone deacetylases (HDACs) play important roles in regulating cell proliferation and differentiation. The HDAC1-containing NuRD complex is generally considered as a corepressor complex and is required for GATA-1-mediated repression. However, recent studies also show that the NuRD complex is involved in GATA-1-mediated gene activation. We tested whether the GATA-1-associated NuRD complex loses its deacetylase activity and commits the GATA-1 complex to become an activator during erythropoiesis. We found that GATA-1-associated deacetylase activity gradually decreased upon induction of erythroid differentiation. GATA-1-associated HDAC1 is increasingly acetylated after differentiation. It has been demonstrated earlier that acetylated HDAC1 has no deacetylase activity. Indeed, overexpression of an HDAC1 mutant, which mimics acetylated HDAC1, promotes GATA-1-mediated transcription and erythroid differentiation. Furthermore, during erythroid differentiation, acetylated HDAC1 recruitment is increased at GATA-1-activated genes, whereas it is significantly decreased at GATA-1-repressed genes. Interestingly, deacetylase activity is not required for Mi2 remodeling activity, suggesting that remodeling activity may be required for both activation and repression. Thus, our data suggest that NuRD can function as a coactivator or repressor and that acetylated HDAC1 converts the NuRD complex from a repressor to an activator during GATA-1-directed erythroid differentiation.

  5. Clinical validity of new genetic biomarkers of irinotecan neutropenia: an independent replication study.

    PubMed

    Crona, D J; Ramirez, J; Qiao, W; de Graan, A-J; Ratain, M J; van Schaik, R H N; Mathijssen, R H J; Rosner, G L; Innocenti, F

    2016-02-01

    The overall goal of this study was to provide evidence for the clinical validity of nine genetic variants in five genes previously associated with irinotecan neutropenia and pharmacokinetics. Variants associated with absolute neutrophil count (ANC) nadir and/or irinotecan pharmacokinetics in a discovery cohort of cancer patients were genotyped in an independent replication cohort of 108 cancer patients. Patients received single-agent irinotecan every 3 weeks. For ANC nadir, we replicated UGT1A1*28, UGT1A1*93 and SLCO1B1*1b in univariate analyses. For irinotecan area under the concentration-time curve (AUC0-24), we replicated ABCC2 -24C>T; however, ABCC2 -24C>T only predicted a small fraction of the variance. For SN-38 AUC0-24 and the glucuronidation ratio, we replicated UGT1A1*28 and UGT1A1*93. In addition to UGT1A1*28, this study independently validated UGT1A1*93 and SLCO1B1*1b as new predictors of irinotecan neutropenia. Further demonstration of their clinical utility will optimize irinotecan therapy in cancer patients.

  6. Species differences in drug glucuronidation: Humanized UDP-glucuronosyltransferase 1 mice and their application for predicting drug glucuronidation and drug-induced toxicity in humans.

    PubMed

    Fujiwara, Ryoichi; Yoda, Emiko; Tukey, Robert H

    2018-02-01

    More than 20% of clinically used drugs are glucuronidated by a microsomal enzyme UDP-glucuronosyltransferase (UGT). Inhibition or induction of UGT can result in an increase or decrease in blood drug concentration. To avoid drug-drug interactions and adverse drug reactions in individuals, therefore, it is important to understand whether UGTs are involved in metabolism of drugs and drug candidates. While most of glucuronides are inactive metabolites, acyl-glucuronides that are formed from compounds with a carboxylic acid group can be highly toxic. Animals such as mice and rats are widely used to predict drug metabolism and drug-induced toxicity in humans. However, there are marked species differences in the expression and function of drug-metabolizing enzymes including UGTs. To overcome the species differences, mice in which certain drug-metabolizing enzymes are humanized have been recently developed. Humanized UGT1 (hUGT1) mice were created in 2010 by crossing Ugt1-null mice with human UGT1 transgenic mice in a C57BL/6 background. hUGT1 mice can be promising tools to predict human drug glucuronidation and acyl-glucuronide-associated toxicity. In this review article, studies of drug metabolism and toxicity in the hUGT1 mice are summarized. We further discuss research and strategic directions to advance the understanding of drug glucuronidation in humans. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  7. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk

    PubMed Central

    Chornokur, Ganna; Lin, Hui-Yi; Tyrer, Jonathan P.; Lawrenson, Kate; Dennis, Joe; Amankwah, Ernest K.; Qu, Xiaotao; Tsai, Ya-Yu; Jim, Heather S. L.; Chen, Zhihua; Chen, Ann Y.; Permuth-Wey, Jennifer; Aben, Katja KH.; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V.; Bean, Yukie T.; Beckmann, Matthias W.; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bunker, Clareann H.; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chang-Claude, Jenny; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Dicks, Ed; Doherty, Jennifer A.; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F.; Eccles, Diana M.; Edwards, Robert P.; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goodman, Marc T.; Gronwald, Jacek; Harrington, Patricia; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A. T.; Hillemanns, Peter; Hogdall, Claus K.; Hogdall, Estrid; Hosono, Satoyo; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y.; Kelemen, Linda E.; Kellar, Mellissa; Kiemeney, Lambertus A.; Krakstad, Camilla; Kjaer, Susanne K.; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F. A. G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; McNeish, Iain; Menon, Usha; Milne, Roger L.; Modugno, Francesmary; Moysich, Kirsten B.; Ness, Roberta B.; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste L.; Pejovic, Tanja; Pelttari, Liisa M.; Pike, Malcolm C.; Poole, Elizabeth M.; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schernhammer, Eva; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B.; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Spiewankiewicz, Beata; Sucheston, Lara; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Thomsen, Lotte; Tangen, Ingvild L.; Tworoger, Shelley S.; van Altena, Anne M.; Vierkant, Robert A.; Vergote, Ignace; Walsh, Christine S.; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Wu, Anna H.; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Hasmad, Hanis N.; Berchuck, Andrew; Iversen, Edwin S.; Schildkraut, Joellen M.; Ramus, Susan J.; Goode, Ellen L.; Monteiro, Alvaro N. A.; Gayther, Simon A.; Narod, Steven A.; Pharoah, Paul D. P.; Sellers, Thomas A.; Phelan, Catherine M.

    2015-01-01

    Background Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk. Methods In total, DNA samples were obtained from 14,525 case subjects with invasive EOC and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC). Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS). SNP analyses were conducted using unconditional logistic regression under a log-additive model, and the FDR q<0.2 was applied to adjust for multiple comparisons. Results The most significant evidence of an association for all invasive cancers combined and for the serous subtype was observed for SNP rs17216603 in the iron transporter gene HEPH (invasive: OR = 0.85, P = 0.00026; serous: OR = 0.81, P = 0.00020); this SNP was also associated with the borderline/low malignant potential (LMP) tumors (P = 0.021). Other genes significantly associated with EOC histological subtypes (p<0.05) included the UGT1A (endometrioid), SLC25A45 (mucinous), SLC39A11 (low malignant potential), and SERPINA7 (clear cell carcinoma). In addition, 1785 SNPs in six genes (HEPH, MGST1, SERPINA, SLC25A45, SLC39A11 and UGT1A) were imputed from the 1000 Genomes Project and examined for association with INV EOC in white-European subjects. The most significant imputed SNP was rs117729793 in SLC39A11 (per allele, OR = 2.55, 95% CI = 1.5-4.35, p = 5.66x10-4). Conclusion These results, generated on a large cohort of women, revealed associations

  8. Mi2β Is Required for γ-Globin Gene Silencing: Temporal Assembly of a GATA-1-FOG-1-Mi2 Repressor Complex in β-YAC Transgenic Mice

    PubMed Central

    Costa, Flávia C.; Fedosyuk, Halyna; Chazelle, Allen M.; Neades, Renee Y.; Peterson, Kenneth R.

    2012-01-01

    Activation of γ-globin gene expression in adults is known to be therapeutic for sickle cell disease. Thus, it follows that the converse, alleviation of repression, would be equally effective, since the net result would be the same: an increase in fetal hemoglobin. A GATA-1-FOG-1-Mi2 repressor complex was recently demonstrated to be recruited to the −566 GATA motif of the Aγ-globin gene. We show that Mi2β is essential for γ-globin gene silencing using Mi2β conditional knockout β-YAC transgenic mice. In addition, increased expression of Aγ-globin was detected in adult blood from β-YAC transgenic mice containing a T>G HPFH point mutation at the −566 GATA silencer site. ChIP experiments demonstrated that GATA-1 is recruited to this silencer at day E16, followed by recruitment of FOG-1 and Mi2 at day E17 in wild-type β-YAC transgenic mice. Recruitment of the GATA-1–mediated repressor complex was disrupted by the −566 HPFH mutation at developmental stages when it normally binds. Our data suggest that a temporal repression mechanism is operative in the silencing of γ-globin gene expression and that either a trans-acting Mi2β knockout deletion mutation or the cis-acting −566 Aγ-globin HPFH point mutation disrupts establishment of repression, resulting in continued γ-globin gene transcription during adult definitive erythropoiesis. PMID:23284307

  9. Mi2β is required for γ-globin gene silencing: temporal assembly of a GATA-1-FOG-1-Mi2 repressor complex in β-YAC transgenic mice.

    PubMed

    Costa, Flávia C; Fedosyuk, Halyna; Chazelle, Allen M; Neades, Renee Y; Peterson, Kenneth R

    2012-01-01

    Activation of γ-globin gene expression in adults is known to be therapeutic for sickle cell disease. Thus, it follows that the converse, alleviation of repression, would be equally effective, since the net result would be the same: an increase in fetal hemoglobin. A GATA-1-FOG-1-Mi2 repressor complex was recently demonstrated to be recruited to the -566 GATA motif of the (A)γ-globin gene. We show that Mi2β is essential for γ-globin gene silencing using Mi2β conditional knockout β-YAC transgenic mice. In addition, increased expression of (A)γ-globin was detected in adult blood from β-YAC transgenic mice containing a T>G HPFH point mutation at the -566 GATA silencer site. ChIP experiments demonstrated that GATA-1 is recruited to this silencer at day E16, followed by recruitment of FOG-1 and Mi2 at day E17 in wild-type β-YAC transgenic mice. Recruitment of the GATA-1-mediated repressor complex was disrupted by the -566 HPFH mutation at developmental stages when it normally binds. Our data suggest that a temporal repression mechanism is operative in the silencing of γ-globin gene expression and that either a trans-acting Mi2β knockout deletion mutation or the cis-acting -566 (A)γ-globin HPFH point mutation disrupts establishment of repression, resulting in continued γ-globin gene transcription during adult definitive erythropoiesis.

  10. Mixed-ligand copper(II) complexes activate aryl hydrocarbon receptor AhR and induce CYP1A genes expression in human hepatocytes and human cell lines.

    PubMed

    Kubešová, Kateřina; Dořičáková, Aneta; Trávníček, Zdeněk; Dvořák, Zdeněk

    2016-07-25

    The effects of four copper(II) mixed-ligand complexes [Cu(qui1)(L)]NO3·H2O (1-3) and [Cu(qui2)(phen)]NO3 (4), where qui1=2-phenyl-3-hydroxy-4(1H)-quinolinone, Hqui2=2-(4-amino-3,5-dichlorophenyl)-N-propyl-3-hydroxy-4(1H)-quinolinone-7-carboxamide, L=1,10-phenanthroline (phen) (1), 5-methyl-1,10-phenanthroline (mphen) (2), bathophenanthroline (bphen) (3), on transcriptional activities of steroid receptors, nuclear receptors and xenoreceptors have been studied. The complexes (1-4) did not influence basal or ligand-inducible activities of glucocorticoid receptor, androgen receptor, thyroid receptor, pregnane X receptor and vitamin D receptor, as revealed by gene reporter assays. The complexes 1 and 2 dose-dependently induced luciferase activity in stable gene reporter AZ-AhR cell line, and this induction was reverted by resveratrol, indicating involvement of aryl hydrocarbon receptor (AhR) in the process. The complexes 1, 2 and 3 induced CYP1A1 mRNA in LS180 cells and CYP1A1/CYP1A2 in human hepatocytes through AhR. Electrophoretic mobility shift assay EMSA showed that the complexes 1 and 2 transformed AhR in its DNA-binding form. Collectively, we demonstrate that the complexes 1 and 2 activate AhR and induce AhR-dependent genes in human hepatocytes and cancer cell lines. In conclusion, the data presented here might be of toxicological importance, regarding the multiple roles of AhR in human physiology and pathophysiology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Effect of KH2PO4 on gene expression, morphological and biochemical characteristics of stevia rebaudiana Bertoni under in vitro conditions.

    PubMed

    Kahrizi, D; Ghari, S M; Ghaheri, M; Fallah, F; Ghorbani, T; Beheshti Ale Agha, A; Kazemi, E; Ansarypour, Z

    2017-08-15

    Stevia rebaudiana is one of the most important biologically sourced and low-calorie sweeteners Bertoni that has a lot of steviol glycosides. Tissue culture is the best for propagation of stevia and micro nutrients can affect both morphological traits and steviol glycosides production. Therefore, the effect of different concentrations of KH2PO4on stevia growth factors and gene expression had been studied by tissue culture methods, RT-PCR and HPLC. According the results, bud numbers had increased significantly in MS + 0.034 mMKH2PO4 media and the highest measured length was seen in plants grown under MS + 0.034 mM KH2PO4 treatment. Also, the highest growth rate (1.396 mm/d) was observed in MS + 0.034 mMKH2PO4.The best concentration of KH2PO4 for expression of UGT74G1 was 0.00425mMand the best one for UGT76G1 expression was 0.017mM. Interestingly, the best media for both stevioside and rebaudioside A accumulation was 0.017mM KH2PO4containing media. There was positive correlation between the best media for gene expression and the best one for steviol glycosides production.

  12. LWD-TCP complex activates the morning gene CCA1 in Arabidopsis.

    PubMed

    Wu, Jing-Fen; Tsai, Huang-Lung; Joanito, Ignasius; Wu, Yi-Chen; Chang, Chin-Wen; Li, Yi-Hang; Wang, Ying; Hong, Jong Chan; Chu, Jhih-Wei; Hsu, Chao-Ping; Wu, Shu-Hsing

    2016-10-13

    A double-negative feedback loop formed by the morning genes CIRCADIAN CLOCK ASSOCIATED1 (CCA1)/LATE ELONGATED HYPOCOTYL (LHY) and the evening gene TIMING OF CAB EXPRESSION1 (TOC1) contributes to regulation of the circadian clock in Arabidopsis. A 24-h circadian cycle starts with the peak expression of CCA1 at dawn. Although CCA1 is targeted by multiple transcriptional repressors, including PSEUDO-RESPONSE REGULATOR9 (PRR9), PRR7, PRR5 and CCA1 HIKING EXPEDITION (CHE), activators of CCA1 remain elusive. Here we use mathematical modelling to infer a co-activator role for LIGHT-REGULATED WD1 (LWD1) in CCA1 expression. We show that the TEOSINTE BRANCHED 1-CYCLOIDEA-PCF20 (TCP20) and TCP22 proteins act as LWD-interacting transcriptional activators. The concomitant binding of LWD1 and TCP20/TCP22 to the TCP-binding site in the CCA1 promoter activates CCA1. Our study reveals activators of the morning gene CCA1 and provides an action mechanism that ensures elevated expression of CCA1 at dawn to sustain a robust clock.

  13. LWD–TCP complex activates the morning gene CCA1 in Arabidopsis

    PubMed Central

    Wu, Jing-Fen; Tsai, Huang-Lung; Joanito, Ignasius; Wu, Yi-Chen; Chang, Chin-Wen; Li, Yi-Hang; Wang, Ying; Hong, Jong Chan; Chu, Jhih-Wei; Hsu, Chao-Ping; Wu, Shu-Hsing

    2016-01-01

    A double-negative feedback loop formed by the morning genes CIRCADIAN CLOCK ASSOCIATED1 (CCA1)/LATE ELONGATED HYPOCOTYL (LHY) and the evening gene TIMING OF CAB EXPRESSION1 (TOC1) contributes to regulation of the circadian clock in Arabidopsis. A 24-h circadian cycle starts with the peak expression of CCA1 at dawn. Although CCA1 is targeted by multiple transcriptional repressors, including PSEUDO-RESPONSE REGULATOR9 (PRR9), PRR7, PRR5 and CCA1 HIKING EXPEDITION (CHE), activators of CCA1 remain elusive. Here we use mathematical modelling to infer a co-activator role for LIGHT-REGULATED WD1 (LWD1) in CCA1 expression. We show that the TEOSINTE BRANCHED 1-CYCLOIDEA-PCF20 (TCP20) and TCP22 proteins act as LWD-interacting transcriptional activators. The concomitant binding of LWD1 and TCP20/TCP22 to the TCP-binding site in the CCA1 promoter activates CCA1. Our study reveals activators of the morning gene CCA1 and provides an action mechanism that ensures elevated expression of CCA1 at dawn to sustain a robust clock. PMID:27734958

  14. Fanconi Anemia Core Complex Gene Promoters Harbor Conserved Transcription Regulatory Elements

    PubMed Central

    Meier, Daniel; Schindler, Detlev

    2011-01-01

    The Fanconi anemia (FA) gene family is a recent addition to the complex network of proteins that respond to and repair certain types of DNA damage in the human genome. Since little is known about the regulation of this novel group of genes at the DNA level, we characterized the promoters of the eight genes (FANCA, B, C, E, F, G, L and M) that compose the FA core complex. The promoters of these genes show the characteristic attributes of housekeeping genes, such as a high GC content and CpG islands, a lack of TATA boxes and a low conservation. The promoters functioned in a monodirectional way and were, in their most active regions, comparable in strength to the SV40 promoter in our reporter plasmids. They were also marked by a distinctive transcriptional start site (TSS). In the 5′ region of each promoter, we identified a region that was able to negatively regulate the promoter activity in HeLa and HEK 293 cells in isolation. The central and 3′ regions of the promoter sequences harbor binding sites for several common and rare transcription factors, including STAT, SMAD, E2F, AP1 and YY1, which indicates that there may be cross-connections to several established regulatory pathways. Electrophoretic mobility shift assays and siRNA experiments confirmed the shared regulatory responses between the prominent members of the TGF-β and JAK/STAT pathways and members of the FA core complex. Although the promoters are not well conserved, they share region and sequence specific regulatory motifs and transcription factor binding sites (TBFs), and we identified a bi-partite nature to these promoters. These results support a hypothesis based on the co-evolution of the FA core complex genes that was expanded to include their promoters. PMID:21826217

  15. Fanconi anemia core complex gene promoters harbor conserved transcription regulatory elements.

    PubMed

    Meier, Daniel; Schindler, Detlev

    2011-01-01

    The Fanconi anemia (FA) gene family is a recent addition to the complex network of proteins that respond to and repair certain types of DNA damage in the human genome. Since little is known about the regulation of this novel group of genes at the DNA level, we characterized the promoters of the eight genes (FANCA, B, C, E, F, G, L and M) that compose the FA core complex. The promoters of these genes show the characteristic attributes of housekeeping genes, such as a high GC content and CpG islands, a lack of TATA boxes and a low conservation. The promoters functioned in a monodirectional way and were, in their most active regions, comparable in strength to the SV40 promoter in our reporter plasmids. They were also marked by a distinctive transcriptional start site (TSS). In the 5' region of each promoter, we identified a region that was able to negatively regulate the promoter activity in HeLa and HEK 293 cells in isolation. The central and 3' regions of the promoter sequences harbor binding sites for several common and rare transcription factors, including STAT, SMAD, E2F, AP1 and YY1, which indicates that there may be cross-connections to several established regulatory pathways. Electrophoretic mobility shift assays and siRNA experiments confirmed the shared regulatory responses between the prominent members of the TGF-β and JAK/STAT pathways and members of the FA core complex. Although the promoters are not well conserved, they share region and sequence specific regulatory motifs and transcription factor binding sites (TBFs), and we identified a bi-partite nature to these promoters. These results support a hypothesis based on the co-evolution of the FA core complex genes that was expanded to include their promoters.

  16. Single Nucleotide Polymorphisms in B-Genome Specific UDP-Glucosyl Transferases Associated with Fusarium Head Blight Resistance and Reduced Deoxynivalenol Accumulation in Wheat Grain.

    PubMed

    Sharma, Pallavi; Gangola, Manu P; Huang, Chen; Kutcher, H Randy; Ganeshan, Seedhabadee; Chibbar, Ravindra N

    2018-01-01

    An in vitro spike culture method was optimized to evaluate Fusarium head blight (FHB) resistance in wheat (Triticum aestivum) and used to screen a population of ethyl methane sulfonate treated spike culture-derived variants (SCDV). Of the 134 SCDV evaluated, the disease severity score of 47 of the variants was ≤30%. Single nucleotide polymorphisms (SNP) in the UDP-glucosyltransferase (UGT) genes, TaUGT-2B, TaUGT-3B, and TaUGT-EST, differed between AC Nanda (an FHB-susceptible wheat variety) and Sumai-3 (an FHB-resistant wheat cultivar). SNP at 450 and 1,558 bp from the translation initiation site in TaUGT-2B and TaUGT-3B, respectively were negatively correlated with FHB severity in the SCDV population, whereas the SNP in TaUGT-EST was not associated with FHB severity. Fusarium graminearum strain M7-07-1 induced early expression of TaUGT-2B and TaUGT-3B in FHB-resistant SCDV lines, which were associated with deoxynivalenol accumulation and reduced FHB disease progression. At 8 days after inoculation, deoxynivalenol concentration varied from 767 ppm in FHB-resistant variants to 2,576 ppm in FHB-susceptible variants. The FHB-resistant SCDV identified can be used as new sources of FHB resistance in wheat improvement programs.

  17. Characterization of the telomere complex, TERF1 and TERF2 genes in muntjac species with fusion karyotypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartmann, Nils; Scherthan, Harry

    The telomere binding proteins TRF1 and TRF2 maintain and protect chromosome ends and confer karyotypic stability. Chromosome evolution in the genus Muntiacus is characterized by numerous tandem (end-to-end) fusions. To study TRF1 and TRF2 telomere binding proteins in Muntiacus species, we isolated and characterized the TERF1 and -2 genes from Indian muntjac (Muntiacus muntjak vaginalis; 2n = 6 female) and from Chinese muntjac (Muntiacus reveesi; 2n = 46). Expression analysis revealed that both genes are ubiquitously expressed and sequence analysis identified several transcript variants of both TERF genes. Control experiments disclosed a novel testis-specific splice variant of TERF1 in humanmore » testes. Amino acid sequence comparisons demonstrate that Muntiacus TRF1 and in particular TRF2 are highly conserved between muntjac and human. In vivo TRF2-GFP and immuno-staining studies in muntjac cell lines revealed telomeric TRF2 localization, while deletion of the DNA binding domain abrogated this localization, suggesting muntjac TRF2 represents a functional telomere protein. Finally, expression analysis of a set of telomere-related genes revealed their presence in muntjac fibroblasts and testis tissue, which suggests the presence of a conserved telomere complex in muntjacs. However, a deviation from the common theme was noted for the TERT gene, encoding the catalytic subunit of telomerase; TERT expression could not be detected in Indian or Chinese muntjac cDNA or genomic DNA using a series of conserved primers, while TRAP assay revealed functional telomerase in Chinese muntjac testis tissues. This suggests muntjacs may harbor a diverged telomerase sequence.« less

  18. The DREAM complex: Master coordinator of cell cycle dependent gene expression

    PubMed Central

    Sadasivam, Subhashini; DeCaprio, James A.

    2014-01-01

    Preface The dimerization partner (DP), retinoblastoma (RB)-like, E2F and MuvB (DREAM) complex provides a previously unsuspected unifying role in the cell cycle by directly linking p130, p107, E2F, BMYB and FOXM1. DREAM mediates gene repression during G0 and coordinates periodic gene expression with peaks during G1/S and G2/M. Perturbations in DREAM regulation shift the balance from quiescence towards proliferation and contribute to increased mitotic gene expression levels frequently observed in cancers with poor prognosis. PMID:23842645

  19. Acetylation of Histone Deacetylase 1 Regulates NuRD Corepressor Complex Activity*

    PubMed Central

    Yang, Tao; Jian, Wei; Luo, Yi; Fu, Xueqi; Noguchi, Constance; Bungert, Jörg; Huang, Suming; Qiu, Yi

    2012-01-01

    Histone deacetylases (HDACs) play important roles in regulating cell proliferation and differentiation. The HDAC1-containing NuRD complex is generally considered as a corepressor complex and is required for GATA-1-mediated repression. However, recent studies also show that the NuRD complex is involved in GATA-1-mediated gene activation. We tested whether the GATA-1-associated NuRD complex loses its deacetylase activity and commits the GATA-1 complex to become an activator during erythropoiesis. We found that GATA-1-associated deacetylase activity gradually decreased upon induction of erythroid differentiation. GATA-1-associated HDAC1 is increasingly acetylated after differentiation. It has been demonstrated earlier that acetylated HDAC1 has no deacetylase activity. Indeed, overexpression of an HDAC1 mutant, which mimics acetylated HDAC1, promotes GATA-1-mediated transcription and erythroid differentiation. Furthermore, during erythroid differentiation, acetylated HDAC1 recruitment is increased at GATA-1-activated genes, whereas it is significantly decreased at GATA-1-repressed genes. Interestingly, deacetylase activity is not required for Mi2 remodeling activity, suggesting that remodeling activity may be required for both activation and repression. Thus, our data suggest that NuRD can function as a coactivator or repressor and that acetylated HDAC1 converts the NuRD complex from a repressor to an activator during GATA-1-directed erythroid differentiation. PMID:23014989

  20. Identifying driving gene clusters in complex diseases through critical transition theory

    NASA Astrophysics Data System (ADS)

    Wolanyk, Nathaniel; Wang, Xujing; Hessner, Martin; Gao, Shouguo; Chen, Ye; Jia, Shuang

    A novel approach of looking at the human body using critical transition theory has yielded positive results: clusters of genes that act in tandem to drive complex disease progression. This cluster of genes can be thought of as the first part of a large genetic force that pushes the body from a curable, but sick, point to an incurable diseased point through a catastrophic bifurcation. The data analyzed is time course microarray blood assay data of 7 high risk individuals for Type 1 Diabetes who progressed into a clinical onset, with an additional larger study requested to be presented at the conference. The normalized data is 25,000 genes strong, which were narrowed down based on statistical metrics, and finally a machine learning algorithm using critical transition metrics found the driving network. This approach was created to be repeatable across multiple complex diseases with only progression time course data needed so that it would be applicable to identifying when an individual is at risk of developing a complex disease. Thusly, preventative measures can be enacted, and in the longer term, offers a possible solution to prevent all Type 1 Diabetes.

  1. Genomic and Coexpression Analyses Predict Multiple Genes Involved in Triterpene Saponin Biosynthesis in Medicago truncatula[C][W

    PubMed Central

    Naoumkina, Marina A.; Modolo, Luzia V.; Huhman, David V.; Urbanczyk-Wochniak, Ewa; Tang, Yuhong; Sumner, Lloyd W.; Dixon, Richard A.

    2010-01-01

    Saponins, an important group of bioactive plant natural products, are glycosides of triterpenoid or steroidal aglycones (sapogenins). Saponins possess many biological activities, including conferring potential health benefits for humans. However, most of the steps specific for the biosynthesis of triterpene saponins remain uncharacterized at the molecular level. Here, we use comprehensive gene expression clustering analysis to identify candidate genes involved in the elaboration, hydroxylation, and glycosylation of the triterpene skeleton in the model legume Medicago truncatula. Four candidate uridine diphosphate glycosyltransferases were expressed in Escherichia coli, one of which (UGT73F3) showed specificity for multiple sapogenins and was confirmed to glucosylate hederagenin at the C28 position. Genetic loss-of-function studies in M. truncatula confirmed the in vivo function of UGT73F3 in saponin biosynthesis. This report provides a basis for future studies to define genetically the roles of multiple cytochromes P450 and glycosyltransferases in triterpene saponin biosynthesis in Medicago. PMID:20348429

  2. TGF-β1 gene-engineered mesenchymal stem cells induce rat cartilage regeneration using nonviral gene vector.

    PubMed

    He, Cai-Xia; Zhang, Tian-Yuan; Miao, Pei-Hong; Hu, Zhong-Jie; Han, Min; Tabata, Yasuhiko; Hu, Yu-Lan; Gao, Jian-Qing

    2012-01-01

    This study evaluated the potential of utilizing transfected pTGFβ-1 gene-engineered rat mesenchymal stem cells (MSCs) using nonviral vector to promote cartilage regeneration. Pullulan-spermine was used as the nonviral gene vector and gelatin sponge was used as the scaffold. MSCs were engineered with TGF-β1 gene with either the three-dimensional (3D) reverse transfection system or the two-dimensional (2D) conventional transfection system. For the 3D reverse transfection system, pullulan-spermine/pTGF-β1 gene complexes were immobilized to the gelatin sponge, followed by the seeding of MSCs. Pullulan-spermine/pTGF-β1 gene complexes were delivered to MSCs cultured in the plate to perform the 2D conventional transfection system, and then MSCs were seeded to the gelatin sponge. Then, TGF-β1 gene-transfected MSC seeded gelatin sponge was implanted to the full-thickness cartilage defect. Compared with the control group, both groups of TGF-β1 gene-engineered MSCs improved cartilage regeneration through optical observation and histology staining. So, with pullulan-spermine as the nonviral vector, TGF-β1-gene engineered MSCs can induce cartilage regeneration in vivo. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  3. Nrf2 target genes are induced under marginal selenium-deficiency

    PubMed Central

    Müller, Mike; Banning, Antje; Brigelius-Flohé, Regina

    2010-01-01

    A suboptimal selenium supply appears to prevail in Europe. The current study, therefore, was focused on the changes in gene expression under a suboptimal selenium intake. Previous microarray analyses in the colon of mice fed either a selenium-adequate or a moderately deficient diet revealed a change in genes of several pathways. Severe selenium-deficiency has been found previously to influence Nrf2-regulated genes of the adaptive response. Since the previous pathway analyses were done with a program not searching for Nrf2 target genes, respective genes were manually selected and confirmed by qPCR. qPCR revealed an induction of phase II (Nqo1, Gsts, Sult1b1 and Ugt1a6) and antioxidant enzymes (Hmox1, Mt2, Prdx1, Srxn1, Sod1 and Gclc) under the selenium-poor diet, which is considered to compensate for the loss of selenoproteins. The strongest effects were observed in the duodenum where preferentially genes for antioxidant enzymes were up-regulated. These also include the mRNA of the selenoproteins TrxR1 and GPx2 that would enable their immediate translation upon selenium refeeding. The down-regulation of Gsk3β in moderate selenium-deficiency observed in the previous paper provides a possible explanation for the activation of the Nrf2 pathway, because inhibition of GSK3β results in the nuclear accumulation of Nrf2. PMID:21189866

  4. Zinc finger transcription factor CASZ1 interacts with histones, DNA repair proteins and recruits NuRD complex to regulate gene transcription.

    PubMed

    Liu, Zhihui; Lam, Norris; Thiele, Carol J

    2015-09-29

    The zinc finger transcription factor CASZ1 has been found to control neural fate-determination in flies, regulate murine and frog cardiac development, control murine retinal cell progenitor expansion and function as a tumor suppressor gene in humans. However, the molecular mechanism by which CASZ1 regulates gene transcription to exert these diverse biological functions has not been described. Here we identify co-factors that are recruited by CASZ1b to regulate gene transcription using co-immunoprecipitation (co-IP) and mass spectrometry assays. We find that CASZ1b binds to the nucleosome remodeling and histone deacetylase (NuRD) complex, histones and DNA repair proteins. Mutagenesis of the CASZ1b protein assay demonstrates that the N-terminus of CASZ1b is required for NuRD binding, and a poly(ADP-ribose) binding motif in the CASZ1b protein is required for histone H3 and DNA repair proteins binding. The N-terminus of CASZ1b fused to an artificial DNA-binding domain (GAL4DBD) causes a significant repression of transcription (5xUAS-luciferase assay), which could be blocked by treatment with an HDAC inhibitor. Realtime PCR results show that the transcriptional activity of CASZ1b mutants that abrogate NuRD or histone H3/DNA binding is significantly decreased. This indicates a model in which CASZ1b binds to chromatin and recruits NuRD complexes to orchestrate epigenetic-mediated transcriptional programs.

  5. Site-Specific Expression of Polycomb-Group Genes Encoding the HPC-HPH/PRC1 Complex in Clinically Defined Primary Nodal and Cutaneous Large B-Cell Lymphomas

    PubMed Central

    Raaphorst, Frank M.; Vermeer, Maarten; Fieret, Elly; Blokzijl, Tjasso; Dukers, Danny; Sewalt, Richard G.A.B.; Otte, Arie P.; Willemze, Rein; Meijer, Chris J.L.M.

    2004-01-01

    Polycomb-group (PcG) genes preserve cell identity by gene silencing, and contribute to regulation of lymphopoiesis and malignant transformation. We show that primary nodal large B-cell lymphomas (LBCLs), and secondary cutaneous deposits from such lymphomas, abnormally express the BMI-1, RING1, and HPH1 PcG genes in cycling neoplastic cells. By contrast, tumor cells in primary cutaneous LBCLs lacked BMI-1 expression, whereas RING1 was variably detected. Lack of BMI-1 expression was characteristic for primary cutaneous LBCLs, because other primary extranodal LBCLs originating from brain, testes, and stomach were BMI-1-positive. Expression of HPH1 was rarely detected in primary cutaneous LBCLs of the head or trunk and abundant in primary cutaneous LBCLs of the legs, which fits well with its earlier recognition as a distinct clinical pathological entity with different clinical behavior. We conclude that clinically defined subclasses of primary LBCLs display site-specific abnormal expression patterns of PcG genes of the HPC-HPH/PRC1 PcG complex. Some of these patterns (such as the expression profile of BMI-1) may be diagnostically relevant. We propose that distinct expression profiles of PcG genes results in abnormal formation of HPC-HPH/PRC1 PcG complexes, and that this contributes to lymphomagenesis and different clinical behavior of clinically defined LBCLs. PMID:14742259

  6. Mapping the UDP-Glucuronic Acid Binding Site in UDP-Glucuronosyltransferase-1 A10 by Homology-based Modeling: Confirmation with Biochemical Evidence†

    PubMed Central

    Banerjee, Rajat; Pennington, Matthew W.; Garza, Amanda; Owens, Ida S.

    2008-01-01

    The UDP-glucuronosyltransferase (UGT) isozyme system is critical for protecting the body against endogenous and exogenous chemicals by linking glucuronic acid donated by UDP-glucuronic acid to a lipophilic acceptor substrate. UGTs convert metabolites, dietary constituents and environmental toxicants to highly excretable glucuronides. Because of difficulties associated with purifying endoplasmic reticulum-bound UGTs for structural studies, we carried out homology-based computer modeling to aid analysis. The search found structural homology in Escherichia coli UDP-galactose 4-epimerase. Consistent with predicted similarities involving the common UDP-moiety in substrates, UDP-glucose and UDP-hexanol amine caused competitive inhibition by Lineweaver-Burk plots. Among predicted binding sites N292, K314, K315 and K404 in UGT1A10, two informative sets of mutants K314R/Q/A/E /G and K404R/E had null activities or 2.7-fold higher/50% less activity, respectively. Scatchard analysis of binding data of affinity-ligand, 5-azido-uridine-[β-32P]-diphosphoglucuronic acid, to purified UGT1A10-His or UGT1A7-His revealed high and low affinity binding sites. 2-Nitro 5-thiocyanobenzoic acid-digested UGT1A10-His bound with radiolabeled affinity-ligand revealed an 11.3- and 14.3-kDa peptide associated with K314 and K404, respectively, in a discontinuous SDS-PAGE system. Similar treatment of 1A10His-K314A bound with the ligand lacked both peptides; 1A10-HisK404R- and 1A10-HisK404E showed 1.3-fold greater- and 50% less-label in the 14.3-kDa peptide, respectively, compared to 1A10-His without affecting the 11.3-kDa peptide. Scatchard analysis of binding data of affinity-ligand to 1A10His-K404R and -K404E showed a 6-fold reduction and a large increase in Kd, respectively. Our results indicate: K314 and K404 are required UDP-glcA binding sites in 1A10, that K404 controls activity and high affinity sites and that K314 and K404 are strictly conserved in 70 aligned UGTs, except for S321

  7. Stromal-derived factor 1 directly promotes genes expressed within the ovulatory cascade in feline cumulus oocyte complexes.

    PubMed

    Rojo, Julieta L; Linari, Martina; Young, Kelly A; Peluffo, Marina C

    2018-05-01

    We hypothesized that the chemokine SDF1/CXCR4 system was present in feline cumulus-oocyte complexes (COCs) and that COCs cultured with SDF1 would directly upregulate gene expression in the ovulatory cascade. Ovaries (n = 50) were obtained from adult domestic cats during the breeding season and COCs were recovered from antral follicles. Because IVM media triggers cumulus-oocyte expansion, culture conditions needed to be optimized to study periovulatory genes. After optimization, the effects of 25 ng/ml SDF1 and the CXCR4 inhibitor were examined in a COC culture for 3, 12, and 24 h. MEM-hepes with 1% of charcoal stripped-FBS was the optimized culture medium, assessed by the expansion of COCs at 24 h in the gonadotropin (GNT) group but not in the media with serum alone. The mRNA expression of HAS2, TNFAIP6, PTX3, and AREG peaked at 3 h in GNT group as compared to all other groups (p < 0.05). COCs cultured with SDF1 showed increased HAS2 and TNFAIP6 mRNA expression at 3 h compared to negative controls and to the CXCR4 inhibitor group. CXCR4 and SDF1 immunostaining was present in both cumulus cells and the oocyte. These results demonstrate that GNT stimulation upregulates key periovulatory genes and expansion in feline COCs from antral follicles, and support the use of this culture system to examine molecular processes within the COC. In addition, SDF1 directly promotes key periovulatory genes in feline COCs, suggesting that the SDF1-CXCR4 pathway may extend its function beyond a chemoattractant, and may play a direct role within the COC.

  8. Nutritional Status Differentially Alters Cytochrome P450 3A4 (CYP3A4) and Uridine 5'-Diphospho-Glucuronosyltransferase (UGT) Mediated Drug Metabolism: Effect of Short-Term Fasting and High Fat Diet on Midazolam Metabolism.

    PubMed

    Lammers, Laureen A; Achterbergh, Roos; Romijn, Johannes A; Mathôt, Ron A A

    2018-06-06

    Previous studies have shown that nutritional status can alter drug metabolism which may result in treatment failure or untoward side effects. This study assesses the effect of two nutritional conditions, short-term fasting, and a short-term high fat diet (HFD) on cytochrome P450 3A4 (CYP3A4) and uridine 5'-diphospho-glucuronosyltransferase (UGT) mediated drug metabolism by studying the pharmacokinetics of midazolam and its main metabolites. In a randomized-controlled cross-over trial, nine healthy subjects received a single intravenous administration of 0.015 mg/kg midazolam after: (1) an overnight fast (control); (2) 36 h of fasting; and (3) an overnight fast after 3 days of a HFD consisting of 500 ml of cream supplemented to their regular diet. Pharmacokinetic parameters were analyzed simultaneously using non-linear mixed-effects modeling. Short-term fasting increased CYP3A4-mediated midazolam clearance by 12% (p < 0.01) and decreased UGT-mediated metabolism apparent 1-OH-midazolam clearance by 13% (p < 0.01) by decreasing the ratio of clearance and the fraction metabolite formed (ΔCL 1-OH-MDZ /f 1-OH-MDZ ). Furthermore, short-term fasting decreased apparent clearance of 1-OH-midazolam-O-glucuronide (CL 1-OH-MDZ-glucuronide /(f 1-OH-MDZ-glucuronide  × f 1-OH-MDZ )) by 20% (p < 0.01). The HFD did not affect systemic clearance of midazolam or metabolites. Short-term fasting differentially alters midazolam metabolism by increasing CYP3A4-mediated metabolism but by decreasing UGT-mediated metabolism. In contrast, a short-term HFD did not affect systemic clearance of midazolam.

  9. The major histocompatibility complex genes impact pain response in DA and DA.1U rats.

    PubMed

    Guo, Yuan; Yao, Fan-Rong; Cao, Dong-Yuan; Li, Li; Wang, Hui-Sheng; Xie, Wen; Zhao, Yan

    2015-08-01

    Our recent studies have shown that the difference in basal pain sensitivity to mechanical and thermal stimulation between Dark-Agouti (DA) rats and a novel congenic DA.1U rats is major histocompatibility complex (MHC) genes dependent. In the present study, we further used DA and DA.1U rats to investigate the role of MHC genes in formalin-induced pain model by behavioral, electrophysiological and immunohistochemical methods. Behavioral results showed biphasic nociceptive behaviors increased significantly following the intraplantar injection of formalin in the hindpaw of DA and DA.1U rats. The main nociceptive behaviors were lifting and licking, especially in DA rats (P<0.001 and P<0.01). The composite pain scores (CPS) in DA rats were significantly higher than those in DA.1U rats in both phases of the formalin test (P<0.01). Electrophysiological results also showed the biphasic increase in discharge rates of C and Aδ fibers of L5 dorsal root in the two strains, and the net change of the discharge rate of DA rats was significantly higher than that of DA.1U rats (P<0.05). The mechanical thresholds decreased after formalin injection in both strains (P<0.01), and the net change in the mechanical threshold in DA was greater than that in DA.1U rats (P<0.05). The expression of RT1-B, representation of MHC class II molecule, in laminae I-II of L4/5 spinal cord in DA rats was significantly higher than that in DA.1U rats in the respective experimental group (P<0.05). These results suggested that both DA and DA.1U rats exhibited nociceptive responses in formalin-induced pain model and DA rats were more sensitive to noxious chemical stimulus than DA.1U rats, indicating that MHC genes might contribute to the difference in pain sensitivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Biotransformation of Bisphenol AF to Its Major Glucuronide Metabolite Reduces Estrogenic Activity

    PubMed Central

    Yin, Jie; Zhang, Jing; Feng, Yixing; Shao, Bing

    2013-01-01

    Bisphenol AF (BPAF), an endocrine disrupting chemical, can induce estrogenic activity through binding to estrogen receptor (ER). However, the metabolism of BPAF in vivo and the estrogenic activity of its metabolites remain unknown. In the present study, we identified four metabolites including BPAF diglucuronide, BPAF glucuronide (BPAF-G), BPAF glucuronide dehydrated and BPAF sulfate in the urine of Sprague-Dawley (SD) rats. BPAF-G was further characterized by nuclear magnetic resonance (NMR). After treatment with a single dose of BPAF, BPAF was metabolized rapidly to BPAF-G, as detected in the plasma of SD rats. Biotransformation of BPAF to BPAF-G was confirmed with human liver microsomes (HLM), and Vmax of glucuronidation for HLM was 11.6 nmol/min/mg. We also found that BPAF glucuronidation could be mediated through several human recombinant UDP-glucuronosyltransferases (UGTs) including UGT1A1, UGT1A3, UGT1A8, UGT1A9, UGT2B4, UGT2B7, UGT2B15 and UGT2B17, among which UGT2B7 showed the highest efficiency of glucuronidation. To explain the biological function of BPAF biotransformation, the estrogenic activities of BPAF and BPAF-G were evaluated in ER-positive breast cancer T47D and MCF7 cells. BPAF significantly stimulates ER-regulated gene expression and cell proliferation at the dose of 100 nM and 1 μM in breast cancer cells. However, BPAF-G did not show any induction of estrogenic activity at the same dosages, implying that formation of BPAF-G is a potential host defense mechanism against BPAF. Based on our study, biotransformation of BPAF to BPAF-G can eliminate BPAF-induced estrogenic activity, which is therefore considered as reducing the potential threat to human beings. PMID:24349450

  11. Cyclin A and the retinoblastoma gene product complex with a common transcription factor.

    PubMed

    Bandara, L R; Adamczewski, J P; Hunt, T; La Thangue, N B

    1991-07-18

    The retinoblastoma gene (Rb) product is a negative regulator of cellular proliferation, an effect that could be mediated in part at the transcriptional level through its ability to complex with the sequence-specific transcription factor DRTF1. This interaction is modulated by adenovirus E1a, which sequesters the Rb protein and several other cellular proteins, including cyclin A, a molecule that undergoes cyclical accumulation and destruction during each cell cycle and which is required for cell cycle progression. Cyclin A, which also complexes with DRTF1, facilitates the efficient assembly of the Rb protein into the complex. This suggests a role for cyclin A in regulating transcription and defines a transcription factor through which molecules that regulate the cell cycle in a negative fashion, such as Rb, and in a positive fashion, such as cyclin A, interact. Mutant loss-of-function Rb alleles, which occur in a variety of tumour cells, also fail to complex with E1a and large T antigen. Here we report on a naturally occurring loss-of-function Rb allele encoding a protein that fails to complex with DRTF1. This might explain how mutation in the Rb gene prevents negative growth control.

  12. [Identification and polymorphism of pectinase genes PGU in the Saccharomyces bayanus complex].

    PubMed

    Shalamitskiy, M Yu; Naumov, G I

    2016-05-01

    Pectinase (endo-polygalacturonase) is the key enzyme splitting plant pectin. The corresponding single gene PGU1 is documented for the yeast S. cerevisiae. On the basis of phylogenetic analysis of the PGU nucleotide sequence available in the GenBank, a family of divergent PGU genes is found in the species complex S. bayanus: S. bayanus var. uvarum, S. eubayanus, and hybrid taxon S. pastorianus. The PGU genes have different chromosome localization.

  13. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases.

    PubMed

    Preciados, Mark; Yoo, Changwon; Roy, Deodutta

    2016-12-13

    signaling pathways. Our findings suggest that in addition to estrogen signaling, EEDs influencing NRF1 regulated communities of genes across genomic and epigenomic multiple networks may contribute in the development of complex chronic human brain health disorders.

  14. The HUSH complex cooperates with TRIM28 to repress young retrotransposons and new genes.

    PubMed

    Robbez-Masson, Luisa; Tie, Christopher H C; Conde, Lucia; Tunbak, Hale; Husovsky, Connor; Tchasovnikarova, Iva A; Timms, Richard T; Herrero, Javier; Lehner, Paul J; Rowe, Helen M

    2018-05-04

    Retrotransposons encompass half of the human genome and contribute to the formation of heterochromatin, which provides nuclear structure and regulates gene expression. Here, we asked if the human silencing hub (HUSH) complex is necessary to silence retrotransposons and whether it collaborates with TRIM28 and the chromatin remodeler ATRX at specific genomic loci. We show that the HUSH complex contributes to de novo repression and DNA methylation of a SVA retrotransposon reporter. By using naïve vs. primed mouse pluripotent stem cells, we reveal a critical role for the HUSH complex in naïve cells, implicating it in programming epigenetic marks in development. While the HUSH component FAM208A binds to endogenous retroviruses (ERVs) and long interspersed element-1s (LINE-1s or L1s), it is mainly required to repress evolutionarily young L1s (mouse-specific lineages less than 5 million years old). TRIM28, in contrast, is necessary to repress both ERVs and young L1s. Genes co-repressed by TRIM28 and FAM208A are evolutionarily young, or exhibit tissue-specific expression, are enriched in young L1s and display evidence for regulation through LTR promoters. Finally, we demonstrate that the HUSH complex is also required to repress L1 elements in human cells. Overall, these data indicate that the HUSH complex and TRIM28 co-repress young retrotransposons and new genes rewired by retrotransposon non-coding DNA. Published by Cold Spring Harbor Laboratory Press.

  15. Inhibition of the binding of MSG-intermolt-specific complex, MIC, to the sericin-1 gene promoter and sericin-1 gene expression by POU-M1/SGF-3.

    PubMed

    Kimoto, Mai; Kitagawa, Tsuyuki; Kobayashi, Isao; Nakata, Tomohiro; Kuroiwa, Asato; Takiya, Shigeharu

    2012-11-01

    The sericin-1 gene encoding a glue protein is expressed in the middle silk gland (MSG) of the silkworm, Bombyx mori. A member of the class III POU domain transcription factors, POU-M1, was cloned as the factor bound to the SC site of the sericin-1 promoter and has been proposed to be a positive transcription factor. In this study, we analyzed the expression pattern of the POU-M1 gene in fourth and fifth instars in comparison with the pattern of the sericin-1 gene. The POU-M1 gene was expressed strongly in the region anterior to the sericin-1-expressing portion of the silk gland at both feeding stages. As the sericin-1-expressing region expands from the posterior to middle portions of the MSG in the fifth instar, the POU-M1-expressing region retreated from the middle to anterior portion. Introduction of the expression vector of POU-M1 into the silk glands by gene gun technology repressed promoter activity of the sericin-1 gene, suggesting that POU-M1 regulates the sericin-1 gene negatively. An in vitro binding assay showed that POU-M1 bound not only to the SC site but also to other promoter elements newly detected in vivo. Another spatiotemporal specific factor MIC binds to these elements, and POU-M1 competed with MIC to bind at the -70 site essential for promoter activity. These results suggest that POU-M1 is involved in restricting the anterior boundary of the sericin-1-expressing region in the silk gland by inhibiting the binding of the transcriptional activator to the promoter elements.

  16. Transcriptome association analysis identifies miR-375 as a major determinant of variable acetaminophen glucuronidation by human liver.

    PubMed

    Papageorgiou, Ioannis; Freytsis, Marina; Court, Michael H

    2016-10-01

    Acetaminophen is the leading cause of acute liver failure (ALF) in many countries including the United States. Hepatic glucuronidation by UDP-glucuronosyltransferase (UGT) 1A subfamily enzymes is the major route of acetaminophen elimination. Reduced glucuronidation may predispose some individuals to acetaminophen-induced ALF, but mechanisms underlying reduced glucuronidation are poorly understood. We hypothesized that specific microRNAs (miRNAs) may reduce UGT1A activity by direct effects on the UGT1A 3'-UTR shared by all UGT1A enzyme transcripts, or by indirect effects on transcription factors regulating UGT1A expression. We performed an unbiased miRNA whole transcriptome association analysis using a bank of human livers with known acetaminophen glucuronidation activities. Of 754 miRNAs evaluated, 9 miRNAs were identified that were significantly overexpressed (p<0.05; >2-fold) in livers with low acetaminophen glucuronidation activities compared with those with high activities. miR-375 showed the highest difference (>10-fold), and was chosen for further mechanistic validation. We demonstrated using in silico analysis and luciferase reporter assays that miR-375 has a unique functional binding site in the 3'-UTR of the aryl hydrocarbon receptor (AhR) gene. Furthermore overexpression of miR-375 in LS180 cells demonstrated significant repression of endogenous AhR protein (by 40%) and mRNA (by 10%), as well as enzyme activity and/or mRNA of AhR regulated enzymes including UGT1A1, UGT1A6, and CYP1A2, without affecting UGT2B7, which is not regulated by AhR. Thus miR-375 is identified as a novel repressor of UGT1A-mediated hepatic acetaminophen glucuronidation through reduced AhR expression, which could predispose some individuals to increased risk for acetaminophen-induced ALF. Published by Elsevier Inc.

