Sample records for uh solar flare

  1. Major Solar Flare

    NASA Image and Video Library

    2017-09-11

    A large sunspot was the source of a powerful solar flare (an X 9.3) and a coronal mass ejection (Sept. 6, 2017). The flare was the largest solar flare of the last decade. For one thing, it created a strong shortwave radio blackout over Europe, Africa and the Atlantic Ocean. Sunspot 2673 has been also the source of several other smaller to medium-sized solar flares over the past few days. Data from the SOHO spacecraft shows the large cloud of particles blasting into space just after the flare. Note: the bright vertical line and the other rays with barred lines are aberrations in our instruments caused by the bright flash of the flare. https://photojournal.jpl.nasa.gov/catalog/PIA21949

  2. The solar flare myth

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.

    1993-01-01

    Many years of research have demonstrated that large, nonrecurrent geomagnetic storms, shock wave disturbances in the solar wind, and energetic particle events in interplanetary space often occur in close association with large solar flares. This result has led to a pradigm of cause and effect - that large solar flares are the fundamental cause of these events in the near-Earth space environmemt. This paradigm, which I call 'the solar flare myth,' dominates the popular perception of the relationship between solar activity and interplanetary and geomagnetic events and has provided much of the pragmatic rationale for the study of the solar flare phenomenon. Yet there is good evidence that this paradigm is wrong and that flares do not generally play a central role in producing major transient disturbances in the near-Earth space environment. In this paper I outline a different paradigm of cause and effect that removes solar flares from their central position in the chain of events leading from the Sun to near-Earth space. Instead, this central role is given to events known as coronal mass ejections.

  3. Electron beams in solar flares

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Dennis, Brian R.; Benz, Arnold O.

    1994-01-01

    A list of publications resulting from this program includes 'The Timing of Electron Beam Signatures in Hard X-Ray and Radio: Solar Flare Observations by BATSE/Compton Gamma-Ray Observatory and PHOENIX'; 'Coherent-Phase or Random-Phase Acceleration of Electron Beams in Solar Flares'; 'Particle Acceleration in Flares'; 'Chromospheric Evaporation and Decimetric Radio Emission in Solar Flares'; 'Sequences of Correlated Hard X-Ray and Type 3 Bursts During Solar Flares'; and 'Solar Electron Beams Detected in Hard X-Rays and Radiowaves.' Abstracts and reprints of each are attached to this report.

  4. Solar Flares and Their Prediction

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.

    1999-01-01

    Solar flares and coronal mass ejection's (CMES) can strongly affect the local environment at the Earth. A major challenge for solar physics is to understand the physical mechanisms responsible for the onset of solar flares. Flares, characterized by a sudden release of energy (approx. 10(exp 32) ergs for the largest events) within the solar atmosphere, result in the acceleration of electrons, protons, and heavier ions as well as the production of electromagnetic radiation from hard X-rays to km radio waves (wavelengths approx. = 10(exp -9) cm to 10(exp 6) cm). Observations suggest that solar flares and sunspots are strongly linked. For example, a study of data from 1956-1969, reveals that approx. 93 percent of major flares originate in active regions with spots. Furthermore, the global structure of the sunspot magnetic field can be correlated with flare activity. This talk will review what we know about flare causes and effects and will discuss techniques for quantifying parameters, which may lead to a prediction of solar flares.

  5. Solar flares

    NASA Technical Reports Server (NTRS)

    Zirin, H.

    1974-01-01

    A review of the knowledge about solar flares which has been obtained through observations from the earth and from space by various methods. High-resolution cinematography is best carried out at H-alpha wavelengths to reveal the structure, time history, and location of flares. The classification flares in H alpha according to either physical or morphological criteria is discussed. The study of flare morphology, which shows where, when, and how flares occur, is important for evaluating theories of flares. Consideration is given to studies of flares by optical spectroscopy, radio emissions, and at X-ray and XUV wavelengths. Research has shown where and possibly why flares occur, but the physics of the instability involved, of the particle acceleration, and of the heating are still not understood.

  6. Mid-level Solar Flare

    NASA Image and Video Library

    2017-12-08

    SDO View of M7.3 Class Solar Flare on Oct. 2, 2014 NASA's Solar Dynamics Observatory captured this image of an M7.3 class solar flare on Oct. 2, 2014. The solar flare is the bright flash of light on the right limb of the sun. A burst of solar material erupting out into space can be seen just below it. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. COMPTEL solar flare observations

    NASA Technical Reports Server (NTRS)

    Ryan, J. M.; Aarts, H.; Bennett, K.; Debrunner, H.; Devries, C.; Denherder, J. W.; Eymann, G.; Forrest, D. J.; Diehl, R.; Hermsen, W.

    1992-01-01

    COMPTEL as part of a solar target of opportunity campaign observed the sun during the period of high solar activity from 7-15 Jun. 1991. Major flares were observed on 9 and 11 Jun. Although both flares were large GOES events (greater than or = X10), they were not extraordinary in terms of gamma-ray emission. Only the decay phase of the 15 Jun. flare was observed by COMPTEL. We report the preliminary analysis of data from these flares, including the first spectroscopic measurement of solar flare neutrons. The deuterium formation line at 2.223 MeV was present in both events and for at least the 9 Jun. event, was comparable to the flux in the nuclear line region of 4-8 MeV, consistent with Solar-Maximum Mission (SSM) Observations. A clear neutron signal was present in the flare of 9 Jun. with the spectrum extending up to 80 MeV and consistent in time with the emission of gamma-rays, confirming the utility of COMPTEL in measuring the solar neutron flux at low energies. The neutron flux below 100 MeV appears to be lower than that of the 3 Jun. 1982 flare by more than an order of magnitude. The neutron signal of the 11 Jun. event is under study. Severe dead time effects resulting from the intense thermal x-rays require significant corrections to the measured flux which increase the magnitude of the associated systematic uncertainties.

  8. Major Solar Flare

    NASA Image and Video Library

    2017-09-18

    The Sun erupted with an X8 solar flare, one of the largest of the current solar cycle (Sept. 10, 2017). Its source was the same sunspot region that produced an X9 flare last week. This is shown in two wavelengths of extreme ultraviolet light at the same time and each reveals different features. Both are colorized to identify in which wavelength they were observed. The coils of loops after the flare are the magnetic field lines reorganizing themselves after the eruption. The video clip covers about six hours. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21958

  9. Influences of misprediction costs on solar flare prediction

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Wang, HuaNing; Dai, XingHua

    2012-10-01

    The mispredictive costs of flaring and non-flaring samples are different for different applications of solar flare prediction. Hence, solar flare prediction is considered a cost sensitive problem. A cost sensitive solar flare prediction model is built by modifying the basic decision tree algorithm. Inconsistency rate with the exhaustive search strategy is used to determine the optimal combination of magnetic field parameters in an active region. These selected parameters are applied as the inputs of the solar flare prediction model. The performance of the cost sensitive solar flare prediction model is evaluated for the different thresholds of solar flares. It is found that more flaring samples are correctly predicted and more non-flaring samples are wrongly predicted with the increase of the cost for wrongly predicting flaring samples as non-flaring samples, and the larger cost of wrongly predicting flaring samples as non-flaring samples is required for the higher threshold of solar flares. This can be considered as the guide line for choosing proper cost to meet the requirements in different applications.

  10. Solar flare emissions and geophysical disturbances

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1973-01-01

    Various geophysical phenomena are produced by both wave and particle emissions from solar flares. Using the observed data for these emissions, a review is given on the nature of solar flares and their development. Geophysical phenomena are discussed by referring to the results for solar flare phenomena.

  11. Solar Flare Physics

    NASA Technical Reports Server (NTRS)

    Schmahl, Edward J.; Kundu, Mukul R.

    2000-01-01

    During the past year we have been working with the HESSI (High Energy Solar Spectroscopic Imager) team in preparation for launch in early 2001. HESSI has as its primary scientific goal photometric imaging and spectroscopy of solar flares in hard X-rays and gamma-rays with an approx. 2 sec angular resolution, approx. keV energy resolution and approx. 2 s time resolution over the 6 keV to 15 MeV energy range. We have performed tests of the imager using a specially designed experiment which exploits the second-harmonic response of HESSI's sub-collimators to an artificial X-ray source at a distance of 1550 cm from its front grids. Figures show the response to X-rays at energies in the range where HESSI is expected to image solar flares. To prepare the team and the solar user community for imaging flares with HESSI, we have written a description of the major imaging concepts. This paper will be submitted for publication in a referred journal.

  12. Large scale solar magnetic fields at the site of flares, the greatness of flares, and solar-terrestrial disturbances

    NASA Technical Reports Server (NTRS)

    Dodson, H. W.; Hedeman, E. R.; Roelof, E. C.

    1982-01-01

    Evidence is presented for an intrinsically solar effect which may dominate such solar-terrestrial correlations as that reported by Chertkov (1976), where large H-alpha flares during 1967-1972 in solar active regions with overlying fields on a 100,000 km scale and predominantly north-to-south orientation were more efficient in the production of geomagnetic disturbances than comparable flares in regions whose fields at the flare sites were directed south-to-north. In addition to being responsible for geomagnetic disturbance enhancements, this purely solar effect may cause solar wind velocity and solar flare proton flux enhancements. If the effect can be generalized to other portions of the solar cycle, it could improve present understanding of the flare mechanism and therefore prove useful in the prediction of solar-terrestrial disturbances.

  13. Solar flare predictions and warnings

    NASA Technical Reports Server (NTRS)

    White, K. P., III

    1972-01-01

    The real-time solar monitoring information supplied to support SPARCS equipped rocket launches, the routine collection and analysis of 3.3-mm solar radio maps, short-term flare forecasts based on these maps, longer-term forecasts based on the recurrence of active regions, and an extension of the flare forecasting technique are summarized. Forecasts for expectation of a solar flare of class or = 2F are given and compared with observed flares. A total of 52 plage regions produced all the flares of class or = 1N during the study period. The following results are indicated: of the total of 21 positive forecasts, 3 were correct and 18 were incorrect; of the total of 31 negative forecasts, 3 were incorrect and 28 were correct; of a total of 6 plage regions producing large flares, 3 were correctly forecast and 3 were missed; and of 46 regions not producing any large flares, 18 were incorrectly forecast and 28 were correctly forecast.

  14. Magnetic Flux Transients during Solar Flares

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, K. S.; Delgado, F.; Hock, R. A.

    2013-12-01

    Solar flares result from the sudden release of energy stored in the magnetic field of the solar atmosphere, attributed to magnetic reconnection. In this work, we use line-of-sight magnetograms to study the changes in photospheric magnetic field during large solar flares. The magnetograms are derived from observations using NASA's Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory, and have a cadence of 3 minutes at a 0.5 arcsecond spatial resolution. We studied the inferred magnetic flux changes in 11 X-class flares from (2011-2012) and 26 M-class flares (2011). Of the 37 flares, 32 exhibited short-lived (less than 30 minutes) magnetic flux transients (MFTs) during the progress of the flare, similar to those by Maurya et al. (2012). We note that MFTs were co-temporal with GOES X-ray peaks. Flares with rapid rises (impulsive flares) had stronger transients while those with slower rises (gradual flares) had weak or no MFTs. Finally, flares with stronger GOES X-ray peaks (flare class) showed stronger MFTs. We believe that these changes are non-physical because the changes in the magnetic field are transient (the magnetic field returns to the pre-flare state) and coincide with the impulsive phase of the flare. This work supported by the US Airforce Office of Scientific Research and the AFRL/RV Space Scholar Program.

  15. Largest Solar Flare on Record

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The largest solar flare ever recorded occurred at 4:51 p.m. EDT, on Monday, April 2, 2001. as Observed by the Solar and Heliospheric Observatory (SOHO) satellite. Solar flares, among the solar systems mightiest eruptions, are tremendous explosions in the atmosphere of the Sun capable of releasing as much energy as a billion megatons of TNT. Caused by the sudden release of magnetic energy, in just a few seconds, solar flares can accelerate solar particles to very high velocities, almost to the speed of light, and heat solar material to tens of millions of degrees. The recent explosion from the active region near the sun's northwest limb hurled a coronal mass ejection into space at a whopping speed of roughly 7.2 million kilometers per hour. Luckily, the flare was not aimed directly towards Earth. Second to the most severe R5 classification of radio blackout, this flare produced an R4 blackout as rated by the NOAA SEC. This classification measures the disruption in radio communications. Launched December 2, 1995 atop an ATLAS-IIAS expendable launch vehicle, the SOHO is a cooperative effort involving NASA and the European Space Agency (ESA). (Image courtesy NASA Goddard SOHO Project office)

  16. Solar Flare Aimed at Earth

    NASA Technical Reports Server (NTRS)

    2002-01-01

    At the height of the solar cycle, the Sun is finally displaying some fireworks. This image from the Solar and Heliospheric Observatory (SOHO) shows a large solar flare from June 6, 2000 at 1424 Universal Time (10:24 AM Eastern Daylight Savings Time). Associated with the flare was a coronal mass ejection that sent a wave of fast moving charged particles straight towards Earth. (The image was acquired by the Extreme ultaviolet Imaging Telescope (EIT), one of 12 instruments aboard SOHO) Solar activity affects the Earth in several ways. The particles generated by flares can disrupt satellite communications and interfere with power transmission on the Earth's surface. Earth's climate is tied to the total energy emitted by the sun, cooling when the sun radiates less energy and warming when solar output increases. Solar radiation also produces ozone in the stratosphere, so total ozone levels tend to increase during the solar maximum. For more information about these solar flares and the SOHO mission, see NASA Science News or the SOHO home page. For more about the links between the sun and climate change, see Sunspots and the Solar Max. Image courtesy SOHO Extreme ultaviolet Imaging Telescope, ESA/NASA

  17. Biggest Solar Flare on Record

    NASA Technical Reports Server (NTRS)

    2002-01-01

    View an animation from the Extreme ultraviolet Imaging Telescope (EIT). At 4:51 p.m. EDT, on Monday, April 2, 2001, the sun unleashed the biggest solar flare ever recorded, as observed by the Solar and Heliospheric Observatory (SOHO) satellite. The flare was definitely more powerful than the famous solar flare on March 6, 1989, which was related to the disruption of power grids in Canada. This recent explosion from the active region near the sun's northwest limb hurled a coronal mass ejection into space at a whopping speed of roughly 7.2 million kilometers per hour. Luckily, the flare was not aimed directly towards Earth. Solar flares, among the solar system's mightiest eruptions, are tremendous explosions in the atmosphere of the Sun capable of releasing as much energy as a billion megatons of TNT. Caused by the sudden release of magnetic energy, in just a few seconds flares can accelerate solar particles to very high velocities, almost to the speed of light, and heat solar material to tens of millions of degrees. Solar ejections are often associated with flares and sometimes occur shortly after the flare explosion. Coronal mass ejections are clouds of electrified, magnetic gas weighing billions of tons ejected from the Sun and hurled into space with speeds ranging from 12 to 1,250 miles per second. Depending on the orientation of the magnetic fields carried by the ejection cloud, Earth-directed coronal mass ejections cause magnetic storms by interacting with the Earth's magnetic field, distorting its shape, and accelerating electrically charged particles (electrons and atomic nuclei) trapped within. Severe solar weather is often heralded by dramatic auroral displays, northern and southern lights, and magnetic storms that occasionally affect satellites, radio communications and power systems. The flare and solar ejection has also generated a storm of high-velocity particles, and the number of particles with ten million electron-volts of energy in the space near

  18. Solar flare induced cosmic noise absorption

    NASA Astrophysics Data System (ADS)

    Ogunmodimu, Olugbenga; Honary, Farideh; Rogers, Neil; Falayi, E. O.; Bolaji, O. S.

    2018-06-01

    Solar flare events are a major observing emphasis for space weather because they affect the ionosphere and can eject high-energy particles that can adversely affect Earth's technologies. In this study we model 38.2 MHz cosmic noise absorption (CNA) by utilising measurements from the Imaging Riometer for Ionospheric Studies (IRIS) at Kilpisjärvi, Finland obtained during solar cycle 23 (1996-2009). We utilised X-ray archive for the same period from the Geostationary Operational Environmental Satellite (GOES) to study solar flare induced cosmic noise absorption. We identified the threshold of flare (M4 class) that could bear significant influence on CNA. Through epoch analysis, we show the magnitude of absorption that each class of flare could produce. Using the parameters of flare and absorption we present a model that could provide the basis for nowcast of CNA induced by M and X-class solar flares.

  19. Solar flare predictions and warnings

    NASA Technical Reports Server (NTRS)

    White, K. P., III; Mayfield, E. B.

    1973-01-01

    The real-time solar monitoring information supplied to support SPARCS-equipped rocket launches, the routine collection and analysis of 3.3-mm solar radio maps, short-term flare forecasts based on these maps, longer-term forecasts based on the recurrence of active regions, and results of the synoptic study of solar active regions at 3.3-mm wavelength are presented. Forecasted flares in the 24-hour forecasts were 81% accurate, and those in the 28-day forecasts were 97% accurate. Synoptic radio maps at 3.3-mm wavelength are presented for twenty-three solar rotations in 1967 and 1968, as well as synoptic flare charts for the same period.

  20. Solar Flares and the High Energy Solar Spectroscopic Imager (HESSI)

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Solar flares are the biggest explosions in the solar system. They are important both for understanding explosive events in the Universe and for their impact on human technology and communications. The satellite-based HESSI is designed to study the explosive release of energy and the acceleration of electrons, protons, and other charged particles to high energies in solar flares. HESSI produces "color" movies of the Sun in high-energy X rays and gamma rays radiated by these energetic particles. HESSI's X-ray and gamma-ray images of flares are obtained using techniques similar to those used in radio interferometry. Ground-based radio observations of the Sun provide an important complement to the HESSI observations of solar flares. I will describe the HESSI Project and the high-energy aspects of solar flares, and how these relate to radio astronomy techniques and observations.

  1. Rethinking the solar flare paradigm

    NASA Astrophysics Data System (ADS)

    D, B. MELROSE

    2018-07-01

    It is widely accepted that solar flares involve release of magnetic energy stored in the solar corona above an active region, but existing models do not include the explicitly time-dependent electrodynamics needed to describe such energy release. A flare paradigm is discussed that includes the electromotive force (EMF) as the driver of the flare, and the flare-associated current that links different regions where magnetic reconnection, electron acceleration, the acceleration of mass motions and current closure occur. The EMF becomes localized across regions where energy conversion occurs, and is involved in energy propagation between these regions.

  2. Mid-level Solar Flare

    NASA Image and Video Library

    2014-10-02

    NASA's Solar Dynamics Observatory captured these images of a solar flare on Oct. 2, 2014. The solar flare is the bright flash of light on the right limb of the sun. A burst of solar material erupting out into space can be seen just below it. Read more: 1.usa.gov/1mW8rel Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Spectroscopic Exploration of Solar Flares

    NASA Astrophysics Data System (ADS)

    Sibeck, D. G.; Paxton, L. J.; Woods, T. N.

    2016-12-01

    Professor Eugene Parker has educated and inspired the heliophysics community since the 1950s about the Parker spiral path for the solar wind, magnetic reconnection throughout the heliosphere, and coronal heating by nano-flares. Solar flares, as well as their often eruptive companions called coronal mass ejections (CMEs), have been studied for decades. While most of these studies involve imaging the Sun, observations of the Sun as a star (full-disk irradiance) have also revealed interesting results through exploring the spectral variability during flare events. Some of the new results from such studies include understanding the flare variability over all wavelengths from the energetic X-rays to the visible, discovering and classifying different flare phases, using coronal dimming measurements to predict CME properties of mass and velocity, and exploring the role of Parker's nano-flares in continual heating of active regions.

  4. Statistical aspects of solar flares

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1987-01-01

    A survey of the statistical properties of 850 H alpha solar flares during 1975 is presented. Comparison of the results found here with those reported elsewhere for different epochs is accomplished. Distributions of rise time, decay time, and duration are given, as are the mean, mode, median, and 90th percentile values. Proportions by selected groupings are also determined. For flares in general, mean values for rise time, decay time, and duration are 5.2 + or - 0.4 min, and 18.1 + or 1.1 min, respectively. Subflares, accounting for nearly 90 percent of the flares, had mean values lower than those found for flares of H alpha importance greater than 1, and the differences are statistically significant. Likewise, flares of bright and normal relative brightness have mean values of decay time and duration that are significantly longer than those computed for faint flares, and mass-motion related flares are significantly longer than non-mass-motion related flares. Seventy-three percent of the mass-motion related flares are categorized as being a two-ribbon flare and/or being accompanied by a high-speed dark filament. Slow rise time flares (rise time greater than 5 min) have a mean value for duration that is significantly longer than that computed for fast rise time flares, and long-lived duration flares (duration greater than 18 min) have a mean value for rise time that is significantly longer than that computed for short-lived duration flares, suggesting a positive linear relationship between rise time and duration for flares. Monthly occurrence rates for flares in general and by group are found to be linearly related in a positive sense to monthly sunspot number. Statistical testing reveals the association between sunspot number and numbers of flares to be significant at the 95 percent level of confidence, and the t statistic for slope is significant at greater than 99 percent level of confidence. Dependent upon the specific fit, between 58 percent and 94 percent of

  5. Measurements and Modeling of Total Solar Irradiance in X-class Solar Flares

    NASA Technical Reports Server (NTRS)

    Moore, Christopher S.; Chamberlin, Phillip Clyde; Hock, Rachel

    2014-01-01

    The Total Irradiance Monitor (TIM) from NASA's SOlar Radiation and Climate Experiment can detect changes in the total solar irradiance (TSI) to a precision of 2 ppm, allowing observations of variations due to the largest X-class solar flares for the first time. Presented here is a robust algorithm for determining the radiative output in the TIM TSI measurements, in both the impulsive and gradual phases, for the four solar flares presented in Woods et al., as well as an additional flare measured on 2006 December 6. The radiative outputs for both phases of these five flares are then compared to the vacuum ultraviolet (VUV) irradiance output from the Flare Irradiance Spectral Model (FISM) in order to derive an empirical relationship between the FISM VUV model and the TIM TSI data output to estimate the TSI radiative output for eight other X-class flares. This model provides the basis for the bolometric energy estimates for the solar flares analyzed in the Emslie et al. study.

  6. Solar and stellar flares and their impact on planets

    NASA Astrophysics Data System (ADS)

    Shibata, Kazunari

    Recent observations of the Sun revealed that the solar atmosphere is full of flares and flare-like phenomena, which affect terrestrial environment and our civilization. It has been established that flares are caused by the release of magnetic energy through magnetic reconnection. Many stars show flares similar to solar flares, and such stellar flares especially in stars with fast rotation are much more energetic than solar flares. These are called superflares. The total energy of a solar flare is 1029 - 1032 erg, while that of a superflare is 1033 - 1038 erg. Recently, it was found that superflares (with 1034 - 1035 erg) occur on Sun-like stars with slow rotation with frequency once in 800 - 5000 years. This suggests the possibility of superflares on the Sun. We review recent development of solar and stellar flare research, and briefly discuss possible impacts of superflares on the Earth and exoplanets.

  7. Ion Acceleration in Solar Flares Determined by Solar Neutron Observations

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Solar Neutron Observation Group

    2013-05-01

    Large amounts of particles can be accelerated to relativistic energy in association with solar flares and/or accompanying phenomena (e.g., CME-driven shocks), and they sometimes reach very near the Earth and penetrate the Earth's atmosphere. These particles are observed by ground-based detectors (e.g., neutron monitors) as Ground Level Enhancements (GLEs). Some of the GLEs originate from high energy solar neutrons which are produced in association with solar flares. These neutrons are also observed by ground-based neutron monitors and solar neutron telescopes. Recently, some of the solar neutron detectors have also been operating in space. By observing these solar neutrons, we can obtain information about ion acceleration in solar flares. Such neutrons were observed in association with some X-class flares in solar cycle 23, and sometimes they were observed by two different types of detectors. For example, on 2005 September 7, large solar neutron signals were observed by the neutron monitor at Mt. Chacaltaya in Bolivia and Mexico City, and by the solar neutron telescopes at Chacaltaya and Mt. Sierra Negra in Mexico in association with an X17.0 flare. The neutron signal continued for more than 20 minutes with high statistical significance. Intense gamma-ray emission was also registered by INTEGRAL, and by RHESSI during the decay phase. We analyzed these data using the solar-flare magnetic-loop transport and interaction model of Hua et al. (2002), and found that the model could successfully fit the data with intermediate values of loop magnetic convergence and pitch angle scattering parameters. These results indicate that solar neutrons were produced at the same time as the gamma-ray line emission and that ions were continuously accelerated at the emission site. In this paper, we introduce some of the solar neutron observations in solar cycle 23, and discuss the tendencies of the physical parameters of solar neutron GLEs, and the energy spectrum and population of the

  8. On the Performance of Multi-Instrument Solar Flare Observations During Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Milligan, Ryan O.; Ireland, Jack

    2018-02-01

    The current fleet of space-based solar observatories offers us a wealth of opportunities to study solar flares over a range of wavelengths. Significant advances in our understanding of flare physics often come from coordinated observations between multiple instruments. Consequently, considerable efforts have been, and continue to be, made to coordinate observations among instruments ( e.g. through the Max Millennium Program of Solar Flare Research). However, there has been no study to date that quantifies how many flares have been observed by combinations of various instruments. Here we describe a technique that retrospectively searches archival databases for flares jointly observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), Solar Dynamics Observatory (SDO)/ EUV Variability Experiment (EVE - Multiple EUV Grating Spectrograph (MEGS)-A and -B, Hinode/( EUV Imaging Spectrometer, Solar Optical Telescope, and X-Ray Telescope), and Interface Region Imaging Spectrograph (IRIS). Out of the 6953 flares of GOES magnitude C1 or greater that we consider over the 6.5 years after the launch of SDO, 40 have been observed by 6 or more instruments simultaneously. Using each instrument's individual rate of success in observing flares, we show that the numbers of flares co-observed by 3 or more instruments are higher than the number expected under the assumption that the instruments operated independently of one another. In particular, the number of flares observed by larger numbers of instruments is much higher than expected. Our study illustrates that these missions often acted in cooperation, or at least had aligned goals. We also provide details on an interactive widget ( Solar Flare Finder), now available in SSWIDL, which allows a user to search for flaring events that have been observed by a chosen set of instruments. This provides access to a broader range of events in order to answer specific science questions. The difficulty in scheduling coordinated

  9. Investigation of relationships between parameters of solar nano-flares and solar activity

    NASA Astrophysics Data System (ADS)

    Safari, Hossein; Javaherian, Mohsen; Kaki, Bardia

    2016-07-01

    Solar flares are one of the important coronal events which are originated in solar magnetic activity. They release lots of energy during the interstellar medium, right after the trigger. Flare prediction can play main role in avoiding eventual damages on the Earth. Here, to interpret solar large-scale events (e.g., flares), we investigate relationships between small-scale events (nano-flares) and large-scale events (e.g., flares). In our method, by using simulations of nano-flares based on Monte Carlo method, the intensity time series of nano-flares are simulated. Then, the solar full disk images taken at 171 angstrom recorded by SDO/AIA are employed. Some parts of the solar disk (quiet Sun (QS), coronal holes (CHs), and active regions (ARs)) are cropped and the time series of these regions are extracted. To compare the simulated intensity time series of nano-flares with the intensity time series of real data extracted from different parts of the Sun, the artificial neural networks is employed. Therefore, we are able to extract physical parameters of nano-flares like both kick and decay rate lifetime, and the power of their power-law distributions. The procedure of variations in the power value of power-law distributions within QS, CH is similar to AR. Thus, by observing the small part of the Sun, we can follow the procedure of solar activity.

  10. Bright Solar Flare

    NASA Image and Video Library

    2017-12-08

    A bright solar flare is captured by the EIT 195Å instrument on 1998 May 2. A solar flare (a sudden, rapid, and intense variation in brightness) occurs when magnetic energy that has built up in the solar atmosphere is suddenly released, launching material outward at millions of km per hour. The Sun’s magnetic fields tend to restrain each other and force the buildup of tremendous energy, like twisting rubber bands, so much that they eventually break. At some point, the magnetic lines of force merge and cancel in a process known as magnetic reconnection, causing plasma to forcefully escape from the Sun. Credit: NASA/GSFC/SOHO/ESA To learn more go to the SOHO website: sohowww.nascom.nasa.gov/home.html To learn more about NASA's Sun Earth Day go here: sunearthday.nasa.gov/2010/index.php

  11. Solar flare particles - Energy-dependent composition and relationship to solar composition

    NASA Technical Reports Server (NTRS)

    Crawford, H. J.; Price, P. B.; Cartwright, B. G.; Sullivan, J. D.

    1975-01-01

    Plastic and glass track detectors on rockets and Apollo spacecraft have been used to determine the composition of particles from He to Ni at energies from 0.1 to 50 MeV per nucleon in several solar flares of widely varying intensities. At low energies the composition of solar particles is enriched in heavy elements by an amount, relative to the asymptotic high-energy composition, that increases with atomic number from Z = 2 up to at least Z = 50, that decreases with energy, and that varies from flare to flare. At high energies (usually beyond an energy of 5 to 20 MeV per nucleon) the composition becomes independent of energy and, though somewhat variable from flare to flare, approximates the composition of the solar atmosphere. A table of abundances of the even-Z elements from He to Ni (plus N) in solar particles is constructed by averaging the asymptotic high-energy abundances in several flares.

  12. Statistical properties of solarflare activity

    NASA Astrophysics Data System (ADS)

    Deng, Linhua; Zhang, Xiaojuan; An, Jianmei; Cai, Yunfang

    2017-12-01

    Magnetic field structures on the solar atmosphere are not symmetric distribution in the northern and southern hemispheres, which is an important aspect of quasi-cyclical evolution of magnetic activity indicators that are related to solar dynamo theories. Three standard analysis techniques are applied to analyze the hemispheric coupling (north-south asymmetry and phase asynchrony) of monthly averaged values of solarflare activity over the past 49 years (from 1966 January to 2014 December). The prominent results are as follows: (1) from a global point of view, solarflare activity on both hemispheres are strongly correlated with each other, but the northern hemisphere precedes the southern one with a phase shift of 7 months; (2) the long-range persistence indeed exists in solarflare activity, but the dynamical complexities in the two hemispheres are not identical; (3) the prominent periodicities of Hα flare activity are 17 years full-disk activity cycle and 11 years Schwabe solar cycle, but the short- and mid-term periodicities cannot determined by monthly time series; (4) by comparing the non-parametric rescaling behavior on a point-by-point basis, the hemispheric asynchrony of solarflare activity are estimated to be ranging from several months to tens of months with an average value of 8.7 months. The analysis results could promote our knowledge on the long-range persistence, the quasi-periodic variation, and the hemispheric asynchrony of solarflare activity on both hemispheres, and possibly provide valuable information for the hemispheric interrelation of solar magnetic activity.

  13. Equatorial ionospheric electrodynamics during solar flares

    NASA Astrophysics Data System (ADS)

    Zhang, Ruilong; Liu, Libo; Le, Huijun; Chen, Yiding

    2017-05-01

    Previous investigations on ionospheric responses to solar flares focused mainly on the photoionization caused by the increased X-rays and extreme ultraviolet irradiance. However, little attention was paid to the related electrodynamics. In this letter, we explored the equatorial electric field (EEF) and electrojet (EEJ) in the ionosphere at Jicamarca during flares from 1998 to 2008. It is verified that solar flares increase dayside eastward EEJ but decrease dayside eastward EEF, revealing a negative correlation between EEJ and EEF. The decreased EEF weakens the equatorial fountain effect and depresses the low-latitude electron density. During flares, the enhancement in the Cowling conductivity may modulate ionospheric dynamo and decrease the EEF. Besides, the decreased EEF is closely related to the enhanced ASY-H index that qualitatively reflects Region 2 field-aligned current (R2 FAC). We speculated that solar flares may also decrease EEF through enhancing R2 FAC that leads to an overshielding-like effect.

  14. Searching for Missing Pieces for Solar Flare Forecasting

    NASA Astrophysics Data System (ADS)

    Leka, K. D.

    2015-12-01

    Knowledge of the state of the solar photospheric magnetic field at a single instant in time does not appear sufficient to uniquely predict the size and timing of impending solar flares. Such knowledge may provide necessary conditions, such as estimates of the magnetic energy needed for a flare to occur. Given the necessary conditions, it is often assumed that the evolution of the field, possibly by only a small amount, may trigger the onset of a flare. We present the results of a study using time series of photospheric vector field data from the Helioseismic and Magnetic Imager (HMI) on NASA's Solar Dynamics Observatory (SDO) to quantitatively parameterize both the state and evolution of solar active regions - their complexity, magnetic topology and energy - as related to solar flare events. We examine both extensive and intensive parameters and their short-term temporal behavior, in the context of predicting flares at various thresholds. Statistical tests based on nonparametric Discriminant Analysis are used to compare pre-flare epochs to a control group of flare-quiet epochs and active regions. Results regarding the type of photospheric signature examined and the efficacy of using the present state vs. temporal evolution to predict solar flares is quantified by standard skill scores. This work is made possible by contracts NASA NNH12CG10C and NOAA/SBIR WC-133R-13-CN-0079.

  15. Active Longitude and Solar Flare Occurrences

    NASA Astrophysics Data System (ADS)

    Gyenge, N.; Ludmány, A.; Baranyi, T.

    2016-02-01

    The aim of the present work is to specify the spatio-temporal characteristics of flare activity observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Geostationary Operational Environmental Satellite (GOES) in connection with the behavior of the longitudinal domain of enhanced sunspot activity known as active longitude (AL). By using our method developed for this purpose, we identified the AL in every Carrington Rotation provided by the Debrecen Photoheliographic Data. The spatial probability of flare occurrence has been estimated depending on the longitudinal distance from AL in the northern and southern hemispheres separately. We have found that more than 60% of the RHESSI and GOES flares is located within +/- 36^\\circ from the AL. Hence, the most flare-productive active regions tend to be located in or close to the active longitudinal belt. This observed feature may allow for the prediction of the geo-effective position of the domain of enhanced flaring probability. Furthermore, we studied the temporal properties of flare occurrence near the AL and several significant fluctuations were found. More precisely, the results of the method are the following fluctuations: 0.8, 1.3, and 1.8 years. These temporal and spatial properties of the solar flare occurrence within the active longitudinal belts could provide us with an enhanced solar flare forecasting opportunity.

  16. Statistical properties of solar flares and coronal mass ejections through the solar cycle

    NASA Astrophysics Data System (ADS)

    Telloni, Daniele; Carbone, Vincenzo; Lepreti, Fabio; Antonucci, Ester

    2016-03-01

    Waiting Time Distributions (WTDs) of solar flares are investigated all through the solar cycle. The same approach applied to Coronal Mass Ejections (CMEs) in a previous work is considered here for flare occurrence. Our analysis reveals that flares and CMEs share some common statistical properties, which result dependent on the level of solar activity. Both flares and CMEs seem to independently occur during minimum solar activity phases, whilst their WTDs significantly deviate from a Poisson function at solar maximum, thus suggesting that these events are correlated. The characteristics of WTDs are constrained by the physical processes generating those eruptions associated with flares and CMEs. A scenario may be drawn in which different mechanisms are actively at work during different phases of the solar cycle. Stochastic processes, most likely related to random magnetic reconnections of the field lines, seem to play a key role during solar minimum periods. On the other hand, persistent processes, like sympathetic eruptions associated to the variability of the photospheric magnetism, are suggested to dominate during periods of high solar activity. Moreover, despite the similar statistical properties shown by flares and CMEs, as it was mentioned above, their WTDs appear different in some aspects. During solar minimum periods, the flare occurrence randomness seems to be more evident than for CMEs. Those persistent mechanisms generating interdependent events during maximum periods of solar activity can be suggested to play a more important role for CMEs than for flares, thus mitigating the competitive action of the random processes, which seem instead strong enough to weaken the correlations among flare event occurrence during solar minimum periods. However, it cannot be excluded that the physical processes at the basis of the origin of the temporal correlation between solar events are different for flares and CMEs, or that, more likely, more sophisticated effects are

  17. Particle acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Forman, M. A.

    1987-01-01

    The most direct signatures of particle acceleration in flares are energetic particles detected in interplanetary space and in the Earth atmosphere, and gamma rays, neutrons, hard X-rays, and radio emissions produced by the energetic particles in the solar atmosphere. The stochastic and shock acceleration theories in flares are reviewed and the implications of observations on particle energy spectra, particle confinement and escape, multiple acceleration phases, particle anistropies, and solar atmospheric abundances are discussed.

  18. Capabilities of GRO/OSSE for observing solar flares

    NASA Technical Reports Server (NTRS)

    Kurfess, J. D.; Johnson, W. N.; Share, G. H.; Hulburt, E. O.; Matz, S. M.; Murphy, R. J.

    1989-01-01

    The launch of the Gamma Ray Observatory (GRO) near solar maximum makes solar flare studies early in the mission particularly advantageous. The Oriented Scintillation Spectrometer Experiment (OSSE) on GRO, covering the energy range 0.05 to 150 MeV, has some significant advantages over the previous generation of satellite-borne gamma-ray detectors for solar observations. The OSSE detectors will have about 10 times the effective area of the Gamma-Ray Spectrometer (GRS) on Solar Maximum Mission (SMM) for both photons and high-energy neutrons. The OSSE also has the added capability of distinguishing between high-energy neutrons and photons directly. The OSSE spectral accumulation time (approx. 4s) is four times faster than that of the SMM/GRS; much better time resolution is available in selected energy ranges. These characteristics will allow the investigation of particle acceleration in flares based on the evolution of the continuum and nuclear line components of flare spectra, nuclear emission in small flares, the anisotropy of continuum emission in small flares, and the relative intensities of different nuclear lines. The OSSE observational program will be devoted primarily to non-solar sources. Therefore, solar observations require planning and special configurations. The instrumental and operational characteristics of OSSE are discussed in the context of undertaking solar observations. The opportunities for guest investigators to participate in solar flare studies with OSSE is also presented.

  19. Are solar gamma-ray-line flares different from other large flares?

    NASA Technical Reports Server (NTRS)

    Cliver, E. W.; Crosby, N. B.; Dennis, B. R.

    1994-01-01

    We reevaluate evidence indicating that gamma-ray-line (GRL) flares are fundamentally different from other large flares without detectable GRL emission and find no compelling support for this proposition. For large flares observed by the Solar Maximum Mission (SMM) from 1980 to 1982, we obtain a reasonably good correlation between 4-8 MeV GRL fluences and greater than 50 keV hard X-ray fluences and find no evidence for a distinct population of large hard X-ray flares that lack commensurate GRL emission. Our results are consistent with the acceleration of the bulk of the approximately 100 keV electrons and approximately 10 MeV protons (i.e., the populations of these species that interact in the solar atmosphere to produce hard X-ray and GRL emission) by a common process in large flares of both long and short durations.

  20. Solar and Stellar Flares and Their Effects on Planets

    NASA Astrophysics Data System (ADS)

    Shibata, Kazunari

    2015-08-01

    Recent space observations of the Sun revealed that the solar atmosphere is full of explosions, such as flares and flare-like phenomena. These flares generate not only strong electromagnetic emissions but also nonthermal particles and bulk plasma ejections, which sometimes lead to geomagnetic storms and affect terrestrial environment and our civilization, damaging satellite, power-grids, radio communication etc. Solar flares are prototype of various explosions in our universe, and hence are important not only for geophysics and environmental science but also for astrophysics. The energy source of solar flares is now established to be magnetic energy stored near sunspots. There is now increasing observational evidence that solar flares are caused by magnetic reconnection, merging of anti-parallel magnetic field lines and associated magneto-plasma dynamics (Shibata and Magara 2011, Living Review). It has also been known that many stars show flares similar to solar flares, and often such stellar flares are much more energetic than solar flares. The total energy of a solar flare is typically 10^29 - 10^32 erg. On the other hand, there are much more energetic flares (10^33 - 10^38 erg) in stars, especially in young stars. These are called superflares. We argue that these superflares on stars can also be understood in a unified way based on the reconnection mechanism. Finally we show evidence of occurrence of superflares on Sun-like stars according to recent stellar observations (Maehara et al. 2012, Nature, Shibayama et al. 2013), which revealed that superflares with energy of 10^34 - 10^35 erg (100 - 1000 times of the largest solar flares) occur with frequency of once in 800 - 5000 years on Sun-like stars which are very similar to our Sun. Against the previous belief, these new observations as well as theory (Shibata et al. 2013) suggest that we cannot deny the possibility of superflares on the present Sun. Finally, we shall discuss possible impacts of these superflares

  1. Building Big Flares: Constraining Generating Processes of Solar Flare Distributions

    NASA Astrophysics Data System (ADS)

    Wyse Jackson, T.; Kashyap, V.; McKillop, S.

    2015-12-01

    We address mechanisms which seek to explain the observed solar flare distribution, dN/dE ~ E1.8. We have compiled a comprehensive database, from GOES, NOAA, XRT, and AIA data, of solar flares and their characteristics, covering the year 2013. These datasets allow us to probe how stored magnetic energy is released over the course of an active region's evolution. We fit power-laws to flare distributions over various attribute groupings. For instance, we compare flares that occur before and after an active region reaches its maximum area, and show that the corresponding flare distributions are indistinguishable; thus, the processes that lead to magnetic reconnection are similar in both cases. A turnover in the distribution is not detectable at the energies accessible to our study, suggesting that a self-organized critical (SOC) process is a valid mechanism. However, we find changes in the distributions that suggest that the simple picture of an SOC where flares draw energy from an inexhaustible reservoir of stored magnetic energy is incomplete. Following the evolution of the flare distribution over the lifetimes of active regions, we find that the distribution flattens with time, and for larger active regions, and that a single power-law model is insufficient. This implies that flares that occur later in the lifetime of the active region tend towards higher energies. We conclude that the SOC process must have an upper bound. Increasing the scope of the study to include data from other years and more instruments will increase the robustness of these results. This work was supported by the NSF-REU Solar Physics Program at SAO, grant number AGS 1263241, NASA Contract NAS8-03060 to the Chandra X-ray Center and by NASA Hinode/XRT contract NNM07AB07C to SAO

  2. The solar energetic particle propagation of solar flare events on 24th solar cycle.

    NASA Astrophysics Data System (ADS)

    Paluk, P.; Khumlumlert, T.; Kanlayaprasit, N.; Aiemsa-ad, N.

    2017-09-01

    Now the Sun is in the 24th solar cycle. The peak of solar cycle correspond to the number of the Sun activities, which one of them is solar flare. The solar flare is the violent explosion at the solar atmosphere and releases the high energy ion from the Sun to the interplanetary medium. Solar energetic particles or solar cosmic ray have important effect on the Earth, such as disrupt radio communication. We analyze the particle transport of the solar flare events on August 9, 2011, January 27, 2012, and November 3, 2013 in 24th solar cycle. The particle data for each solar flare was obtained from SIS instrument on ACE spacecraft. We simulate the particle transport with the equation of Ruffolo 1995, 1998. We solve the transport equation with the numerical technique of finite different. We find the injection duration from the Sun to the Earth by the compared fitting method of piecewise linear function between the simulation results and particle data from spacecraft. The position of these solar flare events are on the west side of the Sun, which are N18W68, N33W85, and S12W16. We found that mean free path is roughly constant for a single event. This implies that the interplanetary scattering is approximately energy independent, but the level of scattering varies with time. The injection duration decreases with increasing energy. We found the resultant variation of the highest energy and lowest energy, because the effect of space environments and the number of the detected data was small. The high mean free path of the high energy particles showed the transport capability of particles along to the variable magnetic field line. The violent explosion of these solar flares didn’t affect on the Earth magnetic field with Kp-index less than 3.

  3. Discovering Tau and Muon Solar Neutrino Flares above Backgrounds

    NASA Astrophysics Data System (ADS)

    Fargion, D.; Moscato, F.

    2005-01-01

    Solar neutrino flares astronomy is at the edge of its discover. High energy flare particles (protons, alpha) whose self scattering within the solar corona is source of a rich prompt charged pions are also source of sharp solar neutrino "burst" (at tens-hundred MeV) produced by their pion-muon primary decay in flight. This brief (minute) solar neutrino "burst" at largest peak overcome by four-five order of magnitude the steady atmospheric neutrino noise at the Earth. Later on, solar flare particles hitting the terrestrial atmosphere may marginally increase the atmospheric neutrino flux without relevant consequences. Largest prompt "burst" solar neutrino flare may be detected in present or better in future largest neutrino underground neutrino detectors. Our estimate for the recent and exceptional October - November 2003 solar flares gives a number of events above or just near unity for Super-Kamiokande. The neutrino spectra may reflect in a subtle way the neutrino flavour mixing in flight. A surprising tau appearance may even occur for a hard ({E}_{nu}_{mu}--> {E}_{nu}_{tau} > 4 GeV) flare spectra. A comparison of the solar neutrino flare (at their birth place on Sun and after oscillation on the arrival on the Earth) with other neutrino foreground is here described and it offer an independent road map to disentangle the neutrino flavour puzzles and its secret flavour mixing angles .

  4. High-energy particles associated with solar flares

    NASA Technical Reports Server (NTRS)

    Sakurai, K.; Klimas, A. J.

    1974-01-01

    High-energy particles, the so-called solar cosmic rays, are often generated in association with solar flares, and then emitted into interplanetary space. These particles, consisting of electrons, protons, and other heavier nuclei, including the iron-group, are accelerated in the vicinity of the flare. By studying the temporal and spatial varation of these particles near the earth's orbit, their storage and release mechanisms in the solar corona and their propagation mechanism can be understood. The details of the nuclear composition and the rigidity spectrum for each nuclear component of the solar cosmic rays are important for investigating the acceleration mechanism in solar flares. The timing and efficiency of the acceleration process can also be investigated by using this information. These problems are described in some detail by using observational results on solar cosmic rays and associated phenomena.

  5. SPE in Solar Cycle 24 : Flare and CME characteristic

    NASA Astrophysics Data System (ADS)

    Neflia, Neflia

    SPE is one of the most severe hazards in the space environment. Such events, tend to occur during periods of intense solar activity, and can lead to high radiation doses in short time intervals. The proton enhancements produced by these solar events may last several days and are very hard to predict in advance and they also can cause harm to both satellite and human in space. The most significant sources of proton in the interplanetary medium are both solar flares and interplanetary shocks driven by coronal mass ejections (CMEs). In this study, I try to find the characteristic of Flare and CME that can cause the proton events in interplanetary medium. For my preliminary study, I will search flare characteristic such as class and position as an SPE causes. I also did the research with CME characteristic such as Angular Width (AW) and linier velocity. During solar cycle 24, the solar activity remain very low with several large flare and Halo CME. This low activity also occur on solar proton events in interplanetary medium. From January 2009 to May 2013, there are 25 SPEs with flux range from 12 - 6530 sfu (10 MeV). The solar flare during these events varies from C to X- class flare. From 27 X-class flare that occur during 2009 - May 2013, only 7 flares cause the SPE. Most of active region location are at solar Western Hemisphere (16/25). only 24 from 139 halo CME (AW=360) cause SPE. Although the probability of SPE from all flare and CME during this range of time is small but they have 3 common characteristics, ie, most of the SPE have active region position at Solar Western Hemisphere, the CME have AW=360 and they have a high linier velocity.

  6. BATSE Solar Flare Spectroscopy

    NASA Technical Reports Server (NTRS)

    Schwartz, R. A.

    1998-01-01

    This final report describes the progress originally proposed: (1) the continued improvement of a software and database environment capable of supporting all users of BATSE solar data as well as providing scientific expertise and effort to the BATSE solar community; (2) the continued participation with the PI team and other guest investigators in the detailed analysis of the BATSE detectors' response at low energies; (3) using spectroscopic techniques to fully exploit the potential of electron time-of-flight studies; and, (4) a full search for flare gamma-ray line emission at 2.2 MeV from all GOES X-class flares observed with BATSE.

  7. Interactive Multi-Instrument Database of Solar Flares

    NASA Technical Reports Server (NTRS)

    Ranjan, Shubha S.; Spaulding, Ryan; Deardorff, Donald G.

