Sample records for ugt1a1 activity diet

  1. Differences in UGT1A1, UGT1A7, and UGT1A9 polymorphisms between Uzbek and Japanese populations.

    PubMed

    Maeda, Hiromichi; Hazama, Shoichi; Shavkat, Abdiev; Okamoto, Ken; Oba, Koji; Sakamoto, Junichi; Takahashi, Kenichi; Oka, Masaki; Nakamura, Daisuke; Tsunedomi, Ryouichi; Okayama, Naoko; Mishima, Hideyuki; Kobayashi, Michiya

    2014-06-01

    Uridine-diphosphate glucuronosyltransferase 1A (UGT1A) is a key enzyme involved in irinotecan metabolism, and polymorphisms in the UGT1A gene are associated with irinotecan-induced toxicity. The aim of this study was to elucidate the allele frequencies of UGT1A polymorphisms in healthy Uzbek volunteers, and to compare them with those of the Japanese population. A total of 97 healthy volunteers from Uzbekistan were enrolled and blood samples were collected from each participant. Genotyping analysis was performed by fragment size analysis for UGT1A1*28, direct sequencing for UGT1A7*3 and UGT1A9*22, and TaqMan assays for UGT1A1*93, UGT1A1*6, UGT1A1*27, UGT1A1*60, and UGT1A7*12. The frequencies of polymorphisms were compared with the Japanese population by using the data previously reported from our study group. When the Uzbek and Japanese populations were compared, heterozygotes or homozygotes for UGT1A1*28, UGT1A1*60, and UGT1A1*93 were significantly more frequent in the Uzbek population (P < 0.01). The rate of UGT1A7*12 was not significantly different between the two populations, whereas UGT1A1*6 and UGT1A9*22 were significantly less frequent in the Uzbek population (P < 0.05). UGT1A7*1 were less prevalent in the Uzbek population than in the Japanese population (P < 0.01). The Uzbek population has different frequencies of polymorphisms in UGT1A genes compared with the Japanese population. A comprehensive study of the influence of UGT1A1 polymorphisms on the risk of irinotecan-induced toxicity is necessary for optimal use of irinotecan treatment.

  2. Glucuronidation of OTS167 in Humans Is Catalyzed by UDP-Glucuronosyltransferases UGT1A1, UGT1A3, UGT1A8, and UGT1A10

    PubMed Central

    Ramírez, Jacqueline; Mirkov, Snezana; House, Larry K.

    2015-01-01

    OTS167 is a potent maternal embryonic leucine zipper kinase inhibitor undergoing clinical testing as antineoplastic agent. We aimed to identify the UDP-glucuronosyltransferases (UGTs) involved in OTS167 metabolism, study the relationship between UGT genetic polymorphisms and hepatic OTS167 glucuronidation, and investigate the inhibitory potential of OTS167 on UGTs. Formation of a single OTS167-glucuronide (OTS167-G) was observed in pooled human liver (HLM) (Km = 3.4 ± 0.2 µM), intestinal microsomes (HIM) (Km = 1.7 ± 0.1 µM), and UGTs. UGT1A1 (64 µl/min/mg) and UGT1A8 (72 µl/min/mg) exhibited the highest intrinsic clearances (CLint) for OTS167, followed by UGT1A3 (51 µl/min/mg) and UGT1A10 (47 µl/min/mg); UGT1A9 was a minor contributor. OTS167 glucuronidation in HLM was highly correlated with thyroxine glucuronidation (r = 0.91, P < 0.0001), SN-38 glucuronidation (r = 0.79, P < 0.0001), and UGT1A1 mRNA (r = 0.72, P < 0.0001). Nilotinib (UGT1A1 inhibitor) and emodin (UGT1A8 and UGT1A10 inhibitor) exhibited the highest inhibitory effects on OTS167-G formation in HLM (68%) and HIM (47%). We hypothesize that OTS167-G is an N-glucuronide according to mass spectrometry. A significant association was found between rs6706232 and reduced OTS167-G formation (P = 0.03). No or weak UGT inhibition (range: 0–21%) was observed using clinically relevant OTS167 concentrations (0.4–2 µM). We conclude that UGT1A1 and UGT1A3 are the main UGTs responsible for hepatic formation of OTS167-G. Intestinal UGT1A1, UGT1A8, and UGT1A10 may contribute to first-pass OTS167 metabolism after oral administration. PMID:25870101

  3. Glucuronidation of OTS167 in Humans Is Catalyzed by UDP-Glucuronosyltransferases UGT1A1, UGT1A3, UGT1A8, and UGT1A10.

    PubMed

    Ramírez, Jacqueline; Mirkov, Snezana; House, Larry K; Ratain, Mark J

    2015-07-01

    OTS167 is a potent maternal embryonic leucine zipper kinase inhibitor undergoing clinical testing as antineoplastic agent. We aimed to identify the UDP-glucuronosyltransferases (UGTs) involved in OTS167 metabolism, study the relationship between UGT genetic polymorphisms and hepatic OTS167 glucuronidation, and investigate the inhibitory potential of OTS167 on UGTs. Formation of a single OTS167-glucuronide (OTS167-G) was observed in pooled human liver (HLM) (Km = 3.4 ± 0.2 µM), intestinal microsomes (HIM) (Km = 1.7 ± 0.1 µM), and UGTs. UGT1A1 (64 µl/min/mg) and UGT1A8 (72 µl/min/mg) exhibited the highest intrinsic clearances (CLint) for OTS167, followed by UGT1A3 (51 µl/min/mg) and UGT1A10 (47 µl/min/mg); UGT1A9 was a minor contributor. OTS167 glucuronidation in HLM was highly correlated with thyroxine glucuronidation (r = 0.91, P < 0.0001), SN-38 glucuronidation (r = 0.79, P < 0.0001), and UGT1A1 mRNA (r = 0.72, P < 0.0001). Nilotinib (UGT1A1 inhibitor) and emodin (UGT1A8 and UGT1A10 inhibitor) exhibited the highest inhibitory effects on OTS167-G formation in HLM (68%) and HIM (47%). We hypothesize that OTS167-G is an N-glucuronide according to mass spectrometry. A significant association was found between rs6706232 and reduced OTS167-G formation (P = 0.03). No or weak UGT inhibition (range: 0-21%) was observed using clinically relevant OTS167 concentrations (0.4-2 µM). We conclude that UGT1A1 and UGT1A3 are the main UGTs responsible for hepatic formation of OTS167-G. Intestinal UGT1A1, UGT1A8, and UGT1A10 may contribute to first-pass OTS167 metabolism after oral administration. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Isothiocyanates induce UGT1A1 in humanized UGT1 mice in a CAR dependent fashion that is highly dependent upon oxidative stress.

    PubMed

    Yoda, Emiko; Paszek, Miles; Konopnicki, Camille; Fujiwara, Ryoichi; Chen, Shujuan; Tukey, Robert H

    2017-04-19

    Isothiocyanates, such as phenethyl isothiocyanate (PEITC), are formed following the consumption of cruciferous vegetables and generate reactive oxygen species (ROS) that lead to the induction of cytoprotective genes such as the UDP-glucuronosyltransferases (UGTs). The induction of ROS activates the Nrf2-Keap 1 pathway leading to the induction of genes through antioxidant response elements (AREs). UGT1A1, the sole enzyme responsible for the metabolism of bilirubin, can be induced following activation of Nrf2. When neonatal humanized UGT1 (hUGT1) mice, which exhibit severe levels of total serum bilirubin (TSB) because of a developmental delay in expression of the UGT1A1 gene, were treated with PEITC, TSB levels were reduced. Liver and intestinal UGT1A1 were induced, along with murine CYP2B10, a consensus CAR target gene. In both neonatal and adult hUGT1/Car -/- mice, PEITC was unable to induce CYP2B10. A similar result was observed following analysis of UGT1A1 expression in liver. However, TSB levels were still reduced in hUGT1/Car -/- neonatal mice because of ROS induction of intestinal UGT1A1. When oxidative stress was blocked by exposing mice to N-acetylcysteine, induction of liver UGT1A1 and CYP2B10 by PEITC was prevented. Thus, new findings in this report link an important role in CAR activation that is dependent upon oxidative stress.

  5. Potent and selective inhibition of magnolol on catalytic activities of UGT1A7 and 1A9.

    PubMed

    Zhu, Liangliang; Ge, Guangbo; Liu, Yong; He, Guiyuan; Liang, Sicheng; Fang, Zhongze; Dong, Peipei; Cao, Yunfeng; Yang, Ling

    2012-10-01

    1. Human exposure to magnolol can reach a high dose in daily life. Our previous studies indicated that magnolol showed high affinities to several UDP-glucuronosyltransferases (UGTs) This study was designed to examine the in vitro inhibitory effects of magnolol on UGTs, and further to evaluate the possibility of the in vivo inhibition that might happen. 2. Assays with recombinant UGTs and human liver microsomes (HLM) indicated that magnolol (10 µM) can selectively inhibit activities of UGT1A9 and extra-hepatic UGT1A7. Inhibition of magnolol on UGT1A7 followed competitive inhibition mechanism, while the inhibition on UGT1A9 obeyed either competitive or mixed inhibition mechanism, depending on substrates. The K(i) values for UGT1A7 and 1A9 are all in nanomolar ranges, lower than possible magnolol concentrations in human gut lumen and blood, indicating the in vivo inhibition on these two enzymes would likely occur. 3. In conclusion, UGT1A7 and 1A9 can be strongly inhibited by magnolol, raising the alarm for safe application of magnolol and traditional Chinese medicines containing magnolol. Additionally, given that UGT1A7 is an extra-hepatic enzyme, magnolol can serve as a selective UGT1A9 inhibitor that will act as a new useful tool in future hepatic glucuronidation phenotyping.

  6. UGT1A1*6 and UGT1A1*28 polymorphisms are correlated with irinotecan-induced toxicity: A meta-analysis.

    PubMed

    Yang, Yuwei; Zhou, MengMeng; Hu, Mingjun; Cui, Yanjie; Zhong, Qi; Liang, Ling; Huang, Fen

    2018-06-22

    Previous articles explored the role of UGT1A1 polymorphism on predicting irinotecan-induced toxicity, but the conclusions were still inconsistent and not comprehensive. We performed this meta-analysis to investigate the association between UGT1A1 polymorphism and irinotecan-induced toxicity. PubMed and Web of Science were searched for articles before July 2017. Inclusion and exclusion criteria were set to select eligible articles, and corresponding data were extracted from those articles. Subgroup analyses based on different cancer categories, doses and races were carried out to achieve comprehensive results. Statistical analyses were conducted using STATA 11.0. A total of 38 studies with 6742 cases were included after reading full text. Both UGT1A1*6 and UGT1A1*28 polymorphism are significantly associated with severe irinotecan-induced toxicity. Both Asian and Caucasian cancer patients with UGT1A1*28 variant had an increased risk. Compared with heterozygous variant, patients with homozygous variant suffered from a higher risk of toxicity. The effect of UGT1A1*28 polymorphism on diarrhea was less than on neutropenia. Subgroup analysis exhibited that for UGT1A1*6 polymorphism, patients treated with low-dose irinotecan were at a notable risk of toxicity. Moreover, the association between UGT1A1*6 polymorphism and irinotecan-induced toxicity was found in patients suffering from respiratory system cancers. Both UGT1A1*6 and UGT1A1*28 polymorphisms can be considered as predictors of irinotecan-induced toxicity, with effect varying by race, cancer type and irinotecan dose. © 2018 John Wiley & Sons Australia, Ltd.

  7. [Detection of UGT1A1*28 Polymorphism Using Fragment Analysis].

    PubMed

    Huang, Ying; Su, Jian; Huang, Xiaosui; Lu, Danxia; Xie, Zhi; Yang, Suqing; Guo, Weibang; Lv, Zhiyi; Wu, Hongsui; Zhang, Xuchao

    2017-12-20

    Uridine-diphosphoglucuronosyl transferase 1A1 (UGT1A1), UGT1A1*28 polymorphism can reduce UGT1A1 enzymatic activity, which may lead to severe toxicities in patients who receive irinotecan. This study tries to build a fragment analysis method to detect UGT1A1*28 polymorphism. A total of 286 blood specimens from the lung cancer patients who were hospitalized in Guangdong General Hospital between April 2014 to May 2015 were detected UGT1A1*28 polymorphism by fragment analysis method. Comparing with Sanger sequencing, precision and accuracy of the fragment analysis method were 100%. Of the 286 patients, 236 (82.5% harbored TA6/6 genotype, 48 (16.8%) TA 6/7 genotype and 2 (0.7%) TA7/7 genotype. Our data suggest hat the fragment analysis method is robust for detecting UGT1A1*28 polymorphism in clinical practice. It's simple, time-saving, and easy-to-carry.

  8. Hepatic expression of transcription factors affecting developmental regulation of UGT1A1 in the Han Chinese population.

    PubMed

    Nie, Ya-Li; He, Hang; Li, Jiang-Feng; Meng, Xiang-Guang; Yan, Liang; Wang, Pei; Wang, Shu-Jie; Bi, Hong-Zheng; Zhang, Li-Rong; Kan, Quan-Cheng

    2017-01-01

    Complete or partial inactivity of UGT1A1, the unique enzyme responsible for bilirubin glucuronidation, is commonly associated with hyperbilirubinemia. We investigated the dynamic expression of UGT1A1, and that of the transcription factors (TFs) involved in its developmental regulation, during human hepatic growth in Han Chinese individuals. Eighty-eight prenatal, pediatric, and adult liver samples were obtained from Han Chinese individuals. Quantitative real-time polymerase chain reaction was used to evaluate mRNA expression of UGT1A1 and TFs including PXR, CAR, HNF1A, HNF4A, PPARA, etc. UGT1A1 protein levels and metabolic activity were determined by western blotting and high-performance liquid chromatography. Direct sequencing was employed to genotype UGT1A1*6 (211G˃A) and UGT1A1*28 (TA6˃TA7) polymorphisms. UGT1A1 expression was minimal in prenatal samples, but significantly elevated during pediatric and adult stages. mRNA and protein levels and metabolic activity were prominently increased (120-, 20-, and 10-fold, respectively) in pediatric and adult livers compared to prenatal samples. Furthermore, expression did not differ appreciably between pediatric and adult periods. Dynamic expression of TFs, including PXR, CAR, HNF1A, HNF4A, and PPARA, was consistent with UGT1A1 levels at each developmental stage. A pronounced correlation between expression of these TFs and that of UGT1A1 (P < 0.001) was observed. Moreover, UGT1A1*6 and UGT1A1*28 polymorphisms reduced levels of UGT1A1 by up to 40-60 %. Hepatic expression of transcription factors is associated with developmental regulation of UGT1A1 in the Han Chinese population. Moreover, UGT1A1 polymorphisms are associated with reduced expression of UGT1A1 mRNA and protein, as well as enzyme activity.

  9. UGT1A and UGT2B genetic variation alters nicotine and nitrosamine glucuronidation in european and african american smokers.

    PubMed

    Wassenaar, Catherine A; Conti, David V; Das, Soma; Chen, Peixian; Cook, Edwin H; Ratain, Mark J; Benowitz, Neal L; Tyndale, Rachel F

    2015-01-01

    Identifying sources of variation in the nicotine and nitrosamine metabolic inactivation pathways is important to understanding the relationship between smoking and cancer risk. Numerous UGT1A and UGT2B enzymes are implicated in nicotine and nitrosamine metabolism in vitro; however, little is known about their roles in vivo. Within UGT1A1, UGT1A4, UGT1A9, UGT2B7, UGT2B10, and UGT2B17, 47 variants were genotyped, including UGT2B10*2 and UGT2B17*2. The association between variation in these UGTs and glucuronidation activity within European and African American current smokers (n = 128), quantified as urinary ratios of the glucuronide over unconjugated compound for nicotine, cotinine, trans-3'-hydroxycotinine, and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), was investigated in regression models assuming a dominant effect of variant alleles. Correcting for multiple testing, three UGT2B10 variants were associated with cotinine glucuronidation, rs2331559 and rs11726322 in European Americans and rs835309 in African Americans (P ≤ 0.0002). Additional variants predominantly in UGT2B10 were nominally associated with nicotine (P = 0.008-0.04) and cotinine (P = <0.001-0.02) glucuronidation in both ethnicities in addition to UGT2B10*2 in European Americans (P = 0.01, P < 0.001). UGT2B17*2 (P = 0.03) in European Americans and UGT2B7 variants (P = 0.02-0.04) in African Americans were nominally associated with 3HC glucuronidation. UGT1A (P = 0.007-0.01), UGT2B10 (P = 0.02), and UGT2B7 (P = 0.02-0.03) variants in African Americans were nominally associated with NNAL glucuronidation. Findings from this initial in vivo study support a role for multiple UGTs in the glucuronidation of tobacco-related compounds in vivo, in particular UGT2B10 and cotinine glucuronidation. Findings also provide insight into ethnic differences in glucuronidation activity, which could be contributing to ethnic disparities in the risk for smoking-related cancers. Cancer Epidemiol Biomarkers Prev

  10. Exome-Wide Association Study Identifies New Low-Frequency and Rare UGT1A1 Coding Variants and UGT1A6 Coding Variants Influencing Serum Bilirubin in Elderly Subjects

    PubMed Central

    Oussalah, Abderrahim; Bosco, Paolo; Anello, Guido; Spada, Rosario; Guéant-Rodriguez, Rosa-Maria; Chery, Céline; Rouyer, Pierre; Josse, Thomas; Romano, Antonino; Elia, Maurizzio; Bronowicki, Jean-Pierre; Guéant, Jean-Louis

    2015-01-01

    level and hyperbilirubinemia risk in elderly subjects. UGT1A1 intronic single-nucleotide polymorphisms (SNPs) (rs6742078, rs887829, rs4148324) serve as proxy markers for the low-frequency and rare UGT1A1 variants, thereby providing mechanistic explanation to the relationship between UGT1A1 intronic SNPs and the UGT1A1 enzyme activity. UGT1A1 and UGT1A6 variants might be potentially associated with gallstone-related cholecystectomy risk. PMID:26039129

  11. Effect of UGT1A1, UGT1A3, DIO1 and DIO2 polymorphisms on L-thyroxine doses required for TSH suppression in patients with differentiated thyroid cancer.

    PubMed

    Santoro, Ana B; Vargens, Daniela D; Barros Filho, Mateus de Camargo; Bulzico, Daniel A; Kowalski, Luiz Paulo; Meirelles, Ricardo M R; Paula, Daniela P; Neves, Ronaldo R S; Pessoa, Cencita N; Struchine, Claudio J; Suarez-Kurtz, Guilherme

    2014-11-01

    To evaluate the impact of genetic polymorphisms in uridine 5'-glucuronosylytansferases UGT1A1 and UGT1A3 and iodothyronine-deiodinases types 1 and 2 on levothyroxine (T4 ; 3,5,3',5'-triiodo-L-thyronine) dose requirement for suppression of thyrotropin (TSH) secretion in patients with differentiated thyroid cancer (DTC). Patients (n = 268) submitted to total thyroidectomy and ablation by (131) I, under T4 therapy for at least 6 months were recruited in three public institutions in Brazil. Multivariate regression modelling was applied to assess the association of T4 dosing with polymorphisms in UGT1A1 (rs8175347), UGT1A3 (rs3806596 and rs1983023), DIO1 (rs11206244 and rs2235544) and DIO2 (rs225014 and rs12885300), demographic and clinical variables. A regression model including UGT1A haplotypes, age, gender, body weight and serum TSH concentration accounted for 39% of the inter-individual variation in the T4 dosage. The association of T4 dose with UGT1A haplotype is attributed to reduced UGT1A1 expression and T4 glucuronidation in liver of carriers of low expression UGT1A1 rs8175347 alleles. The DIO1 and DIO2 genotypes had no influence of T4 dosage. UGT1A haplotypes associate with T4 dosage in DTC patients, but the effect accounts for only 2% of the total variability and recommendation of pre-emptive UGT1A genotyping is not warranted. © 2014 The British Pharmacological Society.

  12. Effect of UGT1A1, UGT1A3, DIO1 and DIO2 polymorphisms on L-thyroxine doses required for TSH suppression in patients with differentiated thyroid cancer

    PubMed Central

    Santoro, Ana B; Vargens, Daniela D; Barros Filho, Mateus de Camargo; Bulzico, Daniel A; Kowalski, Luiz Paulo; Meirelles, Ricardo M R; Paula, Daniela P; Neves, Ronaldo R S; Pessoa, Cencita N; Struchine, Claudio J; Suarez-Kurtz, Guilherme

    2014-01-01

    Aim To evaluate the impact of genetic polymorphisms in uridine 5′-glucuronosylytansferases UGT1A1 and UGT1A3 and iodothyronine-deiodinases types 1 and 2 on levothyroxine (T4; 3,5,3′,5′-triiodo-L-thyronine) dose requirement for suppression of thyrotropin (TSH) secretion in patients with differentiated thyroid cancer (DTC). Methods Patients (n = 268) submitted to total thyroidectomy and ablation by 131I, under T4 therapy for at least 6 months were recruited in three public institutions in Brazil. Multivariate regression modelling was applied to assess the association of T4 dosing with polymorphisms in UGT1A1 (rs8175347), UGT1A3 (rs3806596 and rs1983023), DIO1 (rs11206244 and rs2235544) and DIO2 (rs225014 and rs12885300), demographic and clinical variables. Results A regression model including UGT1A haplotypes, age, gender, body weight and serum TSH concentration accounted for 39% of the inter-individual variation in the T4 dosage. The association of T4 dose with UGT1A haplotype is attributed to reduced UGT1A1 expression and T4 glucuronidation in liver of carriers of low expression UGT1A1 rs8175347 alleles. The DIO1 and DIO2 genotypes had no influence of T4 dosage. Conclusion UGT1A haplotypes associate with T4 dosage in DTC patients, but the effect accounts for only 2% of the total variability and recommendation of pre-emptive UGT1A genotyping is not warranted. PMID:24910925

  13. Impacts of the Glucuronidase Genotypes UGT1A4, UGT2B7, UGT2B15 and UGT2B17 on Tamoxifen Metabolism in Breast Cancer Patients

    PubMed Central

    Romero-Lorca, Alicia; Novillo, Apolonia; Gaibar, María; Bandrés, Fernando; Fernández-Santander, Ana

    2015-01-01

    Tamoxifen is used to prevent and treat estrogen-dependent breast cancer. It is described as a prodrug since most of its antiestrogen effects are exerted through its hydroxylated metabolites 4-OH-tamoxifen and endoxifen. In prior work, we correlated optimal plasma levels of these metabolites with certain genotypes of CYP2D6 and SULT1A2. This descriptive study examines correlations between concentrations of tamoxifen's glucuronide metabolites and genotypes UGT1A4 Pro24Thr, UGT1A4 Leu48Val, UGT2B7 His268Tyr, UGT2B15 Asp85YTyr UGT2B15 Lys523Thr and UGT2B17del in 132 patients with estrogen receptor-positive breast cancer under treatment with tamoxifen. Patients were genotyped by real-time and conventional PCR-RFLP. The glucuronides 4-OH-tamoxifen-N-glucuronide, 4-OH-tamoxifen-O-glucuronide and endoxifen-O-glucuronide were isolated from blood plasma and quantified using a high-pressure liquid chromatography-tandem mass spectrometry system. Individuals who were homozygous for UGT1A448VAL showed significantly lower mean concentrations of both glucuronide metabolites compared to subjects genotyped as wt/wt plus wt/48Val (p=0.037 and p=0.031, respectively). Women homozygous for UGT2B7268Tyr also showed mean substrate/product ratios of 4-OH-tamoxifen/4-OH-tamoxifen-O-glucuronide and 4-OH-tamoxifen/4-OH-tamoxifen-N-glucuronide indicative of reduced glucuronidase activity compared to wt homozygotes or to heterozygotes for the polymorphism (p=0.005 and p=0.003, respectively). In contrast, UGT2B15 Lys523Thr and UGT2B17del were associated with possibly increased enzyme activity. Patients with at least one variant allele UGT2B15523Thr showed significantly higher 4-OH-tamoxifen-O-glucuronide and endoxifen-glucuronide levels (p=0.023 and p=0.025, respectively) indicating a variant gene-dose effect. Higher 4-OH-tamoxifen-N-glucuronide levels observed in UGT2B17del genotypes (p=0.042) could be attributed to a mechanism that compensates for the greater expression of other genes in UGT2B

  14. Role of UGT1A1*6, UGT1A1*28 and ABCG2 c.421C>A polymorphisms in irinotecan-induced neutropenia in Asian cancer patients.

    PubMed

    Jada, Srinivasa Rao; Lim, Robert; Wong, Chiung Ing; Shu, Xiaochen; Lee, Soo Chin; Zhou, Qingyu; Goh, Boon Cher; Chowbay, Balram

    2007-09-01

    The objectives of the present study were (i) to study the pharmacogenetics of UGT1A1*6, UGT1A1*28 and ABCG2 c.421C>A in three distinct healthy Asian populations (Chinese, Malays and Indians), and (ii) to investigate the polygenic influence of these polymorphic variants in irinotecan-induced neutropenia in Asian cancer patients. Pharmacokinetic and pharmacogenetic analyses were done after administration of irinotecan as a 90-min intravenous infusion of 375 mg/m(2) once every 3 weeks (n = 45). Genotypic-phenotypic correlates showed a non-significant influence of UGT1A1*28 and ABCG2 c.421C>A polymorphisms on the pharmacokinetics of SN-38 (P > 0.05), as well as severity of neutropenia (P > 0.05). Significantly higher exposure levels to SN-38 (P = 0.018), lower relative extent of glucuronidation (REG; P = 0.006) and higher biliary index (BI; P = 0.003) were found in cancer patients homozygous for the UGT1A1*6 allele compared with patients harboring the reference genotype. The mean absolute neutrophil count (ANC) was 85% lower and the prevalence of grade 4 neutropenia (ANC < or = 500/microL) was 27% in patients homozygous for UGT1A1*6 compared with the reference group. Furthermore, the presence of the UGT1A1*6 allele was associated with an approximately 3-fold increased risk of developing severe grade 4 neutropenia compared with patients harboring the reference genotype. These exploratory findings suggest that homozygosity for UGT1A1*6 allele may be associated with altered SN-38 disposition and may increase the risk of severe neutropenia in Asian cancer patients, particularly in the Chinese cancer patients who comprised 80% (n = 36) of the patient population in the present study.

  15. Studies on induction of lamotrigine metabolism in transgenic UGT1 mice

    PubMed Central

    Argikar, U. A.; Senekeo-Effenberger, K.; Larson, E. E.; Tukey, R. H.; Remmel, R. P.

    2010-01-01

    A transgenic ‘knock-in’ mouse model expressing a human UGT1 locus (Tg-UGT1) was recently developed and validated. Although these animals express mouse UGT1A proteins, UGT1A4 is a pseudo-gene in mice. Therefore, Tg-UGT1 mice serve as a ‘humanized’ UGT1A4 animal model.Lamotrigine (LTG) is primarily metabolized to its N-glucuronide (LTGG) by hUGT1A4. This investigation aimed at examining the impact of pregnane X receptor (PXR), constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor (PPAR) activators on LTG glucuronidation in vivo and in vitro. Tg-UGT1 mice were administered the inducers phenobarbital (CAR), pregnenolone-16α-carbonitrile (PXR), WY-14643 (PPAR-α), ciglitazone (PPAR-γ), or L-165041 (PPAR-β), once daily for 3 or 4 days. Thereafter, LTG was administered orally and blood samples were collected over 24 h. LTG was measured in blood and formation of LTGG was measured in pooled microsomes made from the livers of treated animals.A three-fold increase in in vivo LTG clearance was seen after phenobarbital administration. In microsomes prepared from phenobarbital-treated Tg-UGT1 animals, 13-fold higher CLint (Vmax/Km) value was observed as compared with the untreated transgenic mice. A trend toward induction of catalytic activity in vitro and in vivo was also observed following pregnenolone-16α-carbonitrile and WY-14643 treatment. This study demonstrates the successful application of Tg-UGT1 mice as a novel tool to study the impact of induction and regulation on metabolism of UGT1A4 substrates. PMID:19845433

  16. Bilirubin UDP-Glucuronosyltransferase 1A1 (UGT1A1) Gene Promoter Polymorphisms and HPRT, Glycophorin A, and Micronuclei Mutant Frequencies in Human Blood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, D; Hall, I J; Eastmond, D

    2004-10-06

    A dinucleotide repeat polymorphism (5-, 6-, 7-, or 8-TA units) has been identified within the promoter region of UDP-glucuronosyltransferase 1A1 gene (UGT1A1). The 7-TA repeat allele has been associated with elevated serum bilirubin levels that cause a mild hyperbilirubinemia (Gilbert's syndrome). Studies suggest that promoter transcriptional activity of UGT1A1 is inversely related to the number of TA repeats and that unconjugated bilirubin concentration increases directly with the number of TA repeat elements. Because bilirubin is a known antioxidant, we hypothesized that UGT1A1 repeats associated with higher bilirubin may be protective against oxidative damage. We examined the effect of UGT1A1 genotypemore » on somatic mutant frequency in the hypoxanthine-guanine phosphoribosyl-transferase (HPRT) gene in human lymphocytes and the glycophorin A (GPA) gene of red blood cells (both N0, NN mutants), and the frequency of lymphocyte micronuclei (both kinetochore (K) positive or micronuclei K negative) in 101 healthy smoking and nonsmoking individuals. As hypothesized, genotypes containing 7-TA and 8-TA displayed marginally lower GPA{_}NN mutant frequency relative to 5/5, 5/6, 6/6 genotypes (p<0.05). In contrast, our analysis showed that lower expressing UGT1A1 alleles (7-TA and 8-TA) were associated with modestly increased HPRT mutation frequency (p<0.05) while the same low expression genotypes were not significantly associated with micronuclei frequencies (K-positive or K-negative) when compared to high expression genotypes (5-TA and 6-TA). We found weak evidence that UGT1A1 genotypes containing 7-TA and 8-TA were associated with increased GPA{_}N0 mutant frequency relative to 5/5, 5/6, 6/6 genotypes (p<0.05). These data suggest that UGT1A1 genotype may modulate somatic mutation of some types, in some cell lineages, by a mechanism not involving bilirubin antioxidant activity. More detailed studies examining UGT1A1 promoter variation, oxidant/antioxidant balance and

  17. The impact of the UGT1A1*60 allele on bilirubin serum concentrations.

    PubMed

    Pasternak, Amy L; Crews, Kristine R; Caudle, Kelly E; Smith, Colton; Pei, Deqing; Cheng, Cheng; Broeckel, Ulrich; Gaur, Aditya H; Hankins, Jane; Relling, Mary V; Haidar, Cyrine E

    2017-01-01

    Identify the functional status of the uridine-diphosphate glucuronyl transferase 1A1 (UGT1A1) -3279T>G (*60) variant. Retrospective review of clinically obtained serum bilirubin concentrations in pediatric patients to evaluate the association of the UGT1A1 -3279T>G (*60) variant with bilirubin concentrations and assessed linkage disequilibrium of the UGT1A1 -3279T>G (*60) and A(TA)7TAA (*28) variants. Total bilirubin concentration did not differ between patients who had a UGT1A1*1/*1 diplotype and patients homozygous for the UGT1A1 -3279T>G (*60/*60) variant. Total bilirubin concentration was lower in patients homozygous for the UGT1A1 -3279T>G (*60/*60) variant than in patients homozygous for the UGT1A1 A(TA)7TAA (*28/*28) variant (p < 0.01). The -3279T>G (*60) and A(TA)7TAA (*28) variants were in strong incomplete linkage disequilibrium in both black and white patients. The presence of the UGT1A1 -3279T>G (*60) variant is not associated with increased bilirubin concentrations.

  18. [Hepatotoxicity of emodin based on UGT1A1 enzyme-mediated bilirubin in liver microsomes].

    PubMed

    Wang, Qi; Dai, Zhong; Zhang, Yu-Jie; Ma, Shuang-Cheng

    2016-12-01

    To study the hepatotoxicity of emodin based on bilirubin metabolism mediated by glucuronidation of UGT1A1 enzyme. In this study, three different incubation systems were established by using RLM, HLM, and rUGT1A1, with bilirubin as the substrate. Different concentrations of bilirubin and emodin were added in the incubation systems. The double reciprocal Michaelis equation was drawn based on the total amount of bilirubin glucuronidation. The apparent inhibition constant Ki was then calculated with the slope curve to predict the hepatotoxicity. The results indicated that emodin had a significant inhibition to the UGT1A1 enzyme in all of the three systems, with Ki=5.400±0.956(P<0.05) in HLM system, Ki =10.020±0.611(P<0.05) in RLM system, Ki=4.850±0.528(P<0.05) in rUGT1A1 system. Meanwhile, emodin had no significant difference between rat and human in terms of inhibition of UGT1A1 enzyme. Emodin had a potential risk of the hepatotoxicity by inhibiting the UGT1A1 enzyme activity. And the method established in this study provides a new thought and new method to evaluate hepatotoxicity and safety of traditional Chinese medicines. Copyright© by the Chinese Pharmaceutical Association.

  19. Enhanced UGT1A1 Gene and Protein Expression in Endometriotic Lesions.

    PubMed

    Piccinato, Carla A; Neme, Rosa M; Torres, Natália; da Silva Victor, Elivane; Brudniewski, Heloísa F; Rosa E Silva, Júlio C; Ferriani, Rui A

    2018-01-01

    The cellular function in endometriosis lesions depends on a highly estrogenic milieu. Lately, it is becoming evident that, besides the circulating levels of estrogens, the balance of synthesis versus inactivation (metabolism) of estrogens by intralesion steroid-metabolizing enzymes also determines the local net estrogen availability. In order to extend the knowledge of the role of estrogen-metabolizing enzymes in endometriosis, we investigated the gene and protein expression of a key uridine diphospho-glucuronosyltransferase (UGT) for estrogen glucuronidation, UGT1A1, in eutopic endometrial samples obtained from nonaffected and endometriosis-affected women and also from endometriotic lesions. Although UGT1A1 messenger RNA (mRNA) expression was detected at similar frequencies in endometriotic lesions and in eutopic endometrial samples, the levels of mRNA expression were greater in deep-infiltrating endometriotic lesions and in non-deep-infiltrating lesions when compared with either control endometrium or eutopic endometrium from women with endometriosis. Overall, we observed that protein expression of UGT1A1 was significantly more frequent in samples from endometriotic lesions in comparison with endometria. In addition, expression of UGT1A1 protein was greater in deep-infiltrating than in non-deep-infiltrating endometriotic lesions. We suggest that the finding of increased expression of UGT1A1 in lesions versus endometria might be related to impairment of regulatory mechanisms, in response to a highly estrogenic milieu, and that this enzyme may be a new target for therapy.

  20. Preparation of reference material for UGT1A1 (TA)n polymorphism genotyping.

    PubMed

    Mlakar, Vid; Mlakar, Simona Jurković; Marc, Janja; Ostanek, Barbara

    2014-08-05

    Gilbert's syndrome is one of the most common metabolic syndromes in the human population characterised by mild unconjugated hyperbilirubinemia resulting from reduced activity of the bilirubin conjugating enzyme UDP-glucuronosyltransferase (UGT1A1). Although Gilbert's syndrome is usually quite benign UGT1A1(TA)n genotyping is important in exclusion of more serious causes of hyperbilirubinemia and since it has significant implications for personalised medicine. The aim of our study was to develop plasmid based reference materials which could be used for UGT1A1(TA)n genotyping. Plasmids were generated using recombinant DNA technology and their number of repeats as well as the entire sequence verified by Sanger sequencing. Their suitability as reference materials was tested using sizing by capillary electrophoresis and denaturing high performance liquid chromatography. Plasmids containing all four different alleles (TA)5, (TA)6, (TA)7 and (TA)8 that are present in the human population as well as a plasmid with (TA)4 repeats were successfully generated. Prepared plasmid reference materials allow the creation of all possible UGT1A1(TA)n polymorphism genotypes and can serve as an efficient substitute for the human genomic DNA reference material in routine genotyping and in the development of new genotyping tests. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Characterization of raloxifene glucuronidation. Potential role of UGT1A8 genotype on raloxifene metabolism in vivo

    PubMed Central

    Sun, Dongxiao; Jones, Nathan R; Manni, Andrea; Lazarus, Philip

    2014-01-01

    Raloxifene is a 2nd-generation selective estrogen receptor modulator used for the prevention and treatment of osteoporosis and the prevention of breast cancer in postmenopausal women. Raloxifene is extensively metabolized by glucuronidation to form raloxifene-6-glucuronide (ral-6-Gluc) and raloxifene-4′-glucuronide (ral-4′-Gluc). The goal of the present study was to determine whether functional polymorphisms in active UGTs could play a role in altered raloxifene glucuronidation in vivo. Using homogenates from HEK293 UGT-overexpressing cell lines, raloxifene was shown to be glucuronidated primarily by the hepatic UGTs 1A1 and 1A9 and the extra-hepatic UGTs 1A8 and 1A10; no detectable raloxifene glucuronidation activity was found for UGT2B enzymes. Functional UGT1A1 transcriptional promoter genotypes were significantly (ptrend=0.005) associated with ral-6-Gluc formation in human liver microsomes, and, consistent with the decreased raloxifene glucuronidation activities observed in vitro with cell line over-expressing UGT1A8 variants, the UGT1A8*2 variant was significantly (p=0.023) correlated with total raloxifene glucuronide formation in human jejunum homogenates. While ral-4′-Gluc exhibited 1/100th the anti-estrogenic activity of raloxifene itself as measured by binding to the estrogen receptor, raloxifene glucuronides comprised ∼99% of the circulating raloxifene dose in raloxifene-treated subjects, with ral-4′-Gluc comprising ∼70% of raloxifene glucuronides. Plasma ral-6-Gluc (ptrend=0.0025), ral-4′-Gluc (ptrend=0.001), and total raloxifene glucuronides (ptrend=0.001) were increased in raloxifene-treated subjects who were predicted slow metabolizers [UGT1A8 (*1/*3)] vs intermediate metabolizers [UGT1A8 (*1/*1) or UGT1A8 (*1/*2)] vs fast metabolizers [UGT1A8 (*2/*2). These data suggest that raloxifene metabolism may be dependent on UGT1A8 genotype and that UGT1A8 genotype may play an important role in overall response to raloxifene. PMID:23682072

  2. Prolonged neutropenia after irinotecan-based chemotherapy in a child with polymorphisms of UGT1A1 and SLCO1B1.

    PubMed

    Sakaguchi, S; Garcia-Bournissen, F; Kim, R; Schwarz, U I; Nathan, P C; Ito, S

    2009-12-01

    Genetic polymorphisms of uridine diphosphate glucuronosyl transferase 1A1 (UGT1A1), and SLCO1B1 coding organic anion-transporter polypeptide 1B1, are independent risk factors known to increase irinotecan toxicity in adults. Although combined occurrence of polymorphisms in these 2 genes is likely to influence susceptibility to irinotecan toxicity, data are scarce, especially in children. We report an 11-year-old female with severe and prolonged neutropenia after irinotecan-based chemotherapy. The patient's genotyping revealed polymorphisms in both UGT1A1 and SLCO1B1. To our knowledge, this is the first case report of combined genotyping of both UGT1A1 and SLCO1B1 in a child with severe irinotecan toxicity.

  3. UGT74S1 is the key player in controlling secoisolariciresinol diglucoside (SDG) formation in flax.

    PubMed

    Fofana, Bourlaye; Ghose, Kaushik; McCallum, Jason; You, Frank M; Cloutier, Sylvie

    2017-02-02

    Flax lignan, commonly known as secoisolariciresinol (SECO) diglucoside (SDG), has recently been reported with health-promoting activities, including its positive impact in metabolic diseases. However, not much was reported on the biosynthesis of SDG and its monoglucoside (SMG) until lately. Flax UGT74S1 was recently reported to sequentially glucosylate SECO into SMG and SDG in vitro. However, whether this gene is the only UGT achieving SECO glucosylation in flax was not known. Flax genome-wide mining for UGTs was performed. Phylogenetic and gene duplication analyses, heterologous gene expression and enzyme assays were conducted to identify family members closely related to UGT74S1 and to establish their roles in SECO glucosylation. A total of 299 different UGTs were identified, of which 241 (81%) were duplicated. Flax UGTs diverged 2.4-153.6 MYA and 71% were found to be under purifying selection pressure. UGT74S1, a single copy gene located on chromosome 7, displayed no evidence of duplication and was deemed to be under positive selection pressure. The phylogenetic analysis identified four main clusters where cluster 4, which included UGT74S1, was the most diverse. The duplicated UGT74S4 and UGT74S3, located on chromosomes 8 and 14, respectively, were the most closely related to UGT74S1 and were differentially expressed in different tissues. Heterologous expression levels of UGT74S1, UGT74S4 and UGT74S3 proteins were similar but UGT74S4 and UGT74S3 glucosylation activity towards SECO was seven fold less than UGT74S1. In addition, they both failed to produce SDG, suggesting neofunctionalization following their divergence from UGT74S1. We showed that UGT74S1 is closely related to two duplicated genes, UGT74S4 and UGT74S3 which, unlike UGT74S1, failed to glucosylate SMG into SDG. The study suggests that UGT74S1 may be the key player in controlling SECO glucosylation into SDG in flax although its closely related genes may also contribute to a minor extent in supplying

  4. Correlation of UGT1A1(*)28 and (*)6 polymorphisms with irinotecan-induced neutropenia in Thai colorectal cancer patients.

    PubMed

    Atasilp, Chalirmporn; Chansriwong, Pichai; Sirachainan, Ekapob; Reungwetwattana, Thanyanan; Chamnanphon, Montri; Puangpetch, Apichaya; Wongwaisayawan, Sansanee; Sukasem, Chonlaphat

    2016-02-01

    UDP-glucuronosyltransferase1A1 (UGT1A1) polymorphisms have been related with irinotecan toxicity. The purpose of this study was to determine the associations between UGT1A1(*)28 and (*)6 polymorphisms and irinotecan toxicity in Thai patients with metastatic colorectal cancer. 44 metastatic colorectal cancer patients received irinotecan-based chemotherapy. Hematologic toxicities were determined in the first and second cycles of treatment. The genotypes of UGT1A1(*)28 and (*)6 were analyzed by pyrosequencing technique. The frequencies of genetic testing for UGT1A1(*)28 and (*)6 polymorphisms were 22.8% (TA6/TA7; 20.5%, TA7/TA7; 2.3%) and 15.9% (GA), respectively. No patients had the homozygous UGT1A1(*)6 (AA). Neither UGT1A1(*)28 nor UGT1A1(*)6 polymorphisms were significantly associated with severe hematologic toxicities. However, analysis of UGT1A1(*)28 and (*)6 in combination revealed an association with severe neutropenia in the first and second cycles (P = 0.044, P = 0.017, respectively). Both UGT1A1(*)28 and (*)6 polymorphisms may have an increased risk of irinotecan-induced neutropenia in Thai colorectal cancer patients. Copyright © 2015 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  5. UGT1A1*6 polymorphism is most predictive of severe neutropenia induced by irinotecan in Japanese cancer patients.

    PubMed

    Onoue, Masahide; Terada, Tomohiro; Kobayashi, Masahiko; Katsura, Toshiya; Matsumoto, Shigemi; Yanagihara, Kazuhiro; Nishimura, Takafumi; Kanai, Masashi; Teramukai, Satoshi; Shimizu, Akira; Fukushima, Masanori; Inui, Ken-ichi

    2009-04-01

    Gene polymorphisms of the UDP-glucuronosyltransferase 1 family, polypeptide A1 (UGT1A1) contribute to individual variations in adverse events among patients administered irinotecan, and the distribution of the polymorphisms shows large interethnic differences. Variation in the solute carrier organic anion-transporter family, member 1B1 (SLCO1B1) gene also has a significant effect on the disposition of irinotecan in Asian cancer patients. In the present study, we evaluated the association of genetic polymorphisms of UGT1A1 and SLCO1B1 with irinotecanrelated neutropenia in Japanese cancer patients. One hundred and thirty-five consecutive patients treated with irinotecan were enrolled. Genotypes of UGT1A1 (*60, *28, *6, and *27) and SLCO1B1 (*1b, *5, and haplotype *15) were determined by direct sequencing. Severe neutropenia refers to events observed during the first cycle of irinotecan treatment. Severe neutropenia was observed in 29 patients (22%). Six patients were homozygous and 48 heterozygous for UGT1A1*6. Only 1 patient was homozygous for UGT1A1*28. Homozygosity for UGT1A1*6 was associated with a high risk of severe neutropenia (odds ratio [OR], 7.78; 95% confidence interval [CI], 1.36 to 44.51). No significant association was found between severe neutropenia and other UGT1A1 polymorphisms or SLCO1B1 polymorphisms. These findings suggest that the UGT1A1*6 polymorphism is a potential predictor of severe neutropenia caused by irinotecan in Japanese cancer patients.

  6. Inhibitory Effects of Commonly Used Herbal Extracts on UDP-Glucuronosyltransferase 1A4, 1A6, and 1A9 Enzyme Activities

    PubMed Central

    Mohamed, Mohamed-Eslam F.

    2011-01-01

    The aim of this study was to investigate the effect of commonly used botanicals on UDP-glucuronosyltransferase (UGT) 1A4, UGT1A6, and UGT1A9 activities in human liver microsomes. The extracts screened were black cohosh, cranberry, echinacea, garlic, ginkgo, ginseng, milk thistle, saw palmetto, and valerian in addition to the green tea catechin epigallocatechin gallate (EGCG). Formation of trifluoperazine glucuronide, serotonin glucuronide, and mycophenolic acid phenolic glucuronide was used as an index reaction for UGT1A4, UGT1A6, and UGT1A9 activities, respectively, in human liver microsomes. Inhibition potency was expressed as the concentration of the inhibitor at 50% activity (IC50) and the volume in which the dose could be diluted to generate an IC50-equivalent concentration [volume/dose index (VDI)]. Potential inhibitors were EGCG for UGT1A4, milk thistle for both UGT1A6 and UGT1A9, saw palmetto for UGT1A6, and cranberry for UGT1A9. EGCG inhibited UGT1A4 with an IC50 value of (mean ± S.E.) 33.8 ± 3.1 μg/ml. Milk thistle inhibited both UGT1A6 and UGT1A9 with IC50 values of 59.5 ± 3.6 and 33.6 ± 3.1 μg/ml, respectively. Saw palmetto and cranberry weakly inhibited UGT1A6 and UGT1A9, respectively, with IC50 values >100 μg/ml. For each inhibition, VDI was calculated to determine the potential of achieving IC50-equivalent concentrations in vivo. VDI values for inhibitors indicate a potential for inhibition of first-pass glucuronidation of UGT1A4, UGT1A6, and UGT1A9 substrates. These results highlight the possibility of herb-drug interactions through modulation of UGT enzyme activities. Further clinical studies are warranted to investigate the in vivo extent of the observed interactions. PMID:21632963

  7. UGT1A1*6 polymorphisms are correlated with irinotecan-induced neutropenia: a systematic review and meta-analysis.

    PubMed

    Zhang, Xue; Yin, Jia-Fu; Zhang, Jiao; Kong, Shu-Jia; Zhang, Hong-Yin; Chen, Xue-Mei

    2017-07-01

    Irinotecan (IRI) chemotherapy toxicities can be severe, and may result in treatment delay, morbidity and in some rare cases death. Neutropenia is a life-threatening side effect of irinotecan, and UDP glucuronosyltransferases (UGTs) gene polymorphisms could predict the side effects in cancer patients and then reduce IRI-induced toxicity by preventative treatment or a decrease in dose. Both UGT1A1*6 and *28 were reliably demonstrated to be risk factors for IRI-induced neutropenia, with tests for both polymorphisms potentially being particularly useful in Asian cancer patients. However, some researchers reported that UGT1A1*6 could predict IRI-induced toxicities in Asian populations, controversial conclusions still remained. Thus, the association between UGT1A1*6 polymorphisms and IRI-induced severe toxicity in cancer patients is still needed to be explored. Therefore, this study aims to investigate the association between UGT1A1*6 polymorphisms and IRI-related severe neutropenia in cancer patients on a large scale. A total of 12 studies that included 746 wild genotype (G/G) cases and 394 variant genotype (G/A and A/A) cases were included on the basis of inclusion criteria. Then we assessed the methodologies quality; odds ratio (OR), risk difference (RD) and 95% confidence intervals (95% CI) were used to assess the strength of association. Overall, an increased risk of severe neutropenia in cancer patients with UGT1A1*6 polymorphisms was found. Patients with recessive models (GA + AA vs. GG) of UGT1A1*6 showed an increased risk (OR 2.03, 95% CI 1.54-2.68; RD = 0.11, P < 0.001). Specifically, the heterozygous variant of UGT1A1*6 showed an increased risk (OR 1.83, 95% CI 1.36-2.46; RD = 0.09, P < 0.001), and homozygous mutation showed also high risk (OR 2.95, 95% CI 1.83-4.75; RD = 0.18, P < 0.001) for severe neutropenia. Subgroup meta-analysis revealed that for patients harboring both heterozygous and homozygous variants, cancer types, low dose of IRI and

  8. [Examination of UGT1A1 polymorphisms and irinotecan-induced neutropenia in patients with Colorectal cancer].

    PubMed

    Teruya, Tsuyoshi; Nakachi, Atsushi; Shimabukuro, Nobuhiro; Toritsuka, Daisuke; Azuma, Yasuharu; Hanashiro, Kiyotoshi; Nishiki, Takehiro; Ota, Morihito; Shimabuku, Masamori; Shiroma, Hiroshi

    2015-05-01

    Irinotecan is an effective drug in the treatment of colorectal cancer. However, there are reports of an association between certain UGT1A1 genetic polymorphisms and the development of adverse reactions(such as neutropenia)related to irinotecan metabolism. We retrospectively investigated UGT1A1 genetic polymorphisms and the occurrences of irinotecan-induced neutropenia in 25 patients of colorectal cancer at our hospital. Analysis of UGT1A1 genetic polymorphisms in these patients yielded the following classifications: a wild-type group( *1/*1)comprising 13 patients(52%), a heterozygous group(*1/ *28, *1/*6)of 10 patients(40%), and a homozygous group(*28/*28, *6/*6)of 2 patients(8%). The frequency of neutropenia was 15.4%(2/13)in the wild-type group, 30%(3/10)in the heterozygous group, and 100%(2/2)in the homozygous group. Grade 4 neutropenia only occurred in the homozygous group. These results suggest that a dose reduction of irinotecan should be considered for patients who fall into the homozygous group upon analysis of their UGT1A1 genetic polymorphisms, as such patients might be susceptible to grade 4 neutropenia.

  9. Association of UGT2B7 and UGT1A4 Polymorphisms with Serum Concentration of Antiepileptic Drugs in Children.

    PubMed

    Du, Zhongliang; Jiao, Yukun; Shi, Lianting

    2016-10-31

    BACKGROUND This study aimed to analyze the relationship of UGT2B7 and UGT1A4 polymorphisms with metabolism of valproic acid (VPA) and lamotrigine (LTG) in epileptic children. MATERIAL AND METHODS We administered VPA (102) and LTG (102) to 204 children with epilepsy. Blood samples were collected before the morning dose. Serum concentration of LTG was measured by high-performance liquid chromatography (HPLC). Serum VPA concentration was tested by fluorescence polarization immunoassay. UGT2B7 A268G, C802T, and G211T polymorphisms, as well as UGT1A4 L48V polymorphism, were assayed by direct automated DNA sequencing after PCR. Evaluation of efficacy was conducted using the Engel method. RESULTS The adjusted serum concentration of VPA was 4.26 μg/mL per mg/kg and LTG was 1.56 μg/mL per mg/kg. Multiple linear regression analysis revealed that VPA or LTG adjusted concentration showed a good linear relation with sex and age. UGT2B7 A268G and C802T polymorphisms were demonstrated to affect the serum concentration of VPA (F=3.147, P=0.047; F=22.754, P=0.000). UGT1A4 L48V polymorphism was not related with the serum concentration of LTG (F=5.328, P=0.006). In the efficacy analysis, we found that C802T polymorphism exerted strong effects on efficacy of VPA (χ²=9.265, P=0.010). L48V polymorphism also showed effects on efficacy of LTG (χ²=17.397, P=0.001). CONCLUSIONS UGT2B7, UGT1A4 polymorphisms play crucial roles in metabolism of VPA and LTG.

  10. Body Fat Percentage Is a Major Determinant of Total Bilirubin Independently of UGT1A1*28 Polymorphism in Young Obese

    PubMed Central

    Kohlova, Michaela; Bronze-da-Rocha, Elsa; Fernandes, João; Costa, Elísio; Catarino, Cristina; Aires, Luísa; Mansilha, Helena Ferreira; Rocha-Pereira, Petronila; Quintanilha, Alexandre; Rêgo, Carla; Santos-Silva, Alice

    2014-01-01

    Objectives Bilirubin has potential antioxidant and anti-inflammatory properties. The UGT1A1*28 polymorphism (TA repeats in the promoter region) is a major determinant of bilirubin levels and recent evidence suggests that raised adiposity may also be a contributing factor. We aimed to study the interaction between UGT1A1 polymorphism, hematological and anthropometric variables with total bilirubin levels in young individuals. Methods 350 obese (mean age of 11.6 years; 52% females) and 79 controls (mean age of 10.5 years; 59% females) were included. Total bilirubin and C-reactive protein (CRP) plasma levels, hemogram, anthropometric data and UGT1A1 polymorphism were determined. In a subgroup of 74 obese and 40 controls body composition was analyzed by dual-energy X-ray absorptiometry. Results The UGT1A1 genotype frequencies were 49.9%, 42.7% and 7.5% for 6/6, 6/7 and 7/7 genotypes, respectively. Patients with 7/7 genotype presented the highest total bilirubin levels, followed by 6/7 and 6/6 genotypes. Compared to controls, obese patients presented higher erythrocyte count, hematocrit, hemoglobin and CRP levels, but no differences in bilirubin or in UGT1A1 genotype distribution. Body fat percentage was inversely correlated with bilirubin in obese patients but not in controls. This inverse association was observed either in 6/7 or 6/6 genotype obese patients. UGT1A1 polymorphism and body fat percentage were the main factors affecting bilirubin levels within obese patients (linear regression analysis). Conclusion In obese children and adolescents, body fat composition and UGT1A1 polymorphism are independent determinants of total bilirubin levels. Obese individuals with 6/6 UGT1A1 genotype and higher body fat mass may benefit from a closer clinical follow-up. PMID:24901842

  11. Bilirubin glucuronidation revisited: proper assay conditions to estimate enzyme kinetics with recombinant UGT1A1.

    PubMed

    Zhou, Jin; Tracy, Timothy S; Remmel, Rory P

    2010-11-01

    Bilirubin, an end product of heme catabolism, is primarily eliminated via glucuronic acid conjugation by UGT1A1. Impaired bilirubin conjugation, caused by inhibition of UGT1A1, can result in clinical consequences, including jaundice and kernicterus. Thus, evaluation of the ability of new drug candidates to inhibit UGT1A1-catalyzed bilirubin glucuronidation in vitro has become common practice. However, the instability of bilirubin and its glucuronides presents substantial technical challenges to conduct in vitro bilirubin glucuronidation assays. Furthermore, because bilirubin can be diglucuronidated through a sequential reaction, establishment of initial rate conditions can be problematic. To address these issues, a robust high-performance liquid chromatography assay to measure both bilirubin mono- and diglucuronide conjugates was developed, and the incubation conditions for bilirubin glucuronidation by human embryonic kidney 293-expressed UGT1A1 were carefully characterized. Our results indicated that bilirubin glucuronidation should be assessed at very low protein concentrations (0.05 mg/ml protein) and over a short incubation time (5 min) to assure initial rate conditions. Under these conditions, bilirubin total glucuronide formation exhibited a hyperbolic (Michaelis-Menten) kinetic profile with a K(m) of ∼0.2 μM. In addition, under these initial rate conditions, the relative proportions between the total monoglucuronide and the diglucuronide product were constant across the range of bilirubin concentration evaluated (0.05-2 μM), with the monoglucuronide being the predominant species (∼70%). In conclusion, establishment of appropriate incubation conditions (i.e., very low protein concentrations and short incubation times) is necessary to properly characterize the kinetics of bilirubin glucuronidation in a recombinant UGT1A1 system.

  12. Identification of drugs and drug metabolites as substrates of multidrug resistance protein 2 (MRP2) using triple-transfected MDCK-OATP1B1-UGT1A1-MRP2 cells

    PubMed Central

    Fahrmayr, C; König, J; Auge, D; Mieth, M; Fromm, MF

    2012-01-01

    BACKGROUND AND PURPOSE The coordinate activity of hepatic uptake transporters [e.g. organic anion transporting polypeptide 1B1 (OATP1B1)], drug-metabolizing enzymes [e.g. UDP-glucuronosyltransferase 1A1 (UGT1A1)] and efflux pumps (e.g. MRP2) is a crucial determinant of drug disposition. However, limited data are available on transport of drugs (e.g. ezetimibe, etoposide) and their glucuronidated metabolites by human MRP2 in intact cell systems. EXPERIMENTAL APPROACH Using monolayers of newly established triple-transfected MDCK-OATP1B1-UGT1A1-MRP2 cells as well as MDCK control cells, single- (OATP1B1) and double-transfected (OATP1B1-UGT1A1, OATP1B1-MRP2) MDCK cells, we therefore studied intracellular concentrations and transcellular transport after administration of ezetimibe or etoposide to the basal compartment. KEY RESULTS Intracellular accumulation of ezetimibe was significantly lower in MDCK-OATP1B1-UGT1A1-MRP2 triple-transfected cells compared with all other cell lines. Considerably higher amounts of ezetimibe glucuronide were found in the apical compartment of MDCK-OATP1B1-UGT1A1-MRP2 monolayers compared with all other cell lines. Using HEK cells, etoposide was identified as a substrate of OATP1B1. Intracellular concentrations of etoposide equivalents (i.e. parent compound plus metabolites) were affected only to a minor extent by the absence or presence of OATP1B1/UGT1A1/MRP2. In contrast, apical accumulation of etoposide equivalents was significantly higher in monolayers of both cell lines expressing MRP2 (MDCK-OATP1B1-MRP2, MDCK-OATP1B1-UGT1A1-MRP2) compared with the single-transfected (OATP1B1) and the control cell line. CONCLUSIONS AND IMPLICATIONS Ezetimibe glucuronide is a substrate of human MRP2. Moreover, etoposide and possibly also its glucuronide are substrates of MRP2. These data demonstrate the functional interplay between transporter-mediated uptake, phase II metabolism and export by hepatic proteins involved in drug disposition. PMID:21923755

  13. Correlation between plasma concentration ratios of SN-38 glucuronide and SN-38 and neutropenia induction in patients with colorectal cancer and wild-type UGT1A1 gene

    PubMed Central

    HIROSE, KOICHI; KOZU, CHIHIRO; YAMASHITA, KOSHIRO; MARUO, EIJI; KITAMURA, MIZUHO; HASEGAWA, JUNICHI; OMODA, KEI; MURAKAMI, TERUO; MAEDA, YORINOBU

    2011-01-01

    In irinotecan (CPT-11)-based chemotherapy, neutropenia and diarrhea are often induced. In the present study, the clinical significance of the concentration ratios of 7-ethyl-10-hydroxycamptothecin (SN-38) glucuronide (SN-38G) and SN-38 in the plasma in predicting CPT-11-induced neutropenia was examined. A total of 17 patients with colorectal cancer and wild-type UDP-glucuronosyltransferase (UGT)1A1 gene were enrolled and treated with CPT-11 as part of the FOLFIRI regimen [CPT-11 and fluorouracil (5-FU)]. Blood was taken exactly 15 min following a 2-h continuous infusion of CPT-11. Plasma concentrations of SN-38, SN-38G and CPT-11 were determined by a modified high-performance liquid chromatography (HPLC) method. The median, maximum and minimum values of plasma SN-38G/SN-38 ratios were 4.25, 7.09 and 1.03, respectively, indicating that UGT activities are variable among patients with the wild-type UGT1A1 gene. The plasma SN-38G/SN-38 ratios decreased with an increase in the trial numbers of chemotherapy (r=0.741, p=0.000669), suggesting that CPT-11 treatment suppresses UGT activity, and the low plasma SN-38G/SN-38 ratios resulted in the induction of greater neutropenia. However, in this analysis, 2 clearly separated regression lines were observed between plasma SN-38G/SN-38 ratios and neutropenia induction. In conclusion, UGT activity involved in SN-38 metabolism is variable among patients with the wild-type UGT1A1 gene, and each CPT-11 treatment suppresses UGT activity. One-point determination of the plasma SN-38G/SN-38 ratio may provide indications for the prediction of CPT-11-induced neutropenia and adjustment of the optimal dose, although further studies are required. PMID:22740978

  14. The UDP-Glucuronosyltransferase (UGT) 1A Polymorphism c.2042C>G (rs8330) Is Associated with Increased Human Liver Acetaminophen Glucuronidation, Increased UGT1A Exon 5a/5b Splice Variant mRNA Ratio, and Decreased Risk of Unintentional Acetaminophen-Induced Acute Liver FailureS⃞

    PubMed Central

    Freytsis, Marina; Wang, Xueding; Peter, Inga; Guillemette, Chantal; Hazarika, Suwagmani; Duan, Su X.; Greenblatt, David J.; Lee, William M.

    2013-01-01

    Acetaminophen is cleared primarily by hepatic glucuronidation. Polymorphisms in genes encoding the acetaminophen UDP-glucuronosyltransferase (UGT) enzymes could explain interindividual variability in acetaminophen glucuronidation and variable risk for liver injury after acetaminophen overdose. In this study, human liver bank samples were phenotyped for acetaminophen glucuronidation activity and genotyped for the major acetaminophen-glucuronidating enzymes (UGTs 1A1, 1A6, 1A9, and 2B15). Of these, only three linked single nucleotide polymorphisms (SNPs) located in the shared UGT1A-3′UTR region (rs10929303, rs1042640, rs8330) were associated with acetaminophen glucuronidation activity, with rs8330 consistently showing higher acetaminophen glucuronidation at all the tested concentrations of acetaminophen. Mechanistic studies using luciferase-UGT1A-3′UTR reporters indicated that these SNPs do not alter mRNA stability or translation efficiency. However, there was evidence for allelic imbalance and a gene-dose proportional increase in the amount of exon 5a versus exon 5b containing UGT1A mRNA spliced transcripts in livers with the rs8330 variant allele. Cotransfection studies demonstrated an inhibitory effect of exon 5b containing cDNAs on acetaminophen glucuronidation by UGT1A1 and UGT1A6 cDNAs containing exon 5a. In silico analysis predicted that rs8330 creates an exon splice enhancer site that could favor exon 5a (over exon 5b) utilization during splicing. Finally, the prevalence of rs8330 was significantly lower (P = 0.027, χ2 test) in patients who had acute liver failure from unintentional acetaminophen overdose compared with patients with acute liver failure from other causes or a race- or ethnicity-matched population. Together, these findings suggest that rs8330 is an important determinant of acetaminophen glucuronidation and could affect an individual’s risk for acetaminophen-induced liver injury. PMID:23408116

  15. Serum Bilirubin Levels and Promoter Variations in HMOX1 and UGT1A1 Genes in Patients with Fabry Disease.

    PubMed

    Jirásková, Alena; Bortolussi, Giulia; Dostálová, Gabriela; Eremiášová, Lenka; Golaň, Lubor; Danzig, Vilém; Linhart, Aleš; Vítek, Libor

    2017-01-01

    The aim of our study was to assess the possible relationships among heme oxygenase (HMOX), bilirubin UDP-glucuronosyl transferase (UGT1A1) promoter gene variations, serum bilirubin levels, and Fabry disease (FD). The study included 56 patients with FD (M : F ratio = 0.65) and 185 healthy individuals. Complete standard laboratory and clinical work-up was performed on all subjects, together with the determination of total peroxyl radical-scavenging capacity. The (GT)n and (TA)n dinucleotide variations in the HMOX1 and UGT1A1 gene promoters, respectively, were determined by DNA fragment analysis. Compared to controls, patients with FD had substantially lower serum bilirubin levels (12.0 versus 8.85  μ mol/L, p = 0.003) and also total antioxidant capacity ( p < 0.05), which showed a close positive relationship with serum bilirubin levels ( p = 0.067) and the use of enzyme replacement therapy ( p = 0.036). There was no association between HMOX1 gene promoter polymorphism and manifestation of FD. However, the presence of the TA 7 allele UGT1A1 gene promoter, responsible for higher systemic bilirubin levels, was associated with a twofold lower risk of manifestation of FD (OR = 0.51, 95% CI = 0.27-0.97, p = 0.038). Markedly lower serum bilirubin levels in FD patients seem to be due to bilirubin consumption during increased oxidative stress, although UGT1A1 promoter gene polymorphism may modify the manifestation of FD as well.

  16. DPD and UGT1A1 deficiency in colorectal cancer patients receiving triplet chemotherapy with fluoropyrimidines, oxaliplatin and irinotecan

    PubMed Central

    Falvella, Felicia Stefania; Cheli, Stefania; Martinetti, Antonia; Mazzali, Cristina; Iacovelli, Roberto; Maggi, Claudia; Gariboldi, Manuela; Pierotti, Marco Alessandro; Di Bartolomeo, Maria; Sottotetti, Elisa; Mennitto, Roberta; Bossi, Ilaria; de Braud, Filippo; Clementi, Emilio; Pietrantonio, Filippo

    2015-01-01

    Aims Triplet chemotherapy with fluoropyrimidines, oxaliplatin and irinotecan is a standard therapy for metastatic colorectal cancer (CRC). Single nucleotide polymorphisms (SNPs) in DPYD and UGT1A1 influence fluoropyrimdines and irinotecan adverse events (AEs). Low frequency DPYD variants (c.1905 + 1G > A, c.1679 T > G, c.2846A > T) are validated but more frequent ones (c.496A > G, c.1129-5923C > G and c.1896 T > C) are not. rs895819 T > C polymorphism in hsa-mir-27a is associated with reduced DPD activity. In this study, we evaluated the clinical usefulness of a pharmacogenetic panel for patients receiving triplet combinations. Methods Germline DNA was available from 64 CRC patients enrolled between 2008 and 2013 in two phase II trials of capecitabine, oxaliplatin and irinotecan plus bevacizumab or cetuximab. SNPs were determined by Real-Time PCR. We evaluated the functional variants in DPYD (rare: c.1905 + 1G > A, c.1679 T > G, c.2846A > T; most common: c.496A > G, c.1129-5923C > G, c.1896 T > C), hsa-mir-27a (rs895819) and UGT1A1 (*28) genes to assess their association with grade 3–4 AEs. Results None of the patients carried rare DPYD variants. We found DPYD c.496A > G, c.1129-5923C > G, c.1896 T > C in heterozygosity in 19%, 5% and 8%, respectively, homozygous rs895819 in hsa-mir-27a in 9% and homozygous UGT1A1*28 in 8%. Grade 3–4 AEs were observed in 36% patients and were associated with DPYD c.496A > G (odds ratio (OR) 4.93, 95% CI 1.29, 18.87; P = 0.021) and homozygous rs895819 in hsa-mir-27a (OR 11.11, 95% CI 1.21, 102.09; P = 0.020). Carriers of DPYD c.1896 T > C and homozygous UGT1A1*28 showed an OR of 8.42 (95% CI 0.88, 80.56; P = 0.052). Multivariate analysis confirmed an independent value for DPYD c.496A > G and c.1896 T > C. Conclusions Concomitant assessment of DPYD variants and the UGT1A1*28 allele is a promising strategy needing further validation for dose personalization. PMID:25782327

  17. Cremophor EL-based nanoemulsion enhances transcellular permeation of emodin through glucuronidation reduction in UGT1A1-overexpressing MDCKII cells.

    PubMed

    Zhang, Tianpeng; Dong, Dong; Lu, Danyi; Wang, Shuai; Wu, Baojian

    2016-03-30

    Oral emodin, a natural anthraquinone and active component of many herbal medicines, is poorly bioavailable because of extensive first-pass glucuronidation. Here we aimed to prepare emodin nanoemulsion (EMO-NE) containing cremophor EL, and to assess its potential for enhancing transcellular absorption of emodin using UGT1A1-overexpressing MDCKII cells (or MDCK1A1 cells). EMO-NE was prepared using a modified emulsification technique and subsequently characterized by particle size, morphology, stability, and drug release. MDCKII cells were stably transfected with UGT1A1 using the lentiviral transfection approach. Emodin transport and metabolism were evaluated in Transwell-cultured MDCK1A1 cells after apical dosing of EMO-NE or control solution. The obtained EMO-NE (116 ± 6.5 nm) was spherical and stable for at least 2 months. Emodin release in vitro was a passive diffusion-driven process. EMO-NE administration increased the apparent permeability of emodin by a 2.3-fold (p<0.001) compared to the pure emodin solution (1.2 × 10(-5) cm/s vs 5.3 × 10(-6) cm/s). Further, both apical and basolateral excretion of emodin glucuronide (EMO-G) were significantly decreased (≥56.5%, p<0.001) in EMO-NE group. This was accompanied by a marked reduction (57.4%, p<0.001) in total emodin glucuronidation. It was found that the reduced glucuronidation was due to inhibition of cellular metabolism by cremophor EL. Cremophor EL inhibited UGT1A1-mediated glucuronidation of emodin using the mixed-type inhibition mechanism. In conclusion, cremophor EL-based nanoemulsion greatly enhanced transcellular permeation of emodin through inhibition of UGT metabolism. This cremophor EL-based nanoformulation may be a promising strategy to improve the oral bioavailability of emodin. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Glycyrrhetinic acid exhibits strong inhibitory effects towards UDP-glucuronosyltransferase (UGT) 1A3 and 2B7.

    PubMed

    Huang, Yin-Peng; Cao, Yun-Feng; Fang, Zhong-Ze; Zhang, Yan-Yan; Hu, Cui-Min; Sun, Xiao-Yu; Yu, Zhen-Wen; Zhu, Xu; Hong, Mo; Yang, Lu; Sun, Hong-Zhi

    2013-09-01

    The aim of the present study is to evaluate the inhibitory effects of liver UDP-glucuronosyltransferases (UGTs) by glycyrrhizic acid and glycyrrhetinic acid, which are the bioactive ingredients isolated from licorice. The results showed that glycyrrhetinic acid exhibited stronger inhibition towards all the tested UGT isoforms, indicating that the deglycosylation process played an important role in the inhibitory potential towards UGT isoforms. Furthermore, the inhibition kinetic type and parameters were determined for the inhibition of glycyrrhetinic acid towards UGT1A3 and UGT2B7. Data fitting using Dixon and Lineweaver-Burk plots demonstrated that the inhibition of UGT1A3 and UGT2B7 by glycyrrhetinic acid was best fit to competitive and noncompetitive type, respectively. The second plot using the slopes from Lineweaver-Burk plots versus glycyrrhetinic acid concentrations was employed to calculate the inhibition kinetic parameters (K(i)), and the values were calculated to be 0.2 and 1.7 μM for UGT1A3 and UGT2B7, respectively. All these results remind us the possibility of UGT inhibition-based herb-drug interaction. However, the explanation of these in vitro parameters should be paid more caution due to complicated factors, including the probe substrate-dependent UGT inhibition behaviour, environmental factors affecting the abundance of herbs' ingredients, and individual difference of pharmacokinetic factors. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Inhibition of UDP-glucuronosyltransferases (UGTs) by phthalate monoesters.

    PubMed

    Du, Zuo; Cao, Yun-Feng; Li, Sai-Nan; Hu, Cui-Min; Fu, Zhi-Wei; Huang, Chun-Ting; Sun, Xiao-Yu; Liu, Yong-Zhe; Yang, Kun; Fang, Zhong-Ze

    2018-04-01

    Phthalate monoesters are important metabolites of phthalate esters (PAEs) which have been extensively utilized in industry. This study aims to investigate the inhibition of phthalate monoesters on the activity of various isoforms of UDP-glucuronosyltransferases (UGTs), trying to elucidate the toxicity mechanism of environmental endocrine disruptors from the new perspectives. In vitro recombinant UGTs-catalyzed glucuronidation of 4-methylumbelliferone (4-MU) was employed to evaluate 8 kinds of phthalate monoesters on 11 sorts of main human UGT isoforms. 100 μM phthalate monoesters exhibited negligible inhibition towards the activity of UGT1A1, UGT1A3, UGT1A6, UGT1A8, UGT1A10, UGT2B4, UGT2B7, UGT2B15 and UGT2B17. The activity of UGT1A7 was strongly inhibited by monoethylhexyl phthalate (MEHP), but slightly inhibited by all the other phthalate monoesters. UGT1A9 was broadly inhibited by monobenzyl phthalate (MBZP), monocyclohexyl phthalate (MCHP), MEHP, monohexyl phthalate (MHP) and monooctyl phthalate (MOP), respectively. MEHP exhibited competitive inhibition towards UGT1A7, and MBZP, MCHP, MEHP, MHP and MOP showed competitive inhibition towards UGT1A9. The inhibition kinetic parameters (K i ) were calculated to be 11.25 μM for MEHP-UGT1A7, and 2.13, 0.09, 1.17, 7.47, 0.16 μM for MBZP-UGT1A9, MCHP-UGT1A9, MEHP-UGT1A9, MHP-UGT1A9, MOP-UGT1A9, respectively. Molecular docking indicated that both hydrogen bonds formation and hydrophobic interactions significantly contributed to the interaction between phthalate monoesters and UGT isoforms. All these information will be beneficial for understanding the adverse effects of PAEs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Identification of UDP-glucuronosyltransferases 1A1, 1A3 and 2B15 as the main contributors to glucuronidation of bakuchiol, a natural biologically active compound.

    PubMed

    Li, Feng; Wang, Shuai; Lu, Danyi; Wang, Yifei; Dong, Dong; Wu, Baojian

    2017-05-01

    1. Bakuchiol, one of the main active compounds of Psoralea corylifolia, possesses a variety of pharmacological activities such as anti-tumor and anti-aging effects. Here, we aimed to characterize the glucuronidation of bakuchiol using human liver microsomes (HLM) and expressed UDP-glucuronosyltransferase (UGT) enzymes. 2. The glucuronide of bakuchiol was confirmed by liquid chromatography-mass spectrometry (LC-MS) and β-glucuronidase hydrolysis assay. Glucuronidation rates and kinetic parameters were derived by enzymatic incubation and model fitting. Activity correlation analyses were performed to identify the main UGT isoforms contributing to hepatic metabolism of bakuchiol. 3. Among the three UGT enzymes (i.e., UGT1A1, UGT1A3 and UGT2B15) capable of catalyzing bakuchiol glucuronidation, UGT2B15 showed the highest activity with a CL int value of 100 μl/min/nmol. Bakuchiol glucuronidation was strongly correlated with glucuronidation of 5-hydroxyrofecoxib (r = 0.933; p < 0.001), 3-O-glucuronidation of β-estradiol (r = 0.719; p < 0.01) and significantly correlated with 24-O-glucuronidation of CDCA (r = 0.594; p < 0.05). In addition, a marked species difference existed in hepatic glucuronidation of bakuchiol. 4. In conclusion, UGT1A1, UGT1A3 and UGT2B15 were identified as the main contributors to glucuronidation of bakuchiol.

  1. UGT2B17 and SULT1A1 gene copy number variation (CNV) detection by LabChip microfluidic technology.

    PubMed

    Gaedigk, Andrea; Gaedigk, Roger; Leeder, J Steven

    2010-05-01

    Gene copy number variations (CNVs) are increasingly recognized to play important roles in the expression of genes and hence on their respective enzymatic activities. This has been demonstrated for a number of drug metabolizing genes, such as UDP-glucuronosyltransferases 2B17 (UGT2B17) and sulfotransferase 1A1 (SULT1A1), which are subject to genetic heterogeneity, including CNV. Quantitative assays to assess gene copy number are therefore becoming an integral part of accurate genotype assessment and phenotype prediction. In this study, we evaluated a microfluidics-based system, the Bio-Rad Experion system, to determine the power and utility of this platform to detect UGT2B17 and SULT1A1 CNV in DNA samples derived from blood and tissue. UGT2B17 is known to present with 0, 1 or 2 and SULT1A1 with up to 5 gene copies. Distinct clustering (p<0.001) into copy number groups was achieved for both genes. DNA samples derived from blood exhibited less inter-run variability compared to DNA samples obtained from liver tissue. This variability may be caused by tissue-specific PCR inhibitors as it could be overcome by using DNA from another tissue, or after the DNA had undergone whole genome amplification. This method produced results comparable to those reported for other quantitative test platforms.

  2. The Implication of the Polymorphisms of COX-1, UGT1A6, and CYP2C9 among Cardiovascular Disease (CVD) Patients Treated with Aspirin.

    PubMed

    Jalil, Nur Jalinna Abdul; Bannur, Zakaria; Derahman, A; Maskon, O; Darinah, Noor; Hamidi, Hamat; Gunasekaran, Osama Ali; Rafizi, Mohd; Azreen, Nur Izatul; Kek, Teh Lay; Salleh, Mohd Zaki

    2015-01-01

      Enzymes potentially responsible for the pharmacokinetic variations of aspirin include cyclooxygenase-1 (COX-1), UDP-glucuronosyltransferase (UGT1A6) and P450 (CYP) (CYP2C9). We therefore aimed to determine the types and frequencies of variants of COX-1 (A-842G), UGT1A6 (UGT1A6*2; A541G and UGT1A6*3; A522C) and CYP2C9 (CYP2C9*3; A1075C) in the three major ethnic groups in Malaysia. In addition, the role of these polymorphisms on aspirin-induced gastritis among the patients was investigated. A total of 165 patients with cardiovascular disease who were treated with 75-150 mg daily dose of aspirin and 300 healthy volunteers were recruited. DNA was extracted from the blood samples and genotyped for COX-1 (A-842G), UGT1A6 (UGT1A6*2 and UGT1A6*3) and CYP2C9 (CYP2C9*3; A1075C) using allele specific polymerase chain reaction (AS-PCR). Variants UGT1A6*2,*3 and CYP2C9*3 were detected in relatively high percentage of 22.83%, 30.0% and 6.50%, respectively; while COX-1 (A-842G) was absent. The genotype frequencies for UGT1A6*2 and *3 were significantly different between Indians and Malays or Chinese. The level of bilirubin among patients with different genotypes of UGT1A6 was significantly different (p-value < 0.05). In addition, CYP2C9*3 was found to be associated with gastritis with an odd ratio of 6.8 (95 % Cl OR: 1.39 - 33.19; P = 0.033). Screening of patients with defective genetic variants of UGT1A6 and CYP2C9*3 helps in identifying patients at risk of aspirin induced gastritis. However, a randomised clinical study of bigger sample size would be needed before it is translated to clinical use.

  3. Screening of recombinant glycosyltransferases reveals the broad acceptor specificity of stevia UGT-76G1.

    PubMed

    Dewitte, Griet; Walmagh, Maarten; Diricks, Margo; Lepak, Alexander; Gutmann, Alexander; Nidetzky, Bernd; Desmet, Tom

    2016-09-10

    UDP-glycosyltransferases (UGTs) are a promising class of biocatalysts that offer a sustainable alternative for chemical glycosylation of natural products. In this study, we aimed to characterize plant-derived UGTs from the GT-1 family with an emphasis on their acceptor promiscuity and their potential application in glycosylation processes. Recombinant expression in E. coli provided sufficient amounts of enzyme for the in-depth characterization of the salicylic acid UGT from Capsella rubella (UGT-SACr) and the stevia UGT from Stevia rebaudiana (UGT-76G1Sr). The latter was found to have a remarkably broad specificity with activities on a wide diversity of structures, from aliphatic and branched alcohols, over small phenolics to larger flavonoids, terpenoids and even higher glycoside compounds. As an example for its industrial potential, the glycosylation of curcumin was thoroughly evaluated. Under optimized conditions, 96% of curcumin was converted within 24h into the corresponding curcumin β-glycosides. In addition, the reaction was performed in a coupled system with sucrose synthase from Glycine max, to enable the cost-efficient (re)generation of UDP-Glc from sucrose as abundant and renewable resource. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Albumin Stimulates the Activity of the Human UDP-Glucuronosyltransferases 1A7, 1A8, 1A10, 2A1 and 2B15, but the Effects Are Enzyme and Substrate Dependent

    PubMed Central

    Svaluto-Moreolo, Paolo; Dziedzic, Klaudyna; Yli-Kauhaluoma, Jari; Finel, Moshe

    2013-01-01

    Human UDP-glucuronosyltransferases (UGTs) are important enzymes in metabolic elimination of endo- and xenobiotics. It was recently shown that addition of fatty acid free bovine serum albumin (BSA) significantly enhances in vitro activities of UGTs, a limiting factor in in vitro–in vivo extrapolation. Nevertheless, since only few human UGT enzymes were tested for this phenomenon, we have now performed detailed enzyme kinetic analysis on the BSA effects in six previously untested UGTs, using 2–4 suitable substrates for each enzyme. We also examined some of the previously tested UGTs, but using additional substrates and a lower BSA concentration, only 0.1%. The latter concentration allows the use of important but more lipophilic substrates, such as estradiol and 17-epiestradiol. In five newly tested UGTs, 1A7, 1A8, 1A10, 2A1, and 2B15, the addition of BSA enhanced, to a different degree, the in vitro activity by either decreasing reaction’s K m, increasing its V max, or both. In contrast, the activities of UGT2B17, another previously untested enzyme, were almost unaffected. The results of the assays with the previously tested UGTs, 1A1, 1A6, 2B4, and 2B7, were similar to the published BSA only as far as the BSA effects on the reactions’ K m are concerned. In the cases of V max values, however, our results differ significantly from the previously published ones, at least with some of the substrates. Hence, the magnitude of the BSA effects appears to be substrate dependent, especially with respect to V max increases. Additionally, the BSA effects may be UGT subfamily dependent since K m decreases were observed in members of subfamilies 1A, 2A and 2B, whereas large V max increases were only found in several UGT1A members. The results shed new light on the complexity of the BSA effects on the activity and enzyme kinetics of the human UGTs. PMID:23372764

  5. Selective Detoxification of Phenols by Pichia pastoris and Arabidopsis thaliana Heterologously Expressing the PtUGT72B1 from Populus trichocarpa

    PubMed Central

    Xu, Zhi-Sheng; Lin, Ya-Qiu; Xu, Jing; Zhu, Bo; Zhao, Wei; Peng, Ri-He; Yao, Quan-Hong

    2013-01-01

    Phenols are present in the environment and commonly in contact with humans and animals because of their wide applications in many industries. In a previous study, we reported that uridine diphosphate-glucose-dependent glucosyltransferase PtUGT72B1 from Populus trichocarpa has high activity in detoxifying trichlorophenol by conjugating glucose. In this study, more experiments were performed to determine the substrate specificity of PtUGT72B1 towards phenolic compounds. Among seven phenols tested, three were glucosylated by PtUGT72B1 including phenol, hydroquinone, and catechol. Transgenic Arabidopsis plants expressing the enzyme PtUGT72B1 showed higher resistance to hydroquinone and catechol but more sensitivity to phenol than wild type plants. Transgenic Pichia pastoris expressing PtUGT72B1 showed enhanced resistance to all three phenols. Compared with wild type Arabidopsis plants, transgenic Arabidopsis plants showed higher removal efficiencies and exported more glucosides of phenol, phenyl β-D-glucopyranoside, to the medium after cultured with the three phenols. Protein extracts from transgenic Arabidopsis plants showed enhanced conjugating activity towards phenol, hydroquinone and catechol. PtUGT72B1 showed much higher expression level in Pichia pastoris than in Arabidopsis plants. Kinetic analysis of the PtUGT72B1 was also performed. PMID:23840543

  6. Modulation of bilirubin neurotoxicity by the Abcb1 transporter in the Ugt1-/- lethal mouse model of neonatal hyperbilirubinemia.

    PubMed

    Bockor, Luka; Bortolussi, Giulia; Vodret, Simone; Iaconcig, Alessandra; Jašprová, Jana; Zelenka, Jaroslav; Vitek, Libor; Tiribelli, Claudio; Muro, Andrés F

    2017-01-01

    Moderate neonatal jaundice is the most common clinical condition during newborn life. However, a combination of factors may result in acute hyperbilirubinemia, placing infants at risk of developing bilirubin encephalopathy and death by kernicterus. While most risk factors are known, the mechanisms acting to reduce susceptibility to bilirubin neurotoxicity remain unclear. The presence of modifier genes modulating the risk of developing bilirubin-induced brain damage is increasingly being recognised. The Abcb1 and Abcc1 members of the ABC family of transporters have been suggested to have an active role in exporting unconjugated bilirubin from the central nervous system into plasma. However, their role in reducing the risk of developing neurological damage and death during neonatal development is still unknown.To this end, we mated Abcb1a/b-/- and Abcc1-/- strains with Ugt1-/- mice, which develop severe neonatal hyperbilirubinemia. While about 60% of Ugt1-/- mice survived after temporary phototherapy, all Abcb1a/b-/-/Ugt1-/- mice died before postnatal day 21, showing higher cerebellar levels of unconjugated bilirubin. Interestingly, Abcc1 role appeared to be less important.In the cerebellum of Ugt1-/- mice, hyperbilirubinemia induced the expression of Car and Pxr nuclear receptors, known regulators of genes involved in the genotoxic response.We demonstrated a critical role of Abcb1 in protecting the cerebellum from bilirubin toxicity during neonatal development, the most clinically relevant phase for human babies, providing further understanding of the mechanisms regulating bilirubin neurotoxicity in vivo. Pharmacological treatments aimed to increase Abcb1 and Abcc1 expression, could represent a therapeutic option to reduce the risk of bilirubin neurotoxicity. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Association of UGT1A1 variants and hyperbilirubinemia in breast-fed full-term Chinese infants.

    PubMed

    Zhou, Youyou; Wang, San-nan; Li, Hong; Zha, Weifeng; Wang, Xuli; Liu, Yuanyuan; Sun, Jian; Peng, Qianqian; Li, Shilin; Chen, Ying; Jin, Li

    2014-01-01

    A retrospective case control study of breast-fed full-term infants was carried out to determine whether variants in Uridine Diphosphate Glucuronosyl Transferase 1A1 (UGT1A1) and Heme Oxygenase-1 (HMOX1) were associated with neonatal hyperbilirubinemia. Eight genetic variants of UGT1A1 and 3 genetic variants of HMOX1 were genotyped in 170 hyperbilirubinemic newborns and 779 controls. Five significant associations with breast-fed hyperbilirubinemia were detected after adjusting for gender, birth season, birth weight, delivery mode, gestational age and False Discovery Rate (FDR) correction: the dominant effect of rs887829 (c-364t) (Odds Ratio (OR): 0.55; 95% Confidence Interval (CI): 0.34-0.89; p = 0.014), the additive effect of (TA)n repeat (OR: 0.59; 95%CI: 0.38-0.91; p = 0.017), the dominant effect of rs4148323 (Gly71Arg, G211A) (OR: 2.02; 95%CI: 1.44-2.85; p = 5.0×10-5), the recessive effect of rs6717546 (g+914a) (OR: 0.30; 95%CI: 0.11-0.83; p = 0.021) and rs6719561 (t+2558c) (OR: 0.38; 95%CI: 0.20-0.75; p = 0.005). Neonates carrying the minor allele of rs887829 (TA)n repeat had significantly lower peak bilirubin than wild types, while the minor allele carriers of rs4148323 had significantly higher peak bilirubin than wild types. No association was found in HMOX1. Our findings added to the understanding of the significance of UGT1A1 in association with neonatal hyperbilirubinemia in East Asian population. Additional studies were required to investigate the mechanisms of the protective effects.

  8. Genome-wide analysis of family-1 UDP glycosyltransferases (UGT) and identification of UGT genes for FHB resistance in wheat (Triticum aestivum L.).

    PubMed

    He, Yi; Ahmad, Dawood; Zhang, Xu; Zhang, Yu; Wu, Lei; Jiang, Peng; Ma, Hongxiang

    2018-04-19

    Fusarium head blight (FHB), a devastating disease in wheat worldwide, results in yield loses and mycotoxin, such as deoxynivalenol (DON), accumulation in infected grains. DON also facilitates the pathogen colonization and spread of FHB symptoms during disease development. UDP-glycosyltransferase enzymes (UGTs) are known to contribute to detoxification and enhance FHB resistance by glycosylating DON into DON-3-glucoside (D3G) in wheat. However, a comprehensive investigation of wheat (Triticum aestivum) UGT genes is still lacking. In this study, we carried out a genome-wide analysis of family-1 UDP glycosyltransferases in wheat based on the PSPG conserved box that resulted in the identification of 179 putative UGT genes. The identified genes were clustered into 16 major phylogenetic groups with a lack of phylogenetic group K. The UGT genes were invariably distributed among all the chromosomes of the 3 genomes. At least 10 intron insertion events were found in the UGT sequences, where intron 4 was observed as the most conserved intron. The expression analysis of the wheat UGT genes using both online microarray data and quantitative real-time PCR verification suggested the distinct role of UGT genes in different tissues and developmental stages. The expression of many UGT genes was up-regulated after Fusarium graminearum inoculation, and six of the genes were further verified by RT-qPCR. We identified 179 UGT genes from wheat using the available sequenced wheat genome. This study provides useful insight into the phylogenetic structure, distribution, and expression patterns of family-1 UDP glycosyltransferases in wheat. The results also offer a foundation for future work aimed at elucidating the molecular mechanisms underlying the resistance to FHB and DON accumulation.

  9. Upregulation of UDP-Glucuronosyltransferases 1a1 and 1a7 Are Involved in Altered Puerarin Pharmacokinetics in Type II Diabetic Rats.

    PubMed

    Dong, Songtao; Zhang, Maofan; Niu, Huimin; Jiang, Kunyu; Jiang, Jialei; Ma, Yinglin; Wang, Xin; Meng, Shengnan

    2018-06-20

    Puerarin is an isoflavonoid extracted from Pueraria lobata roots, and displays a broad range of pharmacological activities, including antidiabetic activity. However, information about the pharmacokinetics of puerarin in diabetics is scarce. This study was conducted to investigate the difference in pharmacokinetic effects of puerarin in normal rats and rats with diabetes mellitus (DM), and the mechanism involved. DM was induced by a combined high-fat diet (HFD) and streptozotocin (STZ) injection. Plasma concentrations of puerarin in DM, HFD, and control rats were determined after intravenous (20 mg/kg) and oral administration (500 mg/kg) of puerarin, and pharmacokinetic parameters were estimated. The messenger RNA (mRNA) and protein expression levels of Ugt1a1 and Ugt1a7 in rat livers and intestines were measured using qRT-PCR and western blot, respectively. The area under the concentration⁻time curve and the clearance of puerarin in the DM rats statistically differed from those in the control rats ( p <0.05) with both administration routes. The hepatic and intestinal gene and protein expressions of Ugt1a1 and Ugt1a7 were significantly increased in the DM rats ( p <0.05). Therefore, the metabolic changes in diabetes could alter the pharmacokinetics of puerarin. This change could be caused by upregulated uridine diphosphate (UDP)-glucuronosyltransferase activity, which may enhance puerarin clearance, and alter its therapeutic effects.

  10. Establishment and Use of New MDCK II Cells Overexpressing Both UGT1A1 and MRP2 to Characterize Flavonoid Metabolism via the Glucuronidation Pathway

    PubMed Central

    Wang, Meifang; Yang, Guangyi; He, Yu; Xu, Beibei; Zeng, Min; Yin, Taijun; Gao, Song; Hu, Ming

    2017-01-01

    Scope The purpose of this study is to characterize how overexpression of an efflux transporter and an UDP-glucuronosyltransferase (UGT) affects the cellular kinetics of glucuronidation processes. Methods and Results A new MDCK II cell line overexpressing both MRP2 and UGT1A1 (MDCKII-UGT1A1/MRP2 cells) was developed and used to determine how overexpression of an efflux transporter affects the kinetics of cellular flavonoid glucuronide production. The results showed that most model flavonoids (from a total of 13) were mainly metabolized into glucuronides in the MDCKII-UGT1A1/MRP2 cells and the glucuronides were rapidly excreted. Flavonoids with three or fewer hydroxyl group at 7, 3′ or 6 hydroxyl group were also metabolized into sulfates. Mechanistic studies using 7-hydroxylflavone showed that its glucuronide was mainly (90%) effluxed by BCRP with a small (10%) but significant contribution from MRP2. Maximal velocity of glucuronide production MDCK-MRP2/UGT1A1 cells showed a fairly good correlation (R2 >0.8) with those derived using UGT1A1 microsomes, but other kinetic parameters (e.g., Km) did not correlate. Conclusion Overexpression of a second efficient efflux transporter did not significantly change the fact that BCRP is the dominant transporter for flavonoid glucuronide nor did it diminish the influence of the efflux transporter as the “gate keeper” of glucuronidation process. PMID:26833852

  11. Effect of UDP-Glucuronosyltransferase (UGT) 1A Polymorphism (rs8330 and rs10929303) on Glucuronidation Status of Acetaminophen

    PubMed Central

    Tahir, Imtiaz Mahmood; Iqbal, Tahira; Saleem, Sadaf; Perveen, Sofia; Farooqi, Aboubakker

    2017-01-01

    Interindividual variability in polymorphic uridine diphosphate-glucuronosyltransferase 1A1 (UGT1A1) ascribed to genetic diversity is associated with relative glucuronidation level among individuals. The present research was aimed to study the effect of 2 important single nucleotide polymorphisms (SNPs; rs8330 and rs10929303) of UGT1A1 gene on glucuronidation status of acetaminophen in healthy volunteers (n = 109). Among enrolled volunteers, 54.13% were male (n = 59) and 45.87% were female (n = 50). The in vivo activity of UGT1A1 was investigated by high-performance liquid chromatography-based analysis of glucuronidation status (ie, acetaminophen and acetaminophen glucuronide) in human volunteers after oral intake of a single dose (1000 mg) of acetaminophen. The TaqMan SNP genotyping assay was used for UGT1A1 genotyping. The wild-type genotype (C/C) was observed the most frequent one for both SNPs (rs8330 and rs10929303) and associated with fast glucuronidator phenotypes. The distribution of variant genotype (G/G) for SNP rs8330 was observed in 5% of male and 8% of the female population; however, for SNP rs10929303, the G/G genotype was found in 8% of both genders. A trimodal distribution (fast, intermediate, and slow) based on phenotypes was observed. Among the male participants, the glucuronidation phenotypes were observed as 7% slow, 37% intermediate, and 56% fast glucuronidators; however, these findings for the females were slightly different as 8%, 32%, and 60% respectively. The k-statistics revealed a compelling evidence for good concordance between phenotype and genotype with a k value of 1.00 for SNP rs8330 and 0.966 for SNP rs10929303 in our population. PMID:28932176

  12. Bisphenol-A glucuronidation in human liver and breast: identification of UDP-glucuronosyltransferases (UGTs) and influence of genetic polymorphisms.

    PubMed

    Street, Christina M; Zhu, Zhaohui; Finel, Moshe; Court, Michael H

    2017-01-01

    1. Bisphenol-A is a ubiquitous environmental contaminant that is primarily metabolized by glucuronidation and associated with various human diseases including breast cancer. Here we identified UDP-glucuronosyltransferases (UGTs) and genetic polymorphisms responsible for interindividual variability in bisphenol-A glucuronidation in human liver and breast. 2. Hepatic UGTs showing the highest bisphenol-A glucuronidation activity included UGT2B15 and UGT1A9. Relative activity factor normalization indicated that UGT2B15 contributes >80% of activity at bisphenol-A concentrations under 5 μM, while UGT1A9 contributes up to 50% of activity at higher concentrations. 3. Bisphenol-A glucuronidation by liver microsomes (46 donors) ranged from 0.25 to 4.3 nmoles/min/mg protein. Two-fold higher glucuronidation (p = 0.018) was observed in UGT1A9 *22/*22 livers compared with *1/*1 and *1/*22 livers. However, no associations were observed for UGT2B15*2 or UGT1A1*28 genotypes. 4. Bisphenol-A glucuronidation by breast microsomes (15 donors) ranged from <0.2 to 56 fmoles/min/mg protein. Breast mRNA expression of UGTs capable of glucuronidating bisphenol-A was highest for UGT1A1, followed by UGT2B4, UGT1A9, UGT1A10, UGT2B7 and UGT2B15. Bisphenol-A glucuronidation was over 10-fold lower in breast tissues with the UGT1A1*28 allele compared with tissues without this allele (p = 0.006). 5. UGT2B15 and UGT1A9 contribute to glucuronidation variability in liver, while UGT1A1 is important in breast.

  13. Expression of the human UDP-galactose transporter gene hUGT1 in tobacco plants' enhanced plant hardness.

    PubMed

    Abedi, Tayebeh; Khalil, Mohamed Farouk Mohamed; Koike, Kanae; Hagura, Yoshio; Tazoe, Yuma; Ishida, Nobuhiro; Kitamura, Kenji; Tanaka, Nobukazu

    2018-04-09

    We reported previously that tobacco plants transformed with the human UDP-galactose transporter 1 gene (hUGT1) had enhanced growth, displayed characteristic traits, and had an increased proportion of galactose (hyper-galactosylation) in the cell wall matrix polysaccharides. Here, we report that hUGT1-transgenic plants have an enhanced hardness. As determined by breaking and bending tests, the leaves and stems of hUGT1-transgenic plants were harder than those of control plants. Transmission electron microscopy revealed that the cell walls of palisade cells in leaves, and those of cortex cells and xylem fibers in stems of hUGT1-transgenic plants, were thicker than those of control plants. The increased amounts of total cell wall materials extracted from the leaves and stems of hUGT1-transgenic plants supported the increased cell wall thickness. In addition, the cell walls of the hUGT1-transgenic plants showed an increased lignin contents, which was supported by the up-regulation of lignin biosynthetic genes. Thus, the heterologous expression of hUGT1 enhanced the accumulation of cell wall materials, which was accompanied by the increased lignin content, resulting in the increased hardness of the leaves and stems of hUGT1-trangenic plants. The enhanced accumulation of cell wall materials might be related to the hyper-galactosylation of cell wall matrix polysaccharides, most notably arabinogalactan, because of the enhanced UDP-galactose transport from the cytosol to the Golgi apparatus by hUGT1, as suggested in our previous report. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Reversible grade 4 hyperbilirubinemia in a patient with UGT1A1 7/7 genotype treated with irinotecan and cetuximab.

    PubMed

    Gupta, Bhavna; LeVea, Charles; Litwin, Alan; Fakih, Marwan G

    2007-03-01

    Irinotecan-induced gastrointestinal toxicities are common and typically present in the form of diarrhea or nausea and vomiting. However, severe hyperbilirubinemia (grade 3/4) has not been previously reported in association with this chemotherapeutic agent. We report a case of prolonged grade 4 hyperbilirubinemia after a single dose of irinotecan at 125 mg/m(2). This severe toxicity was attributed to a UGT1A1 7/7 genotype and resolved to grade 2 after 8 weeks of supportive care. This case outlines the possibility of severe hepatic toxicity with moderate doses of irinotecan in patients with a UGT1A1 7/7 genotype. Despite the severity and prolonged duration of the associated irinotecan-induced hepatic toxicity, the management of similar cases should focus on intensive supportive measures because the toxicity is likely to resolve eventually.

  15. UGT1A1 gene polymorphism: Impact on toxicity and efficacy of irinotecan-based regimens in metastatic colorectal cancer

    PubMed Central

    Schulz, Christoph; Heinemann, Volker; Schalhorn, Andreas; Moosmann, Nikolas; Zwingers, Thomas; Boeck, Stefan; Giessen, Clemens; Stemmler, Hans-Joachim

    2009-01-01

    AIM: To investigate the correlation between uridine diphosphate glucuronosyl transferase 1A1 (UGT1A1) gene polymorphisms and irinotecan-associated side effects and parameters of drug efficacy in patients with metastatic colorectal cancer (mCRC) receiving a low-dose weekly irinotecan chemotherapeutic regimen. METHODS: Genotypes were retrospectively evaluated by gene scan analysis on the ABI 310 sequencer of the TATAA box in the promoter region of the UGT1A1 gene in blood samples from 105 patients who had received 1st line irinotecan-based chemotherapy for mCRC. RESULTS: The distribution of the genotypes was as follows: wild type genotype (WT) (6/6) 39.0%, heterozygous genotype (6/7) 49.5%, and homozygous genotype (7/7) 9.5%. The overall response rate (OR) was similar between patients carrying the (6/7, 7/7) or the WT genotype (6/6) (44.3% vs 43.2%, P = 0.75). Neither time to progression [(TTP) 8.1 vs 8.2 mo, P = 0.97] nor overall survival [(OS) 21.2 vs 18.9 mo, P = 0.73] differed significantly in patients who carried the (6/6) when compared to the (6/7, 7/7) genotype. No significant differences in toxicity were observed: Grade 3 and 4 delayed diarrhoea [(6/7, 7/7) vs (6/6); 13.0% vs 6.2%, P = 0.08], treatment delays [(6/7, 7/7) vs (6/6); 25.1% vs 19.3%, P =0.24] or dose reductions [(6/7, 7/7) vs (6/6); 21.5% vs 27.2%, P = 0.07]. CONCLUSION: This analysis demonstrates the non-significant influence of the UGT1A1 gene polymorphism on efficacy and rate of irinotecan-associated toxicity in mCRC patients receiving low-dose irinotecan based chemotherapy. PMID:19859999

  16. DPYD and UGT1A1 genotyping to predict adverse events during first-line FOLFIRI or FOLFOXIRI plus bevacizumab in metastatic colorectal cancer.

    PubMed

    Cremolini, Chiara; Del Re, Marzia; Antoniotti, Carlotta; Lonardi, Sara; Bergamo, Francesca; Loupakis, Fotios; Borelli, Beatrice; Marmorino, Federica; Citi, Valentina; Cortesi, Enrico; Moretto, Roberto; Ronzoni, Monica; Tomasello, Gianluca; Zaniboni, Alberto; Racca, Patrizia; Buonadonna, Angela; Allegrini, Giacomo; Ricci, Vincenzo; Di Donato, Samantha; Zagonel, Vittorina; Boni, Luca; Falcone, Alfredo; Danesi, Romano

    2018-01-30

    Our study addresses the issue of the clinical reliability of three candidate DPYD and one UGT single nucleotide polymorphisms in predicting 5-fluorouracil- and irinotecan-related adverse events. To this purpose, we took advantage of a large cohort of metastatic colorectal cancer patients treated with first-line 5-fluorouracil- and irinotecan-based chemotherapy regimens (i.e., FOLFIRI or FOLFOXIRI) plus bevacizumab in the randomized clinical trial TRIBE by GONO (clinicaltrials.gov: NCT00719797), in which adverse events were carefully and prospectively collected at each treatment cycle. Here we show that patients bearing DPYD c.1905+1G/A and c.2846A/T genotypes, together with UGT1A1*28 variant carriers, have an increased risk of experiencing clinically relevant toxicities, including hematological AEs and stomatitis. No carrier of the DPYD c.1679T>G minor allele was identified. Present results support the preemptive screening of mentioned DPYD and UGT1A1 variants to identify patients at risk of clinically relevant 5-fluoruracil- and irinotecan-related AEs, in order to improve treatments' safety through a "genotype-guided" approach.

  17. Base substitution mutations in uridinediphosphate-dependent glycosyltransferase 76G1 gene of Stevia rebaudiana causes the low levels of rebaudioside A: mutations in UGT76G1, a key gene of steviol glycosides synthesis.

    PubMed

    Yang, Yong-Heng; Huang, Su-Zhen; Han, Yu-Lin; Yuan, Hai-Yan; Gu, Chun-Sun; Zhao, Yan-Hai

    2014-07-01

    Steviol glycosides, extracted from the leaves of Stevia rebaudiana (Bert) Bertoni, are calorie-free sugar substitute of natural origin with intensely sweet (Boileau et al., 2012). Stevioside and rebaudioside A are the two main kinds of the diterpenic glycosides. We analyzed the concentration of stevioside and rebaudioside A in Stevia leaves of about 500 samples (hybrid progenies) and discovered a mutation plant "Z05" with very low levels of rebaudioside A. Because UGT76G1, a uridinediphosphate-dependent glycosyltransferases, is responsible for the conversion from stevioside to rebaudioside A (Richman et al., 2005), so mutation identification was done by sequencing the candidate gene, UGT76G1. In this study molecular analysis of two strains revealed a heterozygotic nonsense mutation of c.389T > G (p.L121X) in UGT76G1. Meanwhile, we found some amino acid substitutions significant change the protein structure. And the difference of enzyme activity between two strains proved the lack of functionality of UGT76G1 of the mutation "Z05". So the nonsense mutation and amino acid substitution mutation resulted in the low levels of rebaudioside A. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. High Expression of UGT1A1/1A6 in Monkey Small Intestine: Comparison of Protein Expression Levels of Cytochromes P450, UDP-Glucuronosyltransferases, and Transporters in Small Intestine of Cynomolgus Monkey and Human.

    PubMed

    Akazawa, Takanori; Uchida, Yasuo; Miyauchi, Eisuke; Tachikawa, Masanori; Ohtsuki, Sumio; Terasaki, Tetsuya

    2018-01-02

    Cynomolgus monkeys have been widely used for the prediction of drug absorption in humans. The purpose of this study was to clarify the regional protein expression levels of cytochromes P450 (CYPs), UDP-glucuronosyltransferases (UGTs), and transporters in small intestine of cynomolgus monkey using liquid chromatography-tandem mass spectrometry, and to compare them with the corresponding levels in human. UGT1A1 in jejunum and ileum were >4.57- and >3.11-fold and UGT1A6 in jejunum and ileum were >16.1- and >8.57-fold, respectively, more highly expressed in monkey than in human. Also, jejunal expression of monkey CYP3A8 (homologue of human CYP3A4) was >3.34-fold higher than that of human CYP3A4. Among apical drug efflux transporters, BCRP showed the most abundant expression in monkey and human, and the expression levels of BCRP in monkey and human were >1.74- and >1.25-fold greater than those of P-gp and >2.76- and >4.50-fold greater than those of MRP2, respectively. These findings should be helpful to understand species differences of the functions of CYPs, UGTs, and transporters between monkey and human. The UGT1A1/1A6 data would be especially important because it is difficult to identify isoforms responsible for species differences of intestinal glucuronidation by means of functional studies due to overlapping substrate specificity.

  19. A diet containing the soy phytoestrogen genistein causes infertility in female rats partially deficient in UDP glucuronyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seppen, Jurgen, E-mail: j.seppen@amc.uva.nl

    Soy beans contain genistein, a natural compound that has estrogenic effects because it binds the estrogen receptor with relatively high affinity. Genistein is therefore the most important environmental estrogen in the human diet. Detoxification of genistein is mediated through conjugation by UDP-glucuronyltransferase 1 and 2 (UGT1 and UGT2) isoenzymes. Gunn rats have a genetic deficiency in UGT1 activity, UGT2 activities are not affected. Because our Gunn rats stopped breeding after the animal chow was changed to a type with much higher soy content, we examined the mechanism behind this soy diet induced infertility. Gunn and control rats were fed dietsmore » with and without genistein. In these rats, plasma levels of genistein and metabolites, fertility and reproductive parameters were determined. Enzyme assays showed reduced genistein UGT activity in Gunn rats, as compared to wild type rats. Female Gunn rats were completely infertile on a genistein diet, wild type rats were fertile. Genistein diet caused a persistent estrus, lowered serum progesterone and inhibited development of corpora lutea in Gunn rats. Concentrations of total genistein in Gunn and control rat plasma were identical and within the range observed in humans after soy consumption. However, Gunn rat plasma contained 25% unconjugated genistein, compared to 3.6% in control rats. This study shows that, under conditions of reduced glucuronidation, dietary genistein exhibits a strongly increased estrogenic effect. Because polymorphisms that reduce UGT1 expression are prevalent in the human population, these results suggest a cautionary attitude towards the consumption of large amounts of soy or soy supplements. -- Highlights: ► Gunn rats are partially deficient in detoxification by UDP glucuronyltransferases. ► Female Gunn rats are infertile on a soy containing diet. ► Soy contains genistein, a potent phytoestrogen. ► Inefficient glucuronidation of genistein causes female infertility.« less

  20. Development of a new DHPLC assay for genotyping UGT1A (TA)n polymorphism associated with Gilbert's syndrome.

    PubMed

    Mlakar, Simona Jurkovic; Ostanek, Barbara

    2011-01-01

    Gilbert's syndrome is the most common hereditary disorder of bilirubin metabolism. The causative mutation in Caucasians is almost exclusively a (TA) dinucleotide insertion in the UGT1A1 promoter. Affected individuals are homozygous for the variant promoter and have 7 TA repeats instead of 6. Promoters with 5 and 8 TA repeats also exist but are extremely rare in Caucasians. The aim of our study was to develop denaturing high-performance liquid chromatography (DHPLC) assay for genotyping UGT1A1(TA)n polymorphism and to compare it with a previously described single-strand conformation polymorphism (SSCP) assay. Fifty DNA samples with common genotypes ((TA)6/6, (TA)6/7, (TA)7/7) as well as 7 samples with one of the following rare genotypes- (TA)5/6, (TA)5/7, (TA)6/8 or (TA)7/8 were amplified by polymerase chain reaction (PCR) and genotyped by DHPLC using sizing mode. All samples were previously genotyped by SSCP assay which was validated by sequencing analysis. All samples with either common or rare genotypes showed completely concordant results between DHPLC and SSCP assays. Our results show that sizing DHPLC assay is more efficient compared to classical SSCP assay due to shorter time of genotyping analysis, ability of genotyping increased number of samples per day, higher robustness, reproducibility and cost-effectiveness with no loss of accuracy in detection of all UGT1A1(TA)n genotypes. We developed a new DHPLC assay which is suitable for accurate, automated, highthroughput, robust genotyping of all UGT1A1(TA)n polymorphism variants, compared to a labour intensive and time-consuming SSCP assay.