  17. Transcriptomic analysis of Siberian ginseng (Eleutherococcus senticosus) to discover genes involved in saponin biosynthesis.

    PubMed

    Hwang, Hwan-Su; Lee, Hyoshin; Choi, Yong Eui

    2015-03-14

    Eleutherococcus senticosus, Siberian ginseng, is a highly valued woody medicinal plant belonging to the family Araliaceae. E. senticosus produces a rich variety of saponins such as oleanane-type, noroleanane-type, 29-hydroxyoleanan-type, and lupane-type saponins. Genomic or transcriptomic approaches have not been used to investigate the saponin biosynthetic pathway in this plant. In this study, de novo sequencing was performed to select candidate genes involved in the saponin biosynthetic pathway. A half-plate 454 pyrosequencing run produced 627,923 high-quality reads with an average sequence length of 422 bases. De novo assembly generated 72,811 unique sequences, including 15,217 contigs and 57,594 singletons. Approximately 48,300 (66.3%) unique sequences were annotated using BLAST similarity searches. All of the mevalonate pathway genes for saponin biosynthesis starting from acetyl-CoA were isolated. Moreover, 206 reads of cytochrome P450 (CYP) and 145 reads of uridine diphosphate glycosyltransferase (UGT) sequences were isolated. Based on methyl jasmonate (MeJA) treatment and real-time PCR (qPCR) analysis, 3 CYPs and 3 UGTs were finally selected as candidate genes involved in the saponin biosynthetic pathway. The identified sequences associated with saponin biosynthesis will facilitate the study of the functional genomics of saponin biosynthesis and genetic engineering of E. senticosus.

  18. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases

    PubMed Central

    Preciados, Mark; Yoo, Changwon; Roy, Deodutta

    2016-01-01

    suggest that in addition to estrogen signaling, EEDs influencing NRF1 regulated communities of genes across genomic and epigenomic multiple networks may contribute in the development of complex chronic human brain health disorders. PMID:27983596

  19. Rapid screening for nuclear genes mutations in isolated respiratory chain complex I defects.

    PubMed

    Pagniez-Mammeri, Hélène; Lombes, Anne; Brivet, Michèle; Ogier-de Baulny, Hélène; Landrieu, Pierre; Legrand, Alain; Slama, Abdelhamid

    2009-04-01

    Complex I or reduced nicotinamide adenine dinucleotide (NADH): ubiquinone oxydoreductase deficiency is the most common cause of respiratory chain defects. Molecular bases of complex I deficiencies are rarely identified because of the dual genetic origin of this multi-enzymatic complex (nuclear DNA and mitochondrial DNA) and the lack of phenotype-genotype correlation. We used a rapid method to screen patients with isolated complex I deficiencies for nuclear genes mutations by Surveyor nuclease digestion of cDNAs. Eight complex I nuclear genes, among the most frequently mutated (NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS7, NDUFS8, NDUFV1 and NDUFV2), were studied in 22 cDNA fragments spanning their coding sequences in 8 patients with a biochemically proved complex I deficiency. Single nucleotide polymorphisms and missense mutations were detected in 18.7% of the cDNA fragments by Surveyor nuclease treatment. Molecular defects were detected in 3 patients. Surveyor nuclease screening is a reliable method for genotyping nuclear complex I deficiencies, easy to interpret, and limits the number of sequence reactions. Its use will enhance the possibility of prenatal diagnosis and help us for a better understanding of complex I molecular defects.

  20. Role of extrahepatic UDP-glucuronosyltransferase 1A1: Advances in understanding breast milk-induced neonatal hyperbilirubinemia.

    PubMed

    Fujiwara, Ryoichi; Maruo, Yoshihiro; Chen, Shujuan; Tukey, Robert H

    2015-11-15

    Newborns commonly develop physiological hyperbilirubinemia (also known as jaundice). With increased bilirubin levels being observed in breast-fed infants, breast-feeding has been recognized as a contributing factor for the development of neonatal hyperbilirubinemia. Bilirubin undergoes selective metabolism by UDP-glucuronosyltransferase (UGT) 1A1 and becomes a water soluble glucuronide. Although several factors such as gestational age, dehydration and weight loss, and increased enterohepatic circulation have been associated with breast milk-induced jaundice (BMJ), deficiency in UGT1A1 expression is a known cause of BMJ. It is currently believed that unconjugated bilirubin is metabolized mainly in the liver. However, recent findings support the concept that extrahepatic tissues, such as small intestine and skin, contribute to bilirubin glucuronidation during the neonatal period. We will review the recent advances made towards understanding biological and molecular events impacting BMJ, especially regarding the role of extrahepatic UGT1A1 expression. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Role of extrahepatic UDP-glucuronosyltransferase 1A1: advances in understanding breast milk-induced neonatal hyperbilirubinemia

    PubMed Central

    Fujiwara, Ryoichi; Maruo, Yoshihiro; Chen, Shujuan; Tukey, Robert H.

    2015-01-01

    Newborns commonly develop physiological hyperbilirubinemia (also known as jaundice). With increased bilirubin levels being observed in breast-fed infants, breast-feeding has been recognized as a contributing factor for the development of neonatal hyperbilirubinemia. Bilirubin undergoes selective metabolism by UDP-glucuronosyltransferase (UGT) 1A1 and becomes a water soluble glucuronide. Although several factors such as gestational age, dehydration and weight loss, and increased enterohepatic circulation have been associated with breast milk-induced jaundice (BMJ), deficiency in UGT1A1 expression is a known cause of BMJ. It is currently believed that unconjugated bilirubin is metabolized mainly in the liver. However, recent findings support the concept that extrahepatic tissues, such as small intestine and skin, contribute to bilirubin glucuronidation during the neonatal period. We will review the recent advances made towards understanding biological and molecular events impacting BMJ, especially regarding the role of extrahepatic UGT1A1 expression. PMID:26342858

  2. Splenic gene delivery system using self-assembling nano-complex with phosphatidylserine analog.

    PubMed

    Kurosaki, Tomoaki; Nakasone, Chihiro; Kodama, Yukinobu; Egashira, Kanoko; Harasawa, Hitomi; Muro, Takahiro; Nakagawa, Hiroo; Kitahara, Takashi; Higuchi, Norihide; Nakamura, Tadahiro; Sasaki, Hitoshi

    2015-01-01

    The recognition of phosphatidylserine on the erythrocyte membrane mediates erythrophagocytosis by resident spleen macrophages. The application of phosphatidylserine to a gene vector may be a novel approach for splenic drug delivery. Therefore, we chose 1,2-dioleoyl-sn-glycero-3-phospho-L-serin (DOPS) as an analogue of phosphatidylserine for splenic gene delivery of plasmid DNA (pDNA). In the present study, we successfully prepared a stable pDNA ternary complex using DOPS and polyethyleneimine (PEI) and evaluated its efficacy and safety. The pDNA/PEI complex had a positive charge and showed high transgene efficacy, although it caused cytotoxicity and agglutination. The addition of DOPS changed the ζ-potential of the pDNA/PEI complex to negative. It is known that anionic complexes are not taken up well by cells. Surprisingly, however, the pDNA/PEI/DOPS complex showed relatively high transgene efficacy in vitro. Fluorescence microscope observation revealed that the pDNA/PEI/DOPS complex internalized the cells while maintaining the complex formation. The injection of the pDNA/PEI complex killed most mice within 24 h at high doses, although all mice in the pDNA/PEI/DOPS complex group survived. The ternary complex with DOPS showed markedly better safety compared with the pDNA/PEI complex. The pDNA/PEI/DOPS complex showed high gene expression selectively in the spleen after intravenous injection into mice. Thus the ternary complex with DOPS can be used to deliver pDNA to the spleen, in which immune cells are abundant. It appears to have an excellent safety level, although further study to determine the mechanism of action is necessary.

  3. Coevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity

    PubMed Central

    Zhang, Jin; Ruhlman, Tracey A.; Sabir, Jamal S. M.; Blazier, John Chris; Weng, Mao-Lun; Park, Seongjun; Jansen, Robert K.

    2016-01-01

    Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear–plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems. PMID:26893456

  4. Methadone inhibits CYP2D6 and UGT2B7/2B4 in vivo: a study using codeine in methadone- and buprenorphine-maintained subjects

    PubMed Central

    Gelston, Eloise A; Coller, Janet K; Lopatko, Olga V; James, Heather M; Schmidt, Helmut; White, Jason M; Somogyi, Andrew A

    2012-01-01

    AIMS To compare the O-demethylation (CYP2D6-mediated), N-demethylation (CYP3A4-mediated) and 6-glucuronidation (UGT2B4/7-mediated) metabolism of codeine between methadone- and buprenorphine-maintained CYP2D6 extensive metabolizer subjects. METHODS Ten methadone- and eight buprenorphine-maintained subjects received a single 60 mg dose of codeine phosphate. Blood was collected at 3 h and urine over 6 h and assayed for codeine, norcodeine, morphine, morphine-3- and -6-glucuronides and codeine-6-glucuronide. RESULTS The urinary metabolic ratio for O-demethylation was significantly higher (P = 0.0044) in the subjects taking methadone (mean ± SD, 2.8 ± 3.1) compared with those taking buprenorphine (0.60 ± 0.43), likewise for 6-glucuronide formation (0.31 ± 0.24 vs. 0.053 ± 0.027; P < 0.0002), but there was no significant difference (P = 0.36) in N-demethylation. Similar changes in plasma metabolic ratios were also found. In plasma, compared with those maintained on buprenorphine, the methadone-maintained subjects had increased codeine and norcodeine concentrations (P < 0.004), similar morphine (P = 0.72) and lower morphine-3- and -6- and codeine-6-glucuronide concentrations (P < 0.008). CONCLUSION Methadone is associated with inhibition of CYP2D6 and UGTs 2B4 and 2B7 reactions in vivo, even though it is not a substrate for these enzymes. Plasma morphine was not altered, owing to the opposing effects of inhibition of both formation and elimination; however, morphine-6-glucuronide (analgesically active) concentrations were substantially reduced. Drug interactions with methadone are likely to include drugs metabolized by various UGTs and CYP2D6. PMID:22092298

  5. A complex selection signature at the human AVPR1B gene.

    PubMed

    Cagliani, Rachele; Fumagalli, Matteo; Pozzoli, Uberto; Riva, Stefania; Cereda, Matteo; Comi, Giacomo P; Pattini, Linda; Bresolin, Nereo; Sironi, Manuela

    2009-06-01

    The vasopressin receptor type 1b (AVPR1B) is mainly expressed by pituitary corticotropes and it mediates the stimulatory effects of AVP on ACTH release; common AVPR1B haplotypes have been involved in mood and anxiety disorders in humans, while rodents lacking a functional receptor gene display behavioral defects and altered stress responses. Here we have analyzed the two exons of the gene and the data we present suggest that AVPR1B has been subjected to natural selection in humans. In particular, analysis of exon 2 strongly suggests the action of balancing selection in African populations and Europeans: the region displays high nucleotide diversity, an excess of intermediate-frequency alleles, a higher level of within-species diversity compared to interspecific divergence and a genealogy with common haplotypes separated by deep branches. This relatively unambiguous situation coexists with unusual features across exon 1, raising the possibility that a nonsynonymous variant (Gly191Arg) in this region has been subjected to directional selection. Although the underlying selective pressure(s) remains to be identified, we consider this to be among the first documented examples of a gene involved in mood disorders and subjected to natural selection in humans; this observation might add support to the long-debated idea that depression/low mood might have played an adaptive role during human evolution.

  6. A complex selection signature at the human AVPR1B gene

    PubMed Central

    Cagliani, Rachele; Fumagalli, Matteo; Pozzoli, Uberto; Riva, Stefania; Cereda, Matteo; Comi, Giacomo P; Pattini, Linda; Bresolin, Nereo; Sironi, Manuela

    2009-01-01

    Background The vasopressin receptor type 1b (AVPR1B) is mainly expressed by pituitary corticotropes and it mediates the stimulatory effects of AVP on ACTH release; common AVPR1B haplotypes have been involved in mood and anxiety disorders in humans, while rodents lacking a functional receptor gene display behavioral defects and altered stress responses. Results Here we have analyzed the two exons of the gene and the data we present suggest that AVPR1B has been subjected to natural selection in humans. In particular, analysis of exon 2 strongly suggests the action of balancing selection in African populations and Europeans: the region displays high nucleotide diversity, an excess of intermediate-frequency alleles, a higher level of within-species diversity compared to interspecific divergence and a genealogy with common haplotypes separated by deep branches. This relatively unambiguous situation coexists with unusual features across exon 1, raising the possibility that a nonsynonymous variant (Gly191Arg) in this region has been subjected to directional selection. Conclusion Although the underlying selective pressure(s) remains to be identified, we consider this to be among the first documented examples of a gene involved in mood disorders and subjected to natural selection in humans; this observation might add support to the long-debated idea that depression/low mood might have played an adaptive role during human evolution. PMID:19486526

  7. Mosaic Origins of a Complex Chimeric Mitochondrial Gene in Silene vulgaris

    PubMed Central

    Storchova, Helena; Müller, Karel; Lau, Steffen; Olson, Matthew S.

    2012-01-01

    Chimeric genes are significant sources of evolutionary innovation that are normally created when portions of two or more protein coding regions fuse to form a new open reading frame. In plant mitochondria astonishingly high numbers of different novel chimeric genes have been reported, where they are generated through processes of rearrangement and recombination. Nonetheless, because most studies do not find or report nucleotide variation within the same chimeric gene, evolution after the origination of these chimeric genes remains unstudied. Here we identify two alleles of a complex chimera in Silene vulgaris that are divergent in nucleotide sequence, genomic position relative to other mitochondrial genes, and expression patterns. Structural patterns suggest a history partially influenced by gene conversion between the chimeric gene and functional copies of subunit 1 of the mitochondrial ATP synthase gene (atp1). We identified small repeat structures within the chimeras that are likely recombination sites allowing generation of the chimera. These results establish the potential for chimeric gene divergence in different plant mitochondrial lineages within the same species. This result contrasts with the absence of diversity within mitochondrial chimeras found in crop species. PMID:22383961

  8. Genotyping microsatellite DNA markers at putative disease loci in inbred/multiplex families with respiratory chain complex I deficiency allows rapid identification of a novel nonsense mutation (IVS1nt -1) in the NDUFS4 gene in Leigh syndrome.

    PubMed

    Bénit, Paule; Steffann, Julie; Lebon, Sophie; Chretien, Dominique; Kadhom, Noman; de Lonlay, Pascale; Goldenberg, Alice; Dumez, Yves; Dommergues, Marc; Rustin, Pierre; Munnich, Arnold; Rötig, Agnès

    2003-05-01

    Complex I deficiency, the most common cause of mitochondrial disorders, accounts for a variety of clinical symptoms and its genetic heterogeneity makes identification of the disease genes particularly tedious. Indeed, most of the 43 complex I subunits are encoded by nuclear genes, only seven of them being mitochondrially encoded. In order to offer urgent prenatal diagnosis, we have studied an inbred/multiplex family with complex I deficiency by using microsatellite DNA markers flanking the putative disease loci. Microsatellite DNA markers have allowed us to exclude the NDUFS7, NDUFS8, NDUFV1 and NDUFS1 genes and to find homozygosity at the NDUFS4 locus. Direct sequencing has led to identification of a homozygous splice acceptor site mutation in intron 1 of the NDUFS4 gene (IVS1nt -1, G-->A); this was not found in chorion villi of the ongoing pregnancy. We suggest that genotyping microsatellite DNA markers at putative disease loci in inbred/multiplex families helps to identify the disease-causing mutation. More generally, we suggest giving consideration to a more systematic microsatellite analysis of putative disease loci for identification of disease genes in inbred/multiplex families affected with genetically heterogeneous conditions.

  9. The RNA-induced silencing complex: a versatile gene-silencing machine.

    PubMed

    Pratt, Ashley J; MacRae, Ian J

    2009-07-03

    RNA interference is a powerful mechanism of gene silencing that underlies many aspects of eukaryotic biology. On the molecular level, RNA interference is mediated by a family of ribonucleoprotein complexes called RNA-induced silencing complexes (RISCs), which can be programmed to target virtually any nucleic acid sequence for silencing. The ability of RISC to locate target RNAs has been co-opted by evolution many times to generate a broad spectrum of gene-silencing pathways. Here, we review the fundamental biochemical and biophysical properties of RISC that facilitate gene targeting and describe the various mechanisms of gene silencing known to exploit RISC activity.

  10. Role of pharmacogenetics on deferasirox AUC and efficacy.

    PubMed

    Cusato, Jessica; Allegra, Sarah; De Francia, Silvia; Massano, Davide; Piga, Antonio; D'Avolio, Antonio

    2016-04-01

    We evaluated deferasirox pharmacokinetic according to SNPs in genes involved in its metabolism and elimination. Moreover, we defined a plasma area under the curve cut-off value predicting therapy response. Allelic discrimination was performed by real-time PCR. Drug plasma concentrations were measured by a high performance liquid chromatography system coupled with an ultraviolet method. Pharmacokinetic parameters were significantly influenced by UGT1A1 rs887829C>T, UGT1A3 rs1983023C>T and rs3806596A>G SNPs. Area under the curve cut-off values of 360 μg/ml/h for efficacy were here defined and 250 μg/ml/h for nonresponse was reported. UGT1A3 rs3806596GG and ABCG2 rs13120400CC genotypes were factors able to predict efficacy, whereas UGT1A3 rs3806596GG was a nonresponse predictor. These data show how screening patient's genetic profile may help clinicians to optimize iron chelation therapy with deferasirox.

  11. Identification of mediator complex 26 (Crsp7) gametologs on platypus X1 and Y5 sex chromosomes: a candidate testis-determining gene in monotremes?

    PubMed

    Tsend-Ayush, Enkhjargal; Kortschak, R Daniel; Bernard, Pascal; Lim, Shu Ly; Ryan, Janelle; Rosenkranz, Ruben; Borodina, Tatiana; Dohm, Juliane C; Himmelbauer, Heinz; Harley, Vincent R; Grützner, Frank

    2012-01-01

    The basal lineage of monotremes features an extraordinarily complex sex chromosome system which has provided novel insights into the evolution of mammalian sex chromosomes. Recently, sequence information from autosomes, X chromosomes, and XY-shared pseudoautosomal regions has become available. However, no gene has so far been described on any of the Y chromosome-specific regions. We analyzed sequences derived from Y-specific BAC clones to identify genes with potentially male-specific function. Here, we report the identification and characterization of the mediator complex protein gametologs on platypus Y5 (Crspy). We also identified the X-chromosomal copy which unexpectedly maps to X1 (Crspx). Sequence comparison shows extensive divergence between the X and Y copy, but we found no significant positive selection on either gametolog. Expression analysis shows widespread expression of Crspx. Crspy is expressed exclusively in males with particularly strong expression in testis and kidney. Reporter gene assays to investigate whether Crspx/y can act on the recently discovered mouse Sox9 testis-specific enhancer element did reveal a modest effect together with mouse Sox9 + Sf1, but showed overall no significant upregulation of the reporter gene. This is the first report of a differentiated functional male-specific gene on platypus Y chromosomes, providing new insights into sex chromosome evolution and a candidate gene for male-specific function in monotremes.

  12. Multi-functional regulation of 4E-BP gene expression by the Ccr4-Not complex.

    PubMed

    Okada, Hirokazu; Schittenhelm, Ralf B; Straessle, Anna; Hafen, Ernst

    2015-01-01

    The mechanistic target of rapamycin (mTOR) signaling pathway is highly conserved from yeast to humans. It senses various environmental cues to regulate cellular growth and homeostasis. Deregulation of the pathway has been implicated in many pathological conditions including cancer. Phosphorylation cascades through the pathway have been extensively studied but not much is known about the regulation of gene expression of the pathway components. Here, we report that the mRNA level of eukaryotic translation initiation factor (eIF) subunit 4E-binding protein (4E-BP) gene, one of the key mTOR signaling components, is regulated by the highly conserved Ccr4-Not complex. RNAi knockdown of Not1, a putative scaffold protein of this protein complex, increases the mRNA level of 4E-BP in Drosophila Kc cells. Examination of the gene expression mechanism using reporter swap constructs reveals that Not1 depletion increases reporter mRNAs with the 3'UTR of 4E-BP gene, but decreases the ones with the 4E-BP promoter region, suggesting that Ccr4-Not complex regulates both degradation and transcription of 4E-BP mRNA. These results indicate that the Ccr4-Not complex controls expression of a single gene at multiple levels and adjusts the magnitude of the total effect. Thus, our study reveals a novel regulatory mechanism of a key component of the mTOR signaling pathway at the level of gene expression.

  13. PFN1 Induces drug resistance through Beclin1 Complex mediated autophagy in multiple myeloma.

    PubMed

    Lu, Yichen; Wang, Ya; Xu, He; Shi, Chen; Jin, Fengyan; Li, Wei

    2018-06-26

    Autophagy plays an important role in Multiple Myeloma (MM) for homeostasis, survival and drug resistance, but which genes participant in this process is unclear. We identified serval cytoskeleton genes upregulated in MM patients by GEP datasets, especially patients with high PFN1 expression had poor prognosis in MM. In vitro, overexpressed PFN1 promotes proliferation and Bortezomib (BTZ) resistance in MM cells. Further study indicated overexpression of PFN1 significantly promoted the process of autophagy and induced BTZ resistance in MM. Otherwise, knockdown of PFN1 blocked autophagy and sensitized MM to BTZ. Co-IP in MM cells demonstrated PFN1 could bind Beclin1 complex and promote the initiation of autophagy. Inhibition of autophagy via blocking the formation of Beclin1 complex could reverse the phenotype of BTZ resistance in MM. Our findings suggested that PFN1 could promote autophagy through taking part in Beclin1 complex and contribute to BTZ resistance, which may become a novel molecular target in the therapy of MM. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. 19. GENE CAMP ADMINISTRATIVE COMPLEX WITH HEADQUARTERS IN MIDDLE GROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. GENE CAMP ADMINISTRATIVE COMPLEX WITH HEADQUARTERS IN MIDDLE GROUND AND SUPPLY LINES IN BACKGROUND. - Gene Pump Plant, South of Gene Wash Reservoir, 2 miles west of Whitsett Pump Plant, Parker Dam, San Bernardino County, CA

  15. Genomic polymorphism, recombination, and linkage disequilibrium in human major histocompatibility complex-encoded antigen-processing genes.

    PubMed Central

    van Endert, P M; Lopez, M T; Patel, S D; Monaco, J J; McDevitt, H O

    1992-01-01

    Recently, two subunits of a large cytosolic protease and two putative peptide transporter proteins were found to be encoded by genes within the class II region of the major histocompatibility complex (MHC). These genes have been suggested to be involved in the processing of antigenic proteins for presentation by MHC class I molecules. Because of the high degree of polymorphism in MHC genes, and previous evidence for both functional and polypeptide sequence polymorphism in the proteins encoded by the antigen-processing genes, we tested DNA from 27 consanguineous human cell lines for genomic polymorphism by restriction fragment length polymorphism (RFLP) analysis. These studies demonstrate a strong linkage disequilibrium between TAP1 and LMP2 RFLPs. Moreover, RFLPs, as well as a polymorphic stop codon in the telomeric TAP2 gene, appear to be in linkage disequilibrium with HLA-DR alleles and RFLPs in the HLA-DO gene. A high rate of recombination, however, seems to occur in the center of the complex, between the TAP1 and TAP2 genes. Images PMID:1360671

  16. Endothelin-1 gene regulation

    PubMed Central

    Stow, Lisa R.; Jacobs, Mollie E.; Wingo, Charles S.; Cain, Brian D.

    2011-01-01

    Over two decades of research have demonstrated that the peptide hormone endothelin-1 (ET-1) plays multiple, complex roles in cardiovascular, neural, pulmonary, reproductive, and renal physiology. Differential and tissue-specific production of ET-1 must be tightly regulated in order to preserve these biologically diverse actions. The primary mechanism thought to control ET-1 bioavailability is the rate of transcription from the ET-1 gene (edn1). Studies conducted on a variety of cell types have identified key transcription factors that govern edn1 expression. With few exceptions, the cis-acting elements bound by these factors have been mapped in the edn1 regulatory region. Recent evidence has revealed new roles for some factors originally believed to regulate edn1 in a tissue or hormone-specific manner. In addition, other mechanisms involved in epigenetic regulation and mRNA stability have emerged as important processes for regulated edn1 expression. The goal of this review is to provide a comprehensive overview of the specific factors and signaling systems that govern edn1 activity at the molecular level.—Stow, L. R., Jacobs, M. E., Wingo, C. S., Cain, B. D. Endothelin-1 gene regulation. PMID:20837776

  17. Analysis of UGT1A1*28 genotype and SN-38 pharmacokinetics for irinotecan-based chemotherapy in patients with advanced colorectal cancer: results from a multicenter, retrospective study in Shanghai.

    PubMed

    Cai, Xun; Cao, Weiguo; Ding, Honghua; Liu, Tianshu; Zhou, Xinli; Wang, Mei; Zhong, Ming; Zhao, Ziyi; Xu, Qing; Wang, Liwei

    2013-09-01

    The UGT1A1*28 polymorphism, although closely linked with CPT-11-related adverse effects, cannot be used alone to guide individualized treatment decisions. However, CPT-11 dosage can be adjusted according to measured SN-38 pharmacokinetics. Our study is designed to investigate whether there is a relationship between SN-38 peak or valley concentrations and efficacy or adverse effects of CPT-11-based chemotherapy. We retrospectively studied 98 patients treated with advanced colorectal cancer in various UGT1A1*28 genotype groups (mainly (TA)6/(TA)6 and (TA)6/(TA)7 genotypes) treated with CPT-11 as first-line chemotherapy in Shanghai. One hundred and sixty-four advanced colorectal cancer patients were enrolled. To understand differences in genotype expression, the frequency of UGT1A1*28 thymine-adenine (TA) repeats in TATA box arrangement was assessed by PCR with genomic DNA extracted from peripheral blood. For ninety-eight cases with the (TA)6/(TA)6 and (TA)6/(TA)7 genotypes treated with CPT-11 as first-line chemotherapy, the plasma concentration of SN-38 was detected by HPLC 1.5 and 49 h after CPT-11 infusion. Efficacy and adverse effects were observed subsequently, and the relationship between SN-38 plasma concentration and efficacy or adverse effects within genotype groups, as well as differences in efficacy and adverse effects between (TA)6/(TA)6 and (TA)6/(TA)7 genotypes were analyzed statistically. One hundred and fourteen patients (69.51 %) were identified with the (TA)6/(TA)6 genotype, forty-eight patients (29.27 %) with the (TA)6/(TA)7 genotype, and two patients (1.22 %) with the (TA)7/(TA)7 genotype. The average peak and valley concentrations of SN-38 after CPT-11 infusion and plasma bilirubin average levels before and after CPT-11 treatment in the (TA)6/(TA)7 genotype group were all higher than those in (TA)6/(TA)6 group, and the difference was statistically significant (p = 0.00). Stepwise regression analysis showed that SN-38 peak and valley

  18. Coevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity.

    PubMed

    Zhang, Jin; Ruhlman, Tracey A; Sabir, Jamal S M; Blazier, John Chris; Weng, Mao-Lun; Park, Seongjun; Jansen, Robert K

    2016-02-17

    Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear-plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Cloning of genes related to aliphatic glucosinolate metabolism and the mechanism of sulforaphane accumulation in broccoli sprouts under jasmonic acid treatment.

    PubMed

    Guo, Liping; Yang, Runqiang; Gu, Zhenxin

    2016-10-01

    Cytochrome P450 79F1 (CYP79F1), cytochrome P450 83A1 (CYP83A1), UDP-glucosyltransferase 74B1 (UGT74B1), sulfotransferase 18 (ST5b) and flavin-containing monooxygenase GS-OX1 (FMOGS - OX1 ) are important enzymes in aliphatic glucosinolate biosynthesis. In this study, their full-length cDNA in broccoli was firstly cloned, then the mechanism of sulforaphane accumulation under jasmonic acid (JA) treatment was investigated. The full-length cDNA of CYP79F1, CYP83A1, UGT74B1, ST5b and FMOGS - OX1 comprised 1980, 1652, 1592, 1378 and 1623 bp respectively. The increase in aliphatic glucosinolate accumulation in broccoli sprouts treated with JA was associated with elevated expression of genes in the aliphatic glucosinolate biosynthetic pathway. Application of 100 µmol L(-1) JA increased myrosinase (MYR) activity but did not affect epithiospecifier protein (ESP) activity in broccoli sprouts, which was supported by the expression of MYR and ESP. Sulforaphane formation in 7-day-old sprouts treated with 100 µmol L(-1) JA was 3.36 and 1.30 times that in the control and 300 µmol L(-1) JA treatment respectively. JA enhanced the accumulation of aliphatic glucosinolates in broccoli sprouts via up-regulation of related gene expression. Broccoli sprouts treated with 100 µmol L(-1) JA showed higher sulforphane formation than those treated with 300 µmol L(-1) JA owing to the higher glucoraphanin content and myrosinase activity under 100 µmol L(-1) JA treatment. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Gene expression complex networks: synthesis, identification, and analysis.

    PubMed

    Lopes, Fabrício M; Cesar, Roberto M; Costa, Luciano Da F

    2011-10-01

    Thanks to recent advances in molecular biology, allied to an ever increasing amount of experimental data, the functional state of thousands of genes can now be extracted simultaneously by using methods such as cDNA microarrays and RNA-Seq. Particularly important related investigations are the modeling and identification of gene regulatory networks from expression data sets. Such a knowledge is fundamental for many applications, such as disease treatment, therapeutic intervention strategies and drugs design, as well as for planning high-throughput new experiments. Methods have been developed for gene networks modeling and identification from expression profiles. However, an important open problem regards how to validate such approaches and its results. This work presents an objective approach for validation of gene network modeling and identification which comprises the following three main aspects: (1) Artificial Gene Networks (AGNs) model generation through theoretical models of complex networks, which is used to simulate temporal expression data; (2) a computational method for gene network identification from the simulated data, which is founded on a feature selection approach where a target gene is fixed and the expression profile is observed for all other genes in order to identify a relevant subset of predictors; and (3) validation of the identified AGN-based network through comparison with the original network. The proposed framework allows several types of AGNs to be generated and used in order to simulate temporal expression data. The results of the network identification method can then be compared to the original network in order to estimate its properties and accuracy. Some of the most important theoretical models of complex networks have been assessed: the uniformly-random Erdös-Rényi (ER), the small-world Watts-Strogatz (WS), the scale-free Barabási-Albert (BA), and geographical networks (GG). The experimental results indicate that the inference

  1. KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands

    PubMed Central

    Farcas, Anca M; Blackledge, Neil P; Sudbery, Ian; Long, Hannah K; McGouran, Joanna F; Rose, Nathan R; Lee, Sheena; Sims, David; Cerase, Andrea; Sheahan, Thomas W; Koseki, Haruhiko; Brockdorff, Neil; Ponting, Chris P; Kessler, Benedikt M; Klose, Robert J

    2012-01-01

    CpG islands (CGIs) are associated with most mammalian gene promoters. A subset of CGIs act as polycomb response elements (PREs) and are recognized by the polycomb silencing systems to regulate expression of genes involved in early development. How CGIs function mechanistically as nucleation sites for polycomb repressive complexes remains unknown. Here we discover that KDM2B (FBXL10) specifically recognizes non-methylated DNA in CGIs and recruits the polycomb repressive complex 1 (PRC1). This contributes to histone H2A lysine 119 ubiquitylation (H2AK119ub1) and gene repression. Unexpectedly, we also find that CGIs are occupied by low levels of PRC1 throughout the genome, suggesting that the KDM2B-PRC1 complex may sample CGI-associated genes for susceptibility to polycomb-mediated silencing. These observations demonstrate an unexpected and direct link between recognition of CGIs by KDM2B and targeting of the polycomb repressive system. This provides the basis for a new model describing the functionality of CGIs as mammalian PREs. DOI: http://dx.doi.org/10.7554/eLife.00205.001 PMID:23256043

  2. Repeat polymorphisms in estrogen metabolism genes and prostate cancer risk: results from the Prostate Cancer Prevention Trial

    PubMed Central

    Tang, Li; Yao, Song; Till, Cathee; Goodman, Phyllis J.; Tangen, Catherine M.; Wu, Yue; Kristal, Alan R.; Platz, Elizabeth A.; Neuhouser, Marian L.; Stanczyk, Frank Z.; Reichardt, Juergen K.V.; Santella, Regina M.; Hsing, Ann; Hoque, Ashraful; Lippman, Scott M.; Thompson, Ian M.; Ambrosone, Christine B.

    2011-01-01

    The etiology of prostate cancer remains elusive, although steroid hormones probably play a role. Considering the carcinogenic potential of estrogen metabolites as well as altered intraprostatic estrogen biosynthesis during the development of prostate cancer, we investigated associations between repeat polymorphisms of three key estrogen-related genes (CYP11A1, CYP19A1, UGT1A1) and risk of prostate cancer in the Prostate Cancer Prevention Trial (PCPT), designed to test finasteride versus placebo as a chemoprevention agent. Using data and specimens from 1154 cases and 1351 controls who were frequency matched on age, family history of prostate cancer and PCPT treatment arm, we used logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs) separately in the placebo and finasteride arms. Among men in the placebo arm, CYP19A1 7/8 genotype carriers had a significantly higher risk of prostate cancer compared with those with the 7/7 genotype (OR = 1.70, 95% CI = 1.16–2.5), regardless of Gleason grade. This genotype was also associated with elevated serum estrogen levels. For the (TA)n repeat polymorphism in UGT1A1, the heterozygous short (<7 repeats)/long (≥7 repeats) genotype was significantly associated with the risk of low-grade prostate cancer (OR = 1.34, 95% CI = 1.05–1.70) compared with the short/short genotype. No significant association was found with CYP11A1. These associations were not observed among men in the finasteride arm. The results indicate that repeat polymorphisms in genes involved in estrogen biosynthesis and metabolism may influence risk of prostate cancer but that their effects may be modified by factors altering hormone metabolism, such as finasteride treatment. PMID:21771722

  3. Involvement of UDP-Glucuronosyltransferases and Sulfotransferases in the Excretion and Tissue Distribution of Resveratrol in Mice

    PubMed Central

    Böhmdorfer, Michaela; Szakmary, Akos; Schiestl, Robert H.; Vaquero, Javier; Riha, Juliane; Brenner, Stefan; Thalhammer, Theresia; Szekeres, Thomas; Jäger, Walter

    2017-01-01

    Resveratrol is a naturally occurring polyphenolic compound with various pharmacological activities. It is unknown whether the expression of metabolizing enzymes correlates with resveratrol levels in organs and tissues. Therefore, we investigated the metabolism and tissue distribution of resveratrol in mice and assessed its association with the expression of UDP-glucuronosyltransferase (Ugt) and sulfotransferase (Sult) genes. Plasma, urine, feces, and various organs were analyzed using high-performance liquid chromatography at up to 8 h after intragastric resveratrol administration. The metabolism of resveratrol was pronounced, leading to the formation of resveratrol glucuronides and sulfates. Concentrations of resveratrol and its metabolites were high in the gastrointestinal organs, urine, and feces, but low in the liver and kidneys. In lung, heart, thymus, and brain tissues, parent resveratrol levels exceeded the sulfate and glucuronide concentrations. The formation of resveratrol conjugates correlated with the expression of certain Ugt and Sult genes. Reverse transcription quantitative PCR (RT-qPCR) analysis revealed high mRNA expression of Ugt1a1 and Ugt1a6a in the liver, duodenum, jejunum, ileum, and colon, leading to high concentrations of resveratrol-3-O-glucuronide in these organs. Strong correlations of resveratrol-3-O-sulfate and resveratrol-3-O-4′-O-disulfate formation with Sult1a1 mRNA expression were also observed, particularly in the liver and colon. In summary, our data revealed organ-specific expression of Sults and Ugts in mice that strongly affects resveratrol concentrations; this may also be predictive in humans following oral uptake of dietary resveratrol. PMID:29231856

  4. Effect of Resveratrol, a SIRT1 Activator, on the Interactions of the CLOCK/BMAL1 Complex

    PubMed Central

    Park, Insung; Lee, Yool; Kim, Hee-Dae

    2014-01-01

    Background In mammals, the CLOCK/BMAL1 heterodimer is a key transcription factor complex that drives the cyclic expression of clock-controlled genes involved in various physiological functions and behavioral consequences. Recently, a growing number of studies have reported a molecular link between the circadian clock and metabolism. In the present study, we explored the regulatory effects of SIRTUIN1 (SIRT1), an NAD+-dependent deacetylase, on CLOCK/BMAL1-mediated clock gene expression. Methods To investigate the interaction between SIRT1 and CLOCK/BMAL1, we conducted bimolecular fluorescence complementation (BiFC) analyses supplemented with immunocytochemistry assays. BiFC experiments employing deletion-specific mutants of BMAL1 were used to elucidate the specific domains that are necessary for the SIRT1-BMAL1 interaction. Additionally, luciferase reporter assays were used to delineate the effects of SIRT1 on circadian gene expression. Results BiFC analysis revealed that SIRT1 interacted with both CLOCK and BMAL1 in most cell nuclei. As revealed by BiFC assays using various BMAL1 deletion mutants, the PAS-B domain of BMAL1 was essential for interaction with SIRT1. Activation of SIRT1 with resveratrol did not exert any significant change on the interaction with the CLOCK/BMAL1 complex. However, promoter analysis using Per1-Luc and Ebox-Luc reporters showed that SIRT1 significantly downregulated both promoter activities. This inhibitory effect was intensified by treatment with resveratrol, indicating a role for SIRT1 and its activator in CLOCK/BMAL1-mediated transcription of clock genes. Conclusion These results suggest that SIRT1 may form a regulatory complex with CLOCK/BMAL1 that represses clock gene expression, probably via deacetylase activity. PMID:25309798

  5. Induction of the UDP-Glucuronosyltransferase 1A1 during the Perinatal Period Can Cause Neurodevelopmental Toxicity.

    PubMed

    Hirashima, Rika; Michimae, Hirofumi; Takemoto, Hiroaki; Sasaki, Aya; Kobayashi, Yoshinori; Itoh, Tomoo; Tukey, Robert H; Fujiwara, Ryoichi

    2016-09-01

    Anticonvulsants can increase the risk of developing neurotoxicity in infants; however, the underlying mechanism has not been elucidated to date. Thyroxine [3,5,3',5'-l-tetraiodothyronine (T4)] plays crucial roles in the development of the central nervous system. In this study, we hypothesized that induction of UDP-glucuronosyltransferase 1A1 (UGT1A1)-an enzyme involved in the metabolism of T4-by anticonvulsants would reduce serum T4 levels and cause neurodevelopmental toxicity. Exposure of mice to phenytoin during both the prenatal and postnatal periods significantly induced UGT1A1 and decreased serum T4 levels on postnatal day 14. In the phenytoin-treated mice, the mRNA levels of synaptophysin and synapsin I in the hippocampus were lower than those in the control mice. The thickness of the external granule cell layer was greater in phenytoin-treated mice, indicating that induction of UGT1A1 during the perinatal period caused neurodevelopmental disorders. Exposure to phenytoin during only the postnatal period also caused these neurodevelopmental disorders. A T4 replacement attenuated the increase in thickness of the external granule cell layer, indicating that the reduced T4 was specifically associated with the phenytoin-induced neurodevelopmental disorder. In addition, these neurodevelopmental disorders were also found in the carbamazepine- and pregnenolone-16-α-carbonitrile-treated mice. Our study is the first to indicate that UGT1A1 can control neurodevelopment by regulating serum T4 levels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Induction of the UDP-Glucuronosyltransferase 1A1 during the Perinatal Period Can Cause Neurodevelopmental Toxicity

    PubMed Central

    Hirashima, Rika; Michimae, Hirofumi; Takemoto, Hiroaki; Sasaki, Aya; Kobayashi, Yoshinori; Itoh, Tomoo; Tukey, Robert H.

    2016-01-01

    Anticonvulsants can increase the risk of developing neurotoxicity in infants; however, the underlying mechanism has not been elucidated to date. Thyroxine [3,5,3′,5′-l-tetraiodothyronine (T4)] plays crucial roles in the development of the central nervous system. In this study, we hypothesized that induction of UDP-glucuronosyltransferase 1A1 (UGT1A1)—an enzyme involved in the metabolism of T4—by anticonvulsants would reduce serum T4 levels and cause neurodevelopmental toxicity. Exposure of mice to phenytoin during both the prenatal and postnatal periods significantly induced UGT1A1 and decreased serum T4 levels on postnatal day 14. In the phenytoin-treated mice, the mRNA levels of synaptophysin and synapsin I in the hippocampus were lower than those in the control mice. The thickness of the external granule cell layer was greater in phenytoin-treated mice, indicating that induction of UGT1A1 during the perinatal period caused neurodevelopmental disorders. Exposure to phenytoin during only the postnatal period also caused these neurodevelopmental disorders. A T4 replacement attenuated the increase in thickness of the external granule cell layer, indicating that the reduced T4 was specifically associated with the phenytoin-induced neurodevelopmental disorder. In addition, these neurodevelopmental disorders were also found in the carbamazepine- and pregnenolone-16-α-carbonitrile–treated mice. Our study is the first to indicate that UGT1A1 can control neurodevelopment by regulating serum T4 levels. PMID:27413119

  7. On the robustness of complex heterogeneous gene expression networks.

    PubMed

    Gómez-Gardeñes, Jesús; Moreno, Yamir; Floría, Luis M

    2005-04-01

    We analyze a continuous gene expression model on the underlying topology of a complex heterogeneous network. Numerical simulations aimed at studying the chaotic and periodic dynamics of the model are performed. The results clearly indicate that there is a region in which the dynamical and structural complexity of the system avoid chaotic attractors. However, contrary to what has been reported for Random Boolean Networks, the chaotic phase cannot be completely suppressed, which has important bearings on network robustness and gene expression modeling.

  8. Fine-mapping and mutation analysis of TRPM1: a candidate gene for leopard complex (LP) spotting and congenital stationary night blindness in horses.

    PubMed

    Bellone, Rebecca R; Forsyth, George; Leeb, Tosso; Archer, Sheila; Sigurdsson, Snaevar; Imsland, Freyja; Mauceli, Evan; Engensteiner, Martina; Bailey, Ernest; Sandmeyer, Lynne; Grahn, Bruce; Lindblad-Toh, Kerstin; Wade, Claire M

    2010-05-01

    Leopard Complex spotting occurs in several breeds of horses and is caused by an incompletely dominant allele (LP). Homozygosity for LP is also associated with congenital stationary night blindness (CSNB) in Appaloosa horses. Previously, LP was mapped to a 6 cm region on ECA1 containing the candidate gene TRPM1 (Transient Receptor Potential Cation Channel, Subfamily M, Member 1) and decreased expression of this gene, measured by qRT-PCR, was identified as the likely cause of both spotting and ocular phenotypes. This study describes investigations for a mutation causing or associated with the Leopard Complex and CSNB phenotype in horses. Re-sequencing of the gene and associated splice sites within the 105 624 bp genomic region of TRPM1 led to the discovery of 18 SNPs. Most of the SNPs did not have a predictive value for the presence of LP. However, one SNP (ECA1:108,249,293 C>T) found within intron 11 had a strong (P < 0.0005), but not complete, association with LP and CSNB and thus is a good marker but unlikely to be causative. To further localize the association, 70 SNPs spanning over two Mb including the TRPM1 gene were genotyped in 192 horses from three different breeds segregating for LP. A single 173 kb haplotype associated with LP and CSNB (ECA1: 108,197,355- 108,370,150) was identified. Illumina sequencing of 300 kb surrounding this haplotype revealed 57 SNP variants. Based on their localization within expressed sequences or regions of high sequence conservation across mammals, six of these SNPs were considered to be the most likely candidate mutations. While the precise function of TRPM1 remains to be elucidated, this work solidifies its functional role in both pigmentation and night vision. Further, this work has identified several potential regulatory elements of the TRPM1 gene that should be investigated further in this and other species.

  9. PLANT HOMOLOGOUS TO PARAFIBROMIN is a component of the PAF1 complex and assists in regulating expression of genes within H3K27ME3-enriched chromatin.

    PubMed

    Park, Sunchung; Oh, Sookyung; Ek-Ramos, Julissa; van Nocker, Steven

    2010-06-01

    The human Paf1 complex (Paf1C) subunit Parafibromin assists in mediating output from the Wingless/Int signaling pathway, and dysfunction of the encoding gene HRPT2 conditions specific cancer-related disease phenotypes. Here, we characterize the organismal and molecular roles of PLANT HOMOLOGOUS TO PARAFIBROMIN (PHP), the Arabidopsis (Arabidopsis thaliana) homolog of Parafibromin. PHP resides in an approximately 670-kD protein complex in nuclear extracts, and physically interacts with other known Paf1C-related proteins in vivo. In striking contrast to the developmental pleiotropy conferred by mutation in other plant Paf1C component genes in Arabidopsis, loss of PHP specifically conditioned accelerated phase transition from vegetative growth to flowering and resulted in misregulation of a very limited subset of genes that included the flowering repressor FLOWERING LOCUS C. Those genes targeted by PHP were distinguished from the bulk of Arabidopsis genes and other plant Paf1C targets by strong enrichment for trimethylation of lysine-27 on histone H3 (H3K27me3) within chromatin. These findings suggest that PHP is a component of a plant Paf1C protein in Arabidopsis, but has a more specialized role in modulating expression of a subset of Paf1C targets.

  10. Age-dependent pattern of cerebellar susceptibility to bilirubin neurotoxicity in vivo in mice

    PubMed Central

    Bortolussi, Giulia; Baj, Gabriele; Vodret, Simone; Viviani, Giulia; Bittolo, Tamara; Muro, Andrés F.

    2014-01-01

    Neonatal jaundice is caused by high levels of unconjugated bilirubin. It is usually a temporary condition caused by delayed induction of UGT1A1, which conjugates bilirubin in the liver. To reduce bilirubin levels, affected babies are exposed to phototherapy (PT), which converts toxic bilirubin into water-soluble photoisomers that are readily excreted out. However, in some cases uncontrolled hyperbilirubinemia leads to neurotoxicity. To study the mechanisms of bilirubin-induced neurological damage (BIND) in vivo, we generated a mouse model lacking the Ugt1a1 protein and, consequently, mutant mice developed jaundice as early as 36 hours after birth. The mutation was transferred into two genetic backgrounds (C57BL/6 and FVB/NJ). We exposed mutant mice to PT for different periods and analyzed the resulting phenotypes from the molecular, histological and behavioral points of view. Severity of BIND was associated with genetic background, with 50% survival of C57BL/6‑Ugt1−/− mutant mice at postnatal day 5 (P5), and of FVB/NJ-Ugt1−/− mice at P11. Life-long exposure to PT prevented cerebellar architecture alterations and rescued neuronal damage in FVB/NJ-Ugt1−/− but not in C57BL/6-Ugt1−/− mice. Survival of FVB/NJ-Ugt1−/− mice was directly related to the extent of PT treatment. PT treatment of FVB/NJ-Ugt1−/− mice from P0 to P8 did not prevent bilirubin-induced reduction in dendritic arborization and spine density of Purkinje cells. Moreover, PT treatment from P8 to P20 did not rescue BIND accumulated up to P8. However, PT treatment administered in the time-window P0–P15 was sufficient to obtain full rescue of cerebellar damage and motor impairment in FVB/NJ-Ugt1−/− mice. The possibility to modulate the severity of the phenotype by PT makes FVB/NJ-Ugt1−/− mice an excellent and versatile model to study bilirubin neurotoxicity, the role of modifier genes, alternative therapies and cerebellar development during high bilirubin conditions. PMID

  11. A novel NDUFV1 gene mutation in complex I deficiency in consanguineous siblings with brainstem lesions and Leigh syndrome.

    PubMed

    Vilain, C; Rens, C; Aeby, A; Balériaux, D; Van Bogaert, P; Remiche, G; Smet, J; Van Coster, R; Abramowicz, M; Pirson, I

    2012-09-01

    Although deficiency of complex I of the mitochondrial respiratory chain is a frequent cause of encephalopathy in children, only a few mutations have been reported in each of its subunits. In the absence of families large enough for conclusive segregation analysis and of robust functional testing, it is difficult to unequivocally show the causality of the observed mutations and to delineate genotype-phenotype correlations, making additional observations necessary. We observed two consanguineous siblings with an early-onset encephalopathy, medulla, brainstem and mesencephalon lesions on brain magnetic resonance imaging and death before 8 months of age, caused by a complex I deficiency. We used a homozygosity mapping approach and identified a missense mutation in the NDUFV1 gene. The mutation, p.Arg386His, affects a highly conserved residue, contiguous to a cysteine residue known to coordinate an Fe ion. This observation adds to our understanding of complex I deficiency disease. It validates the important role of Arg386 and therefore supports the current molecular model of iron-sulfur clusters in NDUFV1. © 2011 John Wiley & Sons A/S.

  12. Variant in the RFWD3 gene associated with PATN1, a modifier of leopard complex spotting.

    PubMed

    Holl, H M; Brooks, S A; Archer, S; Brown, K; Malvick, J; Penedo, M C T; Bellone, R R

    2016-02-01

    Leopard complex spotting (LP), the result of an incompletely dominant mutation in TRPM1, produces a collection of unique depigmentation patterns in the horse. Although the LP mutation allows for expression of the various patterns, other loci are responsible for modification of the extent of white. Pedigree analysis of families segregating for high levels of patterning indicated a single dominant gene, named Pattern-1 (PATN1), as a major modifier of LP. Linkage analysis in two half-sibling families segregating for PATN1 identified a 15-Mb region on ECA3p that warranted further investigation. Whole transcriptome sequencing of skin samples from horses with and without the PATN1 allele was performed to identify genic SNPs for fine mapping. Two Sequenom assays were utilized to genotype 192 individuals from five LP-carrying breeds. The initial panel highlighted a 1.6-Mb region without a clear candidate gene. In the second round of fine mapping, SNP ECA3:23 658 447T>G in the 3'-UTR of RING finger and WD repeat domain 3 (RFWD3) reached a significance level of P = 1.063 × 10(-39). Sequencing of RFWD3 did not identify any coding polymorphisms specific to PATN1 horses. Genotyping of the RFWD3 3'-UTR SNP in 54 additional LP animals and 327 horses from nine breeds not segregating for LP further supported the association (P = 4.17 × 10(-115)). This variant is a strong candidate for PATN1 and may be particularly useful for LP breeders to select for high levels of white patterning. © 2015 Stichting International Foundation for Animal Genetics.

  13. Pharmacokinetic Analysis of Irinotecan Plus Bevacizumab in Patients with Advanced Solid Tumors

    PubMed Central

    Denlinger, Crystal S.; Blanchard, Rebecca; Xu, Lu; Bernaards, Coen; Litwin, Samuel; Spittle, Cynthia; Berg, Daniel J.; McLaughlin, Susan; Redlinger, Maryann; Dorr, Andrew; Hambleton, Julie; Holden, Scott; Kearns, Anne; Kenkare-Mitra, Sara; Lum, Bert; Meropol, Neal J.; O'Dwyer, Peter J.