    2018-01-01

    The fundamental motivation of the project is that the scientific output of solar research can be greatly enhanced by better exploitation of the existing solar/heliosphere space-data products jointly with ground-based observations. Our primary focus is on developing a specific innovative methodology based on recent advances in "big data" intelligent databases applied to the growing amount of high-spatial and multi-wavelength resolution, high-cadence data from NASA's missions and supporting ground-based observatories. Our flare database is not simply a manually searchable time-based catalog of events or list of web links pointing to data. It is a preprocessed metadata repository enabling fast search and automatic identification of all recorded flares sharing a specifiable set of characteristics, features, and parameters. The result is a new and unique database of solar flares and data search and classification tools for the Heliophysics community, enabling multi-instrument/multi-wavelength investigations of flare physics and supporting further development of flare-prediction methodologies.

  8. The Conundrum of the Solar Pre-Flare Photospheric State.

    NASA Astrophysics Data System (ADS)

    Leka, KD; Barnes, Graham; Wagner, Eric

    2015-08-01

    Knowledge of the state of the solar photospheric magnetic field at a single instant in time does not appear sufficient to predict the size and timing of impending solar flares. Such knowledge may provide necessary conditions, such as the free magnetic energy needed for a flare to occur. Given the necessary conditions, it is often assumed that the evolution of the field, possibly by only a small amount, may trigger the onset of a flare. We present the results of a study using time series of photospheric vector field data from the Helioseismic and Magnetic Imager (HMI) on NASA's Solar Dynamics Observatory (SDO) to quantitatively parameterize both the state and evolution of solar active regions - their complexity, magnetic topology and energy - as related to solar flare events. We examine both extensive and intensive parameters and their temporal behavior, in the context of both large and small flaring episodes. Statistical tests based on nonparametric Discriminant Analysis are used to compare pre-flare epochs to a control group of flare-quiet epochs and active regions. Results regarding the type of photospheric signature examined and the efficacy of using the present state vs. temporal evolution to predict solar flares is quantified by standard skill scores.This work is made possible by contracts NASA NNH12CG10C and NOAA/SBIR WC-133R-13-CN-0079.

  9. Ultrarelativistic electrons and solar flare gamma-radiation

    NASA Technical Reports Server (NTRS)

    Semukhin, P. E.; Kovaltsov, G. A.

    1985-01-01

    Ten solar flares with gamma radiation in excess of 10 MeV were observed. Almost all took place within a heliolatitude greater than 60 deg, close to the solar limb, an indication of the essential anisotropy of high-energy gamma radiation. This high-energy solar flare gamma radiation can be explained by the specific features of the bremsstrahlung of ultrarelativistic electrons trapped within the magnetic arc of the solar atmosphere, even if the acceleration of the electrons is anisotropic.

  10. X-class Solar Flare on March 29, 2014

    NASA Image and Video Library

    2014-03-31

    Extreme ultraviolet light streams out of an X-class solar flare as seen in this image captured on March 29, 2014, by NASA's Solar Dynamics Observatory. This image blends two wavelengths of light: 304 and 171 Angstroms, which help scientists observe the lower levels of the sun's atmosphere. More info: The sun emitted a significant solar flare, peaking at 1:48 p.m. EDT March 29, 2014, and NASA's Solar Dynamics Observatory captured images of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. To see how this event impacted Earth, please visit NOAA's Space Weather Prediction Center at spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings. This flare is classified as an X.1-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Solar Flares Observed with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI)

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    2004-01-01

    Solar flares are impressive examples of explosive energy release in unconfined, magnetized plasma. It is generally believed that the flare energy is derived from the coronal magnetic field. However, we have not been able to establish the specific energy release mechanism(s) or the relative partitioning of the released energy between heating, particle acceleration (electrons and ions), and mass motions. NASA's RHESSI Mission was designed to study the acceleration and evolution of electrons and ions in flares by observing the X-ray and gamma-ray emissions these energetic particles produce. This is accomplished through the combination of high-resolution spectroscopy and spectroscopic imaging, including the first images of flares in gamma rays. RHESSI has observed over 12,000 solar flares since its launch on February 5, 2002. I will demonstrate how we use the RHESSI spectra to deduce physical properties of accelerated electrons and hot plasma in flares. Using images to estimate volumes, w e typically find that the total energy in accelerated electrons is comparable to that in the thermal plasma. I will also present flare observations that provide strong support for the presence of magnetic reconnection in a large-scale, vertical current sheet in the solar corona. RHESSI observations such as these are allowing us to probe more deeply into the physics of solar flares.

  12. Solar Eruptions: Coronal Mass Ejections and Flares

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2012-01-01

    This lecture introduces the topic of Coronal mass ejections (CMEs) and solar flares, collectively known as solar eruptions. During solar eruptions, the released energy flows out from the Sun in the form of magnetized plasma and electromagnetic radiation. The electromagnetic radiation suddenly increases the ionization content of the ionosphere, thus impacting communication and navigation systems. Flares can be eruptive or confined. Eruptive flares accompany CMEs, while confined flares hav only electromagnetic signature. CMEs can drive MHD shocks that accelerate charged particles to very high energies in the interplanetary space, which pose radiation hazard to astronauts and space systems. CMEs heading in the direction of Earth arrive in about two days and impact Earth's magnetosphere, producing geomagnetic storms. The magnetic storms result in a number of effects including induced currnts that can disrupt power grids, railroads, and underground pipelines

  13. NASA's SDO Shows Images of Significant Solar Flare

    NASA Image and Video Library

    2017-12-08

    Caption: An X-class solar flare erupted on the left side of the sun on the evening of Feb. 24, 2014. This composite image, captured at 7:59 p.m. EST, shows the sun in X-ray light with wavelengths of both 131 and 171 angstroms. Credit: NASA/SDO More info: The sun emitted a significant solar flare, peaking at 7:49 p.m. EST on Feb. 24, 2014. NASA's Solar Dynamics Observatory, which keeps a constant watch on the sun, captured images of the event. Solar flares are powerful bursts of radiation, appearing as giant flashes of light in the SDO images. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This flare is classified as an X4.9-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Advances In Understanding Solar And Stellar Flares

    NASA Astrophysics Data System (ADS)

    Kowalski, Adam F.

    2016-07-01

    Flares result from the sudden reconnection and relaxation of magnetic fields in the coronae of stellar atmospheres. The highly dynamic atmospheric response produces radiation across the electromagnetic spectrum, from the radio to X-rays, on a range of timescales, from seconds to days. New high resolution data of solar flares have revealed the intrinsic spatial properties of the flaring chromosphere, which is thought to be where the majority of the flare energy is released as radiation in the optical and near-UV continua and emission lines. New data of stellar flares have revealed the detailed properties of the broadband (white-light) continuum emission, which provides straightforward constraints for models of the transformation of stored magnetic energy in the corona into thermal energy of the lower atmosphere. In this talk, we discuss the physical processes that produce several important spectral phenomena in the near-ultraviolet and optical as revealed from new radiative-hydrodynamic models of flares on the Sun and low mass stars. We present recent progress with high-flux nonthermal electron beams in reproducing the observed optical continuum color temperature of T 10,000 K and the Balmer jump properties in the near-ultraviolet. These beams produce dense, heated chromospheric condensations, which can explain the shape and strength of the continuum emission in M dwarf flares and the red-wing asymmetries in the chromospheric emission lines in recent observations of solar flares from the Interface Region Imaging Spectrograph. Current theoretical challenges and future modeling directions will be discussed, as well as observational synergies between solar and stellar flares.

  15. NASA's SDO Sees Solar Flares

    NASA Image and Video Library

    2014-06-10

    A solar flare bursts off the left limb of the sun in this image captured by NASA's Solar Dynamics Observatory on June 10, 2014, at 7:41 a.m. EDT. This is classified as an X2.2 flare, shown in a blend of two wavelengths of light: 171 and 131 angstroms, colorized in gold and red, respectively. Credit: NASA/SDO/Goddard/Wiessinger NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Deep Flare Net (DeFN) Model for Solar Flare Prediction

    NASA Astrophysics Data System (ADS)

    Nishizuka, N.; Sugiura, K.; Kubo, Y.; Den, M.; Ishii, M.

    2018-05-01

    We developed a solar flare prediction model using a deep neural network (DNN) named Deep Flare Net (DeFN). This model can calculate the probability of flares occurring in the following 24 hr in each active region, which is used to determine the most likely maximum classes of flares via a binary classification (e.g., ≥M class versus Solar Dynamic Observatory, we automatically detected sunspots and calculated 79 features for each region, to which flare occurrence labels of X-, M-, and C-class were attached. We adopted the features used in Nishizuka et al. (2017) and added some features for operational prediction: coronal hot brightening at 131 Å (T ≥ 107 K) and the X-ray and 131 Å intensity data 1 and 2 hr before an image. For operational evaluation, we divided the database into two for training and testing: the data set in 2010–2014 for training, and the one in 2015 for testing. The DeFN model consists of deep multilayer neural networks formed by adapting skip connections and batch normalizations. To statistically predict flares, the DeFN model was trained to optimize the skill score, i.e., the true skill statistic (TSS). As a result, we succeeded in predicting flares with TSS = 0.80 for ≥M-class flares and TSS = 0.63 for ≥C-class flares. Note that in usual DNN models, the prediction process is a black box. However, in the DeFN model, the features are manually selected, and it is possible to analyze which features are effective for prediction after evaluation.

  17. NASA's SDO Shows Images of Significant Solar Flare

    NASA Image and Video Library

    2014-02-25

    Caption: These SDO images from 7:25 p.m. EST on Feb. 24, 2014, show the first moments of an X-class flare in different wavelengths of light -- seen as the bright spot that appears on the left limb of the sun. Hot solar material can be seen hovering above the active region in the sun's atmosphere, the corona. Credit: NASA/SDO More info: The sun emitted a significant solar flare, peaking at 7:49 p.m. EST on Feb. 24, 2014. NASA's Solar Dynamics Observatory, which keeps a constant watch on the sun, captured images of the event. Solar flares are powerful bursts of radiation, appearing as giant flashes of light in the SDO images. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This flare is classified as an X4.9-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Solar flare leaves sun quaking

    NASA Astrophysics Data System (ADS)

    1998-05-01

    Dr. Alexander G. Kosovichev, a senior research scientist from Stanford University, and Dr. Valentina V. Zharkova from Glasgow (United Kingdom) University found the tell-tale seismic signature in data on the Sun's surface collected by the Michelson Doppler Imager onboard the Solar and Heliospheric Observatory (SOHO) spacecraft immediately following a moderate-sized flare on July 9, 1996. "Although the flare was a moderate one, it still released an immense amount of energy," said Dr. Craig Deforest, a researcher with the SOHO project. "The energy released is equal to completely covering the Earth's continents with a yard of dynamite and detonating it all at once." SOHO is a joint project of the European Space Agency and NASA. The finding is reported in the May 28 issue of the journal Nature, and is the subject of a press conference at the spring meeting of the American Geophysical Union in Boston, Mass., May 27. The solar quake that the science team recorded looks much like ripples spreading from a rock dropped into a pool of water. But over the course of an hour, the solar waves traveled for a distance equal to 10 Earth diameters before fading into the fiery background of the Sun's photosphere. Unlike water ripples that travel outward at a constant velocity, the solar waves accelerated from an initial speed of 22,000 miles per hour to a maximum of 250,000 miles per hour before disappearing. "People have looked for evidence of seismic waves from flares before, but they didn't have a theory so they didn't know where to look," says Kosovichev. Several years ago Kosovichev and Zharkova developed a theory that can explain how a flare, which explodes in space above the Sun's surface, can generate a major seismic wave in the Sun's interior. According to the currently accepted model of solar flares, the primary explosion creates high-energy electrons (electrically charged subatomic particles). These are funneled down into a magnetic flux tube, an invisible tube of magnetic

  19. Solar flares and solar wind helium enrichments - July 1965-July 1967.

    NASA Technical Reports Server (NTRS)

    Hirshberg, J.; Bame, S. J.; Robbins, D. E.

    1972-01-01

    It has previously been suggested that the very high relative abundances of helium occasionally observed in the solar wind mark the plasma accelerated by major solar flares. To confirm this hypothesis, we have studied the 43 spectra with He/H greater than 15% that were observed among 10,300 spectra collected by Vela 3 between July 1965-July 1967. Six new flare-enhancement events are discussed in this paper. It is concluded that the association of helium enhancements with major flares is real, nonrandom, and very strong. With this study, there are 12 cases of reliable associations between helium enhancements and flares reported in the literature. The general characteristics of these events are discussed. It is found that the flares are typically large and bright (2B or 3B), often they produce cosmic ray protons, and they are widely distributed in solar longitude. A qualitative discussion of some of the possibilities for the source of helium enhanced plasma is presented. It is suggested that the helium enriched plasma may be the piston producing the shock causing the Type II radio emission.

  20. Statistical research into low-power solar flares. Main phase duration

    NASA Astrophysics Data System (ADS)

    Borovik, Aleksandr; Zhdanov, Anton

    2017-12-01

    This paper is a sequel to earlier papers on time parameters of solar flares in the Hα line. Using data from the International Flare Patrol, an electronic database of solar flares for the period 1972-2010 has been created. The statistical analysis of the duration of the main phase has shown that it increases with increasing flare class and brightness. It has been found that the duration of the main phase depends on the type and features of development of solar flares. Flares with one brilliant point have the shortest main phase; flares with several intensity maxima and two-ribbon flares, the longest one. We have identified more than 3000 cases with an ultra-long duration of the main phase (more than 60 minutes). For 90% of such flares the duration of the main phase is 2-3 hrs, but sometimes it reaches 12 hrs.

  1. NASA's SDO Observes an X-class Solar Flare

    NASA Image and Video Library

    2017-12-08

    The sun emitted a significant solar flare, peaking at 1:01 a.m. EDT on Oct. 19, 2014. NASA's Solar Dynamics Observatory, which is always observing the sun, captured an image of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. To see how this event may affect Earth, please visit NOAA's Space Weather Prediction Center at spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings. This flare is classified as an X1.1-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Millimeter radio evidence for containment mechanisms in solar flares

    NASA Technical Reports Server (NTRS)

    Mayfield, E. B.; White, K. P., III; Shimabukuro, F. I.

    1974-01-01

    Recent theories of solar flares are reviewed with emphasis on the aspects of pre-flare heating. The heating evident at 3.3-mm wavelength is analyzed in the form of daily maps of the solar disk and synoptic maps compiled from the daily maps. It is found that isotherms defining antenna temperature enhancements of 340 K correspond in shape and location to facular areas reported by Waldmeier. Maximum enhancements occur over sunspots or near neutral lines of the longitudinal magnetic fields which indicates heating associated with chromospheric currents. These enhancements are correlated with flare importance number and are observed to increase during several days preceding flaring. This evidence for a containment mechanism in the chromosphere is collated with current theories of solar flares.

  3. Correlation between solar flare productivity and photospheric vector magnetic fields

    NASA Astrophysics Data System (ADS)

    Cui, Yanmei; Wang, Huaning

    2008-11-01

    Studying the statistical correlation between the solar flare productivity and photospheric magnetic fields is very important and necessary. It is helpful to set up a practical flare forecast model based on magnetic properties and improve the physical understanding of solar flare eruptions. In the previous study ([Cui, Y.M., Li, R., Zhang, L.Y., He, Y.L., Wang, H.N. Correlation between solar flare productivity and photospheric magnetic field properties 1. Maximum horizontal gradient, length of neutral line, number of singular points. Sol. Phys. 237, 45 59, 2006]; from now on we refer to this paper as ‘Paper I’), three measures of the maximum horizontal gradient, the length of the neutral line, and the number of singular points are computed from 23990 SOHO/MDI longitudinal magnetograms. The statistical relationship between the solar flare productivity and these three measures is well fitted with sigmoid functions. In the current work, the three measures of the length of strong-shear neutral line, total unsigned current, and total unsigned current helicity are computed from 1353 vector magnetograms observed at Huairou Solar Observing Station. The relationship between the solar flare productivity and the current three measures can also be well fitted with sigmoid functions. These results are expected to be beneficial to future operational flare forecasting models.

  4. MAGNETIC PROPERTIES OF SOLAR ACTIVE REGIONS THAT GOVERN LARGE SOLAR FLARES AND ERUPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toriumi, Shin; Schrijver, Carolus J.; Harra, Louise K.

    Solar flares and coronal mass ejections (CMEs), especially the larger ones, emanate from active regions (ARs). With the aim of understanding the magnetic properties that govern such flares and eruptions, we systematically survey all flare events with Geostationary Orbiting Environmental Satellite levels of ≥M5.0 within 45° from disk center between 2010 May and 2016 April. These criteria lead to a total of 51 flares from 29 ARs, for which we analyze the observational data obtained by the Solar Dynamics Observatory . More than 80% of the 29 ARs are found to exhibit δ -sunspots, and at least three ARs violatemore » Hale’s polarity rule. The flare durations are approximately proportional to the distance between the two flare ribbons, to the total magnetic flux inside the ribbons, and to the ribbon area. From our study, one of the parameters that clearly determine whether a given flare event is CME-eruptive or not is the ribbon area normalized by the sunspot area, which may indicate that the structural relationship between the flaring region and the entire AR controls CME productivity. AR characterization shows that even X-class events do not require δ -sunspots or strong-field, high-gradient polarity inversion lines. An investigation of historical observational data suggests the possibility that the largest solar ARs, with magnetic flux of 2 × 10{sup 23} Mx, might be able to produce “superflares” with energies of the order of 10{sup 34} erg. The proportionality between the flare durations and magnetic energies is consistent with stellar flare observations, suggesting a common physical background for solar and stellar flares.« less

  5. A thermal/nonthermal approach to solar flares

    NASA Technical Reports Server (NTRS)

    Benka, Stephen G.

    1991-01-01

    An approach for modeling solar flare high-energy emissions is developed in which both thermal and nonthermal particles coexist and contribute to the radiation. The thermal/nonthermal distribution function is interpreted physically by postulating the existence of DC sheets in the flare region. The currents then provide both primary plasma heating through Joule dissipation, and runaway electron acceleration. The physics of runaway acceleration is discussed. Several methods are presented for obtaining approximations to the thermal/nonthermal distribution function, both within the current sheets and outside of them. Theoretical hard x ray spectra are calculated, allowing for thermal bremsstrahlung from the heated plasma electrons impinging on the chromosphere. A simple model for hard x ray images of two-ribbon flares is presented. Theoretical microwave gyrosynchrotron spectra are calculated and analyzed, uncovering important new effects caused by the interplay of thermal and nonthermal particles. The theoretical spectra are compared with observed high resolution spectra of solar flares, and excellent agreement is found, in both hard x rays and microwaves. The future detailed application of this approach to solar flares is discussed, as are possible refinements to this theory.

  6. Nuclear processes in solar flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.

    1982-01-01

    The theory of solar gamma-ray line production is reviewed and new calculations of line production yields are presented. Observations, carried out with gamma-ray spectrometers on OSO-7, HEAO-1, HEAO-3 and SMM are reviewed and compared with theory. These observations provide direct evidence for nuclear reactions in flares and furnish unique information on particle acceleration and flare mechanisms.

  7. Imaging X-Ray Polarimeter for Solar Flares (IXPS)

    NASA Technical Reports Server (NTRS)

    Hosack, Michael; Black, J. Kevin; Deines-Jones, Philip; Dennis, Brian R.; Hill, Joanne E.; Jahoda, Keith; Shih, Albert Y.; Urba, Christian E.; Emslie, A. Gordon

    2011-01-01

    We describe the design of a balloon-borne Imaging X-ray Polarimeter for Solar flares (IX PS). This novel instrument, a Time Projection Chamber (TPC) for photoelectric polarimetry, will be capable of measuring polarization at the few percent level in the 20-50 keV energy range during an M- or X class flare, and will provide imaging information at the approx.10 arcsec level. The primary objective of such observations is to determine the directivity of nonthermal high-energy electrons producing solar hard X-rays, and hence to learn about the particle acceleration and energy release processes in solar flares. Secondary objectives include the separation of the thermal and nonthermal components of the flare X-ray emissions and the separation of photospheric albedo fluxes from direct emissions.

  8. Statistical and observational research of solar flare for total spectra and geometrical features

    NASA Astrophysics Data System (ADS)

    Nishimoto, S.; Watanabe, K.; Imada, S.; Kawate, T.; Lee, K. S.

    2017-12-01

    Impulsive energy release phenomena such as solar flares, sometimes affect to the solar-terrestrial environment. Usually, we use soft X-ray flux (GOES class) as the index of flare scale. However, the magnitude of effect to the solar-terrestrial environment is not proportional to that scale. To identify the relationship between solar flare phenomena and influence to the solar-terrestrial environment, we need to understand the full spectrum of solar flares. There is the solar flare irradiance model named the Flare Irradiance Spectral Model (FISM) (Chamberlin et al., 2006, 2007, 2008). The FISM can estimate solar flare spectra with high wavelength resolution. However, this model can not express the time evolution of emitted plasma during the solar flare, and has low accuracy on short wavelength that strongly effects and/or controls the total flare spectra. For the purpose of obtaining the time evolution of total solar flare spectra, we are performing statistical analysis of the electromagnetic data of solar flares. In this study, we select solar flare events larger than M-class from the Hinode flare catalogue (Watanabe et al., 2012). First, we focus on the EUV emission observed by the SDO/EVE. We examined the intensities and time evolutions of five EUV lines of 55 flare events. As a result, we found positive correlation between the "soft X-ray flux" and the "EUV peak flux" for all EVU lines. Moreover, we found that hot lines peaked earlier than cool lines of the EUV light curves. We also examined the hard X-ray data obtained by RHESSI. When we analyzed 163 events, we found good correlation between the "hard X-ray intensity" and the "soft X-ray flux". Because it seems that the geometrical features of solar flares effect to those time evolutions, we also looked into flare ribbons observed by SDO/AIA. We examined 21 flare events, and found positive correlation between the "GOES duration" and the "ribbon length". We also found positive correlation between the "ribbon

  9. Automatic prediction of solar flares and super geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Song, Hui

    Space weather is the response of our space environment to the constantly changing Sun. As the new technology advances, mankind has become more and more dependent on space system, satellite-based services. A geomagnetic storm, a disturbance in Earth's magnetosphere, may produce many harmful effects on Earth. Solar flares and Coronal Mass Ejections (CMEs) are believed to be the major causes of geomagnetic storms. Thus, establishing a real time forecasting method for them is very important in space weather study. The topics covered in this dissertation are: the relationship between magnetic gradient and magnetic shear of solar active regions; the relationship between solar flare index and magnetic features of solar active regions; based on these relationships a statistical ordinal logistic regression model is developed to predict the probability of solar flare occurrences in the next 24 hours; and finally the relationship between magnetic structures of CME source regions and geomagnetic storms, in particular, the super storms when the D st index decreases below -200 nT is studied and proved to be able to predict those super storms. The results are briefly summarized as follows: (1) There is a significant correlation between magnetic gradient and magnetic shear of active region. Furthermore, compared with magnetic shear, magnetic gradient might be a better proxy to locate where a large flare occurs. It appears to be more accurate in identification of sources of X-class flares than M-class flares; (2) Flare index, defined by weighting the SXR flares, is proved to have positive correlation with three magnetic features of active region; (3) A statistical ordinal logistic regression model is proposed for solar flare prediction. The results are much better than those data published in the NASA/SDAC service, and comparable to the data provided by the NOAA/SEC complicated expert system. To our knowledge, this is the first time that logistic regression model has been applied

  10. Global Energetics of Solar Flares. V. Energy Closure in Flares and Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Caspi, Amir; Cohen, Christina M. S.; Holman, Gordon; Jing, Ju; Kretzschmar, Matthieu; Kontar, Eduard P.; McTiernan, James M.; Mewaldt, Richard A.; O'Flannagain, Aidan; Richardson, Ian G.; Ryan, Daniel; Warren, Harry P.; Xu, Yan

    2017-02-01

    In this study we synthesize the results of four previous studies on the global energetics of solar flares and associated coronal mass ejections (CMEs), which include magnetic, thermal, nonthermal, and CME energies in 399 solar M- and X-class flare events observed during the first 3.5 yr of the Solar Dynamics Observatory (SDO) mission. Our findings are as follows. (1) The sum of the mean nonthermal energy of flare-accelerated particles ({E}{nt}), the energy of direct heating ({E}{dir}), and the energy in CMEs ({E}{CME}), which are the primary energy dissipation processes in a flare, is found to have a ratio of ({E}{nt}+{E}{dir}+{E}{CME})/{E}{mag}=0.87+/- 0.18, compared with the dissipated magnetic free energy {E}{mag}, which confirms energy closure within the measurement uncertainties and corroborates the magnetic origin of flares and CMEs. (2) The energy partition of the dissipated magnetic free energy is: 0.51 ± 0.17 in nonthermal energy of ≥slant 6 {keV} electrons, 0.17 ± 0.17 in nonthermal ≥slant 1 {MeV} ions, 0.07 ± 0.14 in CMEs, and 0.07 ± 0.17 in direct heating. (3) The thermal energy is almost always less than the nonthermal energy, which is consistent with the thick-target model. (4) The bolometric luminosity in white-light flares is comparable to the thermal energy in soft X-rays (SXR). (5) Solar energetic particle events carry a fraction ≈ 0.03 of the CME energy, which is consistent with CME-driven shock acceleration. (6) The warm-target model predicts a lower limit of the low-energy cutoff at {e}c≈ 6 {keV}, based on the mean peak temperature of the differential emission measure of T e = 8.6 MK during flares. This work represents the first statistical study that establishes energy closure in solar flare/CME events.

  11. The Solar Flare: A Strongly Turbulent Particle Accelerator

    NASA Astrophysics Data System (ADS)

    Vlahos, L.; Krucker, S.; Cargill, P.

    The topics of explosive magnetic energy release on a large scale (a solar flare) and particle acceleration during such an event are rarely discussed together in the same article. Many discussions of magnetohydrodynamic (MHD) mod- eling of solar flares and/or CMEs have appeared (see [143] and references therein) and usually address large-scale destabilization of the coronal mag- netic field. Particle acceleration in solar flares has also been discussed exten- sively [74, 164, 116, 166, 87, 168, 95, 122, 35] with the main emphasis being on the actual mechanisms for acceleration (e.g., shocks, turbulence, DC electric fields) rather than the global magnetic context in which the acceleration takes place.

  12. An interacting loop model of solar flare bursts

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.

    1981-01-01

    As a result of the strong heating produced at chromospheric levels during a solar flare burst, the local gas pressure can transiently attain very large values in certain regions. The effectiveness of the surrounding magnetic field at confining this high pressure plasma is therefore reduced and the flaring loop becomes free to expand laterally. In so doing it may drive magnetic field lines into neighboring, nonflaring, loops in the same active region, causing magnetic reconnection to take place and triggering another flare burst. The features of this interacting loop model are found to be in good agreement with the energetics and time structure of flare associated solar hard X-ray bursts.

  13. Quasi-periodic Pulsations in the Most Powerful Solar Flare of Cycle 24

    NASA Astrophysics Data System (ADS)

    Kolotkov, Dmitrii Y.; Pugh, Chloe E.; Broomhall, Anne-Marie; Nakariakov, Valery M.

    2018-05-01

    Quasi-periodic pulsations (QPPs) are common in solar flares and are now regularly observed in stellar flares. We present the detection of two different types of QPP signals in the thermal emission light curves of the X9.3-class solar flare SOL2017-09-06T12:02, which is the most powerful flare of Cycle 24. The period of the shorter-period QPP drifts from about 12 to 25 s during the flare. The observed properties of this QPP are consistent with a sausage oscillation of a plasma loop in the flaring active region. The period of the longer-period QPP is about 4 to 5 minutes. Its properties are compatible with standing slow magnetoacoustic oscillations, which are often detected in coronal loops. For both QPP signals, other mechanisms such as repetitive reconnection cannot be ruled out, however. The studied solar flare has an energy in the realm of observed stellar flares, and the fact that there is evidence of a short-period QPP signal typical of solar flares along with a long-period QPP signal more typical of stellar flares suggests that the different ranges of QPP periods typically observed in solar and stellar flares is likely due to observational constraints, and that similar physical processes may be occurring in solar and stellar flares.

  14. PREDICTION OF SOLAR FLARES USING UNIQUE SIGNATURES OF MAGNETIC FIELD IMAGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raboonik, Abbas; Safari, Hossein; Alipour, Nasibe

    Prediction of solar flares is an important task in solar physics. The occurrence of solar flares is highly dependent on the structure and topology of solar magnetic fields. A new method for predicting large (M- and X-class) flares is presented, which uses machine learning methods applied to the Zernike moments (ZM) of magnetograms observed by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory for a period of six years from 2010 June 2 to 2016 August 1. Magnetic field images consisting of the radial component of the magnetic field are converted to finite sets of ZMs andmore » fed to the support vector machine classifier. ZMs have the capability to elicit unique features from any 2D image, which may allow more accurate classification. The results indicate whether an arbitrary active region has the potential to produce at least one large flare. We show that the majority of large flares can be predicted within 48 hr before their occurrence, with only 10 false negatives out of 385 flaring active region magnetograms and 21 false positives out of 179 non-flaring active region magnetograms. Our method may provide a useful tool for the prediction of solar flares, which can be employed alongside other forecasting methods.« less

  15. Low-latitude Ionospheric Heating during Solar Flares

    NASA Astrophysics Data System (ADS)

    Klenzing, J.; Chamberlin, P. C.; Qian, L.; Haaser, R. A.; Burrell, A. G.; Earle, G. D.; Heelis, R. A.; Simoes, F. A.

    2013-12-01

    The advent of the Solar Dynamics Observatory (SDO) represents a leap forward in our capability to measure rapidly changing transient events on the sun. SDO measurements are paired with the comprehensive low latitude measurements of the ionosphere and thermosphere provided by the Communication/Navigation Outage Forecast System (C/NOFS) satellite and state-of-the-art general circulation models to discuss the coupling between the terrestrial upper atmosphere and solar radiation. Here we discuss ionospheric heating as detected by the Coupled Ion-Neutral Dynamics Investigation (CINDI) instrument suite on the C/NOFS satellite during solar flares. Also discusses is the necessity of decoupling the heating due to increased EUV irradiance and that due to geomagnetic storms, which sometimes occur with flares. Increases in both the ion temperature and ion density in the subsolar topside ionosphere are detected within 77 minutes of the 23 Jan 2012 M-class flare, and the observed results are compared with the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) using the Flare Irradiance Spectral Model (FISM) as an input.

  16. FINE STRUCTURES AND OVERLYING LOOPS OF CONFINED SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shuhong; Zhang, Jun; Xiang, Yongyuan, E-mail: shuhongyang@nao.cas.cn

    2014-10-01

    Using the Hα observations from the New Vacuum Solar Telescope at the Fuxian Solar Observatory, we focus on the fine structures of three confined flares and the issue why all the three flares are confined instead of eruptive. All the three confined flares take place successively at the same location and have similar morphologies, so can be termed homologous confined flares. In the simultaneous images obtained by the Solar Dynamics Observatory, many large-scale coronal loops above the confined flares are clearly observed in multi-wavelengths. At the pre-flare stage, two dipoles emerge near the negative sunspot, and the dipolar patches aremore » connected by small loops appearing as arch-shaped Hα fibrils. There exists a reconnection between the small loops, and thus the Hα fibrils change their configuration. The reconnection also occurs between a set of emerging Hα fibrils and a set of pre-existing large loops, which are rooted in the negative sunspot, a nearby positive patch, and some remote positive faculae, forming a typical three-legged structure. During the flare processes, the overlying loops, some of which are tracked by activated dark materials, do not break out. These direct observations may illustrate the physical mechanism of confined flares, i.e., magnetic reconnection between the emerging loops and the pre-existing loops triggers flares and the overlying loops prevent the flares from being eruptive.« less

  17. The solar-flare infrared continuum - Observational techniques and upper limits

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.

    1975-01-01

    Exploratory observations at 20 microns and 350 microns have determined detection thresholds for solar flares in these wavelengths. In the 20-micron range, solar atmospheric fluctuations (the 'temperature field') set the basic limits on flare detectability at about 5 K; at 350 microns, extinction in the earth's atmosphere provides the basic limitation of about 30 K. These thresholds are low enough for the successful detection of several infrared-emitting components of large flares. The upper limits obtained for subflares indicate that the thickness of the H-alpha flare region does not exceed approximately 10 km. This result confirms the conclusion of Suemoto and Hiei (1959) regarding the small effective thickness of the H-alpha-emitting regions in solar flares.

  18. A solar tornado caused by flares

    NASA Astrophysics Data System (ADS)

    Panesar, N. K.; Innes, D. E.; Tiwari, S. K.; Low, B. C.

    2014-01-01

    An enormous solar tornado was observed by SDO/AIA on 25 September 2011. It was mainly associated with a quiescent prominence with an overlying coronal cavity. We investigate the triggering mechanism of the solar tornado by using the data from two instruments: SDO/AIA and STEREO-A/EUVI, covering the Sun from two directions. The tornado appeared near to the active region NOAA 11303 that produced three flares. The flares directly influenced the prominence-cavity system. The release of free magnetic energy from the active region by flares resulted in the contraction of the active region field. The cavity, owing to its superior magnetic pressure, expanded to fill this vacated space in the corona. We propose that the tornado developed on the top of the prominence due to the expansion of the prominence-cavity system.

  19. NASA's SDO Sees Solar Flares

    NASA Image and Video Library

    2017-12-08

    A second X-class flare of June 10, 2014, appears as a bright flash on the left side of this image from NASA’s Solar Dynamics Observatory. This image shows light in the 193-angstrom wavelength, which is typically colorized in yellow. It was captured at 8:55 a.m EDT, just after the flare peaked. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. F-region enhancements induced by solar flares

    NASA Technical Reports Server (NTRS)

    Donnelly, R. F.; Davies, K.; Grubb, R. N.; Fritz, R. B.

    1976-01-01

    ATS-6 total electron content (NT) observations during solar flares exhibit four types of response: (1) a sudden increase in NT (SITEC) for about 2 min with several maxima in growth rate, then a maximum or a distinct slowing in growth, followed by a slow smooth increase to a flat peak, and finally a slow decay in NT; (2) a SITEC that occurs during ionospheric storms, where NT decays abruptly after the first maximum; (3) slow enhancements devoid of distinct impulsive structure in growth rate; and (4) no distinct response in NT, even for relatively large soft X-ray flares. Flare-induced increases in NT are dominated by low-loss F2 ionization produced by 90-911-A emission. The impulsive flare component is relatively intense in the 90-911-A range, but is short lived and weak for flares near the edge of the visible solar disk and for certain slow flares. The impulsive flare component produces the rapid rise, the sharp maxima in growth rate, and the first maximum in SITECs. The slow flare components are strong in the 1-90-A range but relatively weak in the 90-911-A range and accumulatively contribute to the second maximum in type 1 and 3 events, except during storms when F2 loss rates are abnormally high in type 2 events.

  1. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope

    PubMed Central

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-01-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere’s response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80–200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics. PMID:27071459

  2. Ground-based Observations of Large Solar Flares Precursors

    NASA Astrophysics Data System (ADS)

    Sheyner, Olga; Smirnova, Anna; Snegirev, Sergey

    2010-05-01

    The importance problem of Solar-terrestrial physics is regular forecasting of solar activity phenomena, which negatively influence the human's health, operating safety, communication, radar sets and others. The opportunity of development of short-term forecasting technique of geoeffective solar flares is presented in this study. This technique is based on the effect of growth of pulsations of horizontal component of geomagnetic field before the solar proton flares. The long-period (30-60 minutes) pulsations of H-component of geomagnetic field are detected for the events of different intensity on March 22, 1991, November 4, 2001, and November 17, 2001 using the method of wavelet-analysis. Amplitudes of fluctuations of horizontal component of geomagnetic field with the 30-60 minute's periods grow at the most of tested stations during 0.5-3.5 days before the solar flares. The particularities of spectral component are studied for the stations situated on different latitudes. The assumptions about the reason of such precursors-fluctuations appearance are made.

  3. Statistical Studies of Solar White-light Flares and Comparisons with Superflares on Solar-type Stars

    NASA Astrophysics Data System (ADS)

    Namekata, Kosuke; Sakaue, Takahito; Watanabe, Kyoko; Asai, Ayumi; Maehara, Hiroyuki; Notsu, Yuta; Notsu, Shota; Honda, Satoshi; Ishii, Takako T.; Ikuta, Kai; Nogami, Daisaku; Shibata, Kazunari

    2017-12-01

    Recently, many superflares on solar-type stars have been discovered as white-light flares (WLFs). The statistical study found a correlation between their energies (E) and durations (τ): τ \\propto {E}0.39, similar to those of solar hard/soft X-ray flares, τ \\propto {E}0.2{--0.33}. This indicates a universal mechanism of energy release on solar and stellar flares, i.e., magnetic reconnection. We here carried out statistical research on 50 solar WLFs observed with Solar Dynamics Observatory/HMI and examined the correlation between the energies and durations. As a result, the E–τ relation on solar WLFs (τ \\propto {E}0.38) is quite similar to that on stellar superflares (τ \\propto {E}0.39). However, the durations of stellar superflares are one order of magnitude shorter than those expected from solar WLFs. We present the following two interpretations for the discrepancy: (1) in solar flares, the cooling timescale of WLFs may be longer than the reconnection one, and the decay time of solar WLFs can be elongated by the cooling effect; (2) the distribution can be understood by applying a scaling law (τ \\propto {E}1/3{B}-5/3) derived from the magnetic reconnection theory. In the latter case, the observed superflares are expected to have 2–4 times stronger magnetic field strength than solar flares.

  4. CONSTRAINING SOLAR FLARE DIFFERENTIAL EMISSION MEASURES WITH EVE AND RHESSI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caspi, Amir; McTiernan, James M.; Warren, Harry P.

    2014-06-20

    Deriving a well-constrained differential emission measure (DEM) distribution for solar flares has historically been difficult, primarily because no single instrument is sensitive to the full range of coronal temperatures observed in flares, from ≲2 to ≳50 MK. We present a new technique, combining extreme ultraviolet (EUV) spectra from the EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory with X-ray spectra from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), to derive, for the first time, a self-consistent, well-constrained DEM for jointly observed solar flares. EVE is sensitive to ∼2-25 MK thermal plasma emission, and RHESSI to ≳10 MK; together, the twomore » instruments cover the full range of flare coronal plasma temperatures. We have validated the new technique on artificial test data, and apply it to two X-class flares from solar cycle 24 to determine the flare DEM and its temporal evolution; the constraints on the thermal emission derived from the EVE data also constrain the low energy cutoff of the non-thermal electrons, a crucial parameter for flare energetics. The DEM analysis can also be used to predict the soft X-ray flux in the poorly observed ∼0.4-5 nm range, with important applications for geospace science.« less

  5. Interactive Multi-Instrument Database of Solar Flares (IMIDSF)

    NASA Astrophysics Data System (ADS)

    Sadykov, Viacheslav M.; Nita, Gelu M.; Oria, Vincent; Kosovichev, Alexander G.

    2017-08-01

    Solar flares represent a complicated physical phenomenon observed in a broad range of the electromagnetic spectrum, from radiowaves to gamma-rays. For a complete understanding of the flares it is necessary to perform a combined multi-wavelength analysis using observations from many satellites and ground-based observatories. For efficient data search, integration of different flare lists and representation of observational data, we have developed the Interactive Multi-Instrument Database of Solar Flares (https://solarflare.njit.edu/). The web database is fully functional and allows the user to search for uniquely-identified flare events based on their physical descriptors and availability of observations of a particular set of instruments. Currently, data from three primary flare lists (GOES, RHESSI and HEK) and a variety of other event catalogs (Hinode, Fermi GBM, Konus-Wind, OVSA flare catalogs, CACTus CME catalog, Filament eruption catalog) and observing logs (IRIS and Nobeyama coverage), are integrated. An additional set of physical descriptors (temperature and emission measure) along with observing summary, data links and multi-wavelength light curves is provided for each flare event since January 2002. Results of an initial statistical analysis will be presented.

  6. Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares

    NASA Astrophysics Data System (ADS)

    McLaughlin, J. A.; Nakariakov, V. M.; Dominique, M.; Jelínek, P.; Takasao, S.

    2018-02-01

    Solar flare emission is detected in all EM bands and variations in flux density of solar energetic particles. Often the EM radiation generated in solar and stellar flares shows a pronounced oscillatory pattern, with characteristic periods ranging from a fraction of a second to several minutes. These oscillations are referred to as quasi-periodic pulsations (QPPs), to emphasise that they often contain apparent amplitude and period modulation. We review the current understanding of quasi-periodic pulsations in solar and stellar flares. In particular, we focus on the possible physical mechanisms, with an emphasis on the underlying physics that generates the resultant range of periodicities. These physical mechanisms include MHD oscillations, self-oscillatory mechanisms, oscillatory reconnection/reconnection reversal, wave-driven reconnection, two loop coalescence, MHD flow over-stability, the equivalent LCR-contour mechanism, and thermal-dynamical cycles. We also provide a histogram of all QPP events published in the literature at this time. The occurrence of QPPs puts additional constraints on the interpretation and understanding of the fundamental processes operating in flares, e.g. magnetic energy liberation and particle acceleration. Therefore, a full understanding of QPPs is essential in order to work towards an integrated model of solar and stellar flares.

  7. Comment on 'The solar flare myth' by J. T. Gosling

    NASA Technical Reports Server (NTRS)

    Hudson, Hugh; Haisch, Bernhard; Strong, Keith T.

    1995-01-01

    In a recent paper Gosling (1993) claims that solar flares are relatively unimportant for understanding the terrestrial consequences of solar activity, and argues that coronal mass ejections (CMEs) produce the most powerful terrestrial disturbances. This opinion conflicts with observation, as it is well known that CMEs and flares are closely associated, and we disagree with Gosling's insistence on a simplistic cause-and-effect description of the interrelated phenomena of a solar flare. In this brief response we present new Yohkoh data and review older results that demonstrate the close relationships among CMEs, flares, filament eruptions, and other forms of energy release such as particle acceleration.

  8. DOES A SCALING LAW EXIST BETWEEN SOLAR ENERGETIC PARTICLE EVENTS AND SOLAR FLARES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahler, S. W., E-mail: AFRL.RVB.PA@kirtland.af.mil

    2013-05-20

    Among many other natural processes, the size distributions of solar X-ray flares and solar energetic particle (SEP) events are scale-invariant power laws. The measured distributions of SEP events prove to be distinctly flatter, i.e., have smaller power-law slopes, than those of the flares. This has led to speculation that the two distributions are related through a scaling law, first suggested by Hudson, which implies a direct nonlinear physical connection between the processes producing the flares and those producing the SEP events. We present four arguments against this interpretation. First, a true scaling must relate SEP events to all flare X-raymore » events, and not to a small subset of the X-ray event population. We also show that the assumed scaling law is not mathematically valid and that although the flare X-ray and SEP event data are correlated, they are highly scattered and not necessarily related through an assumed scaling of the two phenomena. An interpretation of SEP events within the context of a recent model of fractal-diffusive self-organized criticality by Aschwanden provides a physical basis for why the SEP distributions should be flatter than those of solar flares. These arguments provide evidence against a close physical connection of flares with SEP production.« less

  9. NASA’s Solar Dynamics Observatory Captured Trio of Solar Flares April 2-3

    NASA Image and Video Library

    2017-12-08

    The sun emitted a trio of mid-level solar flares on April 2-3, 2017. The first peaked at 4:02 a.m. EDT on April 2, the second peaked at 4:33 p.m. EDT on April 2, and the third peaked at 10:29 a.m. EDT on April 3. NASA’s Solar Dynamics Observatory, which watches the sun constantly, captured images of the three events. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however — when intense enough — they can disturb the atmosphere in the layer where GPS and communications signals travel. Learn more: go.nasa.gov/2oQVFju Caption: NASA's Solar Dynamics Observatory captured this image of a solar flare peaking at 10:29 a.m. EDT on April 3, 2017, as seen in the bright flash near the sun’s upper right edge. The image shows a subset of extreme ultraviolet light that highlights the extremely hot material in flares and which is typically colorized in teal. Credits: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. NASA's SDO Sees a Solar Flare and a Lunar Transit

    NASA Image and Video Library

    2017-12-08

    A solar flare erupts on Jan. 30, 2014, as seen by the bright flash on the left side of the sun, captured here by NASA's Solar Dynamics Observatory. In the lower right corner the moon can be seen, having just passed between the observatory and the sun. --- The sun emitted a mid-level solar flare, peaking at 11:11 a.m. EST on Jan. 30, 2014. Images of the flare were captured by NASA's Solar Dynamics Observatory, or SDO, shortly after the observatory witnessed a lunar transit. The black disk of the moon can be seen in the lower right of the images. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. To see how this event may impact Earth, please visit NOAA's Space Weather Prediction Center at spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings. This flare is classified as an M6.6 class flare. Updates will be provided as needed. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Common SphinX and RHESSI observations of solar flares

    NASA Astrophysics Data System (ADS)

    Mrozek, T.; Gburek, S.; Siarkowski, M.; Sylwester, B.; Sylwester, J.; Gryciuk, M.

    The Polish X-ray spectrofotometer SphinX has observed a great number of solar flares in the year 2009 - during the most quiet solar minimum almost over the last 100 years. Hundreds of flares have been recorded due to excellent sensitivity of SphinX's detectors. The Si-PIN diodes are about 100 times more sensitive to X-rays than GOES X-ray Monitors. SphinX detectors were absolutely calibrated on Earth with a use of the BESSY synchrotron. In space observations were made in the range 1.2-15~keV with 480~eV energy resolution. SphinX data overlap with the low-energy end of the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) data. RHESSI detectors are quite old (7 years in 2009), but still sensitive enough to provide us with observations of extremely weak solar flares such as those which occurred in 2009. We have selected a group of flares simultaneously observed by RHESSI and SphinX and performed a spectroscopic analysis of the data. Moreover, we compared the physical parameters of these flares plasma. Preliminary results of the comparison show very good agreement between both instruments.

  12. NASA Releases Images of 1st Notable Solar Flare of 2015

    NASA Image and Video Library

    2017-12-08

    The sun emitted a mid-level solar flare, peaking at 11:24 p.m. EST on Jan. 12, 2015. NASA’s Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This flare is classified as an M5.6-class flare. M-class flares are a tenth the size of the most intense flares, the X-class flares. The number provides more information about its strength. An M2 is twice as intense as an M1, an M3 is three times as intense, etc. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Mass ejections. [during solar flares

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Hildner, E.; Hansen, R. T.; Dryer, M.; Mcclymont, A. N.; Mckenna-Lawlor, S. M. P.; Mclean, D. J.; Schmahl, E. J.; Steinolfson, R. S.; Tandberg-Hanssen, E.

    1980-01-01

    Observations and model simulations of solar mass ejection phenomena are examined in an investigation of flare processes. Consideration is given to Skylab and other observations of flare-associated sprays, eruptive prominences, surges and coronal transients, and to MHD, gas dynamic and magnetic loop models developed to account for them. Magnetic forces are found to confine spray material, which originates in preexisting active-region filaments, within steadily expanding loops, while surges follow unmoving, preexisting magnetic field lines. Simulations of effects of a sudden pressure pulse at the bottom of the corona are found to exhibit many characteristics of coronal transients associated with flares, and impulsive heating low in the chromosphere is found to be able to account for surges. The importance of the magnetic field as the ultimate source of energy which drives eruptive phenomena as well as flares is pointed out.

  14. A Statistical Analysis of Loop-Top Motion in Solar Limb Flares

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Sui, Linhui; Brosius, D. G.; Dennis, Brian R.

    2005-01-01

    Previous studies of hot, thermal solar flare loops imaged with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) have identified several flares for which the loop top shrinks downward early in the impulsive phase and then expands upward later in the impulsive phase (Sui & Holman 2003; Sui, Holman & Dennis 2004; Veronig et al. 2005). This early downward motion is not predicted by flare models. We study a statistical sample of RHESSI flares to assess how common this evolution is and to better characterize it. In a sample of 88 flares near the solar lin$ that show identifiable loop structure in RHESSI images, 66% (58 flares) showed downward loop-top motion followed by upward motion. We therefore conclude that the early downward motion is a frequent characteristic of flare loops. We obtain the distribution of the timing of the change from downward to upward motion relative to flare start and peak times. We also obtain the distributions of downward and upward speeds.

  15. Wavelength Dependence of Solar Flare Irradiation and its Influence on the Thermosphere

    NASA Technical Reports Server (NTRS)

    Huang, Yanshi; Richmond, Arthur D.; Deng, Yue; Qian, L.; Solomon, S.; Chamberlin, P.