  1. S-Naproxen and desmethylnaproxen glucuronidation by human liver microsomes and recombinant human UDP-glucuronosyltransferases (UGT): role of UGT2B7 in the elimination of naproxen

    PubMed Central

    Bowalgaha, Kushari; Elliot, David J; Mackenzie, Peter I; Knights, Kathleen M; Swedmark, Stellan; Miners, John O

    2005-01-01

    Aims To characterize the kinetics of S-naproxen (‘naproxen’) acyl glucuronidation and desmethylnaproxen acyl and phenolic glucuronidation by human liver microsomes and identify the human UGT isoform(s) catalysing these reactions. Methods Naproxen and desmethylnaproxen glucuronidation were investigated using microsomes from six and five livers, respectively. Human recombinant UGTs were screened for activity towards naproxen and desmethylnaproxen. Where significant activity was observed, kinetic parameters were determined. Naproxen and desmethylnaproxen glucuronides were measured by separate high-performance liquid chromatography methods. Results Naproxen acyl glucuronidation by human liver microsomes followed biphasic kinetics. Mean apparent Km values (±SD, with 95% confidence interval in parentheses) for the high- and low-affinity components were 29 ± 13 µm (16, 43) and 473 ± 108 µm (359, 587), respectively. UGT 1A1, 1A3, 1A6, 1A7, 1A8, 1A9, 1A10 and 2B7 glucuronidated naproxen. UGT2B7 exhibited an apparent Km (72 µm) of the same order as the high-affinity human liver microsomal activity, which was inhibited by the UGT2B7 selective ‘probe’ fluconazole. Although data for desmethylnaproxen phenolic glucuronidation by human liver microsomes were generally adequately fitted to either the single- or two-enzyme Michaelis–Menten equation, model fitting was inconclusive for desmethylnaproxen acyl glucuronidation. UGT 1A1, 1A7, 1A9 and 1A10 catalysed both the phenolic and acyl glucuronidation of desmethylnaproxen, while UGT 1A3, 1A6 and 2B7 formed only the acyl glucuronide. Atypical glucuronidation kinetics were variably observed for naproxen and desmethylnaproxen glucuronidation by the recombinant UGTs. Conclusion UGT2B7 is responsible for human hepatic naproxen acyl glucuronidation, which is the primary elimination pathway for this drug. PMID:16187975

  2. Characterization of Arabidopsis sterol glycosyltransferase TTG15/UGT80B1 role during freeze and heat stress

    PubMed Central

    Mishra, Manoj K; Singh, Gaurav; Tiwari, Shalini; Singh, Ruchi; Kumari, Nishi; Misra, Pratibha

    2015-01-01

    Sterol glycosyltransferases regulate the properties of sterols by catalyzing the transfer of carbohydrate molecules to the sterol moiety for the synthesis of steryl glycosides and acyl steryl glycosides. We have analyzed the functional role of TTG15/UGT80B1 gene of Arabidopsis thaliana in freeze/thaw and heat shock stress using T-DNA insertional sgt knockout mutants. Quantitative study of spatial as well as temporal gene expression showed tissue-specific and dynamic expression patterns throughout the growth stages. Comparative responses of Col-0, TTG15/UGT80B1 knockout mutant and p35S:TTG15/UGT80B1 restored lines were analyzed under heat and freeze stress conditions. Heat tolerance was determined by survival of plants at 42°C for 3 h, MDA analysis and chlorophyll fluorescence image (CFI) analysis. Freezing tolerance was determined by survival of the plants at -1°C temperature in non-acclimatized (NA) and cold acclimatized (CA) conditions and also by CFI analysis, which revealed that, p35S:TTG15/UGT80B1 restored plants were more adapted to freeze stress than TTG15/UGT80B1 knockout mutant under CA condition. HPLC analysis of the plants showed reduced sterol glycoside in mutant seedlings as compared to other genotypes. Following CA condition, both β-sitosterol and sitosterol glycoside quantity was more in Col-0 and p35S:TTG15/UGT80B1 restored lines, whereas it was significantly less in TTG15/UGT80B1 knockout mutants. From these results, it may be concluded that due to low content of free sterols and sterol glycosides, the physiology of mutant plants was more affected during both, the chilling and heat stress. PMID:26382564

  3. Association between the low-dose irinotecan regimen-induced occurrence of grade 4 neutropenia and genetic variants of UGT1A1 in patients with gynecological cancers

    PubMed Central

    MORIYA, HIROYUKI; SAITO, KATSUHIKO; HELSBY, NUALA; SUGINO, SHIGEKAZU; YAMAKAGE, MICHIAKI; SAWAGUCHI, TAKERU; TAKASAKI, MASAHIKO; KATO, HIDENORI; KUROSAWA, NAHOKO

    2014-01-01

    The occurrence of severe neutropenia during treatment with irinotecan (CPT-11) is associated with the *6 and *28 alleles of uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1). However, the correlation between these variants and the occurrence of severe neutropenia in a low-dose CPT-11 regimen for the treatment of gynecological cancers has not been extensively studied. There are also no studies regarding the association between the 421C>A mutation in ATP-binding cassette sub-family G member 2 (ABCG2) and the occurrence of severe neutropenia in CPT-11-treated patients with gynecological cancers. The present study was designed to determine the factors associated with the occurrence of grade 4 neutropenia during chemotherapy for gynecological cancers with combinations of CPT-11 and cisplatin or mitomycin C. In total, 44 patients with gynecological cancer were enrolled in the study. The association between the absolute neutrophil count (ANC) nadir values, the total dose of CPT-11 and the genotypes of UGT1A1 or ABCG2 was studied. No correlation was observed between the ANC nadir values and the total dose of CPT-11. The ANC nadir values in the UGT1A1*6/*28 and *6/*6 groups were significantly lower compared with those in the *1/*1 group (P<0.01). Univariate analysis showed no association between the occurrence of grade 4 neutropenia and the ABCG2 421C>A mutation. Subsequent to narrowing the factors by univariate analysis, multivariate logistic regression analysis only detected significant correlations between the occurrence of grade 4 neutropenia and the UGT1A1*6/*6 and *6/*28 groups (P=0.029; odds ratio, 6.90; 95% confidence interval, 1.22–38.99). No associations were detected between the occurrence of grade 4 neutropenia and the heterozygous variant (*1/*6 or *1/*28) genotype, type of regimen or age. In conclusion, the UGT1A1*6/*28 and *6/*6 genotypes were found to be associated with the occurrence of severe neutropenia in the low-dose CPT-11 regimen for

  4. SCN1A, ABCC2 and UGT2B7 gene polymorphisms in association with individualized oxcarbazepine therapy.

    PubMed

    Ma, Chun-Lai; Wu, Xun-Yi; Jiao, Zheng; Hong, Zhen; Wu, Zhi-Yuan; Zhong, Ming-Kang

    2015-01-01

    Associations between the effects of SCN1A, SCN2A, ABCC2 and UGT2B7 genetic polymorphisms and oxcarbazepine (OXC) maintenance doses in Han Chinese epileptic patients were investigated. Genetic polymorphisms were detected in 184 epileptic patients receiving OXC monotherapy by high-resolution melting curve and TaqMan method. Carriers of the SCN1A IVS5-91G>A, UGT2B7 c.802T>C and ABCC2 c.1249G>A variant alleles required significantly higher OXC maintenance doses than noncarriers (p < 0.05). Corresponding relative ln (concentration-dose ratios) values for SCN1A IVS5-91 variants differed by the genotypic order GG > GA > AA. SCN1A, UGT2B7 and ABCC2 genetic polymorphisms are associated with OXC maintenance doses and may be useful for the personalization of OXC therapy in epileptic patients. Further studies are needed. Original submitted 6 June 2014; Revision submitted 5 September 2014.

  5. Effects of UGT1A9 genetic polymorphisms on monohydroxylated derivative of oxcarbazepine concentrations and oxcarbazepine monotherapeutic efficacy in Chinese patients with epilepsy.

    PubMed

    Lu, Yao; Fang, Youxin; Wu, Xunyi; Ma, Chunlai; Wang, Yue; Xu, Lan

    2017-03-01

    The human UDP-glucuronosyltransferase which is genetically polymorphic catalyzes glucuronidations of various drugs. The interactions among UGT1A4, UGT1A6, UGT1A9, and UGT2B15 genetic polymorphisms, monohydroxylated derivative (MHD) of oxcarbazepine (OXC) plasma concentrations, and OXC monotherapeutic efficacy were explored in 124 Chinese patients with epilepsy receiving OXC monotherapy. MHD is the major active metabolite of OXC, and its plasma concentration was measured using high-performance liquid chromatography when patients reached their maintenance dose of OXC. Genomic DNA was extracted from whole blood and SNP genotyping performed using PCR followed by dideoxy chain termination sequencing. We followed the patients for at least 1 year to evaluate the OXC monotherapy efficacy. Patients were divided into two groups according to their therapeutic outcome: group 1, seizure free; group 2, not seizure free. The data were analyzed using T test, one-way analysis of variance (ANOVA), Kruskal-Wallis test, chi-square test, Fisher's exact test, correlation analysis, and multivariate regression analysis. T test analysis showed that MHD plasma concentrations were significantly different between the two groups (p = 0.002). One-way ANOVA followed by Bonferroni post hoc testing of four candidate SNPs revealed that carriers of the UGT1A9 variant allele I399 C > T (TT 13.28 ± 7.44 mg/L, TC 16.41 ± 6.53 mg/L) had significantly lower MHD plasma concentrations and poorer seizure control than noncarriers (CC 22.24 ± 8.49 mg/L, p < 0.05). In our study, we have demonstrated the effects of UGT1A9 genetic polymorphisms on MHD plasma concentrations and OXC therapeutic efficacy. Through MHD monitoring, we can predict OXC therapeutic efficacy, which may be useful for the personalization of OXC therapy in epileptic patients.

  6. The effects of clobazam treatment in rats on the expression of genes and proteins encoding glucronosyltransferase 1A/2B (UGT1A/2B) and multidrug resistance‐associated protein-2 (MRP2), and development of thyroid follicular cell hypertrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyawaki, Izuru, E-mail: izuru-miyawaki@ds-pharma.co.jp; Tamura, Akitoshi; Matsumoto, Izumi

    Clobazam (CLB) is known to increase hepatobiliary thyroxine (T4) clearance in Sprague–Dawley (SD) rats, which results in hypothyroidism followed by thyroid follicular cell hypertrophy. However, the mechanism of the acceleration of T4-clearance has not been fully investigated. In the present study, we tried to clarify the roles of hepatic UDP-glucronosyltransferase (UGT) isoenzymes (UGT1A and UGT2B) and efflux transporter (multidrug resistance–associated protein-2; MRP2) in the CLB-induced acceleration of T4-clearance using two mutant rat strains, UGT1A-deficient mutant (Gunn) and MRP2-deficient mutant (EHBR) rats, especially focusing on thyroid morphology, levels of circulating hormones (T4 and triiodothyronine (T3)) and thyroid-stimulating hormone (TSH), and mRNAmore » or protein expressions of UGTs (Ugt1a1, Ugt1a6, and Ugt2b1/2) and MRP2 (Mrp). CLB induced thyroid morphological changes with increases in TSH in SD and Gunn rats, but not in EHBR rats. T4 was slightly decreased in SD and Gunn rats, and T3 was decreased in Gunn rats, whereas these hormones were maintained in EHBR rats. Hepatic Ugt1a1, Ugt1a6, Ugt2b1/2, and Mrp2 mRNAs were upregulated in SD rats. In Gunn rats, UGT1A mRNAs (Ugt1a1/6) and protein levels were quite low, but UGT2B mRNAs (Ugt2b1/2) and protein were prominently upregulated. In SD and Gunn rats, MRP2 mRNA and protein were upregulated to the same degree. These results suggest that MRP2 is an important contributor in development of the thyroid cellular hypertrophy in CLB-treated rats, and that UGT1A and UGT2B work in concert with MRP2 in the presence of MRP2 function to enable the effective elimination of thyroid hormones. -- Highlights: ► Role of UGT and MRP2 in thyroid pathology was investigated in clobazam-treated rats. ► Clobazam induced thyroid cellular hypertrophy in SD and Gunn rats, but not EHBR rats. ► Hepatic Mrp2 gene and protein were upregulated in SD and Gunn rats, but not EHBR rats. ► Neither serum thyroid hormones

  7. UGT74AN1, a Permissive Glycosyltransferase from Asclepias curassavica for the Regiospecific Steroid 3-O-Glycosylation.

    PubMed

    Wen, Chao; Huang, Wei; Zhu, Xue-Lin; Li, Xiao-San; Zhang, Fan; Jiang, Ren-Wang

    2018-02-02

    A permissive steroid glycosyltransferase (UGT74AN1) from Asclepias curassavica exhibited robust capabilities for the regiospecific C3 glycosylation of cardiotonic steroids and C 21 steroid precursors, and unprecedented promiscuity toward 53 structurally diverse natural and unnatural compounds to form O-, N-, and S-glycosides, along with the catalytic reversibility for a one-pot transglycosylation reaction. These findings highlight UGT74AN1 as the first regiospecific catalyst for cardiotonic steroid C3 glycosylation and exhibit significant potential for glycosylation of diverse bioactive molecules in drug discovery.

  8. Statin Lactonization by Uridine 5'-Diphospho-glucuronosyltransferases (UGTs).

    PubMed

    Schirris, Tom J J; Ritschel, Tina; Bilos, Albert; Smeitink, Jan A M; Russel, Frans G M

    2015-11-02

    Statins are cholesterol-lowering drugs that have proven to be effective in lowering the risk of major cardiovascular events. Although well tolerated, statin-induced myopathies are the most common side effects. Compared to their pharmacologically active acid form, statin lactones are more potent inducers of toxicity. They can be formed by glucuronidation mediated by uridine 5'-diphospho-glucuronosyltransferases (UGTs), but a systematic characterization of subtype specificity and kinetics of lactonization is lacking. Here, we demonstrate for six clinically relevant statins that only UGT1A1, 1A3, and 2B7 contribute significantly to their lactonization. UGT1A3 appeared to have the highest lactonization capacity with marked differences in statin conversion rates: pitavastatin ≫ atorvastatin > cerivastatin > lovastatin > rosuvastatin (simvastatin not converted). Using in silico modeling we could identify a probable statin interaction region in the UGT binding pocket. Polymorphisms in these regions of UGT1A1, 1A3, and 2B7 may be a contributing factor in statin-induced myopathies, which could be used in personalization of statin therapy with improved safety.

  9. Identification of UGT2B9*2 and UGT2B33 isolated from female rhesus monkey liver.

    PubMed

    Dean, Brian; Arison, Byron; Chang, Steve; Thomas, Paul E; King, Christopher

    2004-06-01

    Two UDP-glucuronosyltransferases (UGT2B9(*)2 and UGT2B33) have been isolated from female rhesus monkey liver. Microsomal preparations of the cell lines expressing the UGTs catalyzed the glucuronidation of the general substrate 7-hydroxy-4-(trifluoromethyl)coumarin in addition to selected estrogens (beta-estradiol and estriol) and opioids (morphine, naloxone, and naltrexone). UGT2B9(*)2 displayed highest efficiency for beta-estradiol-17-glucuronide production and did not catalyze the glucuronidation of naltrexone. UGT2B33 displayed highest efficiency for estriol and did not catalyze the glucuronidation of beta-estradiol. UGT2B9(*)2 was found also to catalyze the glucuronidation of 4-hydroxyestrone, 16-epiestriol, and hyodeoxycholic acid, while UGT2B33 was capable of conjugating 4-hydroxyestrone, androsterone, diclofenac, and hyodeoxycholic acid. Three glucocorticoids (cortisone, cortisol, and corticosterone) were not substrates for glucuronidation by liver or kidney microsomes or any expressed UGTs. Our current data suggest the use of beta-estradiol-3-glucuronidation, beta-estradiol-17-glucuronidation, and estriol-17-glucuronidation to assay UGT1A01, UGT2B9(*)2, and UGT2B33 activity in rhesus liver microsomes, respectively.

  10. UDP-Glycosyltransferases from the UGT73C Subfamily in Barbarea vulgaris Catalyze Sapogenin 3-O-Glucosylation in Saponin-Mediated Insect Resistance1[W][OA

    PubMed Central

    Augustin, Jörg M.; Drok, Sylvia; Shinoda, Tetsuro; Sanmiya, Kazutsuka; Nielsen, Jens Kvist; Khakimov, Bekzod; Olsen, Carl Erik; Hansen, Esben Halkjær; Kuzina, Vera; Ekstrøm, Claus Thorn; Hauser, Thure; Bak, Søren

    2012-01-01

    Triterpenoid saponins are bioactive metabolites that have evolved recurrently in plants, presumably for defense. Their biosynthesis is poorly understood, as is the relationship between bioactivity and structure. Barbarea vulgaris is the only crucifer known to produce saponins. Hederagenin and oleanolic acid cellobioside make some B. vulgaris plants resistant to important insect pests, while other, susceptible plants produce different saponins. Resistance could be caused by glucosylation of the sapogenins. We identified four family 1 glycosyltransferases (UGTs) that catalyze 3-O-glucosylation of the sapogenins oleanolic acid and hederagenin. Among these, UGT73C10 and UGT73C11 show highest activity, substrate specificity and regiospecificity, and are under positive selection, while UGT73C12 and UGT73C13 show lower substrate specificity and regiospecificity and are under purifying selection. The expression of UGT73C10 and UGT73C11 in different B. vulgaris organs correlates with saponin abundance. Monoglucosylated hederagenin and oleanolic acid were produced in vitro and tested for effects on P. nemorum. 3-O-β-d-Glc hederagenin strongly deterred feeding, while 3-O-β-d-Glc oleanolic acid only had a minor effect, showing that hydroxylation of C23 is important for resistance to this herbivore. The closest homolog in Arabidopsis thaliana, UGT73C5, only showed weak activity toward sapogenins. This indicates that UGT73C10 and UGT73C11 have neofunctionalized to specifically glucosylate sapogenins at the C3 position and demonstrates that C3 monoglucosylation activates resistance. As the UGTs from both the resistant and susceptible types of B. vulgaris glucosylate sapogenins and are not located in the known quantitative trait loci for resistance, the difference between the susceptible and resistant plant types is determined at an earlier stage in saponin biosynthesis. PMID:23027665

  11. Three-dimensional quantitative structure-activity relationship studies on UGT1A9-mediated 3-O-glucuronidation of natural flavonols using a pharmacophore-based comparative molecular field analysis model.

    PubMed

    Wu, Baojian; Morrow, John Kenneth; Singh, Rashim; Zhang, Shuxing; Hu, Ming

    2011-02-01

    Glucuronidation is often recognized as one of the rate-determining factors that limit the bioavailability of flavonols. Hence, design and synthesis of more bioavailable flavonols would benefit from the establishment of predictive models of glucuronidation using kinetic parameters [e.g., K(m), V(max), intrinsic clearance (CL(int)) = V(max)/K(m)] derived for flavonols. This article aims to construct position (3-OH)-specific comparative molecular field analysis (CoMFA) models to describe UDP-glucuronosyltransferase (UGT) 1A9-mediated glucuronidation of flavonols, which can be used to design poor UGT1A9 substrates. The kinetics of recombinant UGT1A9-mediated 3-O-glucuronidation of 30 flavonols was characterized, and kinetic parameters (K(m), V(max), CL(int)) were obtained. The observed K(m), V(max), and CL(int) values of 3-O-glucuronidation ranged from 0.04 to 0.68 μM, 0.04 to 12.95 nmol/mg/min, and 0.06 to 109.60 ml/mg/min, respectively. To model UGT1A9-mediated glucuronidation, 30 flavonols were split into the training (23 compounds) and test (7 compounds) sets. These flavonols were then aligned by mapping the flavonols to specific common feature pharmacophores, which were used to construct CoMFA models of V(max) and CL(int), respectively. The derived CoMFA models possessed good internal and external consistency and showed statistical significance and substantive predictive abilities (V(max) model: q(2) = 0.738, r(2) = 0.976, r(pred)(2) = 0.735; CL(int) model: q(2) = 0.561, r(2) = 0.938, r(pred)(2) = 0.630). The contour maps derived from CoMFA modeling clearly indicate structural characteristics associated with rapid or slow 3-O-glucuronidation. In conclusion, the approach of coupling CoMFA analysis with a pharmacophore-based structural alignment is viable for constructing a predictive model for regiospecific glucuronidation rates of flavonols by UGT1A9.

  12. Effects of Andrographis paniculata and Orthosiphon stamineus extracts on the glucuronidation of 4-methylumbelliferone in human UGT isoforms.

    PubMed

    Ismail, Sabariah; Hanapi, Nur Aziah; Ab Halim, Mohd Rohaimi; Uchaipichat, Verawan; Mackenzie, Peter I

    2010-05-14

    The effects of Andrographis paniculata and Orthosiphon stamineus extracts on the in vitro glucuronidation of 4-methylumbelliferone (4MU) by recombinant human UGTs, UGT1A1, UGT1A3, UGT1A6, UGT1A7, UGT1A8, UGT1A10, UGT2B7 and UGT2B15 were determined. The potential inhibitory effects of both of the extracts on the activity of each of the UGT isoforms were investigated using 4MU as the substrate. Incubations contained UDP-glucuronic acid (UDPGA) as the cofactor, MgCl(2), cell lysate of respective isoform, and 4MU at the approximate apparent K(m) or S(50) value of each isoform. Final concentrations of Andrographis paniculata and Orthosiphon stamineus extracts used were 0.025, 0.25, 2.5, 25 and 50 microg/mL and 0.01, 0.10, 1.0, 10 and 50 microg/mL respectively. Both extracts variably inhibited the activity of most of the isoforms in a concentration dependent manner. Andrographis paniculata extract was the better inhibitor of all the isoforms studied (IC(50) 1.70 microg/mL for UGT1A3, 2.57 microg/mL for UGT1A8, 2.82 microg/mL for UGT2B7, 5.00 micorg/mL for UGT1A1, 5.66 microg/mL for UGT1A6, 9.88 microg/mL for UGT1A7 and 15.66 microg/mL for UGT1A10). Both extracts showed less than 70% inhibition of UGT2B15, so the IC(50) values were >50 microg/mL. The inhibition of human UGTs by Andrographis paniculata and Orthosiphon stamineus extracts in vitro suggests a potential for drug-herbal extract interactions in the therapeutic setting.

  13. UGT1A1 (TA)n genotyping in sickle-cell disease: high resolution melting (HRM) curve analysis or direct sequencing, what is the best way?

    PubMed

    Thomas, Vincent; Mazard, Blandine; Garcia, Caroline; Lacan, Philippe; Gagnieu, Marie-Claude; Joly, Philippe

    2013-09-23

    Minucci et al. have proposed in 2010 a rapid, simple and cost-effective HRM method on the LightCycler 480® apparatus (Roche) for the determination of the 6/6, 6/7 and 7/7 genotypes of the (TA)n UGT1A1 promoter polymorphism. However, they have not studied the n=5 and n=8 alleles which can be quite frequent in sickle-cell disease patients. The aim of our study was to test this HRM protocol to all the 10 possible (TA)n UGT1A1 genotypes (i.e. 5/5, 5/6, 5/7, 5/8, 6/6, 6/7, 6/8, 7/7, 7/8 and 8/8) by using our SCD cohort of patients. All genotypes could be unambiguously identified except 6/7 and 6/8 which give a similar HRM profile. For those two genotypes, the differentiation necessitates either a direct Sanger sequencing or a second PCR protocol followed by a 3% agarose gel migration. For the (TA)n UGT1A1 promoter genotyping of African patients, each lab has to wonder what is the best way between (i) direct Sanger sequencing of all patients and (ii) HRM protocol for all patients followed by a complementary analysis to differentiate the 6/7 and 6/8 genotypes. © 2013. Published by Elsevier B.V. All rights reserved.

  14. Nutritional Status Differentially Alters Cytochrome P450 3A4 (CYP3A4) and Uridine 5'-Diphospho-Glucuronosyltransferase (UGT) Mediated Drug Metabolism: Effect of Short-Term Fasting and High Fat Diet on Midazolam Metabolism.

    PubMed

    Lammers, Laureen A; Achterbergh, Roos; Romijn, Johannes A; Mathôt, Ron A A

    2018-06-06

    Previous studies have shown that nutritional status can alter drug metabolism which may result in treatment failure or untoward side effects. This study assesses the effect of two nutritional conditions, short-term fasting, and a short-term high fat diet (HFD) on cytochrome P450 3A4 (CYP3A4) and uridine 5'-diphospho-glucuronosyltransferase (UGT) mediated drug metabolism by studying the pharmacokinetics of midazolam and its main metabolites. In a randomized-controlled cross-over trial, nine healthy subjects received a single intravenous administration of 0.015 mg/kg midazolam after: (1) an overnight fast (control); (2) 36 h of fasting; and (3) an overnight fast after 3 days of a HFD consisting of 500 ml of cream supplemented to their regular diet. Pharmacokinetic parameters were analyzed simultaneously using non-linear mixed-effects modeling. Short-term fasting increased CYP3A4-mediated midazolam clearance by 12% (p < 0.01) and decreased UGT-mediated metabolism apparent 1-OH-midazolam clearance by 13% (p < 0.01) by decreasing the ratio of clearance and the fraction metabolite formed (ΔCL 1-OH-MDZ /f 1-OH-MDZ ). Furthermore, short-term fasting decreased apparent clearance of 1-OH-midazolam-O-glucuronide (CL 1-OH-MDZ-glucuronide /(f 1-OH-MDZ-glucuronide  × f 1-OH-MDZ )) by 20% (p < 0.01). The HFD did not affect systemic clearance of midazolam or metabolites. Short-term fasting differentially alters midazolam metabolism by increasing CYP3A4-mediated metabolism but by decreasing UGT-mediated metabolism. In contrast, a short-term HFD did not affect systemic clearance of midazolam.

  15. Chirality Influence of Zaltoprofen Towards UDP-Glucuronosyltransferases (UGTs) Inhibition Potential.

    PubMed

    Jia, Lin; Hu, Cuimin; Wang, Haina; Liu, Yongzhe; Liu, Xin; Zhang, Yan-Yan; Li, Wei; Wang, Li-Xuan; Cao, Yun-Feng; Fang, Zhong-Ze

    2015-06-01

    Zaltoprofen (ZLT) is a nonsteroidal antiinflammation drug, and has been clinically employed to treat rheumatoid arthritis, osteoarthritis, and other chronic inflammatory pain conditions. The present study aims to investigate the chirality influence of zaltoprofen towards the inhibition potential towards UDP-glucuronosyltransferases (UGTs) isoforms. In vitro a recombinant UGT isoforms-catalyzed 4-methylumbelliferone (4-MU) glucuronidation incubation system was employed to investigate the inhibition of (R)-zaltoprofen and (S)-zaltoprofen towards UGT isoforms. The inhibition difference capability was observed for the inhibition of (R)-zaltoprofen and (S)-zaltoprofen towards UGT1A8 and UGT2B7, but not for other tested UGT isoforms. (R)-zaltoprofen exhibited noncompetitive inhibition towards UGT1A8 and competitive inhibition towards UGT2B7. The inhibition kinetic parameters were calculated to be 35.3 μM and 19.2 μM for UGT1A8 and UGT2B7. (R)-zaltoprofen and (S)-zaltoprofen exhibited a different inhibition type towards UGT1A7. Based on the reported maximum plasma concentration of (R)-zaltoprofen in vivo, a high drug-drug interaction between (R)-zaltoprofen and the drugs mainly undergoing UGT1A7, UGT1A8, and UGT2B7-catalyzed glucuronidation was indicated. © 2015 Wiley Periodicals, Inc.

  16. Genetic variations in UGT2B28, UGT2B17, UGT2B15 genes and the risk of prostate cancer: A case-control study.

    PubMed

    Habibi, Mohsen; Mirfakhraie, Reza; Khani, Maryam; Rakhshan, Azadeh; Azargashb, Eznollah; Pouresmaeili, Farkhondeh

    2017-11-15

    Glucuronidation is a major pathway for elimination of exogenous and endogenous compounds such as environmental carcinogens and androgens from the body. This biochemical pathway is mediated by enzymes called uridine diphosphoglucuronosyltransferases (UGTs). Null (del/del) genes polymorphisms in UGT2B17, and UGT2B28 and D85Y single-nucleotide polymorphism (SNP) of UGT2B15 have been reported to increase the risk of prostate cancer. The goal of this study was to determine the association of mentioned genetic variants with the risk of prostate cancer. We investigated the copy number variations (CNVs) of UGT2B17 and UGT2B28 loci and the association between rs1902023 polymorphism of UGT2B15 gene in 360 subjects consisted of 120 healthy controls, 120 prostate cancer (PC) patients and 120 benign prostatic hyperplasia (BPH) patients. No association was detected for the mentioned polymorphisms and the risk of PC. However, a significant association was detected between UGT2B17 copy number variation and BPH risk (OR=2.189; 95% CI, 1.303-3.675; p=0.003). Furthermore, we observed that the D85Y polymorphism increases the risk of BPH when analyzed in combination with the copy number variation of UGT2B17 gene (OR=0.135; 95% CI, 0.036-0.512; p=0.003). Our findings suggest that the D85Y polymorphism of UGT2B15 and CNVs in UGT2B28 and UGT2B17 genes is not associated with prostate cancer risk in Iranian patients. To our knowledge, this is the first report that implicates the role of CNV of UGT2B17 gene in BPH. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. PBPK Model of Morphine Incorporating Developmental Changes in Hepatic OCT1 and UGT2B7 Proteins to Explain the Variability in Clearances in Neonates and Small Infants.

    PubMed

    Emoto, Chie; Johnson, Trevor N; Neuhoff, Sibylle; Hahn, David; Vinks, Alexander A; Fukuda, Tsuyoshi

    2018-06-19

    Morphine has large pharmacokinetic variability, which is further complicated by developmental changes in neonates and small infants. The impacts of organic cation transporter 1 (OCT1) genotype and changes in blood-flow on morphine clearance (CL) were previously demonstrated in children, whereas changes in UDP-glucuronosyltransferase 2B7 (UGT2B7) activity showed a small effect. This study, targeting neonates and small infants, was designed to assess the influence of developmental changes in OCT1 and UGT2B7 protein expression and modified blood-flow on morphine CL using physiologically based pharmacokinetic (PBPK) modeling. The implementation of these three age-dependent factors into the pediatric system platform resulted in reasonable prediction for an age-dependent increase in morphine CL in these populations. Sensitivity of morphine CL to changes in cardiac output increased with age up to 3 years, whereas sensitivity to changes in UGT2B7 activity decreased. This study suggests that morphine exhibits age-dependent extraction, likely due to the developmental increase in OCT1 and UGT2B7 protein expression/activity and hepatic blood-flow. © 2018 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  18. Dose-Finding and Pharmacokinetic Study to Optimize the Dosing of Irinotecan According to the UGT1A1 Genotype of Patients With Cancer

    PubMed Central

    Innocenti, Federico; Schilsky, Richard L.; Ramírez, Jacqueline; Janisch, Linda; Undevia, Samir; House, Larry K.; Das, Soma; Wu, Kehua; Turcich, Michelle; Marsh, Robert; Karrison, Theodore; Maitland, Michael L.; Salgia, Ravi; Ratain, Mark J.

    2014-01-01

    Purpose The risk of severe neutropenia from treatment with irinotecan is related in part to UGT1A1*28, a variant that reduces the elimination of SN-38, the active metabolite of irinotecan. We aimed to identify the maximum-tolerated dose (MTD) and dose-limiting toxicity (DLT) of irinotecan in patients with advanced solid tumors stratified by the *1/*1, *1/*28, and *28/*28 genotypes. Patients and Methods Sixty-eight patients received an intravenous flat dose of irinotecan every 3 weeks. Forty-six percent of the patients had the *1/*1 genotype, 41% had the *1/*28 genotype, and 13% had the *28/*28 genotype. The starting dose of irinotecan was 700 mg in patients with the *1/*1 and *1/*28 genotypes and 500 mg in patients with the *28/*28 genotype. Pharmacokinetic evaluation was performed at cycle 1. Results In patients with the *1/*1 genotype, the MTD was 850 mg (four DLTs per 16 patients), and 1,000 mg was not tolerated (two DLTs per six patients). In patients with the *1/*28 genotype, the MTD was 700 mg (five DLTs per 22 patients), and 850 mg was not tolerated (four DLTs per six patients). In patients with the *28/*28 genotype, the MTD was 400 mg (one DLT per six patients), and 500 mg was not tolerated (three DLTs per three patients). The DLTs were mainly myelosuppression and diarrhea. Irinotecan clearance followed linear kinetics. At the MTD for each genotype, dosing by genotype resulted in similar SN-38 areas under the curve (AUCs; r2 = 0.0003; P = .97), but the irinotecan AUC was correlated with the actual dose (r2 = 0.39; P < .001). Four of 48 patients with disease known to be responsive to irinotecan achieved partial response. Conclusion The UGT1A1*28 genotype can be used to individualize dosing of irinotecan. Additional studies should evaluate the effect of genotype-guided dosing on efficacy in patients receiving irinotecan. PMID:24958824

  19. Prognostic Significance of ESR1 Amplification and ESR1 PvuII, CYP2C19*2, UGT2B15*2 Polymorphisms in Breast Cancer Patients

    PubMed Central

    Markiewicz, Aleksandra; Wełnicka-Jaśkiewicz, Marzena; Skokowski, Jarosław; Jaśkiewicz, Janusz; Szade, Jolanta; Jassem, Jacek; Żaczek, Anna J.

    2013-01-01

    Introduction Amplification of the ESR1 gene, coding for estrogen receptor alpha, was shown to predict responsiveness to tamoxifen, however its prognostic impact in breast cancer patients has not been thoroughly investigated. Other factors that could contribute to responsiveness to tamoxifen treatment are polymorphisms in ESR1 gene and genes involved in tamoxifen metabolism. The aim of this study was to assess the prognostic role of ESR1 gene dosage in a consecutive group of breast cancer patients and to correlate this feature with clinico-pathological factors. Additionally, ESR1 PvuII, CYP2C19*2 and UGT2B15*2 polymorphisms were analyzed in the tamoxifen-treated subgroup of patients. Materials and Methods Primary tumor samples from 281 stage I-III consecutive breast cancer patients were analyzed for ESR1 gene dosage using real-time PCR with locked nucleic acids hydrolysis probes. In the tamoxifen-treated subgroup of patients, ESR1 PvuII, CYP2C19*2 and UGT2B15*2 polymorphism in leukocytes genomic DNA were analyzed. Results were correlated with clinico-pathological factors and with disease-free survival (DFS) and overall survival (OS). Results ESR1 amplification (with a cut-off level of 2.0) was found in 12% of the entire group of breast cancer patients, and in 18% of the ER-negative subgroup. This feature was associated with decreased DFS both in the entire group (P=0.007) and in the ER-negative subgroup (P=0.03), but not in the tamoxifen-treated patients. Patients with ESR1 PvuII wt/wt genotype and at least one UGT2B15 wt allele had a worse DFS (P=0.03) and showed a trend towards decreased Os (P=0.08) in comparison to patients with ESR1 PvuII wt/vt or vt/vt genotype and UGT2B15 *2/*2 genotype. Conclusions ESR1 amplification can occur in ER-negative tumors and may carry poor prognosis. In the tamoxifen-treated subgroup, poor prognosis was related to the combined presence of ESR1 PvuII wt/wt and UGT2B15wt/wt or wt/*2 genotype. PMID:23951298

  20. Prognostic significance of ESR1 amplification and ESR1 PvuII, CYP2C19*2, UGT2B15*2 polymorphisms in breast cancer patients.

    PubMed

    Markiewicz, Aleksandra; Wełnicka-Jaśkiewicz, Marzena; Skokowski, Jarosław; Jaśkiewicz, Janusz; Szade, Jolanta; Jassem, Jacek; Zaczek, Anna J

    2013-01-01

    Amplification of the ESR1 gene, coding for estrogen receptor alpha, was shown to predict responsiveness to tamoxifen, however its prognostic impact in breast cancer patients has not been thoroughly investigated. Other factors that could contribute to responsiveness to tamoxifen treatment are polymorphisms in ESR1 gene and genes involved in tamoxifen metabolism. The aim of this study was to assess the prognostic role of ESR1 gene dosage in a consecutive group of breast cancer patients and to correlate this feature with clinico-pathological factors. Additionally, ESR1 PvuII, CYP2C19*2 and UGT2B15*2 polymorphisms were analyzed in the tamoxifen-treated subgroup of patients. Primary tumor samples from 281 stage I-III consecutive breast cancer patients were analyzed for ESR1 gene dosage using real-time PCR with locked nucleic acids hydrolysis probes. In the tamoxifen-treated subgroup of patients, ESR1 PvuII, CYP2C19*2 and UGT2B15*2 polymorphism in leukocytes genomic DNA were analyzed. Results were correlated with clinico-pathological factors and with disease-free survival (DFS) and overall survival (OS). ESR1 amplification (with a cut-off level of 2.0) was found in 12% of the entire group of breast cancer patients, and in 18% of the ER-negative subgroup. This feature was associated with decreased DFS both in the entire group (P=0.007) and in the ER-negative subgroup (P=0.03), but not in the tamoxifen-treated patients. Patients with ESR1 PvuII wt/wt genotype and at least one UGT2B15 wt allele had a worse DFS (P=0.03) and showed a trend towards decreased Os (P=0.08) in comparison to patients with ESR1 PvuII wt/vt or vt/vt genotype and UGT2B15 *2/*2 genotype. ESR1 amplification can occur in ER-negative tumors and may carry poor prognosis. In the tamoxifen-treated subgroup, poor prognosis was related to the combined presence of ESR1 PvuII wt/wt and UGT2B15wt/wt or wt/*2 genotype.

  1. Role of the UGT2B17 deletion in exemestane pharmacogenetics

    PubMed Central

    Luo, Shaman; Chen, Gang; Truica, Cristina; Baird, Cynthia C.; Leitzel, Kim; Lazarus, Philip

    2017-01-01

    Exemestane (EXE) is an aromatase inhibitor used for the prevention and treatment of breast cancer. The major metabolic pathway for EXE is reduction to form the active 17β-dihydro-EXE (17β-DHE) and subsequent glucuronidation to 17β-hydroxy-EXE-17-O-β-D-glucuronide (17β-DHE-Gluc) by UGT2B17. The aim of the present study was to determine the effects of UGT2B17 copy number variation on the levels of urinary and plasma 17β-DHE-Gluc and 17β-DHE in patients taking EXE. Ninety-six post-menopausal Caucasian breast cancer patients with ER+ breast tumors taking 25 mg EXE daily were recruited into this study. UGT2B17 copy number was determined by a real-time PCR copy number variant assay and the levels of EXE, 17β-DHE and 17β-DHE-Gluc were quantified by UPLC/MS in patients’ urine and plasma. A 39-fold decrease (P<0.0001) in the levels of creatinine-adjusted urinary 17β-DHE-Gluc was observed among UGT2B17 (*2/*2) subjects vs. subjects with the UGT2B17 (*1/*1) genotype. The plasma levels of 17β-DHE-Gluc was decreased 29-fold (P<0.0001) in subjects with the UGT2B17 (*2/*2) genotype vs. subjects with UGT2B17 (*1/*1) genotype. The levels of plasma EXE-adjusted 17β-DHE was 28% higher (P=0.04) in subjects with the UGT2B17 (*2/*2) genotype vs. subjects with the UGT2B17 (*1/*1) genotype. These data indicate that UGT2B17 is the major enzyme responsible for 17β-DHE-Gluc formation in vivo and that the UGT2B17 copy number variant may play a role in inter-individual variability in 17β-DHE levels in vivo. PMID:28534527

  2. Role of the UGT2B17 deletion in exemestane pharmacogenetics.

    PubMed

    Luo, S; Chen, G; Truica, C; Baird, C C; Leitzel, K; Lazarus, P

    2018-04-01

    Exemestane (EXE) is an aromatase inhibitor used for the prevention and treatment of breast cancer. The major metabolic pathway for EXE is reduction to form the active 17β-dihydro-EXE (17β-DHE) and subsequent glucuronidation to 17β-hydroxy-EXE-17-O-β-D-glucuronide (17β-DHE-Gluc) by UGT2B17. The aim of the present study was to determine the effects of UGT2B17 copy number variation on the levels of urinary and plasma 17β-DHE-Gluc and 17β-DHE in patients taking EXE. Ninety-six post-menopausal Caucasian breast cancer patients with ER+ breast tumors taking 25 mg EXE daily were recruited into this study. UGT2B17 copy number was determined by a real-time PCR copy number variant assay and the levels of EXE, 17β-DHE and 17β-DHE-Gluc were quantified by UPLC/MS in patients' urine and plasma. A 39-fold decrease (P<0.0001) in the levels of creatinine-adjusted urinary 17β-DHE-Gluc was observed among UGT2B17 (*2/*2) subjects vs subjects with the UGT2B17 (*1/*1) genotype. The plasma levels of 17β-DHE-Gluc was decreased 29-fold (P<0.0001) in subjects with the UGT2B17 (*2/*2) genotype vs subjects with UGT2B17 (*1/*1) genotype. The levels of plasma EXE-adjusted 17β-DHE was 28% higher (P=0.04) in subjects with the UGT2B17 (*2/*2) genotype vs subjects with the UGT2B17 (*1/*1) genotype. These data indicate that UGT2B17 is the major enzyme responsible for 17β-DHE-Gluc formation in vivo and that the UGT2B17 copy number variant may play a role in inter-individual variability in 17β-DHE levels in vivo.

  3. Two UGT84 Family Glycosyltransferases Catalyze a Critical Reaction of Hydrolyzable Tannin Biosynthesis in Pomegranate (Punica granatum)

    PubMed Central

    Ono, Nadia N.; Qin, Xiaoqiong; Wilson, Alexander E.; Li, Gang

    2016-01-01

    Hydrolyzable tannins (HTs) play important roles in plant herbivore deterrence and promotion of human health. A critical step in HT production is the formation of 1-O-galloyl-β-D-glucopyranoside (β-glucogallin, ester-linked gallic acid and glucose) by a UDP-glucosyltransferase (UGT) activity. We cloned and biochemically characterized four candidate UGTs from pomegranate (Punica granatum), of which only UGT84A23 and UGT84A24 exhibited β-glucogallin forming activities in enzyme assays. Although overexpression and single RNAi knockdown pomegranate hairy root lines of UGT84A23 or UGT84A24 did not lead to obvious alterations in punicalagin (the prevalent HT in pomegranate) accumulation, double knockdown lines of the two UGTs resulted in largely reduced levels of punicalagins and bis-hexahydroxydiphenyl glucose isomers. An unexpected accumulation of galloyl glucosides (ether-linked gallic acid and glucose) was also detected in the double knockdown lines, suggesting that gallic acid was utilized by an unidentified UGT activity for glucoside formation. Transient expression in Nicotiana benthamiana leaves and immunogold labeling in roots of pomegranate seedlings collectively indicated cytosolic localization of UGT84A23 and UGT84A24. Overall, functional characterization and localization of UGT84A23 and UGT84A24 open up opportunities for further understanding the regulatory control of HT metabolism in plants and its coordination with other biochemical pathways in the metabolic network. PMID:27227328

  4. Two UGT84 Family Glycosyltransferases Catalyze a Critical Reaction of Hydrolyzable Tannin Biosynthesis in Pomegranate (Punica granatum).

    PubMed

    Ono, Nadia N; Qin, Xiaoqiong; Wilson, Alexander E; Li, Gang; Tian, Li

    2016-01-01

    Hydrolyzable tannins (HTs) play important roles in plant herbivore deterrence and promotion of human health. A critical step in HT production is the formation of 1-O-galloyl-β-D-glucopyranoside (β-glucogallin, ester-linked gallic acid and glucose) by a UDP-glucosyltransferase (UGT) activity. We cloned and biochemically characterized four candidate UGTs from pomegranate (Punica granatum), of which only UGT84A23 and UGT84A24 exhibited β-glucogallin forming activities in enzyme assays. Although overexpression and single RNAi knockdown pomegranate hairy root lines of UGT84A23 or UGT84A24 did not lead to obvious alterations in punicalagin (the prevalent HT in pomegranate) accumulation, double knockdown lines of the two UGTs resulted in largely reduced levels of punicalagins and bis-hexahydroxydiphenyl glucose isomers. An unexpected accumulation of galloyl glucosides (ether-linked gallic acid and glucose) was also detected in the double knockdown lines, suggesting that gallic acid was utilized by an unidentified UGT activity for glucoside formation. Transient expression in Nicotiana benthamiana leaves and immunogold labeling in roots of pomegranate seedlings collectively indicated cytosolic localization of UGT84A23 and UGT84A24. Overall, functional characterization and localization of UGT84A23 and UGT84A24 open up opportunities for further understanding the regulatory control of HT metabolism in plants and its coordination with other biochemical pathways in the metabolic network.

  5. Inhibition of UDP-Glucuronosyltransferase (UGT) Isoforms by Arctiin and Arctigenin.

    PubMed

    Zhang, Hui; Zhao, Zhenying; Wang, Tao; Wang, Yijia; Cui, Xiao; Zhang, Huijuan; Fang, Zhong-Ze

    2016-07-01

    Arctiin is the major pharmacological ingredient of Fructus Arctii, and arctigenin is the metabolite of arctiin formed via the catalysis of human intestinal bacteria. The present study aims to investigate the inhibition profile of arctiin and arctigenin on important phase II drug-metabolizing enzymes UDP-glucuronosyltransferases (UGTs), indicating the possible herb-drug interaction. In vitro screening experiment showed that 100 μM of arctiin and arctigenin inhibited the activity of UGT1A3, 1A9, 2B7, and 2B15. Homology modeling-based in silico docking of arctiin and arctigenin into the activity cavity of UGT2B15 showed that hydrogen bonds and hydrophobic interactions contributed to the strong binding free energy of arctiin (-8.14 kcal/mol) and arctigenin (-8.43 kcal/mol) with UGT2B15. Inhibition kinetics study showed that arctiin and arctigenin exerted competitive and noncompetitive inhibition toward UGT2B15, respectively. The inhibition kinetic parameters (Ki ) were calculated to be 16.0 and 76.7 μM for the inhibition of UGT2B15 by arctiin and arctigenin, respectively. Based on the plasma concentration of arctiin and arctigenin after administration of 100 mg/kg of arctiin, the [I]/Ki values were calculated to be 0.3 and 0.007 for arctiin and arctigenin, respectively. Based on the inhibition evaluation standard ([I]/Ki  < 0.1, low possibility; 0.1 < [I]/Ki  < 1, medium possibility; [I]/Ki  > 1, high possibility), arctiin might induce drug-drug interaction with medium possibility. Based on these results, clinical monitoring the utilization of Fructus Arctii is very important and necessary. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Red wine and component flavonoids inhibit UGT2B17 in vitro

    PubMed Central

    2012-01-01

    Background The metabolism and excretion of the anabolic steroid testosterone occurs by glucuronidation to the conjugate testosterone glucuronide which is then excreted in urine. Alterations in UGT glucuronidation enzyme activity could alter the rate of testosterone excretion and thus its bioavailability. The aim of this study is to investigate if red wine, a common dietary substance, has an inhibitory effect on UGT2B17. Methods Testosterone glucuronidation was assayed using human UGT2B17 supersomes with quantification of unglucuronidated testosterone over time using HPLC with DAD detection. The selected red wine was analyzed using HPLC; and the inhibitory effects of the wine and phenolic components were tested independently in a screening assay. Further analyses were conducted for the strongest inhibitors at physiologically relevant concentrations. Control experiments were conducted to determine the effects of the ethanol on UGT2B17. Results Over the concentration range of 2 to 8%, the red wine sample inhibited the glucuronidation of testosterone by up to 70% over 2 hours. The ethanol content had no significant effect. Three red wine phenolics, identified by HPLC analyses, also inhibited the enzyme by varying amounts in the order of quercetin (72%), caffeic acid (22%) and gallic acid (9%); using a ratio of phenolic:testosterone of 1:2.5. In contrast p-coumaric acid and chlorogenic acid had no effect on the UGT2B17. The most active phenolic was selected for a detailed study at physiologically relevant concentrations, and quercetin maintained inhibitory activity of 20% at 2 μM despite a ten-fold excess of testosterone. Conclusion This study reports that in an in vitro supersome-based assay, the key steroid-metabolizing enzyme UGT2B17 is inhibited by a number of phenolic dietary substances and therefore may reduce the rate of testosterone glucuronidation in vivo. These results highlight the potential interactions of a number of common dietary compounds on

  7. TRPV1 Activation Counters Diet-Induced Obesity Through Sirtuin-1 activation and PRDM-16 Deacetylation in Brown Adipose Tissue

    PubMed Central

    Baskaran, Padmamalini; Krishnan, Vivek; Fettel, Kevin; Gao, Peng; Zhu, Zhiming; Ren, Jun; Thyagarajan, Baskaran

    2017-01-01

    Background/Objective An imbalance between energy intake and expenditure leads to obesity. Increasing metabolism and thermogenesis in brown adipose tissue (BAT) can help in overcoming obesity. Here, we investigated the effect of activation of transient receptor potential vanilloid subfamily 1 (TRPV1) in the upregulation of thermogenic proteins in BAT to counter diet-induced obesity. Subjects/Methods We investigated the effect of dietary supplementation of capsaicin (TRPV1 agonist) on the expression of metabolically important thermogenic proteins in BAT of wild type and TRPV1−/− mice that received either a normal chow or high fat (± capsaicin; TRPV1 activator) diet by immunoblotting. We measured the metabolic activity, respiratory quotient and BAT lipolysis. Results CAP antagonized high fat diet (HFD)-induced obesity without decreasing energy intake in mice. HFD suppressed TRPV1 expression and activity in BAT and CAP countered this effect. HFD feeding caused glucose intolerance, hypercholesterolemia and decreased the plasma concentration of glucagon like peptide-1 and CAP countered these effects. HFD suppressed the expression of metabolically important thermogenic genes, ucp-1, bmp8b, sirtuin 1, pgc-1α and prdm-16 in BAT and CAP prevented this effect. CAP increased the phosphorylation of sirtuin 1 and induced an interaction between PPARγ with PRDM-16. Further, CAP treatment, in vitro, decreased the acetylation of PRDM-16, which was antagonized by inhibition of TRPV1 by capsazepine, chelation of intracellular Ca2+ by cell permeable BAPTA-AM or the inhibition of SIRT-1 by EX 527. Further, CAP supplementation, post HFD, promoted weight loss and enhanced the respiratory exchange ratio. CAP did not have any effect in TRPV1−/− mice. Conclusions Our data show that activation of TRPV1 in BAT enhances the expression of SIRT-1, which facilitates the deacetylation and interaction of PPARγ and PRDM-16. These data suggest that TRPV1 activation is a novel strategy to

  8. Involvement of three putative glucosyltransferases from the UGT72 family in flavonol glucoside/rhamnoside biosynthesis in Lotus japonicus seeds

    PubMed Central

    Yin, Qinggang; Shen, Guoan; Chang, Zhenzhan; Tang, Yuhong; Gao, Hongwen

    2017-01-01

    Abstract Flavonols are one of the largest groups of flavonoids that confer benefits for the health of plants and animals. Flavonol glycosides are the predominant flavonoids present in the model legume Lotus japonicus. The molecular mechanisms underlying the biosynthesis of flavonol glycosides as yet remain unknown in L. japonicus. In the present study, we identified a total of 188 UDP-glycosyltransferases (UGTs) in L. japonicus by genome-wide searching. Notably, 12 UGTs from the UGT72 family were distributed widely among L. japonicus chromosomes, expressed in all tissues, and showed different docking scores in an in silico bioinformatics docking analysis. Further enzymatic assays showed that five recombinant UGTs (UGT72AD1, UGT72AF1, UGT72AH1, UGT72V3, and UGT72Z2) exhibit activity toward flavonol, flavone, and isoflavone aglycones. In particular, UGT72AD1, UGT72AH1, and UGT72Z2 are flavonol-specific UGTs with different kinetic properties. In addition, the overexpression of UGT72AD1 and UGT72Z2 led to increased accumulation of flavonol rhamnosides in L. japonicus and Arabidopsis thaliana. Moreover, the increase of kaempferol 3-O-rhamnoside-7-O-rhamnoside in transgenic A. thaliana inhibited root growth as compared with the wild-type control. These results highlight the significance of the UGT72 family in flavonol glycosylation and the role of flavonol rhamnosides in plant growth. PMID:28204516

  9. Suppression of abnormal morphology and extracytoplasmic function sigma activity in Bacillus subtilis ugtP mutant cells by expression of heterologous glucolipid synthases from Acholeplasma laidlawii.

    PubMed

    Matsuoka, Satoshi; Seki, Takahiro; Matsumoto, Kouji; Hara, Hiroshi

    2016-12-01

    Glucolipids in Bacillus subtilis are synthesized by UgtP processively transferring glucose from UDP-glucose to diacylglycerol. Here we conclude that the abnormal morphology of a ugtP mutant is caused by lack of glucolipids, since the same morphology arises after abolition of glucolipid production by disruption of pgcA and gtaB, which are involved in UDP-glucose synthesis. Conversely, expression of a monoglucosyldiacylglycerol (MGlcDG) produced by 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii (alMGS) almost completely suppressed the ugtP disruptant phenotype. Activation of extracytoplasmic function (ECF) sigmas (SigM, SigV, and SigX) in the ugtP mutant was decreased by alMGS expression, and was suppressed to low levels by MgSO 4 addition. When alMGS and alDGS (A. laidlawii 1,2-diacylglycerol-3-glucose (1-2)-glucosyltransferase producing diglucosyldiacylglycerol (DGlcDG)) were simultaneously expressed, SigX activation was repressed to wild type level. These observations suggest that MGlcDG molecules are required for maintenance of B. subtilis cell shape and regulation of ECF sigmas, and DGlcDG regulates SigX activity.

  10. Effect of UGT2B10, UGT2B17, FMO3, and OCT2 Genetic Variation on Nicotine and Cotinine Pharmacokinetics and Smoking in African Americans

    PubMed Central

    Taghavi, Taraneh; St. Helen, Gideon; Benowitz, Neal L.; Tyndale, Rachel F.

    2017-01-01

    OBJECTIVES Nicotine metabolism rates differ greatly among individuals, even after controlling for variation in the major nicotine metabolizing enzyme, CYP2A6. In this study, the impact of genetic variation in alternative metabolic enzymes and transporters on nicotine and cotinine pharmacokinetics and smoking was investigated. METHODS We examined the impact of UGT2B10, UGT2B17, FMO3, NAT1, and OCT2 variation on pharmacokinetics and smoking (total nicotine equivalents and topography), before and after stratifying by CYP2A6 genotype in 60 African American smokers who received a simultaneous intravenous infusion of deuterium-labeled nicotine and cotinine. RESULTS Variants in UGT2B10 and UGT2B17 were associated with urinary glucuronidation ratios (glucuronide/free substrate). UGT2B10 rs116294140 was associated with significant alterations in cotinine and modest alterations in nicotine pharmacokinetics. These alterations, however, were not sufficient to change nicotine intake or topography. Neither UGT2B10 rs61750900, UGT2B17*2, FMO3 rs2266782, nor NAT1 rs13253389 altered nicotine or cotinine pharmacokinetics among all subjects (n=60); or among individuals with reduced CYP2A6 activity (n=23). The organic cation transporter OCT2 rs316019 significantly increased nicotine and cotinine Cmax (p=0.005, p=0.02, respectively) and decreased nicotine clearance (p=0.05). UGT2B10 rs116294140 had no significant impact on the plasma or urinary trans-3’-hydroxycotinine/cotinine ratio, commonly used as a biomarker of CYP2A6 activity. CONCLUSIONS We demonstrated that polymorphisms in genes other than CYP2A6 represent minor sources of variation in nicotine pharmacokinetics, insufficient to alter smoking in African Americans. The change in cotinine pharmacokinetics with UGT2B10 rs116294140 highlights the UGT2B10 gene as a source of variability in cotinine as a biomarker of tobacco exposure among African American smokers. PMID:28178031

  11. Studies on the flavonoid substrates of human UDP-glucuronosyl transferase (UGT) 2B7.

    PubMed

    Xie, Shenggu; You, Linya; Zeng, Su

    2007-08-01

    Flavonoids are found in fruits, vegetables, nuts, seeds, herbs, spices, stems and flowers, as well as in tea and red wine. They are prominent components of citrus fruits and other food sources, are consumed regularly with the human diet, and have been shown to have many biological functions, including antioxidant and chelating properties. This study suggests features of the flavonoid structure necessary for it to act as a substrate of human UGT2B7. Generally speaking, flavonol has higher glucuronidation activity than flavones and isoflavones. Differences in C3' position have an important effect on UGT2B7 glucuronidation activity, and the various substituents have different influences on glucuronidation activity. For flavonol, the bulky group at C4' can enhance glucuronidation activity. Increasing the number of hydroxyl groups of flavonoids will increase their glucuronidation activity towards UGT2B7, while conjugation of glycon will weaken the activity, and hydroxyl position can also have an important role in activity. The high glucuronidation efficiency observed with many flavonoids suggests that the contribution of UGT2B7 to the metabolism of flavonoids may be significant. The results suggest that we should not only pay attention to glucuronidation activity, but should also attach importance to the regioselectivity of glucuronidation.

  12. Optimized UDP-glucuronosyltransferase (UGT) activity assay for trout liver S9 fractions

    EPA Pesticide Factsheets

    This publication provides an optimized UGT assay for trout liver S9 fractions which can be used to perform in vitro-in vivo extrapolations of measured UGT activityThis dataset is associated with the following publication:Ladd, M., P. Fitzsimmons , and J. Nichols. Optimization of a UDP-glucuronosyltransferase assay for trout liver S9 fractions: Activity enhancement by alamethicin, a pore-forming peptide. XENOBIOTICA. Taylor & Francis, Inc., Philadelphia, PA, USA, 46(12): 1066-1075, (2016).

  13. Structure–inhibition relationship of ginsenosides towards UDP-glucuronosyltransferases (UGTs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zhong-Ze; Joint Center for Translational Medicine, Dalian Institute of Chemical Physics Chinese Academy of Sciences and The first Affiliated Hospital of Liaoning Medical University, No.457, Zhongshan Road, Dalian 116023; Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892

    The wide utilization of ginseng provides the high risk of herb–drug interaction (HDI) with many clinical drugs. The inhibition of ginsenosides towards drug-metabolizing enzymes (DMEs) has been regarded as an important reason for herb–drug interaction (HDI). Compared with the deep studies on the ginsenosides' inhibition towards cytochrome P450 (CYP), the inhibition of ginsenosides towards the important phase II enzymes UDP-glucuronosyltransferases (UGTs) remains to be unclear. The present study aims to evaluate the inhibition behavior of ginsenosides towards important UGT isoforms located in the liver and intestine using in vitro methods. The recombinant UGT isoform-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction was employedmore » as in vitro probe reaction. The results showed that structure-dependent inhibition existed for the inhibition of ginsenosides towards UGT isoforms. To clarify the possibility of in vivo herb–drug interaction induced by this kind of inhibition, the ginsenoside Rg{sub 3} was selected as an example, and the inhibition kinetic type and parameters (K{sub i}) were determined. Rg{sub 3} competitively inhibited UGT1A7, 2B7 and 2B15-catalyzed 4-MU glucuronidation reaction, and exerted noncompetitive inhibition towards UGT1A8-catalyzed 4-MU glucuronidation. The inhibition parameters (K{sub i} values) were calculated to be 22.6, 7.9, 1.9, and 2.0 μM for UGT1A7, 1A8, 2B7 and 2B15. Using human maximum plasma concentration of Rg{sub 3} (400 ng/ml (0.5 μM)) after intramuscular injection of 60 mg Rg{sub 3}, the area under the plasma concentration-time curve (AUC) was extrapolated to increase by 2.2%, 6.3%, 26.3%, and 25% for the co-administered drugs completely undergoing the metabolism catalyzed by UGT1A7, 1A8, 2B7 and 2B15, respectively. All these results indicated that the ginsenosides' inhibition towards UGT isoforms might be an important reason for ginseng–drug interaction. - Highlights: ► Structure-dependent inhibition

  14. Comparison of the inhibition potentials of icotinib and erlotinib against human UDP-glucuronosyltransferase 1A1.

    PubMed

    Cheng, Xuewei; Lv, Xia; Qu, Hengyan; Li, Dandan; Hu, Mengmeng; Guo, Wenzhi; Ge, Guangbo; Dong, Ruihua

    2017-11-01

    UDP-glucuronosyltransferase 1A1 (UGT1A1) plays a key role in detoxification of many potentially harmful compounds and drugs. UGT1A1 inhibition may bring risks of drug-drug interactions (DDIs), hyperbilirubinemia and drug-induced liver injury. This study aimed to investigate and compare the inhibitory effects of icotinib and erlotinib against UGT1A1, as well as to evaluate their potential DDI risks via UGT1A1 inhibition. The results demonstrated that both icotinib and erlotinib are UGT1A1 inhibitors, but the inhibitory effect of icotinib on UGT1A1 is weaker than that of erlotinib. The IC 50 values of icotinib and erlotinib against UGT1A1-mediated NCHN- O -glucuronidation in human liver microsomes (HLMs) were 5.15 and 0.68 μmol/L, respectively. Inhibition kinetic analyses demonstrated that both icotinib and erlotinib were non-competitive inhibitors against UGT1A1-mediated glucuronidation of NCHN in HLMs, with the K i values of 8.55 and 1.23 μmol/L, respectively. Furthermore, their potential DDI risks via UGT1A1 inhibition were quantitatively predicted by the ratio of the areas under the concentration-time curve (AUC) of NCHN. These findings are helpful for the medicinal chemists to design and develop next generation tyrosine kinase inhibitors with improved safety, as well as to guide reasonable applications of icotinib and erlotinib in clinic, especially for avoiding their potential DDI risks via UGT1A1 inhibition.

  15. Identification of Diet-Derived Constituents as Potent Inhibitors of Intestinal Glucuronidation

    PubMed Central

    Gufford, Brandon T.; Chen, Gang; Lazarus, Philip; Graf, Tyler N.; Oberlies, Nicholas H.

    2014-01-01

    Drug-metabolizing enzymes within enterocytes constitute a key barrier to xenobiotic entry into the systemic circulation. Furanocoumarins in grapefruit juice are cornerstone examples of diet-derived xenobiotics that perpetrate interactions with drugs via mechanism-based inhibition of intestinal CYP3A4. Relative to intestinal CYP3A4-mediated inhibition, alternate mechanisms underlying dietary substance–drug interactions remain understudied. A working systematic framework was applied to a panel of structurally diverse diet-derived constituents/extracts (n = 15) as inhibitors of intestinal UDP-glucuronosyl transferases (UGTs) to identify and characterize additional perpetrators of dietary substance–drug interactions. Using a screening assay involving the nonspecific UGT probe substrate 4-methylumbelliferone, human intestinal microsomes, and human embryonic kidney cell lysates overexpressing gut-relevant UGT1A isoforms, 14 diet-derived constituents/extracts inhibited UGT activity by >50% in at least one enzyme source, prompting IC50 determination. The IC50 values of 13 constituents/extracts (≤10 μM with at least one enzyme source) were well below intestinal tissue concentrations or concentrations in relevant juices, suggesting that these diet-derived substances can inhibit intestinal UGTs at clinically achievable concentrations. Evaluation of the effect of inhibitor depletion on IC50 determination demonstrated substantial impact (up to 2.8-fold shift) using silybin A and silybin B, two key flavonolignans from milk thistle (Silybum marianum) as exemplar inhibitors, highlighting an important consideration for interpretation of UGT inhibition in vitro. Results from this work will help refine a working systematic framework to identify dietary substance–drug interactions that warrant advanced modeling and simulation to inform clinical assessment. PMID:25008344

  16. Comparison of inhibition capability of scutellarein and scutellarin towards important liver UDP-glucuronosyltransferase (UGT) isoforms.

    PubMed

    Ma, Guang-You; Cao, Yun-Feng; Hu, Cui-Min; Fang, Zhong-Ze; Sun, Xiao-Yu; Hong, Mo; Zhu, Zhi-Tu

    2014-03-01

    Scutellarin is an important bioactive flavonoid extracted from Erigeron breviscapus (Vant.) Hand-Mazz, and scutellarein is the corresponding aglycone of scutellarin. The present study aims to compare the inhibition potential of scutellarin and scutellarein towards several important UDP-glucuronosyltransferase (UGT) isoforms, including UGT1A1, UGT1A6, UGT1A9 and UGT2B7. It was demonstrated that scutellarein exerted stronger inhibition towards the tested UGT isoforms than scutellarin. Furthermore, the inhibition kinetic type and parameters (Ki ) were determined for the scutellarein's inhibition towards these UGT isoforms. Competitive inhibition of scutellarein towards all these UGT isoforms was demonstrated, and the Ki values were calculated to be 0.02, 5.0, 5.8 and 35.9 μM for UGT1A1, 1A6, 1A9 and 2B7, respectively. Using in vivo maximum plasma concentration of scutellarein in rat, the in vitro-in vivo extrapolation was performed to predict in vivo situation, indicating the most possible in vivo adverse effects due to the inhibition of scutellarein towards UGT1A1. All these results remind us to monitor the utilization of scutellarin and scutellarein, and the herbs containing these two components. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Association of breast-fed neonatal hyperbilirubinemia with UGT1A1 polymorphisms: 211G>A (G71R) mutation becomes a risk factor under inadequate feeding.

    PubMed

    Sato, Hiroko; Uchida, Toshihiko; Toyota, Kentaro; Kanno, Miyako; Hashimoto, Taeko; Watanabe, Masashi; Nakamura, Tomohiro; Tamiya, Gen; Aoki, Kuraaki; Hayasaka, Kiyoshi

    2013-01-01

    Breastfeeding jaundice is a well-known phenomenon, but its pathogenesis is still unclear. Increased production of bilirubin, impaired hepatic uptake and metabolism of bilirubin, and increased enterohepatic circulation of bilirubin account for most cases of pathological neonatal hyperbilirubinemia. We previously reported that 211G>A (G71R) mutation of the UGT1A1 gene is prevalent in East Asians and is associated with the development of neonatal hyperbilirubinemia. Recently, significant association of G71R mutation with hyperbilirubinemia in breast-fed neonates was reported. We enrolled 401 full-term Japanese infants, who were exclusively breast-fed without supplementation of formula before developing hyperbilirubinemia, and classified them into two groups based on the degree of maximal body weight loss during the neonatal period. We analyzed the sex, gestational age, delivery mode, body weight at birth, maximal body weight loss and genotypes of G71R and (TA)(7) polymorphic mutations of UGT1A1. Statistical analysis revealed that maximal body weight loss during the neonatal period is the only independent risk factor for the development of neonatal hyperbilirubinemia. The effect of G71R mutation on neonatal hyperbilirubinemia is significant in neonates with 5% or greater maximal body weight loss and its influence increases in parallel with the degree of maximal body weight loss. Our study indicates that G71R mutation is a risk factor for neonatal hyperbilirubinemia only in infants with inadequate breastfeeding and suggests that adequate breastfeeding may overcome the genetic predisposing factor, G71R mutation, for the development of neonatal hyperbilirubinemia.

  18. In vitro inhibition of human UGT isoforms by ritonavir and cobicistat.

    PubMed

    Algeelani, Sara; Alam, Novera; Hossain, Md Amin; Mikus, Gerd; Greenblatt, David J

    2018-08-01

    1. Ritonavir and cobicistat are pharmacokinetic boosting agents used to increase systemic exposure to other antiretroviral therapies. The manufacturer's data suggests that cobicistat is a more selective CYP3A4 inhibitor than ritonavir. However, the inhibitory effect of ritonavir and cobicistat on human UDP glucuronosyltransferase (UGT) enzymes in Phase II metabolism is not established. This study evaluated the inhibition of human UGT isoforms by ritonavir versus cobicistat. 2. Acetaminophen and ibuprofen were used as substrates to evaluate the metabolic activity of the principal human UGTs. Metabolite formation rates were determined by HPLC analysis of incubates following in vitro incubation of index substrates with human liver microsomes (HLMs) at different concentrations of ritonavir or cobicistat. Probenecid and estradiol served as positive control inhibitors. 3. The 50% inhibitory concentrations (IC 50 ) of cobicistat and ritonavir were at least 50 µM, which substantially exceeds usual clinical plasma concentrations. Probenecid inhibited the glucuronidation of acetaminophen (IC 50 0.7 mM), but not glucuronidation of ibuprofen. At relatively high concentrations, estradiol inhibited ibuprofen glucuronidation (IC 50 17 µM). 4. Ritonavir and cobicistat are unlikely to produce clinically important drug interactions involving drugs metabolized to glucuronide conjugates by UGT1A1, 1A3, 1A6, 1A9, 2B4 and 2B7.

  19. Induced Mutagenesis in UGT74S1 Gene Leads to Stable New Flax Lines with Altered Secoisolariciresinol Diglucoside (SDG) Profiles.

    PubMed

    Fofana, Bourlaye; Ghose, Kaushik; Somalraju, Ashok; McCallum, Jason; Main, David; Deyholos, Michael K; Rowland, Gordon G; Cloutier, Sylvie

    2017-01-01

    Flax secoisolariciresinol (SECO) diglucoside (SDG) lignan is an emerging natural product purported to prevent chronic diseases in humans. SECO, the aglycone form of SDG, has shown higher intestinal cell absorption but it is not accumulated naturally in planta . Recently, we have identified and characterized a UDP-glucosyltransferase gene, UGT74S1 , that glucosylates SECO into its monoglucoside (SMG) and SDG forms when expressed in yeast. However, whether this gene is unique in controlling SECO glucosylation into SDG in planta is unclear. Here, we report on the use of UGT74S1 in reverse and forward genetics to characterize an ethyl methane sulfonate (EMS) mutagenized flax population from cultivar CDC Bethune and consisting of 1996 M2 families. EMS mutagenesis generated 73 SNP variants causing 79 mutational events in the UGT74S1 exonic regions of 93 M2 families. The mutation frequency in the exonic regions was determined to be one per 28 Kb. Of these mutations, 13 homozygous missense mutations and two homozygous nonsense mutations were observed and all were transmitted into the M3 and M4 generations. Forward genetics screening of the population showed homozygous nonsense mutants completely lacking SDG biosynthesis while the production of SMG was observed only in a subset of the M4 lines. Heterozygous or homozygous M4 missense mutants displayed a wide range of SDG levels, some being greater than those of CDC Bethune. No additional deleterious mutations were detected in these mutant lines using a panel of 10 other genes potentially involved in the lignan biosynthesis. This study provides further evidence that UGT74S1 is unique in controlling SDG formation from SECO and this is the first report of non-transgenic flax germplasm with simultaneous knockout of SDG and presence of SMG in planta .

  20. Induced Mutagenesis in UGT74S1 Gene Leads to Stable New Flax Lines with Altered Secoisolariciresinol Diglucoside (SDG) Profiles

    PubMed Central

    Fofana, Bourlaye; Ghose, Kaushik; Somalraju, Ashok; McCallum, Jason; Main, David; Deyholos, Michael K.; Rowland, Gordon G.; Cloutier, Sylvie

    2017-01-01

    Flax secoisolariciresinol (SECO) diglucoside (SDG) lignan is an emerging natural product purported to prevent chronic diseases in humans. SECO, the aglycone form of SDG, has shown higher intestinal cell absorption but it is not accumulated naturally in planta. Recently, we have identified and characterized a UDP-glucosyltransferase gene, UGT74S1, that glucosylates SECO into its monoglucoside (SMG) and SDG forms when expressed in yeast. However, whether this gene is unique in controlling SECO glucosylation into SDG in planta is unclear. Here, we report on the use of UGT74S1 in reverse and forward genetics to characterize an ethyl methane sulfonate (EMS) mutagenized flax population from cultivar CDC Bethune and consisting of 1996 M2 families. EMS mutagenesis generated 73 SNP variants causing 79 mutational events in the UGT74S1 exonic regions of 93 M2 families. The mutation frequency in the exonic regions was determined to be one per 28 Kb. Of these mutations, 13 homozygous missense mutations and two homozygous nonsense mutations were observed and all were transmitted into the M3 and M4 generations. Forward genetics screening of the population showed homozygous nonsense mutants completely lacking SDG biosynthesis while the production of SMG was observed only in a subset of the M4 lines. Heterozygous or homozygous M4 missense mutants displayed a wide range of SDG levels, some being greater than those of CDC Bethune. No additional deleterious mutations were detected in these mutant lines using a panel of 10 other genes potentially involved in the lignan biosynthesis. This study provides further evidence that UGT74S1 is unique in controlling SDG formation from SECO and this is the first report of non-transgenic flax germplasm with simultaneous knockout of SDG and presence of SMG in planta. PMID:28983308

  1. PON1 and Mediterranean Diet

    PubMed Central

    Lou-Bonafonte, José M.; Gabás-Rivera, Clara; Navarro, María A.; Osada, Jesús

    2015-01-01

    The Mediterranean diet has been proven to be highly effective in the prevention of cardiovascular diseases. Paraoxonase 1 (PON1) has been implicated in the development of those conditions, especially atherosclerosis. The present work describes a systematic review of current evidence supporting the influence of Mediterranean diet and its constituents on this enzyme. Despite the differential response of some genetic polymorphisms, the Mediterranean diet has been shown to exert a protective action on this enzyme. Extra virgin olive oil, the main source of fat, has been particularly effective in increasing PON1 activity, an action that could be due to low saturated fatty acid intake, oleic acid enrichment of phospholipids present in high-density lipoproteins that favor the activity, and increasing hepatic PON1 mRNA and protein expressions induced by minor components present in this oil. Other Mediterranean diet constituents, such as nuts, fruits and vegetables, have been effective in modulating the activity of the enzyme, pomegranate and its compounds being the best characterized items. Ongoing research on compounds isolated from all these natural products, mainly phenolic compounds and carotenoids, indicates that some of them are particularly effective, and this may enhance the use of nutraceuticals and functional foods capable of potentiating PON1 activity. PMID:26024295

  2. PON1 and Mediterranean Diet.

    PubMed

    Lou-Bonafonte, José M; Gabás-Rivera, Clara; Navarro, María A; Osada, Jesús

    2015-05-27

    The Mediterranean diet has been proven to be highly effective in the prevention of cardiovascular diseases. Paraoxonase 1 (PON1) has been implicated in the development of those conditions, especially atherosclerosis. The present work describes a systematic review of current evidence supporting the influence of Mediterranean diet and its constituents on this enzyme. Despite the differential response of some genetic polymorphisms, the Mediterranean diet has been shown to exert a protective action on this enzyme. Extra virgin olive oil, the main source of fat, has been particularly effective in increasing PON1 activity, an action that could be due to low saturated fatty acid intake, oleic acid enrichment of phospholipids present in high-density lipoproteins that favor the activity, and increasing hepatic PON1 mRNA and protein expressions induced by minor components present in this oil. Other Mediterranean diet constituents, such as nuts, fruits and vegetables, have been effective in modulating the activity of the enzyme, pomegranate and its compounds being the best characterized items. Ongoing research on compounds isolated from all these natural products, mainly phenolic compounds and carotenoids, indicates that some of them are particularly effective, and this may enhance the use of nutraceuticals and functional foods capable of potentiating PON1 activity.

  3. Role of UDP-Glucuronosyltransferase (UGT) 2B2 in Metabolism of Triiodothyronine: Effect of Microsomal Enzyme Inducers in Sprague Dawley and UGT2B2-Deficient Fischer 344 Rats

    PubMed Central

    Richardson, Terrilyn A.; Klaassen, Curtis D.

    2010-01-01

    Microsomal enzyme inducers (MEI) that increase UDP-glucuronosyltransferases (UGTs) can impact thyroid hormone homeostasis in rodents. Increased glucuronidation can result in reduction of serum thyroid hormone and a concomitant increase in thyroid-stimulating hormone (TSH). UGT2B2 is thought to glucuronidate triiodothyronine (T3). The purposes of this study were to determine the role of UGT2B2 in T3 glucuronidation and whether increased T3 glucuronidation mediates the increased TSH observed after MEI treatment. Sprague Dawley (SD) and UGT2B2-deficient Fischer 344 (F344) rats were fed a control diet or diet containing pregnenolone-16α-carbonitrile (PCN; 800 ppm), 3-methylcholanthrene (3-MC; 200 ppm), or Aroclor 1254 (PCB; 100 ppm) for 7 days. Serum thyroxine (T4), T3, and TSH concentrations, hepatic androsterone/T4/T3 glucuronidation, and thyroid follicular cell proliferation were determined. In both SD and F344 rats, MEI treatments decreased serum T4, whereas serum T3 was maintained (except with PCB treatment). Hepatic T4 glucuronidation increased significantly after MEI in both rat strains. Compared with the other MEI, only PCN treatment significantly increased T3 glucuronidation (281 and 497%) in both SD and UGT2B2-deficient F344 rats, respectively, and increased both serum TSH and thyroid follicular cell proliferation. These data demonstrate an association among increases in T3 glucuronidation, TSH, and follicular cell proliferation after PCN treatment, suggesting that T3 is glucuronidated by other PCN-inducible UGTs in addition to UGT2B2. These data also suggest that PCN (rather than 3-MC or PCB) promotes thyroid tumors through excessive TSH stimulation of the thyroid gland. PMID:20421340

  4. Impact of edaphic factors and nutrient management on the hepatoprotective efficiency of Carlinoside purified from pigeon pea leaves: An evaluation of UGT1A1 activity in hepatitis induced organelles.

    PubMed

    Das, Subhasish; Teja, K Charan; Mukherjee, Sandip; Seal, Soma; Sah, Rajesh Kumar; Duary, Buddhadeb; Kim, Ki-Hyun; Bhattacharya, Satya Sundar

    2018-02-01

    Carlinoside is a unique compound well-known for its excellent curative potential in hepatitis. There is a substantial research gap regarding the medicinal use of carlinoside, as its concentrations are greatly variable (depending on locality). We cultivated Cajanus cajan using vermicompost as a major organic amendment at two locations (Sonitpur and Birbhum) with different soil types, but identical climate conditions. Sonitpur soils were richer in soil organic C (SOC), enzyme activation, and N/P content than Birbhum. However, vermi-treatment improved many soil properties (bulk density, water retention, pH, N/P/K, and enzyme activity) to narrow the locational gap in soil quality by 15-28%. We also recorded a many-fold increment in SOC storage capacities in both locations, which was significantly correlated with carlinoside, total phenol, and flavonoid contents in Cajanus leaves. This significantly up-regulated the carlinoside induced expression of the bilirubin-solubilizing UGT1A1enzyme in HepG2 cell and rat liver. Leaf extracts of vermicompost-aided plants could cure hepatitis in affected rat livers and in the HepG2 cell line. Accordingly, vermi-treatment is an effective route for the growth of Cajanus as a cash crop for biomedical applications and can produce a concurrent improvement in soil quality. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Identification and characterization of naturally occurring inhibitors against UDP-glucuronosyltransferase 1A1 in Fructus Psoraleae (Bu-gu-zhi)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin-Xin; Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023; Lv, Xia

    As an edible traditional Chinese herb, Fructus psoraleae (FP) has been widely used in Asia for the treatment of vitiligo, bone fracture and osteoporosis. Several cases on markedly elevated bilirubin and acute liver injury following administration of FP and its related proprietary medicine have been reported, but the mechanism in FP-associated toxicity has not been well investigated yet. This study aimed to investigate the inhibitory effects of FP extract and its major constituents against human UDP-glucuronosyltransferase 1A1 (UGT1A1), the key enzyme responsible for metabolic elimination of bilirubin. To this end, N-(3-carboxy propyl)-4-hydroxy-1,8-naphthalimide (NCHN), a newly developed specific fluorescent probe formore » UGT1A1, was used to evaluate the inhibitory effects of FP extract or its fractions in human liver microsomes (HLM), while LC-UV fingerprint and UGT1A1 inhibition profile were combined to identity and characterize the naturally occurring inhibitors of UGT1A1 in FP. Our results demonstrated that both the extract of FP and five major components of FP displayed evident inhibitory effects on UGT1A1 in HLM. Among these five identified naturally occurring inhibitors, bavachin and corylifol A were found to be strong inhibitors of UGT1A1 with the inhibition kinetic parameters (K{sub i}) values lower than 1 μM, while neobavaisoflavone, isobavachalcone, and bavachinin displayed moderate inhibitory effects against UGT1A1 in HLM, with the K{sub i} values ranging from 1.61 to 9.86 μM. These findings suggested that FP contains natural compounds with potent inhibitory effects against human UGT1A1, which may be one of the important reasons for triggering FP-associated toxicity, including elevated bilirubin levels and liver injury. - Graphical abstract: LC-UV fingerprint and UGT1A1 inhibition profiles were combined to identity and characterize the natural inhibitors of UGT1A1 in F. psoraleae for the first time. Five major components in F. psoraleae were

  6. UDP-Glucuronosyltransferase 1A Compromises Intracellular Accumulation and Anti-Cancer Effect of Tanshinone IIA in Human Colon Cancer Cells

    PubMed Central

    Liu, Miao; Wang, Qiong; Liu, Fang; Cheng, Xuefang; Wu, Xiaolan; Wang, Hong; Wu, Mengqiu; Ma, Ying; Wang, Guangji; Hao, Haiping

    2013-01-01

    Background and Purpose NAD(P)H: quinone oxidoreductase 1 (NQO1) mediated quinone reduction and subsequent UDP-glucuronosyltransferases (UGTs) catalyzed glucuronidation is the dominant metabolic pathway of tanshinone IIA (TSA), a promising anti-cancer agent. UGTs are positively expressed in various tumor tissues and play an important role in the metabolic elimination of TSA. This study aims to explore the role of UGT1A in determining the intracellular accumulation and the resultant apoptotic effect of TSA. Experimental Approach We examined TSA intracellular accumulation and glucuronidation in HT29 (UGT1A positive) and HCT116 (UGT1A negative) human colon cancer cell lines. We also examined TSA-mediated reactive oxygen species (ROS) production, cytotoxicity and apoptotic effect in HT29 and HCT116 cells to investigate whether UGT1A levels are directly associated with TSA anti-cancer effect. UGT1A siRNA or propofol, a UGT1A9 competitive inhibitor, was used to inhibit UGT1A expression or UGT1A9 activity. Key Results Multiple UGT1A isoforms are positively expressed in HT29 but not in HCT116 cells. Cellular S9 fractions prepared from HT29 cells exhibit strong glucuronidation activity towards TSA, which can be inhibited by propofol or UGT1A siRNA interference. TSA intracellular accumulation in HT29 cells is much lower than that in HCT116 cells, which correlates with high expression levels of UGT1A in HT29 cells. Consistently, TSA induces less intracellular ROS, cytotoxicity, and apoptotic effect in HT29 cells than those in HCT116 cells. Pretreatment of HT29 cells with UGT1A siRNA or propofol can decrease TSA glucuronidation and simultaneously improve its intracellular accumulation, as well as enhance TSA anti-cancer effect. Conclusions and Implications UGT1A can compromise TSA cytotoxicity via reducing its intracellular exposure and switching the NQO1-triggered redox cycle to metabolic elimination. Our study may shed a light in understanding the cellular pharmacokinetic and

  7. Glucuronidation of trans-resveratrol by human liver and intestinal microsomes and UGT isoforms.

    PubMed

    Brill, Shirley S; Furimsky, Anna M; Ho, Mark N; Furniss, Michael J; Li, Yi; Green, Adam G; Bradford, Wallace W; Green, Carol E; Kapetanovic, Izet M; Iyer, Lalitha V

    2006-04-01

    Resveratrol (trans-resveratrol, trans-3,5,4'-trihydroxystilbene) is a naturally occurring stilbene analogue found in high concentrations in red wine. There is considerable research interest to determine the therapeutic potential of resveratrol, as it has been shown to have tumour inhibitory and antioxidant properties. This study was performed to investigate the glucuronidation of resveratrol and possible drug interactions via glucuronidation. Two glucuronide conjugates, resveratrol 3-O-glucuronide and resveratrol 4'-O-glucuronide, were formed by human liver and intestinal microsomes. UGT1A1 and UGT1A9 were predominantly responsible for the formation of the 3-O-glucuronide (Km = 149 microM) and 4'-O-glucuronide (Km = 365 microM), respectively. The glucuronide conjugates were formed at higher levels (up to 10-fold) by intestinal rather than liver microsomes. Resveratrol was co-incubated with substrates of UGT1A1 (bilirubin and 7-ethyl-10-hydroxycamptothecin (SN-38)) and UGT1A9 (7-hydroxytrifluoromethyl coumarin (7-HFC)). No major changes were noted in bilirubin glucuronidation in the presence of resveratrol. Resveratrol significantly inhibited the glucuronidation of SN-38 (Ki = 6.2 +/- 2.1 microM) and 7-HFC (Ki = 0.6 +/- 0.2 microM). Hence, resveratrol has the potential to inhibit the glucuronidation of concomitantly administered therapeutic drugs or dietary components that are substrates of UGT1A1 and UGT1A9.

  8. Use of Isoform-Specific UGT Metabolism to Determine and Describe Rates and Profiles of Glucuronidation of Wogonin and Oroxylin A by Human Liver and Intestinal Microsomes

    PubMed Central

    Zhou, Qiong; Zheng, Zhijie; Xia, Bijun; Tang, Lan; Lv, Chang; Liu, Wei; Liu, Zhongqiu; Hu, Ming

    2010-01-01

    Purposes Glucuronidation via UDP-glucuronosyltransferases (or UGTs) is a major metabolic pathway. The purposes of this study are to determine the UGT-isoform specific metabolic fingerprint (or GSMF) of wogonin and oroxylin A, and to use isoform-specific metabolism rates and kinetics to determine and describe their glucuronidation behaviors in tissue microsomes. Methods In vitro glucuronidation rates and profiles were measured using expressed UGTs and human intestinal and liver microsomes. Results GSMF experiments indicated that both flavonoids were metabolized mainly by UGT1As, with major contributions from UGT1A3 and UGT1A7-1A10. Isoform-specific metabolism showed that kinetic profiles obtained using expressed UGT1A3 and UGT1A7-1A10 could fit to known kinetic models. Glucuronidation of both flavonoids in human intestinal and liver microsomes followed simple Michaelis-Menten kinetics. A comparison of the kinetic parameters and profiles suggests that UGT1A9 is likely the main isoform responsible for liver metabolism. In contrast, a combination of UGT1As with a major contribution from UGT1A10 contributed to their intestinal metabolism. Correlation studies clearly showed that UGT isoform-specific metabolism could describe their metabolism rates and profiles in human liver and intestinal microsomes. Conclusion GSMF and isoform-specific metabolism profiles can determine and describe glucuronidation rates and profiles in human tissue microsomes. PMID:20411407

  9. Effects of ABCB1, ABCC2, UGT2B7 and HNF4α genetic polymorphisms on oxcarbazepine concentrations and therapeutic efficacy in patients with epilepsy.

    PubMed

    Shen, Chunhong; Zhang, Bijun; Liu, Zhirong; Tang, Yelei; Zhang, Yinxi; Wang, Shan; Guo, Yi; Ding, Yao; Wang, Shuang; Ding, Meiping

    2017-10-01

    The aim of the study is to investigate the effects of ABCB1, ABCC2, UGT2B7 and HNF4α genetic polymorphisms on plasma oxcarbazepine (OXC) concentrations and therapeutic efficacy in Han Chinese patients with epilepsy. We recruited 116 Han Chinese patients with epilepsy who were receiving OXC monotherapy. Blood samples were taken and OXC levels were measured. The polymorphisms of ABCB1 rs1045642, ABCC2 rs2273697, UGT2B7 rs7439366, and HNF4α rs2071197 were determined. The therapeutic efficacy of OXC at the 1-year time-point was assessed. Data analysis was performed using IBM SPSS Statistics 22.0. The genetic polymorphism of ABCB1 rs1045642 was found to be associated with normalized OXC concentration and therapeutic efficacy in patients with epilepsy (P<0.05). As for UGT2B7 rs7439366, the allele polymorphism exhibited a correlation with treatment outcome, but not OXC concentration. The polymorphisms of ABCC2 rs2273697 and HNF4α rs2071197 was not associated with OXC concentrations and therapeutic efficacy. These results suggested that ABCB1 rs1045642 and UGT2B7 rs7439366 may affect OXC pharmacokinetics and therapeutic efficacy in Han Chinese patients with epilepsy. However, further studies in larger populations and other ethnic groups are required. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  10. Effects of UDP-glucuronosyltransferase (UGT) polymorphisms on the pharmacokinetics of febuxostat in healthy Chinese volunteers.

    PubMed

    Lin, Meihua; Liu, Jian; Zhou, Huili; Wu, Minglan; Lv, Duo; Huang, Yujie; Zheng, Yunliang; Shentu, Jianzhong; Wu, Lihua

    2017-02-01

    The pharmacokinetics (PKs) of febuxostat varies among individuals, while the main causes are still unknown. We investigated whether the polymorphisms of UGT1A1 and UGT1A3 played an important role in the disposition of the drug after oral administration of febuxostat tablet in Chinese subjects. A total of 42 healthy subjects were from two previous independent clinical bioequivalence (BE) trials of febuxostat, in which the same reference formulation (ULORIC ® tablet, 80 mg) was taken, and thus the PK data were combined for the evaluation of pharmacogenomic effect on febuxostat PKs. Our study clearly indicated that the area under the plasma concentration-time curve (AUC) in the heterozygote and homozygote of UGT1A1*6 (c.211G > A, rs4148323) was significantly higher than that in the wild-type. Meanwhile, the clearance (CL/F) exhibited a significant reduction by 22.2%. Interestingly, UGT1A1*28, in perfect linkage disequilibrium (LD) with UGT1A3*2a, significantly increased its clearance. These results indicate that UGT1A1*6 was an important factor influencing the drug disposition, thus providing a probable explanation for interindividual variation of febuxostat PKs in Chinese subjects. In addition, by considering of the different allele distribution of UGT1A1*6 and *28 in Eastern and Western populations, these findings might further interpret the ethnic difference of febuxostat PKs. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  11. Enantioselective inhibition of carprofen towards UDP-glucuronosyltransferase (UGT) 2B7.

    PubMed

    Fang, Zhong-Ze; Wang, Haina; Cao, Yun-Feng; Sun, Dong-Xue; Wang, Li-Xuan; Hong, Mo; Huang, Ting; Chen, Jian-Xing; Zeng, Jia

    2015-03-01

    UDP-glucuronosyltransferases (UGTs)-catalyzed glucuronidation conjugation reaction plays an important role in the elimination of many important clinical drugs and endogenous substances. The present study aims to investigate the enantioselective inhibition of carprofen towards UGT isoforms. In vitro a recombinant UGT isoforms-catalyzed 4-methylumbelliferone (4-MU) glucuronidation incubation mixture was used to screen the inhibition potential of (R)-carprofen and (S)-carprofen towards multiple UGT isoforms. The results showed that (S)-carprofen exhibited stronger inhibition potential than (R)-carprofen towards UGT2B7. However, no significant difference was observed for the inhibition of (R)-carprofen and (S)-carprofen towards other UGT isoforms. Furthermore, the inhibition kinetic behavior was compared for the inhibition of (S)-carprofen and (R)-carprofen towards UGT2B7. A Lineweaver-Burk plot showed that both (S)-carprofen and (R)-carprofen exhibited competitive inhibition towards UGT2B7-catalyzed 4-MU glucuronidation. The inhibition kinetic parameter (Ki ) was calculated to be 7.0 μM and 31.1 μM for (S)-carprofen and (R)-carprofen, respectively. Based on the standard for drug-drug interaction, the threshold for (S)-carprofen and (R)-carprofen to induce a drug-drug interaction is 0.7 μM and 3.1 μM, respectively. In conclusion, enantioselective inhibition of carprofen towards UDP-glucuronosyltransferase (UGT) 2B7 was demonstrated in the present study. Using the in vitro inhibition kinetic parameter, the concentration threshold of (S)-carprofen and (R)-carprofen to possibly induce the drug-drug interaction was obtained. Therefore, clinical monitoring of the plasma concentration of (S)-carprofen is more important than (R)-carprofen to avoid a possible drug-drug interaction between carprofen and the drugs mainly undergoing UGT2B7-catalyzed metabolism. © 2014 Wiley Periodicals, Inc.

  12. Exercise training and return to a well-balanced diet activate the neuregulin 1/ErbB pathway in skeletal muscle of obese rats.

    PubMed

    Ennequin, Gaël; Boisseau, Nathalie; Caillaud, Kevin; Chavanelle, Vivien; Gerbaix, Maude; Metz, Lore; Etienne, Monique; Walrand, Stéphane; Masgrau, Aurélie; Guillet, Christelle; Courteix, Daniel; Niu, Airu; Li, Yi-Ping; Capel, Fréderic; Sirvent, Pascal

    2015-06-15

    Some studies suggest that neuregulin 1 (NRG1) could be involved in the regulation of skeletal muscle energy metabolism in rodents. Here we assessed whether unbalanced diet is associated with alterations of the NRG1 signalling pathway and whether exercise and diet might restore NRG1 signalling in skeletal muscle of obese rats. We show that diet-induced obesity does not impair NRG1 signalling in rat skeletal muscle. We also report that endurance training and a well-balanced diet activate the NRG1 signalling in skeletal muscle of obese rats, possibly via a new mechanism mediated by the protease ADAM17. These results suggest that some beneficial effects of physical activity and diet in obese rats could be partly explained by stimulation of the NRG1 signalling pathway. Some studies suggest that the signalling pathway of neuregulin 1 (NRG1), a protein involved in the regulation of skeletal muscle metabolism, could be altered by nutritional and exercise interventions. We hypothesized that diet-induced obesity could lead to alterations of the NRG1 signalling pathway and that chronic exercise could improve NRG1 signalling in rat skeletal muscle. To test this hypothesis, male Wistar rats received a high fat/high sucrose (HF/HS) diet for 16 weeks. At the end of this period, NRG1 and ErbB expression/activity in skeletal muscle was assessed. The obese rats then continued the HF/HS diet or were switched to a well-balanced diet. Moreover, in both groups, half of the animals also performed low intensity treadmill exercise training. After another 8 weeks, NRG1 and ErbB expression/activity in skeletal muscle were tested again. The 16 week HF/HS diet induced obesity, but did not significantly affect the NRG1/ErbB signalling pathway in rat skeletal muscle. Conversely, after the switch to a well-balanced diet, NRG1 cleavage ratio and ErbB4 amount were increased. Chronic exercise training also promoted NRG1 cleavage, resulting in increased ErbB4 phosphorylation. This result was

  13. Expression of UDP-glucuronosyltransferase 1A4 in human placenta at term

    PubMed Central

    Østby, Lene; Stuen, Ina; Sundby, Eirik

    2010-01-01

    The placenta contains a large variety of metabolizing enzymes, among them UDP-glucuronosyltransferase (UGT). Several UGT2B isozymes have so far been detected in human placenta, but little is known on placental expression of UGT1A isozymes. The antiepileptic drug lamotrigine (LTG) is a UGT1A4-substrate, and its serum concentration falls by over 50% during pregnancy, leading to impaired seizure control. The placenta may be involved in this. Microsomes from term placentas of 4 LTG-users and 10 healthy control subjects were prepared. Western blot analysis detected UGT1A proteins in all placentas. The presence of UGT1A4 in placenta from LTG users was confirmed with UGT1A4 commercial standard and a specific UGT1A4 primary antibody. Since LTG is primarily metabolized by UGT1A4 and this isozyme is shown to be present in placenta at term, it may be hypothesized that the placenta is involved in the fall of LTG serum concentrations during pregnancy. PMID:21302032

  14. Role of extrahepatic UDP-glucuronosyltransferase 1A1: Advances in understanding breast milk-induced neonatal hyperbilirubinemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujiwara, Ryoichi, E-mail: fujiwarar@pharm.kitasato-u.ac.jp; Maruo, Yoshihiro; Chen, Shujuan

    Newborns commonly develop physiological hyperbilirubinemia (also known as jaundice). With increased bilirubin levels being observed in breast-fed infants, breast-feeding has been recognized as a contributing factor for the development of neonatal hyperbilirubinemia. Bilirubin undergoes selective metabolism by UDP-glucuronosyltransferase (UGT) 1A1 and becomes a water soluble glucuronide. Although several factors such as gestational age, dehydration and weight loss, and increased enterohepatic circulation have been associated with breast milk-induced jaundice (BMJ), deficiency in UGT1A1 expression is a known cause of BMJ. It is currently believed that unconjugated bilirubin is metabolized mainly in the liver. However, recent findings support the concept that extrahepaticmore » tissues, such as small intestine and skin, contribute to bilirubin glucuronidation during the neonatal period. We will review the recent advances made towards understanding biological and molecular events impacting BMJ, especially regarding the role of extrahepatic UGT1A1 expression. - Highlights: • Breast-feeding can be a factor for the development of neonatal hyperbilirubinemia. • UDP-glucuronosyltransferase (UGT) 1A1 is the sole bilirubin-metabolizing enzyme. • Extrahepatic UGT1A1 plays an important role in bilirubin metabolism. • We discuss the potential mechanism of breast milk-induced neonatal jaundice.« less

  15. Role of UDP-Glucuronosyltransferase 1A1 in the Metabolism and Pharmacokinetics of Silymarin Flavonolignans in Patients with HCV and NAFLD.

    PubMed

    Xie, Ying; Miranda, Sonia R; Hoskins, Janelle M; Hawke, Roy L

    2017-01-15

    Silymarin is the most commonly used herbal medicine by patients with chronic liver disease. Silymarin flavonolignans undergo rapid first-pass metabolism primarily by glucuronidation. The aims of this investigation were: (1) to determine the association of UGT1A1*28 polymorphism with the area under the plasma concentration-time curves (AUCs) for silybin A (SA) and silybin B (SB); (2) to evaluate the effect of UGT1A1*28 polymorphism on the profile of flavonolignan glucuronide conjugates found in the plasma; and (3) to investigate the role of UGT1A1 enzyme kinetics on the pharmacokinetics of SA and SB. AUCs and metabolic ratios for thirty-three patients with chronic liver disease administered oral doses of silymarin were compared between different UGT1A1*28 genotypes. The AUCs, metabolic ratios, and the profiles of major SA and SB glucuronides did not differ significantly among the three UGT1A1 genotypes. In contrast, an increase in the proportion of sulfated flavonolignan conjugates in plasma was observed in subjects with UGT1A1*28/*28 genotype compared to subjects carrying wild type alleles. Differences in SA and SB in vitro intrinsic clearance estimates for UGTIA1 correlated inversely with SA and SB exposures observed in vivo indicating a major role for UGT1A1 in silymarin metabolism. In addition, a significant difference in the metabolic ratio observed between patients with NAFLD and HCV suggests that any effect of UGT1A1 polymorphism may be obscured by a greater effect of liver disease on the pharmacokinetics of silymarin. Taken together, these results suggest the presence of the UGT1A1*28 allele does not contribute significantly to a large inter-subject variability in the pharmacokinetics of silybin A and silybin B which may obscure the ability to detect beneficial effects of silymarin in patients with liver disease.

  16. Impairment of enzymatic antioxidant defenses is associated with bilirubin-induced neuronal cell death in the cerebellum of Ugt1 KO mice

    PubMed Central

    Bortolussi, G; Codarin, E; Antoniali, G; Vascotto, C; Vodret, S; Arena, S; Cesaratto, L; Scaloni, A; Tell, G; Muro, A F

    2015-01-01

    Severe hyperbilirubinemia is toxic during central nervous system development. Prolonged and uncontrolled high levels of unconjugated bilirubin lead to bilirubin-induced encephalopathy and eventually death by kernicterus. Despite extensive studies, the molecular and cellular mechanisms of bilirubin toxicity are still poorly defined. To fill this gap, we investigated the molecular processes underlying neuronal injury in a mouse model of severe neonatal jaundice, which develops hyperbilirubinemia as a consequence of a null mutation in the Ugt1 gene. These mutant mice show cerebellar abnormalities and hypoplasia, neuronal cell death and die shortly after birth because of bilirubin neurotoxicity. To identify protein changes associated with bilirubin-induced cell death, we performed proteomic analysis of cerebella from Ugt1 mutant and wild-type mice. Proteomic data pointed-out to oxidoreductase activities or antioxidant processes as important intracellular mechanisms altered during bilirubin-induced neurotoxicity. In particular, they revealed that down-representation of DJ-1, superoxide dismutase, peroxiredoxins 2 and 6 was associated with hyperbilirubinemia in the cerebellum of mutant mice. Interestingly, the reduction in protein levels seems to result from post-translational mechanisms because we did not detect significant quantitative differences in the corresponding mRNAs. We also observed an increase in neuro-specific enolase 2 both in the cerebellum and in the serum of mutant mice, supporting its potential use as a biomarker of bilirubin-induced neurological damage. In conclusion, our data show that different protective mechanisms fail to contrast oxidative burst in bilirubin-affected brain regions, ultimately leading to neurodegeneration. PMID:25950469

  17. Impairment of enzymatic antioxidant defenses is associated with bilirubin-induced neuronal cell death in the cerebellum of Ugt1 KO mice.

    PubMed

    Bortolussi, G; Codarin, E; Antoniali, G; Vascotto, C; Vodret, S; Arena, S; Cesaratto, L; Scaloni, A; Tell, G; Muro, A F

    2015-05-07

    Severe hyperbilirubinemia is toxic during central nervous system development. Prolonged and uncontrolled high levels of unconjugated bilirubin lead to bilirubin-induced encephalopathy and eventually death by kernicterus. Despite extensive studies, the molecular and cellular mechanisms of bilirubin toxicity are still poorly defined. To fill this gap, we investigated the molecular processes underlying neuronal injury in a mouse model of severe neonatal jaundice, which develops hyperbilirubinemia as a consequence of a null mutation in the Ugt1 gene. These mutant mice show cerebellar abnormalities and hypoplasia, neuronal cell death and die shortly after birth because of bilirubin neurotoxicity. To identify protein changes associated with bilirubin-induced cell death, we performed proteomic analysis of cerebella from Ugt1 mutant and wild-type mice. Proteomic data pointed-out to oxidoreductase activities or antioxidant processes as important intracellular mechanisms altered during bilirubin-induced neurotoxicity. In particular, they revealed that down-representation of DJ-1, superoxide dismutase, peroxiredoxins 2 and 6 was associated with hyperbilirubinemia in the cerebellum of mutant mice. Interestingly, the reduction in protein levels seems to result from post-translational mechanisms because we did not detect significant quantitative differences in the corresponding mRNAs. We also observed an increase in neuro-specific enolase 2 both in the cerebellum and in the serum of mutant mice, supporting its potential use as a biomarker of bilirubin-induced neurological damage. In conclusion, our data show that different protective mechanisms fail to contrast oxidative burst in bilirubin-affected brain regions, ultimately leading to neurodegeneration.

  18. Exercise training and return to a well-balanced diet activate the neuregulin 1/ErbB pathway in skeletal muscle of obese rats

    PubMed Central

    Ennequin, Gaël; Boisseau, Nathalie; Caillaud, Kevin; Chavanelle, Vivien; Gerbaix, Maude; Metz, Lore; Etienne, Monique; Walrand, Stéphane; Masgrau, Aurélie; Guillet, Christelle; Courteix, Daniel; Niu, Airu; Li, Yi-Ping; Capel, Fréderic; Sirvent, Pascal

    2015-01-01

    Some studies suggest that the signalling pathway of neuregulin 1 (NRG1), a protein involved in the regulation of skeletal muscle metabolism, could be altered by nutritional and exercise interventions. We hypothesized that diet-induced obesity could lead to alterations of the NRG1 signalling pathway and that chronic exercise could improve NRG1 signalling in rat skeletal muscle. To test this hypothesis, male Wistar rats received a high fat/high sucrose (HF/HS) diet for 16 weeks. At the end of this period, NRG1 and ErbB expression/activity in skeletal muscle was assessed. The obese rats then continued the HF/HS diet or were switched to a well-balanced diet. Moreover, in both groups, half of the animals also performed low intensity treadmill exercise training. After another 8 weeks, NRG1 and ErbB expression/activity in skeletal muscle were tested again. The 16 week HF/HS diet induced obesity, but did not significantly affect the NRG1/ErbB signalling pathway in rat skeletal muscle. Conversely, after the switch to a well-balanced diet, NRG1 cleavage ratio and ErbB4 amount were increased. Chronic exercise training also promoted NRG1 cleavage, resulting in increased ErbB4 phosphorylation. This result was associated with increased protein expression and phosphorylation ratio of the metalloprotease ADAM17, which is involved in NRG1 shedding. Similarly, in vitro stretch-induced activation of ADAM17 in rat myoblasts induced NRG1 cleavage and ErbB4 activation. These results show that low intensity endurance training and well-balanced diet activate the NRG1-ErbB4 pathway, possibly via the metalloprotease ADAM17, in skeletal muscle of diet-induced obese rats. PMID:25820551

  19. Mapping the UDP-Glucuronic Acid Binding Site in UDP-Glucuronosyltransferase-1 A10 by Homology-based Modeling: Confirmation with Biochemical Evidence†

    PubMed Central

    Banerjee, Rajat; Pennington, Matthew W.; Garza, Amanda; Owens, Ida S.

    2008-01-01

    The UDP-glucuronosyltransferase (UGT) isozyme system is critical for protecting the body against endogenous and exogenous chemicals by linking glucuronic acid donated by UDP-glucuronic acid to a lipophilic acceptor substrate. UGTs convert metabolites, dietary constituents and environmental toxicants to highly excretable glucuronides. Because of difficulties associated with purifying endoplasmic reticulum-bound UGTs for structural studies, we carried out homology-based computer modeling to aid analysis. The search found structural homology in Escherichia coli UDP-galactose 4-epimerase. Consistent with predicted similarities involving the common UDP-moiety in substrates, UDP-glucose and UDP-hexanol amine caused competitive inhibition by Lineweaver-Burk plots. Among predicted binding sites N292, K314, K315 and K404 in UGT1A10, two informative sets of mutants K314R/Q/A/E /G and K404R/E had null activities or 2.7-fold higher/50% less activity, respectively. Scatchard analysis of binding data of affinity-ligand, 5-azido-uridine-[β-32P]-diphosphoglucuronic acid, to purified UGT1A10-His or UGT1A7-His revealed high and low affinity binding sites. 2-Nitro 5-thiocyanobenzoic acid-digested UGT1A10-His bound with radiolabeled affinity-ligand revealed an 11.3- and 14.3-kDa peptide associated with K314 and K404, respectively, in a discontinuous SDS-PAGE system. Similar treatment of 1A10His-K314A bound with the ligand lacked both peptides; 1A10-HisK404R- and 1A10-HisK404E showed 1.3-fold greater- and 50% less-label in the 14.3-kDa peptide, respectively, compared to 1A10-His without affecting the 11.3-kDa peptide. Scatchard analysis of binding data of affinity-ligand to 1A10His-K404R and -K404E showed a 6-fold reduction and a large increase in Kd, respectively. Our results indicate: K314 and K404 are required UDP-glcA binding sites in 1A10, that K404 controls activity and high affinity sites and that K314 and K404 are strictly conserved in 70 aligned UGTs, except for S321

  20. [PPARβ/δ Activation prevents hypertriglyceridemia caused by a high fat diet. Involvement of AMPK and PGC-1α-Lipin1-PPARα pathway].