    2009-01-01

    Purpose To evaluate the effect of bevacizumab on the pharmacokinetics (PK) of irinotecan and its active metabolite. Exploratory analyses of the impact of variability in uridine diphosphate glucuronosyltransferase 1A (UGT1A) genes on irinotecan metabolism and toxicity were conducted. Methods This was an open-labeled, fixed-sequence study of bevacizumab with FOLFIRI (irinotecan, leucovorin, and infusional 5-fluorouracil). Pharmacokinetic assessments were conducted in cycles 1 and 3. Results Forty-five subjects were enrolled. No difference in dose-normalized AUC0-last for irinotecan and SN-38 between irinotecan administered alone or in combination with bevacizumab was identified. Leukopenia was associated with higher exposure to both irinotecan and SN-38. UGT1A1 polymorphisms were associated with variability in irinotecan PK. Gastrointestinal toxicity was associated with UGT1A6 genotype. No other associations between UGT1A genotypes and toxicity were detected. Conclusion Bevacizumab does not affect irinotecan PK when administered concurrently. A variety of pharmacogenetic relationships may influence the pharmacokinetics of irinotecan and its toxicity. PMID:19415281

  14. Hybrid Nanomaterial Complexes for Advanced Phage-guided Gene Delivery

    PubMed Central

    Yata, Teerapong; Lee, Koon-Yang; Dharakul, Tararaj; Songsivilai, Sirirurg; Bismarck, Alexander; Mintz, Paul J; Hajitou, Amin

    2014-01-01

    Developing nanomaterials that are effective, safe, and selective for gene transfer applications is challenging. Bacteriophages (phage), viruses that infect bacteria only, have shown promise for targeted gene transfer applications. Unfortunately, limited progress has been achieved in improving their potential to overcome mammalian cellular barriers. We hypothesized that chemical modification of the bacteriophage capsid could be applied to improve targeted gene delivery by phage vectors into mammalian cells. Here, we introduce a novel hybrid system consisting of two classes of nanomaterial systems, cationic polymers and M13 bacteriophage virus particles genetically engineered to display a tumor-targeting ligand and carry a transgene cassette. We demonstrate that the phage complex with cationic polymers generates positively charged phage and large aggregates that show enhanced cell surface attachment, buffering capacity, and improved transgene expression while retaining cell type specificity. Moreover, phage/polymer complexes carrying a therapeutic gene achieve greater cancer cell killing than phage alone. This new class of hybrid nanomaterial platform can advance targeted gene delivery applications by bacteriophage. PMID:25118171

  15. Accumulation of Rutin and Betulinic Acid and Expression of Phenylpropanoid and Triterpenoid Biosynthetic Genes in Mulberry (Morus alba L.).

    PubMed

    Zhao, Shicheng; Park, Chang Ha; Li, Xiaohua; Kim, Yeon Bok; Yang, Jingli; Sung, Gyoo Byung; Park, Nam Il; Kim, Soonok; Park, Sang Un

    2015-09-30

    Mulberry (Morus alba L.) is used in traditional Chinese medicine and is the sole food source of the silkworm. Here, 21 cDNAs encoding phenylpropanoid biosynthetic genes and 21 cDNAs encoding triterpene biosynthetic genes were isolated from mulberry. The expression levels of genes involved in these biosynthetic pathways and the accumulation of rutin, betulin, and betulinic acid, important secondary metabolites, were investigated in different plant organs. Most phenylpropanoid and triterpene biosynthetic genes were highly expressed in leaves and/or fruit, and most genes were downregulated during fruit ripening. The accumulation of rutin was more than fivefold higher in leaves than in other organs, and higher levels of betulin and betulinic acid were found in roots and leaves than in fruit. By comparing the contents of these compounds with gene expression levels, we speculate that MaUGT78D1 and MaLUS play important regulatory roles in the rutin and betulin biosynthetic pathways.

  16. Antagonistic Roles for KNOX1 and KNOX2 Genes in Patterning the Land Plant Body Plan Following an Ancient Gene Duplication

    PubMed Central

    Furumizu, Chihiro; Alvarez, John Paul; Sakakibara, Keiko; Bowman, John L.

    2015-01-01

    Neofunctionalization following gene duplication is thought to be one of the key drivers in generating evolutionary novelty. A gene duplication in a common ancestor of land plants produced two classes of KNOTTED-like TALE homeobox genes, class I (KNOX1) and class II (KNOX2). KNOX1 genes are linked to tissue proliferation and maintenance of meristematic potentials of flowering plant and moss sporophytes, and modulation of KNOX1 activity is implicated in contributing to leaf shape diversity of flowering plants. While KNOX2 function has been shown to repress the gametophytic (haploid) developmental program during moss sporophyte (diploid) development, little is known about KNOX2 function in flowering plants, hindering syntheses regarding the relationship between two classes of KNOX genes in the context of land plant evolution. Arabidopsis plants harboring loss-of-function KNOX2 alleles exhibit impaired differentiation of all aerial organs and have highly complex leaves, phenocopying gain-of-function KNOX1 alleles. Conversely, gain-of-function KNOX2 alleles in conjunction with a presumptive heterodimeric BELL TALE homeobox partner suppressed SAM activity in Arabidopsis and reduced leaf complexity in the Arabidopsis relative Cardamine hirsuta, reminiscent of loss-of-function KNOX1 alleles. Little evidence was found indicative of epistasis or mutual repression between KNOX1 and KNOX2 genes. KNOX proteins heterodimerize with BELL TALE homeobox proteins to form functional complexes, and contrary to earlier reports based on in vitro and heterologous expression, we find high selectivity between KNOX and BELL partners in vivo. Thus, KNOX2 genes confer opposing activities rather than redundant roles with KNOX1 genes, and together they act to direct the development of all above-ground organs of the Arabidopsis sporophyte. We infer that following the KNOX1/KNOX2 gene duplication in an ancestor of land plants, neofunctionalization led to evolution of antagonistic biochemical

  17. Translating Mendelian and complex inheritance of Alzheimer's disease genes for predicting unique personal genome variants

    PubMed Central

    Regan, Kelly; Wang, Kanix; Doughty, Emily; Li, Haiquan; Li, Jianrong; Lee, Younghee; Kann, Maricel G

    2012-01-01

    Objective Although trait-associated genes identified as complex versus single-gene inheritance differ substantially in odds ratio, the authors nonetheless posit that their mechanistic concordance can reveal fundamental properties of the genetic architecture, allowing the automated interpretation of unique polymorphisms within a personal genome. Materials and methods An analytical method, SPADE-gen, spanning three biological scales was developed to demonstrate the mechanistic concordance between Mendelian and complex inheritance of Alzheimer's disease (AD) genes: biological functions (BP), protein interaction modeling, and protein domain implicated in the disease-associated polymorphism. Results Among Gene Ontology (GO) biological processes (BP) enriched at a false detection rate <5% in 15 AD genes of Mendelian inheritance (Online Mendelian Inheritance in Man) and independently in those of complex inheritance (25 host genes of intragenic AD single-nucleotide polymorphisms confirmed in genome-wide association studies), 16 overlapped (empirical p=0.007) and 45 were similar (empirical p<0.009; information theory). SPAN network modeling extended the canonical pathway of AD (KEGG) with 26 new protein interactions (empirical p<0.0001). Discussion The study prioritized new AD-associated biological mechanisms and focused the analysis on previously unreported interactions associated with the biological processes of polymorphisms that affect specific protein domains within characterized AD genes and their direct interactors using (1) concordant GO-BP and (2) domain interactions within STRING protein–protein interactions corresponding to the genomic location of the AD polymorphism (eg, EPHA1, APOE, and CD2AP). Conclusion These results are in line with unique-event polymorphism theory, indicating how disease-associated polymorphisms of Mendelian or complex inheritance relate genetically to those observed as ‘unique personal variants’. They also provide insight for

  18. Mutation screening of 75 candidate genes in 152 complex I deficiency cases identifies pathogenic variants in 16 genes including NDUFB9.

    PubMed

    Haack, Tobias B; Madignier, Florence; Herzer, Martina; Lamantea, Eleonora; Danhauser, Katharina; Invernizzi, Federica; Koch, Johannes; Freitag, Martin; Drost, Rene; Hillier, Ingo; Haberberger, Birgit; Mayr, Johannes A; Ahting, Uwe; Tiranti, Valeria; Rötig, Agnes; Iuso, Arcangela; Horvath, Rita; Tesarova, Marketa; Baric, Ivo; Uziel, Graziella; Rolinski, Boris; Sperl, Wolfgang; Meitinger, Thomas; Zeviani, Massimo; Freisinger, Peter; Prokisch, Holger

    2012-02-01

    Mitochondrial complex I deficiency is the most common cause of mitochondrial disease in childhood. Identification of the molecular basis is difficult given the clinical and genetic heterogeneity. Most patients lack a molecular definition in routine diagnostics. A large-scale mutation screen of 75 candidate genes in 152 patients with complex I deficiency was performed by high-resolution melting curve analysis and Sanger sequencing. The causal role of a new disease allele was confirmed by functional complementation assays. The clinical phenotype of patients carrying mutations was documented using a standardised questionnaire. Causative mutations were detected in 16 genes, 15 of which had previously been associated with complex I deficiency: three mitochondrial DNA genes encoding complex I subunits, two mitochondrial tRNA genes and nuclear DNA genes encoding six complex I subunits and four assembly factors. For the first time, a causal mutation is described in NDUFB9, coding for a complex I subunit, resulting in reduction in NDUFB9 protein and both amount and activity of complex I. These features were rescued by expression of wild-type NDUFB9 in patient-derived fibroblasts. Mutant NDUFB9 is a new cause of complex I deficiency. A molecular diagnosis related to complex I deficiency was established in 18% of patients. However, most patients are likely to carry mutations in genes so far not associated with complex I function. The authors conclude that the high degree of genetic heterogeneity in complex I disorders warrants the implementation of unbiased genome-wide strategies for the complete molecular dissection of mitochondrial complex I deficiency.

  19. Broad spectrum detoxification: the major longevity assurance process regulated by insulin/IGF-1 signaling?

    PubMed

    Gems, David; McElwee, Joshua J

    2005-03-01

    Our recent survey of genes regulated by insulin/IGF-1 signaling (IIS) in Caenorhabditis elegans suggests a role for a number of gene classes in longevity assurance. Based on these findings, we propose a model for the biochemistry of longevity assurance and ageing, which is as follows. Ageing results from molecular damage from highly diverse endobiotic toxins. These are stochastic by-products of diverse metabolic processes, of which reactive oxygen species (ROS) are likely to be only one component. Our microarray analysis suggests a major role in longevity assurance of the phase 1, phase 2 detoxification system involving cytochrome P450 (CYP), short-chain dehydrogenase/reductase (SDR) and UDP-glucuronosyltransferase (UGT) enzymes. Unlike superoxide and hydrogen peroxide detoxification, this system is energetically costly, and requires the excretion from the cell of its products. Given such costs, its activity may be selected against, as predicted by the disposable soma theory. CYP and UGT enzymes target lipophilic molecular species; insufficient activity of this system is consistent with age-pigment (lipofuscin) accumulation during ageing. We suggest that IIS-regulated longevity assurance involves: (a) energetically costly detoxification and excretion of molecular rubbish, and (b) conservation of existing proteins via molecular chaperones. Given the emphasis in this theory on investment in cellular waste disposal, and on protein conservation, we have dubbed it the green theory.

  20. A novel TBP-TAF complex on RNA polymerase II-transcribed snRNA genes.

    PubMed

    Zaborowska, Justyna; Taylor, Alice; Roeder, Robert G; Murphy, Shona

    2012-01-01

    Initiation of transcription of most human genes transcribed by RNA polymerase II (RNAP II) requires the formation of a preinitiation complex comprising TFIIA, B, D, E, F, H and RNAP II. The general transcription factor TFIID is composed of the TATA-binding protein and up to 13 TBP-associated factors. During transcription of snRNA genes, RNAP II does not appear to make the transition to long-range productive elongation, as happens during transcription of protein-coding genes. In addition, recognition of the snRNA gene-type specific 3' box RNA processing element requires initiation from an snRNA gene promoter. These characteristics may, at least in part, be driven by factors recruited to the promoter. For example, differences in the complement of TAFs might result in differential recruitment of elongation and RNA processing factors. As precedent, it already has been shown that the promoters of some protein-coding genes do not recruit all the TAFs found in TFIID. Although TAF5 has been shown to be associated with RNAP II-transcribed snRNA genes, the full complement of TAFs associated with these genes has remained unclear. Here we show, using a ChIP and siRNA-mediated approach, that the TBP/TAF complex on snRNA genes differs from that found on protein-coding genes. Interestingly, the largest TAF, TAF1, and the core TAFs, TAF10 and TAF4, are not detected on snRNA genes. We propose that this snRNA gene-specific TAF subset plays a key role in gene type-specific control of expression.

  1. Simulating evolution of protein complexes through gene duplication and co-option.

    PubMed

    Haarsma, Loren; Nelesen, Serita; VanAndel, Ethan; Lamine, James; VandeHaar, Peter

    2016-06-21

    We present a model of the evolution of protein complexes with novel functions through gene duplication, mutation, and co-option. Under a wide variety of input parameters, digital organisms evolve complexes of 2-5 bound proteins which have novel functions but whose component proteins are not independently functional. Evolution of complexes with novel functions happens more quickly as gene duplication rates increase, point mutation rates increase, protein complex functional probability increases, protein complex functional strength increases, and protein family size decreases. Evolution of complexity is inhibited when the metabolic costs of making proteins exceeds the fitness gain of having functional proteins, or when point mutation rates get so large the functional proteins undergo deleterious mutations faster than new functional complexes can evolve. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The WD40 Domain Protein MSI1 Functions in a Histone Deacetylase Complex to Fine-Tune Abscisic Acid Signaling.

    PubMed

    Mehdi, Saher; Derkacheva, Maria; Ramström, Margareta; Kralemann, Lejon; Bergquist, Jonas; Hennig, Lars

    2016-01-01

    MSI1 belongs to a family of histone binding WD40-repeat proteins. Arabidopsis thaliana contains five genes encoding MSI1-like proteins, but their functions in diverse chromatin-associated complexes are poorly understood. Here, we show that MSI1 is part of a histone deacetylase complex. We copurified HISTONE DEACETYLASE19 (HDA19) with MSI1 and transcriptional regulatory SIN3-like proteins and provide evidence that MSI1 and HDA19 associate into the same complex in vivo. These data suggest that MSI1, HDA19, and HISTONE DEACETYLATION COMPLEX1 protein form a core complex that can integrate various SIN3-like proteins. We found that reduction of MSI1 or HDA19 causes upregulation of abscisic acid (ABA) receptor genes and hypersensitivity of ABA-responsive genes. The MSI1-HDA19 complex fine-tunes ABA signaling by binding to the chromatin of ABA receptor genes and by maintaining low levels of acetylation of histone H3 at lysine 9, thereby affecting the expression levels of ABA receptor genes. Reduced MSI1 or HDA19 levels led to increased tolerance to salt stress corresponding to the increased ABA sensitivity of gene expression. Together, our results reveal the presence of an MSI1-HDA19 complex that fine-tunes ABA signaling in Arabidopsis. © 2016 American Society of Plant Biologists. All rights reserved.

  3. Gene-carried hepatoma targeting complex induced high gene transfection efficiency with low toxicity and significant antitumor activity.

    PubMed

    Zhao, Qing-Qing; Hu, Yu-Lan; Zhou, Yang; Li, Ni; Han, Min; Tang, Gu-Ping; Qiu, Feng; Tabata, Yasuhiko; Gao, Jian-Qing

    2012-01-01

    The success of gene transfection is largely dependent on the development of a vehicle or vector that can efficiently deliver a gene to cells with minimal toxicity. A liver cancer-targeted specific peptide (FQHPSF sequence) was successfully synthesized and linked with chitosan-linked polyethylenimine (CP) to form a new targeted gene delivery vector called CPT (CP/peptide). The structure of CPT was confirmed by (1)H nuclear magnetic resonance spectroscopy and ultraviolet spectrophotometry. The particle size of CPT/ DNA complexes was measured using laser diffraction spectrometry and the cytotoxicity of the copolymer was evaluated by methylthiazol tetrazolium method. The transfection efficiency evaluation of the CP copolymer was performed using luciferase activity assay. Cellular internalization of the CP/DNA complex was observed under confocal laser scanning microscopy. The targeting specificity of the polymer coupled to peptide was measured by competitive inhibition transfection study. The liver targeting specificity of the CPT copolymer in vivo was demonstrated by combining the copolymer with a therapeutic gene, interleukin-12, and assessed by its abilities in suppressing the growth of ascites tumor in mouse model. The results showed that the liver cancer-targeted specific peptide was successfully synthesized and linked with CP to form a new targeted gene delivery vector called CPT. The composition of CPT was confirmed and the vector showed low cytotoxicity and strong targeting specificity to liver tumors in vitro. The in vivo study results showed that interleukin-12 delivered by the new gene vector CPT/DNA significantly enhanced the antitumor effect on ascites tumor-bearing imprinting control region mice as compared with polyethylenimine (25 kDa), CP, and other controls, which further demonstrate the targeting specificity of the new synthesized polymer. The synthesized CPT copolymer was proven to be an effective liver cancer-targeted vector for therapeutic gene

  4. Detection of susceptibility genes as modifiers due to subgroup differences in complex disease.

    PubMed

    Bergen, Sarah E; Maher, Brion S; Fanous, Ayman H; Kendler, Kenneth S

    2010-08-01

    Complex diseases invariably involve multiple genes and often exhibit variable symptom profiles. The extent to which disease symptoms, course, and severity differ between affected individuals may result from underlying genetic heterogeneity. Genes with modifier effects may or may not also influence disease susceptibility. In this study, we have simulated data in which a subset of cases differ by some effect size (ES) on a quantitative trait and are also enriched for a risk allele. Power to detect this 'pseudo-modifier' gene in case-only and case-control designs was explored blind to case substructure. Simulations involved 1000 iterations and calculations for 80% power at P<0.01 while varying the risk allele frequency (RAF), sample size (SS), ES, odds ratio (OR), and proportions of the case subgroups. With realistic values for the RAF (0.20), SS (3000) and ES (1), an OR of 1.7 is necessary to detect a pseudo-modifier gene. Unequal numbers of subjects in the case groups result in little decrement in power until the group enriched for the risk allele is <30% or >70% of the total case population. In practice, greater numbers of subjects and selection of a quantitative trait with a large range will provide researchers with greater power to detect a pseudo-modifier gene. However, even under ideal conditions, studies involving alleles with low frequencies or low ORs are usually underpowered for detection of a modifier or susceptibility gene. This may explain some of the inconsistent association results for many candidate gene studies of complex diseases.

  5. The selfish Segregation Distorter gene complex of Drosophila melanogaster.

    PubMed

    Larracuente, Amanda M; Presgraves, Daven C

    2012-09-01

    Segregation Distorter (SD) is an autosomal meiotic drive gene complex found worldwide in natural populations of Drosophila melanogaster. During spermatogenesis, SD induces dysfunction of SD(+) spermatids so that SD/SD(+) males sire almost exclusively SD-bearing progeny rather than the expected 1:1 Mendelian ratio. SD is thus evolutionarily "selfish," enhancing its own transmission at the expense of its bearers. Here we review the molecular and evolutionary genetics of SD. Genetic analyses show that the SD is a multilocus gene complex involving two key loci--the driver, Segregation distorter (Sd), and the target of drive, Responder (Rsp)--and at least three upward modifiers of distortion. Molecular analyses show that Sd encodes a truncated duplication of the gene RanGAP, whereas Rsp is a large pericentromeric block of satellite DNA. The Sd-RanGAP protein is enzymatically wild type but mislocalized within cells and, for reasons that remain unclear, appears to disrupt the histone-to-protamine transition in drive-sensitive spermatids bearing many Rsp satellite repeats but not drive-insensitive spermatids bearing few or no Rsp satellite repeats. Evolutionary analyses show that the Sd-RanGAP duplication arose recently within the D. melanogaster lineage, exploiting the preexisting and considerably older Rsp satellite locus. Once established, the SD haplotype collected enhancers of distortion and suppressors of recombination. Further dissection of the molecular genetic and cellular basis of SD-mediated distortion seems likely to provide insights into several important areas currently understudied, including the genetic control of spermatogenesis, the maintenance and evolution of satellite DNAs, the possible roles of small interfering RNAs in the germline, and the molecular population genetics of the interaction of genetic linkage and natural selection.

  6. TTT and PIKK Complex Genes Reverted to Single Copy Following Polyploidization and Retain Function Despite Massive Retrotransposition in Maize.

    PubMed

    Garcia, Nelson; Messing, Joachim

    2017-01-01

    The TEL2, TTI1, and TTI2 proteins are co-chaperones for heat shock protein 90 (HSP90) to regulate the protein folding and maturation of phosphatidylinositol 3-kinase-related kinases (PIKKs). Referred to as the TTT complex, the genes that encode them are highly conserved from man to maize. TTT complex and PIKK genes exist mostly as single copy genes in organisms where they have been characterized. Members of this interacting protein network in maize were identified and synteny analyses were performed to study their evolution. Similar to other species, there is only one copy of each of these genes in maize which was due to a loss of the duplicated copy created by ancient allotetraploidy. Moreover, the retained copies of the TTT complex and the PIKK genes tolerated extensive retrotransposon insertion in their introns that resulted in increased gene lengths and gene body methylation, without apparent effect in normal gene expression and function. The results raise an interesting question on whether the reversion to single copy was due to selection against deleterious unbalanced gene duplications between members of the complex as predicted by the gene balance hypothesis, or due to neutral loss of extra copies. Uneven alteration of dosage either by adding extra copies or modulating gene expression of complex members is being proposed as a means to investigate whether the data supports the gene balance hypothesis or not.

  7. Impact of edaphic factors and nutrient management on the hepatoprotective efficiency of Carlinoside purified from pigeon pea leaves: An evaluation of UGT1A1 activity in hepatitis induced organelles.

    PubMed

    Das, Subhasish; Teja, K Charan; Mukherjee, Sandip; Seal, Soma; Sah, Rajesh Kumar; Duary, Buddhadeb; Kim, Ki-Hyun; Bhattacharya, Satya Sundar

    2018-02-01

    Carlinoside is a unique compound well-known for its excellent curative potential in hepatitis. There is a substantial research gap regarding the medicinal use of carlinoside, as its concentrations are greatly variable (depending on locality). We cultivated Cajanus cajan using vermicompost as a major organic amendment at two locations (Sonitpur and Birbhum) with different soil types, but identical climate conditions. Sonitpur soils were richer in soil organic C (SOC), enzyme activation, and N/P content than Birbhum. However, vermi-treatment improved many soil properties (bulk density, water retention, pH, N/P/K, and enzyme activity) to narrow the locational gap in soil quality by 15-28%. We also recorded a many-fold increment in SOC storage capacities in both locations, which was significantly correlated with carlinoside, total phenol, and flavonoid contents in Cajanus leaves. This significantly up-regulated the carlinoside induced expression of the bilirubin-solubilizing UGT1A1enzyme in HepG2 cell and rat liver. Leaf extracts of vermicompost-aided plants could cure hepatitis in affected rat livers and in the HepG2 cell line. Accordingly, vermi-treatment is an effective route for the growth of Cajanus as a cash crop for biomedical applications and can produce a concurrent improvement in soil quality. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Sunflower (Helianthus annuus) fatty acid synthase complex: β-hydroxyacyl-[acyl carrier protein] dehydratase genes.

    PubMed

    González-Thuillier, Irene; Venegas-Calerón, Mónica; Sánchez, Rosario; Garcés, Rafael; von Wettstein-Knowles, Penny; Martínez-Force, Enrique

    2016-02-01

    Two sunflower hydroxyacyl-[acyl carrier protein] dehydratases evolved into two different isoenzymes showing distinctive expression levels and kinetics' efficiencies. β-Hydroxyacyl-[acyl carrier protein (ACP)]-dehydratase (HAD) is a component of the type II fatty acid synthase complex involved in 'de novo' fatty acid biosynthesis in plants. This complex, formed by four intraplastidial proteins, is responsible for the sequential condensation of two-carbon units, leading to 16- and 18-C acyl-ACP. HAD dehydrates 3-hydroxyacyl-ACP generating trans-2-enoyl-ACP. With the aim of a further understanding of fatty acid biosynthesis in sunflower (Helianthus annuus) seeds, two β-hydroxyacyl-[ACP] dehydratase genes have been cloned from developing seeds, HaHAD1 (GenBank HM044767) and HaHAD2 (GenBank GU595454). Genomic DNA gel blot analyses suggest that both are single copy genes. Differences in their expression patterns across plant tissues were detected. Higher levels of HaHAD2 in the initial stages of seed development inferred its key role in seed storage fatty acid synthesis. That HaHAD1 expression levels remained constant across most tissues suggest a housekeeping function. Heterologous expression of these genes in E. coli confirmed both proteins were functional and able to interact with the bacterial complex 'in vivo'. The large increase of saturated fatty acids in cells expressing HaHAD1 and HaHAD2 supports the idea that these HAD genes are closely related to the E. coli FabZ gene. The proposed three-dimensional models of HaHAD1 and HaHAD2 revealed differences at the entrance to the catalytic tunnel attributable to Phe166/Val1159, respectively. HaHAD1 F166V was generated to study the function of this residue. The 'in vitro' enzymatic characterization of the three HAD proteins demonstrated all were active, with the mutant having intermediate K m and V max values to the wild-type proteins.

  9. Genomic anatomy of the Tyrp1 (brown) deletion complex

    PubMed Central

    Smyth, Ian M.; Wilming, Laurens; Lee, Angela W.; Taylor, Martin S.; Gautier, Phillipe; Barlow, Karen; Wallis, Justine; Martin, Sancha; Glithero, Rebecca; Phillimore, Ben; Pelan, Sarah; Andrew, Rob; Holt, Karen; Taylor, Ruth; McLaren, Stuart; Burton, John; Bailey, Jonathon; Sims, Sarah; Squares, Jan; Plumb, Bob; Joy, Ann; Gibson, Richard; Gilbert, James; Hart, Elizabeth; Laird, Gavin; Loveland, Jane; Mudge, Jonathan; Steward, Charlie; Swarbreck, David; Harrow, Jennifer; North, Philip; Leaves, Nicholas; Greystrong, John; Coppola, Maria; Manjunath, Shilpa; Campbell, Mark; Smith, Mark; Strachan, Gregory; Tofts, Calli; Boal, Esther; Cobley, Victoria; Hunter, Giselle; Kimberley, Christopher; Thomas, Daniel; Cave-Berry, Lee; Weston, Paul; Botcherby, Marc R. M.; White, Sharon; Edgar, Ruth; Cross, Sally H.; Irvani, Marjan; Hummerich, Holger; Simpson, Eleanor H.; Johnson, Dabney; Hunsicker, Patricia R.; Little, Peter F. R.; Hubbard, Tim; Campbell, R. Duncan; Rogers, Jane; Jackson, Ian J.

    2006-01-01

    Chromosome deletions in the mouse have proven invaluable in the dissection of gene function. The brown deletion complex comprises >28 independent genome rearrangements, which have been used to identify several functional loci on chromosome 4 required for normal embryonic and postnatal development. We have constructed a 172-bacterial artificial chromosome contig that spans this 22-megabase (Mb) interval and have produced a contiguous, finished, and manually annotated sequence from these clones. The deletion complex is strikingly gene-poor, containing only 52 protein-coding genes (of which only 39 are supported by human homologues) and has several further notable genomic features, including several segments of >1 Mb, apparently devoid of a coding sequence. We have used sequence polymorphisms to finely map the deletion breakpoints and identify strong candidate genes for the known phenotypes that map to this region, including three lethal loci (l4Rn1, l4Rn2, and l4Rn3) and the fitness mutant brown-associated fitness (baf). We have also characterized misexpression of the basonuclin homologue, Bnc2, associated with the inversion-mediated coat color mutant white-based brown (Bw). This study provides a molecular insight into the basis of several characterized mouse mutants, which will allow further dissection of this region by targeted or chemical mutagenesis. PMID:16505357

  10. In vitro characterization of potential CYP- and UGT-derived metabolites of the psychoactive drug 25B-NBOMe using LC-high resolution MS.

    PubMed

    Boumrah, Yacine; Humbert, Luc; Phanithavong, Melodie; Khimeche, Kamel; Dahmani, Abdallah; Allorge, Delphine

    2016-02-01

    One of the main challenges posed by the emergence of new psychoactive substances is their identification in human biological samples. Trying to detect the parent drug could lead to false-negative results when the delay between consumption and sampling has been too long. The identification of their metabolites could then improve their detection window in biological matrices. Oxidative metabolism by cytochromes P450 and glucuronidation are two major detoxification pathways in humans. In order to characterize possible CYP- and UGT-dependent metabolites of the 2-(4-bromo-2,5-dimethoxy-phenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25B-NBOMe), a synthetic psychoactive drug, analyses of human liver microsome (HLM) incubates were performed using an ultra-high performance liquid chromatography system coupled with a quadrupole-time of flight mass spectrometry detector (UHPLC-Q-TOF/MS). On-line analyses were performed using a Waters OASIS HLB column (30 x 2.1 mm, 20 µm) for the automatic sample loading and a Waters ACQUITY HSS C18 column (150 x 2 mm, 1.8 µm) for the chromatographic separation. Twenty-one metabolites, consisting of 12 CYP-derived and 9 UGT-derived metabolites, were identified. O-Desmethyl metabolites were the most abundant compounds after the phase I process, which appears to be in accordance with data from previously published NBOMe-intoxication case reports. Although other important metabolic transformations, such as sulfation, acetylation, methylation or glutathione conjugation, were not studied and artefactual metabolites might have been produced during the HLM incubation process, the record of all the metabolite MS spectra in our library should enable us to characterize relevant metabolites of 25B-NBOMe and allow us to detect 25B-MBOMe users. Copyright © 2015 John Wiley & Sons, Ltd.

  11. HTLV-1 Tax protein recruitment into IKKε and TBK1 kinase complexes enhances IFN-I expression.

    PubMed

    Diani, Erica; Avesani, Francesca; Bergamo, Elisa; Cremonese, Giorgia; Bertazzoni, Umberto; Romanelli, Maria Grazia

    2015-02-01

    The Tax protein expressed by human T-cell leukemia virus type 1 (HTLV-1) plays a pivotal role in the deregulation of cellular pathways involved in the immune response, inflammation, cell survival, and cancer. Many of these effects derive from Tax multiple interactions with host factors, including the subunits of the IKK-complex that are required for NF-κB activation. IKKɛ and TBK1 are two IKK-related kinases that allow the phosphorylation of interferon regulatory factors that trigger IFN type I gene expression. We observed that IKKɛ and TBK1 recruit Tax into cellular immunocomplexes. We also found that TRAF3, which regulates cell receptor signaling effectors, forms complexes with Tax. Transactivation analyses revealed that expression of Tax, in presence of IKKɛ and TBK1, enhances IFN-β promoter activity, whereas the activation of NF-κB promoter is not modified. We propose that Tax may be recruited into the TBK1/IKKɛ complexes as a scaffolding-adaptor protein that enhances IFN-I gene expression. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Nocturnal frontal lobe epilepsy caused by a mutation in the GATOR1 complex gene NPRL3.

    PubMed

    Korenke, Georg-Christoph; Eggert, Marlene; Thiele, Holger; Nürnberg, Peter; Sander, Thomas; Steinlein, Ortrud K

    2016-03-01

    Mutations in NPRL3, one of three genes that encode proteins of the mTORC1-regulating GATOR1 complex, have recently been reported to cause cortical dysplasia with focal epilepsy. We have now analyzed a multiplex epilepsy family by whole exome sequencing and identified a frameshift mutation (NM_001077350.2; c.1522delG; p.E508Rfs*46) within exon 13 of NPRL3. This truncating mutation causes an epilepsy phenotype characterized by early childhood onset of mainly nocturnal frontal lobe epilepsy. The penetrance in our family was low (three affected out of six mutation carriers), compared to families with either ion channel- or DEPDC5-associated familial nocturnal frontal lobe epilepsy. The absence of apparent structural brain abnormalities suggests that mutations in NPRL3 are not necessarily associated with focal cortical dysplasia but might be able to cause epilepsy by different, yet unknown pathomechanisms. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  13. Cellular responses to oxidative stress: the [Ah] gene battery as a paradigm.

    PubMed Central

    Nebert, D W; Petersen, D D; Fornace, A J

    1990-01-01

    A major source of oxidative stress in animals is plant stress metabolites, also termed phytoalexins. The aromatic hydrocarbon-responsive [Ah] gene battery is considered here as a model system in which we can study metabolically coordinated enzymes that respond to phytoalexin-induced oxidative stress. In the mouse, the [Ah] battery comprises at least six genes: two Phase I genes, CYP1A1 and CYP1A2; and four Phase II genes, Nmo-1, Aldh-1, Ugt-1, and Gt-1. All six genes appear to be regulated positively by inducers such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other ligands of the Ah receptor. In the absence of foreign inducer, the control of Nmo-1 gene expression is independent of the control of CYP1A1 and CYP1A2 gene expression. The radiation deletion homozygote c14CoS/c14CoS mouse is lacking about 1.1 centiMorgans of chromosome 7. Although having no detectable CYP1A1 or CYP1A2 activation, the untreated c14CoS/c14CoS mouse exhibits markedly elevated transcripts of the Nmo-1 gene and three growth arrest- and DNA damage-inducible (gadd) genes. These data suggest that the missing region on chromosome 7 in the c14CoS/c14CoS mouse contains a gene(s), which we propose to call Nmo-1n, encoding a trans-acting factor(s) that is a negative effector of the Nmo-1 and gadd genes. The three other [Ah] battery Phase II genes behave similarly to Nmo-1 in the c14CoS/c14CoS mouse. This coordinated response to oxidative stress and DNA damage, by way of the release of a mammalian battery of genes from negative control, bears an interesting resemblance to the SOS response in bacteria. PMID:2272308

  14. The 9-1-1 DNA Clamp Is Required for Immunoglobulin Gene Conversion▿

    PubMed Central

    Saberi, Alihossein; Nakahara, Makoto; Sale, Julian E.; Kikuchi, Koji; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Yamamoto, Kenichi; Takeda, Shunichi; Sonoda, Eiichiro

    2008-01-01

    Chicken DT40 cells deficient in the 9-1-1 checkpoint clamp exhibit hypersensitivity to a variety of DNA-damaging agents. Although recent work suggests that, in addition to its role in checkpoint activation, this complex may play a role in homologous recombination and translesion synthesis, the cause of this hypersensitivity has not been studied thoroughly. The immunoglobulin locus of DT40 cells allows monitoring of homologous recombination and translesion synthesis initiated by activation-induced deaminase (AID)-dependent abasic sites. We show that both the RAD9−/− and RAD17−/− mutants exhibit substantially reduced immunoglobulin gene conversion. However, the level of nontemplated immunoglobulin point mutation increased in these mutants, a finding that is reminiscent of the phenotype resulting from the loss of RAD51 paralogs or Brca2. This suggests that the 9-1-1 complex does not play a central role in translesion synthesis in this context. Despite reduced immunoglobulin gene conversion, the RAD9−/− and RAD17−/− cells do not exhibit a prominent defect in double-strand break-induced gene conversion or a sensitivity to camptothecin. This suggests that the roles of Rad9 and Rad17 may be confined to a subset of homologous recombination reactions initiated by replication-stalling lesions rather than those associated with double-strand break repair. PMID:18662998

  15. Identification of Human UDP-Glucuronosyltransferase 1A4 as the Major Isozyme Responsible for the Glucuronidation of 20(S)-Protopanaxadiol in Human Liver Microsomes

    PubMed Central

    Li, Jia; He, Chunyong; Fang, Lianxiang; Yang, Li; Wang, Zhengtao

    2016-01-01

    20(S)-protopanaxadiol (PPD), one of the representative aglycones of ginsenosides, has a broad spectrum of pharmacological activities. Although phase I metabolism has been investigated extensively, information regarding phase II metabolism of this compound remains to be elucidated. Here, a glucuronidated metabolite of PPD in human liver microsomes (HLMs) and rat liver microsomes (RLMs) was unambiguously identified as PPD-3-O-β-d-glucuronide by nuclear magnetic resonance spectroscopy and high resolution mass spectrometry. The chemical inhibition and recombinant human UDP-Glucuronosyltransferase (UGT) isoforms assay showed that the PPD glucuronidation was mainly catalyzed by UGT1A4 in HLM, whereas UGT1A3 showed weak catalytic activity. In conclusion, PPD-3-O-β-d-glucuronide was first identified as the principal glucuronidation metabolite of PPD in HLMs, which was catalyzed by UGT1A4. PMID:27005621

  16. Characterization of a Glucosyltransferase Enzyme Involved in the Formation of Kaempferol and Quercetin Sophorosides in Crocus sativus1[C][W

    PubMed Central

    Trapero, Almudena; Ahrazem, Oussama; Rubio-Moraga, Angela; Jimeno, Maria Luisa; Gómez, Maria Dolores; Gómez-Gómez, Lourdes

    2012-01-01

    UGT707B1 is a new glucosyltransferase isolated from saffron (Crocus sativus) that localizes to the cytoplasm and the nucleus of stigma and tepal cells. UGT707B1 transcripts were detected in the stigma tissue of all the Crocus species analyzed, but expression analysis of UGT707B1 in tepals revealed its absence in certain species. The analysis of the glucosylated flavonoids present in Crocus tepals reveals the presence of two major flavonoid compounds in saffron: kaempferol-3-O-β-d-glucopyranosyl-(1-2)-β-d-glucopyranoside and quercetin-3-O-β-d-glucopyranosyl-(1-2)-β-d-glucopyranoside, both of which were absent from the tepals of those Crocus species that did not express UGT707B1. Transgenic Arabidopsis (Arabidopsis thaliana) plants constitutively expressing UGT707B1 under the control of the cauliflower mosaic virus 35S promoter have been constructed and their phenotype analyzed. The transgenic lines displayed a number of changes that resembled those described previously in lines where flavonoid levels had been altered. The plants showed hyponastic leaves, a reduced number of trichomes, thicker stems, and flowering delay. Levels of flavonoids measured in extracts of the transgenic plants showed changes in the composition of flavonols when compared with wild-type plants. The major differences were observed in the extracts from stems and flowers, with an increase in 3-sophoroside flavonol glucosides. Furthermore, a new compound not detected in ecotype Columbia wild-type plants was detected in all the tissues and identified as kaempferol-3-O-sophoroside-7-O-rhamnoside. These data reveal the involvement of UGT707B1 in the biosynthesis of flavonol-3-O-sophorosides and how significant changes in flavonoid homeostasis can be caused by the overproduction of a flavonoid-conjugating enzyme. PMID:22649274

  17. New splicing-site mutations in the SURF1 gene in Leigh syndrome patients.

    PubMed

    Pequignot, M O; Desguerre, I; Dey, R; Tartari, M; Zeviani, M; Agostino, A; Benelli, C; Fouque, F; Prip-Buus, C; Marchant, D; Abitbol, M; Marsac, C

    2001-05-04

    The gene SURF1 encodes a factor involved in the biogenesis of cytochrome c oxidase, the last complex in the respiratory chain. Mutations of the SURF1 gene result in Leigh syndrome and severe cytochrome c oxidase deficiency. Analysis of seven unrelated patients with cytochrome c oxidase deficiency and typical Leigh syndrome revealed different SURF1 mutations in four of them. Only these four cases had associated demyelinating neuropathy. Three mutations were novel splicing-site mutations that lead to the excision of exon 6. Two different novel heterozygous mutations were found at the same guanine residue at the donor splice site of intron 6; one was a deletion, whereas the other was a transition [588+1G>A]. The third novel splicing-site mutation was a homozygous [516-2_516-1delAG] in intron 5. One patient only had a homozygous polymorphism in the middle of the intron 8 [835+25C>T]. Western blot analysis showed that Surf1 protein was absent in all four patients harboring mutations. Our studies confirm that the SURF1 gene is an important nuclear gene involved in the cytochrome c oxidase deficiency. We also show that Surf1 protein is not implicated in the assembly of other respiratory chain complexes or the pyruvate dehydrogenase complex.

  18. Direct Role for the Rpd3 Complex in Transcriptional Induction of the Anaerobic DAN/TIR Genes in Yeast▿‡

    PubMed Central

    Sertil, Odeniel; Vemula, Arvind; Salmon, Sharon L.; Morse, Randall H.; Lowry, Charles V.

    2007-01-01

    Saccharomyces cerevisiae adapts to hypoxia by expressing a large group of “anaerobic” genes. Among these, the eight DAN/TIR genes are regulated by the repressors Rox1 and Mot3 and the activator Upc2/Mox4. In attempting to identify factors recruited by the DNA binding repressor Mot3 to enhance repression of the DAN/TIR genes, we found that the histone deacetylase and global repressor complex, Rpd3-Sin3-Sap30, was not required for repression. Strikingly, the complex was instead required for activation. In addition, the histone H3 and H4 amino termini, which are targets of Rpd3, were also required for DAN1 expression. Epistasis tests demonstrated that the Rpd3 complex is not required in the absence of the repressor Mot3. Furthermore, the Rpd3 complex was required for normal function and stable binding of the activator Upc2 at the DAN1 promoter. Moreover, the Swi/Snf chromatin remodeling complex was strongly required for activation of DAN1, and chromatin immunoprecipitation analysis showed an Rpd3-dependent reduction in DAN1 promoter-associated nucleosomes upon induction. Taken together, these data provide evidence that during anaerobiosis, the Rpd3 complex acts at the DAN1 promoter to antagonize the chromatin-mediated repression caused by Mot3 and Rox1 and that chromatin remodeling by Swi/Snf is necessary for normal expression. PMID:17210643

  19. The Lepidoptera Odorant Binding Protein gene family: Gene gain and loss within the GOBP/PBP complex of moths and butterflies.

    PubMed

    Vogt, Richard G; Große-Wilde, Ewald; Zhou, Jing-Jiang

    2015-07-01

    Butterflies and moths differ significantly in their daily activities: butterflies are diurnal while moths are largely nocturnal or crepuscular. This life history difference is presumably reflected in their sensory biology, and especially the balance between the use of chemical versus visual signals. Odorant Binding Proteins (OBP) are a class of insect proteins, at least some of which are thought to orchestrate the transfer of odor molecules within an olfactory sensillum (olfactory organ), between the air and odor receptor proteins (ORs) on the olfactory neurons. A Lepidoptera specific subclass of OBPs are the GOBPs and PBPs; these were the first OBPs studied and have well documented associations with olfactory sensilla. We have used the available genomes of two moths, Manduca sexta and Bombyx mori, and two butterflies, Danaus plexippus and Heliconius melpomene, to characterize the GOBP/PBP genes, attempting to identify gene orthologs and document specific gene gain and loss. First, we identified the full repertoire of OBPs in the M. sexta genome, and compared these with the full repertoire of OBPs from the other three lepidopteran genomes, the OBPs of Drosophila melanogaster and select OBPs from other Lepidoptera. We also evaluated the tissue specific expression of the M. sexta OBPs using an available RNAseq databases. In the four lepidopteran species, GOBP2 and all PBPs reside in single gene clusters; in two species GOBP1 is documented to be nearby, about 100 kb from the cluster; all GOBP/PBP genes share a common gene structure indicating a common origin. As such, the GOBP/PBP genes form a gene complex. Our findings suggest that (1) the lepidopteran GOBP/PBP complex is a monophyletic lineage with origins deep within Lepidoptera phylogeny, (2) within this lineage PBP gene evolution is much more dynamic than GOBP gene evolution, and (3) butterflies may have lost a PBP gene that plays an important role in moth pheromone detection, correlating with a shift from

  20. Analysis of gene expression profile microarray data in complex regional pain syndrome.

    PubMed

    Tan, Wulin; Song, Yiyan; Mo, Chengqiang; Jiang, Shuangjian; Wang, Zhongxing

    2017-09-01

    The aim of the present study was to predict key genes and proteins associated with complex regional pain syndrome (CRPS) using bioinformatics analysis. The gene expression profiling microarray data, GSE47603, which included peripheral blood samples from 4 patients with CRPS and 5 healthy controls, was obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) in CRPS patients compared with healthy controls were identified using the GEO2R online tool. Functional enrichment analysis was then performed using The Database for Annotation Visualization and Integrated Discovery online tool. Protein‑protein interaction (PPI) network analysis was subsequently performed using Search Tool for the Retrieval of Interaction Genes database and analyzed with Cytoscape software. A total of 257 DEGs were identified, including 243 upregulated genes and 14 downregulated ones. Genes in the human leukocyte antigen (HLA) family were most significantly differentially expressed. Enrichment analysis demonstrated that signaling pathways, including immune response, cell motion, adhesion and angiogenesis were associated with CRPS. PPI network analysis revealed that key genes, including early region 1A binding protein p300 (EP300), CREB‑binding protein (CREBBP), signal transducer and activator of transcription (STAT)3, STAT5A and integrin α M were associated with CRPS. The results suggest that the immune response may therefore serve an important role in CRPS development. In addition, genes in the HLA family, such as HLA‑DQB1 and HLA‑DRB1, may present potential biomarkers for the diagnosis of CRPS. Furthermore, EP300, its paralog CREBBP, and the STAT family genes, STAT3 and STAT5 may be important in the development of CRPS.

  1. Mycophenolate mofetil-related leukopenia in children and young adults following kidney transplantation: Influence of genes and drugs.

    PubMed

    Varnell, Charles D; Fukuda, Tsuyoshi; Kirby, Cassie L; Martin, Lisa J; Warshaw, Barry L; Patel, Hiren P; Chand, Deepa H; Barletta, Gina-Marie; Van Why, Scott K; VanDeVoorde, Rene G; Weaver, Donald J; Wilson, Amy; Verghese, Priya S; Vinks, Alexander A; Greenbaum, Larry A; Goebel, Jens; Hooper, David K

    2017-11-01

    MMF is commonly prescribed following kidney transplantation, yet its use is complicated by leukopenia. Understanding the genetics mediating this risk will help clinicians administer MMF safely. We evaluated 284 patients under 21 years of age for incidence and time course of MMF-related leukopenia and performed a candidate gene association study comparing the frequency of 26 SNPs between cases with MMF-related leukopenia and controls. We matched cases by induction, steroid duration, race, center, and age. We also evaluated the impact of induction and SNPs on time to leukopenia in all cases. Sixty-eight (24%) patients had MMF-related leukopenia, of which 59 consented for genotyping and 38 were matched with controls. Among matched pairs, no SNPs were associated with leukopenia. With non-depleting induction, UGT2B7-900A>G (rs7438135) was associated with increased risk of MMF-related leukopenia (P = .038). Time to leukopenia did not differ between patients by induction agent, but 2 SNPs (rs2228075, rs2278294) in IMPDH1 were associated with increased time to leukopenia. MMF-related leukopenia is common after transplantation. UGT2B7 may influence leukopenia risk especially in patients without lymphocyte-depleting induction. IMPDH1 may influence time course of leukopenia after transplant. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. The gammaPE complex contains both SATB1 and HOXB2 and has positive and negative roles in human gamma-globin gene regulation.

    PubMed

    Case, S S; Huber, P; Lloyd, J A

    1999-11-01

    A large nuclear protein complex, termed gammaPE (for gamma-globin promoter and enhancer binding factor), binds to five sites located 5' and 3' of the human y-globin gene. Two proteins, SATB1 (special A-T-rich binding protein 1) and HOXB2, can bind to yPE binding sites. SATB1 binds to nuclear matrix-attachment sites, and HOXB2 is a homeodomain protein important in neural development that is also expressed during erythropoiesis. The present work showed that antisera directed against either SATB1 or HOXB2 reacted specifically with the entire gammaPE complex in electrophoretic mobility shift assays (EMSAs), suggesting that the two proteins can bind to the gammaPE binding site simultaneously. When SATB1 or HOXB2 was expressed in vitro, they could bind independently to gammaPE binding sites in EMSA. Interestingly, the proteins expressed in vitro competed effectively with each other for the gammaPE binding site, suggesting that this may occur under certain conditions in vivo. Transient cotransfections of a HOXB2 cDNA and a y-globin-luciferase reporter gene construct into cells expressing SATB1 suggested that SATB1 has a positive and HOXB2 a negative regulatory effect on transcription. Taking into account their potentially opposing effects and binding activities, SATB1 and HOXB2 may modulate the amount of gamma-globin mRNA expressed during development and differentiation.

  3. Extended mathematical model for "in vivo" quantification of the interaction betweeen atazanavir and bilirubin.

    PubMed

    Lozano, Roberto; Domeque, Nieves; Apesteguia, Alberto-Fermín

    2014-02-01

    The objective of the present work was to conduct an "in vivo" analysis of the atazanavir-bilirubin interaction. We developed a new mathematical approach to PK/PDPK models for competitive interaction based on the Michaelis-Menten equation, which was applied to patients with polymorphisms in the gene for UDP-glucuronosyltransferase 1A1 (UGT1A1). Atazanavir is known to induce concentration-dependent increases in bilirubin plasma levels. Thus, we employed our mathematical model to analyse rises in steady state atazanavir and bilirubin concentrations, ultimately plotting a nomogram for detection of suboptimal atazanavir exposure. Application of our model revealed that an absolute value or a steady state increase in bilirubin falling below 3.8Φ µmol/L (where Φ is a correction factor, =1 for UGT1A1 wild type and ≠1 for UGT1A1 variants) could be used to predict suboptimal atazanavir exposure and treatment failure. Thus, we have successfully established a new mathematical approach for pharmacodynamic-pharmacokinetic modelling of the interaction between atazanavir and bilirubin, as it relates to genetic variants of UGT1A1. Taken together, our findings indicate that bilirubin plasma levels represent a valuable marker of atazanavir exposure. © 2013, The American College of Clinical Pharmacology.

  4. The impact of polyploidy on the evolution of a complex NB-LRR resistance gene cluster in soybean

    USDA-ARS?s Scientific Manuscript database

    A comparative genomics approach was used to investigate the evolution of a complex NB-LRR gene cluster found in soybean (Glycine max), common bean (Phaseolus vulgaris), and other legumes. In soybean, the cluster is associated with several disease resistance (R) genes of known function including Rpg1...

  5. The Arabidopsis Polycomb Repressive Complex 1 (PRC1) Components AtBMI1A, B, and C Impact Gene Networks throughout All Stages of Plant Development1[OPEN

    PubMed Central

    Zhou, Yue

    2017-01-01

    Polycomb Group regulation in Arabidopsis (Arabidopsis thaliana) is required to maintain cell differentiation and allow developmental phase transitions. This is achieved by the activity of three PcG repressive complex 2s (PRC2s) and the participation of a yet poorly defined PRC1. Previous results showed that apparent PRC1 components perform discrete roles during plant development, suggesting the existence of PRC1 variants; however, it is not clear in how many processes these components participate. We show that AtBMI1 proteins are required to promote all developmental phase transitions and to control cell proliferation during organ growth and development, expanding their proposed range of action. While AtBMI1 function during germination is closely linked to B3 domain transcription factors VAL1/2 possibly in combination with GT-box binding factors, other AtBMI1 regulatory networks require participation of different factor combinations. Conversely, EMF1 and LHP1 bind many H3K27me3 positive genes up-regulated in atbmi1a/b/c mutants; however, loss of their function affects expression of a different subset, suggesting that even if EMF1, LHP1, and AtBMI1 exist in a common PRC1 variant, their role in repression depends on the functional context. PMID:27837089

  6. COL5A1: Fine genetic mapping, intron/exon organization, and exclusion as candidate gene in families with tuberous sclerosis complex 1, hereditary hemorrhagic telangiectasia, and Ehlers-Danlos syndrome type II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenspan, D.S.; Papenberg, K.A.; Marchuk, D.A.