    2012-01-01

    The wavelength dependence of solar flare enhancement is one of the important factors determining how the Thermosphere-Ionosphere (T-I) system response to flares. To investigate the wavelength dependence of solar flare, the Flare Irradiance Spectral Model (FISM) has been run for 34 X-class flares. The results show that the percentage increases of solar irradiance at flare peak comparing to pre-flare condition have a clear wavelength dependence. In the wavelength range between 0 - 195 nm, it can vary from 1% to 10000%. The solar irradiance enhancement is largest ( 1000%) in the XUV range (0 - 25 nm), and is about 100% in EUV range (25 - 120 nm). The influence of different wavebands on the T-I system during the October 28th, 2003 flare (X17.2-class) has also been examined using the latest version of National Center for Atmospheric Research (NCAR) Thermosphere- Ionosphere-Electrodynamics General Circulation Model (TIE-GCM). While the globally integrated solar energy deposition is largest in the 0 - 14 nm waveband, the impact of solar irradiance enhancement on the thermosphere at 400 km is largest for 25 - 105 nm waveband. The effect of 122 - 195 nm is small in magnitude, but it decays slowly.

  16. Models of the Solar Atmospheric Response to Flare Heating

    NASA Technical Reports Server (NTRS)

    Allred, Joel

    2011-01-01

    I will present models of the solar atmospheric response to flare heating. The models solve the equations of non-LTE radiation hydrodynamics with an electron beam added as a flare energy source term. Radiative transfer is solved in detail for many important optically thick hydrogen and helium transitions and numerous optically thin EUV lines making the models ideally suited to study the emission that is produced during flares. I will pay special attention to understanding key EUV lines as well the mechanism for white light production. I will also present preliminary results of how the model solar atmosphere responds to Fletcher & Hudson type flare heating. I will compare this with the results from flare simulations using the standard thick target model.

  17. Periodic Recurrence Patterns In X-Ray Solar Flare Appearances

    NASA Astrophysics Data System (ADS)

    Gyenge, N.; Erdélyi, R.

    2018-06-01

    The temporal recurrence of micro-flare events is studied for a time interval before and after of major solar flares. Our sample is based on the X-ray flare observations by the Geostationary Operational Environmental Satellite (GOES) and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The analyzed data contain 1330/301 M-class and X-class GOES/RHESSI energetic solar flares and 4062/4119 GOES/RHESSI micro-flares covering the period elapse since 2002. The temporal analysis of recurrence, by Fast Fourier Transform, of the micro-flares, shows multiple significant periods. Based on the GOES and RHESSI data, the temporal analysis also demonstrates that multiple periods manifest simultaneously in both statistical samples without any significant shift over time. In the GOES sample, the detected significant periods are: 11.33, 5.61, 3.75, 2.80, and 2.24 minutes. The RHESSI data show similar significant periods at 8.54, 5.28, 3.66, 2.88, and 2.19 minutes. The periods are interpreted as signatures of standing oscillations, with the longest period (P 1) being the fundamental and others being higher harmonic modes. The period ratio of the fundamental and higher harmonics (P 1/P N ) is also analyzed. The standing modes may be signatures of global oscillations of the entire solar atmosphere encompassing magnetized plasma from the photosphere to the corona in active regions.

  18. Predicting Arrival Of Protons Emitted In Solar Flares

    NASA Technical Reports Server (NTRS)

    Spagnuolo, John N., Jr.; Schwuttke, Ursula M.; Han, Cecilia S.; Hervias, Felipe

    1996-01-01

    Visual Utility for Localization of Corona Accelerated Nuclei (VULCAN) computer program provides both advance warnings and insight for post-event analyses of effects of solar flares. Using measurements of peak fluxes, times of detection, flare location, solar wind velocities, and x-ray emissions from Sun, as electronically sent by NOAA (National Oceanographic and Atmospheric Administration), VULCAN predicts resulting intensities of proton fluxes at various user-chosen points (spacecraft or planets) of solar system. Also predicts times of onset of fluxes of protons and peak values of fluxes.

  19. The Soft X-Ray/Microwave Ratio of Solar and Stellar Flares and Coronae

    NASA Technical Reports Server (NTRS)

    Benz, A. O.; Guedel, M.

    1994-01-01

    We have carried out plasma diagnostics of solar flares using soft X-ray (SXR) and simultaneous microwave observations and have compared the ratio of X-ray to microwave luminosities of solar flares with various active late-type stars available in the published literature. Both the SXR low-level ('quiescent') emission from stellar coronae and the flaring emission from the Sun and stars are generally interpreted as thermal radiations of coronal plasmas. On the other hand, the microwave emission of stars and solar flares is generally attributed to an extremely hot or nonthermal population of electrons. Solar flare SXR are conventionally measured in a narrower and harder passband than the stellar sources. Observations of the GOES-2 satellite in two energy channels have been used to estimate the luminosity of solar flares as it would appear in the ROSAT satellite passband. The solar and stellar flare luminosities fit well at the lower end of the active stellar coronae. The flare SXR/microwave ratio is similar to the ratio for stellar coronae. The average ratio follows a power-law relation L(sub X) varies as L(sub R)(sup 0.73 +/- 0.03) over 10 orders of magnitude from solar microflares to RS CVn and FK Com-type coronae. Dwarf Me and Ke stars, and RS CVn stars are also compatible with a linear SXR/microwave relation, but the ratio is slightly different for each type of star. Considering the differences between solar flares, stellar flares and the various active stellar coronae, the similarity of the SXR/microwave ratios is surprising. It suggests that the energetic electrons in low-level stellar coronae observed in microwaves are related in a similar way to the coronal thermal plasma as flare electrons to the flare thermal plasma, and, consequently, that the heating mechanism of active stellar coronae is a flare-like process.

  20. Frequency distributions and correlations of solar X-ray flare parameters

    NASA Technical Reports Server (NTRS)

    Crosby, Norma B.; Aschwanden, Markus J.; Dennis, Brian R.

    1993-01-01

    Frequency distributions of flare parameters are determined from over 12,000 solar flares. The flare duration, the peak counting rate, the peak hard X-ray flux, the total energy in electrons, and the peak energy flux in electrons are among the parameters studied. Linear regression fits, as well as the slopes of the frequency distributions, are used to determine the correlations between these parameters. The relationship between the variations of the frequency distributions and the solar activity cycle is also investigated. Theoretical models for the frequency distribution of flare parameters are dependent on the probability of flaring and the temporal evolution of the flare energy build-up. The results of this study are consistent with stochastic flaring and exponential energy build-up. The average build-up time constant is found to be 0.5 times the mean time between flares.

  1. Ionic charge distributions of energetic particles from solar flares

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.; Waldron, W. L.

    1986-01-01

    The effects which solar flare X-rays have on the charge states of solar cosmic rays is determined quantitatively. Rather than to characterize the charge distribution by temperature alone, it is proposed that the X-ray flux at the acceleration site also is used. The effects of flare X-rays are modeled mathematically.

  2. VERY LONG-PERIOD PULSATIONS BEFORE THE ONSET OF SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Baolin; Huang, Jing; Tan, Chengming

    Solar flares are the most powerful explosions occurring in the solar system, which may lead to disastrous space weather events and impact various aspects of our Earth. It remains a big challenge in modern astrophysics to understand the origin of solar flares and predict their onset. Based on the analysis of soft X-ray emission observed by the Geostationary Operational Environmental Satellite , this work reports a new discovery of very long-periodic pulsations occurring in the preflare phase before the onset of solar flares (preflare-VLPs). These pulsations typically have periods of 8–30 min and last for about 1–2 hr. They aremore » possibly generated from LRC oscillations of plasma loops where electric current dominates the physical process during magnetic energy accumulation in the source region. Preflare-VLPs provide essential information for understanding the triggering mechanism and origin of solar flares, and may be a convenient precursory indicator to help us respond to solar explosions and the corresponding disastrous space weather events.« less

  3. Excitation of XUV radiation in solar flares

    NASA Technical Reports Server (NTRS)

    Emslie, A. Gordon

    1992-01-01

    The goal of the proposed research was to understand the means by which XUV radiation in solar flares is excited, and to use this radiation as diagnostics of the energy release and transport processes occurring in the flare. Significant progress in both of these areas, as described, was made.

  4. Terahertz photometers to observe solar flares from space (SOLAR-T project)

    NASA Astrophysics Data System (ADS)

    Kaufmann, Pierre; Raulin, Jean-Pierre

    The space experiment SOLAR-T designed to observe solar flares at THz frequencies was completed. We present the concept, fabrication and performance of a double THz photometers system. An innovative optical setup allows observations of the full solar disk and the detection of small burst transients at the same time. It is the first detecting system conceived to observe solar flare THz emissions on board of stratospheric balloons. The system has been integrated to data acquisition and telemetry modules for this application. SOLAR-T uses two Golay cell detectors preceded by low-pass filters made of rough surface primary mirrors and membranes, 3 and 7 THz band-pass filters, and choppers. Its photometers can detect small solar bursts (tens of solar flux units) with sub second time resolution. One artificial Sun setup was developed to simulate actual observations. Tests comprised the whole system performance, on ambient and low pressure and temperature conditions. It is intended to provide data on the still unrevealed spectral shape of the mysterious THz solar flares emissions. The experiment is planned to be on board of two long-duration stratospheric balloon flights over Antarctica and Russia in 2014-2016. The SOLAR-T development, fabrication and tests has been accomplished by engineering and research teams from Mackenzie, Unicamp and Bernard Lyot Solar Observatory; Propertech Ltda.; Neuron Ltda.; and Samsung, Brazil; Tydex LCC, Russia; CONICET, Argentina; the stratospheric balloon missions will be carried in cooperation with teams from University of California, Berkeley, USA (flight over Antarctica), and Lebedev Physical Institute, Moscow, Russia (flight over Russia).

  5. Large Solar Flares and Sheared Magnetic Field Configuration

    NASA Technical Reports Server (NTRS)

    Choudhary, Debi Prasad

    2001-01-01

    This Comment gives additional information about the nature of flaring locations on the Sun described in the article "Sun unleashes Halloween storm", by R. E. Lopez, et al. What causes the large explosions from solar active regions that unleash huge magnetic storms and adverse space weather? It is now beyond doubt that the magnetic field in solar active regions harbors free energy that is released during these events. Direct measurements of the longitudinal and transverse components of active region magnetic fields with the vector magnetograph at NASA Marshall Space Flight Center (MSFC), taken on a regular basis for the last 30 years, have found key signatures of the locations of powerful flares. A vector magnetograph detects and measures the magnetic shear, which is the deviation of the observed transverse magnetic field direction from the potential field. The sheared locations possess abundant free magnetic energy for solar flares. In addition to active region NOAA 10486, the one that produced the largest flares last October, the NASA/MSFC vector magnetograph has observed several other such complex super active regions, including NOAA 6555 and 6659.

  6. Searches for comet-induced solar flares

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon; Ibodov, Firuz

    During the last decade we have carried out analytical consideration of the impacts of comets with the Sun: the study of passage of cometary nuclei through the solar chromosphere and photosphere was carried out taking into account aerodynamic crushing of the nucleus, transversal expansion of the crushed mass and aerodynamic deceleration of the flattening structure. The results indicate that the stopping of the hypervelocity, more than 600 km/s, comet matter near the photosphere has essentially "explosive" character and will be accompanied by generation of a strong "blast" shock wave as well as ejection of a hot plasma from a relatively very thin,"exploding", near-photosphere layer. Observational manifestations of these processes, comet-induced solar flares, CISF, will be anomalous line emission of metal atoms/ions like Fe, Si, etc. from chromosphere/corona regions and continuum emission of a high-temperature, around 10^6-10^7 K, plasma cloud near the solar surface. Space observations of the phenomena by solar telescopes, including future out-of-ecliptic ones, are of interest for the physics/prognosis of solar flares as well as physics of comets.

  7. Studies of solar flares: Homology and X-ray line broadening

    NASA Astrophysics Data System (ADS)

    Ranns, Neale David Raymond

    This thesis starts with an introduction to the solar atmosphere and the physics that governs its behaviour. The formation processes of spectral lines are presented followed by an explanation of employed plasma diagnostic techniques and line broadening mechanisms. The current understanding on some principle concepts of flare physics are reviewed and the topics of flare homology and non-thermal line broadening are introduced. The many solar satellites and instrumentation that were utilised during this thesis are described. Analysis techniques for some instruments are also presented. A series of solar flares that conform to the literature definition for homologous flares are examined. The apparent homology is shown to be caused by emerging flux rather than continual stressing of a single, or group of, magnetic structure's. The implications for flare homology are discussed. The analysis of a solar flare with a rise and peak in the observed non-thermal X-ray line broadening (Vnt) is then performed. The location of the hot plasma within the flare area is determined and consequently the source of Vnt is located to be within and above the flare loops. The flare footpoints are therefore discarded as a possible source location. Viable source locations are discussed with a view to determining the dominant mechanism for the generation of line broadening. The timing relationships between the hard X-ray (HXR) flux and Vnt in many solar flares are then examined. I show that there is a causal relationship between these two parameters and that the HXR rise time is related to the time delay between the maxima of HXR flux and Vnt. The temporal evolution of Vnt is shown to be dependent upon the shape of the HXR burst. The implications of these results are discussed in terms of determining the line broadening mechanism and the limitations of the data. A summary of the results in this thesis is then presented together with suggestions for future research.

  8. Ion Acceleration in Solar Flares

    NASA Technical Reports Server (NTRS)

    Miller, James A.; Weir, Sue B.

    1996-01-01

    Solar flares are among the most energetic and interesting phenomena in the Solar system, releasing up to 1032 ergs of energy on timescales of several tens of seconds to several tens of minutes. Much of this energy is in the form of suprathermal electrons and ions, which remain trapped at the Sun and produce a wide variety of radiations, as well as escape into interplanetary space, where they can be directly observed. The radiation from trapped particles consists in general of (1) continuum emission; (2) narrow gamma-ray nuclear deexcitation lines; and (3) high-energy neutrons observed in space or by ground-based neutron monitors. The particles that escape into space consist of both electrons and ions, which often have compositions quite different than that of the ambient solar atmosphere. Flares thus present many diagnostics of the particle acceleration mechanism(s), the identification of which is the ultimate goal of flare research. Moreover, flares in fact offer the only opportunity in astrophysics to study the simultaneous energization of both electrons and ions. Hopefully, an understanding of flares with their wealth of diagnostic data will lead to a better understanding of particle acceleration at other sites in the Universe. It is now generally accepted that flares are roughly divided into two classes: impulsive and gradual. Gradual events are large, occur high in the corona, have long-duration soft and hard X-rays and gamma rays, are electron poor, are associated with Type II radio emission and coronal mass ejections (CMEs), and produce energetic ions with coronal abundance ratios. Impulsive events are more compact, occur lower in the corona, produce short-duration radiation, and exhibit dramatic abundance enhancements in the energetic ions. Their He-3/He-4 ratio is - 1, which is a huge increase over the coronal value of about 5 x 10(exp -4), and they also posses smaller but still significant enhancements of Ne, Mg, Si, and Fe relative to He-4, C, N, and O

  9. Solar gamma rays. [in solar flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1974-01-01

    The theory of gamma ray production in solar flares is treated in detail. Both lines and continuum are produced. Results show that the strongest line predicted at 2.225 MeV with a width of less than 100 eV and detected at 2.24 + or - 2.02 MeV, is due to neutron capture by protons in the photosphere. Its intensity is dependent on the photospheric He-3 abundance. The neutrons are produced in nuclear reactions of flare accelerated particles which also produce positrons and prompt nuclear deexcitation lines. The strongest prompt lines are at 4.43 MeV from c-12 and at approximately 6.2 from 0-16 and N-15. The gamma ray continuum, produced by electron bremsstrahlung, allows the determination of the spectrum and number of accelerated electrons in the MeV region. From the comparison of the line and continuum intensities a proton-to-electron ratio of about 10 to 100 at the same energy for the 1972, August 4 flare. For the same flare the protons above 2.5 MeV which are responsible for the gamma ray emission produce a few percent of the heat generated by the electrons which make the hard X rays above 20 keV.

  10. Solar flares, proton showers, and the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Rust, D. M.

    1982-01-01

    Attention is given the hazards posed to Space Shuttle crews by energetic proton radiation from inherently unpredictable solar flares, such as that of April 10-13, 1981, which was experienced by the Space Shuttle Columbia. The most energetic protons from this flare reached the earth's atmosphere an hour after flare onset, and would have posed a potentially lethal threat to astronauts engaged in extravehicular activity in a polar or geosynchronous orbit rather than the low-latitude, low-altitude orbit of this mission. It is shown that proton-producing flares are associated with energization in shocks, many of which are driven by coronal mass ejections. Insights gained from the Solar Maximum Year programs allow reconsideration of proton shower forecasting, which will be essential in the prediction of the weather that Space Shuttle astronauts will encounter during extravehicular activities.

  11. An Interactive Multi-instrument Database of Solar Flares

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadykov, Viacheslav M; Kosovichev, Alexander G; Oria, Vincent

    Solar flares are complicated physical phenomena that are observable in a broad range of the electromagnetic spectrum, from radio waves to γ -rays. For a more comprehensive understanding of flares, it is necessary to perform a combined multi-wavelength analysis using observations from many satellites and ground-based observatories. For an efficient data search, integration of different flare lists, and representation of observational data, we have developed the Interactive Multi-Instrument Database of Solar Flares (IMIDSF, https://solarflare.njit.edu/). The web-accessible database is fully functional and allows the user to search for uniquely identified flare events based on their physical descriptors and the availability ofmore » observations by a particular set of instruments. Currently, the data from three primary flare lists ( Geostationary Operational Environmental Satellites , RHESSI , and HEK) and a variety of other event catalogs ( Hinode , Fermi GBM, Konus- W IND, the OVSA flare catalogs, the CACTus CME catalog, the Filament eruption catalog) and observing logs ( IRIS and Nobeyama coverage) are integrated, and an additional set of physical descriptors (temperature and emission measure) is provided along with an observing summary, data links, and multi-wavelength light curves for each flare event since 2002 January. We envision that this new tool will allow researchers to significantly speed up the search of events of interest for statistical and case studies.« less

  12. An Interactive Multi-instrument Database of Solar Flares

    NASA Astrophysics Data System (ADS)

    Sadykov, Viacheslav M.; Kosovichev, Alexander G.; Oria, Vincent; Nita, Gelu M.

    2017-07-01

    Solar flares are complicated physical phenomena that are observable in a broad range of the electromagnetic spectrum, from radio waves to γ-rays. For a more comprehensive understanding of flares, it is necessary to perform a combined multi-wavelength analysis using observations from many satellites and ground-based observatories. For an efficient data search, integration of different flare lists, and representation of observational data, we have developed the Interactive Multi-Instrument Database of Solar Flares (IMIDSF, https://solarflare.njit.edu/). The web-accessible database is fully functional and allows the user to search for uniquely identified flare events based on their physical descriptors and the availability of observations by a particular set of instruments. Currently, the data from three primary flare lists (Geostationary Operational Environmental Satellites, RHESSI, and HEK) and a variety of other event catalogs (Hinode, Fermi GBM, Konus-WIND, the OVSA flare catalogs, the CACTus CME catalog, the Filament eruption catalog) and observing logs (IRIS and Nobeyama coverage) are integrated, and an additional set of physical descriptors (temperature and emission measure) is provided along with an observing summary, data links, and multi-wavelength light curves for each flare event since 2002 January. We envision that this new tool will allow researchers to significantly speed up the search of events of interest for statistical and case studies.

  13. Investigations of turbulent motions and particle acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Jakimiec, J.; Fludra, A.; Lemen, J. R.; Dennis, B. R.; Sylwester, J.

    1986-01-01

    Investigations of X-raya spectra of solar flares show that intense random (turbulent) motions are present in hot flare plasma. Here it is argued that the turbulent motions are of great importance for flare development. They can efficiently enhance flare energy release and accelerate particles to high energies.

  14. Influence of solar flares on the X-ray corona

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Batchelor, D. A.

    1986-01-01

    Sequences of X-ray images of solar flares, obtained with the Hard X-ray Imaging Spectrometer on the SMM spacecraft, reveal many dynamical phenomena. Movies of 20 flares recorded with 6-sec time resolution were examined. A preliminary analysis of the events as a group are presented, and some new aspects of the well-studied May 21, 1980 flare and a November 6, 1980 flare are discussed.

  15. Spatially inhomogeneous acceleration of electrons in solar flares

    NASA Astrophysics Data System (ADS)

    Stackhouse, Duncan J.; Kontar, Eduard P.

    2018-04-01

    The imaging spectroscopy capabilities of the Reuven Ramaty high energy solar spectroscopic imager (RHESSI) enable the examination of the accelerated electron distribution throughout a solar flare region. In particular, it has been revealed that the energisation of these particles takes place over a region of finite size, sometimes resolved by RHESSI observations. In this paper, we present, for the first time, a spatially distributed acceleration model and investigate the role of inhomogeneous acceleration on the observed X-ray emission properties. We have modelled transport explicitly examining scatter-free and diffusive transport within the acceleration region and compare with the analytic leaky-box solution. The results show the importance of including this spatial variation when modelling electron acceleration in solar flares. The presence of an inhomogeneous, extended acceleration region produces a spectral index that is, in most cases, different from the simple leaky-box prediction. In particular, it results in a generally softer spectral index than predicted by the leaky-box solution, for both scatter-free and diffusive transport, and thus should be taken into account when modelling stochastic acceleration in solar flares.

  16. Lyman continuum observations of solar flares

    NASA Technical Reports Server (NTRS)

    Machado, M. E.; Noyes, R. W.

    1978-01-01

    A study is made of Lyman continuum observations of solar flares, using data obtained by the EUV spectroheliometer on the Apollo Telescope Mount. It is found that there are two main types of flare regions: an overall 'mean' flare coincident with the H-alpha flare region, and transient Lyman continuum kernels which can be identified with the H-alpha and X-ray kernels observed by other authors. It is found that the ground level hydrogen population in flares is closer to LTE than in the quiet sun and active regions, and that the level of Lyman continuum formation is lowered in the atmosphere from a mass column density .000005 g/sq cm in the quiet sun to .0003 g/sq cm in the mean flare, and to .001 g/sq cm in kernels. From these results the amount of chromospheric material 'evaporated' into the high temperature region is derived, which is found to be approximately 10 to the 15th g, in agreement with observations of X-ray emission measures.

  17. Studying the thermal/non-thermal crossover in solar flares

    NASA Technical Reports Server (NTRS)

    Schwartz, R. A.

    1994-01-01

    This report describes work performed under contract NAS5-32584 for Phase 3 of the Compton Gamma Ray Observatory (CGRO) from 1 November 1993 through 1 November 1994. We have made spectral observations of the hard x-ray and gamma-ray bremsstrahlung emissions from solar flares using the Burst and Transit Source Experiment (BASTE) on CGRO. These measurements of their spectrum and time profile provided valuable information on the fundamental flare processes of energy release, particle acceleration, and energy transport. Our scientific objective was to study both the thermal and non-thermal sources of solar flare hard x-ray and gamma-ray emission.

  18. Size Distributions of Solar Flares and Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Cliver, E. W.; Ling, A. G.; Belov, A.; Yashiro, S.

    2012-01-01

    We suggest that the flatter size distribution of solar energetic proton (SEP) events relative to that of flare soft X-ray (SXR) events is primarily due to the fact that SEP flares are an energetic subset of all flares. Flares associated with gradual SEP events are characteristically accompanied by fast (much > 1000 km/s) coronal mass ejections (CMEs) that drive coronal/interplanetary shock waves. For the 1996-2005 interval, the slopes (alpha values) of power-law size distributions of the peak 1-8 Angs fluxes of SXR flares associated with (a) >10 MeV SEP events (with peak fluxes much > 1 pr/sq cm/s/sr) and (b) fast CMEs were approx 1.3-1.4 compared to approx 1.2 for the peak proton fluxes of >10 MeV SEP events and approx 2 for the peak 1-8 Angs fluxes of all SXR flares. The difference of approx 0.15 between the slopes of the distributions of SEP events and SEP SXR flares is consistent with the observed variation of SEP event peak flux with SXR peak flux.

  19. Relativistic-Electron-Dominated Solar Flares Observed by Fermi/GBM

    NASA Astrophysics Data System (ADS)

    Shih, A. Y.; Schwartz, R. A.; Dennis, B. R.

    2013-12-01

    Up to tens of percent of the energy released in solar flares goes into accelerating electrons above ~10 keV and ions above ~1 MeV, and the impulsive heating of the ambient solar atmosphere by these particles is partially or wholly responsible for the production of hot flare plasmas (up to ~50 MK). Although flares can accelerate electrons to relativistic energies, in even large flares the typical falling power-law energy spectrum means that the plasma is primarily heated by the much larger number of low-energy electrons. However, there have been flares observed where the electron energy spectra have high low-energy cutoffs (well above ~100 keV), which significantly changes the electron energies responsible for heating and modifies the usual conception of energy transport in a flare. A systematic study of a range of relativistic-electron-dominated flares can improve our understanding of the relevant acceleration processes and how they may differ from those in "typical" flares. We search the Fermi/GBM data set for such flares based on the electron-associated X-ray/gamma-ray bremsstrahlung emission, making use of an improved background-subtraction approach to improve the ability to detect weaker flares. We present the fitted parameters for the relativistic-electron spectrum and their evolution over time, and compare against RHESSI observations and other instruments when available. We also discuss these events in the context of previously observed correlations between relativistic-electron acceleration and ion acceleration in flares.

  20. The beam-driven chromospheric evaporation model of solar flares - A model not supported by observations from nonimpulsive large flares

    NASA Technical Reports Server (NTRS)

    Feldman, U.

    1990-01-01

    Most large solar flares exhibit hard X-ray emission which is usually impulsive, as well as thermal soft X-ray emission, which is gradual. The beam-driven chromospheric evaporation model of solar flares was proposed to explain the origin of the soft X-ray emitting flare plasma. A careful evaluation of the issue under discussion reveals contradictions between predictions from the theoretical chromospheric evaporation model and actual observations from a set of large X- and M-type flares. It is shown that although the soft X-ray and hard X-ray emissions are a result of the same flare, one is not a result of the other.

  1. The coalescence instability in solar flares

    NASA Technical Reports Server (NTRS)

    Tajima, T.; Brunel, F.; Sakai, J.-I.; Vlahos, L.; Kundu, M. R.

    1985-01-01

    The nonlinear coalescence instability of current carrying solar loops can explain many of the characteristics of the solar flares such as their impulsive nature, heating and high energy particle acceleration, amplitude oscillations of electromagnetic and emission as well as the characteristics of two-dimensional microwave images obtained during a flare. The plasma compressibility leads to the explosive phase of loop coalescence and its overshoot results in amplitude oscillations in temperatures by adiabatic compression and decompression. It is noted that the presence of strong electric fields and super-Alfvenic flows during the course of the instability play an important role in the production of nonthermal particles. A qualitative explanation on the physical processes taking place during the nonlinear stages of the instability is given.

  2. Solar Flare Termination shock and the Synthetic Fe XXI 1354.08 Å line

    NASA Astrophysics Data System (ADS)

    Guo, L.; Li, G.; Reeves, K.; Raymond, J. C.

    2017-12-01

    Solar flares are one of the most energetic phenomena occurred in the solar system. In the standard solar flare model, a fast mode shock, which is often referred to as the flare termination shock (TS), can exist above the loop-top source of hard X-ray emissions. The existence of the termination shock has been recently related to spectral hardening of flare hard X-ray spectrum at energies > 300 keV. Observations of the Fe XXI 1354.08 Å line during solar flares by the IRIS spacecraft have found significant redshift with >100 km/s, which is consistent with a reconnection downflow. The ability to identify such a redshift by IRIS is made possible by IRIS's high time resolution, high spatial resolution, high sensitivity and cadence spectral observations. The ability to identify such a redshift by IRIS suggests that one may be able to use IRIS observations to identify flare termination shocks. Using a MHD simulation to model magnetic reconnection of a solar flare and assuming the existence of a TS in the downflow of the reconnection plasma, we model the synthetic emission of the Fe XXI 1354.08 Å line in this work. We show that the existence of the TS in the solar flare may manifest itself from the Fe XXI 1354.08 Å line.

  3. What we think we know and do not know about solar flares

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1973-01-01

    Solar-terrestrial relations begin in the convective zone of the sun. A combination of nonuniform rotation and cyclonic convection generates magnetic fields in migratory waves, which can account for the observed 22-year solar magnetic cycle. The magnetic fields are the active agent in creating the active magnetic regions, with sunspots, prominences, and flares. The present status of knowledge regarding the solar flare phenomenon is reviewed, giving attention to the extraordinary complexity of the solar flare and the broad spectrum of theoretical ideas that have been generated to meet the challenge.

  4. Energy Release in Solar Flares,

    DTIC Science & Technology

    1982-10-01

    Plasma Research, Stanford University P. Kaufmanu CRAA/CNPq -Conseiho lacional de Desenvolvimento Cientifico e Tecnologico, Slo Paulo, SP, Brasil D.F...three phases of energy release in solar flares (Sturrock, 1980). However, a recent article by Feldman e a.. (1982) points to a significant

  5. Center-to-Limb Variability of Hot Coronal EUV Emissions During Solar Flares

    NASA Astrophysics Data System (ADS)

    Thiemann, E. M. B.; Chamberlin, P. C.; Eparvier, F. G.; Epp, L.

    2018-02-01

    It is generally accepted that densities of quiet-Sun and active region plasma are sufficiently low to justify the optically thin approximation, and this is commonly used in the analysis of line emissions from plasma in the solar corona. However, the densities of solar flare loops are substantially higher, compromising the optically thin approximation. This study begins with a radiative transfer model that uses typical solar flare densities and geometries to show that hot coronal emission lines are not generally optically thin. Furthermore, the model demonstrates that the observed line intensity should exhibit center-to-limb variability (CTLV), with flares observed near the limb being dimmer than those occurring near disk center. The model predictions are validated with an analysis of over 200 flares observed by the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO), which uses six lines, with peak formation temperatures between 8.9 and 15.8 MK, to show that limb flares are systematically dimmer than disk-center flares. The data are then used to show that the electron column density along the line of sight typically increases by 1.76 × 10^{19} cm^{-2} for limb flares over the disk-center flare value. It is shown that the CTLV of hot coronal emissions reduces the amount of ionizing radiation propagating into the solar system, and it changes the relative intensities of lines and bands commonly used for spectral analysis.

  6. Variability of Thermosphere and Ionosphere Responses to Solar Flares

    NASA Technical Reports Server (NTRS)

    Qian, Liying; Burns, Alan G.; Chamberlin, Philip C.; Solomon, Stanley C.

    2011-01-01

    We investigated how the rise rate and decay rate of solar flares affect the thermosphere and ionosphere responses to them. Model simulations and data analysis were conducted for two flares of similar magnitude (X6.2 and X5.4) that had the same location on the solar limb, but the X6.2 flare had longer rise and decay times. Simulated total electron content (TEC) enhancements from the X6.2 and X5.4 flares were 6 total electron content units (TECU) and approximately 2 TECU, and the simulated neutral density enhancements were approximately 15% -20% and approximately 5%, respectively, in reasonable agreement with observations. Additional model simulations showed that for idealized flares with the same magnitude and location, the thermosphere and ionosphere responses changed significantly as a function of rise and decay rates. The Neupert Effect, which predicts that a faster flare rise rate leads to a larger EUV enhancement during the impulsive phase, caused a larger maximum ion production enhancement. In addition, model simulations showed that increased E x B plasma transport due to conductivity increases during the flares caused a significant equatorial anomaly feature in the electron density enhancement in the F region but a relatively weaker equatorial anomaly feature in TEC enhancement, owing to dominant contributions by photochemical production and loss processes. The latitude dependence of the thermosphere response correlated well with the solar zenith angle effect, whereas the latitude dependence of the ionosphere response was more complex, owing to plasma transport and the winter anomaly.

  7. Explosive plasma flows in a solar flare

    NASA Technical Reports Server (NTRS)

    Zarro, Dominic M.; Canfield, Richard C.; Metcalf, Thomas R.; Strong, Keith T.

    1988-01-01

    Solar Maximum Mission soft X-ray data and Sacramento Peak Observatory H-alpha observations are combined in a study of the impulsive phase of a solar flare. A blue asymmetry, indicative of upflows, was observed in the coronal Ca XIX line during the soft X-ray rise phase. A red asymmetry, indicative of downflows, was observed simultaneously in chromospheric H-alpha emitted from bright flare kernels during the period of hard X-ray emission. Combining the velocity data with a measurement of coronal electron density, it is shown that the impulsive phase momentum of upflowing soft X-ray-emitting plasma equalled that of the downflowing H-alpha-emitting plasma to within one order of magnitude. In particular, the momentum of the upflowing plasma was 2 x 10 to the 21st g cm/s while that of the downflowing plasma was 7 x 10 to the 21st g cm/s, with a factor of 2 uncertainty on each value. This equality supports the explosive chromospheric evaporation model of solar flares, in which a sudden pressure increase at the footprint of a coronal loop produces oppositely directed flows in the heated plasma.

  8. The energy spectra of solar flare electrons

    NASA Technical Reports Server (NTRS)

    Evenson, P. A.; Hovestadt, D.; Meyer, P.; Moses, D.

    1985-01-01

    A survey of 50 electron energy spectra from .1 to 100 MeV originating from solar flares was made by the combination of data from two spectrometers onboard the International Sun Earth Explorer-3 spacecraft. The observed spectral shapes of flare events can be divided into two classes through the criteria of fit to an acceleration model. This standard two step acceleration model, which fits the spectral shape of the first class of flares, involves an impulsive step that accelerates particles up to 100 keV and a second step that further accelerates these particles up to 100 MeV by a single shock. This fit fails for the second class of flares that can be characterized as having excessively hard spectra above 1 MeV relative to the predictions of the model. Correlations with soft X-ray and meter radio observations imply that the acceleration of the high energy particles in the second class of flares is dominated by the impulsive phase of the flares.

  9. Ionospheric electron density response to solar flares as viewed by Digisondes

    NASA Astrophysics Data System (ADS)

    Handzo, R.; Forbes, J. M.; Reinisch, Bodo

    2014-04-01

    Solar flares are explosive events on the Sun that release energetic particles, X-rays, EUV, and radio emissions that have an almost immediate impact on Earth's ionosphere-thermosphere (IT) system and/or on operational systems that are affected by IT conditions. To assess such impacts, it is a key that we know how the ionosphere is modified. An objective of this paper is to evaluate how digisondes might serve in this role. Toward this end we utilize data from the Millstone Hill digisonde to reveal the height versus time bottomside F region responses to three X-class flares (X28, X8.3, and X1.7) at a middle latitude site. In terms of percent increase with respect to a preflare hourly mean, the long-lived (> 15-30 min) responses to these flares maximize between about 150 and 250 km and measurably last ~0.75-1.5 h after flare maximum. The relative magnitudes of these responses are complicated by flare position on the solar disk, which determines how much of the EUV solar emissions are attenuated by the solar atmosphere. At Millstone Hill there was little measurable response to these flares near the F2 layer peak; however, at the magnetic equator location of Jicamarca, the F2 peak electron density increased by ~15-40%. Herein, all of these flare response characteristics are interpreted in terms of available modeling results. We propose that such digisonde data, in combination with first-principles models and high-resolution measurements of solar EUV flux emissions (e.g., from Solar Dynamics Observatory/EUV Variability Experiment), can lead us to a deeper understanding of the ionospheric photochemistry and dynamics that underlies a predictive capability.

  10. Numerical modeling of the energy storage and release in solar flares

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Weng, F. S.

    1993-01-01

    This paper reports on investigation of the photospheric magnetic field-line footpoint motion (usually referred to as shear motion) and magnetic flux emerging from below the surface in relation to energy storage in a solar flare. These causality relationships are demonstrated by using numerical magnetohydrodynamic simulations. From these results, one may conclude that the energy stored in solar flares is in the form of currents. The dynamic process through which these currents reach a critical value is discussed as well as how these currents lead to energy release, such as the explosive events of solar flares.

  11. Foretelling Flares and Solar Energetic Particle Events: the FORSPEF tool

    NASA Astrophysics Data System (ADS)

    Anastasiadis, Anastasios; Papaioannou, Athanasios; Sandberg, Ingmar; Georgoulis, Manolis K.; Tziotziou, Kostas; Jiggens, Piers

    2017-04-01

    A novel integrated prediction system, for both solar flares (SFs) and solar energetic particle (SEP) events is being presented. The Forecasting Solar Particle Events and Flares (FORSPEF) provides forecasting of solar eruptive events, such as SFs with a projection to coronal mass ejections (CMEs) (occurrence and velocity) and the likelihood of occurrence of a SEP event. In addition, FORSPEF, also provides nowcasting of SEP events based on actual SF and CME near real-time data, as well as the complete SEP profile (peak flux, fluence, rise time, duration) per parent solar event. The prediction of SFs relies on a morphological method: the effective connected magnetic field strength (Beff); it is based on an assessment of potentially flaring active-region (AR) magnetic configurations and it utilizes sophisticated analysis of a large number of AR magnetograms. For the prediction of SEP events new methods have been developed for both the likelihood of SEP occurrence and the expected SEP characteristics. In particular, using the location of the flare (longitude) and the flare size (maximum soft X-ray intensity), a reductive statistical method has been implemented. Moreover, employing CME parameters (velocity and width), proper functions per width (i.e. halo, partial halo, non-halo) and integral energy (E>30, 60, 100 MeV) have been identified. In our technique warnings are issued for all > C1.0 soft X-ray flares. The prediction time in the forecasting scheme extends to 24 hours with a refresh rate of 3 hours while the respective prediction time for the nowcasting scheme depends on the availability of the near real-time data and falls between 15-20 minutes for solar flares and 6 hours for CMEs. We present the modules of the FORSPEF system, their interconnection and the operational set up. The dual approach in the development of FORPSEF (i.e. forecasting and nowcasting scheme) permits the refinement of predictions upon the availability of new data that characterize changes on

  12. PREDICTION OF SOLAR FLARE SIZE AND TIME-TO-FLARE USING SUPPORT VECTOR MACHINE REGRESSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boucheron, Laura E.; Al-Ghraibah, Amani; McAteer, R. T. James

    We study the prediction of solar flare size and time-to-flare using 38 features describing magnetic complexity of the photospheric magnetic field. This work uses support vector regression to formulate a mapping from the 38-dimensional feature space to a continuous-valued label vector representing flare size or time-to-flare. When we consider flaring regions only, we find an average error in estimating flare size of approximately half a geostationary operational environmental satellite (GOES) class. When we additionally consider non-flaring regions, we find an increased average error of approximately three-fourths a GOES class. We also consider thresholding the regressed flare size for the experimentmore » containing both flaring and non-flaring regions and find a true positive rate of 0.69 and a true negative rate of 0.86 for flare prediction. The results for both of these size regression experiments are consistent across a wide range of predictive time windows, indicating that the magnetic complexity features may be persistent in appearance long before flare activity. This is supported by our larger error rates of some 40 hr in the time-to-flare regression problem. The 38 magnetic complexity features considered here appear to have discriminative potential for flare size, but their persistence in time makes them less discriminative for the time-to-flare problem.« less

  13. An operational integrated short-term warning solution for solar radiation storms: introducing the Forecasting Solar Particle Events and Flares (FORSPEF) system

    NASA Astrophysics Data System (ADS)

    Anastasiadis, Anastasios; Sandberg, Ingmar; Papaioannou, Athanasios; Georgoulis, Manolis; Tziotziou, Kostas; Jiggens, Piers; Hilgers, Alain

    2015-04-01

    We present a novel integrated prediction system, of both solar flares and solar energetic particle (SEP) events, which is in place to provide short-term warnings for hazardous solar radiation storms. FORSPEF system provides forecasting of solar eruptive events, such as solar flares with a projection to coronal mass ejections (CMEs) (occurrence and velocity) and the likelihood of occurrence of a SEP event. It also provides nowcasting of SEP events based on actual solar flare and CME near real-time alerts, as well as SEP characteristics (peak flux, fluence, rise time, duration) per parent solar event. The prediction of solar flares relies on a morphological method which is based on the sophisticated derivation of the effective connected magnetic field strength (Beff) of potentially flaring active-region (AR) magnetic configurations and it utilizes analysis of a large number of AR magnetograms. For the prediction of SEP events a new reductive statistical method has been implemented based on a newly constructed database of solar flares, CMEs and SEP events that covers a large time span from 1984-2013. The method is based on flare location (longitude), flare size (maximum soft X-ray intensity), and the occurrence (or not) of a CME. Warnings are issued for all > C1.0 soft X-ray flares. The warning time in the forecasting scheme extends to 24 hours with a refresh rate of 3 hours while the respective warning time for the nowcasting scheme depends on the availability of the near real-time data and falls between 15-20 minutes. We discuss the modules of the FORSPEF system, their interconnection and the operational set up. The dual approach in the development of FORPSEF (i.e. forecasting and nowcasting scheme) permits the refinement of predictions upon the availability of new data that characterize changes on the Sun and the interplanetary space, while the combined usage of solar flare and SEP forecasting methods upgrades FORSPEF to an integrated forecasting solution. This

  14. Neutral pion production in solar flares

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.; Vestrand, W. T.; Chupp, E. L.; Rieger, E.; Cooper, J. F.; Share, G. H.

    1985-01-01

    The Gamma-Ray Spectrometer (GRS) on SMM has detected more than 130 flares with emission approx 300 keV. More than 10 of these flares were detected at photon energies 10 MeV. Although the majority of the emission at 10 MeV must be from electron bremsstrahlung, at least two of the flares have spectral properties 40 MeV that require gamma rays from the decay of neutral pions. It is found that pion production can occur early in the impulsive phase as defined by hard X-rays near 100 keV. It is also found in one of these flares that a significant portion of this high-energy emission is produced well after the impulsive phase. This extended production phase, most clearly observed at high energies, may be a signature of the acceleration process which produces solar energetic particles (SEP's) in space.

  15. Measuring X-ray anisotropy in solar flares. Prospective stereoscopic capabilities of STIX and MiSolFA

    NASA Astrophysics Data System (ADS)

    Casadei, Diego; Jeffrey, Natasha L. S.; Kontar, Eduard P.

    2017-09-01

    Context. During a solar flare, a large percentage of the magnetic energy released goes into the kinetic energy of non-thermal particles, with X-ray observations providing a direct connection to keV flare-accelerated electrons. However, the electron angular distribution, a prime diagnostic tool of the acceleration mechanism and transport, is poorly known. Aims: During the next solar maximum, two upcoming space-borne X-ray missions, STIX on board Solar Orbiter and MiSolFA, will perform stereoscopic X-ray observations of solar flares at two different locations: STIX at 0.28 AU (at perihelion) and up to inclinations of 25°, and MiSolFA in a low-Earth orbit. The combined observations from these cross-calibrated detectors will allow us to infer the electron anisotropy of individual flares confidently for the first time. Methods: We simulated both instrumental and physical effects for STIX and MiSolFA including thermal shielding, background and X-ray Compton backscattering (albedo effect) in the solar photosphere. We predict the expected number of observable flares available for stereoscopic measurements during the next solar maximum. We also discuss the range of useful spacecraft observation angles for the challenging case of close-to-isotropic flare anisotropy. Results: The simulated results show that STIX and MiSolFA will be capable of detecting low levels of flare anisotropy, for M1-class or stronger flares, even with a relatively small spacecraft angular separation of 20-30°. Both instruments will directly measure the flare X-ray anisotropy of about 40 M- and X-class solar flares during the next solar maximum. Conclusions: Near-future stereoscopic observations with Solar Orbiter/STIX and MiSolFA will help distinguishing between competing flare-acceleration mechanisms, and provide essential constraints regarding collisional and non-collisional transport processes occurring in the flaring atmosphere for individual solar flares.

  16. Solar flare model atmospheres

    NASA Technical Reports Server (NTRS)

    Hawley, Suzanne L.; Fisher, George H.

    1993-01-01

    Solar flare model atmospheres computed under the assumption of energetic equilibrium in the chromosphere are presented. The models use a static, one-dimensional plane parallel geometry and are designed within a physically self-consistent coronal loop. Assumed flare heating mechanisms include collisions from a flux of non-thermal electrons and x-ray heating of the chromosphere by the corona. The heating by energetic electrons accounts explicitly for variations of the ionized fraction with depth in the atmosphere. X-ray heating of the chromosphere by the corona incorporates a flare loop geometry by approximating distant portions of the loop with a series of point sources, while treating the loop leg closest to the chromospheric footpoint in the plane-parallel approximation. Coronal flare heating leads to increased heat conduction, chromospheric evaporation and subsequent changes in coronal pressure; these effects are included self-consistently in the models. Cooling in the chromosphere is computed in detail for the important optically thick HI, CaII and MgII transitions using the non-LTE prescription in the program MULTI. Hydrogen ionization rates from x-ray photo-ionization and collisional ionization by non-thermal electrons are included explicitly in the rate equations. The models are computed in the 'impulsive' and 'equilibrium' limits, and in a set of intermediate 'evolving' states. The impulsive atmospheres have the density distribution frozen in pre-flare configuration, while the equilibrium models assume the entire atmosphere is in hydrostatic and energetic equilibrium. The evolving atmospheres represent intermediate stages where hydrostatic equilibrium has been established in the chromosphere and corona, but the corona is not yet in energetic equilibrium with the flare heating source. Thus, for example, chromospheric evaporation is still in the process of occurring.

  17. An Eruptive Complex Solar Flare and Events in its Aftermath

    NASA Astrophysics Data System (ADS)

    Luoni, M. L.; Francile, C.; Mandrini, C. H.; Cremades, H.

    2017-10-01

    We present a study of the M6.6 flare that occurred on 13 February 2011 in AR 11158. The flare was accompanied by a CME and EUV waves. We use multiwavelength observations from the ground: H-alpha Solar Telescope for Argentina (HASTA), and space: Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA), both onboard the Solar and Dynamic Observatory (SDO).

  18. Solar Flare Impulsive Phase Observations from SDO and Other Observatories

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.; Woods, Thomas N.; Schrijver, Karel; Warren, Harry; Milligan, Ryan; Christe, Steven; Brosius, Jeffrey W.

    2010-01-01

    With the start of normal operations of the Solar Dynamics Observatory in May 2010, the Extreme ultraviolet Variability Experiment (EVE) and the Atmospheric Imaging Assembly (AIA) have been returning the most accurate solar XUV and EUV measurements every 10 and 12 seconds, respectively, at almost 100% duty cycle. The focus of the presentation will be the solar flare impulsive phase observations provided by EVE and AIA and what these observations can tell us about the evolution of the initial phase of solar flares. Also emphasized throughout is how simultaneous observations with other instruments, such as RHESSI, SOHO-CDS, and HINODE-EIS, will help provide a more complete characterization of the solar flares and the evolution and energetics during the impulsive phase. These co-temporal observations from the other solar instruments can provide information such as extending the high temperature range spectra and images beyond that provided by the EUV and XUV wavelengths, provide electron density input into the lower atmosphere at the footpoints, and provide plasma flows of chromospheric evaporation, among other characteristics.

  19. The Dependence of Solar Flare Limb Darkening on Emission Peak Formation Temperature

    NASA Astrophysics Data System (ADS)

    Thiemann, Edward; Epp, Luke; Eparvier, Francis; Chamberlin, Phillip C.