    PubMed

    Barroso, Emma; Astudillo, Alma M; Balsinde, Jesús; Vázquez-Carrera, Manuel

    2013-01-01

    Excessive consume of hypercaloric and high in saturated fat food causes an atherogenic dyslipidemia. In this study we analyzed the effects of PPARβ/δ activator GW501516 on the hypertriglyceridemia induced by a high-fat diet. Male mice were randomized in three groups: control (standard chow), high fat diet (HFD, 35% fat by weight, 58% Kcal from fat) and high fat diet plus GW501516 (3mg/Kg/day). Treatment duration was three weeks. HFD-induced hypertriglyceridemia was accompanied by a reduction in hepatic levels of phospho-AMPK and in PGC-1α and Lipin1 mRNA levels. All these effects were reversed by GW501516 treatment. The lack of changes in phospho-AMPK levels after GW501516 treatment in HFD-fed animals could be the result of an increase in the AMP/ATP ratio. GW501516 treatment also increased Lipin1 protein levels in the nucleus, led to the amplification of the PGC-1α-PPARα pathway and increased PPARα DNA-binding activity, as well as the expression of PPARα-target genes involved in fatty acid oxidation. GW501516 also increased β-hydroxibutirate plasmatic levels, a hepatic β-oxidation end product. Finally, GW501516 increased the hepatic levels of the PPARα endogenous ligand 16:0/18:1-PC and the expression of the VLDL receptor. These data indicate that the hypotriglyceridemic effect of GW501516 in mice subjected to HFD-fed mice is accompanied by an increase in phospho-AMPK levels and the amplification of the PGC-1α-Lipin1-PPARα pathway. Copyright © 2012 Elsevier España, S.L. and SEA. All rights reserved.

  1. Characterization of 107 Genomic DNA Reference Materials for CYP2D6, CYP2C19, CYP2C9, VKORC1, and UGT1A1

    PubMed Central

    Pratt, Victoria M.; Zehnbauer, Barbara; Wilson, Jean Amos; Baak, Ruth; Babic, Nikolina; Bettinotti, Maria; Buller, Arlene; Butz, Ken; Campbell, Matthew; Civalier, Chris; El-Badry, Abdalla; Farkas, Daniel H.; Lyon, Elaine; Mandal, Saptarshi; McKinney, Jason; Muralidharan, Kasinathan; Noll, LeAnne; Sander, Tara; Shabbeer, Junaid; Smith, Chingying; Telatar, Milhan; Toji, Lorraine; Vairavan, Anand; Vance, Carlos; Weck, Karen E.; Wu, Alan H.B.; Yeo, Kiang-Teck J.; Zeller, Markus; Kalman, Lisa

    2010-01-01

    Pharmacogenetic testing is becoming more common; however, very few quality control and other reference materials that cover alleles commonly included in such assays are currently available. To address these needs, the Centers for Disease Control and Prevention's Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing community and the Coriell Cell Repositories, have characterized a panel of 107 genomic DNA reference materials for five loci (CYP2D6, CYP2C19, CYP2C9, VKORC1, and UGT1A1) that are commonly included in pharmacogenetic testing panels and proficiency testing surveys. Genomic DNA from publicly available cell lines was sent to volunteer laboratories for genotyping. Each sample was tested in three to six laboratories using a variety of commercially available or laboratory-developed platforms. The results were consistent among laboratories, with differences in allele assignments largely related to the manufacturer's assay design and variable nomenclature, especially for CYP2D6. The alleles included in the assay platforms varied, but most were identified in the set of 107 DNA samples. Nine additional pharmacogenetic loci (CYP4F2, EPHX1, ABCB1, HLAB, KIF6, CYP3A4, CYP3A5, TPMT, and DPD) were also tested. These samples are publicly available from Coriell and will be useful for quality assurance, proficiency testing, test development, and research. PMID:20889555

  2. The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet

    PubMed Central

    Mitchell, Sarah J.; Martin-Montalvo, Alejandro; Mercken, Evi M.; Palacios, Hector H.; Ward, Theresa M.; Abulwerdi, Gelareh; Minor, Robin K.; Vlasuk, George P.; Ellis, James L.; Sinclair, David A.; Dawson, John; Allison, David B.; Zhang, Yongqing; Becker, Kevin G.; Bernier, Michel; de Cabo, Rafael

    2014-01-01

    The prevention or delay of the onset of age-related diseases prolongs survival and improves quality of life while reducing the burden on the health care system. Activation of sirtuin 1 (SIRT1), an NAD+ deacetylase, improves metabolism and confers protection against physiological and cognitive disturbances in old age. SRT1720 is a specific SIRT1 activator that has health and lifespan benefits in adult mice fed a high-fat diet. We found extension in lifespan, delayed onset of age-related metabolic diseases, and improved general health in mice fed a standard diet after SRT1720 supplementation. Inhibition of pro-inflammatory gene expression both in the liver and muscle of SRT1720-treated animals was noted. SRT1720 lowered phosphorylation of NF-κB pathway regulators in vitro only when SIRT1 was functionally present. Combined with our previous work, the current study further supports the beneficial effects of SRT1720 on health across the lifespan in mice. PMID:24582957

  3. PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression possibly through PPAR{gamma} activation in the liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oishi, Katsutaka, E-mail: k-ooishi@aist.go.jp; Uchida, Daisuke; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki

    Research highlights: {yields} PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression. {yields} Hepatic expressions of PPAR{gamma} and PCG-1{alpha} are induced by a ketogenic diet. {yields} PPAR{gamma} antagonist attenuates a ketogenic diet-induced PAI-1 expression. {yields} Ketogenic diet advances the phase of circadian clock in a PPAR{alpha}-independent manner. -- Abstract: An increased level of plasminogen activator inhibitor-1 (PAI-1) is considered a risk factor for cardiovascular diseases, and PAI-1 gene expression is under the control of molecular circadian clocks in mammals. We recently showed that PAI-1 expression is augmented in a phase-advanced circadian manner in mice fed with a ketogenic diet (KD).more » To determine whether peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) is involved in hypofibrinolytic status induced by a KD, we examined the expression profiles of PAI-1 and circadian clock genes in PPAR{alpha}-null KD mice. Chronic administration of bezafibrate induced the PAI-1 gene expression in a PPAR{alpha}-dependent manner. Feeding with a KD augmented the circadian expression of PAI-1 mRNA in the hearts and livers of wild-type (WT) mice as previously described. The KD-induced mRNA expression of typical PPAR{alpha} target genes such as Cyp4A10 and FGF21 was damped in PPAR{alpha}-null mice. However, plasma PAI-1 concentrations were significantly more elevated in PPAR{alpha}-null KD mice in accordance with hepatic mRNA levels. These observations suggest that PPAR{alpha} activation is dispensable for KD-induced PAI-1 expression. We also found that hyperlipidemia, fatty liver, and the hepatic expressions of PPAR{gamma} and its coactivator PCG-1{alpha} were more effectively induced in PPAR{alpha}-null, than in WT mice on a KD. Furthermore, KD-induced hepatic PAI-1 expression was significantly suppressed by supplementation with bisphenol A diglycidyl ether, a PPAR{gamma} antagonist, in both WT and PPAR

  4. Folic acid supplementation during high-fat diet feeding restores AMPK activation via an AMP-LKB1-dependent mechanism

    PubMed Central

    Sid, Victoria; Wu, Nan; Sarna, Lindsei K.; Siow, Yaw L.; House, James D.

    2015-01-01

    AMPK is an endogenous energy sensor that regulates lipid and carbohydrate metabolism. Nonalcoholic fatty liver disease (NAFLD) is regarded as a hepatic manifestation of metabolic syndrome with impaired lipid and glucose metabolism and increased oxidative stress. Our recent study showed that folic acid supplementation attenuated hepatic oxidative stress and lipid accumulation in high-fat diet-fed mice. The aim of the present study was to investigate the effect of folic acid on hepatic AMPK during high-fat diet feeding and the mechanisms involved. Male C57BL/6J mice were fed a control diet (10% kcal fat), a high-fat diet (60% kcal fat), or a high-fat diet supplemented with folic acid (26 mg/kg diet) for 5 wk. Mice fed a high-fat diet exhibited hyperglycemia, hepatic cholesterol accumulation, and reduced hepatic AMPK phosphorylation. Folic acid supplementation restored AMPK phosphorylation (activation) and reduced blood glucose and hepatic cholesterol levels. Activation of AMPK by folic acid was mediated through an elevation of its allosteric activator AMP and activation of its upstream kinase, namely, liver kinase B1 (LKB1) in the liver. Consistent with in vivo findings, 5-methyltetrahydrofolate (bioactive form of folate) restored phosphorylation (activation) of both AMPK and LKB1 in palmitic acid-treated HepG2 cells. Activation of AMPK by folic acid might be responsible for AMPK-dependent phosphorylation of HMG-CoA reductase, leading to reduced hepatic cholesterol synthesis during high-fat diet feeding. These results suggest that folic acid supplementation may improve cholesterol and glucose metabolism by restoration of AMPK activation in the liver. PMID:26400185

  5. Analysis Extract. AFSC 4D0X1 Diet Therapy (Active Duty)

    DTIC Science & Technology

    2002-07-01

    Diet (s) exp-Lacto Vegetarian Active Active Active Active AD AD...3* 87* 22* V0143 Diet (s) exp-Lacto-Ovo Vegetarian Diet Active Active... Diet (s) exp-Ovo Vegetarian Active Active Active Active AD AD

  6. Effect of the β-glucuronidase inhibitor saccharolactone on glucuronidation by human tissue microsomes and recombinant UDP-glucuronosyltransferases (UGTs)

    PubMed Central

    Oleson, Lauren; Court, Michael H.

    2009-01-01

    Glucuronidation studies using microsomes and recombinant UDP-glucuronosyltransferases (rUGTs) can be complicated by the presence of endogenous β-glucuronidases leading to underestimation of glucuronide formation rates. Saccharolactone is the most frequently used β-glucuronidase inhibitor, although as of yet it is not clear whether this reagent should be routinely added to glucuronidation incubations. Here we determined the effect of saccharolactone on eight different UGT probe activities using pooled human liver microsomes (pHLMs) and rUGTs. Despite the use of buffered incubation solutions it was necessary to adjust the pH of saccharolactone solutions to avoid effects (enhancement or inhibition) of lowered pH on UGT activity. Saccharolactone at concentrations ranging from 1 to 20 mM failed to show enhancement of any of the glucuronidation activities evaluated that could be considered consistent with inhibition of β-glucuronidase. However, for most activities, higher saccharolactone concentrations resulted in a modest degree of inhibition. The greatest inhibitory effect was observed for 5-hydroxytryptamine and estradiol glucuronidation by pHLMs with 35% decrease at 20 mM saccharolactone concentration. Endogenous β-glucuronidase activities were also measured using various human tissue microsomes and rUGTs with estradiol-3-glucuronide and estradiol-17-glucuronide as substrates. Glucuronide hydrolysis was observed for pHLMs, lung microsomes, and insect-cell expressed rUGTs, but not for kidney or intestinal microsomes, or HEK293 microsomes. However, the extent of hydrolysis was relatively small representing only 9 to 19% of the glucuronide formation rate measured in the same preparations. Consequently, these data do not support the routine inclusion of saccharolactone in glucuronidation incubations and, if used, saccharolactone concentrations should be titrated to achieve activity enhancement without inhibition. PMID:18718121

  7. The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet.

    PubMed

    Mitchell, Sarah J; Martin-Montalvo, Alejandro; Mercken, Evi M; Palacios, Hector H; Ward, Theresa M; Abulwerdi, Gelareh; Minor, Robin K; Vlasuk, George P; Ellis, James L; Sinclair, David A; Dawson, John; Allison, David B; Zhang, Yongqing; Becker, Kevin G; Bernier, Michel; de Cabo, Rafael

    2014-03-13

    The prevention or delay of the onset of age-related diseases prolongs survival and improves quality of life while reducing the burden on the health care system. Activation of sirtuin 1 (SIRT1), an NAD(+)-dependent deacetylase, improves metabolism and confers protection against physiological and cognitive disturbances in old age. SRT1720 is a specific SIRT1 activator that has health and lifespan benefits in adult mice fed a high-fat diet. We found extension in lifespan, delayed onset of age-related metabolic diseases, and improved general health in mice fed a standard diet after SRT1720 supplementation. Inhibition of proinflammatory gene expression in both liver and muscle of SRT1720-treated animals was noted. SRT1720 lowered the phosphorylation of NF-κB pathway regulators in vitro only when SIRT1 was functionally present. Combined with our previous work, the current study further supports the beneficial effects of SRT1720 on health across the lifespan in mice. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Effects of a high-fat diet on spontaneous metastasis of Lewis lung carcinoma in plasminogen activator inhibitor-1 deficient and wild-type mice

    USDA-ARS?s Scientific Manuscript database

    We investigated the effects of plasminogen activator inhibitor-1 (PAI-1) deficiency on spontaneous metastasis of Lewis lung carcinoma (LLC) in PAI-1 deficient (PAI-1-/-) and wildtype mice (C57BL/6J background) fed the AIN93G diet or that diet modified with 45% calories from fat. The high-fat diet i...

  9. Role of extrahepatic UDP-glucuronosyltransferase 1A1: Advances in understanding breast milk-induced neonatal hyperbilirubinemia.

    PubMed

    Fujiwara, Ryoichi; Maruo, Yoshihiro; Chen, Shujuan; Tukey, Robert H

    2015-11-15

    Newborns commonly develop physiological hyperbilirubinemia (also known as jaundice). With increased bilirubin levels being observed in breast-fed infants, breast-feeding has been recognized as a contributing factor for the development of neonatal hyperbilirubinemia. Bilirubin undergoes selective metabolism by UDP-glucuronosyltransferase (UGT) 1A1 and becomes a water soluble glucuronide. Although several factors such as gestational age, dehydration and weight loss, and increased enterohepatic circulation have been associated with breast milk-induced jaundice (BMJ), deficiency in UGT1A1 expression is a known cause of BMJ. It is currently believed that unconjugated bilirubin is metabolized mainly in the liver. However, recent findings support the concept that extrahepatic tissues, such as small intestine and skin, contribute to bilirubin glucuronidation during the neonatal period. We will review the recent advances made towards understanding biological and molecular events impacting BMJ, especially regarding the role of extrahepatic UGT1A1 expression. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Role of extrahepatic UDP-glucuronosyltransferase 1A1: advances in understanding breast milk-induced neonatal hyperbilirubinemia

    PubMed Central

    Fujiwara, Ryoichi; Maruo, Yoshihiro; Chen, Shujuan; Tukey, Robert H.

    2015-01-01

    Newborns commonly develop physiological hyperbilirubinemia (also known as jaundice). With increased bilirubin levels being observed in breast-fed infants, breast-feeding has been recognized as a contributing factor for the development of neonatal hyperbilirubinemia. Bilirubin undergoes selective metabolism by UDP-glucuronosyltransferase (UGT) 1A1 and becomes a water soluble glucuronide. Although several factors such as gestational age, dehydration and weight loss, and increased enterohepatic circulation have been associated with breast milk-induced jaundice (BMJ), deficiency in UGT1A1 expression is a known cause of BMJ. It is currently believed that unconjugated bilirubin is metabolized mainly in the liver. However, recent findings support the concept that extrahepatic tissues, such as small intestine and skin, contribute to bilirubin glucuronidation during the neonatal period. We will review the recent advances made towards understanding biological and molecular events impacting BMJ, especially regarding the role of extrahepatic UGT1A1 expression. PMID:26342858

  11. Daily supplementation with fresh pomegranate juice increases paraoxonase 1 expression and activity in mice fed a high-fat diet.

    PubMed

    Estrada-Luna, D; Martínez-Hinojosa, E; Cancino-Diaz, J C; Belefant-Miller, H; López-Rodríguez, G; Betanzos-Cabrera, G

    2018-02-01

    Studies have found that pomegranate juice (PJ) consumption increases the binding of high-density lipoproteins (HDL) to paraoxonase 1 (PON1), thus increasing the catalytic activity of this enzyme. PON1 is an antioxidant arylesterase synthesized in the liver and transported in plasma in association with HDL. Decreased levels of PON1 are associated with higher levels of cholesterol. We determined the effects of PJ on body weight, cholesterol, and triacylglycerols through 5 months of supplementation. In addition, the effect of PJ on pon1 gene expression in the liver was also measured by RT-qPCR as well as the activity in serum by a semiautomated method using paraoxon as a substrate. CD-1 mice were either fed a control diet or were fed a high-fat diet 1.25% (wt/wt) cholesterol, 0.5% (wt/wt) sodium cholate, and 15% (wt/wt) saturated fat. 300 μL of PJ containing 0.35 mmol total polyphenols was administered by oral gavage to half of the high fat mice daily. The rest of the high fat mice and the control mice were administered with 300 μL of water. PJ-supplemented animals had significantly higher levels of expression of pon1 compared to the unsupplemented group. PJ-supplemented animals had twice the PON1 activity of the unsupplemented group. In addition, PJ-supplemented animals had the lowest body weight and significantly reduced cholesterol and triacylglycerol levels, although the tricylglycerol levels were not consistently decreased. These results suggest that PJ protects against the effects of a high-fat diet in body weight, and cholesterol levels.

  12. Induction of the UDP-Glucuronosyltransferase 1A1 during the Perinatal Period Can Cause Neurodevelopmental Toxicity.

    PubMed

    Hirashima, Rika; Michimae, Hirofumi; Takemoto, Hiroaki; Sasaki, Aya; Kobayashi, Yoshinori; Itoh, Tomoo; Tukey, Robert H; Fujiwara, Ryoichi

    2016-09-01

    Anticonvulsants can increase the risk of developing neurotoxicity in infants; however, the underlying mechanism has not been elucidated to date. Thyroxine [3,5,3',5'-l-tetraiodothyronine (T4)] plays crucial roles in the development of the central nervous system. In this study, we hypothesized that induction of UDP-glucuronosyltransferase 1A1 (UGT1A1)-an enzyme involved in the metabolism of T4-by anticonvulsants would reduce serum T4 levels and cause neurodevelopmental toxicity. Exposure of mice to phenytoin during both the prenatal and postnatal periods significantly induced UGT1A1 and decreased serum T4 levels on postnatal day 14. In the phenytoin-treated mice, the mRNA levels of synaptophysin and synapsin I in the hippocampus were lower than those in the control mice. The thickness of the external granule cell layer was greater in phenytoin-treated mice, indicating that induction of UGT1A1 during the perinatal period caused neurodevelopmental disorders. Exposure to phenytoin during only the postnatal period also caused these neurodevelopmental disorders. A T4 replacement attenuated the increase in thickness of the external granule cell layer, indicating that the reduced T4 was specifically associated with the phenytoin-induced neurodevelopmental disorder. In addition, these neurodevelopmental disorders were also found in the carbamazepine- and pregnenolone-16-α-carbonitrile-treated mice. Our study is the first to indicate that UGT1A1 can control neurodevelopment by regulating serum T4 levels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Induction of the UDP-Glucuronosyltransferase 1A1 during the Perinatal Period Can Cause Neurodevelopmental Toxicity

    PubMed Central

    Hirashima, Rika; Michimae, Hirofumi; Takemoto, Hiroaki; Sasaki, Aya; Kobayashi, Yoshinori; Itoh, Tomoo; Tukey, Robert H.

    2016-01-01

    Anticonvulsants can increase the risk of developing neurotoxicity in infants; however, the underlying mechanism has not been elucidated to date. Thyroxine [3,5,3′,5′-l-tetraiodothyronine (T4)] plays crucial roles in the development of the central nervous system. In this study, we hypothesized that induction of UDP-glucuronosyltransferase 1A1 (UGT1A1)—an enzyme involved in the metabolism of T4—by anticonvulsants would reduce serum T4 levels and cause neurodevelopmental toxicity. Exposure of mice to phenytoin during both the prenatal and postnatal periods significantly induced UGT1A1 and decreased serum T4 levels on postnatal day 14. In the phenytoin-treated mice, the mRNA levels of synaptophysin and synapsin I in the hippocampus were lower than those in the control mice. The thickness of the external granule cell layer was greater in phenytoin-treated mice, indicating that induction of UGT1A1 during the perinatal period caused neurodevelopmental disorders. Exposure to phenytoin during only the postnatal period also caused these neurodevelopmental disorders. A T4 replacement attenuated the increase in thickness of the external granule cell layer, indicating that the reduced T4 was specifically associated with the phenytoin-induced neurodevelopmental disorder. In addition, these neurodevelopmental disorders were also found in the carbamazepine- and pregnenolone-16-α-carbonitrile–treated mice. Our study is the first to indicate that UGT1A1 can control neurodevelopment by regulating serum T4 levels. PMID:27413119

  14. Identification of Human UDP-Glucuronosyltransferase 1A4 as the Major Isozyme Responsible for the Glucuronidation of 20(S)-Protopanaxadiol in Human Liver Microsomes

    PubMed Central

    Li, Jia; He, Chunyong; Fang, Lianxiang; Yang, Li; Wang, Zhengtao

    2016-01-01

    20(S)-protopanaxadiol (PPD), one of the representative aglycones of ginsenosides, has a broad spectrum of pharmacological activities. Although phase I metabolism has been investigated extensively, information regarding phase II metabolism of this compound remains to be elucidated. Here, a glucuronidated metabolite of PPD in human liver microsomes (HLMs) and rat liver microsomes (RLMs) was unambiguously identified as PPD-3-O-β-d-glucuronide by nuclear magnetic resonance spectroscopy and high resolution mass spectrometry. The chemical inhibition and recombinant human UDP-Glucuronosyltransferase (UGT) isoforms assay showed that the PPD glucuronidation was mainly catalyzed by UGT1A4 in HLM, whereas UGT1A3 showed weak catalytic activity. In conclusion, PPD-3-O-β-d-glucuronide was first identified as the principal glucuronidation metabolite of PPD in HLMs, which was catalyzed by UGT1A4. PMID:27005621

  15. UGT2B17 minor histocompatibility mismatch and clinical outcome after HLA-identical sibling donor stem cell transplantation.

    PubMed

    Santos, N; Rodríguez-Romanos, R; Nieto, J B; Buño, I; Vallejo, C; Jiménez-Velasco, A; Brunet, S; Buces, E; López-Jiménez, J; González, M; Ferrá, C; Sampol, A; de la Cámara, R; Martínez, C; Gallardo, D

    2016-01-01

    Minor histocompatibility Ags (mHags) have been implicated in the pathogenesis of GVHD after allogeneic hematopoietic stem cell transplantation (HSCT). Uridine diphospho-glucuronosyltransferase 2B17 (UGT2B17) gene deletion may act as a mHag and its association with acute GVHD (aGVHD) has been described. We retrospectively studied the clinical impact of a UGT2B17 mismatch in a cohort of 1127 patients receiving a HSCT from an HLA-identical sibling donor. UGT2B17 mismatch was present in 69 cases (6.1%). Incidence of severe aGVHD was higher in the UGT2B17 mismatched pairs (22.7% vs 14.6%), but this difference was not statistically significant (P: 0.098). We did not detect differences in chronic GVHD, overall survival, relapse-free survival, transplant-related mortality or relapse. Nevertheless, when we analyzed only those patients receiving grafts from a male donor (616 cases), aGVHD was significantly higher in the UGT2B17 mismatched group (25.1% vs 12.8%; P: 0.005) and this association was confirmed by the multivariate analysis (P: 0.043; hazard ratio: 2.16, 95% confidence interval: 1.03-4.57). Overall survival was worse for patients mismatched for UGT2B17 (P: 0.005). We conclude that UGT2B17 mismatch has a negative clinical impact in allogeneic HSCT from HLA-identical sibling donors only when a male donor is used. These results should be confirmed by other studies.

  16. Gut immune deficits in LEW.1AR1-iddm rats partially overcome by feeding a diabetes-protective diet.

    PubMed

    Crookshank, Jennifer A; Patrick, Christopher; Wang, Gen-Sheng; Noel, J Ariana; Scott, Fraser W

    2015-07-01

    The gut immune system and its modification by diet have been implicated in the pathogenesis of type 1 diabetes (T1D). Therefore, we investigated gut immune status in non-diabetes-prone LEW.1AR1 and diabetes-prone LEW.1AR1-iddm rats and evaluated the effect of a low antigen, hydrolysed casein (HC)-based diet on gut immunity and T1D. Rats were weaned onto a cereal-based or HC-based diet and monitored for T1D. Strain and dietary effects on immune homeostasis were assessed in non-diabetic rats (50-60 days old) and rats with recent-onset diabetes using flow cytometry and immunohistochemistry. Immune gene expression was analysed in mesenteric lymph nodes (MLN) and jejunum using quantitative RT-PCR and PCR arrays. T1D was prevented in LEW.1AR1-iddm rats by feeding an HC diet. Diabetic LEW.1AR1-iddm rats had fewer lymphoid tissue T cells compared with LEW.1AR1 rats. The percentage of CD4(+)  Foxp3(+) regulatory T (Treg) cells was decreased in pancreatic lymph nodes (PLN) of diabetic rats. The jejunum of 50-day LEW.1AR1-iddm rats contained fewer CD3(+) T cells, CD163(+) M2 macrophages and Foxp3(+) Treg cells. Ifng expression was increased in MLN and Foxp3 expression was decreased in the jejunum of LEW.1AR1-iddm rats; Ifng/Il4 was decreased in jejunum of LEW.1AR1-iddm rats fed HC. PCR arrays revealed decreased expression of M2-associated macrophage factors in 50-day LEW.1AR1-iddm rats. Wheat peptides stimulated T-cell proliferation and activation in MLN and PLN cells from diabetic LEW.1AR1-iddm rats. LEW.1AR1-iddm rats displayed gut immune cell deficits and decreased immunoregulatory capacity, which were partially corrected in animals fed a low antigen, protective HC diet consistent with other models of T1D. © 2015 John Wiley & Sons Ltd.

  17. Predicting Flavonoid UGT Regioselectivity

    PubMed Central

    Jackson, Rhydon; Knisley, Debra; McIntosh, Cecilia; Pfeiffer, Phillip

    2011-01-01

    Machine learning was applied to a challenging and biologically significant protein classification problem: the prediction of avonoid UGT acceptor regioselectivity from primary sequence. Novel indices characterizing graphical models of residues were proposed and found to be widely distributed among existing amino acid indices and to cluster residues appropriately. UGT subsequences biochemically linked to regioselectivity were modeled as sets of index sequences. Several learning techniques incorporating these UGT models were compared with classifications based on standard sequence alignment scores. These techniques included an application of time series distance functions to protein classification. Time series distances defined on the index sequences were used in nearest neighbor and support vector machine classifiers. Additionally, Bayesian neural network classifiers were applied to the index sequences. The experiments identified improvements over the nearest neighbor and support vector machine classifications relying on standard alignment similarity scores, as well as strong correlations between specific subsequences and regioselectivities. PMID:21747849

  18. Glucuronidation of Drugs and Drug-Induced Toxicity in Humanized UDP-Glucuronosyltransferase 1 Mice

    PubMed Central

    Kutsuno, Yuki; Itoh, Tomoo; Tukey, Robert H.

    2014-01-01

    UDP-glucuronosyltransferases (UGTs) are phase II drug-metabolizing enzymes that catalyze glucuronidation of various drugs. Although experimental rodents are used in preclinical studies to predict glucuronidation and toxicity of drugs in humans, species differences in glucuronidation and drug-induced toxicity have been reported. Humanized UGT1 mice in which the original Ugt1 locus was disrupted and replaced with the human UGT1 locus (hUGT1 mice) were recently developed. In this study, acyl-glucuronidations of etodolac, diclofenac, and ibuprofen in liver microsomes of hUGT1 mice were examined and compared with those of humans and regular mice. The kinetics of etodolac, diclofenac, and ibuprofen acyl-glucuronidation in hUGT1 mice were almost comparable to those in humans, rather than in mice. We further investigated the hepatotoxicity of ibuprofen in hUGT1 mice and regular mice by measuring serum alanine amino transferase (ALT) levels. Because ALT levels were increased at 6 hours after dosing in hUGT1 mice and at 24 hours after dosing in regular mice, the onset pattern of ibuprofen-induced liver toxicity in hUGT1 mice was different from that in regular mice. These data suggest that hUGT1 mice can be valuable tools for understanding glucuronidations of drugs and drug-induced toxicity in humans. PMID:24764149

  19. Herb–drug interaction prediction based on the high specific inhibition of andrographolide derivatives towards UDP-glucuronosyltransferase (UGT) 2B7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Hai-Ying, E-mail: cmu4h-mhy@126.com; Sun, Dong-Xue; Cao, Yun-Feng

    2014-05-15

    Herb–drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (K{sub i}) were determined for themore » compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsome (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behavior. In combination of inhibition parameters (K{sub i}) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb–drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7. - Highlights: • Specific inhibition of andrographolide derivatives towards UGT2B7. • Herb-drug interaction related withAndrographis paniculata. • Guidance for design of UGT2B7 specific inhibitors.« less

  20. Ectopic expression of UGT84A2 delayed flowering by indole-3-butyric acid-mediated transcriptional repression of ARF6 and ARF8 genes in Arabidopsis.

    PubMed

    Zhang, Gui-Zhi; Jin, Shang-Hui; Li, Pan; Jiang, Xiao-Yi; Li, Yan-Jie; Hou, Bing-Kai

    2017-12-01

    Ectopic expression of auxin glycosyltransferase UGT84A2 in Arabidopsis can delay flowering through increased indole-3-butyric acid and suppressed transcription of ARF6, ARF8 and flowering-related genes FT, SOC1, AP1 and LFY. Auxins are critical regulators for plant growth and developmental processes. Auxin homeostasis is thus an important issue for plant biology. Here, we identified an indole-3-butyric acid (IBA)-specific glycosyltransferase, UGT84A2, and characterized its role in Arabidopsis flowering development. UGT84A2 could catalyze the glycosylation of IBA, but not indole-3-acetic acid (IAA). UGT84A2 transcription expression was clearly induced by IBA. When ectopically expressing in Arabidopsis, UGT84A2 caused obvious delay in flowering. Correspondingly, the increase of IBA level, the down-regulation of AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8, and the down-regulation of flowering-related genes such as FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CO1(SOC1), APETALA1 (AP1), and LEAFY(LFY) were observed in transgenic plants. When exogenously applying IBA to wild-type plants, the late flowering phenotype, the down-regulation of ARF6, ARF8 and flowering-related genes recurred. We examined the arf6arf8 double mutants and found that the expression of flowering-related genes was also substantially decreased in these mutants. Together, our results suggest that glycosyltransferase UGT84A2 may be involved in flowering regulation through indole-3-butyric acid-mediated transcriptional repression of ARF6, ARF8 and downstream flowering pathway genes.

  1. Selective reduction in the expression of UGTs and SULTs, a novel mechanism by which piperine enhances the bioavailability of curcumin in rat.

    PubMed

    Zeng, Xiaohui; Cai, Dake; Zeng, Qiaohuang; Chen, Zhao; Zhong, Guoping; Zhuo, Juncheng; Gan, Haining; Huang, Xuejun; Zhao, Ziming; Yao, Nan; Huang, Dane; Zhang, Chengzhe; Sun, Dongmei; Chen, Yuxing

    2017-01-01

    Curcumin (CUR) is known to exert numerous health-promoting effects in pharmacological studies, but its low bioavailability hinders the development of curcumin as a feasible therapeutic agent. Piperine (PIP) has been reported to enhance the bioavailability of curcumin, but the underlying mechanism remains poorly understood. In an attempt to find the mechanism by which piperine enhances the bioavailability of curcumin, the dosage ratio (CUR: PIP) and pre-treatment with piperine were hypothesized as key factors for improving the bioavailability in this combination. Therefore, combining curcumin with piperine at various dose ratios (1:1 to 100:1) and pre-dosing with piperine (0.5-8 h prior to curcumin) were designed to investigate their contributions to the pharmacokinetic parameters of curcumin in rats and their effects on the expression of UGT and SULT isoforms. It was shown that the C max and AUC 0-t of curcumin were slightly increased by 1.29 and 1.67 fold at a ratio of 20:1, while curcumin exposure was enhanced significantly in all the piperine pre-treated rats (0.5-8 h), peaking at 6 h (a 6.09-fold and 5.97-fold increase in C max and AUC 0-t , p < 0.01), regardless of the unchanged t 1/2 and T max . Also observed was a time-dependent inhibition of the hepatic expression of UGT1A6, 1A8, SULT1A1, 1A3, and the colonic expression of UGT1A6 that occurred within 6 h of piperine pre-treatment but was reversed at 8 h, which correlated with the changes in curcumin exposure. Similarly, the inhibitory effect of piperine on most of the UGTs and SULTs are time-dependent in Caco-2 and HepG2 cells. It is concluded that piperine pre-treatment time-dependently improves the bioavailability of curcumin through the reversible and selective inhibition of UGTs and SULTs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Constitutive androstane receptor activation promotes bilirubin clearance in a murine model of alcoholic liver disease.

    PubMed

    Wang, Xiuyan; Zheng, Liyu; Wu, Jinming; Tang, Binbin; Zhang, Mengqin; Zhu, Debin; Lin, Xianfan

    2017-06-01

    Increased plasma levels of bilirubin have been reported in rat models and patients with alcoholic liver disease (ALD). The constitutive androstane receptor (CAR) is a known xenobiotic receptor, which induces the detoxification and transport of bilirubin. In the present study, the bilirubin transport regulatory mechanisms, and the role of CAR activation in hepatic and extrahepatic bilirubin clearance were investigated in a murine model of ALD. The mice were fed a Lieber-DeCarli ethanol diet or an isocaloric control diet for 4 weeks, followed by the administration of CAR agonists, 1,4-bis-[2‑(3,5-dichlorpyridyloxy)]benzene (TCPOBOP) and phenobarbital (PB), and their vehicles to examine the effect of the pharmacological activation of CAR on serum levels of bilirubin and on the bilirubin clearance pathway in ALD by serological survey, western blotting and reverse transcription‑quantitative polymerase chain reaction. The results showed that chronic ethanol ingestion impaired the nuclear translocation of CAR, which was accompanied by elevated serum levels of bilirubin, suppression of the expression of hepatic and renal organic anion transporting polypeptide (OATP) 1A1 and hepatic multidrug resistance‑associated protein 2 (MRP2), and induction of the expression of UDP-glucuronosyltransferase (UGT) 1A1. The activation of CAR by TCPOBOP and PB resulted in downregulation of the serum levels of bilirubin followed by selective upregulation of the expression levels of OATP1A1, OATP1A4, UGT1A1 and MRP2 in ALD. These results revealed the bilirubin transport regulatory mechanisms and highlighted the importance of CAR in modulating the bilirubin clearance pathway in the ALD mouse model.

  3. Ezetimibe, an NPC1L1 inhibitor, is a potent Nrf2 activator that protects mice from diet-induced nonalcoholic steatohepatitis.

    PubMed

    Lee, Da Hyun; Han, Dai Hoon; Nam, Ki Taek; Park, Jeong Su; Kim, Soo Hyun; Lee, Milim; Kim, Gyuri; Min, Byung Soh; Cha, Bong-Soo; Lee, Yu Seol; Sung, Su Haeng; Jeong, Haengdueng; Ji, Hye Won; Lee, Moon Joo; Lee, Jae Sung; Lee, Hui-Young; Chun, Yoomi; Kim, Joungmok; Komatsu, Masaaki; Lee, Yong-Ho; Bae, Soo Han

    2016-10-01

    Oxidative stress is important for the pathogenesis of nonalcoholic fatty liver disease (NAFLD), a chronic disease that ranges from hepatic steatosis to nonalcoholic steatohepatitis (NASH). The nuclear factor erythroid 2-related factor 2-Kelch-like ECH associated protein 1 (Nrf2-Keap1) pathway is essential for cytoprotection against oxidative stress. In this study, we found that oxidative stress or inflammatory biomarkers and TUNEL positive cells were markedly increased in NASH patients compared to normal or simple steatosis. In addition, we identified that the hepatic mRNA levels of Nrf2 target genes such as Nqo-1 and GSTA-1 were significantly increased in NASH patients. Ezetimibe, a drug approved by the Food and Drug Administration for the treatment of hypercholesterolemia, improves NAFLD and alleviates oxidative stress. However, the precise mechanism of its antioxidant function remains largely unknown. We now demonstrate that ezetimibe activates Nrf2-Keap1 pathway which was dependent of autophagy adaptor protein p62, without causing cytotoxicity. Ezetimibe activates AMP-activated protein kinase (AMPK), which in turn phosphorylates p62 (p-S351) via their direct interaction. Correspondingly, Ezetimibe protected liver cells from saturated fatty acid-induced apoptotic cell death through p62-dependent Nrf2 activation. Furthermore, its role as an Nrf2 activator was supported by methione- and choline- deficient (MCD) diet-induced NASH mouse model, showing that ezetimibe decreased the susceptibility of the liver to oxidative injury. These data demonstrate that the molecular mechanisms underlying ezetimibe's antioxidant role in the pathogenesis of NASH. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Ketosis may promote brain macroautophagy by activating Sirt1 and hypoxia-inducible factor-1.

    PubMed

    McCarty, Mark F; DiNicolantonio, James J; O'Keefe, James H

    2015-11-01

    Ketogenic diets are markedly neuroprotective, but the basis of this effect is still poorly understood. Recent studies demonstrate that ketone bodies increase neuronal levels of hypoxia-inducible factor-1α (HIF-1α), possibly owing to succinate-mediated inhibition of prolyl hydroxylase activity. Moreover, there is reason to suspect that ketones can activate Sirt1 in neurons, in part by increasing cytoplasmic and nuclear levels of Sirt1's obligate cofactor NAD(+). Another recent study has observed reduced activity of mTORC1 in the hippocampus of rats fed a ketogenic diet - an effect plausibly attributable to Sirt1 activation. Increased activities of HIF-1 and Sirt1, and a decrease in mTORC1 activity, could be expected to collaborate in the induction of neuronal macroautophagy. Considerable evidence points to moderate up-regulation of neuronal autophagy as a rational strategy for prevention of neurodegenerative disorders; elimination of damaged mitochondria that overproduce superoxide, as well as clearance of protein aggregates that mediate neurodegeneration, presumably contribute to this protection. Hence, autophagy may mediate some of the neuroprotective benefits of ketogenic diets. Brain-permeable agents which activate AMP-activated kinase, such as metformin and berberine, as well as the Sirt1 activator nicotinamide riboside, can also boost neuronal autophagy, and may have potential for amplifying the impact of ketogenesis on this process. Since it might not be practical for most people to adhere to ketogenic diets continuously, alternative strategies are needed to harness the brain-protective potential of ketone bodies. These may include ingestion of medium-chain triglycerides or coconut oil, intermittent ketogenic dieting, and possibly the use of supplements that promote hepatic ketogenesis - notably carnitine and hydroxycitrate - in conjunction with dietary regimens characterized by long daily episodes of fasting or carbohydrate avoidance. Copyright © 2015

  5. Fructose Rich Diet-Induced High Plasminogen Activator Inhibitor-1 (PAI-1) Production in the Adult Female Rat: Protective Effect of Progesterone

    PubMed Central

    Castrogiovanni, Daniel; Alzamendi, Ana; Ongaro, Luisina; Giovambattista, Andrés; Gaillard, Rolf C.; Spinedi, Eduardo

    2012-01-01

    The effect of progesterone (P4) on fructose rich diet (FRD) intake-induced metabolic, endocrine and parametrial adipose tissue (PMAT) dysfunctions was studied in the adult female rat. Sixty day-old rats were i.m. treated with oil alone (control, CT) or containing P4 (12 mg/kg). Rats ate Purina chow-diet ad libitum throughout the entire experiment and, between 100 and 120 days of age drank ad libitum tap water alone (normal diet; CT-ND and P4-ND) or containing fructose (10% w/v; CT-FRD and P4-FRD). At age 120 days, animals were subjected to a glucose tolerance test or decapitated. Plasma concentrations of various biomarkers and PMAT gene abundance were monitored. P4-ND (vs. CT-ND) rats showed elevated circulating levels of lipids. CT-FRD rats displayed high (vs. CT-ND) plasma concentrations of lipids, leptin, adiponectin and plasminogen activator inhibitor-1 (PAI-1). Lipidemia and adiponectinemia were high (vs. P4-ND) in P4-FRD rats. Although P4 failed to prevent FRD-induced hyperleptinemia, it was fully protective on FRD-enhanced plasma PAI-1 levels. PMAT leptin and adiponectin mRNAs were high in CT-FRD and P4-FRD rats. While FRD enhanced PMAT PAI-1 mRNA abundance in CT rats, this effect was absent in P4 rats. Our study supports that a preceding P4-enriched milieu prevented the enhanced prothrombotic risk induced by FRD-elicited high PAI-1 production. PMID:23016136

  6. Fructose rich diet-induced high plasminogen activator inhibitor-1 (PAI-1) production in the adult female rat: protective effect of progesterone.

    PubMed

    Castrogiovanni, Daniel; Alzamendi, Ana; Ongaro, Luisina; Giovambattista, Andrés; Gaillard, Rolf C; Spinedi, Eduardo

    2012-08-01

    The effect of progesterone (P4) on fructose rich diet (FRD) intake-induced metabolic, endocrine and parametrial adipose tissue (PMAT) dysfunctions was studied in the adult female rat. Sixty day-old rats were i.m. treated with oil alone (control, CT) or containing P4 (12 mg/kg). Rats ate Purina chow-diet ad libitum throughout the entire experiment and, between 100 and 120 days of age drank ad libitum tap water alone (normal diet; CT-ND and P4-ND) or containing fructose (10% w/v; CT-FRD and P4-FRD). At age 120 days, animals were subjected to a glucose tolerance test or decapitated. Plasma concentrations of various biomarkers and PMAT gene abundance were monitored. P4-ND (vs. CT-ND) rats showed elevated circulating levels of lipids. CT-FRD rats displayed high (vs. CT-ND) plasma concentrations of lipids, leptin, adiponectin and plasminogen activator inhibitor-1 (PAI-1). Lipidemia and adiponectinemia were high (vs. P4-ND) in P4-FRD rats. Although P4 failed to prevent FRD-induced hyperleptinemia, it was fully protective on FRD-enhanced plasma PAI-1 levels. PMAT leptin and adiponectin mRNAs were high in CT-FRD and P4-FRD rats. While FRD enhanced PMAT PAI-1 mRNA abundance in CT rats, this effect was absent in P4 rats. Our study supports that a preceding P4-enriched milieu prevented the enhanced prothrombotic risk induced by FRD-elicited high PAI-1 production.

  7. Evolution of a Major Drug Metabolizing Enzyme Defect in the Domestic Cat and Other Felidae: Phylogenetic Timing and the Role of Hypercarnivory

    PubMed Central

    Shrestha, Binu; Reed, J. Michael; Starks, Philip T.; Kaufman, Gretchen E.; Goldstone, Jared V.; Roelke, Melody E.; O'Brien, Stephen J.; Koepfli, Klaus-Peter; Frank, Laurence G.; Court, Michael H.

    2011-01-01

    The domestic cat (Felis catus) shows remarkable sensitivity to the adverse effects of phenolic drugs, including acetaminophen and aspirin, as well as structurally-related toxicants found in the diet and environment. This idiosyncrasy results from pseudogenization of the gene encoding UDP-glucuronosyltransferase (UGT) 1A6, the major species-conserved phenol detoxification enzyme. Here, we established the phylogenetic timing of disruptive UGT1A6 mutations and explored the hypothesis that gene inactivation in cats was enabled by minimal exposure to plant-derived toxicants. Fixation of the UGT1A6 pseudogene was estimated to have occurred between 35 and 11 million years ago with all extant Felidae having dysfunctional UGT1A6. Out of 22 additional taxa sampled, representative of most Carnivora families, only brown hyena (Parahyaena brunnea) and northern elephant seal (Mirounga angustirostris) showed inactivating UGT1A6 mutations. A comprehensive literature review of the natural diet of the sampled taxa indicated that all species with defective UGT1A6 were hypercarnivores (>70% dietary animal matter). Furthermore those species with UGT1A6 defects showed evidence for reduced amino acid constraint (increased dN/dS ratios approaching the neutral selection value of 1.0) as compared with species with intact UGT1A6. In contrast, there was no evidence for reduced amino acid constraint for these same species within UGT1A1, the gene encoding the enzyme responsible for detoxification of endogenously generated bilirubin. Our results provide the first evidence suggesting that diet may have played a permissive role in the devolution of a mammalian drug metabolizing enzyme. Further work is needed to establish whether these preliminary findings can be generalized to all Carnivora. PMID:21464924

  8. Inhibition of angiotensin-1-converting enzyme activity by two varieties of ginger (Zingiber officinale) in rats fed a high cholesterol diet.

    PubMed

    Akinyemi, Ayodele Jacob; Ademiluyi, Adedayo Oluwaseun; Oboh, Ganiyu

    2014-03-01

    Angiotensin-1-converting enzyme (ACE) inhibitors are widely used in the treatment of cardiovascular diseases. This study sought to investigate the inhibitory effect of two varieties of ginger (Zingiber officinale) commonly consumed in Nigeria on ACE activity in rats fed a high cholesterol diet. The inhibition of ACE activity of two varieties of ginger (Z. officinale) was investigated in a high cholesterol (2%) diet fed to rats for 3 days. Feeding high cholesterol diets to rats caused a significant (P<.05) increase in the ACE activity. However, there was a significant (P<.05) inhibition of ACE activity as a result of supplementation with the ginger varieties. Rats that were fed 4% white ginger had the greatest inhibitory effect as compared with a control diet. Furthermore, there was a significant (P<.05) increase in the plasma lipid profile with a concomitant increase in malondialdehyde (MDA) content in rat liver and heart tissues. However, supplementing the diet with red and white ginger (either 2% or 4%) caused a significant (P<.05) decrease in the plasma total cholesterol, triglyceride, very low density lipoprotein-cholesterol, and low-density lipoprotein-cholesterol levels, and in MDA content in the tissues. Conversely, supplementation caused a significant (P<.05) increase in plasma high-density lipoprotein-cholesterol level when compared with the control diet. Nevertheless, rats fed 4% red ginger had the greatest reduction as compared with control diet. In conclusion, both ginger varieties exhibited anti-hypercholesterolemic properties in a high cholesterol diet fed to rats. This activity of the gingers may be attributed to its ACE inhibitory activity. However, white ginger inhibited ACE better in a high cholesterol diet fed to rats than red ginger. Therefore, both gingers could serve as good functional foods/nutraceuticals in the management/treatment of hypertension and other cardiovascular diseases.

  9. Magnetic Flyer Facility Correlation and UGT Simulation

    DTIC Science & Technology

    1978-05-01

    AND UGT SIMULATION (U) Kaman Sciences Corporation L ~ P.O. Box 7463 I Colorado Springs, Colcerado 80933 ý4 May 1978DC Final Report CONTRACT No. DNA O01...selected underground test ( UGT ) environment on 3DQP; and, (2) To correlate the magnetically driven flyer plate facilities of VKSC with those of the...tailored to matcb the pressure vs. time anid total impulse measurements obtained on UGT events. This matching of experi- mental data required considerable

  10. Significantly decreased and more variable expression of major CYPs and UGTs in liver microsomes prepared from HBV-positive human hepatocellular carcinoma and matched pericarcinomatous tissues determined using an isotope label-free UPLC-MS/MS method.

    PubMed

    Yan, Tongmeng; Gao, Song; Peng, Xiaojuan; Shi, Jian; Xie, Cong; Li, Qiang; Lu, Linlin; Wang, Ying; Zhou, Fuyuan; Liu, Zhongqiu; Hu, Ming

    2015-03-01

    To determine the liver expression of cytochrome P450 (CYPs) and uridine 5'-diphosphate-glucuronosyltransferases (UGTs), the major phase I and II metabolism enzymes responsible for clearance and detoxification of drugs, xenobiotic and endogenous substances. A validated isotope label-free method was established for absolute and simultaneous quantification of 9 CYPs (1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D, 2E1 and 3A4) and 5 UGTs (1A1, 1A4, 1A6, 1A9 and 2B7) in human liver microsomes using LC-MS/MS. The LC-MS/MS method displayed excellent dynamic range (at least 250-fold) and high sensitivity for each of the signature peptides with acceptable recovery, accuracy and precision. The protein expression profile of CYP and UGT isoforms were then determined in match microsomes samples prepared from patients with HBV-positive human hepatocellular carcinoma (HCC). In the tumor microsomes, the average absolute amounts of 8 major CYP isoforms (except CYP2C19) and 3 UGT isoforms (UGT1A1, UGT1A4 and UGT2B7) were decreased significantly (p < 0.05), whereas UGT1A6 and UGT1A9 levels were unchanged (p > 0.05). In addition, among isoforms with altered expression, 6 of 8 CYP isoforms and all three UGT isoforms were much more variable in tumor microsomes. Lastly, the importance of CYP3A4 was greatly diminished whereas the importance of UGT1A6 was enhanced in tumor microsomes. The use of an isotope label-free absolute quantification method for the simultaneous determination of 9 CYPs and 5 UGTs in human liver microsomes reveals that expression levels of CYPs and UGTs in human liver are severely impact by HCC, which could impact drug metabolism, disposition and pharmacotherapy.

  11. Cooperation of NAD(P)H:quinone oxidoreductase 1 and UDP-glucuronosyltransferases reduces menadione cytotoxicity in HEK293 cells.

    PubMed

    Nishiyama, Takahito; Izawa, Tadashi; Usami, Mami; Ohnuma, Tomokazu; Ogura, Kenichiro; Hiratsuka, Akira

    2010-04-09

    Previous studies have shown that NAD(P)H:quinone oxidoreductase 1 (NQO1) plays an important role in the detoxification of menadione (2-methyl-1,4-naphthoquinone, also known as vitamin K3). However, menadiol (2-methyl-1,4-naphthalenediol) formed from menadione by NQO1-mediated reduction continues to be an unstable substance, which undergoes the reformation of menadione with concomitant formation of reactive oxygen species (ROS). Hence, we focused on the roles of phase II enzymes, with particular attention to UDP-glucuronosyltransferases (UGTs), in the detoxification process of menadione. In this study, we established an HEK293 cell line stably expressing NQO1 (HEK293/NQO1) and HEK293/NQO1 cell lines with doxycycline (DOX)-regulated expression of UGT1A6 (HEK293/NQO1/UGT1A6) and UGT1A10 (HEK293/NQO1/UGT1A10), and evaluated the role of NQO1 and UGTs against menadione-induced cytotoxicity. Our results differed from those of previous studies. HEK293/NQO1 was the most sensitive cell line to menadione cytotoxicity among cell lines established in this study. These phenomena were also observed in HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells in which the expression of UGT was suppressed by DOX treatment. On the contrary, HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells without DOX treatment were resistant to menadione-induced cytotoxicity. These results demonstrated that NQO1 is not a detoxification enzyme for menadione and that UGT-mediated glucuronidation of menadiol is the most important detoxification process. Copyright 2009 Elsevier Inc. All rights reserved.

  12. Reduced Susceptibility of DNA Methyltransferase 1 Hypomorphic (Dnmt1N/+) Mice to Hepatic Steatosis upon Feeding Liquid Alcohol Diet

    PubMed Central

    Yu, Lianbo; Zhang, Xiaoli; Majumder, Sarmila; Motiwala, Tasneem; Khan, Nuzhat; Belury, Martha; McClain, Craig; Jacob, Samson; Ghoshal, Kalpana

    2012-01-01

    Background Methylation at C-5 (5-mdC) of CpG base pairs, the most abundant epigenetic modification of DNA, is catalyzed by 3 essential DNA methyltransferases (Dnmt1, Dnmt3a and Dnmt3b). Aberrations in DNA methylation and Dnmts are linked to different diseases including cancer. However, their role in alcoholic liver disease (ALD) has not been elucidated. Methodology/Principal Findings Dnmt1 wild type (Dnmt1 +/+) and hypomorphic (Dnmt1 N/+) male mice that express reduced level of Dnmt1 were fed Lieber-DeCarli liquid diet containing ethanol for 6 weeks. Control mice were pair-fed calorie-matched alcohol-free liquid diet, and Dnmtase activity, 5-mdC content, gene expression profile and liver histopathology were evaluated. Ethanol feeding caused pronounced decrease in hepatic Dnmtase activity in Dnmt1 +/+ mice due to decrease in Dnmt1 and Dnmt3b protein levels and upregulation of miR-148 and miR-152 that target both Dnmt1 and Dnmt3b. Microarray and qPCR analysis showed that the genes involved in lipid, xenobiotic and glutathione metabolism, mitochondrial function and cell proliferation were dysregulated in the wild type mice fed alcohol. Surprisingly, Dnmt1 N/+ mice were less susceptible to alcoholic steatosis compared to Dnmt1 +/+ mice. Expression of several key genes involved in alcohol (Aldh3b1), lipid (Ppara, Lepr, Vldlr, Agpat9) and xenobiotic (Cyp39a1) metabolism, and oxidative stress (Mt-1, Fmo3) were significantly (P<0.05) altered in Dnmt1 N/+ mice relative to the wild type mice fed alcohol diet. However, CpG islands encompassing the promoter regions of Agpat9, Lepr, Mt1 and Ppara were methylation-free in both genotypes irrespective of the diet, suggesting that promoter methylation does not regulate their expression. Similarly, 5-mdC content of the liver genome, as measured by LC-MS/MS analysis, was not affected by alcohol diet in the wild type or hypomorphic mice. Conclusions/Significance Although feeding alcohol diet reduced Dnmtase activity, the loss of one

  13. Sodium appetite elicited by low-sodium diet is dependent on p44/42 mitogen-activated protein kinase (extracellular signal-regulated kinase 1/2) activation in the brain.

    PubMed

    Monteiro, L R N; Marangon, P B; Elias, L L K; Reis, L C; Antunes-Rodrigues, J; Mecawi, A S

    2017-09-01

    Sodium appetite is regulated by several signalling molecules, among which angiotensin II (Ang II) serves as a key driver of robust salt intake by binding to Ang II type 1 receptors (AT1R) in several regions in the brain. The activation of these receptors recruits the mitogen-activated protein kinase (MAPK) pathway, which has previously been linked to Ang II-induced increases in sodium appetite. Thus, we addressed the involvement of MAPK signalling in the induction of sodium appetite after 4 days of low-sodium diet consumption. An increase in extracellular signal-regulated kinase (ERK) phosphorylation in the laminae terminalis and mediobasal hypothalamus was observed after low-sodium diet consumption. This response was reduced by i.c.v. microinjection of an AT1R antagonist into the laminae terminalis but not the hypothalamus. This result indicates that low-sodium diet consumption activates the MAPK pathway via Ang II/AT1R signalling on the laminae terminalis. On the other hand, activation of the MAPK pathway in the mediobasal hypothalamus after low-sodium diet consumption appears to involve another extracellular mediator. We also evaluated whether a low-sodium diet could increase the sensitivity for Ang II in the brain and activate the MAPK pathway. However, i.c.v. injection of Ang II increased ERK phosphorylation on the laminae terminalis and mediobasal hypothalamus; this increase achieved a response magnitude similar to those observed in both the normal and low-sodium diet groups. These data indicate that low-sodium diet consumption for 4 days is insufficient to change the ERK phosphorylation response to Ang II in the brain. To investigate whether the MAPK pathway is involved in sodium appetite after low-sodium diet consumption, we performed i.c.v. microinjections of a MAPK pathway inhibitor (PD98059). PD98059 inhibited both saline and water intake after low-sodium diet consumption. Thus, the MAPK pathway is involved in promoting the sodium appetite after low

  14. Glutathione S-transferase M1 and T1 gene polymorphisms with consumption of high fruit-juice and vegetable diet affect antioxidant capacity in healthy adults.

    PubMed

    Yuan, Linhong; Zhang, Ling; Ma, Weiwei; Zhou, Xin; Ji, Jian; Li, Nan; Xiao, Rong

    2013-01-01

    To our knowledge, no data have yet shown the combined effects of GSTM1/GSTT1 gene polymorphisms with high consumption of a fruit and vegetable diet on the body's antioxidant capacity. A 2-wk dietary intervention in healthy participants was conducted to test the hypothesis that the antioxidant biomarkers in individuals with different glutathione-S-transferases (GST) genotypes will be different in response to a high fruit-juice and vegetable diet. In our study, 24 healthy volunteers with different GST genotypes (12 GSTM1+/GSTT1+ and 12 GSTM1-/GSTT1- participants) consumed a controlled diet high in fruit-juice and vegetables for 2 wk. Blood and first-void urine specimens were obtained at baseline, 1-wk, and 2-wk intervals. The antioxidant capacity-related biomarkers in blood and urine were observed and recorded at the scheduled times. Erythrocyte GST and glutathione reductase (GR) activities response to a high fruit-juice and vegetable diet are GST genotype-dependent. Two weeks on the high fruit-juice and vegetable diet increased GST and GR activities in the GSTM1+/GSTT1+ group (P < 0.05 compared with baseline or GSTM1-/GSTT1- group), although no effects were observed on GST and GR activities in GSTM1-/GSTT1- participants. Dietary intervention increased total antioxidant capacity and decreased plasma malondialdehyde content in all participants (P < 0.05 compared with baseline), whereas GSTM1+/GSTT1+ participants respond more quickly to a high fruit-juice and vegetable diet than GSTM1-/GSTT1- participants. The diet intervention was effective in enhancing glutathione peroxidase and catalase activities in all participants (P < 0.05 compared with baseline), although there was no influence on erythrocyte superoxide dismutase activity (P > 0.05). The effects of a diet rich in fruit-juice and vegetables on antioxidant capacity were dependent on GSTM1/GSTT1 genotypes. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Green cocoons in silkworm Bombyx mori resulting from the quercetin 5-O-glucosyltransferase of UGT86, is an evolved response to dietary toxins.

    PubMed

    Xu, Xu; Wang, Meng; Wang, Ying; Sima, Yanghu; Zhang, Dayan; Li, Juan; Yin, Weiming; Xu, Shiqing

    2013-05-01

    The glycosylation of UDP-glucosyltransferases (UGTs) is of great importance in the control and elimination of both endogenous and exogenous toxins. Bm-UGT10286 (UGT86) is the sole provider of UGT activity against the 5-O position of quercetin and directly influences the formation of green pigment in the Bombyx cocoon. To evaluate whether cocoon coloration evolved for mimetic purposes, we concentrated on the expression pattern of Ugt86 and the activities of the enzyme substrates. The expression of Ugt86 was not only detected in the cocoon absorbing and accumulating tissues such as the digestive tube and silk glands, but also in quantity in the detoxification tissues of the malpighian tubes and fat body, as well as in the gonads. As in the green cocoon strains, Ugt86 was clearly expressed in the yellow and white cocoon strains. In vitro, the fusion protein of UGT86 showed quercetin metabolic activity. Nevertheless, Ugt86 expression of 5th instar larvae was not up-regulated in the silk gland by exogenous quercetin. However, it was significantly up-regulated in the digestive tube and gonads (P < 0.05). A similar result was observed in experiments where larvae were exposed to rutin, an insect resistance inducer and growth inhibitor typically found in plants, and to 20-hydroxylecdysone (20E), an insect endocrine and plant source hormone. On the contrary, up-regulated Ugt86 expression was almost nil in larvae exposed to juvenile hormone III (P > 0.05). The results of HPLC revealed that a new substance was formed by mixing 20E with the recombinant UGT86 protein in vitro, indicating that the effect of Ugt86 on 20E was similar to that on exogenous quercetin derived from plant food, and that the effect probably initiated the detoxification reaction against rutin. The conclusion is that the reaction of Ugt86 on the silkworm cocoon pigment quercetin is not the result of active mimetic ecogenesis, but derives from the detoxification of UGTs.

  16. Characterization of Panax ginseng UDP-Glycosyltransferases Catalyzing Protopanaxatriol and Biosyntheses of Bioactive Ginsenosides F1 and Rh1 in Metabolically Engineered Yeasts.

    PubMed

    Wei, Wei; Wang, Pingping; Wei, Yongjun; Liu, Qunfang; Yang, Chengshuai; Zhao, Guoping; Yue, Jianmin; Yan, Xing; Zhou, Zhihua

    2015-09-01

    Ginsenosides, the main pharmacologically active natural compounds in ginseng (Panax ginseng), are mostly the glycosylated products of protopanaxadiol (PPD) and protopanaxatriol (PPT). No uridine diphosphate glycosyltransferase (UGT), which catalyzes PPT to produce PPT-type ginsenosides, has yet been reported. Here, we show that UGTPg1, which has been demonstrated to regio-specifically glycosylate the C20-OH of PPD, also specifically glycosylates the C20-OH of PPT to produce bioactive ginsenoside F1. We report the characterization of four novel UGT genes isolated from P. ginseng, sharing high deduced amino acid identity (>84%) with UGTPg1. We demonstrate that UGTPg100 specifically glycosylates the C6-OH of PPT to produce bioactive ginsenoside Rh1, and UGTPg101 catalyzes PPT to produce F1, followed by the generation of ginsenoside Rg1 from F1. However, UGTPg102 and UGTPg103 were found to have no detectable activity on PPT. Through structural modeling and site-directed mutagenesis, we identified several key amino acids of these UGTs that may play important roles in determining their activities and substrate regio-specificities. Moreover, we constructed yeast recombinants to biosynthesize F1 and Rh1 by introducing the genetically engineered PPT-producing pathway and UGTPg1 or UGTPg100. Our study reveals the possible biosynthetic pathways of PPT-type ginsenosides in Panax plants, and provides a sound manufacturing approach for bioactive PPT-type ginsenosides in yeast via synthetic biology strategies. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  17. Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis.

    PubMed

    Dai, Jianye; Liang, Kai; Zhao, Shan; Jia, Wentong; Liu, Yuan; Wu, Hongkun; Lv, Jia; Cao, Chen; Chen, Tao; Zhuang, Shentian; Hou, Xiaomeng; Zhou, Shijie; Zhang, Xiannian; Chen, Xiao-Wei; Huang, Yanyi; Xiao, Rui-Ping; Wang, Yan-Ling; Luo, Tuoping; Xiao, Junyu; Wang, Chu

    2018-06-11

    Obesity and related metabolic diseases are becoming worldwide epidemics that lead to increased death rates and heavy health care costs. Effective treatment options have not been found yet. Here, based on the observation that baicalin, a flavonoid from the herbal medicine Scutellaria baicalensis , has unique antisteatosis activity, we performed quantitative chemoproteomic profiling and identified carnitine palmitoyltransferase 1 (CPT1), the controlling enzyme for fatty acid oxidation, as the key target of baicalin. The flavonoid directly activated hepatic CPT1 with isoform selectivity to accelerate the lipid influx into mitochondria for oxidation. Chronic treatment of baicalin ameliorated diet-induced obesity (DIO) and hepatic steatosis and led to systemic improvement of other metabolic disorders. Disruption of the predicted binding site of baicalin on CPT1 completely abolished the beneficial effect of the flavonoid. Our discovery of baicalin as an allosteric CPT1 activator opens new opportunities for pharmacological treatment of DIO and associated sequelae.

  18. Mycophenolic acid AUC in Thai kidney transplant recipients receiving low dose mycophenolate and its association with UGT2B7 polymorphisms.

    PubMed

    Pithukpakorn, Manop; Tiwawanwong, Tiwat; Lalerd, Yupaporn; Assawamakin, Anunchai; Premasathian, Nalinee; Tasanarong, Adis; Thongnoppakhun, Wanna; Vongwiwatana, Attapong

    2014-01-01

    Despite use of a lower mycophenolate dose in Thai kidney transplant patients, acceptable graft and patient outcomes can be achieved. We therefore examined the pharmacokinetics of mycophenolic acid (MPA) by area under the curve (AUC) and investigated genetic contribution in mycophenolate metabolism in this population. Kidney transplant recipients with stable graft function who were receiving mycophenolate mofetil 1,000 mg/d in combination with either cyclosporine or tacrolimus, and prednisolone were studied. The MPA concentration was measured by fluorescence polarization immunoassay (FPIA), at predose and 1, 1.5, 2, 4, 6, 8, 10, and 12 hours after dosing. Genetic polymorphisms in UGT1A8, UGT1A9, and UGT2B7 were examined by denaturing high-performance liquid chromatography (DHPLC)-based single-base extension (SBE) analysis. A total 138 patients were included in study. The mean AUC was 39.49 mg-h/L (28.39-89.58 mg-h/L), which was in the therapeutic range. The correlation between the predose MPA concentration and AUC was poor. The mean AUC in the tacrolimus group was higher than that in the cyclosporine group. Polymorphisms in UGT2B7 showed significant association with AUC. Most of our patients with reduced mycophenolate dose had the AUC within the therapeutic range. Genetic polymorphisms in UGT2B7 may play a role in MPA metabolism in Thai kidney transplant patients.

  19. Traditional Herbal Formulas to as Treatments for Musculoskeletal Disorders: Their Inhibitory Effects on the Activities of Human Microsomal Cytochrome P450s and UDP-glucuronosyltransferases

    PubMed Central

    Jin, Seong Eun; Seo, Chang-Seob; Shin, Hyeun-Kyoo; Ha, Hyekyung

    2016-01-01

    Objective: The aim of this study was to assess the influence of traditional herbal formulas, including Bangpungtongseong-san (BPTSS; Fangfengtongsheng-san, Bofu-tsusho-san), Ojeok-san (OJS; Wuji-san, Goshaku-san), and Oyaksungi-san (OYSGS; Wuyaoshungi-san, Uyakujyunki-san), on the activities of the human cytochrome P450s (CYP450s) and UDP-glucuronosyltransferases (UGTs), which are drug-metabolizing enzymes. Materials and Methods: The activities of the major human CYP450 isozymes (CYP1A2, CYP3A4, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP2E1) and UGTs (UGT1A1, UGT1A4, and UGT2B7) were investigated using in vitro fluorescence-based and luminescence-based enzyme assays, respectively. The inhibitory effects of the herbal formulas were characterized, and their IC50 values were determined. Results: BPTSS inhibited the activities of CYP1A2, CYP2C19, CYP2E1, and UGT1A1 while it exerted relatively weak inhibition on CYP2B6, CYP2C9, CYP2D6, and CYP3A4. BPTSS also negligibly inhibited the activities of UGT1A4 and UGT2B7, with IC50 values in the excess of 1000 μg/mL. OJS and OYSGS inhibited the activity of CYP2D6, whereas they exhibited no inhibition of the UGT1A4 activity at doses <1000 μg/mL. In addition, OJS inhibited the CYP1A2 activity but exerted a relatively weak inhibition on the activities of CYP2C9, CYP2C19, CYP2E1, and CYP3A4. Conversely, OJS negligibly inhibited the activities of CYP2B6, UGT1A1, and UGT2B7 with IC50 values in excess of 1000 μg/mL. OYSGS weakly inhibited the activities of CYP1A2, CYP2C19, CYP2E1, CYP3A4, and UGT1A1, with a negligible inhibition on the activities of CYP2B6, CYP2C9, and UGT2B7, with IC50 values in excess of 1000 μg/mL. Conclusions: These results provide information regarding the safety and effectiveness of BPTSS, OJS, and OYSGS when combined with conventional drugs. SUMMARY Bangpungtongseong-san inhibited the activities of human microsomal CYP1A2, CYP2C19, CYP2E1, and UGT1A1, with a negligibly inhibition on the activities of CYP2B6

  20. Bach1 gene ablation reduces steatohepatitis in mouse MCD diet model.

    PubMed

    Inoue, Motoki; Tazuma, Susumu; Kanno, Keishi; Hyogo, Hideyuki; Igarashi, Kazuhiko; Chayama, Kazuaki

    2011-03-01

    Bach1 is a transcriptional repressor of heme oxygenase-1 (HO-1, a.k.a. HSP-32), which is an inducible enzyme and has anti-oxidation/anti-inflammatory properties shown in various models of organ injuries. Since oxidative stress plays a pivotal role in the pathogenesis of nonalcoholic steatohepatitis (NASH), HO-1 induction would be expected to prevent the development of NASH. In this study, we investigated the influence of Bach1 ablation in mice on the progression of NASH in methionine-choline deficient (MCD) diet model. Bach1 ablation resulted in significant induction of HO-1 mRNA and its activity in the liver. When fed MCD diet, Bach1(-/-) mice exhibited negligible hepatic steatosis compared to pronounced steatohepatitis in wild type mice with 6-fold increase in hepatic triglyceride content. Whereas feeding of MCD diet decreased mRNA expressions of peroxisome proliferator-activated receptor (PPAR) α and microsomal triglyceride transfer protein (MTP) in wild type mice, there were no change in Bach1(-/-) mice. In addition, hepatic concentration of malondialdehyde (MDA), a biomarker for oxidative stress as well as plasma alanine aminotransferase (ALT) was significantly lower in Bach1(-/-) mice. These findings suggest that Bach1 ablation exerts hepatoprotective effect against steatohepatitis presumably via HO-1 induction and may be a potential therapeutic target.

  1. Beta-arrestin-1 protein represses diet-induced obesity.

    PubMed

    Zhuang, Le-nan; Hu, Wen-xiang; Zhang, Ming-liang; Xin, Shun-mei; Jia, Wei-ping; Zhao, Jian; Pei, Gang

    2011-08-12

    Diet-related obesity is a major metabolic disorder. Excessive fat mass is associated with type 2 diabetes, hepatic steatosis, and arteriosclerosis. Dysregulation of lipid metabolism and adipose tissue function contributes to diet-induced obesity. Here, we report that β-arrestin-1 knock-out mice are susceptible to diet-induced obesity. Knock-out of the gene encoding β-arrestin-1 caused increased fat mass accumulation and decreased whole-body insulin sensitivity in mice fed a high-fat diet. In β-arrestin-1 knock-out mice, we observed disrupted food intake and energy expenditure and increased macrophage infiltration in white adipose tissue. At the molecular level, β-arrestin-1 deficiency affected the expression of many lipid metabolic genes and inflammatory genes in adipose tissue. Consistently, transgenic overexpression of β-arrestin-1 repressed diet-induced obesity and improved glucose tolerance and systemic insulin sensitivity. Thus, our findings reveal that β-arrestin-1 plays a role in metabolism regulation.

  2. A comparison of the ability of a 4:1 ketogenic diet and a 6.3:1 ketogenic diet to elevate seizure thresholds in adult and young rats.

    PubMed

    Nylen, Kirk; Likhodii, Sergei; Abdelmalik, Peter A; Clarke, Jasper; Burnham, W McIntyre

    2005-08-01

    The pentylenetetrazol (PTZ) infusion test was used to compare seizure thresholds in adult and young rats fed either a 4:1 ketogenic diet (KD) or a 6.3:1 KD. We hypothesized that both KDs would significantly elevate seizure thresholds and that the 4:1 KD would serve as a better model of the KD used clinically. Ninety adult rats and 75 young rats were placed on one of five experimental diets: (a) a 4:1 KD, (b) a control diet balanced to the 4:1 KD, (c) a 6.3:1 KD, (d) a standard control diet, or (e) an ad libitum standard control diet. All subjects were seizure tested by using the PTZ infusion test. Blood glucose and beta-hydroxybutyrate (beta-OHB) levels were measured. Neither KD elevated absolute "latencies to seizure" in young or adult rats. Similarly, neither KD elevated "threshold doses" in adult rats. In young rats, the 6.3:1 KD, but not the 4:1 KD, significantly elevated threshold doses. The 6.3:1 KD group showed poorer weight gain than the 4:1 KD group when compared with respective controls. The most dramatic discrepancies were seen in young rats. "Threshold doses" and "latency to seizure" data provided conflicting measures of seizure threshold. This was likely due to the inflation of threshold doses calculated by using the much smaller body weights found in the 6.3:1 KD group. Ultimately, the PTZ infusion test in rats may not be a good preparation to model the anticonvulsant effects of the KD seen clinically, especially when dietary treatments lead to significantly mismatched body weights between the groups.

  3. Dissociation between PGC-1alpha and GLUT-4 expression in skeletal muscle of rats fed a high-fat diet.

    PubMed

    Higashida, Kazuhiko; Higuchi, Mitsuru; Terada, Shin

    2009-12-01

    It has recently been reported that a 4-wk high-fat diet gradually increases skeletal muscle peroxisome proliferator activated receptor (PPAR) gamma coactivator-1alpha (PGC-1alpha) protein content, which has been suggested to regulate GLUT-4 gene transcription. However, it has not been reported that a high-fat diet enhances GLUT-4 mRNA expression and protein content in skeletal muscle, suggesting that an increase in PGC-1alpha protein content is not sufficient to induce muscle GLUT-4 biogenesis in a high-fat fed animal. Therefore, we first evaluated the relationship between PGC-1alpha and GLUT-4 expression in skeletal muscle of rats fed a high-fat diet for 4 wk. The PGC-1alpha protein content in rat epitrochlearis muscle significantly increased by twofold after the 4-wk high-fat diet feeding. However, the high-fat diet had no effect on GLUT-4 protein content and induced a 30% decrease in GLUT-4 mRNA expression in rat skeletal muscle (p<0.05). To clarify the mechanism by which a high-fat diet downregulates GLUT-4 mRNA expression, we next examined the effect of PPARdelta activation, which is known to occur in response to a high-fat diet, on GLUT-4 mRNA expression in L6 myotubes. Incubation with 500 nM GW501516 (PPARdelta activator) for 24 h significantly decreased GLUT-4 mRNA in L6 myotubes. Taken together, these findings suggest that a high-fat diet downregulates GLUT-4 mRNA, possibly through the activation of PPARdelta, despite an increase in PGC-1alpha protein content in rat skeletal muscle, and that a posttranscriptional regulatory mechanism maintains GLUT-4 protein content in skeletal muscle of rats fed a high-fat diet.

  4. Biotransformation of Bisphenol AF to Its Major Glucuronide Metabolite Reduces Estrogenic Activity

    PubMed Central

    Yin, Jie; Zhang, Jing; Feng, Yixing; Shao, Bing

    2013-01-01

    Bisphenol AF (BPAF), an endocrine disrupting chemical, can induce estrogenic activity through binding to estrogen receptor (ER). However, the metabolism of BPAF in vivo and the estrogenic activity of its metabolites remain unknown. In the present study, we identified four metabolites including BPAF diglucuronide, BPAF glucuronide (BPAF-G), BPAF glucuronide dehydrated and BPAF sulfate in the urine of Sprague-Dawley (SD) rats. BPAF-G was further characterized by nuclear magnetic resonance (NMR). After treatment with a single dose of BPAF, BPAF was metabolized rapidly to BPAF-G, as detected in the plasma of SD rats. Biotransformation of BPAF to BPAF-G was confirmed with human liver microsomes (HLM), and Vmax of glucuronidation for HLM was 11.6 nmol/min/mg. We also found that BPAF glucuronidation could be mediated through several human recombinant UDP-glucuronosyltransferases (UGTs) including UGT1A1, UGT1A3, UGT1A8, UGT1A9, UGT2B4, UGT2B7, UGT2B15 and UGT2B17, among which UGT2B7 showed the highest efficiency of glucuronidation. To explain the biological function of BPAF biotransformation, the estrogenic activities of BPAF and BPAF-G were evaluated in ER-positive breast cancer T47D and MCF7 cells. BPAF significantly stimulates ER-regulated gene expression and cell proliferation at the dose of 100 nM and 1 μM in breast cancer cells. However, BPAF-G did not show any induction of estrogenic activity at the same dosages, implying that formation of BPAF-G is a potential host defense mechanism against BPAF. Based on our study, biotransformation of BPAF to BPAF-G can eliminate BPAF-induced estrogenic activity, which is therefore considered as reducing the potential threat to human beings. PMID:24349450

  5. Analysis of UGT1A1*28 genotype and SN-38 pharmacokinetics for irinotecan-based chemotherapy in patients with advanced colorectal cancer: results from a multicenter, retrospective study in Shanghai.

    PubMed

    Cai, Xun; Cao, Weiguo; Ding, Honghua; Liu, Tianshu; Zhou, Xinli; Wang, Mei; Zhong, Ming; Zhao, Ziyi; Xu, Qing; Wang, Liwei

    2013-09-01

    The UGT1A1*28 polymorphism, although closely linked with CPT-11-related adverse effects, cannot be used alone to guide individualized treatment decisions. However, CPT-11 dosage can be adjusted according to measured SN-38 pharmacokinetics. Our study is designed to investigate whether there is a relationship between SN-38 peak or valley concentrations and efficacy or adverse effects of CPT-11-based chemotherapy. We retrospectively studied 98 patients treated with advanced colorectal cancer in various UGT1A1*28 genotype groups (mainly (TA)6/(TA)6 and (TA)6/(TA)7 genotypes) treated with CPT-11 as first-line chemotherapy in Shanghai. One hundred and sixty-four advanced colorectal cancer patients were enrolled. To understand differences in genotype expression, the frequency of UGT1A1*28 thymine-adenine (TA) repeats in TATA box arrangement was assessed by PCR with genomic DNA extracted from peripheral blood. For ninety-eight cases with the (TA)6/(TA)6 and (TA)6/(TA)7 genotypes treated with CPT-11 as first-line chemotherapy, the plasma concentration of SN-38 was detected by HPLC 1.5 and 49 h after CPT-11 infusion. Efficacy and adverse effects were observed subsequently, and the relationship between SN-38 plasma concentration and efficacy or adverse effects within genotype groups, as well as differences in efficacy and adverse effects between (TA)6/(TA)6 and (TA)6/(TA)7 genotypes were analyzed statistically. One hundred and fourteen patients (69.51 %) were identified with the (TA)6/(TA)6 genotype, forty-eight patients (29.27 %) with the (TA)6/(TA)7 genotype, and two patients (1.22 %) with the (TA)7/(TA)7 genotype. The average peak and valley concentrations of SN-38 after CPT-11 infusion and plasma bilirubin average levels before and after CPT-11 treatment in the (TA)6/(TA)7 genotype group were all higher than those in (TA)6/(TA)6 group, and the difference was statistically significant (p = 0.00). Stepwise regression analysis showed that SN-38 peak and valley

  6. Severe Hypertriglyceridemia in Glut1D on Ketogenic Diet.

    PubMed

    Klepper, Joerg; Leiendecker, Baerbel; Heussinger, Nicole; Lausch, Ekkehart; Bosch, Friedrich

    2016-04-01

    High-fat ketogenic diets are the only treatment available for Glut1 deficiency (Glut1D). Here, we describe an 8-year-old girl with classical Glut1D responsive to a 3:1 ketogenic diet and ethosuximide. After 3 years on the diet a gradual increase of blood lipids was followed by rapid, severe asymptomatic hypertriglyceridemia (1,910 mg/dL). Serum lipid apheresis was required to determine liver, renal, and pancreatic function. A combination of medium chain triglyceride-oil and a reduction of the ketogenic diet to 1:1 ratio normalized triglyceride levels within days but triggered severe myoclonic seizures requiring comedication with sultiam. Severe hypertriglyceridemia in children with Glut1D on ketogenic diets may be underdiagnosed and harmful. In contrast to congenital hypertriglyceridemias, children with Glut1D may be treated effectively by dietary adjustments alone. Georg Thieme Verlag KG Stuttgart · New York.

  7. Evidence of changes in alpha-1/AT1 receptor function generated by diet-induced obesity.

    PubMed

    Juarez, Esther; Tufiño, Cecilia; Querejeta, Enrique; Bracho-Valdes, Ismael; Bobadilla-Lugo, Rosa A

    2017-11-01

    To study whether hypercaloric diet-induced obesity deteriorates vascular contractility of rat aorta through functional changes in α 1 adrenergic and/or AT1 Angiotensin II receptors. Angiotensin II- or phenylephrine-induced contraction was tested on isolated aorta rings with and without endothelium from female Wistar rats fed for 7 weeks with hypercaloric diet or standard diet. Vascular expression of Angiotensin II Receptor type 1 (AT1R), Angiotensin II Receptor type 2 (AT2R), Cyclooxygenase-1 (COX-1), Cyclooxygenase-2 (COX-2), inducible Nitric Oxide Synthase (iNOS) and endothelial Nitric Oxide Synthase (eNOS), as well as blood pressure, glucose, insulin and angiotensin II blood levels were measured. Diet-induced obesity did not significantly change agonist-induced contractions (Emax and pD 2 hypercaloric diet vs standard diet n.s.d.) of both intact (e+) or endothelium free (e-) vessels but significantly decrease both phenylephrine and angiotensin II contraction (Emax p < 0.01 hypercaloric diet vs standard diet) in the presence of both prazosin and losartan but only in endothelium-intact vessels. Diet-induced obesity did not change angiotensin II AT1, AT2 receptor proteins expression but reduced COX-1 and NOS2 ( p < 0.05 vs standard diet). Seven-week hypercaloric diet-induced obesity produces alterations in vascular adrenergic and angiotensin II receptor dynamics that suggest an endothelium-dependent adrenergic/angiotensin II crosstalk. These changes reflect early-stage vascular responses to obesity.

  8. Grape-seed procyanidins prevent the cafeteria-diet-induced decrease of glucagon-like peptide-1 production.

    PubMed

    González-Abuín, Noemi; Martínez-Micaelo, Neus; Blay, Mayte; Ardévol, Anna; Pinent, Montserrat

    2014-02-05

    Grape-seed procyanidin extract (GSPE) has been reported to improve insulin resistance in cafeteria rats. Because glucagon-like peptide-1 (GLP-1) is involved in glucose homeostasis, the preventive effects of GSPE on GLP-1 production, secretion, and elimination were evaluated in a model of diet-induced insulin resistance. Rats were fed a cafeteria diet for 12 weeks, and 25 mg of GSPE/kg of body weight was administered concomitantly. Vehicle-treated cafeteria-fed rats and chow-fed rats were used as controls. The cafeteria diet decreased active GLP-1 plasma levels, which is attributed to a decreased intestinal GLP-1 production, linked to reduced colonic enteroendocrine cell populations. Such effects were prevented by GSPE. In the same context, GSPE avoided the decrease on intestinal dipeptidyl-peptidase 4 (DPP4) activity and modulated the gene expression of GLP-1 and its receptor in the hypothalamus. In conclusion, the preventive treatment with GSPE abrogates the effects of the cafeteria diet on intestinal GLP-1 production and DPP4 activity.

  9. Quantitative Characterization of Major Hepatic UDP-Glucuronosyltransferase Enzymes in Human Liver Microsomes: Comparison of Two Proteomic Methods and Correlation with Catalytic Activity.

    PubMed

    Achour, Brahim; Dantonio, Alyssa; Niosi, Mark; Novak, Jonathan J; Fallon, John K; Barber, Jill; Smith, Philip C; Rostami-Hodjegan, Amin; Goosen, Theunis C

    2017-10-01

    Quantitative characterization of UDP-glucuronosyltransferase (UGT) enzymes is valuable in glucuronidation reaction phenotyping, predicting metabolic clearance and drug-drug interactions using extrapolation exercises based on pharmacokinetic modeling. Different quantitative proteomic workflows have been employed to quantify UGT enzymes in various systems, with reports indicating large variability in expression, which cannot be explained by interindividual variability alone. To evaluate the effect of methodological differences on end-point UGT abundance quantification, eight UGT enzymes were quantified in 24 matched liver microsomal samples by two laboratories using stable isotope-labeled (SIL) peptides or quantitative concatemer (QconCAT) standard, and measurements were assessed against catalytic activity in seven enzymes ( n = 59). There was little agreement between individual abundance levels reported by the two methods; only UGT1A1 showed strong correlation [Spearman rank order correlation (Rs) = 0.73, P < 0.0001; R 2 = 0.30; n = 24]. SIL-based abundance measurements correlated well with enzyme activities, with correlations ranging from moderate for UGTs 1A6, 1A9, and 2B15 (Rs = 0.52-0.59, P < 0.0001; R 2 = 0.34-0.58; n = 59) to strong correlations for UGTs 1A1, 1A3, 1A4, and 2B7 (Rs = 0.79-0.90, P < 0.0001; R 2 = 0.69-0.79). QconCAT-based data revealed generally poor correlation with activity, whereas moderate correlations were shown for UGTs 1A1, 1A3, and 2B7. Spurious abundance-activity correlations were identified in the cases of UGT1A4/2B4 and UGT2B7/2B15, which could be explained by correlations of protein expression between these enzymes. Consistent correlation of UGT abundance with catalytic activity, demonstrated by the SIL-based dataset, suggests that quantitative proteomic data should be validated against catalytic activity whenever possible. In addition, metabolic reaction phenotyping exercises should consider spurious abundance-activity correlations

  10. The -675 4G/5G polymorphism at the Plasminogen Activator Inhibitor 1 (PAI-1) gene modulates plasma Plasminogen Activator Inhibitor 1 concentrations in response to dietary fat consumption.

    PubMed

    Pérez-Martínez, P; Adarraga-Cansino, M D; Fernández de la Puebla, R A; Blanco-Molina, A; Delgado-Lista, J; Marín, C; Ordovás, J M; López-Miranda, J; Pérez-Jiménez, F

    2008-04-01

    The objective of the study was to determine whether Plasminogen Activator Inhibitor Type 1 (PAI-1) -675 4G/5G polymorphism is associated with the response of functional plasma PAI-1 concentrations to changes in the amount and quality of dietary fat in healthy subjects. PAI-1 is the major inhibitor of fibrinolysis, and a lower level of fibrinolytic activity could be implicated in an increased risk of IHD. Fifty-nine healthy Spanish volunteers (ten 4G/4G homozygotes, twenty-eight heterozygotes 4G/5G and twenty-one 5G/5G homozygotes) consumed three diets for periods of 4 weeks each: a SFA-rich diet (38 % fat, 20 % SFA), followed by a carbohydrate-rich diet (30 % fat, 55 % carbohydrate) and a MUFA-rich diet (38 % fat, 22 % MUFA) according to a randomized crossover design. At the end of each dietary period plasma lipid and functional plasma PAI-1 concentrations were determined. Subjects carrying the 4G allele (4G/4G and 4G/5G) showed a significant decrease in PAI-1 concentrations after the MUFA diet, compared with the SFA-rich and carbohydrate-rich diets (genotype x diet interaction: P = 0.028). 5G/5G homozygotes had the lowest plasma PAI-1 concentrations compared with 4G/4G and 4G/5G subjects (genotype: P = 0.002), without any changes as a result of the amount and the quality of the dietary fat. In summary, no differences in plasma PAI-1 concentration response were found after changes in dietary fat intake in 5G/5G homozygotes, although these subjects displayed the lowest concentrations of PAI-1. On the other hand, carriers of the 4G allele are more likely to hyper-respond to the presence of MUFA in the diet because of a greater decrease in PAI-1 concentrations.

  11. Genetic polymorphism of UDP-glucuronosyltransferase (UGT2B15) and glucuronidation of paracetamol in healthy population.

    PubMed

    Mehboob, Huma; Iqbal, Tahira; Jamil, Amer; Khaliq, Tanweer

    2016-05-01

    Inter individual variability in polymorphic UDP-glucuronosyltransferase (UGT2B15) has been associated with varied glucuronidation level. The present project was designed to determine the genetic polymorphism of UDP-glucuronosyltransferase (UGT2B15) and glucuronidation of paracetamol in healthy (male=59 and female=50) population. The association between genotype (UGT2B15) and phenotype (paracetamol glucuronidation) has been evaluated. According to trimodal model, genotypes and phenotypes were categorized as fast, intermediate and slow glucuronidators. Presence of wild type allele illustrated a UGT2B15 genotype as fast glucuronidator. The glucuronidation status was investigated by HPLC analysis of paracetamol. Ratio of paracetamol glucuronide to paracetamol was determined with two antimodes at glucuronidation ratio of 0.3 and 1.8. In our study, 7% and 12% of population was distributed as slow glucuronidators by phenotype and genotype, respectively and association between phenotype and genotype was good for analysis of glucuronidation status as displayed by kappa value (0.792).

  12. Alpha-lipoic acid improves high-fat diet-induced hepatic steatosis by modulating the transcription factors SREBP-1, FoxO1 and Nrf2 via the SIRT1/LKB1/AMPK pathway.

    PubMed

    Yang, Yi; Li, Wang; Liu, Yang; Sun, Yuning; Li, Yan; Yao, Qing; Li, Jianning; Zhang, Qian; Gao, Yujing; Gao, Ling; Zhao, Jiajun

    2014-11-01

    Understanding the mechanism by which alpha-lipoic acid supplementation has a protective effect upon nonalcoholic fatty liver disease in vivo and in vitro may lead to targets for preventing hepatic steatosis. Male C57BL/6J mice were fed a normal diet, high-fat diet or high-fat diet supplemented with alpha-lipoic acid for 24 weeks. HepG2 cells were incubated with normal medium, palmitate or alpha-lipoic acid. The lipid-lowering effects were measured. The protein expression and distribution were analyzed by Western blot, immunoprecipitation and immunofluorescence, respectively. We found that alpha-lipoic acid enhanced sirtuin 1 deacetylase activity through liver kinase B1 and stimulated AMP-activated protein kinase. By activating the sirtuin 1/liver kinase B1/AMP-activated protein kinase pathway, the translocation of sterol regulatory element-binding protein-1 into the nucleus and forkhead box O1 into the cytoplasm was prevented. Alpha-lipoic acid increased adipose triacylglycerol lipase expression and decreased fatty acid synthase abundance. In in vivo and in vitro studies, alpha-lipoic acid also increased nuclear NF-E2-related factor 2 levels and downstream target amounts via the sirtuin 1 pathway. Alpha-lipoic acid eventually reduced intrahepatic and serum triglyceride content. The protective effects of alpha-lipoic acid on hepatic steatosis appear to be associated with the transcription factors sterol regulatory element-binding protein-1, forkhead box O1 and NF-E2-related factor 2. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Diabetes mellitus reduces activity of human UDP-glucuronosyltransferase 2B7 in liver and kidney leading to decreased formation of mycophenolic acid acyl-glucuronide metabolite.

    PubMed

    Dostalek, Miroslav; Court, Michael H; Hazarika, Suwagmani; Akhlaghi, Fatemeh

    2011-03-01

    Mycophenolic acid (MPA) is an immunosuppressive agent commonly used after organ transplantation. Altered concentrations of MPA metabolites have been reported in diabetic kidney transplant recipients, although the reason for this difference is unknown. We aimed to compare MPA biotransformation and UDP-glucuronosyltransferase (UGT) expression and activity between liver (n = 16) and kidney (n = 8) from diabetic and nondiabetic donors. Glucuronidation of MPA, as well as the expression and probe substrate activity of UGTs primarily responsible for MPA phenol glucuronide (MPAG) formation (UGT1A1 and UGT1A9), and MPA acyl glucuronide (AcMPAG) formation (UGT2B7), was characterized. We have found that both diabetic and nondiabetic human liver microsomes and kidney microsomes formed MPAG with similar efficiency; however, AcMPAG formation was significantly lower in diabetic samples. This finding is supported by markedly lower glucuronidation of the UGT2B7 probe zidovudine, UGT2B7 protein, and UGT2B7 mRNA in diabetic tissues. UGT genetic polymorphism did not explain this difference because UGT2B7*2 or *1c genotype were not associated with altered microsomal UGT2B7 protein levels or AcMPAG formation. Furthermore, mRNA expression and probe activities for UGT1A1 or UGT1A9, both forming MPAG but not AcMPAG, were comparable between diabetic and nondiabetic tissues, suggesting the effect may be specific to UGT2B7-mediated AcMPAG formation. These findings suggest that diabetes mellitus is associated with significantly reduced UGT2B7 mRNA expression, protein level, and enzymatic activity of human liver and kidney, explaining in part the relatively low circulating concentrations of AcMPAG in diabetic patients.

  14. Influence of a high carbohydrate diet on the functional activity of 5-HT1B/1D receptors on human peripheral blood lymphocytes during intense military training.

    PubMed

    Chennaoui, Mounir; Drogou, Catherine; Guezennec, Charles-Yannick; Gomez-Merino, Danielle

    2006-03-01

    The present study was undertaken to examine the effect of a high carbohydrate diet on the functional activity of 5-HT1B/1D receptors in human peripheral blood lymphocytes, and on serum cortisol and plasma cytokine responses during intense military training. Thirty two male soldiers (mean age: 21 +/- 2 years) were randomly assigned to two groups and received either 3200 kcal/24 h [13440 kJ; habitual diet group (HD)] or 4200 kcal/24 h [17640 kJ, high carbohydrate diet group (HCD)] by adding 1000 kcal (4200 kJ) of fruit jelly to the HD. They took part in a three-week training program followed by a five-day combat course. Blood samples were collected from each group before entry into the commando training and after the five-day combat course. The results of [35S] GTPgammaS binding assays showed that h5-HT1B/1D receptors were desensitized after the training program in the HD group, whereas no change was observed between the beginning and the end of the military training in the HCD group [(HD : IC50 = 100 +/- 14 nM to 544 +/- 178 nM; n = 16) and (HCD: IC50 = 68 +/- 14 nM to 101 +/- 22 nM; n = 16)]. Serum cortisol was only significantly increased after the commando training in the HD group (from 532.2 +/- 30 to 642 +/- 45 nmol.L(-1), p < 0.05), whereas values were not significantly changed in the HCD group (441 +/- 31 to 502 +/- 40 nmol.L(-1)). No changes were observed in IL-10, TNF-alpha and IFN-gamma levels after the training program in either group. Carbohydrate ingestion or additional dietary energy during repeated bouts of high-intensity exercise could attenuate the alterations in immune function via 5-HT1B/1D receptors and the action of 5-HT moduline, an endogenous tetrapeptide (Leu-Ser-Ala-Leu) that specifically modulates the sensitivity of 5-HT1B/1D receptors.

  15. High-fat diet enhances and plasminogen activator inhibitor-1 deficiency attenuates bone loss in mice with Lewis Lung carcinoma

    USDA-ARS?s Scientific Manuscript database

    This study determined the effects of a high-fat diet and plasminogen activator inhibitor-1 deficiency (PAI-1-/-) on bone structure in mice bearing Lewis lung carcinoma (LLC) in lungs. Reduction in bone volume fraction (BV/TV) by 22% and 21%, trabecular number (Tb.N) by 8% and 4% and bone mineral de...

  16. Autophagy activation, not peroxisome proliferator-activated receptor γ coactivator 1α, may mediate exercise-induced improvements in glucose handling during diet-induced obesity.

    PubMed

    Rosa-Caldwell, Megan E; Brown, Jacob L; Lee, David E; Blackwell, Thomas A; Turner, Kyle W; Brown, Lemuel A; Perry, Richard A; Haynie, Wesley S; Washington, Tyrone A; Greene, Nicholas P

    2017-09-01

    What is the central question of this study? What are the individual and combined effects of muscle-specific peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) overexpression and physical activity during high-fat feeding on glucose and exercise tolerance? What is the main finding and its importance? Our main finding is that muscle-specific PGC-1α overexpression provides no protection against lipid-overload pathologies nor does it enhance exercise adaptations. Instead, physical activity, regardless of PGC-1α content, protects against high-fat diet-induced detriments. Activation of muscle autophagy was correlated with exercise protection, suggesting that autophagy might be a mediating factor for exercise-induced protection from lipid overload. The prevalence of glucose intolerance is alarmingly high. Efforts to promote mitochondrial biogenesis through peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) to mitigate glucose intolerance have been controversial. However, physical activity remains a primary means to alleviate the condition. The aim of this study was to determine the combined effects of muscle-specific overexpression of PGC-1α and physical activity on glucose handling during diet-induced obesity. Wild-type (WT, ∼20) and PGC-1α muscle transgenic (MCK-PGC-1α, ∼20) mice were given a Western diet (WD) at 8 weeks age and allowed to consume food ab libitum throughout the study. At 12 weeks of age, all animals were divided into sedentary (SED) or voluntary wheel running (VWR) interventions. At 7, 11 and 15 weeks of age, animals underwent glucose tolerance tests (GTT) and graded exercise tests (GXT). At 16 weeks of age, tissues were collected. At 11 weeks, the MCK-PGC-1α animals had 50% greater glucose tolerance integrated area under the curve compared with WT. However, at 15 weeks, SED animals also had greater GTT integrated area under the curve compared with VWR, regardless of genotype; furthermore, SED

  17. Tuberous Sclerosis Complex-1 Deficiency Attenuates Diet-Induced Hepatic Lipid Accumulation

    PubMed Central

    Kenerson, Heidi L.; Yeh, Matthew M.; Yeung, Raymond S.

    2011-01-01

    Non-alcoholic fatty liver disease (NAFLD) is causally linked to type 2 diabetes, insulin resistance and dyslipidemia. In a normal liver, insulin suppresses gluconeogenesis and promotes lipogenesis. In type 2 diabetes, the liver exhibits selective insulin resistance by failing to inhibit hepatic glucose production while maintaining triglyceride synthesis. Evidence suggests that the insulin pathway bifurcates downstream of Akt to regulate these two processes. Specifically, mTORC1 has been implicated in lipogenesis, but its role on hepatic steatosis has not been examined. Here, we generated mice with hepatocyte-specific deletion of Tsc1 to study the effects of constitutive mTORC1 activation in the liver. These mice developed normally but displayed mild hepatomegaly and insulin resistance without obesity. Unexpectedly, the Tsc1-null livers showed minimal signs of steatosis even under high-fat diet condition. This ‘resistant’ phenotype was reversed by rapamycin and could be overcome by the expression of Myr-Akt. Moreover, rapamycin failed to reduce hepatic triglyceride levels in models of steatosis secondary to Pten ablation in hepatocytes or high-fat diet in wild-type mice. These observations suggest that mTORC1 is neither necessary nor sufficient for steatosis. Instead, Akt and mTORC1 have opposing effects on hepatic lipid accumulation such that mTORC1 protects against diet-induced steatosis. Specifically, mTORC1 activity induces a metabolic shift towards fat utilization and glucose production in the liver. These findings provide novel insights into the role of mTORC1 in hepatic lipid metabolism. PMID:21479224

  18. 11β-hydroxysteroid dehydrogenase-1 deficiency alters the gut microbiome response to Western diet.

    PubMed

    Johnson, Jethro S; Opiyo, Monica N; Thomson, Marian; Gharbi, Karim; Seckl, Jonathan R; Heger, Andreas; Chapman, Karen E

    2017-02-01

    The enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) interconverts active glucocorticoids and their intrinsically inert 11-keto forms. The type 1 isozyme, 11β-HSD1, predominantly reactivates glucocorticoids in vivo and can also metabolise bile acids. 11β-HSD1-deficient mice show altered inflammatory responses and are protected against the adverse metabolic effects of a high-fat diet. However, the impact of 11β-HSD1 on the composition of the gut microbiome has not previously been investigated. We used high-throughput 16S rDNA amplicon sequencing to characterise the gut microbiome of 11β-HSD1-deficient and C57Bl/6 control mice, fed either a standard chow diet or a cholesterol- and fat-enriched 'Western' diet. 11β-HSD1 deficiency significantly altered the composition of the gut microbiome, and did so in a diet-specific manner. On a Western diet, 11β-HSD1 deficiency increased the relative abundance of the family Bacteroidaceae, and on a chow diet, it altered relative abundance of the family Prevotellaceae Our results demonstrate that (i) genetic effects on host-microbiome interactions can depend upon diet and (ii) that alterations in the composition of the gut microbiome may contribute to the aspects of the metabolic and/or inflammatory phenotype observed with 11β-HSD1 deficiency. © 2017 The authors.

  19. 11β-hydroxysteroid dehydrogenase-1 deficiency alters the gut microbiome response to Western diet

    PubMed Central

    Johnson, Jethro S; Opiyo, Monica N; Thomson, Marian; Gharbi, Karim; Seckl, Jonathan R; Heger, Andreas

    2016-01-01

    The enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) interconverts active glucocorticoids and their intrinsically inert 11-keto forms. The type 1 isozyme, 11β-HSD1, predominantly reactivates glucocorticoids in vivo and can also metabolise bile acids. 11β-HSD1-deficient mice show altered inflammatory responses and are protected against the adverse metabolic effects of a high-fat diet. However, the impact of 11β-HSD1 on the composition of the gut microbiome has not previously been investigated. We used high-throughput 16S rDNA amplicon sequencing to characterise the gut microbiome of 11β-HSD1-deficient and C57Bl/6 control mice, fed either a standard chow diet or a cholesterol- and fat-enriched ‘Western’ diet. 11β-HSD1 deficiency significantly altered the composition of the gut microbiome, and did so in a diet-specific manner. On a Western diet, 11β-HSD1 deficiency increased the relative abundance of the family Bacteroidaceae, and on a chow diet, it altered relative abundance of the family Prevotellaceae. Our results demonstrate that (i) genetic effects on host–microbiome interactions can depend upon diet and (ii) that alterations in the composition of the gut microbiome may contribute to the aspects of the metabolic and/or inflammatory phenotype observed with 11β-HSD1 deficiency. PMID:27885053

  20. Activity-Based Profiling of a Physiologic Aglycone Library Reveals Sugar Acceptor Promiscuity of Family 1 UDP-Glucosyltransferases from Grape1[W

    PubMed Central

    Bönisch, Friedericke; Frotscher, Johanna; Stanitzek, Sarah; Rühl, Ernst; Wüst, Matthias; Bitz, Oliver; Schwab, Wilfried

    2014-01-01

    Monoterpenols serve various biological functions and accumulate in grape (Vitis vinifera), where a major fraction occurs as nonvolatile glycosides. We have screened the grape genome for sequences with similarity to terpene URIDINE DIPHOSPHATE GLYCOSYLTRANSFERASES (UGTs) from Arabidopsis (Arabidopsis thaliana). A ripening-related expression pattern was shown for three candidates by spatial and temporal expression analyses in five grape cultivars. Transcript accumulation correlated with the production of monoterpenyl β-d-glucosides in grape exocarp during ripening and was low in vegetative tissue. Targeted functional screening of the recombinant UGTs for their biological substrates was performed by activity-based metabolite profiling (ABMP) employing a physiologic library of aglycones built from glycosides isolated from grape. This approach led to the identification of two UDP-glucose:monoterpenol β-d-glucosyltransferases. Whereas VvGT14a glucosylated geraniol, R,S-citronellol, and nerol with similar efficiency, the three allelic forms VvGT15a, VvGT15b, and VvGT15c preferred geraniol over nerol. Kinetic resolution of R,S-citronellol and R,S-linalool was shown for VvGT15a and VvGT14a, respectively. ABMP revealed geraniol as the major biological substrate but also disclosed that these UGTs may add to the production of further glycoconjugates in planta. ABMP of aglycone libraries provides a versatile tool to uncover novel biologically relevant substrates of small-molecule glycosyltransferases that often show broad sugar acceptor promiscuity. PMID:25073706

  1. Oxymatrine attenuates hepatic steatosis in non-alcoholic fatty liver disease rats fed with high fructose diet through inhibition of sterol regulatory element binding transcription factor 1 (Srebf1) and activation of peroxisome proliferator activated receptor alpha (Pparα).

    PubMed

    Shi, Li-juan; Shi, Lei; Song, Guang-yao; Zhang, He-fang; Hu, Zhi-juan; Wang, Chao; Zhang, Dong-hui

    2013-08-15

    The aim of this study was to examine the therapeutic effect of oxymatrine, a monomer isolated from the medicinal plant Sophora flavescens Ait, on the hepatic lipid metabolism in non-alcoholic fatty liver (NAFLD) rats and to explore the potential mechanism. Rats were fed with high fructose diet for 8 weeks to establish the NAFLD model, then were given oxymatrine treatment (40, 80, and 160 mg/kg, respectively) for another 8 weeks. Body weight gain, liver index, serum and liver lipids, and histopathological evaluation were measured. Enzymatic activity and gene expression of the key enzymes involved in the lipogenesis and fatty acid oxidation were assayed. The results showed that oxymatrine treatment reduced body weight gain, liver weight, liver index, dyslipidemia, and liver triglyceride level in a dose dependant manner. Importantly, the histopathological examination of liver confirmed that oxymatrine could decrease the liver lipid accumulation. The treatment also decreased the fatty acid synthase (FAS) enzymatic activity and increased the carnitine palmitoyltransferase 1A (CPT1A) enzymatic activity. Besides, oxymatrine treatment decreased the mRNA expression of sterol regulatory element binding transcription factor 1(Srebf1), fatty acid synthase (Fasn), and acetyl CoA carboxylase (Acc), and increased the mRNA expression of peroxisome proliferator activated receptor alpha (Pparα), carnitine palmitoyltransferase 1A (Cpt1a), and acyl CoA oxidase (Acox1) in high fructose diet induced NAFLD rats. These results suggested that the therapeutic effect of oxymatrine on the hepatic steatosis in high fructose diet induced fatty liver rats is partly due to down-regulating Srebf1 and up-regulating Pparα mediated metabolic pathways simultaneously. © 2013 Elsevier B.V. All rights reserved.

  2. Dietary intervention in acne: Attenuation of increased mTORC1 signaling promoted by Western diet.

    PubMed

    Melnik, Bodo

    2012-01-01

    The purpose of this paper is to highlight the endocrine signaling of Western diet, a fundamental environmental factor involved in the pathogenesis of epidemic acne. Western nutrition is characterized by high calorie uptake, high glycemic load, high fat and meat intake, as well as increased consumption of insulin- and IGF-1-level elevating dairy proteins. Metabolic signals of Western diet are sensed by the nutrient-sensitive kinase, mammalian target of rapamycin complex 1 (mTORC1), which integrates signals of cellular energy, growth factors (insulin, IGF-1) and protein-derived signals, predominantly leucine, provided in high amounts by milk proteins and meat. mTORC1 activates SREBP, the master transcription factor of lipogenesis. Leucine stimulates mTORC1-SREBP signaling and leucine is directly converted by sebocytes into fatty acids and sterols for sebaceous lipid synthesis. Over-activated mTORC1 increases androgen hormone secretion and most likely amplifies androgen-driven mTORC1 signaling of sebaceous follicles. Testosterone directly activates mTORC1. Future research should investigate the effects of isotretinoin on sebocyte mTORC1 activity. It is conceivable that isotretinoin may downregulate mTORC1 in sebocytes by upregulation of nuclear levels of FoxO1. The role of Western diet in acne can only be fully appreciated when all stimulatory inputs for maximal mTORC1 activation, i.e., glucose, insulin, IGF-1 and leucine, are adequately considered. Epidemic acne has to be recognized as an mTORC1-driven disease of civilization like obesity, type 2 diabetes, cancer and neurodegenerative diseases. These new insights into Western diet-mediated mTORC1-hyperactivity provide a rational basis for dietary intervention in acne by attenuating mTORC1 signaling by reducing (1) total energy intake, (2) hyperglycemic carbohydrates, (3) insulinotropic dairy proteins and (4) leucine-rich meat and dairy proteins. The necessary dietary changes are opposed to the evolution of

  3. UGT-29 protein expression and localization during bacterial infection in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Wong, Rui-Rui; Lee, Song-Hua; Nathan, Sheila

    2014-09-01

    The nematode Caenorhabditis elegans is routinely used as an animal model to delineate complex molecular mechanisms involved in the host response to pathogen infection. Following up on an earlier study on host-pathogen interaction, we constructed a ugt-29::GFP transcriptional fusion transgenic worm strain to examine UGT-29 protein expression and localization upon bacterial infection. UGT-29 orthologs can be found in higher organisms including humans and is proposed as a member of the UDP-Glucoronosyl Transferase family of proteins which are involved in phase II detoxification of compounds detrimental to the host organism. Under uninfected conditions, UGT-29::GFP fusion protein was highly expressed in the C. elegans anterior pharynx and intestine, two major organs involved in detoxification. We further evaluated the localization of the enzyme in worms infected with the bacterial pathogen, Burkholderia pseudomallei. The infected ugt-29::GFP transgenic strain exhibited increased fluorescence in the pharynx and intestine with pronounced fluorescence also extending to body wall muscle. This transcriptional fusion GFP transgenic worm is a convenient and direct tool to provide information on UGT detoxification enzyme gene expression and could be a useful tool for a number of diverse applications.

  4. Loss of NHE1 activity leads to reduced oxidative stress in heart and mitigates high-fat diet-induced myocardial stress.

    PubMed

    Prasad, Vikram; Lorenz, John N; Miller, Marian L; Vairamani, Kanimozhi; Nieman, Michelle L; Wang, Yigang; Shull, Gary E

    2013-12-01

    Acute inhibition of the NHE1 Na(+)/H(+) exchanger protects against ischemia-reperfusion injury and chronic inhibition attenuates development of cardiac hypertrophy and failure. To determine the cardiac effects of chronic inhibition of NHE1 under non-pathological conditions we used NHE1-null mice as a model of long-term NHE1 inhibition. Cardiovascular performance was relatively normal in Nhe1(-/-) mice although cardiac contractility and relaxation were slightly improved in mutant mice of the FVB/N background. GSH levels and GSH:GSSG ratios were elevated in Nhe1(-/-) hearts indicating an enhanced redox potential. Consistent with a reduced need for antioxidant protection, expression of heat shock proteins Hsp60 and Hsp25 was lower in Nhe1(-/-) hearts. Similarly, expression of mitochondrial superoxide dismutase 2 was reduced, with no increase in expression of other ROS scavenging enzymes. GLUT1 levels were increased in Nhe1(-/-) hearts, the number of lipid droplets in myocytes was reduced, and PDK4 expression was refractory to high-fat diet-induced upregulation observed in wild-type hearts. High-fat diet-induced stress was attenuated in Nhe1(-/-) hearts, as indicated by smaller increases in phosphorylation of Hsp25 and α-B crystallin, and there was better preservation of insulin sensitivity, as evidenced by PKB/Akt phosphorylation. Plasma glucose and insulin levels were lower and high-fat diet-induced hepatic lipid accumulation was reduced in Nhe1(-/-) mice, demonstrating extracardiac effects of NHE1 ablation. These data indicate that long-term ablation of NHE1 activity increases the redox potential, mitigates high-fat diet-induced myocardial stress and fatty liver disease, leads to better preservation of insulin sensitivity, and may alter both cardiac and systemic metabolic substrate handling in mice. © 2013 Elsevier Ltd. All rights reserved.