    1994-09-01

    Type V collagen is the only fibrillar collagen which has yet to be implicated in the pathogenesis of genetic diseases in humans or mice. To begin examining the possible role of type V collagen in genetic disease, we have previously mapped COL5A1, the gene for the {alpha}1 chain of type V collagen, to 9q23.2{r_arrow}q34.3 and described two restriction site polymorphisms which allowed us to exclude COL5A1 as candidate gene for nail-patella syndrome. We have now used these polymorphisms to exclude COL5A1 as candidate gene for tuberous sclerosis complex 1 and Ehlers-Danlos syndrome type II. In addition, we describe a CAmore » repeat, with observed heterozygosity of about 0.5, in a COL5A1 intron, which has allowed us to exclude COL5A1 as a candidate gene in hereditary hemorrhagic telangiectasia and to place COL5A1 on the CEPH family genetic map between markers D9S66 and D9S67. We have also determined the entire intron/exon organization of COL5A1, which will facilitate characterization of mutations in genetic diseases with which COL5A1 may be linked in future studies.« less

  7. Design of magnetic gene complexes as effective and serum resistant gene delivery systems for mesenchymal stem cells.

    PubMed

    Zhang, Tian-Yuan; Wu, Jia-He; Xu, Qian-Hao; Wang, Xia-Rong; Lu, Jingxiong; Hu, Ying; Jo, Jun-Ichiro; Yamamoto, Masaya; Ling, Daishun; Tabata, Yasuhiko; Gao, Jian-Qing

    2017-03-30

    Gene engineered mesenchymal stem cells (MSCs) have been proposed as promising tools for their various applications in biomedicine. Nevertheless, the lack of an effective and safe way to genetically modify these stem cells is still a major obstacle in the current studies. Herein, we designed novel magnetic complexes by assembling cationized pullulan derivatives with magnetic iron oxide nanoparticles for delivering target genes to MSCs. Results showed that this complexes achieved effective gene expression with the assistance of external magnetic field, and resisted the adverse effect induced by serum proteins on the gene delivery. Moreover, neither significant cytotoxicity nor the interference on the osteogenic differentiation to MSCs were observed after magnetofection. Further studies revealed that this effective and serum resistant gene transfection was partly due to the accelerated and enhanced intracellular uptake process driven by external magnetic field. To conclude, the current study presented a novel option for genetic modification of MSCs in an effective, relatively safe and serum compatible way. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. KDM2B Recruitment of the Polycomb Group Complex, PRC1.1, Requires Cooperation between PCGF1 and BCORL1.

    PubMed

    Wong, Sarah J; Gearhart, Micah D; Taylor, Alexander B; Nanyes, David R; Ha, Daniel J; Robinson, Angela K; Artigas, Jason A; Lee, Oliver J; Demeler, Borries; Hart, P John; Bardwell, Vivian J; Kim, Chongwoo A

    2016-10-04

    KDM2B recruits H2A-ubiquitinating activity of a non-canonical Polycomb Repression Complex 1 (PRC1.1) to CpG islands, facilitating gene repression. We investigated the molecular basis of recruitment using in vitro assembly assays to identify minimal components, subcomplexes, and domains required for recruitment. A minimal four-component PRC1.1 complex can be assembled by combining two separately isolated subcomplexes: the DNA-binding KDM2B/SKP1 heterodimer and the heterodimer of BCORL1 and PCGF1, a core component of PRC1.1. The crystal structure of the KDM2B/SKP1/BCORL1/PCGF1 complex illustrates the crucial role played by the PCGF1/BCORL1 heterodimer. The BCORL1 PUFD domain positions residues preceding the RAWUL domain of PCGF1 to create an extended interface for interaction with KDM2B, which is unique to the PCGF1-containing PRC1.1 complex. The structure also suggests how KDM2B might simultaneously function in PRC1.1 and an SCF ubiquitin ligase complex and the possible molecular consequences of BCOR PUFD internal tandem duplications found in pediatric kidney and brain tumors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Species delimitation in Trametes: a comparison of ITS, RPB1, RPB2 and TEF1 gene phylogenies.

    PubMed

    Carlson, Alexis; Justo, Alfredo; Hibbett, David S

    2014-01-01

    Trametes is a cosmopolitan genus of white rot polypores, including the "turkey tail" fungus, T. versicolor. Although Trametes is one of the most familiar genera of polypores, its species-level taxonomy is unsettled. The ITS region is the most commonly used molecular marker for species delimitation in fungi, but it has been shown to have a low molecular variation in Trametes resulting in poorly resolved phylogenies and unclear species boundaries, especially in the T. versicolor species complex (T. versicolor sensu stricto, T. ochracea, T. pubescens, T. ectypa). Here we evaluate the performance of three protein-coding genes (TEF1, RPB1, RPB2) for species delimitation and phylogenetic reconstruction in Trametes. We obtained 59 TEF1, 34 RPB1 and 55 RPB2 sequences from 69 individuals, focusing on the T. versicolor complex and performed phylogenetic analyses with maximum likelihood and parsimony methods. All three protein-coding genes outperformed ITS for separating species in the T. versicolor complex. The multigene phylogenetic analysis shows the highest amount of resolution and supported nodes separating T. ectypa, T. ochracea, T. pubescens and T. versicolor with strong support. In addition three slineages are resolved in the species complex of T. elegans. The T. elegans complex includes three species: T. elegans (based on material from Puerto Rico, Belize, the Philippines), T. aesculi (from North America) and T. repanda (from Papua New Guinea, the Philippines, Venezuela). The utility of gene markers varies, with TEF1 having the highest PCR and sequencing success rate and RPB1 offering the best backbone resolution for the genus. © 2014 by The Mycological Society of America.

  10. Identification of human UDP-glucuronosyltransferases involved in N-carbamoyl glucuronidation of lorcaserin.

    PubMed

    Sadeque, Abu J M; Usmani, Khawja A; Palamar, Safet; Cerny, Matthew A; Chen, Weichao G

    2012-04-01

    Lorcaserin, a selective serotonin 5-HT(2C) receptor agonist, is a weight management agent in clinical development. Lorcaserin N-carbamoyl glucuronidation governs the predominant excretory pathway of lorcaserin in humans. Human UDP-glucuronosyltransferases (UGTs) responsible for lorcaserin N-carbamoyl glucuronidation are identified herein. Lorcaserin N-carbamoyl glucuronide formation was characterized by the following approaches: metabolic screening using human tissues (liver, kidney, intestine, and lung) and recombinant enzymes, kinetic analyses, and inhibition studies. Whereas microsomes from all human tissues studied herein were found to be catalytically active for lorcaserin N-carbamoyl glucuronidation, liver microsomes were the most efficient. With recombinant UGT enzymes, lorcaserin N-carbamoyl glucuronidation was predominantly catalyzed by three UGT2Bs (UGT2B7, UGT2B15, and UGT2B17), whereas two UGT1As (UGT1A6 and UGT1A9) played a minor role. UGT2B15 was most efficient, with an apparent K(m) value of 51.6 ± 1.9 μM and V(max) value of 237.4 ± 2.8 pmol/mg protein/min. The rank order of catalytic efficiency of human UGT enzymes for lorcaserin N-carbamoyl glucuronidation was UGT2B15 > UGT2B7 > UGT2B17 > UGT1A9 > UGT1A6. Inhibition of lorcaserin N-carbamoyl glucuronidation activities of UGT2B7, UGT2B15, and UGT2B17 in human liver microsomes by mefenamic acid, bisphenol A, and eugenol further substantiated the involvement of these UGT2B isoforms. In conclusion, multiple human UGT enzymes catalyze N-carbamoyl glucuronidation of lorcaserin; therefore, it is unlikely that inhibition of any one of these UGT activities will lead to significant inhibition of the lorcaserin N-carbamoyl glucuronidation pathway. Thus, the potential for drug-drug interaction by concomitant administration of a drug(s) that is metabolized by any of these UGTs is remote.

  11. Severe neonatal hyperbilirubinemia in Crigler‐Najjar syndrome model mice can be reversed with zinc protoporphyrin

    PubMed Central

    Mitsugi, Ryo; Uemura, Asuka; Itoh, Tomoo; Tukey, Robert H.

    2017-01-01

    Neurotoxic bilirubin is solely conjugated by UDP‐glucuronosyltransferase (UGT) 1A1. Due to an inadequate function of UGT1A1, human neonates develop mild to severe physiological hyperbilirubinemia. Accumulation of bilirubin in the brain leads to the onset of irreversible brain damage called kernicterus. Breastfeeding is one of the most significant factors that increase the risk of developing kernicterus in infants. Why does the most natural way of feeding increase the risk of brain damage or even death? This question leads to the hypothesis that breast milk‐induced neonatal hyperbilirubinemia might bring certain benefits to the body. One of the barriers to answering the above question is the lack of animal models that display mild to severe neonatal hyperbilirubinemia. A mouse model that develops neonatal hyperbilirubinemia was previously developed by a knockout of the Ugt1 locus. Deletion of Ugt1a1 results in neonatal lethality from bilirubin neurotoxicity. Bilirubin is the end product of heme catabolism in which heme oxygenase‐I is largely involved. When zinc protoporphyrin, an inhibitor of heme oxygenase I, was administered to newborn Ugt1 −/− mice, serum bilirubin levels dropped dramatically, rescuing the mice from bilirubin‐induced neonatal lethality. Zinc protoporphyrin‐treated Ugt1 −/− mice developed normally as adults capable of reproducing, but their newborns showed even more severe hyperbilirubinemia. Microarray analysis of the hyperbilirubinemic livers indicated that a number of genes associated with nucleotide, transport, and immune response were significantly down‐regulated in a serum bilirubin level‐dependent manner. Conclusion: Our study provides an opportunity to advance the development of effective therapeutics to effectively and rapidly prevent bilirubin‐induced toxicity. Neonatal hyperbilirubinemia has various impacts on the body that could be driven by the antioxidant property of bilirubin. (Hepatology Communications 2017;1

  12. Transcription factor GATA-1 regulates human HOXB2 gene expression in erythroid cells.

    PubMed

    Vieille-Grosjean, I; Huber, P

    1995-03-03

    The human HOXB2 gene is a member of the vertebrate Hox gene family that contains genes coding for specific developmental stage DNA-binding proteins. Remarkably, within the hematopoietic compartment, genes of the HOXB complex are expressed specifically in erythromegakaryocytic cell lines and, for some of them, in hematopoietic progenitors. Here, we report the study of HOXB2 gene transcriptional regulation in hematopoietic cells, an initial step in understanding the lineage-specific expression of the whole HOXB complex in these cells. We have isolated the HOXB2 5'-flanking sequence and have characterized a promoter fragment extending 323 base pairs upstream from the transcriptional start site, which, in transfection experiments, was sufficient to direct the tissue-specific expression of HOXB2 in the erythroid cell line K562. In this fragment, we have identified a potential GATA-binding site that is essential to the promoter activity as demonstrated by point mutation experiments. Gel shift analysis revealed the formation of a specific complex in both erythroleukemic lines K562 and HEL that could be prevented by the addition of a specific antiserum raised against GATA-1 protein. These findings suggest a regulatory hierarchy in which GATA-1 is upstream of the HOXB2 gene in erythroid cells.

  13. The Nuclear Pore-Associated TREX-2 Complex Employs Mediator to Regulate Gene Expression

    PubMed Central

    Schneider, Maren; Hellerschmied, Doris; Schubert, Tobias; Amlacher, Stefan; Vinayachandran, Vinesh; Reja, Rohit; Pugh, B. Franklin; Clausen, Tim; Köhler, Alwin

    2015-01-01

    Summary Nuclear pore complexes (NPCs) influence gene expression besides their established function in nuclear transport. The TREX-2 complex localizes to the NPC basket and affects gene-NPC interactions, transcription, and mRNA export. How TREX-2 regulates the gene expression machinery is unknown. Here, we show that TREX-2 interacts with the Mediator complex, an essential regulator of RNA Polymerase (Pol) II. Structural and biochemical studies identify a conserved region on TREX-2, which directly binds the Mediator Med31/Med7N submodule. TREX-2 regulates assembly of Mediator with the Cdk8 kinase and is required for recruitment and site-specific phosphorylation of Pol II. Transcriptome and phenotypic profiling confirm that TREX-2 and Med31 are functionally interdependent at specific genes. TREX-2 additionally uses its Mediator-interacting surface to regulate mRNA export suggesting a mechanism for coupling transcription initiation and early steps of mRNA processing. Our data provide mechanistic insight into how an NPC-associated adaptor complex accesses the core transcription machinery. PMID:26317468

  14. Antheraea pernyi silk fibroin for targeted gene delivery of VEGF165-Ang-1 with PEI.

    PubMed

    Ma, Caili; Lv, Linlin; Liu, Yu; Yu, Yanni; You, Renchuan; Yang, Jicheng; Li, Mingzhong

    2014-06-01

    Vascularization is a crucial challenge in tissue engineering. One solution for this problem is to implant scaffolds that contain functional genes that promote vascularization by providing angiogenic growth factors via a gene delivery carrier. Poly(ethylenimine) (PEI) is a gene delivery carrier with high transfection efficiency but with cytotoxicity. To solve this problem, we utilized Antheraea pernyi silk fibroin (ASF), which has favorable cytocompatibility and biodegradability, RGD sequences and a negative charge, in conjunction with PEI, as the delivery vector for vascular endothelial growth factor (VEGF) 165-angiopoietin-1 (Ang-1) dual gene simultaneous expression plasmid, creating an ASF/PEI/pDNA complex. The results suggested that the zeta potential of the ASF/PEI/pDNA complex was significantly lower than that of the PEI/pDNA complex. Decreased nitrogen and increased oxygen on the surface of the complex demonstrated that the ASF had successfully combined with the surface of the PEI/pDNA. Furthermore, the complexes resisted digestion by nucleic acid enzymes and degradation by serum. L929 cells were cultured and transfected in vitro and improved cytotoxicity was found when the cells were transfected with ASF/PEI/pDNA compared with PEI/pDNA. In addition, the transfection efficiency and VEGF secretion increased. In general, this study provides a novel method for decreasing the cytotoxicity of PEI gene delivery vectors and increasing transfection efficiency of angiogenesis-related genes.

  15. Arabidopsis ETR1 and ERS1 Differentially Repress the Ethylene Response in Combination with Other Ethylene Receptor Genes1[W

    PubMed Central

    Liu, Qian; Wen, Chi-Kuang

    2012-01-01

    The ethylene response is negatively regulated by a family of five ethylene receptor genes in Arabidopsis (Arabidopsis thaliana). The five members of the ethylene receptor family can physically interact and form complexes, which implies that cooperativity for signaling may exist among the receptors. The ethylene receptor gene mutations etr1-1(C65Y)(for ethylene response1-1), ers1-1(I62P) (for ethylene response sensor1-1), and ers1C65Y are dominant, and each confers ethylene insensitivity. In this study, the repression of the ethylene response by these dominant mutant receptor genes was examined in receptor-defective mutants to investigate the functional significance of receptor cooperativity in ethylene signaling. We showed that etr1-1(C65Y), but not ers1-1(I62P), substantially repressed various ethylene responses independent of other receptor genes. In contrast, wild-type receptor genes differentially supported the repression of ethylene responses by ers1-1(I62P); ETR1 and ETHYLENE INSENSITIVE4 (EIN4) supported ers1-1(I62P) functions to a greater extent than did ERS2, ETR2, and ERS1. The lack of both ETR1 and EIN4 almost abolished the repression of ethylene responses by ers1C65Y, which implied that ETR1 and EIN4 have synergistic effects on ers1C65Y functions. Our data indicated that a dominant ethylene-insensitive receptor differentially repressed ethylene responses when coupled with a wild-type ethylene receptor, which supported the hypothesis that the formation of a variety of receptor complexes may facilitate differential receptor signal output, by which ethylene responses can be repressed to different extents. We hypothesize that plants can respond to a broad ethylene concentration range and exhibit tissue-specific ethylene responsiveness with differential cooperation of the multiple ethylene receptors. PMID:22227969

  16. Repression of Middle Sporulation Genes in Saccharomyces cerevisiae by the Sum1-Rfm1-Hst1 Complex Is Maintained by Set1 and H3K4 Methylation

    PubMed Central

    Jaiswal, Deepika; Jezek, Meagan; Quijote, Jeremiah; Lum, Joanna; Choi, Grace; Kulkarni, Rushmie; Park, DoHwan; Green, Erin M.

    2017-01-01

    The conserved yeast histone methyltransferase Set1 targets H3 lysine 4 (H3K4) for mono, di, and trimethylation and is linked to active transcription due to the euchromatic distribution of these methyl marks and the recruitment of Set1 during transcription. However, loss of Set1 results in increased expression of multiple classes of genes, including genes adjacent to telomeres and middle sporulation genes, which are repressed under normal growth conditions because they function in meiotic progression and spore formation. The mechanisms underlying Set1-mediated gene repression are varied, and still unclear in some cases, although repression has been linked to both direct and indirect action of Set1, associated with noncoding transcription, and is often dependent on the H3K4me2 mark. We show that Set1, and particularly the H3K4me2 mark, are implicated in repression of a subset of middle sporulation genes during vegetative growth. In the absence of Set1, there is loss of the DNA-binding transcriptional regulator Sum1 and the associated histone deacetylase Hst1 from chromatin in a locus-specific manner. This is linked to increased H4K5ac at these loci and aberrant middle gene expression. These data indicate that, in addition to DNA sequence, histone modification status also contributes to proper localization of Sum1. Our results also show that the role for Set1 in middle gene expression control diverges as cells receive signals to undergo meiosis. Overall, this work dissects an unexplored role for Set1 in gene-specific repression, and provides important insights into a new mechanism associated with the control of gene expression linked to meiotic differentiation. PMID:29066473

  17. Glucose-induced expression of MIP-1 genes requires O-GlcNAc transferase in monocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikanishi, Toshihiro; ERATO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012; Fujiki, Ryoji

    2010-04-16

    O-glycosylation has emerged as an important modification of nuclear proteins, and it appears to be involved in gene regulation. Recently, we have shown that one of the histone methyl transferases (MLL5) is activated through O-glycosylation by O-GlcNAc transferase (OGT). Addition of this monosaccharide is essential for forming a functional complex. However, in spite of the abundance of OGT in the nucleus, the impact of nuclear O-glycosylation by OGT remains largely unclear. To address this issue, the present study was undertaken to test the impact of nuclear O-glycosylation in a monocytic cell line, THP-1. Using a cytokine array, MIP-1{alpha} and -1{beta}more » genes were found to be regulated by nuclear O-glycosylation. Biochemical purification of the OGT interactants from THP-1 revealed that OGT is an associating partner for distinct co-regulatory complexes. OGT recruitment and protein O-glycosylation were observed at the MIP-1{alpha} gene promoter; however, the known OGT partner (HCF-1) was absent when the MIP-1{alpha} gene promoter was not activated. From these findings, we suggest that OGT could be a co-regulatory subunit shared by functionally distinct complexes supporting epigenetic regulation.« less

  18. Ensemble gene function prediction database reveals genes important for complex I formation in Arabidopsis thaliana.

    PubMed

    Hansen, Bjoern Oest; Meyer, Etienne H; Ferrari, Camilla; Vaid, Neha; Movahedi, Sara; Vandepoele, Klaas; Nikoloski, Zoran; Mutwil, Marek

    2018-03-01

    Recent advances in gene function prediction rely on ensemble approaches that integrate results from multiple inference methods to produce superior predictions. Yet, these developments remain largely unexplored in plants. We have explored and compared two methods to integrate 10 gene co-function networks for Arabidopsis thaliana and demonstrate how the integration of these networks produces more accurate gene function predictions for a larger fraction of genes with unknown function. These predictions were used to identify genes involved in mitochondrial complex I formation, and for five of them, we confirmed the predictions experimentally. The ensemble predictions are provided as a user-friendly online database, EnsembleNet. The methods presented here demonstrate that ensemble gene function prediction is a powerful method to boost prediction performance, whereas the EnsembleNet database provides a cutting-edge community tool to guide experimentalists. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  19. Pharmacokinetics and pharmacogenetics of the MEK1/2 inhibitor, selumetinib, in Asian and Western healthy subjects: a pooled analysis.

    PubMed

    Dymond, Angela W; Elks, Cathy; Martin, Paul; Carlile, David J; Mariani, Gabriella; Lovick, Susan; Huang, Yifan; Lorch, Ulrike; Brown, Helen; So, Karen

    2017-06-01

    Emerging data on selumetinib, a MEK1/2 inhibitor in clinical development, suggest a possible difference in pharmacokinetics (PK) between Japanese and Western patients. This pooled analysis sought to assess the effect of ethnicity on selumetinib exposure in healthy Western and Asian subjects, and to identify any association between genetic variants in the UGT1A1, CYP2C19 and ABCG2 genes and observed differences in selumetinib PK. A pooled analysis of data from ten Phase I studies, one in Asian subjects (encompassing Japanese, non-Japanese Asian and Indian Asian subjects) and nine in Western subjects, was conducted. Key findings were derived from the collective exposure data across doses of 25, 35, 50 and 75 mg selumetinib; primary variables were dose-normalized AUC and C max . PK data from 308 subjects (10 studies) were available for the pooled analysis; genetic data from 87 subjects (3 studies) were available for the pharmacogenetic analysis. Dose-normalized AUC and C max were 35% (95% CI: 25-47%) and 39% (95% CI: 24-56%) higher in the pooled Asian group, respectively, compared with Western subjects. PK exposure parameters were similar between the Japanese, non-Japanese Asian and Indian groups. There was no evidence that the polymorphisms assessed in the genes UGT1A1, CYP2C19 and ABCG2 account for observed PK differences. Selumetinib exposure was higher in healthy Asian subjects compared with Western subjects, and these data provide valuable insight for clinicians to consider when treating patients of Asian ethnicity with selumetinib.

  20. Intragenic motifs regulate the transcriptional complexity of Pkhd1/PKHD1

    PubMed Central

    Boddu, Ravindra; Yang, Chaozhe; O’Connor, Amber K.; Hendrickson, Robert Curtis; Boone, Braden; Cui, Xiangqin; Garcia-Gonzalez, Miguel; Igarashi, Peter; Onuchic, Luiz F.; Germino, Gregory G.

    2014-01-01

    Autosomal recessive polycystic kidney disease (ARPKD) results from mutations in the human PKHD1 gene. Both this gene, and its mouse ortholog, Pkhd1, are primarily expressed in renal and biliary ductal structures. The mouse protein product, fibrocystin/polyductin complex (FPC), is a 445-kDa protein encoded by a 67-exon transcript that spans >500 kb of genomic DNA. In the current study, we observed multiple alternatively spliced Pkhd1 transcripts that varied in size and exon composition in embryonic mouse kidney, liver, and placenta samples, as well as among adult mouse pancreas, brain, heart, lung, testes, liver, and kidney. Using reverse transcription PCR and RNASeq, we identified 22 novel Pkhd1 kidney transcripts with unique exon junctions. Various mechanisms of alternative splicing were observed, including exon skipping, use of alternate acceptor/donor splice sites, and inclusion of novel exons. Bioinformatic analyses identified, and exon-trapping minigene experiments validated, consensus binding sites for serine/arginine-rich proteins that modulate alternative splicing. Using site-directed mutagenesis, we examined the functional importance of selected splice enhancers. In addition, we demonstrated that many of the novel transcripts were polysome bound, thus likely translated. Finally, we determined that the human PKHD1 R760H missense variant alters a splice enhancer motif that disrupts exon splicing in vitro and is predicted to truncate the protein. Taken together, these data provide evidence of the complex transcriptional regulation of Pkhd1/PKHD1 and identified motifs that regulate its splicing. Our studies indicate that Pkhd1/PKHD1 transcription is modulated, in part by intragenic factors, suggesting that aberrant PKHD1 splicing represents an unappreciated pathogenic mechanism in ARPKD. PMID:24984783

  1. Mapping fusiform rust resistance genes within a complex mating design of loblolly pine

    Treesearch

    Tania Quesada; Marcio F.R. Resende Jr.; Patricio Munoz; Jill L. Wegrzyn; David B. Neale; Matias Kirst; Gary F. Peter; Salvador A. Gezan; C.Dana Nelson; John M. Davis

    2014-01-01

    Fusiform rust resistance can involve gene-for-gene interactions where resistance (Fr) genes in the host interact with corresponding avirulence genes in the pathogen, Cronartium quercuum f.sp. fusiforme (Cqf). Here, we identify trees with Fr genes in a loblolly pine population derived from a complex mating design challenged with two Cqf inocula (one gall and 10 gall...

  2. Dynamic gene expression analysis in a H1N1 influenza virus mouse pneumonia model.

    PubMed

    Bao, Yanyan; Gao, Yingjie; Shi, Yujing; Cui, Xiaolan

    2017-06-01

    H1N1, a major pathogenic subtype of influenza A virus, causes a respiratory infection in humans and livestock that can range from a mild infection to more severe pneumonia associated with acute respiratory distress syndrome. Understanding the dynamic changes in the genome and the related functional changes induced by H1N1 influenza virus infection is essential to elucidating the pathogenesis of this virus and thereby determining strategies to prevent future outbreaks. In this study, we filtered the significantly expressed genes in mouse pneumonia using mRNA microarray analysis. Using STC analysis, seven significant gene clusters were revealed, and using STC-GO analysis, we explored the significant functions of these seven gene clusters. The results revealed GOs related to H1N1 virus-induced inflammatory and immune functions, including innate immune response, inflammatory response, specific immune response, and cellular response to interferon-beta. Furthermore, the dynamic regulation relationships of the key genes in mouse pneumonia were revealed by dynamic gene network analysis, and the most important genes were filtered, including Dhx58, Cxcl10, Cxcl11, Zbp1, Ifit1, Ifih1, Trim25, Mx2, Oas2, Cd274, Irgm1, and Irf7. These results suggested that during mouse pneumonia, changes in the expression of gene clusters and the complex interactions among genes lead to significant changes in function. Dynamic gene expression analysis revealed key genes that performed important functions. These results are a prelude to advancements in mouse H1N1 influenza virus infection biology, as well as the use of mice as a model organism for human H1N1 influenza virus infection studies.

  3. Mediator complex cooperatively regulates transcription of retinoic acid target genes with Polycomb Repressive Complex 2 during neuronal differentiation.

    PubMed

    Fukasawa, Rikiya; Iida, Satoshi; Tsutsui, Taiki; Hirose, Yutaka; Ohkuma, Yoshiaki

    2015-11-01

    The Mediator complex (Mediator) plays key roles in transcription and functions as the nexus for integration of various transcriptional signals. Previously, we screened for Mediator cyclin-dependent kinase (CDK)-interacting factors and identified three proteins related to chromatin regulation. One of them, SUZ12 is required for both stability and activity of Polycomb Repressive Complex 2 (PRC2). PRC2 primarily suppresses gene expression through histone H3 lysine 27 trimethylation, resulting in stem cell maintenance and differentiation; perturbation of this process leads to oncogenesis. Recent work showed that Mediator contributes to the embryonic stem cell state through DNA loop formation, which is strongly associated with chromatin architecture; however, it remains unclear how Mediator regulates gene expression in cooperation with chromatin regulators (i.e. writers, readers and remodelers). We found that Mediator CDKs interact directly with the PRC2 subunit EZH2, as well as SUZ12. Known PRC2 target genes were deregulated by Mediator CDK knockdown during neuronal differentiation, and both Mediator and PRC2 complexes co-occupied the promoters of developmental genes regulated by retinoic acid. Our results provide a mechanistic link between Mediator and PRC2 during neuronal differentiation. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  4. Expression of Immune Genes on Chromosome 6p21.3-22.1 in Schizophrenia

    PubMed Central

    Sinkus, Melissa L.; Adams, Catherine E.; Logel, Judith; Freedman, Robert; Leonard, Sherry

    2013-01-01

    Schizophrenia is a common mental illness with a large genetic component. Three genome-wide association studies have implicated the major histocompatibility complex gene region on chromosome 6p21.3-22.1 in schizophrenia. In addition, nicotine, which is commonly abused in schizophrenia, affects the expression of central nervous system immune genes. Messenger RNA levels for genes in the 6p21.3-22.1 region were measured in human postmortem hippocampus of 89 subjects. The effects of schizophrenia diagnosis, smoking and systemic inflammatory illness were compared. Cell-specific expression patterns for the class I major histocompatibility complex gene HLA-A were explored utilizing in situ hybridization. Expression of five genes was altered in schizophrenic subjects. Messenger RNA levels for the class I major histocompatibility complex antigen HLA-B were increased in schizophrenic nonsmokers, while levels for smokers were indistinguishable from those of controls. β2 microglobulin, HLA-A and Notch4 were all expressed in a pattern where inflammatory illness was associated with increased expression in controls but not in subjects with schizophrenia. Schizophrenia was also associated with increased expression of Butyrophilin 2A2. HLA-A was expressed in glutamatergic and GABAergic neurons in the dentate gyrus, hilus, and the stratum pyramidale of the CA1-CA4 regions of the hippocampus, but not in astrocytes. In conclusion, the expression of genes from the major histocompatibility complex region of chromosome 6 with likely roles in synaptic development is altered in schizophrenia. There were also significant interactions between schizophrenia diagnosis and both inflammatory illness and smoking. PMID:23395714

  5. Pyviko: an automated Python tool to design gene knockouts in complex viruses with overlapping genes.

    PubMed

    Taylor, Louis J; Strebel, Klaus

    2017-01-07

    Gene knockouts are a common tool used to study gene function in various organisms. However, designing gene knockouts is complicated in viruses, which frequently contain sequences that code for multiple overlapping genes. Designing mutants that can be traced by the creation of new or elimination of existing restriction sites further compounds the difficulty in experimental design of knockouts of overlapping genes. While software is available to rapidly identify restriction sites in a given nucleotide sequence, no existing software addresses experimental design of mutations involving multiple overlapping amino acid sequences in generating gene knockouts. Pyviko performed well on a test set of over 240,000 gene pairs collected from viral genomes deposited in the National Center for Biotechnology Information Nucleotide database, identifying a point mutation which added a premature stop codon within the first 20 codons of the target gene in 93.2% of all tested gene-overprinted gene pairs. This shows that Pyviko can be used successfully in a wide variety of contexts to facilitate the molecular cloning and study of viral overprinted genes. Pyviko is an extensible and intuitive Python tool for designing knockouts of overlapping genes. Freely available as both a Python package and a web-based interface ( http://louiejtaylor.github.io/pyViKO/ ), Pyviko simplifies the experimental design of gene knockouts in complex viruses with overlapping genes.

  6. Structure of a BMI-1-Ring1B Polycomb Group Ubiquitin Ligase Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li,Z.; Cao, R.; Wang, M.

    2006-01-01

    Polycomb group (PcG) proteins Bmi-1 and Ring1B are core subunits of the PRC1 complex which plays important roles in the regulation of Hox gene expression, X-chromosome inactivation, tumorigenesis and stem cell self-renewal. The RING finger protein Ring1B is an E3 ligase that participates in the ubiquitination of lysine 119 of histone H2A, and the binding of Bmi-1 stimulates the E3 ligase activity. We have mapped the regions of Bmi-1 and Ring1B required for efficient ubiquitin transfer and determined a 2.5 Angstroms structure of the Bmi-1-Ring1B core domain complex. The structure reveals that Ring1B 'hugs' Bmi-1 through extensive RING domain contactsmore » and its N-terminal tail wraps around Bmi-1. The two regions of interaction have a synergistic effect on the E3 ligase activity. Our analyses suggest a model where the Bmi-1-Ring1B complex stabilizes the interaction between the E2 enzyme and the nucleosomal substrate to allow efficient ubiquitin transfer.« less

  7. RYBP stimulates PRC1 to shape chromatin-based communication between Polycomb repressive complexes

    PubMed Central

    Rose, Nathan R; King, Hamish W; Blackledge, Neil P; Fursova, Nadezda A; Ember, Katherine JI; Fischer, Roman; Kessler, Benedikt M; Klose, Robert J

    2016-01-01

    Polycomb group (PcG) proteins function as chromatin-based transcriptional repressors that are essential for normal gene regulation during development. However, how these systems function to achieve transcriptional regulation remains very poorly understood. Here, we discover that the histone H2AK119 E3 ubiquitin ligase activity of Polycomb repressive complex 1 (PRC1) is defined by the composition of its catalytic subunits and is highly regulated by RYBP/YAF2-dependent stimulation. In mouse embryonic stem cells, RYBP plays a central role in shaping H2AK119 mono-ubiquitylation at PcG targets and underpins an activity-based communication between PRC1 and Polycomb repressive complex 2 (PRC2) which is required for normal histone H3 lysine 27 trimethylation (H3K27me3). Without normal histone modification-dependent communication between PRC1 and PRC2, repressive Polycomb chromatin domains can erode, rendering target genes susceptible to inappropriate gene expression signals. This suggests that activity-based communication and histone modification-dependent thresholds create a localized form of epigenetic memory required for normal PcG chromatin domain function in gene regulation. DOI: http://dx.doi.org/10.7554/eLife.18591.001 PMID:27705745

  8. Identification and functional analysis of two Golgi-localized UDP-galactofuranose transporters with overlapping functions in Aspergillus niger.

    PubMed

    Park, Joohae; Tefsen, Boris; Heemskerk, Marc J; Lagendijk, Ellen L; van den Hondel, Cees A M J J; van Die, Irma; Ram, Arthur F J

    2015-11-02

    Galactofuranose (Galf)-containing glycoconjugates are present in numerous microbes, including filamentous fungi where they are important for morphology, virulence and maintaining cell wall integrity. The incorporation of Galf-residues into galactomannan, galactomannoproteins and glycolipids is carried out by Golgi-localized Galf transferases. The nucleotide sugar donor used by these transferases (UDP-Galf) is produced in the cytoplasm and has to be transported to the lumen of the Golgi by a dedicated nucleotide sugar transporter. Based on homology with recently identified UDP-Galf-transporters in A. fumigatus and A. nidulans, two putative UDP-Galf-transporters in A. niger were found. Their function and localization was determined by gene deletions and GFP-tagging studies, respectively. The two putative UDP-Galf-transporters in A. niger are homologous to each other and are predicted to contain eleven transmembrane domains (UgtA) or ten transmembrane domains (UgtB) due to a reduced length of the C-terminal part of the UgtB protein. The presence of two putative UDP-Galf-transporters in the genome was not unique for A. niger. From the twenty Aspergillus species analysed, nine species contained two additional putative UDP-Galf-transporters. Three of the nine species were outside the Aspergillus section nigri, indication an early duplication of UDP-Galf-transporters and subsequent loss of the UgtB copy in several aspergilli. Deletion analysis of the single and double mutants in A. niger indicated that the two putative UDP-Galf-transporters (named UgtA and UgtB) have a redundant function in UDP-Galf-transport as only the double mutant displayed a Galf-negative phenotype. The Galf-negative phenotype of the double mutant could be complemented by expressing either CFP-UgtA or CFP-UgtB fusion proteins from their endogenous promoters, indicating that both CFP-tagged proteins are functional. Both Ugt proteins co-localize with each other as well as with the GDP

  9. Dosage changes of a segment at 17p13.1 lead to intellectual disability and microcephaly as a result of complex genetic interaction of multiple genes.

    PubMed

    Carvalho, Claudia M B; Vasanth, Shivakumar; Shinawi, Marwan; Russell, Chad; Ramocki, Melissa B; Brown, Chester W; Graakjaer, Jesper; Skytte, Anne-Bine; Vianna-Morgante, Angela M; Krepischi, Ana C V; Patel, Gayle S; Immken, LaDonna; Aleck, Kyrieckos; Lim, Cynthia; Cheung, Sau Wai; Rosenberg, Carla; Katsanis, Nicholas; Lupski, James R

    2014-11-06

    The 17p13.1 microdeletion syndrome is a recently described genomic disorder with a core clinical phenotype of intellectual disability, poor to absent speech, dysmorphic features, and a constellation of more variable clinical features, most prominently microcephaly. We identified five subjects with copy-number variants (CNVs) on 17p13.1 for whom we performed detailed clinical and molecular studies. Breakpoint mapping and retrospective analysis of published cases refined the smallest region of overlap (SRO) for microcephaly to a genomic interval containing nine genes. Dissection of this phenotype in zebrafish embryos revealed a complex genetic architecture: dosage perturbation of four genes (ASGR1, ACADVL, DVL2, and GABARAP) impeded neurodevelopment and decreased dosage of the same loci caused a reduced mitotic index in vitro. Moreover, epistatic analyses in vivo showed that dosage perturbations of discrete gene pairings induce microcephaly. Taken together, these studies support a model in which concomitant dosage perturbation of multiple genes within the CNV drive the microcephaly and possibly other neurodevelopmental phenotypes associated with rearrangements in the 17p13.1 SRO. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  10. CYP1A1, GCLC, AGT, AGTR1 gene-gene interactions in community-acquired pneumonia pulmonary complications.

    PubMed

    Salnikova, Lyubov E; Smelaya, Tamara V; Golubev, Arkadiy M; Rubanovich, Alexander V; Moroz, Viktor V

    2013-11-01

    This study was conducted to establish the possible contribution of functional gene polymorphisms in detoxification/oxidative stress and vascular remodeling pathways to community-acquired pneumonia (CAP) susceptibility in the case-control study (350 CAP patients, 432 control subjects) and to predisposition to the development of CAP complications in the prospective study. All subjects were genotyped for 16 polymorphic variants in the 14 genes of xenobiotics detoxification CYP1A1, AhR, GSTM1, GSTT1, ABCB1, redox-status SOD2, CAT, GCLC, and vascular homeostasis ACE, AGT, AGTR1, NOS3, MTHFR, VEGFα. Risk of pulmonary complications (PC) in the single locus analysis was associated with CYP1A1, GCLC and AGTR1 genes. Extra PC (toxic shock syndrome and myocarditis) were not associated with these genes. We evaluated gene-gene interactions using multi-factor dimensionality reduction, and cumulative gene risk score approaches. The final model which included >5 risk alleles in the CYP1A1 (rs2606345, rs4646903, rs1048943), GCLC, AGT, and AGTR1 genes was associated with pleuritis, empyema, acute respiratory distress syndrome, all PC and acute respiratory failure (ARF). We considered CYP1A1, GCLC, AGT, AGTR1 gene set using Set Distiller mode implemented in GeneDecks for discovering gene-set relations via the degree of sharing descriptors within a given gene set. N-acetylcysteine and oxygen were defined by Set Distiller as the best descriptors for the gene set associated in the present study with PC and ARF. Results of the study are in line with literature data and suggest that genetically determined oxidative stress exacerbation may contribute to the progression of lung inflammation.

  11. The abundance of cis-acting loci leading to differential allele expression in F1 mice and their relationship to loci harboring genes affecting complex traits.

    PubMed

    Yeo, Seungeun; Hodgkinson, Colin A; Zhou, Zhifeng; Jung, Jeesun; Leung, Ming; Yuan, Qiaoping; Goldman, David

    2016-08-11

    Genome-wide surveys have detected cis-acting quantitative trait loci altering levels of RNA transcripts (RNA-eQTLs) by associating SNV alleles to transcript levels. However, the sensitivity and specificity of detection of cis- expression quantitative trait loci (eQTLs) by genetic approaches, reliant as it is on measurements of transcript levels in recombinant inbred strains or offspring from arranged crosses, is unknown, as is their relationship to QTL's for complex phenotypes. We used transcriptome-wide differential allele expression (DAE) to detect cis-eQTLs in forebrain and kidney from reciprocal crosses between three mouse inbred strains, 129S1/SvlmJ, DBA/2J, and CAST/EiJ and C57BL/6 J. Two of these crosses were previously characterized for cis-eQTLs and QTLs for various complex phenotypes by genetic analysis of recombinant inbred (RI) strains. 5.4 %, 1.9 % and 1.5 % of genes assayed in forebrain of B6/129SF1, B6/DBAF1, and B6/CASTF1 mice, respectively, showed differential allelic expression, indicative of cis-acting alleles at these genes. Moreover, the majority of DAE QTLs were observed to be tissue-specific with only a small fraction showing cis-effects in both tissues. Comparing DAE QTLs in F1 mice to cis-eQTLs previously mapped in RI strains we observed that many of the cis-eQTLs were not confirmed by DAE. Additionally several novel DAE-QTLs not identified as cis-eQTLs were identified suggesting that there are differences in sensitivity and specificity for QTL detection between the two methodologies. Strain specific DAE QTLs in B6/DBAF1 mice were located in excess at candidate genes for alcohol use disorders, seizures, and angiogenesis previously implicated by genetic linkage in C57BL/6J × DBA/2JF2 mice or BXD RI strains. Via a survey for differential allele expression in F1 mice, a substantial proportion of genes were found to have alleles altering expression in cis-acting fashion. Comparing forebrain and kidney, many or most of these alleles were

  12. Concomitant loss of NDH complex-related genes within chloroplast and nuclear genomes in some orchids.

    PubMed

    Lin, Choun-Sea; Chen, Jeremy J W; Chiu, Chi-Chou; Hsiao, Han C W; Yang, Chen-Jui; Jin, Xiao-Hua; Leebens-Mack, James; de Pamphilis, Claude W; Huang, Yao-Ting; Yang, Ling-Hung; Chang, Wan-Jung; Kui, Ling; Wong, Gane Ka-Shu; Hu, Jer-Ming; Wang, Wen; Shih, Ming-Che

    2017-06-01

    The chloroplast NAD(P)H dehydrogenase-like (NDH) complex consists of about 30 subunits from both the nuclear and chloroplast genomes and is ubiquitous across most land plants. In some orchids, such as Phalaenopsis equestris, Dendrobium officinale and Dendrobium catenatum, most of the 11 chloroplast genome-encoded ndh genes (cp-ndh) have been lost. Here we investigated whether functional cp-ndh genes have been completely lost in these orchids or whether they have been transferred and retained in the nuclear genome. Further, we assessed whether both cp-ndh genes and nucleus-encoded NDH-related genes can be lost, resulting in the absence of the NDH complex. Comparative analyses of the genome of Apostasia odorata, an orchid species with a complete complement of cp-ndh genes which represents the sister lineage to all other orchids, and three published orchid genome sequences for P. equestris, D. officinale and D. catenatum, which are all missing cp-ndh genes, indicated that copies of cp-ndh genes are not present in any of these four nuclear genomes. This observation suggests that the NDH complex is not necessary for some plants. Comparative genomic/transcriptomic analyses of currently available plastid genome sequences and nuclear transcriptome data showed that 47 out of 660 photoautotrophic plants and all the heterotrophic plants are missing plastid-encoded cp-ndh genes and exhibit no evidence for maintenance of a functional NDH complex. Our data indicate that the NDH complex can be lost in photoautotrophic plant species. Further, the loss of the NDH complex may increase the probability of transition from a photoautotrophic to a heterotrophic life history. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  13. The Chloroplast atpA Gene Cluster in Chlamydomonas reinhardtii1

    PubMed Central

    Drapier, Dominique; Suzuki, Hideki; Levy, Haim; Rimbault, Blandine; Kindle, Karen L.; Stern, David B.; Wollman, Francis-André

    1998-01-01

    Most chloroplast genes in vascular plants are organized into polycistronic transcription units, which generate a complex pattern of mono-, di-, and polycistronic transcripts. In contrast, most Chlamydomonas reinhardtii chloroplast transcripts characterized to date have been monocistronic. This paper describes the atpA gene cluster in the C. reinhardtii chloroplast genome, which includes the atpA, psbI, cemA, and atpH genes, encoding the α-subunit of the coupling-factor-1 (CF1) ATP synthase, a small photosystem II polypeptide, a chloroplast envelope membrane protein, and subunit III of the CF0 ATP synthase, respectively. We show that promoters precede the atpA, psbI, and atpH genes, but not the cemA gene, and that cemA mRNA is present only as part of di-, tri-, or tetracistronic transcripts. Deletions introduced into the gene cluster reveal, first, that CF1-α can be translated from di- or polycistronic transcripts, and, second, that substantial reductions in mRNA quantity have minimal effects on protein synthesis rates. We suggest that posttranscriptional mRNA processing is common in C. reinhardtii chloroplasts, permitting the expression of multiple genes from a single promoter. PMID:9625716

  14. Polyubiquitination of the B-cell translocation gene 1 and 2 proteins is promoted by the SCF ubiquitin ligase complex containing βTrCP.

    PubMed

    Sasajima, Hitoshi; Nakagawa, Koji; Kashiwayanagi, Makoto; Yokosawa, Hideyoshi

    2012-01-01

    B-cell translocation gene 1 and 2 (BTG1 and BTG2) are members of the BTG/Tob antiproliferative protein family, which is able to regulate the cell cycle and cell proliferation. We previously reported that BTG1, BTG2, Tob, and Tob2 are degraded via the ubiquitin-proteasome pathway. In this study, we investigated the mechanism of polyubiquitination of BTG1 and BTG2. Since the Skp1-Cdc53/Cullin 1-F-box protein (SCF) complex functions as one of the major ubiquitin ligases for cell cycle regulation, we first examined interactions between BTG proteins and components of the SCF complex, and found that BTG1 and BTG2 were capable of interacting with the SCF complex containing Cullin-1 (a scaffold protein) and Skp1 (a linker protein). As the SCF complex can ubiquitinate various target proteins by substituting different F-box proteins as subunits that recognize different target proteins, we next examined which F-box proteins could bind the two BTG proteins, and found that Skp2, β-transducin repeat-containing protein 1 (βTrCP1), and βTrCP2 were able to associate with both BTG1 and BTG2. Furthermore, we obtained evidence showing that βTrCP1 enhanced the polyubiquitination of both BTG1 and BTG2 more efficiently than Skp2 did, and that an F-box truncated mutant of βTrCP1 had a dominant negative effect on this polyubiquitination. Thus, we propose that BTG1 and BTG2 are subjected to polyubiquitination, more efficiently when it is mediated by SCFβTrCP than by SCFSkp2.

  15. DNA entropy reveals a significant difference in complexity between housekeeping and tissue specific gene promoters.

    PubMed

    Thomas, David; Finan, Chris; Newport, Melanie J; Jones, Susan

    2015-10-01

    The complexity of DNA can be quantified using estimates of entropy. Variation in DNA complexity is expected between the promoters of genes with different transcriptional mechanisms; namely housekeeping (HK) and tissue specific (TS). The former are transcribed constitutively to maintain general cellular functions, and the latter are transcribed in restricted tissue and cells types for specific molecular events. It is known that promoter features in the human genome are related to tissue specificity, but this has been difficult to quantify on a genomic scale. If entropy effectively quantifies DNA complexity, calculating the entropies of HK and TS gene promoters as profiles may reveal significant differences. Entropy profiles were calculated for a total dataset of 12,003 human gene promoters and for 501 housekeeping (HK) and 587 tissue specific (TS) human gene promoters. The mean profiles show the TS promoters have a significantly lower entropy (p<2.2e-16) than HK gene promoters. The entropy distributions for the 3 datasets show that promoter entropies could be used to identify novel HK genes. Functional features comprise DNA sequence patterns that are non-random and hence they have lower entropies. The lower entropy of TS gene promoters can be explained by a higher density of positive and negative regulatory elements, required for genes with complex spatial and temporary expression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The forkhead-like transcription factor (Fhl1p) maintains yeast replicative lifespan by regulating ribonucleotide reductase 1 (RNR1) gene transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, Akiko; Kamei, Yuka; Mukai, Yukio

    In eukaryotes, numerous genetic factors contribute to the lifespan including metabolic enzymes, signal transducers, and transcription factors. As previously reported, the forkhead-like transcription factor (FHL1) gene was required for yeast replicative lifespan and cell proliferation. To determine how Fhl1p regulates the lifespan, we performed a DNA microarray analysis of a heterozygous diploid strain deleted for FHL1. We discovered numerous Fhl1p-target genes, which were then screened for lifespan-regulating activity. We identified the ribonucleotide reductase (RNR) 1 gene (RNR1) as a regulator of replicative lifespan. RNR1 encodes a large subunit of the RNR complex, which consists of two large (Rnr1p/Rnr3p) and twomore » small (Rnr2p/Rnr4p) subunits. Heterozygous deletion of FHL1 reduced transcription of RNR1 and RNR3, but not RNR2 and RNR4. Chromatin immunoprecipitation showed that Fhl1p binds to the promoter regions of RNR1 and RNR3. Cells harboring an RNR1 deletion or an rnr1-C428A mutation, which abolishes RNR catalytic activity, exhibited a short lifespan. In contrast, cells with a deletion of the other RNR genes had a normal lifespan. Overexpression of RNR1, but not RNR3, restored the lifespan of the heterozygous FHL1 mutant to the wild-type (WT) level. The Δfhl1/FHL1 mutant conferred a decrease in dNTP levels and an increase in hydroxyurea (HU) sensitivity. These findings reveal that Fhl1p regulates RNR1 gene transcription to maintain dNTP levels, thus modulating longevity by protection against replication stress. - Highlights: • Fhl1p regulates replicative lifespan and transcription of RNR large subunit genes. • Rnr1p uniquely acts as a lifespan regulator independent of the RNR complex. • dNTP levels modulate longevity by protection against replication stress.« less

  17. Evaluation of the in vitro/in vivo potential of five berries (bilberry, blueberry, cranberry, elderberry, and raspberry ketones) commonly used as herbal supplements to inhibit uridine diphospho-glucuronosyltransferase.