    2017-08-01

    Solar limb effects are local brightening or darkening of an emission that depend on where in the Sun's atmosphere it forms. Near the solar limb, optically thick (thin) emissions will darken (brighten) as the column of absorbers (emitters) along the line-of-sight increases. Note that in limb brightening, emission sources are re-arranged whereas in limb darkening they are obscured. Thus, only limb darkening is expected to occur in disk integrated observations. Limb darkening also results in center-to-limb variations of disk-integrated solar flare spectra, with important consequences for how planetary atmospheres are affected by flares. Flares are typically characterized by their flux in the optically thin 0.1-0.8 nm band measured by the X-ray Sensor (XRS) on board the Geostationary Operational Environmental Satellite (GOES). On the other hand, Extreme Ultraviolet (EUV) line emissions can limb darken because they are sensitive to resonant scattering, resulting in a flare's location on the solar disk controlling the amount of ionizing radiation that reaches a planet. For example, an X-class flare originating from disk center may significantly heat a planet's thermosphere, whereas the same flare originating near the limb may have no effect because much of the effective emissions are scattered in the solar corona.To advance the relatively poor understanding of flare limb darkening, we use over 300 M-class or larger flares observed by the EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory (SDO) to characterize limb darkening as a function of emission peak formation temperature, Tf. For hot coronal emissions (Tf>2 MK), these results show a linear relationship between the degree of limb darkening and Tf where lines with Tf=2 MK darken approximately 7 times more than lines with Tf=16 MK. Because the extent of limb darkening is dependent on the height of the source plasma, we use simple Beer-Lambert radiative transfer analysis to interpret these results

  20. Implications of RHESSI Observations for Solar Flare Models and Energetics

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    2006-01-01

    Observations of solar flares in X-rays and gamma-rays provide the most direct information about the hottest plasma and energetic electrons and ions accelerated in flares. The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) has observed over 18000 solar flares in X-rays and gamma-rays since its launch in February of 2002. RHESSI observes the full Sun at photon energies from as low as 3 keV to as high as 17 MeV with a spectral resolution on the order of 1 keV. It also provides images in arbitrary bands within this energy range with spatial resolution as good as 3 seconds of arc. Full images are typically produced every 4 seconds, although higher time resolution is possible. This unprecedented combination of spatial, spectral, and temporal resolution, spectral range and flexibility has led to fundamental advances in our understanding of flares. I will show RHESSI and coordinated observations that confirm coronal magnetic reconnection models for eruptive flares and coronal mass ejections, but also present new puzzles for these models. I will demonstrate how the analysis of RHESSI spectra has led to a better determination of the energy flux and total energy in accelerated electrons, and of the energy in the hot, thermal flare plasma. I will discuss how these energies compare with each other and with the energy contained in other flare-related phenomena such as interplanetary particles and coronal mass ejections.

  1. TESTING AUTOMATED SOLAR FLARE FORECASTING WITH 13 YEARS OF MICHELSON DOPPLER IMAGER MAGNETOGRAMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, J. P.; Hoeksema, J. T., E-mail: JMason86@sun.stanford.ed, E-mail: JTHoeksema@sun.stanford.ed

    Flare occurrence is statistically associated with changes in several characteristics of the line-of-sight magnetic field in solar active regions (ARs). We calculated magnetic measures throughout the disk passage of 1075 ARs spanning solar cycle 23 to find a statistical relationship between the solar magnetic field and flares. This expansive study of over 71,000 magnetograms and 6000 flares uses superposed epoch (SPE) analysis to investigate changes in several magnetic measures surrounding flares and ARs completely lacking associated flares. The results were used to seek any flare associated signatures with the capability to recover weak systematic signals with SPE analysis. SPE analysismore » is a method of combining large sets of data series in a manner that yields concise information. This is achieved by aligning the temporal location of a specified flare in each time series, then calculating the statistical moments of the 'overlapping' data. The best-calculated parameter, the gradient-weighted inversion-line length (GWILL), combines the primary polarity inversion line (PIL) length and the gradient across it. Therefore, GWILL is sensitive to complex field structures via the length of the PIL and shearing via the gradient. GWILL shows an average 35% increase during the 40 hr prior to X-class flares, a 16% increase before M-class flares, and 17% increase prior to B-C-class flares. ARs not associated with flares tend to decrease in GWILL during their disk passage. Gilbert and Heidke skill scores are also calculated and show that even GWILL is not a reliable parameter for predicting solar flares in real time.« less

  2. Solar Flare Physics

    NASA Technical Reports Server (NTRS)

    Schmahl, Edward J.; Kundu, Mukul R.

    1998-01-01

    We have continued our previous efforts in studies of fourier imaging methods applied to hard X-ray flares. We have performed physical and theoretical analysis of rotating collimator grids submitted to GSFC(Goddard Space Flight Center) for the High Energy Solar Spectroscopic Imager (HESSI). We have produced simulation algorithms which are currently being used to test imaging software and hardware for HESSI. We have developed Maximum-Entropy, Maximum-Likelihood, and "CLEAN" methods for reconstructing HESSI images from count-rate profiles. This work is expected to continue through the launch of HESSI in July, 2000. Section 1 shows a poster presentation "Image Reconstruction from HESSI Photon Lists" at the Solar Physics Division Meeting, June 1998; Section 2 shows the text and viewgraphs prepared for "Imaging Simulations" at HESSI's Preliminary Design Review on July 30, 1998.

  3. SHORT-TERM SOLAR FLARE PREDICTION USING MULTIRESOLUTION PREDICTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Daren; Huang Xin; Hu Qinghua

    2010-01-20

    Multiresolution predictors of solar flares are constructed by a wavelet transform and sequential feature extraction method. Three predictors-the maximum horizontal gradient, the length of neutral line, and the number of singular points-are extracted from Solar and Heliospheric Observatory/Michelson Doppler Imager longitudinal magnetograms. A maximal overlap discrete wavelet transform is used to decompose the sequence of predictors into four frequency bands. In each band, four sequential features-the maximum, the mean, the standard deviation, and the root mean square-are extracted. The multiresolution predictors in the low-frequency band reflect trends in the evolution of newly emerging fluxes. The multiresolution predictors in the high-frequencymore » band reflect the changing rates in emerging flux regions. The variation of emerging fluxes is decoupled by wavelet transform in different frequency bands. The information amount of these multiresolution predictors is evaluated by the information gain ratio. It is found that the multiresolution predictors in the lowest and highest frequency bands contain the most information. Based on these predictors, a C4.5 decision tree algorithm is used to build the short-term solar flare prediction model. It is found that the performance of the short-term solar flare prediction model based on the multiresolution predictors is greatly improved.« less

  4. Study of the behaviour of the equatorial ionization anomaly (EIA) during solar flares

    NASA Astrophysics Data System (ADS)

    Aggarwal, Malini; Astafyeva, Elvira

    2014-05-01

    A solar flare occurring in the sun's chromosphere is observed in various wavebands (radio to x-rays). The response of the solar flare which causes sudden changes in the earth's ionosphere is not yet well understood though investigations suggested that its impact depends on the size and location of occurrence of solar flare on sun. Considering this, we have carried an investigation to study the response of two strong and gradual solar flares: 2 Apr 2001 (X20, limb) and 7 Feb 2010 (M6.4, disk) on the earth's equatorial-low latitude regions using multi-technique observations of satellite and ground-based instruments. We found a weakening of strength of equatorial ionization anomaly (EIA) in total electron content during both the flares as observed by TOPEX, JASON-1 and JASON-2 altimeter measurements. The H component of the geomagnetic field also shows a sudden change at equatorial and low latitude stations in the sunlit hemisphere during the flare. The observations of ionosonde at low-latitudes indicate a strong absorption of higher-frequency radio signals. The detail response of these flare on EIA of the earth's ionosphere will be presented and discussed.

  5. EGRET High Energy Capability and Multiwavelength Flare Studies and Solar Flare Proton Spectra

    NASA Technical Reports Server (NTRS)

    Chupp, Edward L.

    1998-01-01

    The accomplishments of the participation in the Compton Gamma Ray Observatory Guest investigator program is summarized in this report. The work involved the study of Energetic Gamma Ray Experiment Telescope (EGRET)/Total Absorption Shower Counter(TASC) flare data. The specific accomplishments were the use of the accelerator neutron measurements obtained at the University of New Hampshire to verify the TASC response function and to modify the TASC fitting program to include a high energy neutron contribution, and to determine a high energy neutron contribution to the emissions from the 1991 June 11, solar flare. The next step in the analysis of this event was doing fits to the TASC energy-loss spectra as a function of time. A significant hardening of the solar proton spectrum over time was found for the flare. Further data was obtained from the Yohkoh HXT time histories and images for the 1991 October 27 flare. The results to date demonstrate that the TASC spectral analysis contributes crucial information on the particle spectrum interacting at the Sun. The report includes a paper accepted for publication, a draft of a paper to be delivered at the 26th International Cosmic Ray Conference and an abstract of a paper to be presented at the Meeting of the American Physical Society.

  6. Impulsiveness and energetics in solar flares with and without type II radio bursts - A comparison of hard X-ray characteristics for over 2500 solar flares

    NASA Astrophysics Data System (ADS)

    Pearson, Douglas H.; Nelson, Robert; Kojoian, Gabriel; Seal, James

    1989-01-01

    The hard X-ray characteristics of more than 2500 solar flares are used to study the relative size, impulsiveness, and energetics of flares with and without type II radio bursts. A quantitative definition of the hard X-ray impulsiveness is introduced, which may be applied to a large number of events unambiguously. It is found that the flares with type II bursts are generally not significantly larger, more impulsive, or more energetic than those without type II bursts. Also, no evidence is found to suggest a simple classification of the flares as either 'impulsive' or 'gradual'. Because type II bursts are present even in small flares with relatively unimpulsive energy releases, it is concluded that changes in the ambient conditions of the solar atmosphere causing an unusually low Alfven speed may be important in the generation of the shock wave that produces type II radio bursts.

  7. Statistical study of spatio-temporal distribution of precursor solar flares associated with major flares

    NASA Astrophysics Data System (ADS)

    Gyenge, N.; Ballai, I.; Baranyi, T.

    2016-07-01

    The aim of the present investigation is to study the spatio-temporal distribution of precursor flares during the 24 h interval preceding M- and X-class major flares and the evolution of follower flares. Information on associated (precursor and follower) flares is provided by Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Flare list, while the major flares are observed by the Geostationary Operational Environmental Satellite (GOES) system satellites between 2002 and 2014. There are distinct evolutionary differences between the spatio-temporal distributions of associated flares in about one-day period depending on the type of the main flare. The spatial distribution was characterized by the normalized frequency distribution of the quantity δ (the distance between the major flare and its precursor flare normalized by the sunspot group diameter) in four 6 h time intervals before the major event. The precursors of X-class flares have a double-peaked spatial distribution for more than half a day prior to the major flare, but it changes to a lognormal-like distribution roughly 6 h prior to the event. The precursors of M-class flares show lognormal-like distribution in each 6 h subinterval. The most frequent sites of the precursors in the active region are within a distance of about 0.1 diameter of sunspot group from the site of the major flare in each case. Our investigation shows that the build-up of energy is more effective than the release of energy because of precursors.

  8. High-energy particle production in solar flares (SEP, gamma-ray and neutron emissions). [solar energetic particles

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.

    1987-01-01

    Electrons and ions, over a wide range of energies, are produced in association with solar flares. Solar energetic particles (SEPs), observed in space and near earth, consist of electrons and ions that range in energy from 10 keV to about 100 MeV and from 1 MeV to 20 GeV, respectively. SEPs are directly recorded by charged particle detectors, while X-ray, gamma-ray, and neutron detectors indicate the properties of the accelerated particles (electrons and ions) which have interacted in the solar atmosphere. A major problem of solar physics is to understand the relationship between these two groups of charged particles; in particular whether they are accelerated by the same mechanism. The paper reviews the physics of gamma-rays and neutron production in the solar atmosphere and the method by which properties of the primary charged particles produced in the solar flare can be deduced. Recent observations of energetic photons and neutrons in space and at the earth are used to present a current picture of the properties of impulsively flare accelerated electrons and ions. Some important properties discussed are time scale of production, composition, energy spectra, accelerator geometry. Particular attention is given to energetic particle production in the large flare on June 3, 1982.

  9. Deep Learning Based Solar Flare Forecasting Model. I. Results for Line-of-sight Magnetograms

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Wang, Huaning; Xu, Long; Liu, Jinfu; Li, Rong; Dai, Xinghua

    2018-03-01

    Solar flares originate from the release of the energy stored in the magnetic field of solar active regions, the triggering mechanism for these flares, however, remains unknown. For this reason, the conventional solar flare forecast is essentially based on the statistic relationship between solar flares and measures extracted from observational data. In the current work, the deep learning method is applied to set up the solar flare forecasting model, in which forecasting patterns can be learned from line-of-sight magnetograms of solar active regions. In order to obtain a large amount of observational data to train the forecasting model and test its performance, a data set is created from line-of-sight magnetogarms of active regions observed by SOHO/MDI and SDO/HMI from 1996 April to 2015 October and corresponding soft X-ray solar flares observed by GOES. The testing results of the forecasting model indicate that (1) the forecasting patterns can be automatically reached with the MDI data and they can also be applied to the HMI data; furthermore, these forecasting patterns are robust to the noise in the observational data; (2) the performance of the deep learning forecasting model is not sensitive to the given forecasting periods (6, 12, 24, or 48 hr); (3) the performance of the proposed forecasting model is comparable to that of the state-of-the-art flare forecasting models, even if the duration of the total magnetograms continuously spans 19.5 years. Case analyses demonstrate that the deep learning based solar flare forecasting model pays attention to areas with the magnetic polarity-inversion line or the strong magnetic field in magnetograms of active regions.

  10. IRIS Ultraviolet Spectral Properties of a Sample of X-Class Solar Flares

    NASA Astrophysics Data System (ADS)

    Butler, Elizabeth; Kowalski, Adam; Cauzzi, Gianna; Allred, Joel C.; Daw, Adrian N.

    2018-06-01

    The white-light (near-ultraviolet (NUV) and optical) continuum emission comprises the majority of the radiated energy in solar flares. However, there are nearly as many explanations for the origin of the white-light continuum radiation as there are white-light flares that have been studied in detail with spectra. Furthermore, there are rarely robust constraints on the time-resolved dynamics in the white-light emitting flare layers. We are conducting a statistical study of the properties of Fe II lines, Mg II lines, and NUV continuum intensity in bright flare kernels observed by the Interface Region Imaging Spectrograph (IRIS), in order to provide comprehensive constraints for radiative-hydrodynamic flare models. Here we present a new technique for identifying bright flare kernels and preliminary relationships among IRIS spectral properties for a sample of X-class solar flares.

  11. Verification of operational solar flare forecast: Case of Regional Warning Center Japan

    NASA Astrophysics Data System (ADS)

    Kubo, Yûki; Den, Mitsue; Ishii, Mamoru

    2017-08-01

    In this article, we discuss a verification study of an operational solar flare forecast in the Regional Warning Center (RWC) Japan. The RWC Japan has been issuing four-categorical deterministic solar flare forecasts for a long time. In this forecast verification study, we used solar flare forecast data accumulated over 16 years (from 2000 to 2015). We compiled the forecast data together with solar flare data obtained with the Geostationary Operational Environmental Satellites (GOES). Using the compiled data sets, we estimated some conventional scalar verification measures with 95% confidence intervals. We also estimated a multi-categorical scalar verification measure. These scalar verification measures were compared with those obtained by the persistence method and recurrence method. As solar activity varied during the 16 years, we also applied verification analyses to four subsets of forecast-observation pair data with different solar activity levels. We cannot conclude definitely that there are significant performance differences between the forecasts of RWC Japan and the persistence method, although a slightly significant difference is found for some event definitions. We propose to use a scalar verification measure to assess the judgment skill of the operational solar flare forecast. Finally, we propose a verification strategy for deterministic operational solar flare forecasting. For dichotomous forecast, a set of proposed verification measures is a frequency bias for bias, proportion correct and critical success index for accuracy, probability of detection for discrimination, false alarm ratio for reliability, Peirce skill score for forecast skill, and symmetric extremal dependence index for association. For multi-categorical forecast, we propose a set of verification measures as marginal distributions of forecast and observation for bias, proportion correct for accuracy, correlation coefficient and joint probability distribution for association, the

  12. Non-neutralized Electric Currents in Solar Active Regions and Flare Productivity

    NASA Astrophysics Data System (ADS)

    Kontogiannis, Ioannis; Georgoulis, Manolis K.; Park, Sung-Hong; Guerra, Jordan A.

    2017-11-01

    We explore the association of non-neutralized currents with solar flare occurrence in a sizable sample of observations, aiming to show the potential of such currents in solar flare prediction. We used the high-quality vector magnetograms that are regularly produced by the Helioseismic Magnetic Imager, and more specifically, the Space weather HMI Active Region Patches (SHARP). Through a newly established method that incorporates detailed error analysis, we calculated the non-neutralized currents contained in active regions (AR). Two predictors were produced, namely the total and the maximum unsigned non-neutralized current. Both were tested in AR time-series and a representative sample of point-in-time observations during the interval 2012 - 2016. The average values of non-neutralized currents in flaring active regions are higher by more than an order of magnitude than in non-flaring regions and correlate very well with the corresponding flare index. The temporal evolution of these parameters appears to be connected to physical processes, such as flux emergence and/or magnetic polarity inversion line formation, that are associated with increased solar flare activity. Using Bayesian inference of flaring probabilities, we show that the total unsigned non-neutralized current significantly outperforms the total unsigned magnetic flux and other well-established current-related predictors. It therefore shows good prospects for inclusion in an operational flare-forecasting service. We plan to use the new predictor in the framework of the FLARECAST project along with other highly performing predictors.

  13. Mini-filament Eruptions Triggering Confined Solar Flares Observed by ONSET and SDO

    NASA Astrophysics Data System (ADS)

    Yang, Shuhong; Zhang, Jun

    2018-06-01

    Using the observations from the Optical and Near-infrared Solar Eruption Tracer (ONSET) and the Solar Dynamics Observatory (SDO), we study an M5.7 flare in AR 11476 on 2012 May 10 and a micro-flare in the quiet Sun on 2017 March 23. Before the onset of each flare, there is a reverse S-shaped filament above the polarity inversion line, then the filaments become unstable and begin to rise. The rising filaments gain the upper hand over the tension force of the dome-like overlying loops and thus successfully erupt outward. The footpoints of the reconnecting overlying loops successively brighten and are observed as two flare ribbons, while the newly formed low-lying loops appear as post-flare loops. These eruptions are similar to the classical model of successful filament eruptions associated with coronal mass ejections (CMEs). However, the erupting filaments in this study move along large-scale lines and eventually reach the remote solar surface; i.e., no filament material is ejected into the interplanetary space. Thus, both the flares are confined. These results reveal that some successful filament eruptions can trigger confined flares. Our observations also imply that this kind of filament eruption may be ubiquitous on the Sun, from active regions (ARs) with large flares to the quiet Sun with micro-flares.

  14. Powerful Solar Flares in September 2017. Comparison with the Largest Flares in Cycle 24

    NASA Astrophysics Data System (ADS)

    Bruevich, E. A.; Bruevich, V. V.

    2018-06-01

    Solar flare activity in cycle 24 is studied. Satellite observations of x-ray fluxes from GOES-15 and UV emission lines from the SDO/EVE experiment are used. The most powerful flares of cycle 24 in classes X9.3 and X8.2 in September 2017 are compared with powerful flares in classes M5-X6.9. The times at which the fluxes in the 30.4 and 9.4 nm lines and in the 0.1-0.8 nm x-ray range begin to increase are compared for 21 of the large flares. The total energies arriving at the earth from flares in the 30.4 and 9.4 nm lines and in the 0.1-0.9 nm x-ray range, E30.4, E9.4, and E0.1-0.8, from 25 flares during 2011 and 2012 are calculated. It is shown that the calculated energies of the flares in the analyzed lines from SDO/EVE and in the x-ray range from GOES-15 are closely interrelated.

  15. Beam-return current systems in solar flares

    NASA Technical Reports Server (NTRS)

    Spicer, D. S.; Sudan, R. N.

    1984-01-01

    It is demonstrated that the common assumption made in solar flare beam transport theory that the beam-accompanied return current is purely electrostatically driven is incorrect, and that the return current is both electrostatically and inductively driven, in accordance with Lenz's law, with the inductive effects dominating for times greater than a few plasma periods. In addition, it is shown that a beam can only exist in a solar plasma for a finite time which is much smaller than the inductive return current dissipation time. The importance of accounting for the role of the acceleration mechanism in forming the beam is discussed. In addition, the role of return current driven anomalous resistivity and its subsequent anomalous Joule heating during the flare process is elucidated.

  16. On the Origin of Solar and Stellar Flares

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon

    2015-08-01

    Physical processes connected with falls of comets and evaporating bodies, FEBs, onto stars with cosmic velocities, around 600 km/s, are considered. The processes include aerodynamic crushing of comet nucleus and transversal expansion of crushed mass within the solar chromosphere as well as sharp deceleration of the flattening structure in a relatively very thin layer near the solar/stellar photosphere. Fast thermalization of the body's kinetic energy will be accompanied by impulse generation of a high temperature plasma in the thin layer, i.e., "explosion" and strong "blast" shock wave as well as eruption of the layer ionized material into space above the chromosphere. Impact mechanism is capable to lead to generation of solar/stellar super-flares. Some similarities of this phenomenon with flare activity by magnetic reconnection are also revealed.

  17. Gradient spectral analysis of solar radio flare superevents

    NASA Astrophysics Data System (ADS)

    Rosa, R. R.; Veronese, T. B.; Sych, R. A.; Bolzan, M. A.; Sandri, S. A.; Drummond, I. A.; Becceneri, J. C.; Sawant, H. S.

    2011-12-01

    Some of complex solar active regions exhibit rare and sudden transitions that occur over time intervals that are short compared to the characteristic time scales of their evolution. Usually, extreme radio emission is driven by a latent nonlinear process involving magnetic reconnection among coronal loops and such extreme events (e.g., X-class flares and coronal mass ejections) express the presence of plasma and magnetic activity usually hidden inside the solar convective layer. Recently, the scaling exponent obtained from Detrended Fluctuation Analysis has been used to characterize the formation of solar flare superevents - SFS (integrated flux of radiation greater than 1.5 J/m2) when it is observed in the decimetric range of 1-3 GHz (Veronese et al., 2011). Here, we show a complementary computational analisys of four X-class solar flares observed in 17GHz from Nobeyama Radioheliograph. Our analysis is based on the combination of DFA and Gradient Spectral Analysis (GSA) which can be used to characterize the evolution of SFSs under the condition that the emission threshold is large enough (fmax > 300 S.F.U.) and the solar flux unit variability is greater than 50% of the average taken from the minimum flux to the extreme value. Preliminary studies of the gradient spectra of Nobeyama data in 17 GHz can be found in Sawant et al. (JASTP 73(11), 2011). Future applications of GSA on the images which will be observed from the Brazilian Decimetric Array (BDA) are discusssed.

  18. Searching for Spectroscopic Signs of Termination Shocks in Solar Flares

    NASA Astrophysics Data System (ADS)

    Galan, G.; Polito, V.; Reeves, K.

    2017-12-01

    The standard flare model predicts the presence of a termination shock located above the flare loop tops, however terminations shocks have not yet been well observed. We analyze flare observations by the Interface Region Imaging Spectrograph (IRIS), which provides cotemporal UV imaging and spectral data. Specifically, we study plasma emissions in the Fe XXI line, formed at the very hot plasma temperatures in flares (> 10 MK). Imaging observations that point to shocks include fast hot reconnection downflows above the loop tops and localized dense, bright plasma at the loop tops; spectral signatures that suggest shocks in the locality of the loop tops include redshifts and nonthermal broadening of the Fe XXI line. We identify possibly significant redshifts in some on-disk flare events observed by IRIS. Redshifts are observed in the vicinity of the bright loop top source that is thought to coincide with the site of the shock. In these events, the Fe XXI emissions at the time of the redshifted structures are dominated by at the at-rest components. The much more less intense redshifted components are broader, with velocities of 200 km/s. The spatial location of these shifts might indicate plasma motions and speeds indicative of termination shocks. This work is supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313, and by NASA Grant NNX15AJ93G. Keywords: Solar flares, Solar magnetic reconnection, Termination shocks

  19. ANATOMY OF A SOLAR FLARE: MEASUREMENTS OF THE 2006 DECEMBER 14 X-CLASS FLARE WITH GONG, HINODE, AND RHESSI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, S. A.; Zharkov, S.; Zharkova, V. V.

    2011-10-01

    Some of the most challenging observations to explain in the context of existing flare models are those related to the lower atmosphere and below the solar surface. Such observations, including changes in the photospheric magnetic field and seismic emission, indicate the poorly understood connections between energy release in the corona and its impact in the photosphere and the solar interior. Using data from Hinode, TRACE, RHESSI, and GONG we study the temporal and spatial evolution of the 2006 December 14 X-class flare in the chromosphere, photosphere, and the solar interior. We investigate the connections between the emission at various atmosphericmore » depths, including acoustic signatures obtained by time-distance and holography methods from the GONG data. We report the horizontal displacements observed in the photosphere linked to the timing and locations of the acoustic signatures we believe to be associated with this flare, their vertical and horizontal displacement velocities, and their potential implications for current models of flare dynamics.« less

  20. Thermodynamic Spectrum of Solar Flares Based on SDO/EVE Observations: Techniques and First Results

    NASA Technical Reports Server (NTRS)

    Wang, Yuming; Zhou, Zhenjun; Zhang, Jie; Liu, Kai; Liu, Rui; Shen, Chenglong; Chamberlin, Phillip C.

    2016-01-01

    The Solar Dynamics Observatory (SDO)/EUV Variability Experiment (EVE) provides rich information on the thermodynamic processes of solar activities, particularly on solar flares. Here, we develop a method to construct thermodynamic spectrum (TDS) charts based on the EVE spectral lines. This tool could potentially be useful for extreme ultraviolet (EUV) astronomy to learn about the eruptive activities on distant astronomical objects. Through several cases, we illustrate what we can learn from the TDS charts. Furthermore, we apply the TDS method to 74 flares equal to or greater than the M5.0 class, and reach the following statistical results. First, EUV peaks are always behind the soft X-ray (SXR) peaks and stronger flares tend to have faster cooling rates. There is a power-law correlation between the peak delay times and the cooling rates, suggesting a coherent cooling process of flares from SXR to EUV emissions. Second, there are two distinct temperature drift patterns, called Type I and Type II. For Type I flares, the enhanced emission drifts from high to low temperature like a quadrilateral, whereas for Type II flares the drift pattern looks like a triangle. Statistical analysis suggests that Type II flares are more impulsive than Type I flares. Third, for late-phase flares, the peak intensity ratio of the late phase to the main phase is roughly correlated with the flare class, and the flares with a strong late phase are all confined. We believe that the re-deposition of the energy carried by a flux rope, which unsuccessfully erupts out, into thermal emissions is responsible for the strong late phase found in a confined flare. Furthermore, we show the signatures of the flare thermodynamic process in the chromosphere and transition region in the TDS charts. These results provide new clues to advance our understanding of the thermodynamic processes of solar flares and associated solar eruptions, e.g., coronal mass ejections.

  1. THERMODYNAMIC SPECTRUM OF SOLAR FLARES BASED ON SDO/EVE OBSERVATIONS: TECHNIQUES AND FIRST RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuming; Zhou, Zhenjun; Liu, Kai

    2016-03-15

    The Solar Dynamics Observatory (SDO)/EUV Variability Experiment (EVE) provides rich information on the thermodynamic processes of solar activities, particularly on solar flares. Here, we develop a method to construct thermodynamic spectrum (TDS) charts based on the EVE spectral lines. This tool could potentially be useful for extreme ultraviolet (EUV) astronomy to learn about the eruptive activities on distant astronomical objects. Through several cases, we illustrate what we can learn from the TDS charts. Furthermore, we apply the TDS method to 74 flares equal to or greater than the M5.0 class, and reach the following statistical results. First, EUV peaks are always behind the soft X-raymore » (SXR) peaks and stronger flares tend to have faster cooling rates. There is a power-law correlation between the peak delay times and the cooling rates, suggesting a coherent cooling process of flares from SXR to EUV emissions. Second, there are two distinct temperature drift patterns, called Type I and Type II. For Type I flares, the enhanced emission drifts from high to low temperature like a quadrilateral, whereas for Type II flares the drift pattern looks like a triangle. Statistical analysis suggests that Type II flares are more impulsive than Type I flares. Third, for late-phase flares, the peak intensity ratio of the late phase to the main phase is roughly correlated with the flare class, and the flares with a strong late phase are all confined. We believe that the re-deposition of the energy carried by a flux rope, which unsuccessfully erupts out, into thermal emissions is responsible for the strong late phase found in a confined flare. Furthermore, we show the signatures of the flare thermodynamic process in the chromosphere and transition region in the TDS charts. These results provide new clues to advance our understanding of the thermodynamic processes of solar flares and associated solar eruptions, e.g., coronal mass ejections.« less

  2. The mean ionic charge of silicon in 3HE-rich solar flares

    NASA Technical Reports Server (NTRS)

    Luhn, A.; Klecker, B.; Hovestadt, E.; Moebius, E.

    1985-01-01

    Mean ionic charge of iron in 3He-rich solar flares and the average mean charge of Silicon for 23 #He-rich periods during the time interval from September 1978 to October 1979 were determined. It is indicated that the value of the mean charge state of Silicon is higher than the normal flare average by approximately 3 units and in perticular it is higher then the value predicted by resonant heating models for 3He-rich solar flares.

  3. High-energy gamma-ray emission from solar flares: Summary of Fermi large area telescope detections and analysis of two m-class flares

    DOE PAGES

    Ackermann, M.; Ajello, M.; Albert, A.; ...

    2014-04-29

    Here, we present the detections of 18 solar flares detected in high-energy γ-rays (above 100 MeV) with the Fermi Large Area Telescope (LAT) during its first 4 yr of operation. Our work suggests that particle acceleration up to very high energies in solar flares is more common than previously thought, occurring even in modest flares, and for longer durations. Interestingly, all these flares are associated with fairly fast coronal mass ejections (CMEs). We then describe the detailed temporal, spatial, and spectral characteristics of the first two long-lasting events: the 2011 March 7 flare, a moderate (M3.7) impulsive flare followed bymore » slowly varying γ-ray emission over 13 hr, and the 2011 June 7 M2.5 flare, which was followed by γ-ray emission lasting for 2 hr. We compare the Fermi LAT data with X-ray and proton data measurements from GOES and RHESSI. We argue that the γ-rays are more likely produced through pion decay than electron bremsstrahlung, and we find that the energy spectrum of the proton distribution softens during the extended emission of the 2011 March 7 flare. Furthermore, this would disfavor a trapping scenario for particles accelerated during the impulsive phase of the flare and point to a continuous acceleration process at play for the duration of the flares. CME shocks are known for accelerating the solar energetic particles (SEPs) observed in situ on similar timescales, but it might be challenging to explain the production of γ-rays at the surface of the Sun while the CME is halfway to the Earth. A stochastic turbulence acceleration process occurring in the solar corona is another likely scenario. Detailed comparison of characteristics of SEPs and γ-ray-emitting particles for several flares will be helpful to distinguish between these two possibilities.« less

  4. Automated Solar Flare Detection and Feature Extraction in High-Resolution and Full-Disk Hα Images

    NASA Astrophysics Data System (ADS)

    Yang, Meng; Tian, Yu; Liu, Yangyi; Rao, Changhui

    2018-05-01

    In this article, an automated solar flare detection method applied to both full-disk and local high-resolution Hα images is proposed. An adaptive gray threshold and an area threshold are used to segment the flare region. Features of each detected flare event are extracted, e.g. the start, peak, and end time, the importance class, and the brightness class. Experimental results have verified that the proposed method can obtain more stable and accurate segmentation results than previous works on full-disk images from Big Bear Solar Observatory (BBSO) and Kanzelhöhe Observatory for Solar and Environmental Research (KSO), and satisfying segmentation results on high-resolution images from the Goode Solar Telescope (GST). Moreover, the extracted flare features correlate well with the data given by KSO. The method may be able to implement a more complicated statistical analysis of Hα solar flares.

  5. Evidence for solar flare rare gases in the Khor Temiki aubrite.

    NASA Technical Reports Server (NTRS)

    Rajan, R. S.; Price, P. B.

    1973-01-01

    It has been found by studying a number of gas-rich meteorites, including Khor Temiki that there is a correlation between the abundance of 'track-rich' grains and the concentration of trapped rare gases. The amount of solar flare gas in Khor Temiki is examined. It is pointed out that the Khor Temiki enstatite is an ideal sample in which to look for evidence of solar flare gases because there has been little or no diffusion loss of solar wind gases.

  6. Multifractality as a Measure of Complexity in Solar Flare Activity

    NASA Astrophysics Data System (ADS)

    Sen, Asok K.

    2007-03-01

    In this paper we use the notion of multifractality to describe the complexity in H α flare activity during the solar cycles 21, 22, and 23. Both northern and southern hemisphere flare indices are analyzed. Multifractal behavior of the flare activity is characterized by calculating the singularity spectrum of the daily flare index time series in terms of the Hölder exponent. The broadness of the singularity spectrum gives a measure of the degree of multifractality or complexity in the flare index data. The broader the spectrum, the richer and more complex is the structure with a higher degree of multifractality. Using this broadness measure, complexity in the flare index data is compared between the northern and southern hemispheres in each of the three cycles, and among the three cycles in each of the two hemispheres. Other parameters of the singularity spectrum can also provide information about the fractal properties of the flare index data. For instance, an asymmetry to the left or right in the singularity spectrum indicates a dominance of high or low fractal exponents, respectively, reflecting a relative abundance of large or small fluctuations in the total energy emitted by the flares. Our results reveal that in the even (22nd) cycle the singularity spectra are very similar for the northern and southern hemispheres, whereas in the odd cycles (21st and 23rd) they differ significantly. In particular, we find that in cycle 21, the northern hemisphere flare index data have higher complexity than its southern counterpart, with an opposite pattern prevailing in cycle 23. Furthermore, small-scale fluctuations in the flare index time series are predominant in the northern hemisphere in the 21st cycle and are predominant in the southern hemisphere in the 23rd cycle. Based on these findings one might suggest that, from cycle to cycle, there exists a smooth switching between the northern and southern hemispheres in the multifractality of the flaring process. This new

  7. Solar flare induced D-region ionospheric perturbations evaluated from VLF measurements

    NASA Astrophysics Data System (ADS)

    Singh, Ashutosh K.; Singh, A. K.; Singh, Rajesh; Singh, R. P.

    2014-03-01

    The results of very low frequency (VLF) wave amplitude measurements carried out at the low latitude station Varanasi (geom. lat. 14∘55'N, long. 154∘E), India during solar flares are presented for the first time. The VLF waves (19.8 kHz) transmitted from the NWC-transmitter, Australia propagated in the Earth-ionosphere waveguide to long distances and were recorded at Varanasi. Data are analyzed and the reflection height H' and the sharpness factor β are evaluated. It is found that the reflection height decreases whereas sharpness factor increases with the increase of solar flare power. The H' is found to be higher and β smaller at low latitudes than the corresponding values at mid and high latitudes. The sunspot numbers were low during the considered period 2011-2012, being the rising phase of solar cycle 24 and as a result cosmic rays may impact the D-region ionosphere. The increased ionization from the flare lowers the effective reflecting height, H', of the D-region roughly in proportion to the logarithm of the X-ray flare intensity from a typical mid-day unperturbed value of about 71-72 km down to about 65 km for an X class flare. The sharpness ( β) of the lower edge of the D-region is also significantly increased by the flare but reaches a clear saturation value of about 0.48 km-1 for flares of magnitude greater than about X1 class.

  8. A phenomenological model of solar flares

    NASA Technical Reports Server (NTRS)

    Colgate, S. A.

    1978-01-01

    The energy of solar flares is derived from the magnetic energy of fields convected to the sun's surface and subsequently converted to heat and energetic particles within the chromosphere. The circumstances of this conversion in most current models is magnetic flux annihilation at a neutral sheet. An analysis is conducted of the constraints of flux annihilation. It is shown that the present evidence of solar cosmic rays, X-rays, gamma-rays, and total energy suggests a choice of annihilation not at a neutral point, but by an enhanced dissipation of a field-aligned current. The field configuration is related both to its origin and to the extensive theory and laboratory experiments concerned with this configuration in magnetic fusion. The magnetic field model is applied to the August 4 flare. It is shown how the plasma heating in the annihilation region balanced by thermal conduction leads to a plasma temperature of about 20 million deg K.

  9. Predicting the Where and the How Big of Solar Flares

    NASA Astrophysics Data System (ADS)

    Barnes, Graham; Leka, K. D.; Gilchrist, Stuart

    2017-08-01

    The approach to predicting solar flares generally characterizes global properties of a solar active region, for example the total magnetic flux or the total length of a sheared magnetic neutral line, and compares new data (from which to make a prediction) to similar observations of active regions and their associated propensity for flare production. We take here a different tack, examining solar active regions in the context of their energy storage capacity. Specifically, we characterize not the region as a whole, but summarize the energy-release prospects of different sub-regions within, using a sub-area analysis of the photospheric boundary, the CFIT non-linear force-free extrapolation code, and the Minimum Current Corona model. We present here early results from this approach whose objective is to understand the different pathways available for regions to release stored energy, thus eventually providing better estimates of the where (what sub-areas are storing how much energy) and the how big (how much energy is stored, and how much is available for release) of solar flares.

  10. SLIPPING MAGNETIC RECONNECTIONS WITH MULTIPLE FLARE RIBBONS DURING AN X-CLASS SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing, E-mail: ruishengzheng@sdu.edu.cn

    2016-06-01

    With the observations of the Solar Dynamics Observatory , we present the slipping magnetic reconnections with multiple flare ribbons (FRs) during an X1.2 eruptive flare on 2014 January 7. A center negative polarity was surrounded by several positive ones, and three FRs appeared. The three FRs showed apparent slipping motions, and hook structures formed at their ends. Due to the moving footpoints of the erupting structures, one tight semi-circular hook disappeared after the slippage along its inner and outer edges, and coronal dimmings formed within the hook. The east hook also faded as a result of the magnetic reconnection betweenmore » the arcades of a remote filament and a hot loop that was impulsively heated by the under flare loops. Our results are accordant with the slipping magnetic reconnection regime in three-dimensional standard model for eruptive flares. We suggest that the complex structures of the flare are likely a consequence of the more complex flux distribution in the photosphere, and the eruption involves at least two magnetic reconnections.« less

  11. Faint Coronal Hard X-rays From Accelerated Electrons in Solar Flares

    NASA Astrophysics Data System (ADS)

    Glesener, Lindsay Erin

    Solar flares are huge explosions on the Sun that release a tremendous amount of energy from the coronal magnetic field, up to 1033 ergs, in a short time (100--1000 seconds), with much of the energy going into accelerated electrons and ions. An efficient acceleration mechanism is needed, but the details of this mechanism remain relatively unknown. A fraction of this explosive energy reaches the Earth in the form of energetic particles, producing geomagnetic storms and posing dangers to spaceborne instruments, astronauts, and Earthbound power grids. There are thus practical reasons, as well as intellectual ones, for wishing to understand this extraordinary form of energy release. Through imaging spectroscopy of the hard X-ray (HXR) emission from solar flares, the behavior of flare-accelerated electrons can be studied. The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI ) spacecraft launched in 2002 with the goal of better understanding flare particle acceleration. Using rotation modulation collimators, RHESSI is able to cover a wide energy range (3 keV--17 MeV) with fine angular and energy resolutions. RHESSI's success in the last 10 years in investigating the relationship between energetic electrons and ions, the nature of faint sources in the corona, the energy distribution of flares, and several other topics have significantly advanced the understanding of flares. But along with the wealth of information revealed by RHESSI come some clear observational challenges. Very few, if any, RHESSI observations have come close to imaging the electron acceleration region itself. This is undoubtedly due to a lack of both sensitivity (HXRs from electron beams in the tenuous corona are faint) and dynamic range (HXR sources at chromospheric flare footpoints are much brighter and tend to obscure faint coronal sources). Greater sensitivity is also required to investigate the role that small flares in the quiet Sun could play in heating the corona. The Focusing Optics

  12. On the Importance of the Flare's Late Phase for the Solar Extreme Ultraviolet Irradiance

    NASA Technical Reports Server (NTRS)

    Woods, Thomas N.; Eparvier, Frank; Jones, Andrew R.; Hock, Rachel; Chamberlin, Phillip C.; Klimchuk, James A.; Didkovsky, Leonid; Judge, Darrell; Mariska, John; Bailey, Scott; hide

    2011-01-01

    The new solar extreme ultraviolet (EUV) irradiance observations from NASA Solar Dynamics Observatory (SDO) have revealed a new class of solar flares that are referred to as late phase flares. These flares are characterized by the hot 2-5 MK coronal emissions (e.g., Fe XVI 33.5 nm) showing large secondary peaks that appear many minutes to hours after an eruptive flare event. In contrast, the cool 0.7-1.5 MK coronal emissions (e.g., Fe IX 17.1 nm) usually dim immediately after the flare onset and do not recover until after the delayed second peak of the hot coronal emissions. We refer to this period of 1-5 hours after the fl amrea sin phase as the late phase, and this late phase is uniquely different than long duration flares associated with 2-ribbon flares or large filament eruptions. Our analysis of the late phase flare events indicates that the late phase involves hot coronal loops near the flaring region, not directly related to the original flaring loop system but rather with the higher post-eruption fields. Another finding is that space weather applications concerning Earth s ionosphere and thermosphere need to consider these late phase flares because they can enhance the total EUV irradiance flare variation by a factor of 2 when the late phase contribution is included.

  13. The Atmospheric Response to High Nonthermal Electron Beam Fluxes in Solar Flares. I. Modeling the Brightest NUV Footpoints in the X1 Solar Flare of 2014 March 29

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalski, Adam F.; Allred, Joel C.; Daw, Adrian

    2017-02-10

    The 2014 March 29 X1 solar flare (SOL20140329T17:48) produced bright continuum emission in the far- and near-ultraviolet (NUV) and highly asymmetric chromospheric emission lines, providing long-sought constraints on the heating mechanisms of the lower atmosphere in solar flares. We analyze the continuum and emission line data from the Interface Region Imaging Spectrograph (IRIS) of the brightest flaring magnetic footpoints in this flare. We compare the NUV spectra of the brightest pixels to new radiative-hydrodynamic predictions calculated with the RADYN code using constraints on a nonthermal electron beam inferred from the collisional thick-target modeling of hard X-ray data from Reuven Ramatymore » High Energy Solar Spectroscopic Imager . We show that the atmospheric response to a high beam flux density satisfactorily achieves the observed continuum brightness in the NUV. The NUV continuum emission in this flare is consistent with hydrogen (Balmer) recombination radiation that originates from low optical depth in a dense chromospheric condensation and from the stationary beam-heated layers just below the condensation. A model producing two flaring regions (a condensation and stationary layers) in the lower atmosphere is also consistent with the asymmetric Fe ii chromospheric emission line profiles observed in the impulsive phase.« less

  14. The Atmospheric Response to High Nonthermal Electron Beam Fluxes in Solar Flares. I. Modeling the Brightest NUV Footpoints in the X1 Solar Flare of 2014 March 29

    NASA Technical Reports Server (NTRS)

    Kowalski, Adam F.; Allred, Joel C.; Daw, Adrian N.; Cauzzi, Gianna; Carlsson, Mats

    2017-01-01

    The 2014 March 29 X1 solar flare (SOL20140329T17:48) produced bright continuum emission in the far- and near-ultraviolet (NUV) and highly asymmetric chromospheric emission lines, providing long-sought constraints on the heating mechanisms of the lower atmosphere in solar flares. We analyze the continuum and emission line data from the Interface Region Imaging Spectrograph (IRIS) of the brightest flaring magnetic footpoints in this flare. We compare the NUV spectra of the brightest pixels to new radiative-hydrodynamic predictions calculated with the RADYN code using constraints on a nonthermal electron beam inferred from the collisional thick-target modeling of hard X-ray data from Reuven Ramaty High Energy Solar Spectroscopic Imager. We show that the atmospheric response to a high beam flux density satisfactorily achieves the observed continuum brightness in the NUV. The NUV continuum emission in this flare is consistent with hydrogen (Balmer) recombination radiation that originates from low optical depth in a dense chromospheric condensation and from the stationary beam-heated layers just below the condensation. A model producing two flaring regions (a condensation and stationary layers) in the lower atmosphere is also consistent with the asymmetric Fe II chromospheric emission line profiles observed in the impulsive phase.

  15. The interpretation of hard X-ray polarization measurements in solar flares

    NASA Technical Reports Server (NTRS)

    Leach, J.; Emslie, A. G.; Petrosian, V.

    1983-01-01

    Observations of polarization of moderately hard X-rays in solar flares are reviewed and compared with the predictions of recent detailed modeling of hard X-ray bremsstrahlung production by non-thermal electrons. The recent advances in the complexity of the modeling lead to substantially lower predicted polarizations than in earlier models and more fully highlight how various parameters play a role in determining the polarization of the radiation field. The new predicted polarizations are comparable to those predicted by thermal modeling of solar flare hard X-ray production, and both are in agreement with the observations. In the light of these results, new polarization observations with current generation instruments are proposed which could be used to discriminate between non-thermal and thermal models of hard X-ray production in solar flares.

  16. A Large-scale Plume in an X-class Solar Flare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleishman, Gregory D.; Nita, Gelu M.; Gary, Dale E.

    Ever-increasing multi-frequency imaging of solar observations suggests that solar flares often involve more than one magnetic fluxtube. Some of the fluxtubes are closed, while others can contain open fields. The relative proportion of nonthermal electrons among those distinct loops is highly important for understanding energy release, particle acceleration, and transport. The access of nonthermal electrons to the open field is also important because the open field facilitates the solar energetic particle (SEP) escape from the flaring site, and thus controls the SEP fluxes in the solar system, both directly and as seed particles for further acceleration. The large-scale fluxtubes aremore » often filled with a tenuous plasma, which is difficult to detect in either EUV or X-ray wavelengths; however, they can dominate at low radio frequencies, where a modest component of nonthermal electrons can render the source optically thick and, thus, bright enough to be observed. Here we report the detection of a large-scale “plume” at the impulsive phase of an X-class solar flare, SOL2001-08-25T16:23, using multi-frequency radio data from Owens Valley Solar Array. To quantify the flare’s spatial structure, we employ 3D modeling utilizing force-free-field extrapolations from the line of sight SOHO /MDI magnetograms with our modeling tool GX-Simulator. We found that a significant fraction of the nonthermal electrons that accelerated at the flare site low in the corona escapes to the plume, which contains both closed and open fields. We propose that the proportion between the closed and open fields at the plume is what determines the SEP population escaping into interplanetary space.« less

  17. Simulating the Mg II NUV Spectra & C II Resonance Lines During Solar Flares

    NASA Astrophysics Data System (ADS)

    Kerr, Graham Stewart; Allred, Joel C.; Leenaarts, Jorrit; Butler, Elizabeth; Kowalski, Adam

    2017-08-01

    The solar chromosphere is the origin of the bulk of the enhanced radiative output during solar flares, and so comprehensive understanding of this region is important if we wish to understand energy transport in solar flares. It is only relatively recently, however, with the launch of IRIS that we have routine spectroscopic flarea observations of the chromsphere and transition region. Since several of the spectral lines observed by IRIS are optically thick, it is necessary to use forward modelling to extract the useful information that these lines carry about the flaring chromosphere and transition region. We present the results of modelling the formation properties Mg II resonance lines & subordinate lines, and the C II resonance lines during solar flares. We focus on understanding their relation to the physical strucutre of the flaring atmosphere, exploiting formation height differences to determine if we can extract information about gradients in the atmosphere. We show the effect of degrading the profiles to the resolution of the IRIS, and that the usual observational techniques used to identify the line centroid do a poor job in the early stages of the flare (partly due to multiple optically thick line components). Finally, we will tentatively comment on the effects that 3D radiation transfer may have on these lines.

  18. Thermodynamics of supra-arcade downflows in solar flares

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Liu, Rui; Deng, Na; Wang, Haimin

    2017-10-01

    Context. Supra-arcade downflows (SADs) have been frequently observed during the gradual phase of solar flares near the limb. In coronal emission lines sensitive to flaring plasmas, they appear as tadpole-like dark voids against the diffuse fan-shaped "haze" above, flowing toward the well-defined flare arcade. Aims: We aim to investigate the evolution of SADs' thermal properties, and to shed light on the formation mechanism and physical processes of SADs. Methods: We carefully studied several selected SADs from two flare events and calculated their differential emission measures (DEMs) as well as DEM-weighted temperatures using data obtained by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamic Observatory. Results: Our analysis shows that SADs are associated with a substantial decrease in DEM above 4 MK, which is 1-3 orders of magnitude smaller than the surrounding haze as well as the region before or after the passage of SADs, but comparable to the quiet corona. There is no evidence for the presence of the SAD-associated hot plasma (>20 MK) in the AIA data, and this decrease in DEM does not cause any significant change in the DEM distribution as well as the DEM-weighted temperature, which supports this idea that SADs are density depletion. This depression in DEM rapidly recovers in the wake of the SADs studied, generally within a few minutes, suggesting that they are discrete features. In addition, we found that SADs in one event are spatio-temporally associated with the successive formation of post-flare loops along the flare arcade. Movies associated to Figs. A.1 and A.2 are available at http://www.aanda.org

  19. A Large-scale Search for Evidence of Quasi-periodic Pulsations in Solar Flares

    NASA Astrophysics Data System (ADS)

    Inglis, A. R.; Ireland, J.; Dennis, B. R.; Hayes, L.; Gallagher, P.