  5. A tandem array of UDP-glycosyltransferases from the UGT73C subfamily glycosylate sapogenins, forming a spectrum of mono- and bisdesmosidic saponins.

    PubMed

    Erthmann, Pernille Østerbye; Agerbirk, Niels; Bak, Søren

    2018-05-01

    This study identifies six UGT73Cs all able to glucosylate sapogenins at positions 3 and/or 28 which demonstrates that B. vulgaris has a much richer arsenal of UGTs involved in saponin biosynthesis than initially anticipated. The wild cruciferous plant Barbarea vulgaris is resistant to some insects due to accumulation of two monodesmosidic triterpenoid saponins, oleanolic acid 3-O-β-cellobioside and hederagenin 3-O-β-cellobioside. Insect resistance depends on the structure of the sapogenin aglycone and the glycosylation pattern. The B. vulgaris saponin profile is complex with at least 49 saponin-like metabolites, derived from eight sapogenins and including up to five monosaccharide units. Two B. vulgaris UDP-glycosyltransferases, UGT73C11 and UGT73C13, O-glucosylate sapogenins at positions 3 and 28, forming mainly 3-O-β-D-glucosides. The aim of this study was to identify UGTs responsible for the diverse saponin oligoglycoside moieties observed in B. vulgaris. Twenty UGT genes from the insect resistant genotype were selected and heterologously expressed in Nicotiana benthamiana and/or Escherichia coli. The extracts were screened for their ability to glycosylate sapogenins (oleanolic acid, hederagenin), the hormone 24-epibrassinolide and sapogenin monoglucosides (hederagenin and oleanolic acid 3-O-β-D-glucosides). Six UGTs from the UGT73C subfamily were able to glucosylate both sapogenins and both monoglucosides at positions 3 and/or 28. Some UGTs formed bisdesmosidic saponins efficiently. At least four UGT73C genes were localized in a tandem array with UGT73C11 and possibly UGT73C13. This organization most likely reflects duplication events followed by sub- and neofunctionalization. Indeed, signs of positive selection on several amino acid sites were identified and modelled to be localized on the UGT protein surface. This tandem array is proposed to initiate higher order bisdesmosidic glycosylation of B. vulgaris saponins, leading to the recently discovered

  6. Use Of Transgenic Mice In UDP-Glucuronosyltransferase (UGT) Studies

    PubMed Central

    Ou, Zhimin; Huang, Min; Zhao, Lizi; Xie, Wen

    2009-01-01

    Transgenic mouse models are useful to understand the function and regulation of drug metabolizing enzymes in vivo. This article is intended to describe the general strategies and to discuss specific examples on how to use transgenic, gene knockout, and humanized mice to study the function as well as genetic and pharmacological regulation of UDP-glucuronosyltransferases (UGTs). The physiological and pharmacological implications of transcription factor-mediated UGT regulation will also be discussed. The UGT-regulating transcription factors to be discussed in this article include nuclear hormone receptors (NRs), aryl hydrocarbon receptor (AhR), and nuclear factor erythroid 2-related factor 2 (Nrf2). PMID:20070245

  7. Synthesis of Mono- and Di-Glucosides of Zearalenone and α-/β-Zearalenol by Recombinant Barley Glucosyltransferase HvUGT14077

    PubMed Central

    Michlmayr, Herbert; Varga, Elisabeth; Lupi, Francesca; Malachová, Alexandra; Hametner, Christian; Berthiller, Franz; Adam, Gerhard

    2017-01-01

    Zearalenone (ZEN) is an estrogenic mycotoxin occurring in Fusarium-infected cereals. Glucosylation is an important plant defense mechanism and generally reduces the acute toxicity of mycotoxins to humans and animals. Toxicological information about ZEN-glucosides is limited due to the unavailability of larger amounts required for animal studies. HvUGT14077, a recently-validated ZEN-conjugating barley UDP-glucosyltransferase was expressed in Escherichia coli, affinity purified, and characterized. HvUGT14077 possesses high affinity (Km = 3 µM) and catalytic efficiency (kcat/Km = 190 s−1·mM−1) with ZEN. It also efficiently glucosylates the phase-I ZEN-metabolites α-zearalenol and β-zearalenol, with kcat/Km of 40 and 74 s−1·mM−1, respectively. HvUGT14077 catalyzes O-glucosylation at C-14 and C-16 with preference of 14-glucoside synthesis. Furthermore, relatively slow consecutive formation of 14,16-di-glucosides was observed; their structures were tentatively identified by mass spectrometry and for ZEN-14,16-di-glucoside confirmed by nuclear magnetic resonance spectroscopy. Recombinant HvUGT14077 allowed efficient preparative synthesis of ZEN-glucosides, yielding about 90% ZEN-14-glucoside and 10% ZEN-16-glucoside. The yield of ZEN-16-glucoside could be increased to 85% by co-incubation with a β-glucosidase highly selective for ZEN-14-glucoside. Depletion of the co-substrate UDP-glucose was counteracted by a sucrose synthase based regeneration system. This strategy could also be of interest to increase the yield of minor glucosides synthesized by other glucosyltransferases. PMID:28208765

  8. Preliminary Investigation of the Contribution of CYP2A6, CYP2B6, and UGT1A9 Polymorphisms on Artesunate-Mefloquine Treatment Response in Burmese Patients with Plasmodium falciparum Malaria

    PubMed Central

    Phompradit, Papichaya; Muhamad, Poonuch; Cheoymang, Anurak; Na-Bangchang, Kesara

    2014-01-01

    CYP2A6, CYP2B6, and UGT1A9 genetic polymorphisms and treatment response after a three-day course of artesunate-mefloquine was investigated in 71 Burmese patients with uncomplicated Plasmodium falciparum malaria. Results provide evidence for the possible link between CYP2A6 and CYP2B6 polymorphisms and plasma concentrations of artesunate/dihydroartemisinin and treatment response. In one patient who had the CYP2A6*1A/*4C genotype (decreased enzyme activity), plasma concentration of artesunate at one hour appeared to be higher, and the concentration of dihydroartemisinin was lower than for those carrying other genotypes (415 versus 320 ng/mL). The proportion of patients with adequate clinical and parasitologic response who had the CYP2B6*9/*9 genotype (mutant genotype) was significantly lower compared with those with late parasitologic failure (14.0% versus 19.0%). Confirmation through a larger study in various malaria-endemic areas is required before a definite conclusion on the role of genetic polymorphisms of these drug-metabolizing enzymes on treatment response after artesunate-based combination therapy can be made. PMID:24891466

  9. Species differences in drug glucuronidation: Humanized UDP-glucuronosyltransferase 1 mice and their application for predicting drug glucuronidation and drug-induced toxicity in humans

    PubMed Central

    Fujiwara, Ryoichi; Yoda, Emiko; Tukey, Robert H.

    2018-01-01

    More than 20% of clinically used drugs are glucuronidated by a microsomal enzyme UDP-glucuronosyltransferase (UGT). Inhibition or induction of UGT can result in an increase or decrease in blood drug concentration. To avoid drug-drug interactions and adverse drug reactions in individuals, therefore, it is important to understand whether UGTs are involved in metabolism of drugs and drug candidates. While most of glucuronides are inactive metabolites, acyl-glucuronides that are formed from compounds with a carboxylic acid group can be highly toxic. Animals such as mice and rats are widely used to predict drug metabolism and drug-induced toxicity in humans. However, there are marked species differences in the expression and function of drug-metabolizing enzymes including UGTs. To overcome the species differences, mice in which certain drug-metabolizing enzymes are humanized have been recently developed. Humanized UGT1 (hUGT1) mice were created in 2010 by crossing Ugt1-null mice with human UGT1 transgenic mice in a C57BL/6 background. hUGT1 mice can be promising tools to predict human drug glucuronidation and acyl-glucuronide-associated toxicity. In this review article, studies of drug metabolism and toxicity in the hUGT1 mice are summarized. We further discuss research and strategic directions to advance the understanding of drug glucuronidation in humans. PMID:29079228

  10. Physical activity, diet, and risk of Alzheimer disease.

    PubMed

    Scarmeas, Nikolaos; Luchsinger, Jose A; Schupf, Nicole; Brickman, Adam M; Cosentino, Stephanie; Tang, Ming X; Stern, Yaakov

    2009-08-12

    Both higher adherence to a Mediterranean-type diet and more physical activity have been independently associated with lower Alzheimer disease (AD) risk but their combined association has not been investigated. To investigate the combined association of diet and physical activity with AD risk. Prospective cohort study of 2 cohorts comprising 1880 community-dwelling elders without dementia living in New York, New York, with both diet and physical activity information available. Standardized neurological and neuropsychological measures were administered approximately every 1.5 years from 1992 through 2006. Adherence to a Mediterranean-type diet (scale of 0-9; trichotomized into low, middle, or high; and dichotomized into low or high) and physical activity (sum of weekly participation in various physical activities, weighted by the type of physical activity [light, moderate, vigorous]; trichotomized into no physical activity, some, or much; and dichotomized into low or high), separately and combined, were the main predictors in Cox models. Models were adjusted for cohort, age, sex, ethnicity, education, apolipoprotein E genotype, caloric intake, body mass index, smoking status, depression, leisure activities, a comorbidity index, and baseline Clinical Dementia Rating score. Time to incident AD. A total of 282 incident AD cases occurred during a mean (SD) of 5.4 (3.3) years of follow-up. When considered simultaneously, both Mediterranean-type diet adherence (compared with low diet score, hazard ratio [HR] for middle diet score was 0.98 [95% confidence interval {CI}, 0.72-1.33]; the HR for high diet score was 0.60 [95% CI, 0.42-0.87]; P = .008 for trend) and physical activity (compared with no physical activity, the HR for some physical activity was 0.75 [95% CI, 0.54-1.04]; the HR for much physical activity was 0.67 [95% CI, 0.47-0.95]; P = .03 for trend) were associated with lower AD risk. Compared with individuals neither adhering to the diet nor participating in

  11. Inhibition of UDP-glucuronosyltransferase (UGT)-mediated glycyrrhetinic acid 3-O-glucuronidation by polyphenols and triterpenoids.

    PubMed

    Koyama, Mayuko; Shirahata, Tatsuya; Hirashima, Rika; Kobayashi, Yoshinori; Itoh, Tomoo; Fujiwara, Ryoichi

    2017-08-01

    Glycyrrhetinic acid (GA) is an active metabolite of glycyrrhizin, which is a main constituent in licorice (Glycyrrhiza glabra). While GA exhibits a wide variety of pharmacological activities in the body, it is converted to a toxic metabolite GA 3-O-glucuronide by hepatic UDP-glucuronosyltransferases (UGTs). To avoid the development of the toxic metabolite-induced pseudohyperaldosteronism (pseudoaldosteronism), there is a limitation in maximum daily dosage of licorice and in combined usage of other glycyrrhizin-containing natural medicine. In this study, we investigated the inhibitory effects of various polyphenols and triterpenoids on the UGT-mediated GA 3-O-glucuronidation. In human liver microsomes, UGT-mediated GA glucuronidation was significantly inhibited by protopanaxadiol with an IC 50 value of 59.2 μM. Isoliquiritigenin, rosmarinic acid, alisol B, alisol acetate, and catechin moderately inhibited the GA glucuronidation with IC 50 values of 96.4 μM, 125 μM, 160 μM, 163 μM, and 164 μM. Other tested 19 polyphenols and triterpenoids, including liquiritigenin, did not inhibit UGT-mediated GA glucuronidation in human liver microsomes. Our data indicate that relatively higher dosage of licorice can be used without a risk of developing pseudohyperaldosteronism in combination of natural medicine containing protopanaxadiol such as Panax ginseng. Furthermore, supplemental protopanaxadiol and isoliquiritigenin might be useful in preventing licorice-inducing pseudoaldosteronism. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  12. The Contribution of Common UGT2B10 and CYP2A6 Alleles to Variation in Nicotine Glucuronidation among European Americans

    PubMed Central

    Bloom, A. Joseph; von Weymarn, Linda B.; Martinez, Maribel; Bierut, Laura J.; Goate, Alison; Murphy, Sharon E.

    2014-01-01

    UDP-glucuronosytransferase-2B10 (UGT2B10) is the primary catalyst of nicotine glucuronidation. To develop a predictive genetic model of nicotine metabolism, the conversion of deuterated (D2)-nicotine to D2-nicotine-glucuronide, D2-cotinine, D2-cotinine-glucuronide, and D2-trans-3'-hydroxycotinine were quantified in 188 European Americans, and the contribution of UGT2B10 genotype to variability in first-pass nicotine glucuronidation assessed, following a procedure previously applied to nicotine C-oxidation. The proportion of total nicotine converted to nicotine-glucuronide (D2-nicotine-glucuronide/ (D2-nicotine +D2-nicotine-glucuronide +D2-cotinine +D2-cotinine-glucuronide +D2-trans-3'-hydroxycotinine)) was the primary phenotype. The variant, rs61750900T (D67Y) (minor allele frequency (MAF) = 10%), is confirmed to abolish nicotine glucuronidation activity. Another variant, rs112561475G (N397D) (MAF = 2%), is significantly associated with enhanced glucuronidation. rs112561475G is the ancestral allele of a well-conserved amino acid, indicating that the majority of human UGT2B10 alleles are derived hypomorphic alleles. CYP2A6 and UGT2B10 genotype explain 53% of the variance in oral nicotine glucuronidation in this sample. CYP2A6 and UGT2B10 genetic variants are also significantly associated with un-deuterated (D0) nicotine glucuronidation in subjects smoking ad libitum. We find no evidence for further common variation markedly influencing hepatic UGT2B10 expression in European Americans. PMID:24192532

  13. β-1,3/1,6-Glucan-supplemented diets antagonize immune inhibitory effects of hypoxia and enhance the immune response to a model vaccine.

    PubMed

    Rodríguez, Felipe E; Valenzuela, Beatriz; Farías, Ana; Sandino, Ana María; Imarai, Mónica

    2016-12-01

    The diets of farmed salmon are usually supplemented with immunostimulants to improve health status. Because β-glucan is one of the most common immunostimulants used in diets, here we examined the effect of two β-1,3/1,6-glucan-supplemented diets on the expression of immune response genes of Atlantic salmon. The relative abundances of IFN-α1, Mx, IFN-γ, IL-12, TGF-β1, IL-10, and CD4 transcripts were evaluated in head kidney by qRT-PCR. We assessed the effects of the diets under normoxia and acute hypoxia, as salmon are especially sensitive to changes in the concentration of dissolved oxygen, which can also affect immunity. These effects were also tested on vaccinated fish, as we expected that β-1,3/1,6-glucan-supplemented diets would enhance the adaptive immune response to the vaccine. We found that administration of the Bg diet (containing β-1,3/1,6-glucan) under normoxia had no effects on the expression of the analyzed genes in the kidney of the diet-fed fish, but under hypoxia/re-oxygenation (90 min of acute hypoxia), the βg diet affected the expression of the antiviral genes, IFN-α1 and Mx, preventing their decrease caused by hypoxia. The Bax diet, which in addition to β-1,3/1,6-glucan, contained astaxanthin, increased IL-12 and IFN-γ in kidneys. With fish exposed to hypoxia/reoxygenation, the diet prevented the decrease of IFN-α1 and Mx levels observed after hypoxia. When fish were vaccinated, only the levels of IL-12 and CD4 transcripts increased, but interestingly if fish were also fed the Bax diet, the vaccination induced a significant increase in all the analyzed transcripts. Finally, when vaccinated fish were exposed to hypoxia, the effect of the Bax diet was greatly reduced for all genes tested and moreover, inducible effects completely disappeared for IL-12, IFN-α, and Mx. Altogether, these results showed that the tested β-1,3/1,6-glucan diets increased the levels of transcripts of key genes involved in innate and adaptive immune response

  14. TRPV1 agonist monoacylglycerol increases UCP1 content in brown adipose tissue and suppresses accumulation of visceral fat in mice fed a high-fat and high-sucrose diet.

    PubMed

    Iwasaki, Yusaku; Tamura, Yasuko; Inayoshi, Kimiko; Narukawa, Masataka; Kobata, Kenji; Chiba, Hiroshige; Muraki, Etsuko; Tsunoda, Nobuyo; Watanabe, Tatsuo

    2011-01-01

    The administration of such a transient receptor potential vanilloid 1 (TRPV1) agonist as capsaicin, which is a pungent ingredient of red pepper, promotes energy metabolism and suppresses visceral fat accumulation. We have recently identified monoacylglycerols (MGs) having an unsaturated long-chain fatty acid as the novel TRPV1 agonist in foods. We investigated in this present study the effects of dietary MGs on uncoupling protein 1 (UCP1) expression in interscapular brown adipose tissue (IBAT) and on fat accumulation in mice fed with a high-fat, high-sucrose diet. The MG30 diet that substituted 30% of all lipids for MGs (a mixture of 1-oleoylglycerol, 1-linoleoylglycerol and 1-linolenoylglycerol) significantly increased the UCP1 content of IBAT and decreased the weight of epididymal white adipose tissue, and the serum glucose, total cholesterol and free fatty acid levels. The diet containing only 1-oleoylglycerol as MG also increased UCP1 expression in IBAT. MGs that activated TRPV1 also therefore induced the expression of UCP 1 and prevented visceral fat accumulation as well as capsaicin.

  15. Characterization of a Glucosyltransferase Enzyme Involved in the Formation of Kaempferol and Quercetin Sophorosides in Crocus sativus1[C][W

    PubMed Central

    Trapero, Almudena; Ahrazem, Oussama; Rubio-Moraga, Angela; Jimeno, Maria Luisa; Gómez, Maria Dolores; Gómez-Gómez, Lourdes

    2012-01-01

    UGT707B1 is a new glucosyltransferase isolated from saffron (Crocus sativus) that localizes to the cytoplasm and the nucleus of stigma and tepal cells. UGT707B1 transcripts were detected in the stigma tissue of all the Crocus species analyzed, but expression analysis of UGT707B1 in tepals revealed its absence in certain species. The analysis of the glucosylated flavonoids present in Crocus tepals reveals the presence of two major flavonoid compounds in saffron: kaempferol-3-O-β-d-glucopyranosyl-(1-2)-β-d-glucopyranoside and quercetin-3-O-β-d-glucopyranosyl-(1-2)-β-d-glucopyranoside, both of which were absent from the tepals of those Crocus species that did not express UGT707B1. Transgenic Arabidopsis (Arabidopsis thaliana) plants constitutively expressing UGT707B1 under the control of the cauliflower mosaic virus 35S promoter have been constructed and their phenotype analyzed. The transgenic lines displayed a number of changes that resembled those described previously in lines where flavonoid levels had been altered. The plants showed hyponastic leaves, a reduced number of trichomes, thicker stems, and flowering delay. Levels of flavonoids measured in extracts of the transgenic plants showed changes in the composition of flavonols when compared with wild-type plants. The major differences were observed in the extracts from stems and flowers, with an increase in 3-sophoroside flavonol glucosides. Furthermore, a new compound not detected in ecotype Columbia wild-type plants was detected in all the tissues and identified as kaempferol-3-O-sophoroside-7-O-rhamnoside. These data reveal the involvement of UGT707B1 in the biosynthesis of flavonol-3-O-sophorosides and how significant changes in flavonoid homeostasis can be caused by the overproduction of a flavonoid-conjugating enzyme. PMID:22649274

  16. Diet of Theropithecus from 4 to 1 Ma in Kenya

    PubMed Central

    Cerling, Thure E.; Chritz, Kendra L.; Jablonski, Nina G.; Leakey, Meave G.; Manthi, Fredrick Kyalo

    2013-01-01

    Theropithecus was a common large-bodied primate that co-occurred with hominins in many Plio-Pleistocene deposits in East and South Africa. Stable isotope analyses of tooth enamel from T. brumpti (4.0–2.5 Ma) and T. oswaldi (2.0–1.0 Ma) in Kenya show that the earliest Theropithecus at 4 Ma had a diet dominated by C4 resources. Progressively, this genus increased the proportion of C4-derived resources in its diet and by 1.0 Ma, had a diet that was nearly 100% C4-derived. It is likely that this diet was comprised of grasses or sedges; stable isotopes cannot, by themselves, give an indication of the relative importance of leaves, seeds, or underground storage organs to the diet of this primate. Theropithecus throughout the 4- to 1-Ma time range has a diet that is more C4-based than contemporaneous hominins of the genera Australopithecus, Kenyanthropus, and Homo; however, Theropithecus and Paranthropus have similar proportions of C4-based resources in their respective diets. PMID:23733967

  17. Species differences in drug glucuronidation: Humanized UDP-glucuronosyltransferase 1 mice and their application for predicting drug glucuronidation and drug-induced toxicity in humans.

    PubMed

    Fujiwara, Ryoichi; Yoda, Emiko; Tukey, Robert H

    2018-02-01

    More than 20% of clinically used drugs are glucuronidated by a microsomal enzyme UDP-glucuronosyltransferase (UGT). Inhibition or induction of UGT can result in an increase or decrease in blood drug concentration. To avoid drug-drug interactions and adverse drug reactions in individuals, therefore, it is important to understand whether UGTs are involved in metabolism of drugs and drug candidates. While most of glucuronides are inactive metabolites, acyl-glucuronides that are formed from compounds with a carboxylic acid group can be highly toxic. Animals such as mice and rats are widely used to predict drug metabolism and drug-induced toxicity in humans. However, there are marked species differences in the expression and function of drug-metabolizing enzymes including UGTs. To overcome the species differences, mice in which certain drug-metabolizing enzymes are humanized have been recently developed. Humanized UGT1 (hUGT1) mice were created in 2010 by crossing Ugt1-null mice with human UGT1 transgenic mice in a C57BL/6 background. hUGT1 mice can be promising tools to predict human drug glucuronidation and acyl-glucuronide-associated toxicity. In this review article, studies of drug metabolism and toxicity in the hUGT1 mice are summarized. We further discuss research and strategic directions to advance the understanding of drug glucuronidation in humans. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  18. Maternal obesity alters feto-placental Cytochrome P4501A1 activity

    PubMed Central

    DuBois, Barent N.; O’Tierney, Perrie; Pearson, Jacob; Friedman, Jacob E.; Thornburg, Kent; Cherala, Ganesh

    2012-01-01

    Cytochrome P4501A1 (CYP1A1), an important drug metabolizing enzyme, is expressed in human placenta throughout gestation as well as in fetal liver. Obesity, a chronic inflammatory condition, is known to alter CYP enzyme expression in non-placental tissues. In the present study, we test the hypothesis that maternal obesity alters the distribution of CYP1A1 activity in feto-placental unit. Placentas were collected from non-obese (BMI<30) and obese (BMI>30) women at term. Livers were collected from gestation day 130 fetuses of non-human primates fed either control diet or high-fat diet (HFD). Cytosol and microsomes were collected using differential centrifugation, and incubated with 7-Ethoxyresorufin. The CYP1A1 specific activity (pmoles of resorufin formed/min/mg of protein) was measured at excitation/emission wavelength of 530/590nm. Placentas of obese women had significantly reduced microsomal CYP1A1 activity compared to non-obese women (0.046 vs. 0.082; p<0.05); however no such effect was observed on cytosolic activity. Similarly, fetal liver from HFD fed mothers had significantly reduced microsomal CYP1A1 activity (0.44±0.04 vs. 0.20±0.10; p<0.05), with no significant difference in cytosolic CYP1A1 activity (control, 1.23±0.20; HFD, 0.80±0.40). Interestingly, multiple linear regression analyses of placental efficiency indicates cytosolic CYP1A1 activity is a main effect (5.67±2.32 (β±SEM); p=0.022) along with BMI (−0.57±0.26; p=0.037), fetal gender (1.07±0.26; p<0.001), and maternal age (0.07±0.03; p=0.011). In summary, while maternal obesity affects microsomal CYP1A1 activity alone, cytosolic activity along with maternal BMI is an important determinant of placental efficiency. Together, these data suggest that maternal lifestyle could have a significant impact on CYP1A1 activity, and hints at a possible role for CYP1A1 in feto-placental growth and thereby well-being of fetus. PMID:23046808

  19. Ketone Bodies as a Possible Adjuvant to Ketogenic Diet in PDHc Deficiency but Not in GLUT1 Deficiency.

    PubMed

    Habarou, F; Bahi-Buisson, N; Lebigot, E; Pontoizeau, C; Abi-Warde, M T; Brassier, A; Le Quan Sang, K H; Broissand, C; Vuillaumier-Barrot, S; Roubertie, A; Boutron, A; Ottolenghi, C; de Lonlay, P

    2018-01-01

    Ketogenic diet is the first line therapy for neurological symptoms associated with pyruvate dehydrogenase deficiency (PDHD) and intractable seizures in a number of disorders, including GLUT1 deficiency syndrome (GLUT1-DS). Because high-fat diet raises serious compliance issues, we investigated if oral L,D-3-hydroxybutyrate administration could be as effective as ketogenic diet in PDHD and GLUT1-DS. We designed a partial or total progressive substitution of KD with L,D-3-hydroxybutyrate in three GLUT1-DS and two PDHD patients. In GLUT1-DS patients, we observed clinical deterioration including increased frequency of seizures and myoclonus. In parallel, ketone bodies in CSF decreased after introducing 3-hydroxybutyrate. By contrast, two patients with PDHD showed clinical improvement as dystonic crises and fatigability decreased under basal metabolic conditions. In one of the two PDHD children, 3-hydroxybutyrate has largely replaced the ketogenic diet, with the latter that is mostly resumed only during febrile illness. Positive direct effects on energy metabolism in PDHD patients were suggested by negative correlation between ketonemia and lactatemia (r 2  = 0.59). Moreover, in cultured PDHc-deficient fibroblasts, the increase of CO 2 production after 14 C-labeled 3-hydroxybutyrate supplementation was consistent with improved Krebs cycle activity. However, except in one patient, ketonemia tended to be lower with 3-hydroxybutyrate administration compared to ketogenic diet. 3-hydroxybutyrate may be an adjuvant treatment to ketogenic diet in PDHD but not in GLUT1-DS under basal metabolic conditions. Nevertheless, ketogenic diet is still necessary in PDHD patients during febrile illness.

  20. Metabolic profile in two physically active Inuit groups consuming either a western or a traditional Inuit diet

    PubMed Central

    Munch-Andersen, Thor; Olsen, David B.; Søndergaard, Hans; Daugaard, Jens R.; Bysted, Anette; Christensen, Dirk L.; Saltin, Bengt; Helge, Jørn W.

    2012-01-01

    Objectives To evaluate the effect of regular physical activity on metabolic risk factors and blood pressure in Inuit with high BMI consuming a western diet (high amount of saturated fatty acids and carbohydrates with a high glycemic index). Study design Cross sectional study, comparing Inuit eating a western diet with Inuit eating a traditional diet. Methods Two physically active Greenland Inuit groups consuming different diet, 20 eating a traditional diet (Qaanaaq) and 15 eating a western diet (TAB), age (mean (range)); 38, (22–58) yrs, BMI; 28 (20–40) were subjected to an oral glucose tolerance test (OGTT), blood sampling, maximal oxygen uptake test, food interview/collection and monitoring of physical activity. Results All Inuit had a normal OGTT. Fasting glucose (mmol/l), HbA1c (%), total cholesterol (mmol/l) and HDL-C (mmol/l) were for Qaanaaq women: 4.8±0.2, 5.3±0.1, 4.96±0.42, 1.34±0.06, for Qaanaaq men: 4.9±0.1, 5.7±0.1, 5.08±0.31, 1.28±0.09, for TAB women: 5.1±0.2, 5.3±0.1, 6.22±0.39, 1.86±0.13, for TAB men: 5.1±0.2, 5.3±0.1, 6.23±0.15, 1.60±0.10. No differences were found in systolic or diastolic blood pressure between the groups. There was a more adverse distribution of small dense LDL-C particles and higher total cholesterol and HDL-C concentration in the western diet group. Conclusions Diabetes or impaired glucose tolerance was not found in the Inuit consuming either the western or the traditional diet, and this could, at least partly, be due to the high amount of regular daily physical activity. However, when considering the total cardio vascular risk profile the Inuit consuming a western diet had a less healthy profile than the Inuit consuming a traditional diet. PMID:22456044

  1. Metabolic profile in two physically active Inuit groups consuming either a western or a traditional Inuit diet.

    PubMed

    Munch-Andersen, Thor; Olsen, David B; Søndergaard, Hans; Daugaard, Jens R; Bysted, Anette; Christensen, Dirk L; Saltin, Bengt; Helge, Jørn W

    2012-03-19

    To evaluate the effect of regular physical activity on metabolic risk factors and blood pressure in Inuit with high BMI consuming a western diet (high amount of saturated fatty acids and carbohydrates with a high glycemic index). Cross sectional study, comparing Inuit eating a western diet with Inuit eating a traditional diet. Two physically active Greenland Inuit groups consuming different diet, 20 eating a traditional diet (Qaanaaq) and 15 eating a western diet (TAB), age (mean (range)); 38, (22-58) yrs, BMI; 28 (20-40) were subjected to an oral glucose tolerance test (OGTT), blood sampling, maximal oxygen uptake test, food interview/collection and monitoring of physical activity. All Inuit had a normal OGTT. Fasting glucose (mmol/l), HbA1c (%), total cholesterol (mmol/l) and HDL-C (mmol/l) were for Qaanaaq women: 4.8±0.2, 5.3±0.1, 4.96±0.42, 1.34±0.06, for Qaanaaq men: 4.9±0.1, 5.7±0.1, 5.08±0.31, 1.28±0.09, for TAB women: 5.1±0.2, 5.3±0.1, 6.22±0.39, 1.86±0.13, for TAB men: 5.1±0.2, 5.3±0.1, 6.23±0.15, 1.60±0.10. No differences were found in systolic or diastolic blood pressure between the groups. There was a more adverse distribution of small dense LDL-C particles and higher total cholesterol and HDL-C concentration in the western diet group. Diabetes or impaired glucose tolerance was not found in the Inuit consuming either the western or the traditional diet, and this could, at least partly, be due to the high amount of regular daily physical activity. However, when considering the total cardio vascular risk profile the Inuit consuming a western diet had a less healthy profile than the Inuit consuming a traditional diet.

  2. Açai (Euterpe oleracea Mart.) Upregulates Paraoxonase 1 Gene Expression and Activity with Concomitant Reduction of Hepatic Steatosis in High-Fat Diet-Fed Rats

    PubMed Central

    Lage, Nara Nunes; Lopes, Juliana Márcia Macedo; de Lima, Wanderson Geraldo

    2016-01-01

    Açai (Euterpe oleracea Mart.), a fruit from the Amazon region, has emerged as a promising source of polyphenols. Açai consumption has been increasing owing to ascribed health benefits and antioxidant properties; however, its effects on hepatic injury are limited. In this study, we evaluated the antioxidant effect of filtered açai pulp on the expression of paraoxonase (PON) isoforms and PON1 activity in rats with nonalcoholic fatty liver disease (NAFLD). The rats were fed a standard AIN-93M (control) diet or a high-fat (HF) diet containing 25% soy oil and 1% cholesterol with or without açai pulp (2 g/day) for 6 weeks. Our results show that açai pulp prevented low-density lipoprotein (LDL) oxidation, increased serum and hepatic PON1 activity, and upregulated the expression of PON1 and ApoA-I in the liver. In HF diet-fed rats, treatment with açai pulp attenuated liver damage, reducing fat infiltration and triglyceride (TG) content. In rats receiving açai, increased serum PON1 activity was correlated with a reduction in hepatic steatosis and hepatic injury. These findings suggest the use of açai as a potential therapy for liver injuries, supporting the idea that dietary antioxidants are a promising approach to enhance the defensive systems against oxidative stress. PMID:27642496

  3. Açai (Euterpe oleracea Mart.) Upregulates Paraoxonase 1 Gene Expression and Activity with Concomitant Reduction of Hepatic Steatosis in High-Fat Diet-Fed Rats.

    PubMed

    Pereira, Renata Rebeca; de Abreu, Isabel Cristina Mallosto Emerich; Guerra, Joyce Ferreira da Costa; Lage, Nara Nunes; Lopes, Juliana Márcia Macedo; Silva, Maísa; de Lima, Wanderson Geraldo; Silva, Marcelo Eustáquio; Pedrosa, Maria Lucia

    2016-01-01

    Açai (Euterpe oleracea Mart.), a fruit from the Amazon region, has emerged as a promising source of polyphenols. Açai consumption has been increasing owing to ascribed health benefits and antioxidant properties; however, its effects on hepatic injury are limited. In this study, we evaluated the antioxidant effect of filtered açai pulp on the expression of paraoxonase (PON) isoforms and PON1 activity in rats with nonalcoholic fatty liver disease (NAFLD). The rats were fed a standard AIN-93M (control) diet or a high-fat (HF) diet containing 25% soy oil and 1% cholesterol with or without açai pulp (2 g/day) for 6 weeks. Our results show that açai pulp prevented low-density lipoprotein (LDL) oxidation, increased serum and hepatic PON1 activity, and upregulated the expression of PON1 and ApoA-I in the liver. In HF diet-fed rats, treatment with açai pulp attenuated liver damage, reducing fat infiltration and triglyceride (TG) content. In rats receiving açai, increased serum PON1 activity was correlated with a reduction in hepatic steatosis and hepatic injury. These findings suggest the use of açai as a potential therapy for liver injuries, supporting the idea that dietary antioxidants are a promising approach to enhance the defensive systems against oxidative stress.

  4. High fat-diet and saturated fatty acid palmitate inhibits IGF-1 function in chondrocytes.

    PubMed

    Nazli, S A; Loeser, R F; Chubinskaya, S; Willey, J S; Yammani, R R

    2017-09-01

    Insulin-like growth factor-1 (IGF-1) promotes matrix synthesis and cell survival in cartilage. Chondrocytes from aged and osteoarthritic cartilage have a reduced response to IGF-1. The purpose of this study was to determine the effect of free fatty acids (FFA) present in a high-fat diet on IGF-1 function in cartilage and the role of endoplasmic reticulum (ER) stress. C57BL/6 male mice were maintained on either a high-fat (60% kcal from fat) or a low-fat (10% kcal from fat) diet for 4 months. Mice were then sacrificed; femoral head cartilage caps were collected and treated with IGF-1 to measure proteoglycan (PG) synthesis. Cultured human chondrocytes were treated with 500 μM FFA palmitate or oleate, followed by stimulation with (100 ng/ml) IGF-1 overnight to measure CHOP (a protein marker for ER stress) and PG synthesis. Human chondrocytes were pre-treated with palmitate or 1 mM 4-phenyl butyric acid (PBA) or 1 μM C-Jun N terminal Kinase (JNK) inhibitor, and IGF-1 function (PG synthesis and signaling) was measured. Cartilage explants from mice on the high fat-diet showed reduced IGF-1 mediated PG synthesis compared to a low-fat group. Treatment of human chondrocytes with palmitate induced expression of CHOP, activated JNK and inhibited IGF-1 function. PBA, a small molecule chemical chaperone that alleviates ER stress rescued IGF-1 function and a JNK inhibitor rescued IGF-1 signaling. Palmitate-induced ER stress inhibited IGF-1 function in chondrocytes/cartilage via activating the mitogen-activated protein (MAP) kinase JNK. This is the first study to demonstrate that ER stress is metabolic factor that regulates IGF-1 function in chondrocytes. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  5. Epidemiological investigation of the UGT2B17 polymorphism in doping control urine samples and its correlation to T/E ratios.

    PubMed

    Anielski, Patricia; Simmchen, Juliane; Wassill, Lars; Ganghofner, Dirk; Thieme, Detlef

    2011-10-01

    The deletion polymorphism of the enzyme UGT2B17 is known to correlate with the level of the testosterone to epitestosterone (T/E) ratio in urine specimen. Due to the importance of the T/E ratio to detect testosterone abuse in doping analysis, a PCR-ELISA system (Genotype® UGT test, AmplexDiagnostics) was established to identify the UGT2B17 phenotype in urine samples. Epidemiological investigations in a set of 674 routine doping controls (in- and out-of-competition) resulted in 22.8% homozygote gene-deleted and 74.5% UGT2B17-positive athletes. The validated test system has shown to be robust and sensitive: in only 18 cases (2.7%) isolation of cell material from urine failed. Following hydrolysis of glucuronidated conjugates, steroids were analyzed as bis-TMS derivatives by gas chromatography-mass spectrometry (GC-MS), for example, testosterone (T) and epitestosterone (E). Additionally, isotope ration mass spectrometry (IRMS) analysis and luteinizing hormone (LH) measurement were applied. Mean T/E ratios significantly correlated with the UGT2B17 phenotype (del: T/E 0.9; pos: 1.7), however the values did not differ as distinctive as reported in previous studies. Additionally, the T/E ratios in the gene-deleted group did not show a normal curve of distribution (median of T/E 0.5). Obviously, beside the UGT2B17 deletion further influences have to be taken into account, for example, polymorphisms or induction of other metabolizing enzymes. Our results indicate that the UGT2B17 polymorphism might be insufficient when utilized solely as a crucial parameter for individual interpretation of T/E in urine. Nevertheless, the detection of the UGT2B17-gene deletion in urine samples would provide additional information important for gathering evidence in analysis of steroids in doping control. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Intraventricular Injection of LKB1 Inhibits the Formation of Diet-Induced Obesity in Rats by Activating the AMPK-POMC Neurons-Sympathetic Nervous System Axis.

    PubMed

    Xi, Pengjiao; Du, Jianying; Liang, Huimin; Han, Jie; Wu, Zhaoxia; Wang, Haomin; He, Lu; Wang, Qiming; Ge, Haize; Li, Yongmei; Xue, Jie; Tian, Derun

    2018-01-01

    Obesity is increasingly becoming a major public health problem worldwide. Peripheral LKB1 inhibits white fat generation, but the effect of central LKB1 on diet-induced obesity (DIO) is unknown. Therefore, we examined whether LKB1 over-expression in the hypothalamus can inhibit the development of obesity. Adult male Sprague-Dawley rats were anesthetized and placed in a stereotaxic apparatus. LKB1-AAV-EGFP (2.0 × 108 or 2.0 × 1010 vector genomes) or Control-AAV-EGFP (2.0 × 108 vector genomes) was injected into the third ventricle. After administration, the rats were fed a high-fat diet (HFD) for 9 weeks to induce obesity. Rats fed a chow fat diet were used as normal controls. LKB1 delivery decreased body weight, energy intake, fat mass, and serum lipid levels. LKB1 also improved HFD-induced hepatic fatty degeneration. Interestingly, LKB1 over-expression in the hypothalamus activated the AMPK-POMC neurons-sympathetic nervous system (SNS) axis, which can release epinephrine to promote white fat browning. Conversely, the elevated expression of MC3R/MC4R inhibited food intake. These two factors worked together to inhibit the development of obesity. LKB1 in the hypothalamus may have therapeutic potential for DIO through the activation of the AMPK-POMC neurons-SNS axis. © 2018 The Author(s). Published by S. Karger AG, Basel.

  7. Raspberry promotes brown and beige adipocyte development in mice fed high-fat diet through activation of AMP-activated protein kinase (AMPK) α1.

    PubMed

    Zou, Tiande; Wang, Bo; Yang, Qiyuan; de Avila, Jeanene M; Zhu, Mei-Jun; You, Jinming; Chen, Daiwen; Du, Min

    2018-05-01

    Development of brown and beige/brite adipocytes increases thermogenesis and helps to reduce obesity and metabolic syndrome. Our previous study suggests that dietary raspberry can ameliorate metabolic syndromes in diet-induced obese mice. Here, we further evaluated the effects of raspberry on energy expenditure and adaptive thermogenesis and determined whether these effects were mediated by AMP-activated protein kinase (AMPK). Mice deficient in the catalytic subunit of AMPKα1 and wild-type (WT) mice were fed a high-fat diet (HFD) or HFD supplemented with 5% raspberry (RAS) for 10 weeks. The thermogenic program and related regulatory factors in adipose tissue were assessed. RAS improved the insulin sensitivity and reduced fat mass in WT mice but not in AMPKα1 -/- mice. In the absence of AMPKα1, RAS failed to increase oxygen consumption and heat production. Consistent with this, the thermogenic gene expression in brown adipose tissue and brown-like adipocyte formation in subcutaneous adipose tissue were not induced by RAS in AMPKα1 -/- mice. In conclusion, AMPKα1 is indispensable for the effects of RAS on brown and beige/brite adipocyte development, and prevention of obesity and metabolic dysfunction. Copyright © 2018. Published by Elsevier Inc.

  8. Vitamin K1 (phylloquinone) and K2 (menaquinone-4) supplementation improves bone formation in a high-fat diet-induced obese mice.

    PubMed

    Kim, Misung; Na, Woori; Sohn, Cheongmin

    2013-09-01

    Several reports suggest that obesity is a risk factor for osteoporosis. Vitamin K plays an important role in improving bone metabolism. This study examined the effects of vitamin K1 and vitamin K2 supplementation on the biochemical markers of bone turnover and morphological microstructure of the bones by using an obese mouse model. Four-week-old C57BL/6J male mice were fed a 10% fat normal diet group or a 45% kcal high-fat diet group, with or without 200 mg/1000 g vitamin K1 (Normal diet + K1, high-fat diet + K1) and 200 mg/1000 g vitamin K2 (Normal diet + K2, high-fat diet + K2) for 12 weeks. Serum levels of osteocalcin were higher in the high-fat diet + K2 group than in the high-fat diet group. Serum OPG level of the high-fat diet group, high-fat diet + K1 group, and high-fat diet + K2 group was 2.31 ± 0.31 ng/ml, 2.35 ± 0.12 ng/ml, and 2.90 ± 0.11 ng/ml, respectively. Serum level of RANKL in the high-fat diet group was significantly higher than that in the high-fat diet + K1 group and high-fat diet + K2 group (p<0.05). Vitamin K supplementation seems to tend to prevent bone loss in high-fat diet induced obese state. These findings suggest that vitamin K supplementation reversed the high fat diet induced bone deterioration by modulating osteoblast and osteoclast activities and prevent bone loss in a high-fat diet-induced obese mice.

  9. A prospective clinical pilot-trial comparing the effect of an optimized mixed diet versus a flexible low-glycemic index diet on nutrient intake and HbA(1c) levels in children with type 1 diabetes.

    PubMed

    Marquard, Jan; Stahl, Anna; Lerch, Christian; Wolters, Mareen; Grotzke-Leweling, Maike; Mayatepek, Ertan; Meissner, Thomas

    2011-01-01

    Low-glycemic index (GI) diet vs. high-GI diet improves glycemic control, but it is not clear whether a low-GI diet is superior to an optimized mixed diet (OMD). This was a 12-week parallel-group pilot-trial including 17 children with type 1 diabetes. A separate dietary education into the allocated diet (OMD vs. low-GI) was performed. Nutrition was recorded by means of a three-day dietary record. The primary objective was to determine the macro- and micronutrient composition of the different diets, the secondary objective was to determine the short-term effect on HbA(1c) levels. In the low-GI group carbohydrate intake decreased, fat intake increased by trend. In the OMD group fat and energy intake decreased. No changes of HbA(1c) levels between the groups were observed. OMD could have positive effects in overweight and obese diabetic children, since a reduction in fat and energy intake can be achieved. The findings of this pilot-trial suggest that OMD could be superior to a low-GI diet.

  10. A Diet, Physical Activity, and Meditation Intervention in Men With Rising Prostate-Specific Antigen (PSA)

    DTIC Science & Technology

    2007-05-01

    AD_________________ Award Number: DAMD17-03-1-0139 TITLE: A Diet , Physical Activity, and...To) 1 May 2003 – 30 Apr 2007 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER A Diet , Physical Activity, and Meditation Intervention in Men with...asymptomatic men with biochemically recurrent PrCA, as reflected by the PSA rise, is favorably affected by an intensive, vegetable-based diet , plus

  11. Effects of CB1 and CRF1 receptor antagonists on binge-like eating in rats with limited access to a sweet fat diet: Lack of withdrawal-like responses

    PubMed Central

    Sabino, Valentina; Rice, Kenner C.; Zorrilla, Eric P.

    2013-01-01

    Positive reinforcement (e.g., appetitive, rewarding properties) has often been hypothesized to maintain excessive intake of palatable foods. Recently, rats receiving intermittent access to high sucrose diets showed binge-like intake with withdrawal-like signs upon cessation of access, suggesting negative reinforcement mechanisms contribute as well. Whether intermittent access to high fat diets also produces withdrawal-like syndromes is controversial. The present study therefore tested the hypothesis that binge-like eating and withdrawal-like anxiety would arise in a novel model of binge eating based on daily 10-min access to a sweet fat diet (35% fat kcal, 31% sucrose kcal). Within 2–3 weeks, female Wistar rats developed binge-like intake comparable to levels seen previously for high sucrose diets (~40% of daily caloric intake within 10 min) plus excess weight gain and adiposity, but absent increased anxiety-like behavior during elevated plus-maze or defensive withdrawal tests after diet withdrawal. Binge-like intake was unaffected by pretreatment with the corticotropin-releasing factor type 1 (CRF1) receptor antagonist R121919, and corticosterone responses to restraint stress did not differ between sweet-fat binge rats and chow-fed controls. In contrast, pretreatment with the cannabinoid type 1 (CB1) receptor antagonist SR147778 dose-dependently reduced binge-like intake, albeit less effectively than in ad lib chow or sweet fat controls. A priming dose of the sweet fat diet did not precipitate increased anxiety-like behavior, but rather increased plus-maze locomotor activity. The results suggest that CB1-dependent positive reinforcement rather than CRF1-dependent negative reinforcement mechanisms predominantly maintain excessive intake in this limited access model of sweet-fat diet binges. PMID:22776620

  12. Protective role of cytochrome P450 1A1 (CYP1A1) against benzo[a]pyrene-induced toxicity in mouse aorta.

    PubMed

    Uno, Shigeyuki; Sakurai, Kenichi; Nebert, Daniel W; Makishima, Makoto

    2014-02-28

    Benzo[a]pyrene (BaP) is an environmental pollutant produced by combustive processes, such as cigarette smoke and coke ovens, and is implicated in the pathogenesis of atherosclerosis. Cytochrome P450 1A1 (CYP1A1) plays a role in both metabolic activation and detoxication of BaP in a context-dependent manner. The role of CYP1A1 in BaP-induced toxicity in aorta remains unknown. First, we fed Apoe⁻/⁻ mice an atherogenic diet plus BaP and found that oral BaP-enhanced atherosclerosis is associated with increased reactive oxygen species (ROS) and inflammatory markers, such as plasma tumor necrosis factor levels and aortic mRNA expression of vascular endothelial growth factor A (Vegfa). We next examined the effect of an atherogenic diet plus BaP on ROS and inflammatory markers in Cyp1a1⁻/⁻ mice. Although this treatment was not sufficient to induce atherosclerotic lesions in Cyp1a1⁻/⁻ mice, plasma antioxidant levels were decreased in Cyp1a1⁻/⁻ mice even in the absence of BaP treatment. The atherogenic diet plus BaP effectively elevated plasma ROS levels and expression of atherosclerosis-related genes, specifically Vegfa, in Cyp1a1⁻/⁻ mice compared with wild-type mice. BaP treatment increased Vegfa mRNA levels in mouse embryonic fibroblasts from Cyp1a1⁻/⁻ mice but not from wild-type mice. BaP-induced DNA adduct formation was increased in the aorta of Cyp1a1⁻/⁻ mice, but not wild-type or Apoe⁻/⁻ mice, and the atherogenic diet decreased BaP-induced DNA adducts in Cyp1a1⁻/⁻ mice compared with mice on a control diet. These data suggest that ROS production contributes to BaP-exacerbated atherosclerosis and that CYP1A1 plays a protective role against oral BaP toxicity in aorta. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Postprandial lysophospholipid suppresses hepatic fatty acid oxidation: the molecular link between group 1B phospholipase A2 and diet-induced obesity

    PubMed Central

    Labonté, Eric D.; Pfluger, Paul T.; Cash, James G.; Kuhel, David G.; Roja, Juan C.; Magness, Daniel P.; Jandacek, Ronald J.; Tschöp, Matthias H.; Hui, David Y.

    2010-01-01

    Decrease in fat catabolic rate on consuming a high-fat diet contributes to diet-induced obesity. This study used group 1B phospholipase A2 (Pla2g1b)-deficient mice, which are resistant to hyperglycemia, to test the hypothesis that Pla2g1b and its lipolytic product lysophospholipid suppress hepatic fat utilization and energy metabolism in promoting diet-induced obesity. The metabolic consequences of hypercaloric diet, including body weight gain, energy expenditure, and fatty acid oxidation, were compared between Pla2g1b+/+ and Pla2g1b−/− mice. The Pla2g1b−/− mice displayed normal energy balance when fed chow, but were resistant to obesity when challenged with a hypercaloric diet. Obesity resistance in Pla2g1b−/− mice is due to their ability to maintain elevated energy expenditure and core body temperature when subjected to hypercaloric diet, which was not observed in Pla2g1b+/+ mice. The Pla2g1b−/− mice also displayed increased postprandial hepatic fat utilization due to increased expression of peroxisome proliferator-activated receptor (PPAR)-α, PPAR-δ, PPAR-γ, cd36/Fat, and Ucp2, which coincided with reduced postprandial plasma lysophospholipid levels. Lysophospholipids produced by Pla2g1b hydrolysis suppress hepatic fat utilization and down-regulate energy expenditure, thereby preventing metabolically beneficial adaptation to a high-fat diet exposure in promoting diet-induced obesity and type 2 diabetes.—Labonté, E. D., Pfluger, P. T., Cash, J. G., Kuhel, D. G., Rojas, J. C., Magness, D. P., Jandacek, R. J., Tschöp, M. H., Hui, D. Y. Postprandial lysophospholipid suppresses hepatic fatty acid oxidation: the molecular link between group 1B phospholipase A2 and diet-induced obesity. PMID:20215528

  14. Low-carbohydrate diets for type 1 diabetes mellitus: A systematic review.

    PubMed

    Turton, Jessica L; Raab, Ron; Rooney, Kieron B

    2018-01-01

    Type 1 diabetes is an autoimmune condition characterised by pancreatic beta cell destruction and absolute insulin deficiency. The strongest predictor of diabetes complications is glycaemic control and achieving HbA1c ≤ 7.0% is the primary management target. However, standard treatment appears to be lacking and adjunctive strategies require consideration. A systematic review was conducted to examine the effect of low-carbohydrate diets on type 1 diabetes management. Four databases were searched from inception until 28 March 2017: MEDLINE; CINAHL; Cochrane Library; and EMBASE. All primary studies containing a methods section (excluding cross-sectional) were included. Reports had to quantitatively measure the effect(s) of a dietary intervention or observed intake over at least two weeks where carbohydrate is below 45% total energy in adults and/or children with type 1 diabetes. The primary outcome was HbA1c and secondary outcomes were severe hypoglycaemia, total daily insulin, BMI, quality of life and mean daily glucose. Seventy-nine full-text articles were assessed for eligibility and nine were included (two randomised controlled trials, four pre-post interventions, two case-series, one case-report). Eight studies reported a mean change in HbA1c with a low-carbohydrate diet. Of these, four reported a non-significant change (P ≥ 0.05) and three reported statistically significant reductions (P < 0.05). Two studies reported severe hypoglycaemia, five reported total insulin, three reported BMI, and one reported blood glucose. Due to the significant heterogeneity of included studies, an overall effect could not be determined. This review presents all available evidence on low-carbohydrate diets for type 1 diabetes and suggests an urgent need for more primary studies.

  15. SLC6A1 Mutation and Ketogenic Diet in Epilepsy With Myoclonic-Atonic Seizures.

    PubMed

    Palmer, Samantha; Towne, Meghan C; Pearl, Phillip L; Pelletier, Renee C; Genetti, Casie A; Shi, Jiahai; Beggs, Alan H; Agrawal, Pankaj B; Brownstein, Catherine A

    2016-11-01

    Epilepsy with myoclonic-atonic seizures, also known as myoclonic-astatic epilepsy or Doose syndrome, has been recently linked to variants in the SLC6A1 gene. Epilepsy with myoclonic-atonic seizures is often refractory to antiepileptic drugs, and the ketogenic diet is known for treating medically intractable seizures, although the mechanism of action is largely unknown. We report a novel SLC6A1 variant in a patient with epilepsy with myoclonic-atonic seizures, analyze its effects, and suggest a mechanism of action for the ketogenic diet. We describe a ten-year-old girl with epilepsy with myoclonic-atonic seizures and a de novo SLC6A1 mutation who responded well to the ketogenic diet. She carried a c.491G>A mutation predicted to cause p.Cys164Tyr amino acid change, which was identified using whole exome sequencing and confirmed by Sanger sequencing. High-resolution structural modeling was used to analyze the likely effects of the mutation. The SLC6A1 gene encodes a transporter that removes gamma-aminobutyric acid from the synaptic cleft. Mutations in SLC6A1 are known to disrupt the gamma-aminobutyric acid transporter protein 1, affecting gamma-aminobutyric acid levels and causing seizures. The p.Cys164Tyr variant found in our study has not been previously reported, expanding on the variants linked to epilepsy with myoclonic-atonic seizures. A 10-year-old girl with a novel SLC6A1 mutation and epilepsy with myoclonic-atonic seizures had an excellent clinical response to the ketogenic diet. An effect of the diet on gamma-aminobutyric acid reuptake mediated by gamma-aminobutyric acid transporter protein 1 is suggested. A personalized approach to epilepsy with myoclonic-atonic seizures patients carrying SLC6A1 mutation and a relationship between epilepsy with myoclonic-atonic seizures due to SLC6A1 mutations, GABAergic drugs, and the ketogenic diet warrants further exploration. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Forced Hepatic Overexpression of CEACAM1 Curtails Diet-Induced Insulin Resistance

    PubMed Central

    Al-Share, Qusai Y.; DeAngelis, Anthony M.; Lester, Sumona Ghosh; Bowman, Thomas A.; Ramakrishnan, Sadeesh K.; Abdallah, Simon L.; Russo, Lucia; Patel, Payal R.; Kaw, Meenakshi K.; Raphael, Christian K.; Kim, Andrea Jung; Heinrich, Garrett; Lee, Abraham D.; Kim, Jason K.; Kulkarni, Rohit N.; Philbrick, William M.

    2015-01-01

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) regulates insulin sensitivity by promoting hepatic insulin clearance. Liver-specific inactivation or global null-mutation of Ceacam1 impairs hepatic insulin extraction to cause chronic hyperinsulinemia, resulting in insulin resistance and visceral obesity. In this study we investigated whether diet-induced insulin resistance implicates changes in hepatic CEACAM1. We report that feeding C57/BL6J mice a high-fat diet reduced hepatic CEACAM1 levels by >50% beginning at 21 days, causing hyperinsulinemia, insulin resistance, and elevation in hepatic triacylglycerol content. Conversely, liver-specific inducible CEACAM1 expression prevented hyperinsulinemia and markedly limited insulin resistance and hepatic lipid accumulation that were induced by prolonged high-fat intake. This was partly mediated by increased hepatic β-fatty acid oxidation and energy expenditure. The data demonstrate that the high-fat diet reduced hepatic CEACAM1 expression and that overexpressing CEACAM1 in liver curtailed diet-induced metabolic abnormalities by protecting hepatic insulin clearance. PMID:25972571

  17. Should fatty acid signature proportions sum to 1 for diet estimation?

    USGS Publications Warehouse

    Bromaghin, Jeffrey F.; Budge, Suzanne M.; Thiemann, Gregory W.

    2016-01-01

    Knowledge of predator diets, including how diets might change through time or differ among predators, provides essential insights into their ecology. Diet estimation therefore remains an active area of research within quantitative ecology. Quantitative fatty acid signature analysis (QFASA) is an increasingly common method of diet estimation. QFASA is based on a data library of prey signatures, which are vectors of proportions summarizing the fatty acid composition of lipids, and diet is estimated as the mixture of prey signatures that most closely approximates a predator’s signature. Diets are typically estimated using proportions from a subset of all fatty acids that are known to be solely or largely influenced by diet. Given the subset of fatty acids selected, the current practice is to scale their proportions to sum to 1.0. However, scaling signature proportions has the potential to distort the structural relationships within a prey library and between predators and prey. To investigate that possibility, we compared the practice of scaling proportions with two alternatives and found that the traditional scaling can meaningfully bias diet estimators under some conditions. Two aspects of the prey types that contributed to a predator’s diet influenced the magnitude of the bias: the degree to which the sums of unscaled proportions differed among prey types and the identifiability of prey types within the prey library. We caution investigators against the routine scaling of signature proportions in QFASA.

  18. Aflatoxin B1-contaminated diet disrupts the blood-brain barrier and affects fish behavior: Involvement of neurotransmitters in brain synaptosomes.

    PubMed

    Baldissera, Matheus D; Souza, Carine F; Zeppenfeld, Carla Cristina; Descovi, Sharine N; Moreira, Karen Luise S; da Rocha, Maria Izabel U M; da Veiga, Marcelo L; da Silva, Aleksandro S; Baldisserotto, Bernardo

    2018-06-01

    It is known that the cytotoxic effects of aflatoxin B 1 (AFB 1 ) in endothelial cells of the blood-brain barrier (BBB) are associated with behavioral dysfunction. However, the effects of a diet contaminated with AFB 1 on the behavior of silver catfish remain unknown. Thus, the aim of this study was to evaluate whether an AFB 1 -contaminated diet (1177 ppb kg feed -1 ) impaired silver catfish behavior, as well as whether disruption of the BBB and alteration of neurotransmitters in brain synaptosomes are involved. Fish fed a diet contaminated with AFB 1 presented a behavioral impairment linked with hyperlocomotion on days 14 and 21 compared with the control group (basal diet). Neurotransmitter levels were also affected on days 14 and 21. The permeability of the BBB to Evans blue dye increased in the intoxicated animals compared with the control group, which suggests that the BBB was disrupted. Moreover, acetylcholinesterase (AChE) activity in brain synaptosomes was increased in fish fed a diet contaminated with AFB 1 , while activity of the sodium-potassium pump (Na + , K + -ATPase) was decreased. Based on this evidence, the present study shows that silver catfish fed a diet containing AFB 1 exhibit behavioral impairments related to hyperlocomotion. This diet caused a disruption of the BBB and brain lesions, which may contribute to the behavioral changes. Also, the alterations in the activities of AChE and Na + , K + -ATPase in brain synaptosomes may directly contribute to this behavior, since they may promote synapse dysfunction. In addition, the hyperlocomotion may be considered an important macroscopic marker indicating possible AFB 1 intoxication. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. ET-1 increases reactive oxygen species following hypoxia and high-salt diet in the mouse glomerulus.

    PubMed

    Heimlich, J B; Speed, J S; Bloom, C J; O'Connor, P M; Pollock, J S; Pollock, D M

    2015-03-01

    This study was designed to determine whether ET-1 derived from endothelial cells contributes to oxidative stress in the glomerulus of mice subjected to a high-salt diet and/or hypoxia. C57BL6/J control mice or vascular endothelial cell ET-1 knockout (VEET KO) mice were subjected to 3-h exposure to hypoxia (8% O₂) and/or 2 weeks of high-salt diet (4% NaCl) prior to metabolic cage assessment of renal function and isolation of glomeruli for the determination of reactive oxygen species (ROS). In control mice, hypoxia significantly increased urinary protein excretion during the initial 24 h, but only in animals on a high-salt diet. Hypoxia increased glomerular ET-1 mRNA expression in control, but not in vascular endothelial cell ET-1 knockout (VEET KO) mice. Under normoxic conditions, mice on a high-salt diet had approx. 150% higher glomerular ET-1 mRNA expression compared with a normal-salt diet (P < 0.05). High-salt diet administration significantly increased glomerular ROS production in flox control, but not in glomeruli isolated from VEET KO mice. In C57BL6/J mice, the ETA receptor-selective antagonist, ABT-627, significantly attenuated the increase in glomerular ROS production produced by high-salt diet. In addition, chronic infusion of C57BL6/J mice with a subpressor dose of ET-1 (osmotic pumps) significantly increased the levels of glomerular ROS that were prevented by ETA antagonist treatment. These data suggest that both hypoxia and a high-salt diet increase glomerular ROS production via endothelial-derived ET-1-ETA receptor activation and provide a potential mechanism for ET-1-induced nephropathy. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  20. Correlations between polymorphisms in the uridine diphosphate-glucuronosyltransferase 1A and C-C motif chemokine receptor 5 genes and infection with the hepatitis B virus in three ethnic groups in China.

    PubMed

    Zhang, Chan; He, Yan; Shan, Ke-Ren; Tan, Kui; Zhang, Ting; Wang, Chan-Juan; Guan, Zhi-Zhong

    2018-02-01

    Objective To determine whether genetic polymorphisms in the uridine diphosphate-glucuronosyltransferase 1A ( UGT1A) and the C-C motif chemokine receptor 5 ( CCR5) genes are associated with hepatitis B virus (HBV) infection in Yi, Yao and Han ethnic groups in the Guizhou Province of China. Methods The study enrolled subjects with and without HBV infection. Whole blood was used for DNA genotyping using standard techniques. The study determined the frequencies of several polymorphic alleles ( UGT1A6 [rs2070959], UGT1A1 [rs8175347], CCR5-59029 [rs1799987] and CCR5Δ32 [rs333]) and then characterized their relationship with HBV infection. Results A total of 404 subjects were enrolled in the study: 138 from the Yao group, 101 from the Yi group and 165 from the Han group. There was a significant difference in the frequency of UGT1A1 rs8175347 polymorphisms among the three groups. The rates of 7TA carriers of UGT1A1 rs8175347 in all three groups were significantly higher than the other genotypes. Individuals with genotype AA of UGT1A6 rs2070959 in the Yi group had a higher risk for HBV infection than in the Yao and Han groups. The frequency of genotype GG in CCR5-59029 in the Yao group was significantly higher than in the Yi group. The genotypes of CCR5Δ32 were not associated with HBV infection. Conclusion These findings provide genetic and epidemiological evidence for an association of UGT1A and CCR5-59029 polymorphisms with HBV infection in Chinese Yi and Yao populations.

  1. A Diet, Physical Activity, and Meditation Intervention in Men With Rising Prostate-Specific Antigen (PSA)

    DTIC Science & Technology

    2006-05-01

    AD_________________ Award Number: DAMD17-03-1-0139 TITLE: A Diet , Physical Activity, and...A Diet , Physical Activity, and Meditation Intervention in Men With Rising Prostate- 5a. CONTRACT NUMBER Specific Antigen (PSA...favorably affected by an intensive, vegetable-based diet , plus physical activity and mindfulness-based stress reduction. This randomized trial will

  2. Endothelial LOX-1 activation differentially regulates arterial thrombus formation depending on oxLDL levels: role of the Oct-1/SIRT1 and ERK1/2 pathways.

    PubMed

    Akhmedov, Alexander; Camici, Giovanni G; Reiner, Martin F; Bonetti, Nicole R; Costantino, Sarah; Holy, Erik W; Spescha, Remo D; Stivala, Simona; Schaub Clerigué, Ariane; Speer, Thimoteus; Breitenstein, Alexander; Manz, Jasmin; Lohmann, Christine; Paneni, Francesco; Beer, Juerg-Hans; Lüscher, Thomas F

    2017-04-01

    The lectin-like oxLDL receptor-1 (LOX-1) promotes endothelial uptake of oxidized low-density lipoprotein (oxLDL) and plays an important role in atherosclerosis and acute coronary syndromes (ACS). However, its role in arterial thrombus formation remains unknown. We investigated whether LOX-1 plays a role in arterial thrombus formation in vivo at different levels of oxLDL using endothelial-specific LOX-1 transgenic mice (LOX-1TG) and a photochemical injury thrombosis model of the carotid artery. In mice fed a normal chow diet, time to arterial occlusion was unexpectedly prolonged in LOX-1TG as compared to WT. In line with this, tissue factor (TF) expression and activity in carotid arteries of LOX-1TG mice were reduced by half. This effect was mediated by activation of octamer transcription factor 1 (Oct-1) leading to upregulation of the mammalian deacetylase silent information regulator-two 1 (SIRT1) via binding to its promoter and subsequent inhibition of NF-κB signaling. In contrast, intravenous injection of oxLDL as well as high cholesterol diet for 6 weeks led to a switch from the Oct-1/SIRT1 signal transduction pathway to the ERK1/2 pathway and in turn to an enhanced thrombotic response with shortened occlusion time. Thus, LOX-1 differentially regulates thrombus formation in vivo depending on the degree of activation by oxLDL. At low oxLDL levels LOX-1 activates the protective Oct-1/SIRT1 pathway, while at higher levels of the lipoprotein switches to the thrombogenic ERK1/2 pathway. These findings may be important for arterial thrombus formation in ACS and suggest that SIRT1 may represent a novel therapeutic target in this context. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  3. Inhibition of the aryl hydrocarbon receptor prevents Western diet-induced obesity. Model for AHR activation by kynurenine via oxidized-LDL, TLR2/4, TGFβ, and IDO1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, Benjamin J.

    Obesity is an increasingly urgent global problem, yet, little is known about its causes and less is known how obesity can be effectively treated. We showed previously that the aryl hydrocarbon receptor (AHR) plays a role in the regulation of body mass in mice fed Western diet. The AHR is a ligand-activated nuclear receptor that regulates genes involved in a number of biological pathways, including xenobiotic metabolism and T cell polarization. This study was an investigation into whether inhibition of the AHR prevents Western diet-based obesity. Male C57Bl/6J mice were fed control and Western diets with and without the AHRmore » antagonist α-naphthoflavone or CH-223191, and a mouse hepatocyte cell line was used to delineate relevant cellular pathways. Studies are presented showing that the AHR antagonists α-naphthoflavone and CH-223191 significantly reduce obesity and adiposity and ameliorates liver steatosis in male C57Bl/6J mice fed a Western diet. Mice deficient in the tryptophan metabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) were also resistant to obesity. Using an AHR-directed, luciferase-expressing mouse hepatocyte cell line, we show that the transforming growth factor β1 (TGFβ1) signaling pathway via PI3K and NF-κB and the toll-like receptor 2/4 (TLR2/4) signaling pathway stimulated by oxidized low-density lipoproteins via NF-κB, each induce luciferase expression; however, TLR2/4 signaling was significantly reduced by inhibition of IDO1. At physiological levels, kynurenine but not kynurenic acid (both tryptophan metabolites and known AHR agonists) activated AHR-directed luciferase expression. We propose a hepatocyte-based model, in which kynurenine production is increased by enhanced IDO1 activity stimulated by TGFβ1 and TLR2/4 signaling, via PI3K and NF-κB, to perpetuate a cycle of AHR activation to cause obesity; and inhibition of the AHR, in turn, blocks the cycle's output to prevent obesity. The AHR with its broad ligand binding

  4. Impact of a high-cholesterol diet on expression levels of Niemann-Pick C1-like 1 and intestinal transporters in rats and mice.

    PubMed

    Kawase, Atsushi; Araki, Yasuha; Ueda, Yukiko; Nakazaki, Sayaka; Iwaki, Masahiro

    2016-08-01

    Niemann-Pick C1-like 1 (NPC1L1), ATP-binding cassette (ABC)G5, and ABCG8 are all involved in intestinal cholesterol absorption. It is unclear whether a high-cholesterol (HC) diet affects the expression of these transporters in rats and mice as well as humans. We examined the effects of an HC diet on their expression in small intestine and the differences between rats and mice in the responsive of this expression to an HC diet. In addition to these transporters, alterations in six representative drug and nutrient transporters (multidrug resistance-associated protein, breast cancer resistance protein, peptide transporter, sodium-glucose linked transporter, glucose transporter, and L-type amino acid transporter) and transcriptional factors such as hepatocyte nuclear factor (HNF)4α, sterol regulatory element-binding protein (SREBP)2, and liver X receptor (LXR)α were determined. In rats and mice fed an HC diet for 7 days, the mRNA and protein levels of NPC1L1 in the small intestine were determined by real-time reverse transcription polymerase chain reaction and western blotting, respectively. The mRNA levels of ABCG5 and ABCG8, six representative transporters, and transcriptional factors such as HNF4α, SREBP2, and LXR were examined. Significant decreases in the expression levels of NPC1L1 were observed in mice, but not rats, fed the HC diet. The mRNA levels of ABCG5 and ABCG8 were significantly increased in HC rats but not in mice. Only minor changes in the mRNA levels of the other transporters were seen in HC rats and mice. Decreased mRNA levels of HNF4α and SREBP2 in mice could be involved in the reduction in NPC1L1 expression observed upon the introduction of an HC diet. These results indicate that the effects of an HC diet on the expression levels of NPC1L1, ABCG5, and ABCG8 differ between mice and rats.

  5. Reduced adiponectin expression after high-fat diet is associated with selective up-regulation of ALDH1A1 and further retinoic acid receptor signaling in adipose tissue

    PubMed Central

    Landrier, Jean-Francois; Kasiri, Elnaz; Karkeni, Esma; Mihály, Johanna; Béke, Gabriella; Weiss, Kathrin; Lucas, Renata; Aydemir, Gamze; Salles, Jérome; Walrand, Stéphane; de Lera, Angel R.; Rühl, Ralph

    2017-01-01

    Adiponectin is an adipocyte-derived adipokine with potent antidiabetic, anti-inflammatory, and antiatherogenic activity. Long-term, high-fat diet results in gain of body weight, adiposity, further inflammatory-based cardiovascular diseases, and reduced adiponectin secretion. Vitamin A derivatives/retinoids are involved in several of these processes, which mainly take place in white adipose tissue (WAT). In this study, we examined adiponectin expression as a function of dietary high-fat and high–vitamin A conditions in mice. A decrease of adiponectin expression in addition to an up-regulation of aldehyde dehydrogenase A1 (ALDH1A1), retinoid signaling, and retinoic acid response element signaling was selectively observed in WAT of mice fed a normal–vitamin A, high-fat diet. Reduced adiponectin expression in WAT was also observed in mice fed a high–vitamin A diet. Adipocyte cell culture revealed that endogenous and synthetic retinoic acid receptor (RAR)α- and RARγ-selective agonists, as well as a synthetic retinoid X receptor agonist, efficiently reduced adiponectin expression, whereas ALDH1A1 expression only increased with RAR agonists. We conclude that reduced adiponectin expression under high-fat dietary conditions is dependent on 1) increased ALDH1A1 expression in adipocytes, which does not increase all-trans-retinoic acid levels; 2) further RAR ligand–induced, WAT-selective, increased retinoic acid response element–mediated signaling; and 3) RAR ligand–dependent reduction of adiponectin expression.—Landrier, J.-F., Kasiri, E., Karkeni, E., Mihály, J., Béke, G., Weiss, K., Lucas, R., Aydemir, G., Salles, J., Walrand, S., de Lera, A. R., Rühl, R. Reduced adiponectin expression after high-fat diet is associated with selective up-regulation of ALDH1A1 and further retinoic acid receptor signaling in adipose tissue. PMID:27729412

  6. Hypolipidemic activity and mechanisms of the total phenylpropanoid glycosides from Ligustrum robustum (Roxb.) Blume by AMPK-SREBP-1c pathway in hamsters fed a high-fat diet.

    PubMed

    Yang, Runmei; Chu, Xinxin; Sun, Le; Kang, Zhuoying; Ji, Min; Yu, Ying; Liu, Ying; He, Zhendan; Gao, Nannan

    2018-04-01

    The aim of this study was to evaluate the hypolipidemic effect and mechanisms of total phenylpropanoid glycosides extracted from Ligustrum robustum (Roxb.) Blume (LRTPG) in hamsters fed a high-fat diet and to discover bioactive components in HepG2 cell model induced by oleic acid. LRTPG of high (1.2 g/kg), medium (0.6 g/kg), and low (0.3 g/kg) doses was administrated daily for 21 consecutive days in hamsters. We found that in hamsters fed a high-fat diet, LRTPG effectively reduced the concentrations of plasma triglycerides (TG), free fatty acid, total cholesterol, low-density lipoprotein cholesterol, and hepatic TG and total cholesterol. And the compounds acteoside, ligupurpuroside A, ligupurpuroside C, and ligupurpuroside D significantly inhibited lipid accumulation in HepG2 cell at the concentration of 50 μmol/L. Mechanism research demonstrated that LRTPG increased the levels of phospho-AMP-activated protein kinase and phospho-sterol regulatory element binding protein-1c in liver, further to suppress the downstream lipogenic genes as stearoyl-CoA desaturase 1, glycerol-3-phosphate acyltransferase, 1-acylglycerol-3-phosphate O-acyltransferase 2, and diacylglycerol acyltransferase 2. In addition, LRTPG increased the hydrolysis of circulating TG by up-regulating lipoprotein lipase activities. These results indicate that LRTPG prevents hyperlipidemia via activation of hepatic AMP-activated protein kinase-sterol regulatory element binding protein-1c pathway. Copyright © 2018 John Wiley & Sons, Ltd.

  7. Dexras1 mediates glucocorticoid-associated adipogenesis and diet-induced obesity

    PubMed Central

    Cha, Jiyoung Y.; Kim, Hyo Jung; Yu, Jung Hwan; Xu, Jing; Kim, Daham; Paul, Bindu D.; Choi, Hyeonjin; Kim, Seyun; Lee, Yoo Jeong; Ho, Gary P.; Rao, Feng; Snyder, Solomon H.; Kim, Jae-woo

    2013-01-01

    Adipogenesis, the conversion of precursor cells into adipocytes, is associated with obesity and is mediated by glucocorticoids acting via hitherto poorly characterized mechanisms. Dexras1 is a small G protein of the Ras family discovered on the basis of its marked induction by the synthetic glucocorticoid dexamethasone. We show that Dexras1 mediates adipogenesis and diet-induced obesity. Adipogenic differentiation of 3T3-L1 cells is abolished with Dexras1 depletion, whereas overexpression of Dexras1 elicits adipogenesis. Adipogenesis is markedly reduced in mouse embryonic fibroblasts from Dexras1-deleted mice, whereas adiposity and diet-induced weight gain are diminished in the mutant mice. PMID:24297897

  8. Muscle-specific deletion of Prkaa1 enhances skeletal muscle lipid accumulation in mice fed a high-fat diet.

    PubMed

    Wu, Weiche; Xu, Ziye; Zhang, Ling; Liu, Jiaqi; Feng, Jie; Wang, Xinxia; Shan, Tizhong; Wang, Yizhen

    2018-05-01

    Excessive intramyocellular triacylglycerols (IMTGs, muscle lipids) are associated with the abnormal energy metabolism and insulin resistance of skeletal muscle. AMP-activated protein kinase (AMPK), a crucial cellular energy sensor, consists of α, β and γ subunits. Researchers have not clearly determined whether Prkaa1 (also known as AMPKα1) affects IMTG accumulation in skeletal muscle. Here, we show an important role of Prkaa1 in skeletal muscle lipid metabolism. Deletion of muscle Prkaa1 leads to the delayed development of skeletal muscles but does not affect glucose tolerance or insulin sensitivity in animals fed a normal diet. Notably, when animals are fed a high-fat diet, the skeletal muscle of muscle-specific Prkaa1 knockout mice accumulates more lipids than the skeletal muscle of wild-type (WT) mice, with concomitant upregulation of adipogenic gene expressions and downregulation of the expression of genes associated with mitochondrial oxidation. Muscle-specific Prkaa1 ablation also results in hyperlipidemia, which may contribute to the increased IMTG levels. Furthermore, Prkaa1 deletion activates skeletal muscle mTOR signalling, which has a central role in lipid metabolism and mitochondrial oxidation. Collectively, our study provides new insights into the role of Prkaa1 in skeletal muscle. This knowledge may contribute to the treatment of related metabolic diseases.

  9. Ingestion of diet soda before a glucose load augments glucagon-like peptide-1 secretion.

    PubMed

    Brown, Rebecca J; Walter, Mary; Rother, Kristina I

    2009-12-01

    The goal of this study was to determine the effect of artificial sweeteners on glucose, insulin, and glucagon-like peptide (GLP)-1 in humans. For this study, 22 healthy volunteers (mean age 18.5 +/- 4.2 years) underwent two 75-g oral glucose tolerance tests with frequent measurements of glucose, insulin, and GLP-1 for 180 min. Subjects drank 240 ml of diet soda or carbonated water, in randomized order, 10 min prior to the glucose load. Glucose excursions were similar after ingestion of carbonated water and diet soda. Serum insulin levels tended to be higher after diet soda, without statistical significance. GLP-1 peak and area under the curve (AUC) were significantly higher with diet soda (AUC 24.0 +/- 15.2 pmol/l per 180 min) versus carbonated water (AUC 16.2 +/- 9.0 pmol/l per 180 min; P = 0.003). Artificial sweeteners synergize with glucose to enhance GLP-1 release in humans. This increase in GLP-1 secretion may be mediated via stimulation of sweet-taste receptors on L-cells by artificial sweetener.

  10. Effects of Curcuma xanthorrhiza Extracts and Their Constituents on Phase II Drug-metabolizing Enzymes Activity.

    PubMed

    Salleh, Nurul Afifah Mohd; Ismail, Sabariah; Ab Halim, Mohd Rohaimi

    2016-01-01

    Curcuma xanthorrhiza is a native Indonesian plant and traditionally utilized for a range of illness including liver damage, hypertension, diabetes, and cancer. The study determined the effects of C. xanthorrhiza extracts (ethanol and aqueous) and their constituents (curcumene and xanthorrhizol) on UDP-glucuronosyltransferase (UGT) and glutathione transferase (GST) activities. The inhibition studies were evaluated both in rat liver microsomes and in human recombinant UGT1A1 and UGT2B7 enzymes. p-nitrophenol and beetle luciferin were used as the probe substrates for UGT assay while 1-chloro-2,4-dinitrobenzene as the probe for GST assay. The concentrations of extracts studied ranged from 0.1 to 1000 μg/mL while for constituents ranged from 0.01 to 500 μM. In rat liver microsomes, UGT activity was inhibited by the ethanol extract (IC 50 =279.74 ± 16.33 μg/mL). Both UGT1A1 and UGT2B7 were inhibited by the ethanol and aqueous extracts with IC 50 values ranging between 9.59-22.76 μg/mL and 110.71-526.65 μg/Ml, respectively. Rat liver GST and human GST Pi-1 were inhibited by ethanol and aqueous extracts, respectively (IC 50 =255.00 ± 13.06 μg/mL and 580.80 ± 18.56 μg/mL). Xanthorrhizol was the better inhibitor of UGT1A1 (IC 50 11.30 ± 0.27 μM) as compared to UGT2B7 while curcumene did not show any inhibition. For GST, both constituents did not show any inhibition. These findings suggest that C. xanthorrhiza have the potential to cause herb-drug interaction with drugs that are primarily metabolized by UGT and GST enzymes. Findings from this study would suggest which of Curcuma xanthorrhiza extracts and constituents that would have potential interactions with drugs which are highly metabolized by UGT and GST enzymes. Further clinical studies can then be designed if needed to evaluate the in vivo pharmacokinetic relevance of these interactions Abbreviations Used : BSA: Bovine serum albumin, CAM: Complementary and alternative medicine, cDNA: Complementary

  11. Validation of variants in SLC28A3 and UGT1A6 as genetic markers predictive of anthracycline-induced cardiotoxicity in children.

    PubMed

    Visscher, H; Ross, C J D; Rassekh, S R; Sandor, G S S; Caron, H N; van Dalen, E C; Kremer, L C; van der Pal, H J; Rogers, P C; Rieder, M J; Carleton, B C; Hayden, M R

    2013-08-01

    The use of anthracyclines as effective antineoplastic drugs is limited by the occurrence of cardiotoxicity. Multiple genetic variants predictive of anthracycline-induced cardiotoxicity (ACT) in children were recently identified. The current study was aimed to assess replication of these findings in an independent cohort of children. . Twenty-three variants were tested for association with ACT in an independent cohort of 218 patients. Predictive models including genetic and clinical risk factors were constructed in the original cohort and assessed in the current replication cohort. . We confirmed the association of rs17863783 in UGT1A6 and ACT in the replication cohort (P = 0.0062, odds ratio (OR) 7.98). Additional evidence for association of rs7853758 (P = 0.058, OR 0.46) and rs885004 (P = 0.058, OR 0.42) in SLC28A3 was found (combined P = 1.6 × 10(-5) and P = 3.0 × 10(-5), respectively). A previously constructed prediction model did not significantly improve risk prediction in the replication cohort over clinical factors alone. However, an improved prediction model constructed using replicated genetic variants as well as clinical factors discriminated significantly better between cases and controls than clinical factors alone in both original (AUC 0.77 vs. 0.68, P = 0.0031) and replication cohort (AUC 0.77 vs. 0.69, P = 0.060). . We validated genetic variants in two genes predictive of ACT in an independent cohort. A prediction model combining replicated genetic variants as well as clinical risk factors might be able to identify high- and low-risk patients who could benefit from alternative treatment options. Copyright © 2013 Wiley Periodicals, Inc.

  12. PTP1B Deficiency Enables the Ability of a High-Fat Diet to Drive the Invasive Character of PTEN-Deficient Prostate Cancers.

    PubMed

    Labbé, David P; Uetani, Noriko; Vinette, Valérie; Lessard, Laurent; Aubry, Isabelle; Migon, Eva; Sirois, Jacinthe; Haigh, Jody J; Bégin, Louis R; Trotman, Lloyd C; Paquet, Marilène; Tremblay, Michel L

    2016-06-01

    Diet affects the risk and progression of prostate cancer, but the interplay between diet and genetic alterations in this disease is not understood. Here we present genetic evidence in the mouse showing that prostate cancer progression driven by loss of the tumor suppressor Pten is mainly unresponsive to a high-fat diet (HFD), but that coordinate loss of the protein tyrosine phosphatase Ptpn1 (encoding PTP1B) enables a highly invasive disease. Prostate cancer in Pten(-/-)Ptpn1(-/-) mice was characterized by increased cell proliferation and Akt activation, interpreted to reflect a heightened sensitivity to IGF-1 stimulation upon HFD feeding. Prostate-specific overexpression of PTP1B was not sufficient to initiate prostate cancer, arguing that it acted as a diet-dependent modifier of prostate cancer development in Pten(-/-) mice. Our findings offer a preclinical rationale to investigate the anticancer effects of PTP1B inhibitors currently being studied clinically for diabetes treatment as a new modality for management of prostate cancer. Cancer Res; 76(11); 3130-5. ©2016 AACR. ©2016 American Association for Cancer Research.

  13. Fructose Mediated Non-Alcoholic Fatty Liver Is Attenuated by HO-1-SIRT1 Module in Murine Hepatocytes and Mice Fed a High Fructose Diet

    PubMed Central

    Sodhi, Komal; Puri, Nitin; Favero, Gaia; Stevens, Sarah; Meadows, Charles; Abraham, Nader G.; Rezzani, Rita; Ansinelli, Hayden; Lebovics, Edward; Shapiro, Joseph I.

    2015-01-01

    Background Oxidative stress underlies the etiopathogenesis of nonalcoholic fatty liver disease (NAFLD), obesity and cardiovascular disease (CVD). Heme Oxygenase-1 (HO-1) is a potent endogenous antioxidant gene that plays a key role in decreasing oxidative stress. Sirtuin1 (SIRT1) belongs to the family of NAD-dependent de-acyetylases and is modulated by cellular redox. Hypothesis We hypothesize that fructose-induced obesity creates an inflammatory and oxidative environment conducive to the development of NAFLD and metabolic syndrome. The aim of this study is to determine whether HO-1 acts through SIRT1 to form a functional module within hepatocytes to attenuate steatohepatitis, hepatic fibrosis and cardiovascular dysfunction. Methods and Results We examined the effect of fructose, on hepatocyte lipid accumulation and fibrosis in murine hepatocytes and in mice fed a high fructose diet in the presence and absence of CoPP, an inducer of HO-1, and SnMP, an inhibitor of HO activity. Fructose increased oxidative stress markers and decreased HO-1 and SIRT1 levels in hepatocytes (p<0.05). Further fructose supplementation increased FAS, PPARα, pAMPK and triglycerides levels; CoPP negated this increase. Concurrent treatment with CoPP and SIRT1 siRNA in hepatocytes increased FAS, PPARα, pAMPK and triglycerides levels suggesting that HO-1 is upstream of SIRT1 and suppression of SIRT1 attenuates the beneficial effects of HO-1. A high fructose diet increased insulin resistance, blood pressure, markers of oxidative stress and lipogenesis along with fibrotic markers in mice (p<0.05). Increased levels of HO-1 increased SIRT1 levels and ameliorated fructose-mediated lipid accumulation and fibrosis in liver along with decreasing vascular dysfunction (p<0.05 vs. fructose). These beneficial effects of CoPP were reversed by SnMP. Conclusion Taken together, our study demonstrates, for the first time, that HO-1 induction attenuates fructose-induced hepatic lipid deposition, prevents the

  14. N-Caffeoyltryptamine, a Potent Anti-Inflammatory Phenolic Amide, Suppressed MCP-1 Expression in LPS-stimulated THP-1 Cells and Rats Fed a High-Fat Diet.

    PubMed

    Park, Jae B

    2017-05-27

    Monocyte chemoattractant protein-1 (MCP-1) is a well-known chemokine critically involved in the pathophysiological progression of several inflammatory diseases including arthrosclerosis. N -caffeoyltryptamine is a phenolic amide with strong anti-inflammatory effects. Therefore, in this paper, the potential effect of N -caffeoyltryptamine on MCP-1 expression was investigated as a potential p38 mitogen-activated protein (MAP) kinase inhibitor in vitro and in vivo. At the concentration of 20 μM, N -caffeoyltryptamine significantly inhibited p38 MAP kinase α, β, γ and δ by 15-50% ( p < 0.05), particularly p38 MAP kinase α (IC 50 = 16.7 μM) and β (IC 50 = 18.3 μM). Also, the pretreatment of the lipopolysaccharide (LPS)-stimulated THP-1 cells with N -caffeoyltryptamine (10, 20 and 40 μM) led to significant suppression of MCP-1 production by 10-45% ( p < 0.05) in the cells. Additionally, N -caffeoyltryptamine was also able to significantly downregulate MCP-1 mRNA expression in the THP-1 cells ( p < 0.05). On the basis of this strong inhibition in vitro, an animal study was conducted to confirm this inhibitory effect in vivo. Rats were divided into three groups ( n = 8): a normal control diet (C), a high-fat diet (HF), or a high-fat diet supplemented with N -caffeoyltryptamine (2 mg per day) (HFS). After 16 weeks, blood samples were collected from the rats in each group, and MCP-1 levels were determined in plasma with other atherogenic markers (C-reactive protein and soluble E-selectin (sE-selectin)). As expected, the average MCP-1 levels of the HF group were found to be higher than those of the C group ( p < 0.05). However, the MCP-1 levels of the HFS group were significantly lower than those of the HF group ( p < 0.05), suggesting that N -caffeoyltryptamine could decrease MCP-1 expression in vivo. Related to other atherogenic markers such as C-reactive protein and sE-selectin, there was no significant difference in their levels between the HF and HFS groups

  15. Supplements of transgenic malt or grain containing (1,3-1,4)-beta-glucanase increase the nutritive value of barley-based broiler diets to that of maize.

    PubMed

    Von Wettstein, D; Warner, J; Kannangara, C G

    2003-07-01

    final stages of grain maturation and provides extraordinary heat stability. The large amount of highly active (1,3-1,4)-beta-glucanase in the mature grain allowed the reduction of the transgenic grain ingredient to 0.2 g/kg diet, thus making the ingredient comparable to that of the trace minerals added to standard diets. 5. A direct comparison using transgenic grain supplement at the level of 1 g/kg of feed with the standard recommended addition of the commercial enzyme preparation Avizyme 1100 at 1 g/kg yielded equal weight gain, feed consumption and feed efficiency in birds fed a barley-based diet. 6. The production of sticky droppings characteristic of broilers fed on barley diets was avoided with all 9 experimental diets and reduced to the level observed with a standard maize diet by supplementation with transgenic barley. 7. The excellent growth and normal survival of the 400 broilers tested on barley diets supplemented with transgenic grain or malt showed the grain and malt not to be toxic. 8. The barley feed with added transgenic grain or malt containing thermotolerant (1,3-1,4)-beta-glucanase provides an environmentally friendly alternative to enzyme additives, as it uses photosynthetic energy for production of the enzyme in the grain and thus avoids use of non-renewable energy for fermentation. The deposition of the enzyme in the protein bodies of the grain in the field makes coating procedures for stabilisation of enzyme activity superfluous. 9. Barley feed with the small amount of transgenic grain as additive to normal barley provides an alternative for broiler feed in areas where grain maize cannot be grown for climatic reasons or because of unsuitable soil and thus has to be imported.

  16. Ingestion of Diet Soda Before a Glucose Load Augments Glucagon-Like Peptide-1 Secretion

    PubMed Central

    Brown, Rebecca J.; Walter, Mary; Rother, Kristina I.

    2009-01-01

    OBJECTIVE The goal of this study was to determine the effect of artificial sweeteners on glucose, insulin, and glucagon-like peptide (GLP)-1 in humans. RESEARCH DESIGN AND METHODS For this study, 22 healthy volunteers (mean age 18.5 ± 4.2 years) underwent two 75-g oral glucose tolerance tests with frequent measurements of glucose, insulin, and GLP-1 for 180 min. Subjects drank 240 ml of diet soda or carbonated water, in randomized order, 10 min prior to the glucose load. RESULTS Glucose excursions were similar after ingestion of carbonated water and diet soda. Serum insulin levels tended to be higher after diet soda, without statistical significance. GLP-1 peak and area under the curve (AUC) were significantly higher with diet soda (AUC 24.0 ± 15.2 pmol/l per 180 min) versus carbonated water (AUC 16.2 ± 9.0 pmol/l per 180 min; P = 0.003). CONCLUSIONS Artificial sweeteners synergize with glucose to enhance GLP-1 release in humans. This increase in GLP-1 secretion may be mediated via stimulation of sweet-taste receptors on L-cells by artificial sweetener. PMID:19808921

  17. Transcriptome association analysis identifies miR-375 as a major determinant of variable acetaminophen glucuronidation by human liver.

    PubMed

    Papageorgiou, Ioannis; Freytsis, Marina; Court, Michael H

    2016-10-01

    Acetaminophen is the leading cause of acute liver failure (ALF) in many countries including the United States. Hepatic glucuronidation by UDP-glucuronosyltransferase (UGT) 1A subfamily enzymes is the major route of acetaminophen elimination. Reduced glucuronidation may predispose some individuals to acetaminophen-induced ALF, but mechanisms underlying reduced glucuronidation are poorly understood. We hypothesized that specific microRNAs (miRNAs) may reduce UGT1A activity by direct effects on the UGT1A 3'-UTR shared by all UGT1A enzyme transcripts, or by indirect effects on transcription factors regulating UGT1A expression. We performed an unbiased miRNA whole transcriptome association analysis using a bank of human livers with known acetaminophen glucuronidation activities. Of 754 miRNAs evaluated, 9 miRNAs were identified that were significantly overexpressed (p<0.05; >2-fold) in livers with low acetaminophen glucuronidation activities compared with those with high activities. miR-375 showed the highest difference (>10-fold), and was chosen for further mechanistic validation. We demonstrated using in silico analysis and luciferase reporter assays that miR-375 has a unique functional binding site in the 3'-UTR of the aryl hydrocarbon receptor (AhR) gene. Furthermore overexpression of miR-375 in LS180 cells demonstrated significant repression of endogenous AhR protein (by 40%) and mRNA (by 10%), as well as enzyme activity and/or mRNA of AhR regulated enzymes including UGT1A1, UGT1A6, and CYP1A2, without affecting UGT2B7, which is not regulated by AhR. Thus miR-375 is identified as a novel repressor of UGT1A-mediated hepatic acetaminophen glucuronidation through reduced AhR expression, which could predispose some individuals to increased risk for acetaminophen-induced ALF. Published by Elsevier Inc.

  18. Resistance to Diet-Induced Obesity and Associated Metabolic Perturbations in Haploinsufficient Monocarboxylate Transporter 1 Mice

    PubMed Central

    Steiner, Nadia; Carneiro, Lionel; Favrod, Céline; Preitner, Frédéric; Thorens, Bernard; Stehle, Jean-Christophe; Dix, Laure; Pralong, François; Magistretti, Pierre J.; Pellerin, Luc

    2013-01-01

    The monocarboxylate transporter 1 (MCT1 or SLC16A1) is a carrier of short-chain fatty acids, ketone bodies, and lactate in several tissues. Genetically modified C57BL/6J mice were produced by targeted disruption of the mct1 gene in order to understand the role of this transporter in energy homeostasis. Null mutation was embryonically lethal, but MCT1 +/− mice developed normally. However, when fed high fat diet (HFD), MCT1 +/− mice displayed resistance to development of diet-induced obesity (24.8% lower body weight after 16 weeks of HFD), as well as less insulin resistance and no hepatic steatosis as compared to littermate MCT1 +/+ mice used as controls. Body composition analysis revealed that reduced weight gain in MCT1 +/− mice was due to decreased fat accumulation (50.0% less after 9 months of HFD) notably in liver and white adipose tissue. This phenotype was associated with reduced food intake under HFD (12.3% less over 10 weeks) and decreased intestinal energy absorption (9.6% higher stool energy content). Indirect calorimetry measurements showed ∼ 15% increase in O2 consumption and CO2 production during the resting phase, without any changes in physical activity. Determination of plasma concentrations for various metabolites and hormones did not reveal significant changes in lactate and ketone bodies levels between the two genotypes, but both insulin and leptin levels, which were elevated in MCT1 +/+ mice when fed HFD, were reduced in MCT1 +/− mice under HFD. Interestingly, the enhancement in expression of several genes involved in lipid metabolism in the liver of MCT1 +/+ mice under high fat diet was prevented in the liver of MCT1 +/− mice under the same diet, thus likely contributing to the observed phenotype. These findings uncover the critical role of MCT1 in the regulation of energy balance when animals are exposed to an obesogenic diet. PMID:24367518

  19. Not merely a question of self-control: The longitudinal effects of overeating behaviors, diet quality and physical activity on dieters' perceived diet success.

    PubMed

    Keller, Carmen; Hartmann, Christina

    2016-12-01

    This longitudinal study was conducted between 2010 (T1) and 2014 (T2) on a random sample from the general Swiss population (N = 2781, 46% male). Results showed that dieters (restrained eaters) who reported lack of success in T2 were overweight in T1, had higher levels of emotional and external eating, overeating, and ambivalence toward eating palatable food in T1, and a significantly increased body mass index (BMI) in the period between T1 and T2. Dieters who reported success in T2 had maintained a normal BMI between T1 and T2, had a higher diet quality in T1 and had maintained regular physical activity for at least one year before T2. The logistic regression revealed that high levels of dispositional self-control provided the most important predictor of being a successful dieter. When controlling for dispositional self-control, high levels of emotional eating, overeating, and ambivalence in T1, together with increases in these levels between T1 and T2, were associated with a decreased likelihood of being a successful dieter in T2. High levels of diet quality in T1 and the maintenance of regular physical activity were associated with an increased likelihood of being a successful dieter in T2. Results suggest that diet success and failure is a long-term phenomenon, partly but not fully explained by dispositional self-control. Independent of self-control persistent patterns of overeating due to emotional eating and ambivalent feelings toward eating palatable food, also explain long-term diet failure. A high diet quality and maintenance of regular physical activity accounted for dieters' long-term success. This is the first study that examined the long-term psychological and behavioral characteristics of successful and unsuccessful restrained eaters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity

    PubMed Central

    Verdeguer, Francisco; Soustek, Meghan S.; Hatting, Maximilian; Blättler, Sharon M.; McDonald, Devin; Barrow, Joeva J.

    2015-01-01

    Mitochondrial oxidative and thermogenic functions in brown and beige adipose tissues modulate rates of energy expenditure. It is unclear, however, how beige or white adipose tissue contributes to brown fat thermogenic function or compensates for partial deficiencies in this tissue and protects against obesity. Here, we show that the transcription factor Yin Yang 1 (YY1) in brown adipose tissue activates the canonical thermogenic and uncoupling gene expression program. In contrast, YY1 represses a series of secreted proteins, including fibroblast growth factor 21 (FGF21), bone morphogenetic protein 8b (BMP8b), growth differentiation factor 15 (GDF15), angiopoietin-like 6 (Angptl6), neuromedin B, and nesfatin, linked to energy expenditure. Despite substantial decreases in mitochondrial thermogenic proteins in brown fat, mice lacking YY1 in this tissue are strongly protected against diet-induced obesity and exhibit increased energy expenditure and oxygen consumption in beige and white fat depots. The increased expression of secreted proteins correlates with elevation of energy expenditure and promotion of beige and white fat activation. These results indicate that YY1 in brown adipose tissue controls antagonistic gene expression programs associated with energy balance and maintenance of body weight. PMID:26503783

  1. Overexpression of NRK1 ameliorates diet- and age-induced hepatic steatosis and insulin resistance.

    PubMed

    Fan, Rui; Cui, Jing; Ren, Feng; Wang, Qingzhi; Huang, Yanmei; Zhao, Bin; Wei, Lai; Qian, Xinlai; Xiong, Xiwen

    2018-06-02

    NAD + is a co-enzyme in redox reactions and a substrate required for activity of various enzyme families, including sirtuins and poly(ADP-ribose) polymerases. Dietary supplementation of NAD + precursors nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR) protects against metabolic disease, neurodegenerative disorders and age-related physiological decline in mammals. Here we sought to identify the roles of nicotinamide riboside kinase 1 (NRK1) plays in regulating hepatic NAD + biosynthesis and lipid metabolism. Using adenovirus mediated gene transduction to overexpress or knockdown NRK1 in mouse liver, we have demonstrated that NRK1 is critical for maintaining hepatic NAD + levels and triglyceride content. We have further shown that the hepatic expression of Nmrk1 mRNA is significantly decreased either in mice treated with high-fat diet or in aged mice. However, adenoviral delivery of NRK1 in these diet- and age-induced mice elevates hepatic NAD + levels, reduces hepatic steatosis, and improves glucose tolerance and insulin sensitivity. Our results provide important insights in targeting NRK1 for treating hepatic steatosis. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Low-calcium diets increase both production and clearance of 1,25-dihydroxyvitamin D3 in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, J.; Bunker, J.E.; Kamimura, M.

    1990-02-01

    Administration of large doses of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to animals induces 1,25(OH)2D3 side-chain oxidative pathways. This study determined if the elevated plasma 1,25(OH)2D3 seen in rats fed low-Ca diets is associated not only with an increased production rate (PR) but also with an increased metabolic clearance rate (MCR) of the hormone. In vitamin D-replete rats fed a Ca-deficient diet for 3-4 wk, the PR increased 21-fold, plasma levels 15-fold, and the MCR by 37%. The increased MCR in Ca-deficient rats was associated with a 48% increase in hepatic microsomal UDP glucuronyl transferase enzyme activity, whereas 1,25(OH)2D3 catabolism by homogenates ofmore » liver and small intestinal mucosa was unchanged. In contrast to the effects of low-Ca diets, acute (7 h) pharmacological elevation of plasma 1,25(OH)2D3 to 1.5 ng/ml in normal rats did not influence the MCR. Thus chronically elevated 1,25(OH)2D3 levels are necessary to stimulate clearance. In conclusion, 1,25(OH)2D3 clearance in rats can be stimulated not only by chronic pharmacological doses of 1,25(OH)2D3 but also by the physiological stimulus of a low-Ca diet. Hence, plasma 1,25(OH)2D3 levels can be regulated by changes in both PR and MCR.« less

  3. Inhibition of the aryl hydrocarbon receptor prevents Western diet-induced obesity. Model for AHR activation by kynurenine via oxidized-LDL, TLR2/4, TGFβ, and IDO1.

    PubMed

    Moyer, Benjamin J; Rojas, Itzel Y; Kerley-Hamilton, Joanna S; Hazlett, Haley F; Nemani, Krishnamurthy V; Trask, Heidi W; West, Rachel J; Lupien, Leslie E; Collins, Alan J; Ringelberg, Carol S; Gimi, Barjor; Kinlaw, William B; Tomlinson, Craig R

    2016-06-01

    Obesity is an increasingly urgent global problem, yet, little is known about its causes and less is known how obesity can be effectively treated. We showed previously that the aryl hydrocarbon receptor (AHR) plays a role in the regulation of body mass in mice fed Western diet. The AHR is a ligand-activated nuclear receptor that regulates genes involved in a number of biological pathways, including xenobiotic metabolism and T cell polarization. This study was an investigation into whether inhibition of the AHR prevents Western diet-based obesity. Male C57Bl/6J mice were fed control and Western diets with and without the AHR antagonist α-naphthoflavone or CH-223191, and a mouse hepatocyte cell line was used to delineate relevant cellular pathways. Studies are presented showing that the AHR antagonists α-naphthoflavone and CH-223191 significantly reduce obesity and adiposity and ameliorates liver steatosis in male C57Bl/6J mice fed a Western diet. Mice deficient in the tryptophan metabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) were also resistant to obesity. Using an AHR-directed, luciferase-expressing mouse hepatocyte cell line, we show that the transforming growth factor β1 (TGFβ1) signaling pathway via PI3K and NF-κB and the toll-like receptor 2/4 (TLR2/4) signaling pathway stimulated by oxidized low-density lipoproteins via NF-κB, each induce luciferase expression; however, TLR2/4 signaling was significantly reduced by inhibition of IDO1. At physiological levels, kynurenine but not kynurenic acid (both tryptophan metabolites and known AHR agonists) activated AHR-directed luciferase expression. We propose a hepatocyte-based model, in which kynurenine production is increased by enhanced IDO1 activity stimulated by TGFβ1 and TLR2/4 signaling, via PI3K and NF-κB, to perpetuate a cycle of AHR activation to cause obesity; and inhibition of the AHR, in turn, blocks the cycle's output to prevent obesity. The AHR with its broad ligand binding specificity

  4. Sarcolipin and uncoupling protein 1 play distinct roles in diet-induced thermogenesis and do not compensate for one another.

    PubMed

    Rowland, Leslie A; Maurya, Santosh K; Bal, Naresh C; Kozak, Leslie; Periasamy, Muthu

    2016-07-01

    It is well known that uncoupling protein 1 (UCP1) in brown adipose tissue plays an important role in diet-induced thermogenesis. In this study, whether sarcolipin (SLN), a regulator of sarco/endoplasmic reticulum Ca(2+) -ATPase pump in muscle, is also an important player of diet-induced thermogenesis was investigated, as well as whether loss of SLN could be compensated by increased UCP1 expression and vice versa. Age- and sex-matched UCP1(-/-) , SLN(-/-) , and double knockout for both UCP1 and SLN mice maintained in C57Bl/6J background were challenged to high-fat diet for 12 weeks and then analyzed for weight gain, alterations in serum metabolites, and changes in thermogenic protein expression. Loss of either SLN or UCP1 alone was sufficient to cause diet-induced obesity. No compensatory upregulation of UCP1 in SLN(-/-) mice or vice versa was found. Paradoxically, loss of both mechanisms failed to exacerbate the obesity phenotype. Data suggest that both SLN- and UCP1-based adaptive thermogenic mechanisms were essential for achieving maximal diet-induced thermogenesis. When both mechanisms were absent, less efficient thermogenic mechanisms were activated to counter energy imbalance. © 2016 The Obesity Society.

  5. Glucose Tolerance, Lipids, and GLP-1 Secretion in JCR:LA-cp Rats Fed a High Protein Fiber Diet

    PubMed Central

    Reimer, Raylene A.; Russell, James C.

    2013-01-01

    Background We have shown that individually, dietary fiber and protein increase secretion of the anorexigenic and insulinotropic hormone, glucagon-like peptide-1 (GLP-1). Objective Our objective was to combine, in one diet, high levels of fiber and protein to maximize GLP-1 secretion, improve glucose tolerance, and reduce weight gain. Methods and Procedures Lean (+/?) and obese (cp/cp) male James C Russell corpulent (JCR:LA-cp) rats lacking a functional leptin receptor were fed one of four experimental diets (control, high protein (HP), high fiber (HF, prebiotic fiber inulin), or combination (CB)) for 3 weeks. An oral glucose tolerance test (OGTT) was performed to evaluate plasma GLP-1, insulin and glucose. Plasma lipids and intestinal proglucagon mRNA expression were determined. Results Energy intake was lower with the HF diet in lean and obese rats. Weight gain did not differ between diets. Higher colonic proglucagon mRNA in lean rats fed a CB diet was associated with higher GLP-1 secretion during OGTT. The HP diet significantly reduced plasma glucose area under the curve (AUC) during OGTT in obese rats, which reflected both an increased GLP-1 AUC and higher fasting insulin. Diets containing inulin resulted in the lowest plasma triglyceride and total cholesterol levels. Discussion Overall, combining HP with HF in the diet increased GLP-1 secretion in response to oral glucose, but did not improve glucose tolerance or lipid profiles more than the HF diet alone did. We also suggest that glycemic and insulinemic response to prebiotics differ among rat models and future research work should examine their role in improving glucose tolerance in diet-induced vs. genetic obesity with overt hyperleptinemia. PMID:18223610

  6. Sardine protein diet increases plasma glucagon-like peptide-1 levels and prevents tissue oxidative stress in rats fed a high-fructose diet.

    PubMed

    Madani, Zohra; Sener, Abdullah; Malaisse, Willy J; Dalila, Ait Yahia

    2015-11-01

    The current study investigated whether sardine protein mitigates the adverse effects of fructose on plasma glucagon‑like peptide-1 (GLP-1) and oxidative stress in rats. Rats were fed casein (C) or sardine protein (S) with or without high‑fructose (HF) for 2 months. Plasma glucose, insulin, GLP‑1, lipid and protein oxidation and antioxidant enzymes were assayed. HF rats developed obesity, hyperglycemia, hyperinsulinemia, insulin resistance and oxidative stress despite reduced energy and food intakes. High plasma creatinine and uric acid levels, in addition to albuminuria were observed in the HF groups. The S‑HF diet reduced plasma glucose, insulin, creatinine, uric acid and homeostasis model assessment‑insulin resistance index levels, however increased GLP‑1 levels compared with the C‑HF diet. Hydroperoxides were reduced in the liver, kidney, heart and muscle of S‑HF fed rats compared with C‑HF fed rats. A reduction in liver, kidney and heart carbonyls was observed in S‑HF fed rats compared with C‑HF fed rats. Reduced levels of nitric oxide (NO) were detected in the liver, kidney and heart of the S‑HF fed rats compared with C‑HF fed rats. The S diet compared with the C diet reduced levels of liver hydroperoxides, heart carbonyls and kidney NO. The S‑HF diet compared with the C‑HF diet increased the levels of liver and kidney superoxide dismutase, liver and muscle catalase, liver, heart and muscle glutathione peroxidase and liver ascorbic acid. The S diet prevented and reversed insulin resistance and oxidative stress, and may have benefits in patients with metabolic syndrome.

  7. The effect of a low-glycemic diet vs a standard diet on blood glucose levels and macronutrient intake in children with type 1 diabetes.

    PubMed

    Rovner, Alisha J; Nansel, Tonja R; Gellar, Lauren

    2009-02-01

    A low-glycemic index (GI) diet may lower postprandial hyperglycemia and decrease the risk for postabsorptive hypoglycemia in people with type 1 diabetes. However, insufficient evidence exists on the efficacy of a low-GI diet to support practice recommendations. The goal of this study was to examine the blood glucose response to and the macronutrient composition of low-GI meals vs usual meals consumed ad libitum at home in children with type 1 diabetes. A within-subject, crossover design was employed. Twenty-three participants were recruited between June and August 2006. Participants wore a continuous blood glucose monitoring system and completed diet diaries on 2 days. On 1 day, participants consumed their usual meal; on another day, participants consumed low-GI meals ad libidum. Order of the 2 days was counterbalanced. The mean GI was 34+/-6 for the low-GI day and 57+/-6 for the usual meal day (P<0.0001). During the low-GI day, mean daytime blood glucose values (125+/-28 mg/dL [6.9+/-1.5 nmol/L] vs 185+/-58 mg/dL [10.3+/-3.2 nmol/L], P<0.001), blood glucose area above 180 mg/dL (4,486+/-6,138 vs 26,707+/-25,038, P<0.006), and high blood glucose index (5.1+/-5.1 vs 13.6+/-7.6, P<0.001) were lower compared to the usual mean day. During the low-GI day, subjects consumed more fiber (24.5+/-12.3 g vs 14.5+/-6.1 g, P<0.007) and less fat (45.7+/-12.2 g vs 76.8+/-32.4 g, P<0.005); however, there were no differences in energy, carbohydrate, or protein intake. In this pilot study, a low-GI diet was associated with improved diet quality and a reduction in hyperglycemia.