    PubMed

    Choi, Eu Jin; Park, Jung Bae; Yoon, Kee Dong; Bae, Soo Kyung

    2014-10-01

    In this study, we evaluated inhibitory potentials of popularly-consumed berries (bilberry, blueberry, cranberry, elderberry, and raspberry ketones) as herbal supplements on UGT1A1, UGT1A4, UGT1A6, UGT1A9, and UGT2B7 in vitro. We also investigated the potential herb-drug interaction via UGT1A1 inhibition by blueberry in vivo. We demonstrated that these berries had only weak inhibitory effects on the five UGTs. Bilberry and elderberry had no apparent inhibitions. Blueberry weakly inhibited UGT1A1 with an IC50 value of 62.4±4.40 μg/mL and a Ki value of 53.1 μg/mL. Blueberry also weakly inhibited UGT2B7 with an IC50 value of 147±11.1 μg/mL. In addition, cranberry weakly inhibited UGT1A9 activity (IC50=458±49.7 μg/mL) and raspberry ketones weakly inhibited UGT2B7 activity (IC50=248±28.2 μg/mL). Among tested berries, blueberry showed the lowest IC50 value in the inhibition of UGT1A1 in vitro. However, the co-administration of blueberry had no effect on the pharmacokinetics of irinotecan and its active metabolite, SN-38, which was mainly eliminated via UGT1A1, in vivo. Our data suggests that these five berries are unlikely to cause clinically significant herb-drug interactions mediated via inhibition of UGT enzymes involved in drug metabolism. These findings should enable an understanding of herb-drug interactions for the safe use of popularly-consumed berries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Mapping of Gene Expression Reveals CYP27A1 as a Susceptibility Gene for Sporadic ALS

    PubMed Central

    van Rheenen, Wouter; Franke, Lude; Jansen, Ritsert C.; van Es, Michael A.; van Vught, Paul W. J.; Blauw, Hylke M.; Groen, Ewout J. N.; Horvath, Steve; Estrada, Karol; Rivadeneira, Fernando; Hofman, Albert; Uitterlinden, Andre G.; Robberecht, Wim; Andersen, Peter M.; Melki, Judith; Meininger, Vincent; Hardiman, Orla; Landers, John E.; Brown, Robert H.; Shatunov, Aleksey; Shaw, Christopher E.; Leigh, P. Nigel; Al-Chalabi, Ammar; Ophoff, Roel A.

    2012-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive, neurodegenerative disease characterized by loss of upper and lower motor neurons. ALS is considered to be a complex trait and genome-wide association studies (GWAS) have implicated a few susceptibility loci. However, many more causal loci remain to be discovered. Since it has been shown that genetic variants associated with complex traits are more likely to be eQTLs than frequency-matched variants from GWAS platforms, we conducted a two-stage genome-wide screening for eQTLs associated with ALS. In addition, we applied an eQTL analysis to finemap association loci. Expression profiles using peripheral blood of 323 sporadic ALS patients and 413 controls were mapped to genome-wide genotyping data. Subsequently, data from a two-stage GWAS (3,568 patients and 10,163 controls) were used to prioritize eQTLs identified in the first stage (162 ALS, 207 controls). These prioritized eQTLs were carried forward to the second sample with both gene-expression and genotyping data (161 ALS, 206 controls). Replicated eQTL SNPs were then tested for association in the second-stage GWAS data to find SNPs associated with disease, that survived correction for multiple testing. We thus identified twelve cis eQTLs with nominally significant associations in the second-stage GWAS data. Eight SNP-transcript pairs of highest significance (lowest p = 1.27×10−51) withstood multiple-testing correction in the second stage and modulated CYP27A1 gene expression. Additionally, we show that C9orf72 appears to be the only gene in the 9p21.2 locus that is regulated in cis, showing the potential of this approach in identifying causative genes in association loci in ALS. This study has identified candidate genes for sporadic ALS, most notably CYP27A1. Mutations in CYP27A1 are causal to cerebrotendinous xanthomatosis which can present as a clinical mimic of ALS with progressive upper motor neuron loss, making it a plausible susceptibility gene for

  19. Protective effects of coffee against oxidative stress induced by the tobacco carcinogen benzo[α]pyrene.

    PubMed

    Kalthoff, Sandra; Landerer, Steffen; Reich, Julia; Strassburg, Christian P

    2017-07-01

    Coffee consumption has been epidemiologically associated with a lower risk for liver cirrhosis and cancer. UDP-glucuronosyltransferases (UGT1A) catalyze the detoxification of reactive metabolites thereby acting as indirect antioxidants. Aim of the study was to examine UGT1A regulation in response to Benzo[α]pyrene (BaP) to elucidate the potentially protective effects of coffee on BaP-induced oxidative stress and toxicity. In cell culture (HepG2, KYSE70 cells) and in htgUGT1A-WT mice, UGT1A transcription was activated by BaP, while it was reduced or absent htgUGT1A-SNP (containing 10 commonly occurring UGT1A-SNPs) mice. siRNA-mediated knockdown identified aryl hydrocarbon receptor (AhR) and nuclear factor erythroid2-related factor-2 (Nrf2) as mediators of BaP-induced UGT1A upregulation. Exposure to coffee led to a reduction of BaP-induced production of reactive oxygen species in vitro and in htgUGT1A-WT and -SNP mice. After UGT1A silencing by UGT1A-specific siRNA in cell culture, the coffee-mediated reduction of ROS production was significantly impaired compared to UGT1A expressing cells. A common UGT1A haplotype, prevalent in 9% (homozygous) of the White population, significantly impairs the expression of UGT1A enzymes in response to the putative tobacco carcinogen BaP and is likely to represent a significant risk factor for reduced detoxification and increased genotoxicity. Coffee was demonstrated to inhibit BaP-induced production of oxidative stress by UGT1A activation, and is therefore an attractive candidate for chemoprotection in risk groups for HCC or other tumors. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Complexity of Gene Expression Evolution after Duplication: Protein Dosage Rebalancing

    PubMed Central

    Rogozin, Igor B.

    2014-01-01

    Ongoing debates about functional importance of gene duplications have been recently intensified by a heated discussion of the “ortholog conjecture” (OC). Under the OC, which is central to functional annotation of genomes, orthologous genes are functionally more similar than paralogous genes at the same level of sequence divergence. However, a recent study challenged the OC by reporting a greater functional similarity, in terms of gene ontology (GO) annotations and expression profiles, among within-species paralogs compared to orthologs. These findings were taken to indicate that functional similarity of homologous genes is primarily determined by the cellular context of the genes, rather than evolutionary history. Subsequent studies suggested that the OC appears to be generally valid when applied to mammalian evolution but the complete picture of evolution of gene expression also has to incorporate lineage-specific aspects of paralogy. The observed complexity of gene expression evolution after duplication can be explained through selection for gene dosage effect combined with the duplication-degeneration-complementation model. This paper discusses expression divergence of recent duplications occurring before functional divergence of proteins encoded by duplicate genes. PMID:25197576

  1. Dissecting the function of Cullin-RING ubiquitin ligase complex genes in planarian regeneration.

    PubMed

    Strand, Nicholas S; Allen, John M; Ghulam, Mahjoobah; Taylor, Matthew R; Munday, Roma K; Carrillo, Melissa; Movsesyan, Artem; Zayas, Ricardo M

    2018-01-15

    The ubiquitin system plays a role in nearly every aspect of eukaryotic cell biology. The enzymes responsible for transferring ubiquitin onto specific substrates are the E3 ubiquitin ligases, a large and diverse family of proteins, for which biological roles and target substrates remain largely undefined. Studies using model organisms indicate that ubiquitin signaling mediates key steps in developmental processes and tissue regeneration. Here, we used the freshwater planarian, Schmidtea mediterranea, to investigate the role of Cullin-RING ubiquitin ligase (CRL) complexes in stem cell regulation during regeneration. We identified six S. mediterranea cullin genes, and used RNAi to uncover roles for homologs of Cullin-1, -3 and -4 in planarian regeneration. The cullin-1 RNAi phenotype included defects in blastema formation, organ regeneration, lesions, and lysis. To further investigate the function of cullin-1-mediated cellular processes in planarians, we examined genes encoding the adaptor protein Skp1 and F-box substrate-recognition proteins that are predicted to partner with Cullin-1. RNAi against skp1 resulted in phenotypes similar to cullin-1 RNAi, and an RNAi screen of the F-box genes identified 19 genes that recapitulated aspects of cullin-1 RNAi, including ones that in mammals are involved in stem cell regulation and cancer biology. Our data provides evidence that CRLs play discrete roles in regenerative processes and provide a platform to investigate how CRLs regulate stem cells in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. FURTHER STUDIES ON THE γG-HEAVY CHAIN GENE COMPLEXES, WITH PARTICULAR REFERENCE TO THE GENETIC MARKERS Gm(g) AND Gm(n)

    PubMed Central

    Natvig, J. B.; Kunkel, H. G.; Yount, W. J.; Nielsen, J. C.

    1968-01-01

    The recently described Gm (g) and Gm (n) genetic markers of the γG3- and γG2-subgroups of γ-globulin were characterized in detail primarily through studies of myeloma proteins, their polypeptide chains and fragments. Antisera derived from rabbits, non-human primates and rheumatoid arthritis patients gave identical results. This contrasted with the Gm (b) system where the rabbit antisera react with a different genetic determinant (b0) than the sera from rheumatoid arthritis patients (b). The Gm (g) and Gm (n) antigens were detected both by precipitin analysis and by hemagglutination inhibition. The Gm (g) antigen was not associated with any of the other genetic antigens of the γG3-proteins which all belonged in the Gm (b) class. The genes for the latter were always allelic to the gene coding for Gm (g), with that for Gm (b0) constantly present when that for Gm (g) was absent. The Gm (g) and Gm (n) markers were of particular value in tracing the various gene complexes made up of the closely linked subgroup genes. Further support was gained for the concept that the different gene complexes of various population groups arose primarily through crossing-over. The Gm g and Gm b genes for the γG3-subgroup were extremely closely linked to those for the γG1-subgroup. However the Gm (n) marker indicated that the γG2-subgroup genes were probably further separated on the chromosome. Additional evidence was obtained for the γG2-γG3-γG1-order of the subgroup cistrons. Among the wide range of gene complexes a new type (γG2,—,γ/G1) was described. This complex appeared to have a deletion of the γG3-cistron. Lower levels of γG3-globulin were found in the sera of the individuals with this gene in the heterozygous state. The possibility that this unusual complex arose through an unequal nonhomologous crossing-over is discussed. PMID:19867305

  3. Formation of Stable Cationic Lipid/DNA Complexes for Gene Transfer

    NASA Astrophysics Data System (ADS)

    Hofland, Hans E. J.; Shephard, Lee; Sullivan, Sean M.

    1996-07-01

    Stable cationic lipid/DNA complexes were formed by solubilizing cationic liposomes with 1% octylglucoside and complexing a DNA plasmid with the lipid in the presence of detergent. Removal of the detergent by dialysis yielded a lipid/DNA suspension that was able to transfect tissue culture cells up to 90 days after formation with no loss in activity. Similar levels of gene transfer were obtained by mixing the cationic lipid in a liposome form with DNA just prior to cell addition. However, expression was completely lost 24 hr after mixing. The transfection efficiency of the stable complex in 15% fetal calf serum was 30% of that obtained in the absence of serum, whereas the transient complex was completely inactivated with 2% fetal calf serum. A 90-day stability study comparing various storage conditions showed that the stable complex could be stored frozen or as a suspension at 4 degrees C with no loss in transfection efficiency. Centrifugation of the stable complex produced a pellet that contained approximately 90% of the DNA and 10% of the lipid. Transfection of cells with the resuspended pellet and the supernatant showed that the majority of the transfection activity was in the pellet and all the toxicity was in the supernatant. Formation of a stable cationic lipid/DNA complex has produced a transfection vehicle that can be stored indefinitely, can be concentrated with no loss in transfection efficiency, and the toxicity levels can be greatly reduced when the active complex is isolated from the uncomplexed lipid.

  4. Androgen receptor signals regulate UDP-glucuronosyltransferases in the urinary bladder: a potential mechanism of androgen-induced bladder carcinogenesis.

    PubMed

    Izumi, Koji; Zheng, Yichun; Hsu, Jong-Wei; Chang, Chawnshang; Miyamoto, Hiroshi

    2013-02-01

    UDP-glucuronosyltransferases (UGTs), major phase II drug metabolism enzymes, play an important role in urinary bladder cancer initiation by detoxifying carcinogens. We aimed to determine if androgens regulate UGT expression via the androgen receptor (AR) pathway in the bladder. Real-time reverse transcription-polymerase chain reaction and Western blot analyses were used to assess UGT1A levels in the normal urothelium SVHUC cell line stably expressed with AR and in bladder tissues from AR knockout (ARKO) and castrated male mice. Immunohistochemistry was also performed in radical cystectomy specimens. Dihydrotestosterone (DHT) treatment in SVHUC-AR reduced mRNA expression of all the UGT1A subtypes (19-75% decrease), and hydroxyflutamide antagonized the DHT effects. In contrast, DHT showed only marginal effects on UGT1A expression in SVHUC-Vector. Of note were higher expression levels of UGT1As in SVHUC-Vector than in SVHUC-AR. In ARKO mice, all the Ugt1a subtypes were up-regulated, compared to wild-type littermates. In wild-type male mice, castration increased the expression of Ugt1a8, Ugt1a9, and Ugt1a10. Additionally, wild-type female mice had higher levels of Ugt1a than wild-type males. Immunohistochemical studies showed strong (3+) UGT1A staining in 11/24 (46%) cancer tissues, which was significantly lower than in corresponding benign tissues [17/18 (94%) cases (P = 0.0009)]. These results suggest that androgen-mediated AR signals promote bladder carcinogenesis by down-regulating the expression of UGTs in the bladder. Copyright © 2011 Wiley Periodicals, Inc.

  5. Gene duplication and fragmentation in the zebra finch major histocompatibility complex

    PubMed Central

    2010-01-01

    Background Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. Results The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. Conclusion The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene

  6. Gene duplication and fragmentation in the zebra finch major histocompatibility complex.

    PubMed

    Balakrishnan, Christopher N; Ekblom, Robert; Völker, Martin; Westerdahl, Helena; Godinez, Ricardo; Kotkiewicz, Holly; Burt, David W; Graves, Tina; Griffin, Darren K; Warren, Wesley C; Edwards, Scott V

    2010-04-01

    Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene duplication and translocation in the

  7. XNP-1/ATR-X acts with RB, HP1 and the NuRD complex during larval development in C. elegans.

    PubMed

    Cardoso, Carlos; Couillault, Carole; Mignon-Ravix, Cecile; Millet, Anne; Ewbank, Jonathan J; Fontés, Michel; Pujol, Nathalie

    2005-02-01

    Mutations in the XNP/ATR-X gene cause several X-linked mental retardation syndromes in humans. The XNP/ATR-X gene encodes a DNA-helicase belonging to the SNF2 family. It has been proposed that XNP/ATR-X might be involved in chromatin remodelling. The lack of a mouse model for the ATR-X syndrome has, however, hampered functional studies of XNP/ATR-X. C. elegans possesses one homolog of the XNP/ATR-X gene, named xnp-1. By analysing a deletion mutant, we show that xnp-1 is required for the development of the embryo and the somatic gonad. Moreover, we show that abrogation of xnp-1 function in combination with inactivation of genes of the NuRD complex, as well as lin-35/Rb and hpl-2/HP1 leads to a stereotyped block of larval development with a cessation of growth but not of cell division. We also demonstrate a specific function for xnp-1 together with lin-35 or hpl-2 in the control of transgene expression, a process known to be dependent on chromatin remodelling. This study thus demonstrates that in vivo XNP-1 acts in association with RB, HP1 and the NuRD complex during development.

  8. Exon resequencing of H3K9 methyltransferase complex genes, EHMT1, EHTM2 and WIZ, in Japanese autism subjects.

    PubMed

    Balan, Shabeesh; Iwayama, Yoshimi; Maekawa, Motoko; Toyota, Tomoko; Ohnishi, Tetsuo; Toyoshima, Manabu; Shimamoto, Chie; Esaki, Kayoko; Yamada, Kazuo; Iwata, Yasuhide; Suzuki, Katsuaki; Ide, Masayuki; Ota, Motonori; Fukuchi, Satoshi; Tsujii, Masatsugu; Mori, Norio; Shinkai, Yoichi; Yoshikawa, Takeo

    2014-01-01

    Histone H3 methylation at lysine 9 (H3K9) is a conserved epigenetic signal, mediating heterochromatin formation by trimethylation, and transcriptional silencing by dimethylation. Defective GLP (Ehmt1) and G9a (Ehmt2) histone lysine methyltransferases, involved in mono and dimethylation of H3K9, confer autistic phenotypes and behavioral abnormalities in animal models. Moreover, EHMT1 loss of function results in Kleefstra syndrome, characterized by severe intellectual disability, developmental delays and psychiatric disorders. We examined the possible role of histone methyltransferases in the etiology of autism spectrum disorders (ASD) and suggest that rare functional variants in these genes that regulate H3K9 methylation may be associated with ASD. Since G9a-GLP-Wiz forms a heteromeric methyltransferase complex, all the protein-coding regions and exon/intron boundaries of EHMT1, EHMT2 and WIZ were sequenced in Japanese ASD subjects. The detected variants were prioritized based on novelty and functionality. The expression levels of these genes were tested in blood cells and postmortem brain samples from ASD and control subjects. Expression of EHMT1 and EHMT2 isoforms were determined by digital PCR. We identified six nonsynonymous variants: three in EHMT1, two in EHMT2 and one in WIZ. Two variants, the EHMT1 ankyrin repeat domain (Lys968Arg) and EHMT2 SET domain (Thr961Ile) variants were present exclusively in cases, but showed no statistically significant association with ASD. The EHMT2 transcript expression was significantly elevated in the peripheral blood cells of ASD when compared with control samples; but not for EHMT1 and WIZ. Gene expression levels of EHMT1, EHMT2 and WIZ in Brodmann area (BA) 9, BA21, BA40 and the dorsal raphe nucleus (DoRN) regions from postmortem brain samples showed no significant changes between ASD and control subjects. Nor did expression levels of EHMT1 and EHMT2 isoforms in the prefrontal cortex differ significantly between ASD and

  9. ACCUMULATION OF PHOTOSYSTEM ONE1, a Member of a Novel Gene Family, Is Required for Accumulation of [4Fe-4S] Cluster–Containing Chloroplast Complexes and Antenna Proteins

    PubMed Central

    Amann, Katrin; Lezhneva, Lina; Wanner, Gerd; Herrmann, Reinhold G.; Meurer, Jörg

    2004-01-01

    To investigate the nuclear-controlled mechanisms of [4Fe-4S] cluster assembly in chloroplasts, we selected Arabidopsis thaliana mutants with a decreased content of photosystem I (PSI) containing three [4Fe-4S] clusters. One identified gene, ACCUMULATION OF PHOTOSYSTEM ONE1 (APO1), belongs to a previously unknown gene family with four defined groups (APO1 to APO4) only found in nuclear genomes of vascular plants. All homologs contain two related motifs of ∼100 amino acid residues that could potentially provide ligands for [4Fe-4S] clusters. APO1 is essentially required for photoautotrophic growth, and levels of PSI core subunits are below the limit of detection in the apo1 mutant. Unlike other Arabidopsis PSI mutants, apo1 fails to accumulate significant amounts of the outer antenna subunits of PSI and PSII and to form grana stacks. In particular, APO1 is essentially required for stable accumulation of other plastid-encoded and nuclear-encoded [4Fe-4S] cluster complexes within the chloroplast, whereas [2Fe-2S] cluster–containing complexes appear to be unaffected. In vivo labeling experiments and analyses of polysome association suggest that translational elongation of the PSI transcripts psaA and psaB is specifically arrested in the mutant. Taken together, our findings suggest that APO1 is involved in the stable assembly of several [4Fe-4S] cluster–containing complexes of chloroplasts and interferes with translational events probably in association with plastid nucleoids. PMID:15494558

  10. Cancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1–BAP1 complex

    PubMed Central

    Balasubramani, Anand; Larjo, Antti; Bassein, Jed A.; Chang, Xing; Hastie, Ryan B.; Togher, Susan M.; Lähdesmäki, Harri; Rao, Anjana

    2015-01-01

    ASXL1 is the obligate regulatory subunit of a deubiquitinase complex whose catalytic subunit is BAP1. Heterozygous mutations of ASXL1 that result in premature truncations are frequent in myeloid leukemias and Bohring–Opitz syndrome. Here we demonstrate that ASXL1 truncations confer enhanced activity on the ASXL1–BAP1 complex. Stable expression of truncated, hyperactive ASXL1–BAP1 complexes in a haematopoietic precursor cell line results in global erasure of H2AK119Ub, striking depletion of H3K27me3, selective upregulation of a subset of genes whose promoters are marked by both H2AK119Ub and H3K4me3, and spontaneous differentiation to the mast cell lineage. These outcomes require the catalytic activity of BAP1, indicating that they are downstream consequences of H2AK119Ub erasure. In bone marrow precursors, expression of truncated ASXL1–BAP1 complex cooperates with TET2 loss-of-function to increase differentiation to the myeloid lineage in vivo. Our data raise the possibility that ASXL1 truncation mutations confer gain-of-function on the ASXL–BAP1 complex. PMID:26095772

  11. The bromodomain protein LEX-1 acts with TAM-1 to modulate gene expression in C. elegans.

    PubMed

    Tseng, Rong-Jeng; Armstrong, Kristin R; Wang, Xiaodong; Chamberlin, Helen M

    2007-11-01

    In many organisms, repetitive DNA serves as a trigger for gene silencing. However, some gene expression is observed from repetitive genomic regions such as heterochromatin, suggesting mechanisms exist to modulate the silencing effects. From a genetic screen in C. elegans, we have identified mutations in two genes important for expression of repetitive sequences: lex-1 and tam-1. Here we show that lex-1 encodes a protein containing an ATPase domain and a bromodomain. LEX-1 is similar to the yeast Yta7 protein, which maintains boundaries between silenced and active chromatin. tam-1 has previously been shown to encode a RING finger/B-box protein that modulates gene expression from repetitive DNA. We find that lex-1, like tam-1, acts as a class B synthetic multivulva (synMuv) gene. However, since lex-1 and tam-1 mutants have normal P granule localization, it suggests they act through a mechanism distinct from other class B synMuvs. We observe intragenic (interallelic) complementation with lex-1 and a genetic interaction between lex-1 and tam-1, data consistent with the idea that the gene products function in the same biological process, perhaps as part of a protein complex. We propose that LEX-1 and TAM-1 function together to influence chromatin structure and to promote expression from repetitive sequences.

  12. A novel algorithm for simplification of complex gene classifiers in cancer

    PubMed Central

    Wilson, Raphael A.; Teng, Ling; Bachmeyer, Karen M.; Bissonnette, Mei Lin Z.; Husain, Aliya N.; Parham, David M.; Triche, Timothy J.; Wing, Michele R.; Gastier-Foster, Julie M.; Barr, Frederic G.; Hawkins, Douglas S.; Anderson, James R.; Skapek, Stephen X.; Volchenboum, Samuel L.

    2013-01-01

    The clinical application of complex molecular classifiers as diagnostic or prognostic tools has been limited by the time and cost needed to apply them to patients. Using an existing fifty-gene expression signature known to separate two molecular subtypes of the pediatric cancer rhabdomyosarcoma, we show that an exhaustive iterative search algorithm can distill this complex classifier down to two or three features with equal discrimination. We validated the two-gene signatures using three separate and distinct data sets, including one that uses degraded RNA extracted from formalin-fixed, paraffin-embedded material. Finally, to demonstrate the generalizability of our algorithm, we applied it to a lung cancer data set to find minimal gene signatures that can distinguish survival. Our approach can easily be generalized and coupled to existing technical platforms to facilitate the discovery of simplified signatures that are ready for routine clinical use. PMID:23913937

  13. Survey, Culture, and Genome Analysis of Ocular Chlamydia trachomatis in Tibetan Boarding Primary Schools in Qinghai Province, China

    PubMed Central

    Feng, Le; Lu, Xinxin; Yu, Yonghui; Wang, Tao; Luo, Shengdong; Sun, Zhihui; Duan, Qing; Wang, Ningli; Song, Lihua

    2017-01-01

    Trachoma, the leading infectious cause of blindness worldwide, is an ancient human disease. Its existence in China can be traced back to as early as the twenty-seventh century BC. In modern China, the overall prevalence of trachoma has dramatically reduced, but trachoma is still endemic in many areas of the country. Here, we report that 26 (8%) of 322 students from two rural boarding schools of Qinghai province, west China, were identified as having ocular C. trachomatis infection; and 15 ocular C. trachomatis strains were isolated from these trachoma patients. Chlamydiae in 37 clinical samples were genotyped as type B based on ompA gene analyses. Three ompA variants with one or two in-between SNP differences in the second or fourth variable domain were found. C. trachomatis strains QH111L and QH111R were from the same patient's left and right conjunctival swabs, respectively, but their ompA genes have a non-synonymous base difference in the second variable domain. Moreover, this SNP only exists in this single sample, suggesting QH111L is a newly emerged ompA variant. Interestingly, chromosomal phylogeny analysis found QH111L clusters between a branch of two type B strains and a branch of both A and C strains, but is significantly divergent from both branches. Comparative chromosome analysis found that compared to sequences of reference B/TZ1A828/OT strain, 12 of 22 QH111L's chromosomal genes exhibiting more than nine SNPs have the best homology with reciprocal genes of UGT strains while 9 of 22 genes are closest to those of type C strains. Consistent with findings of UGT-type genetic features in the chromosome, the QH111L plasmid appears to be intermediate between UGT and classical ocular plasmids due to the existence of UGT-type SNPs in the QH111L plasmid. Moreover, the QH111L strain has a unique evolutionarily older cytotoxin region compared to cytotoxin regions of other C. trachomatis strains. The genome analyses suggest that the QH111L strain is derived from

  14. Effect of Traumatic Brain Injury, Erythropoietin, and Anakinra on Hepatic Metabolizing Enzymes and Transporters in an Experimental Rat Model.

    PubMed

    Anderson, Gail D; Peterson, Todd C; Vonder Haar, Cole; Farin, Fred M; Bammler, Theo K; MacDonald, James W; Kantor, Eric D; Hoane, Michael R

    2015-09-01

    In contrast to considerable data demonstrating a decrease in cytochrome P450 (CYP) activity in inflammation and infection, clinically, traumatic brain injury (TBI) results in an increase in CYP and UDP glucuronosyltransferase (UGT) activity. The objective of this study was to determine the effects of TBI alone and with treatment with erythropoietin (EPO) or anakinra on the gene expression of hepatic inflammatory proteins, drug-metabolizing enzymes, and transporters in a cortical contusion impact (CCI) injury model. Microarray-based transcriptional profiling was used to determine the effect on gene expression at 24 h, 72 h, and 7 days post-CCI. Plasma cytokine and liver protein concentrations of CYP2D4, CYP3A1, EPHX1, and UGT2B7 were determined. There was no effect of TBI, TBI + EPO, or TBI + anakinra on gene expression of the inflammatory factors shown to be associated with decreased expression of hepatic metabolic enzymes in models of infection and inflammation. IL-6 plasma concentrations were increased in TBI animals and decreased with EPO and anakinra treatment. There was no significant effect of TBI and/or anakinra on gene expression of enzymes or transporters known to be involved in drug disposition. TBI + EPO treatment decreased the gene expression of Cyp2d4 at 72 h with a corresponding decrease in CYP2D4 protein at 72 h and 7 days. CYP3A1 protein was decreased at 24 h. In conclusion, EPO treatment may result in a significant decrease in the metabolism of Cyp-metabolized drugs. In contrast to clinical TBI, there was not a significant effect of experimental TBI on CYP or UGT metabolic enzymes.

  15. PPAR{gamma} activates ABCA1 gene transcription but reduces the level of ABCA1 protein in HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mogilenko, Denis A., E-mail: denis@iem.sp.ru; Department of Embryology, St. Petersburg State University, 199034 St. Petersburg; Shavva, Vladimir S.

    Research highlights: {yields} PPAR{gamma} activates ABCA1 gene expression but decreases ABCA1 protein content in human hepatoma cell line HepG2. {yields} Treatment of HepG2 cells with PPAR{gamma} agonist GW1929 leads to dissociation of LXR{beta} from ABCA1-LXR{beta} complex. {yields} Inhibition of protein kinases MEK1/2 abolishes PPAR{gamma}-mediated dissociation of LXR{beta} from ABCA1/LXR{beta} complex. {yields} Activation of PPAR{gamma} leads to increasing of the level of LXR{beta} associated with LXRE within ABCA1 gene promoter. -- Abstract: Synthesis of ABCA1 protein in liver is necessary for high-density lipoproteins (HDL) formation in mammals. Nuclear receptor PPAR{gamma} is known as activator of ABCA1 expression, but details of PPAR{gamma}-mediatedmore » regulation of ABCA1 at both transcriptional and post-transcriptional levels in hepatocytes have not still been well elucidated. In this study we have shown, that PPAR{gamma} activates ABCA1 gene transcription in human hepatoma cells HepG2 through increasing of LXR{beta} binding with promoter region of ABCA1 gene. Treatment of HepG2 cells with PPAR{gamma} agonist GW1929 leads to dissociation of LXR{beta} from ABCA1/LXR{beta} complex and to nuclear translocation of this nuclear receptor resulting in reduction of ABCA1 protein level 24 h after treatment. Inhibition of protein kinases MEK1/2 abolishes PPAR{gamma}-mediated dissociation of LXR{beta} from ABCA1/LXR{beta} complex, but does not block PPAR{gamma}-dependent down-regulation of ABCA1 protein in HepG2 cells. These data suggest that PPAR{gamma} may be important for regulation of the level of hepatic ABCA1 protein and indicate the new interplays between PPAR{gamma}, LXR{beta} and MEK1/2 in regulation of ABCA1 mRNA and protein expression.« less

  16. Proteomic and Genomic Analyses of the Rvb1 and Rvb2 Interaction Network upon Deletion of R2TP Complex Components*

    PubMed Central

    Lakshminarasimhan, Mahadevan; Boanca, Gina; Banks, Charles A. S.; Hattem, Gaye L.; Gabriel, Ana E.; Groppe, Brad D.; Smoyer, Christine; Malanowski, Kate E.; Peak, Allison; Florens, Laurence; Washburn, Michael P.

    2016-01-01

    The highly conserved yeast R2TP complex, consisting of Rvb1, Rvb2, Pih1, and Tah1, participates in diverse cellular processes ranging from assembly of protein complexes to apoptosis. Rvb1 and Rvb2 are closely related proteins belonging to the AAA+ superfamily and are essential for cell survival. Although Rvbs have been shown to be associated with various protein complexes including the Ino80 and Swr1chromatin remodeling complexes, we performed a systematic quantitative proteomic analysis of their associated proteins and identified two additional complexes that associate with Rvb1 and Rvb2: the chaperonin-containing T-complex and the 19S regulatory particle of the proteasome complex. We also analyzed Rvb1 and Rvb2 purified from yeast strains devoid of PIH1 and TAH1. These analyses revealed that both Rvb1 and Rvb2 still associated with Hsp90 and were highly enriched with RNA polymerase II complex components. Our analyses also revealed that both Rvb1 and Rvb2 were recruited to the Ino80 and Swr1 chromatin remodeling complexes even in the absence of Pih1 and Tah1 proteins. Using further biochemical analysis, we showed that Rvb1 and Rvb2 directly interacted with Hsp90 as well as with the RNA polymerase II complex. RNA-Seq analysis of the deletion strains compared with the wild-type strains revealed an up-regulation of ribosome biogenesis and ribonucleoprotein complex biogenesis genes, down-regulation of response to abiotic stimulus genes, and down-regulation of response to temperature stimulus genes. A Gene Ontology analysis of the 80 proteins whose protein associations were altered in the PIH1 or TAH1 deletion strains found ribonucleoprotein complex proteins to be the most enriched category. This suggests an important function of the R2TP complex in ribonucleoprotein complex biogenesis at both the proteomic and genomic levels. Finally, these results demonstrate that deletion network analyses can provide novel insights into cellular systems. PMID:26831523

  17. Diabetes mellitus reduces activity of human UDP-glucuronosyltransferase 2B7 in liver and kidney leading to decreased formation of mycophenolic acid acyl-glucuronide metabolite.

    PubMed

    Dostalek, Miroslav; Court, Michael H; Hazarika, Suwagmani; Akhlaghi, Fatemeh

    2011-03-01

    Mycophenolic acid (MPA) is an immunosuppressive agent commonly used after organ transplantation. Altered concentrations of MPA metabolites have been reported in diabetic kidney transplant recipients, although the reason for this difference is unknown. We aimed to compare MPA biotransformation and UDP-glucuronosyltransferase (UGT) expression and activity between liver (n = 16) and kidney (n = 8) from diabetic and nondiabetic donors. Glucuronidation of MPA, as well as the expression and probe substrate activity of UGTs primarily responsible for MPA phenol glucuronide (MPAG) formation (UGT1A1 and UGT1A9), and MPA acyl glucuronide (AcMPAG) formation (UGT2B7), was characterized. We have found that both diabetic and nondiabetic human liver microsomes and kidney microsomes formed MPAG with similar efficiency; however, AcMPAG formation was significantly lower in diabetic samples. This finding is supported by markedly lower glucuronidation of the UGT2B7 probe zidovudine, UGT2B7 protein, and UGT2B7 mRNA in diabetic tissues. UGT genetic polymorphism did not explain this difference because UGT2B7*2 or *1c genotype were not associated with altered microsomal UGT2B7 protein levels or AcMPAG formation. Furthermore, mRNA expression and probe activities for UGT1A1 or UGT1A9, both forming MPAG but not AcMPAG, were comparable between diabetic and nondiabetic tissues, suggesting the effect may be specific to UGT2B7-mediated AcMPAG formation. These findings suggest that diabetes mellitus is associated with significantly reduced UGT2B7 mRNA expression, protein level, and enzymatic activity of human liver and kidney, explaining in part the relatively low circulating concentrations of AcMPAG in diabetic patients.

  18. APG: an Active Protein-Gene network model to quantify regulatory signals in complex biological systems.

    PubMed

    Wang, Jiguang; Sun, Yidan; Zheng, Si; Zhang, Xiang-Sun; Zhou, Huarong; Chen, Luonan

    2013-01-01

    Synergistic interactions among transcription factors (TFs) and their cofactors collectively determine gene expression in complex biological systems. In this work, we develop a novel graphical model, called Active Protein-Gene (APG) network model, to quantify regulatory signals of transcription in complex biomolecular networks through integrating both TF upstream-regulation and downstream-regulation high-throughput data. Firstly, we theoretically and computationally demonstrate the effectiveness of APG by comparing with the traditional strategy based only on TF downstream-regulation information. We then apply this model to study spontaneous type 2 diabetic Goto-Kakizaki (GK) and Wistar control rats. Our biological experiments validate the theoretical results. In particular, SP1 is found to be a hidden TF with changed regulatory activity, and the loss of SP1 activity contributes to the increased glucose production during diabetes development. APG model provides theoretical basis to quantitatively elucidate transcriptional regulation by modelling TF combinatorial interactions and exploiting multilevel high-throughput information.

  19. APG: an Active Protein-Gene Network Model to Quantify Regulatory Signals in Complex Biological Systems

    PubMed Central

    Wang, Jiguang; Sun, Yidan; Zheng, Si; Zhang, Xiang-Sun; Zhou, Huarong; Chen, Luonan

    2013-01-01

    Synergistic interactions among transcription factors (TFs) and their cofactors collectively determine gene expression in complex biological systems. In this work, we develop a novel graphical model, called Active Protein-Gene (APG) network model, to quantify regulatory signals of transcription in complex biomolecular networks through integrating both TF upstream-regulation and downstream-regulation high-throughput data. Firstly, we theoretically and computationally demonstrate the effectiveness of APG by comparing with the traditional strategy based only on TF downstream-regulation information. We then apply this model to study spontaneous type 2 diabetic Goto-Kakizaki (GK) and Wistar control rats. Our biological experiments validate the theoretical results. In particular, SP1 is found to be a hidden TF with changed regulatory activity, and the loss of SP1 activity contributes to the increased glucose production during diabetes development. APG model provides theoretical basis to quantitatively elucidate transcriptional regulation by modelling TF combinatorial interactions and exploiting multilevel high-throughput information. PMID:23346354

  20. Bdf1 Bromodomains Are Essential for Meiosis and the Expression of Meiotic-Specific Genes

    PubMed Central

    Perot, Jonathan; Arlotto, Marie; Mietton, Flore; Boland, Anne; Deleuze, Jean-François; Ferro, Myriam; Govin, Jérôme

    2017-01-01

    Bromodomain and Extra-terminal motif (BET) proteins play a central role in transcription regulation and chromatin signalling pathways. They are present in unicellular eukaryotes and in this study, the role of the BET protein Bdf1 has been explored in Saccharomyces cerevisiae. Mutation of Bdf1 bromodomains revealed defects on both the formation of spores and the meiotic progression, blocking cells at the exit from prophase, before the first meiotic division. This phenotype is associated with a massive deregulation of the transcription of meiotic genes and Bdf1 bromodomains are required for appropriate expression of the key meiotic transcription factor NDT80 and almost all the Ndt80-inducible genes, including APC complex components. Bdf1 notably accumulates on the promoter of Ndt80 and its recruitment is dependent on Bdf1 bromodomains. In addition, the ectopic expression of NDT80 during meiosis partially bypasses this dependency. Finally, purification of Bdf1 partners identified two independent complexes with Bdf2 or the SWR complex, neither of which was required to complete sporulation. Taken together, our results unveil a new role for Bdf1 –working independently from its predominant protein partners Bdf2 and the SWR1 complex–as a regulator of meiosis-specific genes. PMID:28068333

  1. Comparison of the inhibitory effects of tolcapone and entacapone against human UDP-glucuronosyltransferases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Xia

    2016-06-15

    Tolcapone and entacapone are two potent catechol-O-methyltransferase (COMT) inhibitors with a similar skeleton and displaying similar pharmacological activities. However, entacapone is a very safe drug used widely in the treatment of Parkinson's disease, while tolcapone is only in limited use for Parkinson's patients and needs careful monitoring of hepatic functions due to hepatotoxicity. This study aims to investigate and compare the inhibitory effects of entacapone and tolcapone on human UDP-glucosyltransferases (UGTs), as well as to evaluate the potential risks from the view of drug-drug interactions (DDI). The results demonstrated that both tolcapone and entacapone exhibited inhibitory effects on UGT1A1, UGT1A7,more » UGT1A9 and UGT1A10. In contrast to entacapone, tolcapone exhibited more potent inhibitory effects on UGT1A1, UGT1A7, and UGT1A10, while their inhibitory potentials against UGT1A9 were comparable. It is noteworthy that the inhibition constants (K{sub i}) of tolcapone and entacapone against bilirubin-O-glucuronidation in human liver microsomes (HLM) are determined as 0.68 μM and 30.82 μM, respectively, which means that the inhibition potency of tolcapone on UGT1A1 mediated bilirubin-O-glucuronidation in HLM is much higher than that of entacapone. Furthermore, the potential risks of tolcapone or entacapone via inhibition of human UGT1A1 were quantitatively predicted by the ratio of the areas under the plasma drug concentration-time curve (AUC). The results indicate that tolcapone may result in significant increase in AUC of bilirubin or the drugs primarily metabolized by UGT1A1, while entacapone is unlikely to cause a significant DDI through inhibition of UGT1A1. - Highlights: • Tolcapone and entacapone exhibited preferential inhibition against UGT1A enzymes. • In contrast to entacapone, tolcapone exhibited more potent inhibitory effects on human UGT1A1, 1 A7 and 1 A10. • Tolcapone may lead to significant increase in AUC of bilirubin.

  2. Genotype-based association models of complex diseases to detect gene-gene and gene-environment interactions.

    PubMed

    Lobach, Iryna; Fan, Ruzong; Manga, Prashiela

    A central problem in genetic epidemiology is to identify and rank genetic markers involved in a disease. Complex diseases, such as cancer, hypertension, diabetes, are thought to be caused by an interaction of a panel of genetic factors, that can be identified by markers, which modulate environmental factors. Moreover, the effect of each genetic marker may be small. Hence, the association signal may be missed unless a large sample is considered, or a priori biomedical data are used. Recent advances generated a vast variety of a priori information, including linkage maps and information about gene regulatory dependence assembled into curated pathway databases. We propose a genotype-based approach that takes into account linkage disequilibrium (LD) information between genetic markers that are in moderate LD while modeling gene-gene and gene-environment interactions. A major advantage of our method is that the observed genetic information enters a model directly thus eliminating the need to estimate haplotype-phase. Our approach results in an algorithm that is inexpensive computationally and does not suffer from bias induced by haplotype-phase ambiguity. We investigated our model in a series of simulation experiments and demonstrated that the proposed approach results in estimates that are nearly unbiased and have small variability. We applied our method to the analysis of data from a melanoma case-control study and investigated interaction between a set of pigmentation genes and environmental factors defined by age and gender. Furthermore, an application of our method is demonstrated using a study of Alcohol Dependence.

  3. Identification of causal genes for complex traits

    PubMed Central

    Hormozdiari, Farhad; Kichaev, Gleb; Yang, Wen-Yun; Pasaniuc, Bogdan; Eskin, Eleazar

    2015-01-01

    Motivation: Although genome-wide association studies (GWAS) have identified thousands of variants associated with common diseases and complex traits, only a handful of these variants are validated to be causal. We consider ‘causal variants’ as variants which are responsible for the association signal at a locus. As opposed to association studies that benefit from linkage disequilibrium (LD), the main challenge in identifying causal variants at associated loci lies in distinguishing among the many closely correlated variants due to LD. This is particularly important for model organisms such as inbred mice, where LD extends much further than in human populations, resulting in large stretches of the genome with significantly associated variants. Furthermore, these model organisms are highly structured and require correction for population structure to remove potential spurious associations. Results: In this work, we propose CAVIAR-Gene (CAusal Variants Identification in Associated Regions), a novel method that is able to operate across large LD regions of the genome while also correcting for population structure. A key feature of our approach is that it provides as output a minimally sized set of genes that captures the genes which harbor causal variants with probability ρ. Through extensive simulations, we demonstrate that our method not only speeds up computation, but also have an average of 10% higher recall rate compared with the existing approaches. We validate our method using a real mouse high-density lipoprotein data (HDL) and show that CAVIAR-Gene is able to identify Apoa2 (a gene known to harbor causal variants for HDL), while reducing the number of genes that need to be tested for functionality by a factor of 2. Availability and implementation: Software is freely available for download at genetics.cs.ucla.edu/caviar. Contact: eeskin@cs.ucla.edu PMID:26072484

  4. Identification of causal genes for complex traits.

    PubMed

    Hormozdiari, Farhad; Kichaev, Gleb; Yang, Wen-Yun; Pasaniuc, Bogdan; Eskin, Eleazar

    2015-06-15

    Although genome-wide association studies (GWAS) have identified thousands of variants associated with common diseases and complex traits, only a handful of these variants are validated to be causal. We consider 'causal variants' as variants which are responsible for the association signal at a locus. As opposed to association studies that benefit from linkage disequilibrium (LD), the main challenge in identifying causal variants at associated loci lies in distinguishing among the many closely correlated variants due to LD. This is particularly important for model organisms such as inbred mice, where LD extends much further than in human populations, resulting in large stretches of the genome with significantly associated variants. Furthermore, these model organisms are highly structured and require correction for population structure to remove potential spurious associations. In this work, we propose CAVIAR-Gene (CAusal Variants Identification in Associated Regions), a novel method that is able to operate across large LD regions of the genome while also correcting for population structure. A key feature of our approach is that it provides as output a minimally sized set of genes that captures the genes which harbor causal variants with probability ρ. Through extensive simulations, we demonstrate that our method not only speeds up computation, but also have an average of 10% higher recall rate compared with the existing approaches. We validate our method using a real mouse high-density lipoprotein data (HDL) and show that CAVIAR-Gene is able to identify Apoa2 (a gene known to harbor causal variants for HDL), while reducing the number of genes that need to be tested for functionality by a factor of 2. Software is freely available for download at genetics.cs.ucla.edu/caviar. © The Author 2015. Published by Oxford University Press.

  5. Nanoparticle Based Galectin-1 Gene Silencing, Implications in Methamphetamine Regulation of HIV-1 Infection in Monocyte Derived Macrophages

    PubMed Central

    Law, Wing Cheung; Mahajan, Supriya D.; Aalinkeel, Ravikumar; Nair, Bindukumar; Sykes, Donald E.; Yong, Ken-Tye; Hui, Rui; Prasad, Paras N.; Schwartz, Stanley A.

    2012-01-01

    Galectin-1, an adhesion molecule, is expressed in macrophages and implicated in human immunodeficiency virus (HIV-1) viral adsorption. In this study, we investigated the effects of methamphetamine on galectin-1 production in human monocyte derived macrophages (MDM) and the role of galectin-1 in methamphetamine potentiation of HIV-1 infection. Herein we show that levels of galectin-1 gene and protein expression are significantly increased by meth-amphetamine. Furthermore, concomitant incubation of MDM with galectin-1 and methamphetamine facilitates HIV-1 infection compared to galectin-1 alone or methamphetamine alone. We utilized a nanotechnology approach that uses gold nanorod (GNR)-galectin-1 siRNA complexes (nanoplexes) to inhibit gene expression for galectin-1. Nanoplexes significantly silenced gene expression for galectin-1 and reversed the effects of methamphetamine on galectin-1 gene expression. Moreover, the effects of methamphetamine on HIV-1 infection were attenuated in the presence of the nanoplex in MDM. PMID:22689223

  6. Universal BRCA1/BRCA2 Testing for Ovarian Cancer Patients is Welcomed, but with Care: How Women and Staff Contextualize Experiences of Expanded Access.

    PubMed

    Shipman, Hannah; Flynn, Samantha; MacDonald-Smith, Carey F; Brenton, James; Crawford, Robin; Tischkowitz, Marc; Hulbert-Williams, Nicholas J

    2017-12-01

    Decreasing costs of genetic testing and advances in treatment for women with cancer with germline BRCA1/BRCA2 mutations have heralded more inclusive genetic testing programs. The Genetic Testing in Epithelial Ovarian Cancer (GTEOC) Study, investigates the feasibility and acceptability of offering genetic testing to all women recently diagnosed with epithelial ovarian cancer (universal genetic testing or UGT). Study participants and staff were interviewed to: (i) assess the impact of UGT (ii) integrate patients' and staff perspectives in the development of new UGT programs. Semi-structured interviews were conducted with twelve GTEOC Study participants and five members of staff involved in recruiting them. The transcripts were transcribed verbatim and analyzed using Interpretative Phenomenological Analysis. There are two super-ordinate themes: motivations and influences around offers of genetic testing and impacts of genetic testing in ovarian cancer patients. A major finding is that genetic testing is contextualized within the broader experiences of the women; the impact of UGT was minimized in comparison with the ovarian cancer diagnosis. Women who consent to UGT are motivated by altruism and by their relatives' influence, whilst those who decline are often considered overwhelmed or fearful. Those without a genetic mutation are usually reassured by this result, whilst those with a genetic mutation must negotiate new uncertainties and responsibilities towards their families. Our findings suggest that UGT in this context is generally acceptable to women. However, the period shortly after diagnosis is a sensitive time and some women are emotionally overburdened. UGT is considered a 'family affair' and staff must acknowledge this.

  7. Electrostatically assembled dendrimer complex with a high-affinity protein binder for targeted gene delivery.

    PubMed

    Kim, Jong-Won; Lee, Joong-Jae; Choi, Joon Sig; Kim, Hak-Sung

    2018-06-10

    Although a variety of non-viral gene delivery systems have been developed, they still suffer from low efficiency and specificity. Herein, we present the assembly of a dendrimer complex comprising a DNA cargo and a targeting moiety as a new format for targeted gene delivery. A PAMAM dendrimer modified with histidine and arginine (HR-dendrimer) was used to enhance the endosomal escape and transfection efficiency. An EGFR-specific repebody, composed of leucine-rich repeat (LRR) modules, was employed as a targeting moiety. A polyanionic peptide was genetically fused to the repebody, followed by incubation with an HR-dendrimer and a DNA cargo to assemble the dendrimer complex through an electrostatic interaction. The resulting dendrimer complex was shown to deliver a DNA cargo with high efficiency in a receptor-specific manner. An analysis using a confocal microscope confirmed the internalization of the dendrimer complex and subsequent dissociation of a DNA cargo from the complex. The present approach can be broadly used in a targeted gene delivery in many areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Replication-Independent Histone Deposition by the HIR Complex and Asf1

    PubMed Central

    Green, Erin M.; Antczak, Andrew J.; Bailey, Aaron O.; Franco, Alexa A.; Wu, Kevin J.; Yates, John R.; Kaufman, Paul D.

    2010-01-01

    Summary The orderly deposition of histones onto DNA is mediated by conserved assembly complexes, including Chromatin Assembly Factor-1 (CAF-1) and the Hir proteins [1–4]. CAF-1 and the Hir proteins operate in distinct but functionally overlapping histone deposition pathways in vivo [5, 6]. The Hir proteins and CAF-1 share a common partner, the highly conserved histone H3/H4-binding protein Asf1, which binds the middle subunit of CAF-1 as well as to Hir proteins [7–11]. Asf1 binds to newly synthesized histones H3/H4 [12] and this complex stimulates histone deposition by CAF-1 [7, 12, 13]. In yeast, Asf1 is required for the contribution of the Hir proteins to gene silencing [7, 14]. Here, we demonstrate that Hir1, Hir2, Hir3 and Hpc2 comprise the HIR complex, which co-purifies with histone deposition protein Asf1. Together, the HIR complex and Asf1 deposit histones onto DNA in a replication-independent manner. Histone deposition by the HIR complex and Asf1 is impaired by a mutation in Asf1 that inhibits HIR binding. These data indicate that the HIR complex and Asf1 proteins function together as a conserved eukaryotic pathway for histone replacement throughout the cell cycle. PMID:16303565

  9. The Sg-1 Glycosyltransferase Locus Regulates Structural Diversity of Triterpenoid Saponins of Soybean[W][OA

    PubMed Central

    Sayama, Takashi; Ono, Eiichiro; Takagi, Kyoko; Takada, Yoshitake; Horikawa, Manabu; Nakamoto, Yumi; Hirose, Aya; Sasama, Hiroko; Ohashi, Mihoko; Hasegawa, Hisakazu; Terakawa, Teruhiko; Kikuchi, Akio; Kato, Shin; Tatsuzaki, Nana; Tsukamoto, Chigen; Ishimoto, Masao

    2012-01-01

    Triterpene saponins are a diverse group of biologically functional products in plants. Saponins usually are glycosylated, which gives rise to a wide diversity of structures and functions. In the group A saponins of soybean (Glycine max), differences in the terminal sugar species located on the C-22 sugar chain of an aglycone core, soyasapogenol A, were observed to be under genetic control. Further genetic analyses and mapping revealed that the structural diversity of glycosylation was determined by multiple alleles of a single locus, Sg-1, and led to identification of a UDP-sugar–dependent glycosyltransferase gene (Glyma07g38460). Although their sequences are highly similar and both glycosylate the nonacetylated saponin A0-αg, the Sg-1a allele encodes the xylosyltransferase UGT73F4, whereas Sg-1b encodes the glucosyltransferase UGT73F2. Homology models and site-directed mutagenesis analyses showed that Ser-138 in Sg-1a and Gly-138 in Sg-1b proteins are crucial residues for their respective sugar donor specificities. Transgenic complementation tests followed by recombinant enzyme assays in vitro demonstrated that sg-10 is a loss-of-function allele of Sg-1. Considering that the terminal sugar species in the group A saponins are responsible for the strong bitterness and astringent aftertastes of soybean seeds, our findings herein provide useful tools to improve commercial properties of soybean products. PMID:22611180

  10. Pharmacogenetic association between GSTP1 genetic polymorphism and febrile neutropenia in Japanese patients with early breast cancer.