    2016-12-01

    The nature of quasi-periodic pulsations (QPP) in solar flares is poorly constrained, and critically the general prevalence of such signals in solar flares is unknown. Therefore, we perform a large-scale search for evidence of signals consistent with QPP in solar flares, focusing on the 1-300 s timescale. We analyze 675 M- and X-class flares observed by the Geostationary Operational Environmental Satellite (GOES) series in 1-8 Å soft X-rays between 2011 February 1 and 2015 December 31. Additionally, over the same era we analyze Fermi/Gamma-ray Burst Monitor (GBM) 15-25 keV X-ray data for each of these flares associated with a Fermi/GBM solar flare trigger, a total of 261 events. Using a model comparison method, we determine whether there is evidence for a substantial enhancement in the Fourier power spectrum that may be consistent with a QPP signature, based on three tested models; a power-law plus a constant, a broken power-law plus constant, and a power-law-plus-constant with an additional QPP signature component. From this, we determine that ˜30% of GOES events and ˜8% of Fermi/GBM events show strong signatures consistent with classical interpretations of QPP. For the remaining events either two or more tested models cannot be strongly distinguished from each other, or the events are well-described by single power-law or broken power-law Fourier power spectra. For both instruments, a preferred characteristic timescale of ˜5-30 s was found in the QPP-like events, with no dependence on flare magnitude in either GOES or GBM data. We also show that individual events in the sample show similar characteristic timescales in both GBM and GOES data sets. We discuss the implications of these results for our understanding of solar flares and possible QPP mechanisms.

  20. A Large-Scale Search for Evidence of Quasi-Periodic Pulsations in Solar Flares

    NASA Technical Reports Server (NTRS)

    Inglis, A. R.; Ireland, J.; Dennis, B. R..; Hayes, L.; Gallagher, P.

    2016-01-01

    The nature of quasi-periodic pulsations (QPP) in solar flares is poorly constrained, and critically the general prevalence of such signals in solar flares is unknown. Therefore, we perform a large-scale search for evidence of signals consistent with QPP in solar flares, focusing on the 1300 s timescale. We analyze 675 M- and X-class flares observed by the Geostationary Operational Environmental Satellite (GOES) series in 18 soft X-rays between 2011 February 1 and 2015 December 31. Additionally, over the same era we analyze Fermi/Gamma-ray Burst Monitor (GBM) 1525 keV X-ray data for each of these flares associated with a Fermi/GBM solar flare trigger, a total of 261 events. Using a model comparison method, we determine whether there is evidence for a substantial enhancement in the Fourier power spectrum that may be consistent with a QPP signature, based on three tested models; a power-law plus a constant, a broken power-law plus constant, and a power-law-plus-constant with an additional QPP signature component. From this, we determine that approx. 30% of GOES events and approx. 8% of Fermi/GBM events show strong signatures consistent with classical interpretations of QPP. For the remaining events either two or more tested models cannot be strongly distinguished from each other, or the events are well-described by single power-law or broken power-law Fourier power spectra. For both instruments, a preferred characteristic time-scale of approx. 5-30 s was found in the QPP-like events, with no dependence on flare magnitude in either GOES or GBM data. We also show that individual events in the sample show similar characteristic time-scales in both GBM and GOES data sets. We discuss the implications of these results for our understanding of solar flares and possible QPP mechanisms.

  1. ABOVE-THE-LOOP-TOP OSCILLATION AND QUASI-PERIODIC CORONAL WAVE GENERATION IN SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takasao, Shinsuke; Shibata, Kazunari, E-mail: takasao@kwasan.kyoto-u.ac.jp

    Observations revealed that various kinds of oscillations are excited in solar flare regions. Quasi-periodic pulsations (QPPs) in flare emissions are commonly observed in a wide range of wavelengths. Recent observations have found that fast-mode magnetohydrodynamic (MHD) waves are quasi-periodically emitted from some flaring sites (quasi-periodic propagating fast-mode magnetoacoustic waves; QPFs). Both QPPs and QPFs imply a cyclic disturbance originating from the flaring sites. However, the physical mechanisms remain puzzling. By performing a set of two-dimensional MHD simulations of a solar flare, we discovered the local oscillation above the loops filled with evaporated plasma (above-the-loop-top region) and the generation of QPFsmore » from such oscillating regions. Unlike all previous models for QPFs, our model includes essential physics for solar flares such as magnetic reconnection, heat conduction, and chromospheric evaporation. We revealed that QPFs can be spontaneously excited by the above-the-loop-top oscillation. We found that this oscillation is controlled by the backflow of the reconnection outflow. The new model revealed that flare loops and the above-the-loop-top region are full of shocks and waves, which is different from the previous expectations based on a standard flare model and previous simulations. In this paper, we show the QPF generation process based on our new picture of flare loops and will briefly discuss a possible relationship between QPFs and QPPs. Our findings will change the current view of solar flares to a new view in which they are a very dynamic phenomenon full of shocks and waves.« less

  2. An extended superhot solar flare X-ray source

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Ohki, K. I.; Tsuneta, S.

    1985-01-01

    A superhot hard X-ray source in a solar flare occulted by the solar limb was identified. Its hard X-ray image was found to show great horizontal extent but little vertical extent. An H alpha brightening at the same limb position about an hour later suggests a multi-component loop prominence system, so that it appears that a superhot source can evolve in the same manner as a normal solar soft X-ray source. The assignment of plausiable values to physical parameters in the source suggests (from the simplest form of classical thermal-conduction theory) that either new physics will be required to suppress conduction, or else that gradual energy release well after the impulsive phase of the flare must occur. In this respect too, the superhot source appears to resemble ordinary soft X-ray sources, except of course that its temperature is higher.

  3. Helium (3) Rich Solar Flares

    DOE R&D Accomplishments Database

    Colgate, S. A.; Audouze, J.; Fowler, W. A.

    1977-05-03

    The extreme enrichment of {sup 3} He {sup 4} He greater than or equal to 1 in some solar flares as due to spallation and the subsequent confinement of the products in a high temperature, kT approx. = 200 keV, high density, n{sub e} approx. = 3 x 10{sup 15} cm {sup -3} plasma associated with the magnetic instability producing the flare is interpreted. The pinch or filament is a current of high energy protons that creates the spallation and maintains the temperature that produces the high energy x-ray spectrum and depletes other isotopes D, Li, Be, and B as observed. Finally the high temperature plasma is a uniquely efficient spallation target that is powered by the interaction of stellar convection and self generated magnetic field.

  4. Proton Flares in Solar Activity Complexes: Possible Origins and Consequences

    NASA Astrophysics Data System (ADS)

    Isaeva, E. S.; Tomozov, V. M.; Yazev, S. A.

    2018-03-01

    Solar flares observed during the 24th solar-activity cycle and accompanied by fluxes of particles detected at the Earth's orbit with intensities exceeding 10 particles cm-2 s-1 and energies of more than 10 MeV per particle mainly occurred in activity complexes (82% of cases), with 80% of these occurring no more than 20 heliographic degrees from the nearest coronal holes. The correlation between the X-ray classes of flares and the proton fluxes detected at the Earth's orbit is weak. The work presented here supports the hypothesis that the leakage of particles into the heliosphere is due to the existence of long-lived magnetic channels, which facilitate the transport of flare-accelerated particles into the boundary regions of open magnetic structures of coronal holes. The possible contribution of exchange reconnection in the formation of such channels and the role of exchange reconnection in the generation of flares are discussed.

  5. Energy storage and deposition in a solar flare

    NASA Technical Reports Server (NTRS)

    Vorpahl, J. A.

    1976-01-01

    X-ray pictures of a solar flare taken with the S-056 X-ray telescope aboard Skylab are interpreted in terms of flare energy deposition and storage. The close similarity between calculated magnetic-field lines and the overall structure of the X-ray core is shown to suggest that the flare occurred in an entire arcade of loops. It is found that different X-ray features brightened sequentially as the flare evolved, indicating that some triggering disturbance moved from one side to the other in the flare core. A propagation velocity of 180 to 280 km/s is computed, and it is proposed that the geometry of the loop arcade strongly influenced the propagation of the triggering disturbance as well as the storage and site of the subsequent energy deposition. Some possible physical causes for the sequential X-ray brightening are examined, and a magnetosonic wave is suggested as the triggering disturbance. 'Correct' conditions for energy release are considered

  6. Prediction and warning system of SEP events and solar flares for risk estimation in space launch operations

    NASA Astrophysics Data System (ADS)

    García-Rigo, Alberto; Núñez, Marlon; Qahwaji, Rami; Ashamari, Omar; Jiggens, Piers; Pérez, Gustau; Hernández-Pajares, Manuel; Hilgers, Alain

    2016-07-01

    A web-based prototype system for predicting solar energetic particle (SEP) events and solar flares for use by space launch operators is presented. The system has been developed as a result of the European Space Agency (ESA) project SEPsFLAREs (Solar Events Prediction system For space LAunch Risk Estimation). The system consists of several modules covering the prediction of solar flares and early SEP Warnings (labeled Warning tool), the prediction of SEP event occurrence and onset, and the prediction of SEP event peak and duration. In addition, the system acquires data for solar flare nowcasting from Global Navigation Satellite Systems (GNSS)-based techniques (GNSS Solar Flare Detector, GSFLAD and the Sunlit Ionosphere Sudden Total Electron Content Enhancement Detector, SISTED) as additional independent products that may also prove useful for space launch operators.

  7. Thermal Structure of Supra-Arcade Plasma in Two Solar Flares

    NASA Technical Reports Server (NTRS)

    Reeves, Katharine K.; Savage, Sabrina; McKenzie, David E.; Weber, Mark A.

    2012-01-01

    In this work, we use Hinode/XRT and SDO/AIA data to determine the thermal structure of supra-arcade plasma in two solar flares. The first flare is a Ml.2 flare that occurred on November 5, 2010 on the east limb. This flare was one of a series of flares from AR 11121, published in Reeves & Golub (2011). The second flare is an XI.7 flare that occurred on January 27, 2012 on the west limb. This flare exhibits visible supra-arcade downflows (SADs), where the November 2010 flare does not. For these two flares we combine XRT and AlA data to calculate DEMs of each pixel in the supra-arcade plasma, giving insight into the temperature and density structures in the fan of plasma above the post-flare arcade. We find in each case that the supra-arcade plasma is around 10 MK, and there is a marked decrease in the emission measure in the SADs. We also compare the DEMs calculated with the combined AIA/XRT dataset to those calculated using AIA alone.

  8. UH-60M Black Hawk Helicopter (UH-60M Black Hawk)

    DTIC Science & Technology

    2016-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-341 UH-60M Black Hawk Helicopter (UH-60M Black Hawk) As of FY 2017 President’s Budget Defense...Acquisition Management Information Retrieval (DAMIR) March 21, 2016 18:25:45 UNCLASSIFIED UH-60M Black Hawk December 2015 SAR March 21, 2016 18...Operational Requirements Document OSD - Office of the Secretary of Defense O&S - Operating and Support PAUC - Program Acquisition Unit Cost UH-60M Black Hawk

  9. The excitation of helium resonance lines in solar flares

    NASA Technical Reports Server (NTRS)

    Porter, J. G.; Gebbie, K. B.; November, L. J.

    1985-01-01

    Helium resonance line intensities are calculated for a set of six flare models corresponding to two rates of heating and three widely varying incident fluxes of soft X-rays. The differing ionization and excitation equilibria produced by these models, the processes which dominate the various cases, and the predicted helium line spectra are examined. The line intensities and their ratios are compared with values derived from Skylab NRL spectroheliograms for a class M flare, thus determining which of these models most nearly represents the density vs temperature structure and soft X-ray flux in the flaring solar transition region, and the temperature and dominant mechanaism of formation of the helium line spectrum during a flare.

  10. Forecasting Solar Flares Using Magnetogram-based Predictors and Machine Learning

    NASA Astrophysics Data System (ADS)

    Florios, Kostas; Kontogiannis, Ioannis; Park, Sung-Hong; Guerra, Jordan A.; Benvenuto, Federico; Bloomfield, D. Shaun; Georgoulis, Manolis K.

    2018-02-01

    We propose a forecasting approach for solar flares based on data from Solar Cycle 24, taken by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) mission. In particular, we use the Space-weather HMI Active Region Patches (SHARP) product that facilitates cut-out magnetograms of solar active regions (AR) in the Sun in near-realtime (NRT), taken over a five-year interval (2012 - 2016). Our approach utilizes a set of thirteen predictors, which are not included in the SHARP metadata, extracted from line-of-sight and vector photospheric magnetograms. We exploit several machine learning (ML) and conventional statistics techniques to predict flares of peak magnitude {>} M1 and {>} C1 within a 24 h forecast window. The ML methods used are multi-layer perceptrons (MLP), support vector machines (SVM), and random forests (RF). We conclude that random forests could be the prediction technique of choice for our sample, with the second-best method being multi-layer perceptrons, subject to an entropy objective function. A Monte Carlo simulation showed that the best-performing method gives accuracy ACC=0.93(0.00), true skill statistic TSS=0.74(0.02), and Heidke skill score HSS=0.49(0.01) for {>} M1 flare prediction with probability threshold 15% and ACC=0.84(0.00), TSS=0.60(0.01), and HSS=0.59(0.01) for {>} C1 flare prediction with probability threshold 35%.

  11. A solar super-flare as cause for the 14C variation in AD 774/5 ?

    NASA Astrophysics Data System (ADS)

    Neuhäuser, R.; Hambaryan, V. V.

    2014-11-01

    We present further considerations regarding the strong 14C variation in AD 774/5. For its cause, either a solar super-flare or a short gamma-ray burst were suggested. We show that all kinds of stellar or neutron star flares would be too weak for the observed energy input at Earth in AD 774/5. Even though Maehara et al. (2012) present two super-flares with {˜ 1035} erg of presumably solar-type stars, we would like to caution: These two stars are poorly studied and may well be close binaries, and/or having a M-type dwarf companion, and/or may be much younger and/or much more magnetic than the Sun - in any such case, they might not be true solar analog stars. From the frequency of large stellar flares averaged over all stellar activity phases (maybe obtained only during grand activity maxima), one can derive (a limit of) the probability for a large solar flare at a random time of normal activity: We find the probability for one flare within 3000 years to be possibly as low as 0.3 to 0.008 considering the full 1σ error range. Given the energy estimate in Miyake et al. (2012) for the AD 774/5 event, it would need to be {˜ 2000} stronger than the Carrington event as solar super-flare. If the AD 774/5 event as solar flare would be beamed (to an angle of only {˜ 24°}), 100 times lower energy would be needed. A new AD 774/5 energy estimate by Usoskin et al. (2013) with a different carbon cycle model, yielding 4 ot 6 time lower 14C production, predicts 4-6 times less energy. If both reductions are applied, the AD 774/5 event would need to be only ˜ 4 times stronger than the Carrington event in 1859 (if both had similar spectra). However, neither 14C nor 10Be peaks were found around AD 1859. Hence, the AD 774/5 event (as solar flare) either was not beamed that strongly, and/or it would have been much more than 4-6 times stronger than Carrington, and/or the lower energy estimate (Usoskin et al. 2013) is not correct, and/or such solar flares cannot form (enough) 14C and

  12. Thermal Evolution and Radiative Output of Solar Flares Observed by the EUV Variability Experiment (EVE)

    NASA Technical Reports Server (NTRS)

    Chamberlin, P. C.; Milligan, R. O.; Woods, T. N.

    2012-01-01

    This paper describes the methods used to obtain the thermal evolution and radiative output during solar flares as observed by the Extreme u ltraviolet Variability Experiment (EVE) onboard the Solar Dynamics Ob servatory (SDO). Presented and discussed in detail are how EVE measur ements, due to its temporal cadence, spectral resolution and spectral range, can be used to determine how the thermal plasma radiates at v arious temperatures throughout the impulsive and gradual phase of fla res. EVE can very accurately determine the radiative output of flares due to pre- and in-flight calibrations. Events are presented that sh ow the total radiated output of flares depends more on the flare duration than the typical GOES X-ray peak magnitude classification. With S DO observing every flare throughout its entire duration and over a la rge temperature range, new insights into flare heating and cooling as well as the radiative energy release in EUV wavelengths support exis ting research into understanding the evolution of solar flares.

  13. X-ray line coincidence photopumping in a solar flare

    NASA Astrophysics Data System (ADS)

    Keenan, F. P.; Poppenhaeger, K.; Mathioudakis, M.; Rose, S. J.; Flowerdew, J.; Hynes, D.; Christian, D. J.; Nilsen, J.; Johnson, W. R.

    2018-03-01

    Line coincidence photopumping is a process where the electrons of an atomic or molecular species are radiatively excited through the absorption of line emission from another species at a coincident wavelength. There are many instances of line coincidence photopumping in astrophysical sources at optical and ultraviolet wavelengths, with the most famous example being Bowen fluorescence (pumping of O III 303.80 Å by He II), but none to our knowledge in X-rays. However, here we report on a scheme where a He-like line of Ne IX at 11.000 Å is photopumped by He-like Na X at 11.003 Å, which predicts significant intensity enhancement in the Ne IX 82.76 Å transition under physical conditions found in solar flare plasmas. A comparison of our theoretical models with published X-ray observations of a solar flare obtained during a rocket flight provides evidence for line enhancement, with the measured degree of enhancement being consistent with that expected from theory, a truly surprising result. Observations of this enhancement during flares on stars other than the Sun would provide a powerful new diagnostic tool for determining the sizes of flare loops in these distant, spatially unresolved, astronomical sources.

  14. Electron acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Droge, Wolfgang; Meyer, Peter; Evenson, Paul; Moses, Dan

    1989-01-01

    For the period Spetember 1978 to December 1982, 55 solar flare particle events for which the instruments on board the ISEE-3 spacecraft detected electrons above 10 MeV. Combining data with those from the ULEWAT spectrometer electron spectra in the range from 0.1 to 100 MeV were obtained. The observed spectral shapes can be divided into two classes. The spectra of the one class can be fit by a single power law in rigidity over the entire observed range. The spectra of the other class deviate from a power law, instead exhibiting a steepening at low rigidities and a flattening at high rigidities. Events with power-law spectra are associated with impulsive (less than 1 hr duration) soft X-ray emission, whereas events with hardening spectra are associated with long-duration (more than 1 hr) soft X-ray emission. The characteristics of long-duration events are consistent with diffusive shock acceleration taking place high in the corona. Electron spectra of short-duration flares are well reproduced by the distribution functions derived from a model assuming simultaneous second-order Fermi acceleration and Coulomb losses operating in closed flare loops.

  15. Hard X-Ray Emission from Partially Occulted Solar Flares: RHESSI Observations in Two Solar Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Effenberger, Frederic; Costa, Fatima Rubio da; Petrosian, Vahé

    2017-02-01

    Flares close to the solar limb, where the footpoints are occulted, can reveal the spectrum and structure of the coronal looptop source in X-rays. We aim at studying the properties of the corresponding energetic electrons near their acceleration site, without footpoint contamination. To this end, a statistical study of partially occulted flares observed with Reuven Ramaty High-Energy Solar Spectroscopic Imager is presented here, covering a large part of solar cycles 23 and 24. We perform detailed spectra, imaging, and light curve analyses for 116 flares and include contextual observations from SDO and STEREO when available, providing further insights into flaremore » emission that were previously not accessible. We find that most spectra are fitted well with a thermal component plus a broken power-law, non-thermal component. A thin-target kappa distribution model gives satisfactory fits after the addition of a thermal component. X-ray imaging reveals small spatial separation between the thermal and non-thermal components, except for a few flares with a richer coronal source structure. A comprehensive light curve analysis shows a very good correlation between the derivative of the soft X-ray flux (from GOES ) and the hard X-rays for a substantial number of flares, indicative of the Neupert effect. The results confirm that non-thermal particles are accelerated in the corona and estimated timescales support the validity of a thin-target scenario with similar magnitudes of thermal and non-thermal energy fluxes.« less

  16. QUASI-PERIODIC PULSATIONS IN SOLAR AND STELLAR FLARES: RE-EVALUATING THEIR NATURE IN THE CONTEXT OF POWER-LAW FLARE FOURIER SPECTRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inglis, A. R.; Ireland, J.; Dominique, M.

    The nature of quasi-periodic pulsations (QPPs) in solar and stellar flares remains debated. Recent work has shown that power-law-like Fourier power spectra are an intrinsic property of solar and stellar flare signals, a property that many previous studies of this phenomenon have not accounted for. Hence a re-evaluation of the existing interpretations and assumptions regarding QPPs is needed. We adopt a Bayesian method for investigating this phenomenon, fully considering the Fourier power-law properties of flare signals. Using data from the PROBA2/Large Yield Radiometer, Fermi/Gamma-ray Burst Monitor, Nobeyama Radioheliograph, and Yohkoh/HXT instruments, we study a selection of flares from the literaturemore » identified as QPP events. Additionally, we examine optical data from a recent stellar flare that appears to exhibit oscillatory properties. We find that, for all but one event tested, an explicit oscillation is not required to explain the observations. Instead, the flare signals are adequately described as a manifestation of a power law in the Fourier power spectrum. However, for the flare of 1998 May 8, strong evidence for an explicit oscillation with P ≈ 14-16 s is found in the 17 GHz radio data and the 13-23 keV Yohkoh/HXT data. We conclude that, most likely, many previously analyzed events in the literature may be similarly described by power laws in the flare Fourier power spectrum, without invoking a narrowband, oscillatory component. Hence the prevalence of oscillatory signatures in solar and stellar flares may be less than previously believed. The physical mechanism behind the appearance of the observed power laws is discussed.« less

  17. Solar Flare Super-Events: When they Can Occur and the Energy Limits of their Realization

    NASA Astrophysics Data System (ADS)

    Ishkov, Vitaly N.

    2015-03-01

    For the successful development of terrestrial civilization it is necessary to estimate the space factors, including phenomena on Sun, which can ruin it or cause such catastrophic loss, that the restoration to the initial level can take unacceptably long time. Super-powerful solar flares are the only such phenomena. Therefore an attempt is undertaken to estimate the possibility of such super-event occurrence at this stage of our star evolution. Since solar flare events are the consequence of the newly emerging magnetic fluxes interacting with the already existing magnetic fields of active regions, are investigated the observed cases which lead to the realization of such super-events. From the observations of the maximal magnetic fluxes during the period of reliable solar observations, the conclusion is made that the super- extreme solar flares cannot significantly exceed the most powerful solar flares which have already been observed. On the statistics of the reliable solar cycles the sunspot groups, in which occurred the most powerful solar super-events (August- September 1859 - solar cycle 10; June 1991 - SC 22; October-November 2003 - SC 23) appeared in the periods of the solar magnetic field reorganization between the epochs of "increased" and "lowered" solar activity.

  18. Elemental abundance differences between nuclei acclerated in CIR shocks and solar flares

    NASA Technical Reports Server (NTRS)

    Dietrich, W. F.; Simpson, J. A.

    1985-01-01

    Measurement of the ratios of nuclear abundances H/He, CNO/Fe-group and the Fe-group/HE for 51 passages of Corotating Interaction Regions (CIRs) at 1 AU, and measurement of these ratios from 620 solar flares in the energy range 0.6 to 4 MeV per nucleon, show that CIR shock acceleration alone does not change significantly these ratios from the values they have for solar system abundances or the solar wind. The solar flare ratios continue to reflect strong biases in the abundances, consistent with requirements for multistage acceleration rpocesses at the Sun.

  19. Implications of X-Ray Observations for Electron Acceleration and Propagation in Solar Flares

    NASA Technical Reports Server (NTRS)

    Holman, G. D.; Aschwanden, M. J.; Aurass, H.; Battaglia, M.; Grigis, P. C.; Kontar, E. P.; Liu, W.; Saint-Hilaire, P.; Zharkova, V. V.

    2011-01-01

    High-energy X-rays and gamma-rays from solar flares were discovered just over fifty years ago. Since that time, the standard for the interpretation of spatially integrated flare X-ray spectra at energies above several tens of keV has been the collisional thick-target model. After the launch of the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) in early 2002, X-ray spectra and images have been of sufficient quality to allow a greater focus on the energetic electrons responsible for the X-ray emission, including their origin and their interactions with the flare plasma and magnetic field. The result has been new insights into the flaring process, as well as more quantitative models for both electron acceleration and propagation, and for the flare environment with which the electrons interact. In this article we review our current understanding of electron acceleration, energy loss, and propagation in flares. Implications of these new results for the collisional thick-target model, for general flare models, and for future flare studies are discussed.

  20. Solar Demon: near real-time Flare, Dimming and EUV wave monitoring

    NASA Astrophysics Data System (ADS)

    Kraaikamp, Emil; Verbeeck, Cis

    Dimmings and EUV waves have been observed routinely in EUV images since 1996. They are closely associated with coronal mass ejections (CMEs), and therefore provide useful information for early space weather alerts. On the one hand, automatic detection and characterization of dimmings and EUV waves can be used to gain better understanding of the underlying physical mechanisms. On the other hand, every dimming and EUV wave provides extra information on the associated front side CME, and can improve estimates of the geo-effectiveness and arrival time of the CME. Solar Demon has been designed to detect and characterize dimmings, EUV waves, as well as solar flares in near real-time on Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) data. The detection modules are running continuously at the Royal Observatory of Belgium on both quick-look data, as well as synoptic science data. The output of Solar Demon can be accessed in near real-time on the Solar Demon website, and includes images, movies, light curves, and the numerical evolution of several parameters. Solar Demon is the result of collaboration between the FP7 projects AFFECTS and COMESEP. Flare detections of Solar Demon are integrated into the COMESEP alert system. Here we present the Solar Demon detection algorithms and their output. We will show several interesting flare, dimming and EUV wave events, and present general statistics of the detections made so far during solar cycle 24.

  1. Effect of enhanced x-ray flux on the ionosphere over Cyprus during solar flares

    NASA Astrophysics Data System (ADS)

    Mostafa, Md. Golam; Haralambous, Haris

    2015-06-01

    In this work we study the effect of solar flares on the ionosphere over Cyprus. Solar flares are impulsive solar activity events usually coupled with Coronal Mass Ejection (CME). The arrival and the subsequent impact of solar flares on geospace, following an eruption on the Sun's surface is almost immediate (around 9 min) whereas the impact of CMEs is rather delayed (2-3 days) as the former is based on X-ray radiation whereas the latter phenomenon is related with particles and magnetic fields travelling at lower speeds via the Solar Wind. The penetration of X-rays down to the Dregion following such an event enhances the electron density. This increase can be monitored by ionosondes, which measure the electron density up to the maximum electron density NmF2. The significance of this increase lies on the increase of signal absorption causing limited window of operating frequencies for HF communications. In this study the effect of enhanced X-ray flux on the ionosphere over Cyprus during solar flares has been investigated. To establish the correlation and extent of impact on different layers, data of X-ray intensity from Geostationary Operational Environmental Satellite (GOES) and ionospheric characteristics (D & F layer) over Nicosia station (35° N, 33° E) were examined for all solar flares during the period 2011-2014. The analysis revealed a positive and good correlation between frequency of minimum reflection, fmin and X-ray intensity for D layer demonstrating that X-rays play a dominant role in the ionization of lower ionosphere. Hence, X-ray flux can be used as a good proxy for studying the solar flare effects on lower ionosphere. The correlation coefficient between maximum electron density of F layer, NmF2 and X-ray intensity was found to be poor.

  2. The Gamma-Ray Imager/Polarimeter for Solar Flares (GRIPS)

    NASA Technical Reports Server (NTRS)

    Shih, Albert Y.; Lin, Robert P.; Hurford, Gordon J.; Duncan, Nicole A.; Saint-Hilaire, Pascal; Bain, Hazel M.; Boggs, Steven E.; Zoglauer, Andreas C.; Smith, David M.; Tajima, Hiroyasu; hide

    2012-01-01

    The balloon-borne Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) instrument will provide a near-optimal combination of high-resolution imaging, spectroscopy, and polarimetry of solar-flare gamma-ray/hard X-ray emissions from approximately 20 keV to greater than approximately 10 MeV. GRIPS will address questions raised by recent solar flare observations regarding particle acceleration and energy release, such as: What causes the spatial separation between energetic electrons producing hard X-rays and energetic ions producing gamma-ray lines? How anisotropic are the relativistic electrons, and why can they dominate in the corona? How do the compositions of accelerated and ambient material vary with space and time, and why? The spectrometer/polarimeter consists of sixteen 3D position-sensitive germanium detectors (3D-GeDs), where each energy deposition is individually recorded with an energy resolution of a few keV FWHM and a spatial resolution of less than 0.1 cubic millimeter. Imaging is accomplished by a single multi-pitch rotating modulator (MPRM), a 2.5-centimeter thick tungsten alloy slit/slat grid with pitches that range quasi-continuously from 1 to 13 millimeters. The MPRM is situated 8 meters from the spectrometer to provide excellent image quality and unparalleled angular resolution at gamma-ray energies (12.5 arcsec FWHM), sufficient to separate 2.2 MeV footpoint sources for almost all flares. Polarimetry is accomplished by analyzing the anisotropy of reconstructed Compton scattering in the 3D-GeDs (i.e., as an active scatterer), with an estimated minimum detectable polarization of a few percent at 150-650 keV in an X-class flare. GRIPS is scheduled for a continental-US engineering test flight in fall 2013, followed by long or ultra-long duration balloon flights in Antarctica.

  3. A LARGE-SCALE SEARCH FOR EVIDENCE OF QUASI-PERIODIC PULSATIONS IN SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inglis, A. R.; Ireland, J.; Dennis, B. R.

    The nature of quasi-periodic pulsations (QPP) in solar flares is poorly constrained, and critically the general prevalence of such signals in solar flares is unknown. Therefore, we perform a large-scale search for evidence of signals consistent with QPP in solar flares, focusing on the 1–300 s timescale. We analyze 675 M- and X-class flares observed by the Geostationary Operational Environmental Satellite (GOES) series in 1–8 Å soft X-rays between 2011 February 1 and 2015 December 31. Additionally, over the same era we analyze Fermi /Gamma-ray Burst Monitor (GBM) 15–25 keV X-ray data for each of these flares associated with amore » Fermi /GBM solar flare trigger, a total of 261 events. Using a model comparison method, we determine whether there is evidence for a substantial enhancement in the Fourier power spectrum that may be consistent with a QPP signature, based on three tested models; a power-law plus a constant, a broken power-law plus constant, and a power-law-plus-constant with an additional QPP signature component. From this, we determine that ∼30% of GOES events and ∼8% of Fermi /GBM events show strong signatures consistent with classical interpretations of QPP. For the remaining events either two or more tested models cannot be strongly distinguished from each other, or the events are well-described by single power-law or broken power-law Fourier power spectra. For both instruments, a preferred characteristic timescale of ∼5–30 s was found in the QPP-like events, with no dependence on flare magnitude in either GOES or GBM data. We also show that individual events in the sample show similar characteristic timescales in both GBM and GOES data sets. We discuss the implications of these results for our understanding of solar flares and possible QPP mechanisms.« less

  4. Statistical relationship between the succeeding solar flares detected by the RHESSI satellite

    NASA Astrophysics Data System (ADS)

    Balázs, L. G.; Gyenge, N.; Korsós, M. B.; Baranyi, T.; Forgács-Dajka, E.; Ballai, I.

    2014-06-01

    The Reuven Ramaty High Energy Solar Spectroscopic Imager has observed more than 80 000 solar energetic events since its launch on 2002 February 12. Using this large sample of observed flares, we studied the spatiotemporal relationship between succeeding flares. Our results show that the statistical relationship between the temporal and spatial differences of succeeding flares can be described as a power law of the form R(t) ˜ tp with p = 0.327 ± 0.007. We discuss the possible interpretations of this result as a characteristic function of a supposed underlying physics. Different scenarios are considered to explain this relation, including the case where the connectivity between succeeding events is realized through a shock wave in the post Sedov-Taylor phase or where the spatial and temporal relationship between flares is supposed to be provided by an expanding flare area in the sub-diffusive regime. Furthermore, we cannot exclude the possibility that the physical process behind the statistical relationship is the reordering of the magnetic field by the flare or it is due to some unknown processes.

  5. UH cosmic rays and solar system material - The elements just beyond iron

    NASA Technical Reports Server (NTRS)

    Wefel, J. P.; Schramm, D. N.; Blake, J. B.

    1977-01-01

    The nucleosynthesis of cosmic-ray elements between the iron peak and the rare-earth region is examined, and compositional changes introduced by propagation in interstellar space are calculated. Theories on the origin of elements heavier than iron are reviewed, a supernova model of explosive nucleosynthesis is adopted for the ultraheavy (UH) cosmic rays, and computational results for different source distributions are compared with experimental data. It is shown that both the cosmic-ray data and the nucleosynthesis calculations are not yet of sufficient precision to pinpoint the processes occurring in cosmic-ray source regions, that the available data do provide boundary conditions for cosmic-ray nucleosynthesis, and that these limits may apply to the origin of elements in the solar system. Specifically, it is concluded that solar-system abundances appear to be consistent with a superposition of the massive-star core-helium-burning s-process plus explosive-carbon-burning synthesis for the elements from Cu to As and are explained adequately by the s- and r-processes for heavier elements.

  6. Association of solar flares with coronal mass ejections accompanied by Deca-Hectometric type II radio burst for two solar cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Kharayat, Hema; Prasad, Lalan; Pant, Sumit

    2018-05-01

    The aim of present study is to find the association of solar flares with coronal mass ejections (CMEs) accompanied by Deca-Hectometric (DH) type II radio burst for the period 1997-2014 (solar cycle 23 and ascending phase of solar cycle 24). We have used a statistical analysis and found that 10-20∘ latitudinal belt of northern region and 80-90∘ longitudinal belts of western region of the sun are more effective for flare-CME accompanied by DH type II radio burst events. M-class flares (52%) are in good association with the CMEs accompanied by DH type II radio burst. Further, we have calculated the flare position and found that most frequent flare site is at the center of the CME span. However, the occurrence probability of all flares is maximum outside the CME span. X-class flare associated CMEs have maximum speed than that of M, C, and B-class flare associated CMEs. We have also found a good correlation between flare position and central position angle of CMEs accompanied by DH type II radio burst.

  7. Solar Flare Termination Shock and Synthetic Emission Line Profiles of the Fe xxi 1354.08 Å Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Lijia; Li, Gang; Reeves, Kathy

    Solar flares are among the most energetic phenomena that occur in the solar system. In the standard solar flare model, a fast mode shock, often referred to as the flare termination shock (TS), can exist above the loop-top source of hard X-ray emissions. The existence of the TS has been recently related to spectral hardening of a flare’s hard X-ray spectra at energies >300 keV. Observations of the Fe xxi 1354.08 Å line during solar flares by the Interface Region Imaging Spectrograph ( IRIS ) spacecraft have found significant redshifts with >100 km s{sup −1}, which is consistent with amore » reconnection downflow. The ability to detect such a redshift with IRIS suggests that one may be able to use IRIS observations to identify flare TSs. Using a magnetohydrodynamic simulation to model magnetic reconnection of a solar flare and assuming the existence of a TS in the downflow of the reconnection plasma, we model the synthetic emission of the Fe xxi 1354.08 line in this work. We show that the existence of the TS in the solar flare may manifest itself in the Fe xxi 1354.08 Å line.« less

  8. Mid-term periodicities and heliospheric modulation of coronal index and solar flare index during solar cycles 22-23

    NASA Astrophysics Data System (ADS)

    Singh, Prithvi Raj; Saxena, A. K.; Tiwari, C. M.

    2018-04-01

    We applied fast Fourier transform techniques and Morlet wavelet transform on the time series data of coronal index, solar flare index, and galactic cosmic ray, for the period 1986-2008, in order to investigate the long- and mid-term periodicities including the Rieger ({˜ }130 to {˜ }190 days), quasi-period ({˜ }200 to {˜ }374 days), and quasi-biennial periodicities ({˜ }1.20 to {˜ }3.27 years) during the combined solar cycles 22-23. We emphasize the fact that a lesser number of periodicities are found in the range of low frequencies, while the higher frequencies show a greater number of periodicities. The rotation rates at the base of convection zone have periods for coronal index of {˜ }1.43 years and for solar flare index of {˜ }1.41 year, and galactic cosmic ray, {˜ }1.35 year, during combined solar cycles 22-23. In relation to these two solar parameters (coronal index and solar flare index), for the solar cycles 22-23, we found that galactic cosmic ray modulation at mid cut-off rigidity (Rc = 2.43GV) is anti-correlated with time-lag of few months.

  9. Pulsations in the Earth's Lower Ionosphere Synchronized With Solar Flare Emission

    NASA Astrophysics Data System (ADS)

    Hayes, Laura A.; Gallagher, Peter T.; McCauley, Joseph; Dennis, Brian R.; Ireland, Jack; Inglis, Andrew

    2017-10-01

    Solar flare emission at X-ray and extreme ultraviolet (EUV) energies can cause substantial enhancements in the electron density in the Earth's lower ionosphere. It has now become clear that flares exhibit quasi-periodic pulsations with timescales of minutes at X-ray energies, but to date, it has not been known if the ionosphere is sensitive to this variability. Here using a combination of very low frequency (24 kHz) measurement together with space-based X-ray and EUV observations, we report pulsations of the ionospheric D region, which are synchronized with a set of pulsating flare loops. Modeling of the ionosphere show that the D region electron density varies by up to an order of magnitude over the timescale of the pulsations (˜ 20 min). Our results reveal that the Earth's ionosphere is more sensitive to small-scale changes in solar soft X-ray flux than previously thought and implies that planetary ionospheres are closely coupled to small-scale changes in solar/stellar activity.

  10. Turbulent and directed plasma motions in solar flares

    NASA Technical Reports Server (NTRS)

    Fludra, A.; Bentley, R. D.; Lemen, J. R.; Jakimiec, J.; Sylwester, J.

    1989-01-01

    An improved method for fitting asymmetric soft X-ray line profiles from solar flares is presented. A two-component model is used where one component represents the total emission from directed upflow plasma and the other the emission from the plasma at rest. Unlike previous methods, the width of the moving component is independent from that of the stationary component. Time variations of flare plasma characteristics (i.e., temperature, emission measure of moving and stationary plasma, upflow and turbulent velocities) are derived from the Ca XIX and Fe XXV spectra recorded by the Bent Crystal Spectrometer on the Solar Maximum Mission. The fitting technique provides a statistical estimation for the uncertainties in the fitting parameters. The relationship between the directed and turbulent motions has been studied, and a correlation of the random and directed motions has been found in some flares with intensive plasma upflows. Mean temperatures of the upflowing and stationary plasmas are compared for the first time from ratios of calcium to iron X-ray line intensities. Finally, evidence for turbulent motions and the possibility of plasma upflow late into the decay phase is presented and discussed.

  11. The High Energy Photons Emission from Solar Flares Observed by SZ2-XD

    NASA Astrophysics Data System (ADS)

    Wang, Huanyu; Li, Xinqiao; Ma, Yuqian; Zhang, Chengmo; Xu, Yupeng; Wang, Jingzhou; Chen, Guoming

    The spectra and light curve of near a hundred Solar X-ray Flare events, which were observed by SZ2/XD in the energy band of 10-800 keV during 2001, have been investigated. The events covered from C to X-class flares, which are shown different characters of high energy photons emission. The results will be presented in this paper. The discussions will be made especially for 3 of the brightest X-class solar flares SF010402(X20),SF010406(X5.6) and SF010415 (X14.4, a GLE event).

  12. Comparative Analysis of VLF Signal Variation along Trajectory Induced by X-ray Solar Flares

    NASA Astrophysics Data System (ADS)

    Kolarski, A.; Grubor, D.

    2015-12-01

    Comparative qualitative analysis of amplitude and phase delay variations was carried out along the trajectory of GQD/22.1 kHz and NAA/24.0 kHz VLF signal traces, propagating from Skelton (UK) and Maine (USA) toward Belgrade, induced by four isolated solar X-ray flare events occurred during the period from September 2005 to December 2006. For monitoring, recording and for storage of VLF data at the Institute of Physics in Belgrade, Serbia, the AbsPAL system was used. For modeling purposes of propagating conditions along GQD and NAA signal propagation paths, LWPCv21 program code was used. Occurred solar flare events induced lower ionosphere electron density height profile changes, causing perturbations in VLF wave propagation within Earth-ionosphere waveguides. As analyzed VLF signals characterize by different propagation parameters along trajectories from their transmitters to the Belgrade receiver site, their propagation is affected in different ways for different solar flare events and also for the same solar flare events.

  13. Magnetic Properties of Solar Active Regions that Govern Large Solar Flares and Eruptions

    NASA Astrophysics Data System (ADS)

    Toriumi, Shin; Schrijver, Carolus J.; Harra, Louise; Hudson, Hugh S.; Nagashima, Kaori

    2017-08-01

    Strong flares and CMEs are often produced from active regions (ARs). In order to better understand the magnetic properties and evolutions of such ARs, we conducted statistical investigations on the SDO/HMI and AIA data of all flare events with GOES levels >M5.0 within 45 deg from the disk center for 6 years from May 2010 (from the beginning to the declining phase of solar cycle 24). Out of the total of 51 flares from 29 ARs, more than 80% have delta-sunspots and about 15% violate Hale’s polarity rule. We obtained several key findings including (1) the flare duration is linearly proportional to the separation of the flare ribbons (i.e., scale of reconnecting magnetic fields) and (2) CME-eruptive events have smaller sunspot areas. Depending on the magnetic properties, flaring ARs can be categorized into several groups, such as spot-spot, in which a highly-sheared polarity inversion line is formed between two large sunspots, and spot-satellite, where a newly-emerging flux next to a mature sunspot triggers a compact flare event. These results point to the possibility that magnetic structures of the ARs determine the characteristics of flares and CMEs. In the presentation, we will also show new results from the systematic flux emergence simulations of delta-sunspot formation and discuss the evolution processes of flaring ARs.

  14. Survey of localized solar flare signatures in the ionosphere with GNSS, VLF, and GOES observations

    NASA Astrophysics Data System (ADS)

    Blevins, S. M.; Hayes, L.; Collado-Vega, Y. M.; Michael, B. P.; Noll, C. E.

    2017-12-01

    Global navigation satellite system (GNSS) phase measurements of the total electron content (TEC) and ionospheric delay are sensitive to sudden increases in electron density in the layers of the Earth's ionosphere. These sudden ionospheric disruptions, or SIDs, are due to enhanced X-ray and extreme ultraviolet radiation from a solar flare that drastically increases the electron density in localized regions. SIDs are solar flare signatures in the Earth's ionosphere and can be observed with very low frequency (VLF 3-30 kHz) monitors and dual-frequency GNSS (L1 = 1575.42 MHz, L2 = 1227.60 MHz) receivers that probe lower (D-region) to upper (F-region) ionospheric layers, respectively. Data from over 500 solar flare events, spanning April 2010 to July 2017, including GOES C-, M-, and X-class solar flares at various intensities, were collected from the Space Weather Database Of Notifications, Knowledge, Information (DONKI) developed at the NASA Goddard Space Flight Center (GSFC) Community Coordinated Modeling Center (CCMC). Historical GOES satellite (NOAA) X-ray flux (NASA GSFC CCMC integrated Space Weather Analysis system (iSWA)), and VLF SID (Stanford University Solar SID Space Weather Monitor program) time series data are available for all solar flare events of the sample set. We use GNSS data archived at the NASA GSFC Crustal Dynamics Data Information System (CDDIS) to characterize the F-region reactions to the increased ionization, complementing the ground-based D-region (VLF), and space-based X-ray observations (GOES). CDDIS provides GNSS data with 24-hour coverage at a temporal resolution of 30 seconds from over 500 stations. In our study we choose 63 stations, spanning 23 countries at a variety of geographic locations to provide continuous coverage for all solar flare events in the sample. This geographic distribution enables us to explore the effects of different solar flare intensities at localized regions in the Earths ionosphere around the globe. The GNSS

  15. X-ray line coincidence photopumping in a solar flare

    DOE PAGES

    Keenan, F. P.; Poppenhaeger, K.; Mathioudakis, M.; ...

    2017-11-23

    Line coincidence photopumping is a process where the electrons of an atomic or molecular species are radiatively excited through the absorption of line emission from another species at a coincident wavelength. There are many instances of line coincidence photopumping in astrophysical sources at optical and ultraviolet wavelengths, with the most famous example being Bowen fluorescence (pumping of O III 303.80 Å by He II), but none to our knowledge in X-rays. However, here we report on a scheme where a He-like line of Ne IX at 11.000 Å is photopumped by He-like Na X at 11.003 Å, which predicts significantmore » intensity enhancement in the Ne IX 82.76 Å transition under physical conditions found in solar flare plasmas. A comparison of our theoretical models with published X-ray observations of a solar flare obtained during a rocket flight provides evidence for line enhancement, with the measured degree of enhancement being consistent with that expected from theory, a truly surprising result. Observations of this enhancement during flares on stars other than the Sun would provide a powerful new diagnostic tool for determining the sizes of flare loops in these distant, spatially unresolved, astronomical sources.« less

  16. X-ray line coincidence photopumping in a solar flare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keenan, F. P.; Poppenhaeger, K.; Mathioudakis, M.

    Line coincidence photopumping is a process where the electrons of an atomic or molecular species are radiatively excited through the absorption of line emission from another species at a coincident wavelength. There are many instances of line coincidence photopumping in astrophysical sources at optical and ultraviolet wavelengths, with the most famous example being Bowen fluorescence (pumping of O III 303.80 Å by He II), but none to our knowledge in X-rays. However, here we report on a scheme where a He-like line of Ne IX at 11.000 Å is photopumped by He-like Na X at 11.003 Å, which predicts significantmore » intensity enhancement in the Ne IX 82.76 Å transition under physical conditions found in solar flare plasmas. A comparison of our theoretical models with published X-ray observations of a solar flare obtained during a rocket flight provides evidence for line enhancement, with the measured degree of enhancement being consistent with that expected from theory, a truly surprising result. Observations of this enhancement during flares on stars other than the Sun would provide a powerful new diagnostic tool for determining the sizes of flare loops in these distant, spatially unresolved, astronomical sources.« less

  17. Observation and Interpretation of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Flare

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; Mewaldt, R. A.; Leske, R. A.; Shih, A. Y.; Stone, E. C.; Cohen, C. M. S.; Cummings, A. C.; Labrador, A. W.; vonRosenvinge, T. T.; Wiedenbeck, M. E.

    2009-01-01

    We discuss observations of energetic neutral hydrogen atoms (ENAs) from a solar flare/coronal mass ejection event reported by Mewaldt et al. (2009). The observations were made during the 5 December 2006 X9 solar flare, located at E79, by the Low Energy Telescopes (LETs) on STEREO A and B. Prior to the arrival of the main solar energetic particle (SEP) event at Earth, both LETs observed a sudden burst of 1.6 to 15 MeV particles arriving from the Sun. The derived solar emission profile, arrival directions, and energy spectrum all show that the <5 MeV particles were due to energetic neutral hydrogen atoms produced by either flare or shock-accelerated protons. RHESSI measurements of the 2.2-MeV gamma-ray line provide an estimate of the number of interacting flare-accelerated protons in this event, which leads to an improved estimate of ENA production by flare-accelerated protons. CME-driven shock acceleration is also considered. Taking into account ENA losses, we conclude that the observed ENAs must have been produced in the high corona at heliocentric distances .2 solar radii.

  18. The impulsive hard X-rays from solar flares

    NASA Technical Reports Server (NTRS)

    Leach, J.

    1984-01-01

    A technique for determining the physical arrangement of a solar flare during the impulsive phase was developed based upon a nonthermal model interpretation of the emitted hard X-rays. Accurate values are obtained for the flare parameters, including those which describe the magnetic field structure and the beaming of the energetic electrons, parameters which have hitherto been mostly inaccessible. The X-ray intensity height structure can be described readily with a single expression based upon a semi-empirical fit to the results from many models. Results show that the degree of linear polarization of the X-rays from a flaring loop does not exceed 25 percent and can easily and naturally be as low as the polarization expected from a thermal model. This is a highly significant result in that it supersedes those based upon less thorough calculations of the electron beam dynamics and requires that a reevaluation of hopes of using polarization measurements to discriminate between categories of flare models.