  8. Relative biological value of 1α-hydroxycholecalciferol to 25-hydroxycholecalciferol in broiler chicken diets.

    PubMed

    Han, J C; Chen, G H; Zhang, J L; Wang, J G; Qu, H X; Yan, Y F; Yang, X J; Cheng, Y H

    2017-07-01

    This study was conducted to evaluate the relative biological value (RBV) of 1α-hydroxycholecalciferol (1α-OH-D3) to 25-hydroxycholecalciferol (25-OH-D3) in one- to 21-day-old broiler chickens fed calcium (Ca)- and phosphorus (P)-deficient diets. On the d of hatch, 450 male Ross 308 broiler chickens were weighed and randomly allotted to 9 treatments with 5 replicates of 10 birds per replicate. The basal diet contained 0.50% Ca and 0.25% non-phytate phosphorus (NPP) but was not supplemented with cholecalciferol (vitamin D3). The levels of Ca and NPP in basal diets were lower than those recommended by NRC (1994). 25-OH-D3 was fed at zero, 1.25, 2.5, 5.0, and 10.0 μg/kg, and 1α-OH-D3 was fed at 0.625, 1.25, 2.5, and 5.0 μg/kg. The RBV of 1α-OH-D3 to 25-OH-D3 based on vitamin D intake was determined by the slope ratio method. Results showed that 25-OH-D3 or 1α-OH-D3 improved the growth performance and decreased the mortality in one- to 21-day-old broilers. A linear relationship was observed between the level of 25-OH-D3 or 1α-OH-D3 and mineralization of the femur, tibia, or metatarsus. The RBV of 1α-OH-D3 to 25-OH-D3 were 234, 253, and 202% when the weight, ash weight, and Ca percentage of femur were used as criteria. The corresponding RBV of 1α-OH-D3 to 25-OH-D3 were 232 to 263% and 245 to 267%, respectively, when tibia and metatarsus mineralization were used as criteria. These data indicate that when directly feeding a hormonally active form of vitamin D as 1α-OH-D3 proportionally less is needed than when using the precursor (25-OH-D3) in diets deficient in Ca and P. © 2017 Poultry Science Association Inc.

  9. Diet1, bile acid diarrhea, and FGF15/19: mouse model and human genetic variants.

    PubMed

    Lee, Jessica M; Ong, Jessica R; Vergnes, Laurent; de Aguiar Vallim, Thomas Q; Nolan, Jonathan; Cantor, Rita M; Walters, Julian R F; Reue, Karen

    2018-03-01

    Diet1 modulates intestinal production of the hormone, fibroblast growth factor (FGF)15, which signals in liver to regulate bile acid synthesis. C57BL/6ByJ mice with a spontaneous Diet1 -null mutation are resistant to hypercholesterolemia compared with wild-type C57BL/6J mice through enhanced cholesterol conversion to bile acids. To further characterize the role of Diet1 in metabolism, we generated Diet1 -/- mice on the C57BL/6J genetic background. C57BL/6J Diet1 -/- mice had elevated bile acid levels, reduced Fgf15 expression, and increased gastrointestinal motility and intestinal luminal water content, which are symptoms of bile acid diarrhea (BAD) in humans. Natural genetic variation in Diet1 mRNA expression levels across 76 inbred mouse strains correlated positively with Ffg15 mRNA and negatively with serum bile acid levels. This led us to investigate the role of DIET1 genetic variation in primary BAD patients. We identified a DIET1 coding variant ( rs12256835 ) that had skewed prevalence between BAD cases and controls. This variant causes an H1721Q amino acid substitution that increases the levels of FGF19 protein secreted from cultured cells. We propose that genetic variation in DIET1 may be a determinant of FGF19 secretion levels, and may affect bile acid metabolism in both physiological and pathological conditions. Copyright © 2018 by the American Society for Biochemistry and Molecular Biology, Inc.

  10. Inhibition of Neuroblastoma Tumor Growth by Ketogenic Diet and/or Calorie Restriction in a CD1-Nu Mouse Model.

    PubMed

    Morscher, Raphael Johannes; Aminzadeh-Gohari, Sepideh; Feichtinger, René Gunther; Mayr, Johannes Adalbert; Lang, Roland; Neureiter, Daniel; Sperl, Wolfgang; Kofler, Barbara

    2015-01-01

    Neuroblastoma is a malignant pediatric cancer derived from neural crest cells. It is characterized by a generalized reduction of mitochondrial oxidative phosphorylation. The goal of the present study was to investigate the effects of calorie restriction and ketogenic diet on neuroblastoma tumor growth and monitor potential adaptive mechanisms of the cancer's oxidative phosphorylation system. Xenografts were established in CD-1 nude mice by subcutaneous injection of two neuroblastoma cell lines having distinct genetic characteristics and therapeutic sensitivity [SH-SY5Y and SK-N-BE(2)]. Mice were randomized to four treatment groups receiving standard diet, calorie-restricted standard diet, long chain fatty acid based ketogenic diet or calorie-restricted ketogenic diet. Tumor growth, survival, metabolic parameters and weight of the mice were monitored. Cancer tissue was evaluated for diet-induced changes of proliferation indices and multiple oxidative phosphorylation system parameters (respiratory chain enzyme activities, western blot analysis, immunohistochemistry and mitochondrial DNA content). Ketogenic diet and/or calorie restriction significantly reduced tumor growth and prolonged survival in the xenograft model. Neuroblastoma growth reduction correlated with decreased blood glucose concentrations and was characterized by a significant decrease in Ki-67 and phospho-histone H3 levels in the diet groups with low tumor growth. As in human tumor tissue, neuroblastoma xenografts showed distinctly low mitochondrial complex II activity in combination with a generalized low level of mitochondrial oxidative phosphorylation, validating the tumor model. Neuroblastoma showed no ability to adapt its mitochondrial oxidative phosphorylation activity to the change in nutrient supply induced by dietary intervention. Our data suggest that targeting the metabolic characteristics of neuroblastoma could open a new front in supporting standard therapy regimens. Therefore, we propose

  11. Meta-analysis diagnostic accuracy of SNP-based pathogenicity detection tools: a case of UTG1A1 gene mutations.

    PubMed

    Galehdari, Hamid; Saki, Najmaldin; Mohammadi-Asl, Javad; Rahim, Fakher

    2013-01-01

    Crigler-Najjar syndrome (CNS) type I and type II are usually inherited as autosomal recessive conditions that result from mutations in the UGT1A1 gene. The main objective of the present review is to summarize results of all available evidence on the accuracy of SNP-based pathogenicity detection tools compared to published clinical result for the prediction of in nsSNPs that leads to disease using prediction performance method. A comprehensive search was performed to find all mutations related to CNS. Database searches included dbSNP, SNPdbe, HGMD, Swissvar, ensemble, and OMIM. All the mutation related to CNS was extracted. The pathogenicity prediction was done using SNP-based pathogenicity detection tools include SIFT, PHD-SNP, PolyPhen2, fathmm, Provean, and Mutpred. Overall, 59 different SNPs related to missense mutations in the UGT1A1 gene, were reviewed. Comparing the diagnostic OR, PolyPhen2 and Mutpred have the highest detection 4.983 (95% CI: 1.24 - 20.02) in both, following by SIFT (diagnostic OR: 3.25, 95% CI: 1.07 - 9.83). The highest MCC of SNP-based pathogenicity detection tools, was belong to SIFT (34.19%) followed by Provean, PolyPhen2, and Mutpred (29.99%, 29.89%, and 29.89%, respectively). Hence the highest SNP-based pathogenicity detection tools ACC, was fit to SIFT (62.71%) followed by PolyPhen2, and Mutpred (61.02%, in both). Our results suggest that some of the well-established SNP-based pathogenicity detection tools can appropriately reflect the role of a disease-associated SNP in both local and global structures.

  12. Adaptive facultative diet-induced thermogenesis in wild-type but not in UCP1-ablated mice.

    PubMed

    von Essen, Gabriella; Lindsund, Erik; Cannon, Barbara; Nedergaard, Jan

    2017-11-01

    The significance of diet-induced thermogenesis (DIT) for metabolic control is still debated. Although obesogenic diets recruit UCP1 and adrenergically inducible thermogenesis, and although the absence of UCP1 may promote the development of obesity, no actual UCP1-related thermogenesis identifiable as diet-induced thermogenesis has to date been unambiguously demonstrated. Examining mice living at thermoneutrality, we have identified a process of facultative (directly elicited by acute eating), adaptive (magnitude develops over weeks on an obesogenic diet), and fully UCP1-dependent thermogenesis. We found no evidence for UCP1-independent diet-induced thermogenesis. The thermogenesis was proportional to the total amount of UCP1 protein in brown adipose tissue and was not dependent on any contribution of UCP1 in brite/beige adipose tissue, since no UCP1 protein was found there under these conditions. Total UCP1 protein amount developed proportionally to total body fat content. The physiological messenger linking obesity level and acute eating to increased thermogenesis is not known. Thus UCP1-dependent diet-induced thermogenesis limits obesity development during exposure to obesogenic diets but does not prevent obesity as such. Copyright © 2017 the American Physiological Society.

  13. Association of 1-y changes in diet pattern with cardiovascular disease risk factors and adipokines: results from the 1-y randomized Oslo Diet and Exercise Study.

    PubMed

    Jacobs, David R; Sluik, Diewertje; Rokling-Andersen, Merethe H; Anderssen, Sigmund A; Drevon, Christian A

    2009-02-01

    We hypothesized that favorable changes in dietary patterns would lead to a reduction in body size and an improvement in metabolic status. The objective was to study changes in diet patterns relative to changes in body size, blood pressure, and circulating concentrations of lipids, glucose, insulin, adiponectin, and other cytokines in the context of a 1-y randomized intervention study. For 1 y, 187 men aged 45 +/- 2 y, approximately 50% of whom met the criteria of the metabolic syndrome, were randomly assigned to a diet protocol (n = 45), an exercise protocol (n = 48), a protocol of diet plus exercise (n = 58), or a control protocol (n = 36). A previously defined a priori diet score was created by summing tertile rankings of 35 food group variables; a higher score generally reflected recommended dietary changes in the trial (mean +/- SD at baseline: 31 +/- 6.5; range: 15-47). Over the study year, the diet score increased by approximately 2 +/- 5.5 in both diet groups, with a decrease of an equivalent amount in the exercise and control groups. The weight change was -3.5 +/- 0.6 kg/10-point change in diet score (P < 0.0001), similarly within each intervention group, independently of the change in energy intake or baseline age and smoking status. Weight change was attenuated but remained significant after adjustment for intervention group and percentage body fat. Subjects with an increased diet score had more favorable changes in other body size variables, systolic blood pressure, and blood lipid, glucose, insulin, and adiponectin concentrations. Change in diet score was unrelated to resistin and several cytokines. The change toward a more favorable diet pattern was associated with improved body size and metabolic profile.

  14. Unraveling the Mechanism Underlying the Glycosylation and Methylation of Anthocyanins in Peach1[C][W

    PubMed Central

    Cheng, Jun; Wei, Guochao; Zhou, Hui; Gu, Chao; Vimolmangkang, Sornkanok; Liao, Liao; Han, Yuepeng

    2014-01-01

    Modification of anthocyanin plays an important role in increasing its stability in plants. Here, six anthocyanins were identified in peach (Prunus persica), and their structural diversity is attributed to glycosylation and methylation. Interestingly, peach is quite similar to the wild species Prunus ferganensis but differs from both Prunus davidiana and Prunus kansueasis in terms of anthocyanin composition in flowers. This indicates that peach is probably domesticated from P. ferganensis. Subsequently, genes responsible for both methylation and glycosylation of anthocyanins were identified, and their spatiotemporal expression results in different patterns of anthocyanin accumulation in flowers, leaves, and fruits. Two tandem-duplicated genes encoding flavonoid 3-O-glycosyltransferase (F3GT) in peach, PpUGT78A1 and PpUGT78A2, showed different activity toward anthocyanin, providing an example of divergent evolution of F3GT genes in plants. Two genes encoding anthocyanin O-methyltransferase (AOMT), PpAOMT1 and PpAOMT2, are expressed in leaves and flowers, but only PpAOMT2 is responsible for the O-methylation of anthocyanins at the 3′ position in peach. In addition, our study reveals a novel branch of UGT78 genes in plants that lack the highly conserved intron 2 of the UGT gene family, with a great variation of the amino acid residue at position 22 of the plant secondary product glycosyltransferase box. Our results not only provide insights into the mechanisms underlying anthocyanin glycosylation and methylation in peach but will also aid in future attempts to manipulate flavonoid biosynthesis in peach as well as in other plants. PMID:25106821

  15. Are a Healthy Diet and Physical Activity Synergistically Associated with Cognitive Functioning in Older Adults?

    PubMed

    Nijholt, W; Jager-Wittenaar, H; Visser, M; van der Schans, C P; Hobbelen, J S M

    2016-01-01

    Previous research has demonstrated that being both physically active and adhering a healthy diet is associated with improved cognitive functioning; however, it remains unclear whether these factors act synergistically. We investigated the synergistic association of a healthy diet and being physically active with cognitive functioning. Cross-sectional study. Data from the Longitudinal Aging Study Amsterdam (LASA) were used. We analyzed data from 2,165 community dwelling adults who were aged 55-85 years, 56% of whom were female. Cognitive functioning was assessed by the Mini-Mental State Examination (MMSE), an MMSE score of >26 indicates good cognitive functioning. Physical activity was assessed by the LASA Physical Activity Questionnaire and was considered sufficient if the person engaged in moderately intense physical activity ≥ 20 min/day. A healthy diet score was based on the intake of fruit, vegetables and fish. Each of the food groups was assigned a score that ranged from 1 (well below the Dutch guideline for a healthy diet) to 4 (well above the Dutch guideline for a healthy diet), and the scores were aggregated to determine a healthy diet (healthy ≥ 9 points). Multiple logistic and linear regression analyses were used to examine the (synergistic) association among physical activity, a healthy diet and cognitive functioning. All analyses were adjusted for potential chronic diseases and lifestyle confounders. Of all of the participants, 25% were diagnosed with a cognitive impairment (MMSE ≤26), 80% were physically active and 41% had a healthy diet. Sixty three percent of the participants both adhered to a healthy diet and were physically active. Sufficient daily physical activity (OR=2.545 p<.001) and adherence to a healthy diet (OR=1.766 p=.002) were associated with good cognitive functioning. After adjusting for confounding factors, sufficient physical activity was not significantly related to cognitive functioning (p=.163); however adherence to a

  16. Data Generated by Quantitative Liquid Chromatography-Mass Spectrometry Proteomics Are Only the Start and Not the Endpoint: Optimization of Quantitative Concatemer-Based Measurement of Hepatic Uridine-5'-Diphosphate-Glucuronosyltransferase Enzymes with Reference to Catalytic Activity.

    PubMed

    Achour, Brahim; Dantonio, Alyssa; Niosi, Mark; Novak, Jonathan J; Al-Majdoub, Zubida M; Goosen, Theunis C; Rostami-Hodjegan, Amin; Barber, Jill

    2018-06-01

    Quantitative proteomic methods require optimization at several stages, including sample preparation, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and data analysis, with the final analysis stage being less widely appreciated by end-users. Previously reported measurement of eight uridine-5'-diphospho-glucuronosyltransferases (UGT) generated by two laboratories [using stable isotope-labeled (SIL) peptides or quantitative concatemer (QconCAT)] reflected significant disparity between proteomic methods. Initial analysis of QconCAT data showed lack of correlation with catalytic activity for several UGTs (1A4, 1A6, 1A9, 2B15) and moderate correlations for UGTs 1A1, 1A3, and 2B7 ( R s = 0.40-0.79, P < 0.05; R 2 = 0.30); good correlations were demonstrated between cytochrome P450 activities and abundances measured in the same experiments. Consequently, a systematic review of data analysis, starting from unprocessed LC-MS/MS data, was undertaken, with the aim of improving accuracy, defined by correlation against activity. Three main criteria were found to be important: choice of monitored peptides and fragments, correction for isotope-label incorporation, and abundance normalization using fractional protein mass. Upon optimization, abundance-activity correlations improved significantly for six UGTs ( R s = 0.53-0.87, P < 0.01; R 2 = 0.48-0.73); UGT1A9 showed moderate correlation ( R s = 0.47, P = 0.02; R 2 = 0.34). No spurious abundance-activity relationships were identified. However, methods remained suboptimal for UGT1A3 and UGT1A9; here hydrophobicity of standard peptides is believed to be limiting. This commentary provides a detailed data analysis strategy and indicates, using examples, the significance of systematic data processing following acquisition. The proposed strategy offers significant improvement on existing guidelines applicable to clinically relevant proteins quantified using QconCAT. Copyright © 2018 by The American Society for Pharmacology

  17. Prenatal nicotine exposure enhances Cx43 and Panx1 unopposed channel activity in brain cells of adult offspring mice fed a high-fat/cholesterol diet

    PubMed Central

    Orellana, Juan A.; Busso, Dolores; Ramírez, Gigliola; Campos, Marlys; Rigotti, Attilio; Eugenín, Jaime; von Bernhardi, Rommy

    2014-01-01

    Nicotine, the most important neuroteratogen of tobacco smoke, can reproduce brain and cognitive disturbances per se when administered prenatally. However, it is still unknown if paracrine signaling among brain cells participates in prenatal nicotine-induced brain impairment of adult offspring. Paracrine signaling is partly mediated by unopposed channels formed by connexins hemichannels (HCs) and pannexins serving as aqueous pores permeable to ions and small signaling molecules, allowing exchange between the intra- and extracellular milieus. Our aim was to address whether prenatal nicotine exposure changes the activity of those channels in adult mice offspring under control conditions or subjected to a second challenge during young ages: high-fat/cholesterol (HFC) diet. To induce prenatal exposure to nicotine, osmotic minipumps were implanted in CF1 pregnant mice at gestational day 5 to deliver nicotine bitartrate or saline (control) solutions. After weaning, offspring of nicotine-treated or untreated pregnant mice were fed ad libitum with chow or HFC diets for 8 weeks. The functional state of connexin 43 (Cx43) and pannexin 1 (Panx1) unopposed channels was evaluated by dye uptake experiments in hippocampal slices from 11-week-old mice. We found that prenatal nicotine increased the opening of Cx43 HCs in astrocytes, and Panx1 channels in microglia and neurons only if offspring mice were fed with HFC diet. Blockade of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2) and prostaglandin E receptor 1 (EP1), ionotropic ATP receptor type 7 (P2X7) and NMDA receptors, showed differential inhibition of prenatal nicotine-induced channel opening in glial cells and neurons. Importantly, inhibition of the above mentioned enzymes and receptors, or blockade of Cx43 and Panx1 unopposed channels greatly reduced adenosine triphosphate (ATP) and glutamate release from hippocampal slices of prenatally nicotine-exposed offspring. We propose that unregulated gliotransmitter

  18. Sphingosine kinase 1 is regulated by peroxisome proliferator-activated receptor α in response to free fatty acids and is essential for skeletal muscle interleukin-6 production and signaling in diet-induced obesity.

    PubMed

    Ross, Jessica S; Hu, Wei; Rosen, Bess; Snider, Ashley J; Obeid, Lina M; Cowart, L Ashley

    2013-08-02

    We previously demonstrated that sphingosine kinase 1 (Sphk1) expression and activity are up-regulated by exogenous palmitate (PAL) in a skeletal muscle model system and in diet-induced obesity in mice; however, potential functions and in vivo relevance of this have not been addressed. Here, we aimed to determine the mechanism by which PAL regulates SphK1 in muscle, and to determine potential roles for its product, sphingosine-1-phosphate (S1P), in muscle biology in the context of obesity. Cloning and analysis of the mouse Sphk1 promoter revealed a peroxisome proliferator-activated receptor (PPAR) α cis-element that mediated activation of a reporter under control of the Sphk1 promoter; direct interaction of PPARα was demonstrated by chromatin immunoprecipitation. PAL treatment induced the proinflammatory cytokine interleukin (IL)-6 in a manner dependent on SphK1, and this was attenuated by inhibition of the sphingosine-1-phosphate receptor 3 (S1PR3). Diet-induced obesity in mice demonstrated that IL-6 expression in muscle, but not adipose tissue, increased in obesity, but this was attenuated in Sphk1(-/-) mice. Moreover, plasma IL-6 levels were significantly decreased in obese Sphk1(-/-) mice relative to obese wild type mice, and muscle, but not adipose tissue IL-6 signaling was activated. These data indicate that PPARα regulates Sphk1 expression in the context of fatty acid oversupply and links PAL to muscle IL-6 production. Moreover, this function of SphK1 in diet-induced obesity suggests a potential role for SphK1 in obesity-associated pathological outcomes.

  19. Over-expression of UDP-glycosyltransferase gene UGT2B17 is involved in chlorantraniliprole resistance in Plutella xylostella (L.).

    PubMed

    Li, Xiuxia; Zhu, Bin; Gao, Xiwu; Liang, Pei

    2017-07-01

    UDP-glycosyltransferases (UGTs) are phase II detoxification enzymes widely distributed within living organisms. Their involvement in the biotransformation of various lipophilic endogenous compounds and phytoalexins in insects has been documented. However, the roles of this enzyme family in insecticide resistance have rarely been reported. Here, the functions of UGTs in chlorantraniliprole resistance in Plutella xylostella were investigated. Treatment with sulfinpyrazone and 5-nitrouracil (both inhibitors of UGT enzymes) significantly increased the toxicity of chlorantraniliprole against the third instar larvae of P. xylostella. Among the 23 UGT transcripts examined, only UGT2B17 was found to be over-expressed (with a range from 30.7- to 77.3-fold) in all four chlorantraniliprole-resistant populations compared to the susceptible one (CHS). The knock-down of UGT2B17 by RNA interference (RNAi) dramatically increased the toxicity of chlorantraniliprole by 27.4% and 29.8% in the CHS and CHR (resistant) populations, respectively. In contrast, exposure to phenobarbital significantly increased the relative expression of UGT2B17 while decreasing the toxicity of chlorantraniliprole to the larvae by 14.0%. UGT2B17 is involved in the detoxification of chlorantraniliprole, and its over-expression may play an important role in chlorantraniliprole resistance in P. xylostella. These results shed some light upon and further our understanding of the mechanisms of diamide insecticide resistance in insects. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Regulation of bile acid homeostasis by the intestinal Diet1–FGF15/19 axis

    PubMed Central

    Reue, Karen; Lee, Jessica M.; Vergnes, Laurent

    2015-01-01

    Purpose of review Hepatic bile acid synthesis is controlled, in part, by a complex enterohepatic feedback regulatory mechanism. In this review, we focus on the role of the intestinal FGF15/19 hormone in modulating bile acid levels, and additional metabolic effects on glucose metabolism, non-alcoholic liver disease (NAFLD), and liver regeneration. We also highlight the newly identified intestinal protein, Diet1, which is a modulator of FGF15/19 levels. Recent findings Low FGF19 levels are associated with bile acid diarrhea and NAFLD. In contrast, high FGF19 levels are associated with diabetes remission following Roux-en-Y gastric bypass surgery, suggesting new therapeutic approaches against type 2 diabetes. The effect of FGF15/19 on liver plasticity is a double-edged sword: whereas elevated FGF15/19 levels improve survival of mice after partial hepatectomy, FGF19 mitogenic activity is associated with liver carcinoma. Finally, a recent study has identified Diet1, an intestinal factor that influences FGF15/19 levels in mouse intestine and human enterocytes. Diet1 represents the first factor shown to influence FGF15/19 levels at a post-transcriptional level. Summary The biological effects of FGF15/19 make it an attractive target for treating metabolic dysregulation underlying conditions such as fatty liver and type 2 diabetes. Further elucidation of the role of Diet1 in FGF15/19 secretion may provide a control point for pharmacological modulation of FGF15/19 levels. PMID:24535283

  1. Altered Body Weight Regulation in CK1ε Null and tau Mutant Mice on Regular Chow and High Fat Diets

    PubMed Central

    Zhou, Lili; Summa, Keith C.; Olker, Christopher; Vitaterna, Martha H.; Turek, Fred W.

    2016-01-01

    Disruption of circadian rhythms results in metabolic dysfunction. Casein kinase 1 epsilon (CK1ε) is a canonical circadian clock gene. Null and tau mutations in CK1ε show distinct effects on circadian period. To investigate the role of CK1ε in body weight regulation under both regular chow (RC) and high fat (HF) diet conditions, we examined body weight on both RC and HF diets in CK1ε −/− and CK1ε tau/tau mice on a standard 24 hr light-dark (LD) cycle. Given the abnormal entrainment of CK1ε tau/tau mice on a 24 hr LD cycle, a separate set of CK1ε tau/tau mice were tested under both diet conditions on a 20 hr LD cycle, which more closely matches their endogenous period length. On the RC diet, both CK1ε −/− and CK1ε tau/tau mutants on a 24 hr LD cycle and CK1ε tau/tau mice on a 20 hr LD cycle exhibited significantly lower body weights, despite similar overall food intake and activity levels. On the HF diet, CK1ε tau/tau mice on a 20 hr LD cycle were protected against the development of HF diet-induced excess weight gain. These results provide additional evidence supporting a link between circadian rhythms and energy regulation at the genetic level, particularly highlighting CK1ε involved in the integration of circadian biology and metabolic physiology. PMID:27144030

  2. Food anticipatory activity on a calorie-restricted diet is independent of Sirt1.

    PubMed

    Assali, Dina R; Hsu, Cynthia T; Gunapala, Keith M; Aguayo, Antonio; McBurney, Michael; Steele, Andrew D

    2018-01-01

    A number of studies have demonstrated that the Sirtuin family member, Sirt1, is a key integrator of growth, metabolism, and lifespan. Sirt1 directly interacts with and deacetylates key regulators of the circadian clock, positioning it to be an important link between feeding and circadian rhythms. In fact, one study suggests that Sirt1 is necessary for behavioral anticipation of limited daily food availability, a circadian process termed food anticipatory activity (FAA). In their study, mice overexpressing Sirt1 had enhanced FAA, while mice lacking Sirt1 had little to no FAA. Based on the supposition that Sirt1 was indeed required for FAA, we sought to use Sirt1 deletion to map the neural circuitry responsible for FAA. We began by inactivating Sirt1 using the cell-type specific Cre-driver lines proopiomelanocortin, but after observing no effect on body weight loss or FAA we then moved on to more broadly neuronal Cre drivers Ca2+/calmodulin-dependent protein kinase II and nestin. As neither of these neuronal deletions of Sirt1 had impaired FAA, we then tested 1) a broad postnatal tamoxifen-inducible deletion, 2) a complete, developmental knockout of Sirt1, and 3) a gene replacement, catalytically inactive, form of Sirt1; but all of these mice had FAA similar to controls. Therefore, our findings suggest that FAA is completely independent of Sirt1.

  3. Diet-Induced Obesity Enhances TRPV1-Mediated Neurovascular Reactions in the Dura Mater.

    PubMed

    Marics, Balázs; Peitl, Barna; Pázmándi, Kitti; Bácsi, Attila; Németh, József; Oszlács, Orsolya; Jancsó, Gábor; Dux, Mária

    2017-03-01

    Exploring the pathophysiological changes in transient receptor potential vanilloid 1 (TRPV1) receptor of the trigeminovascular system in high-fat, high-sucrose (HFHS) diet-induced obesity of experimental animals. Clinical and experimental observations suggest a link between obesity and migraine. Accumulating evidence indicates that metabolic and immunological alterations associated with obesity may potentially modulate trigeminovascular functions. A possible target for obesity-induced pathophysiological changes is the TRPV1/capsaicin receptor which is implicated in the pathomechanism of headaches in a complex way. Male Sprague-Dawley rats were fed a regular (n = 25) or HFHS diet (n = 26) for 20 weeks. At the end of the dietary period, body weight of the animals was normally distributed in both groups and it was significantly higher in animals on HFHS diet. Therefore, experimental groups were regarded as control and HFHS diet-induced obese groups. Capsaicin-induced changes in meningeal blood flow and release of calcitonin gene-related peptide (CGRP) from dural trigeminal afferents were measured in control and obese rats. The distribution of TRPV1- and CGRP-immunoreactive meningeal sensory nerves was also compared in whole mount preparations of the dura mater. Metabolic parameters of the animals were assessed by examining glucose and insulin homeostasis as well as plasma cytokine concentrations. HFHS diet was accompanied by reduced food consumption and greater fluid and energy intakes in addition to increased body weight of the animals. HFHS diet increased fasting blood glucose and insulin concentrations as well as levels of circulating proinflammatory cytokines interleukin-1β and interleukin-6. In obese animals, dural application of the archetypal TRPV1 agonist capsaicin resulted in significantly augmented vasodilatory and vasoconstrictor responses as compared to controls. Diet-induced obesity was also associated with enhanced basal and capsaicin

  4. Increased long-flight activity triggered in beet armyworm by larval feeding on diet containing Cry1Ac protoxin.

    PubMed

    Jiang, Xing Fu; Chen, Jian; Zhang, Lei; Sappington, Thomas W; Luo, Li Zhi

    2013-01-01

    Evaluating ecological safety and conducting pest risk analysis for transgenic crops are vitally important before their commercial planting. The beet armyworm, Spodoptera exigua, a long-distance migratory insect pest, is not a direct target of transgenic Cry1Ac-expressing cotton in China, but nevertheless it has recently become an important pest. Migrants leaving their natal field arrive in other appropriate habitat far away in a short time, often followed by larval outbreaks. S. exigua has low susceptibility to Cry1Ac. However, our results from laboratory experiments identified (i) sublethal effects of Cry1Ac protoxin on larval development rate, larval and pupal weight, and adult lifetime fecundity, and (ii) increased long-flight behavior triggered by Cry1Ac which may contribute to larval outbreaks elsewhere. No significant differences in larval mortality, pupation rate, adult emergence rate, longevity, pre-oviposition period, or oviposition period were observed between controls and larvae fed on artificial diet incorporating a low concentration of Cry1Ac protoxin. The negative sublethal effects on some developmental and reproductive traits and lack of effect on others suggest they do not contribute to the observed severity of S. exigua outbreaks after feeding on Cry1Ac cotton. Interestingly, the percentage of long fliers increased significantly when larvae were reared on diet containing either of two low-dose treatments of Cry1Ac, suggesting a possible increased propensity to disperse long distances triggered by Cry1Ac. We hypothesize that negative effects on development and reproduction caused by Cry1Ac in the diet are offset by increased flight propensity triggered by the poor food conditions, thereby improving the chances of escaping adverse local conditions before oviposition. Increased long-flight propensity in turn may amplify the area damaged by outbreak populations. This phenomenon might be common in other migratory insect pests receiving sublethal doses

  5. Increased Long-Flight Activity Triggered in Beet Armyworm by Larval Feeding on Diet Containing Cry1Ac Protoxin

    PubMed Central

    Jiang, Xing Fu; Chen, Jian; Zhang, Lei; Sappington, Thomas W.; Luo, Li Zhi

    2013-01-01

    Evaluating ecological safety and conducting pest risk analysis for transgenic crops are vitally important before their commercial planting. The beet armyworm, Spodoptera exigua, a long-distance migratory insect pest, is not a direct target of transgenic Cry1Ac-expressing cotton in China, but nevertheless it has recently become an important pest. Migrants leaving their natal field arrive in other appropriate habitat far away in a short time, often followed by larval outbreaks. S. exigua has low susceptibility to Cry1Ac. However, our results from laboratory experiments identified (i) sublethal effects of Cry1Ac protoxin on larval development rate, larval and pupal weight, and adult lifetime fecundity, and (ii) increased long-flight behavior triggered by Cry1Ac which may contribute to larval outbreaks elsewhere. No significant differences in larval mortality, pupation rate, adult emergence rate, longevity, pre-oviposition period, or oviposition period were observed between controls and larvae fed on artificial diet incorporating a low concentration of Cry1Ac protoxin. The negative sublethal effects on some developmental and reproductive traits and lack of effect on others suggest they do not contribute to the observed severity of S. exigua outbreaks after feeding on Cry1Ac cotton. Interestingly, the percentage of long fliers increased significantly when larvae were reared on diet containing either of two low-dose treatments of Cry1Ac, suggesting a possible increased propensity to disperse long distances triggered by Cry1Ac. We hypothesize that negative effects on development and reproduction caused by Cry1Ac in the diet are offset by increased flight propensity triggered by the poor food conditions, thereby improving the chances of escaping adverse local conditions before oviposition. Increased long-flight propensity in turn may amplify the area damaged by outbreak populations. This phenomenon might be common in other migratory insect pests receiving sublethal doses

  6. Loss of UCP1 exacerbates Western diet-induced glycemic dysregulation independent of changes in body weight in female mice

    PubMed Central

    Winn, Nathan C.; Gastecki, Michelle L.; Welly, Rebecca J.; Scroggins, Rebecca J.; Zidon, Terese M.; Gaines, T’Keaya L.; Woodford, Makenzie L.; Karasseva, Natalia G.; Kanaley, Jill A.; Sacks, Harold S.

    2017-01-01

    We tested the hypothesis that female mice null for uncoupling protein 1 (UCP1) would have increased susceptibility to Western diet-induced “whitening” of brown adipose tissue (AT) and glucose intolerance. Six-week-old C57BL/6J wild-type (WT) and UCP1 knockout (UCP1−/−) mice, housed at 25°C, were randomized to either a control diet (10% kcal from fat) or Western diet (45% kcal from fat and 1% cholesterol) for 28 wk. Loss of UCP1 had no effect on energy intake, energy expenditure, spontaneous physical activity, weight gain, or visceral white AT mass. Despite similar susceptibility to weight gain compared with WT, UCP1−/− exhibited whitening of brown AT evidenced by a striking ~500% increase in mass and appearance of large unilocular adipocytes, increased expression of genes related to inflammation, immune cell infiltration, and endoplasmic reticulum/oxidative stress (P < 0.05), and decreased mitochondrial subunit protein (COX I, II, III, and IV, P < 0.05), all of which were exacerbated by Western diet (P < 0.05). UCP1−/− mice also developed liver steatosis and glucose intolerance, which was worsened by Western diet. Collectively, these findings demonstrate that loss of UCP1 exacerbates Western diet-induced whitening of brown AT, glucose intolerance, and induces liver steatosis. Notably, the adverse metabolic manifestations of UCP1−/− were independent of changes in body weight, visceral adiposity, and energy expenditure. These novel findings uncover a previously unrecognized metabolic protective role of UCP1 that is independent of its already established role in energy homeostasis. PMID:27881400

  7. High fat diet and GLP-1 drugs induce pancreatic injury in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouse, Rodney, E-mail: rodney.rouse@fda.hhs.gov; Xu, Lin; Stewart, Sharron

    Glucagon Like Peptide-1 (GLP-1) drugs are currently used to treat type-2 diabetes. Safety concerns for increased risk of pancreatitis and pancreatic ductal metaplasia have accompanied these drugs. High fat diet (HFD) is a type-2 diabetes risk factor that may affect the response to GLP-1 drug treatment. The objective of the present study was to investigate the effects of diet and GLP-1 based drugs on the exocrine pancreas in mice. Experiments were designed in a mouse model of insulin resistance created by feeding a HFD or standard diet (STD) for 6 weeks. The GLP-1 drugs, sitagliptin (SIT) and exenatide (EXE) weremore » administered once daily for additional 6 weeks in both mice fed HFD or STD. The results showed that body weight, blood glucose levels, and serum levels of pro-inflammatory cytokines (TNFα, IL-1β, and KC) were significantly greater in HFD mice than in STD mice regardless of GLP-1 drug treatment. The semi-quantitative grading showed that pancreatic changes were significantly greater in EXE and SIT-treated mice compared to control and that HFD exacerbated spontaneous exocrine pancreatic changes seen in saline-treated mice on a standard diet. Exocrine pancreatic changes identified in this study included acinar cell injury (hypertrophy, autophagy, apoptosis, necrosis, and atrophy), vascular injury, interstitial edema and inflammation, fat necrosis, and duct changes. These findings support HFD as a risk factor to increased susceptibility/severity for acute pancreatitis and indicate that GLP-1 drugs cause pancreatic injury that can be exacerbated in a HFD environment.« less

  8. Evaluation of the in vitro/in vivo potential of five berries (bilberry, blueberry, cranberry, elderberry, and raspberry ketones) commonly used as herbal supplements to inhibit uridine diphospho-glucuronosyltransferase.

    PubMed

    Choi, Eu Jin; Park, Jung Bae; Yoon, Kee Dong; Bae, Soo Kyung

    2014-10-01

    In this study, we evaluated inhibitory potentials of popularly-consumed berries (bilberry, blueberry, cranberry, elderberry, and raspberry ketones) as herbal supplements on UGT1A1, UGT1A4, UGT1A6, UGT1A9, and UGT2B7 in vitro. We also investigated the potential herb-drug interaction via UGT1A1 inhibition by blueberry in vivo. We demonstrated that these berries had only weak inhibitory effects on the five UGTs. Bilberry and elderberry had no apparent inhibitions. Blueberry weakly inhibited UGT1A1 with an IC50 value of 62.4±4.40 μg/mL and a Ki value of 53.1 μg/mL. Blueberry also weakly inhibited UGT2B7 with an IC50 value of 147±11.1 μg/mL. In addition, cranberry weakly inhibited UGT1A9 activity (IC50=458±49.7 μg/mL) and raspberry ketones weakly inhibited UGT2B7 activity (IC50=248±28.2 μg/mL). Among tested berries, blueberry showed the lowest IC50 value in the inhibition of UGT1A1 in vitro. However, the co-administration of blueberry had no effect on the pharmacokinetics of irinotecan and its active metabolite, SN-38, which was mainly eliminated via UGT1A1, in vivo. Our data suggests that these five berries are unlikely to cause clinically significant herb-drug interactions mediated via inhibition of UGT enzymes involved in drug metabolism. These findings should enable an understanding of herb-drug interactions for the safe use of popularly-consumed berries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Influence of substrates on the in vitro kinetics of steviol glucuronidation and interaction between steviol glycosides metabolites and UGT2B7.

    PubMed

    Chen, Jun-Ming; Xia, Yong-Mei; Zhang, Yan-Dong; Zhang, Tong-Tong; Peng, Qing-Rui; Fang, Yun

    2018-06-01

    Steviol glycosides, a natural sweetener, may perform bioactivities via steviol, their main metabolite in human digestion. The metabolising kinetics, i.e. glucuronidation kinetics and interaction between steviol glycosides or their metabolites and metabolising enzyme, are important for understanding the bioactivity and cytotoxicity. The present study investigated kinetics of steviol glucuronidation in human liver microsome and a recombinant human UDP-glucuronosyltransferases isomer, UGT2B7, along with molecular docking to analyse interaction between UGT2B7 and steviol or glucose. The active pocket of UGT2B7 is consisted of Arg352, Leu347, Lys343, Phe339, Tyr354, Lys355 and Leu353. The influence of stevioside, rebaudioside A, glucose and some chemotherapy reagents on the glucuronidation was also studied. The predicted hepatic clearence suggested that steviol could be classified as high-clearence drug. The steviol glycosides did not affect the glucuronidation of steviol notably.

  10. Association between liver failure and hepatic UDP-glucuronosyltransferase activity in dairy cows with follicular cysts.

    PubMed

    Tanemura, Kouichi; Ohtaki, Tadatoshi; Kuwahara, Yasushi; Tsumagari, Shigehisa

    2017-01-20

    Uridine 5'-diphospho-glucuronosyltransferase (UGT) liver activity was measured using estradiol-17β as a substrate in dairy cows with follicular cysts. The activity was significantly lower than that in dairy cows with normal estrous cycles (P<0.01). Liver disorders, such as fatty liver and hepatitis, were observed in half cows with follicular cysts, and liver UGT activity was lower than that in cows with normal estrus cycles. In addition, the liver UGT activity was significantly lower in dairy cows with follicular cysts without liver disorders than in dairy cows with normal estrous cycles. Therefore, the cows were divided into those with low, middle and high liver UGT activities, and liver disorder complication rates were investigated. The complication rate was significantly higher in the low- (78.1%) than in the middle- (22.2%) and high-level (8.3%) groups, suggesting that liver disorders are closely associated with the development of follicular cysts in dairy cows and that steroid hormone metabolism is delayed because of reduced liver UGT activity, resulting in follicular cyst formation. We conclude that reduced estradiol-17β glucuronidation in the liver and liver disorders are associated with follicular cyst occurrence in dairy cows.

  11. Glutathione peroxidase (EC 1.11.1.9) and superoxide dismutase (EC 1.15.1.1) activities in riboflavin-deficient rats infected with Plasmodium berghei malaria.

    PubMed

    Adelekan, D A; Thurnham, D I

    1998-03-01

    Riboflavin deficiency interferes with the growth and multiplication of malaria parasites as well as the host response to malaria. The objective of the present work was to determine the effects of riboflavin deficiency on erythrocyte glutathione peroxidase (EC 1.11.1.9; GPx) and superoxide dismutase (EC 1.15.1.1; SOD) in rats infected with Plasmodium berghei malaria. Riboflavin in its co-enzyme form, FAD, is required by glutathione reductase (EC 1.6.4.1) to regenerate GSH and GSH is an important cellular antioxidant both in its own right and also as a substrate for the enzyme GPx. Weanling rats were deprived of riboflavin for 8 weeks before intraperitoneal injection of 1 x 10(6) P. berghei parasites. Control animals were weight-matched to the respective riboflavin-deficient group. At 10 d post-infection, parasite counts were higher in the weight-matched control group than the riboflavin-deficient group (P = 0.004). GPx activity was higher in erythrocytes of rats parasitized with P. berghei than comparable non-infected rats regardless of riboflavin status (P < 0.05). As mature erythrocytes do not synthesize new protein, the higher GPx activities were probably due to the presence of the parasite protein. In erythrocytes from riboflavin-deficient rats, GPx activity tended to be lower than in those rats fed on diets adequate in riboflavin (weight-matched controls) whether parasitized or not, but the difference was not significant. Neither riboflavin deficiency nor malaria had any effect on erythrocyte SOD activity. It was concluded that riboflavin deficiency has no marked effect on erythrocyte GPx or SOD activity in the rat.

  12. Cytokinin-Specific Glycosyltransferases Possess Different Roles in Cytokinin Homeostasis Maintenance.

    PubMed

    Šmehilová, Mária; Dobrůšková, Jana; Novák, Ondřej; Takáč, Tomáš; Galuszka, Petr

    2016-01-01

    Plant hormones cytokinins (CKs) are one of the major mediators of physiological responses throughout plant life span. Therefore, a proper homeostasis is maintained by regulation of their active levels. Besides degradation, CKs are deactivated by uridine diphosphate glycosyltransferases (UGTs). Physiologically, CKs active levels decline in senescing organs, providing a signal to nutrients that a shift to reproductive tissues has begun. In this work, we show CK glucosides distribution in Arabidopsis leaves during major developmental transition phases. Besides continuous accumulation of N-glucosides we detected sharp maximum of the glucosides in senescence. This is caused prevalently by N7-glucosides followed by N9-glucosides and specifically also by trans-zeatin-O-glucoside (tZOG). Interestingly, we observed a similar trend in response to exogenously applied CK. In Arabidopsis, only three UGTs deactivate CKs in vivo: UGT76C1, UGT76C2 and UGT85A1. We thereby show that UGT85A1 is specifically expressed in senescent leaves whereas UGT76C2 is activated rapidly in response to exogenously applied CK. To shed more light on the UGTs physiological roles, we performed a comparative study on UGTs loss-of-function mutants, characterizing a true ugt85a1-1 loss-of-function mutant for the first time. Although no altered phenotype was detected under standard condition we observed reduced chlorophyll degradation with increased anthocyanin accumulation in our experiment on detached leaves accompanied by senescence and stress related genes modulated expression. Among the mutants, ugt76c2 possessed extremely diminished CK N-glucosides levels whereas ugt76c1 showed some specificity toward cis-zeatin (cZ). Besides tZOG, a broader range of CK glucosides was decreased in ugt85a1-1. Performing CK metabolism gene expression profiling, we revealed that activation of CK degradation pathway serves as a general regulatory mechanism of disturbed CK homeostasis followed by decreased CK signaling in

  13. Can Families Eat Better Without Spending More? Improving Diet Quality Does Not Increase Diet Cost in a Randomized Clinical Trial among Youth with Type 1 Diabetes and Their Parents.

    PubMed

    Nansel, Tonja R; Lipsky, Leah M; Eisenberg, Miriam H; Liu, Aiyi; Mehta, Sanjeev N; Laffel, Lori M B

    2016-11-01

    Although cost is a frequently cited barrier to healthful eating, limited prospective data exist. To examine the association of diet cost with diet quality change. An 18-month randomized clinical trial evaluated a dietary intervention. Youth with type 1 diabetes duration ≥1 year, age 8.0 to 16.9 years, receiving care at an outpatient tertiary diabetes center in Boston, MA, participated along with a parent from 2010 to 2013 (N=136). Eighty-two percent of participants were from middle- to upper-income households. The family-based behavioral intervention targeted intake of whole plant foods. Diet quality as indicated by the Healthy Eating Index 2005 (HEI-2005) (which measures conformance to the 2005 Dietary Guidelines for Americans) and whole plant food density (cup or ounce equivalents per 1,000 kcal target food groups) were calculated from 3-day food records of youth and parent dietary intake at six and four time points, respectively. Food prices were obtained from two online supermarkets common to the study location. Daily diet cost was calculated by summing prices of reported foods. Random effects models estimated treatment group differences in time-varying diet cost. Separate models for youth and parent adjusted for covariates examined associations of time-varying change in diet quality with change in diet cost. There was no treatment effect on time-varying diet cost for either youth (β -.49, 95% CI -1.07 to 0.08; P=0.10) or parents (β .24, 95% CI -1.61 to 2.08; P=0.80). In addition, time-varying change in diet quality indicators was not associated with time-varying change in diet cost for youth. Among parents, a 1-cup or 1-oz equivalent increase in whole plant food density was associated with a $0.63/day lower diet cost (β -.63, 95% CI -1.20 to -0.05; P=0.03). Improved diet quality was not accompanied by greater cost for youth with type 1 diabetes and their parents participating in a randomized clinical trial. Findings challenge the prevailing assumption

  14. TRPV1 activation improves exercise endurance and energy metabolism through PGC-1α upregulation in mice.

    PubMed

    Luo, Zhidan; Ma, Liqun; Zhao, Zhigang; He, Hongbo; Yang, Dachun; Feng, Xiaoli; Ma, Shuangtao; Chen, Xiaoping; Zhu, Tianqi; Cao, Tingbing; Liu, Daoyan; Nilius, Bernd; Huang, Yu; Yan, Zhencheng; Zhu, Zhiming

    2012-03-01

    Impaired aerobic exercise capacity and skeletal muscle dysfunction are associated with cardiometabolic diseases. Acute administration of capsaicin enhances exercise endurance in rodents, but the long-term effect of dietary capsaicin is unknown. The capsaicin receptor, the transient receptor potential vanilloid 1 (TRPV1) cation channel has been detected in skeletal muscle, the role of which remains unclear. Here we report the function of TRPV1 in cultured C2C12 myocytes and the effect of TRPV1 activation by dietary capsaicin on energy metabolism and exercise endurance of skeletal muscles in mice. In vitro, capsaicin increased cytosolic free calcium and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression in C2C12 myotubes through activating TRPV1. In vivo, PGC-1α in skeletal muscle was upregulated by capsaicin-induced TRPV1 activation or genetic overexpression of TRPV1 in mice. TRPV1 activation increased the expression of genes involved in fatty acid oxidation and mitochondrial respiration, promoted mitochondrial biogenesis, increased oxidative fibers, enhanced exercise endurance and prevented high-fat diet-induced metabolic disorders. Importantly, these effects of capsaicin were absent in TRPV1-deficient mice. We conclude that TRPV1 activation by dietary capsaicin improves energy metabolism and exercise endurance by upregulating PGC-1α in skeletal muscles. The present results indicate a novel therapeutic strategy for managing metabolic diseases and improving exercise endurance.

  15. Inositol 1,4,5-trisphosphate receptor 1 mutation perturbs glucose homeostasis and enhances susceptibility to diet-induced diabetes.

    PubMed

    Ye, Risheng; Ni, Min; Wang, Miao; Luo, Shengzhan; Zhu, Genyuan; Chow, Robert H; Lee, Amy S

    2011-08-01

    The inositol 1,4,5-trisphosphate receptors (IP3Rs) as ligand-gated Ca(2)(+) channels are key modulators of cellular processes. Despite advances in understanding their critical role in regulating neuronal function and cell death, how this family of proteins impact cell metabolism is just emerging. Unexpectedly, a transgenic mouse line (D2D) exhibited progressive glucose intolerance as a result of transgene insertion. Inverse PCR was used to identify the gene disruption in the D2D mice. This led to the discovery that Itpr1 is among the ten loci disrupted in chromosome 6. Itpr1 encodes for IP3R1, the most abundant IP3R isoform in mouse brain and also highly expressed in pancreatic β-cells. To study IP3R1 function in glucose metabolism, we used the Itpr1 heterozygous mutant mice, opt/+. Glucose homeostasis in male mice cohorts was examined by multiple approaches of metabolic phenotyping. Under regular diet, the opt/+ mice developed glucose intolerance but no insulin resistance. Decrease in second-phase glucose-stimulated blood insulin level was observed in opt/+ mice, accompanied by reduced β-cell mass and insulin content. Strikingly, when fed with high-fat diet, the opt/+ mice were more susceptible to the development of hyperglycemia, glucose intolerance, and insulin resistance. Collectively, our studies identify the gene Itpr1 being interrupted in the D2D mice and uncover a novel role of IP3R1 in regulation of in vivo glucose homeostasis and development of diet-induced diabetes.

  16. Influence of PAI-1 on adipose tissue growth and metabolic parameters in a murine model of diet-induced obesity.

    PubMed

    Morange, P E; Lijnen, H R; Alessi, M C; Kopp, F; Collen, D; Juhan-Vague, I

    2000-04-01

    An increased plasma plasminogen activator inhibitor-1 (PAI-1) level is a risk factor for myocardial infarction, particularly when associated with visceral obesity. Although the link between PAI-1 and obesity is well documented, little is known about the physiological relevance of PAI-1 production by adipose tissue. Therefore, we have compared adipose tissue development and insulin resistance plasma parameters in PAI-1-deficient mice (PAI-1(-/-)) and wild-type littermates (PAI-1(+/+)) in a model of nutritionally induced obesity. After 17 weeks of consuming a high-fat diet (HFD), PAI-1(+/+) mice showed marked obesity, with a 52% increase in body weight compared with mice that were kept on a standard fat diet (P<0.0001). This weight gain was accompanied by adipocyte hypertrophy and an increase in the number of stroma cells in the gonadal fat pad, expressed as stroma cells/adipocytes (0.67+/-0.05 versus 0.43+/-0. 02; P<0.001). In plasma, the HFD induced a marked increase in PAI-1 antigen (5.1+/-0.56 versus 2+/-0.22 ng/mL; P<0.001), fasting insulinemia (1.1+/-0.21 versus 0.21+/-0.04 ng/mL; P<0.001), and glycemia (7.4+/-0.5 versus 5+/-0.3 mmol/L; P<0.001), whereas plasma triglyceride levels were not affected. When we compared PAI-1(-/-) and PAI-1(+/+) mice on the HFD, PAI-1(-/-) mice gained weight faster than did PAI-1(+/+) mice, with a significant difference in body weight between 3 and 8 weeks of the diet (32+/-1.7 versus 26+/-1.6 g at 6 weeks; P<0.05). After 17 weeks of the HFD, its effect on weight gain and the number and size of adipocytes was similar in PAI-1(+/+) and PAI-1(-/-) mice. By contrast, the increase in the number of stroma cells presented by PAI-1(+/+) mice was not observed in PAI-1(-/-) mice. In obese PAI-1(-/-) mice, tissue-type PA activity and antigen levels in the gonadal fat pad were significantly higher than in obese PAI-1(+/+) mice (230+/-50 versus 47+/-20 arbitrary units/g, P<0.01; 40+/-13 versus 17+/-13 ng/g, P<0.05, respectively), whereas

  17. Activation of liver X receptor decreases atherosclerosis in Ldlr⁻/⁻ mice in the absence of ATP-binding cassette transporters A1 and G1 in myeloid cells.

    PubMed

    Kappus, Mojdeh S; Murphy, Andrew J; Abramowicz, Sandra; Ntonga, Vusisizwe; Welch, Carrie L; Tall, Alan R; Westerterp, Marit

    2014-02-01

    Liver X receptor (LXR) activators decrease atherosclerosis in mice. LXR activators (1) directly upregulate genes involved in reverse cholesterol transport and (2) exert anti-inflammatory effects mediated by transrepression of nuclear factor-κB target genes. We investigated whether myeloid cell deficiency of ATP-binding cassette transporters A1 and G1 (ABCA1/G1), principal targets of LXR that promote macrophage cholesterol efflux and initiate reverse cholesterol transport, would abolish the beneficial effects of LXR activation on atherosclerosis. LXR activator T0901317 substantially reduced inflammatory gene expression in macrophages lacking ABCA1/G1. Ldlr(-/-) mice were transplanted with Abca1(-/-)Abcg1(-/-) or wild-type bone marrow (BM) and fed a Western-type diet for 6 weeks with or without T0901317 supplementation. Abca1/g1 BM deficiency increased atherosclerotic lesion complexity and inflammatory cell infiltration into the adventitia and myocardium. T0901317 markedly decreased lesion area, complexity, and inflammatory cell infiltration in the Abca1(-/-)Abcg1(-/-) BM-transplanted mice. To investigate whether this was because of macrophage Abca1/g1 deficiency, Ldlr(-/-) mice were transplanted with LysmCreAbca1(fl/fl)Abcg1(fl/fl) or Abca1(fl/fl)Abcg1(fl/fl) BM and fed Western-type diet with or without the more specific LXR agonist GW3965 for 12 weeks. GW3965 decreased lesion size in both groups, and the decrease was more prominent in the LysmCreAbca1(fl/fl)Abcg1(fl/fl) group. The results suggest that anti-inflammatory effects of LXR activators are of key importance to their antiatherosclerotic effects in vivo independent of cholesterol efflux pathways mediated by macrophage ABCA1/G1. This has implications for the development of LXR activators that lack adverse effects on lipogenic genes while maintaining the ability to transrepress inflammatory genes.

  18. Cpt1a gene expression in peripheral blood mononuclear cells as an early biomarker of diet-related metabolic alterations

    PubMed Central

    Díaz-Rúa, Rubén; Palou, Andreu; Oliver, Paula

    2016-01-01

    Background Research on biomarkers that provide early information about the development of future metabolic alterations is an emerging discipline. Gene expression analysis in peripheral blood mononuclear cells (PBMC) is a promising tool to identify subjects at risk of developing diet-related diseases. Objective We analysed PBMC expression of key energy homeostasis-related genes in a time-course analysis in order to find out early markers of metabolic alterations due to sustained intake of high-fat (HF) and high-protein (HP) diets. Design We administered HF and HP diets (4 months) to adult Wistar rats in isocaloric conditions to a control diet, mainly to avoid overweight associated with the intake of hyperlipidic diets and, thus, to be able to characterise markers of metabolically obese normal-weight (MONW) syndrome. PBMC samples were collected at different time points of dietary treatment and expression of relevant energy homeostatic genes analysed by real-time reverse transcription-polymerase chain reaction. Serum parameters related with metabolic syndrome, as well as fat deposition in liver, were also analysed. Results The most outstanding results were those obtained for the expression of the lipolytic gene carnitine palmitoyltransferase 1a (Cpt1a). Cpt1a expression in PBMC increased after only 1 month of exposure to both unbalanced diets, and this increased expression was maintained thereafter. Interestingly, in the case of the HF diet, Cpt1a expression was altered even in the absence of increased body weight but correlated with alterations such as higher insulin resistance, alteration of serum lipid profile and, particularly, increased fat deposition in liver, a feature characteristic of metabolic syndrome, which was even observed in animals fed with HP diet. Conclusions We propose Cpt1a gene expression analysis in PBMC as an early biomarker of metabolic alterations associated with MONW phenotype due to the intake of isocaloric HF diets, as well as a marker of

  19. Identification of human UDP-glucuronosyltransferases involved in N-carbamoyl glucuronidation of lorcaserin.

    PubMed

    Sadeque, Abu J M; Usmani, Khawja A; Palamar, Safet; Cerny, Matthew A; Chen, Weichao G

    2012-04-01

    Lorcaserin, a selective serotonin 5-HT(2C) receptor agonist, is a weight management agent in clinical development. Lorcaserin N-carbamoyl glucuronidation governs the predominant excretory pathway of lorcaserin in humans. Human UDP-glucuronosyltransferases (UGTs) responsible for lorcaserin N-carbamoyl glucuronidation are identified herein. Lorcaserin N-carbamoyl glucuronide formation was characterized by the following approaches: metabolic screening using human tissues (liver, kidney, intestine, and lung) and recombinant enzymes, kinetic analyses, and inhibition studies. Whereas microsomes from all human tissues studied herein were found to be catalytically active for lorcaserin N-carbamoyl glucuronidation, liver microsomes were the most efficient. With recombinant UGT enzymes, lorcaserin N-carbamoyl glucuronidation was predominantly catalyzed by three UGT2Bs (UGT2B7, UGT2B15, and UGT2B17), whereas two UGT1As (UGT1A6 and UGT1A9) played a minor role. UGT2B15 was most efficient, with an apparent K(m) value of 51.6 ± 1.9 μM and V(max) value of 237.4 ± 2.8 pmol/mg protein/min. The rank order of catalytic efficiency of human UGT enzymes for lorcaserin N-carbamoyl glucuronidation was UGT2B15 > UGT2B7 > UGT2B17 > UGT1A9 > UGT1A6. Inhibition of lorcaserin N-carbamoyl glucuronidation activities of UGT2B7, UGT2B15, and UGT2B17 in human liver microsomes by mefenamic acid, bisphenol A, and eugenol further substantiated the involvement of these UGT2B isoforms. In conclusion, multiple human UGT enzymes catalyze N-carbamoyl glucuronidation of lorcaserin; therefore, it is unlikely that inhibition of any one of these UGT activities will lead to significant inhibition of the lorcaserin N-carbamoyl glucuronidation pathway. Thus, the potential for drug-drug interaction by concomitant administration of a drug(s) that is metabolized by any of these UGTs is remote.

  20. Effects of sex, weight, diet and hCG administration on levels of skatole and indole in the liver and hepatic activities of cytochromes P4502E1 and P4502A6 in pigs.

    PubMed

    Zamaratskaia, G; Chen, G; Lundström, K

    2006-02-01

    Cytochromes P4502E1 (CYP2E1) and P4502A6 (CYP2A6) catalyse metabolic reactions of skatole and indole metabolism. The objectives of this study were as follows: to evaluate whether activities of CYP2E1 and CYP2A6 in pigs of two live weights (LW) differ between males and females; to investigate whether activities of CYP2E1 and CYP2A6 are affected by hCG stimulation; and to investigate whether the levels of skatole and indole in the liver and the activities of CYP2E1 and CYP2A6 are affected by raw potato starch (RPS). Female pigs expressed higher CYP2A6 activity at 90kg LW, and higher CYP2E1 activity at 115kg LW compared to male pigs. Skatole levels in the liver were higher in male pigs than in female pigs at both LW, whereas indole levels were higher in males only at 115 kg LW. Neither levels of indolic compounds in the liver nor enzyme activities were affected by hCG stimulation. The inclusion of RPS in the diet reduced skatole levels in the liver in both sexes and increased CYP2A6 activity in female pigs. It was concluded that the incidence of boar taint may depend on both skatole amount, which reach the liver, and the activities of enzymes involved in skatole metabolism, which may vary depending on sex, live weight, and diet.

  1. Effect of low glycemic load diet on glycated hemoglobin (HbA1c) in poorly-controlled diabetes patients.

    PubMed

    Ziaee, Amir; Afaghi, Ahmad; Sarreshtehdari, Majied

    2011-12-29

    Different carbohydrate diets have been administrated to diabetic patients to evaluate the glycemic response, while Poor-controlled diabetes is increasing world wide. To investigate the role of an alternative carbohydrate diet on glycemic control, we explored the effect of a low glycemic load (Low GL)-high fat diet on glycemic response and also glycated hemoglobin (HbA1c) of poor-controlled diabetes patients. Hundred poorly-controlled diabetes patients, HbA1c > 8, age 52.8 ± 4.5 y, were administrated a low GL diet , GL = 67 (Energy 1800 kcal; total fat 36%; fat derived from olive oil and nuts 15%; carbohydrate 42%; protein 22%) for 10 weeks. Patients did their routine life style program during intervention. Fasting blood glucose and HbA1c before and after intervention with significant reduction were: 169 ± 17, 141 ± 12; 8.85% (73 mmol/mol) ± 0.22%, and 7.81% (62 mmol/mol) ± 0.27%; respectively (P < 0.001). Mean fasting blood glucose reduced by 28.1 ± 12.5 and HbA1c by 1.1% (11 mmol/mol) ± 0.3% (P=0.001). There was positive moderate correlation between HbA1c concentration before intervention and FBS reduction after intervention (P < 0.001, at 0.01 level, R =0.52), and strong positive correlation between FBS before intervention and FBS reduction (P < 0.001, at 0.01 level, R = 0.70). This study demonstrated that our alternative low glycemic load diet can be effective in glycemic control.

  2. Orexin-A/hypocretin-1 Immunoreactivity in the Lateral Hypothalamus is Reduced in Genetically Obese but not in Diet-induced Obese Mice.

    PubMed

    González, J Antonio; Prehn, Jochen H M

    2018-01-15

    The mechanisms that link diet and body weight are not fully understood. A diet high in fat often leads to obesity, and this in part is the consequence of diet-induced injury to specific hypothalamic nuclei. It has been suggested that a diet high in fat leads to cell loss in the lateral hypothalamus, which contains specific populations of neurons that are essential for regulating energy homoeostasis; however, we do not know which cell types are affected by the diet. We studied the possibility that high-fat diet leads to a reduction in orexin-A/hypocretin-1 (Hcrt1) and/or melanin-concentrating hormone (MCH) immunoreactivity in the lateral hypothalamus. We quantified immuno-labeled Hcrt1 and MCH cells in brain sections of mice fed a diet high in fat for up to 12 weeks starting at 4 weeks of age and found that this diet did not modify the number of Hcrt1- or MCH-immunoreactive neurons. By contrast, there were fewer Hcrt1- (but not MCH-) immunoreactive cells in genetically obese db/db mice compared to wild-type mice. Non-obese, heterozygous db/+ mice also had fewer Hcrt1-immunoreactive cells. Differences in the number of Hcrt1-immunoreactive cells were only a function of the db genotype but not of diet or body weight. Our findings show that the lateral hypothalamus is affected differently in the db genotype and in diet-induced obesity, and support the idea that not all hypothalamic neurons involved in energy balance regulation are sensitive to the effects of diet. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Autophagy activation in COL6 myopathic patients by a low-protein-diet pilot trial.

    PubMed

    Castagnaro, Silvia; Pellegrini, Camilla; Pellegrini, Massimo; Chrisam, Martina; Sabatelli, Patrizia; Toni, Silvia; Grumati, Paolo; Ripamonti, Claudio; Pratelli, Loredana; Maraldi, Nadir M; Cocchi, Daniela; Righi, Valeria; Faldini, Cesare; Sandri, Marco; Bonaldo, Paolo; Merlini, Luciano

    2016-12-01

    A pilot clinical trial based on nutritional modulation was designed to assess the efficacy of a one-year low-protein diet in activating autophagy in skeletal muscle of patients affected by COL6/collagen VI-related myopathies. Ullrich congenital muscular dystrophy and Bethlem myopathy are rare inherited muscle disorders caused by mutations of COL6 genes and for which no cure is yet available. Studies in col6 null mice revealed that myofiber degeneration involves autophagy defects and that forced activation of autophagy results in the amelioration of muscle pathology. Seven adult patients affected by COL6 myopathies underwent a controlled low-protein diet for 12 mo and we evaluated the presence of autophagosomes and the mRNA and protein levels for BECN1/Beclin 1 and MAP1LC3B/LC3B in muscle biopsies and blood leukocytes. Safety measures were assessed, including muscle strength, motor and respiratory function, and metabolic parameters. After one y of low-protein diet, autophagic markers were increased in skeletal muscle and blood leukocytes of patients. The treatment was safe as shown by preservation of lean:fat percentage of body composition, muscle strength and function. Moreover, the decreased incidence of myofiber apoptosis indicated benefits in muscle homeostasis, and the metabolic changes pointed at improved mitochondrial function. These data provide evidence that a low-protein diet is able to activate autophagy and is safe and tolerable in patients with COL6 myopathies, pointing at autophagy activation as a potential target for therapeutic applications. In addition, our findings indicate that blood leukocytes are a promising noninvasive tool for monitoring autophagy activation in patients.

  4. Brown Alga Ecklonia cava polyphenol extract ameliorates hepatic lipogenesis, oxidative stress, and inflammation by activation of AMPK and SIRT1 in high-fat diet-induced obese mice.

    PubMed

    Eo, Hyeyoon; Jeon, You-jin; Lee, Myoungsook; Lim, Yunsook

    2015-01-14

    Obesity is considered to be a metaflammatory condition. Ecklonia cava, brown algae rich in polyphenols, has shown strong antioxidant activity in vitro. This study investigated the effect of E. cava polyphenol extract (ECPE) on the regulation of fat metabolism, inflammation, and the antioxidant defense system in high fat diet-induced obese mice. After obesity was induced by a high-fat diet (HFD), the mice were administered ECPE by gavage for 5 days/12 weeks. ECPE supplementation reduced body weight gain, adipose tissue mass, plasma lipid profiles, hepatic fat deposition, insulin resistance, and the plasma leptin/adiponectin ratio derived from HFD-induced obesity. Moreover, ECPE supplementation selectively ameliorated hepatic protein levels associated with lipogenesis, inflammation, and the antioxidant defense system as well as activation of AMPK and SIRT1. Collectively, ECPE supplement might have potential antiobesity effects via regulation of AMPK and SIRT1 in HFD-induced obesity.

  5. Methadone inhibits CYP2D6 and UGT2B7/2B4 in vivo: a study using codeine in methadone- and buprenorphine-maintained subjects

    PubMed Central

    Gelston, Eloise A; Coller, Janet K; Lopatko, Olga V; James, Heather M; Schmidt, Helmut; White, Jason M; Somogyi, Andrew A

    2012-01-01

    AIMS To compare the O-demethylation (CYP2D6-mediated), N-demethylation (CYP3A4-mediated) and 6-glucuronidation (UGT2B4/7-mediated) metabolism of codeine between methadone- and buprenorphine-maintained CYP2D6 extensive metabolizer subjects. METHODS Ten methadone- and eight buprenorphine-maintained subjects received a single 60 mg dose of codeine phosphate. Blood was collected at 3 h and urine over 6 h and assayed for codeine, norcodeine, morphine, morphine-3- and -6-glucuronides and codeine-6-glucuronide. RESULTS The urinary metabolic ratio for O-demethylation was significantly higher (P = 0.0044) in the subjects taking methadone (mean ± SD, 2.8 ± 3.1) compared with those taking buprenorphine (0.60 ± 0.43), likewise for 6-glucuronide formation (0.31 ± 0.24 vs. 0.053 ± 0.027; P < 0.0002), but there was no significant difference (P = 0.36) in N-demethylation. Similar changes in plasma metabolic ratios were also found. In plasma, compared with those maintained on buprenorphine, the methadone-maintained subjects had increased codeine and norcodeine concentrations (P < 0.004), similar morphine (P = 0.72) and lower morphine-3- and -6- and codeine-6-glucuronide concentrations (P < 0.008). CONCLUSION Methadone is associated with inhibition of CYP2D6 and UGTs 2B4 and 2B7 reactions in vivo, even though it is not a substrate for these enzymes. Plasma morphine was not altered, owing to the opposing effects of inhibition of both formation and elimination; however, morphine-6-glucuronide (analgesically active) concentrations were substantially reduced. Drug interactions with methadone are likely to include drugs metabolized by various UGTs and CYP2D6. PMID:22092298

  6. Synergic chemoprevention with dietary carbohydrate restriction and supplementation of AMPK-activating phytochemicals: the role of SIRT1.

    PubMed

    Lee, Jong Doo; Choi, Min-Ah; Ro, Simon Weonsang; Yang, Woo Ick; Cho, Arthur E H; Ju, Hye-Lim; Baek, Sinhwa; Chung, Sook In; Kang, Won Jun; Yun, Mijin; Park, Jeon Han

    2016-01-01

    Calorie restriction or a low-carbohydrate diet (LCD) can increase life span in normal cells while inhibiting carcinogenesis. Various phytochemicals also have calorie restriction-mimetic anticancer properties. We investigated whether an isocaloric carbohydrate-restriction diet and AMP-activated protein kinase (AMPK)-activating phytochemicals induce synergic tumor suppression. We used a mixture of AMPK-activating phytochemical extracts including curcumin, quercetin, catechins, and resveratrol. Survival analysis was carried out in a B16F10 melanoma model fed a control diet (62.14% kcal carbohydrate, 24.65% kcal protein and 13.2% kcal fat), a control diet with multiple phytochemicals (MP), LCD (16.5, 55.2, and 28.3% kcal, respectively), LCD with multiple phytochemicals (LCDmp), a moderate-carbohydrate diet (MCD, 31.9, 62.4, and 5.7% kcal, respectively), or MCD with phytochemicals (MCDmp). Compared with the control group, MP, LCD, or MCD intervention did not produce survival benefit, but LCDmp (22.80±1.58 vs. 28.00±1.64 days, P=0.040) and MCDmp (23.80±1.08 vs. 30.13±2.29 days, P=0.008) increased the median survival time significantly. Suppression of the IGF-1R/PI3K/Akt/mTOR signaling, activation of the AMPK/SIRT1/LKB1pathway, and NF-κB suppression were the critical tumor-suppression mechanisms. In addition, SIRT1 suppressed proliferation of the B16F10 and A375SM cells under a low-glucose condition. Alterations in histone methylation within Pten and FoxO3a were observed after the MCDmp intervention. In the transgenic liver cancer model developed by hydrodynamic transfection of the HrasG12V and shp53, MCDmp and LCDmp interventions induced significant cancer-prevention effects. Microarray analysis showed that PPARα increased with decreased IL-6 and NF-κB within the hepatocytes after an MCDmp intervention. In conclusion, an isocaloric carbohydrate-restriction diet and natural AMPK-activating agents induce synergistic anticancer effects. SIRT1 acts as a

  7. Alteration of muscle fiber characteristics and the AMPK-SIRT1-PGC-1α axis in skeletal muscle of growing pigs fed low-protein diets with varying branched-chain amino acid ratios

    PubMed Central

    Duan, Yehui; Li, Fengna; Wang, Wenlong; Guo, Qiuping; Wen, Chaoyue; Yin, Yulong

    2017-01-01

    There mainly exists four major myosin heavy chains (MyHC) (i.e., I, IIa, IIx, and IIb) in growing pigs. The current study aimed to explore the effects of low-protein diets supplemented with varying branched-chain amino acids (BCAAs) on muscle fiber characteristics and the AMPK-SIRT1-PGC-1α axis in skeletal muscles. Forty growing pigs (9.85 ± 0.35 kg) were allotted to 5 groups and fed with diets supplemented with varying leucine: isoleucine: valine ratios: 1:0.51:0.63 (20% crude protein, CP), 1:1:1 (17% CP), 1:0.75:0.75 (17% CP), 1:0.51:0.63 (17% CP), and 1:0.25:0.25 (17% CP), respectively. The skeletal muscles of different muscle fiber composition, that is, longissimus dorsi muscle (LM, a fast-twitch glycolytic muscle), biceps femoris muscle (BM, a mixed slow- and fast-twitch oxido-glycolytic muscle), and psoas major muscle (PM, a slow-twitch oxidative muscle) were collected and analyzed. Results showed that relative to the control group (1:0.51:0.63, 20% CP), the low-protein diets with the leucine: isoleucine: valine ratio ranging from 1:0.75:0.75 to 1:0.25:0.25 especially augmented the mRNA and protein abundance of MyHC I fibers in BM and lowered the mRNA abundance of MyHC IIb particularly in LM (P < 0.05), with a concurrent increase in the activation of AMPK and the mRNA abundance of SIRT and PGC-1α in BM (P < 0.05). The results reveal that low-protein diets supplemented with optimal BCAA ratio, i.e. 1:0.75:0.75-1:0.25:0.25, induce muscle more oxidative especially in oxido-glycolytic skeletal muscle of growing pigs. These effects are likely associated with the activation of the AMPK-SIRT1-PGC-1α axis. PMID:29291007

  8. Plasminogen activator inhibitor-1, monocyte chemoattractant protein-1, e-selectin and C-reactive protein levels in response to 4-week very-high-fructose or -glucose diets.

    PubMed

    Silbernagel, G; Machann, J; Häring, H-U; Fritsche, A; Peter, A

    2014-01-01

    High intake of added sweeteners is considered to have a causal role in the pathogenesis of cardiometabolic disorders. Especially, high-fructose intake is regarded as potentially harmful to cardiometabolic health. It may cause not only weight gain but also low-grade inflammation, which represents an independent risk factor for developing type 2 diabetes and cardiovascular disease. In particular, fructose has been suggested to induce plasminogen activator inhibitor-1 (PAI-1) expression in the liver and to increase circulating inflammatory cytokines. We therefore aimed to investigate, whether high-fructose diet has an impact on PAI-1, monocyte chemoattractant protein-1 (MCP-1), e-selectin and C-reactive protein (CRP) concentrations in healthy humans. We studied 20 participants (12 males and 8 females) of the TUebingen FRuctose Or Glucose study. This is an exploratory, parallel, prospective, randomized, single-blinded, outpatient, hypercaloric, intervention study. The participants had a mean age of 30.9 ± 2.1 years and a mean body mass index of 26.0 ± 0.5 kg/m(2) and they received 150 g of either fructose or glucose per day for 4 weeks. There were neither significant changes of PAI-1, MCP-1, e-selectin and CRP after fructose (n=10) and glucose (n=10) intervention nor treatment effects (all P>0.2). Moreover, we did not observe longitudinal associations of the inflammatory parameters with triglycerides, liver fat, visceral fat and body weight in the fructose group. Temporary high-fructose intake does not seem to cause inflammation in apparently healthy people in this secondary analysis of a small feeding trial.

  9. TRPV1 activation improves exercise endurance and energy metabolism through PGC-1α upregulation in mice

    PubMed Central

    Luo, Zhidan; Ma, Liqun; Zhao, Zhigang; He, Hongbo; Yang, Dachun; Feng, Xiaoli; Ma, Shuangtao; Chen, Xiaoping; Zhu, Tianqi; Cao, Tingbing; Liu, Daoyan; Nilius, Bernd; Huang, Yu; Yan, Zhencheng; Zhu, Zhiming

    2012-01-01

    Impaired aerobic exercise capacity and skeletal muscle dysfunction are associated with cardiometabolic diseases. Acute administration of capsaicin enhances exercise endurance in rodents, but the long-term effect of dietary capsaicin is unknown. The capsaicin receptor, the transient receptor potential vanilloid 1 (TRPV1) cation channel has been detected in skeletal muscle, the role of which remains unclear. Here we report the function of TRPV1 in cultured C2C12 myocytes and the effect of TRPV1 activation by dietary capsaicin on energy metabolism and exercise endurance of skeletal muscles in mice. In vitro, capsaicin increased cytosolic free calcium and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression in C2C12 myotubes through activating TRPV1. In vivo, PGC-1α in skeletal muscle was upregulated by capsaicin-induced TRPV1 activation or genetic overexpression of TRPV1 in mice. TRPV1 activation increased the expression of genes involved in fatty acid oxidation and mitochondrial respiration, promoted mitochondrial biogenesis, increased oxidative fibers, enhanced exercise endurance and prevented high-fat diet-induced metabolic disorders. Importantly, these effects of capsaicin were absent in TRPV1-deficient mice. We conclude that TRPV1 activation by dietary capsaicin improves energy metabolism and exercise endurance by upregulating PGC-1α in skeletal muscles. The present results indicate a novel therapeutic strategy for managing metabolic diseases and improving exercise endurance. PMID:22184011

  10. Diet-induced obesity prolongs neuroinflammation and recruits CCR2+ monocytes to the brain following herpes simplex virus (HSV)-1 latency in mice

    PubMed Central

    White, Katherine A.; Hutton, Scott R.; Weimer, Jill M.

    2016-01-01

    Herpes simplex virus (HSV)-1 is a ubiquitous human infection, with increased prevalence in obese populations. Obesity has been linked to increased inflammation, susceptibility to infection, and higher rates of anxiety disorder and cognitive impairment. To determine how obesity alters neuroinflammation and behavior following infection, we infected weanling C57BL/6 or CCR2RFP/+/CX3CR1GFP/+ mice with a very low dose of HSV-1. Following viral latency (14 days post infection (d p.i.)), mice were randomly assigned to remain on the low fat (LF) diet or switched to a 45% high fat (HF) diet. Eight weeks post diet shift, latently infected mice on the HF diet (HSV-HF) had greater microglial activation and infiltration of inflammatory CCR2+ monocytes in the hypothalamus and dentate gyrus, in comparison to both HSV-LF mice and uninfected mice on LF and HF diets. VCAM staining was present in hypothalamus and hippocampus of the HSV-HF mice in the areas of monocyte infiltration. Infiltrating monocytes also produced proinflammatory cytokines demonstrating that, along with activated microglia, monocytes contribute to sustained neuroinflammation in latently infected obese mice. Utilizing a light-dark preference test, we found that HSV-HF mice had increased anxiety-like behavior. In the marble-burying test, HF diet and HSV infection resulted in increased numbers of buried marbles. Together, these mice provide a useful, testable model to study the biobehavioral effects of obesity and latent HSV-1 infection in regards to anxiety and may provide a tool for studying diet intervention programs in the future. PMID:27311830

  11. Maternal Diet Supplementation with n-6/n-3 Essential Fatty Acids in a 1.2 : 1.0 Ratio Attenuates Metabolic Dysfunction in MSG-Induced Obese Mice

    PubMed Central

    Martin, Josiane Morais; Miranda, Rosiane Aparecida; Palma-Rigo, Kesia; Alves, Vander Silva; Fabricio, Gabriel Sergio; Pavanello, Audrei; Franco, Claudinéia Conationi da Silva; Ribeiro, Tatiane Aparecida; Visentainer, Jesuí Vergílio; Banafé, Elton Guntendeorfer; Martin, Clayton Antunes; Mathias, Paulo Cezar de Freitas

    2016-01-01

    Essential polyunsaturated fatty acids (PUFAs) prevent cardiometabolic diseases. We aimed to study whether a diet supplemented with a mixture of n-6/n-3 PUFAs, during perinatal life, attenuates outcomes of long-term metabolic dysfunction in prediabetic and obese mice. Seventy-day-old virgin female mice were mated. From the conception day, dams were fed a diet supplemented with sunflower oil and flaxseed powder (containing an n-6/n-3 PUFAs ratio of 1.2 : 1.0) throughout pregnancy and lactation, while control dams received a commercial diet. Newborn mice were treated with monosodium L-glutamate (MSG, 4 mg g−1 body weight per day) for the first 5 days of age. A batch of weaned pups was sacrificed to quantify the brain and pancreas total lipids; another batch were fed a commercial diet until 90 days of age, where glucose homeostasis and glucose-induced insulin secretion (GIIS) as well as retroperitoneal fat and Lee index were assessed. MSG-treated mice developed obesity, glucose intolerance, insulin resistance, pancreatic islet dysfunction, and higher fat stores. Maternal flaxseed diet-supplementation decreased n-6/n-3 PUFAs ratio in the brain and pancreas and blocked glucose intolerance, insulin resistance, GIIS impairment, and obesity development. The n-6/n-3 essential PUFAs in a ratio of 1.2 : 1.0 supplemented in maternal diet during pregnancy and lactation prevent metabolic dysfunction in MSG-obesity model. PMID:28050167

  12. Can families eat better without spending more? Improving diet quality does not increase diet cost in a randomized clinical trial among youth with type 1 diabetes and their parents

    PubMed Central

    Lipsky, Leah M.; Eisenberg, Miriam H.; Liu, Aiyi; Mehta, Sanjeev N.; Laffel, Lori M.B.

    2016-01-01

    Background Although cost is a frequently cited barrier to healthful eating, limited prospective data exist. Objective This study examined the association of diet cost with diet quality change. Design An 18-month randomized clinical trial evaluated a dietary intervention. Participants/setting Youth with type 1 diabetes duration ≥1 year, age 8.0 to 16.9 years (N=136), receiving care at an outpatient tertiary diabetes center in Boston, Massachusetts participated along with a parent from 2010 to 2013. Eighty-two percent of participants were from middle to upper income households. Intervention The family-based behavioral intervention targeted intake of whole plant foods. Main outcome measures Diet quality as indicated by the Healthy Eating Index-2005 (HEI-2005, measures conformance to 2005 Dietary Guidelines for Americans) and whole plant food density (WPFD, cup/oz equivalents per 1000 kcal of target food groups) were calculated from three-day food records of youth and parent dietary intake at six and four time points, respectively. Food prices were obtained from two online supermarkets common to the study location; daily diet cost was calculated by summing prices of reported foods. Statistical analyses performed Random effects models estimated treatment group differences in time-varying diet cost. Separate models for youth and parent adjusted for covariates examined associations of time-varying change in diet quality with change in diet cost. Results There was no treatment effect on time-varying diet cost for either youth [β (95%CI) = −0.49 (−1.07, 0.08), p=.10] or parents [β=0.24 (−1.61, 2.08) p=.80]. Additionally, time-varying change in diet quality indicators was not associated with time-varying change in diet cost for youth. Among parents, a 1 cup/oz-equivalent increase in whole plant food density was associated with a $.63/day lower diet cost [β=−0.63 (−1.20, −0.05), p=0.03]. Conclusions Improved diet quality was not accompanied by greater cost

  13. Lipopolysaccharide derived from the rumen down-regulates stearoyl-CoA desaturase 1 expression and alters fatty acid composition in the liver of dairy cows fed a high-concentrate diet.

    PubMed

    Xu, Tianle; Tao, Hui; Chang, Guangjun; Zhang, Kai; Xu, Lei; Shen, Xiangzhen

    2015-03-07

    Dairy cows are often fed a high-concentrate diet to meet lactating demands, yet long-term concentrate feeding induces subacute ruminal acidosis (SARA) and leads to a decrease in milk fat. Stearoyl-CoA desaturase1 (SCD1) participates in fatty acid biosynthesis in the liver of lactating ruminants. Here, we conducted this study to investigate the impact of lipopolysaccharide derived from the rumen on SCD1 expression and on fatty acid composition in the liver of dairy cows fed a high-concentrate diet. Eight multiparous mid-lactating Holstein cows (455 ± 28 kg) were randomly assigned into two groups in the experiment and were fed a low-concentrate diet (LC) or high-concentrate diet (HC) for 18 weeks. The results showed that the total volatile fatty acids and lactic acid accumulated in the rumen, leading to a decreased rumen pH and elevated lipopolysaccharides (LPSs) in the HC group. The long chain fatty acid profile in the rumen and hepatic vein was remarkably altered in the animals fed the HC diet. The triglyceride (TG), non-esterified fatty acid (NEFA) and total cholesterol (TCH) content in the plasma was significantly decreased, whereas plasma glucose and insulin levels were increased. The expression of SCD1 in the liver was significantly down-regulated in the HC group. In regards to transcriptional regulators, the expression of sterol regulatory element binding transcription factors (SREBF1c, SREBF2) and SREBP cleavage activating protein (SCAP) was down-regulated, while peroxisome proliferator-activated receptor α (PPARα) was up-regulated. These data indicate that lipopolysaccharide derived from the rumen down-regulates stearoyl-CoA desaturase 1 expression and alters fatty acid composition in the liver of dairy cows fed a high-concentrate diet.

  14. Contextual factors are associated with diet quality in youth with type 1 diabetes

    PubMed Central

    Nansel, Tonja R.; Lipsky, Leah M.; Liu, Aiyi; Laffel, Lori M.B.; Mehta, Sanjeev N.

    2014-01-01

    This study examined differences in diet quality by meal type, location, and time of week in youth with type 1 diabetes (T1D). A sample of youth with T1D (n=252; 48% female) age 8 to 18 years (13.2±2.8) with diabetes duration ≥1 year (6.3±3.4) completed 3-day diet records. Multilevel linear regression models tested for differences in diet quality indicators by meal type, location and time of week (weekdays versus weekends). Participants showed greater energy intake and poorer diet quality on weekends relative to weekdays, with lower intake of fruit and vegetables, and higher intake of total and saturated fat. Differences in diet quality were seen across meal types, with higher nutrient density at breakfast and dinner than at lunch and snacks. Participants reported the highest whole grain and lowest fat intake at breakfast, but higher added sugar than at lunch or dinner. Dinner was characterized by the highest fruit intake, lowest added sugar, and lowest glycemic load, but also the highest sodium intake. The poorest nutrient density and highest added sugar occurred during snacks. Diet quality was poorer for meals consumed away from home than those consumed at home for breakfast, dinner, and snacks. Findings regarding lunch meal location were mixed, with higher nutrient density, lower glycemic load, and less added sugar at home lunches, and lower total fat, saturated fat, and sodium at lunches away from home. Findings indicate impacts of meal type, location and time of week on diet quality, suggesting targets for nutrition education and behavioral interventions. PMID:24651028

  15. Effect of Lactobacillus acidophilus NS1 on plasma cholesterol levels in diet-induced obese mice.

    PubMed

    Song, M; Park, S; Lee, H; Min, B; Jung, S; Park, S; Kim, E; Oh, S

    2015-03-01

    We investigated the probiotic properties of Lactobacillus acidophilus NS1, such as acid resistance, bile tolerance, adherence to HT-29 cells, and cholesterol assimilation activity. In an animal study, 7-wk-old male C57BL/6 mice were fed a normal diet, a high-fat diet (HFD), or an HFD with L. acidophilus NS1 (ca. 1.0×10(8) cfu/mL) for 10 wk. Total cholesterol and low-density lipoprotein (LDL) cholesterol levels were significantly lower in mice fed an HFD with L. acidophilus NS1 than in those fed an HFD only, whereas high-density lipoprotein cholesterol levels were similar between these 2 groups. To understand the mechanism of the cholesterol-lowering effect of L. acidophilus NS1 on the HFD-mediated increase in plasma cholesterol levels, we determined mRNA levels of genes involved in cholesterol homeostasis in the liver. Expression of sterol regulatory element-binding protein 2 (Srebp2) and LDL receptor (Ldlr) in the liver was dramatically reduced in mice fed a HFD compared with those fed a normal diet. When L. acidophilus NS1 was administered orally to HFD-fed mice, an HFD-induced suppression of Srebp2 and Ldlr expression in the liver was abolished. These results suggest that the oral administration of L. acidophilus NS1 to mice fed an HFD increased the expression of Srebp2 and Ldlr in the liver, which was inhibited by high fat intake, thus leading to a decrease in plasma cholesterol levels. Lactobacillus acidophilus NS1 could be a useful probiotic microorganism for cholesterol-lowering dairy products and the improvement of hyperlipidemia and hepatic lipid metabolism. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Association between liver failure and hepatic UDP-glucuronosyltransferase activity in dairy cows with follicular cysts

    PubMed Central

    TANEMURA, Kouichi; OHTAKI, Tadatoshi; KUWAHARA, Yasushi; TSUMAGARI, Shigehisa

    2016-01-01

    Uridine 5’-diphospho-glucuronosyltransferase (UGT) liver activity was measured using estradiol-17β as a substrate in dairy cows with follicular cysts. The activity was significantly lower than that in dairy cows with normal estrous cycles (P<0.01). Liver disorders, such as fatty liver and hepatitis, were observed in half cows with follicular cysts, and liver UGT activity was lower than that in cows with normal estrus cycles. In addition, the liver UGT activity was significantly lower in dairy cows with follicular cysts without liver disorders than in dairy cows with normal estrous cycles. Therefore, the cows were divided into those with low, middle and high liver UGT activities, and liver disorder complication rates were investigated. The complication rate was significantly higher in the low- (78.1%) than in the middle- (22.2%) and high-level (8.3%) groups, suggesting that liver disorders are closely associated with the development of follicular cysts in dairy cows and that steroid hormone metabolism is delayed because of reduced liver UGT activity, resulting in follicular cyst formation. We conclude that reduced estradiol-17β glucuronidation in the liver and liver disorders are associated with follicular cyst occurrence in dairy cows. PMID:27666462

  17. Comparative Study of the Effects of a 1-Year Dietary Intervention of a Low-Carbohydrate Diet Versus a Low-Fat Diet on Weight and Glycemic Control in Type 2 Diabetes

    PubMed Central

    Davis, Nichola J.; Tomuta, Nora; Schechter, Clyde; Isasi, Carmen R.; Segal-Isaacson, C.J.; Stein, Daniel; Zonszein, Joel; Wylie-Rosett, Judith

    2009-01-01

    OBJECTIVE To compare the effects of a 1-year intervention with a low-carbohydrate and a low-fat diet on weight loss and glycemic control in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS This study is a randomized clinical trial of 105 overweight adults with type 2 diabetes. Primary outcomes were weight and A1C. Secondary outcomes included blood pressure and lipids. Outcome measures were obtained at 3, 6, and 12 months. RESULTS The greatest reduction in weight and A1C occurred within the first 3 months. Weight loss occurred faster in the low-carbohydrate group than in the low-fat group (P = 0.005), but at 1 year a similar 3.4% weight reduction was seen in both dietary groups. There was no significant change in A1C in either group at 1 year. There was no change in blood pressure, but a greater increase in HDL was observed in the low-carbohydrate group (P = 0.002). CONCLUSIONS Among patients with type 2 diabetes, after 1 year a low-carbohydrate diet had effects on weight and A1C similar to those seen with a low-fat diet. There was no significant effect on blood pressure, but the low-carbohydrate diet produced a greater increase in HDL cholesterol. PMID:19366978

  18. Genistein promotes insulin action through adenosine monophosphate-activated protein kinase activation and p70 ribosomal protein S6 kinase 1 inhibition in the skeletal muscle of mice fed a high energy diet.

    PubMed

    Arunkumar, Elumalai; Anuradha, Carani Venkatraman

    2012-08-01

    Genistein (GEN), a soy isoflavone, exerts insulin-sensitizing actions in animals; however, the underlying mechanisms have not been determined. Because GEN is a known activator of adenosine monophosphate-activated protein kinase (AMPK), we hypothesize that GEN activates insulin signaling through AMPK activation. To test this hypothesis, a high fat-high fructose diet (HFFD)-fed mice model of insulin resistance was administered GEN, and the insulin signaling pathway proteins in the skeletal muscle were examined. Hyperglycemia and hyperinsulinemia observed in HFFD-fed mice were significantly lowered by GEN. GEN increased insulin-stimulated tyrosine phosphorylation of insulin receptor-β and insulin receptor substrate (IRS) 1 but down-regulated IRS-1 serine phosphorylation in the skeletal muscle of HFFD-fed mice. Furthermore, GEN treatment improved muscle IRS-1-associated phospatidylinositol-3 kinase expression, phosphorylation of Akt at Ser(473), and translocation of glucose transporter subtype 4. Phosphorylation of AMPK at Thr(172) and acetyl coenzyme A carboxylase (ACC) at Ser(79) was augmented, whereas phosphorylation of p70 ribosomal protein S6 kinase 1 at Thr(389) was significantly decreased after GEN treatment in the skeletal muscle of HFFD-fed mice. These results suggest that GEN might improve insulin action in the skeletal muscle by targeting AMPK. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. [Glucose transponer type 1 deficiency síndrome (GLUT-1 SD) treated with ketogenic diet. Report of one case].

    PubMed

    Cornejo, Verónica E; Cabello, Juan Francisco A; Colombo, Marta C; Raimann, Erna B

    2007-05-01

    The glucose transporter type 1 deficiency syndrome (GLUT-1 SD) (OMIM 606777) is an inborn error of metabolism of brain glucose transport. The characteristic clinical manifestations are seizures, hypotonia, developmental delay, microcephaly and hypoglycorrhachia. We report a girl with normal weight and height at birth. At 6 weeks of age she started with convulsions reaching up to 20 myoclonic seizures a day. She was treated with valproate, phenobarbital and carbamazepine without response. Blood analysis including aminoacids and acylcarnitines were all normal. The brain MRI showed frontal atrophy with an increased subarachnoidal space and Electroencephalography was abnormal. Blood glucose was 84 mg/dl and spinal fluid glucose 26 mg/dl with a ratio of 0.31 (Normal Ratio >0.65+/-00.1). These results suggested the diagnosis of GLUT-1 SD, and was confirmed with erythrocyte glucose uptake of 44% (Normal range 80-100%). A molecular study found the mutation 969del, C971T in exon 6 of the gene Glut-1. Treatment with a ketogenic diet was started immediately and after 7 days with this diet seizures ceased. Anticonvulsants were progressively suspended. At present, the patient is 6 years old, she continues on a ketogenic diet and supplements with L-carnitine, lipoic acid, vitamins and minerals. Growth and development are normal with an intelligence quotient of 103. It is concluded that it is necessary to include GLUT-1 SD in the differential diagnosis of children with early seizures that are non responsive to pharmacological treatment.

  20. Association between UGT2B7 gene polymorphisms and fentanyl sensitivity in patients undergoing painful orthognathic surgery

    PubMed Central

    Muraoka, Wataru; Nishizawa, Daisuke; Fukuda, Kenichi; Kasai, Shinya; Hasegawa, Junko; Wajima, Koichi; Nakagawa, Taneaki

    2016-01-01

    Background Fentanyl is often used instead of morphine for the treatment of pain because it has fewer side effects. The metabolism of morphine by glucuronidation is known to be influenced by polymorphisms of the UGT2B7 gene. Some metabolic products of fentanyl are reportedly metabolized by glucuronate conjugation. The genes that are involved in the metabolic pathway of fentanyl may also influence fentanyl sensitivity. We analyzed associations between fentanyl sensitivity and polymorphisms of the UGT2B7 gene to clarify the hereditary determinants of individual differences in fentanyl sensitivity. Results This study examined whether single-nucleotide polymorphisms (SNPs) of the UGT2B7 gene affect cold pain sensitivity and the analgesic effects of fentanyl, evaluated by a standardized pain test and fentanyl requirements in healthy Japanese subjects who underwent uniform surgical procedures. The rs7439366 SNP of UGT2B7 is reportedly associated with the metabolism and analgesic effects of morphine. We found that this SNP is also associated with the analgesic effects of fentanyl in the cold pressor-induced pain test. It suggested that the C allele of the rs7439366 SNP may enhance analgesic efficacy. Two SNPs of UGT2B7, rs4587017 and rs1002849, were also found to be novel SNPs that may influence the analgesic effects of fentanyl in the cold pressor-induced pain test. Conclusions Fentanyl sensitivity for cold pressor-induced pain was associated with the rs7439366, rs4587017, and rs1002849 SNPs of the UGT2B7 gene. Our findings may provide valuable information for achieving satisfactory pain control and open to new avenues for personalized pain treatment. PMID:28256933

  1. Ablation of PPP1R3G reduces glycogen deposition and mitigates high-fat diet induced obesity.

    PubMed

    Zhang, Yongxian; Gu, Jin; Wang, Lin; Zhao, Zilong; Pan, Yi; Chen, Yan

    2017-01-05

    Glycogen and triglyceride are two major forms of energy storage in the body and provide the fuel during different phases of food deprivation. However, how glycogen metabolism is linked to fat deposition in adipose tissue has not been clearly characterized. We generated a mouse model with whole-body deletion of PPP1R3G, a glycogen-targeting subunit of protein phosphatase-1 required for glycogen synthesis. Upon feeding with high-fat diet, the body weight and fat composition are significantly reduced in the PPP1R3G -/- mice compared to the wild type controls. The metabolic rate of the mice as measured by O 2 consumption and CO 2 production is accelerated by PPP1R3G deletion. The high-fat diet-induced liver steatosis is also slightly relieved by PPP1R3G deletion. The glycogen level in adipose tissue is reduced by PPP1R3G deletion. In 3T3L1 cells, overexpression of PPP1R3G leads to increases of both glycogen and triglyceride levels. In conclusion, our study indicates that glycogen is actively involved in fat accumulation in adipose tissue and obesity development upon high-fat diet. Our study also suggests that PPP1R3G is an important player that links glycogen metabolism to lipid metabolism in vivo. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Effects of induction/inhibition of endogenous heme oxygenase-1 on lipid metabolism, endothelial function, and atherosclerosis in rabbits on a high fat diet.

    PubMed

    Liu, Danan; He, Zuoyun; Wu, Lirong; Fang, Ying

    2012-01-01

    The heme oxygenase-1 (HO-1) / carbon monoxide (CO) system has been presumed as a therapeutic target for preventing atherosclerosis. However, the exact mechanism(s) underlying this system remains largely undefined. This study aims to examine the influence of induction/inhibition of HO-1 on atherosclerotic plaque using pharmacological approaches and to elucidate potential mechanisms. Rabbits were randomly assigned to receive a standard diet (control group), high fat diet (HFD), HFD plus HO inducer hemin (HFD + H group), and HFD plus an HO inhibitor, zinc protoporphyrin-9 (ZnPP9, HFD + Z group). Atherosclerotic plaque was evaluated using oil red O staining and histological analyses. Immunohistochemistry, western blotting, and RT-PCR were employed to study the expression of HO-1 and endothelin-1 (ET-1). Levels of CO, nitric oxide (NO), eNOS/iNOS activities, NF-κB activity, and TNF-α level were determined. No significant differences of serum lipid levels were observed among the HFD, HFD + Z, and HFD + H groups. In rabbits, HFD induced typical atherosclerotic plaque and increased intima/media thickness ratio, which was markedly reduced in the HFD + H group and further aggravated in the HFD + Z group. Furthermore, hemin increased HO-1 expression, CO levels, and eNOS activity, while decreasing iNOS levels, ET-1 expression, NF-κB activity, and TNF-α level. ZnPP9 caused opposite effects. Induction of the endogenous HO-1/CO system by hemin can prevent atherosclerosis though increasing CO levels, regulating eNOS activity, NF-κB activity, TNF-α levels, and ET-1 levels in rabbits. Our results add new evidence for the importance of HO-1 in the genesis and development of atherosclerosis and provide several possible mechanisms underlying the anti-atherosclerosis effects of HO-1.

  3. Protective effects of coffee against oxidative stress induced by the tobacco carcinogen benzo[α]pyrene.

    PubMed

    Kalthoff, Sandra; Landerer, Steffen; Reich, Julia; Strassburg, Christian P

    2017-07-01

    Coffee consumption has been epidemiologically associated with a lower risk for liver cirrhosis and cancer. UDP-glucuronosyltransferases (UGT1A) catalyze the detoxification of reactive metabolites thereby acting as indirect antioxidants. Aim of the study was to examine UGT1A regulation in response to Benzo[α]pyrene (BaP) to elucidate the potentially protective effects of coffee on BaP-induced oxidative stress and toxicity. In cell culture (HepG2, KYSE70 cells) and in htgUGT1A-WT mice, UGT1A transcription was activated by BaP, while it was reduced or absent htgUGT1A-SNP (containing 10 commonly occurring UGT1A-SNPs) mice. siRNA-mediated knockdown identified aryl hydrocarbon receptor (AhR) and nuclear factor erythroid2-related factor-2 (Nrf2) as mediators of BaP-induced UGT1A upregulation. Exposure to coffee led to a reduction of BaP-induced production of reactive oxygen species in vitro and in htgUGT1A-WT and -SNP mice. After UGT1A silencing by UGT1A-specific siRNA in cell culture, the coffee-mediated reduction of ROS production was significantly impaired compared to UGT1A expressing cells. A common UGT1A haplotype, prevalent in 9% (homozygous) of the White population, significantly impairs the expression of UGT1A enzymes in response to the putative tobacco carcinogen BaP and is likely to represent a significant risk factor for reduced detoxification and increased genotoxicity. Coffee was demonstrated to inhibit BaP-induced production of oxidative stress by UGT1A activation, and is therefore an attractive candidate for chemoprotection in risk groups for HCC or other tumors. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Expression of Na+/glucose co-transporter 1 (SGLT1) is enhanced by supplementation of the diet of weaning piglets with artificial sweeteners.

    PubMed

    Moran, Andrew W; Al-Rammahi, Miran A; Arora, Daleep K; Batchelor, Daniel J; Coulter, Erin A; Daly, Kristian; Ionescu, Catherine; Bravo, David; Shirazi-Beechey, Soraya P

    2010-09-01

    In an intensive livestock production, a shorter suckling period allows more piglets to be born. However, this practice leads to a number of disorders including nutrient malabsorption, resulting in diarrhoea, malnutrition and dehydration. A number of strategies have been proposed to overcome weaning problems. Artificial sweeteners, routinely included in piglets' diet, were thought to enhance feed palatability. However, it is shown in rodent models that when included in the diet, they enhance the expression of Na+/glucose co-transporter (SGLT1) and the capacity of the gut to absorb glucose. Here, we show that supplementation of piglets' feed with a combination of artificial sweeteners saccharin and neohesperidin dihydrochalcone enhances the expression of SGLT1 and intestinal glucose transport function. Artificial sweeteners are known to act on the intestinal sweet taste receptor T1R2/T1R3 and its partner G-protein, gustducin, to activate pathways leading to SGLT1 up-regulation. Here, we demonstrate that T1R2, T1R3 and gustducin are expressed together in the enteroendocrine cells of piglet intestine. Furthermore, gut hormones secreted by the endocrine cells in response to dietary carbohydrates, glucagon-like peptides (GLP)-1, GLP-2 and glucose-dependent insulinotrophic peptide (GIP), are co-expressed with type 1 G-protein-coupled receptors (T1R) and gustducin, indicating that L- and K-enteroendocrine cells express these taste elements. In a fewer endocrine cells, T1R are also co-expressed with serotonin. Lactisole, an inhibitor of human T1R3, had no inhibitory effect on sweetener-induced SGLT1 up-regulation in piglet intestine. A better understanding of the mechanism(s) involved in sweetener up-regulation of SGLT1 will allow the identification of nutritional targets with implications for the prevention of weaning-related malabsorption.

  5. Weight status in US youth: the role of activity, diet, and sedentary behaviors.

    PubMed

    Peart, Tasha; Velasco Mondragon, H Eduardo; Rohm-Young, Deborah; Bronner, Yvonne; Hossain, Mian B

    2011-11-01

    To assess associations of physical activity, diet, and sedentary behaviors with overweight and obesity. Analyses of the NHANES 2003-06 were conducted among 2368 US adolescents, ages 12-19. Self-reported diet and sedentary behavior measures were used; physical activity was assessed using accelerometers. Television/video viewing (OR=1.84; CI=1.24, 2.69), physical activity (OR=0.75; CI=0.59, 0.95), and fiber intake (OR=0.96; CI=0.92, 0.99) were associated with obesity whereas television/video viewing was a risk factor for overweight (OR=1.57; CI=1.1, 2.63). Findings using accelerometer-measured physical activity are consistent with results from other studies using self-reported measurements. No interactions with ethnicity and gender were found.

  6. Combination treatment with quercetin and resveratrol attenuates high fat diet-induced obesity and associated inflammation in rats via the AMPKα1/SIRT1 signaling pathway

    PubMed Central

    Zhao, Le; Cen, Fang; Tian, Feng; Li, Min-Jie; Zhang, Qi; Shen, Hong-Yi; Shen, Xiang-Chun; Zhou, Ming-Mei; Du, Jun

    2017-01-01

    Diet-induced obesity is associated with systemic inflammation, which is considered to originate predominantly from the adipose tissue. Quercetin and resveratrol are two dietary polyphenols that exhibit anti-inflammatory properties and anti-insulin resistance when administered in isolation or combination (CQR). It remains unknown whether CQR reduces high fat diet (HFD)-induced obesity and inflammation in rats. In the current study, 46 male Wistar rats were divided into two groups, one of which was fed a normal diet (ND, 5.4% fat, w/w) and one of which was fed a HFD (45% fat, w/w) for 3 weeks. Following removal of the 12 most obesity-resistant rats from the HFD group, the remaining rats were divided into two sub-groups: A HFD group and a HFD+CQR group (administered 120 mg/kg/day resveratrol and 240 mg/kg/day quercetin). The results revealed that the HFD+CQR group had significantly lower body weights at 11 weeks compared with the HFD group and had significantly reduced visceral adipose tissue weights and adipocyte sizes. Serum lipid profiles were also significantly ameliorated in the HFD+CQR group. CQR attenuated the expression of systemic proinflammatory adipokines, including leptin, tumor necrosis factor-α, monocyte chemoattractant protein-1 and interleukin-6. It also reduced the recruitment of mast cells to the epididyotic adipose tissue (EAT). Furthermore, CQR reversed the HFD-induced suppression of 5′-adenosine monophosphate-activated protein kinase α1 (AMPKα1) phosphorylation and sirtuin 1 (SIRT1) expression in EAT. In conclusion, CQR may suppress obesity and associated inflammation via the AMPKα1/SIRT1 signaling pathway in rats fed a HFD. PMID:29285143

  7. Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase.

    PubMed

    Jackson, R G; Lim, E K; Li, Y; Kowalczyk, M; Sandberg, G; Hoggett, J; Ashford, D A; Bowles, D J

    2001-02-09

    Biochemical characterization of recombinant gene products following a phylogenetic analysis of the UDP-glucosyltransferase (UGT) multigene family of Arabidopsis has identified one enzyme (UGT84B1) with high activity toward the plant hormone indole-3-acetic acid (IAA) and three related enzymes (UGT84B2, UGT75B1, and UGT75B2) with trace activities. The identity of the IAA conjugate has been confirmed to be 1-O-indole acetyl glucose ester. A sequence annotated as a UDP-glucose:IAA glucosyltransferase (IAA-UGT) in the Arabidopsis genome and expressed sequence tag data bases given its similarity to the maize iaglu gene sequence showed no activity toward IAA. This study describes the first biochemical analysis of a recombinant IAA-UGT and provides the foundation for future genetic approaches to understand the role of 1-O-indole acetyl glucose ester in Arabidopsis.

  8. The PPARβ/δ activator GW501516 prevents the down-regulation of AMPK caused by a high-fat diet in liver and amplifies the PGC-1α-Lipin 1-PPARα pathway leading to increased fatty acid oxidation.

    PubMed

    Barroso, Emma; Rodríguez-Calvo, Ricardo; Serrano-Marco, Lucía; Astudillo, Alma M; Balsinde, Jesús; Palomer, Xavier; Vázquez-Carrera, Manuel

    2011-05-01

    Metabolic syndrome-associated dyslipidemia is mainly initiated by hepatic overproduction of the plasma lipoproteins carrying triglycerides. Here we examined the effects of the peroxisome proliferator-activated receptors (PPAR)-β/δ activator GW501516 on high-fat diet (HFD)-induced hypertriglyceridemia and hepatic fatty acid oxidation. Exposure to the HFD caused hypertriglyceridemia that was accompanied by reduced hepatic mRNA levels of PPAR-γ coactivator 1 (PGC-1)-α and lipin 1, and these effects were prevented by GW501516 treatment. GW501516 treatment also increased nuclear lipin 1 protein levels, leading to amplification in the PGC-1α-PPARα signaling system, as demonstrated by the increase in PPARα levels and PPARα-DNA binding activity and the increased expression of PPARα-target genes involved in fatty acid oxidation. These effects of GW501516 were accompanied by an increase in plasma β-hydroxybutyrate levels, demonstrating enhanced hepatic fatty acid oxidation. Moreover, GW501516 increased the levels of the hepatic endogenous ligand for PPARα, 16:0/18:1-phosphatidilcholine and markedly enhanced the expression of the hepatic Vldl receptor. Interestingly, GW501516 prevented the reduction in AMP-activated protein kinase (AMPK) phosphorylation and the increase in phosphorylated levels of ERK1/2 caused by HFD. In addition, our data indicate that the activation of AMPK after GW501516 treatment in mice fed HFD might be the result of an increase in the AMP to ATP ratio in hepatocytes. These findings indicate that the hypotriglyceridemic effect of GW501516 in HFD-fed mice is accompanied by an increase in phospho-AMPK levels and the amplification of the PGC-1α-lipin 1-PPARα pathway.

  9. Effects of a brief high-fat diet and acute exercise on the mTORC1 and IKK/NF-κB pathways in rat skeletal muscle

    PubMed Central

    Castorena, Carlos M.; Arias, Edward B.; Sharma, Naveen; Cartee, Gregory D.