    PubMed

    Sugishita, Mihoko; Imai, Tsuneo; Kikumori, Toyone; Mitsuma, Ayako; Shimokata, Tomoya; Shibata, Takashi; Morita, Sachi; Inada-Inoue, Megumi; Sawaki, Masataka; Hasegawa, Yoshinori; Ando, Yuichi

    2016-03-01

    Genetic risk factors for febrile neutropenia (FN), the major adverse event of perioperative chemotherapy for early breast cancer, remain unclear. This study retrospectively explored pharmacogenetic associations of single nucleotide polymorphisms (SNPs) of the uridine glucuronosyltransferase 2B7 (UGT2B7, rs7668258), glutathione-S-transferase pi 1 (GSTP1, rs1695), and microcephalin 1 (MCPH1, rs2916733) genes with chemotherapy-related adverse events in 102 Japanese women who received epirubicin and cyclophosphamide as perioperative chemotherapy for early breast cancer. The allele frequencies for all of the SNPs were in concordance with the Hap-Map data of Japanese individuals. Among the 24 patients who had FN at least once during all courses of chemotherapy, 23 had the A/A genotype, and 1 had the A/G genotype of the GSTP1 polymorphism (rs1695, P = 0.001); 23 of the 70 patients with the A/A genotype had FN, as compared with only 1 of the 32 patients with the A/G and G/G genotypes. The genotype distributions of the UGT2B7 and MCPH1 polymorphisms did not differ between the patients who had FN or grade 3/4 neutropenia and those who did not. Among Japanese women who received epirubicin and cyclophosphamide as perioperative chemotherapy for early breast cancer, those with the A/A genotype of the GSTP1 polymorphism (rs1695) were more likely to have FN.

  11. Identification and characterization of human UDP-glucuronosyltransferases responsible for the in-vitro glucuronidation of arctigenin.

    PubMed

    Xin, Hong; Xia, Yang-Liu; Hou, Jie; Wang, Ping; He, Wei; Yang, Ling; Ge, Guang-Bo; Xu, Wei

    2015-12-01

    This study aimed to characterize the glucuronidation pathway of arctigenin (AR) in human liver microsomes (HLM) and human intestine microsomes (HIM). HLM and HIM incubation systems were employed to catalyse the formation of AR glucuronide. The glucuronidation activity of commercially recombinant UGT isoforms towards AR was screened. A combination of chemical inhibition assay and kinetic analysis was used to determine the UGT isoforms involved in the glucuronidation of AR in HLM and HIM. AR could be extensively metabolized to one mono-glucuronide in HLM and HIM. The mono-glucuronide was biosynthesized and characterized as 4'-O-glucuronide. UGT1A1, 1A3, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7 and 2B17 participated in the formation of 4'-O-G, while UGT2B17 demonstrated the highest catalytic activity in this biotransformation. Both kinetic analysis and chemical inhibition assays demonstrated that UGT1A9, UGT2B7 and UGT2B17 played important roles in AR-4'-O-glucuronidation in HLM. Furthermore, HIM demonstrated moderate efficiency for AR-4'-O-glucuronidation, implying that AR may undergo a first-pass metabolism during the absorption process. UGT1A9, UGT2B7 and UGT2B17 were the major isoforms responsible for the 4'-O-glucuronidation of AR in HLM, while UGT2B7 and UGT2B17 were the major contributors to this biotransformation in HIM. © 2015 Royal Pharmaceutical Society.

  12. A novel approach to simulate gene-environment interactions in complex diseases.

    PubMed

    Amato, Roberto; Pinelli, Michele; D'Andrea, Daniel; Miele, Gennaro; Nicodemi, Mario; Raiconi, Giancarlo; Cocozza, Sergio

    2010-01-05

    Complex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.). Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones. We present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS), a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful. By the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte Carlo process allows random variability. A knowledge

  13. Analysis of the SWI/SNF chromatin-remodeling complex during early heart development and BAF250a repression cardiac gene transcription during P19 cell differentiation

    PubMed Central

    Singh, Ajeet Pratap; Archer, Trevor K.

    2014-01-01

    The regulatory networks of differentiation programs and the molecular mechanisms of lineage-specific gene regulation in mammalian embryos remain only partially defined. We document differential expression and temporal switching of BRG1-associated factor (BAF) subunits, core pluripotency factors and cardiac-specific genes during post-implantation development and subsequent early organogenesis. Using affinity purification of BRG1 ATPase coupled to mass spectrometry, we characterized the cardiac-enriched remodeling complexes present in E8.5 mouse embryos. The relative abundance and combinatorial assembly of the BAF subunits provides functional specificity to Switch/Sucrose NonFermentable (SWI/SNF) complexes resulting in a unique gene expression profile in the developing heart. Remarkably, the specific depletion of the BAF250a subunit demonstrated differential effects on cardiac-specific gene expression and resulted in arrhythmic contracting cardiomyocytes in vitro. Indeed, the BAF250a physically interacts and functionally cooperates with Nucleosome Remodeling and Histone Deacetylase (NURD) complex subunits to repressively regulate chromatin structure of the cardiac genes by switching open and poised chromatin marks associated with active and repressed gene expression. Finally, BAF250a expression modulates BRG1 occupancy at the loci of cardiac genes regulatory regions in P19 cell differentiation. These findings reveal specialized and novel cardiac-enriched SWI/SNF chromatin-remodeling complexes, which are required for heart formation and critical for cardiac gene expression regulation at the early stages of heart development. PMID:24335282

  14. AP1 binding site is another target of FGF2 regulation of bone sialoprotein gene transcription.

    PubMed

    Takai, Hideki; Araki, Shouta; Mezawa, Masaru; Kim, Dong-Soon; Li, Xinyue; Yang, Li; Li, Zhengyang; Wang, Zhitao; Nakayama, Youhei; Ogata, Yorimasa

    2008-02-29

    Bone sialoprotein (BSP) is an early marker of osteoblast differentiation. We previously reported that fibroblast growth factor 2 (FGF2) regulates BSP gene transcription via FGF2 response element (FRE) in the proximal promoter of rat BSP gene. We here report that activator protein 1 (AP1) binding site overlapping with glucocorticoid response element (GRE) AP1/GRE in the rat BSP gene promoter is another target of FGF2. Using the osteoblastic cell line ROS17/2.8, we determined that BSP mRNA levels increased by 10 ng/ml FGF2 at 6 and 12 h. Runx2 protein levels increased by FGF2 (10 ng/ml) at 3 h. Treatment of ROS17/2.8 cells with FGF2 (10 ng/ml, 12 h) increased luciferase activities of constructs including -116 to +60 and -938 to +60 of the rat BSP gene promoter. Effects of FGF2 abrogated in constructs included 2 bp mutations in the FRE and AP1/GRE elements. Luciferase activities induced by FGF2 were blocked by tyrosine kinase inhibitor herbimycin A, src-tyrosine kinase inhibitor PP1 and MAP kinase kinase inhibitor U0126. Gel shift analyses showed that FGF2 increased binding of FRE and AP1/GRE elements. Notably, the AP1/GRE-protein complexes were supershifted by Smad1 and c-Fos antibodies, c-Jun and Dlx5 antibodies disrupted the complexes formation, on the other hand AP1/GRE-protein complexes did not change by Runx2 antibody. These studies demonstrate that FGF2 stimulates BSP gene transcription by targeting the FRE and AP1/GRE elements in the rat BSP gene promoter.

  15. Glucocorticoid Receptor Hetero-Complex Gene STIP1 Is Associated with Improved Lung Function in Asthmatics Treated with Inhaled Corticosteroids

    PubMed Central

    Hawkins, Gregory A.; Lazarus, Ross; Smith, Richard S.; Tantisira, Kelan G.; Meyers, Deborah A.; Peters, Stephen P.; Weiss, Scott T.; Bleecker, Eugene R.

    2015-01-01

    Background Corticosteroids exert their anti-inflammatory action by binding and activating the intracellular the glucocorticoid receptor (GR) hetero-complex. Objective Evaluate the genes HSPCB, HSPCA, STIP1, HSPA8, DNAJB1, PTGES3, FKBP5, and FKBP4 on corticosteroid response. Methods Caucasian asthmatics (382) randomized to once daily flunisolide or conventional inhaled corticosteroid therapy were genotyped. Outcome measures were baseline FEV1, % predicted FEV1, and % change in FEV1 after corticosteroid treatment. Multivariable analyses adjusted for age, gender, and height, were performed fitting the most appropriate genetic model based on quantitative mean derived from ANOVA models to determine if there was an independent effect of polymorphisms on change in FEV1 independent of baseline level. Results Positive recessive model correlations for STIP1 SNPs were observed for baseline FEV1 [rs4980524, p=0.009; rs6591838, p=0.0045; rs2236647, p=0.002; and rs2236648; p=0.013], baseline % predicted FEV1 [rs4980524, p=0.002; rs6591838, p=0.017; rs2236647, p=0.003; and rs2236648; p=0.008] ; % change in FEV1 at 4 weeks [rs4980524, p=0.044; rs6591838, p=0.016; rs2236647; p=0.01] and 8 weeks therapy [rs4980524, p=0.044; rs6591838, p=0.016; rs2236647; p=0.01]. Haplotypic associations were observed for baseline FEV1 and % change in FEV1 at 4 weeks therapy [p=0.05 and p=0.01, respectively]. Significant trends towards association were observed for baseline % predicted FEV1 and % change in FEV1 at 8 weeks therapy. Positive correlations between haplotypes and % change in FEV1 were also observed. Conclusions STIP1 genetic variations may play a role in regulating corticosteroid response in asthmatics with reduced lung function. Replication in a second asthma population is required to confirm these observations. Clinical Implications Identifying genes that regulate corticosteroid responses could allow a priori determination of individual responses to corticosteroid therapy, leading to

  16. Preliminary Investigation of the Contribution of CYP2A6, CYP2B6, and UGT1A9 Polymorphisms on Artesunate-Mefloquine Treatment Response in Burmese Patients with Plasmodium falciparum Malaria

    PubMed Central

    Phompradit, Papichaya; Muhamad, Poonuch; Cheoymang, Anurak; Na-Bangchang, Kesara

    2014-01-01

    CYP2A6, CYP2B6, and UGT1A9 genetic polymorphisms and treatment response after a three-day course of artesunate-mefloquine was investigated in 71 Burmese patients with uncomplicated Plasmodium falciparum malaria. Results provide evidence for the possible link between CYP2A6 and CYP2B6 polymorphisms and plasma concentrations of artesunate/dihydroartemisinin and treatment response. In one patient who had the CYP2A6*1A/*4C genotype (decreased enzyme activity), plasma concentration of artesunate at one hour appeared to be higher, and the concentration of dihydroartemisinin was lower than for those carrying other genotypes (415 versus 320 ng/mL). The proportion of patients with adequate clinical and parasitologic response who had the CYP2B6*9/*9 genotype (mutant genotype) was significantly lower compared with those with late parasitologic failure (14.0% versus 19.0%). Confirmation through a larger study in various malaria-endemic areas is required before a definite conclusion on the role of genetic polymorphisms of these drug-metabolizing enzymes on treatment response after artesunate-based combination therapy can be made. PMID:24891466

  17. RING1 is associated with the polycomb group protein complex and acts as a transcriptional repressor.

    PubMed

    Satijn, D P; Gunster, M J; van der Vlag, J; Hamer, K M; Schul, W; Alkema, M J; Saurin, A J; Freemont, P S; van Driel, R; Otte, A P

    1997-07-01

    The Polycomb (Pc) protein is a component of a multimeric, chromatin-associated Polycomb group (PcG) protein complex, which is involved in stable repression of gene activity. The identities of components of the PcG protein complex are largely unknown. In a two-hybrid screen with a vertebrate Pc homolog as a target, we identify the human RING1 protein as interacting with Pc. RING1 is a protein that contains the RING finger motif, a specific zinc-binding domain, which is found in many regulatory proteins. So far, the function of the RING1 protein has remained enigmatic. Here, we show that RING1 coimmunoprecipitates with a human Pc homolog, the vertebrate PcG protein BMI1, and HPH1, a human homolog of the PcG protein Polyhomeotic (Ph). Also, RING1 colocalizes with these vertebrate PcG proteins in nuclear domains of SW480 human colorectal adenocarcinoma and Saos-2 human osteosarcoma cells. Finally, we show that RING1, like Pc, is able to repress gene activity when targeted to a reporter gene. Our findings indicate that RING1 is associated with the human PcG protein complex and that RING1, like PcG proteins, can act as a transcriptional repressor.

  18. A New Gene Expression Signature for Triple-Negative Breast Cancer Using Frozen Fresh Tissue before Neoadjuvant Chemotherapy

    PubMed Central

    Santuario-Facio, Sandra K; Cardona-Huerta, Servando; Perez-Paramo, Yadira X; Trevino, Victor; Hernandez-Cabrera, Francisco; Rojas-Martinez, Augusto; Uscanga-Perales, Grecia; Martinez-Rodriguez, Jorge L; Martinez-Jacobo, Lizeth; Padilla-Rivas, Gerardo; Muñoz-Maldonado, Gerardo; Gonzalez-Guerrero, Juan Francisco; Valero-Gomez, Javier; Vazquez-Guerrero, Ana L; Martinez-Rodriguez, Herminia G; Barboza-Quintana, Alvaro; Barboza-Quintana, Oralia; Garza-Guajardo, Raquel; Ortiz-Lopez, Rocio

    2017-01-01

    Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer tumors. Comparisons between TNBC and non–triple-negative breast cancer (nTNBC) may help to differentiate key components involved in TNBC neoplasms. The purpose of the study was to analyze the expression profile of TNBC versus nTNBC tumors in a homogeneous population from northeastern Mexico. A prospective study of 50 patients (25 TNBC and 25 nTNBC) was conducted. Clinic parameters were equally distributed for TNBC and nTNBC: age at diagnosis (51 versus 47 years, p = 0.1), glucose level (107 mg/dl versus 104 mg/dl, p = 0.64), and body mass index (28 versus 29, p = 0.14). Core biopsies were collected for histopathological diagnosis and gene expression analysis. Total RNA was isolated and expression profiling was performed. Forty genes showed differential expression pattern in TNBC tumors. Among these, nine overexpressed genes (PRKX/PRKY, UGT8, HMGA1, LPIN1, HAPLN3, FAM171A1, BCL141A, FOXC1, and ANKRD11), and one underexpressed gene (ANX9) are involved in general metabolism. Based on this biochemical peculiarity and the overexpression of BCL11A and FOXC1 (involved in tumor growth and metastasis, respectively), we validated by quantitative polymerase chain reaction the expression profiles of seven genes out of the signature. In this report, a new gene signature for TNBC is proposed. To our knowledge, this is the first TNBC signature that describes genes involved in general metabolism. The findings may be pertinent for Mexican patients and require evaluation in other ethnic groups and populations. PMID:28474731

  19. NDRG1, a growth and cancer related gene: regulation of gene expression and function in normal and disease states.

    PubMed

    Ellen, Thomas P; Ke, Qingdong; Zhang, Ping; Costa, Max

    2008-01-01

    N-myc downstream-regulated gene 1 (NDRG1) is an intracellular protein that is induced under a wide variety of stress and cell growth-regulatory conditions. NDRG1 is up-regulated by cell differentiation signals in various cancer cell lines and suppresses tumor metastasis. Despite its specific role in the molecular cause of Charcot-Marie-Tooth type 4D disease, there has been more interest in the gene as a marker of tumor progression and enhancer of cellular differentiation. Because it is strongly up-regulated under hypoxic conditions, and this condition is prevalent in solid tumors, its regulation is somewhat complex, governed by hypoxia-inducible factor 1 alpha (HIF-1alpha)- and p53-dependent pathways, as well as its namesake, neuroblastoma-derived myelocytomatosis, and probably many other factors, at the transcriptional and translational levels, and through mRNA stability. We survey the data for clues to the NDRG1 gene's mechanism and for indications that the NDRG1 gene may be an efficient diagnostic tool and therapy in many types of cancers.

  20. Conservation of regulatory sequences and gene expression patterns in the disintegrating Drosophila Hox gene complex

    PubMed Central

    Negre, Bárbara; Casillas, Sònia; Suzanne, Magali; Sánchez-Herrero, Ernesto; Akam, Michael; Nefedov, Michael; Barbadilla, Antonio; de Jong, Pieter; Ruiz, Alfredo

    2005-01-01

    Homeotic (Hox) genes are usually clustered and arranged in the same order as they are expressed along the anteroposterior body axis of metazoans. The mechanistic explanation for this colinearity has been elusive, and it may well be that a single and universal cause does not exist. The Hox-gene complex (HOM-C) has been rearranged differently in several Drosophila species, producing a striking diversity of Hox gene organizations. We investigated the genomic and functional consequences of the two HOM-C splits present in Drosophila buzzatii. Firstly, we sequenced two regions of the D. buzzatii genome, one containing the genes labial and abdominal A, and another one including proboscipedia, and compared their organization with that of D. melanogaster and D. pseudoobscura in order to map precisely the two splits. Then, a plethora of conserved noncoding sequences, which are putative enhancers, were identified around the three Hox genes closer to the splits. The position and order of these enhancers are conserved, with minor exceptions, between the three Drosophila species. Finally, we analyzed the expression patterns of the same three genes in embryos and imaginal discs of four Drosophila species with different Hox-gene organizations. The results show that their expression patterns are conserved despite the HOM-C splits. We conclude that, in Drosophila, Hox-gene clustering is not an absolute requirement for proper function. Rather, the organization of Hox genes is modular, and their clustering seems the result of phylogenetic inertia more than functional necessity. PMID:15867430

  1. Insights into GATA-1 Mediated Gene Activation versus Repression via Genome-wide Chromatin Occupancy Analysis

    PubMed Central

    Yu, Ming; Riva, Laura; Xie, Huafeng; Schindler, Yocheved; Moran, Tyler B.; Cheng, Yong; Yu, Duonan; Hardison, Ross; Weiss, Mitchell J; Orkin, Stuart H.; Bernstein, Bradley E.; Fraenkel, Ernest; Cantor, Alan B.

    2009-01-01

    Summary The transcription factor GATA-1 is required for terminal erythroid maturation and functions as an activator or repressor depending on gene context. Yet its in vivo site selectivity and ability to distinguish between activated versus repressed genes remain incompletely understood. In this study, we performed GATA-1 ChIP-seq in erythroid cells and compared it to GATA-1 induced gene expression changes. Bound and differentially expressed genes contain a greater number of GATA binding motifs, a higher frequency of palindromic GATA sites, and closer occupancy to the transcriptional start site versus non-differentially expressed genes. Moreover, we show that the transcription factor Zbtb7a occupies GATA-1 bound regions of some direct GATA-1 target genes, that the presence of SCL/TAL1 helps distinguish transcriptional activation versus repression, and that Polycomb Repressive Complex 2 (PRC2) is involved in epigenetic silencing of a subset of GATA-1 repressed genes. These data provide insights into GATA-1 mediated gene regulation in vivo. PMID:19941827

  2. Evidence for differences in regioselective and stereoselective glucuronidation of silybin diastereomers from milk thistle (Silybum marianum) by human UDP-glucuronosyltransferases.

    PubMed

    Jančová, Petra; Siller, Michal; Anzenbacherová, Eva; Křen, Vladimír; Anzenbacher, Pavel; Simánek, Vilím

    2011-09-01

    The flavonolignan silybin, the main component of silymarin, extract from the seeds of Silybum marianum, is used mostly as a hepatoprotectant. Silybin is almost 1:1 mixture of two diastereomers A and B. The individual UDP-glucuronosyltransferases (UGTs) contributing to the metabolism of silybin diastereomers have not been identified yet. In this study, the contribution of UGTs to silybin metabolism was examined. The potential silybin metabolites were formed in vitro by incubating silybin (i) with the human liver microsomal fraction, (ii) with human hepatocytes and finally (iii) with 12 recombinant UGTs (UGT1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15 and 2B17). High-performance liquid chromatographic (HPLC) techniques with UV detection and additionally MS detection were used for metabolite identification. Hepatocytes and microsomes formed silybin A-7-O-β-D-glucuronides, B-7-O-β-D-glucuronides, A-20-O-β-D-glucuronides and B-20-O-β-D-glucuronides. With recombinant UGTs, the major role of the UGT1A1, 1A3, 1A8 and 1A10 enzymes but also of the UGT1A6, 1A7, 1A9, 2B7 and 2B15 in the stereoselective reactions leading to the respective silybin glucuronides was confirmed. UGT1A4, UGT2B4 and UGT2B17 did not participate in silybin glucuronidation. The predominant formation of 7-O-β-D-glucuronides and the preferential glucuronidation of silybin B diastereomer in vitro by human UGTs were confirmed.

  3. An LXR–NCOA5 gene regulatory complex directs inflammatory crosstalk-dependent repression of macrophage cholesterol efflux

    PubMed Central

    Gillespie, Mark A; Gold, Elizabeth S; Ramsey, Stephen A; Podolsky, Irina; Aderem, Alan; Ranish, Jeffrey A

    2015-01-01

    LXR–cofactor complexes activate the gene expression program responsible for cholesterol efflux in macrophages. Inflammation antagonizes this program, resulting in foam cell formation and atherosclerosis; however, the molecular mechanisms underlying this antagonism remain to be fully elucidated. We use promoter enrichment-quantitative mass spectrometry (PE-QMS) to characterize the composition of gene regulatory complexes assembled at the promoter of the lipid transporter Abca1 following downregulation of its expression. We identify a subset of proteins that show LXR ligand- and binding-dependent association with the Abca1 promoter and demonstrate they differentially control Abca1 expression. We determine that NCOA5 is linked to inflammatory Toll-like receptor (TLR) signaling and establish that NCOA5 functions as an LXR corepressor to attenuate Abca1 expression. Importantly, TLR3–LXR signal crosstalk promotes recruitment of NCOA5 to the Abca1 promoter together with loss of RNA polymerase II and reduced cholesterol efflux. Together, these data significantly expand our knowledge of regulatory inputs impinging on the Abca1 promoter and indicate a central role for NCOA5 in mediating crosstalk between pro-inflammatory and anti-inflammatory pathways that results in repression of macrophage cholesterol efflux. PMID:25755249

  4. Inhibition of human UDP-glucuronosyltransferase enzymes by lapatinib, pazopanib, regorafenib and sorafenib: Implications for hyperbilirubinemia.

    PubMed

    Miners, John O; Chau, Nuy; Rowland, Andrew; Burns, Kushari; McKinnon, Ross A; Mackenzie, Peter I; Tucker, Geoffrey T; Knights, Kathleen M; Kichenadasse, Ganessan

    2017-04-01

    Kinase inhibitors (KIs) are a rapidly expanding class of drugs used primarily for the treatment of cancer. Data relating to the inhibition of UDP-glucuronosyltransferase (UGT) enzymes by KIs is sparse. However, lapatinib (LAP), pazopanib (PAZ), regorafenib (REG) and sorafenib (SOR) have been implicated in the development of hyperbilirubinemia in patients. This study aimed to characterise the role of UGT1A1 inhibition in hyperbilirubinemia and assess the broader potential of these drugs to perpetrate drug-drug interactions arising from UGT enzyme inhibition. Twelve recombinant human UGTs from subfamilies 1A and 2B were screened for inhibition by LAP, PAZ, REG and SOR. IC 50 values for the inhibition of all UGT1A enzymes, except UGT1A3 and UGT1A4, by the four KIs were <10μM. LAP, PAZ, REG and SOR inhibited UGT1A1-catalysed bilirubin glucuronidation with mean IC 50 values ranging from 34nM (REG) to 3734nM (PAZ). Subsequent kinetic experiments confirmed that REG and SOR were very potent inhibitors of human liver microsomal β-estradiol glucuronidation, an established surrogate for bilirubin glucuronidation, with mean K i values of 20 and 33nM, respectively. K i values for LAP and PAZ were approximately 1- and 2-orders of magnitude higher than those for REG and SOR. REG and SOR were equipotent inhibitors of human liver microsomal UGT1A9 (mean K i 678nM). REG and SOR are the most potent inhibitors of a human UGT enzyme identified to date. In vitro-in vivo extrapolation indicates that inhibition of UGT1A1 contributes significantly to the hyperbilirubinemia observed in patients treated with REG and SOR, but not with LAP and PAZ. Inhibition of other UGT1A1 substrates in vivo is likely. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Recognition deficits in mice carrying mutations of genes encoding BLOC-1 subunits pallidin or dysbindin.

    PubMed

    Spiegel, S; Chiu, A; James, A S; Jentsch, J D; Karlsgodt, K H

    2015-11-01

    Numerous studies have implicated DTNBP1, the gene encoding dystrobrevin-binding protein or dysbindin, as a candidate risk gene for schizophrenia, though this relationship remains somewhat controversial. Variation in dysbindin, and its location on chromosome 6p, has been associated with cognitive processes, including those relying on a complex system of glutamatergic and dopaminergic interactions. Dysbindin is one of the seven protein subunits that comprise the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Dysbindin protein levels are lower in mice with null mutations in pallidin, another gene in the BLOC-1, and pallidin levels are lower in mice with null mutations in the dysbindin gene, suggesting that multiple subunit proteins must be present to form a functional oligomeric complex. Furthermore, pallidin and dysbindin have similar distribution patterns in a mouse and human brain. Here, we investigated whether the apparent correspondence of pallid and dysbindin at the level of gene expression is also found at the level of behavior. Hypothesizing a mutation leading to underexpression of either of these proteins should show similar phenotypic effects, we studied recognition memory in both strains using the novel object recognition task (NORT) and social novelty recognition task (SNRT). We found that mice with a null mutation in either gene are impaired on SNRT and NORT when compared with wild-type controls. These results support the conclusion that deficits consistent with recognition memory impairment, a cognitive function that is impaired in schizophrenia, result from either pallidin or dysbindin mutations, possibly through degradation of BLOC-1 expression and/or function. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  6. Control of human adenovirus type 5 gene expression by cellular Daxx/ATRX chromatin-associated complexes

    PubMed Central

    Schreiner, Sabrina; Bürck, Carolin; Glass, Mandy; Groitl, Peter; Wimmer, Peter; Kinkley, Sarah; Mund, Andreas; Everett, Roger D.; Dobner, Thomas

    2013-01-01

    Death domain–associated protein (Daxx) cooperates with X-linked α-thalassaemia retardation syndrome protein (ATRX), a putative member of the sucrose non-fermentable 2 family of ATP-dependent chromatin-remodelling proteins, acting as the core ATPase subunit in this complex, whereas Daxx is the targeting factor, leading to histone deacetylase recruitment, H3.3 deposition and transcriptional repression of cellular promoters. Despite recent findings on the fundamental importance of chromatin modification in host-cell gene regulation, it remains unclear whether adenovirus type 5 (Ad5) transcription is regulated by cellular chromatin remodelling to allow efficient virus gene expression. Here, we focus on the repressive role of the Daxx/ATRX complex during Ad5 replication, which depends on intact protein–protein interaction, as negative regulation could be relieved with a Daxx mutant that is unable to interact with ATRX. To ensure efficient viral replication, Ad5 E1B-55K protein inhibits Daxx and targets ATRX for proteasomal degradation in cooperation with early region 4 open reading frame protein 6 and cellular components of a cullin-dependent E3-ubiquitin ligase. Our studies illustrate the importance and diversity of viral factors antagonizing Daxx/ATRX-mediated repression of viral gene expression and shed new light on the modulation of cellular chromatin remodelling factors by Ad5. We show for the first time that cellular Daxx/ATRX chromatin remodelling complexes play essential roles in Ad gene expression and illustrate the importance of early viral proteins to counteract cellular chromatin remodelling. PMID:23396441

  7. Characterization of in vitro glucuronidation clearance of a range of drugs in human kidney microsomes: comparison with liver and intestinal glucuronidation and impact of albumin.

    PubMed

    Gill, Katherine L; Houston, J Brian; Galetin, Aleksandra

    2012-04-01

    Previous studies have shown the importance of the addition of albumin for characterization of hepatic glucuronidation in vitro; however, no reports exist on the effects of albumin on renal or intestinal microsomal glucuronidation assays. This study characterized glucuronidation clearance (CL(int, UGT)) in human kidney, liver, and intestinal microsomes in the presence and absence of bovine serum albumin (BSA) for seven drugs with differential UDP-glucuronosyltransferase (UGT) 1A9 and UGT2B7 specificity, namely, diclofenac, ezetimibe, gemfibrozil, mycophenolic acid, naloxone, propofol, and telmisartan. The impact of renal CL(int, UGT) on accuracy of in vitro-in vivo extrapolation (IVIVE) of glucuronidation clearance was investigated. Inclusion of 1% BSA for acidic drugs and 2% for bases/neutral drugs in incubations was found to be suitable for characterization of CL(int, UGT) in different tissues. Although BSA increased CL(int, UGT) in all tissues, the extent was tissue- and drug-dependent. Scaled CL(int, UGT) in the presence of BSA ranged from 2.22 to 207, 0.439 to 24.4, and 0.292 to 23.8 ml · min(-1) · g tissue(-1) in liver, kidney, and intestinal microsomes. Renal CL(int, UGT) (per gram of tissue) was up to 2-fold higher in comparison with that for liver for UGT1A9 substrates; in contrast, CL(int, UGT) for UGT2B7 substrates represented approximately one-third of hepatic estimates. Scaled renal CL(int, UGT) (in the presence of BSA) was up to 30-fold higher than intestinal glucuronidation for the drugs investigated. Use of in vitro data obtained in the presence of BSA and inclusion of renal clearance improved the IVIVE of glucuronidation clearance, with 50% of drugs predicted within 2-fold of observed values. Characterization and consideration of kidney CL(int, UGT) is particularly important for UGT1A9 substrates.

  8. Characterization of In Vitro Glucuronidation Clearance of a Range of Drugs in Human Kidney Microsomes: Comparison with Liver and Intestinal Glucuronidation and Impact of Albumin

    PubMed Central

    Gill, Katherine L.; Houston, J. Brian

    2012-01-01

    Previous studies have shown the importance of the addition of albumin for characterization of hepatic glucuronidation in vitro; however, no reports exist on the effects of albumin on renal or intestinal microsomal glucuronidation assays. This study characterized glucuronidation clearance (CLint, UGT) in human kidney, liver, and intestinal microsomes in the presence and absence of bovine serum albumin (BSA) for seven drugs with differential UDP-glucuronosyltransferase (UGT) 1A9 and UGT2B7 specificity, namely, diclofenac, ezetimibe, gemfibrozil, mycophenolic acid, naloxone, propofol, and telmisartan. The impact of renal CLint, UGT on accuracy of in vitro-in vivo extrapolation (IVIVE) of glucuronidation clearance was investigated. Inclusion of 1% BSA for acidic drugs and 2% for bases/neutral drugs in incubations was found to be suitable for characterization of CLint, UGT in different tissues. Although BSA increased CLint, UGT in all tissues, the extent was tissue- and drug-dependent. Scaled CLint, UGT in the presence of BSA ranged from 2.22 to 207, 0.439 to 24.4, and 0.292 to 23.8 ml · min−1 · g tissue−1 in liver, kidney, and intestinal microsomes. Renal CLint, UGT (per gram of tissue) was up to 2-fold higher in comparison with that for liver for UGT1A9 substrates; in contrast, CLint, UGT for UGT2B7 substrates represented approximately one-third of hepatic estimates. Scaled renal CLint, UGT (in the presence of BSA) was up to 30-fold higher than intestinal glucuronidation for the drugs investigated. Use of in vitro data obtained in the presence of BSA and inclusion of renal clearance improved the IVIVE of glucuronidation clearance, with 50% of drugs predicted within 2-fold of observed values. Characterization and consideration of kidney CLint, UGT is particularly important for UGT1A9 substrates. PMID:22275465

  9. Discordant genotyping results using DNA isolated from anti-doping control urine samples.

    PubMed

    Choong, Eva; Schulze, Jenny J; Ericsson, Magnus; Rane, Anders; Ekström, Lena

    2017-07-01

    The UGT2B17 gene deletion polymorphism is known to correlate to urinary concentration of testosterone-glucuronide and hence this genotype exerts a large impact on the testosterone/epitestosterone (T/E) ratio, a biomarker for testosterone doping. The objective of this study was to assess if DNA isolated from athletes' urine samples (n = 713) obtained in routine doping controls could be targeted for genotyping analysis for future integration in the athlete's passport. A control population (n = 21) including both urine and blood DNA was used for genotyping concordance test. Another aim was to study a large group (n = 596) of authentic elite athletes in respect of urinary steroid profile in relation to genetic variation. First we found that the genotype results when using urine-derived DNA did not correlate sufficiently with the genotype obtained from whole blood DNA. Secondly we found males with one or two UGT2B17 alleles had higher T/E (mean 1.63 ± 0.93) than females (mean 1.28 ± 1.08), p˂0.001. Unexpectedly, we found that several male del/del athletes in power sports had a T/E ˃1. If men in power sport exert a different urinary steroid profile needs to be further investigated. The other polymorphisms investigated in the CYP17A1, UGT2B7 and UGT2B15 genes did not show any associations with testosterone and epitestosterone concentrations. Our results show that genotyping using urine samples according to our method is not useful in an anti-doping setting. Instead, it is of importance for the anti-doping test programs to include baseline values in the ABP to minimize any putative impact of genotype. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Functional Characterization of a Flavonoid Glycosyltransferase in Sweet Orange (Citrus sinensis).

    PubMed

    Liu, Xiaogang; Lin, Cailing; Ma, Xiaodi; Tan, Yan; Wang, Jiuzhao; Zeng, Ming

    2018-01-01

    Fruits of sweet orange ( Citrus sinensis ), a popular commercial Citrus species, contain high concentrations of flavonoids beneficial to human health. These fruits predominantly accumulate O -glycosylated flavonoids, in which the disaccharides [neohesperidose (rhamnosyl-α-1,2-glucose) or rutinose (rhamnosyl-α-1,6-glucose)] are linked to the flavonoid aglycones through the 3- or 7-hydroxyl sites. The biotransformation of the flavonoid aglycones into O -rutinosides or O -neohesperidosides in the Citrus plants usually consists of two glycosylation reactions involving a series of uridine diphosphate-sugar dependent glycosyltransferases (UGTs). Although several genes encoding flavonoid UGTs have been functionally characterized in the Citrus plants, full elucidation of the flavonoid glycosylation process remains elusive. Based on the available genomic and transcriptome data, we isolated a UGT with a high expression level in the sweet orange fruits that possibly encodes a flavonoid glucosyltransferase and/or rhamnosyltransferase. Biochemical analyses revealed that a broad range of flavonoid substrates could be glucosylated at their 3- and/or 7-hydrogen sites by the recombinant enzyme, including hesperetin, naringenin, diosmetin, quercetin, and kaempferol. Furthermore, overexpression of the gene could significantly increase the accumulations of quercetin 7- O -rhamnoside, quercetin 7- O -glucoside, and kaempferol 7- O -glucoside, implying that the enzyme has flavonoid 7- O -glucosyltransferase and 7- O -rhamnosyltransferase activities in vivo .

  11. Synonymous codon usage of genes in polymerase complex of Newcastle disease virus.

    PubMed

    Kumar, Chandra Shekhar; Kumar, Sachin

    2017-06-01

    Newcastle disease virus (NDV) is pathogenic to both avian and non-avian species but extensively finds poultry as its primary host and causes heavy economic losses in the poultry industry. In this study, a total of 186 polymerase complex comprising of nucleoprotein (N), phosphoprotein (P), and large polymerase (L) genes of NDV was analyzed for synonymous codon usage. The relative synonymous codon usage and effective number of codons (ENC) values were used to estimate codon usage variation in each gene. Correspondence analysis (COA) was used to study the major trend in codon usage variation. Analyzing the ENC plot values against GC3s (at synonymous third codon position) we concluded that mutational pressure was the main factor determining codon usage bias than translational selection in NDV N, P, and L genes. Moreover, correlation analysis indicated, that aromaticity of N, P, and L genes also influenced the codon usage variation. The varied distribution of pathotypes for N, P, and L gene clearly suggests that change in codon usage for NDV is pathotype specific. The codon usage preference similarity in N, P, and L gene might be detrimental for polymerase complex functioning. The study represents a comprehensive analysis to date of N, P, and L genes codon usage pattern of NDV and provides a basic understanding of the mechanisms for codon usage bias. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Visualization of the Drosophila dKeap1-CncC interaction on chromatin illumines cooperative, xenobiotic-specific gene activation

    PubMed Central

    Deng, Huai; Kerppola, Tom K.

    2014-01-01

    Interactions among transcription factors control their physiological functions by regulating their binding specificities and transcriptional activities. We implement a strategy to visualize directly the genomic loci that are bound by multi-protein complexes in single cells in Drosophila. This method is based on bimolecular fluorescence complementation (BiFC) analysis of protein interactions on polytene chromosomes. Drosophila Keap1 (dKeap1)-CncC complexes localized to the nucleus and bound chromatin loci that were not bound preferentially by dKeap1 or CncC when they were expressed separately. dKeap1 and CncC binding at these loci was enhanced by phenobarbital, but not by tert-butylhydroquinone (tBHQ) or paraquat. Endogenous dKeap1 and CncC activated transcription of the Jheh (Jheh1, Jheh2, Jheh3) and dKeap1 genes at these loci, whereas CncC alone activated other xenobiotic response genes. Ectopic dKeap1 expression increased CncC binding at the Jheh and dKeap1 gene loci and activated their transcription, whereas dKeap1 inhibited CncC binding at other xenobiotic response gene loci and suppressed their transcription. The combinatorial chromatin-binding specificities and transcriptional activities of dKeap1-CncC complexes mediated the selective activation of different sets of genes by different xenobiotic compounds, in part through feed-forward activation of dKeap1 transcription. PMID:25063457

  13. Gene expression profiles in Parkinson disease prefrontal cortex implicate FOXO1 and genes under its transcriptional regulation.

    PubMed

    Dumitriu, Alexandra; Latourelle, Jeanne C; Hadzi, Tiffany C; Pankratz, Nathan; Garza, Dan; Miller, John P; Vance, Jeffery M; Foroud, Tatiana; Beach, Thomas G; Myers, Richard H

    2012-06-01

    Parkinson disease (PD) is a complex neurodegenerative disorder with largely unknown genetic mechanisms. While the degeneration of dopaminergic neurons in PD mainly takes place in the substantia nigra pars compacta (SN) region, other brain areas, including the prefrontal cortex, develop Lewy bodies, the neuropathological hallmark of PD. We generated and analyzed expression data from the prefrontal cortex Brodmann Area 9 (BA9) of 27 PD and 26 control samples using the 44K One-Color Agilent 60-mer Whole Human Genome Microarray. All samples were male, without significant Alzheimer disease pathology and with extensive pathological annotation available. 507 of the 39,122 analyzed expression probes were different between PD and control samples at false discovery rate (FDR) of 5%. One of the genes with significantly increased expression in PD was the forkhead box O1 (FOXO1) transcription factor. Notably, genes carrying the FoxO1 binding site were significantly enriched in the FDR-significant group of genes (177 genes covered by 189 probes), suggesting a role for FoxO1 upstream of the observed expression changes. Single-nucleotide polymorphisms (SNPs) selected from a recent meta-analysis of PD genome-wide association studies (GWAS) were successfully genotyped in 50 out of the 53 microarray brains, allowing a targeted expression-SNP (eSNP) analysis for 52 SNPs associated with PD affection at genome-wide significance and the 189 probes from FoxO1 regulated genes. A significant association was observed between a SNP in the cyclin G associated kinase (GAK) gene and a probe in the spermine oxidase (SMOX) gene. Further examination of the FOXO1 region in a meta-analysis of six available GWAS showed two SNPs significantly associated with age at onset of PD. These results implicate FOXO1 as a PD-relevant gene and warrant further functional analyses of its transcriptional regulatory mechanisms.

  14. Gene Expression Profiles in Parkinson Disease Prefrontal Cortex Implicate FOXO1 and Genes under Its Transcriptional Regulation

    PubMed Central

    Dumitriu, Alexandra; Latourelle, Jeanne C.; Hadzi, Tiffany C.; Pankratz, Nathan; Garza, Dan; Miller, John P.; Vance, Jeffery M.; Foroud, Tatiana; Beach, Thomas G.; Myers, Richard H.

    2012-01-01

    Parkinson disease (PD) is a complex neurodegenerative disorder with largely unknown genetic mechanisms. While the degeneration of dopaminergic neurons in PD mainly takes place in the substantia nigra pars compacta (SN) region, other brain areas, including the prefrontal cortex, develop Lewy bodies, the neuropathological hallmark of PD. We generated and analyzed expression data from the prefrontal cortex Brodmann Area 9 (BA9) of 27 PD and 26 control samples using the 44K One-Color Agilent 60-mer Whole Human Genome Microarray. All samples were male, without significant Alzheimer disease pathology and with extensive pathological annotation available. 507 of the 39,122 analyzed expression probes were different between PD and control samples at false discovery rate (FDR) of 5%. One of the genes with significantly increased expression in PD was the forkhead box O1 (FOXO1) transcription factor. Notably, genes carrying the FoxO1 binding site were significantly enriched in the FDR–significant group of genes (177 genes covered by 189 probes), suggesting a role for FoxO1 upstream of the observed expression changes. Single-nucleotide polymorphisms (SNPs) selected from a recent meta-analysis of PD genome-wide association studies (GWAS) were successfully genotyped in 50 out of the 53 microarray brains, allowing a targeted expression–SNP (eSNP) analysis for 52 SNPs associated with PD affection at genome-wide significance and the 189 probes from FoxO1 regulated genes. A significant association was observed between a SNP in the cyclin G associated kinase (GAK) gene and a probe in the spermine oxidase (SMOX) gene. Further examination of the FOXO1 region in a meta-analysis of six available GWAS showed two SNPs significantly associated with age at onset of PD. These results implicate FOXO1 as a PD–relevant gene and warrant further functional analyses of its transcriptional regulatory mechanisms. PMID:22761592

  15. Ezh1 and Ezh2 differentially regulate PSD-95 gene transcription in developing hippocampal neurons.

    PubMed

    Henriquez, Berta; Bustos, Fernando J; Aguilar, Rodrigo; Becerra, Alvaro; Simon, Felipe; Montecino, Martin; van Zundert, Brigitte

    2013-11-01

    Polycomb Repressive Complex 2 (PRC2) mediates transcriptional silencing by catalyzing histone H3 lysine 27 trimethylation (H3K27me3), but its role in the maturation of postmitotic mammalian neurons remains largely unknown. We report that the PRC2 paralogs Ezh1 and Ezh2 are differentially expressed during hippocampal development. We show that depletion of Ezh2 leads to increased expression of PSD-95, a critical plasticity gene, and that reduced PSD-95 gene transcription is correlated with enrichment of Ezh2 at the PSD-95 gene promoter; however, the H3K27me3 epigenetic mark is not present at the PSD-95 gene promoter, likely due to the antagonizing effects of the H3S28P and H3K27Ac marks and the activity of the H3K27 demethylases JMJD3 and UTX. In contrast, increased PSD-95 gene transcription is accompanied by the presence of Ezh1 and elongation-engaged RNA Polymerase II complexes at the PSD-95 gene promoter, while knock-down of Ezh1 reduces PSD-95 transcription. These results indicate that Ezh1 and Ezh2 have antagonistic roles in regulating PSD-95 transcription. © 2013.

  16. Distribution of genetic polymorphisms of genes encoding drug metabolizing enzymes & drug transporters - a review with Indian perspective.

    PubMed

    Umamaheswaran, Gurusamy; Kumar, Dhakchinamoorthi Krishna; Adithan, Chandrasekaran

    2014-01-01

    Phase I and II drug metabolizing enzymes (DME) and drug transporters are involved in the absorption, distribution, metabolism as well as elimination of many therapeutic agents, toxins and various pollutants. Presence of genetic polymorphisms in genes encoding these proteins has been associated with marked inter-individual variability in their activity that could result in variation in drug response, toxicity as well as in disease predisposition. The emergent field pharmacogenetics and pharmacogenomics (PGx) is a promising discipline, as it predicts disease risk, selection of proper medication with regard to response and toxicity, and appropriate drug dosage guidance based on an individual's genetic make-up. Consequently, genetic variations are essential to understand the ethnic differences in disease occurrence, development, prognosis, therapeutic response and toxicity. For that reason, it is necessary to establish the normative frequency of these genes in a particular population before unraveling the genotype-phenotype associations. Although a fair amount of allele frequency data are available in Indian populations, the existing pharmacogenetic data have not been compiled into a database. This review was intended to compile the normative frequency distribution of the variants of genes encoding DMEs (CYP450s, TPMT, GSTs, COMT, SULT1A1, NAT2 and UGTs) and transporter proteins (MDR1, OCT1 and SLCO1B1) with Indian perspective.

  17. Positive selection drives the evolution of a major histocompatibility complex gene in an endangered Mexican salamander species complex.

    PubMed

    Tracy, Karen E; Kiemnec-Tyburczy, Karen M; DeWoody, J Andrew; Parra-Olea, Gabriela; Zamudio, Kelly R

    2015-06-01

    Immune gene evolution can be critical to species survival in the face of infectious disease. In particular, polymorphism in the genes of the major histocompatibility complex (MHC) helps vertebrates combat novel and diverse pathogens by increasing the number of pathogen-derived proteins that can initiate the host's acquired immune response. In this study, we used a combination of presumably adaptive and neutral markers to investigate MHC evolution in populations of five salamander species within the Ambystoma velasci complex, a group consisting of 15 recently diverged species, several of which are endangered. We isolated 31 unique MHC class II β alleles from 75 total individuals from five species in this complex. MHC heterozygosity was significantly lower than expected for all five species, and we found no clear relationship between number of MHC alleles and species range, life history, or level of heterozygosity. We inferred a phylogeny representing the evolutionary history of Ambystoma MHC, with which we found signatures of positive selection on the overall gene, putative peptide-binding residues, and allelic lineages. We identified several instances of trans-species polymorphism, a hallmark of balancing selection observed in other groups of closely related species. In contrast, we did not detect comparable allelic diversity or signatures of selection on neutral loci. Additionally, we identified 17 supertypes among the 44 unique Ambystoma alleles, indicating that these sequences may encode functionally distinct MHC variants. We therefore have strong evidence that positive selection is a major evolutionary force driving patterns of MHC polymorphism in this recently radiated species complex.

  18. Influence of uridine diphosphate glucuronosyltransferase 2B7 -161C>T polymorphism on the concentration of valproic acid in pediatric epilepsy patients.

    PubMed

    Inoue, Kazuyuki; Suzuki, Eri; Yazawa, Rei; Yamamoto, Yoshiaki; Takahashi, Toshiki; Takahashi, Yukitoshi; Imai, Katsumi; Koyama, Seiichi; Inoue, Yushi; Tsuji, Daiki; Hayashi, Hideki; Itoh, Kunihiko

    2014-06-01

    Valproic acid (VPA) is widely used to treat various types of epilepsy. Interindividual variability in VPA pharmacokinetics may arise from genetic polymorphisms of VPA-metabolizing enzymes. This study aimed to examine the relationships between plasma VPA concentrations and the -161C>T single nucleotide polymorphism in uridine diphosphate glucuronosyltransferase (UGT) 2B7 genes in pediatric epilepsy patients. This study included 78 pediatric epilepsy patients carrying the cytochrome P450 (CYP) 2C9*1/*1 genotype and who were not treated with the enzyme inducers (phenytoin, phenobarbital, and carbamazepine), lamotrigine, and/or topiramate. CYP2C9*3 and UGT2B7 -161C>T polymorphisms were identified using methods based on polymerase chain reaction-restriction fragment length polymorphism. Blood samples were drawn from each patient under steady-state conditions, and plasma VPA concentrations were measured. Significant differences in adjusted plasma VPA concentrations were observed between carriers of CC, CT, and TT genotypes in the UGT2B7 -161C>T polymorphism (P = 0.039). Patients with the CC genotype had lower adjusted plasma VPA concentrations than those with CT or TT genotype (P = 0.028). These data suggest that the UGT2B7 -161C>T polymorphism in pediatric epilepsy patients carrying the CYP2C9*1/*1 genotype affects VPA concentration.

  19. Roles of the Nuclear Lamina in Stable Nuclear Association and Assembly of a Herpesviral Transactivator Complex on Viral Immediate-Early Genes

    PubMed Central

    Silva, Lindsey; Oh, Hyung Suk; Chang, Lynne; Yan, Zhipeng; Triezenberg, Steven J.; Knipe, David M.

    2012-01-01

    ABSTRACT Little is known about the mechanisms of gene targeting within the nucleus and its effect on gene expression, but most studies have concluded that genes located near the nuclear periphery are silenced by heterochromatin. In contrast, we found that early herpes simplex virus (HSV) genome complexes localize near the nuclear lamina and that this localization is associated with reduced heterochromatin on the viral genome and increased viral immediate-early (IE) gene transcription. In this study, we examined the mechanism of this effect and found that input virion transactivator protein, virion protein 16 (VP16), targets sites adjacent to the nuclear lamina and is required for targeting of the HSV genome to the nuclear lamina, exclusion of heterochromatin from viral replication compartments, and reduction of heterochromatin on the viral genome. Because cells infected with the VP16 mutant virus in1814 showed a phenotype similar to that of lamin A/C−/− cells infected with wild-type virus, we hypothesized that the nuclear lamina is required for VP16 activator complex formation. In lamin A/C−/− mouse embryo fibroblasts, VP16 and Oct-1 showed reduced association with the viral IE gene promoters, the levels of VP16 and HCF-1 stably associated with the nucleus were lower than in wild-type cells, and the association of VP16 with HCF-1 was also greatly reduced. These results show that the nuclear lamina is required for stable nuclear localization and formation of the VP16 activator complex and provide evidence for the nuclear lamina being the site of assembly of the VP16 activator complex. PMID:22251972

  20. Fanconi anemia protein, FANCA, associates with BRG1, a component of the human SWI/SNF complex.

    PubMed

    Otsuki, T; Furukawa, Y; Ikeda, K; Endo, H; Yamashita, T; Shinohara, A; Iwamatsu, A; Ozawa, K; Liu, J M

    2001-11-01

    Fanconi anemia (FA) is a genetic disorder that predisposes to hematopoietic failure, birth defects and cancer. We identified an interaction between the FA protein, FANCA and brm-related gene 1 (BRG1) product. BRG1 is a subunit of the SWI/SNF complex, which remodels chromatin structure through a DNA-dependent ATPase activity. FANCA was demonstrated to associate with the endogenous SWI/SNF complex. We also found a significant increase in the molecular chaperone, glucose-regulated protein 94 (GRP94) among BRG1-associated factors isolated from a FANCA-mutant cell line, which was not seen in either a normal control cell line or the mutant line complemented by wild-type FANCA. Despite this specific difference, FANCA did not appear to be absolutely required for in vitro chromatin remodeling. Finally, we demonstrated co-localization in the nucleus between transfected FANCA and BRG1. The physiological action of FANCA on the SWI/SNF complex remains to be clarified, but our work suggests that FANCA may recruit the SWI/SNF complex to target genes, thereby enabling coupled nuclear functions such as transcription and DNA repair.