  19. Solar flares observed simultaneously with SphinX, GOES and RHESSI

    NASA Astrophysics Data System (ADS)

    Mrozek, Tomasz; Gburek, Szymon; Siarkowski, Marek; Sylwester, Barbara; Sylwester, Janusz; Kępa, Anna; Gryciuk, Magdalena

    2013-07-01

    In February 2009, during recent deepest solar minimum, Polish Solar Photometer in X-rays (SphinX) begun observations of the Sun in the energy range of 1.2-15 keV. SphinX was almost 100 times more sensitive than GOES X-ray Sensors. The silicon PIN diode detectors used in the experiment were carefully calibrated on the ground using Synchrotron Radiation Source BESSY II. The SphinX energy range overlaps with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) energy range. The instrument provided us with observations of hundreds of very small flares and X-ray brightenings. We have chosen a group of solar flares observed simultaneously with GOES, SphinX and RHESSI and performed spectroscopic analysis of observations wherever possible. The analysis of thermal part of the spectra showed that SphinX is a very sensitive complementary observatory for RHESSI and GOES.

  20. Max 1991: Flare Research at the Next Solar Maximum. Workshop 1: Scientific Objectives

    NASA Technical Reports Server (NTRS)

    Canfield, Richard C.; Dennis, Brian R.

    1988-01-01

    The purpose of the Max 1991 program is to gather coordinated sets of solar flare and active region data and to perform interpretive and theoretical research aimed at understanding flare energy storage and release, particle acceleration, flare energy transport, and the propagation of flare effects to Earth. The workshop was divided into four areas of concern: energy storage, energy release, particle acceleration, and energy transport.

  1. Calcium ionization balance and argon/calcium abundance in solar flares

    NASA Astrophysics Data System (ADS)

    Antonucci, E.; Marocchi, D.; Gabriel, A. H.; Doschek, G. A.

    1987-12-01

    An earlier analysis of solar flare calcium spectra from XRP and P78-1 aimed at measuring the calcium ionization balance resulted in an ambiguity due to a line blend between the calcium q line and an Ar XVII line. In the present work the calcium line 'r' is included in the analysis in order to resolve this problem. It is shown that the correct calcium ionization balance is that indicated in the earlier paper as corresponding to an argon/calcium abundance ratio of 0.2. The argon/calcium abundance ratio in the group of solar flares studied is shown to be 0.2 + or - 0.2. It is further argued that while the abundance of heavy elements may be enhanced in energetic flare events, this enhancement is less for argon than for calcium, leading to an argon/calcium ratio smaller than that present in the quiet sun.

  2. Anomalous Temporal Behaviour of Broadband Ly Alpha Observations During Solar Flares from SDO/EVE

    NASA Technical Reports Server (NTRS)

    Milligan, Ryan O.; Chamberlin, Phillip C.

    2016-01-01

    Although it is the most prominent emission line in the solar spectrum, there has been a notable lack of studies devoted to variations in Lyman-alpha (Ly-alpha) emission during solar flares in recent years. However, the few examples that do exist have shown Ly-alpha emission to be a substantial radiator of the total energy budget of solar flares (of the order of 10 percent). It is also a known driver of fluctuations in the Earth's ionosphere. The EUV (Extreme Ultra-Violet) Variability Experiment (EVE) on board the Solar Dynamics Observatory (SDO) now provides broadband, photometric Ly-alpha data at 10-second cadence with its Multiple EUV Grating Spectrograph-Photometer (MEGS-P) component, and has observed scores of solar flares in the 5 years since it was launched. However, the MEGS-P time profiles appear to display a rise time of tens of minutes around the time of the flare onset. This is in stark contrast to the rapid, impulsive increase observed in other intrinsically chromospheric features (H-alpha, Ly-beta, LyC, C III, etc.). Furthermore, the emission detected by MEGS-P peaks around the time of the peak of thermal soft X-ray emission and not during the impulsive phase when energy deposition in the chromosphere (often assumed to be in the form of non-thermal electrons) is greatest. The time derivative of Ly-alpha lightcurves also appears to resemble that of the time derivative of soft X-rays, reminiscent of the Neupert effect. Given that spectrally-resolved Ly-alpha observations during flares from SORCE / SOLSTICE (Solar Radiation and Climate Experiment / Solar Stellar Irradiance Comparison Experiment) peak during the impulsive phase as expected, this suggests that the atypical behaviour of MEGS-P data is a manifestation of the broadband nature of the observations. This could imply that other lines andor continuum emission that becomes enhanced during flares could be contributing to the passband. Users are hereby urged to exercise caution when interpreting

  3. Influence of solar flare X-rays on the habitability on the Mars

    NASA Astrophysics Data System (ADS)

    Jain, Rajmal; Awasthi, Arun K.; Tripathi, Sharad C.; Bhatt, Nipa J.; Khan, Parvaiz A.

    2012-08-01

    We probe the lethality of X-rays from solar flares to organisms on Mars based on the observations of 10 solar flares. We, firstly, estimate the doses produced by the strong flares observed by the RHESSI and GOES missions during the descending phase of sunspot cycle 23. Next, in order to realize the dependence of dose on flux and steepness of spectra, we model the incident spectra over a wide range of spectral index to estimate dose values and compare them with the observed doses. We calculate the distribution of surficial spectra visible to organisms on the martian surface by employing attenuation of X-rays due to CO2 column densities distribution over the South Pole. The surficial flux distribution after folding with the opacity of water enables us to estimate the dose distribution over the South Pole. The dose measured from the surficial spectrum produced by the observed 10 flares corresponding to the latitudes 50-60°, 60-70°, 70-80° and 80-90°S varies in the range of 6.39 × 10-9-1.80 × 10-6; 4.89 × 10-10-5.21 × 10-8; 5.10 × 10-11-5.20 × 10-9 and 4.42 × 10-10-4.89 × 10-12 gray (1 gray = 104 erg/g) respectively. Comparing the measured as well as the modeled doses with those proposed to be lethal for various organisms by Smith and Scalo (Smith, D.S., Scalo, J. [2007]. Planet. Space Sci. 55, 517-527); we report that the habitability of life on the South Pole remains unaffected even by the strongest solar flare occurred during descending phase of solar cycle 23. Further, the monthly integrated energy released by the solar flares in the most productive month viz. October 2003 and January 2005 from the GOES soft X-ray observations is estimated to be 8.43 and 3.32 × 1032 ergs respectively, which is almost equal in order to the typical energy released by a single strong X-class flare. Therefore, we propose the life near the South Pole region on the Mars remain uninfluenced by X-ray emission even during monster phenomena of energy release on the Sun and

  4. Explosive Chromospheric Evaporation Driven by Nonthermal Electrons around One Footpoint of a Solar Flare Loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, D.; Ning, Z. J.; Huang, Y.

    We explore the temporal relationship between microwave/hard X-ray (HXR) emission and Doppler velocity during the impulsive phase of a solar flare on 2014 October 27 (SOL2014-10-27) that displays a pulse on the light curves in the microwave (34 GHz) and HXR (25–50 keV) bands before the flare maximum. Imaging observation shows that this pulse mainly comes from one footpoint of a solar flare loop. The slit of the Interface Region Imaging Spectrograph ( IRIS ) stays at this footpoint during this solar flare. The Doppler velocities of Fe xxi 1354.09 Å and Si iv 1402.77 Å are extracted from themore » Gaussian fitting method. We find that the hot line of Fe xxi 1354.09 Å (log T ∼ 7.05) in the corona exhibits blueshift, while the cool line of Si iv 1402.77 Å (log T ∼ 4.8) in the transition region exhibits redshift, indicating explosive chromospheric evaporation. Evaporative upflows along the flare loop are also observed in the AIA 131 Å image. To our knowledge, this is the first report of chromospheric evaporation evidence from both spectral and imaging observations in the same flare. Both microwave and HXR pulses are well correlated with the Doppler velocities, suggesting that the chromospheric evaporation is driven by nonthermal electrons around this footpoint of a solar flare loop.« less

  5. Understanding the HMI Pseudocontinuum in White-light Solar Flares

    NASA Astrophysics Data System (ADS)

    Švanda, Michal; Jurčák, Jan; Kašparová, Jana; Kleint, Lucia

    2018-06-01

    We analyze observations of the X9.3 solar flare (SOL2017-09-06T11:53) observed by SDO/HMI and Hinode/Solar Optical Telescope. Our aim is to learn about the nature of the HMI pseudocontinuum I c used as a proxy for the white-light continuum. From model atmospheres retrieved by an inversion code applied to the Stokes profiles observed by the Hinode satellite, we synthesize profiles of the Fe I 617.3 nm line and compare them to HMI observations. Based on a pixel-by-pixel comparison, we show that the value of I c represents the continuum level well in quiet-Sun regions only. In magnetized regions, it suffers from a simplistic algorithm that is applied to a complex line shape. During this flare, both instruments also registered emission profiles in the flare ribbons. Such emission profiles are poorly represented by the six spectral points of HMI and the MDI-like algorithm does not account for emission profiles in general; thus, the derived pseudocontinuum intensity does not approximate the continuum value properly.

  6. Temporal and Periodic Variations of Sunspot Counts in Flaring and Non-Flaring Active Regions

    NASA Astrophysics Data System (ADS)

    Kilcik, A.; Yurchyshyn, V.; Donmez, B.; Obridko, V. N.; Ozguc, A.; Rozelot, J. P.

    2018-04-01

    We analyzed temporal and periodic variations of sunspot counts (SSCs) in flaring (C-, M-, or X-class flares), and non-flaring active regions (ARs) for nearly three solar cycles (1986 through 2016). Our main findings are as follows: i) temporal variations of monthly means of the daily total SSCs in flaring and non-flaring ARs behave differently during a solar cycle and the behavior varies from one cycle to another; during Solar Cycle 23 temporal SSC profiles of non-flaring ARs are wider than those of flaring ARs, while they are almost the same during Solar Cycle 22 and the current Cycle 24. The SSC profiles show a multi-peak structure and the second peak of flaring ARs dominates the current Cycle 24, while the difference between peaks is less pronounced during Solar Cycles 22 and 23. The first and second SSC peaks of non-flaring ARs have comparable magnitude in the current solar cycle, while the first peak is nearly absent in the case of the flaring ARs of the same cycle. ii) Periodic variations observed in the SSCs profiles of flaring and non-flaring ARs derived from the multi-taper method (MTM) spectrum and wavelet scalograms are quite different as well, and they vary from one solar cycle to another. The largest detected period in flaring ARs is 113± 1.6 days while we detected much longer periodicities (327± 13, 312 ± 11, and 256± 8 days) in the non-flaring AR profiles. No meaningful periodicities were detected in the MTM spectrum of flaring ARs exceeding 55± 0.7 days during Solar Cycles 22 and 24, while a 113± 1.3 days period was detected in flaring ARs of Solar Cycle 23. For the non-flaring ARs the largest detected period was only 31± 0.2 days for Cycle 22 and 72± 1.3 days for the current Cycle 24, while the largest measured period was 327± 13 days during Solar Cycle 23.

  7. EGRET High Energy Capability and Multiwavelength Flare Studies and Solar Flare Proton Spectra

    NASA Technical Reports Server (NTRS)

    Chupp, Edward L.

    1997-01-01

    UNH was assigned the responsibility to use their accelerator neutron measurements to verify the TASC response function and to modify the TASC fitting program to include a high energy neutron contribution. Direct accelerator-based measurements by UNH of the energy-dependent efficiencies for detecting neutrons with energies from 36 to 720 MeV in NaI were compared with Monte Carlo TASC calculations. The calculated TASC efficiencies are somewhat lower (by about 20%) than the accelerator results in the energy range 70-300 MeV. The measured energy-loss spectrum for 207 MeV neutron interactions in NaI were compared with the Monte Carlo response for 200 MeV neutrons in the TASC indicating good agreement. Based on this agreement, the simulation was considered to be sufficiently accurate to generate a neutron response library to be used by UNH in modifying the TASC fitting program to include a neutron component in the flare spectrum modeling. TASC energy-loss data on the 1991 June 11 flare was transferred to UNH. Also included appendix: Gamma-rays and neutrons as a probe of flare proton spectra: the solar flare of 11 June 1991.

  8. Solar He-3: Information from nuclear reactions in flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.

    1974-01-01

    Information on solar He-3 from nuclear reactions in flares was considered. Consideration was also given to the development of models for these reactions as well as the abundance of He-3 in the photosphere. Data show that abundances may be explained by nuclear reactions of flare acceleration protons and alpha particles with the ambient atmosphere, provided that various assumptions are made on the directionality of the interacting beams and acceleration of the particles after production.

  9. Interaction of Solar-Flare-Accelerated Nuclei with the Solar Photosphere and the Isotopic Composition of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Vasil'ev, G. I.; Ostryakov, V. M.; Pavlov, A. K.; Chakchurina, M. E.

    2017-12-01

    The nuclear interactions of solar-flare-accelerated protons and ions with the solar atmosphere and the deeper layers of the Sun lead to the formation of several stable and radioactive isotopes. This article examines the GEANT4 depth profiles of 2H, 3H, 3He, 6Li, 7Li, 10Be, and 14C. When accelerated particles pass through a layer of 0.1-2 g cm-2, 6Li, 7Li, 10Be, and 14C isotopes form in sufficient amounts to explain their anomalous abundances in lunar soil samples. It is assumed that they escape into interplanetary space with coronal mass ejections immediately after the flare.

  10. The Fading Behavior of the Propagating VLF Signal during the Recovery Time of Solar Flares

    NASA Astrophysics Data System (ADS)

    Yasmina, B.

    2016-12-01

    The VLF radio signal propagating in the waveguide delimited by the Earth's surface and the D-layer of the ionosphere undergoes important modifications due to solar flares. In this work we focus on the NRK (37.5 kHz) VLF transmitter signal that propagates along the medium path to Algiers receiver (distance=3495 km). The signal analysis of two different flare classes shows that the perturbation due to a week flare of C2.1 (Imax=2.1 x 10-6 W/m2) class are less important than the medium one of M3.2 (Imax=3.2 x 10-5 W/m2) class. This leads to the fast recovery to the normal ionospheric condition after the weak solar flare while the medium solar flare takes more time. Additionally, the study of the signal amplitude behaviors by means of the LWPC code shows that the fading displacement toward the transmitter is more significant in the case of M3.2 flare than C2.1 class.

  11. The fading behavior of the propagating VLF signal during the recovery time of solar flares.

    NASA Astrophysics Data System (ADS)

    Bouderba, Yasmina; Tribeche, Mouloud; Nait Amor, Samir

    2016-07-01

    The VLF radio signal propagating in the waveguide delimited by the Earth's surface and the D-layer of the ionosphere undergoes important modifications due to solar flares. In this work we focus on the NRK (37.5 kHz) VLF transmitter signal that propagates along the medium path to Algiers receiver (distance=3495 km). The signal analysis of two different flare classes shows that the perturbation due to a week flare of C2.1 (I _{max}=2.1 x 10 ^{-6} W/m ^{2}) class are less important than the medium one of M3.2 (I _{max}=3.2 x 10 ^{-5} W/m ^{2}) class. This leads to the fast recovery to the normal ionospheric condition after the weak solar flare while the medium solar flare takes more time. Additionally, the study of the signal amplitude behaviors by means of the LWPC code shows that the fading displacement toward the transmitter is more significant in the case of M3.2 flare than C2.1 class.

  12. Anomalous temporal behaviour of broadband Lyα observations during solar flares from SDO/EVE

    NASA Astrophysics Data System (ADS)

    Milligan, Ryan O.; Chamberlin, Phillip C.

    2016-03-01

    Although it is the most prominent emission line in the solar spectrum, there has been a notable lack of studies devoted to variations in Lyα emission during solar flares in recent years. However, the few examples that do exist have shown Lyα emission to be a substantial radiator of the total energy budget of solar flares (of the order of 10%). It is also a known driver of fluctuations in the Earth's ionosphere. The EUV Variability Experiment (EVE) on board the Solar Dynamics Observatory now provides broadband, photometric Lyα data at 10 s cadence with its Multiple EUV Grating Spectrograph-Photometer (MEGS-P) component, and has observed scores of solar flares in the 5 years since it was launched. However, the MEGS-P time profiles appear to display a rise time of tens of minutes around the time of the flare onset. This is in stark contrast to the rapid, impulsive increase observed in other intrinsically chromospheric features (Hα, Lyβ, LyC, C III, etc.). Furthermore, the emission detected by MEGS-P peaks around the time of the peak of thermal soft X-ray emission and not during the impulsive phase when energy deposition in the chromosphere (often assumed to be in the form of non-thermal electrons) is greatest. The time derivative of Lyα lightcurves also appears to resemble that of the time derivative of soft X-rays, reminiscent of the Neupert effect. Given that spectrally-resolved Lyα observations during flares from SORCE/SOLSTICE peak during the impulsive phase as expected, this suggests that the atypical behaviour of MEGS-P data is a manifestation of the broadband nature of the observations. This could imply that other lines and/or continuum emission that becomes enhanced during flares could be contributing to the passband. Users are hereby urged to exercise caution when interpreting broadband Lyα observations of solar flares. Comparisons have also been made with other broadband Lyα photometers such as PROBA2/LYRA and GOES/EUVS-E.

  13. Millimeter and X-Ray Emission from the 5 July 2012 Solar Flare

    NASA Astrophysics Data System (ADS)

    Tsap, Y. T.; Smirnova, V. V.; Motorina, G. G.; Morgachev, A. S.; Kuznetsov, S. A.; Nagnibeda, V. G.; Ryzhov, V. S.

    2018-03-01

    The 5 July 2012 solar flare SOL2012-07-05T11:44 (11:39 - 11:49 UT) with an increasing millimeter spectrum between 93 and 140 GHz is considered. We use space and ground-based observations in X-ray, extreme ultraviolet, microwave, and millimeter wave ranges obtained with the Reuven Ramaty High-Energy Solar Spectroscopic Imager, Solar Dynamics Observatory (SDO), Geostationary Operational Environmental Satellite, Radio Solar Telescope Network, and Bauman Moscow State Technical University millimeter radio telescope RT-7.5. The main parameters of thermal and accelerated electrons were determined through X-ray spectral fitting assuming the homogeneous thermal source and thick-target model. From the data of the Atmospheric Imaging Assembly/SDO and differential-emission-measure calculations it is shown that the thermal coronal plasma gives a negligible contribution to the millimeter flare emission. Model calculations suggest that the observed increase of millimeter spectral flux with frequency is determined by gyrosynchrotron emission of high-energy (≳ 300 keV) electrons in the chromosphere. The consequences of the results are discussed in the light of the flare-energy-release mechanisms.

  14. ELECTRON ACCELERATION IN CONTRACTING MAGNETIC ISLANDS DURING SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borovikov, D.; Tenishev, V.; Gombosi, T. I.

    Electron acceleration in solar flares is well known to be efficient at generating energetic particles that produce the observed bremsstrahlung X-ray spectra. One mechanism proposed to explain the observations is electron acceleration within contracting magnetic islands formed by magnetic reconnection in the flare current sheet. In a previous study, a numerical magnetohydrodynamic simulation of an eruptive solar flare was analyzed to estimate the associated electron acceleration due to island contraction. That analysis used a simple analytical model for the island structure and assumed conservation of the adiabatic invariants of particle motion. In this paper, we perform the first-ever rigorous integrationmore » of the guiding-center orbits of electrons in a modeled flare. An initially isotropic distribution of particles is seeded in a contracting island from the simulated eruption, and the subsequent evolution of these particles is followed using guiding-center theory. We find that the distribution function becomes increasingly anisotropic over time as the electrons’ energy increases by up to a factor of five, in general agreement with the previous study. In addition, we show that the energized particles are concentrated on the Sunward side of the island, adjacent to the reconnection X-point in the flare current sheet. Furthermore, our analysis demonstrates that the electron energy gain is dominated by betatron acceleration in the compressed, strengthened magnetic field of the contracting island. Fermi acceleration by the shortened field lines of the island also contributes to the energy gain, but it is less effective than the betatron process.« less

  15. Multi-wavelength Observations and Modeling of Solar Flares: Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Su, Y.

    2017-12-01

    We present a review of our recent investigations on multi-wavelength observations and magnetic field modeling of solar flares. High-resolution observations taken by NVST and BBSO/NST reveal unprecedented fine structures of the flaring regions. Observations by SDO, IRIS, and GOES provide the complementary information. The magnetic field models are constructed using either non-linear force free field extrapolations or flux rope insertion method. Our studies have shown that the flaring regions often consist of double or multiple flux ropes, which often exist at different heights. The fine flare ribbon structures may be due to the magnetic reconnection in the complex quasi separatrix layers. The magnetic field modeling of several large flares suggests that the so called hot-channel structure is corresponding to the erupting flux rope above the X-point in a magnetic configuration with Hyperbolic Flux Tube.

  16. Solar Neutrino flare detection in Hyperkamiokande and SK

    NASA Astrophysics Data System (ADS)

    Fargion, Daniele

    2016-07-01

    The possible buid and near activity of a Megaton neutrino detection in HyperKamiokande and the older SK implementation by Gadolinium liqid might open to future detection of largest solar flare (pion trace at tens MeV) electron neutrino and antineutrino. The multiwave detection of X-gamma and neutrino event might offer a deep view of such solar acelleration and of neutrino flavor mix along its flight. The possoble near future discover of such events will open a third neutrino astronomy windows after rarest SN 1987A and persistent Solar nuclear signals.

  17. Evaluation the effect of energetic particles in solar flares on satellite's life time

    NASA Astrophysics Data System (ADS)

    Bagheri, Z.; Davoudifar, P.

    2016-09-01

    As the satellites have a multiple role in the humans' life, their damages and therefore logical failures of their segment causes problems and lots of expenses. So evaluating different types of failures in their segments has a crustal role. Solar particles are one of the most important reasons of segment damages (hard and soft) during a solar event or in usual times. During a solar event these particle may cause extensive damages which are even permanent (hard errors). To avoid these effects and design shielding mediums, we need to know SEP (solar energetic particles) flux and MTTF (mean time between two failures) of segments. In the present work, we calculated SEP flux witch collide the satellite in common times, in different altitudes. OMERE software was used to determine the coordinates and specifications of a satellite which in simulations has been launched to space. Then we considered a common electronic computer part and calculated MTTF for it. In the same way the SEP fluxes were calculated during different solar flares of different solar cycles and MTFFs were evaluated during occurring of solar flares. Thus a relation between solar flare energy and life time of the satellite electronic part (hours) was obtained.

  18. SolarSoft Desat Package for the Recovery of Saturated AIA Flare Images

    NASA Astrophysics Data System (ADS)

    Schwartz, Richard Alan; Torre, Gabriele; Piana, Michele; Massone, AnnaMaria

    2015-04-01

    The dynamic range of EUV images has been limited by the problem of CCD saturation as seen countless times in movies of solare flares made using the Solar Dynamics Observatory’s Atmospheric Imaging Assembly (SDO AIA). Concurrent with the saturation are the eight rays emanating from the saturation locus which are the result of diffraction off the wire meshes that support the EUV passband filters. This is the problem and its solution in a nutshell. By utilizing techniques similar to those used for making images from the rotating modulation collimators on the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) we have developed a software package that can be used to make images of the EUV flare kernels in a highly automated way as described in Schwartz et al. (2014). Starting from cutouts centered around a flaring region, the software uses the point-spread-function (PSF) of the diffraction pattern to identify and reconstruct the region of the primary saturation. The software also uses the best information available to reconstruct the general scene obscured from overflow saturation and subtracts away the diffraction fringes. It is not a total correction for the PSF but is meant to provide the flare images above all. The software is freely available and distributed within the DESAT package of Solar Software.(Schwartz, R. A., Torre, G., & Piana, M. (2014), Astrophysical Journal Letters, 793, LL23 )

  19. Theoretical studies on rapid fluctuations in solar flares

    NASA Technical Reports Server (NTRS)

    Vlahos, Loukas

    1986-01-01

    Rapid fluctuations in the emission of solar bursts may have many different origins e.g., the acceleration process can have a pulsating structure, the propagation of energetic electrons and ions can be interrupted from plasma instabilities and finally the electromagnetic radiation produced by the interaction of electrostatic and electromagnetic waves may have a pulsating behavior in time. In two separate studies the conditions for rapid fluctuations in solar flare driven emission were analyzed.

  20. DIRECT SPATIAL ASSOCIATION OF AN X-RAY FLARE WITH THE ERUPTION OF A SOLAR QUIESCENT FILAMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holman, Gordon D.; Foord, Adi, E-mail: gordon.d.holman@nasa.gov

    Solar flares primarily occur in active regions. Hard X-ray flares have been found to occur only in active regions. They are often associated with the eruption of active region filaments and coronal mass ejections (CMEs). CMEs can also be associated with the eruption of quiescent filaments, not located in active regions. Here we report the first identification of a solar X-ray flare outside an active region observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The X-ray emission was directly associated with the eruption of a long, quiescent filament and fast CME. Images from RHESSI show this flare emissionmore » to be located along a section of the western ribbon of the expanding, post-eruption arcade. EUV images from the Solar Dynamics Observatory Atmospheric Imaging Assembly show no connection between this location and nearby active regions. Therefore the flare emission is found not to be located in or associated with an active region. However, a nearby, small, magnetically strong dipolar region provides a likely explanation for the existence and location of the flare X-ray emission. This emerging dipolar region may have also triggered the filament eruption.« less

  1. Observations of the 12.3 micron Mg I emission line during a major solar flare

    NASA Technical Reports Server (NTRS)

    Deming, Drake; Jennings, Donald E.; Osherovich, Vladimir; Wiedemann, Gunter; Hewagama, Tilak

    1990-01-01

    The extremely Zeeman-sensitive 12.32 micron Mg I solar emission line was observed during a 3B/X5.7 solar flare on October 24, 1989. When compared to postflare values, Mg I emission-line intensity in the penumbral flare ribbon was 20 percent greater at the peak of the flare in soft X-rays, and the 12 micron continuum intensity was 7 percent greater. The flare also excited the emission line in the umbra where it is normally absent. The umbral flare emission exhibits a Zeeman splitting 200 G less than the adjacent penumbra, suggesting that it is excited at higher altitude. The absolute penumbral magnetic field strength did not change by more than 100 G between the flare peak and postflare period. However, a change in the inclination of the field lines, probably related to the formation and development of the flare loop system, was seen.

  2. Turbulence as a contributor to intermediate energy storage during solar flares

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bornmann, P.L.

    Turbulence is considered as a method for converting the energy observed as mass motions during the impulsive phase into thermal energy observed during the gradual phase of solar flares. The kinetic energy of the large-scale eddies driven by the upflowing material continuously cascades to smaller-scale eddies until viscosity is able to convert it into thermal energy. The general properties of steady-state, homogeneous, fluid turbulence in a nonmagnetic plasma and the properties of turbulent decay are reviewed. The time-dependent behavior of the velocities and energies observed by the X-ray Polychromator (XRP) instrument on Solar Maximum Mission (SMM) during the 1980 Novembermore » 5 flare are compared with the properties of turbulence. This study indicates that turbulence may play a role in flare energetics and may account for a fraction of the total amount of thermal energy observed during the gradual phase. The rate at which the observed flare velocities decrease is consistent with the decay of turbulent energy but may too rapid to account for the entire time delay between the impulsive and gradual phases.« less

  3. Particle acceleration and gamma rays in solar flares: Recent observations and new modeling

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, L. I.; Gan, W. Q.

    2012-09-01

    Experiments on SMM, GAMMA, Yohkoh, GRANAT, Compton GRO, INTEGRAL, RHESSI and CORONAS-F satellites over the past three decades have provided copious data for fundamental research relating to particle acceleration, transport and energetics of flares and to the ambient abundance of the solar corona, chromosphere and photosphere. We summarize main results of solar gamma-astronomy (including some results of several joint Russian-Chinese projects) and try to appraise critically a real contribution of those results into modern understanding of solar flares, particle acceleration at the Sun and some properties of the solar atmosphere. Recent findings based on the RHESSI, INTEGRAL and CORONAS-F measurements (source locations, spectrum peculiarities, 3He abundance etc.) are especially discussed. Some unusual features of extreme solar events (e.g., 28 October 2003 and 20 January 2005) have been found in gamma-ray production and generation of relativistic particles (solar cosmic rays, or SCR). A number of different plausible assumptions are considered concerning the details of underlying physical processes during large flares: (1) existence of a steeper distribution of surrounding medium density as compared to a standard astrophysical model (HSRA) for the solar atmosphere; (2) enhanced content of the 3He isotope; (3) formation of magnetic trap with specific properties; (4) prevailing non-uniform (e.g., fan-like) velocity (angular) distributions of secondary neutrons, etc. It is emphasized that real progress in this field may be achieved only by combination of gamma-ray data in different energy ranges with multi-wave and energetic particle observations during the same event. We especially note several promising lines for the further studies: (1) resonant acceleration of the 3He ions in the corona; (2) timing of the flare evolution by gamma-ray fluxes in energy range above 90 MeV; (3) separation of gamma-ray fluxes from different sources at/near the Sun (e.g., different

  4. Fermi -LAT Observations of High-energy Behind-the-limb Solar Flares

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Buehler, R.; Allafort, A.

    2017-02-01

    We report on the Fermi -LAT detection of high-energy emission from the behind-the-limb (BTL) solar flares that occurred on 2013 October 11, and 2014 January 6 and September 1. The Fermi -LAT observations are associated with flares from active regions originating behind both the eastern and western limbs, as determined by STEREO . All three flares are associated with very fast coronal mass ejections (CMEs) and strong solar energetic particle events. We present updated localizations of the >100 MeV photon emission, hard X-ray (HXR) and EUV images, and broadband spectra from 10 keV to 10 GeV, as well as microwavemore » spectra. We also provide a comparison of the BTL flares detected by Fermi -LAT with three on-disk flares and present a study of some of the significant quantities of these flares as an attempt to better understand the acceleration mechanisms at work during these occulted flares. We interpret the HXR emission to be due to electron bremsstrahlung from a coronal thin-target loop top with the accelerated electron spectra steepening at semirelativistic energies. The >100 MeV gamma-rays are best described by a pion-decay model resulting from the interaction of protons (and other ions) in a thick-target photospheric source. The protons are believed to have been accelerated (to energies >10 GeV) in the CME environment and precipitate down to the photosphere from the downstream side of the CME shock and landed on the front side of the Sun, away from the original flare site and the HXR emission.« less

  5. Fermi-LAT Observations of High-energy Behind-the-limb Solar Flares

    DOE PAGES

    Ackermann, M.; Allafort, A.; Baldini, L.; ...

    2017-01-31

    In this paper, we report on the Fermi-LAT detection of high-energy emission from the behind-the-limb (BTL) solar flares that occurred on 2013 October 11, and 2014 January 6 and September 1. The Fermi-LAT observations are associated with flares from active regions originating behind both the eastern and western limbs, as determined by STEREO. All three flares are associated with very fast coronal mass ejections (CMEs) and strong solar energetic particle events. We present updated localizations of the >100 MeV photon emission, hard X-ray (HXR) and EUV images, and broadband spectra from 10 keV to 10 GeV, as well as microwavemore » spectra. We also provide a comparison of the BTL flares detected by Fermi-LAT with three on-disk flares and present a study of some of the significant quantities of these flares as an attempt to better understand the acceleration mechanisms at work during these occulted flares. We interpret the HXR emission to be due to electron bremsstrahlung from a coronal thin-target loop top with the accelerated electron spectra steepening at semirelativistic energies. The >100 MeV gamma-rays are best described by a pion-decay model resulting from the interaction of protons (and other ions) in a thick-target photospheric source. In conclusion, the protons are believed to have been accelerated (to energies >10 GeV) in the CME environment and precipitate down to the photosphere from the downstream side of the CME shock and landed on the front side of the Sun, away from the original flare site and the HXR emission.« less

  6. Acceleration of runaway electrons in solar flares

    NASA Technical Reports Server (NTRS)

    Moghaddam-Taaheri, E.; Goertz, C. K.

    1990-01-01

    The dc electric field acceleration of electrons out of a thermal plasma and the evolution of the runaway tail are studied numerically, using a relativistic quasi-linear code based on the Ritz-Galerkin method and finite elements. A small field-aligned electric field is turned on at a certain time. The resulting distribution function from the runaway process is used to calculate the synchrotron emission during the evolution of the runaway tail. It is found that, during the runaway tail formation, which lasts a few tens of seconds for typical solar flare conditions, the synchrotron emission level is low, almost ot the same order as the emission from the thermal plasma, at the high-frequency end of the spectrum. However, the emission is enhanced explosively in a few microseconds by several orders of magnitude at the time the runaway tail stops growing along the magnetic field and tends toward isotropy due to the pitch-angle scattering of the fast particles. Results indicate that, in order to account for the observed synchrotron emission spectrum of a typical solar flare, the electric field acceleration phase must be accompanied or preceded by a heating phase which yields an enhanced electron temperature of about 2-15 keV in the flare region if the electric field is 0.1-0.2 times the Dreicer field and cyclotron-to-plasma frequency ratios are of order 1-2.

  7. STEREOSCOPIC OBSERVATION OF SLIPPING RECONNECTION IN A DOUBLE CANDLE-FLAME-SHAPED SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gou, Tingyu; Liu, Rui; Wang, Yuming

    2016-04-20

    The 2011 January 28 M1.4 flare exhibits two side-by-side candle-flame-shaped flare loop systems underneath a larger cusp-shaped structure during the decay phase, as observed at the northwestern solar limb by the Solar Dynamics Observatory . The northern loop system brightens following the initiation of the flare within the southern loop system, but all three cusp-shaped structures are characterized by ∼10 MK temperatures, hotter than the arch-shaped loops underneath. The “Ahead” satellite of the Solar Terrestrial Relations Observatory provides a top view, in which the post-flare loops brighten sequentially, with one end fixed while the other apparently slipping eastward. By performingmore » stereoscopic reconstruction of the post-flare loops in EUV and mapping out magnetic connectivities, we found that the footpoints of the post-flare loops are slipping along the footprint of a hyperbolic flux tube (HFT) separating the two loop systems and that the reconstructed loops share similarity with the magnetic field lines that are traced starting from the same HFT footprint, where the field lines are relatively flexible. These results argue strongly in favor of slipping magnetic reconnection at the HFT. The slipping reconnection was likely triggered by the flare and manifested as propagative dimmings before the loop slippage is observed. It may contribute to the late-phase peak in Fe xvi 33.5 nm, which is even higher than its main-phase counterpart, and may also play a role in the density and temperature asymmetry observed in the northern loop system through heat conduction.« less

  8. High-resolution X-ray spectra of solar flares. IV - General spectral properties of M type flares

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Doschek, G. A.; Kreplin, R. W.; Mariska, J. T.

    1980-01-01

    The spectral characteristics in selected narrow regions of the X-ray spectrum of class M solar flares are analyzed. High-resolution spectra in the ranges 1.82-1.97, 2.98-3.07, 3.14-3.24 and 8.26-8.53 A, which contain lines important for the determination of electron temperature and departure from ionization equilibrium, were recorded by spaceborne Bragg crystal spectrometers. Temperatures of up to 20,000,000 K are obtained from line ratios during flare rise phases in M as well as X flares, while in the decay phase the calcium temperature can be as low as 8,000,000 K, which is significantly lower than in X flares. Large nonthermal motions (on the order of 130 km/sec at most) are also observed in M as well as X flares, which are largest during the soft X-ray rise phase. Finally, it is shown that the method proposed by Gabriel and Phillips (1979) for detecting departures of electrons from Maxwellian velocity distributions is not sufficiently sensitive to give reliable results for the present data.

  9. An investigation of solar flares and associated solar radio bursts on ionospheric total electron content

    NASA Astrophysics Data System (ADS)

    Uwamahoro, Jean

    2016-07-01

    Solar transients events such as Coronal Mass Ejections (CMEs) and solar flares represent are the cause of various aspects of space weather and can impact the modern man made technological system. Such solar transients are often associated with solar radio bursts (SRBs), particularly of type II and III that , at ground level can be detected by the CALLISTO (Compact Astronomical Low-frequency Low-cost Instrument for Spectroscopy and Transportable Observatories) solar spectrometer. The present study aims at investigating solar flares and associated SRBs impact on the ionospheric total electron content (TEC). SRBs data used are dynamic spectra covering the 2014-2015 period and detected by the CALLISTO instrument that is installed at the university of Rwanda, Kigali. To investigate ionospheric impact, we use TEC data from IGS stations located at almost the same universal time zone, and correlate the observed TEC changes to the corresponding observed solar bursts events. Preliminary observations resulting from this study indicate a slight enhancement in TEC during the burst event days. The observed TEC enhancement on the burst day can be associated to increased UV and X-rays radiations and particle acceleration that are associated with SRBs events. This work is a contribution to more understanding of the geo-space impact of solar transients phenomena for modeling and prediction.

  10. High energy neutron and gamma-radiation generated during the solar flares

    NASA Technical Reports Server (NTRS)

    Kocharov, G. E.; Mandzhavidze, N. Z.

    1985-01-01

    The problem of high energy neutrons and gamma rays generation in the solar conditions is considered. It is shown that due to a peculiarity of generation and propagation of neutrons corresponding solar flares should be localized at high helio-longitudes.

  11. Energetic particles in solar flares. Chapter 4 in the proceedings of the 2nd Skylab Workshop on Solar Flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Colgate, S. A.; Dulk, G. A.; Hoyng, P.; Knight, J. W., III; Lin, R. P.; Melrose, D. B.; Paizis, C.; Orrall, F.; Shapiro, P. R.

    1978-01-01

    The recent direct observational evidence for the acceleration of particles in solar flares, i.e. radio emission, bremsstrahlung X-ray emission, gamma-ray line and continuum emission, as well as direct observations of energetic electrons and ions, are discussed and intercorrelated. At least two distinct phases of acceleration of solar particles exist that can be distinguished in terms of temporal behavior, type and energy of particles accelerated and the acceleration mechanism. Bulk energization seems the likely acceleration mechanism for the first phase while Fermi mechanism is a viable candidate for the second one.

  12. Spectropolarimetric Inversions of the Ca II 8542 Å Line in an M-class Solar Flare

    NASA Astrophysics Data System (ADS)

    Kuridze, D.; Henriques, V. M. J.; Mathioudakis, M.; Rouppe van der Voort, L.; de la Cruz Rodríguez, J.; Carlsson, M.

    2018-06-01

    We study the M1.9-class solar flare SOL2015-09-27T10:40 UT using high-resolution full Stokes imaging spectropolarimetry of the Ca II 8542 Å line obtained with the CRISP imaging spectropolarimeter at the Swedish 1-m Solar Telescope. Spectropolarimetric inversions using the non-LTE code NICOLE are used to construct semiempirical models of the flaring atmosphere to investigate the structure and evolution of the flare temperature and magnetic field. A comparison of the temperature stratification in flaring and nonflaring areas reveals strong heating of the flare ribbon during the flare peak. The polarization signals of the ribbon in the chromosphere during the flare maximum become stronger when compared to its surroundings and to pre- and post-flare profiles. Furthermore, a comparison of the response functions to perturbations in the line-of-sight magnetic field and temperature in flaring and nonflaring atmospheres shows that during the flare, the Ca II 8542 Å line is more sensitive to the lower atmosphere where the magnetic field is expected to be stronger. The chromospheric magnetic field was also determined with the weak-field approximation, which led to results similar to those obtained with the NICOLE inversions.

  13. Classification of Solar Flares

    DTIC Science & Technology

    1988-11-01

    34proton flares," and flares which cause ground level effects are often called "GLE events" or " cosmic - ray flares." However, the term "proton flares...34 in general refers to both groups. Ellison et al (54) first noticed that cosmic - ray flares are typically two- ribbon flares, with two large Ha ribbons...atmosphere and combine with protons to produce deuterons and the 2.2 MeV gamma- ray line. Pions produced by nuclear interactions decay to muons , which in

  14. Revealing the Evolution of Non-thermal Electrons in Solar Flares Using 3D Modeling

    NASA Astrophysics Data System (ADS)

    Fleishman, Gregory D.; Nita, Gelu M.; Kuroda, Natsuha; Jia, Sabina; Tong, Kevin; Wen, Richard R.; Zhizhuo, Zhou

    2018-05-01

    Understanding non-thermal particle generation, transport, and escape in solar flares requires detailed quantification of the particle evolution in the realistic 3D domain where the flare takes place. Rather surprisingly, apart from the standard flare scenario and integral characteristics of non-thermal electrons, not much is known about the actual evolution of non-thermal electrons in the 3D spatial domain. This paper attempts to begin to remedy this situation by creating sets of evolving 3D models, the synthesized emission from which matches the evolving observed emission. Here, we investigate two contrasting flares: a dense, “coronal-thick-target” flare SOL2002-04-12T17:42, that contained a single flare loop observed in both microwaves and X-rays, and a more complex flare, SOL2015-06-22T17:50, that contained at least four distinct flaring loops needed to consistently reproduce the microwave and X-ray emission. Our analysis reveals differing evolution patterns for the non-thermal electrons in the dense and tenuous loops; however, both patterns suggest that resonant wave–particle interactions with turbulence play a central role. These results offer new constraints for theory and models of the particle acceleration and transport in solar flares.

  15. MAGNETIC-ISLAND CONTRACTION AND PARTICLE ACCELERATION IN SIMULATED ERUPTIVE SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guidoni, S. E.; DeVore, C. R.; Karpen, J. T.

    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission in solar flares is not well understood. Drake et al. proposed a mechanism for accelerating electrons in contracting magnetic islands formed by kinetic reconnection in multi-layered current sheets (CSs). We apply these ideas to sunward-moving flux ropes (2.5D magnetic islands) formed during fast reconnection in a simulated eruptive flare. A simple analytic model is used to calculate the energy gain of particles orbiting the field lines of the contracting magnetic islands in our ultrahigh-resolution 2.5D numerical simulation. We find that the estimated energy gainsmore » in a single island range up to a factor of five. This is higher than that found by Drake et al. for islands in the terrestrial magnetosphere and at the heliopause, due to strong plasma compression that occurs at the flare CS. In order to increase their energy by two orders of magnitude and plausibly account for the observed high-energy flare emission, the electrons must visit multiple contracting islands. This mechanism should produce sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each magnetohydrodynamic-scale island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare CS is a promising candidate for electron acceleration in solar eruptions.« less

  16. Magnetic-Island Contraction and Particle Acceleration in Simulated Eruptive Solar Flares

    NASA Technical Reports Server (NTRS)

    Guidoni, S. E.; Devore, C. R.; Karpen, J. T.; Lynch, B. J.

    2016-01-01

    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission in solar flares is not well understood. Drake et al. proposed a mechanism for accelerating electrons in contracting magnetic islands formed by kinetic reconnection in multi-layered current sheets (CSs). We apply these ideas to sunward-moving flux ropes (2.5D magnetic islands) formed during fast reconnection in a simulated eruptive flare. A simple analytic model is used to calculate the energy gain of particles orbiting the field lines of the contracting magnetic islands in our ultrahigh-resolution 2.5D numerical simulation. We find that the estimated energy gains in a single island range up to a factor of five. This is higher than that found by Drake et al. for islands in the terrestrial magnetosphere and at the heliopause, due to strong plasma compression that occurs at the flare CS. In order to increase their energy by two orders of magnitude and plausibly account for the observed high-energy flare emission, the electrons must visit multiple contracting islands. This mechanism should produce sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each magneto hydro dynamic-scale island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare CS is a promising candidate for electron acceleration in solar eruptions.

  17. Morphological evolution of X-ray flare structures from the rise through the decay phase. [Skylab study of solar flares

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Krieger, A. S.; Vaiana, G. S.

    1975-01-01

    The morphological evolution of 12 solar X-ray subflares from onset through the decay phase has been studied using photographic X-ray images obtained from Skylab. The spatial configurations are found to vary widely from flare to flare, but they appear to be composed of two basic kinds of structures. The first, termed 'X-ray kernels', are brightest during the rise phase; the second, looplike structures, appear during the maximum and decay phases of the event. The X-ray kernels are small pointlike structures which may be related to the nonthermal phases of flares.

  18. Neutron-decay Protons from Solar Flares as Seed Particles for CME-shock Acceleration in the Inner Heliosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Ronald J.; Ko, Yuan-Kuen, E-mail: ronald.murphy@nrl.navy.mil, E-mail: yuan-kuen.ko@nrl.navy.mil

    The protons in large solar energetic particle events are accelerated in the inner heliosphere by fast shocks produced by coronal mass ejections. Unless there are other sources, the protons these shocks act upon would be those of the solar wind (SW). The efficiency of the acceleration depends on the kinetic energy of the protons. For a 2000 km s{sup −1} shock, the most effective proton energies would be 30–100 keV; i.e., within the suprathermal tail component of the SW. We investigate one possible additional source of such protons: those resulting from the decay of solar-flare-produced neutrons that escape from themore » Sun into the low corona. The neutrons are produced by interactions of flare-accelerated ions with the solar atmosphere. We discuss the production of low-energy neutrons in flares and their decay on a interplanetary magnetic field line near the Sun. We find that even when the flaring conditions are optimal, the 30–100 keV neutron-decay proton density produced by even a very large solar flare would be only about 10% of that of the 30–100 keV SW suprathermal tail. We discuss the implication of a seed-particle source of more frequent, small flares.« less

  19. GAIA modeling of electrodynamics in the lower ionosphere during a severe solar flare event

    NASA Astrophysics Data System (ADS)

    Matsumura, M.; Shiokawa, K.; Shinagawa, H.; Jin, H.; Fujiwara, H.; Miyoshi, Y.; Otsuka, Y.

    2016-12-01

    Recent studies indicated that the ionospheric F-region disturbances due to solar flare irradiance are controlled not only by photoionization but also by electrodynamical changes of the ionosphere [Liu et al., 2007; Qian et al., 2012]. The electric field changes during solar flare events occur mainly in the E-region due to the X-ray flux enhancement, and in the equatorial counter electrojet regions the eastward electric field turns into westward below 107-km altitude [Manju and Viswanathan, 2005]. The TIME-GCM model has been used to investigate the flare-related electrodynamics of the ionosphere [Qian et al., 2012]. However, the model did not consider the flare effects at altitudes below 97 km due to the ionospheric lower boundary of the model. On the other hand, the GAIA model [Jin et al., 2011] can simulate electron density variations and electrodynamics around and below 100 km because the model does not have the limitation of the lower boundary. We have improved the GAIA model to incorporate the Flare Irradiance Spectral Model (FISM) [Chamberlin et al., 2007; 2008] to understand the global response of the whole ionosphere including E and D regions to the solar flares. We have performed a simulation for the X17 flare event of October 28, 2003, and have showed that soft X-ray considerably enhances conductivity even at an altitude of 80 km. We will report its effect on the ionospheric electric field and the equatorial electrojet currents.

  20. The Response of Mid-Latitude Ionospheric TEC to Geomagnetic Storms and Solar Flares

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Roussel-Dupre, R.