    2016-01-01

    One exercise session can improve subsequent insulin-stimulated glucose uptake by skeletal muscle in healthy and insulin-resistant individuals. Our first aim was to determine whether a brief (2 weeks) high-fat diet (HFD) that caused muscle insulin resistance would activate the mammalian target of rapamycin complex 1 (mTORC1) and/or inhibitor of κB kinase/nuclear factor κB (IKK/NF-κB) pathways, which are potentially linked to induction of insulin resistance. Our second aim was to determine whether acute exercise that improved insulin-stimulated glucose uptake by muscles would attenuate activation of these pathways. We compared HFD-fed rats with rats fed a low-fat diet (LFD). Some animals from each diet group were sedentary and others were studied 3 h postexercise, when insulin-stimulated glucose uptake was increased. The results did not provide evidence that brief HFD activated either the mTORC1 (including phosphorylation of mTORSer2448, TSC2Ser939, p70S6KThr412, and RPS6Ser235/236) or the IKK/NF-κB (including abundance of IκBα or phosphorylation of NF-κBSer536, IKKα/βSer177/181, and IκBSer32) pathway in insulin-resistant muscles. Exercise did not oppose the activation of either pathway, as evidenced by no attenuation of phosphorylation of key proteins in the IKK/NF-κB pathway (NF-κBSer536, IKKα/βSer177/181, and IκBSer32), unaltered IκBα abundance, and no attenuation of phosphorylation of key proteins in the mTORC1 pathway (mTORSer2448, TSC2Ser939, and RPS6Ser235/236). Instead, exercise induced greater phosphorylation of 2 proteins of the mTORC1 pathway (PRAS40Thr246 and p70S6KThr412) in insulin-stimulated muscles, regardless of diet. Insulin resistance induced by a brief HFD was not attributable to greater activation of the mTORC1 or the IKK/NF-κB pathway in muscle, and exercise-induced improvement in insulin sensitivity was not attributable to attenuated activation of these pathways in muscle. PMID:25706655

  10. UGT2B17 gene deletion associated with an increase in bone mineral density similar to the effect of hormone replacement in postmenopausal women.

    PubMed

    Giroux, S; Bussières, J; Bureau, A; Rousseau, F

    2012-03-01

    UGT2B17 is one of the most important enzymes for androgen metabolism. In addition, the UGT2B17 gene is one of the most commonly deleted regions of the human genome. The deletion was previously found associated with higher femoral bone density in men and women, and we replicated this association in a sample of postmenopausal who never used hormone therapy. Deletion of the UGT2B17 gene was previously shown to be associated with a higher hip bone mineral density (BMD). Using a PCR assay, we tried to replicate the association among a large group of 2,379 women. We examined the effect of the deletion on femoral neck BMD and lumbar spine BMD according to the menopausal status and hormone replacement therapy (HRT). We used a high-throughput PCR assay to identify the gene and the deletion in a population of well-characterized women. Two additional polymorphisms, UGT2B28 deletion and UGT2B15 rs1902023 G > T were also investigated. Only UGT2B17 deletion was associated with LS and FN BMD. Furthermore, the association was seen only among postmenopausal women who had never used hormone replacement as in the first reported association. We confirmed the association between UGT2B17 deletion and a higher LS and FN BMD. In addition, we show that the association is observed among postmenopausal women who never used HRT consistent with the enzymatic function of UGT2B17. The analysis shows that those having one or two UGT2B17 alleles benefit from HRT, which is not the case for null carriers.

  11. Low-income, pregnant, African American women's views on physical activity and diet.

    PubMed

    Groth, Susan W; Morrison-Beedy, Dianne

    2013-01-01

    This research was conducted to gain insight into how low-income, pregnant, African American women viewed physical activity and approached nutrition during pregnancy. Three focus groups with a total of 26 women were conducted utilizing open-ended questions related to physical activity and diet during pregnancy. Content analysis was used to analyze the verbatim transcripts. Groups were compared and contrasted at the within-group and between-group levels to identify themes. Two themes that related to physical activity during pregnancy were identified: 1) fatigue and low energy dictate activity and 2) motivation to exercise is not there. Three themes were identified that related to diet: 1) despite best intentions, appetite, taste, and cravings drive eating behavior; 2) I'll decide for myself what to eat; and 3) eating out is a way of life. Women reported that being physically active and improving their diets was not easy. Women indicated that their levels of physical activity had decreased since becoming pregnant. Attempts at improving their diets were undermined by frequenting fast food restaurants and cravings for highly dense, palatable foods. Women ceded to the physical aspects of pregnancy, often choosing to ignore the advice of others. A combination of low levels of physical activity and calorie-dense diets increased the risk of excessive gestational weight gain in this sample of women, consequently increasing the risk for weight retention after pregnancy. Health care providers can promote healthy eating and physical activity by building on women's being "in tune with and listening to" their bodies. They can query women about their beliefs regarding physical activity and diet and offer information to ensure understanding of what contributes to healthy pregnancy outcomes. Intervention can focus on factors such as cravings and what tastes good, suggesting ways to manage pregnancy effects within a healthy diet. © 2013 by the American College of Nurse-Midwives.

  12. Synergic chemoprevention with dietary carbohydrate restriction and supplementation of AMPK-activating phytochemicals: the role of SIRT1

    PubMed Central

    Choi, Min-Ah; Ro, Simon Weonsang; Yang, Woo Ick; Cho, Arthur E.H.; Ju, Hye-Lim; Baek, Sinhwa; Chung, Sook In; Kang, Won Jun; Yun, Mijin; Park, Jeon Han

    2016-01-01

    Calorie restriction or a low-carbohydrate diet (LCD) can increase life span in normal cells while inhibiting carcinogenesis. Various phytochemicals also have calorie restriction-mimetic anticancer properties. We investigated whether an isocaloric carbohydrate-restriction diet and AMP-activated protein kinase (AMPK)-activating phytochemicals induce synergic tumor suppression. We used a mixture of AMPK-activating phytochemical extracts including curcumin, quercetin, catechins, and resveratrol. Survival analysis was carried out in a B16F10 melanoma model fed a control diet (62.14% kcal carbohydrate, 24.65% kcal protein and 13.2% kcal fat), a control diet with multiple phytochemicals (MP), LCD (16.5, 55.2, and 28.3% kcal, respectively), LCD with multiple phytochemicals (LCDmp), a moderate-carbohydrate diet (MCD, 31.9, 62.4, and 5.7% kcal, respectively), or MCD with phytochemicals (MCDmp). Compared with the control group, MP, LCD, or MCD intervention did not produce survival benefit, but LCDmp (22.80±1.58 vs. 28.00±1.64 days, P=0.040) and MCDmp (23.80±1.08 vs. 30.13±2.29 days, P=0.008) increased the median survival time significantly. Suppression of the IGF-1R/PI3K/Akt/mTOR signaling, activation of the AMPK/SIRT1/LKB1pathway, and NF-κB suppression were the critical tumor-suppression mechanisms. In addition, SIRT1 suppressed proliferation of the B16F10 and A375SM cells under a low-glucose condition. Alterations in histone methylation within Pten and FoxO3a were observed after the MCDmp intervention. In the transgenic liver cancer model developed by hydrodynamic transfection of the HrasG12V and shp53, MCDmp and LCDmp interventions induced significant cancer-prevention effects. Microarray analysis showed that PPARα increased with decreased IL-6 and NF-κB within the hepatocytes after an MCDmp intervention. In conclusion, an isocaloric carbohydrate-restriction diet and natural AMPK-activating agents induce synergistic anticancer effects. SIRT1 acts as a

  13. Polycystic kidney disease induced in F(1) Sprague-Dawley rats fed para-nonylphenol in a soy-free, casein-containing diet.

    PubMed

    Latendresse, J R; Newbold, R R; Weis, C C; Delclos, K B

    2001-07-01

    para-Nonylphenol (NP; CAS #84852-15-3), an alkylphenol with a 9-carbon olefin side chain, is widely used in the manufacture of nonionic surfactants, lubricant additives, polymer stabilizers, and antioxidants. Due to its wide commercial use and putative endocrine activity in humans and wildlife, the NTP elected to assess its effects on reproduction in multigenerational studies. To avoid known estrogenic activity of phytoestrogens in soy and alfalfa, a soy- and alfalfa-free, casein-containing diet was used in a range-finding study to determine the doses of NP to be tested further. NP was administered to Sprague-Dawley rats in the diet at 0, 5, 25, 200, 500, 1000, or 2000 ppm to F(0) dams beginning on gestation-day 7. The F(1) pups were weaned at postnatal day (PND) 21, and their exposure via diet was continued at the same dose level as their respective dams. Pup weights from birth through weaning were not significantly different from controls in any dose group, but the average weight of both sexes was significantly less compared to controls, beginning with the PND 28 weighing. The F(1) rats were sacrificed on PND 50 (n = 15, 3 pups of each sex from 5 litters for all dose groups). Terminal body weights of males and females in the 2000-ppm dose group were 74% and 85% of controls, respectively. Severe polycystic kidney disease (PKD) was present in 100% of the 2000 ppm-exposed male and female rats. At 1000 ppm, 67% of males and 53% of females had mild to moderate PKD versus none of either sex in the control and lower-dose groups. The no-adverse-effect level (NOAEL) for PKD was determined to be 500 ppm. Previous studies with comparable duration and route of exposure, but using soy-containing diets, reported either no or only mild PKD at 2000 ppm NP. We conclude that the renal toxicity of NP is highly dependent on the diet on which the animals are maintained. The potential interaction of diet and test compounds on nonreproductive as well as reproductive endpoints should be

  14. Synergistic Interplay between Curcumin and Polyphenol-Rich Foods in the Mediterranean Diet: Therapeutic Prospects for Neurofibromatosis 1 Patients.

    PubMed

    Esposito, Teresa; Schettino, Carla; Polverino, Paola; Allocca, Salvatore; Adelfi, Laura; D'Amico, Alessandra; Capaldo, Guglielmo; Varriale, Bruno; Di Salle, Anna; Peluso, Gianfranco; Sorrentino, Giuseppe; Lus, Giacomo; Sampaolo, Simone; Di Iorio, Giuseppe; Melone, Mariarosa Anna Beatrice

    2017-07-21

    Neurofibromas are the hallmark lesions in Neurofibromatosis 1 (NF1); these tumors are classified as cutaneous, subcutaneous and plexiform. In contrast to cutaneous and subcutaneous neurofibromas, plexiform neurofibromas can grow quickly and progress to malignancy. Curcumin, a turmeric-derived polyphenol, has been shown to interact with several molecular targets implicated in carcinogenesis. Here, we describe the impact of different dietary patterns, namely Mediterranean diet (MedDiet) compared to the Western diet (WesDiet), both with or without curcumin, on NF1 patients' health. After six months, patients adopting a traditional MedDiet enriched with 1200 mg curcumin per day (MedDietCurcumin) presented a significant reduction in the number and volume of cutaneous neurofibromas; these results were confirmed in subsequent evaluations. Notably, in one patient, a large cranial plexiform neurofibroma exhibited a reduction in volume (28%) confirmed by Magnetic Resonance Imaging. Conversely, neither unenriched MedDiet nor WesDiet enriched with curcumin exhibited any significant positive effect. We hypothesize that the combination of a polyphenol-rich Mediterranean diet and curcumin was responsible for the beneficial effect observed on NF1. This is, to the best of our knowledge, the first experience with curcumin supplementation in NF1 patients. Our report suggests that an integrated nutritional approach may effectively aid in the management of NF1.

  15. Cytokine Response to Diet and Exercise Affects Atheromatous Matrix Metalloproteinase-2/9 Activity in Mice.

    PubMed

    Shon, Soo-Min; Jang, Hee Jeong; Schellingerhout, Dawid; Kim, Jeong-Yeon; Ryu, Wi-Sun; Lee, Su-Kyoung; Kim, Jiwon; Park, Jin-Yong; Oh, Ji Hye; Kang, Jeong Wook; Je, Kang-Hoon; Park, Jung E; Kim, Kwangmeyung; Kwon, Ick Chan; Lee, Juneyoung; Nahrendorf, Matthias; Park, Jong-Ho; Kim, Dong-Eog

    2017-09-25

    The aim of this study is to identify the principal circulating factors that modulate atheromatous matrix metalloproteinase (MMP) activity in response to diet and exercise.Methods and Results:Apolipoprotein-E knock-out (ApoE -/- ) mice (n=56) with pre-existing plaque, fed either a Western diet (WD) or normal diet (ND), underwent either 10 weeks of treadmill exercise or had no treatment. Atheromatous MMP activity was visualized using molecular imaging with a MMP-2/9 activatable near-infrared fluorescent (NIRF) probe. Exercise did not significantly reduce body weight, visceral fat, and plaque size in either WD-fed animals or ND-fed animals. However, atheromatous MMP-activity was different; ND animals that did or did not exercise had similarly low MMP activities, WD animals that did not exercise had high MMP activity, and WD animals that did exercise had reduced levels of MMP activity, close to the levels of ND animals. Factor analysis and path analysis showed that soluble vascular cell adhesion molecule (sVCAM)-1 was directly positively correlated to atheromatous MMP activity. Adiponectin was indirectly negatively related to atheromatous MMP activity by way of sVCAM-1. Resistin was indirectly positively related to atheromatous MMP activity by way of sVCAM-1. Visceral fat amount was indirectly positively associated with atheromatous MMP activity, by way of adiponectin reduction and resistin elevation. MMP-2/9 imaging of additional mice (n=18) supported the diet/exercise-related anti-atherosclerotic roles for sVCAM-1. Diet and exercise affect atheromatous MMP activity by modulating the systemic inflammatory milieu, with sVCAM-1, resistin, and adiponectin closely interacting with each other and with visceral fat.

  16. Identification and characterization of human UDP-glucuronosyltransferases responsible for the in-vitro glucuronidation of arctigenin.

    PubMed

    Xin, Hong; Xia, Yang-Liu; Hou, Jie; Wang, Ping; He, Wei; Yang, Ling; Ge, Guang-Bo; Xu, Wei

    2015-12-01

    This study aimed to characterize the glucuronidation pathway of arctigenin (AR) in human liver microsomes (HLM) and human intestine microsomes (HIM). HLM and HIM incubation systems were employed to catalyse the formation of AR glucuronide. The glucuronidation activity of commercially recombinant UGT isoforms towards AR was screened. A combination of chemical inhibition assay and kinetic analysis was used to determine the UGT isoforms involved in the glucuronidation of AR in HLM and HIM. AR could be extensively metabolized to one mono-glucuronide in HLM and HIM. The mono-glucuronide was biosynthesized and characterized as 4'-O-glucuronide. UGT1A1, 1A3, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7 and 2B17 participated in the formation of 4'-O-G, while UGT2B17 demonstrated the highest catalytic activity in this biotransformation. Both kinetic analysis and chemical inhibition assays demonstrated that UGT1A9, UGT2B7 and UGT2B17 played important roles in AR-4'-O-glucuronidation in HLM. Furthermore, HIM demonstrated moderate efficiency for AR-4'-O-glucuronidation, implying that AR may undergo a first-pass metabolism during the absorption process. UGT1A9, UGT2B7 and UGT2B17 were the major isoforms responsible for the 4'-O-glucuronidation of AR in HLM, while UGT2B7 and UGT2B17 were the major contributors to this biotransformation in HIM. © 2015 Royal Pharmaceutical Society.

  17. The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: Animal-plant arms-race and co-evolution.

    PubMed

    Bock, Karl Walter

    2016-01-01

    UDP-glycosyltransferases (UGTs) are major phase II enzymes of a detoxification system evolved in all kingdoms of life. Lipophilic endobiotics such as hormones and xenobiotics including phytoalexins and drugs are conjugated by vertebrates mainly with glucuronic acid, by invertebrates and plants mainly with glucose. Plant-herbivore arms-race has been the major driving force for evolution of large UGT and other enzyme superfamilies. The UGT superfamily is defined by a common protein structure and signature sequence of 44 amino acids responsible for binding the UDP moiety of the sugar donor. Plants developed toxic phytoalexins stored as glucosides. Upon herbivore attack these conjugates are converted to highly reactive compounds. In turn, animals developed large families of UGTs in their intestine and liver to detoxify these phytoalexins. Interestingly, phytoalexins, exemplified by quercetin glucuronides and glucosinolate-derived isocyanates, are known insect attractant pigments in plants, and antioxidants, anti-inflammatory and chemopreventive compounds of humans. It is to be anticipated that phytochemicals may provide a rich source in beneficial drugs. Copyright © 2015. Published by Elsevier Inc.

  18. Preventing leptin resistance by blocking angiotensin II AT1 receptors in diet-induced obese rats

    PubMed Central

    Müller-Fielitz, Helge; Lau, Margot; Geißler, Cathleen; Werner, Lars; Winkler, Martina; Raasch, Walter

    2015-01-01

    Background and Purpose AT1 receptor blockers (ARBs) represent an approach for treating metabolic syndrome due to their potency in reducing hypertension, body weight and onset of type 2 diabetes. The mechanism underlying ARB-induced weight loss is still unclear. Experimental Approach Leptin resistance tests (LRTs) in diet-induced obese or lean rats were conducted to determine whether telmisartan (8 mg·kg−1·day−1, 14 days) enhances leptin sensitivity. Phosphorylation of signal transducer and activator of transcription 3 (pSTAT3) staining was performed in hypothalami to determine leptin transport across the blood–brain barrier. Key Results Telmisartin reduced weight gain, food intake and plasma leptin but blood pressure remained unchanged. The 24 h profiles of plasma leptin after saline injections were similar in controls and telmisartan-treated rats, but after leptin injections were higher in controls and slightly lower in telmisartan-treated animals. After telmisartan, energy intake during LRT was lower in leptin-than in saline-pretreated rats, but remained unchanged in controls, irrespectively of whether rats received saline or leptin. Leptin minimized the gain in body weight during LRT in telmisartan-treated rats as compared with saline-treated animals. pSTAT3 staining was reduced in cafeteria diet-fed rats as compared with chow-fed rats but this was normalized by telmisartan. Telmisartin reduced hypothalamic mRNA levels of the orexigenic peptides melanin-concentrating hormone and prepro-orexin. Conclusions and Implications Rats fed a cafeteria diet develop leptin resistance after 2 weeks. Leptin sensitivity was preserved by telmisartan treatment even in rats fed a cafeteria diet. This pleiotropic effect is not related to the hypotensive action of telmisartan. PMID:25258168

  19. Non-Traditional Aspects of Renal Diets: Focus on Fiber, Alkali and Vitamin K1 Intake.

    PubMed

    Cupisti, Adamasco; D'Alessandro, Claudia; Gesualdo, Loreto; Cosola, Carmela; Gallieni, Maurizio; Egidi, Maria Francesca; Fusaro, Maria

    2017-04-29

    Renal diets for advanced chronic kidney disease (CKD) are structured to achieve a lower protein, phosphate and sodium intake, while supplying adequate energy. The aim of this nutritional intervention is to prevent or correct signs, symptoms and complications of renal insufficiency, delaying the start of dialysis and preserving nutritional status. This paper focuses on three additional aspects of renal diets that can play an important role in the management of CKD patients: the vitamin K1 and fiber content, and the alkalizing potential. We examined the energy and nutrients composition of four types of renal diets according to their protein content: normal diet (ND, 0.8 g protein/kg body weight (bw)), low protein diet (LPD, 0.6 g protein/kg bw), vegan diet (VD, 0.7 g protein/kg bw), very low protein diet (VLPD, 0.3 g protein/kg bw). Fiber content is much higher in the VD and in the VLPD than in the ND or LPD. Vitamin K1 content seems to follow the same trend, but vitamin K2 content, which could not be investigated, might have a different pattern. The net endogenous acid production (NEAP) value decreases from the ND and LPD to the vegetarian diets, namely VD and VLPD; the same finding occurred for the potential renal acid load (PRAL). In conclusion, renal diets may provide additional benefits, and this is the case of vegetarian diets. Namely, VD and VLPD also provide high amounts of fibers and Vitamin K1, with a very low acid load. These features may have favorable effects on Vitamin K1 status, intestinal microbiota and acid-base balance. Hence, we can speculate as to the potential beneficial effects on vascular calcification and bone disease, on protein metabolism, on colonic environment and circulating levels of microbial-derived uremic toxins. In the case of vegetarian diets, attention must be paid to serum potassium levels.

  20. Non-Traditional Aspects of Renal Diets: Focus on Fiber, Alkali and Vitamin K1 Intake

    PubMed Central

    Cupisti, Adamasco; D’Alessandro, Claudia; Gesualdo, Loreto; Cosola, Carmela; Gallieni, Maurizio; Egidi, Maria Francesca; Fusaro, Maria

    2017-01-01

    Renal diets for advanced chronic kidney disease (CKD) are structured to achieve a lower protein, phosphate and sodium intake, while supplying adequate energy. The aim of this nutritional intervention is to prevent or correct signs, symptoms and complications of renal insufficiency, delaying the start of dialysis and preserving nutritional status. This paper focuses on three additional aspects of renal diets that can play an important role in the management of CKD patients: the vitamin K1 and fiber content, and the alkalizing potential. We examined the energy and nutrients composition of four types of renal diets according to their protein content: normal diet (ND, 0.8 g protein/kg body weight (bw)), low protein diet (LPD, 0.6 g protein/kg bw), vegan diet (VD, 0.7 g protein/kg bw), very low protein diet (VLPD, 0.3 g protein/kg bw). Fiber content is much higher in the VD and in the VLPD than in the ND or LPD. Vitamin K1 content seems to follow the same trend, but vitamin K2 content, which could not be investigated, might have a different pattern. The net endogenous acid production (NEAP) value decreases from the ND and LPD to the vegetarian diets, namely VD and VLPD; the same finding occurred for the potential renal acid load (PRAL). In conclusion, renal diets may provide additional benefits, and this is the case of vegetarian diets. Namely, VD and VLPD also provide high amounts of fibers and Vitamin K1, with a very low acid load. These features may have favorable effects on Vitamin K1 status, intestinal microbiota and acid-base balance. Hence, we can speculate as to the potential beneficial effects on vascular calcification and bone disease, on protein metabolism, on colonic environment and circulating levels of microbial-derived uremic toxins. In the case of vegetarian diets, attention must be paid to serum potassium levels. PMID:28468236

  1. Greater diet quality is associated with more optimal glycemic control in a longitudinal study of youth with type 1 diabetes.

    PubMed

    Nansel, Tonja R; Lipsky, Leah M; Liu, Aiyi

    2016-07-01

    Despite the centrality of nutrition in the management of type 1 diabetes, the association of diet quality and macronutrient distribution with glycemic control is ambiguous. This study examined longitudinally the association of dietary intake with multiple indicators of glycemic control in youth with type 1 diabetes participating in a behavioral nutrition intervention study. Participants in a randomized clinical trial of a behavioral nutrition intervention [n = 136; mean ± SD age: 12.8 ± 2.6 y; glycated hemoglobin (HbA1c): 8.1% ± 1.0%; 69.1% using an insulin pump] completed 3-d diet records at baseline and months 3, 6, 9, 12, and 18; masked continuous glucose monitoring (CGM) data were obtained concurrently with the use of the Medtronic iPro CGM system. HbA1c was obtained every 3 mo; 1,5-anhydroglucitol was obtained every 6 mo. Linear mixed-effects regression models estimated associations of time-varying dietary intake variables with time-varying glycemic control indicators, controlling for age, height, weight, sex, Tanner stage, diabetes duration, regimen, frequency of blood glucose monitoring, physical activity, and treatment assignment. HbA1c was associated inversely with carbohydrate and natural sugar, and positively with protein and unsaturated fat. 1,5-Anhydroglucitol was associated positively with fiber intake and natural sugar. Greater glycemic control as indicated by ≥1 CGM variable was associated with higher Healthy Eating Index-2005, whole plant food density, fiber, carbohydrate, and natural sugar and lower glycemic index and unsaturated fat. Both overall diet quality and macronutrient distribution were associated with more optimal glycemic control. Associations were more consistent for CGM variables obtained concurrently with dietary intake than for biomarkers of longer-term glycemic control. These findings suggest that glycemic control may be improved by increasing intake of high-fiber, low glycemic-index, carbohydrate-containing foods. This trial

  2. Tissue and species differences in the glucuronidation of glabridin with UDP-glucuronosyltransferases.

    PubMed

    Guo, Bin; Fang, Zhongze; Yang, Lu; Xiao, Ling; Xia, Yangliu; Gonzalez, Frank J; Zhu, Liangliang; Cao, Yunfeng; Ge, Guangbo; Yang, Ling; Sun, Hongzhi

    2015-04-25

    Glabridin (GA) has gained wide application in the cosmetics and food industry. This study was performed to investigate its metabolic inactivation and elimination by glucuronidation by use of liver and intestine microsomes from humans (HLM and HIM) and rats (RLM and RIM), and liver microsomes from cynomolgus monkeys and beagle dogs (CyLM and DLM). Both hydroxyl groups at the C2 and C4 positions of the B ring are conjugated to generate two mono-glucuronides (M1 and M2). HIM, RIM and RLM showed the most robust activity in catalyzing M2 formation with intrinsic clearance values (Clint) above 2000 μL/min/mg, with little measurable M1 formation activity. DLM displayed considerable activity both in M1 and M2 formation, with Clint values of 71 and 214 μL/min/mg, respectively, while HLM and CyLM exhibited low activities in catalyzing M1 and M2 formation, with Clint values all below 20 μL/min/mg. It is revealed that UGT1A1, 1A3, 1A9, 2B7, 2B15 and extrahepatic UGT1A8 and 1A10 are involved in GA glucuronidation. Nearly all UGTs preferred M2 formation except for UGT1A1. Notably, UGT1A8 displayed the highest activity with a Clint value more than 5-fold higher than the other isoforms. Chemical inhibition studies, using selective inhibitors of UGT1A1, 1A9, 2B7 and 1A8, further revealed that UGT1A8 contributed significantly to intestinal GA glucuronidation in humans. In summary, this in vitro study demonstrated large species differences in GA glucuronidation by liver and intestinal microsomes, and that intestinal UGTs are important for the pathway in humans. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. UDP-Glucuronosyltransferase Expression in Mouse Liver Is Increased in Obesity- and Fasting-Induced Steatosis

    PubMed Central

    Xu, Jialin; Kulkarni, Supriya R.; Li, Liya

    2012-01-01

    UDP-glucuronosyltransferases (Ugt) catalyze phase II conjugation reactions with glucuronic acid, which enhances chemical polarity and the elimination from the body. Few studies have addressed whether Ugt expression and activity are affected by liver disease, such as steatosis. The purpose of this study was to determine whether steatosis induced by obesity or fasting could affect liver Ugt mRNA expression and activity. Male C57BL/6J and Lepob/ob (ob/ob) mice were fed ad libitum or food was withheld for 24 h. In steatotic livers of ob/ob mice, Ugt1a1, -1a6, -1a9, -2a3, -3a1, and -3a2 mRNA expression increased. Fasting, which also induced steatosis, increased hepatic Ugt1a1, -1a6, -1a7, -1a9, -2b1, -2b5, -2a3, -3a1, and -3a2 mRNA expression in mouse liver. Likewise, acetaminophen glucuronidation increased by 47% in hepatic microsomes from ob/ob mice compared with that in C57BL/6J mice, but not after fasting. In both steatosis models, Ugt induction was accompanied by increased aryl hydrocarbon receptor, constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor (PPAR)-α, pregnane X receptor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and peroxisome proliferator-activated receptor-γ coactivator-1α mRNA expression. In addition, fasting increased CAR, PPAR, and Nrf2 binding activity. The work points to hepatic triglyceride concentrations corresponding with nuclear receptor and Ugt expression. The findings indicate that steatosis significantly alters hepatic Ugt expression and activity, which could have a significant impact on determining circulating hormone levels, drug efficacy, and environmental chemical clearance. PMID:22031624

  4. UDP-glucuronosyltransferase expression in mouse liver is increased in obesity- and fasting-induced steatosis.

    PubMed

    Xu, Jialin; Kulkarni, Supriya R; Li, Liya; Slitt, Angela L

    2012-02-01

    UDP-glucuronosyltransferases (Ugt) catalyze phase II conjugation reactions with glucuronic acid, which enhances chemical polarity and the elimination from the body. Few studies have addressed whether Ugt expression and activity are affected by liver disease, such as steatosis. The purpose of this study was to determine whether steatosis induced by obesity or fasting could affect liver Ugt mRNA expression and activity. Male C57BL/6J and Lep(ob/ob) (ob/ob) mice were fed ad libitum or food was withheld for 24 h. In steatotic livers of ob/ob mice, Ugt1a1, -1a6, -1a9, -2a3, -3a1, and -3a2 mRNA expression increased. Fasting, which also induced steatosis, increased hepatic Ugt1a1, -1a6, -1a7, -1a9, -2b1, -2b5, -2a3, -3a1, and -3a2 mRNA expression in mouse liver. Likewise, acetaminophen glucuronidation increased by 47% in hepatic microsomes from ob/ob mice compared with that in C57BL/6J mice, but not after fasting. In both steatosis models, Ugt induction was accompanied by increased aryl hydrocarbon receptor, constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor (PPAR)-α, pregnane X receptor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and peroxisome proliferator-activated receptor-γ coactivator-1α mRNA expression. In addition, fasting increased CAR, PPAR, and Nrf2 binding activity. The work points to hepatic triglyceride concentrations corresponding with nuclear receptor and Ugt expression. The findings indicate that steatosis significantly alters hepatic Ugt expression and activity, which could have a significant impact on determining circulating hormone levels, drug efficacy, and environmental chemical clearance.

  5. Isocaloric pair-fed high-carbohydrate diet induced more hepatic steatosis and inflammation than high-fat diet mediated by miR- 34a/SIRT1 axis in mice

    USDA-ARS?s Scientific Manuscript database

    To investigate the different effects of isocaloric high-fat diet (HFD) and high-carbohydrate diet (HCD) on hepatic steatosis and the underlying mechanisms, especially the role of microRNA- 34a/silent information regulator T1 (SIRT1) axis, C57BL/6J mice (n = 12/group) were isocaloric pair-fed with Li...

  6. Toxicity of xanthene food dyes by inhibition of human drug-metabolizing enzymes in a noncompetitive manner.

    PubMed

    Mizutani, Takaharu

    2009-01-01

    The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC(50) values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC(50) values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the noninhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of (1)O(2) originating on xanthene dyes by light irradiation, because inhibition was prevented by (1)O(2) quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin.

  7. Differences in the Glucuronidation of Resveratrol and Pterostilbene: Altered Enzyme Specificity and Potential Gender Differences

    PubMed Central

    Dellinger, Ryan W.; Gomez Garcia, Angela M.; Meyskens, Frank L.

    2015-01-01

    Summary Resveratrol, a natural polyphenol found in grapes, berries and other plants, has been proposed as an ideal chemopreventative agent due to its plethora of health promoting activities. However, despite its lofty promise as a cancer prevention agent its success in human clinical trials has been limited due to its poor bioavailability. Thus, interest in other natural polyphenols is intensifying including the naturally occurring dimethylated analog of resveratrol, pterostilbene. The UDP-glucuronosyltransferase (UGT) family of enzymes plays a vital role in the metabolism of both resveratrol and pterostilbene. The current study sought to elucidate the UGT family members responsible for the metabolism of pterostilbene and to examine gender differences in the glucuronidation of resveratrol and pterostilbene. We demonstrate that UGT1A1 and UGT1A3 are mainly responsible for pterostilbene glucuronidation although UGT1A8, UGT1A9 and UGT1A10 also had detectable activity. Intriguingly, UGT1A1 exhibits the highest activity against both resveratrol and pterostilbene despite altered hydroxyl group specificity. Using pooled human liver microsomes, enzyme kinetics were determined for pterostilbene and resveratrol glucuronides. In all cases females were more efficient than males, indicating potential gender differences in stilbene metabolism. Importantly, the glucuronidation of pterostilbene is much less efficient than that of resveratrol, indicating that pterostilbene will have dramatically decreased metabolism in humans. PMID:23965644

  8. fat-1 mice prevent high-fat plus high-sugar diet-induced non-alcoholic fatty liver disease.

    PubMed

    Guo, Xiao-Fei; Gao, Jin-Long; Li, Jiao-Mei; Li, Duo

    2017-11-15

    High-fat and high-sugar (HFS) diets have been suggested to play a causal role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). This study aimed to investigate whether fat-1 transgenic mice with a higher tissue content of n-3 polyunsaturated fatty acids (PUFAs) could prevent HFS diet-induced NAFLD, compared with wild-type mice. The fat-1 and wild-type littermates had free access to a 15% fructose solution plus high-fat diet, a 15% glucose solution plus high-fat diet, or a 15% sucrose solution plus high-fat diet, respectively. Caloric intake, weight gain, biochemical parameters, histology, and gene and protein expression levels were measured after 8 weeks of intervention. Liquid intake in glucose- or sucrose-fed mice was about 2-fold compared with that in fructose-fed mice. The wild-type mice given glucose showed the highest total caloric intake and weight gain compared to the other groups. The serum concentrations of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and alanine transaminase (ALT) were significantly lowered in fat-1 groups compared with their paired wild-type groups. Histological analysis showed that the wild-type groups fed the HFS diets developed hepatic lipid accumulation and steatosis, compared with the fat-1 groups. The gene and protein expression levels involved in fatty acid synthesis and the toll-like receptor (TLR)-4 signaling pathway were significantly inhibited in the fat-1 groups compared with the wild-type groups. The endogenously synthesized n-3 PUFAs of the three fat-1 groups, which inhibit fatty acid synthesis and the TLR-4 signaling pathway, prevent HFS diet-induced NAFLD.

  9. ROCK1 in AgRP neurons regulates energy expenditure and locomotor activity in male mice.

    PubMed

    Huang, Hu; Lee, Seung Hwan; Ye, Chianping; Lima, Ines S; Oh, Byung-Chul; Lowell, Bradford B; Zabolotny, Janice M; Kim, Young-Bum

    2013-10-01

    Normal leptin signaling is essential for the maintenance of body weight homeostasis. Proopiomelanocortin- and agouti-related peptide (AgRP)-producing neurons play critical roles in regulating energy metabolism. Our recent work demonstrates that deletion of Rho-kinase 1 (ROCK1) in the AgRP neurons of mice increased body weight and adiposity. Here, we report that selective loss of ROCK1 in AgRP neurons caused a significant decrease in energy expenditure and locomotor activity of mice. These effects were independent of any change in food intake. Furthermore, AgRP neuron-specific ROCK1-deficient mice displayed central leptin resistance, as evidenced by impaired Signal Transducer and Activator of Transcription 3 activation in response to leptin administration. Leptin's ability to hyperpolarize and decrease firing rate of AgRP neurons was also abolished in the absence of ROCK1. Moreover, diet-induced and genetic forms of obesity resulted in reduced ROCK1 activity in murine arcuate nucleus. Of note, high-fat diet also impaired leptin-stimulated ROCK1 activity in arcuate nucleus, suggesting that a defect in hypothalamic ROCK1 activity may contribute to the pathogenesis of central leptin resistance in obesity. Together, these data demonstrate that ROCK1 activation in hypothalamic AgRP neurons is required for the homeostatic regulation of energy expenditure and adiposity. These results further support previous work identifying ROCK1 as a key regulator of energy balance and suggest that targeting ROCK1 in the hypothalamus may lead to development of antiobesity therapeutics.

  10. Does running with or without diet changes reduce fat mass in novice runners? A 1-year prospective study.

    PubMed

    Nielsen, Rasmus O; Videbaek, Solvej; Hansen, Mette; Parner, Erik T; Rasmussen, Sten; Langberg, Henning

    2016-01-01

    The aim of this study was to explore how average weekly running distance, combined with changes in diet habits and reasons to take up running, influence fat mass. Fat mass was assessed by bioelectrical impedance at baseline and after 12 months in 538 novice runners included in a 1-year observational prospective follow-up study. During follow-up, running distance for each participant was continuously measured by GPS while reasons to take up running and diet changes were assessed trough web-based questionnaires. Loss of fat mass was compared between runners covering an average of 5 km or more per week and those running shorter distances. Runners who took up running to lose weight and ran over 5 km per week in average over a one-year period combined with a diet change reduced fat mass by -5.58 kg (95% CI: -8.69; -2.46; P<0.001). Compared with subjects also running over 5 km per week but without diet changes, the mean difference in fat mass between groups was 3.81 kg (95% CI: -5.96; -1.66; P<0.001). A difference of -3.55 kg (95% CI: -5.69; -1.41; P<0.001) was found when comparing with those running less than 5 km per week and making changes to their own diet. An average running distance of more than 5 km per week in runners who took up running to lose weight combined with a targeted diet change seems effective in reducing fat mass over a one-year period among novice runners. Still, randomized controlled trials are needed to better document the effects of self-selected diet changes.

  11. Mangifera indica L. extract and mangiferin modulate cytochrome P450 and UDP-glucuronosyltransferase enzymes in primary cultures of human hepatocytes.

    PubMed

    Rodeiro, Idania; José Gómez-Lechón, M; Perez, Gabriela; Hernandez, Ivones; Herrera, José Alfredo; Delgado, Rene; Castell, José V; Teresa Donato, M

    2013-05-01

    The aqueous stem bark extract of Mangifera indica L. (MSBE) has been reported to have antioxidant, anti-inflammatory and analgesic properties. In previous studies, we showed that MSBE and mangiferin, its main component, lower the activity of some cytochrome P-450 (P450) enzymes in rat hepatocytes and human liver microsomes. In the present study, the effects of MSBE and mangiferin on several P450 enzymes and UDP-glucuronosyltransferases (UGTs) in human-cultured hepatocytes have been examined. After hepatocytes underwent a 48-h treatment with sub-cytotoxic concentrations of the products (50-250 µg/mL), a concentration-dependent decrease of the activity of the five P450 enzymes measured (CYP1A2, 2A6, 2C9, 2D6 and 3A4) was observed. For all the activities, a reduction of at least 50% at the highest concentration (250 µg/mL) was observed. In addition, UGT activities diminished. MSBE considerably reduced UGT1A9 activity (about 60% at 250 µg/mL) and lesser effects on the other UGTs. In contrast, 250 µg/mL mangiferin had greater effects on UGT1A1 and 2B7 than on UGT1A9 (about 55% vs. 35% reduction, respectively). Quantification of specific mRNAs revealed reduced CYP3A4 and 3A5 mRNAs content, and an increase in CYP1A1, CYP1A2, UGT1A1 and UGT1A9 mRNAs. No remarkable effects on the CYP2A6, 2B6, 2C9, 2C19, 2D6 and 2E1 levels were observed. Our results suggest that the activity and/or expression of major P450 and UGT enzymes is modulated by MSBE and that potential herb-drugs interactions could arise after a combined intake of this extract with conventional medicines. Therefore, the potential safety risks of this natural product derived by altering the ADMET properties of co-administered drugs should be examined. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Lyso-DGTS lipid isolated from microalgae enhances PON1 activities in vitro and in vivo, increases PON1 penetration into macrophages and decreases cellular lipid accumulation.

    PubMed

    Dahli, Loureen; Atrahimovich, Dana; Vaya, Jacob; Khatib, Soliman

    2018-04-16

    High-density lipoprotein (HDL) plays an important role in preventing atherosclerosis. The antioxidant effect of HDL is mostly associated with paraoxonase 1 (PON1) activity. Increasing PON1 activity using nutrients might improve HDL function and quality and thus, decrease atherosclerotic risk. We previously isolated and identified a novel active compound, lyso-DGTS (C20:5,0) from Nannochloropsis sp. ethanol extract. In the present study, its effect on PON1 activities was examined and the mechanism by which the compound affects PON1 activity was explored. Lyso-DGTS elevated recombinant PON1 (rePON1) lactonase and esterase activities in a dose- and time-responsive manner, and further stabilized and preserved rePON1 lactonase activity. Incubation of lyso-DGTS with human serum for 4 h at 37°C also increased PON1 lactonase activity in a dose-responsive manner. Using tryptophan-fluorescence-quenching assay, lyso-DGTS was found to interact with rePON1 spontaneously with negative free energy (ΔG = -22.87 kJ mol -1 at 25°C). Thermodynamic parameters and molecular modeling calculations showed that the main interaction of lyso-DGTS with the enzyme is through a hydrogen bond with supporting van der Waals interactions. Furthermore, lyso-DGTS significantly increased rePON1 influx into macrophages and prevented lipid accumulation in macrophages stimulated with oxidized low-density lipid dose-dependently. In vivo supplementation of lyso-DGTS to the circulation of mice fed a high-fat diet via osmotic mini-pumps implanted subcutaneously significantly increased serum PON1 lactonase activity and decreased serum glucose concentrations to the level of mice fed a normal diet. Our findings suggest a beneficial effect of lyso-DGTS on increasing PON1 activity and thus, improving HDL quality and atherosclerotic risk factors. © 2018 BioFactors, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  13. Losartan reduces liver expression of plasminogen activator inhibitor-1 (PAI-1) in a high fat-induced rat nonalcoholic fatty liver disease model.

    PubMed

    Rosselli, Maria Soledad; Burgueño, Adriana L; Carabelli, Julieta; Schuman, Mariano; Pirola, Carlos J; Sookoian, Silvia

    2009-09-01

    To evaluate the effect of losartan-an angiotensin II type 1 receptor (AT1R) antagonist- and telmisartan-an AT1R blocker with insulin-sensitizing properties-, on the hepatic expression of plasminogen activator inhibitor-1 (PAI-1) in a rat model of nonalcoholic fatty liver disease (NAFLD). Rats were given a high-fat diet (HFD) for 8 weeks and after this period were randomly divided into 3 groups. For 12 weeks along with the same access to HFD, one group (9 rats) received losartan and another group received telmisartan (10 rats), both at 10mg/kg intraperitoneally (ip) every 24h. The third group (8 rats) received saline ip along with the HFD. Finally, a control group (6 rats) was fed with standard chow diet for 20 weeks. Fatty liver was reverted by both losartan and telmisartan. Both drugs had beneficial effects on insulin resistance, reaching statistical significance in telmisartan group. Expression of hepatic mRNA of PAI-1 showed a 42% decrease in losartan-treated rats in comparison with both HFD group and telmisartan-treated rats. To further evaluate this differential effect on PAI-1 expression, we explored the effect of the drugs on liver expression of TNFalpha, PEPCK-C and PPARalpha, and no significant differences were observed. These results indicate that AT1R blockers could be eligible drugs for reducing hepatic lipid accumulation in patients with NAFLD. However, only 12 weeks of losartan treatment strongly reduced hepatic PAI-1 gene expression. These differences could provide even more effective options for preventing fatty liver disease and its cardiovascular complications.

  14. High-fat diet amplifies renal renin angiotensin system expression, blood pressure elevation, and renal dysfunction caused by Ceacam1 null deletion.

    PubMed

    Li, Caixia; Culver, Silas A; Quadri, Syed; Ledford, Kelly L; Al-Share, Qusai Y; Ghadieh, Hilda E; Najjar, Sonia M; Siragy, Helmy M

    2015-11-01

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAMl), a substrate of the insulin receptor tyrosine kinase, regulates insulin action by promoting insulin clearance. Global null mutation of Ceacam1 gene (Cc1(-/-)) results in features of the metabolic syndrome, including insulin resistance, hyperinsulinemia, visceral adiposity, elevated blood pressure, and albuminuria. It also causes activation of the renal renin-angiotensin system (RAS). In the current study, we tested the hypothesis that high-fat diet enhances the expression of RAS components. Three-month-old wild-type (Cc1(+/+)) and Cc1(-/-) mice were fed either a regular or a high-fat diet for 8 wk. At baseline under regular feeding conditions, Cc1(-/-) mice exhibited higher blood pressure, urine albumin-to-creatinine ratio (UACR), and renal expression of angiotensinogen, renin/prorenin, angiotensin-converting enzyme, (pro)renin receptor, angiotensin subtype AT1 receptor, angiotensin II, and elevated PI3K phosphorylation, as detected by p85α (Tyr(508)) immunostaining, inflammatory response, and the expression of collagen I and collagen III. In Cc1(+/+) mice, high-fat diet increased blood pressure, UACR, the expression of angiotensin-converting enzyme and angiotensin II, PI3K phosphorylation, inflammatory response, and the expression of collagen I and collagen III. In Cc1(-/-) mice, high-fat intake further amplified these parameters. Immunohistochemical staining showed increased p-PI3K p85α (Tyr(508)) expression in renal glomeruli, proximal, distal, and collecting tubules of Cc1(-/-) mice fed a high-fat diet. Together, this demonstrates that high-fat diet amplifies the permissive effect of Ceacam1 deletion on renal expression of all RAS components, PI3K phosphorylation, inflammation, and fibrosis. Copyright © 2015 the American Physiological Society.

  15. Long-Term Selenium-Deficient Diet Induces Liver Damage by Altering Hepatocyte Ultrastructure and MMP1/3 and TIMP1/3 Expression in Growing Rats.

    PubMed

    Han, Jing; Liang, Hua; Yi, Jianhua; Tan, Wuhong; He, Shulan; Wang, Sen; Li, Feng; Wu, Xiaofang; Ma, Jing; Shi, Xiaowei; Guo, Xiong; Bai, Chuanyi

    2017-02-01

    The effects of selenium (Se)-deficient diet on the liver were evaluated by using growing rats which were fed with normal and Se-deficient diets, respectively, for 109 days. The results showed that rats fed with Se-deficient diet led to a decrease in Se concentration in the liver, particularly among male rats from the low-Se group. This causes alterations to the ultrastructure of hepatocytes with condensed chromatin and swelling mitochondria observed after low Se intake. Meanwhile, pathological changes and increased fibrosis in hepatic periportal were detected by hematoxylin and eosin and Masson's trichrome staining in low-Se group. Furthermore, through immunohistochemistry (IHC) staining, higher expressions of metalloproteinases (MMP1/3) and their tissue inhibitors of metalloproteinases (TIMP1/3) were observed in the hepatic periportal of rats from the low-Se group. However, higher expressions of MMP1/3 and lower expressions of TIMP1/3 were detected in hepatic central vein and hepatic sinusoid. In addition, upregulated expressions of MMP1/3 and downregulated expressions of TIMP1/3 at the messenger RNA (mRNA) and protein levels also appeared to be relevant to low Se intake. In conclusion, Se-deficient diet could cause low Se concentration in the liver, alterations of hepatocyte ultrastructure, differential expressions of MMP1/3 and TIMP1/3 as well as fibrosis in the liver hepatic periportal.

  16. Effects of a diet containing genetically modified rice expressing the Cry1Ab/1Ac protein (Bacillus thuringiensis toxin) on broiler chickens.

    PubMed

    Li, Zeyang; Gao, Yang; Zhang, Minhong; Feng, Jinghai; Xiong, Yandan

    2015-01-01

    The aim of this study was to evaluate the effect of feeding Bacillus thuringiensis (Bt) rice expressing the Cry1Ab/1Ac protein on broiler chicken. The genetically modified (GM) Bt rice was compared with the corresponding non-GM rice regarding performance of feeding groups, their health status, relative organ weights, biochemical serum parameters and occurrence of Cry1Ab/1Ac gene fragments. One hundred and eighty day-old Arbor Acres female broilers with the same health condition were randomly allocated to the two treatments (6 replicate cages with 15 broilers in each cage per treatment). They received diets containing GM rice (GM group) or its parental non-GM rice (non-GM group) at 52-57% of the air-dried diet for 42 days. The results show that the transgenic rice had a similar nutrient composition as the non-GM rice and had no adverse effects on chicken growth, biochemical serum parameters and necropsy during the 42-day feeding period. In birds fed the GM rice, no transgenic gene fragments were detected in the samples of blood, liver, kidneys, spleen, jejunum, ileum, duodenum and muscle tissue. In conclusion, the results suggest that Bt rice expressing Cry1Ab/1Ac protein has no adverse effects on broiler chicken. Therefore, it can be considered as safe and used as feed source for broiler chicken.

  17. Metabolomic and Lipidomic Analysis of the Heart of Peroxisome Proliferator-Activated Receptor-γ Coactivator 1-β Knock Out Mice on a High Fat Diet.

    PubMed

    McCombie, Gregor; Medina-Gomez, Gema; Lelliott, Christopher J; Vidal-Puig, Antonio; Griffin, Julian L

    2012-06-18

    The peroxisome proliferator-activated receptor-γ coactivators (PGC-1) are transcriptional coactivators with an important role in mitochondrial biogenesis and regulation of genes involved in the electron transport chain and oxidative phosphorylation in oxidative tissues including cardiac tissue. These coactivators are thought to play a key role in the development of obesity, type 2 diabetes and the metabolic syndrome. In this study we have used a combined metabolomic and lipidomic analysis of cardiac tissue from the PGC-1β null mouse to examine the effects of a high fat diet on this organ. Multivariate statistics readily separated tissue from PGC-1β null mice from their wild type controls either in gender specific models or in combined datasets. This was associated with an increase in creatine and a decrease in taurine in the null mouse, and an increase in myristic acid and a reduction in long chain polyunsaturated fatty acids for both genders. The most profound changes were detected by liquid chromatography mass spectrometry analysis of intact lipids with the tissue from the null mouse having a profound increase in a number of triglycerides. The metabolomic and lipodomic changes indicate PGC-1β has a profound influence on cardiac metabolism.

  18. Targeting density-enhanced phosphatase-1 (DEP-1) with antisense oligonucleotides improves the metabolic phenotype in high-fat diet-fed mice

    PubMed Central

    2013-01-01

    Background Insulin signaling is tightly controlled by tyrosine dephosphorylation of the insulin receptor through protein-tyrosine-phosphatases (PTPs). DEP-1 is a PTP dephosphorylating tyrosine residues in a variety of receptor tyrosine kinases. Here, we analyzed whether DEP-1 activity is differentially regulated in liver, skeletal muscle and adipose tissue under high-fat diet (HFD), examined the role of DEP-1 in insulin resistance in vivo, and its function in insulin signaling. Results Mice were fed an HFD for 10 weeks to induce obesity-associated insulin resistance. Thereafter, HFD mice were subjected to systemic administration of specific antisense oligonucleotides (ASOs), highly accumulating in hepatic tissue, against DEP-1 or control ASOs. Targeting DEP-1 led to improvement of insulin sensitivity, reduced basal glucose level, and significant reduction of body weight. This was accompanied by lower insulin and leptin serum levels. Suppression of DEP-1 in vivo also induced hyperphosphorylation in the insulin signaling cascade of the liver. Moreover, DEP-1 physically associated with the insulin receptor in situ, and recombinant DEP-1 dephosphorylated the insulin receptor in vitro. Conclusions These results indicate that DEP-1 acts as an endogenous antagonist of the insulin receptor, and downregulation of DEP-1 results in an improvement of insulin sensitivity. DEP-1 may therefore represent a novel target for attenuation of metabolic diseases. PMID:23889985

  19. IGF-1 Alleviates High Fat Diet-Induced Myocardial Contractile Dysfunction: Role of Insulin Signaling and Mitochondrial Function

    PubMed Central

    Zhang, Yingmei; Yuan, Ming; Bradley, Katherine M.; Dong, Feng; Anversa, Piero; Ren, Jun

    2012-01-01

    Obesity is often associated with reduced plasma IGF-1 levels, oxidative stress, mitochondrial damage and cardiac dysfunction. This study was designed to evaluate the impact of IGF-1 on high fat diet-induced oxidative, myocardial, geometric and mitochondrial responses. FVB and cardiomyocyte-specific IGF-1 overexpression transgenic mice were fed a low (10%) or high fat (45%) diet to induce obesity. High fat diet feeding led to glucose intolerance, elevated plasma levels of leptin, interleukin-6, insulin and triglyceride as well as reduced circulating IGF-1 levels. Echocardiography revealed reduced fractional shortening, increased end systolic and diastolic diameter, increased wall thickness, and cardiac hypertrophy in high fat-fed FVB mice. High fat diet promoted ROS generation, apoptosis, protein and mitochondrial damage, reduced ATP content, cardiomyocyte cross-sectional area, contractile and intracellular Ca2+ dysregulation, including depressed peak shortening and maximal velocity of shortening/relengthening, prolonged duration of relengthening, and dampened intracellular Ca2+ rise and clearance. Western blot analysis revealed disrupted phosphorylation of insulin receptor, post-receptor signaling molecules IRS-1 (tyrosine/serine phosphorylation), Akt, GSK3β, Foxo3a, mTOR, as well as downregulated expression of mitochondrial proteins PPARγ coactivator 1α (PGC1α) and UCP-2. Intriguingly, IGF-1 mitigated high fat diet feeding-induced alterations in ROS, protein and mitochondrial damage, ATP content, apoptosis, myocardial contraction, intracellular Ca2+ handling and insulin signaling, but not whole body glucose intolerance and cardiac hypertrophy. Exogenous IGF-1 treatment also alleviated high fat diet-induced cardiac dysfunction. Our data revealed that IGF-1 alleviates high fat diet-induced cardiac dysfunction despite persistent cardiac remodeling, possibly due to preserved cell survival, mitochondrial function and insulin signaling. PMID:22275536

  20. Multiple behavior changes in diet and activity: a randomized controlled trial using mobile technology.

    PubMed

    Spring, Bonnie; Schneider, Kristin; McFadden, H Gene; Vaughn, Jocelyn; Kozak, Andrea T; Smith, Malaina; Moller, Arlen C; Epstein, Leonard H; Demott, Andrew; Hedeker, Donald; Siddique, Juned; Lloyd-Jones, Donald M

    2012-05-28

    Many patients exhibit multiple chronic disease risk behaviors. Research provides little information about advice that can maximize simultaneous health behavior changes. To test which combination of diet and activity advice maximizes healthy change, we randomized 204 adults with elevated saturated fat and low fruit and vegetable intake, high sedentary leisure time, and low physical activity to 1 of 4 treatments: increase fruit/vegetable intake and physical activity, decrease fat and sedentary leisure, decrease fat and increase physical activity, and increase fruit/vegetable intake and decrease sedentary leisure. Treatments provided 3 weeks of remote coaching supported by mobile decision support technology and financial incentives. During treatment, incentives were contingent on using the mobile device to self-monitor and attain behavioral targets; during follow-up, incentives were contingent only on recording. The outcome was standardized, composite improvement on the 4 diet and activity behaviors at the end of treatment and at 5-month follow-up. Of the 204 individuals randomized, 200 (98.0%) completed follow-up. The increase fruits/vegetables and decrease sedentary leisure treatments improved more than the other 3 treatments (P < .001). Specifically, daily fruit/vegetable intake increased from 1.2 servings to 5.5 servings, sedentary leisure decreased from 219.2 minutes to 89.3 minutes, and saturated fat decreased from 12.0% to 9.5% of calories consumed. Differences between treatment groups were maintained through follow-up. Traditional dieting (decrease fat and increase physical activity) improved less than the other 3 treatments (P < .001). Remote coaching supported by mobile technology and financial incentives holds promise to improve diet and activity. Targeting fruits/vegetables and sedentary leisure together maximizes overall adoption and maintenance of multiple healthy behavior changes.

  1. Day to day variability in fat oxidation and the effect after only 1 day of change in diet composition.

    PubMed

    Støa, Eva Maria; Nyhus, Lill-Katrin; Børresen, Sandra Claveau; Nygaard, Caroline; Hovet, Åse Marie; Bratland-Sanda, Solfrid; Helgerud, Jan; Støren, Øyvind

    2016-04-01

    Indirect calorimetry is a common and noninvasive method to estimate rate of fat oxidation (FatOx) during exercise, and test-retest reliability should be considered when interpreting results. Diet also has an impact on FatOx. The aim of the present study was to investigate day to day variations in FatOx during moderate exercise given the same diet and 2 different isoenergetic diets. Nine healthy, moderately-trained females participated in the study. They performed 1 maximal oxygen uptake test and 4 FatOx tests. Habitual diets were recorded and repeated to assess day to day variability in FatOx. FatOx was also measured after 1 day of fat-rich (26.8% carbohydrates (CHO), 23.2% protein, 47.1% fat) and 1 day of CHO-rich diet (62.6% CHO, 20.1% protein, 12.4% fat). The reliability test revealed no differences in FatOx, respiratory exchange ratio (RER), oxygen uptake, carbon dioxide production, heart rate, blood lactate concentration, or blood glucose between the 2 habitual diet days. FatOx decreased after the CHO-rich diet compared with the habitual day 2 (from 0.42 ± 0.15 to 0.29 ± 0.13 g·min(-1), p < 0.05). No difference was found in FatOx between fat-rich diet and the 2 habitual diet days. FatOx was 31% lower (from 0.42 ± 0.14 to 0.29 ± 0.13 g·min(-1), p < 0.01) after the CHO-rich diet compared with the fat-rich diet. Using RER data to measure FatOx is a reliable method as long as the diet is strictly controlled. However, even a 1-day change in macronutrient composition will likely affect the FatOx results.

  2. Differential skeletal responses of hindlimb unloaded rats on a vitamin D-deficient diet to 1,25-dihydroxyvitamin D3 and its analog, seocalcitol (EB1089)

    NASA Technical Reports Server (NTRS)

    Narayanan, Ramesh; Allen, Matthew R.; Gaddy, Dana; Bloomfield, Susan A.; Smith, Carolyn L.; Weigel, Nancy L.

    2004-01-01

    Conditions of disuse in bed rest patients, as well as microgravity experienced by astronauts are accompanied by reduced mechanical loading, reduced calcium absorption, and lower serum levels of 1,25(OH)2D3 (1,25-D), the active metabolite of vitamin D, all contributing to bone loss. To determine whether 1,25-D or a less calcemic analog, Seocalcitol or EB1089 (1 alpha,25-dihydroxy-22,24-diene-24,26,27-trihomovitamin D3) can alleviate bone loss in a rat hindlimb unloading model of disuse osteopenia, mature male rats originally on a vitamin D replete diet containing 1.01% calcium were transferred to a vitamin D-deficient diet containing 0.48% calcium and then tail suspended and treated for 28 days with vehicle, 0.05 microg/kg 1,25-D, or 0.05 microg/kg EB1089. The vitamin D-deficient diet caused a substantial decrease in bone mineral density (-8%), which may be compounded by hindlimb unloading (-10%). Exogenous 1,25-D not only prevented the bone loss but also increased the bone mineral density to greater than the baseline level (+7%). EB1089 was less effective in preventing bone loss. Analysis of site and cell-specific effects of 1,25-D and EB1089 revealed that 1,25-D was more active than EB1089 in the intestine, the site of calcium absorption, and in inducing osteoclastogenesis and bone resorption whereas EB1089 was more effective in inducing osteoblast differentiation. These studies suggest that elevating circulating 1,25-D levels presumably increasing calcium absorption can counteract bone loss induced by disuse or microgravity with its associated reductions in circulating 1,25-D and decreased calcium absorption.

  3. Broad spectrum detoxification: the major longevity assurance process regulated by insulin/IGF-1 signaling?

    PubMed

    Gems, David; McElwee, Joshua J

    2005-03-01

    Our recent survey of genes regulated by insulin/IGF-1 signaling (IIS) in Caenorhabditis elegans suggests a role for a number of gene classes in longevity assurance. Based on these findings, we propose a model for the biochemistry of longevity assurance and ageing, which is as follows. Ageing results from molecular damage from highly diverse endobiotic toxins. These are stochastic by-products of diverse metabolic processes, of which reactive oxygen species (ROS) are likely to be only one component. Our microarray analysis suggests a major role in longevity assurance of the phase 1, phase 2 detoxification system involving cytochrome P450 (CYP), short-chain dehydrogenase/reductase (SDR) and UDP-glucuronosyltransferase (UGT) enzymes. Unlike superoxide and hydrogen peroxide detoxification, this system is energetically costly, and requires the excretion from the cell of its products. Given such costs, its activity may be selected against, as predicted by the disposable soma theory. CYP and UGT enzymes target lipophilic molecular species; insufficient activity of this system is consistent with age-pigment (lipofuscin) accumulation during ageing. We suggest that IIS-regulated longevity assurance involves: (a) energetically costly detoxification and excretion of molecular rubbish, and (b) conservation of existing proteins via molecular chaperones. Given the emphasis in this theory on investment in cellular waste disposal, and on protein conservation, we have dubbed it the green theory.

  4. Biochemical phenotyping unravels novel metabolic abnormalities and potential biomarkers associated with treatment of GLUT1 deficiency with ketogenic diet.

    PubMed

    Cappuccio, Gerarda; Pinelli, Michele; Alagia, Marianna; Donti, Taraka; Day-Salvatore, Debra-Lynn; Veggiotti, Pierangelo; De Giorgis, Valentina; Lunghi, Simona; Vari, Maria Stella; Striano, Pasquale; Brunetti-Pierri, Nicola; Kennedy, Adam D; Elsea, Sarah H

    2017-01-01

    Global metabolomic profiling offers novel opportunities for the discovery of biomarkers and for the elucidation of pathogenic mechanisms that might lead to the development of novel therapies. GLUT1 deficiency syndrome (GLUT1-DS) is an inborn error of metabolism due to reduced function of glucose transporter type 1. Clinical presentation of GLUT1-DS is heterogeneous and the disorder mirrors patients with epilepsy, movement disorders, or any paroxysmal events or unexplained neurological manifestation triggered by exercise or fasting. The diagnostic biochemical hallmark of the disease is a reduced cerebrospinal fluid (CSF)/blood glucose ratio and the only available treatment is ketogenic diet. This study aimed at advancing our understanding of the biochemical perturbations in GLUT1-DS pathogenesis through biochemical phenotyping and the treatment of GLUT1-DS with a ketogenic diet. Metabolomic analysis of three CSF samples from GLUT1-DS patients not on ketogenic diet was feasible inasmuch as CSF sampling was used for diagnosis before to start with ketogenic diet. The analysis of plasma and urine samples obtained from GLUT1-DS patients treated with a ketogenic diet showed alterations in lipid and amino acid profiles. While subtle, these were consistent findings across the patients with GLUT1-DS on ketogenic diet, suggesting impacts on mitochondrial physiology. Moreover, low levels of free carnitine were present suggesting its consumption in GLUT1-DS on ketogenic diet. 3-hydroxybutyrate, 3-hydroxybutyrylcarnitine, 3-methyladipate, and N-acetylglycine were identified as potential biomarkers of GLUT1-DS on ketogenic diet. This is the first study to identify CSF, plasma, and urine metabolites associated with GLUT1-DS, as well as biochemical changes impacted by a ketogenic diet. Potential biomarkers and metabolic insights deserve further investigation.

  5. Biochemical phenotyping unravels novel metabolic abnormalities and potential biomarkers associated with treatment of GLUT1 deficiency with ketogenic diet

    PubMed Central

    Cappuccio, Gerarda; Pinelli, Michele; Alagia, Marianna; Donti, Taraka; Day-Salvatore, Debra-Lynn; Veggiotti, Pierangelo; De Giorgis, Valentina; Lunghi, Simona; Vari, Maria Stella; Striano, Pasquale; Brunetti-Pierri, Nicola; Kennedy, Adam D.

    2017-01-01

    Global metabolomic profiling offers novel opportunities for the discovery of biomarkers and for the elucidation of pathogenic mechanisms that might lead to the development of novel therapies. GLUT1 deficiency syndrome (GLUT1-DS) is an inborn error of metabolism due to reduced function of glucose transporter type 1. Clinical presentation of GLUT1-DS is heterogeneous and the disorder mirrors patients with epilepsy, movement disorders, or any paroxysmal events or unexplained neurological manifestation triggered by exercise or fasting. The diagnostic biochemical hallmark of the disease is a reduced cerebrospinal fluid (CSF)/blood glucose ratio and the only available treatment is ketogenic diet. This study aimed at advancing our understanding of the biochemical perturbations in GLUT1-DS pathogenesis through biochemical phenotyping and the treatment of GLUT1-DS with a ketogenic diet. Metabolomic analysis of three CSF samples from GLUT1-DS patients not on ketogenic diet was feasible inasmuch as CSF sampling was used for diagnosis before to start with ketogenic diet. The analysis of plasma and urine samples obtained from GLUT1-DS patients treated with a ketogenic diet showed alterations in lipid and amino acid profiles. While subtle, these were consistent findings across the patients with GLUT1-DS on ketogenic diet, suggesting impacts on mitochondrial physiology. Moreover, low levels of free carnitine were present suggesting its consumption in GLUT1-DS on ketogenic diet. 3-hydroxybutyrate, 3-hydroxybutyrylcarnitine, 3-methyladipate, and N-acetylglycine were identified as potential biomarkers of GLUT1-DS on ketogenic diet. This is the first study to identify CSF, plasma, and urine metabolites associated with GLUT1-DS, as well as biochemical changes impacted by a ketogenic diet. Potential biomarkers and metabolic insights deserve further investigation. PMID:28961260

  6. Deletion of protein tyrosine phosphatase 1B rescues against myocardial anomalies in high fat diet-induced obesity: Role of AMPK-dependent autophagy.

    PubMed

    Kandadi, Machender R; Panzhinskiy, Evgeniy; Roe, Nathan D; Nair, Sreejayan; Hu, Dahai; Sun, Aijun

    2015-02-01

    Obesity-induced cardiomyopathy may be mediated by alterations in multiple signaling cascades involved in glucose and lipid metabolism. Protein tyrosine phosphatase-1B (PTP1B) is an important negative regulator of insulin signaling. This study was designed to evaluate the role of PTP1B in high fat diet-induced cardiac contractile anomalies. Wild-type and PTP1B knockout mice were fed normal (10%) or high (45%) fat diet for 5months prior to evaluation of cardiac function. Myocardial function was assessed using echocardiography and an Ion-Optix MyoCam system. Western blot analysis was employed to evaluate levels of AMPK, mTOR, raptor, Beclin-1, p62 and LC3-II. RT-PCR technique was employed to assess genes involved in hypertrophy and lipid metabolism. Our data revealed increased LV thickness and LV chamber size as well as decreased fractional shortening following high fat diet intake, the effect was nullified by PTP1B knockout. High fat diet intake compromised cardiomyocyte contractile function as evidenced by decreased peak shortening, maximal velocity of shortening/relengthening, intracellular Ca²⁺ release as well as prolonged duration of relengthening and intracellular Ca²⁺ decay, the effects of which were alleviated by PTP1B knockout. High fat diet resulted in enlarged cardiomyocyte area and increased lipid accumulation, which were attenuated by PTP1B knockout. High fat diet intake dampened myocardial autophagy as evidenced by decreased LC3-II conversion and Beclin-1, increased p62 levels as well as decreased phosphorylation of AMPK and raptor, the effects of which were significantly alleviated by PTP1B knockout. Pharmacological inhibition of AMPK using compound C disengaged PTP1B knockout-conferred protection against fatty acid-induced cardiomyocyte contractile anomalies. Taken together, our results suggest that PTP1B knockout offers cardioprotection against high fat diet intake through activation of AMPK. This article is part of a Special Issue entitled

  7. Sterol O-acyltransferase 1 deficiency improves defective insulin signaling in the brains of mice fed a high-fat diet.

    PubMed

    Xu, Ning; Meng, Hao; Liu, Tian-Yi; Feng, Ying-Li; Qi, Yuan; Zhang, Dong-Huan; Wang, Hong-Lei

    2018-05-05

    Insulin resistance induced by a high-fat diet (HFD) is related to metabolic diseases, and sterol O-acyltransferase 1 (SOAT1) is a key enzyme for the biosynthesis of cholesteryl ester. In the present study, wild-type (WT) mice and SOAT1-knockout (KO) mice with a C57BL6 background fed a HFD were used to explore the role of SOAT1 in the hypothalamus. The results show that the WT mice exhibited a significant increase in body weight as well as hepatic histologic changes; they also had a lower glucose and insulin tolerance than the WT mice fed a normal diet. However, the metabolic syndrome was attenuated in the SOAT1-KO HFD-fed mice. With regard to brain function, the SOAT1-KO HFD-fed mice showed improved cognitive function; they also manifested reduced levels of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6, which would otherwise be raised by a HFD. In addition, the HFD led to the overexpression of GFAP and phosphorylated NF-κB in the hypothalamus, changes that were reversed in the SOAT1-KO HFD-fed mice. Moreover, SOAT1-KO mice improved HFD-caused defective hypothalamic insulin resistance, as evidenced by the upregulation of p-insulin receptor (INSR), p-AKT and p-glycogen synthase kinase (GSK)-3β, while the downregulation of p-AMP-activated protein kinase (AMPK)-α and p-acetyl-CoA carboxylase (ACC)-α. In addition, similar results were observed in high fructose (HFR)-stimulated astrocytes (ASTs) isolated from WT or KO mice. These results suggest that SOAT1 plays an important role in hypothalamic insulin sensitivity, linked to cognitive impairment, in HFD-fed mice. Copyright © 2018. Published by Elsevier Inc.

  8. Management of Type 1 Diabetes With a Very Low-Carbohydrate Diet.

    PubMed

    Lennerz, Belinda S; Barton, Anna; Bernstein, Richard K; Dikeman, R David; Diulus, Carrie; Hallberg, Sarah; Rhodes, Erinn T; Ebbeling, Cara B; Westman, Eric C; Yancy, William S; Ludwig, David S

    2018-06-01

    To evaluate glycemic control among children and adults with type 1 diabetes mellitus (T1DM) who consume a very low-carbohydrate diet (VLCD). We conducted an online survey of an international social media group for people with T1DM who follow a VLCD. Respondents included adults and parents of children with T1DM. We assessed current hemoglobin A1c (HbA1c) (primary measure), change in HbA1c after the self-reported beginning of the VLCD, total daily insulin dose, and adverse events. We obtained confirmatory data from diabetes care providers and medical records. Of 316 respondents, 131 (42%) were parents of children with T1DM, and 57% were of female sex. Suggestive evidence of T1DM (based on a 3-tier scoring system in which researchers took into consideration age and weight at diagnosis, pancreatic autoimmunity, insulin requirement, and clinical presentation) was obtained for 273 (86%) respondents. The mean age at diagnosis was 16 ± 14 years, the duration of diabetes was 11 ± 13 years, and the time following a VLCD was 2.2 ± 3.9 years. Participants had a mean daily carbohydrate intake of 36 ± 15 g. Reported mean HbA1c was 5.67% ± 0.66%. Only 7 (2%) respondents reported diabetes-related hospitalizations in the past year, including 4 (1%) for ketoacidosis and 2 (1%) for hypoglycemia. Exceptional glycemic control of T1DM with low rates of adverse events was reported by a community of children and adults who consume a VLCD. The generalizability of these findings requires further studies, including high-quality randomized controlled trials. Copyright © 2018 by the American Academy of Pediatrics.

  9. TAPBPR bridges UDP-glucose:glycoprotein glucosyltransferase 1 onto MHC class I to provide quality control in the antigen presentation pathway

    PubMed Central

    Neerincx, Andreas; Hermann, Clemens; Antrobus, Robin; van Hateren, Andy; Cao, Huan; Trautwein, Nico; Stevanović, Stefan; Elliott, Tim; Deane, Janet E; Boyle, Louise H

    2017-01-01

    Recently, we revealed that TAPBPR is a peptide exchange catalyst that is important for optimal peptide selection by MHC class I molecules. Here, we asked whether any other co-factors associate with TAPBPR, which would explain its effect on peptide selection. We identify an interaction between TAPBPR and UDP-glucose:glycoprotein glucosyltransferase 1 (UGT1), a folding sensor in the calnexin/calreticulin quality control cycle that is known to regenerate the Glc1Man9GlcNAc2 moiety on glycoproteins. Our results suggest the formation of a multimeric complex, dependent on a conserved cysteine at position 94 in TAPBPR, in which TAPBPR promotes the association of UGT1 with peptide-receptive MHC class I molecules. We reveal that the interaction between TAPBPR and UGT1 facilities the reglucosylation of the glycan on MHC class I molecules, promoting their recognition by calreticulin. Our results suggest that in addition to being a peptide editor, TAPBPR improves peptide optimisation by promoting peptide-receptive MHC class I molecules to associate with the peptide-loading complex. DOI: http://dx.doi.org/10.7554/eLife.23049.001 PMID:28425917

  10. Role of UDP-glucuronosyltransferase isoforms in 13-cis retinoic acid metabolism in humans.

    PubMed

    Rowbotham, Sophie E; Illingworth, Nicola A; Daly, Ann K; Veal, Gareth J; Boddy, Alan V

    2010-07-01

    13-cis Retinoic acid (13cisRA, isotretinoin) is an important drug in both dermatology, and the treatment of high-risk neuroblastoma. 13cisRA is known to undergo cytochrome P450-mediated oxidation, mainly by CYP2C8, but phase II metabolic pathways have not been characterized. In the present study, the glucuronidation activities of human liver (HLM) and intestinal microsomes (HIM), as well as a panel of human UDP-glucuronosyltransferases (UGTs) toward both 13cisRA and the 4-oxo metabolite, 4-oxo 13cisRA, were compared using high-performance liquid chromatography. Both HLM and, to a greater extent, HIM catalyzed the glucuronidation of 13cisRA and 4-oxo 13cisRA. Based on the structures of 13cisRA and 4-oxo 13cisRA, the glucuronides formed are conjugated at the terminal carboxylic acid. Further analysis revealed that UGT1A1, UGT1A3, UGT1A7, UGT1A8, and UGT1A9 were the major isoforms responsible for the glucuronidation of both substrates. For 13cisRA, a pronounced substrate inhibition was observed with individual UGTs and with HIM. UGT1A3 exhibited the highest rate of activity toward both substrates, and a high rate of activity toward 13cisRA glucuronidation was also observed with UGT1A7. However, for both substrates, K(m) values were above concentrations reported in clinical studies. Therefore, UGT1A9 is likely to be the most important enzyme in the glucuronidation of both substrates as this enzyme had the lowest K(m) and is expressed in both the intestine and at high levels in the liver.

  11. An unfortunate challenge: Ketogenic diet for the treatment of Lennox-Gastaut syndrome in tyrosinemia type 1.

    PubMed

    De Lucia, Silvana; Pichard, Samia; Ilea, Adina; Greneche, Marie-Odile; François, Laurent; Delanoë, Catherine; Schiff, Manuel; Auvin, Stéphane

    2016-07-01

    The ketogenic diet is an evidence-based treatment for resistant epilepsy including Lennox-Gastaut syndrome. This diet is based on low carbohydrate-high fat intakes. Dietary treatment is also therapeutic for inborn errors of metabolism such as aminoacdiopathies. We report a child with both Lennox-Gastaut syndrome and tyrosinemia type 1. This epilepsy syndrome resulted form a porencephalic cyst secondary to brain abscesses that occurred during the management of malnutrition due to untreated tyrosinemia type 1. We used a ketogenic diet as treatment for Lennox-Gastaut syndrome taking into account dietary requirements for tyrosinemia type 1. The patient was transiently responder during a 6-month period. This report illustrates that ketogenic diet remains a therapeutic option even when additional dietary requirements are needed. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  12. The selective orexin receptor 1 antagonist ACT-335827 in a rat model of diet-induced obesity associated with metabolic syndrome.

    PubMed

    Steiner, Michel A; Sciarretta, Carla; Pasquali, Anne; Jenck, Francois

    2013-01-01

    The orexin system regulates feeding, nutrient metabolism and energy homeostasis. Acute pharmacological blockade of orexin receptor 1 (OXR-1) in rodents induces satiety and reduces normal and palatable food intake. Genetic OXR-1 deletion in mice improves hyperglycemia under high-fat (HF) diet conditions. Here we investigated the effects of chronic treatment with the novel selective OXR-1 antagonist ACT-335827 in a rat model of diet-induced obesity (DIO) associated with metabolic syndrome (MetS). Rats were fed either standard chow (SC) or a cafeteria (CAF) diet comprised of intermittent human snacks and a constant free choice between a HF/sweet (HF/S) diet and SC for 13 weeks. Thereafter the SC group was treated with vehicle (for 4 weeks) and the CAF group was divided into a vehicle and an ACT-335827 treatment group. Energy and water intake, food preference, and indicators of MetS (abdominal obesity, glucose homeostasis, plasma lipids, and blood pressure) were monitored. Hippocampus-dependent memory, which can be impaired by DIO, was assessed. CAF diet fed rats treated with ACT-335827 consumed less of the HF/S diet and more of the SC, but did not change their snack or total kcal intake compared to vehicle-treated rats. ACT-335827 increased water intake and the high-density lipoprotein associated cholesterol proportion of total circulating cholesterol. ACT-335827 slightly increased body weight gain (4% vs. controls) and feed efficiency in the absence of hyperphagia. These effects were not associated with significant changes in the elevated fasting glucose and triglyceride (TG) plasma levels, glucose intolerance, elevated blood pressure, and adiposity due to CAF diet consumption. Neither CAF diet consumption alone nor ACT-335827 affected memory. In conclusion, the main metabolic characteristics associated with DIO and MetS in rats remained unaffected by chronic ACT-335827 treatment, suggesting that pharmacological OXR-1 blockade has minimal impact in this model.

  13. Glucosylation of 4-Hydroxy-2,5-Dimethyl-3(2H)-Furanone, the Key Strawberry Flavor Compound in Strawberry Fruit1

    PubMed Central

    Hong, Xiaotong; Zhao, Shuai; Liu, Jingyi; Schulenburg, Katja; Huang, Fong-Chin; Franz-Oberdorf, Katrin

    2016-01-01

    Strawberries emit hundreds of different volatiles, but only a dozen, including the key compound HDMF [4-hydroxy-2,5-dimethyl-3(2H)-furanone] contribute to the flavor of the fruit. However, during ripening, a considerable amount of HDMF is metabolized to the flavorless HDMF β-d-glucoside. Here, we functionally characterize nine ripening-related UGTs (UDP-glucosyltransferases) in Fragaria that function in the glucosylation of volatile metabolites by comprehensive biochemical analyses. Some UGTs showed a rather broad substrate tolerance and glucosylated a range of aroma compounds in vitro, whereas others had a more limited substrate spectrum. The allelic UGT71K3a and b proteins and to a lesser extent UGT73B24, UGT71W2, and UGT73B23 catalyzed the glucosylation of HDMF and its structural homolog 2(or 5)-ethyl-4-hydroxy-5(or 2)-methyl-3(2H)-furanone. Site-directed mutagenesis to introduce single K458R, D445E, D343E, and V383A mutations and a double G433A/I434V mutation led to enhanced HDMF glucosylation activity compared to the wild-type enzymes. In contrast, a single mutation in the center of the plant secondary product glycosyltransferase box (A389V) reduced the enzymatic activity. Down-regulation of UGT71K3 transcript expression in strawberry receptacles led to a significant reduction in the level of HDMF-glucoside and a smaller decline in HDMF-glucoside-malonate compared with the level in control fruits. These results provide the foundation for improvement of strawberry flavor and the biotechnological production of HDMF-glucoside. PMID:26993618

  14. Determinants of diet and physical activity (DEDIPAC): a summary of findings.

    PubMed

    Brug, Johannes; van der Ploeg, Hidde P; Loyen, Anne; Ahrens, Wolfgang; Allais, Oliver; Andersen, Lene F; Cardon, Greet; Capranica, Laura; Chastin, Sebastien; De Bourdeaudhuij, Ilse; De Craemer, Marieke; Donnelly, Alan; Ekelund, Ulf; Finglas, Paul; Flechtner-Mors, Marion; Hebestreit, Antje; Kubiak, Thomas; Lanza, Massimo; Lien, Nanna; MacDonncha, Ciaran; Mazzocchi, Mario; Monsivais, Pablo; Murphy, Marie; Nicolaou, Mary; Nöthlings, Ute; O'Gorman, Donal J; Renner, Britta; Roos, Gun; van den Berg, Matthijs; Schulze, Matthias B; Steinacker, Jürgen M; Stronks, Karien; Volkert, Dorothee; Lakerveld, Jeroen

    2017-11-03

    The establishment of the Determinants of Diet and Physical Activity (DEDIPAC) Knowledge Hub, 2013-2016, was the first action taken by the 'Healthy Diet for a Healthy Life' European Joint Programming Initiative. DEDIPAC aimed to provide better insight into the determinants of diet, physical activity and sedentary behaviour across the life course, i.e. insight into the causes of the causes of important, non-communicable diseases across Europe and beyond. DEDIPAC was launched in late 2013, and delivered its final report in late 2016. In this paper we give an overview of what was achieved in terms of furthering measurement and monitoring, providing overviews of the state-of-the-art in the field, and building toolboxes for further research and practice. Additionally, we propose some of the next steps that are now required to move forward in this field, arguing in favour of 1) sustaining the Knowledge Hub and developing it into a European virtual research institute and knowledge centre for determinants of behavioural nutrition and physical activity with close links to other parts of the world; 2) establishing a cohort study of families across all regions of Europe focusing specifically on the individual and contextual determinants of major, non-communicable disease; and 3) furthering DEDIPAC's work on nutrition, physical activity, and sedentary behaviour policy evaluation and benchmarking across Europe by aligning with other international initiatives and by supporting harmonisation of pan-European surveillance.

  15. The reduction of starch in finishing diets supplemented with oil does not prevent the accumulation of trans-10 18:1 in lamb meat.

    PubMed

    Costa, M; Alves, S P; Francisco, A; Almeida, J; Alfaia, C M; Martins, S V; Prates, J A M; Santos-Silva, J; Doran, O; Bessa, R J B

    2017-08-01

    The experiment was conducted to test the hypothesis that the replacement of cereal with low-starch feed ingredients in lambs' finishing diets supplemented with oils could prevent the accumulation of -10-18:1 in meat. Forty lambs were fed 1 of 4 diets supplemented with soybean oil (5.9%) and fish oil (1%) for 6 wk before slaughter. The control (CON) diet contained 43% barley, and in the other diets, barley was completely replaced by dehydrated citrus pulp (DCP), dehydrated sugar beet pulp (DBP), or soybean hulls (SH). Growth performance, feed intake, and carcass and meat quality traits were analyzed. At slaughter, LM samples were collected for gene expression evaluation, and 3 d after slaughter, LM and subcutaneous (s.c.) fat samples were collected for fatty acid analysis. None of the diets affected meat quality, but the DCP diet reduced ADG ( < 0.05) and the DCP and SH diets decreased the feed-to-gain ratio ( < 0.01). The DCP diet increased ( < 0.05) the risk of parakeratosis and the severity of the lesions. Moreover, the DBP treatment led to increased a* (redness) and b* (yellowness) in s.c. fat compared with the CON treatment ( < 0.05). The lipid content of LM did not differ ( > 0.05) with treatment and averaged 34.4 g/kg of meat. Diets had no effect ( > 0.05) on SFA, PUFA, and -MUFA sums and on the -6:-3 ratio in both LM and s.c. fat. A lower expression of fatty acid synthase (FASN) was found with the DCP treatment than with the other treatments ( < 0.001). All treatments showed a high accumulation of -10-18:1, averaging 91 mg/g fatty acid in LM and 147 mg/g fatty acid in s.c. fat. The concentration of -11-18:1 in the tissues was considerably lower than that of -10-18:1, and thus the -10-18:1:-11-18:1 ratio was above 3 with all treatments. Despite this, the SH diet clearly promoted a larger deposition of -11-18:1 and -9,-11-18:2 in tissues compared with the other treatments. () gene expression and SCD activity index in LM were reduced with the SH diet compared

  16. Effect of diet on carboxylesterase activity of tadpoles (Rhinella arenarum) exposed to chlorpyrifos.

    PubMed

    Attademo, A M; Sanchez-Hernandez, J C; Lajmanovich, R C; Peltzer, P M; Junges, C

    2017-01-01

    An outdoor microcosm was performed with tadpoles (Rhinella arenarum) exposed to 125μgL -1 chlorpyrifos and fed two types of food, i.e., lettuce (Lactuca sativa) and a formulated commercial pellet. Acetylcholinesterase (AChE) and carboxylesterase (CbE) activities were measured in liver and intestine after 10 days of pesticide exposure. Non-exposed tadpoles fed lettuce had an intestinal AChE activity almost two-fold higher than that of pellet-fed tadpoles. No significant differences were observed, however, in liver AChE activity between diets. Likewise, intestinal CbE activity - measured using two substrates, i.e. 1-naphthyl acetate (1-NA) and 4-nitrophenyl valerate (4-NPV) - was higher in tadpoles fed lettuce than in those fed pellets. However, the diet-dependent response of liver CbE activity was opposite to that in the intestine. Chlorpyrifos caused a significant inhibition of both esterase activities, which was tissue- and diet-specific. The highest inhibition degree was found in the intestinal AChE and CbE activities of lettuce-fed tadpoles (42-78% of controls) compared with pellet-fed tadpoles (<60%). Although chlorpyrifos significantly inhibited liver CbE activity of the group fed lettuce, this effect was not observed in the group fed pellets. In general, intestinal CbE activity was more sensitive to chlorpyrifos inhibition than AChE activity. This finding, together with the high levels of basal CbE activity found in the intestine, may be understood as a detoxification system able to reduce intestinal OP uptake. Moreover, the results of this study suggest that diet is a determinant factor in toxicity testing with tadpoles to assess OP toxicity, because it modulates levels of this potential detoxifying enzyme activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The Female Lower Genital Tract Is a Privileged Compartment with IL-10 Producing Dendritic Cells and Poor Th1 Immunity following Chlamydia trachomatis Infection

    PubMed Central

    Marks, Ellen; Tam, Miguel A.; Lycke, Nils Y.

    2010-01-01

    While a primary genital tract infection with C. trachomatis stimulates partial-protection against re-infection, it may also result in severe inflammation and tissue destruction. Here we have dissected whether functional compartments exist in the genital tract that restrict Th1-mediated protective immunity. Apart from the Th1-subset, little is known about the role of other CD4+ T cell subsets in response to a genital tract chlamydial infection. Therefore, we investigated CD4+ T cell subset differentiation in the genital tract using RT-PCR for expression of critical transcription factors and cytokines in the upper (UGT) and lower genital tract (LGT) of female C57BL/6 mice in response to C. trachomatis serovar D infection. We found that the Th1 subset dominated the UGT, as IFN-γ and T-bet mRNA expression were high, while GATA-3 was low following genital infection with C. trachomatis serovar D. By contrast, IL-10 and GATA-3 mRNA dominated the LGT, suggesting the presence of Th2 cells. These functional compartments also attracted regulatory T cells (Tregs) differently as increased FoxP3 mRNA expression was seen primarily in the UGT. Although IL-17A mRNA was somewhat up-regulated in the LGT, no significant change in RORγ-t mRNA expression was observed, suggesting no involvement of Th17 cells. The dichotomy between the LGT and UGT was maintained during infection by IL-10 because in IL-10-deficient mice the distinction between the two compartments was completely lost and a dramatic shift to the predominance of Th1 cells in the LGT occurred. Unexpectedly, the major source of IL-10 was CD11c+ CD11b+ DC, probably creating an anti-inflammatory privileged site in the LGT. PMID:21079691

  18. Cyp1b1 deletion and retinol deficiency coordinately suppress mouse liver lipogenic genes and hepcidin expression during post-natal development

    PubMed Central

    Maguire, Meghan; Larsen, Michele Campaigne; Foong, Yee Hoon; Tanumihardjo, Sherry; Jefcoate, Colin R.

    2018-01-01

    Cyp1b1 deletion and gestational vitamin A deficiency (GVAD) redirect adult liver gene expression. A matched sufficient pre- and post-natal diet, which has high carbohydrate and normal iron content (LF12), increased inflammatory gene expression markers in adult livers that were suppressed by GVAD and Cyp1b1 deletion. At birth on the LF12 diet, Cyp1b1 deletion and GVAD each suppress liver expression of the iron suppressor, hepcidin (Hepc), while increasing stellate cell activation markers and suppressing post-natal increases in lipogenesis. Hepc was less suppressed in Cyp1b1−/− pups with a standard breeder diet, but was restored by iron supplementation of the LF12 diet. Conclusions The LF12 diet delivered low post-natal iron and attenuated Hepc. Hepc decreases in Cyp1b1−/− and GVAD mice resulted in stellate activation and lipogenesis suppression. Endothelial BMP6, a Hepc stimulant, is a potential coordinator and Cyp1b1 target. These neonatal changes in Cyp1b1−/− mice link to diminished adult obesity and liver inflammation. PMID:28583802

  19. mTORC1 activity as a determinant of cancer risk--rationalizing the cancer-preventive effects of adiponectin, metformin, rapamycin, and low-protein vegan diets.

    PubMed

    McCarty, Mark F

    2011-10-01

    Increased plasma levels of adiponectin, metformin therapy of diabetes, rapamycin administration in transplant patients, and lifelong consumption of low-protein plant-based diets have all been linked to decreased risk for various cancers. These benefits may be mediated, at least in part, by down-regulated activity of the mTORC1 complex, a key regulator of protein translation. By boosting the effective availability of the translation initiator eIF4E, mTORC1 activity promotes the translation of a number of "weak" mRNAs that code for proteins, often up-regulated in cancer, that promote cellular proliferation, invasiveness, and angiogenesis, and that abet cancer promotion and chemoresistance by opposing apoptosis. Measures which inhibit eIF4E activity, either directly or indirectly, may have utility not only for cancer prevention, but also for the treatment of many cancers in which eIF4E drives malignancy. Since eIF4E is overexpressed in many cancers, strategies which target eIF4E directly--some of which are now being assessed clinically--may have the broadest efficacy in this regard. Many of the "weak" mRNAs coding for proteins that promote malignant behavior or chemoresistance are regulated transcriptionally by NF-kappaB and/or Stat3, which are active in a high proportion of cancers; thus, regimens concurrently targeting eIF4E, NF-kappaB, and Stat3 may suppress these proteins at both the transcriptional and translational levels, potentially achieving a very marked reduction in their expression. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Toxicity of Xanthene Food Dyes by Inhibition of Human Drug-Metabolizing Enzymes in a Noncompetitive Manner

    PubMed Central

    Mizutani, Takaharu

    2009-01-01

    The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC50 values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC50 values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the noninhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of 1O2 originating on xanthene dyes by light irradiation, because inhibition was prevented by 1O2 quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin. PMID:20041016

  1. Application of Optical Fibers to DNA’s Testing Program.

    DTIC Science & Technology

    1980-10-15

    economic impact. In addition to benefitting UGT , advances in fiber optic technology can greatly impact other DNA activities such as hardening of military...components and simulation and testing in high radiation environments. Using the UGT environment as a test bed, optical fibers can be characterized in...OPTIC SYSTEMS 33 3-3.1 Active System Design 37 4 USE OF FIBERS IN UGT 47 4-1 ADVANTAGES OF FIBERS FOR UGT 47 4-2 DIAGNOSTIC APPLICATIONS 4-3 EFFECTS

  2. Preadipocyte 11beta-hydroxysteroid dehydrogenase type 1 is a keto-reductase and contributes to diet-induced visceral obesity in vivo.

    PubMed

    De Sousa Peixoto, R A; Turban, S; Battle, J H; Chapman, K E; Seckl, J R; Morton, N M

    2008-04-01

    Glucocorticoid excess promotes visceral obesity and cardiovascular disease. Similar features are found in the highly prevalent metabolic syndrome in the absence of high levels of systemic cortisol. Although elevated activity of the glucocorticoid-amplifying enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) within adipocytes might explain this paradox, the potential role of 11beta-HSD1 in preadipocytes is less clear; human omental adipose stromal vascular (ASV) cells exhibit 11beta-dehydrogenase activity (inactivation of glucocorticoids) probably due to the absence of cofactor provision by hexose-6-phosphate dehydrogenase. To clarify the depot-specific impact of 11beta-HSD1, we assessed whether preadipocytes in ASV from mesenteric (as a representative of visceral adipose tissue) and sc tissue displayed 11beta-HSD1 activity in mice. 11beta-HSD1 was highly expressed in freshly isolated ASV cells, predominantly in preadipocytes. 11beta-HSD1 mRNA and protein levels were comparable between ASV and adipocyte fractions in both depots. 11beta-HSD1 was an 11beta-reductase, thus reactivating glucocorticoids in ASV cells, consistent with hexose-6-phosphate dehydrogenase mRNA expression. Unexpectedly, glucocorticoid reactivation was higher in intact mesenteric ASV cells despite a lower expression of 11beta-HSD1 mRNA and protein (homogenate activity) levels than sc ASV cells. This suggests a novel depot-specific control over 11beta-HSD1 enzyme activity. In vivo, high-fat diet-induced obesity was accompanied by increased visceral fat preadipocyte differentiation in wild-type but not 11beta-HSD1(-/-) mice. The results suggest that 11beta-HSD1 reductase activity is augmented in mouse mesenteric preadipocytes where it promotes preadipocyte differentiation and contributes to visceral fat accumulation in obesity.

  3. Associations between diet quality and physical activity measures among a southern Ontario regional sample of grade 6 students.

    PubMed

    Woodruff, Sarah J; Hanning, Rhona M

    2010-12-01

    The purpose of this study was to determine diet quality and physical activity behaviours of grade 6 students by sex and body weight status, and to determine the associations between diet quality and physical activity behaviours. The Web-based Food Behaviour Questionnaire, which included a 24-h diet recall and the modified Physical Activity Questionnaire for Older Children (PAQ-C), was administered to a cross-section of schools (n = 405 students from 15 schools). Measured height and weight were used to calculate body mass index and weight status (Cole et al. 2000). A Canadian version of the Healthy Eating Index (HEI-C) was used to describe overall diet quality. The mean HEI-C was 69.6 (13.2) with the majority (72%) falling into the needs improvement category. The overall mean physical activity score was 3.7 out of a maximum of 5, with obese subjects being less active compared with normal weight and overweight (p < 0.001). Ordinal logistic regression analysis (of HEI-C vs. all measures of the PAQ-C, sex, and weight status) revealed that HEI-C ratings were likely to be higher in students that walked to and from school 5 days per week (vs. 0 days per week; odds ratio 3.18, p = 0.010); and were active 1 evening per week (vs. none; odds ratio 3.48, p = 0.039). The positive association between diet quality and some aspects of physical activity suggests possible clustering of health behaviours. Future research should test the potential benefits of promoting 1 health behaviour (e.g., healthy eating) with another (e.g., physical activity).

  4. A ketogenic amino acid rich diet benefits mitochondrial homeostasis by altering the AKT/4EBP1 and autophagy signaling pathways in the gastrocnemius and soleus.

    PubMed

    Li, Jinpeng; Kanasaki, Megumi; Xu, Ling; Kitada, Munehiro; Nagao, Kenji; Adachi, Yusuke; Jinzu, Hiroko; Noguchi, Yasushi; Kohno, Miyuki; Kanasaki, Keizo; Koya, Daisuke

    2018-07-01

    Muscle biology is important topic in diabetes research. We have reported that a diet with ketogenic amino acids rich replacement (KAAR) ameliorated high-fat diet (HFD)-induced hepatosteatosis via activation of the autophagy system. Here, we found that a KAAR ameliorated the mitochondrial morphological alterations and associated mitochondrial dysfunction induced by an HFD through induction of the AKT/4EBP1 and autophagy signaling pathways in both fast and slow muscles. The mice were fed with a standard HFD (30% fat in food) or an HFD with KAAR (HFD KAAR ). In both the gastrocnemius and the soleus, HFD KAAR ameliorated HFD-impaired mitochondrial morphology and mitochondrial function, characterized by decreased mitofusin 2, optic atrophy 1, peroxisome proliferator-activated receptor (PPAR) γ coactivator-1α and PPARα levels and increased dynamin-related protein 1 levels. The decreased levels of phosphorylated AKT and 4EBP1 in the gastrocnemius and soleus of HFD-fed mice were remediated by HFD KAAR . Furthermore, the HFD KAAR ameliorated the HFD-induced autophagy defects in the gastrocnemius and soleus. These findings suggest that KAAR may be a novel strategy to combat obesity-induced mitochondrial dysfunction, likely through induction of the AKT/4EBP1 and autophagy pathways in skeletal muscle. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Mice deficient in mitochondrial glycerol-3-phosphate acyltransferase-1 have diminished myocardial triacylglycerol accumulation during lipogenic diet and altered phospholipid fatty acid composition

    PubMed Central

    Lewin, Tal M.; de Jong, Hendrik; Schwerbrock, Nicole J. M.; Hammond, Linda E.; Watkins, Steven M.; Combs, Terry P.; Coleman, Rosalind A.

    2008-01-01

    Glycerol-3-phosphate acyltransferase-1 (GPAT1), which is located on the outer mitochondrial membrane comprises up to 30% of total GPAT activity in the heart. It is one of at least four mammalian GPAT isoforms known to catalyze the initial, committed, and rate limiting step of glycerolipid synthesis. Because excess triacylglycerol (TAG) accumulates in cardiomyocytes in obesity and type 2 diabetes, we determined whether lack of GPAT1 would alter the synthesis of heart TAG and phospholipids after a 2-week high sucrose diet or a 3-month high fat diet. Even in the absence of hypertriglyceridemia, TAG increased 2-fold with both diets in hearts from wildtype mice. In contrast, hearts from Gpat1−/− mice contained 20–80% less TAG than the wildtype controls. In addition, hearts from Gpat1−/− mice fed the high-sucrose diet incorporate 60% less [14C]palmitate into heart TAG as compared to wildtype mice. Because GPAT1 prefers 16:0-CoA to other long chain acyl-CoA substrates, we determined the fatty acid composition of heart phospholipids. Compared to wildtype littermate controls, hearts from Gpat1−/− mice contained a lower amount of 16:0 in phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine/phosphatidylinositol and significantly more C20:4n6. Phosphatidylcholine and phosphatidylethanolamine from Gpat1−/− hearts also contained higher amounts of 18:0 and 18:1. Although at least three other GPAT isoforms are expressed in the heart, our data suggest that GPAT1 contributes significantly to cardiomyocyte TAG synthesis during lipogenic or high fat diets and influences the incorporation of 20:4n6 into heart phospholipids. PMID:18522808

  6. Neonatal diet composition modulates ileum mitochondrial function in a neonatal pig model Eugenia Carvalho1

    USDA-ARS?s Scientific Manuscript database

    The composition of postnatal diet (i.e., breastmilk vs. formula) has a strong influence on a variety of physiological outcomes in infants, but the impact on bioenergetics and mitochondrial function remains an open question. In a published study (1), early ingestion of dairy-based infant formula vs....

  7. IGF1 Shapes Macrophage Activation in Response to Immunometabolic Challenge.

    PubMed

    Spadaro, Olga; Camell, Christina D; Bosurgi, Lidia; Nguyen, Kim Y; Youm, Yun-Hee; Rothlin, Carla V; Dixit, Vishwa Deep

    2017-04-11

    In concert with their phagocytic activity, macrophages are thought to regulate the host immunometabolic responses primarily via their ability to produce specific cytokines and metabolites. Here, we show that IL-4-differentiated, M2-like macrophages secrete IGF1, a hormone previously thought to be exclusively produced from liver. Ablation of IGF1 receptors from myeloid cells reduced phagocytosis, increased macrophages in adipose tissue, elevated adiposity, lowered energy expenditure, and led to insulin resistance in mice fed a high-fat diet. The investigation of adipose macrophage phenotype in obese myeloid IGF1R knockout (MIKO) mice revealed a reduction in transcripts associated with M2-like macrophage activation. Furthermore, the MIKO mice infected with helminth Nippostrongylus brasiliensis displayed delayed resolution from infection with normal insulin sensitivity. Surprisingly, cold challenge did not trigger an overt M2-like state and failed to induce tyrosine hydroxylase expression in adipose tissue macrophages of control or MIKO mice. These results show that IGF1 signaling shapes the macrophage-activation phenotype. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Carob pod insoluble fiber exerts anti-atherosclerotic effects in rabbits through sirtuin-1 and peroxisome proliferator-activated receptor-γ coactivator-1α.

    PubMed

    Valero-Muñoz, María; Martín-Fernández, Beatriz; Ballesteros, Sandra; Lahera, Vicente; de las Heras, Natalia

    2014-09-01

    The aim of this study was to evaluate the potential effects of an insoluble dietary fiber from carob pod (IFC) (1 g ⋅ kg(-1) ⋅ d(-1) in the diet) on alterations associated with atherosclerosis in rabbits with dyslipidemia. Male New Zealand rabbits (n = 30) were fed the following diets for 8 wk: 1) a control diet (SF412; Panlab) as a control group representing normal conditions; 2) a control supplemented with 0.5% cholesterol + 14% coconut oil (DL) (SF302; Panlab) for 8 wk as a dyslipidemic group; and 3) a control containing 0.5% cholesterol + 14% coconut oil plus IFC (1 g ⋅ kg(-1) ⋅ d(-1)) (DL+IFC) for 8 wk. IFC was administered in a pellet mixed with the DL diet. The DL-fed group developed mixed dyslipidemia and atherosclerotic lesions, which were associated with endothelial dysfunction, inflammation, and fibrosis. Furthermore, sirtuin-1 (SIRT1) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) protein expression in the aorta were reduced to 77% and 63% of the control group, respectively (P < 0.05), in these rabbits. Administration of IFC to DL-fed rabbits reduced the size of the aortic lesion significantly (DL, 15.2% and DL+IFC, 2.6%) and normalized acetylcholine-induced relaxation (maximal response: control, 89.3%; DL, 61.6%; DL+IFC, 87.1%; P < 0.05) and endothelial nitric oxide synthase expression (DL, 52% and DL+IFC, 104% of the control group). IFC administration to DL-fed rabbits also reduced cluster of differentiation 36 (DL, 148% and DL+IFC, 104% of the control group; P < 0.05), plasminogen activator inhibitor-1 (DL, 141% and DL+IFC, 107% of the control group), tumor necrosis factor-α (DL, 166% and DL+IFC, 120% of the control group), vascular cell adhesion molecule-1 (DL, 153% and DL+IFC, 110% of the control group), transforming growth factor-β (DL, 173% and DL+IFC, 99% of the control group), and collagen I (DL, 157% and DL+IFC, 112% of the control group) in the aorta. These effects were accompanied by an enhancement of

  9. Paraoxonase 1 Q192R (PON1-192) polymorphism is associated with reduced lipid peroxidation in healthy young men on a low-carotenoid diet supplemented with tomato juice.

    PubMed

    Bub, Achim; Barth, Stephan W; Watzl, Bernhard; Briviba, Karlis; Rechkemmer, Gerhard

    2005-03-01

    The HDL-bound enzyme paraoxonase (PON) protects LDL from oxidation and may therefore attenuate the development of atherosclerosis. We examined the effect of tomato and carrot juice consumption on PON1 activity and lipid peroxidation in healthy young volunteers with different PON1-192 genotypes (Q/R substitution at position 192). In this randomized cross-over study twenty-two healthy, non-smoking men on a low-carotenoid diet received 330 ml/d tomato juice (37.0 mg lycopene, 1.6 mg beta-carotene) or carrot juice (27.1 mg beta-carotene, 13.1 mg alpha-carotene) for 2 weeks. Intervention periods were preceded by 2-week low-carotenoid intake. We determined the PON1-192 genotype by restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR) and measured ex vivo LDL oxidation (lag time), plasma malondialdehyde and PON1 activity at the beginning and end of each intervention period. At baseline, lag time was higher (P<0.05) in QQ (111 (sd 9) min) than in QR/RR subjects (101 (sd 8) min). Neither tomato nor carrot juice consumption had significant effects on PON1 activity. However, tomato juice consumption reduced (P<0.05) plasma malondialdehyde in QR/RR (Delta: -0.073 (sd 0.11) micromol/l) as compared to QQ subjects (Delta:+0.047 (sd 0.13) micromol/l). Carrot juice had no significant effect on malondialdehyde irrespective of the PON1-192 genotype. Male volunteers with the QR/RR genotype showed an increased lipid peroxidation at baseline. Although tomato and carrot juice fail to affect PON1 activity, tomato juice intake reduced lipid peroxidation in healthy volunteers carrying the R-allele of the PON1-192 genotype and could thus contribute to CVD risk reduction in these individuals.

  10. CH4 dehydrogenation on Cu(1 1 1), Cu@Cu(1 1 1), Rh@Cu(1 1 1) and RhCu(1 1 1) surfaces: A comparison studies of catalytic activity

    NASA Astrophysics Data System (ADS)

    Zhang, Riguang; Duan, Tian; Ling, Lixia; Wang, Baojun

    2015-06-01

    In the CVD growth of graphene, the reaction barriers of the dehydrogenation for hydrocarbon molecules directly decide the graphene CVD growth temperature. In this study, density functional theory method has been employed to comparatively probe into CH4 dehydrogenation on four types of Cu(1 1 1) surface, including the flat Cu(1 1 1) surface (labeled as Cu(1 1 1)) and the Cu(1 1 1) surface with one surface Cu atom substituted by one Rh atom (labeled as RhCu(1 1 1)), as well as the Cu(1 1 1) surface with one Cu or Rh adatom (labeled as Cu@Cu(1 1 1) and Rh@Cu(1 1 1), respectively). Our results show that the highest barrier of the whole CH4 dehydrogenation process is remarkably reduced from 448.7 and 418.4 kJ mol-1 on the flat Cu(1 1 1) and Cu@Cu(1 1 1) surfaces to 258.9 kJ mol-1 on RhCu(1 1 1) surface, and to 180.0 kJ mol-1 on Rh@Cu(1 1 1) surface, indicating that the adsorbed or substituted Rh atom on Cu catalyst can exhibit better catalytic activity for CH4 complete dehydrogenation; meanwhile, since the differences for the highest barrier between Cu@Cu(1 1 1) and Cu(1 1 1) surfaces are smaller, the catalytic behaviors of Cu@Cu(1 1 1) surface are very close to the flat Cu(1 1 1) surface, suggesting that the morphology of Cu substrate does not obviously affect the dehydrogenation of CH4, which accords with the reported experimental observations. As a result, the adsorbed or substituted Rh atom on Cu catalyst exhibit a better catalytic activity for CH4 dehydrogenation compared to the pure Cu catalyst, especially on Rh-adsorbed Cu catalyst, we can conclude that the potential of synthesizing high-quality graphene with the help of Rh on Cu foils may be carried out at relatively low temperatures. Meanwhile, the adsorbed Rh atom is the reaction active center, namely, the CVD growth can be controlled by manipulating the graphene nucleation position.

  11. The effects of two different hypocaloric diets on glucagon-like peptide 1 in obese adults, relation with insulin response after weight loss.

    PubMed

    de Luis, Daniel A; Sagrado, Manuel Gonzalez; Conde, Rosa; Aller, Rocio; Izaola, Olatz

    2009-01-01

    Few studies have investigated the effect of type of diets on GLP-1 concentrations. The aim of this study was to compare the effect of two diets on circulating GLP-1 levels and the relation with insulin response after weight loss. A population of 118 obese patients were analyzed. Patients were randomly allocated to two groups: (a) Diet I (low carbohydrate) and (b) Diet II (low fat). Biochemical and anthropometric parameters were measured before and after 3 months of hypocaloric diet. Fifty-two patients (12 male/40 female) were treated with Diet I and 66 patients (21 male/45 female) with Diet II. In Group I, basal GLP-1 levels did not change after dietary treatment (9.4+/-3.3 vs. 9.9+/-3.1 ng/ml; ns). In Group II, GLP-1 levels decreased significantly (8.4%) (9.2+/-3.3 vs 8.7+/-3.1 ng/ml; P<.05). In the multivariate analysis with a dependent variable (levels of GLP-1), only insulin levels remained as an independent predictor in the model (F=5.9; P<.05), with an increase of 0.6 ng/ml (95% CI 0.1-1.1) GLP-1 concentrations with each increase of 1 mUI/ml of insulin. A hypocaloric diet with a low fat percentage decreased GLP-1 levels with a direct correlation with insulin levels. Nevertheless, patients with a hypocaloric diet with a low carbohydrate percentage treatment did not change GLP-1 levels. Diet macronutrient manipulation on GLP-1 response could be useful in an obesity nutrition therapy.

  12. Relationship between adherence to diet, glycemic control and cardiovascular risk factors in patients with type 1 diabetes: a nationwide survey in Brazil

    PubMed Central

    2014-01-01

    Background To determine the relationship between adherence to the diet reported by patients with type 1 diabetes under routine clinical care in Brazil, and demographic, socioeconomic status, glycemic control and cardiovascular risk factors. Methods This was a cross-sectional, multicenter study conducted between December 2008 and December 2010 in 28 public clinics in 20 Brazilian cities. The data was obtained from 3,180 patients, aged 22 ± 11.8 years (56.3% females, 57.4% Caucasians and 43.6% non-Caucasians). The mean time since diabetes diagnosis was 11.7 ± 8.1 years. Results Overall, 1,722 (54.2%) of the patients reported to be adherent to the diet without difference in gender, duration of diabetes and socioeconomic status. Patients who reported adherence to the diet had lower BMI, HbA1c, triglycerides, LDL-cholesterol, non HDL-cholesterol and diastolic blood pressure and had more HbA1c at goal, performed more frequently self-monitoring of blood glucose (p < 0.001), and reported less difficulties to follow specific schedules of diet plans (p < 0.001). Less patients who reported to be adherent were obese or overweight (p = 0.005). The quantity of food and time schedule of the meals were the most frequent complaints. Logistic regression analysis showed that ethnicity, (Caucasians, (OR 1.26 [1.09-1.47]), number of medical clinical visits in the last year (OR 1.10 [1.06-1.15]), carbohydrate counting, (OR 2.22 [1.49-3.30]) and diets recommended by diabetes societies’, (OR 1.57 [1.02-2.41]) were related to greater patients’ adherence (p < 0.05) and age, [adolescents (OR 0.60 [0.50-0.72]), high BMI (OR 0.58 [0.94-0.98]) and smoking (OR 0.58 [0.41-0.84]) with poor patients’ adherence (p < 0.01). Conclusions Our results suggest that it is necessary to rethink medical nutrition therapy in order to help patients to overcome barriers that impair an optimized adherence to the diet. PMID:24607084

  13. Relationship between adherence to diet, glycemic control and cardiovascular risk factors in patients with type 1 diabetes: a nationwide survey in Brazil.