  1. Pharmacokinetic and pharmacogenetic markers of irinotecan toxicity.

    PubMed

    Hahn, Roberta Zilles; Antunes, Marina Venzon; Verza, Simone Gasparin; Perassolo, Magda Susana; Suyenaga, Edna Sayuri; Schwartsmann, Gilberto; Linden, Rafael

    2018-06-22

    Irinotecan (IRI) is a widely used chemotherapeutic drug, mostly used for first-line treatment of colorectal and pancreatic cancer. IRI doses are usually established based on patient's body surface area, an approach associated with large inter-individual variability in drug exposure and high incidence of severe toxicity. Toxic and therapeutic effects of IRI are also due to its active metabolite SN-38, reported to be up to 100 times more cytotoxic than IRI. SN-38 is detoxified by the formation of SN-38 glucuronide, through UGT1A1. Genetic polymorphisms in the UGT1A1 gene are associated to higher exposures to SN-38 and severe toxicity. Pharmacokinetic models to describe IRI and SN-38 kinetic profiles are available, with few studies exploring pharmacokinetic and pharmacogenetic-based dose individualization. The aim of this manuscript is to review the available evidence supporting pharmacogenetic and pharmacokinetic dose individualization of IRI in order to reduce the occurrence of severe toxicity during cancer treatment. The PubMed database was searched, considering papers published in the period from 1995-2017, using the keywords irinotecan, pharmacogenetics, metabolic genotyping, dose individualization, therapeutic drug monitoring, pharmacokinetics and pharmacodynamics, either alone or in combination, with original papers being selected based on the presence of relevant data. The findings of this review confirm the importance of considering individual patient characteristics to select IRI doses. Currently, the most straightforward approach for IRI dose individualization is UGT1A1 genotyping. However, this strategy is sub-optimal due to several other genetic and environmental contributions to the variable pharmacokinetics of IRI and its active metabolite. The use of dried blood spot sampling could allow the clinical application of complex sampling for the clinical use of limited sampling and population pharmacokinetic models for IRI doses individualization. Copyright

  2. Examination of AVPR1a as an autism susceptibility gene.

    PubMed

    Wassink, T H; Piven, J; Vieland, V J; Pietila, J; Goedken, R J; Folstein, S E; Sheffield, V C

    2004-10-01

    Impaired reciprocal social interaction is one of the core features of autism. While its determinants are complex, one biomolecular pathway that clearly influences social behavior is the arginine-vasopressin (AVP) system. The behavioral effects of AVP are mediated through the AVP receptor 1a (AVPR1a), making the AVPR1a gene a reasonable candidate for autism susceptibility. We tested the gene's contribution to autism by screening its exons in 125 independent autistic probands and genotyping two promoter polymorphisms in 65 autism affected sibling pair (ASP) families. While we found no nonconservative coding sequence changes, we did identify evidence of linkage and of linkage disequilibrium. These results were most pronounced in a subset of the ASP families with relatively less severe impairment of language. Thus, though we did not demonstrate a disease-causing variant in the coding sequence, numerous nontraditional disease-causing genetic abnormalities are known to exist that would escape detection by traditional gene screening methods. Given the emerging biological, animal model, and now genetic data, AVPR1a and genes in the AVP system remain strong candidates for involvement in autism susceptibility and deserve continued scrutiny.

  3. Transcriptome analysis provides insights into the delayed sticky disease symptoms in Carica papaya.

    PubMed

    Madroñero, Johana; Rodrigues, Silas P; Antunes, Tathiana F S; Abreu, Paolla M V; Ventura, José A; Fernandes, A Alberto R; Fernandes, Patricia Machado Bueno

    2018-03-21

    Global gene expression analysis indicates host stress responses, mainly those mediated by SA, associated to the tolerance to sticky disease symptoms at pre-flowering stage in Carica papaya. Carica papaya plants develop the papaya sticky disease (PSD) as a result of the combined infection of papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2), or PMeV complex. PSD symptoms appear only after C. papaya flowers. To understand the mechanisms involved in this phenomenon, the global gene expression patterns of PMeV complex-infected C. papaya at pre-and post-flowering stages were assessed by RNA-Seq. The result was 633 and 88 differentially expressed genes at pre- and post-flowering stages, respectively. At pre-flowering stage, genes related to stress and transport were up-regulated while metabolism-related genes were down-regulated. It was observed that induction of several salicylic acid (SA)-activated genes, including PR1, PR2, PR5, WRKY transcription factors, ROS and callose genes, suggesting SA signaling involvement in the delayed symptoms. In fact, pre-flowering C. papaya treated with exogenous SA showed a tendency to decrease the PMeV and PMeV2 loads when compared to control plants. However, pre-flowering C. papaya also accumulated transcripts encoding a NPR1-inhibitor (NPR1-I/NIM1-I) candidate, genes coding for UDP-glucosyltransferases (UGTs) and several genes involved with ethylene pathway, known to be negative regulators of SA signaling. At post-flowering, when PSD symptoms appeared, the down-regulation of PR-1 encoding gene and the induction of BSMT1 and JA metabolism-related genes were observed. Hence, SA signaling likely operates at the pre-flowering stage of PMeV complex-infected C. papaya inhibiting the development of PSD symptoms, but the induction of its negative regulators prevents the full-scale and long-lasting tolerance.

  4. Human AZU-1 gene, variants thereof and expressed gene products

    DOEpatents

    Chen, Huei-Mei; Bissell, Mina

    2004-06-22

    A human AZU-1 gene, mutants, variants and fragments thereof. Protein products encoded by the AZU-1 gene and homologs encoded by the variants of AZU-1 gene acting as tumor suppressors or markers of malignancy progression and tumorigenicity reversion. Identification, isolation and characterization of AZU-1 and AZU-2 genes localized to a tumor suppressive locus at chromosome 10q26, highly expressed in nonmalignant and premalignant cells derived from a human breast tumor progression model. A recombinant full length protein sequences encoded by the AZU-1 gene and nucleotide sequences of AZU-1 and AZU-2 genes and variant and fragments thereof. Monoclonal or polyclonal antibodies specific to AZU-1, AZU-2 encoded protein and to AZU-1, or AZU-2 encoded protein homologs.

  5. Complexes containing cationic and anionic pH-sensitive liposomes: comparative study of factors influencing plasmid DNA gene delivery to tumors.

    PubMed

    Chen, Yan; Sun, Ji; Lu, Ying; Tao, Chun; Huang, Jingbin; Zhang, He; Yu, Yuan; Zou, Hao; Gao, Jing; Zhong, Yanqiang

    2013-01-01

    pH-sensitive liposomes represent an effective gene vector in cancer therapy. However, their use is greatly hampered by their relatively low transfection efficiency. To improve the transfection efficiency of pH-sensitive liposomes, we prepared complexes containing 3β-[N-(N',N'-dimethylaminoethane) carbamoyl] cholesterol (DC-Chol) and dioleoylphosphatidyl ethanolamine (DOPE) liposomes and pH-sensitive liposomes composed of cholesteryl hemisuccinate (CHEMS) and DOPE, and evaluated the influence of various factors on plasmid DNA (pDNA) transfection efficiency. All DC-Chol/DOPE liposome/pDNA and pH-sensitive liposome complexes showed similarly potent pH sensitivity. In the presence of serum-containing medium, two optimized complexes of DC-Chol/DOPE liposomes/pDNA and pH-sensitive PEGylated liposomes showed high transfection efficiency of 22.94% and 20.07%, respectively. Notably, DC-Chol/DOPE (2:3) liposomes/pH-sensitive PEGylated (1%) liposome complexes with a charge ratio of 1:1 (m/m [+/-]) showed enhanced accumulation in tumors in vivo. Our results show the influence of various factors on pDNA transfection efficiency in complexes of DC-Chol/DOPE liposomes and pH-sensitive PEGylated liposomes. Understanding of such mechanisms will lead to better design of complexes of DC-Chol/DOPE liposomes and pH-sensitive liposomes for gene therapy.

  6. Complexes containing cationic and anionic pH-sensitive liposomes: comparative study of factors influencing plasmid DNA gene delivery to tumors

    PubMed Central

    Chen, Yan; Sun, Ji; Lu, Ying; Tao, Chun; Huang, Jingbin; Zhang, He; Yu, Yuan; Zou, Hao; Gao, Jing; Zhong, Yanqiang

    2013-01-01

    pH-sensitive liposomes represent an effective gene vector in cancer therapy. However, their use is greatly hampered by their relatively low transfection efficiency. To improve the transfection efficiency of pH-sensitive liposomes, we prepared complexes containing 3β-[N-(N′,N′-dimethylaminoethane) carbamoyl] cholesterol (DC-Chol) and dioleoylphosphatidyl ethanolamine (DOPE) liposomes and pH-sensitive liposomes composed of cholesteryl hemisuccinate (CHEMS) and DOPE, and evaluated the influence of various factors on plasmid DNA (pDNA) transfection efficiency. All DC-Chol/DOPE liposome/pDNA and pH-sensitive liposome complexes showed similarly potent pH sensitivity. In the presence of serum-containing medium, two optimized complexes of DC-Chol/DOPE liposomes/pDNA and pH-sensitive PEGylated liposomes showed high transfection efficiency of 22.94% and 20.07%, respectively. Notably, DC-Chol/DOPE (2:3) liposomes/pH-sensitive PEGylated (1%) liposome complexes with a charge ratio of 1:1 (m/m [+/−]) showed enhanced accumulation in tumors in vivo. Our results show the influence of various factors on pDNA transfection efficiency in complexes of DC-Chol/DOPE liposomes and pH-sensitive PEGylated liposomes. Understanding of such mechanisms will lead to better design of complexes of DC-Chol/DOPE liposomes and pH-sensitive liposomes for gene therapy. PMID:23637529

  7. Activity, polypeptide and gene identification of thylakoid Ndh complex in trees: potential physiological relevance of fluorescence assays.

    PubMed

    Serrot, Patricia H; Sabater, Bartolomé; Martín, Mercedes

    2012-09-01

    Three evergreen (Laurus nobilis, Viburnum tinus and Thuja plicata) and two autumnal abscission deciduous trees (Cydonia oblonga and Prunus domestica) have been investigated for the presence (zymogram and immunodetection) and functionality (post-illumination chlorophyll fluorescence) of the thylakoid Ndh complex. The presence of encoding ndh genes has also been investigated in T. plicata. Western assays allowed tentative identification of zymogram NADH dehydrogenase bands corresponding to the Ndh complex after native electrophoresis of solubilized fractions from L. nobilis, V. tinus, C. oblonga and P. domestica leaves, but not in those of T. plicata. However, Ndh subunits were detected after SDS-PAGE of thylakoid solubilized proteins of T. plicata. The leaves of the five plants showed the post-illumination chlorophyll fluorescence increase dependent on the presence of active Ndh complex. The fluorescence increase was higher in autumn in deciduous, but not in evergreen trees, which suggests that the thylakoid Ndh complex could be involved in autumnal leaf senescence. Two ndhB genes were sequenced from T. plicata that differ at the 350 bp 3' end sequence. Comparison with the mRNA revealed that ndhB genes have a 707-bp type II intron between exons 1 (723 bp) and 2 (729 bp) and that the UCA 259th codon is edited to UUA in mRNA. Phylogenetically, the ndhB genes of T. plicata group close to those of Metasequoia, Cryptomeria, Taxodium, Juniperus and Widdringtonia in the cupresaceae branch and are 5' end shortened by 18 codons with respect to that of angiosperms. Copyright © Physiologia Plantarum 2012.

  8. Activity, polypeptide and gene identification of thylakoid Ndh complex in trees: potential physiological relevance of fluorescence assays

    PubMed Central

    Serrot, Patricia H; Sabater, Bartolomé; Martín, Mercedes

    2012-01-01

    Three evergreen (Laurus nobilis, Viburnum tinus and Thuja plicata) and two autumnal abscission deciduous trees (Cydonia oblonga and Prunus domestica) have been investigated for the presence (zymogram and immunodetection) and functionality (post-illumination chlorophyll fluorescence) of the thylakoid Ndh complex. The presence of encoding ndh genes has also been investigated in T. plicata. Western assays allowed tentative identification of zymogram NADH dehydrogenase bands corresponding to the Ndh complex after native electrophoresis of solubilized fractions from L. nobilis, V. tinus, C. oblonga and P. domestica leaves, but not in those of T. plicata. However, Ndh subunits were detected after SDS-PAGE of thylakoid solubilized proteins of T. plicata. The leaves of the five plants showed the post-illumination chlorophyll fluorescence increase dependent on the presence of active Ndh complex. The fluorescence increase was higher in autumn in deciduous, but not in evergreen trees, which suggests that the thylakoid Ndh complex could be involved in autumnal leaf senescence. Two ndhB genes were sequenced from T. plicata that differ at the 350 bp 3′ end sequence. Comparison with the mRNA revealed that ndhB genes have a 707-bp type II intron between exons 1 (723 bp) and 2 (729 bp) and that the UCA 259th codon is edited to UUA in mRNA. Phylogenetically, the ndhB genes of T. plicata group close to those of Metasequoia, Cryptomeria, Taxodium, Juniperus and Widdringtonia in the cupresaceae branch and are 5′ end shortened by 18 codons with respect to that of angiosperms. PMID:22324908

  9. Molecular markers shared by diverse apomictic Pennisetum species.

    PubMed

    Lubbers, E L; Arthur, L; Hanna, W W; Ozias-Akins, P

    1994-11-01

    Two molecular markers, a RAPD (randomly amplified polymorphic DNA) and a RFLP/STS (restriction fragment length polymorphism/sequence-tagged site), previously were found associated with apomictic reproductive behavior in a backcross population produced to transfer apomixis from Pennisetum squamulatum to pearl millet. The occurrence of these molecular markers in a range of 29 accessions of Pennisetum comprising 11 apomictic and 8 sexual species was investigated. Both markers were specific for apomictic species in Pennisetum. The RFLP/STS marker, UGT 197, was found to be associated with all taxa that displayed apomictic reproductive behavior except those in section Brevivalvula. Neither UGT197 nor the cloned RAPD fragment OPC-04600 hybridized with any sexually reproducing representatives of the genus. The cloned C04600 was associated with 3 of the 11 apomictic species, P. ciliare, P. massaicum, and P. squamulatum. UGT197 was more consistently associated with apomictic reproductive behavior than OPC04600 or cloned C04600, thus it could be inferred that UGT197 is more closely linked to the gene(s) for apomixis than the cloned C04600. The successful use of these probes to survey other Pennisetum species indicates that apomixis is a trait that can be followed across species by using molecular means. This technique of surveying species within a genus will be useful in determining the relative importance of newly isolated markers and may facilitate the identification of the apomixis gene(s).

  10. A stable transcription factor complex nucleated by oligomeric AML1–ETO controls leukaemogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiao-Jian; Wang, Zhanxin; Wang, Lan

    2013-06-30

    Transcription factors are frequently altered in leukaemia through chromosomal translocation, mutation or aberrant expression. AML1–ETO, a fusion protein generated by the t(8;21) translocation in acute myeloid leukaemia, is a transcription factor implicated in both gene repression and activation. AML1–ETO oligomerization, mediated by the NHR2 domain, is critical for leukaemogenesis, making it important to identify co-regulatory factors that ‘read’ the NHR2 oligomerization and contribute to leukaemogenesis. Here we show that, in human leukaemic cells, AML1–ETO resides in and functions through a stable AML1–ETO-containing transcription factor complex (AETFC) that contains several haematopoietic transcription (co)factors. These AETFC components stabilize the complex through multivalentmore » interactions, provide multiple DNA-binding domains for diverse target genes, co-localize genome wide, cooperatively regulate gene expression, and contribute to leukaemogenesis. Within the AETFC complex, AML1–ETO oligomerization is required for a specific interaction between the oligomerized NHR2 domain and a novel NHR2-binding (N2B) motif in E proteins. Crystallographic analysis of the NHR2–N2B complex reveals a unique interaction pattern in which an N2B peptide makes direct contact with side chains of two NHR2 domains as a dimer, providing a novel model of how dimeric/oligomeric transcription factors create a new protein-binding interface through dimerization/oligomerization. Intriguingly, disruption of this interaction by point mutations abrogates AML1–ETO-induced haematopoietic stem/progenitor cell self-renewal and leukaemogenesis. These results reveal new mechanisms of action of AML1–ETO, and provide a potential therapeutic target in t(8;21)-positive acute myeloid leukaemia.« less

  11. Complex organisation and structure of the ghrelin antisense strand gene GHRLOS, a candidate non-coding RNA gene

    PubMed Central

    Seim, Inge; Carter, Shea L; Herington, Adrian C; Chopin, Lisa K

    2008-01-01

    Background The peptide hormone ghrelin has many important physiological and pathophysiological roles, including the stimulation of growth hormone (GH) release, appetite regulation, gut motility and proliferation of cancer cells. We previously identified a gene on the opposite strand of the ghrelin gene, ghrelinOS (GHRLOS), which spans the promoter and untranslated regions of the ghrelin gene (GHRL). Here we further characterise GHRLOS. Results We have described GHRLOS mRNA isoforms that extend over 1.4 kb of the promoter region and 106 nucleotides of exon 4 of the ghrelin gene, GHRL. These GHRLOS transcripts initiate 4.8 kb downstream of the terminal exon 4 of GHRL and are present in the 3' untranslated exon of the adjacent gene TATDN2 (TatD DNase domain containing 2). Interestingly, we have also identified a putative non-coding TATDN2-GHRLOS chimaeric transcript, indicating that GHRLOS RNA biogenesis is extremely complex. Moreover, we have discovered that the 3' region of GHRLOS is also antisense, in a tail-to-tail fashion to a novel terminal exon of the neighbouring SEC13 gene, which is important in protein transport. Sequence analyses revealed that GHRLOS is riddled with stop codons, and that there is little nucleotide and amino-acid sequence conservation of the GHRLOS gene between vertebrates. The gene spans 44 kb on 3p25.3, is extensively spliced and harbours multiple variable exons. We have also investigated the expression of GHRLOS and found evidence of differential tissue expression. It is highly expressed in tissues which are emerging as major sites of non-coding RNA expression (the thymus, brain, and testis), as well as in the ovary and uterus. In contrast, very low levels were found in the stomach where sense, GHRL derived RNAs are highly expressed. Conclusion GHRLOS RNA transcripts display several distinctive features of non-coding (ncRNA) genes, including 5' capping, polyadenylation, extensive splicing and short open reading frames. The gene is also

  12. Complex organisation and structure of the ghrelin antisense strand gene GHRLOS, a candidate non-coding RNA gene.

    PubMed

    Seim, Inge; Carter, Shea L; Herington, Adrian C; Chopin, Lisa K

    2008-10-28

    The peptide hormone ghrelin has many important physiological and pathophysiological roles, including the stimulation of growth hormone (GH) release, appetite regulation, gut motility and proliferation of cancer cells. We previously identified a gene on the opposite strand of the ghrelin gene, ghrelinOS (GHRLOS), which spans the promoter and untranslated regions of the ghrelin gene (GHRL). Here we further characterise GHRLOS. We have described GHRLOS mRNA isoforms that extend over 1.4 kb of the promoter region and 106 nucleotides of exon 4 of the ghrelin gene, GHRL. These GHRLOS transcripts initiate 4.8 kb downstream of the terminal exon 4 of GHRL and are present in the 3' untranslated exon of the adjacent gene TATDN2 (TatD DNase domain containing 2). Interestingly, we have also identified a putative non-coding TATDN2-GHRLOS chimaeric transcript, indicating that GHRLOS RNA biogenesis is extremely complex. Moreover, we have discovered that the 3' region of GHRLOS is also antisense, in a tail-to-tail fashion to a novel terminal exon of the neighbouring SEC13 gene, which is important in protein transport. Sequence analyses revealed that GHRLOS is riddled with stop codons, and that there is little nucleotide and amino-acid sequence conservation of the GHRLOS gene between vertebrates. The gene spans 44 kb on 3p25.3, is extensively spliced and harbours multiple variable exons. We have also investigated the expression of GHRLOS and found evidence of differential tissue expression. It is highly expressed in tissues which are emerging as major sites of non-coding RNA expression (the thymus, brain, and testis), as well as in the ovary and uterus. In contrast, very low levels were found in the stomach where sense, GHRL derived RNAs are highly expressed. GHRLOS RNA transcripts display several distinctive features of non-coding (ncRNA) genes, including 5' capping, polyadenylation, extensive splicing and short open reading frames. The gene is also non-conserved, with differential

  13. The hematopoietic regulator TAL1 is required for chromatin looping between the β-globin LCR and human γ-globin genes to activate transcription.

    PubMed

    Yun, Won Ju; Kim, Yea Woon; Kang, Yujin; Lee, Jungbae; Dean, Ann; Kim, AeRi

    2014-04-01

    TAL1 is a key hematopoietic transcription factor that binds to regulatory regions of a large cohort of erythroid genes as part of a complex with GATA-1, LMO2 and Ldb1. The complex mediates long-range interaction between the β-globin locus control region (LCR) and active globin genes, and although TAL1 is one of the two DNA-binding complex members, its role is unclear. To explore the role of TAL1 in transcription activation of the human γ-globin genes, we reduced the expression of TAL1 in erythroid K562 cells using lentiviral short hairpin RNA, compromising its association in the β-globin locus. In the TAL1 knockdown cells, the γ-globin transcription was reduced to 35% and chromatin looping of the (G)γ-globin gene with the LCR was disrupted with decreased occupancy of the complex member Ldb1 and LMO2 in the locus. However, GATA-1 binding, DNase I hypersensitive site formation and several histone modifications were largely maintained across the β-globin locus. In addition, overexpression of TAL1 increased the γ-globin transcription and increased interaction frequency between the (G)γ-globin gene and LCR. These results indicate that TAL1 plays a critical role in chromatin loop formation between the γ-globin genes and LCR, which is a critical step for the transcription of the γ-globin genes.

  14. The hematopoietic regulator TAL1 is required for chromatin looping between the β-globin LCR and human γ-globin genes to activate transcription

    PubMed Central

    Yun, Won Ju; Kim, Yea Woon; Kang, Yujin; Lee, Jungbae; Dean, Ann; Kim, AeRi

    2014-01-01

    TAL1 is a key hematopoietic transcription factor that binds to regulatory regions of a large cohort of erythroid genes as part of a complex with GATA-1, LMO2 and Ldb1. The complex mediates long-range interaction between the β-globin locus control region (LCR) and active globin genes, and although TAL1 is one of the two DNA-binding complex members, its role is unclear. To explore the role of TAL1 in transcription activation of the human γ-globin genes, we reduced the expression of TAL1 in erythroid K562 cells using lentiviral short hairpin RNA, compromising its association in the β-globin locus. In the TAL1 knockdown cells, the γ-globin transcription was reduced to 35% and chromatin looping of the Gγ-globin gene with the LCR was disrupted with decreased occupancy of the complex member Ldb1 and LMO2 in the locus. However, GATA-1 binding, DNase I hypersensitive site formation and several histone modifications were largely maintained across the β-globin locus. In addition, overexpression of TAL1 increased the γ-globin transcription and increased interaction frequency between the Gγ-globin gene and LCR. These results indicate that TAL1 plays a critical role in chromatin loop formation between the γ-globin genes and LCR, which is a critical step for the transcription of the γ-globin genes. PMID:24470145

  15. Pharmacokinetic and pharmacogenomic profiles of telmisartan after the oral microdose and therapeutic dose.

    PubMed

    Ieiri, Ichiro; Nishimura, Chisa; Maeda, Kazuya; Sasaki, Tomohiro; Kimura, Miyuki; Chiyoda, Takeshi; Hirota, Tekeshi; Irie, Shin; Shimizu, Hitoshi; Noguchi, Takanori; Yoshida, Kenji; Sugiyama, Yuichi

    2011-08-01

    In this study, we evaluated (a) the contribution of SLCO1B3 and UGT1A polymorphisms to the pharmacokinetics of telmisartan in two forms, a microdose (MD) and a therapeutic dose (TD); (b) linkage disequilibrium (LD) between UGT1A1 and UGT1A3; and (c) linearity in the pharmacokinetics of telmisartan between the two forms. Telmisartan was orally administered at MD condition (100 μg), and then at TD condition (80 mg) to 33 healthy volunteers whose genotypes were prescreened by DMET Plus. Plasma concentrations of telmisartan and its glucuronide were measured by LC-MS/MS, and population pharmacokinetic analysis was performed. No obvious effect of SLCO1B3 polymorphisms (334T>G, 699G>A, and rs11045585) on the pharmacokinetics of telmisartan was observed. The strong LD between UGT1A1*6 and UGT1A3*4a, and between UGT1A1*28 and UGT1A3*2a were observed. After both MD and TD administration, the mean area under the curve0-24 (±standard deviation) of telmisartan was significantly lower and higher in individuals with the UGT1A3*2a (TD, 1701±970 ng hr/ml; MD, 978±537 pg hr/ml) and *4a variants (TD, 5340±1168; MD, 3145±1093), respectively, compared with those in individuals with UGT1A3*1/*1 (TD, 2969±1456; MD, 1669±726). These results were quantitatively confirmed by population pharmacokinetic analysis. Nonlinearity of the dose-exposure relationship was observed between the MD and TD. The haplotypes of UGT1A3 significantly influenced pharmacokinetics of telmisartan and a strong LD between UGT1A1 genotype and UGT1A3 haplotype was observed. These findings are potentially of pharmacological and toxicological importance to the development and clinical use of drugs.

  16. Identification of susceptible genes for complex chronic diseases based on disease risk functional SNPs and interaction networks.

    PubMed

    Li, Wan; Zhu, Lina; Huang, Hao; He, Yuehan; Lv, Junjie; Li, Weimin; Chen, Lina; He, Weiming

    2017-10-01

    Complex chronic diseases are caused by the effects of genetic and environmental factors. Single nucleotide polymorphisms (SNPs), one common type of genetic variations, played vital roles in diseases. We hypothesized that disease risk functional SNPs in coding regions and protein interaction network modules were more likely to contribute to the identification of disease susceptible genes for complex chronic diseases. This could help to further reveal the pathogenesis of complex chronic diseases. Disease risk SNPs were first recognized from public SNP data for coronary heart disease (CHD), hypertension (HT) and type 2 diabetes (T2D). SNPs in coding regions that were classified into nonsense and missense by integrating several SNP functional annotation databases were treated as functional SNPs. Then, regions significantly associated with each disease were screened using random permutations for disease risk functional SNPs. Corresponding to these regions, 155, 169 and 173 potential disease susceptible genes were identified for CHD, HT and T2D, respectively. A disease-related gene product interaction network in environmental context was constructed for interacting gene products of both disease genes and potential disease susceptible genes for these diseases. After functional enrichment analysis for disease associated modules, 5 CHD susceptible genes, 7 HT susceptible genes and 3 T2D susceptible genes were finally identified, some of which had pleiotropic effects. Most of these genes were verified to be related to these diseases in literature. This was similar for disease genes identified from another method proposed by Lee et al. from a different aspect. This research could provide novel perspectives for diagnosis and treatment of complex chronic diseases and susceptible genes identification for other diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Genomic localization of the human gene encoding Dr1, a negative modulator of transcription of class II and class III genes.

    PubMed

    Purrello, M; Di Pietro, C; Rapisarda, A; Viola, A; Corsaro, C; Motta, S; Grzeschik, K H; Sichel, G

    1996-01-01

    Dr1 is a nuclear protein of 19 kDa that exists in the nucleoplasm as a homotetramer. By binding to TBP (the DNA-binding subunit of TFIID, and also a subunit of SL1 and TFIIIB), the protein blocks class II and class III preinitiation complex assembly, thus repressing the activity of the corresponding promoters. Since transcription of class I genes is unaffected by Dr1. it has been proposed that the protein may coordinate the expression of class I, class II and class III genes. By somatic cell genetics and fluorescence in situ hybridization, we have localized the gene (DR1), present in the genome of higher eukaryotes as a single copy, to human chromosome region 1p21-->p13. The nucleotide sequence conservation of the coding segment of the gene, as determined by Noah's ark blot analysis, and its ubiquitous transcription suggest that Dr1 has an important biological role, which could be related to the negative control of cell proliferation.

  18. Myeloid Leukemia Factor Acts in a Chaperone Complex to Regulate Transcription Factor Stability and Gene Expression.

    PubMed

    Dyer, Jamie O; Dutta, Arnob; Gogol, Madelaine; Weake, Vikki M; Dialynas, George; Wu, Xilan; Seidel, Christopher; Zhang, Ying; Florens, Laurence; Washburn, Michael P; Abmayr, Susan M; Workman, Jerry L

    2017-06-30

    Mutations that affect myelodysplasia/myeloid leukemia factor (MLF) proteins are associated with leukemia and several other cancers. However, with no strong homology to other proteins of known function, the role of MLF proteins in the cell has remained elusive. Here, we describe a proteomics approach that identifies MLF as a member of a nuclear chaperone complex containing a DnaJ protein, BCL2-associated anthanogene 2, and Hsc70. This complex associates with chromatin and regulates the expression of target genes. The MLF complex is bound to sites of nucleosome depletion and sites containing active chromatin marks (e.g., H3K4me3 and H3K4me1). Hence, MLF binding is enriched at promoters and enhancers. Additionally, the MLF-chaperone complex functions to regulate transcription factor stability, including the RUNX transcription factor involved in hematopoiesis. Although Hsc70 and other co-chaperones have been shown to play a role in nuclear translocation of a variety of proteins including transcription factors, our findings suggest that MLF and the associated co-chaperones play a direct role in modulating gene transcription. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Seasonal alteration in amounts of lignans and their glucosides and gene expression of the relevant biosynthetic enzymes in the Forsythia suspense leaf.

    PubMed

    Morimoto, Kinuyo; Satake, Honoo

    2013-01-01

    Lignans of Forsythia spp. are essential components of various Chinese medicines and health diets. However, the seasonal alteration in lignan amounts and the gene expression profile of lignan-biosynthetic enzymes has yet to be investigated. In this study, we have assessed seasonal alteration in amounts of major lignans, such as pinoresinol, matairesinol, and arctigenin, and examined the gene expression profile of pinoresinol/lariciresinol reductase (PLR), pinoresinol-glucosylating enzyme (UGT71A18), and secoisolariciresinol dehydrogenase (SIRD) in the leaf of Forsythia suspense from April to November. All of the lignans in the leaf continuously increased from April to June, reached the maximal level in June, and then decreased. Ninety percent of pinoresinol and matairesinol was converted into glucosides, while approximately 50% of arctigenin was aglycone. PLR was stably expressed from April to August, whereas the PLR expression was not detected from September to November. In contrast, the UGT71A18 expression was found from August to November, but not from April to July. The SIRD expression was prominent from April to May, not detected in June to July, and then increased again from September to November. These expression profiles of the lignan-synthetic enzymes are largely compatible with the alteration in lignan contents. Furthermore, such seasonal lignan profiles are in good agreement with the fact that the Forsythia leaves for Chinese medicinal tea are harvested in June. This is the first report on seasonal alteration in lignans and the relevant biosynthetic enzyme genes in the leaf of Forsythia species.

  20. Juxtaposed Polycomb complexes co-regulate vertebral identity.

    PubMed

    Kim, Se Young; Paylor, Suzanne W; Magnuson, Terry; Schumacher, Armin

    2006-12-01

    Best known as epigenetic repressors of developmental Hox gene transcription, Polycomb complexes alter chromatin structure by means of post-translational modification of histone tails. Depending on the cellular context, Polycomb complexes of diverse composition and function exhibit cooperative interaction or hierarchical interdependency at target loci. The present study interrogated the genetic, biochemical and molecular interaction of BMI1 and EED, pivotal constituents of heterologous Polycomb complexes, in the regulation of vertebral identity during mouse development. Despite a significant overlap in dosage-sensitive homeotic phenotypes and co-repression of a similar set of Hox genes, genetic analysis implicated eed and Bmi1 in parallel pathways, which converge at the level of Hox gene regulation. Whereas EED and BMI1 formed separate biochemical entities with EzH2 and Ring1B, respectively, in mid-gestation embryos, YY1 engaged in both Polycomb complexes. Strikingly, methylated lysine 27 of histone H3 (H3-K27), a mediator of Polycomb complex recruitment to target genes, stably associated with the EED complex during the maintenance phase of Hox gene repression. Juxtaposed EED and BMI1 complexes, along with YY1 and methylated H3-K27, were detected in upstream regulatory regions of Hoxc8 and Hoxa5. The combined data suggest a model wherein epigenetic and genetic elements cooperatively recruit and retain juxtaposed Polycomb complexes in mammalian Hox gene clusters toward co-regulation of vertebral identity.

  1. The mate recognition protein gene mediates reproductive isolation and speciation in the Brachionus plicatilis cryptic species complex

    PubMed Central

    2012-01-01

    Background Chemically mediated prezygotic barriers to reproduction likely play an important role in speciation. In facultatively sexual monogonont rotifers from the Brachionus plicatilis cryptic species complex, mate recognition of females by males is mediated by the Mate Recognition Protein (MRP), a globular glycoprotein on the surface of females, encoded by the mmr-b gene family. In this study, we sequenced mmr-b copies from 27 isolates representing 11 phylotypes of the B. plicatilis species complex, examined the mode of evolution and selection of mmr-b, and determined the relationship between mmr-b genetic distance and mate recognition among isolates. Results Isolates of the B. plicatilis species complex have 1–4 copies of mmr-b, each composed of 2–9 nearly identical tandem repeats. The repeats within a gene copy are generally more similar than are gene copies among phylotypes, suggesting concerted evolution. Compared to housekeeping genes from the same isolates, mmr-b has accumulated only half as many synonymous differences but twice as many non-synonymous differences. Most of the amino acid differences between repeats appear to occur on the outer face of the protein, and these often result in changes in predicted patterns of phosphorylation. However, we found no evidence of positive selection driving these differences. Isolates with the most divergent copies were unable to mate with other isolates and rarely self-crossed. Overall the degree of mate recognition was significantly correlated with the genetic distance of mmr-b. Conclusions Discrimination of compatible mates in the B. plicatilis species complex is determined by proteins encoded by closely related copies of a single gene, mmr-b. While concerted evolution of the tandem repeats in mmr-b may function to maintain identity, it can also lead to the rapid spread of a mutation through all copies in the genome and thus to reproductive isolation. The mmr-b gene is evolving rapidly, and novel alleles may

  2. The mate recognition protein gene mediates reproductive isolation and speciation in the Brachionus plicatilis cryptic species complex.

    PubMed

    Gribble, Kristin E; Mark Welch, David B

    2012-08-01

    Chemically mediated prezygotic barriers to reproduction likely play an important role in speciation. In facultatively sexual monogonont rotifers from the Brachionus plicatilis cryptic species complex, mate recognition of females by males is mediated by the Mate Recognition Protein (MRP), a globular glycoprotein on the surface of females, encoded by the mmr-b gene family. In this study, we sequenced mmr-b copies from 27 isolates representing 11 phylotypes of the B. plicatilis species complex, examined the mode of evolution and selection of mmr-b, and determined the relationship between mmr-b genetic distance and mate recognition among isolates. Isolates of the B. plicatilis species complex have 1-4 copies of mmr-b, each composed of 2-9 nearly identical tandem repeats. The repeats within a gene copy are generally more similar than are gene copies among phylotypes, suggesting concerted evolution. Compared to housekeeping genes from the same isolates, mmr-b has accumulated only half as many synonymous differences but twice as many non-synonymous differences. Most of the amino acid differences between repeats appear to occur on the outer face of the protein, and these often result in changes in predicted patterns of phosphorylation. However, we found no evidence of positive selection driving these differences. Isolates with the most divergent copies were unable to mate with other isolates and rarely self-crossed. Overall the degree of mate recognition was significantly correlated with the genetic distance of mmr-b. Discrimination of compatible mates in the B. plicatilis species complex is determined by proteins encoded by closely related copies of a single gene, mmr-b. While concerted evolution of the tandem repeats in mmr-b may function to maintain identity, it can also lead to the rapid spread of a mutation through all copies in the genome and thus to reproductive isolation. The mmr-b gene is evolving rapidly, and novel alleles may be maintained and increase in

  3. MYC interaction with the tumor suppressive SWI/SNF complex member INI1 regulates transcription and cellular transformation

    PubMed Central

    Stojanova, Angelina; Tu, William B.; Ponzielli, Romina; Kotlyar, Max; Chan, Pak-Kei; Boutros, Paul C.; Khosravi, Fereshteh; Jurisica, Igor; Raught, Brian; Penn, Linda Z.

    2016-01-01

    ABSTRACT MYC is a key driver of cellular transformation and is deregulated in most human cancers. Studies of MYC and its interactors have provided mechanistic insight into its role as a regulator of gene transcription. MYC has been previously linked to chromatin regulation through its interaction with INI1 (SMARCB1/hSNF5/BAF47), a core member of the SWI/SNF chromatin remodeling complex. INI1 is a potent tumor suppressor that is inactivated in several types of cancers, most prominently as the hallmark alteration in pediatric malignant rhabdoid tumors. However, the molecular and functional interaction of MYC and INI1 remains unclear. Here, we characterize the MYC-INI1 interaction in mammalian cells, mapping their minimal binding domains to functionally significant regions of MYC (leucine zipper) and INI1 (repeat motifs), and demonstrating that the interaction does not interfere with MYC-MAX interaction. Protein-protein interaction network analysis expands the MYC-INI1 interaction to the SWI/SNF complex and a larger network of chromatin regulatory complexes. Genome-wide analysis reveals that the DNA-binding regions and target genes of INI1 significantly overlap with those of MYC. In an INI1-deficient rhabdoid tumor system, we observe that with re-expression of INI1, MYC and INI1 bind to common target genes and have opposing effects on gene expression. Functionally, INI1 re-expression suppresses cell proliferation and MYC-potentiated transformation. Our findings thus establish the antagonistic roles of the INI1 and MYC transcriptional regulators in mediating cellular and oncogenic functions. PMID:27267444

  4. Cerivastatin, Genetic Variants, and the Risk of Rhabdomyolysis

    PubMed Central

    Marciante, Kristin D.; Durda, Jon P.; Heckbert, Susan R.; Lumley, Thomas; Rice, Ken; McKnight, Barbara; Totah, Rheem A.; Tamraz, Bani; Kroetz, Deanna L.; Fukushima, Hisayo; Kaspera, Rüdiger; Bis, Joshua C.; Glazer, Nicole L.; Li, Guo; Austin, Thomas R.; Taylor, Kent D.; Rotter, Jerome I.; Jaquish, Cashell E.; Kwok, Pui-Yan; Tracy, Russell P.; Psaty, Bruce M.

    2011-01-01

    Objective The withdrawal of cerivastatin involved an uncommon but serious adverse reaction, rhabdomyolysis. The bimodal response--rhabdomyolysis in a small proportion of users-- points to genetic factors as a potential cause. We conducted a case-control study to evaluate genetic markers for cerivastatin-associated rhabdomyolysis. Methods The study had two components: a candidate gene study to evaluate variants in CYP2C8, UGT1A1, UGT1A3, and SLCO1B1; and a genome-wide association (GWA) study to identify risk factors in other regions of the genome. 185 rhabdomyolysis cases were frequency matched to statin-using controls from the Cardiovascular Health Study (n=374) and the Heart and Vascular Health Study (n=358). Validation relied on functional studies. Results Permutation test results suggested an association between cerivastatin-associated rhabdomyolysis and variants in SLCO1B1 (p = 0.002), but not variants in CYP2C8 (p = 0.073) or the UGTs (p = 0.523). An additional copy of the minor allele of SLCO1B1 rs4149056 (p.Val174Ala) was associated with the risk of rhabdomyolysis (OR: 1.89, 95% CI: 1.40 to 2.56). In transfected cells, this variant reduced cerivastatin transport by 40% compared with the reference transporter (p < 0.001). The GWA identified an intronic variant (rs2819742) in the ryanodine receptor 2 gene (RYR2) as significant (p=1.74E-07). An additional copy of the minor allele of the RYR2 variant was associated with a reduced risk of rhabdomyolysis (OR: 0.48; 95% CI: 0.36 to 0.63). Conclusion We identified modest genetic risk factors for an extreme response to cerivastatin. Disabling genetic variants in the candidate genes were not responsible for the bimodal response to cerivastatin. PMID:21386754

  5. The mRNA cap-binding protein Cbc1 is required for high and timely expression of genes by promoting the accumulation of gene-specific activators at promoters.

    PubMed

    Li, Tianlu; De Clercq, Nikki; Medina, Daniel A; Garre, Elena; Sunnerhagen, Per; Pérez-Ortín, José E; Alepuz, Paula

    2016-02-01

    The highly conserved Saccharomyces cerevisiae cap-binding protein Cbc1/Sto1 binds mRNA co-transcriptionally and acts as a key coordinator of mRNA fate. Recently, Cbc1 has also been implicated in transcription elongation and pre-initiation complex (PIC) formation. Previously, we described Cbc1 to be required for cell growth under osmotic stress and to mediate osmostress-induced translation reprogramming. Here, we observe delayed global transcription kinetics in cbc1Δ during osmotic stress that correlates with delayed recruitment of TBP and RNA polymerase II to osmo-induced promoters. Interestingly, we detect an interaction between Cbc1 and the MAPK Hog1, which controls most gene expression changes during osmostress, and observe that deletion of CBC1 delays the accumulation of the activator complex Hot1-Hog1 at osmostress promoters. Additionally, CBC1 deletion specifically reduces transcription rates of highly transcribed genes under non-stress conditions, such as ribosomal protein (RP) genes, while having low impact on transcription of weakly expressed genes. For RP genes, we show that recruitment of the specific activator Rap1, and subsequently TBP, to promoters is Cbc1-dependent. Altogether, our results indicate that binding of Cbc1 to the capped mRNAs is necessary for the accumulation of specific activators as well as PIC components at the promoters of genes whose expression requires high and rapid transcription. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Traditional Herbal Formulas to as Treatments for Musculoskeletal Disorders: Their Inhibitory Effects on the Activities of Human Microsomal Cytochrome P450s and UDP-glucuronosyltransferases

    PubMed Central

    Jin, Seong Eun; Seo, Chang-Seob; Shin, Hyeun-Kyoo; Ha, Hyekyung

    2016-01-01

    Objective: The aim of this study was to assess the influence of traditional herbal formulas, including Bangpungtongseong-san (BPTSS; Fangfengtongsheng-san, Bofu-tsusho-san), Ojeok-san (OJS; Wuji-san, Goshaku-san), and Oyaksungi-san (OYSGS; Wuyaoshungi-san, Uyakujyunki-san), on the activities of the human cytochrome P450s (CYP450s) and UDP-glucuronosyltransferases (UGTs), which are drug-metabolizing enzymes. Materials and Methods: The activities of the major human CYP450 isozymes (CYP1A2, CYP3A4, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP2E1) and UGTs (UGT1A1, UGT1A4, and UGT2B7) were investigated using in vitro fluorescence-based and luminescence-based enzyme assays, respectively. The inhibitory effects of the herbal formulas were characterized, and their IC50 values were determined. Results: BPTSS inhibited the activities of CYP1A2, CYP2C19, CYP2E1, and UGT1A1 while it exerted relatively weak inhibition on CYP2B6, CYP2C9, CYP2D6, and CYP3A4. BPTSS also negligibly inhibited the activities of UGT1A4 and UGT2B7, with IC50 values in the excess of 1000 μg/mL. OJS and OYSGS inhibited the activity of CYP2D6, whereas they exhibited no inhibition of the UGT1A4 activity at doses <1000 μg/mL. In addition, OJS inhibited the CYP1A2 activity but exerted a relatively weak inhibition on the activities of CYP2C9, CYP2C19, CYP2E1, and CYP3A4. Conversely, OJS negligibly inhibited the activities of CYP2B6, UGT1A1, and UGT2B7 with IC50 values in excess of 1000 μg/mL. OYSGS weakly inhibited the activities of CYP1A2, CYP2C19, CYP2E1, CYP3A4, and UGT1A1, with a negligible inhibition on the activities of CYP2B6, CYP2C9, and UGT2B7, with IC50 values in excess of 1000 μg/mL. Conclusions: These results provide information regarding the safety and effectiveness of BPTSS, OJS, and OYSGS when combined with conventional drugs. SUMMARY Bangpungtongseong-san inhibited the activities of human microsomal CYP1A2, CYP2C19, CYP2E1, and UGT1A1, with a negligibly inhibition on the activities of CYP2B6

  7. The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes

    PubMed Central

    Feng, Qin; Zhang, Yi

    2001-01-01

    Histone deacetylation plays an important role in methylated DNA silencing. Recent studies indicated that the methyl-CpG-binding protein, MBD2, is a component of the MeCP1 histone deacetylase complex. Interestingly, MBD2 is able to recruit the nucleosome remodeling and histone deacetylase, NuRD, to methylated DNA in vitro. To understand the relationship between the MeCP1 complex and the NuRD complex, we purified the MeCP1 complex to homogeneity and found that it contains 10 major polypeptides including MBD2 and all of the known NuRD components. Functional analysis of the purified MeCP1 complex revealed that it preferentially binds, remodels, and deacetylates methylated nucleosomes. Thus, our study defines the MeCP1 complex, and provides biochemical evidence linking nucleosome remodeling and histone deacetylation to methylated gene silencing. PMID:11297506

  8. A complex of serine protease genes expressed preferentially in cytotoxic T-lymphocytes is closely linked to the T-cell receptor alpha- and delta-chain genes on mouse chromosome 14.

    PubMed

    Crosby, J L; Bleackley, R C; Nadeau, J H

    1990-02-01

    A complex of genes encoding serine proteases that are preferentially expressed in cytotoxic T-cells was shown to be closely linked to the T-cell receptor alpha- and delta-chain genes on mouse chromosome 14. A striking difference in recombination frequencies among linkage crosses was reported. Two genes, Np-1 and Tcra, which fail to recombine in crosses involving conventional strains of mice, were shown to recombine readily in interspecific crosses involving Mus spretus. This difference in recombination frequency suggests chromosomal rearrangements that suppress recombination in conventional crosses, recombination hot spots in interspecific crosses, or selection against recombinant haplotypes during development of recombinant inbred strains. Finally, a mutation called disorganization, which is located near the serine protease complex, is of considerable interest because it causes an extraordinarily wide variety of congenital defects. Because of the involvement of serine protease loci in several homeotic mutations in Drosophila, disorganization must be considered a candidate for a mutation in a serine protease-encoding gene.

  9. Segmental Duplication, Microinversion, and Gene Loss Associated with a Complex Inversion Breakpoint Region in Drosophila

    PubMed Central

    Calvete, Oriol; González, Josefa; Betrán, Esther; Ruiz, Alfredo

    2012-01-01

    Chromosomal inversions are usually portrayed as simple two-breakpoint rearrangements changing gene order but not gene number or structure. However, increasing evidence suggests that inversion breakpoints may often have a complex structure and entail gene duplications with potential functional consequences. Here, we used a combination of different techniques to investigate the breakpoint structure and the functional consequences of a complex rearrangement fixed in Drosophila buzzatii and comprising two tandemly arranged inversions sharing the middle breakpoint: 2m and 2n. By comparing the sequence in the breakpoint regions between D. buzzatii (inverted chromosome) and D. mojavensis (noninverted chromosome), we corroborate the breakpoint reuse at the molecular level and infer that inversion 2m was associated with a duplication of a ∼13 kb segment and likely generated by staggered breaks plus repair by nonhomologous end joining. The duplicated segment contained the gene CG4673, involved in nuclear transport, and its two nested genes CG5071 and CG5079. Interestingly, we found that other than the inversion and the associated duplication, both breakpoints suffered additional rearrangements, that is, the proximal breakpoint experienced a microinversion event associated at both ends with a 121-bp long duplication that contains a promoter. As a consequence of all these different rearrangements, CG5079 has been lost from the genome, CG5071 is now a single copy nonnested gene, and CG4673 has a transcript ∼9 kb shorter and seems to have acquired a more complex gene regulation. Our results illustrate the complex effects of chromosomal rearrangements and highlight the need of complementing genomic approaches with detailed sequence-level and functional analyses of breakpoint regions if we are to fully understand genome structure, function, and evolutionary dynamics. PMID:22328714

  10. Tumor metastasis-associated human MTA1 gene and its MTA1 protein product: role in epithelial cancer cell invasion, proliferation and nuclear regulation.

    PubMed

    Nicolson, Garth L; Nawa, Akihiro; Toh, Yasushi; Taniguchi, Shigeki; Nishimori, Katsuhiko; Moustafa, Amr

    2003-01-01

    Using differential cDNA library screening techniques based on metastatic and nonmetastatic rat mammary adenocarcinoma cell lines, we previously cloned and sequenced the metastasis-associated gene mta1. Using homology to the rat mta1 gene, we cloned the human MTA1 gene and found it to be over-expressed in a variety of human cell lines (breast, ovarian, lung, gastric and colorectal cancer but not melanoma or sarcoma) and cancerous tissues (breast, esophageal, colorectal, gastric and pancreatic cancer). We found a close similarity between the human MTA1 and rat mta1 genes (88% and 96% identities of the nucleotide and predicted amino acid sequences, respectively). Both genes encode novel proteins that contain a proline rich region (SH3-binding motif), a putative zinc finger motif, a leucine zipper motif and 5 copies of the SPXX motif found in gene regulatory proteins. Using Southern blot analysis the MTA1 gene was highly conserved, and using Northern blot analysis MTA1 transcripts were found in virtually all human cell lines (melanoma, breast, cervix and ovarian carcinoma cells and normal breast epithelial cells). However, the expression level of the MTA1 gene in normal breast epithelial cells was approximately 50% of that found in rapidly growing adenocarcinoma and atypical epithelial cell lines. Experimental inhibition of MTA1 protein expression using antisense phosphorothioate oligonucleotides resulted in inhibition of growth and invasion of human MDA-MB-231 breast cancer cells with relatively high MTA1 expression. Furthermore, the MTA1 protein was localized in the nuclei of cells transfected with a mammalian expression vector containing a full-length MTA1 gene. Although some MTA1 protein was found in the cytoplasm, the vast majority of MTA1 protein was localized in the nucleus. Examination of recombinate MTA1 and related MTA2 proteins suggests that MTA1 protein is a histone deacetylase. It also appears to behave like a GATA-element transcription factor, since

  11. The Mediator Complex Subunit PFT1 Is a Key Regulator of Jasmonate-Dependent Defense in Arabidopsis[C][W

    PubMed Central

    Kidd, Brendan N.; Edgar, Cameron I.; Kumar, Krish K.; Aitken, Elizabeth A.; Schenk, Peer M.; Manners, John M.; Kazan, Kemal

    2009-01-01

    Jasmonate signaling plays an important role in both plant defense and development. Here, we have identified a subunit of the Mediator complex as a regulator of the jasmonate signaling pathway in Arabidopsis thaliana. The Mediator complex is a conserved multiprotein complex that acts as a universal adaptor between transcription factors and the RNA polymerase II transcriptional machinery. We report that the PHYTOCHROME AND FLOWERING TIME1 (PFT1) gene, which encodes the MEDIATOR25 subunit of Mediator, is required for jasmonate-dependent defense gene expression and resistance to leaf-infecting necrotrophic fungal pathogens. Conversely, PFT1 appears to confer susceptibility to Fusarium oxysporum, a root-infecting hemibiotrophic fungal pathogen known to hijack jasmonate responses for disease development. Consistent with this, jasmonate gene expression was suppressed in the pft1 mutant during infection with F. oxysporum. In addition, a wheat (Triticum aestivum) homolog of PFT1 complemented the defense and the developmental phenotypes of the pft1 mutant, suggesting that the jasmonate signaling functions of PFT1 may be conserved in higher plants. Overall, our results identify an important control point in the regulation of the jasmonate signaling pathway within the transcriptional machinery. PMID:19671879

  12. Complex modulation of androgen responsive gene expression by methoxyacetic acid

    PubMed Central

    2011-01-01

    Background Optimal androgen signaling is critical for testicular development and spermatogenesis. Methoxyacetic acid (MAA), the primary active metabolite of the industrial chemical ethylene glycol monomethyl ether, disrupts spermatogenesis and causes testicular atrophy. Transcriptional trans-activation studies have indicated that MAA can enhance androgen receptor activity, however, whether MAA actually impacts the expression of androgen-responsive genes in vivo, and which genes might be affected is not known. Methods A mouse TM3 Leydig cell line that stably expresses androgen receptor (TM3-AR) was prepared and analyzed by transcriptional profiling to identify target gene interactions between MAA and testosterone on a global scale. Results MAA is shown to have widespread effects on androgen-responsive genes, affecting processes ranging from apoptosis to ion transport, cell adhesion, phosphorylation and transcription, with MAA able to enhance, as well as antagonize, androgenic responses. Moreover, testosterone is shown to exert both positive and negative effects on MAA gene responses. Motif analysis indicated that binding sites for FOX, HOX, LEF/TCF, STAT5 and MEF2 family transcription factors are among the most highly enriched in genes regulated by testosterone and MAA. Notably, 65 FOXO targets were repressed by testosterone or showed repression enhanced by MAA with testosterone; these include 16 genes associated with developmental processes, six of which are Hox genes. Conclusions These findings highlight the complex interactions between testosterone and MAA, and provide insight into the effects of MAA exposure on androgen-dependent processes in a Leydig cell model. PMID:21453523

  13. Roles of the nuclear lamina in stable nuclear association and assembly of a herpesviral transactivator complex on viral immediate-early genes.