    2004-12-01

    The effects of geomagnetic storms and solar flares on the ionosphere are manifested as large magnitude sudden fluctuations in the Total Electron Content (TEC). In this study, the broadband VHF signal (30-100MHz) data from the Los Alamos Portable Pulser (LAPP) received by the FORTE (Fast Onboard Recording of Transient Events) satellite during the period of 1997-2002 are used to investigate the mean TEC variation response to geomagnetic storm. A total of 14 geomagnetic storms are selected where FORTE-LAPP data are available to derive average TECs during extended storm-time and non-storm time for a given storm. The variations in the ionospheric TECs at Los Alamos, New Mexico are investigated for the 14 selected geomagnetic storms. In most cases (12 out of 14), we see overall enhancements in TEC as a result of geomagnetic storm impact at Los Alamos. The relative enhancements in TEC at Los Alamos due to a geomagnetic storm can reach as high as 3-fold of the normal TEC values. The overall absolute enhancements in TEC at Los Alamos are up to about 30 TECU. The magnitude of TEC enhancements is diversified over all storm categories without a clean-cut relationship between the storm intensity and the TEC enhancement. The mean TEC variation response to geomagnetic storm can be complicated when several consecutive storms occurred in a row and a net TEC reduction may be seen. Data of continuous GPS TEC measurements are collected at a 1-minute time resolution during July 2004 when 5 X-class solar flares occurred from two Allen Osborne Associates ICS-4000Z GPS receivers mounted at the Physics Building at Los Alamos National Laboratory. In detecting effects of solar flares on the ionospheric TEC, we apply appropriate filtering to remove the linear trend of TEC and a coherent processing of TEC variations simultaneously for all the visible GPS satellites in a given time interval. The responses of ionospheric TEC at minute time scale to these powerful impulsive solar flares are

  1. CONFINED FLARES IN SOLAR ACTIVE REGION 12192 FROM 2014 OCTOBER 18 TO 29

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Huadong; Zhang, Jun; Yang, Shuhong

    2015-07-20

    Using the observations from the Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory, we investigate 6 X-class and 29 M-class flares occurring in solar active region (AR) 12192 from October 18 to 29. Among them, 30 (including 6 X- and 24 M-class) flares originated from the AR core, and the other 5 M-flares appeared at the AR periphery. Four of the X-flares exhibited similar flaring structures, indicating they were homologous flares with an analogous triggering mechanism. The possible scenario is that photospheric motions of emerged magnetic fluxes lead to shearing of the associatedmore » coronal magnetic field, which then yields a tether-cutting favorable configuration. Among the five periphery M-flares, four were associated with jet activities. The HMI vertical magnetic field data show that the photospheric fluxes of opposite magnetic polarities emerged, converged, and canceled with each other at the footpoints of the jets before the flares. Only one M-flare from the AR periphery was followed by a coronal mass ejection (CME). From October 20 to 26, the mean decay index of the horizontal background field within the height range of 40–105 Mm is below the typical threshold for torus instability onset. This suggests that a strong confinement from the overlying magnetic field might be responsible for the poor CME production of AR 12192.« less

  2. Quasi-Periodic Pulsations in the Earth's Ionosphere Synchronized with Solar Flare Emission

    NASA Astrophysics Data System (ADS)

    Hayes, L.; Gallagher, P.; McCauley, J.; Dennis, B. R.; Ireland, J.; Inglis, A. R.

    2017-12-01

    Solar flare activity is a powerful factor affecting the geophysical processes in the Earth's ionosphere. In particular, X-ray photons with wavelength < 10 A can penetrate down to the D-region ( 60-90 km in altitude) resulting in a dramatic increase of ionization in this lowest lying region of the Earth's ionosphere. This manifests as a substantial enhancement of electron density height profile at these altitudes to extents large enough to change the propagation conditions for Very Low Frequency (VLF 3-30 kHz) radio waves that travel in the waveguide formed by the Earth and the lower ionosphere. Recently, it has become clear that flares exhibit quasi-periodic pulsations with periods of seconds to minutes at EUV, X-ray and gamma-ray wavelengths. To date, it has not been known if the Earth's ionosphere is sensitive to these dynamic solar pulsations. Here, we report ionospheric pulsations with periods of 20 minutes that are synchronized with a set of pulsating flare loops using VLF observations of the ionospheric D-layer together with X-ray and EUV observations of a solar flare from the NOAA/GOES and NASA/SDO satellites. Modeling of the ionosphere show that the D-region electron density varies by up to an order of magnitude over the timescale of the pulsations. Our results show that the Earth's ionosphere is more sensitive to small-scale changes in solar activity than previously thought.

  3. SIGN SINGULARITY AND FLARES IN SOLAR ACTIVE REGION NOAA 11158

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorriso-Valvo, L.; De Vita, G.; Kazachenko, M. D.

    Solar Active Region NOAA 11158 has hosted a number of strong flares, including one X2.2 event. The complexity of current density and current helicity are studied through cancellation analysis of their sign-singular measure, which features power-law scaling. Spectral analysis is also performed, revealing the presence of two separate scaling ranges with different spectral index. The time evolution of parameters is discussed. Sudden changes of the cancellation exponents at the time of large flares and the presence of correlation with Extreme-Ultra-Violet and X-ray flux suggest that eruption of large flares can be linked to the small-scale properties of the current structures.

  4. Equatorial electrojet responses to intense solar flares under geomagnetic disturbance time electric fields

    NASA Astrophysics Data System (ADS)

    Abdu, M. A.; Nogueira, P. A. B.; Souza, J. R.; Batista, I. S.; Dutra, S. L. G.; Sobral, J. H. A.

    2017-03-01

    Large enhancement in the equatorial electrojet (EEJ) current can occur due to sudden increase in the E layer density arising from solar flare associated ionizing radiations, as also from background electric fields modified by magnetospheric disturbances when present before or during a solar flare. We investigate the EEJ responses at widely separated longitudes during two X-class flares that occurred at different activity phases surrounding the magnetic super storm sequences of 28-29 October 2003. During the 28 October flare we observed intense reverse electrojet under strong westward electric field in the sunrise sector over Jicamarca. Sources of westward disturbance electric fields driving large EEJ current are identified for the first time. Model calculations on the E layer density, with and without flare, and comparison of the results between Jicamarca and Sao Luis suggested enhanced westward electric field due to the flare occurring close to sunrise (over Jicamarca). During the flare on 29 October, which occurred during a rapid AE recovery, a strong overshielding electric field of westward polarity over Jicamarca delayed an expected EEJ eastward growth due to flare-induced ionization enhancement in the afternoon. This EEJ response yielded a measure of the overshielding decay time determined by the storm time Region 2 field-aligned current. This paper will present a detailed analysis of the EEJ responses during the two flares, including a quantitative evaluation of the flare-induced electron density enhancements and identification of electric field sources that played dominant roles in the large westward EEJ at the sunrise sector over Jicamarca.

  5. Relationships Between Photospheric Flows and Solar Flares

    NASA Astrophysics Data System (ADS)

    Welsch, B. T.; Li, Y.

    2013-12-01

    Fourier Local Correlation Tracking (FLCT) has been applied to the entire database of 96-minute cadence line-of-sight (LOS) magnetograms from the SOHO/MDI mission, to derive photospheric transverse velocities (u_x,u_y). In a previous study, we applied FLCT to a few dozen active regions (ARs), and found that the "proxy Poynting flux" (PPF) --- the product u B^2, where u is the FLCT flow speed and B is the LOS field divided by the cosine of viewing angle, integrated over each AR --- was statistically related to flare activity. We will present preliminary results of our investigation of the relationship between PPF and flare activity from NOAA's GOES catalog for several hundred ARs identified in NOAA's daily Solar Region Summaries.

  6. STATISTICAL STUDY of HARD X-RAY SPECTRAL CHARACTERISTICS OF SOLAR FLARES

    NASA Astrophysics Data System (ADS)

    Alaoui, M.; Krucker, S.; Saint-Hilaire, P.; Lin, R. P.

    2009-12-01

    We investigate the spectral characteristics of 75 solar flares at the hard X-ray peak time observed by RHESSI (Ramaty High Energy Solar Spectroscopic Imager) in the energy range 12-150keV. At energies above 40keV, the Hard X-ray emission is mostly produced by bremsstrahlung of suprathermal electrons as they interact with the ambient plasma in the chromosphere. The observed photon spectra therefore provide diagnostics of electron acceleration processes in Solar flares. We will present statistical results of spectral fitting using two models: a broken power law plus a thermal component which is a direct fit of the photon spectrum and a thick target model plus a thermal component which is a fit of the photon spectra with assumptions on the electrons emitting bremsstrahlung in the thick target approximation.

  7. Effect of solar flares flux on the propagation and modal composition of VLF signal in the lower ionosphere

    NASA Astrophysics Data System (ADS)

    Bouderba, Yasmina; Nait Amor, Samir; Tribeche, Mouloud

    2015-04-01

    The VLF radio waves propagating in the Earth-Ionosphere waveguide are sensitive to the ionospheric disturbances due to X rays solar flux. In order to understand the VLF signal response to the solar flares, the LWPC code is used to simulate the signal perturbation parameters (amplitude and phase) at fixed solar zenith angle. In this work, we used the NRK-Algiers signal data and the study was done for different flares classes. The results show that the perturbed parameters increase with the increasing solar flares flux. This increases is due to the growth of the electron density resulting from the changes of the Wait's parameters. However, the behavior of the perturbation parameters as function of distance shows different forms of signal perturbations. It was also observed that the null points move towards the transmitter location when the flare flux increases which is related to the modal composition of the propagating signal. Effectively, for a given mode, the plot of the attenuation coefficient as function of the flare flux shows a decreases when the flux increases which is more significant for high modes. Thus, the solar flares effect is to amplify the VLF signal by reducing the attenuation coefficient.

  8. Collisionless shock formation and the prompt acceleration of solar flare ions

    NASA Technical Reports Server (NTRS)

    Cargill, P. J.; Goodrich, C. C.; Vlahos, L.

    1988-01-01

    The formation mechanisms of collisionless shocks in solar flare plasmas are investigated. The priamry flare energy release is assumed to arise in the coronal portion of a flare loop as many small regions or 'hot spots' where the plasma beta locally exceeds unity. One dimensional hybrid numerical simulations show that the expansion of these 'hot spots' in a direction either perpendicular or oblique to the ambient magnetic field gives rise to collisionless shocks in a few Omega(i), where Omega(i) is the local ion cyclotron frequency. For solar parameters, this is less than 1 second. The local shocks are then subsequently able to accelerate particles to 10 MeV in less than 1 second by a combined drift-diffusive process. The formation mechanism may also give rise to energetic ions of 100 keV in the shock vicinity. The presence of these energetic ions is due either to ion heating or ion beam instabilities and they may act as a seed population for further acceleration. The prompt acceleration of ions inferred from the Gamma Ray Spectrometer on the Solar Maximum Mission can thus be explained by this mechanism.

  9. Turbulent Kinetic Energy in the Energy Balance of a Solar Flare

    NASA Astrophysics Data System (ADS)

    Kontar, E. P.; Perez, J. E.; Harra, L. K.; Kuznetsov, A. A.; Emslie, A. G.; Jeffrey, N. L. S.; Bian, N. H.; Dennis, B. R.

    2017-04-01

    The energy released in solar flares derives from a reconfiguration of magnetic fields to a lower energy state, and is manifested in several forms, including bulk kinetic energy of the coronal mass ejection, acceleration of electrons and ions, and enhanced thermal energy that is ultimately radiated away across the electromagnetic spectrum from optical to x rays. Using an unprecedented set of coordinated observations, from a suite of instruments, we here report on a hitherto largely overlooked energy component—the kinetic energy associated with small-scale turbulent mass motions. We show that the spatial location of, and timing of the peak in, turbulent kinetic energy together provide persuasive evidence that turbulent energy may play a key role in the transfer of energy in solar flares. Although the kinetic energy of turbulent motions accounts, at any given time, for only ˜(0.5 - 1 )% of the energy released, its relatively rapid (˜1 - 10 s ) energization and dissipation causes the associated throughput of energy (i.e., power) to rival that of major components of the released energy in solar flares, and thus presumably in other astrophysical acceleration sites.

  10. Turbulent Kinetic Energy in the Energy Balance of a Solar Flare.

    PubMed

    Kontar, E P; Perez, J E; Harra, L K; Kuznetsov, A A; Emslie, A G; Jeffrey, N L S; Bian, N H; Dennis, B R

    2017-04-14

    The energy released in solar flares derives from a reconfiguration of magnetic fields to a lower energy state, and is manifested in several forms, including bulk kinetic energy of the coronal mass ejection, acceleration of electrons and ions, and enhanced thermal energy that is ultimately radiated away across the electromagnetic spectrum from optical to x rays. Using an unprecedented set of coordinated observations, from a suite of instruments, we here report on a hitherto largely overlooked energy component-the kinetic energy associated with small-scale turbulent mass motions. We show that the spatial location of, and timing of the peak in, turbulent kinetic energy together provide persuasive evidence that turbulent energy may play a key role in the transfer of energy in solar flares. Although the kinetic energy of turbulent motions accounts, at any given time, for only ∼(0.5-1)% of the energy released, its relatively rapid (∼1-10  s) energization and dissipation causes the associated throughput of energy (i.e., power) to rival that of major components of the released energy in solar flares, and thus presumably in other astrophysical acceleration sites.

  11. Effects of solar flares on the ionosphere of Mars.

    PubMed

    Mendillo, Michael; Withers, Paul; Hinson, David; Rishbeth, Henry; Reinisch, Bodo

    2006-02-24

    All planetary atmospheres respond to the enhanced x-rays and ultraviolet (UV) light emitted from the Sun during a flare. Yet only on Earth are observations so continuous that the consequences of these essentially unpredictable events can be measured reliably. Here, we report observations of solar flares, causing up to 200% enhancements to the ionosphere of Mars, as recorded by the Mars Global Surveyor in April 2001. Modeling the altitude dependence of these effects requires that relative enhancements in the soft x-ray fluxes far exceed those in the UV.

  12. Singly charged energetic helium emitted in solar flares

    NASA Technical Reports Server (NTRS)

    Hovestadt, D.; Hoefner, H.; Klecker, B.; Scholer, M.; Gloeckler, G.; Ipavich, F. M.; Fan, C. Y.; Fisk, L. A.; Ogallagher, J. J.

    1981-01-01

    First direct charge state measurements of 0.41-1.05 MeV per nucleon helium accelerated at the sun reveal surprisingly large abundances of singly ionized helium, with typical He(+)/He(++) ratios between 0.04 and 0.21. This unexpected overabundance of He(+) was observed in each of the three large solar-flare particle events which occurred between 1978 August and 1979 October. The data were obtained with the Max-Planck-Institut/University of Maryland Experiment on board the ISEE-3 spacecraft. The observations suggest either strong coronal temperature inhomogeneities including cool regions of approximately 100,000 K or injection of 'cold' chromospheric/photospheric material into the flare acceleration region.

  13. Influence of solar activity on fibrinolysis and fibrinogenolysis. [statistical correlation between solar flare and blood coagulation indices

    NASA Technical Reports Server (NTRS)

    Marchenko, V. I.

    1974-01-01

    During periods of high solar activity fibrinolysis and fibrinogenolysis are increased. A direct correlative relationship is established between the indices of fibrinolysis, fibrinogenolysis and solar flares which were recorded two days before the blood was collected for analysis.

  14. Searching for evidence of quasi-periodic pulsations in solar flares using the AFINO code

    NASA Astrophysics Data System (ADS)

    Inglis, Andrew; Ireland, Jack; Dennis, Brian R.; Hayes, Laura Ann; Gallagher, Peter T.

    2017-08-01

    The AFINO (Automated Flare Inference of Oscillations) code is a new tool to allow analysis of temporal solar data in search of oscillatory signatures. Using AFINO, we carry out a large-scale search for evidence of signals consistent with quasi-periodic pulsations (QPP) in solar flares, focusing on the 1-300 s timescale. We analyze 675 M- and X-class flares observed by GOES in 1-8 Å soft X-rays between 2011 February 1 and 2015 December 31. Additionally, over the same era we analyze Fermi/GBM 15-25 keV X-ray data for each of these flares associated with a GBM solar flare trigger, a total of 261 events. Using a model comparison method and the Bayesian Information Criterion statistic, we determine whether there is evidence for a substantial enhancement in the Fourier power spectrum that may be consistent with a QPP-like signature.Quasi-steady periodic signatures appear more prevalently in thermal soft X-ray data than in the counterpart hard X-ray emission: according to AFINO ~30% of GOES flares but only ~8% of the same flares observed by GBM show strong signatures consistent with classical interpretations of QPP, which include MHD wave processes and oscillatory reconnection events. For both datasets, preferred characteristic timescales of ~5-30 s were found in the QPP-like events, with no clear dependence on flare magnitude. Individual events in the sample also show similar characteristic timescales in both GBM and GOES data sets, indicating that the same phenomenon is sometimes observed simultaneously in soft and hard X-rays. We discuss the implications of these survey results, and future developments of the analysis method. AFINO continues to run daily on new flares observed by GOES, and the full AFINO catalogue is made available online.

  15. Internal and External Reconnection Series Homologous Solar Flares

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2001-01-01

    Using data from the extreme ultraviolet imaging telescope (EIT) on SOHO and the soft X-ray telescope (SXT) on Yohkoh, we examine a series of morphologically homologous solar flares occurring in National Oceanic and Atmospheric Administration (NOAA) active region 8210 over May 1-2, 1998. An emerging flux region (EFR) impacted against a sunspot to the west and next to a coronal hole to the east is the source of the repeated flaring. An SXT sigmoid parallels the EFR's neutral line at the site of the initial flaring in soft X rays. In EIT each flaring episode begins with the formation of a crinkle pattern external to the EFR. These EIT crinkles move out from, and then in toward, the EFR with velocities approx. 20 km/ s. A shrinking and expansion of the width of the coronal hole coincides with the crinkle activity, and generation and evolution of a postflare loop system begins near the time of crinkle formation. Using a schematic based on magnetograms of the region, we suggest that these observations are consistent with the standard reconnection-based model for solar eruptions but are modified by the presence of the additional magnetic fields of the sunspot and coronal hole. In the schematic, internal reconnection begins inside of the EFR-associated fields, unleashing a flare, postflare loops, and a coronal mass ejection (CME). External reconnection, first occurring between the escaping CME and the coronal hole field and second occurring between fields formed as a result of the first external reconnection, results in the EIT crinkles and changes in the coronal hole boundary. By the end of the second external reconnection, the initial setup is reinstated; thus the sequence can repeat, resulting in morphologically homologous eruptions. Our inferred magnetic topology is similar to that suggested in the "breakout model" of eruptions although we cannot determine if our eruptions are released primarily by the breakout mechanism (external reconnection) or, alternatively

  16. CORRELATION OF HARD X-RAY AND WHITE LIGHT EMISSION IN SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhar, Matej; Krucker, Säm; Battaglia, Marina

    A statistical study of the correlation between hard X-ray and white light emission in solar flares is performed in order to search for a link between flare-accelerated electrons and white light formation. We analyze 43 flares spanning GOES classes M and X using observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager and Helioseismic and Magnetic Imager. We calculate X-ray fluxes at 30 keV and white light fluxes at 6173 Å summed over the hard X-ray flare ribbons with an integration time of 45 s around the peak hard-X ray time. We find a good correlation between hard X-raymore » fluxes and excess white light fluxes, with a highest correlation coefficient of 0.68 for photons with energy of 30 keV. Assuming the thick target model, a similar correlation is found between the deposited power by flare-accelerated electrons and the white light fluxes. The correlation coefficient is found to be largest for energy deposition by electrons above ∼50 keV. At higher electron energies the correlation decreases gradually while a rapid decrease is seen if the energy provided by low-energy electrons is added. This suggests that flare-accelerated electrons of energy ∼50 keV are the main source for white light production.« less

  17. High-energy solar flare observations at the Y2K maximum

    NASA Astrophysics Data System (ADS)

    Emslie, A. Gordon

    2000-04-01

    Solar flares afford an opportunity to observe processes associated with the acceleration and propagation of high-energy particles at a level of detail not accessible in any other astrophysical source. I will review some key results from previous high-energy solar flare observations, including those from the Compton Gamma-Ray Observatory, and the problems that they pose for our understanding of energy release and particle acceleration processes in the astrophysical environment. I will then discuss a program of high-energy observations to be carried out during the upcoming 2000-2001 solar maximum that is aimed at addressing and resolving these issues. A key element in this observational program is the High Energy Solar Spectroscopic Imager (HESSI) spacecraft, which will provide imaging spectroscopic observations with spatial, temporal, and energy resolutions commensurate with the physical processes believed to be operating, and will in addition provide the first true gamma-ray spectroscopy of an astrophysical source. .

  18. A Unified Computational Model for Solar and Stellar Flares

    NASA Technical Reports Server (NTRS)

    Allred, Joel C.; Kowalski, Adam F.; Carlsson, Mats

    2015-01-01

    We present a unified computational framework that can be used to describe impulsive flares on the Sun and on dMe stars. The models assume that the flare impulsive phase is caused by a beam of charged particles that is accelerated in the corona and propagates downward depositing energy and momentum along the way. This rapidly heats the lower stellar atmosphere causing it to explosively expand and dramatically brighten. Our models consist of flux tubes that extend from the sub-photosphere into the corona. We simulate how flare-accelerated charged particles propagate down one-dimensional flux tubes and heat the stellar atmosphere using the Fokker-Planck kinetic theory. Detailed radiative transfer is included so that model predictions can be directly compared with observations. The flux of flare-accelerated particles drives return currents which additionally heat the stellar atmosphere. These effects are also included in our models. We examine the impact of the flare-accelerated particle beams on model solar and dMe stellar atmospheres and perform parameter studies varying the injected particle energy spectra. We find the atmospheric response is strongly dependent on the accelerated particle cutoff energy and spectral index.

  19. TIME-DEPENDENT DENSITY DIAGNOSTICS OF SOLAR FLARE PLASMAS USING SDO/EVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milligan, Ryan O.; Kennedy, Michael B.; Mathioudakis, Mihalis

    2012-08-10

    Temporally resolved electron density measurements of solar flare plasmas are presented using data from the EUV Variability Experiment (EVE) on board the Solar Dynamics Observatory. The EVE spectral range contains emission lines formed between 10{sup 4} and 10{sup 7} K, including transitions from highly ionized iron ({approx}>10 MK). Using three density-sensitive Fe XXI ratios, peak electron densities of 10{sup 11.2}-10{sup 12.1} cm{sup -3} were found during four X-class flares. While previous measurements of densities at such high temperatures were made at only one point during a flaring event, EVE now allows the temporal evolution of these high-temperature densities to bemore » determined at 10 s cadence. A comparison with GOES data revealed that the peak of the density time profiles for each line ratio correlated well with that of the emission measure time profile for each of the events studied.« less

  20. An investigation of solar flares and associated solar radio bursts impact on ionospheric total electron content

    NASA Astrophysics Data System (ADS)

    Tuyizere, Sarathiel

    2016-07-01

    Solar transients events such as Coronal Mass Ejections (CMEs) and solar flares represent the cause of various aspects of space weather and can impact the modern man made technological system. Such solar transients are often associated with solar radio bursts (SRBs), particularly of type II and III that , at ground level can be detected by the CALLISTO (Compact Astronomical Low-frequency Low-cost Instrument for Spectroscopy and Transportable Observatories) solar spectrometer. The present study aims at investigating solar flares and associated SRBs impact on the ionospheric total electron content (TEC). SRBs data used are dynamic spectra covering the 2014-2015 period and detected by the CALLISTO instrument that is installed at the university of Rwanda, Kigali. To investigate ionospheric impact, we use TEC data from IGS stations located at almost the same universal time zone, and correlate the observed TEC changes to the corresponding observed solar bursts events. Preliminary observations resulting from this study indicate a slight enhancement in TEC during the burst event days. The observed TEC enhancement on the burst day can be associated to increased UV and X-rays radiations and particle acceleration that are associated with SRBs events. This work is a contribution to more understanding of the geo-space impact of solar transients phenomena for modeling and prediction.

  1. MAGNETOHYDRODYNAMIC SIMULATION OF THE X2.2 SOLAR FLARE ON 2011 FEBRUARY 15. II. DYNAMICS CONNECTING THE SOLAR FLARE AND THE CORONAL MASS EJECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, S.; Magara, T.; Choe, G. S.

    2015-04-20

    We clarify a relationship between the dynamics of a solar flare and a growing coronal mass ejection (CME) by investigating the dynamics of magnetic fields during the X2.2-class flare taking place in the solar active region 11158 on 2011 February 15, based on simulation results obtained from Inoue et al. We found that the strongly twisted lines formed through tether-cutting reconnection in the twisted lines of a nonlinear force-free field can break the force balance within the magnetic field, resulting in their launch from the solar surface. We further discover that a large-scale flux tube is formed during the eruptionmore » as a result of the tether-cutting reconnection between the eruptive strongly twisted lines and these ambient weakly twisted lines. The newly formed large flux tube exceeds the critical height of the torus instability. Tether-cutting reconnection thus plays an important role in the triggering of a CME. Furthermore, we found that the tangential fields at the solar surface illustrate different phases in the formation of the flux tube and its ascending phase over the threshold of the torus instability. We will discuss these dynamics in detail.« less

  2. Activity Analyses for Solar-type Stars Observed with Kepler. II. Magnetic Feature versus Flare Activity

    NASA Astrophysics Data System (ADS)

    He, Han; Wang, Huaning; Zhang, Mei; Mehrabi, Ahmad; Yan, Yan; Yun, Duo

    2018-05-01

    The light curves of solar-type stars present both periodic fluctuation and flare spikes. The gradual periodic fluctuation is interpreted as the rotational modulation of magnetic features on the stellar surface and is used to deduce magnetic feature activity properties. The flare spikes in light curves are used to derive flare activity properties. In this paper, we analyze the light curve data of three solar-type stars (KIC 6034120, KIC 3118883, and KIC 10528093) observed with Kepler space telescope and investigate the relationship between their magnetic feature activities and flare activities. The analysis shows that: (1) both the magnetic feature activity and the flare activity exhibit long-term variations as the Sun does; (2) unlike the Sun, the long-term variations of magnetic feature activity and flare activity are not in phase with each other; (3) the analysis of star KIC 6034120 suggests that the long-term variations of magnetic feature activity and flare activity have a similar cycle length. Our analysis and results indicate that the magnetic features that dominate rotational modulation and the flares possibly have different source regions, although they may be influenced by the magnetic field generated through a same dynamo process.

  3. The Solar Flare 4: 10 keV X-ray Spectrum

    NASA Technical Reports Server (NTRS)

    Phillips, K. J. H.

    2004-01-01

    The 4-10 keV solar flare spectrum includes highly excited lines of stripped Ca, Fe, and Ni ions as well as a continuum steeply falling with energy. Groups of lines at approximately 7 keV and approximately 8 keV, observed during flares by the broad-band RHESSI spectrometer and called here the Fe-line and Fe/Ni-line features, are formed mostly of Fe lines but with Ni lines contributing to the approximately 8 keV feature. Possible temperature indicators of these line features are discussed - the peak or centroid energies of the Fe-line feature, the line ratio of the Fe-line to the Fe/Ni-line features, and the equivalent width of the Fe-line feature. The equivalent width is by far the most sensitive to temperature. However, results will be confused if, as is commonly believed, the abundance of Fe varies from flare to flare, even during the course of a single flare. With temperature determined from the thermal continuum, the Fe-line feature becomes a diagnostic of the Fe abundance in flare plasmas. These results are of interest for other hot plasmas in coronal ionization equilibrium such as stellar flare plasmas, hot gas in galaxies, and older supernova remnants.

  4. Large-scale particle acceleration by magnetic reconnection during solar flares

    NASA Astrophysics Data System (ADS)

    Li, X.; Guo, F.; Li, H.; Li, G.; Li, S.

    2017-12-01

    Magnetic reconnection that triggers explosive magnetic energy release has been widely invoked to explain the large-scale particle acceleration during solar flares. While great efforts have been spent in studying the acceleration mechanism in small-scale kinetic simulations, there have been rare studies that make predictions to acceleration in the large scale comparable to the flare reconnection region. Here we present a new arrangement to study this problem. We solve the large-scale energetic-particle transport equation in the fluid velocity and magnetic fields from high-Lundquist-number MHD simulations of reconnection layers. This approach is based on examining the dominant acceleration mechanism and pitch-angle scattering in kinetic simulations. Due to the fluid compression in reconnection outflows and merging magnetic islands, particles are accelerated to high energies and develop power-law energy distributions. We find that the acceleration efficiency and power-law index depend critically on upstream plasma beta and the magnitude of guide field (the magnetic field component perpendicular to the reconnecting component) as they influence the compressibility of the reconnection layer. We also find that the accelerated high-energy particles are mostly concentrated in large magnetic islands, making the islands a source of energetic particles and high-energy emissions. These findings may provide explanations for acceleration process in large-scale magnetic reconnection during solar flares and the temporal and spatial emission properties observed in different flare events.

  5. Observation of a reversal of rotation in a sunspot during a solar flare

    PubMed Central

    Bi, Yi; Jiang, Yunchun; Yang, Jiayan; Hong, Junchao; Li, Haidong; Yang, Bo; Xu, Zhe

    2016-01-01

    The abrupt motion of the photospheric flux during a solar flare is thought to be a back reaction caused by the coronal field reconfiguration. However, the type of motion pattern and the physical mechanism responsible for the back reaction has been uncertain. Here we show that the direction of a sunspot's rotation is reversed during an X1.6 flare using observations from the Helioseismic and Magnetic Imager. A magnetic field extrapolation model shows that the corresponding coronal magnetic field shrinks with increasing magnetic twist density. This suggests that the abrupt reversal of rotation in the sunspot may be driven by a Lorentz torque that is produced by the gradient of twist density from the solar corona to the solar interior. These results support the view that the abrupt reversal in the rotation of the sunspot is a dynamic process responding to shrinkage of the coronal magnetic field during the flare. PMID:27958266

  6. RELATIONSHIP BETWEEN CHROMOSPHERIC EVAPORATION AND MAGNETIC FIELD TOPOLOGY IN AN M-CLASS SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadykov, Viacheslav M; Kosovichev, Alexander G; Sharykin, Ivan N

    2016-09-01

    Chromospheric evaporation is observed as Doppler blueshift during solar flares. It plays a key role in the dynamics and energetics of solar flares; however, its mechanism is still unknown. In this paper, we present a detailed analysis of spatially resolved multi-wavelength observations of chromospheric evaporation during an M 1.0-class solar flare (SOL2014-06-12T21:12) using data from NASA’s Interface Region Imaging Spectrograph and HMI/ SDO (the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory), and high-resolution observations from VIS/NST (the Visible Imaging Spectrometer at the New Solar Telescope). The results show that the averaged over the flare region Fe xximore » blueshift of the hot (10{sup 7} K) evaporating plasma is delayed relative to the C ii redshift of the relatively cold (10{sup 4} K) chromospheric plasma by about one minute. The spatial distribution of the delays is not uniform across the region and can be as long as two minutes in several zones. Using vector magnetograms from HMI, we reconstruct the magnetic field topology and the quasi-separatrix layer, and find that the blueshift delay regions as well as the H α flare ribbons are connected to the region of the magnetic polarity inversion line (PIL) and an expanding flux rope via a system of low-lying loop arcades with a height of ≲4.5 Mm. As a result, the chromospheric evaporation may be driven by the energy release in the vicinity of PIL, and has the observed properties due to a local magnetic field topology.« less

  7. White-Light Observations of Major Flares Compared to Total Solar Irradiance and Short-Wavelength Observations

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon; Kopp, Greg; Harvey, J. W.

    2014-06-01

    The NSO’s GONG network produces “white light” (WL) continuum intensity images from one-minute integrations averaged across a 0. Å wide band pass centered at 676 Å at one minute cadence using six sites worldwide. Clear WL signatures of solar flares are present in GONG intensity data for only the largest flares because of low spatial resolution (2.5 arcsec pixel size). For six major flares (GOES class X6.5 - X28) observed by GONG, we compare integrated GONG full-disk WL intensity curves with SORCE/TIM total solar irradiance (TSI) measurements. Distinctive p-mode signatures are evident in both GONG and SORCE time series, though the correlation between GONG and SORCE data varies from flare to flare. In some cases a clear TSI peak and an interruption of the GONG p-mode pattern accompany the flare. The flare signature is generally weaker in the GONG data, suggesting that most of the TIM flare signal arises from wavelengths shorter than the GONG band pass. The flare kernels nevertheless are clear and last many minutes in the spatially resolved GONG image time series. We also compare the GONG active region intensity observations with shorter-wavelength data. In one case observed by TRACE, the GONG and TRACE WL curves are very similar and the TRACE 160 Å curve shows a significant precursor and a long tail. In most cases the GONG WL and RHESSI 25-100 keV counts appear well correlated in time. This work utilizes GONG data obtained by the NSO Integrated Synoptic Program (NISP), managed by the National Solar Observatory, which is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation.

  8. Spectral Atlas of X-ray Lines Emitted During Solar Flares Based on CHIANTI

    NASA Technical Reports Server (NTRS)

    Landi, E.; Phillips, K. J. H.

    2005-01-01

    A spectral atlas of X-ray lines in the wavelength range 7.47-18.97 Angstroms is presented, based on high-resolution spectra obtained during two M-class solar flares (on 1980 August 25 and 1985 July 2) with the Flat Crystal Spectrometer on board the Solar Maximum Mission. The physical properties of the flaring plasmas are derived as a function of time using strong, isolated lines. From these properties predicted spectra using the CHIANTI database have been obtained which were then compared with wavelengths and fluxes of lines in the observed spectra to establish line identifications. identifications for nearly all the observed lines in the resulting atlas are given, with some significant corrections to previous analysis of these flare spectra.

  9. Magnetic field configuration associated with solar gamma ray flares in June, 1991

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; West, E. A.; Smith, J. E.; Trussart, F.-M.; Kenney, E. G.

    1992-01-01

    The vector magnetic field configuration of the solar active region AR 6659 that produced very high levels of flare activity in Jun. 1991 is described. The morphology and evolution of the photospheric fields are described for the period 7-10 Jun., and the flares taking place around these dates and their locations relative to the photospheric fields are indicated. By comparing the observed vector field with the potential field calculated from the observed line-of-sight flux, we identify the nonpotential characteristics of the fields along the magnetic neutral lines where the flares were observed. These results are compared with those from the earlier study of gamma-ray flares.

  10. The emission in the region E>0.1MeV during disk and limb faint solar flares

    NASA Astrophysics Data System (ADS)

    Irene, Arkhangelskaja; Andrew, Arkhangelskiy; Yury, Kotov; Alexandr, Glyanenko; Maria, Kolchina; Alexey, Kirichenko

    2013-06-01

    Hard X-ray and gamma-ray emission in energy band E>50 keV was first observed by AVS-F apparatus onboard CORONAS-F satellite (detector SONG-D) during some solar flares with classes B and C by GOES classification. Such component registered in flares with duration less than 30 min. However γ-emission up to several tens of MeV was observed during some classes B and C events, which temporal profiles were not corresponded to Neupert effect. For example, during class B2.3 limb solar flare January 7, 2005 maximum observed energy was Emax˜36 MeV and during class B4.6 disk solar event January 12, 2005 maximum observed energy was Emax˜7 MeV. Properties of temporal profiles and energy spectra of faint solar flares, during which emission in the energy band of E>0.1 MeV were registered are discussed in the presented work. There is not any strong correlation between presence or absence of hard X-ray and γ-ray emission and the intensity of soft X-ray emission during solar flares. The one of illustration of this fact is the absence of any observed statistically significant count rate exceed above background level during some class M flares in the energy band E>0.1 MeV. The typical example of such flares is event November 8, 2001 (class M4.2, lasts from 14:59 UT up to 16:00 UT, maximum of soft X-ray emission was at 15:35 UT on GOES data).

  11. A very small and super strong zebra pattern burst at the beginning of a solar flare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Baolin; Tan, Chengming; Zhang, Yin

    2014-08-01

    Microwave emission with spectral zebra pattern structures (ZPs) is frequently observed in solar flares and the Crab pulsar. The previous observations show that ZP is a structure only overlapped on the underlying broadband continuum with slight increments and decrements. This work reports an unusually strong ZP burst occurring at the beginning of a solar flare observed simultaneously by two radio telescopes located in China and the Czech Republic and by the EUV telescope on board NASA's satellite Solar Dynamics Observatory on 2013 April 11. It is a very short and super strong explosion whose intensity exceeds several times that ofmore » the underlying flaring broadband continuum emission, lasting for just 18 s. EUV images show that the flare starts from several small flare bursting points (FBPs). There is a sudden EUV flash with extra enhancement in one of these FBPs during the ZP burst. Analysis indicates that the ZP burst accompanying an EUV flash is an unusual explosion revealing a strong coherent process with rapid particle acceleration, violent energy release, and fast plasma heating simultaneously in a small region with a short duration just at the beginning of the flare.« less

  12. A search for energetic ion directivity in large solar flares

    NASA Astrophysics Data System (ADS)

    Vestrand, W. Thomas

    One of the key observational questions for solar flare physics is: What is the number, the energy spectrum, and the angular distribution of flare accelerated ions? The standard method for deriving ion spectral shape employs the ratio of influences observed on the 4-7 MeV band to the narrow neutron capture line at 2.223 MeV. The 4-7 MeV band is dominated by the principal nuclear de-excitation lines from C-12 and O-16 which are generated in the low chromosphere by the direct excitation or spallation of nuclei by energetic ions. In contrast, the narrow 2.223 MeV line is produced by the capture of thermal neutrons on protons in the photosphere. These capture neutrons are generated by energetic ion interactions and thermalized by scattering in the solar atmosphere. In a series of papers, Ramaty, Lingenfelter, and their collaborators have calculated the expected ratio of fluence in the 4-7 MeV band to the 2.223 MeV line for a wide range of energetic ion spectral shapes (see, e.g. Hua and Lingenfelter 1987). Another technique for deriving ion spectral shapes and angular distributions uses the relative strength of the Compton tail associated with the 2.223 MeV neutron capture line (Vestrand 1988, 1990). This technique can independently constrain both the angular and the energy distribution of the energetic parent ions. The combination of this tail/line strength diagnostic with the line/(4-7) MeV fluence ratio can allow one to constrain both properties of the energetic ion distributions. The primary objective of our Solar Maximum Mission (SMM) guest investigator program was to study measurements of neutron capture line emission and prompt nuclear de-excitation for large flares detected by the Solar Maximum Mission/ Gamma-Ray Spectrometer (SMM/GRS) and to use these established line diagnostics to study the properties of flare accelerated ions.

  13. Max '91: Flare research at the next solar maximum

    NASA Technical Reports Server (NTRS)

    Dennis, Brian; Canfield, Richard; Bruner, Marilyn; Emslie, Gordon; Hildner, Ernest; Hudson, Hugh; Hurford, Gordon; Lin, Robert; Novick, Robert; Tarbell, Ted

    1988-01-01

    To address the central scientific questions surrounding solar flares, coordinated observations of electromagnetic radiation and energetic particles must be made from spacecraft, balloons, rockets, and ground-based observatories. A program to enhance capabilities in these areas in preparation for the next solar maximum in 1991 is recommended. The major scientific issues are described, and required observations and coordination of observations and analyses are detailed. A program plan and conceptual budgets are provided.

  14. Statistical study of free magnetic energy and flare productivity of solar active regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, J. T.; Jing, J.; Wang, S.

    Photospheric vector magnetograms from the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory are utilized as the boundary conditions to extrapolate both nonlinear force-free and potential magnetic fields in solar corona. Based on the extrapolations, we are able to determine the free magnetic energy (FME) stored in active regions (ARs). Over 3000 vector magnetograms in 61 ARs were analyzed. We compare FME with the ARs' flare index (FI) and find that there is a weak correlation (<60%) between FME and FI. FME shows slightly improved flare predictability relative to the total unsigned magnetic flux of ARs in themore » following two aspects: (1) the flare productivity predicted by FME is higher than that predicted by magnetic flux and (2) the correlation between FI and FME is higher than that between FI and magnetic flux. However, this improvement is not significant enough to make a substantial difference in time-accumulated FI, rather than individual flare, predictions.« less

  15. The Efficiency of Solar Flares With Gamma-ray Emission of Solar Cosmic Rays Production.

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Kurt, V. G.; Mavromichalaki, H.

    A statistical analysis of solar flares with gamma-ray emission measured by SMM (W.T. Westrand, at al.,1999, Ap.J, Suppl. Series, 409) and proton events occurrence based on the proton events catalog (A.Belov, at al.2001, Proc. 27th ICRC 2001, Ham- burg, 3465) was performed. We obtained the probabilities of the appearence of pro- ton fluxes near the Earth from the different fluence values of gamma-line emission, bremsstrahlung emissions and soft X-ray emission of the parent flares. This statisti- cal approach allows us to obtain if not precise than at least proper quantitative ratios than relate the flares with obvious evidences for proton production with the escaped from the Sun viciniy. We than look at the available data of soft X-ray flares time behaviour and show the exact timing of proton acceleration and probably shock for- mation comparing the soft X-ray injection function. The shock wave influence on the proton escaping process is shortly discussed.

  16. SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobra, M. G.; Couvidat, S., E-mail: couvidat@stanford.edu

    2015-01-10

    We attempt to forecast M- and X-class solar flares using a machine-learning algorithm, called support vector machine (SVM), and four years of data from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager, the first instrument to continuously map the full-disk photospheric vector magnetic field from space. Most flare forecasting efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based vector magnetograms. This is the first time a large data set of vector magnetograms has been used to forecast solar flares. We build a catalog of flaring and non-flaring active regions sampled from a databasemore » of 2071 active regions, comprised of 1.5 million active region patches of vector magnetic field data, and characterize each active region by 25 parameters. We then train and test the machine-learning algorithm and we estimate its performances using forecast verification metrics with an emphasis on the true skill statistic (TSS). We obtain relatively high TSS scores and overall predictive abilities. We surmise that this is partly due to fine-tuning the SVM for this purpose and also to an advantageous set of features that can only be calculated from vector magnetic field data. We also apply a feature selection algorithm to determine which of our 25 features are useful for discriminating between flaring and non-flaring active regions and conclude that only a handful are needed for good predictive abilities.« less

  17. TRIGGER OF A BLOWOUT JET IN A SOLAR CORONAL MASS EJECTION ASSOCIATED WITH A FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaohong; Yang, Shuhong; Chen, Huadong

    2015-11-20

    Using the multi-wavelength images and the photospheric magnetograms from the Solar Dynamics Observatory, we study the flare that was associated with the only coronal mass ejection (CME) in active region (AR) 12192. The eruption of a filament caused a blowout jet, and then an M4.0 class flare occurred. This flare was located at the edge of the AR instead of in the core region. The flare was close to the apparently “open” fields, appearing as extreme-ultraviolet structures that fan out rapidly. Due to the interaction between flare materials and “open” fields, the flare became an eruptive flare, leading to themore » CME. Then, at the same site of the first eruption, another small filament erupted. With the high spatial and temporal resolution Hα data from the New Vacuum Solar Telescope at the Fuxian Solar Observatory, we investigate the interaction between the second filament and the nearby “open” lines. The filament reconnected with the “open” lines, forming a new system. To our knowledge, the detailed process of this kind of interaction is reported for the first time. Then the new system rotated due to the untwisting motion of the filament, implying that the twist was transferred from the closed filament system to the “open” system. In addition, the twist seemed to propagate from the lower atmosphere to the upper layers and was eventually spread by the CME to the interplanetary space.« less

  18. OBSERVATIONAL EVIDENCE OF ELECTRON-DRIVEN EVAPORATION IN TWO SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, D.; Ning, Z. J.; Zhang, Q. M., E-mail: lidong@pmo.ac.cn

    2015-11-01

    We have explored the relationship between hard X-ray (HXR) emissions and Doppler velocities caused by the chromospheric evaporation in two X1.6 class solar flares on 2014 September 10 and October 22, respectively. Both events display double ribbons and the Interface Region Imaging Spectrograph slit is fixed on one of their ribbons from the flare onset. The explosive evaporations are detected in these two flares. The coronal line of Fe xxi 1354.09 Å shows blueshifts, but the chromospheric line of C i 1354.29 Å shows redshifts during the impulsive phase. The chromospheric evaporation tends to appear at the front of themore » flare ribbon. Both Fe xxi and C i display their Doppler velocities with an “increase-peak-decrease” pattern that is well related to the “rising-maximum-decay” phase of HXR emissions. Such anti-correlation between HXR emissions and Fe xxi Doppler shifts and correlation with C i Doppler shifts indicate the electron-driven evaporation in these two flares.« less

  19. NuSTAR Hard X-Ray Observation of a Sub-A Class Solar Flare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glesener, Lindsay; Krucker, Säm; Hudson, Hugh

    We report a Nuclear Spectroscopic Telescope Array ( NuSTAR ) observation of a solar microflare, SOL2015-09-01T04. Although it was too faint to be observed by the GOES X-ray Sensor, we estimate the event to be an A0.1 class flare in brightness. This microflare, with only ∼5 counts s{sup −1} detector{sup −1} observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager ( RHESSI ), is fainter than any hard X-ray (HXR) flare in the existing literature. The microflare occurred during a solar pointing by the highly sensitive NuSTAR astrophysical observatory, which used its direct focusing optics to produce detailed HXRmore » microflare spectra and images. The microflare exhibits HXR properties commonly observed in larger flares, including a fast rise and more gradual decay, earlier peak time with higher energy, spatial dimensions similar to the RHESSI microflares, and a high-energy excess beyond an isothermal spectral component during the impulsive phase. The microflare is small in emission measure, temperature, and energy, though not in physical size; observations are consistent with an origin via the interaction of at least two magnetic loops. We estimate the increase in thermal energy at the time of the microflare to be 2.4 × 10{sup 27} erg. The observation suggests that flares do indeed scale down to extremely small energies and retain what we customarily think of as “flare-like” properties.« less

  20. Observations of an Eruptive Solar Flare in the Extended EUV Solar Corona

    NASA Astrophysics Data System (ADS)

    Seaton, Daniel B.; Darnel, Jonathan M.

    2018-01-01

    We present observations of a powerful solar eruption, accompanied by an X8.2 solar flare, from NOAA Active Region 12673 on 2017 September 10 by the Solar Ultraviolet Imager (SUVI) on the GOES-16 spacecraft. SUVI is noteworthy for its relatively large field of view, which allows it to image solar phenomena to heights approaching 2 solar radii. These observations include the detection of an apparent current sheet associated with magnetic reconnection in the wake of the eruption, and evidence of an extreme-ultraviolet wave at some of the largest heights ever reported. We discuss the acceleration of the nascent coronal mass ejection to approximately 2000 km s‑1 at about 1.5 solar radii. We compare these observations with models of eruptions and eruption-related phenomena. We also describe the SUVI data and discuss how the scientific community can access SUVI observations of the event.

  1. Characteristics that Produce White-light Enhancements in Solar Flares Observed by Hinode/SOT

    NASA Astrophysics Data System (ADS)

    Watanabe, Kyoko; Kitagawa, Jun; Masuda, Satoshi

    2017-12-01

    To understand the conditions that produce white-light (WL) enhancements in solar flares, a statistical analysis of visible continuum data as observed by Hinode/Solar Optical Telescope (SOT) was performed. In this study, approximately 100 flare events from M- and X-class flares were selected. The time period during which the data were recorded spans from 2011 January to 2016 February. Of these events, approximately half are classified as white-light flares (WLFs), whereas the remaining events do not show any enhancements of the visible continuum (non-WLF; NWL). To determine the existence of WL emission, running difference images of not only the Hinode/SOT WL (G-band, blue, green, and red filter) data, but also the Solar Dynamics Observatory/Helioseismic and Magnetic Imager continuum data are used. A comparison between these two groups of WL data in terms of duration, temperature, emission measure of GOES soft X-rays, distance between EUV flare ribbons, strength of hard X-rays, and photospheric magnetic field strength was undertaken. In this statistical study, WLF events are characterized by a shorter timescale and shorter ribbon distance compared with NWL events. From the scatter plots of the duration of soft X-rays and the energy of non-thermal electrons, a clear distinction between WLF and NWL events can be made. It is found that the precipitation of large amounts of accelerated electrons within a short time period plays a key role in generating WL enhancements. Finally, it was demonstrated that the coronal magnetic field strength in the flare region is one of the most important factors that allow the individual identification of WLF events from NWL events.

  2. Solar Flare Hard X-ray Spikes Observed by RHESSI: a Statistical Study

    NASA Astrophysics Data System (ADS)

    Cheng, Jianxia; Qiu, J.; Ding, M.; Wang, H.

    2013-07-01

    Hard X-ray (HXR) spikes refer to fine time structures on timescales of seconds to milliseconds in high-energy HXR emission profiles during solar flare eruptions. We present a preliminary statistical investigation of temporal and spectral properties of HXR spikes. Using a three-sigma spike selection rule, we detected 184 spikes in 94 out of 322 flares with significant counts at given photon energies, which were detected from demodulated HXR light curves obtained by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). About one fifth of these spikes are also detected at photon energies higher than 100 keV. The statistical properties of the spikes are as follows. (1) HXR spikes are produced in both impulsive flares and long-duration flares with nearly the same occurrence rates. Ninety percent of the spikes occur during the rise phase of the flares, and about 70% occur around the peak times of the flares. (2) The time durations of the spikes vary from 0.2 to 2 s, with the mean being 1.0 s, which is not dependent on photon energies. The spikes exhibit symmetric time profiles with no significant difference between rise and decay times.(3) Among the most energetic spikes, nearly all of them have harder count spectra than their underlying slow-varying components. There is also a weak indication that spikes exhibiting time lags in high-energy emissions tend to have harder spectra than spikes with time lags in low-energy emissions.