    PubMed

    Davison, Kariane A K; Negrato, Carlos A; Cobas, Roberta; Matheus, Alessandra; Tannus, Lucianne; Palma, Catia S; Japiassu, Leticia; Carneiro, Joao R I; Rodacki, Melanie; Zajdenverg, Lenita; Araújo, Neuza B C; Cordeiro, Marilena M; Luescher, Jorge Luiz; Berardo, Renata S; Nery, Marcia; Cani, Catarina; do Carmo A Marques, Maria; Calliari, Luiz Eduardo; Noronha, Renata M; Manna, Thais D; Savoldelli, Roberta; Penha, Fernanda G; Foss, Milton C; Foss-Freitas, Maria Cristina; de Fatima Guedes, Maria; Dib, Sergio A; Dualib, Patricia; Silva, Saulo C; Sepúlveda, Janice; Sampaio, Emerson; Rea, Rosangela R; Faria, Ana Cristina R A; Tschiedel, Balduino; Lavigne, Suzana; Cardozo, Gustavo A; Pires, Antonio C; Robles, Fernando C; Azevedo, Mirela; Canani, Luis Henrique; Zucatti, Alessandra T; Coral, Marisa H C; Pereira, Daniela A; Araujo, Luiz Antonio; Pedrosa, Hermelinda C; Tolentino, Monica; Prado, Flaviene A; Rassi, Nelson; Araujo, Leticia B; Fonseca, Reine M C; Guedes, Alexis D; Mattos, Odelisa S; Faria, Manuel; Azulay, Rossana; Forti, Adriana C; Façanha, Cristina F S; Montenegro, Renan; Montenegro, Ana Paula; Melo, Naira H; Rezende, Karla F; Ramos, Alberto; Felicio, João S; Santos, Flavia M; Jezini, Deborah L; Gomes, Marilia B

    2014-03-07

    To determine the relationship between adherence to the diet reported by patients with type 1 diabetes under routine clinical care in Brazil, and demographic, socioeconomic status, glycemic control and cardiovascular risk factors. This was a cross-sectional, multicenter study conducted between December 2008 and December 2010 in 28 public clinics in 20 Brazilian cities. The data was obtained from 3,180 patients, aged 22 ± 11.8 years (56.3% females, 57.4% Caucasians and 43.6% non-Caucasians). The mean time since diabetes diagnosis was 11.7 ± 8.1 years. Overall, 1,722 (54.2%) of the patients reported to be adherent to the diet without difference in gender, duration of diabetes and socioeconomic status. Patients who reported adherence to the diet had lower BMI, HbA1c, triglycerides, LDL-cholesterol, non HDL-cholesterol and diastolic blood pressure and had more HbA1c at goal, performed more frequently self-monitoring of blood glucose (p < 0.001), and reported less difficulties to follow specific schedules of diet plans (p < 0.001). Less patients who reported to be adherent were obese or overweight (p = 0.005). The quantity of food and time schedule of the meals were the most frequent complaints. Logistic regression analysis showed that ethnicity, (Caucasians, (OR 1.26 [1.09-1.47]), number of medical clinical visits in the last year (OR 1.10 [1.06-1.15]), carbohydrate counting, (OR 2.22 [1.49-3.30]) and diets recommended by diabetes societies', (OR 1.57 [1.02-2.41]) were related to greater patients' adherence (p < 0.05) and age, [adolescents (OR 0.60 [0.50-0.72]), high BMI (OR 0.58 [0.94-0.98]) and smoking (OR 0.58 [0.41-0.84]) with poor patients' adherence (p < 0.01). Our results suggest that it is necessary to rethink medical nutrition therapy in order to help patients to overcome barriers that impair an optimized adherence to the diet.

  14. Homocysteine threshold value based on cystathionine beta synthase and paraoxonase 1 activities in mice.

    PubMed

    Hamelet, J; Aït-Yahya-Graison, E; Matulewicz, E; Noll, C; Badel-Chagnon, A; Camproux, A-C; Demuth, K; Paul, J-L; Delabar, J M; Janel, N

    2007-12-01

    Hyperhomocysteinaemia is a metabolic disorder associated with the development of premature atherosclerosis. Among the determinants which predispose to premature thromboembolic and atherothrombotic events, serum activity of paraoxonase 1, mainly synthesized in the liver, has been shown to be a predictor of cardiovascular disease and to be negatively correlated with serum homocysteine levels in human. Even though treatments of hyperhomocysteinaemic patients ongoing cardiovascular complications are commonly used, it still remains unclear above which homocysteine level a preventive therapy should be started. In order to establish a threshold of plasma homocysteine concentration we have analyzed the hepatic cystathionine beta synthase and paraoxonase 1 activities in a moderate to intermediate murine model of hyperhomocysteinaemia. Using wild type and heterozygous cystathionine beta synthase deficient mice fed a methionine enriched diet or a control diet, we first studied the link between cystathionine beta synthase and paraoxonase 1 activities and plasma homocysteine concentration. Among the animals used in this study, we observed a negative correlation between plasma homocysteine level and cystathionine beta synthase activity (rho=-0.52, P=0.0008) or paraoxonase 1 activity (rho=-0.49, P=0.002). Starting from these results, a homocysteine cut-off value of 15 microm has been found for both cystathionine beta synthase (P=0.0003) and paraoxonase 1 (P=0.0007) activities. Our results suggest that both cystathionine beta synthase and paraoxonase 1 activities are significantly decreased in mice with a plasma homocysteine value greater than 15 microm. In an attempt to set up preventive treatment for cardiovascular disease our results indicate that treatments should be started from 15 microm of plasma homocysteine.

  15. A church-based diet and physical activity intervention for rural, lower Mississippi Delta African American adults: Delta Body and Soul effectiveness study, 2010-2011.

    PubMed

    Tussing-Humphreys, Lisa; Thomson, Jessica L; Mayo, Tanyatta; Edmond, Emanuel

    2013-06-06

    Obesity, diabetes, and hypertension have reached epidemic levels in the largely rural Lower Mississippi Delta (LMD) region. We assessed the effectiveness of a 6-month, church-based diet and physical activity intervention, conducted during 2010 through 2011, for improving diet quality (measured by the Healthy Eating Index-2005) and increasing physical activity of African American adults in the LMD region. We used a quasi-experimental design in which 8 self-selected eligible churches were assigned to intervention or control. Assessments included dietary, physical activity, anthropometric, and clinical measures. Statistical tests for group comparisons included χ(2), Fisher's exact, and McNemar's tests for categorical variables, and mixed-model regression analysis for continuous variables and modeling intervention effects. Retention rates were 85% (176 of 208) for control and 84% (163 of 195) for intervention churches. Diet quality components, including total fruit, total vegetables, and total quality improved significantly in both control (mean [standard deviation], 0.3 [1.8], 0.2 [1.1], and 3.4 [9.6], respectively) and intervention (0.6 [1.7], 0.3 [1.2], and 3.2 [9.7], respectively) groups, while significant increases in aerobic (22%) and strength/flexibility (24%) physical activity indicators were apparent in the intervention group only. Regression analysis indicated that intervention participation level and vehicle ownership were significant positive predictors of change for several diet quality components. This church-based diet and physical activity intervention may be effective in improving diet quality and increasing physical activity of LMD African American adults. Components key to the success of such programs are participant engagement in educational sessions and vehicle access.

  16. Naringin ameliorates metabolic syndrome by activating AMP-activated protein kinase in mice fed a high-fat diet.

    PubMed

    Pu, Peng; Gao, Dong-Mei; Mohamed, Salim; Chen, Jing; Zhang, Jing; Zhou, Xiao-Ya; Zhou, Nai-Jing; Xie, Jing; Jiang, Hong

    2012-02-01

    Metabolic syndrome is a low-grade inflammatory state in which oxidative stress is involved. Naringin, isolated from the Citrussinensis, is a phenolic compound with anti-oxidative and anti-inflammatory activities. The aim of this study was to explore the effects of naringin on metabolic syndrome in mice. The animal models, induced by high-fat diet in C57BL/6 mice, developed obesity, dyslipidemia, fatty liver, liver dysfunction and insulin resistance. These changes were attenuated by naringin. Further investigations revealed that the inhibitory effect on inflammation and insulin resistance was mediated by blocking activation of the MAPKs pathways and by activating IRS1; the lipid-lowering effect was attributed to inhibiting the synthesis way and increasing fatty acid oxidation; the hypoglycemic effect was due to the regulation of PEPCK and G6pase. The anti-oxidative stress of naringin also participated in the improvement of insulin resistance and lipogenesis. All of these depended on the AMPK activation. To confirm the results of the animal experiment, we tested primary hepatocytes exposed to high glucose system. Naringin was protective by phosphorylating AMPKα and IRS1. Taken together, these results suggested that naringin protected mice exposed to a high-fat diet from metabolic syndrome through an AMPK-dependent mechanism involving multiple types of intracellular signaling and reduction of oxidative damage. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Aquatide Activation of SIRT1 Reduces Cellular Senescence through a SIRT1-FOXO1-Autophagy Axis.

    PubMed

    Lim, Chae Jin; Lee, Yong-Moon; Kang, Seung Goo; Lim, Hyung W; Shin, Kyong-Oh; Jeong, Se Kyoo; Huh, Yang Hoon; Choi, Suin; Kor, Myungho; Seo, Ho Seong; Park, Byeong Deog; Park, Keedon; Ahn, Jeong Keun; Uchida, Yoshikazu; Park, Kyungho

    2017-09-01

    Ultraviolet (UV) irradiation is a relevant environment factor to induce cellular senescence and photoaging. Both autophagy- and silent information regulator T1 (SIRT1)-dependent pathways are critical cellular processes of not only maintaining normal cellular functions, but also protecting cellular senescence in skin exposed to UV irradiation. In the present studies, we investigated whether modulation of autophagy induction using a novel synthetic SIRT1 activator, heptasodium hexacarboxymethyl dipeptide-12 (named as Aquatide), suppresses the UVB irradiation-induced skin aging. Treatment with Aquatide directly activates SIRT1 and stimulates autophagy induction in cultured human dermal fibroblasts. Next, we found that Aquatide-mediated activation of SIRT1 increases autophagy induction via deacetylation of forkhead box class O (FOXO) 1. Finally, UVB irradiation-induced cellular senescence measured by SA-β-gal staining was significantly decreased in cells treated with Aquatide in parallel to occurring SIRT1 activation-dependent autophagy. Together, Aquatide modulates autophagy through SIRT1 activation, contributing to suppression of skin aging caused by UV irradiation.

  18. Association of diet and lifestyle with glycated haemoglobin in type 1 diabetes participants in the EURODIAB prospective complications study.

    PubMed

    Balk, S N; Schoenaker, D A J M; Mishra, G D; Toeller, M; Chaturvedi, N; Fuller, J H; Soedamah-Muthu, S S

    2016-02-01

    Diet and lifestyle advice for type 1 diabetes (T1DM) patients is based on little evidence and putative effects on glycaemic control. Therefore, we investigated the longitudinal relation between dietary and lifestyle variables and HbA1c levels in patients with type 1 diabetes. A 7-year prospective cohort analysis was performed in 1659 T1DM patients (52% males, mean age 32.5 years) participating in the EURODIAB Prospective Complications Study. Baseline dietary intake was assessed by 3- day records and physical activity, smoking status and alcohol intake by questionnaires. HbA1c during follow-up was centrally assessed by immunoassay. Analysis of variance (ANOVA) and restricted cubic spline regression analyses were performed to assess dose-response associations between diet and lifestyle variables and HbA1c levels, adjusted for age, sex, lifestyle and body composition measures, baseline HbA1c, medication use and severe hypoglycaemic attacks. Mean follow-up of our study population was 6.8 (s.d. 0.6) years. Mean HbA1c level was 8.25% (s.d. 1.85) (or 66.6 mmol/mol) at baseline and 8.27% (s.d. 1.44) at follow-up. Physical activity, smoking status and alcohol intake were not associated with HbA1c at follow-up in multivariable ANOVA models. Baseline intake below the median of vegetable protein (<29 g/day) and dietary fibre (<18 g/day) was associated with higher HbA1c levels. Restricted cubic splines showed nonlinear associations with HbA1c levels for vegetable protein (P (nonlinear)=0.008) and total dietary fibre (P (nonlinear)=0.0009). This study suggests that low intake of vegetable protein and dietary fibre are associated with worse glycaemic control in type 1 diabetes.

  19. Comparison of the inhibitory effects of tolcapone and entacapone against human UDP-glucuronosyltransferases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Xia

    2016-06-15

    Tolcapone and entacapone are two potent catechol-O-methyltransferase (COMT) inhibitors with a similar skeleton and displaying similar pharmacological activities. However, entacapone is a very safe drug used widely in the treatment of Parkinson's disease, while tolcapone is only in limited use for Parkinson's patients and needs careful monitoring of hepatic functions due to hepatotoxicity. This study aims to investigate and compare the inhibitory effects of entacapone and tolcapone on human UDP-glucosyltransferases (UGTs), as well as to evaluate the potential risks from the view of drug-drug interactions (DDI). The results demonstrated that both tolcapone and entacapone exhibited inhibitory effects on UGT1A1, UGT1A7,more » UGT1A9 and UGT1A10. In contrast to entacapone, tolcapone exhibited more potent inhibitory effects on UGT1A1, UGT1A7, and UGT1A10, while their inhibitory potentials against UGT1A9 were comparable. It is noteworthy that the inhibition constants (K{sub i}) of tolcapone and entacapone against bilirubin-O-glucuronidation in human liver microsomes (HLM) are determined as 0.68 μM and 30.82 μM, respectively, which means that the inhibition potency of tolcapone on UGT1A1 mediated bilirubin-O-glucuronidation in HLM is much higher than that of entacapone. Furthermore, the potential risks of tolcapone or entacapone via inhibition of human UGT1A1 were quantitatively predicted by the ratio of the areas under the plasma drug concentration-time curve (AUC). The results indicate that tolcapone may result in significant increase in AUC of bilirubin or the drugs primarily metabolized by UGT1A1, while entacapone is unlikely to cause a significant DDI through inhibition of UGT1A1. - Highlights: • Tolcapone and entacapone exhibited preferential inhibition against UGT1A enzymes. • In contrast to entacapone, tolcapone exhibited more potent inhibitory effects on human UGT1A1, 1 A7 and 1 A10. • Tolcapone may lead to significant increase in AUC of bilirubin.

  20. HNF1A variant, energy-reduced diets and insulin resistance improvement during weight loss: The POUNDS Lost trial and DIRECT.

    PubMed

    Huang, Tao; Wang, Tiange; Heianza, Yoriko; Sun, Dianjianyi; Ivey, Kerry; Durst, Ronen; Schwarzfuchs, Dan; Stampfer, Meir J; Bray, George A; Sacks, Frank M; Shai, Iris; Qi, Lu

    2018-06-01

    To determine whether weight-loss diets varying in macronutrients modulate the genetic effect of hepatocyte nuclear factor 1α (HNF1A) rs7957197 on weight loss and improvement of insulin resistance. We analysed the interaction between HNF1A rs7957197 and weight-loss diets with regard to weight loss and insulin resistance improvement among 722 overweight/obese adults from a 2-year randomized weight-loss trial, the POUNDS Lost trial. The findings were replicated in another independent 2-year weight-loss trial, the Dietary Intervention Randomized Controlled Trial (DIRECT), in 280 overweight/obese adults. In the POUNDS Lost trial, we found that a high-fat diet significantly modified the genetic effect of HNF1A on weight loss and reduction in waist circumference (P for interaction = .006 and .005, respectively). Borderline significant interactions for fasting insulin and insulin resistance (P for interaction = .07 and .06, respectively) were observed. We replicated the results in DIRECT. Pooled results showed similar significant interactions with weight loss, waist circumference reduction, and improvement in fasting insulin and insulin resistance (P values for interaction = .001, .005, .02 and .03, respectively). Greater decreases in weight, waist circumference, fasting insulin level and insulin resistance were observed in participants with the T allele compared to those without the T allele in the high-fat diet group (P = .04, .03 and .01, respectively). Our replicable findings provide strong evidence that individuals with the HNF1A rs7957197 T allele might obtain more benefits in weight loss and improvement of insulin resistance by choosing a hypocaloric and high-fat diet. © 2018 John Wiley & Sons Ltd.

  1. Supplementation of chitosan alleviates high-fat diet-enhanced lipogenesis in rats via adenosine monophosphate (AMP)-activated protein kinase activation and inhibition of lipogenesis-associated genes.

    PubMed

    Chiu, Chen-Yuan; Chan, Im-Lam; Yang, Tsung-Han; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2015-03-25

    This study investigated the role of chitosan in lipogenesis in high-fat diet-induced obese rats. The lipogenesis-associated genes and their upstream regulatory proteins were explored. Diet supplementation of chitosan efficiently decreased the increased weights in body, livers, and adipose tissues in high-fat diet-fed rats. Chitosan supplementation significantly raised the lipolysis rate; attenuated the adipocyte hypertrophy, triglyceride accumulation, and lipoprotein lipase activity in epididymal adipose tissues; and decreased hepatic enzyme activities of lipid biosynthesis. Chitosan supplementation significantly activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation and attenuated high-fat diet-induced protein expressions of lipogenic transcription factors (PPAR-γ and SREBP1c) in livers and adipose tissues. Moreover, chitosan supplementation significantly inhibited the expressions of downstream lipogenic genes (FAS, HMGCR, FATP1, and FABP4) in livers and adipose tissues of high-fat diet-fed rats. These results demonstrate for the first time that chitosan supplementation alleviates high-fat diet-enhanced lipogenesis in rats via AMPK activation and lipogenesis-associated gene inhibition.

  2. Effects of dietary physical or nutritional factors on morphology of rumen papillae and transcriptome changes in lactating dairy cows based on three different forage-based diets.

    PubMed

    Wang, Bing; Wang, Diming; Wu, Xuehui; Cai, Jie; Liu, Mei; Huang, Xinbei; Wu, Jiusheng; Liu, Jianxin; Guan, Leluo

    2017-05-06

    Rumen epithelial tissue plays an important role in nutrient absorption and rumen health. However, whether forage quality and particle size impact the rumen epithelial morphology is unclear. The current study was conducted to elucidate the effects of forage quality and forage particle size on rumen epithelial morphology and to identify potential underlying molecular mechanisms by analyzing the transcriptome of the rumen epithelium (RE). To achieve these objectives, 18 mid-lactation dairy cows were allocated to three groups (6 cows per group), and were fed with one of three different forage-based diets, alfalfa hay (AH), corn stover (CS), and rice straw (RS) for 14 weeks, respectively. Ruminal volatile fatty acids (VFAs) and epithelial thickness were determined, and RNA-sequencing was conducted to identify the transcriptomic changes of rumen epithelial under different forage-based diets. The RS diet exhibited greater particle size but low quality, the AH diet was high nutritional value but small particle size, and CS diet was low quality and small particle size. The ruminal total VFA concentration was greater in AH compared with those in CS or RS. The width of the rumen papillae was greater in RS-fed cows than in cows fed AH or CS. In total, 31, 40, and 28 differentially expressed (DE, fold change > 2, FDR < 0.05) genes were identified via pair-wise comparisons including AH vs. CS, AH vs. RS, and RS vs. CS, respectively. Functional classification analysis of DE genes revealed dynamic changes in ion binding (such as DSG1) between AH and CS, proliferation and apoptotic processes (such as BAG3, HLA-DQA1, and UGT2B17) and complement activation (such as C7) between AH or RS and CS. The expression of HLA-DQA1 was down-regulated in RS compared with AH and CS, and the expression of UGT2B17 was down-regulated in RS compared with CS, with positive (R = 0.94) and negative (R = -0.96) correlation with the width of rumen epithelial papillae (P < 0

  3. Effects of Nonalcoholic Fatty Liver Disease on Hepatic CYP2B1 and in Vivo Bupropion Disposition in Rats Fed a High-Fat or Methionine/Choline-Deficient Diet.

    PubMed

    Cho, Sung-Joon; Kim, Sang-Bum; Cho, Hyun-Jong; Chong, Saeho; Chung, Suk-Jae; Kang, Il-Mo; Lee, Jangik Ike; Yoon, In-Soo; Kim, Dae-Duk

    2016-07-13

    Nonalcoholic fatty liver disease (NAFLD) refers to hepatic pathologies, including simple fatty liver (SFL), nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis, that may progress to hepatocellular carcinoma. These liver disease states may affect the activity and expression levels of drug-metabolizing enzymes, potentially resulting in an alteration in the pharmacokinetics, therapeutic efficacy, and safety of drugs. This study investigated the hepatic cytochrome P450 (CYP) 2B1-modulating effect of a specific NAFLD state in dietary rat models. Sprague-Dawley rats were given a methionine/choline-deficient (MCD) or high-fat (HF) diet to induce NASH and SFL, respectively. The induction of these disease states was confirmed by plasma chemistry and liver histological analysis. Both the protein and mRNA levels of hepatic CYP2B1 were considerably reduced in MCD diet-fed rats; however, they were similar between the HF diet-fed and control rats. Consistently, the enzyme-kinetic and pharmacokinetic parameters for CYP2B1-mediated bupropion metabolism were considerably reduced in MCD diet-fed rats; however, they were also similar between the HF diet-fed and control rats. These results may promote a better understanding of the influence of NAFLD on CYP2B1-mediated metabolism, which could have important implications for the safety and pharmacokinetics of drug substrates for the CYP2B subfamily in patients with NAFLD.

  4. Dietary effect on mixed function P450 1A2 activity assayed by estimation of caffeine metabolism in man.

    PubMed

    Kall, M A; Clausen, J

    1995-10-01

    Two studies were performed in order to evaluate cytochrome P450 1A2 mediated caffeine metabolism during different nutritional conditions. 1. In the first study, 23 healthy male non-smokers, mean age 25, changed from a customary mixed diet to a standard diet in 6 days. The 6 day's standard diet was based on bread, potatoes, rice and boiled meat. Thus, broccoli, cabbage and other cruciferous vegetables, spinach, leeks, onion, parsley, grapefruit, toasted bread, fried and charcoal grilled food, smoked fish and meat, ham and sausages were avoided. 2. In the second study, 33 healthy non-smoking subjects, 24 men and nine women mean age 25 years, volunteered. The study was designed to compare a customary home dietary period with the 6 day period of low dietary P450 induction and with a 5 day supplementary dietary period, i.e. ingestion of known dietary inducers. None of the women were using oral contraceptives or were pregnant during the experimental period. In the period of diet supplementation, the volunteers received charcoal grilled hamburger as a supplement to the standard low induction diet for lunch for 5 days. The hamburgers were made with 150 g beef (18-20% fat) and were grilled on charcoal for 10 min on each side until they were 'well done'. In the present study P450 1A2 activity was estimated from the caffeine metabolic ratio, the so-called CYP 1A2 index:(AFMU + 1-MX + 1-MU/ 17 -DMU) of the caffeine metabolites formed after oral ingestion of 200 mg caffeine. Urine was collected 4-8 h after caffeine ingestion in study 1 and 5 h after caffeine ingestion in study 2. In study 1 the CYP 1A2 index decreased from 4.28 +/- 0.98 in the customary home dietary period to 3.87 +/- 0.69 in the standard dietary period corresponding to 10.6% (P < 0.06) decrease in the CYP 1A2 index. In study 2 the CYP 1A2 index decreased from 4.47 +/- 1.76 in the customary home dietary period to 3.90 +/- 1.12 in the standard dietary period corresponding to a 14.6% decrease (P < 0.2) in P450 1A

  5. Effect of High Protein Diet and Probiotic Lactobacillus casei Shirota Supplementation in Aflatoxin B1-Induced Rats

    PubMed Central

    Nurul Adilah, Z.; Liew, Winnie-Pui-Pui; Amin, I.

    2018-01-01

    Probiotic Lactobacillus casei Shirota (LcS) is a potential decontaminating agent of aflatoxin B1 (AFB1). However, few studies have investigated the influence of diet, especially a high protein (HP) diet, on the binding of AFB1 by probiotics. This research was conducted to determine the effect of HP diet on the ability of LcS to bind AFB1 and reduce aflatoxin M1 (AFM1) in AFB1-induced rats. Sprague Dawley rats were randomly divided into three groups: A (HP only), B (HP + 108 CFU LcS + 25 μg AFB1/kg BW), and C (HP + 25 μg AFB1/kg BW). Levels of AST and ALP were higher in all groups but other liver function's biomarkers were in the normal range, and the liver's histology showed no structural changes. The urea level of rats in group B (10.02 ± 0.73 mmol/l) was significantly lower (p < 0.05) than that of rats in group A (10.82 ± 0.26 mmol/l). The presence of carcinoma in the small intestine and colon was more obvious in group C than in group B. Moreover, rats in group B had significantly (p < 0.05) lower AFM1 concentration (0.39 ± 0.01 ng/ml) than rats in group C (5.22 ± 0.28 ng/ml). Through these findings, LcS supplementation with HP diet alleviated the adverse effects of AFB1 by preventing AFB1 absorption in the small intestine and reducing urinary AFM1.

  6. Hyperpalatable Diet and Physical Exercise Modulate the Expression of the Glial Monocarboxylate Transporters MCT1 and 4.

    PubMed

    Portela, Luis V; Brochier, Andressa W; Haas, Clarissa B; de Carvalho, Afonso Kopczynski; Gnoato, Jussania A; Zimmer, Eduardo R; Kalinine, Eduardo; Pellerin, Luc; Muller, Alexandre P

    2017-10-01

    Hyperpalatable diets (HP) impair brain metabolism, and regular physical exercise has an apparent opposite effect. Here, we combined a prior long-term exposure to HP diet followed by physical exercise and evaluated the impact on some neuroenergetic components and on cognitive performance. We assessed the extracellular lactate concentration, expression of monocarboxylate transporters (MCTs), pyruvate dehydrogenase (PDH), and mitochondrial function in the hippocampus. Male C57BL/6J mice were fed 4 months with HP or a control diet. Subsequently, they were divided in the following groups: control diet sedentary (CDS), control diet exercise (CDE), HP diet sedentary (HPS), and HP diet exercise (HPE) (n = 15 per group) and were engaged for an additional 30-day period of voluntary exercise and HP diet. Relative to the control situation, exercise increased MCT1, MCT4, and PDH protein levels, while the HP diet increased MCT1 and MCT4 protein levels. The production of hydrogen peroxide (H 2 O 2 ) and the mitochondrial membrane potential (∆Ѱ m ) stimulated by succinate in hippocampal homogenates were not significantly different between groups. ADP phosphorylation and the maximal respiratory rate induced by FCCP showed similar responses between groups, implying a normal mitochondrial function. Also, extracellular brain lactate levels were increased in the HPE group compared to other groups soon after performing the Y-maze task. However, such enhanced lactate levels were not associated with improved memory performance. In summary, hippocampal protein expression levels of MCT1 and 4 were increased by physical exercise and HP diet, whereas PDH was only increased by exercise. These observations indicate that a hippocampal metabolic reprogramming takes place in response to these environmental factors.

  7. The development of tumours under a ketogenic diet in association with the novel tumour marker TKTL1: A case series in general practice.

    PubMed

    Jansen, Natalie; Walach, Harald

    2016-01-01

    Since the initial observations by Warburg in 1924, it has become clear in recent years that tumour cells require a high level of glucose to proliferate. Therefore, a ketogenic diet that provides the body with energy mainly through fat and proteins, but contains a reduced amount of carbohydrates, has become a dietary option for supporting tumour treatment and has exhibited promising results. In the present study, the first case series of such a treatment in general practice is presented, in which 78 patients with tumours were treated within a time window of 10 months. The patients were monitored regarding their levels of transketolase-like-1 (TKTL1), a novel tumour marker associated with aerobic glycolysis of tumour cells, and the patients' degree of adherence to a ketogenic diet. Tumour progression was documented according to oncologists' reports. Tumour status was correlated with TKTL1 expression (Kruskal-Wallis test, P<0.0001), indicating that more progressed and aggressive tumours may require a higher level of aerobic glycolysis. In palliative patients, a clear trend was observed in patients who adhered strictly to a ketogenic diet, with one patient experiencing a stagnation in tumour progression and others an improvement in their condition. The adoption of a ketogenic diet was also observed to affect the levels of TKTL1 in those patients. In conclusion, the results from the present case series in general practice suggest that it may be beneficial to advise tumour patients to adopt a ketogenic diet, and that those who adhere to it may have positive results from this type of diet. Thus, the use of a ketogenic diet as a complementary treatment to tumour therapy must be further studied in rigorously controlled trials.

  8. The development of tumours under a ketogenic diet in association with the novel tumour marker TKTL1: A case series in general practice

    PubMed Central

    JANSEN, NATALIE; WALACH, HARALD

    2016-01-01

    Since the initial observations by Warburg in 1924, it has become clear in recent years that tumour cells require a high level of glucose to proliferate. Therefore, a ketogenic diet that provides the body with energy mainly through fat and proteins, but contains a reduced amount of carbohydrates, has become a dietary option for supporting tumour treatment and has exhibited promising results. In the present study, the first case series of such a treatment in general practice is presented, in which 78 patients with tumours were treated within a time window of 10 months. The patients were monitored regarding their levels of transketolase-like-1 (TKTL1), a novel tumour marker associated with aerobic glycolysis of tumour cells, and the patients' degree of adherence to a ketogenic diet. Tumour progression was documented according to oncologists' reports. Tumour status was correlated with TKTL1 expression (Kruskal-Wallis test, P<0.0001), indicating that more progressed and aggressive tumours may require a higher level of aerobic glycolysis. In palliative patients, a clear trend was observed in patients who adhered strictly to a ketogenic diet, with one patient experiencing a stagnation in tumour progression and others an improvement in their condition. The adoption of a ketogenic diet was also observed to affect the levels of TKTL1 in those patients. In conclusion, the results from the present case series in general practice suggest that it may be beneficial to advise tumour patients to adopt a ketogenic diet, and that those who adhere to it may have positive results from this type of diet. Thus, the use of a ketogenic diet as a complementary treatment to tumour therapy must be further studied in rigorously controlled trials. PMID:26870251

  9. Saponin Biosynthesis in Saponaria vaccaria. cDNAs Encoding β-Amyrin Synthase and a Triterpene Carboxylic Acid Glucosyltransferase1[OA

    PubMed Central

    Meesapyodsuk, Dauenpen; Balsevich, John; Reed, Darwin W.; Covello, Patrick S.

    2007-01-01

    Saponaria vaccaria (Caryophyllaceae), a soapwort, known in western Canada as cowcockle, contains bioactive oleanane-type saponins similar to those found in soapbark tree (Quillaja saponaria; Rosaceae). To improve our understanding of the biosynthesis of these saponins, a combined polymerase chain reaction and expressed sequence tag approach was taken to identify the genes involved. A cDNA encoding a β-amyrin synthase (SvBS) was isolated by reverse transcription-polymerase chain reaction and characterized by expression in yeast (Saccharomyces cerevisiae). The SvBS gene is predominantly expressed in leaves. A S. vaccaria developing seed expressed sequence tag collection was developed and used for the isolation of a full-length cDNA bearing sequence similarity to ester-forming glycosyltransferases. The gene product of the cDNA, classified as UGT74M1, was expressed in Escherichia coli, purified, and identified as a triterpene carboxylic acid glucosyltransferase. UGT74M1 is expressed in roots and leaves and appears to be involved in monodesmoside biosynthesis in S. vaccaria. PMID:17172290

  10. [Induction of uridine 5'-diphosphate-glucuronosyltransferase gene expression by sulforaphane and its mechanism: experimental study in human colon cancel cells].

    PubMed

    Wang, Min; Li, Yan-Qing; Zhong, Ning; Chen, Jian; Xu, Xiao-Qun; Yuan, Meng-Biao

    2005-03-30

    To study the induction of expression of uridine 5'-diphosphate (UDP)-glucuronosyltransferase (UGT) 1A in colon cancer cells by sulforaphane (SFN) and its possible mechanism. Human colon cancer cells of the line Caco-2 were cultured and added with SFN of different terminal concentrations, all below the concentration of IC(50). RT-PCR was used to examine the expression of UGT1A mRNA induced by SFN. Western blotting was used to detect the expression of UGT1A protein. The glucuronidation rate of N-hydroxy-PhIP was measured by high performance liquid chromatography (HPLC). The nuclear localization of transcription factor Nrf2 was observed by confocal laser microscopy. (1) Expression of UGT1A mRNA was observed in the Cac0-2 cells induced by SFN of the concentrations of 10 micromol/L approximately 35 micromol/L in a dose-independent manner (P < 0.05). Sulforaphane of the concentration of 25 micromol/L induced the UGT1A mRNA expression time-dependently. The levels of UGT1A1, UGT1A8, and UGT1A10 mRNA expression were significantly increased in the cells treated with 25 micromol/L sulforaphane compared to that in the controls (P = 0.006, P = 0.017, and P = 0.008 respectively). (2) The UGT1A protein band intensity increased significantly in the Coco-2 cells treated with sulforaphane of the concentrations 10 micromol/L approximately 30 micromol/L for 24 h in comparison with the control cells. (3) When the microsomes from the untreated Caco-2 cells were incubated with N-hydroxy-PhIP there was a minor HPLC peak at the expected retention time for N-hydroxy-PhIP-N2-glucuronide. This peak was dramatically increased in the sulforaphane-treated cells, suggesting higher activities of glucuronidation of N-hydroxy-PhIP. (4) Cytoplasmic labeling of NF-E2-related factor 2 (Nrf2), a transcription factor, with no nuclear staining was observed in the non-stimulated cells, whereas an intense nuclear labeling was observed in the sulforaphane-treated cells, indicating the induction of nuclear

  11. Role of Deleted in Breast Cancer 1 (DBC1) Protein in SIRT1 Deacetylase Activation Induced by Protein Kinase A and AMP-activated Protein Kinase*

    PubMed Central

    Nin, Veronica; Escande, Carlos; Chini, Claudia C.; Giri, Shailendra; Camacho-Pereira, Juliana; Matalonga, Jonathan; Lou, Zhenkun; Chini, Eduardo N.

    2012-01-01

    The NAD+-dependent deacetylase SIRT1 is a key regulator of several aspects of metabolism and aging. SIRT1 activation is beneficial for several human diseases, including metabolic syndrome, diabetes, obesity, liver steatosis, and Alzheimer disease. We have recently shown that the protein deleted in breast cancer 1 (DBC1) is a key regulator of SIRT1 activity in vivo. Furthermore, SIRT1 and DBC1 form a dynamic complex that is regulated by the energetic state of the organism. Understanding how the interaction between SIRT1 and DBC1 is regulated is therefore essential to design strategies aimed to activate SIRT1. Here, we investigated which pathways can lead to the dissociation of SIRT1 and DBC1 and consequently to SIRT1 activation. We observed that PKA activation leads to a fast and transient activation of SIRT1 that is DBC1-dependent. In fact, an increase in cAMP/PKA activity resulted in the dissociation of SIRT1 and DBC1 in an AMP-activated protein kinase (AMPK)-dependent manner. Pharmacological AMPK activation led to SIRT1 activation by a DBC1-dependent mechanism. Indeed, we found that AMPK activators promote SIRT1-DBC1 dissociation in cells, resulting in an increase in SIRT1 activity. In addition, we observed that the SIRT1 activation promoted by PKA and AMPK occurs without changes in the intracellular levels of NAD+. We propose that PKA and AMPK can acutely activate SIRT1 by inducing dissociation of SIRT1 from its endogenous inhibitor DBC1. Our experiments provide new insight on the in vivo mechanism of SIRT1 regulation and a new avenue for the development of pharmacological SIRT1 activators targeted at the dissociation of the SIRT1-DBC1 complex. PMID:22553202

  12. Role of deleted in breast cancer 1 (DBC1) protein in SIRT1 deacetylase activation induced by protein kinase A and AMP-activated protein kinase.

    PubMed

    Nin, Veronica; Escande, Carlos; Chini, Claudia C; Giri, Shailendra; Camacho-Pereira, Juliana; Matalonga, Jonathan; Lou, Zhenkun; Chini, Eduardo N

    2012-07-06

    The NAD(+)-dependent deacetylase SIRT1 is a key regulator of several aspects of metabolism and aging. SIRT1 activation is beneficial for several human diseases, including metabolic syndrome, diabetes, obesity, liver steatosis, and Alzheimer disease. We have recently shown that the protein deleted in breast cancer 1 (DBC1) is a key regulator of SIRT1 activity in vivo. Furthermore, SIRT1 and DBC1 form a dynamic complex that is regulated by the energetic state of the organism. Understanding how the interaction between SIRT1 and DBC1 is regulated is therefore essential to design strategies aimed to activate SIRT1. Here, we investigated which pathways can lead to the dissociation of SIRT1 and DBC1 and consequently to SIRT1 activation. We observed that PKA activation leads to a fast and transient activation of SIRT1 that is DBC1-dependent. In fact, an increase in cAMP/PKA activity resulted in the dissociation of SIRT1 and DBC1 in an AMP-activated protein kinase (AMPK)-dependent manner. Pharmacological AMPK activation led to SIRT1 activation by a DBC1-dependent mechanism. Indeed, we found that AMPK activators promote SIRT1-DBC1 dissociation in cells, resulting in an increase in SIRT1 activity. In addition, we observed that the SIRT1 activation promoted by PKA and AMPK occurs without changes in the intracellular levels of NAD(+). We propose that PKA and AMPK can acutely activate SIRT1 by inducing dissociation of SIRT1 from its endogenous inhibitor DBC1. Our experiments provide new insight on the in vivo mechanism of SIRT1 regulation and a new avenue for the development of pharmacological SIRT1 activators targeted at the dissociation of the SIRT1-DBC1 complex.

  13. Spirulina platensis and phycocyanobilin activate atheroprotective heme oxygenase-1: a possible implication for atherogenesis.

    PubMed

    Strasky, Zbynek; Zemankova, Lenka; Nemeckova, Ivana; Rathouska, Jana; Wong, Ronald J; Muchova, Lucie; Subhanova, Iva; Vanikova, Jana; Vanova, Katerina; Vitek, Libor; Nachtigal, Petr

    2013-11-01

    Spirulina platensis, a water blue-green alga, has been associated with potent biological effects, which might have important relevance in atheroprotection. We investigated whether S. platensis or phycocyanobilin (PCB), its tetrapyrrolic chromophore, can activate atheroprotective heme oxygenase-1 (Hmox1), a key enzyme in the heme catabolic pathway responsible for generation of a potent antioxidant bilirubin, in endothelial cells and in a mouse model of atherosclerosis. In vitro experiments were performed on EA.hy926 endothelial cells exposed to extracts of S. platensis or PCB. In vivo studies were performed on ApoE-deficient mice fed a cholesterol diet and S. platensis. The effect of these treatments on Hmox1, as well as other markers of oxidative stress and endothelial dysfunction, was then investigated. Both S. platensis and PCB markedly upregulated Hmox1 in vitro, and a substantial overexpression of Hmox1 was found in aortic atherosclerotic lesions of ApoE-deficient mice fed S. platensis. In addition, S. platensis treatment led to a significant increase in Hmox1 promoter activity in the spleens of Hmox-luc transgenic mice. Furthermore, both S. platensis and PCB were able to modulate important markers of oxidative stress and endothelial dysfunction, such as eNOS, p22 NADPH oxidase subunit, and/or VCAM-1. Both S. platensis and PCB activate atheroprotective HMOX1 in endothelial cells and S. platensis increased the expression of Hmox1 in aortic atherosclerotic lesions in ApoE-deficient mice, and also in Hmox-luc transgenic mice beyond the lipid lowering effect. Therefore, activation of HMOX1 and the heme catabolic pathway may represent an important mechanism of this food supplement for the reduction of atherosclerotic disease.

  14. CTRP9 induces mitochondrial biogenesis and protects high glucose-induced endothelial oxidative damage via AdipoR1 -SIRT1- PGC-1α activation.

    PubMed

    Cheng, Liang; Li, Bin; Chen, Xu; Su, Jie; Wang, Hongbing; Yu, Shiqiang; Zheng, Qijun

    2016-09-02

    Vascular lesions caused by endothelial dysfunction are the most common and serious complication of diabetes. The vasoactive potency of CTRP9 has been reported in our previous study via nitric oxide (NO) production. However, the effect of CTRP9 on vascular endothelial cells remains unknown. This study aimed to investigate the protection role of CTRP9 in the primary aortic vascular endothelial cells and HAECs under high-glucose condition. We found that the aortic vascular endothelial cells isolated from mice fed with a high fat diet generated more ROS production than normal cells, along with decreased mitochondrial biogenesis, which was also found in HAECs treated with high glucose. However, the treatment of CTPR9 significantly reduced ROS production and increased the activities of endogenous antioxidant enzymes, the expression of PGC-1α, NRF1, TFAM, ATP5A1 and SIRT1, and the activity of cytochrome c oxidase, indicating an induction of mitochondrial biogenesis. Furthermore, silencing the expression of SIRT1 in HAECs impeded the effect of CTRP9 on mitochondrial biogenesis, while silencing the expression of AdipoR1 in HAECs reversed the expression of SIRT1 and PGC-1α. Based on these findings, this study showed that CTRP9 might induce mitochondrial biogenesis and protect high glucose-induced endothelial oxidative damage via AdipoR1-SIRT1-PGC-1α signaling pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Weight management practices associated with PCOS and their relationships with diet and physical activity.

    PubMed

    Moran, L J; Brown, W J; McNaughton, S A; Joham, A E; Teede, H J

    2017-03-01

    Do weight management practices differ in women with and without PCOS? Women in the general population with self-reported PCOS are more likely to be using healthy weight management practices and alternative non-lifestyle measures for weight management than women without PCOS. Lifestyle management is the first-line treatment in PCOS. However, the specific weight management practices used by women with PCOS and their effect on diet and physical activity are unclear. The study was a population-based observational cross-sectional study involving women in the 1973-1978 cohort (n = 7767 total; n = 556 with PCOS, n = 7211 without PCOS). Women with and without self-reported PCOS were included. Self-reported outcome measures included healthy lifestyle-related or alternative non-lifestyle-related (e.g. laxatives or smoking) weight management practices, dietary intake and physical activity. Women with PCOS were more likely to be following both healthy [reducing meal or snack size (odds ratio (OR) 1.50, 95% CI 1.14, 1.96, P = 0.004) and reducing fat or sugar intake (OR 1.32, 95% CI 1.03, 1.69, P = 0.027) or following a low glycaemic index diet (OR 2.88, 95% CI 2.30, 3.59, P < 0.001)] and alternative [smoking (OR 1.60, 95% CI 1.02, 2.52, P = 0.043) or use of laxative, diet pills, fasting or diuretics (OR 1.45, 95% CI 1.07, 1.97, P = 0.017)] weight management practices than women without PCOS. In PCOS, the use of a range of healthy weight management practices was associated with increases in physical activity (P < 0.001), diet quality (P < 0.001), percentage protein intake (P < 0.001) and decreases in glycaemic index (P < 0.001), and percentages of fat (P = 0.001), saturated fat (P < 0.001) or fibre (P = 0.003). Use of alternative weight management practices was associated with decreases in diet quality. Limitations include the use of self-reported data for PCOS, height, weight, diet, physical activity and weight management behaviours. In PCOS, we should focus on improving

  16. DJ-1 Is a Copper Chaperone Acting on SOD1 Activation*

    PubMed Central

    Girotto, Stefania; Cendron, Laura; Bisaglia, Marco; Tessari, Isabella; Mammi, Stefano; Zanotti, Giuseppe; Bubacco, Luigi

    2014-01-01

    Lack of oxidative stress control is a common and often prime feature observed in many neurodegenerative diseases. Both DJ-1 and SOD1, proteins involved in familial Parkinson disease and amyotrophic lateral sclerosis, respectively, play a protective role against oxidative stress. Impaired activity and modified expression of both proteins have been observed in different neurodegenerative diseases. A potential cooperative action of DJ-1 and SOD1 in the same oxidative stress response pathway may be suggested based on a copper-mediated interaction between the two proteins reported here. To investigate the mechanisms underlying the antioxidative function of DJ-1 in relation to SOD1 activity, we investigated the ability of DJ-1 to bind copper ions. We structurally characterized a novel copper binding site involving Cys-106, and we investigated, using different techniques, the kinetics of DJ-1 binding to copper ions. The copper transfer between the two proteins was also examined using both fluorescence spectroscopy and specific biochemical assays for SOD1 activity. The structural and functional analysis of the novel DJ-1 copper binding site led us to identify a putative role for DJ-1 as a copper chaperone. Alteration of the coordination geometry of the copper ion in DJ-1 may be correlated to the physiological role of the protein, to a potential failure in metal transfer to SOD1, and to successive implications in neurodegenerative etiopathogenesis. PMID:24567322

  17. Diet Quality, Physical Activity, Smoking Status, and Weight Fluctuation Are Associated with Weight Change in Women and Men1–3

    PubMed Central

    Kimokoti, Ruth W.; Newby, P. K.; Gona, Philimon; Zhu, Lei; Jasuja, Guneet K.; Pencina, Michael J.; McKeon-O'Malley, Catherine; Fox, Caroline S.; D'Agostino, Ralph B.; Millen, Barbara E.

    2010-01-01

    The effect of diet quality on weight change, relative to other body weight determinants, is insufficiently understood. Furthermore, research on long-term weight change in U.S. adults is limited. We evaluated prospectively patterns and predictors of weight change in Framingham Offspring/Spouse (FOS) women and men (n = 1515) aged ≥30 y with BMI ≥ 18.5 kg/m2 and without cardiovascular disease, diabetes, and cancer at baseline over a 16-y period. Diet quality was assessed using the validated Framingham Nutritional Risk Score. In women, older age (P < 0.0001) and physical activity (P < 0.05) were associated with lower weight gain. Diet quality interacted with former smoking status (P-interaction = 0.02); former smokers with lower diet quality gained an additional 5.2 kg compared with those with higher diet quality (multivariable-adjusted P-trend = 0.06). Among men, older age (P < 0.0001) and current smoking (P < 0.01) were associated with lower weight gain, and weight fluctuation (P < 0.01) and former smoking status (P < 0.0001) were associated with greater weight gain. Age was the strongest predictor of weight change in both women (partial R2 = 11%) and men (partial R2 = 8.6%). Normal- and overweight women gained more than obese women (P < 0.05) and younger adults gained more weight than older adults (P < 0.0001). Patterns and predictors of weight change differ by sex. Age in both sexes and physical activity among women as well as weight fluctuation and smoking status in men were stronger predictors of weight change than diet quality among FOS adults. Women who stopped smoking over follow-up and had poor diet quality gained the most weight. Preventive interventions need to be sex-specific and consider lifestyle factors. PMID:20484553

  18. Identification and functional characterization of a flax UDP-glycosyltransferase glucosylating secoisolariciresinol (SECO) into secoisolariciresinol monoglucoside (SMG) and diglucoside (SDG).

    PubMed

    Ghose, Kaushik; Selvaraj, Kumarakurubaran; McCallum, Jason; Kirby, Chris W; Sweeney-Nixon, Marva; Cloutier, Sylvie J; Deyholos, Michael; Datla, Raju; Fofana, Bourlaye

    2014-03-28

    Lignans are a class of diphenolic nonsteroidal phytoestrogens often found glycosylated in planta. Flax seeds are a rich source of secoisolariciresinol diglucoside (SDG) lignans. Glycosylation is a process by which a glycosyl group is covalently attached to an aglycone substrate and is catalyzed by uridine diphosphate glycosyltransferases (UGTs). Until now, very little information was available on UGT genes that may play a role in flax SDG biosynthesis. Here we report on the identification, structural and functional characterization of 5 putative UGTs potentially involved in secoisolariciresinol (SECO) glucosylation in flax. Five UGT genes belonging to the glycosyltransferases' family 1 (EC 2.4.x.y) were cloned and characterized. They fall under four UGT families corresponding to five sub-families referred to as UGT74S1, UGT74T1, UGT89B3, UGT94H1, UGT712B1 that all display the characteristic plant secondary product glycosyltransferase (PSPG) conserved motif. However, diversity was observed within this 44 amino acid sequence, especially in the two peptide sequences WAPQV and HCGWNS known to play a key role in the recognition and binding of diverse aglycone substrates and in the sugar donor specificity. In developing flax seeds, UGT74S1 and UGT94H1 showed a coordinated gene expression with that of pinoresinol-lariciresinol reductase (PLR) and their gene expression patterns correlated with SDG biosynthesis. Enzyme assays of the five heterologously expressed UGTs identified UGT74S1 as the only one using SECO as substrate, forming SECO monoglucoside (SMG) and then SDG in a sequential manner. We have cloned and characterized five flax UGTs and provided evidence that UGT74S1 uses SECO as substrate to form SDG in vitro. This study allowed us to propose a model for the missing step in SDG lignan biosynthesis.

  19. Identification and functional characterization of a flax UDP-glycosyltransferase glucosylating secoisolariciresinol (SECO) into secoisolariciresinol monoglucoside (SMG) and diglucoside (SDG)

    PubMed Central

    2014-01-01

    Background Lignans are a class of diphenolic nonsteroidal phytoestrogens often found glycosylated in planta. Flax seeds are a rich source of secoisolariciresinol diglucoside (SDG) lignans. Glycosylation is a process by which a glycosyl group is covalently attached to an aglycone substrate and is catalyzed by uridine diphosphate glycosyltransferases (UGTs). Until now, very little information was available on UGT genes that may play a role in flax SDG biosynthesis. Here we report on the identification, structural and functional characterization of 5 putative UGTs potentially involved in secoisolariciresinol (SECO) glucosylation in flax. Results Five UGT genes belonging to the glycosyltransferases’ family 1 (EC 2.4.x.y) were cloned and characterized. They fall under four UGT families corresponding to five sub-families referred to as UGT74S1, UGT74T1, UGT89B3, UGT94H1, UGT712B1 that all display the characteristic plant secondary product glycosyltransferase (PSPG) conserved motif. However, diversity was observed within this 44 amino acid sequence, especially in the two peptide sequences WAPQV and HCGWNS known to play a key role in the recognition and binding of diverse aglycone substrates and in the sugar donor specificity. In developing flax seeds, UGT74S1 and UGT94H1 showed a coordinated gene expression with that of pinoresinol-lariciresinol reductase (PLR) and their gene expression patterns correlated with SDG biosynthesis. Enzyme assays of the five heterologously expressed UGTs identified UGT74S1 as the only one using SECO as substrate, forming SECO monoglucoside (SMG) and then SDG in a sequential manner. Conclusion We have cloned and characterized five flax UGTs and provided evidence that UGT74S1 uses SECO as substrate to form SDG in vitro. This study allowed us to propose a model for the missing step in SDG lignan biosynthesis. PMID:24678929

  20. Reserpine in weight reduction. The effect in obese patients on 1,000-calorie diets: a controlled study.

    PubMed

    SMITH, M C

    1959-10-01

    In a controlled study (the control group receiving pyribenzamine) it was observed that reserpine, in the dosage used, had no effect on weight loss in patients receiving d-amphetamine sulphate (Dexedrine(R)) and methyl cellulose (Cellothyl(R)) while on 1,000-calorie diets as compared with the control group. There was no observable difference in subjective feelings of the patients in the two groups. Reserpine had no effect on the length of time the patients remained on their diets.

  1. Androgen receptor signals regulate UDP-glucuronosyltransferases in the urinary bladder: a potential mechanism of androgen-induced bladder carcinogenesis.

    PubMed

    Izumi, Koji; Zheng, Yichun; Hsu, Jong-Wei; Chang, Chawnshang; Miyamoto, Hiroshi

    2013-02-01

    UDP-glucuronosyltransferases (UGTs), major phase II drug metabolism enzymes, play an important role in urinary bladder cancer initiation by detoxifying carcinogens. We aimed to determine if androgens regulate UGT expression via the androgen receptor (AR) pathway in the bladder. Real-time reverse transcription-polymerase chain reaction and Western blot analyses were used to assess UGT1A levels in the normal urothelium SVHUC cell line stably expressed with AR and in bladder tissues from AR knockout (ARKO) and castrated male mice. Immunohistochemistry was also performed in radical cystectomy specimens. Dihydrotestosterone (DHT) treatment in SVHUC-AR reduced mRNA expression of all the UGT1A subtypes (19-75% decrease), and hydroxyflutamide antagonized the DHT effects. In contrast, DHT showed only marginal effects on UGT1A expression in SVHUC-Vector. Of note were higher expression levels of UGT1As in SVHUC-Vector than in SVHUC-AR. In ARKO mice, all the Ugt1a subtypes were up-regulated, compared to wild-type littermates. In wild-type male mice, castration increased the expression of Ugt1a8, Ugt1a9, and Ugt1a10. Additionally, wild-type female mice had higher levels of Ugt1a than wild-type males. Immunohistochemical studies showed strong (3+) UGT1A staining in 11/24 (46%) cancer tissues, which was significantly lower than in corresponding benign tissues [17/18 (94%) cases (P = 0.0009)]. These results suggest that androgen-mediated AR signals promote bladder carcinogenesis by down-regulating the expression of UGTs in the bladder. Copyright © 2011 Wiley Periodicals, Inc.

  2. An evaluation of diet and physical activity messaging in African American churches.

    PubMed

    Harmon, Brook E; Blake, Christine E; Thrasher, James F; Hébert, James R

    2014-04-01

    The use of faith-based organizations as sites to deliver diet and physical activity interventions is increasing. Methods to assess the messaging environment within churches are limited. Our research aimed to develop and test an objective assessment methodology to characterize health messages, particularly those related to diet and physical activity, within a sample of African American churches. Written messages (bulletins, brochures, magazines) were systematically collected over 1 year and analyzed with a coding scheme that had high interrater reliability (average κ = .77). Within all health messages (n = 1109), diet and physical activity messages were prevalent (47% and 32%, respectively). Consistent with prior qualitative research, messages related to meals and to providing food to people in need were frequently found (54% and 25% of diet messages, respectively). Contrary to past research, sports and physical activity as praise (e.g., praise dancing) were the most prevalent physical activity messages (36% and 31% of physical activity messages, respectively). Bulletins, flyers, and brochures were the media in which diet and physical activity messages were most frequently found (14%, 33%, and 24%, respectively), and the church was the most frequent source (41%). Only diet and physical activity messages focused on disease prevention were more likely to originate from national health organizations than from the church (26% vs. 16%). Churches varied in the topics, media types, and sources of health messages, an important factor to consider when planning and implementing health promotion research. Future research should determine whether the enhancement of church messaging environments can produce behavioral change.

  3. Insulin-Like growth factor 1 related pathways and high-fat diet promotion of transgenic adenocarcinoma mouse prostate (TRAMP) cancer progression.

    PubMed

    Xu, H; Jiang, H W; Ding, Q

    2015-04-01

    We aimed to investigate the role of IGF-1 related pathway in high-fat diet (HFD) promotion of TRAMP mouse PCa progression. TRAMP mice were randomly divided into two groups: HFD group and normal diet group. TRAMP mice of both groups were sacrificed and sampled on the 20th, 24th and 28th week respectively. Serum levels of insulin, IGF-1 and IGF-2 were tested by ELISA. Prostate tissue of TRAMP mice was used for both HE staining and immunohistochemical staining of IGF-1 related pathway proteins, including IGF-1Rα, IGF -1Rβ, IGFBPs and AKT. The mortality of TRAMP mice from HFD group was significantly higher than that of normal diet group (23.81% and 7.14%, p=.035). The tumor incidence of HFD TRAMP mice at 20(th) week was significantly higher than normal diet group (78.57% and 35.71%, p=.022). Serum IGF-1 level of HFD TRAMP mice was significantly higher than that of normal diet TRAMP mice. Serum IGF-1 level tended to increase with HFD TRAMP mice's age. HFD TRAMP mice had higher positive staining rate of IGF-1Rα, IGF-1Rβ, IGFBP3 and Akt than normal diet TRAMP mice. IGF-1 related pathway played an important role in high-fat diet promotion of TRAMP mouse PCa development and progression. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. High fat diet accelerates cartilage repair in DBA/1 mice.

    PubMed

    Wei, Wu; Bastiaansen-Jenniskens, Yvonne M; Suijkerbuijk, Mathijs; Kops, Nicole; Bos, Pieter K; Verhaar, Jan A N; Zuurmond, Anne-Marie; Dell'Accio, Francesco; van Osch, Gerjo J V M

    2017-06-01

    Obesity is a well-known risk factor for osteoarthritis, but it is unknown what it does on cartilage repair. Here we investigated whether a high fat diet (HFD) influences cartilage repair in a mouse model of cartilage repair. We fed DBA/1 mice control or HFD (60% energy from fat). After 2 weeks, a full thickness cartilage defect was made in the trochlear groove. Mice were sacrificed, 1, 8, and 24 weeks after operation. Cartilage repair was evaluated on histology. Serum glucose, insulin and amyloid A were measured 24 h before operation and at endpoints. Immunohistochemical staining was performed on synovium and adipose tissue to evaluate macrophage infiltration and phenotype. One week after operation, mice on HFD had defect filling with fibroblast-like cells and more cartilage repair as indicated by a lower Pineda score. After 8 weeks, mice on a HFD still had a lower Pineda score. After 24 weeks, no mice had complete cartilage repair and we did not detect a significant difference in cartilage repair between diets. Bodyweight was increased by HFD, whereas serum glucose, amyloid A and insulin were not influenced. Macrophage infiltration and phenotype in adipose tissue and synovium were not influenced by HFD. In contrast to common wisdom, HFD accelerated intrinsic cartilage repair in DBA/1 mice on the short term. Resistance to HFD induced inflammatory and metabolic changes could be associated with accelerated cartilage repair. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1258-1264, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Elucidation and functional characterization of CsPSY and CsUGT promoters in Crocus sativus L.

    PubMed Central

    Bhat, Archana; Mishra, Sonal; Kaul, Sanjana

    2018-01-01

    The dried stigmas of Crocus sativus constitute the saffron, which is considered to be the costliest spice of the world. Saffron is valuable for its constituents, which are mainly apocarotenoids. In order to enhance the production of apocarotenoids, it is imperative to understand the regulation of apocarotenoid biosynthetic pathway. In C. sativus, although the pathway has been elucidated, the information regarding the regulation of the pathwaygenes is scanty. During the present investigation, the characterization of promoters regulating the expression of two important genes i.e. CsPSY and CsUGT was performed. We successfully cloned the promoters of both the genes, which were functionally characterized in Crocus sativus and Nicotiana tabaccum. In silico analysis of the promoters demonstrated the presence of several important cis regulatory elements responding tolight, hormonesand interaction with transcription factors (TFs). Further analysis suggested the regulation of CsPSY promoter by Abscisic acid (ABA) and that of CsUGT by Gibberellic acid (GA). In addition, we also observed ABA and GA mediated modulation in the expression of significant TFs and CsPSY and CsUGT transcripts. Overall, the study addresses issues related to regulation of key genes of apocarotenoid pathway in C.sativus. PMID:29634744

  6. Elucidation and functional characterization of CsPSY and CsUGT promoters in Crocus sativus L.

    PubMed

    Bhat, Archana; Mishra, Sonal; Kaul, Sanjana; Dhar, Manoj K

    2018-01-01

    The dried stigmas of Crocus sativus constitute the saffron, which is considered to be the costliest spice of the world. Saffron is valuable for its constituents, which are mainly apocarotenoids. In order to enhance the production of apocarotenoids, it is imperative to understand the regulation of apocarotenoid biosynthetic pathway. In C. sativus, although the pathway has been elucidated, the information regarding the regulation of the pathwaygenes is scanty. During the present investigation, the characterization of promoters regulating the expression of two important genes i.e. CsPSY and CsUGT was performed. We successfully cloned the promoters of both the genes, which were functionally characterized in Crocus sativus and Nicotiana tabaccum. In silico analysis of the promoters demonstrated the presence of several important cis regulatory elements responding tolight, hormonesand interaction with transcription factors (TFs). Further analysis suggested the regulation of CsPSY promoter by Abscisic acid (ABA) and that of CsUGT by Gibberellic acid (GA). In addition, we also observed ABA and GA mediated modulation in the expression of significant TFs and CsPSY and CsUGT transcripts. Overall, the study addresses issues related to regulation of key genes of apocarotenoid pathway in C.sativus.

  7. Metabolic fate of desomorphine elucidated using rat urine, pooled human liver preparations, and human hepatocyte cultures as well as its detectability using standard urine screening approaches.

    PubMed

    Richter, Lilian H J; Kaminski, Yeda Rumi; Noor, Fozia; Meyer, Markus R; Maurer, Hans H

    2016-09-01

    Desomorphine is an opioid misused as "crocodile", a cheaper alternative to heroin. It is a crude synthesis product homemade from codeine with toxic byproducts. The aim of the present work was to investigate the metabolic fate of desomorphine in vivo using rat urine and in vitro using pooled human liver microsomes and cytosol as well as human liver cell lines (HepG2 and HepaRG) by Orbitrap-based liquid chromatography-high resolution-tandem mass spectrometry or hydrophilic interaction liquid chromatography. According to the identified metabolites, the following metabolic steps could be proposed: N-demethylation, hydroxylation at various positions, N-oxidation, glucuronidation, and sulfation. The cytochrome P450 (CYP) initial activity screening revealed CYP3A4 to be the only CYP involved in all phase I steps. UDP-glucuronyltransferase (UGT) initial activity screening showed that UGT1A1, UGT1A8, UGT1A9, UGT1A10, UGT2B4, UGT2B7, UGT2B15, and UGT2B17 formed desomorphine glucuronide. Among the tested in vitro models, HepaRG cells were identified to be the most suitable tool for prediction of human hepatic phase I and II metabolism of drugs of abuse. Finally, desomorphine (crocodile) consumption should be detectable by all standard urine screening approaches mainly via the parent compound and/or its glucuronide assuming similar kinetics in rats and humans.

  8. Effect of virgin coconut oil enriched diet on the antioxidant status and paraoxonase 1 activity in ameliorating the oxidative stress in rats - a comparative study.

    PubMed

    Arunima, S; Rajamohan, T

    2013-09-01

    Virgin coconut oil (VCO) extracted by wet processing is popular among the scientific field and society nowadays. The present study was carried out to examine the comparative effect of VCO with copra oil (CO), olive oil (OO) and sunflower oil (SFO) on endogenous antioxidant status and paraoxonase 1 activity in ameliorating the oxidative stress in rats. Male Sprague-Dawley rats were fed different oils at 8% level for 45 days along with the synthetic diet. Results revealed that dietary VCO improved the antioxidant status compared to other three oil fed groups (P < 0.05), which is evident from the increased activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase in tissues. Concentration of reduced glutathione was also found to be increased significantly in liver (532.97 mM per 100 g liver), heart (15.77 mM per 100 g heart) and kidney (1.58 mM per 100 g kidney) of VCO fed rats compared to those fed with CO, OO and SFO (P < 0.05). In addition, the activity of paraoxonase 1 was significantly increased in VCO fed rats compared to other oil fed groups (P < 0.05). Furthermore, VCO administration prevented the oxidative stress, which is indicated by the decreased formation of lipid peroxidation and protein oxidation products like malondialdehyde, hydroperoxides, conjugated dienes and protein carbonyls in serum and tissues compared to other oil fed rats (P < 0.05). Wet processing of VCO retains higher amounts of biologically active unsaponifiable components like polyphenols (84 mg per 100 g oil) and tocopherols (33.12 μg per 100 g oil) etc. compared to other oils (P < 0.05). From these observations, it is concluded that VCO has a beneficial role in improving antioxidant status and hence preventing lipid and protein oxidation.

  9. SKI-II--a sphingosine kinase 1 inhibitor--exacerbates atherosclerosis in low-density lipoprotein receptor-deficient (LDL-R-/-) mice on high cholesterol diet.

    PubMed

    Potì, Francesco; Ceglarek, Uta; Burkhardt, Ralph; Simoni, Manuela; Nofer, Jerzy-Roch

    2015-05-01

    Sphingosine 1-phosphate (S1P) is a lysosphingolipid associated with high-density lipoproteins (HDL) that contributes to their anti-atherogenic potential. We investigated whether a reduction in S1P plasma levels affects atherosclerosis in low-density lipoprotein receptor deficient (LDL-R-/-) mice. LDL-R-/- mice on Western diet containing low (0.25% w/w) or high (1.25% w/w) cholesterol were treated for 16 weeks with SKI-II, a sphingosine kinase 1 inhibitor that significantly reduced plasma S1P levels. SKI-II treatment increased atherosclerotic lesions in the thoracic aorta in mice on high but not low cholesterol diet. This compound did not affect body weight, blood cell counts and plasma total and HDL cholesterol, but decreased triglycerides. In addition, mice on high cholesterol diet receiving SKI-II showed elevated levels of tumor necrosis factor-α and endothelial adhesion molecules (sICAM-1, sVCAM-1). Prolonged lowering of plasma S1P produces pro-atherogenic effects in LDL-R-/- mice that are evident under condition of pronounced hypercholesterolemia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Sortilin 1 knockout alters basal adipose glucose metabolism but not diet-induced obesity in mice.

    PubMed

    Li, Jibiao; Matye, David J; Wang, Yifeng; Li, Tiangang

    2017-04-01

    Sortilin 1 (Sort1) is a trafficking receptor that has been implicated in the regulation of plasma cholesterol in humans and mice. Here, we use metabolomics and hyperinsulinemic-euglycemic clamp approaches to obtain further understanding of the in vivo effects of Sort1 deletion on diet-induced obesity as well as on adipose lipid and glucose metabolism. Results show that Sort1 knockout (KO) does not affect Western diet-induced obesity nor adipose fatty acid and ceramide concentrations. Under the basal fasting state, chow-fed Sort1 KO mice have decreased adipose glycolytic metabolites, but Sort1 deletion does not affect insulin-stimulated tissue glucose uptake during the insulin clamp. These results suggest that Sort1 loss-of-function in vivo does not affect obesity development, but differentially modulates adipose glucose metabolism under fasting and insulin-stimulated states. © 2017 Federation of European Biochemical Societies.

  11. Alpha-1A Adrenergic receptor activation increases inhibitory tone in CA1 hippocampus

    PubMed Central

    Hillman, Kristin L.; Lei, Saobo; Doze, Van A.

    2009-01-01

    The endogenous catecholamine norepinephrine (NE) exhibits anti-epileptic properties, however it is not well understood which adrenergic receptor (AR) mediates this effect. The aim of this study was to investigate α1-adrenergic receptor (AR) activation in region CA1 of the hippocampus, a subcortical structure often implicated in temporal lobe epilepsies. Using cell-attached and whole-cell recordings in rat hippocampal slices, we confirmed that selective α1-AR activation increases action potential firing in a subpopulation of CA1 interneurons. We found that this response is mediated via the α1A-AR subtype, initiated by sodium influx, and appears independent of second messenger signaling. In CA1 pyramidal cells, α1A-AR activation decreases activity due to increased pre-synaptic GABA and somatostatin release. Examination of post-synaptic receptor involvement revealed that while GABAA receptors mediate the majority of α1A-adrenergic effects on CA1 pyramidal cells, significant contributions are also made by GABAB and somatostatin receptors. Finally, to test whether α1A-AR activation could have potential therapeutic implications, we performed AR agonist challenges using two in vitro epileptiform models. When GABAA receptors were available, α1A-AR activation significantly decreased epileptiform bursting in CA1. Together, our findings directly link stimulation of the α1A-AR subtype to release of GABA and somatostatin at the single cell level and suggest that α1A-AR activation may represent one mechanism by which NE exerts anti-epileptic effects within the hippocampus. PMID:19201164

  12. Collecting Duct Nitric Oxide Synthase 1ß Activation Maintains Sodium Homeostasis During High Sodium Intake Through Suppression of Aldosterone and Renal Angiotensin II Pathways.

    PubMed

    Hyndman, Kelly A; Mironova, Elena V; Giani, Jorge F; Dugas, Courtney; Collins, Jessika; McDonough, Alicia A; Stockand, James D; Pollock, Jennifer S

    2017-10-24

    During high sodium intake, the renin-angiotensin-aldosterone system is downregulated and nitric oxide signaling is upregulated in order to remain in sodium balance. Recently, we showed that collecting duct nitric oxide synthase 1β is critical for fluid-electrolyte balance and subsequently blood pressure regulation during high sodium feeding. The current study tested the hypothesis that high sodium activation of the collecting duct nitric oxide synthase 1β pathway is critical for maintaining sodium homeostasis and for the downregulation of the renin-angiotensin-aldosterone system-epithelial sodium channel axis. Male control and collecting duct nitric oxide synthase 1β knockout (CDNOS1KO) mice were placed on low, normal, and high sodium diets for 1 week. In response to the high sodium diet, plasma sodium was significantly increased in control mice and to a significantly greater level in CDNOS1KO mice. CDNOS1KO mice did not suppress plasma aldosterone in response to the high sodium diet, which may be partially explained by increased adrenal AT1R expression. Plasma renin concentration was appropriately suppressed in both genotypes. Furthermore, CDNOS1KO mice had significantly higher intrarenal angiotensin II with high sodium diet, although intrarenal angiotensinogen levels and angiotensin-converting enzyme activity were similar between knockout mice and controls. In agreement with inappropriate renin-angiotensin-aldosterone system activation in the CDNOS1KO mice on a high sodium diet, epithelial sodium channel activity and sodium transporter abundance were significantly higher compared with controls. These data demonstrate that high sodium activation of collecting duct nitric oxide synthase 1β signaling induces suppression of systemic and intrarenal renin-angiotensin-aldosterone system, thereby modulating epithelial sodium channel and other sodium transporter abundance and activity to maintain sodium homeostasis. © 2017 The Authors. Published on behalf of the

  13. Keap1 knockdown increases markers of metabolic syndrome after long-term high fat diet feeding.

    PubMed

    More, Vijay R; Xu, Jialin; Shimpi, Prajakta C; Belgrave, Clyde; Luyendyk, James P; Yamamoto, Masayuki; Slitt, Angela L

    2013-08-01

    The nuclear factor E2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway upregulates antioxidant and biotransformation enzyme expression to counter cellular oxidative stress. The contributions of Nrf2 to other cellular functions, such as lipid homeostasis, are emerging. This study was conducted to determine how enhanced Nrf2 activity influences the progression of metabolic syndrome with long-term high-fat diet (HFD) feeding. C57BL/6 and Keap1-knockdown (Keap1-KD) mice, which exhibit enhanced Nrf2 activity, were fed a HFD for 24 weeks. Keap1-KD mice had higher body weight and white adipose tissue mass compared to C57BL/6 mice on HFD, along with increased inflammation and lipogenic gene expression. HFD feeding increased hepatic steatosis and inflammation to a greater extent in Keap1-KD mice compared to C57BL/6 mice, which was associated with increased liver Cd36, fatty acid-binding protein 4, and monocyte chemoattractant protein 1 mRNA expression, as well as increased acetyl-CoA carboxylase 1 and stearoyl-CoA desaturase-1 protein expression. The HFD altered short-term glucose homeostasis to a greater degree in Keap-KD mice compared to C57BL/6 mice, which was accompanied by downregulation of insulin receptor substrate 1 mRNA expression in skeletal muscle. Together, the results indicate that Keap1 knockdown, on treatment with HFD, increases certain markers of metabolic syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Pyranoflavones: a group of small-molecule probes for exploring the active site cavities of cytochrome P450 enzymes 1A1, 1A2, and 1B1.

    PubMed

    Liu, Jiawang; Taylor, Shannon F; Dupart, Patrick S; Arnold, Corey L; Sridhar, Jayalakshmi; Jiang, Quan; Wang, Yuji; Skripnikova, Elena V; Zhao, Ming; Foroozesh, Maryam

    2013-05-23

    Selective inhibition of P450 enzymes is the key to block the conversion of environmental procarcinogens to their carcinogenic metabolites in both animals and humans. To discover highly potent and selective inhibitors of P450s 1A1, 1A2, and 1B1, as well as to investigate active site cavities of these enzymes, 14 novel flavone derivatives were prepared as chemical probes. Fluorimetric enzyme inhibition assays were used to determine the inhibitory activities of these probes toward P450s 1A1, 1A2, 1B1, 2A6, and 2B1. A highly selective P450 1B1 inhibitor 5-hydroxy-4'-propargyloxyflavone (5H4'FPE) was discovered. Some tested compounds also showed selectivity between P450s 1A1 and 1A2. α-Naphthoflavone-like and 5-hydroxyflavone derivatives preferentially inhibited P450 1A2, while β-naphthoflavone-like flavone derivatives showed selective inhibition of P450 1A1. On the basis of structural analysis, the active site cavity models of P450 enzymes 1A1 and 1A2 were generated, demonstrating a planar long strip cavity and a planar triangular cavity, respectively.

  15. Role of CYP1A1 in modulating the vascular and blood pressure benefits of omega-3 polyunsaturated fatty acids.

    PubMed

    Agbor, Larry N; Wiest, Elani F; Rothe, Michael; Schunck, Wolf-Hagen; Walker, Mary K

    2014-12-01

    The mechanisms that mediate the cardiovascular protective effects of omega 3 (n-3) polyunsaturated fatty acids (PUFAs) have not been fully elucidated. Cytochrome P450 1A1 efficiently metabolizes n-3 PUFAs to potent vasodilators. Thus, we hypothesized that dietary n-3 PUFAs increase nitric oxide (NO)-dependent blood pressure regulation and vasodilation in a CYP1A1-dependent manner. CYP1A1 wild-type (WT) and knockout (KO) mice were fed an n-3 or n-6 PUFA-enriched diet for 8 weeks and were analyzed for tissue fatty acids and metabolites, NO-dependent blood pressure regulation, NO-dependent vasodilation of acetylcholine (ACh) in mesenteric resistance arterioles, and endothelial NO synthase (eNOS) and phospho-Ser1177-eNOS expression in the aorta. All mice fed the n-3 PUFA diet showed significantly higher levels of n-3 PUFAs and their metabolites, and significantly lower levels of n-6 PUFAs and their metabolites. In addition, KO mice on the n-3 PUFA diet accumulated significantly higher levels of n-3 PUFAs in the aorta and kidney without a parallel increase in the levels of their metabolites. Moreover, KO mice exhibited significantly less NO-dependent regulation of blood pressure on the n-3 PUFA diet and significantly less NO-dependent, ACh-mediated vasodilation in mesenteric arterioles on both diets. Finally, the n-3 PUFA diet significantly increased aortic phospho-Ser1177-eNOS/eNOS ratio in the WT compared with KO mice. These data demonstrate that CYP1A1 contributes to eNOS activation, NO bioavailability, and NO-dependent blood pressure regulation mediated by dietary n-3 PUFAs. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  16. RESERPINE IN WEIGHT REDUCTION—The Effect in Obese Patients on 1,000-Calorie Diets: A Controlled Study

    PubMed Central

    Smith, Maurice C.

    1959-01-01

    In a controlled study (the control group receiving pyribenzamine) it was observed that reserpine, in the dosage used, had no effect on weight loss in patients receiving d-amphetamine sulphate (Dexedrine®) and methyl cellulose (Cellothyl®) while on 1,000-calorie diets as compared with the control group. There was no observable difference in subjective feelings of the patients in the two groups. Reserpine had no effect on the length of time the patients remained on their diets. PMID:13832087

  17. Mortality, greenhouse gas emissions and consumer cost impacts of combined diet and physical activity scenarios: a health impact assessment study.

    PubMed

    Tainio, Marko; Monsivais, Pablo; Jones, Nicholas Rv; Brand, Christian; Woodcock, James

    2017-02-22

    To quantify changes in mortality, greenhouse gas (GHG) emissions and consumer costs for physical activity and diet scenarios. For the physical activity scenarios, all car trips from <1 to <8 miles long were progressively replaced with cycling. For the diet scenarios, the study population was assumed to increase fruit and vegetable (F&V) consumption by 1-5 portions of F&V per day, or to eat at least 5 portions per day. Health effects were modelled with the comparative risk assessment method. Consumer costs were based on fuel cost savings and average costs of F&V, and GHG emissions to fuel usage and F&V production. Working age population for England. Data from the Health Survey for England, National Travel Survey and National Diet and Nutrition Survey. Changes in premature deaths, consumer costs and GHG emissions stratified by age, gender and socioeconomic status (SES). Premature deaths were reduced by between 75 and 7648 cases per year for the physical activity scenarios, and 3255 and 6187 cases per year for the diet scenarios. Mortality reductions were greater among people of medium and high SES in the physical activity scenarios, whereas people with lower SES benefited more in the diet scenarios. Similarly, transport fuel costs fell more for people of high SES, whereas diet costs increased most for the lowest SES group. Net GHG emissions decreased by between 0.2 and 10.6 million tons of carbon dioxide equivalent (MtCO 2 e) per year for the physical activity scenarios and increased by between 1.3 and 6.3 MtCO 2 e/year for the diet scenarios. Increasing F&V consumption offers the potential for large health benefits and reduces health inequalities. Replacing short car trips with cycling offers the potential for net benefits for health, GHG emissions and consumer costs. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. The utility of a "trauma 1 OP" activation at a level 1 pediatric trauma center.

    PubMed

    Hunt, Madison M; Stevens, Austin M; Hansen, Kristine W; Fenton, Stephen J

    2017-02-01

    To expedite flow of injured children suspected to require operative intervention, a "trauma 1 OP" (T1OP) activation classification was created. The purpose of this study was to review this strategy at a level 1 pediatric trauma center. A retrospective review of T1OP activations between 2003 and 2015 was performed. Children suspected of requiring neurosurgical intervention were classified as trauma 1 OP neuro (T1OP(N)). Comparisons were made to trauma 1 (T1) patients who required emergent operative intervention, excluding orthopedic injuries. Overall, 461 T1OP activations occurred (72% T1OP(N)) compared to 129 T1 activations requiring emergent surgery. Demographics were not significantly different between groups, although T1OP patients were slightly younger and more often experienced falls or were victims of abuse. Compared to T1 activations, T1OP activations had a significantly higher mortality rate (21% vs. 7%, p<0.001). Repeat head imaging was more common in the T1OP(N) group compared to imaged children in the T1 group (20% vs. 37%, p=0.05). T1OP(N) patients more often went directly to the OR (45% vs. 33%, p=0.02) and did so in a significantly faster period of time (32min vs. 53min, p<0.001). Use of the T1OP activations appropriately triaged surgical patients, resulting in significantly faster transport times to the OR. II, prognosis study. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Thymoquinone-rich fraction nanoemulsion (TQRFNE) decreases Aβ40 and Aβ42 levels by modulating APP processing, up-regulating IDE and LRP1, and down-regulating BACE1 and RAGE in response to high fat/cholesterol diet-induced rats.

    PubMed

    Ismail, Norsharina; Ismail, Maznah; Azmi, Nur Hanisah; Bakar, Muhammad Firdaus Abu; Yida, Zhang; Abdullah, Maizaton Atmadini; Basri, Hamidon

    2017-11-01

    Though the causes of Alzheimer's disease (AD) are yet to be understood, much evidence has suggested that excessive amyloid-β (Aβ) accumulation due to abnormal amyloid-β precursor protein (APP) processing and Aβ metabolism are crucial processes towards AD pathogenesis. Hence, approaches aiming at APP processing and Aβ metabolism are currently being actively pursued for the management of AD. Studies suggest that high cholesterol and a high fat diet have harmful effects on cognitive function and may instigate the commencement of AD pathogenesis. Despite the neuropharmacological attributes of black cumin seed (Nigella sativa) extracts and its main active compound, thymoquinone (TQ), limited records are available in relation to AD research. Nanoemulsion (NE) is exploited as drug delivery systems due to their capacity of solubilising non-polar active compounds and is widely examined for brain targeting. Herewith, the effects of thymoquinone-rich fraction nanoemulsion (TQRFNE), thymoquinone nanoemulsion (TQNE) and their counterparts' conventional emulsion in response to high fat/cholesterol diet (HFCD)-induced rats were investigated. Particularly, the Aβ generation; APP processing, β-secretase 1 (BACE1), γ-secretases of presenilin 1 (PSEN1) and presenilin 2 (PSEN2), Aβ degradation; insulin degrading enzyme (IDE), Aβ transportation; low density lipoprotein receptor-related protein 1 (LRP1) and receptor for advanced glycation end products (RAGE) were measured in brain tissues. TQRFNE reduced the brain Aβ fragment length 1-40 and 1-42 (Aβ40 and Aβ42) levels, which would attenuate the AD pathogenesis. This reduction could be due to the modulation of β- and γ-secretase enzyme activity, and the Aβ degradation and transportation in/out of the brain. The findings show the mechanistic actions of TQRFNE in response to high fat and high cholesterol diet associated to Aβ generation, degradation and transportation in the rat's brain tissue. Copyright © 2017 Elsevier

  20. Leucine supplementation increases SIRT1 expression and prevents mitochondrial dysfunction and metabolic disorders in high-fat diet-induced obese mice.

    PubMed

    Li, Hongliang; Xu, Mingjiang; Lee, Jiyeon; He, Chaoyong; Xie, Zhonglin

    2012-11-15

    Leucine supplementation has been shown to prevent high-fat diet (HFD)-induced obesity, hyperglycemia, and dyslipidemia in animal models, but the underlying mechanisms are not fully understood. Recent studies suggest that activation of Sirtuin 1 (SIRT1) is an important mechanism to maintain energy and metabolic homeostasis. We therefore examined the involvement of SIRT1 in leucine supplementation-prevented obesity and insulin resistance. To accomplish this goal, male C57BL/6J mice were fed normal diet or HFD, supplemented with or without leucine. After 2 mo of treatment, alterations in SIRT1 expression, insulin signaling, and energy metabolism were analyzed. Eight weeks of HFD induced obesity, fatty liver, mitochondrial dysfunction, hyperglycemia, and insulin resistance in mice. Addition of leucine to HFD correlated with increased expression of SIRT1 and NAMPT (nicotinamide phosphoribosyltransferase) as well as higher intracellular NAD(+) levels, which decreased acetylation of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α) and forkhead box O1 (FoxO1). The deacetylation of PGC1α may contribute to upregulation of genes controlling mitochondrial biogenesis and fatty acid oxidation, thereby improving mitochondrial function and preventing HFD-induced obesity in mice. Moreover, decreased acetylation of FoxO1 was accompanied by decreased expression of pseudokinase tribble 3 (TRB3) and reduced the association between TRB3 and Akt, which enhanced insulin sensitivity and improved glucose metabolism. Finally, transfection of dominant negative AMPK prevented activation of SIRT1 signaling in HFD-Leu mice. These data suggest that increased expression of SIRT1 after leucine supplementation may lead to reduced acetylation of PGC1α and FoxO1, which is associated with attenuation of HFD-induced mitochondrial dysfunction, insulin resistance, and obesity.

  1. Leucine supplementation increases SIRT1 expression and prevents mitochondrial dysfunction and metabolic disorders in high-fat diet-induced obese mice

    PubMed Central

    Li, Hongliang; Xu, Mingjiang; Lee, Jiyeon; He, Chaoyong

    2012-01-01

    Leucine supplementation has been shown to prevent high-fat diet (HFD)-induced obesity, hyperglycemia, and dyslipidemia in animal models, but the underlying mechanisms are not fully understood. Recent studies suggest that activation of Sirtuin 1 (SIRT1) is an important mechanism to maintain energy and metabolic homeostasis. We therefore examined the involvement of SIRT1 in leucine supplementation-prevented obesity and insulin resistance. To accomplish this goal, male C57BL/6J mice were fed normal diet or HFD, supplemented with or without leucine. After 2 mo of treatment, alterations in SIRT1 expression, insulin signaling, and energy metabolism were analyzed. Eight weeks of HFD induced obesity, fatty liver, mitochondrial dysfunction, hyperglycemia, and insulin resistance in mice. Addition of leucine to HFD correlated with increased expression of SIRT1 and NAMPT (nicotinamide phosphoribosyltransferase) as well as higher intracellular NAD+ levels, which decreased acetylation of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α) and forkhead box O1 (FoxO1). The deacetylation of PGC1α may contribute to upregulation of genes controlling mitochondrial biogenesis and fatty acid oxidation, thereby improving mitochondrial function and preventing HFD-induced obesity in mice. Moreover, decreased acetylation of FoxO1 was accompanied by decreased expression of pseudokinase tribble 3 (TRB3) and reduced the association between TRB3 and Akt, which enhanced insulin sensitivity and improved glucose metabolism. Finally, transfection of dominant negative AMPK prevented activation of SIRT1 signaling in HFD-Leu mice. These data suggest that increased expression of SIRT1 after leucine supplementation may lead to reduced acetylation of PGC1α and FoxO1, which is associated with attenuation of HFD-induced mitochondrial dysfunction, insulin resistance, and obesity. PMID:22967499

  2. A pivotal role of BEX1 in liver progenitor cell expansion in mice.

    PubMed

    Gu, Yuting; Wei, Weiting; Cheng, Yiji; Wan, Bing; Ding, Xinyuan; Wang, Hui; Zhang, Yanyun; Jin, Min

    2018-06-15

    The activation and expansion of bipotent liver progenitor cells (LPCs) are indispensable for liver regeneration after severe or chronic liver injury. However, the underlying molecular mechanisms regulating LPCs and LPC-mediated liver regeneration remain elusive. Hepatic brain-expressed X-linked 1 (BEX1) expression was evaluated using microarray screening, real-time polymerase chain reaction, immunoblotting and immunofluorescence. LPC activation and liver injury were studied following a choline-deficient, ethionine-supplemented (CDE) diet in wild-type (WT) and Bex1 -/- mice. Proliferation, apoptosis, colony formation and hepatic differentiation were examined in LPCs from WT and Bex1 -/- mice. Peroxisome proliferator-activated receptor gamma was detected in Bex1-deficient LPCs and mouse livers, and was silenced to analyse the expansion of LPCs from WT and Bex1 -/- mice. Hepatic BEX1 expression was increased during CDE diet-induced liver injury and was highly elevated primarily in LPCs. Bex1 -/- mice fed a CDE diet displayed impaired LPC expansion and liver regeneration. Bex1 deficiency inhibited LPC proliferation and enhanced LPC apoptosis in vitro. Additionally, Bex1 deficiency inhibited the colony formation of LPCs but had no effect on their hepatic differentiation. Mechanistically, BEX1 inhibited peroxisome proliferator-activated receptor gamma to promote LPC expansion. Our findings indicate that BEX1 plays a pivotal role in LPC activation and expansion during liver regeneration, potentially providing novel targets for liver regeneration and chronic liver disease therapies.

  3. Ketogenic Diet Improves Brain Ischemic Tolerance and Inhibits NLRP3 Inflammasome Activation by Preventing Drp1-Mediated Mitochondrial Fission and Endoplasmic Reticulum Stress

    PubMed Central

    Guo, Min; Wang, Xun; Zhao, Yanxin; Yang, Qi; Ding, Hongyan; Dong, Qiang; Chen, Xingdong; Cui, Mei

    2018-01-01

    Background: Neuroprotective effects of ketogenic diets (KD) have been reported in stroke models, and nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome has also been implicated in the pathogenesis of stroke. This study aimed to investigate the effects of KD on NLRP3 inflammasome and explore the potential molecular mechanisms. Methods: In in vivo study, mice were fed with KD for 3 weeks and then subjected to middle cerebral artery occlusion/reperfusion (MCAO/R)-injury. In in vitro study, SH-SY-5Y cells were treated with β-hydroxybutyrate (BHB) followed by oxygen–glucose deprivation/reoxygenation (OGD/R). NLRP3 inflammasome activation and related regulatory mechanisms were evaluated. Results: Mice fed with KD had increased tolerance to MCAO/R. KD inhibited endoplasmic reticulum (ER) stress and suppressed TXNIP/NLRP3 inflammasome activation in the brain. The in vitro study showed BHB (10 mM) prevented the mitochondrial translocation of dynamin-related protein 1 (Drp1) to inhibit mitochondrial fission. Furthermore, BHB decreased reactive oxygen species (ROS) generation, inhibited ROS-NLRP3 pathway in OGD/R-treated cells, and suppressed ER stress-induced NLRP3 inflammasome activation. Conclusions: KD may suppress ER stress and protect mitochondrial integrity by suppressing the mitochondrial translocation of Drp1 to inhibit NLRP3 inflammasome activation, thus exerting neuroprotective effects. Our findings provide evidence for the potential application of KD in the prevention of ischemic stroke. PMID:29662437

  4. DNA-independent PARP-1 activation by phosphorylated ERK2 increases Elk1 activity: a link to histone acetylation.

    PubMed

    Cohen-Armon, Malka; Visochek, Leonid; Rozensal, Dana; Kalal, Adi; Geistrikh, Ilona; Klein, Rodika; Bendetz-Nezer, Sarit; Yao, Zhong; Seger, Rony

    2007-01-26

    PolyADP-ribose polymerases (PARPs) catalyze a posttranslational modification of nuclear proteins by polyADP-ribosylation. The catalytic activity of the abundant nuclear protein PARP-1 is stimulated by DNA strand breaks, and PARP-1 activation is required for initiation of DNA repair. Here we show that PARP-1 also acts within extracellular signal-regulated kinase (ERK) signaling cascade that mediates growth and differentiation. The findings reveal an alternative mode of PARP-1 activation, which does not involve binding to DNA or DNA damage. In a cell-free system, recombinant PARP-1 was intensively activated and thereby polyADP-ribosylated by a direct interaction with phosphorylated ERK2, and the activated PARP-1 dramatically increased ERK2-catalyzed phosphorylation of the transcription factor Elk1. In cortical neurons treated with nerve growth factors and in stimulated cardiomyocytes, PARP-1 activation enhanced ERK-induced Elk1-phosphorylation, core histone acetylation, and transcription of the Elk1-target gene c-fos. These findings constitute evidence for PARP-1 activity within the ERK signal-transduction pathway.

  5. Optimization of a UDP-glucuronosyltransferase assay for trout liver S9 fractions: Activity enhancement by alamethicin, a pore-forming peptide

    EPA Science Inventory

    An existing assay for hepatic UDP-glucuronosyltransferase (UGT) activity was optimized for use with trout liver S9 fractions. Individual experiments were conducted to determine the time dependence of UGT activity as well as optimal levels of S9 protein, uridine 5’-diphosph...

  6. Coordinate Activation of Redox-Dependent ASK1/TGF-β Signaling by a Multiprotein Complex (MPK38, ASK1, SMADs, ZPR9, and TRX) Improves Glucose and Lipid Metabolism in Mice.

    PubMed

    Seong, Hyun-A; Manoharan, Ravi; Ha, Hyunjung

    2016-03-10

    To explore the molecular connections between redox-dependent apoptosis signal-regulating kinase 1 (ASK1) and transforming growth factor-β (TGF-β) signaling pathways and to examine the physiological processes in which coordinated regulation of these two signaling pathways plays a critical role. We provide evidence that the ASK1 and TGF-β signaling pathways are interconnected by a multiprotein complex harboring murine protein serine-threonine kinase 38 (MPK38), ASK1, Sma- and Mad-related proteins (SMADs), zinc-finger-like protein 9 (ZPR9), and thioredoxin (TRX) and demonstrate that the activation of either ASK1 or TGF-β activity is sufficient to activate both the redox-dependent ASK1 and TGF-β signaling pathways. Physiologically, the restoration of the downregulated activation levels of ASK1 and TGF-β signaling in genetically and diet-induced obese mice by adenoviral delivery of SMAD3 or ZPR9 results in the amelioration of adiposity, hyperglycemia, hyperlipidemia, and impaired ketogenesis. Our data suggest that the multiprotein complex linking ASK1 and TGF-β signaling pathways may be a potential target for redox-mediated metabolic complications.

  7. A comparative study on the effect of high cholesterol diet on the hippocampal CA1 area of adult and aged rats.

    PubMed

    Abo El-Khair, Doaa M; El-Safti, Fatma El-Nabawia A; Nooh, Hanaa Z; El-Mehi, Abeer E

    2014-06-01

    Dementia is one of the most important problems nowadays. Aging is associated with learning and memory impairments. Diet rich in cholesterol has been shown to be detrimental to cognitive performance. This work was carried out to compare the effect of high cholesterol diet on the hippocampus of adult and aged male albino rats. Twenty adult and twenty aged male rats were used in this study. According to age, the rats were randomly subdivided into balanced and high cholesterol diet fed groups. The diet was 15 g/rat/day for adult rats and 20 g/rat/day for aged rats for eight weeks. Serial coronal sections of hippocampus and blood samples were taken from each rat. For diet effect evaluation, Clinical, biochemical, histological, immunohistochemical, and morphometric assessments were done. In compare to a balanced diet fed rat, examination of Cornu Ammonis 1 (CA 1) area in the hippocampus of the high cholesterol diet adult rats showed degeneration, a significant decrease of the pyramidal cells, attenuation and/or thickening of small blood vessels, apparent increase of astrocytes and apparent decrease of Nissl's granules content. Moreover, the high cholesterol diet aged rats showed aggravation of senility changes of the hippocampus together with Alzheimer like pathological changes. In conclusion, the high cholesterol diet has a significant detrimental effect on the hippocampus and aging might pronounce this effect. So, we should direct our attention to limit cholesterol intake in our food to maintain a healthy life style for a successful aging.

  8. Short-term high-fat diet alters postprandial glucose metabolism and circulating vascular cell adhesion molecule-1 in healthy males.

    PubMed

    Numao, Shigeharu; Kawano, Hiroshi; Endo, Naoya; Yamada, Yuka; Takahashi, Masaki; Konishi, Masayuki; Sakamoto, Shizuo

    2016-08-01

    Short-term intake of a high-fat diet aggravates postprandial glucose metabolism; however, the dose-response relationship has not been investigated. We hypothesized that short-term intake of a eucaloric low-carbohydrate/high-fat diet (LCHF) would aggravate postprandial glucose metabolism and circulating adhesion molecules in healthy males. Seven healthy young males (mean ± SE; age: 26 ± 1 years) consumed either a eucaloric control diet (C, approximately 25% fats), a eucaloric intermediate-carbohydrate/intermediate-fat diet (ICIF, approximately 50% fats), or an LCHF (approximately 70% fats) for 3 days. An oral meal tolerance test (MTT) was performed after the 3-day dietary intervention. The concentrations of plasma glucose, insulin, glucagon-like peptide-1 (GLP-1), intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 (VCAM-1) were determined at rest and during MTT. The incremental area under the curve (iAUC) of plasma glucose concentration during MTT was significantly higher in LCHF than in C (P = 0.009). The first-phase insulin secretion indexes were significantly lower in LCHF than in C (P = 0.04). Moreover, the iAUC of GLP-1 and VCAM-1 concentrations was significantly higher in LCHF than in C (P = 0.014 and P = 0.04, respectively). The metabolites from ICIF and C were not significantly different. In conclusion, short-term intake of eucaloric diet containing a high percentage of fats in healthy males excessively increased postprandial glucose and VCAM-1 concentrations and attenuated first-phase insulin release.

  9. HF diets increase hypothalamic PTP1B and induce leptin resistance through both leptin-dependent and -independent mechanisms

    PubMed Central

    White, Christy L.; Whittington, Amy; Barnes, Maria J.; Wang, Zhong; Bray, George A.; Morrison, Christopher D.

    2009-01-01

    Protein tyrosine phosphatase 1B (PTP1B) contributes to leptin resistance by inhibiting intracellular leptin receptor signaling. Mice with whole body or neuron-specific deletion of PTP1B are hypersensitive to leptin and resistant to diet-induced obesity. Here we report a significant increase in PTP1B protein levels in the mediobasal hypothalamus (P = 0.003) and a concomitant reduction in leptin sensitivity following 28 days of high-fat (HF) feeding in rats. A significant increase in PTP1B mRNA levels was also observed in rats chronically infused with leptin (3 μg/day icv) for 14 days (P = 0.01) and in leptin-deficient ob/ob mice infused with leptin (5 μg/day sc for 14 days; P = 0.003). When saline-infused ob/ob mice were placed on a HF diet for 14 days, an increase in hypothalamic PTP1B mRNA expression was detected (P = 0.001) despite the absence of circulating leptin. In addition, although ob/ob mice were much more sensitive to leptin on a low-fat (LF) diet, a reduction in this sensitivity was still observed following exposure to a HF diet. Taken together, these data indicate that hypothalamic PTP1B is specifically increased during HF diet-induced leptin resistance. This increase in PTP1B is due in part to chronic hyperleptinemia, suggesting that hyperleptinemia is one mechanism contributing to the development of leptin resistance. However, these data also indicate that leptin is not required for the increase in hypothalamic PTP1B or the development of leptin resistance. Therefore, additional, leptin-independent mechanisms must exist that increase hypothalamic PTP1B and contribute to leptin resistance. PMID:19017730

  10. We Are What We Eat! But Who Controls Our Choice? An Active Learning Project on Food & Nutrition with Activities for Key Stages 1, 2, 3, and 4.

    ERIC Educational Resources Information Center

    Jarvis, Heather

    This activity book is designed to create awareness about all the issues attached to food supply and a healthy diet with factual information. Materials are provided for teachers to teach children about food in its entirety. The nine units include: (1) "Starting Activities: Sorting Foods and Factors Which Control Our Diet"; (2) "Food Likes and…

  11. Activation of ER stress and mTORC1 suppresses hepatic sortilin-1 levels in obese mice

    PubMed Central

    Ai, Ding; Baez, Juan M.; Jiang, Hongfeng; Conlon, Donna M.; Hernandez-Ono, Antonio; Frank-Kamenetsky, Maria; Milstein, Stuart; Fitzgerald, Kevin; Murphy, Andrew J.; Woo, Connie W.; Strong, Alanna; Ginsberg, Henry N.; Tabas, Ira; Rader, Daniel J.; Tall, Alan R.

    2012-01-01

    Recent GWAS have identified SNPs at a human chromosom1 locus associated with coronary artery disease risk and LDL cholesterol levels. The SNPs are also associated with altered expression of hepatic sortilin-1 (SORT1), which encodes a protein thought to be involved in apoB trafficking and degradation. Here, we investigated the regulation of Sort1 expression in mouse models of obesity. Sort1 expression was markedly repressed in both genetic (ob/ob) and high-fat diet models of obesity; restoration of hepatic sortilin-1 levels resulted in reduced triglyceride and apoB secretion. Mouse models of obesity also exhibit increased hepatic activity of mammalian target of rapamycin complex 1 (mTORC1) and ER stress, and we found that administration of the mTOR inhibitor rapamycin to ob/ob mice reduced ER stress and increased hepatic sortilin-1 levels. Conversely, genetically increased hepatic mTORC1 activity was associated with repressed Sort1 and increased apoB secretion. Treating WT mice with the ER stressor tunicamycin led to marked repression of hepatic sortilin-1 expression, while administration of the chemical chaperone PBA to ob/ob mice led to amelioration of ER stress, increased sortilin-1 expression, and reduced apoB and triglyceride secretion. Moreover, the ER stress target Atf3 acted at the SORT1 promoter region as a transcriptional repressor, whereas knockdown of Atf3 mRNA in ob/ob mice led to increased hepatic sortilin-1 levels and decreased apoB and triglyceride secretion. Thus, in mouse models of obesity, induction of mTORC1 and ER stress led to repression of hepatic Sort1 and increased VLDL secretion via Atf3. This pathway may contribute to dyslipidemia in metabolic disease. PMID:22466652

  12. Short-term impact of a classical ketogenic diet on gut microbiota in GLUT1 Deficiency Syndrome: A 3-month prospective observational study.

    PubMed

    Tagliabue, Anna; Ferraris, Cinzia; Uggeri, Francesca; Trentani, Claudia; Bertoli, Simona; de Giorgis, Valentina; Veggiotti, Pierangelo; Elli, Marina

    2017-02-01

    The classical ketogenic diet (KD) is a high-fat, very low-carbohydrate normocaloric diet used for drug-resistant epilepsy and Glucose Transporter 1 Deficiency Syndrome (GLUT1 DS). In animal models, high fat diet induces large alterations in microbiota producing deleterious effects on gut health. We carried out a pilot study on patients treated with KD comparing their microbiota composition before and after three months on the diet. Six patients affected by GLUT1 DS were asked to collect fecal samples before and after three months on the diet. RT - PCR analysis was performed in order to quantify Firmicutes, Bacteroidetes, Bifidobacterium spp., Lactobacillus spp., Clostridium perfringens, Enterobacteriaceae, Clostridium cluster XIV, Desulfovibrio spp. and Faecalibacterium prausnitzii. Compared with baseline, there were no statistically significant differences at 3 months in Firmicutes and Bacteroidetes. However fecal microbial profiles revealed a statistically significant increase in Desulfovibrio spp. (p = 0.025), a bacterial group supposed to be involved in the exacerbation of the inflammatory condition of the gut mucosa associated to the consumption of fats of animal origin. A future prospective study on the changes in gut microbiota of all children with epilepsy started on a KD is warranted. In patients with dysbiosis demonstrated by fecal samples, it my be reasonable to consider an empiric trial of pre or probiotics to potentially restore the «ecological balance» of intestinal microbiota. Copyright © 2016 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  13. Influence of a Virgin Olive Oil versus Butter Plus Cholesterol-Enriched Diet on Testicular Enzymatic Activities in Adult Male Rats

    PubMed Central

    Segarra, Ana Belén; Martínez-Cañamero, Magdalena; Ramírez-Sánchez, Manuel

    2017-01-01

    The aim of the present work was to improve our knowledge on the mechanisms underlying the beneficial or deleterious effects on testicular function of the so-called Mediterranean and Western diet by analyzing glutamyl aminopeptidase (GluAP), gamma glutamyl transpeptidase (GGT) and dipeptidyl peptidase IV (DPP IV) activities in testis, as enzymes involved in testicular function. Male Wistar rats (6 months old) were fed for 24 weeks with three different diets: standard (S), an S diet supplemented with virgin-olive-oil (20%) (VOO), or a S diet enriched with butter (20%) plus cholesterol (0.1%) (Bch). At the end of the experimental period, plasma lipid profiled (total triglycerides, total cholesterol and cholesterol fractions (HDL, LDL and VDL)) were measured. Enzymatic activities were determined by fluorimetric methods in soluble (sol) and membrane-bound (mb) fractions of testicular tissue using arylamide derivatives as substrates. Results indicated an increase in plasmatic triglycerides, total cholesterol, LDL and VLDL in Bch. A significant increase of mb GluAP and GGT activities was also found in this diet in comparison with the other two diets. Furthermore, significant and positive correlations were established between these activities and plasma triglycerides and/or total cholesterol. These results support a role for testicular GluAP and GGT activities in the effects of saturated fat (Western diet) on testicular functions. In contrast, VOO increased sol DPP IV activity in comparison with the other two diets, which support a role for this activity in the effects of monounsaturated fat (Mediterranean diet) on testicular function. The present results strongly support the influence of fatty acids and cholesterol on testicular GluAP and GGT activities and also provide support that the reported beneficial influence of the Mediterranean diet in male fertility may be mediated in part by an increase of testicular sol DPP IV activity. PMID:28777292

  14. Influence of a Virgin Olive Oil versus Butter Plus Cholesterol-Enriched Diet on Testicular Enzymatic Activities in Adult Male Rats.

    PubMed

    Domínguez-Vías, Germán; Segarra, Ana Belén; Martínez-Cañamero, Magdalena; Ramírez-Sánchez, Manuel; Prieto, Isabel

    2017-08-04

    The aim of the present work was to improve our knowledge on the mechanisms underlying the beneficial or deleterious effects on testicular function of the so-called Mediterranean and Western diet by analyzing glutamyl aminopeptidase (GluAP), gamma glutamyl transpeptidase (GGT) and dipeptidyl peptidase IV (DPP IV) activities in testis, as enzymes involved in testicular function. Male Wistar rats (6 months old) were fed for 24 weeks with three different diets: standard (S), an S diet supplemented with virgin-olive-oil (20%) (VOO), or a S diet enriched with butter (20%) plus cholesterol (0.1%) (Bch). At the end of the experimental period, plasma lipid profiled (total triglycerides, total cholesterol and cholesterol fractions (HDL, LDL and VDL)) were measured. Enzymatic activities were determined by fluorimetric methods in soluble (sol) and membrane-bound (mb) fractions of testicular tissue using arylamide derivatives as substrates. Results indicated an increase in plasmatic triglycerides, total cholesterol, LDL and VLDL in Bch. A significant increase of mb GluAP and GGT activities was also found in this diet in comparison with the other two diets. Furthermore, significant and positive correlations were established between these activities and plasma triglycerides and/or total cholesterol. These results support a role for testicular GluAP and GGT activities in the effects of saturated fat (Western diet) on testicular functions. In contrast, VOO increased sol DPP IV activity in comparison with the other two diets, which support a role for this activity in the effects of monounsaturated fat (Mediterranean diet) on testicular function. The present results strongly support the influence of fatty acids and cholesterol on testicular GluAP and GGT activities and also provide support that the reported beneficial influence of the Mediterranean diet in male fertility may be mediated in part by an increase of testicular sol DPP IV activity.

  15. Diet and Physical Activity Apps: Perceived Effectiveness by App Users

    PubMed Central

    Egelandsdal, Bjørg; Amdam, Gro V; Almli, Valerie L; Oostindjer, Marije

    2016-01-01

    Background Diet and physical activity apps are two types of health apps that aim to promote healthy eating and energy expenditure through monitoring of dietary intake and physical activity. No clear evidence showing the effectiveness of using these apps to promote healthy eating and physical activity has been previously reported. Objective This study aimed to identify how diet and physical activity (PA) apps affected their users. It also investigated if using apps was associated with changes in diet and PA. Methods First, 3 semi-structured focus group discussions concerning app usability were conducted (15 app users and 8 nonusers; mean age 24.2 years, SD 6.4), including outcome measures such as motivations, experiences, opinions, and adherence. Results from the discussions were used to develop a questionnaire. The questionnaire, which contained questions about behavior changes, app usage, perceived effectiveness, and opinions of app usability, was answered by 500 Norwegians, with a mean age of 25.8 years (SD 5.1). Results App users found diet and PA apps effective in promoting healthy eating and exercising. These apps affected their actions, health consciousness, and self-education about nutrition and PA; and were also a part of their social lives. Over half of the users perceived that apps were effective in assisting them to eat healthily and to exercise more. Diet apps were more effective when they were frequently used and over a long period of time, compared to infrequent or short-term use (P=.01 and P=.02, respectively). Users who used diet and PA apps, perceived apps as more effective than users who only used one type of app (all P<.05). App users were better at maintaining diet and PA behaviors than nonusers (all P<.05). Young adults found apps fun to use, but sometimes time consuming. They wanted apps to be designed to meet their personal expectations. Conclusions App usage influenced action, consciousness, self-education about nutrition and PA, and social

  16. Cav-1 promotes atherosclerosis by activating JNK-associated signaling.

    PubMed

    Wang, Dong-Xia; Pan, Yong-Quan; Liu, Bing; Dai, Li

    2018-05-07

    The objective of the study is to calculate the role and underlying the molecular mechanisms of caveolin-1 (Cav-1) in atherosclerosis (AS). Cav-1 was mainly expressed in the endothelial cells of atherosclerotic lesions in both human patients and apolipoprotein E deficient (ApoE -/- ) mice. Cav-1 deficiency (Cav-1 -/- ) attenuated high-fat diet (HFD)-induced atherosclerotic lesions in ApoE -/- mice, supported by the reduced aortic plaques. Cav-1 -/- reduced the macrophage content and decreased the release of inflammation-related cytokines or chemokine in serum or abdominal aortas, accompanied with the inactivation of inhibitor κB kinase κ (IKKβ)/p65/IκBα signaling pathway. Also, the activity of mitogen-activated protein kinases 7/c-Jun-N-terminal kinase (MKK7/JNK) signaling was decreased by Cav-1 -/- . In addition, oxidative stress induced by HFD in ApoE -/- mice was alleviated by Cav-1 -/- . In response to HFD, Cav-1 -/- markedly reduced triglyceride (TG), total cholesterol (TC), low-density lipoprotein-cholesterol (LDLC) and very low-density lipoprotein-cholesterol (VLDLC) in serum of HFD-fed ApoE -/- mice, whereas enhanced high-density lipoprotein-cholesterol (HDLC) contents. Consistent with these findings, haematoxylin and eosin (H&E) and Oil Red O staining showed fewer lipid droplets in the liver of Cav-1-deficient mice. Further, real time-quantitative PCR (RT-qPCR) analysis indicated that Cav-1 -/- alleviated dyslipidemia both in liver and abdominal aortas of ApoE -/- mice fed with HFD. Cav-1 inhibition-induced attenuation of inflammatory response, oxidative stress and dyslipidemia were confirmed in vitro using mouse vascular smooth muscle cells (VSMCs) treated with ox-LDL. Surprisingly, the processes regulated by Cav-1-knockdown could be abolished through promoting JNK activation in ox-LDL-treated VSMCs. In conclusion, Cav-1 expression could promote HFD-induced AS in a JNK-dependent manner. Copyright © 2018. Published by Elsevier Inc.