    PubMed

    Silva, Lindsey; Oh, Hyung Suk; Chang, Lynne; Yan, Zhipeng; Triezenberg, Steven J; Knipe, David M

    2012-01-01

    Little is known about the mechanisms of gene targeting within the nucleus and its effect on gene expression, but most studies have concluded that genes located near the nuclear periphery are silenced by heterochromatin. In contrast, we found that early herpes simplex virus (HSV) genome complexes localize near the nuclear lamina and that this localization is associated with reduced heterochromatin on the viral genome and increased viral immediate-early (IE) gene transcription. In this study, we examined the mechanism of this effect and found that input virion transactivator protein, virion protein 16 (VP16), targets sites adjacent to the nuclear lamina and is required for targeting of the HSV genome to the nuclear lamina, exclusion of heterochromatin from viral replication compartments, and reduction of heterochromatin on the viral genome. Because cells infected with the VP16 mutant virus in1814 showed a phenotype similar to that of lamin A/C(-/-) cells infected with wild-type virus, we hypothesized that the nuclear lamina is required for VP16 activator complex formation. In lamin A/C(-/-) mouse embryo fibroblasts, VP16 and Oct-1 showed reduced association with the viral IE gene promoters, the levels of VP16 and HCF-1 stably associated with the nucleus were lower than in wild-type cells, and the association of VP16 with HCF-1 was also greatly reduced. These results show that the nuclear lamina is required for stable nuclear localization and formation of the VP16 activator complex and provide evidence for the nuclear lamina being the site of assembly of the VP16 activator complex. The targeting of chromosomes in the cell nucleus is thought to be important in the regulation of expression of genes on the chromosomes. The major documented effect of intranuclear targeting has been silencing of chromosomes at sites near the nuclear periphery. In this study, we show that targeting of the herpes simplex virus DNA genome to the nuclear periphery promotes formation of

  14. Variation in 12 porcine genes involved in the carbohydrate moiety assembly of glycosphingolipids does not account for differential binding of F4 Escherichia coli and their fimbriae.

    PubMed

    Goetstouwers, Tiphanie; Van Poucke, Mario; Coddens, Annelies; Nguyen, Van Ut; Melkebeek, Vesna; Deforce, Dieter; Cox, Eric; Peelman, Luc J

    2014-10-03

    Glycosphingolipids (GSLs) are important membrane components composed of a carbohydrate structure attached to a hydrophobic ceramide. They can serve as specific membrane receptors for microbes and microbial products, such as F4 Escherichia coli (F4 ETEC) and isolated F4 fimbriae. The aim of this study was to investigate the hypothesis that variation in genes involved in the assembly of the F4 binding carbohydrate moiety of GSLs (i.e. ARSA, B4GALT6, GAL3ST1, GALC, GBA, GLA, GLB1, GLB1L, NEU1, NEU2, UGCG, UGT8) could account for differential binding of F4 ETEC and their fimbriae. RT-PCR could not reveal any differential expression of the 12 genes in the jejunum of F4 receptor-positive (F4R(+)) and F4 receptor-negative (F4R(-)) pigs. Sequencing the complete open reading frame of the 11 expressed genes (NEU2 was not expressed) identified 72 mutations. Although some of them might have a structural effect, none of them could be associated with a F4R phenotype. We conclude that no regulatory or structural variation in any of the investigated genes is responsible for the genetic susceptibility of pigs towards F4 ETEC.

  15. Reassortment between Influenza B Lineages and the Emergence of a Coadapted PB1–PB2–HA Gene Complex

    PubMed Central

    Dudas, Gytis; Bedford, Trevor; Lycett, Samantha; Rambaut, Andrew

    2015-01-01

    Influenza B viruses make a considerable contribution to morbidity attributed to seasonal influenza. Currently circulating influenza B isolates are known to belong to two antigenically distinct lineages referred to as B/Victoria and B/Yamagata. Frequent exchange of genomic segments of these two lineages has been noted in the past, but the observed patterns of reassortment have not been formalized in detail. We investigate interlineage reassortments by comparing phylogenetic trees across genomic segments. Our analyses indicate that of the eight segments of influenza B viruses only segments coding for polymerase basic 1 and 2 (PB1 and PB2) and hemagglutinin (HA) proteins have maintained separate Victoria and Yamagata lineages and that currently circulating strains possess PB1, PB2, and HA segments derived entirely from one or the other lineage; other segments have repeatedly reassorted between lineages thereby reducing genetic diversity. We argue that this difference between segments is due to selection against reassortant viruses with mixed-lineage PB1, PB2, and HA segments. Given sufficient time and continued recruitment to the reassortment-isolated PB1–PB2–HA gene complex, we expect influenza B viruses to eventually undergo sympatric speciation. PMID:25323575

  16. Variants in members of the cadherin-catenin complex, CDH1 and CTNND1, cause blepharocheilodontic syndrome.

    PubMed

    Kievit, Anneke; Tessadori, Federico; Douben, Hannie; Jordens, Ingrid; Maurice, Madelon; Hoogeboom, Jeannette; Hennekam, Raoul; Nampoothiri, Sheela; Kayserili, Hülya; Castori, Marco; Whiteford, Margo; Motter, Connie; Melver, Catherine; Cunningham, Michael; Hing, Anne; Kokitsu-Nakata, Nancy M; Vendramini-Pittoli, Siulan; Richieri-Costa, Antonio; Baas, Annette F; Breugem, Corstiaan C; Duran, Karen; Massink, Maarten; Derksen, Patrick W B; van IJcken, Wilfred F J; van Unen, Leontine; Santos-Simarro, Fernando; Lapunzina, Pablo; Gil-da Silva Lopes, Vera L; Lustosa-Mendes, Elaine; Krall, Max; Slavotinek, Anne; Martinez-Glez, Victor; Bakkers, Jeroen; van Gassen, Koen L I; de Klein, Annelies; van den Boogaard, Marie-José H; van Haaften, Gijs

    2018-02-01

    Blepharocheilodontic syndrome (BCDS) consists of lagophthalmia, ectropion of the lower eyelids, distichiasis, euryblepharon, cleft lip/palate and dental anomalies and has autosomal dominant inheritance with variable expression. We identified heterozygous variants in two genes of the cadherin-catenin complex, CDH1, encoding E-cadherin, and CTNND1, encoding p120 catenin delta1 in 15 of 17 BCDS index patients, as was recently described in a different publication. CDH1 plays an essential role in epithelial cell adherence; CTNND1 binds to CDH1 and controls the stability of the complex. Functional experiments in zebrafish and human cells showed that the CDH1 variants impair the cell adhesion function of the cadherin-catenin complex in a dominant-negative manner. Variants in CDH1 have been linked to familial hereditary diffuse gastric cancer and invasive lobular breast cancer; however, no cases of gastric or breast cancer have been reported in our BCDS cases. Functional experiments reported here indicated the BCDS variants comprise a distinct class of CDH1 variants. Altogether, we identified the genetic cause of BCDS enabling DNA diagnostics and counseling, in addition we describe a novel class of dominant negative CDH1 variants.

  17. The Modifier of Transcription 1 (Mot1) ATPase and Spt16 Histone Chaperone Co-regulate Transcription through Preinitiation Complex Assembly and Nucleosome Organization.

    PubMed

    True, Jason D; Muldoon, Joseph J; Carver, Melissa N; Poorey, Kunal; Shetty, Savera J; Bekiranov, Stefan; Auble, David T

    2016-07-15

    Modifier of transcription 1 (Mot1) is a conserved and essential Swi2/Snf2 ATPase that can remove TATA-binding protein (TBP) from DNA using ATP hydrolysis and in so doing exerts global effects on transcription. Spt16 is also essential and functions globally in transcriptional regulation as a component of the facilitates chromatin transcription (FACT) histone chaperone complex. Here we demonstrate that Mot1 and Spt16 regulate a largely overlapping set of genes in Saccharomyces cerevisiae. As expected, Mot1 was found to control TBP levels at co-regulated promoters. In contrast, Spt16 did not affect TBP recruitment. On a global scale, Spt16 was required for Mot1 promoter localization, and Mot1 also affected Spt16 localization to genes. Interestingly, we found that Mot1 has an unanticipated role in establishing or maintaining the occupancy and positioning of nucleosomes at the 5' ends of genes. Spt16 has a broad role in regulating chromatin organization in gene bodies, including those nucleosomes affected by Mot1. These results suggest that the large scale overlap in Mot1 and Spt16 function arises from a combination of both their unique and shared functions in transcription complex assembly and chromatin structure regulation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Genes of the class II and class III major histocompatibility complex are associated with typhoid fever in Vietnam.

    PubMed

    Dunstan, S J; Stephens, H A; Blackwell, J M; Duc, C M; Lanh, M N; Dudbridge, F; Phuong, C X; Luxemburger, C; Wain, J; Ho, V A; Hien, T T; Farrar, J; Dougan, G

    2001-01-15

    The influence of genes of the major histocompatibility complex (MHC) class II and class III loci on typhoid fever susceptibility was investigated. Individuals with blood culture-confirmed typhoid fever and control subjects from 2 distinct geographic locations in southern Vietnam were genotyped for HLA-DRB1 and HLA-DQB1 alleles, the gene that encodes tumor necrosis factor (TNF)-alpha (TNFA [-238] and TNFA [-308]), the gene that encodes lymphotoxin-alpha, and alleles of the TNF-alpha microsatellite. HLA-DRB1*0301/6/8, HLA-DQB1*0201-3, and TNFA*2 (-308) were associated with susceptibility to typhoid fever, whereas HLA-DRB1*04, HLA-DQB1*0401/2, and TNFA*1 (-308) were associated with disease resistance. The frequency of all possible haplotypes of the 3 individually associated loci were estimated and were found to be significantly different in typhoid case patients and control subjects (chi2=55.56, 32 df; P=.006). Haplotypes that were either protective (TNFA*1 [-308].DRB1*04) or predisposed individuals to typhoid fever (TNFA*2 [-308].DRB1*0301) were determined. This report identifies a genetic association in humans between typhoid fever and MHC class II and III genes.

  19. Complexity of genetic sequences modified by horizontal gene transfer and degraded-DNA uptake

    NASA Astrophysics Data System (ADS)

    Tremberger, George; Dehipawala, S.; Nguyen, A.; Cheung, E.; Sullivan, R.; Holden, T.; Lieberman, D.; Cheung, T.

    2015-09-01

    Horizontal gene transfer has been a major vehicle for efficient transfer of genetic materials among living species and could be one of the sources for noncoding DNA incorporation into a genome. Our previous study of lnc- RNA sequence complexity in terms of fractal dimension and information entropy shows a tight regulation among the studied genes in numerous diseases. The role of sequence complexity in horizontal transferred genes was investigated with Mealybug in symbiotic relation with a 139K genome microbe and Deinococcus radiodurans as examples. The fractal dimension and entropy showed correlation R-sq of 0.82 (N = 6) for the studied Deinococcus radiodurans sequences. For comparison the Deinococcus radiodurans oxidative stress tolerant catalase and superoxide dismutase genes under extracellular dGMP growth condition showed R-sq ~ 0.42 (N = 6); and the studied arsenate reductase horizontal transferred genes for toxicity survival in several microorganisms showed no correlation. Simulation results showed that R-sq < 0.4 would be improbable at less than one percent chance, suggestive of additional selection pressure when compared to the R-sq ~ 0.29 (N = 21) in the studied transferred genes in Mealybug. The mild correlation of R-sq ~ 0.5 for fractal dimension versus transcription level in the studied Deinococcus radiodurans sequences upon extracellular dGMP growth condition would suggest that lower fractal dimension with less electron density fluctuation favors higher transcription level.

  20. Construction of "Toxin Complex" in a Mutant Serotype C Strain of Clostridium botulinum Harboring a Defective Neurotoxin Gene.

    PubMed

    Suzuki, Tomonori; Nagano, Thomas; Niwa, Koichi; Uchino, Masataka; Tomizawa, Motohiro; Sagane, Yoshimasa; Watanabe, Toshihiro

    2017-01-01

    A non-toxigenic mutant of the toxigenic serotype C Clostridium botulinum strain Stockholm (C-St), C-N71, does not produce the botulinum neurotoxin (BoNT). However, the original strain C-St produces botulinum toxin complex, in which BoNT is associated with non-toxic non-hemagglutinin (NTNHA) and three hemagglutinin proteins (HA-70, HA-33, and HA-17). Therefore, in this study, we aimed to elucidate the effects of bont gene knockout on the formation of the "toxin complex." Nucleotide sequence analysis revealed that a premature stop codon was introduced in the bont gene, whereas other genes were not affected by this mutation. Moreover, we successfully purified the "toxin complex" produced by C-N71. The "toxin complex" was identified as a mixture of NTNHA/HA-70/HA-17/HA-33 complexes with intact NTNHA or C-terminally truncated NTNHA, without BoNT. These results indicated that knockout of the bont gene does not affect the formation of the "toxin complex." Since the botulinum toxin complex has been shown to play an important role in oral toxin transport in the human and animal body, a non-neurotoxic "toxin complex" of C-N71 may be valuable for the development of an oral drug delivery system.

  1. A systems-genetics approach and data mining tool to assist in the discovery of genes underlying complex traits in Oryza sativa.

    PubMed

    Ficklin, Stephen P; Feltus, Frank Alex

    2013-01-01

    Many traits of biological and agronomic significance in plants are controlled in a complex manner where multiple genes and environmental signals affect the expression of the phenotype. In Oryza sativa (rice), thousands of quantitative genetic signals have been mapped to the rice genome. In parallel, thousands of gene expression profiles have been generated across many experimental conditions. Through the discovery of networks with real gene co-expression relationships, it is possible to identify co-localized genetic and gene expression signals that implicate complex genotype-phenotype relationships. In this work, we used a knowledge-independent, systems genetics approach, to discover a high-quality set of co-expression networks, termed Gene Interaction Layers (GILs). Twenty-two GILs were constructed from 1,306 Affymetrix microarray rice expression profiles that were pre-clustered to allow for improved capture of gene co-expression relationships. Functional genomic and genetic data, including over 8,000 QTLs and 766 phenotype-tagged SNPs (p-value < = 0.001) from genome-wide association studies, both covering over 230 different rice traits were integrated with the GILs. An online systems genetics data-mining resource, the GeneNet Engine, was constructed to enable dynamic discovery of gene sets (i.e. network modules) that overlap with genetic traits. GeneNet Engine does not provide the exact set of genes underlying a given complex trait, but through the evidence of gene-marker correspondence, co-expression, and functional enrichment, site visitors can identify genes with potential shared causality for a trait which could then be used for experimental validation. A set of 2 million SNPs was incorporated into the database and serve as a potential set of testable biomarkers for genes in modules that overlap with genetic traits. Herein, we describe two modules found using GeneNet Engine, one with significant overlap with the trait amylose content and another with

  2. Association of insertion-deletions polymorphisms with colorectal cancer risk and clinical features

    PubMed Central

    Marques, Diego; Ferreira-Costa, Layse Raynara; Ferreira-Costa, Lorenna Larissa; Correa, Romualdo da Silva; Borges, Aline Maciel Pinheiro; Ito, Fernanda Ribeiro; Ramos, Carlos Cesar de Oliveira; Bortolin, Raul Hernandes; Luchessi, André Ducati; Ribeiro-dos-Santos, Ândrea; Santos, Sidney; Silbiger, Vivian Nogueira

    2017-01-01

    AIM To investigate the association between 16 insertion-deletions (INDEL) polymorphisms, colorectal cancer (CRC) risk and clinical features in an admixed population. METHODS One hundred and forty patients with CRC and 140 cancer-free subjects were examined. Genomic DNA was extracted from peripheral blood samples. Polymorphisms and genomic ancestry distribution were assayed by Multiplex-PCR reaction, separated by capillary electrophoresis on the ABI 3130 Genetic Analyzer instrument and analyzed on GeneMapper ID v3.2. Clinicopathological data were obtained by consulting the patients’ clinical charts, intra-operative documentation, and pathology scoring. RESULTS Logistic regression analysis showed that polymorphism variations in IL4 gene was associated with increased CRC risk, while TYMS and UCP2 genes were associated with decreased risk. Reference to anatomical localization of tumor Del allele of NFKB1 and CASP8 were associated with more colon related incidents than rectosigmoid. In relation to the INDEL association with tumor node metastasis (TNM) stage risk, the Ins alleles of ACE, HLAG and TP53 (6 bp INDEL) were associated with higher TNM stage. Furthermore, regarding INDEL association with relapse risk, the Ins alleles of ACE, HLAG, and UGT1A1 were associated with early relapse risk, as well as the Del allele of TYMS. Regarding INDEL association with death risk before 10 years, the Ins allele of SGSM3 and UGT1A1 were associated with death risk. CONCLUSION The INDEL variations in ACE, UCP2, TYMS, IL4, NFKB1, CASP8, TP53, HLAG, UGT1A1, and SGSM3 were associated with CRC risk and clinical features in an admixed population. These data suggest that this cancer panel might be useful as a complementary tool for better clinical management, and more studies need to be conducted to confirm these findings. PMID:29085228

  3. Association of insertion-deletions polymorphisms with colorectal cancer risk and clinical features.

    PubMed

    Marques, Diego; Ferreira-Costa, Layse Raynara; Ferreira-Costa, Lorenna Larissa; Correa, Romualdo da Silva; Borges, Aline Maciel Pinheiro; Ito, Fernanda Ribeiro; Ramos, Carlos Cesar de Oliveira; Bortolin, Raul Hernandes; Luchessi, André Ducati; Ribeiro-Dos-Santos, Ândrea; Santos, Sidney; Silbiger, Vivian Nogueira

    2017-10-07

    To investigate the association between 16 insertion-deletions (INDEL) polymorphisms, colorectal cancer (CRC) risk and clinical features in an admixed population. One hundred and forty patients with CRC and 140 cancer-free subjects were examined. Genomic DNA was extracted from peripheral blood samples. Polymorphisms and genomic ancestry distribution were assayed by Multiplex-PCR reaction, separated by capillary electrophoresis on the ABI 3130 Genetic Analyzer instrument and analyzed on GeneMapper ID v3.2. Clinicopathological data were obtained by consulting the patients' clinical charts, intra-operative documentation, and pathology scoring. Logistic regression analysis showed that polymorphism variations in IL4 gene was associated with increased CRC risk, while TYMS and UCP2 genes were associated with decreased risk. Reference to anatomical localization of tumor Del allele of NFKB1 and CASP8 were associated with more colon related incidents than rectosigmoid. In relation to the INDEL association with tumor node metastasis (TNM) stage risk, the Ins alleles of ACE , HLAG and TP53 (6 bp INDEL) were associated with higher TNM stage. Furthermore, regarding INDEL association with relapse risk, the Ins alleles of ACE , HLAG , and UGT1A1 were associated with early relapse risk, as well as the Del allele of TYMS . Regarding INDEL association with death risk before 10 years, the Ins allele of SGSM3 and UGT1A1 were associated with death risk. The INDEL variations in ACE , UCP2 , TYMS , IL4 , NFKB1 , CASP8 , TP53 , HLAG , UGT1A1 , and SGSM3 were associated with CRC risk and clinical features in an admixed population. These data suggest that this cancer panel might be useful as a complementary tool for better clinical management, and more studies need to be conducted to confirm these findings.

  4. Effects of Brown Rice and White Rice on Expression of Xenobiotic Metabolism Genes in Type 2 Diabetic Rats

    PubMed Central

    Imam, Mustapha Umar; Ismail, Maznah

    2012-01-01

    Xenobiotics constantly influence biological systems through several means of interaction. These interactions are disturbed in type 2 diabetes, with implications for disease outcome. We aimed to study the implications of such disturbances on type 2 diabetes and rice consumption, the results of which could affect management of the disease in developing countries. In a type 2 diabetic rat model induced through a combination of high fat diet and low dose streptozotocin injection, up-regulation of xenobiotic metabolism genes in the diabetic untreated group was observed. Xenobiotic metabolism genes were upregulated more in the white rice (WR) group than the diabetic untreated group while the brown rice (BR) group showed significantly lower expression values, though not as effective as metformin, which gave values closer to the normal non-diabetic group. The fold changes in expression in the WR group compared to the BR group for Cyp2D4, Cyp3A1, Cyp4A1, Cyp2B1, Cyp2E1, Cyp2C11, UGT2B1, ALDH1A1 and Cyp2C6 were 2.6, 2, 1.5, 4, 2.8, 1.5, 1.8, 3 and 5, respectively. Our results suggest that WR may upregulate these genes in type 2 diabetes more than BR, potentially causing faster drug metabolism, less drug efficacy and more toxicity. These results may have profound implications for rice eating populations, constituting half the world’s population. PMID:22942722

  5. Analysis of Staphylococcal cassette chromosome mec in Staphylococcus haemolyticus and Staphylococcus sciuri: identification of a novel ccr gene complex with a newly identified ccrA allotype (ccrA7).

    PubMed

    Urushibara, Noriko; Paul, Shyamal Kumar; Hossain, Mohammad Akram; Kawaguchiya, Mitsuyo; Kobayashi, Nobumichi

    2011-06-01

    Methicillin resistance in staphylococci is conferred by the acquisition in its chromosome of the mecA gene, which is located on a mobile genetic element called staphylococcal cassette chromosome mec (SCCmec). Genetic type of SCCmec is defined by combination of mec gene complex class and cassette chromosome recombinase gene (ccr) allotype. In this study, we analyzed genetic diversity of the SCCmec in 11 Staphylococcus haemolyticus strains and a Staphylococcus sciuri strain, which were recently isolated from clinical specimens in Bangladesh. Among these strains, only two S. haemolyticus strains were proved to have the known types of SCCmec, that is, SCCmec V (class C2 mec-ccrC) and VII (class C1 mec-ccrC). Five S. haemolyticus strains were assigned two unique mec-ccr gene complexes combination; that is, class C1 mec-ccrA4B4 (four isolates) and class A mec-ccrC (one isolate). In the remaining four S. haemolyticus strains with class C1 mec, no known ccr allotypes could be detected. A single S. sciuri strain with class A mec complex carried a ccrA gene belonging to a novel allotype designated ccrA7, together with ccrB3. The ccrA7 gene in the S. sciuri strain showed 61.7%-82.7% sequence identity to the ccrA gene sequences published so far, and 75.3% identity to ccrA3, which is a component of the type 3 ccr complex (ccrA3-ccrB3) in methicillin-resistant Staphylococcus aureus. The results of the present study indicated that mec gene complex and ccr genes in coagulase-negative staphylococci are highly divergent, and distinct from those of common methicillin-resistant S. aureus. Identification of the novel ccrA7 allotype combined with ccrB3 suggested an occurrence of recombination between different ccr complexes in nature.

  6. MEN1, MEN4, and Carney Complex: Pathology and Molecular Genetics

    PubMed Central

    Schernthaner-Reiter, Marie Helene; Trivellin, Giampaolo; Stratakis, Constantine A.

    2015-01-01

    Pituitary adenomas are a common feature of a subset of endocrine neoplasia syndromes, which have otherwise highly variable disease manifestations. We provide here a review of the clinical features and human molecular genetics of multiple endocrine neoplasia type 1 and 4 (MEN1 and MEN4, respectively) and Carney complex (CNC). MEN1, MEN4 and CNC are hereditary autosomal dominant syndromes that can present with pituitary adenomas. MEN1 is caused by inactivating mutations in the MEN1 gene, whose product menin is involved in multiple intracellular pathways contributing to transcriptional control and cell proliferation. MEN1 clinical features include primary hyperparathyroidism, pancreatic neuroendocrine tumours and prolactinomas and other pituitary adenomas. A subset of patients with pituitary adenomas and other MEN1 features have mutations in the CDKN1B gene; their disease has been called MEN type 4 (MEN4). Inactivating mutations in the type 1α regulatory subunit of protein kinase A (PKA) (the PRKAR1A gene), that lead to dysregulation and activation of the PKA pathway, are the main genetic cause of CNC, which is clinically characterised by primary pigmented adrenocortical disease (PPNAD), spotty skin pigmentation (lentigines), cardiac and other myxomas and acromegaly due to somatotropinomas or somatotrope hyperplasia. PMID:25592387

  7. Harnessing the complexity of gene expression data from cancer: from single gene to structural pathway methods

    PubMed Central

    2012-01-01

    High-dimensional gene expression data provide a rich source of information because they capture the expression level of genes in dynamic states that reflect the biological functioning of a cell. For this reason, such data are suitable to reveal systems related properties inside a cell, e.g., in order to elucidate molecular mechanisms of complex diseases like breast or prostate cancer. However, this is not only strongly dependent on the sample size and the correlation structure of a data set, but also on the statistical hypotheses tested. Many different approaches have been developed over the years to analyze gene expression data to (I) identify changes in single genes, (II) identify changes in gene sets or pathways, and (III) identify changes in the correlation structure in pathways. In this paper, we review statistical methods for all three types of approaches, including subtypes, in the context of cancer data and provide links to software implementations and tools and address also the general problem of multiple hypotheses testing. Further, we provide recommendations for the selection of such analysis methods. Reviewers This article was reviewed by Arcady Mushegian, Byung-Soo Kim and Joel Bader. PMID:23227854

  8. Molecular Cloning and Functional Characterization of a Novel (Iso)flavone 4′,7-O-diglucoside Glucosyltransferase from Pueraria lobata

    PubMed Central

    Wang, Xin; Fan, Rongyan; Li, Jia; Li, Changfu; Zhang, Yansheng

    2016-01-01

    Pueraria lobata roots accumulate a rich source of isoflavonoid glycosides, including 7-O- and 4′-O-mono-glucosides, and 4′,7-O-diglucosides, which have numerous human health benefits. Although, isoflavonoid 7-O-glucosyltranferases (7-O-UGTs) have been well-characterized at molecular levels in legume plants, genes, or enzymes that are required for isoflavonoid 4′-O- and 4′,7-O-glucosylation have not been identified in P. lobata to date. Especially for the 4′,7-O-di-glucosylations, the genetic control for this tailing process has never been elucidated from any plant species. Through transcriptome mining, we describe here the identification and characterization of a novel UGT (designated PlUGT2) governing the isoflavonoid 4′,7-O-di-glucosylations in P. lobata. Biochemical roles of PlUGT2 were assessed by in vitro assays with PlUGT2 protein produced in Escherichia coli and analyzed for its qualitative substrate specificity. PlUGT2 was active with various (iso)flavonoid acceptors, catalyzing consecutive glucosylation activities at their O-4′ and O-7 positions. PlUGT2 was most active with genistein, a general isoflavone in legume plants. Real-time PCR analysis showed that PlUGT2 is preferentially transcribed in roots relative to other organs of P. lobata, which is coincident with the accumulation pattern of 4′-O-glucosides and 4′,7-O-diglucosides in P. lobata. The identification of PlUGT2 would help to decipher the P. lobata isoflavonoid glucosylations in vivo and may provide a useful enzyme catalyst for an efficient biotransformation of isoflavones or other natural products for food or pharmacological purposes. PMID:27066037

  9. Transcriptional Network Analysis in Muscle Reveals AP-1 as a Partner of PGC-1α in the Regulation of the Hypoxic Gene Program

    PubMed Central

    Baresic, Mario; Salatino, Silvia; Kupr, Barbara

    2014-01-01

    Skeletal muscle tissue shows an extraordinary cellular plasticity, but the underlying molecular mechanisms are still poorly understood. Here, we use a combination of experimental and computational approaches to unravel the complex transcriptional network of muscle cell plasticity centered on the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a regulatory nexus in endurance training adaptation. By integrating data on genome-wide binding of PGC-1α and gene expression upon PGC-1α overexpression with comprehensive computational prediction of transcription factor binding sites (TFBSs), we uncover a hitherto-underestimated number of transcription factor partners involved in mediating PGC-1α action. In particular, principal component analysis of TFBSs at PGC-1α binding regions predicts that, besides the well-known role of the estrogen-related receptor α (ERRα), the activator protein 1 complex (AP-1) plays a major role in regulating the PGC-1α-controlled gene program of the hypoxia response. Our findings thus reveal the complex transcriptional network of muscle cell plasticity controlled by PGC-1α. PMID:24912679

  10. MDR-1 and MRP2 Gene Polymorphisms in Mexican Epileptic Pediatric Patients with Complex Partial Seizures.

    PubMed

    Escalante-Santiago, David; Feria-Romero, Iris Angélica; Ribas-Aparicio, Rosa María; Rayo-Mares, Dario; Fagiolino, Pietro; Vázquez, Marta; Escamilla-Núñez, Consuelo; Grijalva-Otero, Israel; López-García, Miguel Angel; Orozco-Suárez, Sandra

    2014-01-01

    Although the Pgp efflux transport protein is overexpressed in resected tissue of patients with epilepsy, the presence of polymorphisms in MDR1/ABCB1 and MRP2/ABCC2 in patients with antiepileptic-drugs resistant epilepsy (ADR) is controversial. The aim of this study was to perform an exploratory study to identify nucleotide changes and search new and reported mutations in patients with ADR and patients with good response (CTR) to antiepileptic drugs (AEDs) in a rigorously selected population. We analyzed 22 samples In Material and Methods, from drug-resistant patients with epilepsy and 7 samples from patients with good response to AEDs. Genomic DNA was obtained from leukocytes. Eleven exons in both genes were genotyped. The concentration of drugs in saliva and plasma was determined. The concentration of valproic acid in saliva was lower in ADR than in CRT. In ABCB1, five reported SNPs and five unreported nucleotide changes were identified; rs2229109 (GA) and rs2032582 (AT and AG) were found only in the ADR. Of six SNPs associated with the ABCC2 that were found in the study population, rs3740066 (TT) and 66744T > A (TG) were found only in the ADR. The strongest risk factor in the ABCB1 gene was identified as the TA genotype of rs2032582, whereas for the ABCC2 gene the strongest risk factor was the T allele of rs3740066. The screening of SNPs in ACBC1 and ABCC2 indicates that the Mexican patients with epilepsy in this study display frequently reported ABCC1 polymorphisms; however, in the study subjects with a higher risk factor for drug resistance, new nucleotide changes were found in the ABCC2 gene. Thus, the population of Mexican patients with AED-resistant epilepsy (ADR) used in this study exhibits genetic variability with respect to those reported in other study populations; however, it is necessary to explore this polymorphism in a larger population of patients with ADR.

  11. MDR-1 and MRP2 Gene Polymorphisms in Mexican Epileptic Pediatric Patients with Complex Partial Seizures

    PubMed Central

    Escalante-Santiago, David; Feria-Romero, Iris Angélica; Ribas-Aparicio, Rosa María; Rayo-Mares, Dario; Fagiolino, Pietro; Vázquez, Marta; Escamilla-Núñez, Consuelo; Grijalva-Otero, Israel; López-García, Miguel Angel; Orozco-Suárez, Sandra

    2014-01-01

    Although the Pgp efflux transport protein is overexpressed in resected tissue of patients with epilepsy, the presence of polymorphisms in MDR1/ABCB1 and MRP2/ABCC2 in patients with antiepileptic-drugs resistant epilepsy (ADR) is controversial. The aim of this study was to perform an exploratory study to identify nucleotide changes and search new and reported mutations in patients with ADR and patients with good response (CTR) to antiepileptic drugs (AEDs) in a rigorously selected population. We analyzed 22 samples In Material and Methods, from drug-resistant patients with epilepsy and 7 samples from patients with good response to AEDs. Genomic DNA was obtained from leukocytes. Eleven exons in both genes were genotyped. The concentration of drugs in saliva and plasma was determined. The concentration of valproic acid in saliva was lower in ADR than in CRT. In ABCB1, five reported SNPs and five unreported nucleotide changes were identified; rs2229109 (GA) and rs2032582 (AT and AG) were found only in the ADR. Of six SNPs associated with the ABCC2 that were found in the study population, rs3740066 (TT) and 66744T > A (TG) were found only in the ADR. The strongest risk factor in the ABCB1 gene was identified as the TA genotype of rs2032582, whereas for the ABCC2 gene the strongest risk factor was the T allele of rs3740066. The screening of SNPs in ACBC1 and ABCC2 indicates that the Mexican patients with epilepsy in this study display frequently reported ABCC1 polymorphisms; however, in the study subjects with a higher risk factor for drug resistance, new nucleotide changes were found in the ABCC2 gene. Thus, the population of Mexican patients with AED-resistant epilepsy (ADR) used in this study exhibits genetic variability with respect to those reported in other study populations; however, it is necessary to explore this polymorphism in a larger population of patients with ADR. PMID:25346718

  12. The Proteomic Profile of Deleted in Breast Cancer 1 (DBC1) Interactions Points to a Multifaceted Regulation of Gene Expression*

    PubMed Central

    Giguère, Sophie S. B.; Guise, Amanda J.; Jean Beltran, Pierre M.; Joshi, Preeti M.; Greco, Todd M.; Quach, Olivia L.; Kong, Jeffery; Cristea, Ileana M.

    2016-01-01

    Deleted in breast cancer 1 (DBC1) has emerged as an important regulator of multiple cellular processes, ranging from gene expression to cell cycle progression. DBC1 has been linked to tumorigenesis both as an inhibitor of histone deacetylases, HDAC3 and sirtuin 1, and as a transcriptional cofactor for nuclear hormone receptors. However, despite mounting interest in DBC1, relatively little is known about the range of its interacting partners and the scope of its functions. Here, we carried out a functional proteomics-based investigation of DBC1 interactions in two relevant cell types, T cells and kidney cells. Microscopy, molecular biology, biochemistry, and mass spectrometry studies allowed us to assess DBC1 mRNA and protein levels, localization, phosphorylation status, and protein interaction networks. The comparison of DBC1 interactions in these cell types revealed conserved regulatory roles for DBC1 in gene expression, chromatin organization and modification, and cell cycle progression. Interestingly, we observe previously unrecognized DBC1 interactions with proteins encoded by cancer-associated genes. Among these interactions are five components of the SWI/SNF complex, the most frequently mutated chromatin remodeling complex in human cancers. Additionally, we identified a DBC1 interaction with TBL1XR1, a component of the NCoR complex, which we validated by reciprocal isolation. Strikingly, we discovered that DBC1 associates with proteins that regulate the circadian cycle, including DDX5, DHX9, and SFPQ. We validated this interaction by colocalization and reciprocal isolation. Functional assessment of this association demonstrated that DBC1 protein levels are important for regulating CLOCK and BMAL1 protein oscillations in synchronized T cells. Our results suggest that DBC1 is integral to the maintenance of the circadian molecular clock. Furthermore, the identified interactions provide a valuable resource for the exploration of pathways involved in DBC1

  13. Cationic Lipid-Nucleic Acid Complexes for Gene Delivery And Silencing: Pathways And Mechanisms for Plasmid Dna And Sirna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewert, K.K.; Zidovska, A.; Ahmad, A.

    2012-07-17

    Motivated by the promises of gene therapy, there is great interest in developing non-viral lipid-based vectors for therapeutic applications due to their low immunogenicity, low toxicity, ease of production, and the potential of transferring large pieces of DNA into cells. In fact, cationic liposome (CL) based vectors are among the prevalent synthetic carriers of nucleic acids (NAs) currently used in gene therapy clinical trials worldwide. These vectors are studied both for gene delivery with CL-DNA complexes and gene silencing with CL-siRNA (short interfering RNA) complexes. However, their transfection efficiencies and silencing efficiencies remain low compared to those of engineered viralmore » vectors. This reflects the currently poor understanding of transfection-related mechanisms at the molecular and self-assembled levels, including a lack of knowledge about interactions between membranes and double stranded NAs and between CL-NA complexes and cellular components. In this review we describe our recent efforts to improve the mechanistic understanding of transfection by CL-NA complexes, which will help to design optimal lipid-based carriers of DNA and siRNA for therapeutic gene delivery and gene silencing.« less

  14. Functional polymorphisms in UDP-glucuronosyltransferases and recurrence in tamoxifen-treated breast cancer survivors

    PubMed Central

    Ahern, Thomas P.; Christensen, Mariann; Cronin-Fenton, Deirdre P.; Lunetta, Kathryn L.; Søiland, Håvard; Gjerde, Jennifer; Garne, Jens Peter; Rosenberg, Carol L.; Silliman, Rebecca A.; Sørensen, Henrik Toft; Lash, Timothy L.; Hamilton-Dutoit, Stephen

    2011-01-01

    Background Tamoxifen is oxidized by cytochrome-P450 enzymes (e.g., CYP2D6) to two active metabolites, which are eliminated via glucuronidation by UDP-glucuronosyltransferases (UGTs). We measured the association between functional polymorphisms in key UGTs (UGT2B15*2, UGT2B7*2, and UGT1A8*3) and the recurrence rate among breast cancer survivors. Methods We used the Danish Breast Cancer Cooperative Group registry to identify 541 cases of recurrent breast cancer among women with estrogen receptor-positive tumors treated with tamoxifen for at least one year (ER+/TAM+), and 300 cases of recurrent breast cancer among women with estrogen receptor-negative tumors who were not treated with tamoxifen (ER−/TAM−). We matched 1 control to each case on ER status, menopausal status, stage, calendar period, and county. UGT polymorphisms were genotyped from archived primary tumors. We estimated the recurrence odds ratio for the UGT polymorphisms using logistic regression models, with and without stratification on CYP2D6*4 genotype. Results No UGT polymorphism was associated with breast cancer recurrence in either the ER+/TAM+ or ER-/TAM- groups [in the ER+TAM+ group, compared with two normal alleles: adjusted OR for two UGT2B15*2 variant alleles = 1.0 (95% CI: 0.70, 1.5); adjusted OR for two for UGT2B7*2 variant alleles = 0.91 (95% CI: 0.65, 1.3); adjusted OR for 1 or 2 UGT1A8*3 variant alleles = 0.75 (0.41, 1.4)]. Associations were similar within strata of CYP2D6*4 genotype. Conclusions Functional polymorphisms in key tamoxifen-metabolizing enzymes were not associated with breast cancer recurrence risk. Impact Our results do not support the genotyping of key metabolic enzyme polymorphisms to predict response to tamoxifen therapy. PMID:21750172

  15. Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex.

    PubMed

    Zeng, Ling-Hui; Rensing, Nicholas R; Zhang, Bo; Gutmann, David H; Gambello, Michael J; Wong, Michael

    2011-02-01

    Tuberous Sclerosis Complex (TSC) is an autosomal dominant, multi-system disorder, typically involving severe neurological symptoms, such as epilepsy, cognitive deficits and autism. Two genes, TSC1 and TSC2, encoding the proteins hamartin and tuberin, respectively, have been identified as causing TSC. Although there is a substantial overlap in the clinical phenotype produced by TSC1 and TSC2 mutations, accumulating evidence indicates that TSC2 mutations cause more severe neurological manifestations than TSC1 mutations. In this study, the neurological phenotype of a novel mouse model involving conditional inactivation of the Tsc2 gene in glial-fibrillary acidic protein (GFAP)-positive cells (Tsc2(GFAP1)CKO mice) was characterized and compared with previously generated Tsc1(GFAP1)CKO mice. Similar to Tsc1(GFAP1)CKO mice, Tsc2(GFAP1)CKO mice exhibited epilepsy, premature death, progressive megencephaly, diffuse glial proliferation, dispersion of hippocampal pyramidal cells and decreased astrocyte glutamate transporter expression. However, Tsc2(GFAP1)CKO mice had an earlier onset and higher frequency of seizures, as well as significantly more severe histological abnormalities, compared with Tsc1(GFAP1)CKO mice. The differences between Tsc1(GFAP1)CKO and Tsc2(GFAP1)CKO mice were correlated with higher levels of mammalian target of rapamycin (mTOR) activation in Tsc2(GFAP1)CKO mice and were reversed by the mTOR inhibitor, rapamycin. These findings provide novel evidence in mouse models that Tsc2 mutations intrinsically cause a more severe neurological phenotype than Tsc1 mutations and suggest that the difference in phenotype may be related to the degree to which Tsc1 and Tsc2 inactivation causes abnormal mTOR activation.

  16. Toward a clinical practice guide in pharmacogenomics testing for functional polymorphisms of drug-metabolizing enzymes. Gene/drug pairs and barriers perceived in Spain

    PubMed Central

    Agúndez, José A. G.; Abad-Santos, Francisco; Aldea, Ana; Alonso-Navarro, Hortensia; Bernal, María L.; Borobia, Alberto M.; Borrás, Emma; Carballo, Miguel; Carvajal, Alfonso; García-Muñiz, José D.; Gervasini, Guillermo; Jiménez-Jiménez, Félix J.; Lucena, María I.; Martínez, Carmen; Sacristán, José A.; Salado, Inés; Sinués, Blanca; Vicente, Jorge; García-Martín, Elena

    2012-01-01

    The development of clinical practice recommendations or guidelines for the clinical use of biomarkers is an issue of great importance with regard to adverse drug reactions. The potential of pharmacogenomic biomarkers has been extensively investigated in recent years. However, several barriers to implementing the use of pharmacogenomics testing exist. We conducted a survey among members of the Spanish Societies of Pharmacology and Clinical Pharmacology to obtain information about the perception of such barriers and to compare the perceptions of participants about the relative importance of major gene/drug pairs. Of 11 potential barriers, the highest importance was attributed to lack of institutional support for pharmacogenomics testing, and to the issues related to the lack of guidelines. Of the proposed gene/drug pairs the highest importance was assigned to HLA-B/abacavir, UGT1A1/irinotecan, and CYP2D6/tamoxifen. In this perspective article, we compare the relative importance of 29 gene/drug pairs in the Spanish study with that of the same pairs in the American Society for Clinical Pharmacology and Therapeutics study, and we provide suggestions and areas of focus to develop a guide for clinical practice in pharmacogenomics testing. PMID:23233861

  17. The Effects of Soy Supplementation on Gene Expression in Breast Cancer: A Randomized Placebo-Controlled Study

    PubMed Central

    Doane, Ashley S.; Russo, Lianne; Cabal, Rafael; Reis-Filho, Jorge S.; Gerald, William; Cody, Hiram; Khanin, Raya; Bromberg, Jacqueline; Norton, Larry

    2014-01-01

    Background There are conflicting reports on the impact of soy on breast carcinogenesis. This study examines the effects of soy supplementation on breast cancer-related genes and pathways. Methods Women (n = 140) with early-stage breast cancer were randomly assigned to soy protein supplementation (n = 70) or placebo (n = 70) for 7 to 30 days, from diagnosis until surgery. Adherence was determined by plasma isoflavones: genistein and daidzein. Gene expression changes were evaluated by NanoString in pre- and posttreatment tumor tissue. Genome-wide expression analysis was performed on posttreatment tissue. Proliferation (Ki67) and apoptosis (Cas3) were assessed by immunohistochemistry. Results Plasma isoflavones rose in the soy group (two-sided Wilcoxon rank-sum test, P < .001) and did not change in the placebo group. In paired analysis of pre- and posttreatment samples, 21 genes (out of 202) showed altered expression (two-sided Student’s t-test, P < .05). Several genes including FANCC and UGT2A1 revealed different magnitude and direction of expression changes between the two groups (two-sided Student’s t-test, P < .05). A high-genistein signature consisting of 126 differentially expressed genes was identified from microarray analysis of tumors. This signature was characterized by overexpression (>2-fold) of cell cycle transcripts, including those that promote cell proliferation, such as FGFR2, E2F5, BUB1, CCNB2, MYBL2, CDK1, and CDC20 (P < .01). Soy intake did not result in statistically significant changes in Ki67 or Cas3. Conclusions Gene expression associated with soy intake and high plasma genistein defines a signature characterized by overexpression of FGFR2 and genes that drive cell cycle and proliferation pathways. These findings raise the concerns that in a subset of women soy could adversely affect gene expression in breast cancer. PMID:25190728

  18. Functional Characterization of a Flavonoid Glycosyltransferase in Sweet Orange (Citrus sinensis)

    PubMed Central

    Liu, Xiaogang; Lin, Cailing; Ma, Xiaodi; Tan, Yan; Wang, Jiuzhao; Zeng, Ming

    2018-01-01

    Fruits of sweet orange (Citrus sinensis), a popular commercial Citrus species, contain high concentrations of flavonoids beneficial to human health. These fruits predominantly accumulate O-glycosylated flavonoids, in which the disaccharides [neohesperidose (rhamnosyl-α-1,2-glucose) or rutinose (rhamnosyl-α-1,6-glucose)] are linked to the flavonoid aglycones through the 3- or 7-hydroxyl sites. The biotransformation of the flavonoid aglycones into O-rutinosides or O-neohesperidosides in the Citrus plants usually consists of two glycosylation reactions involving a series of uridine diphosphate-sugar dependent glycosyltransferases (UGTs). Although several genes encoding flavonoid UGTs have been functionally characterized in the Citrus plants, full elucidation of the flavonoid glycosylation process remains elusive. Based on the available genomic and transcriptome data, we isolated a UGT with a high expression level in the sweet orange fruits that possibly encodes a flavonoid glucosyltransferase and/or rhamnosyltransferase. Biochemical analyses revealed that a broad range of flavonoid substrates could be glucosylated at their 3- and/or 7-hydrogen sites by the recombinant enzyme, including hesperetin, naringenin, diosmetin, quercetin, and kaempferol. Furthermore, overexpression of the gene could significantly increase the accumulations of quercetin 7-O-rhamnoside, quercetin 7-O-glucoside, and kaempferol 7-O-glucoside, implying that the enzyme has flavonoid 7-O-glucosyltransferase and 7-O-rhamnosyltransferase activities in vivo. PMID:29497429

  19. Involvement of heme oxygenase-1 in β-cyclodextrin-hemin complex-induced cucumber adventitious rooting process.

    PubMed

    Lin, Yuting; Li, Meiyue; Huang, Liqin; Shen, Wenbiao; Ren, Yong

    2012-09-01

    Our previous results showed that β-cyclodextrin-hemin complex (CDH) exhibited a vital protective role against cadmium-induced oxidative damage and toxicity in alfalfa seedling roots by the regulation of heme oxygenase-1 (HO-1) gene expression. In this report, we further test whether CDH exhibited the hormonal-like response. The application of CDH and an inducer of HO-1, hemin, were able to induce the up-regulation of cucumber HO-1 gene (CsHO1) expression and thereafter the promotion of adventitious rooting in cucumber explants. The effect is specific for HO-1 since the potent HO-1 inhibitor zinc protoporphyrin IX (ZnPP) blocked the above responses triggered by CDH, and the inhibitory effects were reversed further when 30% saturation of CO aqueous solution was added together. Further, molecular evidence showed that CDH triggered the increases of the HO-1-mediated target genes responsible for adventitious rooting, including one DnaJ-like gene (CsDNAJ-1) and two calcium-dependent protein kinase (CDPK) genes (CsCDPK1 and CsCDPK5), and were inhibited by ZnPP and reversed by CO. The calcium (Ca2+) chelator ethylene glycol-bis (2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and the Ca2+ channel blocker lanthanum chloride (LaCl3) not only compromised the induction of adventitious rooting induced by CDH but also decreased the transcripts of above three target genes. However, the application of ascorbic acid (AsA), a well-known antioxidant in plants, failed to exhibit similar inducible effect on adventitious root formation. In short, above results illustrated that the response of CDH in the induction of cucumber adventitious rooting might be through HO-1-dependent mechanism and calcium signaling. Physiological, pharmacological and molecular evidence showed that β-cyclodextrin-hemin complex (CDH) was able to induce cucumber adventitious rooting through heme oxygenase-1 (HO-1)-dependent mechanism and calcium signaling.

  20. Analysis of pharmacogenetic traits in two distinct South African populations

    PubMed Central

    2011-01-01

    Our knowledge of pharmacogenetic variability in diverse populations is scarce, especially in sub-Saharan Africa. To bridge this gap in knowledge, we characterised population frequencies of clinically relevant pharmacogenetic traits in two distinct South African population groups. We genotyped 211 tagging single nucleotide polymorphisms (tagSNPs) in 12 genes that influence antiretroviral drug disposition, in 176 South African individuals belonging to two distinct population groups residing in the Western Cape: the Xhosa (n = 109) and Cape Mixed Ancestry (CMA) (n = 67) groups. The minor allele frequencies (MAFs) of eight tagSNPs in six genes (those encoding the ATP binding cassette sub-family B, member 1 [ABCB1], four members of the cytochrome P450 family [CYP2A7P1, CYP2C18, CYP3A4, CYP3A5] and UDP-glucuronosyltransferase 1 [UGT1A1]) were significantly different between the Xhosa and CMA populations (Bonferroni p < 0.05). Twenty-seven haplotypes were inferred in four genes (CYP2C18, CYP3A4, the gene encoding solute carrier family 22 member 6 [SLC22A6] and UGT1A1) between the two South African populations. Characterising the Xhosa and CMA population frequencies of variant alleles important for drug transport and metabolism can help to establish the clinical relevance of pharmacogenetic testing in these populations. PMID:21712189