  17. Tissue Specific Expression Of Sprouty1 In Mice Protects Against High Fat Diet Induced Fat Accumulation, Bone Loss, And Metabolic Dysfunction

    PubMed Central

    Urs, Sumithra; Henderson, Terry; Le, Phuong; Rosen, Clifford J.; Liaw, Lucy

    2012-01-01

    We recently characterized Sprouty1 (Spry1), a growth factor signaling inhibitor as a regulator of marrow progenitor cells promoting osteoblast differentiation at the expense of adipocytes. Adipose tissue specific Spry1 expression in mice resulted in increased bone mass and reduced body fat while conditional knockout of Spry1 had the opposite effect with decreased bone and increased body fat. Because Spry1 suppresses normal fat development, we tested the hypothesis that Spry1 expression prevents high fat diet-induced obesity, bone loss, and associated lipid abnormalities and demonstrate that Spry1 has a long-term protective effect on mice fed a high caloric diet. We studied diet-induced obesity in mice with fatty acid binding promoter (aP2)-driven expression or conditional knockout of Spry1 in adipocytes. Phenotyping was performed by whole body dual-energy X-ray absorptiometry, microCT, histology and blood analysis. In conditional Spry1 null mice, high fat diet increased body fat by 40%, impaired glucose regulation, and led to liver steatosis. However, over-expression of Spry1 led to 35% lower body fat, reduced bone loss, and normal metabolic function compared to single transgenics. This protective phenotype was associated with decreased circulating insulin (70%) and leptin (54%) compared to controls on a high fat diet. Additionally, Spry1 expression decreased adipose tissue inflammation by 45%. We show that conditional Spry1 expression in adipose tissue protects against high fat diet-induced obesity and associated bone loss. PMID:22142492

  18. Universal BRCA1/BRCA2 Testing for Ovarian Cancer Patients is Welcomed, but with Care: How Women and Staff Contextualize Experiences of Expanded Access.

    PubMed

    Shipman, Hannah; Flynn, Samantha; MacDonald-Smith, Carey F; Brenton, James; Crawford, Robin; Tischkowitz, Marc; Hulbert-Williams, Nicholas J

    2017-12-01

    Decreasing costs of genetic testing and advances in treatment for women with cancer with germline BRCA1/BRCA2 mutations have heralded more inclusive genetic testing programs. The Genetic Testing in Epithelial Ovarian Cancer (GTEOC) Study, investigates the feasibility and acceptability of offering genetic testing to all women recently diagnosed with epithelial ovarian cancer (universal genetic testing or UGT). Study participants and staff were interviewed to: (i) assess the impact of UGT (ii) integrate patients' and staff perspectives in the development of new UGT programs. Semi-structured interviews were conducted with twelve GTEOC Study participants and five members of staff involved in recruiting them. The transcripts were transcribed verbatim and analyzed using Interpretative Phenomenological Analysis. There are two super-ordinate themes: motivations and influences around offers of genetic testing and impacts of genetic testing in ovarian cancer patients. A major finding is that genetic testing is contextualized within the broader experiences of the women; the impact of UGT was minimized in comparison with the ovarian cancer diagnosis. Women who consent to UGT are motivated by altruism and by their relatives' influence, whilst those who decline are often considered overwhelmed or fearful. Those without a genetic mutation are usually reassured by this result, whilst those with a genetic mutation must negotiate new uncertainties and responsibilities towards their families. Our findings suggest that UGT in this context is generally acceptable to women. However, the period shortly after diagnosis is a sensitive time and some women are emotionally overburdened. UGT is considered a 'family affair' and staff must acknowledge this.

  19. Pharmacological characterization of [trans-5'-(4-amino-7,7-dimethyl-2-trifluoromethyl-7H-pyrimido[4,5-b][1,4]oxazin-6-yl)-2',3'-dihydrospiro(cyclohexane-1,1'-inden)-4-yl]acetic acid monobenzenesulfonate (JTT-553), a novel acyl CoA:diacylglycerol transferase (DGAT) 1 inhibitor.

    PubMed

    Tomimoto, Daisuke; Okuma, Chihiro; Ishii, Yukihito; Akiyama, Yoshiyuki; Ohta, Takeshi; Kakutani, Makoto; Ohkuma, Yoshiaki; Ogawa, Nobuya

    2015-01-01

    Acyl CoA:diacylglycerol acyltransferase (DGAT) 1 is an enzyme that catalyzes the final step in triglyceride (TG) synthesis. This enzyme is considered to be a potential therapeutic target for obesity and diabetes. Here, results of an investigation of the pharmacological effects of JTT-553 [trans-5'-(4-amino-7,7-dimethyl-2-trifluoromethyl-7H-pyrimido[4,5-b][1,4]oxazin-6-yl)-2',3'-dihydrospiro(cyclohexane-1,1'-inden)-4-yl]acetic acid monobenzenesulfonate, a novel DGAT1 inhibitor, are reported. To measure the inhibitory activity of JTT-553 against DGAT1, TG synthesis using [(14)C]-labeled oleoyl-CoA was evaluated. Similarly, the inhibitory activity of JTT-553 against DGAT2, an isozyme of DGAT1, and acyl-CoA cholesterol acyltransferase (ACAT) 1, which is highly homologous to DGAT1, were evaluated. JTT-553 selectively inhibited human DGAT1 and showed comparable inhibitory effects on the activity of human, rat, and mouse DGAT. In vivo, JTT-553 suppressed plasma TG and chylomicron TG levels after olive oil loading in Sprague-Dawley (SD) rats. JTT-553 also inhibited TG synthesis in epididymal fat after [(14)C] oleic acid injection in C57BL/6J mice. Food intake was evaluated in SD rats fed 3.1%, 13%, or 35% (w/w) fat diets. In rats fed the 35% fat diet, JTT-553 reduced food intake. This reduction of food intake was observed 2 h after feeding, lasted for 24 h, and correlated with dietary fat content. Furthermore, JTT-553 reduced daily food intake and body weight gain in diet-induced obese rats after 4-week repeated administration. JTT-553 exerted multiple effects on intestinal fat absorption, adipose fat synthesis, and food intake, and consequently induced body weight reduction. Therefore, JTT-553 is expected to be an effective novel therapeutic agent for the treatment of obesity.

  20. Monocyte chemotactic protein-1 deficiency attenuates and high-fat diet exacerbates bone loss in mice with Lewis lung carcinoma.

    PubMed

    Yan, Lin; Nielsen, Forrest H; Sundaram, Sneha; Cao, Jay

    2017-04-04

    Bone loss occurs in obesity and cancer-associated complications including wasting. This study determined whether a high-fat diet and a deficiency in monocyte chemotactic protein-1 (MCP-1) altered bone structural defects in male C57BL/6 mice with Lewis lung carcinoma (LLC) metastases in lungs. Compared to non-tumor-bearing mice, LLC reduced bone volume fraction, connectivity density, trabecular number, trabecular thickness and bone mineral density and increased trabecular separation in femurs. Similar changes occurred in vertebrae. The high-fat diet compared to the AIN93G diet exacerbated LLC-induced detrimental structural changes; the exacerbation was greater in femurs than in vertebrae. Mice deficient in MCP-1 compared to wild-type mice exhibited increases in bone volume fraction, connectivity density, trabecular number and decreases in trabecular separation in both femurs and vertebrae, and increases in trabecular thickness and bone mineral density and a decrease in structure model index in vertebrae. Lewis lung carcinoma significantly decreased osteocalcin but increased tartrate-resistant acid phosphatase 5b (TRAP 5b) in plasma. In LLC-bearing mice, the high-fat diet increased and MCP-1 deficiency decreased plasma TRAP 5b; neither the high-fat diet nor MCP-1 deficiency resulted in significant changes in plasma concentration of osteocalcin. In conclusion, pulmonary metastasis of LLC is accompanied by detrimental bone structural changes; MCP-1 deficiency attenuates and high-fat diet exacerbates the metastasis-associated bone wasting.

  1. [Influence of hypocaloric diet with addition of a vitamin-mineral complex on status of patients with obesity 1st and 2nd degrees].

    PubMed

    Sharafetdinov, Kh Kh; Plotnikova, O A; Zykina, V V; Mal'tsev, G Iu; Sokol'nikov, A A; Kaganov, B S

    2011-01-01

    Addition of a vitamin-mineral complex (VMC) to a standard hypocaloric diet leads to a positive dynamics of antropometric characteristics in patients with obesity 1st and 2nd degrees which is comparable to effectiveness of standard dietotherapy (dietary treatment) traditionally used in complex treatment of obesity. Addition of 1,8 mg of vitamin B2 as part of VMC to a hypocaloric diet is shown to be inadequate in eradication of marginal provision of riboflavin when using diets reduced in calories.

  2. Lack of efficacy of a reduced microparticle diet in a multi-centred trial of patients with active Crohn's disease.

    PubMed

    Lomer, Miranda C E; Grainger, Stephen L; Ede, Roland; Catterall, Adrian P; Greenfield, Simon M; Cowan, Russell E; Vicary, F Robin; Jenkins, Anthony P; Fidler, Helen; Harvey, Rory S; Ellis, Richard; McNair, Alistair; Ainley, Colin C; Thompson, Richard P H; Powell, Jonathan J

    2005-03-01

    Dietary microparticles, which are bacteria-sized and non-biological, found in the modern Western diet, have been implicated in both the aetiology and pathogenesis of Crohn's disease. Following on from the findings of a previous pilot study, we aimed to confirm whether a reduction in the amount of dietary microparticles facilitates induction of remission in patients with active Crohn's disease, in a single-blind, randomized, multi-centre, placebo controlled trial. Eighty-three patients with active Crohn's disease were randomly allocated in a 2 x 2 factorial design to a diet low or normal in microparticles and/or calcium for 16 weeks. All patients received a reducing dose of prednisolone for 6 weeks. Outcome measures were Crohn's disease activity index, Van Hees index, quality of life and a series of objective measures of inflammation including erythrocyte sedimentation rate, C-reactive protein, intestinal permeability and faecal calprotectin. After 16 weeks patients returned to their normal diet and were followed up for a further 36 weeks. Dietary manipulation provided no added effect to corticosteroid treatment on any of the outcome measures during the dietary trial (16 weeks) or follow-up (to 1 year); e.g., for logistic regression of Crohn's disease activity index based rates of remission (P=0.1) and clinical response (P=0.8), in normal versus low microparticle groups. Our adequately powered and carefully controlled dietary trial found no evidence that reducing microparticle intake aids remission in active Crohn's disease.

  3. UDP-glucuronosyltransferase 1A1*6 and *28 polymorphisms as indicators of initial dose level of irinotecan to reduce risk of neutropenia in patients receiving FOLFIRI for colorectal cancer.

    PubMed

    Miyata, Yoshinori; Touyama, Tetsuo; Kusumi, Takaya; Morita, Yoshitaka; Mizunuma, Nobuyuki; Taniguchi, Fumihiro; Manabe, Mitsuaki

    2016-08-01

    Irinotecan (CPT-11)-induced neutropenia is associated with UDP-glucuronosyltransferase (UGT) 1A1*6 and *28 polymorphisms. This prospective study investigated whether using these polymorphisms to adjust the initial dose of CPT-11 as part of FOLFIRI treatment in colorectal cancer patients might improve safety. All data were collected by a physician. The relationship between UGT1A1 polymorphisms and first-cycle neutropenia, reasons for treatment discontinuation, and time-to-treatment failure were evaluated. Multivariate analysis was used to assess the risk of neutropenia. A total of 795 patients were divided into wild-type (*1/*1) (50.1 %), heterozygous (*28/*1, *6/*1) (41.1 %), and homozygous (*28/*28, *6/*6, *28/*6) (8.8 %) groups, in which the median starting dose of CPT-11 was 143.0, 143.0, and 115.0 mg/m(2), respectively. First-cycle grade ≥3 neutropenia occurred in 17.3, 25.4, and 28.6 % of these patients, respectively. Multivariate analysis revealed that the incidence of grade ≥3 neutropenia was significantly greater in the heterozygous and homozygous groups than in the wild-type group [odds ratio (OR) 1.67; 95 % confidence interval (CI) 1.16-2.42; p = 0.0060, and OR 2.22; 95 % CI 1.22-4.02; p = 0.0088, respectively]. Age (OR 1.77; 95 % CI 1.24-2.53; p = 0.0017), coelomic fluid (OR 1.84; 95 % CI 1.05-3.25; p = 0.0343), and non-reduction in starting dose (OR 1.53; 95 % CI 1.08-2.18; p = 0.0176) were also identified as significant risk factors. The risk of neutropenia was higher in the heterozygous and homozygous groups at initiation of CPT-11 treatment. This suggests that when a reduction in dose is required in patients harboring two variant alleles, the decrease should be approximately 20 %.

  4. Sex-dependent regulation of hypothalamic neuropeptide Y-Y1 receptor gene expression in moderate/high fat, high-energy diet-fed mice

    PubMed Central

    Zammaretti, Francesca; Panzica, Giancarlo; Eva, Carola

    2007-01-01

    In this study we investigated whether long-term consumption of a moderate/high fat (MHF), high-energy diet can affect the gene expression of the Y1 receptor (Y1R) for neuropeptide Y (NPY) in the dorsomedial (DMH), ventromedial (VMH), arcuate (ARC) and paraventricular (PVN) hypothalamic nuclei of male and female Y1R/LacZ transgenic mice, carrying the murine Y1R promoter linked to the LacZ gene. MHF diet-fed male mice showed an increased consumption of metabolizable energy that was associated with a significant increase in body weight as compared with chow-fed controls. In parallel, consumption of a MHF diet for 8 weeks significantly decreased Y1R/LacZ transgene expression in the DMH and VMH of male mice whereas no changes were found in the ARC and PVN. Leptin treatment reduced body weight of both MHF diet- and chow-fed male mice but failed to prevent the decrease in Y1R/LacZ transgene expression apparent in the DMH and VMH of male mice after 8 weeks of MHF diet intake. Conversely, no significant changes of metabolizable energy intake, body weight or hypothalamic β-galactosidase expression were found in MHF diet-fed female Y1R/LacZ transgenic mice. A gender-related difference of Y1R/LacZ transgenic mice was also observed in response to leptin treatment that failed to decrease body weight of both MHF diet- and chow-fed female mice. Results herein demonstrate that Y1R/LacZ FVB mice show a sexual dimorphism both on energy intake and on nucleus-specific regulation of the NPY Y1R system in the hypothalamus. Overall, these results provide new insights into the mechanism by which diet composition affects the hypothalamic circuit that controls energy homeostasis. PMID:17584829

  5. Understanding Substrate Selectivity of Human UDP-glucuronosyltransferases through QSAR modeling and analysis of homologous enzymes

    PubMed Central

    Dong, Dong; Ako, Roland; Hu, Ming; Wu, Baojian

    2015-01-01

    The UDP-glucuronosyltransferase (UGT) enzyme catalyzes the glucuronidation reaction which is a major metabolic and detoxification pathway in humans. Understanding the mechanisms for substrate recognition by UGT assumes great importance in an attempt to predict its contribution to xenobiotic/drug disposition in vivo. Spurred on by this interest, 2D/3D-quantitative structure activity relationships (QSAR) and pharmacophore models have been established in the absence of a complete mammalian UGT crystal structure. This review discusses the recent progress in modeling human UGT substrates including those with multiple sites of glucuronidation. A better understanding of UGT active site contributing to substrate selectivity (and regioselectivity) from the homologous enzymes (i.e., plant and bacterial UGTs, all belong to family 1 of glycosyltransferase (GT1)) is also highlighted, as these enzymes share a common catalytic mechanism and/or overlapping substrate selectivity. PMID:22385482

  6. Enzymatic regulation of glucose disposal in human skeletal muscle after a high-fat, low-carbohydrate diet.

    PubMed

    Pehleman, Tanya L; Peters, Sandra J; Heigenhauser, George J F; Spriet, Lawrence L

    2005-01-01

    Whole body glucose disposal and skeletal muscle hexokinase, glycogen synthase (GS), pyruvate dehydrogenase (PDH), and PDH kinase (PDK) activities were measured in aerobically trained men after a standardized control diet (Con; 51% carbohydrate, 29% fat, and 20% protein of total energy intake) and a 56-h eucaloric, high-fat, low-carbohydrate diet (HF/LC; 5% carbohydrate, 73% fat, and 22% protein). An oral glucose tolerance test (OGTT; 1 g/kg) was administered after the Con and HF/LC diets with vastus lateralis muscle biopsies sampled pre-OGTT and 75 min after ingestion of the oral glucose load. The 90-min area under the blood glucose and plasma insulin concentration vs. time curves increased by 2-fold and 1.25-fold, respectively, after the HF/LC diet. The pre-OGTT fraction of GS in its active form and the maximal activity of hexokinase were not affected by the HF/LC diet. However, the HF/LC diet increased PDK activity (0.19 +/- 0.05 vs. 0.08 +/- 0.02 min(-1)) and decreased PDH activation (0.38 +/- 0.08 vs. 0.79 +/- 0.10 mmol acetyl-CoA.kg wet muscle(-1).min(-1)) before the OGTT vs. Con. During the OGTT, GS and PDH activation increased by the same magnitude in both diets, such that PDH activation remained lower during the HF/LC OGTT (0.60 +/- 0.11 vs. 1.04 +/- 0.09 mmol acetyl-CoA.kg(-1).min(-1)). These data demonstrate that the decreased glucose disposal during the OGTT after the 56-h HF/LC diet was in part related to decreased oxidative carbohydrate disposal in skeletal muscle and not to decreased glycogen storage. The rapid increase in PDK activity during the HF/LC diet appeared to account for the reduced potential for oxidative carbohydrate disposal.

  7. Over-stimulation of insulin/IGF-1 signaling by western diet may promote diseases of civilization: lessons learnt from laron syndrome.

    PubMed

    Melnik, Bodo C; John, Swen Malte; Schmitz, Gerd

    2011-06-24

    The insulin/insulin-like growth factor-1 (IGF-1) pathway drives an evolutionarily conserved network that regulates lifespan and longevity. Individuals with Laron syndrome who carry mutations in the growth hormone receptor (GHR) gene that lead to severe congenital IGF-1 deficiency with decreased insulin/IGF-1 signaling (IIS) exhibit reduced prevalence rates of acne, diabetes and cancer. Western diet with high intake of hyperglycemic carbohydrates and insulinotropic dairy over-stimulates IIS. The reduction of IIS in Laron subjects unmasks the potential role of persistent hyperactive IIS mediated by Western diet in the development of diseases of civilization and offers a rational perspective for dietary adjustments with less insulinotropic diets like the Paleolithic diet.

  8. Over-stimulation of insulin/IGF-1 signaling by western diet may promote diseases of civilization: lessons learnt from laron syndrome

    PubMed Central

    2011-01-01

    The insulin/insulin-like growth factor-1 (IGF-1) pathway drives an evolutionarily conserved network that regulates lifespan and longevity. Individuals with Laron syndrome who carry mutations in the growth hormone receptor (GHR) gene that lead to severe congenital IGF-1 deficiency with decreased insulin/IGF-1 signaling (IIS) exhibit reduced prevalence rates of acne, diabetes and cancer. Western diet with high intake of hyperglycemic carbohydrates and insulinotropic dairy over-stimulates IIS. The reduction of IIS in Laron subjects unmasks the potential role of persistent hyperactive IIS mediated by Western diet in the development of diseases of civilization and offers a rational perspective for dietary adjustments with less insulinotropic diets like the Paleolithic diet. PMID:21699736

  9. Influence of Genetic Ancestry on INDEL Markers of NFKβ1, CASP8, PAR1, IL4 and CYP19A1 Genes in Leprosy Patients.

    PubMed

    Pinto, Pablo; Salgado, Claudio; Santos, Ney Pereira Carneiro; Santos, Sidney; Ribeiro-dos-Santos, Ândrea

    2015-01-01

    Leprosy is an insidious infectious disease caused by the obligate intracellular bacteria Mycobacterium leprae, and host genetic factors can modulate the immune response and generate distinct categories of leprosy susceptibility that are also influenced by genetic ancestry. We investigated the possible effects of CYP19A1 [rs11575899], NFKβ1 [rs28362491], IL1α [rs3783553], CASP8 [rs3834129], UGT1A1 [rs8175347], PAR1 [rs11267092], CYP2E1 [INDEL 96pb] and IL4 [rs79071878] genes in a group of 141 leprosy patients and 180 healthy individuals. The INDELs were typed by PCR Multiplex in ABI PRISM 3130 and analyzed with GeneMapper ID v3.2. The NFKβ1, CASP8, PAR1 and IL4 INDELs were associated with leprosy susceptibility, while NFKβ1, CASP8, PAR1 and CYP19A1 were associated with the MB (Multibacilary) clinical form of leprosy. NFKβ1 [rs28362491], CASP8 [rs3834129], PAR1 [rs11267092] and IL4 [rs79071878] genes are potential markers for susceptibility to leprosy development, while the INDELs in NFKβ1, CASP8, PAR1 and CYP19A1 (rs11575899) are potential markers for the severe clinical form MB. Moreover, all of these markers are influenced by genetic ancestry, and European contribution increases the risk to leprosy development, in other hand an increase in African contribution generates protection against leprosy.

  10. Fabp1 gene ablation inhibits high-fat diet-induced increase in brain endocannabinoids.

    PubMed

    Martin, Gregory G; Landrock, Danilo; Chung, Sarah; Dangott, Lawrence J; Seeger, Drew R; Murphy, Eric J; Golovko, Mikhail Y; Kier, Ann B; Schroeder, Friedhelm

    2017-01-01

    The endocannabinoid system shifts energy balance toward storage and fat accumulation, especially in the context of diet-induced obesity. Relatively little is known about factors outside the central nervous system that may mediate the effect of high-fat diet (HFD) on brain endocannabinoid levels. One candidate is the liver fatty acid binding protein (FABP1), a cytosolic protein highly prevalent in liver, but not detected in brain, which facilitates hepatic clearance of fatty acids. The impact of Fabp1 gene ablation (LKO) on the effect of high-fat diet (HFD) on brain and plasma endocannabinoid levels was examined and data expressed for each parameter as the ratio of high-fat diet/control diet. In male wild-type mice, HFD markedly increased brain N-acylethanolamides, but not 2-monoacylglycerols. LKO blocked these effects of HFD in male mice. In female wild-type mice, HFD slightly decreased or did not alter these endocannabinoids as compared with male wild type. LKO did not block the HFD effects in female mice. The HFD-induced increase in brain arachidonic acid-derived arachidonoylethanolamide in males correlated with increased brain-free and total arachidonic acid. The ability of LKO to block the HFD-induced increase in brain arachidonoylethanolamide correlated with reduced ability of HFD to increase brain-free and total arachidonic acid in males. In females, brain-free and total arachidonic acid levels were much less affected by either HFD or LKO in the context of HFD. These data showed that LKO markedly diminished the impact of HFD on brain endocannabinoid levels, especially in male mice. © 2016 International Society for Neurochemistry.

  11. Mortality, greenhouse gas emissions and consumer cost impacts of combined diet and physical activity scenarios: a health impact assessment study

    PubMed Central

    Monsivais, Pablo; Jones, Nicholas RV; Brand, Christian; Woodcock, James

    2017-01-01

    Objective To quantify changes in mortality, greenhouse gas (GHG) emissions and consumer costs for physical activity and diet scenarios. Design For the physical activity scenarios, all car trips from <1 to <8 miles long were progressively replaced with cycling. For the diet scenarios, the study population was assumed to increase fruit and vegetable (F&V) consumption by 1–5 portions of F&V per day, or to eat at least 5 portions per day. Health effects were modelled with the comparative risk assessment method. Consumer costs were based on fuel cost savings and average costs of F&V, and GHG emissions to fuel usage and F&V production. Setting Working age population for England. Participants Data from the Health Survey for England, National Travel Survey and National Diet and Nutrition Survey. Primary outcomes measured Changes in premature deaths, consumer costs and GHG emissions stratified by age, gender and socioeconomic status (SES). Results Premature deaths were reduced by between 75 and 7648 cases per year for the physical activity scenarios, and 3255 and 6187 cases per year for the diet scenarios. Mortality reductions were greater among people of medium and high SES in the physical activity scenarios, whereas people with lower SES benefited more in the diet scenarios. Similarly, transport fuel costs fell more for people of high SES, whereas diet costs increased most for the lowest SES group. Net GHG emissions decreased by between 0.2 and 10.6 million tons of carbon dioxide equivalent (MtCO2e) per year for the physical activity scenarios and increased by between 1.3 and 6.3 MtCO2e/year for the diet scenarios. Conclusions Increasing F&V consumption offers the potential for large health benefits and reduces health inequalities. Replacing short car trips with cycling offers the potential for net benefits for health, GHG emissions and consumer costs. PMID:28399514

  12. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-delta.

    PubMed

    Yan, Zhen Cheng; Liu, Dao Yan; Zhang, Li Li; Shen, Chen Yi; Ma, Qun Li; Cao, Ting Bing; Wang, Li Juan; Nie, Hai; Zidek, Walter; Tepel, Martin; Zhu, Zhi Ming

    2007-03-09

    Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-delta (PPAR-delta)-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow or a high-fat diet without and with regular endurance exercise. Exercise in rats on high-fat diet significantly reduced visceral fat mass, blood pressure, and adipocyte size (each p<0.05). Adipocyte hypertrophy induced by high-fat diet was accompanied by increased CB1 expression in adipose tissue, whereas exercise significantly reduced CB1 expression (each p<0.05). CB1 receptor expression and adipocyte differentiation were directly regulated by PPAR-delta. Adipocyte hypertrophy induced by high-fat diet was accompanied by reduced PPAR-delta. Furthermore, selective silencing of PPAR-delta by RNA interference in 3T3-L1-preadipocyte cells significantly increased CB1 expression from 1.00+/-0.06 (n=3) to 1.91+/-0.06 (n=3; p<0.01) and increased adipocyte differentiation, whereas adenovirus-mediated overexpression of PPAR-delta significantly reduced CB1 expression to 0.39+/-0.03 (n=3; p<0.01) and reduced adipocyte differentiation. In the presence of the CB1 antagonist rimonabant adipocyte differentiation in stimulated 3T3 L1 preadipocyte cells was significantly reduced. The study indicates that high-fat diet-induced hypertrophy of adipocytes is associated with increased CB1 receptor expression which is directly regulated by PPAR-delta. Both CB1 and PPAR-delta are intimately involved in therapeutic interventions against a most important cardiovascular risk factor.

  13. Dietary quercetin attenuates oxidant-induced endothelial dysfunction and atherosclerosis in apolipoprotein E knockout mice fed a high-fat diet: a critical role for heme oxygenase-1.

    PubMed

    Shen, Yu; Ward, Natalie C; Hodgson, Jonathan M; Puddey, Ian B; Wang, Yutang; Zhang, Di; Maghzal, Ghassan J; Stocker, Roland; Croft, Kevin D

    2013-12-01

    Several lines of evidence indicate that quercetin, a polyphenol derived in the diet from fruit and vegetables, contributes to cardiovascular health. We aimed to investigate the effects of dietary quercetin on endothelial function and atherosclerosis in mice fed a high-fat diet. Wild-type C57BL/6 (WT) and apolipoprotein E gene knockout (ApoE(-/-)) mice were fed: (i) a high-fat diet (HFD) or (ii) a HFD supplemented with 0.05% w/w quercetin (HFD+Q), for 14 weeks. Compared with animals fed HFD, HFD+Q attenuated atherosclerosis in ApoE(-/-) mice. Treatment with the HFD+Q significantly improved endothelium-dependent relaxation of aortic rings isolated from WT but not ApoE(-/-) mice and attenuated hypochlorous acid-induced endothelial dysfunction in aortic rings of both WT and ApoE(-/-) mice. Mechanistic studies revealed that HFD+Q significantly improved plasma F2-isoprostanes, 24h urinary nitrite, and endothelial nitric oxide synthase activity, and increased heme oxygenase-1 (HO-1) protein expression in the aortas of both WT and ApoE(-/-) mice (P<0.05). HFD+Q also resulted in small changes in plasma cholesterol (P<0.05 in WT) and plasma triacylglycerols (P<0.05 in ApoE (-/-)mice). In a separate experiment, quercetin did not protect against hypochlorite-induced endothelial dysfunction in arteries obtained from heterozygous HO-1 gene knockout mice with low expression of HO-1 protein. Quercetin protects mice fed a HFD against oxidant-induced endothelial dysfunction and ApoE(-/-) mice against atherosclerosis. These effects are associated with improvements in nitric oxide bioavailability and are critically related to arterial induction of HO-1. © 2013 Elsevier Inc. All rights reserved.

  14. Early inflammation-associated factors blunt sterol regulatory element-binding proteins-1-mediated lipogenesis in high-fat diet-fed APPSWE /PSEN1dE9 mouse model of Alzheimer's disease.

    PubMed

    Tang, Ying; Peng, Yunhua; Liu, Jing; Shi, Le; Wang, Yongyao; Long, Jiangang; Liu, Jiankang

    2015-11-18

    Alzheimer's disease (AD) patients have increased an incidence of Type 2 diabetes (T2D), however the underlying mechanisms are not well understood. Since AD is considered a multifactorial disease, that affects both the central nerves system and periphery, and the dysregulation of hepatic lipid and glucose metabolism play critical roles in T2D, we therefore aim to explore the influence of AD genotype on the liver during the progress of high-fat diet (HFD)-induced T2D. 14-week-old female APP SWE /PSEN1dE9 (AD) mice and age-, gender-matched wild type controls C57BL/6J (WT) mice were fed a HFD (45% kcal fat content) or a standard chow diet (Chow, 12% kcal fat content) for 22 weeks. The effects of diet and genotype were analyzed. Mouse primary hepatocytes were used to decipher the underlying mechanisms. HFD induced significantly higher body weight gain, more severe hyperglycemia, glucose intolerance as well as hepatic insulin resistance in AD mice than in WT mice. However, AD mice showed reduced HFD-induced hepatic steatosis, and SREBP-1-mediated lipogenic signaling was activated by HFD in WT mice but not in AD mice. Additionally, 14-week-old AD mice exhibited higher expression of NF-κB p65, p-JNK and p-p38MAPK, as well as higher hepatic and serum contents of IL-6 and TNFα. In mouse primary hepatocyte cultures, IL-6 and TNFα inhibited high glucose plus insulin-induced activation of SREBP-1-mediated lipogenic signaling and biosynthesis of NEFA and TG. Early inflammation-associated factors most likely diminish HFD-induced hepatic lipid deposition by inhibiting SREBP-1-mediated de novo lipogenesis, thus driving substrate flux to glucose production for hyperglycemia and hepatic insulin resistance in T2D development. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. A calcium-deficient diet in pregnant, nursing rats induces hypomethylation of specific cytosines in the 11β-hydroxysteroid dehydrogenase-1 promoter in pup liver.

    PubMed

    Takaya, Junji; Iharada, Anna; Okihana, Hiroyuki; Kaneko, Kazunari

    2013-11-01

    Prenatal undernutrition affects offspring phenotype via changes in the epigenetic regulation of specific genes. We hypothesized that pregnant females that were fed a calcium (Ca)-deficient diet would have offspring with altered hepatic glucocorticoid-related gene expression and altered epigenetic gene regulation. Female Wistar rats ate either a Ca-deficient or control diet from 3 weeks before conception to 21 days after parturition. Pups were allowed to nurse from their original mothers and then euthanized on day 21. Methylation of individual cytosine-guanine dinucleotides in the phosphoenolpyruvate carboxykinase (Pck1), peroxisome proliferator-activated receptor α (Ppara), glucocorticoid receptor (Nr3c1), 11β-hydroxysteroid dehydrogenase-1 (Hsd11b1), and 11β-hydroxysteroid dehydrogenase-2 (Hsd11b2) promoters was measured in liver tissue using pyrosequencing. For each gene, quantitative real-time polymerase chain reaction was used to assess mRNA levels in liver tissue. Overall Hsd11b1 methylation was lower in the Ca-deficient group than in the control group; however, overall methylation of each other gene did not differ between groups. Serum corticosterone levels in male pups from Ca-deficient dams were higher than those in control pups. Expression of Pck1 and Nr3c1 was lower in the Ca-deficient group than in the control group. A Ca-deficient diet for a dam during gestation and early nursing may alter glucocorticoid metabolism and lead to higher intracellular glucocorticoid concentrations in the hepatic cells of her offspring; moreover, this abnormal glucocorticoid metabolism may induce the metabolic complications that are associated with Ca deficiency. These findings indicated that prenatal nutrition affected glucocorticoid metabolism in offspring in part by affecting the epigenome of offspring. © 2013.

  16. Tissue-specific expression of Sprouty1 in mice protects against high-fat diet-induced fat accumulation, bone loss and metabolic dysfunction.

    PubMed

    Urs, Sumithra; Henderson, Terry; Le, Phuong; Rosen, Clifford J; Liaw, Lucy

    2012-09-28

    We recently characterised Sprouty1 (Spry1), a growth factor signalling inhibitor as a regulator of marrow progenitor cells promoting osteoblast differentiation at the expense of adipocytes. Adipose tissue-specific Spry1 expression in mice resulted in increased bone mass and reduced body fat, while conditional knockout of Spry1 had the opposite effect with decreased bone mass and increased body fat. Because Spry1 suppresses normal fat development, we tested the hypothesis that Spry1 expression prevents high-fat diet-induced obesity, bone loss and associated lipid abnormalities, and demonstrate that Spry1 has a long-term protective effect on mice fed a high-energy diet. We studied diet-induced obesity in mice with fatty acid binding promoter-driven expression or conditional knockout of Spry1 in adipocytes. Phenotyping was performed by whole-body dual-energy X-ray absorptiometry, microCT, histology and blood analysis. In conditional Spry1-null mice, a high-fat diet increased body fat by 40 %, impaired glucose regulation and led to liver steatosis. However, overexpression of Spry1 led to 35 % (P < 0·05) lower body fat, reduced bone loss and normal metabolic function compared with single transgenics. This protective phenotype was associated with decreased circulating insulin (70 %) and leptin (54 %; P < 0·005) compared with controls on a high-fat diet. Additionally, Spry1 expression decreased adipose tissue inflammation by 45 %. We show that conditional Spry1 expression in adipose tissue protects against high-fat diet-induced obesity and associated bone loss.

  17. Resveratrol and caloric restriction prevent hepatic steatosis by regulating SIRT1-autophagy pathway and alleviating endoplasmic reticulum stress in high-fat diet-fed rats

    PubMed Central

    Zhang, Guofu; Bu, Yongjun; Zhang, Guanghui; Zhao, Xiangmei

    2017-01-01

    Background Studies have demonstrated that resveratrol (a natural polyphenol) and caloric restriction activate Sirtuin-1 (SIRT1) and induce autophagy. Furthermore, autophagy is induced by the SIRT1-FoxO signaling pathway and was recently shown to be a critical protective mechanism against non-alcoholic fatty liver disease (NAFLD) development. We aimed to compare the effects of resveratrol and caloric restriction on hepatic lipid metabolism and elucidate the mechanism by which resveratrol supplementation and caloric restriction alleviate hepatosteatosis by examining the molecular interplay between SIRT1 and autophagy. Methods and results Eight-week-old male Wistar rats (40) were divided into four groups: the STD group, which was fed a standard chow diet; the HFD group, which was fed a high-fat diet; HFD-RES group, which was fed a high-fat diet plus resveratrol (200 mg/kg.bw); and the HFD-CR group, which was fed a high-fat diet in portions containing 70% of the mean intake of the HFD group rats. The groups were maintained for 18 weeks. Metabolic parameters, Oil Red O and hematoxylin-eosin staining of the liver, and the mRNA and protein expression of SIRT1, autophagy markers and endoplasmic reticulum(ER) stress-associated genes in the liver were assessed after the 18-week treatment. We found that resveratrol (200 mg/kg bw) and caloric restriction (30%) partially prevented hepatic steatosis and hepatocyte ballooning, increased the expression of SIRT1 and autophagy markers while decreasing ER stress markers in the liver and alleviated lipid metabolism disorder. Moreover, caloric restriction provided superior protection against HFD-induced hepatic fatty accumulation compared with resveratrol and the effects were associated with decreased total energy intake and body weight. Conclusion We conclude that the SIRT1-autophagy pathway and decreased ER stress are universally required for the protective effects of moderate caloric restriction (30%) and resveratrol (a

  18. Resveratrol and caloric restriction prevent hepatic steatosis by regulating SIRT1-autophagy pathway and alleviating endoplasmic reticulum stress in high-fat diet-fed rats.

    PubMed

    Ding, Shibin; Jiang, Jinjin; Zhang, Guofu; Bu, Yongjun; Zhang, Guanghui; Zhao, Xiangmei

    2017-01-01

    Studies have demonstrated that resveratrol (a natural polyphenol) and caloric restriction activate Sirtuin-1 (SIRT1) and induce autophagy. Furthermore, autophagy is induced by the SIRT1-FoxO signaling pathway and was recently shown to be a critical protective mechanism against non-alcoholic fatty liver disease (NAFLD) development. We aimed to compare the effects of resveratrol and caloric restriction on hepatic lipid metabolism and elucidate the mechanism by which resveratrol supplementation and caloric restriction alleviate hepatosteatosis by examining the molecular interplay between SIRT1 and autophagy. Eight-week-old male Wistar rats (40) were divided into four groups: the STD group, which was fed a standard chow diet; the HFD group, which was fed a high-fat diet; HFD-RES group, which was fed a high-fat diet plus resveratrol (200 mg/kg.bw); and the HFD-CR group, which was fed a high-fat diet in portions containing 70% of the mean intake of the HFD group rats. The groups were maintained for 18 weeks. Metabolic parameters, Oil Red O and hematoxylin-eosin staining of the liver, and the mRNA and protein expression of SIRT1, autophagy markers and endoplasmic reticulum(ER) stress-associated genes in the liver were assessed after the 18-week treatment. We found that resveratrol (200 mg/kg bw) and caloric restriction (30%) partially prevented hepatic steatosis and hepatocyte ballooning, increased the expression of SIRT1 and autophagy markers while decreasing ER stress markers in the liver and alleviated lipid metabolism disorder. Moreover, caloric restriction provided superior protection against HFD-induced hepatic fatty accumulation compared with resveratrol and the effects were associated with decreased total energy intake and body weight. We conclude that the SIRT1-autophagy pathway and decreased ER stress are universally required for the protective effects of moderate caloric restriction (30%) and resveratrol (a pharmacological SIRT1 activator) supplementation

  19. Perceived influence and college students' diet and physical activity behaviors: an examination of ego-centric social networks.

    PubMed

    Harmon, Brook E; Forthofer, Melinda; Bantum, Erin O; Nigg, Claudio R

    2016-06-06

    Obesity is partially a social phenomenon, with college students particularly vulnerable to changes in social networks and obesity-related behaviors. Currently, little is known about the structure of social networks among college students and their potential influence on diet and physical activity behaviors. The purpose of the study was to examine social influences impacting college students' diet and physical activity behaviors, including sources of influence, comparisons between sources' and students' behaviors, and associations with meeting diet and physical activity recommendations. Data was collected from 40 students attending college in Hawaii. Participants completed diet and physical activity questionnaires and a name generator. Participants rated nominees' influence on their diet and physical activity behaviors as well as compared nominees' behaviors to their own. Descriptive statistics were used to look at perceptions of influence across network groups. Logistic regression models were used to examine associations between network variables and odds of meeting recommendations. A total of 325 nominations were made and included: family (n = 116), college friends (n = 104), high school friends (n = 87), and significant others (n = 18). Nearly half of participants were not from Hawaii. Significant others of non-Hawaii students were perceived to be the most influential (M(SD) = 9(1.07)) and high school friends the least influential (M(SD) = 1.31(.42)) network. Overall, perceived influence was highest for diet compared to physical activity, but varied based on comparisons with nominees' behaviors. Significant others were most often perceived has having similar (44 %) or worse (39 %) eating behaviors than participants, and those with similar eating behaviors were perceived as most influential (M(SD) = 9.25(1.04)). Few associations were seen between network variables and odds of meeting recommendations. Among the groups nominated, high

  20. 4-Bicyclic heteroaryl-piperidine derivatives as potent, orally bioavailable Stearoyl-CoA desaturase-1 (SCD1) inhibitors. Part 1: urea-based analogs.

    PubMed

    Yang, Shyh-Ming; Tang, Yuting; Zhang, Rui; Lu, Huajun; Kuo, Gee-Hong; Gaul, Michael D; Li, Yaxin; Ho, George; Conway, James G; Liang, Yin; Lenhard, James M; Demarest, Keith T; Murray, William V

    2013-12-15

    A new series of urea-based, 4-bicyclic heteroaryl-piperidine derivatives as potent SCD1 inhibitors is described. The structure-activity relationships focused on bicyclic heteroarenes and aminothiazole-urea portions are discussed. A trend of dose-dependent decrease in body weight gain in diet-induced obese (DIO) mice is also demonstrated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Proteinase-Activated Receptor-1 and Immunomodulatory Effects of a PAR1-Activating Peptide in a Mouse Model of Prostatitis

    PubMed Central

    Stanton, M. Mark; Nelson, Lisa K.; Benediktsson, Hallgrimur; Hollenberg, Morley D.; Buret, Andre G.; Ceri, Howard

    2013-01-01

    Background. Nonbacterial prostatitis has no established etiology. We hypothesized that proteinase-activated receptor-1 (PAR1) can play a role in prostatitis. We therefore investigated the effects of PAR1 stimulation in the context of a new model of murine nonbacterial prostatitis. Methods. Using a hapten (ethanol-dinitrobenzene sulfonic acid- (DNBS-)) induced prostatitis model with both wild-type and PAR1-null mice, we examined (1) the location of PAR1 in the mouse prostate and (2) the impact of a PAR1-activating peptide (TFLLR-NH2: PAR1-TF) on ethanol-DNBS-induced inflammation. Results. Ethanol-DNBS-induced inflammation was maximal at 2 days. In the tissue, PAR1 was expressed predominantly along the apical acini of prostatic epithelium. Although PAR1-TF on its own did not cause inflammation, its coadministration with ethanol-DNBS reduced all indices of acute prostatitis. Further, PAR1-TF administration doubled the prostatic production of interleukin-10 (IL-10) compared with ethanol-DNBS treatment alone. This enhanced IL-10 was not observed in PAR1-null mice and was not caused by the reverse-sequence receptor-inactive peptide, RLLFT-NH2. Surprisingly, PAR1-TF, also diminished ethanol-DNBS-induced inflammation in PAR1-null mice. Conclusions. PAR1 is expressed in the mouse prostate and its activation by PAR1-TF elicits immunomodulatory effects during ethanol-DNBS-induced prostatitis. However, PAR1-TF also diminishes ethanol-DNBS-induced inflammation via a non-PAR1 mechanism by activating an as-yet unknown receptor. PMID:24459330

  2. Consumption of high ω-3 fatty acid diet suppressed prostate tumorigenesis in C3(1) Tag mice.

    PubMed

    Akinsete, Juliana A; Ion, Gabriela; Witte, Theodore R; Hardman, W Elaine

    2012-01-01

    Prostate cancer incidence and mortality are high in the Western world and high ω-6/ω-3 PUFA in the Western diet may be a contributing factor. We investigated whether changing from a diet that approximates ω-6 fat content of the Western diet to a high ω-3 fat diet at adulthood might reduce prostate cancer risk. Female SV 129 mice that had consumed a high ω-6 diet containing corn oil for 2 weeks were bred with homozygous C3(1)Tag transgenic male mice. All male offspring were weaned to the corn oil diet (CO) until postpuberty when half of the male offspring were transferred to a high ω-3 diet containing canola oil and fish oil concentrate (FS). High ω-3 diet increased ω-3 and decreased ω-6 fat content of mice tissues. Average weights of prostate and genitourinary bloc were significantly lower in mice consuming high ω-3 diet at adulthood (CO-FS) than mice fed a lifetime high ω-6 diet (CO-CO). There was slower progression of tumorigenesis in dorsalateral prostate of CO-FS than in CO-CO mice. CO-FS mice had slightly lower plasma testosterone level at 24 and 40 weeks, significantly lower estradiol level at 40 weeks and significantly less expressed androgen receptor (AR) in the dorsalateral prostate at 40 weeks than CO-CO mice. Consumption of high ω-3 diet lowered the expression of genes expected to increase proliferation and decrease apoptosis in dorsalateral prostate. Our results suggest that consumption of high ω-3 diet slows down prostate tumorigenesis by lowering estradiol, testosterone and AR levels, promoting apoptosis and suppressing cell proliferation in C3(1)Tag mice.

  3. Consumption of high ω-3 fatty acid diet suppressed prostate tumorigenesis in C3(1) Tag mice

    PubMed Central

    Ion, Gabriela; Witte, Theodore R.; Hardman, W.Elaine

    2012-01-01

    Prostate cancer incidence and mortality are high in the Western world and high ω-6/ω-3 PUFA in the Western diet may be a contributing factor. We investigated whether changing from a diet that approximates ω-6 fat content of the Western diet to a high ω-3 fat diet at adulthood might reduce prostate cancer risk. Female SV 129 mice that had consumed a high ω-6 diet containing corn oil for 2 weeks were bred with homozygous C3(1)Tag transgenic male mice. All male offspring were weaned to the corn oil diet (CO) until postpuberty when half of the male offspring were transferred to a high ω-3 diet containing canola oil and fish oil concentrate (FS). High ω-3 diet increased ω-3 and decreased ω-6 fat content of mice tissues. Average weights of prostate and genitourinary bloc were significantly lower in mice consuming high ω-3 diet at adulthood (CO-FS) than mice fed a lifetime high ω-6 diet (CO–CO). There was slower progression of tumorigenesis in dorsalateral prostate of CO-FS than in CO–CO mice. CO-FS mice had slightly lower plasma testosterone level at 24 and 40 weeks, significantly lower estradiol level at 40 weeks and significantly less expressed androgen receptor (AR) in the dorsalateral prostate at 40 weeks than CO–CO mice. Consumption of high ω-3 diet lowered the expression of genes expected to increase proliferation and decrease apoptosis in dorsalateral prostate. Our results suggest that consumption of high ω-3 diet slows down prostate tumorigenesis by lowering estradiol, testosterone and AR levels, promoting apoptosis and suppressing cell proliferation in C3(1)Tag mice. PMID:22045025

  4. Effect of GLP-1 Receptor Activation on Offspring Kidney Health in a Rat Model of Maternal Obesity.

    PubMed

    Glastras, Sarah J; Chen, Hui; McGrath, Rachel T; Zaky, Amgad A; Gill, Anthony J; Pollock, Carol A; Saad, Sonia

    2016-03-23

    Maternal obesity is associated with an increased risk of chronic disease in offspring, including type 2 diabetes (T2D). Exendin-4 (Exd-4) activates the glucagon like peptide-1 (GLP-1) receptor thereby decreasing serum glucose levels and body weight. In addition, Exd-4 has been shown to reduce renal and cardiac complications in experimental models of T2D. We hypothesized that treatment with Exd-4 would ameliorate the detrimental effects of maternal and diet-induced obesity on renal characteristics in offspring. Female Sprague-Dawley rats were fed either normal or high-fat diet (HFD) for 6 weeks prior to pregnancy, during pregnancy and lactation, and their offspring were weaned to normal or HFD. The offspring were randomized to Exd-4 or placebo from weaning and their kidneys harvested at Week 9. We found that the kidneys of offspring from obese mothers, regardless of postnatal diet, had significantly increased markers of inflammation, oxidative stress and fibrosis. Exd-4 ameliorated the negative renal effects of maternal obesity and in particular, reduced renal inflammation, oxidative stress and fibrosis. In conclusion, maternal obesity has persisting effects on renal structure in the offspring. GLP-1 analogues are potentially useful for protecting against the deleterious effects of maternal obesity on renal physiology in offspring.

  5. Adherence to Mediterranean Diet Pattern among Spanish Adults Attending a Medical Centre: Nondiabetic Subjects and Type 1 and 2 Diabetic Patients

    PubMed Central

    Vidal-Peracho, Concepción; Tricás-Moreno, José Miguel; Lucha-López, Ana Carmen; Camuñas-Pescador, Ana Cristina; Caverni-Muñoz, Alberto; Fanlo-Mazas, Pablo

    2017-01-01

    Objective To identify adherence to Mediterranean diet among two groups of Spanish adults: diabetic patients and nondiabetic subjects. Methods Adherence to Mediterranean diet was measured by a 14-item screener (scale: 0–14; ≤5: low, 6–9: moderate, and ≥10: high) in 351 volunteers. Results Mean age was 50.97 ± 12.58 in nondiabetics (n = 154) and 59.50 ± 13.34 in diabetics (n = 197). The whole sample scored 8.77 ± 1.82. Score was 9.19 ± 1.84 in nondiabetic females (n = 58) and 8.15 ± 1.79 in diabetic females (n = 85) (p = 0.003), due to lower consumption of olive oil (p = 0.005) and nuts (p = 0.000). Type 2 diabetic males (n = 79; 8.76 ± 1.88) consumed less olive oil than healthy males (n = 28; 9.36 ± 1.59) (p = 0.046). Up to 30-year-old nondiabetics scored lower than more than 60-year-old nondiabetics (8.40 ± 1.5 versus 9.74 ± 2.03; p = 0.047). The youngest ate less olive oil (p = 0.002) and more pastries (p = 0.007). Conclusions The sample presented moderate adherence to Mediterranean diet in all subgroups. Scientific evidence about the benefits of Mediterranean diet, olive oil, and nuts supports the recommendation to increase consumption of olive oil and nuts in diabetic women and of daily olive oil in type 2 diabetic men, reducing consumption of red meat, butter, and pastries, and to promote Mediterranean diet among the youngest of the sample studied. PMID:29527536

  6. Effect of β-1, 3 glucan binding protein based zinc oxide nanoparticles supplemented diet on immune response and disease resistance in Oreochromis mossambicus against Aeromonas hydrophila.

    PubMed

    Anjugam, Mahalingam; Vaseeharan, Baskaralingam; Iswarya, Arokiadhas; Gobi, Narayanan; Divya, Mani; Thangaraj, Merlin P; Elumalai, Preetham

    2018-05-01

    Recently, several immunostimulants such as β-glucan, microbial and plant products have been used as dietary supplements to combat disease outbreaks in aquaculture. The present study investigates the potential of Portunus pelagicus β-1, 3 glucan binding protein based zinc oxide nanoparticles (Ppβ-GBP-ZnO NPs) supplemented diet on growth, immune response and disease resistance in Mozambique tilapia, Oreochromis mossambicus. The immune-related protein β-GBP was purified from the haemolymph of P. pelagicus using Sephadex G-100 affinity column chromatography. Ppβ-GBP-ZnO NPs was physico- chemically characterized and experimental feed was formulated. Fish were separately fed with commercial diet (control-group I) and Ppβ-GBP (group II, III, IV), Ppβ-GBP-ZnO NPs (group V, VI, VII), chem-ZnO NPs (VIII, IX, X) mixed diet at the concentration of 0.001%, 0.002% and 0.004% respectively. Triplicate groups of O. mossambicus were fed with experimental diets twice a day for 30 days. Fish receiving Ppβ-GBP-ZnO NPs supplemented diet showed a significant increase (P < 0.05) in growth performance. Cellular immune responses (myeloperoxidase activity, lysozyme activity and reactive oxygen species activity) and humoral immune responses (complement activity, antiprotease activity and alkaline phosphatase activity) were evaluated at an interval of 15 days during the feeding trial. Results demonstrate that both cellular and humoral immune responses were substantially increased (P < 0.05) in fish fed with 0.004% of Ppβ-GBP-ZnO NPs supplemented diet than others. Antibiofilm potential of Ppβ-GBP-ZnO NPs against Aeromonas hydrophila was visualized through confocal laser scanning microscopy (CLSM), which reveals reduction in the preformed biofilm thickness to 10 μm  at the concentration of 50 μg/ml. Furthermore, after 30 days of feeding trial, fish were challenged with aquatic fish pathogen A. hydrophila (1 × 10 7  cells ml -1 ) through intraperitoneal injection

  7. Solid-phase synthesis and structure-activity relationships of novel biarylethers as melanin-concentrating hormone receptor-1 antagonists.

    PubMed

    Ma, Vu; Bannon, Anthony W; Baumgartner, Jamie; Hale, Clarence; Hsieh, Faye; Hulme, Christopher; Rorrer, Kirk; Salon, John; van Staden, Carlo; Tempest, Paul

    2006-10-01

    Melanin-concentrating hormone (MCH) is a cyclic 19 amino acid orexigenic neuropeptide. The action of MCH on feeding is thought to involve the activation of its respective G protein-coupled receptor MCH-R1. Consequently, antagonists that block MCH regulated MCH-R1 activity may provide a viable approach to the treatment of diet-induced obesity. This communication reports the discovery of a novel MCH-R1 receptor antagonist, the biarylether 7, identified through high throughput screening. The solid-phase synthesis and structure-activity relationship of related analogs is described.

  8. Multiple Behavior Change in Diet and Activity: A Randomized Controlled Trial Using Mobile Technology

    PubMed Central

    Spring, Bonnie; Schneider, Kristin; McFadden, H.G.; Vaughn, Jocelyn; Kozak, Andrea T.; Smith, Malaina; Moller, Arlen C.; Epstein, Leonard H.; DeMott, Andrew; Hedeker, Donald; Siddique, Juned; Lloyd-Jones, Donald M.

    2012-01-01

    Background Many patients exhibit multiple chronic disease risk behaviors. Research provides little information about advice that can maximize simultaneous health behavior changes. Methods To test which combination of diet and activity advice maximizes healthy change, we randomized 204 adults with elevated saturated fat and low fruit/vegetable intakes, high sedentary leisure time and low physical activity to one of four treatments: increase fruit/vegetable and physical activity; decrease fat and sedentary leisure; decrease fat and increase physical activity; increase fruit/vegetable and decrease sedentary leisure. Treatments provided three weeks of remote coaching supported by mobile decision support technology and financial incentives. During treatment, incentives were contingent on using the mobile device to self-monitor and attain behavioral targets; during follow-up they were contingent only on recording. The outcome was standardized, composite improvement on the four diet and activity behaviors at end of treatment and five month follow-up. Results Of those randomized, 200 (98%) completed follow-up. The increase fruit/vegetable and decrease sedentary leisure treatment improved more than the other 3 treatments (p<.001). Specifically, fruit/vegetables increased from 1.2 servings/day to 5.5; sedentary leisure decreased from 219.2 minutes/day to 89.3; saturated fat decreased from 12.0% of calories consumed to 9.5%. Differences between treatment groups were maintained through follow-up. Traditional dieting (decrease fat and increase physical activity) improved less than the other 3 treatments (p<.001). Conclusions Remote coaching supported by mobile technology and financial incentives holds promise to improve diet and activity. Targeting fruits/vegetables and sedentary leisure together maximizes overall adoption and maintenance of multiple healthy behavior changes. PMID:22636824

  9. Adaptive changes in translation initiation activities for rat pancreatic protein synthesis with feeding of a high-protein diet.

    PubMed

    Hashi, Masaru; Yoshizawa, Fumiaki; Onozuka, Emi; Ogata, Momoko; Hara, Hiroshi

    2005-08-01

    We have previously demonstrated that dietary protein induced pancreatic hypergrowth in pancreaticobiliary diverted (PBD) rats. Dietary protein and dietary amino acids stimulate protein synthesis by regulating translation initiation in the rat skeletal muscle and liver. The aim of the present study was to determine whether feeding a high-protein diet induces activation of translation initiation for protein synthesis in the rat pancreas. In PBD rats in which the bile-pancreatic juice was surgically diverted to the upper ileum for 11-13 days, pancreatic dry weight and protein content were doubled compared with those in sham rats and further increased with feeding of a high-protein diet (60% casein diet) for 2 days. These pancreatic growth parameters were maintained at high levels for the next 5 days and were much higher than those of sham rats fed a high-protein diet. In both sham and PBD rats, feeding of a high-protein diet for 2 days induced phosphorylation of eukaryotic initiation factor 4E-binding protein 1 and 70-kDa ribosomal protein S6 kinase, indicating the activation of the initiation phase of translation for pancreatic protein synthesis. However, this increased phosphorylation returned to normal levels on Day 7 in PBD but not in sham rats. We concluded that feeding a high-protein diet induced pancreatic growth with increases in the translation initiation activities for pancreatic protein synthesis within 2 days and that prolonged feeding of a high-protein diet changed the initiation activities differently in sham and PBD rats.

  10. Knockout of TRPV1 Exacerbates Left Ventricular Diastolic Dysfunction Induced by A High-fat Diet in Mice.

    PubMed

    Zhong, Beihua; Rubinstein, Jack; Ma, Shuangtao; Wang, Donna H

    2018-05-03

    Transient receptor potential vanilloid 1 (TRPV1) channels in sensory nerves have anti-oxidative properties and counteract obesity and diabetes that are associated with diastolic dysfunction with preserved ejection fraction. We tested the hypothesis that TRPV1 knockout exacerbates high-fat diet (HFD)-induced glucose intolerance and diastolic dysfunction. Trpv1-/- and wild-type (WT) mice were fed chow diet or HFD for 20 weeks. Then, we performed the intraperitoneal glucose tolerance test, measured the heart function through transthoracic echocardiography and Langendorff heart perfusion system, analyzed cardiac histology, and measured the myocardial superoxide production and the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. HFD increased body weight, heart weight, and levels of fasting glucose, insulin, and leptin in both strains, with no differences between two strains. HFD impaired glucose tolerance in both strains with a more profound effect in Trpv1-/- than WT mice. HFD increased left ventricular (LV) internal diameter in diastole in both strains, while increased LV posterior wall thickness in diastole in Trpv1-/- but not in WT mice. HFD increased LV end-diastolic pressure in both strains with a further increase in Trpv1-/- mice, while decreased -dP/dt in Trpv1-/- but not in WT mice. HFD-induced cardiac collagen deposition and superoxide production were enhanced in Trpv1-/- mice. HFD upregulated cardiac p22phox in both strains, while increased p47phox in Trpv1-/- but not in WT mice. In summary, TRPV1 knockout exacerbates HFD-induced glucose intolerance, cardiac oxidative stress and collagen deposition, leading to aggravated LV diastolic dysfunction. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Sphingosine-1-phosphate: a novel nonhypoxic activator of hypoxia-inducible factor-1 in vascular cells.

    PubMed

    Michaud, Maude D; Robitaille, Geneviève A; Gratton, Jean-Philippe; Richard, Darren E

    2009-06-01

    Sphingosine-1-phosphate (S1P) is a potent bioactive phospholipid responsible for a variety of vascular cell responses. Hypoxia-inducible factor-1 (HIF-1) is a transcriptional activator of genes essential for adaptation to low oxygen. S1P and HIF-1 are both important mediators of vascular cell responses such as migation, proliferation, and survival. Studies have shown that nonhypoxic stimuli can activate HIF-1 in oxygenated conditions. Here, we attempt to determine whether S1P can modulate the vascular activation of HIF-1. We show that in vascular endothelial and smooth muscle cells, activation of the S1P type-2 receptor by S1P strongly increases HIF-1 alpha protein levels, the active subunit of HIF-1. This is achieved through pVHL-independent stabilization of HIF-1 alpha. We demonstrate that the HIF-1 nuclear complex, formed on S1P stimulation, is transcriptionally active and specifically binds to a hypoxia-responsive elements. Moreover, S1P activates the expression of genes known to be closely regulated by HIF-1. Our results identify S1P as a novel and potent nonhypoxic activator of HIF-1. We believe that understanding the role played by HIF-1 in S1P gene regulation will have a strong impact on different aspects of vascular biology.

  12. Loss of CTRP1 disrupts glucose and lipid homeostasis

    PubMed Central

    Rodriguez, Susana; Lei, Xia; Petersen, Pia S.; Tan, Stefanie Y.; Little, Hannah C.

    2016-01-01

    C1q/TNF-related protein 1 (CTRP1) is a conserved plasma protein of the C1q family with notable metabolic and cardiovascular functions. We have previously shown that CTRP1 infusion lowers blood glucose and that transgenic mice with elevated circulating CTRP1 are protected from diet-induced obesity and insulin resistance. Here, we used a genetic loss-of-function mouse model to address the requirement of CTRP1 for metabolic homeostasis. Despite similar body weight, food intake, and energy expenditure, Ctrp1 knockout (KO) mice fed a low-fat diet developed insulin resistance and hepatic steatosis. Impaired glucose metabolism in Ctrp1 KO mice was associated with increased hepatic gluconeogenic gene expression and decreased skeletal muscle glucose transporter glucose transporter 4 levels and AMP-activated protein kinase activation. Loss of CTRP1 enhanced the clearance of orally administered lipids but did not affect intestinal lipid absorption, hepatic VLDL-triglyceride export, or lipoprotein lipase activity. In contrast to triglycerides, hepatic cholesterol levels were reduced in Ctrp1 KO mice, paralleling the reduced expression of cholesterol synthesis genes. Contrary to expectations, when challenged with a high-fat diet to induce obesity, Ctrp1 KO mice had increased physical activity and reduced body weight, adiposity, and expression of lipid synthesis and fibrotic genes in adipose tissue; these phenotypes were linked to elevated FGF-21 levels. Due in part to increased hepatic AMP-activated protein kinase activation and reduced expression of lipid synthesis genes, Ctrp1 KO mice fed a high-fat diet also had reduced liver and serum triglyceride and cholesterol levels. Taken together, these results provide genetic evidence to establish the significance of CTRP1 to systemic energy metabolism in different metabolic and dietary contexts. PMID:27555298

  13. The TRPC1 Ca2+-permeable channel inhibits exercise-induced protection against high-fat diet-induced obesity and type II diabetes.

    PubMed

    Krout, Danielle; Schaar, Anne; Sun, Yuyang; Sukumaran, Pramod; Roemmich, James N; Singh, Brij B; Claycombe-Larson, Kate J

    2017-12-15

    The transient receptor potential canonical channel-1 (TRPC1) is a Ca 2+ -permeable channel found in key metabolic organs and tissues, including the hypothalamus, adipose tissue, and skeletal muscle. Loss of TRPC1 may alter the regulation of cellular energy metabolism resulting in insulin resistance thereby leading to diabetes. Exercise reduces insulin resistance, but it is not known whether TRPC1 is involved in exercise-induced insulin sensitivity. The role of TRPC1 in adiposity and obesity-associated metabolic diseases has not yet been determined. Our results show that TRPC1 functions as a major Ca 2+ entry channel in adipocytes. We have also shown that fat mass and fasting glucose concentrations were lower in TRPC1 KO mice that were fed a high-fat (HF) (45% fat) diet and exercised as compared with WT mice fed a HF diet and exercised. Adipocyte numbers were decreased in both subcutaneous and visceral adipose tissue of TRPC1 KO mice fed a HF diet and exercised. Finally, autophagy markers were decreased and apoptosis markers increased in TRPC1 KO mice fed a HF diet and exercised. Overall, these findings suggest that TRPC1 plays an important role in the regulation of adiposity via autophagy and apoptosis and that TRPC1 inhibits the positive effect of exercise on type II diabetes risk under a HF diet-induced obesity environment.

  14. AMPK activation caused by reduced liver lactate metabolism protects against hepatic steatosis in MCT1 haploinsufficient mice.

    PubMed

    Carneiro, Lionel; Asrih, Mohamed; Repond, Cendrine; Sempoux, Christine; Stehle, Jean-Christophe; Leloup, Corinne; Jornayvaz, François R; Pellerin, Luc

    2017-12-01

    Hepatic steatosis is the first step leading to non-alcoholic fatty liver disease, which represents a major complication of obesity. Here, we show that MCT1 haploinsufficient mice resist to hepatic steatosis development when fed a high fat diet. They exhibit a reduced hepatic capacity to metabolize monocarboxylates such as lactate compared to wildtype mice. To understand how this resistance to steatosis develops, we used HFD fed wildtype mice with hepatic steatosis and MCT1 haploinsufficient mice to study hepatic metabolism. AMPK is constitutively activated in the liver of MCT1 haploinsufficient mice, leading to an inactivation of SREBP1. Therefore, expression of key transcription factors for lipid metabolism, such as PPARα and γ, CHREB, or SREBP1 itself, as well as several enzymes including FAS and CPT1, was not upregulated in these mice when fed a high fat diet. It is proposed that reduced hepatic lactate metabolism is responsible for the protection against hepatic steatosis in MCT1 haploinsufficient mice via a constitutive activation of AMPK and repression of several major elements involved in hepatic lipid metabolism. Our results support a role of increased lactate uptake in hepatocytes during HFD that, in turn, induce a metabolic shift stimulating SREBP1 activity and lipid accumulation. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  15. Endocrine and metabolic consequences due to restrictive carbohydrate diets in children with type 1 diabetes: An illustrative case series.

    PubMed

    de Bock, Martin; Lobley, Kristine; Anderson, Donald; Davis, Elizabeth; Donaghue, Kim; Pappas, Marcelle; Siafarikas, Aris; Cho, Yoon Hi; Jones, Timothy; Smart, Carmel

    2018-02-01

    Low carbohydrate diets for the management of type 1 diabetes have been popularised by social media. The promotion of a low carbohydrate diet in lay media is in contrast to published pediatric diabetes guidelines that endorse a balanced diet from a variety of foods for optimal growth and development in children with type 1 diabetes. This can be a source of conflict in clinical practice. We describe a series of 6 cases where adoption of a low carbohydrate diet in children impacted growth and cardiovascular risk factors with potential long-term sequelae. These cases support current clinical guidelines for children with diabetes that promote a diet where total energy intake is derived from balanced macronutrient sources. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Influence of environmental and genetic factors on CYP1A2 activity in individuals of South Asian and European ancestry.

    PubMed

    Perera, V; Gross, A S; McLachlan, A J

    2012-10-01

    The drug-metabolizing enzyme CYP1A2 contributes to the metabolism of a number of commonly used medicines and displays wide interindividual variability. The aim of this study was to investigate CYP1A2 activity in a population of South Asian ancestry and compare it with a population of European ancestry. CYP1A2 activity was determined using the 4 h paraxanthine/caffeine saliva concentration ratio following a 100-mg oral dose of caffeine in healthy individuals of South Asian (n = 166) and European (n = 166) ancestry. Participants were surveyed for extrinsic ethnic factors and genotyped for polymorphisms in CYP1A2 and related genes. Significantly lower CYP1A2 activity was observed in South Asian participants (median: 0.42; range: 0.10-1.06) as compared with European participants (0.54; 0.12-1.64) (P < 0.01). Multiple linear regression indicated that 41% of the variability in CYP1A2 activity could be explained by the diet, lifestyle, and genetic factors studied.

  17. Changes in diet, cardiovascular risk factors and modelled cardiovascular risk following diagnosis of diabetes: 1-year results from the ADDITION-Cambridge trial cohort.

    PubMed

    Savory, L A; Griffin, S J; Williams, K M; Prevost, A T; Kinmonth, A-L; Wareham, N J; Simmons, R K

    2014-02-01

    To describe change in self-reported diet and plasma vitamin C, and to examine associations between change in diet and cardiovascular disease risk factors and modelled 10-year cardiovascular disease risk in the year following diagnosis of Type 2 diabetes. Eight hundred and sixty-seven individuals with screen-detected diabetes underwent assessment of self-reported diet, plasma vitamin C, cardiovascular disease risk factors and modelled cardiovascular disease risk at baseline and 1 year (n = 736) in the ADDITION-Cambridge trial. Multivariable linear regression was used to quantify the association between change in diet and cardiovascular disease risk at 1 year, adjusting for change in physical activity and cardio-protective medication. Participants reported significant reductions in energy, fat and sodium intake, and increases in fruit, vegetable and fibre intake over 1 year. The reduction in energy was equivalent to an average-sized chocolate bar; the increase in fruit was equal to one plum per day. There was a small increase in plasma vitamin C levels. Increases in fruit intake and plasma vitamin C were associated with small reductions in anthropometric and metabolic risk factors. Increased vegetable intake was associated with an increase in BMI and waist circumference. Reductions in fat, energy and sodium intake were associated with reduction in HbA1c , waist circumference and total cholesterol/modelled cardiovascular disease risk, respectively. Improvements in dietary behaviour in this screen-detected population were associated with small reductions in cardiovascular disease risk, independently of change in cardio-protective medication and physical activity. Dietary change may have a role to play in the reduction of cardiovascular disease risk following diagnosis of diabetes. © 2013 The Authors. Diabetic Medicine published by John Wiley & Sons Ltd on behalf of Diabetes UK.

  18. A low carbohydrate Mediterranean diet improves cardiovascular risk factors and diabetes control among overweight patients with type 2 diabetes mellitus: a 1-year prospective randomized intervention study.

    PubMed

    Elhayany, A; Lustman, A; Abel, R; Attal-Singer, J; Vinker, S

    2010-03-01

    The appropriate dietary intervention for overweight persons with type 2 diabetes mellitus (DM2) is unclear. Trials comparing the effectiveness of diets are frequently limited by short follow-up times and high dropout rates. The effects of a low carbohydrate Mediterranean (LCM), a traditional Mediterranean (TM), and the 2003 American Diabetic Association (ADA) diet were compared, on health parameters during a 12-month period. In this 12-month trial, 259 overweight diabetic patients (mean age 55 years, mean body mass index 31.4 kg/m(2)) were randomly assigned to one of the three diets. The primary end-points were reduction of fasting plasma glucose, HbA1c and triglyceride (TG) levels. 194 patients out of 259 (74.9%) completed follow-up. After 12 months, the mean weight loss for all patients was 8.3 kg: 7.7 kg for ADA, 7.4 kg for TM and 10.1 kg for LCM diets. The reduction in HbA1c was significantly greater in the LCM diet than in the ADA diet (-2.0 and -1.6%, respectively, p < 0.022). HDL cholesterol increased (0.1 mmol/l +/- 0.02) only on the LCM (p < 0.002). The reduction in serum TG was greater in the LCM (-1.3 mmol/l) and TM (-1.5 mmol/l) than in the ADA (-0.7 mmol/l), p = 0.001. An intensive 12-month dietary intervention in a community-based setting was effective in improving most modifiable cardiovascular risk factors in all the dietary groups. Only the LCM improved HDL levels and was superior to both the ADA and TM in improving glycaemic control.

  19. Nicotine N-glucuronidation relative to N-oxidation and C-oxidation and UGT2B10 genotype in five ethnic/racial groups

    PubMed Central

    Murphy, Sharon E.; Park, Sung-Shim L.; Thompson, Elizabeth F.; Wilkens, Lynne R.; Patel, Yesha; Stram, Daniel O.; Le Marchand, Loic

    2014-01-01

    Nicotine metabolism influences smoking behavior and differences in metabolism probably contribute to ethnic variability in lung cancer risk. We report here on the proportion of nicotine metabolism by cytochrome P450 2A6-catalyzed C-oxidation, UDP-glucuronosyl transferase 2B10 (UGT2B10)-catalyzed N-glucuronidation and flavin monooxygenase 3-catalyzed N-oxidation in five ethnic/racial groups and the role of UGT2B10 genotype on the metabolic patterns observed. Nicotine and its metabolites were quantified in urine from African American (AA, n = 364), Native Hawaiian (NH, n = 311), White (n = 437), Latino (LA, n = 453) and Japanese American (JA, n = 674) smokers. Total nicotine equivalents, the sum of nicotine and six metabolites, and nicotine metabolism phenotypes were calculated. The relationship of UGT2B10 genotype to nicotine metabolic pathways was determined for each group; geometric means were computed and adjusted for age, sex, creatinine, and body mass index. Nicotine metabolism patterns were unique across the groups, C-oxidation was lowest in JA and NH (P < 0.0001), and N-glucuronidation lowest in AA (P < 0.0001). There was no difference in C-oxidation among Whites and AA and LA. Nicotine and cotinine glucuronide ratios were 2- and 3-fold lower in AA compared with Whites. Two UGT variants, a missense mutation (Asp67Tyr, rs61750900) and a splice variant (rs116294140) accounted for 33% of the variation in glucuronidation. In AA, the splice variant accounted for the majority of the reduced nicotine glucuronidation. UGT2B10 variant allele carriers had increased levels of C-oxidation (P = 0.0099). Our data indicate that the relative importance of nicotine metabolic pathways varies by ethnicity, and all pathways should be considered when characterizing the role of nicotine metabolism on smoking behavior and cancer risk. PMID:25233931

  20. THE CAFETERIA DIET INCREASES FAT MASS AND CHRONICALLY ELEVATES LUMBAR SYMPATHETIC NERVE ACTIVITY IN RATS

    PubMed Central

    Muntzel, Martin S.; Al-Naimi, Omar Ali S.; Barclay, Alicia; Ajasin, David

    2012-01-01

    Obesity causes sympathetic activation that promotes atherosclerosis, end-organ damage, and hypertension. Because high-fat induced weight gain in rats elevates plasma leptin at 1–3 days following onset of calorie dense diets, we hypothesized that diet-induced overfeeding will increase sympathetic activity within one week following onset of the regimen. To test this, we continuously measured sympathetic activity and blood pressure before and during the onset of diet-induced obesity using a high calorie cafeteria-style diet. Female Wistar rats, in which radiotelemeters had been implanted for continuous monitoring of lumbar sympathetic activity, mean arterial pressure, and heart rate, were randomly assigned to groups that received regular chow (control) or a cafeteria diet for a period of 15 days. This short-term cafeteria-feeding regimen caused modest but non-significant increases in body weight (P = 0.07) and a doubling of brown and white adipose tissue (P < 0.01). The increases in fat mass were accompanied by elevations in plasma leptin (P < 0.001) but no change in glucose. Overall heart rates and blood pressure were higher in cafeteria rats compared with controls (P < 0.05). Cafeteria diet-induced weight gain caused increases in lumbar sympathetic nerve activity that became significant by the 12th day of the diet (p < 0.001). These data show, for the first time, that the high-fat cafeteria-style diet stimulates sustained increases in lumbar sympathetic neural drive in rats. PMID:23090774

  1. RNA-Seq profiling reveals novel hepatic gene expression pattern in aflatoxin B1 treated rats.

    PubMed

    Merrick, B Alex; Phadke, Dhiral P; Auerbach, Scott S; Mav, Deepak; Stiegelmeyer, Suzy M; Shah, Ruchir R; Tice, Raymond R

    2013-01-01

    Deep sequencing was used to investigate the subchronic effects of 1 ppm aflatoxin B1 (AFB1), a potent hepatocarcinogen, on the male rat liver transcriptome prior to onset of histopathological lesions or tumors. We hypothesized RNA-Seq would reveal more differentially expressed genes (DEG) than microarray analysis, including low copy and novel transcripts related to AFB1's carcinogenic activity compared to feed controls (CTRL). Paired-end reads were mapped to the rat genome (Rn4) with TopHat and further analyzed by DESeq and Cufflinks-Cuffdiff pipelines to identify differentially expressed transcripts, new exons and unannotated transcripts. PCA and cluster analysis of DEGs showed clear separation between AFB1 and CTRL treatments and concordance among group replicates. qPCR of eight high and medium DEGs and three low DEGs showed good comparability among RNA-Seq and microarray transcripts. DESeq analysis identified 1,026 differentially expressed transcripts at greater than two-fold change (p<0.005) compared to 626 transcripts by microarray due to base pair resolution of transcripts by RNA-Seq, probe placement within transcripts or an absence of probes to detect novel transcripts, splice variants and exons. Pathway analysis among DEGs revealed signaling of Ahr, Nrf2, GSH, xenobiotic, cell cycle, extracellular matrix, and cell differentiation networks consistent with pathways leading to AFB1 carcinogenesis, including almost 200 upregulated transcripts controlled by E2f1-related pathways related to kinetochore structure, mitotic spindle assembly and tissue remodeling. We report 49 novel, differentially-expressed transcripts including confirmation by PCR-cloning of two unique, unannotated, hepatic AFB1-responsive transcripts (HAfT's) on chromosomes 1.q55 and 15.q11, overexpressed by 10 to 25-fold. Several potentially novel exons were found and exon refinements were made including AFB1 exon-specific induction of homologous family members, Ugt1a6 and Ugt1a7c. We find the

  2. Effects of Specific Multi-Nutrient Enriched Diets on Cerebral Metabolism, Cognition and Neuropathology in AβPPswe-PS1dE9 Mice

    PubMed Central

    Jansen, Diane; Zerbi, Valerio; Arnoldussen, Ilse A. C.; Wiesmann, Maximilian; Rijpma, Anne; Fang, Xiaotian T.; Dederen, Pieter J.; Mutsaers, Martina P. C.; Broersen, Laus M.; Lütjohann, Dieter; Miller, Malgorzata; Joosten, Leo A. B.; Heerschap, Arend; Kiliaan, Amanda J.

    2013-01-01

    Recent studies have focused on the use of multi-nutrient dietary interventions in search of alternatives for the treatment and prevention of Alzheimer's disease (AD). In this study we investigated to which extent long-term consumption of two specific multi-nutrient diets can modulate AD-related etiopathogenic mechanisms and behavior in 11-12-month-old AβPPswe-PS1dE9 mice. Starting from 2 months of age, male AβPP-PS1 mice and wild-type littermates were fed either a control diet, the DHA+EPA+UMP (DEU) diet enriched with uridine monophosphate (UMP) and the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), or the Fortasyn® Connect (FC) diet enriched with the DEU diet plus phospholipids, choline, folic acid, vitamins and antioxidants. We performed behavioral testing, proton magnetic resonance spectroscopy, immunohistochemistry, biochemical analyses and quantitative real-time PCR to gain a better understanding of the potential mechanisms by which these multi-nutrient diets exert protective properties against AD. Our results show that both diets were equally effective in changing brain fatty acid and cholesterol profiles. However, the diets differentially affected AD-related pathologies and behavioral measures, suggesting that the effectiveness of specific nutrients may depend on the dietary context in which they are provided. The FC diet was more effective than the DEU diet in counteracting neurodegenerative aspects of AD and enhancing processes involved in neuronal maintenance and repair. Both diets elevated interleukin-1β mRNA levels in AβPP-PS1 and wild-type mice. The FC diet additionally restored neurogenesis in AβPP-PS1 mice, decreased hippocampal levels of unbound choline-containing compounds in wild-type and AβPP-PS1 animals, suggesting diminished membrane turnover, and decreased anxiety-related behavior in the open field behavior. In conclusion, the current data indicate that specific multi-nutrient diets can influence AD

  3. A Mediterranean diet improves HbA1c but not fasting blood glucose compared to alternative dietary strategies: a network meta-analysis.

    PubMed

    Carter, P; Achana, F; Troughton, J; Gray, L J; Khunti, K; Davies, M J

    2014-06-01

    Overweight or obese individuals with type 2 diabetes are encouraged to lose weight for optimal glucose management, yet many find this difficult. Determining whether alterations in dietary patterns irrespective of weight loss can aid glucose control has not been fully investigated. We conducted a systematic review and meta-analysis aiming to determine the effects of a Mediterranean diet compared to other dietary interventions on glycaemic control irrespective of weight loss. Electronic databases were searched for controlled trials that included a Mediterranean diet intervention. The interventions included all major components of the Mediterranean diet and were carried out in free-living individuals at high risk or diagnosed with type 2 diabetes. Network meta-analysis compared all interventions with one another at the same time as maintaining randomisation. Analyses were conducted within a Bayesian framework. Eight studies met the inclusion criteria, seven examined fasting blood glucose (n = 972), six examined fasting insulin (n = 1330) and three examined HbA1c (n = 487). None of the interventions were significantly better than the others in lowering glucose parameters. The Mediterranean diet reduced HbA1c significantly compared to usual care but not compared to the Palaeolithic diet. The effect of alterations in dietary practice irrespective of weight loss on glycaemic control cannot be concluded from the present review. The need for further research in this area is apparent because no firm conclusions about relative effectiveness of interventions could be drawn as a result of the paucity of the evidence. © 2013 The British Dietetic Association Ltd.

  4. Pyridostigmine protects against cardiomyopathy associated with adipose tissue browning and improvement of vagal activity in high-fat diet rats.

    PubMed

    Lu, Yi; Wu, Qing; Liu, Long-Zhu; Yu, Xiao-Jiang; Liu, Jin-Jun; Li, Man-Xiang; Zang, Wei-Jin

    2018-04-01

    Obesity, a major contributor to the development of cardiovascular diseases, is associated with an autonomic imbalance characterized by sympathetic hyperactivity and diminished vagal activity. Vagal activation plays important roles in weight loss and improvement of cardiac function. Pyridostigmine is a reversible acetylcholinesterase inhibitor, but whether it ameliorates cardiac lipid accumulation and cardiac remodeling in rats fed a high-fat diet has not been determined. This study investigated the effects of pyridostigmine on high-fat diet-induced cardiac dysfunction and explored the potential mechanisms. Rats were fed a normal or high-fat diet and treated with pyridostigmine. Vagal discharge was evaluated using the BL-420S system, and cardiac function by echocardiograms. Lipid deposition and cardiac remodeling were determined histologically. Lipid utility was assessed by qPCR. A high-fat diet led to a significant reduction in vagal discharge and lipid utility and a marked increase in lipid accumulation, cardiac remodeling, and cardiac dysfunction. Pyridostigmine improved vagal activity and lipid metabolism disorder and cardiac remodeling, accompanied by an improvement of cardiac function in high-fat diet-fed rats. An increase in the browning of white adipose tissue in pyridostigmine-treated rats was also observed and linked to the expression of UCP-1 and CIDEA. Additionally, pyridostigmine facilitated activation of brown adipose tissue via activation of the SIRT-1/AMPK/PGC-1α pathway. In conclusion, a high-fat diet resulted in cardiac lipid accumulation, cardiac remodeling, and a significant decrease in vagal discharge. Pyridostigmine ameliorated cardiomyopathy, an effect related to reduced cardiac lipid accumulation, and facilitated the browning of white adipose tissue while activating brown adipose tissue. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Gluten-free but also gluten-enriched (gluten+) diet prevent diabetes in NOD mice; the gluten enigma in type 1 diabetes.

    PubMed

    Funda, David P; Kaas, Anne; Tlaskalová-Hogenová, Helena; Buschard, Karsten

    2008-01-01

    Environmental factors such as nutrition or exposure to infections play a substantial role in the pathogenesis of type 1 diabetes (T1D). We have previously shown that gluten-free, non-purified diet largely prevented diabetes in non-obese diabetic (NOD) mice. In this study we tested hypothesis that early introduction of gluten-enriched (gluten+) diet may increase diabetes incidence in NOD mice. Standard, gluten-free, gluten+ modified Altromin diets and hydrolysed-casein-based Pregestimil diet were fed to NOD females and diabetes incidence was followed for 310 days. Insulitis score and numbers of gut mucosal lymphocytes were determined in non-diabetic animals. A significantly lower diabetes incidence (p < 0.0001) was observed in NOD mice fed gluten-free diet (5.9%, n = 34) and Pregestimil diet (10%, n = 30) compared to mice on the standard Altromin diet (60.6%, n = 33). Surprisingly, gluten+ diet also prevented diabetes incidence, even at the level found with the gluten-free diet (p < 0.0001, 5.9%, n = 34). The minority of mice, which developed diabetes on all the three diabetes-protective (gluten+, gluten-free, Pregestimil) diets, did that slightly later compared to those on the standard diet. Lower insulitis score compared to control mice was found in non-diabetic NOD mice on the gluten-free, and to a lesser extent also gluten+ and Pregestimil diets. No substantial differences in the number of CD3(+), TCR-gammadelta(+), and IgA(+) cells in the small intestine were documented. Gluten+ diet prevents diabetes in NOD mice at the level found with the non-purified gluten-free diet. Possible mechanisms of the enigmatic, dual effect of dietary gluten on the development of T1D are discussed. 2007 John Wiley & Sons, Ltd

  6. Synthesis and biological evaluation of 3-methyl-5-phenylthieno[2,3-d]pyrimidine-2,4(1H,3H)-dione derivatives for the treatment of diet-induced obesity.

    PubMed

    Sang, Yun; Pei, Heyin; Ma, Liang; Huang, Li; Xie, Caifeng; Chen, Jinying; Liang, Xiaolin; Ran, Yan; Wang, Guangcheng; Yang, Zhuang; Cao, Dong; He, Lin; Wu, Yuzhe; He, Linhong; Zhu, Jun; Lan, Jingbo; Chen, Lijuan

    2014-01-01

    Triglycerides are the main part of fats and half of the lipids in hepatocytes, and play an important role in metabolism as energy sources and transporters of dietary fat. In this study, 33 derivatives based on 3-methyl-5-phenylthieno[2,3-d]pyrimidine-2,4(1H,3H)-dione were synthesized and evaluated for their lipid-lowering activity. Among them, compound 1i was found to exhibit potent triglyceride-lowering potency in 3T3-L1 adipocytes which was comparable to that of the adenosine monophosphate-activated protein kinase (AMPK) agonist Acadesine (AIACR). Furthermore, oral administration of 1i at a dose of 50 mg kg(-1) d(-1) for 5 weeks could reduce the mean body weight and liver weight by 12.02% and 32.00%, respectively, and regulated serum levels of triglycerides in diet-induced obese mice. The results indicate that compound 1i is a potential small-molecule for the treatment of diet-induced obesity and related diseases.

  7. Modifications of Western-type diet regarding protein, fat and sucrose levels as modulators of steroid metabolism and activity in liver.

    PubMed

    Krawczyńska, Agata; Herman, Andrzej P; Antushevich, Hanna; Bochenek, Joanna; Dziendzikowska, Katarzyna; Gajewska, Alina; Gromadzka-Ostrowska, Joanna

    2017-01-01

    The aim of the study was to evaluate whether the modification of the Western-type diet (high-fat, high-sucrose diet rich in saturated fatty acids) considering macronutrients content would influence hepatic metabolism and activity of steroids. For 3 weeks Wistar rat were fed the Western-type diet (21% fat, 35% sucrose, 19% protein, lard) and its modifications regarding dietary protein (10 and 19%), fat (5 and 21%) and sucrose (0 and 35%) levels. The steroid 5α-reductase type 1 (Srd5a1) and androgen receptor (Ar) gene expression as well as testosterone (T) conversion towards 5α-reduced derivatives in liver were positively correlated with body weight gain. The Western-type diets with decreased protein content regardless of the sucrose level exerted the most negative effect on the antioxidant system decreasing catalase (Cat), sodium dismutase (Sod1) and glutathione peroxidase (Gpx1) gene expression as well as Cat and Gpx activity and total antioxidant status, simultaneously intensifying lipid peroxidation. The impaired antioxidant system was accompanied by decreased level of hepatic T metabolism towards estrogens: 17β-estradiol (E2) and estriol, and increased estrogen receptor type 1 (Esr1) gene expression. Liver Esr1 mRNA level was differently correlated with T (positively) and E2 (negatively) plasma levels. Whereas the fat reduction in Western-type diet restored the plasma proportion between T and E2. In conclusion it could be stated that Western-type diet modification relating to protein, sucrose and fat content can influence hepatic steroid metabolism and activity; however the estrogens and androgens metabolism in liver would be connected with impairment of liver function or catabolic activity, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A diet and physical activity intervention for rural African Americans

    USDA-ARS?s Scientific Manuscript database

    PURPOSE Epidemic levels of obesity, diabetes, hypertension, and heart disease are rampant in the largely rural Lower Mississippi Delta (LMD) region of Mississippi. We assessed the effectiveness of a six-month, church-based, diet and physical activity (PA) intervention for improving diet quality (as ...

  9. CD1 Mouse Retina Is Shielded From Iron Overload Caused by a High Iron Diet

    PubMed Central

    Bhoiwala, Devang L.; Song, Ying; Cwanger, Alyssa; Clark, Esther; Zhao, Liang-liang; Wang, Chenguang; Li, Yafeng; Song, Delu; Dunaief, Joshua L.

    2015-01-01

    Purpose High RPE iron levels have been associated with age-related macular degeneration. Mutation of the ferroxidase ceruloplasmin leads to RPE iron accumulation and degeneration in patients with aceruloplasminemia; mice lacking ceruloplasmin and its homolog hephaestin have a similar RPE degeneration. To determine whether a high iron diet (HID) could cause RPE iron accumulation, possibly contributing to RPE oxidative stress in AMD, we tested the effect of dietary iron on mouse RPE iron. Methods Male CD1 strain mice were fed either a standard iron diet (SID) or the same diet with extra iron added (HID) for either 3 months or 10 months. Mice were analyzed with immunofluorescence and Perls' histochemical iron stain to assess iron levels. Levels of ferritin, transferrin receptor, and oxidative stress gene mRNAs were measured by quantitative PCR (qPCR) in neural retina (NR) and isolated RPE. Morphology was assessed in plastic sections. Results Ferritin immunoreactivity demonstrated a modest increase in the RPE in 10-month HID mice. Analysis by qPCR showed changes in mRNA levels of iron-responsive genes, indicating moderately increased iron in the RPE of 10-month HID mice. However, even by age 18 months, there was no Perls' signal in the retina or RPE and no retinal degeneration. Conclusions These findings indicate that iron absorbed from the diet can modestly increase the level of iron deposition in the wild-type mouse RPE without causing RPE or retinal degeneration. This suggests regulation of retinal iron uptake at the blood-retinal barriers. PMID:26275132

  10. Replacing dietary glucose with fructose increases ChREBP activity and SREBP-1 protein in rat liver nucleus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koo, Hyun-Young; Miyashita, Michio; Department of Pediatrics, Nihon University School of Medicine, Itabashi, Tokyo

    2009-12-11

    Diets high in fructose cause hypertriglyceridemia and insulin resistance in part due to simultaneous induction of gluconeogenic and lipogenic genes in liver. We investigated the mechanism underlying the unique pattern of gene induction by dietary fructose. Male Sprague-Dawley rats (n = 6 per group) were meal-fed (4 h/d) either 63% (w/w) glucose or 63% fructose diet. After two weeks, animals were killed at the end of the last meal. Nuclear SREBP-1 was 2.2 times higher in fructose-fed rats than glucose-fed rats. Nuclear FoxO1 was elevated 1.7 times in fructose group, but did not reach significance (P = 0.08). Unexpectedly, nomore » difference was observed in nuclear ChREBP between two groups. However, ChREBP DNA binding was 3.9x higher in fructose-fed animals without an increase in xylulose-5-phospate, a proposed ChREBP activator. In conclusion, the gene induction by dietary fructose is likely to be mediated in part by simultaneously increased ChREBP activity, SREBP-1 and possibly FoxO1 protein in nucleus.« less

  11. Behaviour change techniques targeting both diet and physical activity in type 2 diabetes: A systematic review and meta-analysis.

    PubMed

    Cradock, Kevin A; ÓLaighin, Gearóid; Finucane, Francis M; Gainforth, Heather L; Quinlan, Leo R; Ginis, Kathleen A Martin

    2017-02-08

    Changing diet and physical activity behaviour is one of the cornerstones of type 2 diabetes treatment, but changing behaviour is challenging. The objective of this study was to identify behaviour change techniques (BCTs) and intervention features of dietary and physical activity interventions for patients with type 2 diabetes that are associated with changes in HbA 1c and body weight. We performed a systematic review of papers published between 1975-2015 describing randomised controlled trials (RCTs) that focused exclusively on both diet and physical activity. The constituent BCTs, intervention features and methodological rigour of these interventions were evaluated. Changes in HbA 1c and body weight were meta-analysed and examined in relation to use of BCTs. Thirteen RCTs were identified. Meta-analyses revealed reductions in HbA 1c at 3, 6, 12 and 24 months of -1.11 % (12 mmol/mol), -0.67 % (7 mmol/mol), -0.28 % (3 mmol/mol) and -0.26 % (2 mmol/mol) with an overall reduction of -0.53 % (6 mmol/mol [95 % CI -0.74 to -0.32, P < 0.00001]) in intervention groups compared to control groups. Meta-analyses also showed a reduction in body weight of -2.7 kg, -3.64 kg, -3.77 kg and -3.18 kg at 3, 6, 12 and 24 months, overall reduction was -3.73 kg (95 % CI -6.09 to -1.37 kg, P = 0.002). Four of 46 BCTs identified were associated with >0.3 % reduction in HbA 1c : 'instruction on how to perform a behaviour', 'behavioural practice/rehearsal', 'demonstration of the behaviour' and 'action planning', as were intervention features 'supervised physical activity', 'group sessions', 'contact with an exercise physiologist', 'contact with an exercise physiologist and a dietitian', 'baseline HbA 1c >8 %' and interventions of greater frequency and intensity. Diet and physical activity interventions achieved clinically significant reductions in HbA 1c at three and six months, but not at 12 and 24 months. Specific BCTs and intervention features identified may

  12. AIP1 recruits phosphatase PP2A to ASK1 in tumor necrosis factor-induced ASK1-JNK activation.

    PubMed

    Min, Wang; Lin, Yan; Tang, Shibo; Yu, Luyang; Zhang, Haifeng; Wan, Ting; Luhn, Tricia; Fu, Haian; Chen, Hong

    2008-04-11

    Previously we have shown that AIP1 (apoptosis signal-regulating kinase [ASK]1-interacting protein 1), a novel member of the Ras-GAP protein family, facilitates dephosphorylation of ASK1 at pSer967 and subsequently 14-3-3 release from ASK1, leading to enhanced ASK1-JNK signaling. However, the phosphatase(s) responsible for ASK1 dephosphorylation at pSer967 has not been identified. In the present study, we identified protein phosphatase (PP)2A as a potential phosphatase in vascular endothelial cells (ECs). Tumor necrosis factor (TNF)-induced dephosphorylation of ASK1 pSer967 in ECs was blocked by PP2A inhibitor okadaic acid. Overexpression of PP2A catalytic subunit induced dephosphorylation of ASK1 pSer967 and activation of c-Jun N-terminal kinase (JNK). In contrast, a catalytic inactive form of PP2A or PP2A small interfering RNA blunted TNF-induced dephosphorylation of ASK1 pSer967 and activation of JNK without effects on NF-kappaB activation. Whereas AIP1, via its C2 domain, binds to ASK1, PP2A binds to the GAP domain of AIP1. Endogenous AIP1-PP2A complex can be detected in the resting state, and TNF induces a complex formation of AIP1-PP2A with ASK1. Furthermore, TNF-induced association of PP2A with ASK1 was diminished in AIP1-knockdown ECs, suggesting a critical role of AIP1 in recruiting PP2A to ASK1. TNF-signaling molecules TRAF2 and RIP1, known to be in complex with AIP1 and activate AIP1 by phosphorylating AIP1 at Ser604, are critical for TNF-induced ASK1 dephosphorylation. Finally, PP2A and AIP1 cooperatively induce activation of ASK1-JNK signaling and EC apoptosis, as demonstrated by both overexpression and small interfering RNA knockdown approaches. Taken together, our data support a critical role of PP2A-AIP1 complex in TNF-induced activation of ASK1-JNK apoptotic signaling.

  13. Calcium mobilization and Rac1 activation are required for VCAM-1 (vascular cell adhesion molecule-1) stimulation of NADPH oxidase activity.

    PubMed Central

    Cook-Mills, Joan M; Johnson, Jacob D; Deem, Tracy L; Ochi, Atsuo; Wang, Lei; Zheng, Yi

    2004-01-01

    VCAM-1 (vascular cell adhesion molecule-1) plays an important role in the regulation of inflammation in atherosclerosis, asthma, inflammatory bowel disease and transplantation. VCAM-1 activates endothelial cell NADPH oxidase, and this oxidase activity is required for VCAM-1-dependent lymphocyte migration. We reported previously that a mouse microvascular endothelial cell line promotes lymphocyte migration that is dependent on VCAM-1, but not on other known adhesion molecules. Here we have investigated the signalling mechanisms underlying VCAM-1 function. Lymphocyte binding to VCAM-1 on the endothelial cell surface activated an endothelial cell calcium flux that could be inhibited with anti-alpha4-integrin and mimicked by anti-VCAM-1-coated beads. VCAM-1 stimulation of calcium responses could be blocked by an inhibitor of intracellular calcium mobilization, a calcium channel inhibitor or a calcium chelator, resulting in the inhibition of NADPH oxidase activity. Addition of ionomycin overcame the calcium channel blocker suppression of VCAM-1-stimulated NADPH oxidase activity, but could not reverse the inhibitory effect imposed by intracellular calcium blockage, indicating that both intracellular and extracellular calcium mobilization are required for VCAM-1-mediated activation of NADPH oxidase. Furthermore, VCAM-1 specifically activated the Rho-family GTPase Rac1, and VCAM-1 activation of NADPH oxidase was blocked by a dominant negative Rac1. Thus VCAM-1 stimulates the mobilization of intracellular and extracellular calcium and Rac1 activity that are required for the activation of NADPH oxidase. PMID:14594451

  14. Spirulina maxima Extract Reduces Obesity through Suppression of Adipogenesis and Activation of Browning in 3T3-L1 Cells and High-Fat Diet-Induced Obese Mice.

    PubMed

    Seo, Young-Jin; Kim, Kui-Jin; Choi, Jia; Koh, Eun-Jeong; Lee, Boo-Yong

    2018-06-01

    Obesity predisposes animals towards the metabolic syndrome and diseases such as type 2 diabetes, atherosclerosis, and cardiovascular disease. Spirulina maxima is a microalga with anti-oxidant, anti-cancer, and neuroprotective activities, but the anti-obesity effect of Spirulina maxima 70% ethanol extract (SM70EE) has not yet been fully established. We investigated the effect of SM70EE on adipogenesis, lipogenesis, and browning using in vitro and in vivo obesity models. SM70EE treatment reduced lipid droplet accumulation by the oil red O staining method and downregulated the adipogenic proteins C/EBPα, PPARγ, and aP2, and the lipogenic proteins SREBP1, ACC, FAS, LPAATβ, Lipin1, and DGAT1 by western blot analysis. In addition, the index components of SM70EE, chlorophyll a, and C-phycocyanin, reduced adipogenesis and lipogenesis protein levels in 3T3-L1 and C3H10T1/2 cells. High-fat diet (HFD)-fed mice administered with SM70EE demonstrated smaller adipose depots and lower blood lipid concentrations than control HFD-fed mice. The lower body mass gain in treated SM70EE-administrated mice was associated with lower protein expression of adipogenesis factors and higher expression of AMPKα-induced adipose browning proteins PRDM16, PGC1α, and UCP1. SM70EE administration ameliorates obesity, likely by reducing adipogenesis and activating the thermogenic program, in 3T3-L1 cells and HFD-induced obese mice.

  15. Resveratrol as a Bioenhancer to Improve Anti-Inflammatory Activities of Apigenin.

    PubMed

    Lee, Jin-Ah; Ha, Sang Keun; Cho, EunJung; Choi, Inwook

    2015-11-19

    The aim of this study was to improve the anti-inflammatory activities of apigenin through co-treatment with resveratrol as a bioenhancer of apigenin. RAW 264.7 cells pretreated with hepatic metabolites formed by the co-metabolism of apigenin and resveratrol (ARMs) in HepG2 cells were stimulated with lipopolysaccharide (LPS). ARMs prominently inhibited (p < 0.05) the production of nitric oxide (NO), prostaglandin E₂ (PGE₂), interleukin (IL)-1β, IL-6 and TNF-α. Otherwise no such activity was observed by hepatic metabolites of apigenin alone (AMs). ARMs also effectively suppressed protein expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Co-administration of apigenin (50 mg/kg) and resveratrol (25 mg/kg) also showed a significant reduction of carrageenan-induced paw edema in mice (61.20% to 23.81%). Co-administration of apigenin and resveratrol led to a 2.39 fold increase in plasma apigenin levels compared to administration of apigenin alone, suggesting that co-administration of resveratrol could increase bioavailability of apigenin. When the action of resveratrol on the main apigenin metabolizing enzymes, UDP-glucuronosyltransferases (UGTs), was investigated, resveratrol mainly inhibited the formation of apigenin glucuronides by UGT1A9 in a non-competitive manner with a Ki value of 7.782 μM. These results suggested that resveratrol helps apigenin to bypass hepatic metabolism and maintain apigenin's anti-inflammatory activities in the body.

  16. Resveratrol as a Bioenhancer to Improve Anti-Inflammatory Activities of Apigenin

    PubMed Central

    Lee, Jin-Ah; Ha, Sang Keun; Cho, EunJung; Choi, Inwook

    2015-01-01

    The aim of this study was to improve the anti-inflammatory activities of apigenin through co-treatment with resveratrol as a bioenhancer of apigenin. RAW 264.7 cells pretreated with hepatic metabolites formed by the co-metabolism of apigenin and resveratrol (ARMs) in HepG2 cells were stimulated with lipopolysaccharide (LPS). ARMs prominently inhibited (p < 0.05) the production of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin (IL)-1β, IL-6 and TNF-α. Otherwise no such activity was observed by hepatic metabolites of apigenin alone (AMs). ARMs also effectively suppressed protein expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Co-administration of apigenin (50 mg/kg) and resveratrol (25 mg/kg) also showed a significant reduction of carrageenan-induced paw edema in mice (61.20% to 23.81%). Co-administration of apigenin and resveratrol led to a 2.39 fold increase in plasma apigenin levels compared to administration of apigenin alone, suggesting that co-administration of resveratrol could increase bioavailability of apigenin. When the action of resveratrol on the main apigenin metabolizing enzymes, UDP-glucuronosyltransferases (UGTs), was investigated, resveratrol mainly inhibited the formation of apigenin glucuronides by UGT1A9 in a non-competitive manner with a Ki value of 7.782 μM. These results suggested that resveratrol helps apigenin to bypass hepatic metabolism and maintain apigenin’s anti-inflammatory activities in the body. PMID:26610561

  17. Glucose metabolism and hepatic Igf1 DNA methylation are altered in the offspring of dams fed a low-salt diet during pregnancy.

    PubMed

    Siqueira, Flavia R; Furukawa, Luzia N S; Oliveira, Ivone B; Heimann, Joel C

    2016-02-01

    A low-salt (LS) diet during pregnancy has been linked to insulin resistance in adult offspring, at least in the experimental setting. However, it remains unclear if this effect is due to salt restriction during early or late pregnancy. To better understand this phenomenon, 12-week-old female Wistar rats were fed a LS or normal-salt (NS) diet during gestation or a LS diet during either the first (LS10) or second (LS20) half of gestation. Glucose tolerance test, HOMA-IR, gene expression analysis and DNA methylation measurements were conducted for the Insr, Igf1, Igf1r, Ins1 and Ins2 genes in the livers of neonates and in the liver, white adipose tissue and muscle of 20-week-old male offspring. Birth weight was lower in the LS20 and LS animals compared with the NS and LS10 rats. In the liver, the Igf1 levels in the LS10, LS20 and LS neonates were lower than those in the NS neonates. Methylation of the Insr, Igf1r, Ins1 and Ins2 genes was influenced in a variable manner by low salt intake during pregnancy. Increased liver Igf1 methylation was observed in the LS and LS20 neonates compared with their NS and LS10 counterparts. Glucose intolerance was observed in adult offspring as an effect of low salt intake over the duration of pregnancy. Compared to the NS animals, the HOMA-IR was higher in the 12-week-old LS and 20-week-old LS-10 rats. Based on these results, it appears that the reason a LS diet during pregnancy induces a low birth weight is its negative correlation with Igf1 DNA methylation in neonates. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Reduced fat mass in rats fed a high oleic acid-rich safflower oil diet is associated with changes in expression of hepatic PPARalpha and adipose SREBP-1c-regulated genes.

    PubMed

    Hsu, Shan-Ching; Huang, Ching-Jang

    2006-07-01

    PPARs and sterol regulatory element-binding protein-1c (SREPB-1c) are fatty acid-regulated transcription factors that control lipid metabolism at the level of gene expression. This study compared a high oleic acid-rich safflower oil (ORSO) diet and a high-butter diet for their effect on adipose mass and expressions of genes regulated by PPAR and SREPB-1c in rats. Four groups of Wistar rats were fed 30S (30% ORSO), 5S (5% ORSO), 30B (29% butter + 1% ORSO), or 5B (4% butter plus 1% ORSO) diets for 15 wk. Compared with the 30B group, the 30S group had less retroperitoneal white adipose tissue (RWAT) mass and lower mRNA expressions of lipoprotein lipase, adipocyte fatty acid-binding protein, fatty acid synthase, acetyl CoA carboxylase, and SREBP-1c in the RWAT, higher mRNA expressions of acyl CoA oxidase, carnitine palmitoyl-transferase 1A, fatty acid binding protein, and mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in the liver (P < 0.05). The 18:2(n-6) and 20:4(n-6) contents in the liver and RWAT of the 30S group were >2 fold those of the 30B group (P < 0.05). These results suggested that the smaller RWAT mass in rats fed the high-ORSO diet might be related to the higher tissue 18:2(n-6) and 20:4(n-6). This in turn could upregulate the expressions of fatty acid catabolic genes through the activation of PPARalpha in the liver and downregulate the expressions of lipid storage and lipogenic gene through the suppression of SREBP-1c in the RWAT.

  19. Low Cotinine Glucuronidation Results in Higher Serum and Saliva Cotinine in African American Compared to White Smokers.

    PubMed

    Murphy, Sharon E; Sipe, Christopher J; Choi, Kwangsoo; Raddatz, Leah M; Koopmeiners, Joseph S; Donny, Eric C; Hatsukami, Dorothy K

    2017-07-01

    Background: Tobacco exposure is often quantified by serum or saliva concentrations of the primary nicotine metabolite, cotinine. However, average cotinine concentrations are higher in African Americans (AA) compared with Whites with similar smoking levels. Cotinine is metabolized by UGT2B10 and CYP2A6, and low UGT2B10 activity is common in AA, due to the prevalence of a UGT2B10 splice variant. Methods: UGT2B10 activity was phenotyped in 1,446 smokers (34% AA) by measuring the percentage of cotinine excreted as a glucuronide. Urinary total nicotine equivalents (TNE), the sum of nicotine and 6 metabolites, were determined to quantify smoking dose, and cotinine and 3'-hydroxycotinine were quantified in saliva (study 1) or serum (study 2). Results: Ninety-seven smokers (78% AA) were null for UGT2B10 activity, and the saliva and serum cotinine levels, after adjustment for TNE and cigarettes per day (CPD), were 68% and 48% higher in these smokers compared with nonnull smokers ( P < 0.001). After adjustment for TNE and CPD, salivary cotinine was 35% higher, and serum cotinine 24% higher in AA versus White smokers, but with additional adjustment for UGT2B10 activity, there were no significant differences in saliva and serum cotinine concentrations between these two groups. Conclusions: UGT2B10 activity significantly influences plasma cotinine levels, and higher cotinine concentrations in AA versus White smokers (after adjustment for smoking dose) result from lower levels of UGT2B10-catalyzed cotinine glucuronidation by AA. Impact: UGT2B10 activity or genotype should be considered when using cotinine as a tobacco exposure biomarker, particularly in populations such as AA with high frequencies of UGT2B10 nonfunctional variants. Cancer Epidemiol Biomarkers Prev; 26(7); 1093-9. ©2017 AACR . ©2017 American Association for Cancer Research.

  20. Antihyperglycemic and antidyslipidemic activity of Musa paradisiaca-based diet in alloxan-induced diabetic rats.

    PubMed

    Ajiboye, Basiru O; Oloyede, Hussein O B; Salawu, Musa O

    2018-01-01

    This study was aimed at investigating the antihyperglycemic and antidyslipidemic activity of Musa paradisiaca -based diets in alloxan-induced diabetic mellitus rats. Diabetes was induced by a single intraperitoneal injection of alloxan (150 mg/kg b.w) in 48 randomly selected rats. The rats were randomly grouped into four as follows: normal rats fed Dioscorea rotundata -based diet, diabetic control rats fed D. rotundata -based diet, diabetic rats fed D. rotundata -based diet and administered metformin (14.2 mg/kg body weight) orally per day, and diabetic rats fed M. paradisiaca -based diet. Body weight and fasting blood glucose level were monitored, on 28th days the rats were sacrificed, liver was excised. Thereafter, the hyperglycemic and dyslipidemic statii of the induced diabetic animals were determined. The M. paradisiaca -based diet significantly ( p  <   .05) reversed the levels of fasting blood glucose, with significant ( p  <   .05) increase in insulin and glycogen concentrations. The diet also increased the activity of hexokinase with significant reduction ( p  <   .05) in glucose-6-phosphatase and fructose-1-6-diphosphatase activities. M. paradisiaca -based diet demonstrated significant reduction ( p  <   .05) in cholesterol, triacylglycerol (TG), very low-density lipoprotein (VLDL), low-density lipoprotein (LDL), and significant increase ( p  <   .05) in high-density lipoprotein (HDL) compared with those of diabetic control group. Also, M. paradisiaca -based diet significantly ( p  <   .05) reversed the activities of aspartate aminotransferase and alanine aminotransferase when compared with diabetic control animals. The consumption of this diet may be useful in ameliorating hyperglycemia and dyslipidemia in diabetes mellitus patients.