  3. Chromospheric-coronal coupling during solar flares: Current systems and particle acceleration

    NASA Technical Reports Server (NTRS)

    Winglee, Robert M.; Mckean, M. E.; Dulk, G. A.

    1989-01-01

    Two-dimensional (three velocity) electrostatic particle simulations are used to investigate the particle heating and acceleration associated with the impulsive phase of a solar flare. A crossfield current in the high corona (which is presumably driven by reconnection processes) is used to initiate the flare. Due to the differential motion of the electrons and ions, currents, and associated quasi-static electric fields are generated with the primary current and balancing return current being on adjacent field lines. These currents extend from the corona down into the chromosphere. Electrons can be accelerated to energies exceeding 100 keV on short time scales via the quasi-static fields and wave-particle interactions. The spectra of these electrons has a broken power-law distribution which hardens in time. The spatially separate primary and return currents are closed by the cross-field acceleration of the ambient ions into the primary current regions. These ions are then accelerated upwards into the corona by the same quasi-static electric field accelerating the electrons downwards. This acceleration can account for the broadened stationary and weak blue shifted component seen in soft x ray line emissions and enhancements in heavy ion abundances seen in the solar wind in associations with solar flares.

  4. Semiempirical photospheric models of a solar flare on May 28, 2012

    NASA Astrophysics Data System (ADS)

    Andriets, E. S.; Kondrashova, N. N.

    2015-02-01

    The variation of the photosphere physical state during the decay phase of SF/B6.8-class solar flare on May 28, 2012 in active region NOAA 11490 is studied. We used the data of the spectropolarimetric observations with the French-Italian solar telescope THEMIS (Tenerife, Spain). Semi-empirical model atmospheres are derived from the inversion with SIR (Stokes Inversion based on Response functions) code. The inversion was based on Stokes profiles of six photospheric lines. Each model atmosphere has a two-component structure: a magnetic flux tube and non-magnetic surroundings. The Harvard Smithsonian Reference Atmosphere (HSRA) has been adopted for the surroundings. The macroturbulent velocity and the filling factor were assumed to be constant with the depth. The optical depth dependences of the temperature, magnetic field strength, and line-of-sight velocity are obtained from inversion. According to the received model atmospheres, the parameters of the magnetic field and the thermodynamical parameters changed during the decay phase of the flare. The model atmospheres showed that the photosphere remained in a disturbed state during observations after the maximum of the flare. There are temporal changes in the temperature and the magnetic field strength optical depth dependences. The temperature enhancement in the upper photospheric layers is found in the flaring atmospheres relative to the quiet-Sun model. The downflows are found in the low and upper photosphere at the decay phase of the flare.

  5. Momentum balance in four solar flares

    NASA Technical Reports Server (NTRS)

    Canfield, Richard C.; Metcalf, Thomas R.; Zarro, Dominic M.; Lemen, James R.

    1990-01-01

    Solar Maximum Mission soft X-ray spectra and National Solar Observatory (Sacramento Peak) H-alpha spectra were combined in a study of high-speed flows during the impulsive phase of four solar flares. In all events, a blue asymmetry (indicative of upflows) was observed in the coronal Ca XIX line during the soft X-ray rise phase. In all events a red asymmetry (indicative of downflows) was observed simultaneously in chromospheric H-alpha. These oppositely directed flows were concurrent with impulsive hard X-ray emission. Combining the velocity data with estimates of the density based on emission measurements and volume estimates, it is shown that for the impulsive phase as a whole the total momentum of upflowing soft X-ray plasma equaled that of the downflowing H-alpha plasma, to within an order of magnitude, in all four events. Only the chromospheric evaporation model predicts equal total momentum in the upflowing soft X-ray-emitting and downflowing H-alphba-emitting materials.

  6. Study of the Effect of Solar Flares and the Solar Position on the NRK - Algiers VLF Signal Path

    NASA Astrophysics Data System (ADS)

    Bouderba, Yasmina; Tribeche, Mouloud; Amor Samir, Nait

    X-ray and UV radiations emitted from the sun during solar flares, may cause enhancement of the ionization in the lower ionosphere. To study the effect of solar flares and their occurrence in the daytime on the D layer of the ionosphere (60-90 Km), we used Very Low Frequency (VLF) data of the NRK-ALG GCP (NRK: 63.85 N, 22.45 W, 37.5 KHz; Algiers: 36.16 N, 3.13 E; Distance: 3495 Km). Since any ionospheric electron density change, VLF signal perturbations in both of amplitude (ΔA) and phase (Δϕ) are measured. However, from the measured ΔA and Δϕ, the ionospheric parameters: H’ (the reflecting height in Km) and β (the increasing conductivity in Km-1) are then deduced using the Long wave probability code (LWPC). The results show that the signal perturbations parameters (ΔA and Δϕ) increased with the X-ray flux. Thus, as a function of the solar flux, H’ decreases to lower altitudes, but B increases up to a saturation value. From the H’ and β parameters, the electron density enhancement is then deduced. In addition to the experimental results, a numerical simulation of the D region disturbances due to solar flares was developed. Therefore, a comparison between the experimentally measured electron density and numerically determined is done as function of the solar flux and the solar zenith angle.

  7. Solar flare induced ionospheric D-region enhancements from VLF amplitude observations

    NASA Astrophysics Data System (ADS)

    Thomson, N. R.; Clilverd, M. A.

    2001-11-01

    Enhancements of D-region electron densities caused by solar flares are determined from observations of VLF subionospheric amplitude changes and these enhancements are then related to the magnitudes of the X-ray fluxes measured by the GOES satellites. The electron densities are characterised by the two traditional parameters, /H' and /β (being measures of the ionospheric height and the rate of increase of electron density with height, respectively), which are found by VLF radio modelling of the observed amplitudes using the NOSC Earth-ionosphere waveguide programs (LWPC and Modefinder) mainly on two paths, one short and one long. The short path measurements were made near Cambridge, UK, on the 18.3kHz signals from the French transmitter 617km to the south while the long path measurements were made near Dunedin, NZ, on the 24.8kHz signals from NLK in Seattle, USA, 12.3Mm across the Pacific Ocean. The observations include flares up to a magnitude of about M5 (5×10-5Wm-2 at 0.1-0.8nm) which gave VLF amplitude enhancements up to about 8dB; these corresponded, under near solar maximum conditions (1992), to a reduction in /H' from about 71km down to about 63km and an increase in /β from 0.43km-1 up to about 0.49km-1. The increased values of /β during a flare are caused by the solar X-rays dominating all sources of ionisation during the flare in contrast with the normal unperturbed daytime values of /β which are significantly lower than for a single solar UV or X-ray source due to the extra electrons from the normal galactic cosmic ray ionisation in the lowest parts of the D-region. This steady, normal (unperturbed) cosmic ray influence on /β, and hence unperturbed VLF attenuation, is more marked at times of reduced solar Lyman-/α flux in the D-region such as at solar minimum, high latitudes or early or late in the day, thus explaining the normal (unperturbed) higher VLF attenuation rates previously reported in these conditions.

  8. Flare Clustering

    NASA Astrophysics Data System (ADS)

    Title, Alan; DeRosa, Marc

    2016-10-01

    The continuous full disk observations provided by the Atmospheric Imaging Assembly (AIA ) can give an observer the impression that many flare eruptions are causally related to one another. However, both detailed analyses of a number of events as well as several statistical studies have provided only rare examples or weak evidence of causal behavior. Since the mechanisms of flare triggering are not well understood, the lack of hard evidence is not surprising. For this study we looked instead for groups of flares (flare clusters) in which successive flares occur within a fixed time - the selection time. The data set used for the investigation is the flare waiting times provided by the X-ray flare detectors on the Geostationary Operational Environmental Satellites (GOES). We limited the study to flares of magnitude C5 and greater obtained during cycles 21, 22, 23, and 24. The GOES field of view includes the entire visible surface. While many flares in a cluster may come from the same active region, the larger clusters often have origins in multiple regions. The longest C5 cluster found with a linking window of 36 hours in cycles 21, 22, 23,and 24 was 54, 82, 42, and 18 days, respectively. X flares also cluster. A superposed epoch analyses demonstrates that there is a pronounced enhancement of number of C5 and and above flares that are centered on the X flare clusters. We suggest that this behavior implies that a component of the observed coordinated behavior originates from the MHD processes driven by the solar dynamo that in turn creates unstable states in the solar atmosphere. The relationship between flare clusters and magnetic centers of activity was explored as was the correlation between high flare rates and significant changes in the total solar magnetic flux,

  9. STUDYING THE POLARIZATION OF HARD X-RAY SOLAR FLARES WITH THE GAMMA RAY POLARIMETER EXPERIMENT (GRAPE)

    NASA Astrophysics Data System (ADS)

    Ertley, Camden

    2014-01-01

    The degree of linear polarization of hard X-rays (50-500 keV) can provide a better understanding of the particle acceleration mechanisms and the emission of radiation during solar flares. Difficulties in measuring the linear polarization has limited the ability of past experiments to place constraints on solar flare models. The Gamma RAy Polarimeter Experiment (GRAPE) is a balloon-borne Compton polarimeter designed to measure polarization in the 50 - 500 keV energy range. This energy range minimizes the thermal contamination that can potentially affect measurements at lower energies. This research focuses on the analysis of data acquired during the first high altitude balloon flight of the GRAPE payload in 2011. During this 26 hour balloon flight two M-class flares were observed. The analysis effort includes the development of a Monte Carlo simulation of the full instrument payload with the GEANT4 toolkit. The simulations were used in understanding the background environment, creating a response matrix for the deconvolution of the energy loss spectra, and determining the modulation factor for a 100% linearly polarized source. We report on the results from the polarization analysis of the solar flare data. The polarization and spectral data can be used to further our understanding of particle acceleration in the context of current solar flare models.

  10. Effective recombination coefficient and solar zenith angle effects on low-latitude D-region ionosphere evaluated from VLF signal amplitude and its time delay during X-ray solar flares

    NASA Astrophysics Data System (ADS)

    Basak, Tamal; Chakrabarti, Sandip Kumar

    Excess solar X-ray radiation during solar flares causes an enhancement of ionization in the ionospheric D-region and hence affects sub-ionospherically propagating VLF signal amplitude and phase. VLF signal amplitude perturbation (DeltaA) and amplitude time delay (Deltat) (vis- ´a-vis corresponding X-ray light curve as measured by GOES-15) of NWC/19.8 kHz signal have been computed for solar flares which is detected by us during Jan-Sep 2011. The signal is recorded by SoftPAL facility of IERC/ICSP, Sitapur (22(°) 27'N, 87(°) 45'E), West Bengal, India. In first part of the work, using the well known LWPC technique, we simulated the flare induced excess lower ionospheric electron density by amplitude perturbation method. Unperturbed D-region electron density is also obtained from simulation and compared with IRI-model results. Using these simulation results and time delay as key parameters, we calculate the effective electron recombination coefficient (alpha_{eff}) at solar flare peak region. Our results match with the same obtained by other established models. In the second part, we dealt with the solar zenith angle effect on D-region during flares. We relate this VLF data with the solar X-ray data. We find that the peak of the VLF amplitude occurs later than the time of the X-ray peak for each flare. We investigate this so-called time delay (Deltat). For the C-class flares we find that there is a direct correspondence between Deltat of a solar flare and the average solar zenith angle Z over the signal propagation path at flare occurrence time. Now for deeper analysis, we compute the Deltat for different local diurnal time slots DT. We find that while the time delay is anti-correlated with the flare peak energy flux phi_{max} independent of these time slots, the goodness of fit, as measured by reduced-chi(2) , actually worsens as the day progresses. The variation of the Z dependence of reduced-chi(2) seems to follow the variation of standard deviation of Z along

  11. WebGL-enabled 3D visualization of a Solar Flare Simulation

    NASA Astrophysics Data System (ADS)

    Chen, A.; Cheung, C. M. M.; Chintzoglou, G.

    2016-12-01

    The visualization of magnetohydrodynamic (MHD) simulations of astrophysical systems such as solar flares often requires specialized software packages (e.g. Paraview and VAPOR). A shortcoming of using such software packages is the inability to share our findings with the public and scientific community in an interactive and engaging manner. By using the javascript-based WebGL application programming interface (API) and the three.js javascript package, we create an online in-browser experience for rendering solar flare simulations that will be interactive and accessible to the general public. The WebGL renderer displays objects such as vector flow fields, streamlines and textured isosurfaces. This allows the user to explore the spatial relation between the solar coronal magnetic field and the thermodynamic structure of the plasma in which the magnetic field is embedded. Plans for extending the features of the renderer will also be presented.

  12. Interrelation of soft and hard X-ray emissions during solar flares. I - Observations

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Kiplinger, A. L.; Zarro, D. M.; Dulk, G. A.; Lemen, J. R.

    1991-01-01

    The interrelation between the acceleration and heating of electrons and ions during impulsive solar flares is determined on the basis of simulataneous observations of hard and soft X-ray emission from the Solar Maximum Mission at high time resolution (6 s). For all the flares, the hard X-rays are found to have a power-law spectrum which breaks down during the rise phase and beginning of the decay phase. After that, the spectrum changes to either a single power law or a power law that breaks up at high energies. The characteristics of the soft X-ray are found to depend on the flare position. It is suggested that small-scale quasi-static electric fields are important for determining the acceleration of the X-ray-producing electrons and the outflowing chromospheric ions.

  13. Solar Flares, Type III Radio Bursts, Coronal Mass Ejections, and Energetic Particles

    NASA Technical Reports Server (NTRS)

    Cane, Hilary V.; Erickson, W. C.; Prestage, N. P.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    In this correlative study between greater than 20 MeV solar proton events, coronal mass ejections (CMEs), flares, and radio bursts it is found that essentially all of the proton events are preceded by groups of type III bursts and all are preceded by CMEs. These type III bursts (that are a flare phenomenon) usually are long-lasting, intense bursts seen in the low-frequency observations made from space. They are caused by streams of electrons traveling from close to the solar surface out to 1 AU. In most events the type III emissions extend into, or originate at, the time when type II and type IV bursts are reported (some 5 to 10 minutes after the start of the associated soft X-ray flare) and have starting frequencies in the 500 to approximately 100 MHz range that often get lower as a function of time. These later type III emissions are often not reported by ground-based observers, probably because of undue attention to type II bursts. It is suggested to call them type III-1. Type III-1 bursts have previously been called shock accelerated (SA) events, but an examination of radio dynamic spectra over an extended frequency range shows that the type III-1 bursts usually start at frequencies above any type II burst that may be present. The bursts sometimes continue beyond the time when type II emission is seen and, furthermore, sometimes occur in the absence of any type II emission. Thus the causative electrons are unlikely to be shock accelerated and probably originate in the reconnection regions below fast CMEs. A search did not find any type III-1 bursts that were not associated with CMEs. The existence of low-frequency type III bursts proves that open field lines extend from within 0.5 radius of the Sun into the interplanetary medium (the bursts start above 100 MHz, and such emission originates within 0.5 solar radius of the solar surface). Thus it is not valid to assume that only closed field lines exist in the flaring regions associated with CMEs and some

  14. Effect of the X5.4 Class Solar Flare Event of Solar Cycle 24 ON the GPS Signal Reception in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Ismail, S.; Musa, T. A.; Aris, W. A. W.; Gopir, G.

    2016-09-01

    In this paper, we examine the effect of solar flare event on the Global Positioning System (GPS) signal reception in Peninsular Malaysia during the X5.4 class solar flare on 7th March 2012, 00:24 UT at active region AR1429. GPS data from six MyRTKnet stations that cover the northern, southern, western and eastern regions of Peninsular Malaysia were used, namely Langkawi (Kedah), Bandar Baharu (Pulau Pinang), Pekan (Pahang), Mersing (Johor), Tanjung Pengelih (Johor) and Malacca (Malacca). The total electron content (TEC) was estimated based on the single layer ionospheric model. Next, the ionospheric delay for each GPS frequency of L1 (1575.42 MHz), L2 (1227.60 MHz) and L5 (1176.45 MHz) was then calculated. The results show that solar flare event can influence the GPS signal reception in Peninsular Malaysia where the X5.4 class solar flare shows significant effect of the ionospheric delay within the range of 9 m - 20 m. These research findings will significantly contribute to space weather study and its effects on space-based positioning system such as the GPS.

  15. Stereoscopic observations of hard x ray sources in solar flares made with GRO and other spacecraft

    NASA Technical Reports Server (NTRS)

    Kane, S. R.; Hurley, K.; Mctiernan, J. M.; Laros, J. G.

    1992-01-01

    Since the launch of the Gamma Ray Observatory (GRO) in Apr. 1991, the Burst and Transient Source Experiment (BATSE) instrument on GRO has recorded a large number of solar flares. Some of these flares have also been observed by the Gamma-Ray Burst Detector on the Pioneer Venus Orbiter (PVO) and/or by the Solar X-Ray/Cosmic Gamma-Ray Burst Experiment on the Ulysses spacecraft. A preliminary list of common flares observed during the period May-Jun. 1991 is presented and the possible joint studies are indicated.

  16. Block-induced Complex Structures Building the Flare-productive Solar Active Region 12673

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shuhong; Zhang, Jun; Zhu, Xiaoshuai

    Solar active region (AR) 12673 produced 4 X-class, 27 M-class, and numerous lower-class flares during its passage across the visible solar disk in 2017 September. Our study is to answer the questions why this AR was so flare-productive and how the X9.3 flare, the largest one of the past decade, took place. We find that there was a sunspot in the initial several days, and then two bipolar regions emerged nearby it successively. Due to the standing of the pre-existing sunspot, the movement of the bipoles was blocked, while the pre-existing sunspot maintained its quasi-circular shaped umbra only with themore » disappearance of a part of penumbra. Thus, the bipolar patches were significantly distorted, and the opposite polarities formed two semi-circular shaped structures. After that, two sequences of new bipolar regions emerged within the narrow semi-circular zone, and the bipolar patches separated along the curved channel. The new bipoles sheared and interacted with the previous ones, forming a complex topological system, during which numerous flares occurred. At the highly sheared region, a great deal of free energy was accumulated. On September 6, one negative patch near the polarity inversion line began to rapidly rotate and shear with the surrounding positive fields, and consequently the X9.3 flare erupted. Our results reveal that the block-induced complex structures built the flare-productive AR and the X9.3 flare was triggered by an erupting filament due to the kink instability. To better illustrate this process, a block-induced eruption model is proposed for the first time.« less

  17. Wavelength Dependence of Solar Irradiance Enhancement During X-Class Flares and Its Influence on the Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Huang, Yanshi; Richmond, Arthur D.; Deng, Yue; Chamberlin, Phillip C.; Qian, Liying; Solomon, Stanley C.; Roble, Raymond G.; Xiao, Zuo

    2013-01-01

    The wavelength dependence of solar irradiance enhancement during flare events is one of the important factors in determining how the Thermosphere-Ionosphere (T-I) system responds to flares. To investigate the wavelength dependence of flare enhancement, the Flare Irradiance Spectral Model (FISM) was run for 61 X-class flares. The absolute and the percentage increases of solar irradiance at flare peaks, compared to pre-flare conditions, have clear wavelength dependences. The 0-14 nm irradiance increases much more (approx. 680% on average) than that in the 14-25 nm waveband (approx. 65% on average), except at 24 nm (approx. 220%). The average percentage increases for the 25-105 nm and 122-190 nm wavebands are approx. 120% and approx. 35%, respectively. The influence of 6 different wavebands (0-14 nm, 14-25 nm, 25-105 nm, 105- 120 nm, 121.56 nm, and 122-175 nm) on the thermosphere was examined for the October 28th, 2003 flare (X17-class) event by coupling FISM with the National Center for Atmospheric Research (NCAR) Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) under geomagnetically quiet conditions (Kp=1). While the enhancement in the 0-14 nm waveband caused the largest enhancement of the globally integrated solar heating, the impact of solar irradiance enhancement on the thermosphere at 400 km is largest for the 25-105 nm waveband (EUV), which accounts for about 33 K of the total 45 K temperature enhancement, and approx. 7.4% of the total approx. 11.5% neutral density enhancement. The effect of 122-175 nm flare radiation on the thermosphere is rather small. The study also illustrates that the high-altitude thermospheric response to the flare radiation at 0-175 nm is almost a linear combination of the responses to the individual wavebands. The upper thermospheric temperature and density enhancements peaked 3-5 h after the maximum flare radiation.

  18. Wavelength Dependence of Solar Irradiance Enhancement During X-class Flares and Its Influence on the Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Huang, Yanshi; Richmond, A. D.

    2013-01-01

    The wavelength dependence of solar irradiance enhancement during flare events is one of the important factors in determining how the Thermosphere-Ionosphere (TI) system responds to flares. To investigate the wavelength dependence of flare enhancement, the Flare Irradiance Spectral Model (FISM) was run for 61X-class flares. The absolute and the percentage increases of solar irradiance at flare peaks, compared to pre-flare conditions, have clear wavelength dependences. The 0-4 nm irradiance increases much more ((is) approximately 680 on average) than that in the 14-25 nm waveband ((is) approximately 65 on average), except at 24 nm ( (is) approximately 220). The average percentage increases for the 25-105 nm and 122-190 nm wave bands are approximately 120 and approximately 35, respectively. The influence of 6 different wavebands (0-14 nm, 14-25 nm, 25-105 nm, 105-120 nm, 121.56 nm,and122-175 nm) on the thermosphere was examined for the October 28th, 2003 flare (X17-class) event by coupling FISM with the National Center for Atmospheric Research (NCAR) Thermosphere-Ionosphere-Electrodynamics General Circulation Model(TIE-GCM) under geomagnetically quiet conditions (Kp=1). While the enhancement in the0-14nm waveband caused the largest enhancement of the globally integrated solar heating, the impact of solar irradiance enhancement on the thermosphere at 400 km is largest for the 25-105 nm waveband (EUV), which accounts for about 33 K of the total 45 K temperature enhancement, and approximately 7.4% of the total approximately 11.5% neutral density enhancement. The effect of 122-175 nm flare radiation on the thermosphere is rather small. The study also illustrates that the high-altitude thermospheric response to the flare radiation at 0-175 nm is almost a linear combination of the responses to the individual wavebands. The upper thermospheric temperature and density enhancements peaked 3-5 h after the maximum flare radiation.

  19. The Next Level in Automated Solar Flare Forecasting: the EU FLARECAST Project

    NASA Astrophysics Data System (ADS)

    Georgoulis, M. K.; Bloomfield, D.; Piana, M.; Massone, A. M.; Gallagher, P.; Vilmer, N.; Pariat, E.; Buchlin, E.; Baudin, F.; Csillaghy, A.; Soldati, M.; Sathiapal, H.; Jackson, D.; Alingery, P.; Argoudelis, V.; Benvenuto, F.; Campi, C.; Florios, K.; Gontikakis, C.; Guennou, C.; Guerra, J. A.; Kontogiannis, I.; Latorre, V.; Murray, S.; Park, S. H.; Perasso, A.; Sciacchitano, F.; von Stachelski, S.; Torbica, A.; Vischi, D.

    2017-12-01

    We attempt an informative description of the Flare Likelihood And Region Eruption Forecasting (FLARECAST) project, European Commission's first large-scale investment to explore the limits of reliability and accuracy achieved for the forecasting of major solar flares. We outline the consortium, top-level objectives and first results of the project, highlighting the diversity and fusion of expertise needed to deliver what was promised. The project's final product, featuring an openly accessible, fully modular and free to download flare forecasting facility will be delivered in early 2018. The project's three objectives, namely, science, research-to-operations and dissemination / communication, are also discussed: in terms of science, we encapsulate our close-to-final assessment on how close (or far) are we from a practically exploitable solar flare forecasting. In terms of R2O, we briefly describe the architecture of the FLARECAST infrastructure that includes rigorous validation for each forecasting step. From the three different communication levers of the project we finally focus on lessons learned from the two-way interaction with the community of stakeholders and governmental organizations. The FLARECAST project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 640216.

  20. HOW DID A MAJOR CONFINED FLARE OCCUR IN SUPER SOLAR ACTIVE REGION 12192?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Chaowei; Feng, Xueshang; Wu, S. T.

    We study the physical mechanism of a major X-class solar flare that occurred in the super NOAA active region (AR) 12192 using data-driven numerical magnetohydrodynamic (MHD) modeling complemented with observations. With the evolving magnetic fields observed at the solar surface as bottom boundary input, we drive an MHD system to evolve self-consistently in correspondence with the realistic coronal evolution. During a two-day time interval, the modeled coronal field has been slowly stressed by the photospheric field evolution, which gradually created a large-scale coronal current sheet, i.e., a narrow layer with intense current, in the core of the AR. The currentmore » layer was successively enhanced until it became so thin that a tether-cutting reconnection between the sheared magnetic arcades was set in, which led to a flare. The modeled reconnecting field lines and their footpoints match well the observed hot flaring loops and the flare ribbons, respectively, suggesting that the model has successfully “reproduced” the macroscopic magnetic process of the flare. In particular, with simulation, we explained why this event is a confined eruption—the consequence of the reconnection is a shared arcade instead of a newly formed flux rope. We also found a much weaker magnetic implosion effect compared to many other X-class flares.« less

  1. Sun Emits a Mid-Level Flare

    NASA Image and Video Library

    2017-12-08

    Caption: A burst of solar material leaps off the left side of the sun in what’s known as a prominence eruption. This image combines three images from NASA’s Solar Dynamics Observatory captured on May 3, 2013, at 1:45 pm EDT, just as an M-class solar flare from the same region was subsiding. The images include light from the 131, 171 and 304 Angstrom wavelengths. Credit: NASA/Goddard/SDO --- The sun emitted a mid-level solar flare, peaking at 1:32 pm EDT on May 3, 2013. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This disrupts the radio signals for as long as the flare is ongoing, and the radio blackout for this flare has already subsided. This flare is classified as an M5.7 class flare. M-class flares are the weakest flares that can still cause some space weather effects near Earth. Increased numbers of flares are quite common at the moment, since the sun's normal 11-year activity cycle is ramping up toward solar maximum, which is expected in late 2013. Updates will be provided as they are available on the flare and whether there was an associated coronal mass ejection (CME), another solar phenomenon that can send solar particles into space and affect electronic systems in satellites and on Earth. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Study of the effect of solar flares on the VLF signal during D layer disappearance time

    NASA Astrophysics Data System (ADS)

    Palit, Sourav; Chakrabarti, Sandip Kumar; Ray, Suman

    We have modeled the effect of solar flare on the VLF signal during D layer disappearance time of the lower ionosphere by using the Monte Carlo simulation and a simple chemical scheme We have calculated the electron density profile during the flare using GEANT4 and the chemical model and put it as input to the LWPC to find the VLF amplitude variation due to the flare during the time when the D-layer is disappearing. We have compared the effect on the observed VLF signals with this model. We found that the long decay phase of a solar flare specially during the D-layer disappearance time causes the shifting of the sunset terminator times of VLF signals towards the nighttime. For observation we have taken the data for NWC-IERC propagation path. We have investigated the effect for different classes of flares.

  3. Sun Emits a Mid-Level Flare

    NASA Image and Video Library

    2017-12-08

    Caption: NASA’s Solar Dynamics Observatory (SDO) captured this image of an M5.7 class flare on May 3, 2013 at 1:30 p.m. EDT. This image shows light in the 131 Angstrom wavelength, a wavelength of light that can show material at the very hot temperatures of a solar flare and that is typically colorized in teal. Caption: NASA’s Solar Dynamics Observatory (SDO) captured this image of an M5.7 class flare on May 3, 2013 at 1:30 p.m. EDT. This image shows light in the 131 Angstrom wavelength, a wavelength of light that can show material at the very hot temperatures of a solar flare and that is typically colorized in teal. Credit: NASA/Goddard/SDO --- The sun emitted a mid-level solar flare, peaking at 1:32 pm EDT on May 3, 2013. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This disrupts the radio signals for as long as the flare is ongoing, and the radio blackout for this flare has already subsided. This flare is classified as an M5.7 class flare. M-class flares are the weakest flares that can still cause some space weather effects near Earth. Increased numbers of flares are quite common at the moment, since the sun's normal 11-year activity cycle is ramping up toward solar maximum, which is expected in late 2013. Updates will be provided as they are available on the flare and whether there was an associated coronal mass ejection (CME), another solar phenomenon that can send solar particles into space and affect electronic systems in satellites and on Earth. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling

  4. Solar Flare Occurrence Rate and Probability in Terms of the Sunspot Classification Supplemented with Sunspot Area and Its Changes

    NASA Astrophysics Data System (ADS)

    Lee, K.; Moon, Y.; Lee, J.; Na, H.; Lee, K.

    2013-12-01

    We investigate the solar flare occurrence rate and daily flare probability in terms of the sunspot classification supplemented with sunspot area and its changes. For this we use the NOAA active region data and GOES solar flare data for 15 years (from January 1996 to December 2010). We consider the most flare-productive 11 sunspot classes in the McIntosh sunspot group classification. Sunspot area and its changes can be a proxy of magnetic flux and its emergence/cancellation, respectively. We classify each sunspot group into two sub-groups by its area: 'Large' and 'Small'. In addition, for each group, we classify it into three sub-groups according to sunspot area changes: 'Decrease', 'Steady', and 'Increase'. As a result, in the case of compact groups, their flare occurrence rates and daily flare probabilities noticeably increase with sunspot group area. We also find that the flare occurrence rates and daily flare probabilities for the 'Increase' sub-groups are noticeably higher than those for the other sub-groups. In case of the (M + X)-class flares in the ';Dkc' group, the flare occurrence rate of the 'Increase' sub-group is three times higher than that of the 'Steady' sub-group. The mean flare occurrence rates and flare probabilities for all sunspot groups increase with the following order: 'Decrease', 'Steady', and 'Increase'. Our results statistically demonstrate that magnetic flux and its emergence enhance the occurrence of major solar flares.

  5. Observational evidence for thermal wave fronts in solar flares

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Simnett, G. M.; Smith, D. F.

    1985-01-01

    Images in 3.5-30 keV X-rays obtained during the first few minutes of seven solar flares show rapid motions. In each case X-ray emission first appeared at one end of a magnetic field structure, and then propagated along the field at a velocity between 800 and 1700 km/s. The observed X-ray structures were 45,000-230,000 km long. Simultaneous H-alpha images were available in three cases; they showed brightenings when the fast-moving fronts arrived at the chromosphere. The fast-moving fronts are interpreted as electron thermal conduction fronts since their velocities are consistent with conduction at the observed temperatures of 1-3 x 10 to the 7th K. The inferred conductive heat flux of up to 10-billion ergs/s sq cm accounts for most of the energy released in the flares, implying that the flares were primarily thermal phenomena.

  6. Observations of solar flare photon energy spectra from 20 keV to 7 MeV

    NASA Technical Reports Server (NTRS)

    Yoshimori, M.; Watanabe, H.; Nitta, N.

    1985-01-01

    Solar flare photon energy spectra in the 20 keV to 7 MeV range are derived from the Apr. 1, Apr. 4, apr. 27 and May 13, 1981 flares. The flares were observed with a hard X-ray and a gamma-ray spectrometers on board the Hinotori satellite. The results show that the spectral shape varies from flare to flare and the spectra harden in energies above about 400 keV. Effects of nuclear line emission on the continuum and of higher energy electron bremsstrahlung are considered to explain the spectral hardening.

  7. VizieR Online Data Catalog: Quasi-periodic pulsations in solar flares (Inglis+, 2016)

    NASA Astrophysics Data System (ADS)

    Inglis, A. R.; Ireland, J.; Dennis, B. R.; Hayes, L.; Gallagher, P.

    2018-04-01

    We have used data from the Geostationary Operational Environmental Satellite (GOES) instrument series, and from Fermi/Gamma-ray Burst Monitor (GBM). For this reason, we choose the interval 2011 February 1 - 2015 December 31, as it not only coincides with the availability of GOES-15 satellite data, but also includes regular solar observations by GBM. GOES satellites are equipped with solar X-ray detectors that record the incident flux in the 0.5-4Å and 1-8Å wavelength ranges. Solar X-ray data from the most recent satellite, GOES-15, has been available since 2010 at a nominal 2s cadence. To access the GOES catalog, we use the Heliophysics Event Knowledgebase (HEK). Fermi/GBM operates in the 8keV-40MeV range and regularly observes emission from solar flares, with a solar duty cycle of ~60%, similar to the solar-dedicated Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). To accumulate the database of Fermi/GBM events, we use the GBM trigger catalog produced by the instrument team, selecting all events marked as flares. (2 data files).

  8. Adiabatic heating in impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Maetzler, C.; Bai, T.; Crannell, C. J.; Frost, K. J.

    1977-01-01

    The dynamic X-ray spectra of two simple, impulsive solar flares are examined together with H alpha, microwave and meter wave radio observations. X-ray spectra of both events were characteristic of thermal bremsstrahlung from single temperature plasmas. The symmetry between rise and fall was found to hold for the temperature and emission measure. The relationship between temperature and emission measure was that of an adiabatic compression followed by adiabatic expansion; the adiabatic index of 5/3 indicated that the electron distribution remained isotropic. Observations in H alpha provided further evidence for compressive energy transfer.

  9. Spectroscopic Observations of a Solar Flare and the Associated Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Murray, S.; Tian, H.; McKillop, S.

    2013-12-01

    We used data from the EUV Imaging Spectrometer (EIS) on board Hinode to examine a coronal mass ejection and a preceding flare observed on 21 November 2012 between 15:00 and 17:00 UT. Images from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory were used to align the data from EIS with specific events occurring. We analyzed spectra of a few emission lines at three locations on the flare site and one location in the erupting prominence. On the flare site, we found line profiles showing typical characteristics of chromospheric evaporation: downflows at cooler lines and upflows at hotter lines. At one particular location on the flare site, we clearly identified dominant downflows on the order of 100 km/s in lines through Fe VIII to Fe XVI. To the best of our knowledge, this is the first time that such strong high-speed downflows have been spectroscopically observed in the impulsive phase of solar flares. The profile of the Fe VIII 184.54 line reveals two peaks and we were able to use the double Gaussian fit to separate the rapid downflows of dense material from the nearly stationary coronal background emission. For the erupting prominence, we were able to analyze multiple lines, cooler and warmer, of interest using this double Gaussian fit to separate the background emission from the emission of the ejected material. Our results show that the LOS velocities of the ejected material are about 100 km/s in the lower corona. Additionally, in each region of interest, we used the ratio of the density-sensitive line pair FeXII 195/186 to determine the electron density. Our results clearly show that the coronal densities were greatly enhanced during the flare. The density of the ejected material is also much larger than the typical coronal density. This research was supported by the NSF grant for the Solar Physics REU Program at the Smithsonian Astrophysical Observatory (AGS-1263241).

  10. PROPERTIES OF CHROMOSPHERIC EVAPORATION AND PLASMA DYNAMICS OF A SOLAR FLARE FROM IRIS OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadykov, Viacheslav M.; Dominguez, Santiago Vargas; Kosovichev, Alexander G.

    The dynamics of hot chromospheric plasma of solar flares is a key to understanding the mechanisms of flare energy release and particle acceleration. A moderate M1.0 class flare of 2014 June 12, (SOL2014-06-12T21:12) was simultaneously observed by NASA's Interface Region Imaging Spectrograph (IRIS) and other spacecraft, and also by the New Solar Telescope at the BBSO. This paper presents the first part of our investigation focused on analysis of the IRIS data. Our analysis of the IRIS data in different spectral lines reveals a strong redshifted jet-like flow with a speed of ∼100 km s{sup −1} of the chromospheric material beforemore » the flare. Strong nonthermal emission of the C ii k 1334.5 Å line, formed in the chromosphere–corona transition region, is observed at the beginning of the impulsive phase in several small (with a size of ∼1″) points. It is also found that the C ii k line is redshifted across the flaring region before, during, and after the impulsive phase. A peak of integrated emission of the hot (1.1 · 10{sup 7} K) plasma in the Fe xxi 1354.1 Å line is detected approximately five minutes after the integrated emission peak of the lower temperature C ii k. A strong blueshift of the Fe xxi line across the flaring region corresponds to evaporation flows of the hot chromospheric plasma with a speed of 50 km s{sup −1}. Additional analysis of the RHESSI data supports the idea that the upper chromospheric dynamics observed by IRIS has features of “gentle” evaporation driven by heating of the solar chromosphere by accelerated electrons and by a heat flux from the flare energy release site.« less

  11. Solar flare hard X-ray spikes observed by RHESSI: a statistical study

    NASA Astrophysics Data System (ADS)

    Cheng, J. X.; Qiu, J.; Ding, M. D.; Wang, H.

    2012-11-01

    Context. Hard X-ray (HXR) spikes refer to fine time structures on timescales of seconds to milliseconds in high-energy HXR emission profiles during solar flare eruptions. Aims: We present a preliminary statistical investigation of temporal and spectral properties of HXR spikes. Methods: Using a three-sigma spike selection rule, we detected 184 spikes in 94 out of 322 flares with significant counts at given photon energies, which were detected from demodulated HXR light curves obtained by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). About one fifth of these spikes are also detected at photon energies higher than 100 keV. Results: The statistical properties of the spikes are as follows. (1) HXR spikes are produced in both impulsive flares and long-duration flares with nearly the same occurrence rates. Ninety percent of the spikes occur during the rise phase of the flares, and about 70% occur around the peak times of the flares. (2) The time durations of the spikes vary from 0.2 to 2 s, with the mean being 1.0 s, which is not dependent on photon energies. The spikes exhibit symmetric time profiles with no significant difference between rise and decay times. (3) Among the most energetic spikes, nearly all of them have harder count spectra than their underlying slow-varying components. There is also a weak indication that spikes exhibiting time lags in high-energy emissions tend to have harder spectra than spikes with time lags in low-energy emissions.

  12. A survey of hard X-ray imaging concepts currently proposed for viewing solar flares

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W.; Davis, John M.; Emslie, A. G.

    1991-01-01

    Several approaches to imaging hard X-rays emitted from solar flares have been proposed. These include the fixed modulation collimator, the rotating modulation collimator, the spiral fresnel zone pattern, and the redundantly coded aperture. These techniques are under consideration for use in the Solar Maximum '91 balloon program, the Japanese Solar-A satellite, the Controls, Astrophysics, and Structures Experiment in Space, and the Pinhole/Occulter Facility and are outlined and discussed in the context of preliminary results from numerical modeling and the requirements derived from current ideas as to the expected hard X-ray structures in the impulsive phase of solar flares. Preliminary indications are that all of the approaches are promising, but each has its own unique set of limitations.

  13. X-ray observations of two short but intense solar flares

    NASA Technical Reports Server (NTRS)

    Nitta, Nariaki; Dennis, Brian R.; Kiplinger, Alan L.

    1990-01-01

    This paper presents continuum X-ray spectra of impulsive emission in two short but intense solar flares which have relatively weak soft X-ray emissions, combining data obtained with soft X-ray and hard X-ray spectrometers on board two satellites, the SMM and Hinotori. In both flares, photon spectra of the impulsive component are found to flatten toward low energies, suggesting that a low-energy cutoff of the electron spectrum could be greater than about 50 keV and that the total energy contained in the electrons is significantly less than that usually quoted for a cutoff energy of about 20 keV. Different shapes of the X-ray spectrum at energies below 50 keV in other flares can be attributed to the variety in the relative strength of gradual and impulsive emissions. In one of the two flares, observations with the imager on Hinotori suggest that hard X-ray emission is likely to be associated with loop footpoints. It is argued that contamination by the gradual soft X-ray emission and/or the asymmetry of loops could explain the detection of single sources in the majority of flares that have been imaged in hard X-rays.

  14. A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations

    NASA Astrophysics Data System (ADS)

    Felix, Simon; Bolzern, Roman; Battaglia, Marina

    2017-11-01

    One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS_CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS_CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation of quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.

  15. Effective recombination coefficient and solar zenith angle effects on low-latitude D-region ionosphere evaluated from VLF signal amplitude and its time delay during X-ray solar flares

    NASA Astrophysics Data System (ADS)

    Basak, Tamal; Chakrabarti, Sandip K.

    2013-12-01

    Excess solar X-ray radiation during solar flares causes an enhancement of ionization in the ionospheric D-region and hence affects sub-ionospherically propagating VLF signal amplitude and phase. VLF signal amplitude perturbation (Δ A) and amplitude time delay (Δ t) (vis-á-vis corresponding X-ray light curve as measured by GOES-15) of NWC/19.8 kHz signal have been computed for solar flares which is detected by us during Jan-Sep 2011. The signal is recorded by SoftPAL facility of IERC/ICSP, Sitapur (22∘ 27'N, 87∘ 45'E), West Bengal, India. In first part of the work, using the well known LWPC technique, we simulated the flare induced excess lower ionospheric electron density by amplitude perturbation method. Unperturbed D-region electron density is also obtained from simulation and compared with IRI-model results. Using these simulation results and time delay as key parameters, we calculate the effective electron recombination coefficient ( α eff ) at solar flare peak region. Our results match with the same obtained by other established models. In the second part, we dealt with the solar zenith angle effect on D-region during flares. We relate this VLF data with the solar X-ray data. We find that the peak of the VLF amplitude occurs later than the time of the X-ray peak for each flare. We investigate this so-called time delay (Δ t). For the C-class flares we find that there is a direct correspondence between Δ t of a solar flare and the average solar zenith angle Z over the signal propagation path at flare occurrence time. Now for deeper analysis, we compute the Δ t for different local diurnal time slots DT. We find that while the time delay is anti-correlated with the flare peak energy flux ϕ max independent of these time slots, the goodness of fit, as measured by reduced- χ 2, actually worsens as the day progresses. The variation of the Z dependence of reduced- χ 2 seems to follow the variation of standard deviation of Z along the T x - R x propagation

  16. Prompt acceleration of ions by oblique turbulent shocks in solar flares

    NASA Technical Reports Server (NTRS)

    Decker, R. B.; Vlahos, L.

    1985-01-01

    Solar flares often accelerate ions and electrons to relativistic energies. The details of the acceleration process are not well understood, but until recently the main trend was to divide the acceleration process into two phases. During the first phase elctrons and ions are heated and accelerated up to several hundreds of keV simultaneously with the energy release. These mildly relativistic electrons interact with the ambient plasma and magnetic fields and generate hard X-ray and radio radiation. The second phase, usually delayed from the first by several minutes, is responsible for accelerating ions and electrons to relativistic energies. Relativistic electrons and ions interact with the solar atmosphere or escape from the Sun and generate gamma ray continuum, gamma ray line emission, neutron emission or are detected in space by spacecraft. In several flares the second phase is coincident with the start of a type 2 radio burst that is believed to be the signature of a shock wave. Observations from the Solar Maximum Mission spacecraft have shown, for the first time, that several flares accelerate particles to all energies nearly simultaneously. These results posed a new theoretical problem: How fast are shocks and magnetohydrodynamic turbulence formed and how quickly can they accelerate ions to 50 MeV in the lower corona? This problem is discussed.

  17. Productivity of Solar Flares and Magnetic Helicity Injection in Active Regions

    NASA Astrophysics Data System (ADS)

    Park, Sung-hong; Chae, Jongchul; Wang, Haimin

    2010-07-01

    The main objective of this study is to better understand how magnetic helicity injection in an active region (AR) is related to the occurrence and intensity of solar flares. We therefore investigate the magnetic helicity injection rate and unsigned magnetic flux, as a reference. In total, 378 ARs are analyzed using SOHO/MDI magnetograms. The 24 hr averaged helicity injection rate and unsigned magnetic flux are compared with the flare index and the flare-productive probability in the next 24 hr following a measurement. In addition, we study the variation of helicity over a span of several days around the times of the 19 flares above M5.0 which occurred in selected strong flare-productive ARs. The major findings of this study are as follows: (1) for a sub-sample of 91 large ARs with unsigned magnetic fluxes in the range from (3-5) × 1022 Mx, there is a difference in the magnetic helicity injection rate between flaring ARs and non-flaring ARs by a factor of 2; (2) the GOES C-flare-productive probability as a function of helicity injection displays a sharp boundary between flare-productive ARs and flare-quiet ones; (3) the history of helicity injection before all the 19 major flares displayed a common characteristic: a significant helicity accumulation of (3-45) × 1042 Mx2 during a phase of monotonically increasing helicity over 0.5-2 days. Our results support the notion that helicity injection is important in flares, but it is not effective to use it alone for the purpose of flare forecast. It is necessary to find a way to better characterize the time history of helicity injection as well as its spatial distribution inside ARs.

  18. PRODUCTIVITY OF SOLAR FLARES AND MAGNETIC HELICITY INJECTION IN ACTIVE REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sung-hong; Wang Haimin; Chae, Jongchul, E-mail: sp295@njit.ed

    The main objective of this study is to better understand how magnetic helicity injection in an active region (AR) is related to the occurrence and intensity of solar flares. We therefore investigate the magnetic helicity injection rate and unsigned magnetic flux, as a reference. In total, 378 ARs are analyzed using SOHO/MDI magnetograms. The 24 hr averaged helicity injection rate and unsigned magnetic flux are compared with the flare index and the flare-productive probability in the next 24 hr following a measurement. In addition, we study the variation of helicity over a span of several days around the times ofmore » the 19 flares above M5.0 which occurred in selected strong flare-productive ARs. The major findings of this study are as follows: (1) for a sub-sample of 91 large ARs with unsigned magnetic fluxes in the range from (3-5) x 10{sup 22} Mx, there is a difference in the magnetic helicity injection rate between flaring ARs and non-flaring ARs by a factor of 2; (2) the GOES C-flare-productive probability as a function of helicity injection displays a sharp boundary between flare-productive ARs and flare-quiet ones; (3) the history of helicity injection before all the 19 major flares displayed a common characteristic: a significant helicity accumulation of (3-45) x 10{sup 42} Mx{sup 2} during a phase of monotonically increasing helicity over 0.5-2 days. Our results support the notion that helicity injection is important in flares, but it is not effective to use it alone for the purpose of flare forecast. It is necessary to find a way to better characterize the time history of helicity injection as well as its spatial distribution inside ARs.« less

  19. Current Fragmentation and Particle Acceleration in Solar Flares

    NASA Astrophysics Data System (ADS)

    Cargill, P. J.; Vlahos, L.; Baumann, G.; Drake, J. F.; Nordlund, Å.

    2012-11-01

    Particle acceleration in solar flares remains an outstanding problem in plasma physics and space science. While the observed particle energies and timescales can perhaps be understood in terms of acceleration at a simple current sheet or turbulence site, the vast number of accelerated particles, and the fraction of flare energy in them, defies any simple explanation. The nature of energy storage and dissipation in the global coronal magnetic field is essential for understanding flare acceleration. Scenarios where the coronal field is stressed by complex photospheric motions lead to the formation of multiple current sheets, rather than the single monolithic current sheet proposed by some. The currents sheets in turn can fragment into multiple, smaller dissipation sites. MHD, kinetic and cellular automata models are used to demonstrate this feature. Particle acceleration in this environment thus involves interaction with many distributed accelerators. A series of examples demonstrate how acceleration works in such an environment. As required, acceleration is fast, and relativistic energies are readily attained. It is also shown that accelerated particles do indeed interact with multiple acceleration sites. Test particle models also demonstrate that a large number of particles can be accelerated, with a significant fraction of the flare energy associated with them. However, in the absence of feedback, and with limited numerical resolution, these results need to be viewed with caution. Particle in cell models can incorporate feedback and in one scenario suggest that acceleration can be limited by the energetic particles reaching the condition for firehose marginal stability. Contemporary issues such as footpoint particle acceleration are also discussed. It is also noted that the idea of a "standard flare model" is ill-conceived when the entire distribution of flare energies is considered.

  20. The heliolongitudinal distribution of solar flares associated with solar proton events.

    PubMed

    Smart, D F; Shea, M A

    1996-01-01

    We find that the heliolongitudinal distribution of solar flares associated with earth-observed solar proton events is a function of the particle measurement energy. For solar proton events containing fluxes with energies exceeding 1 GeV, we find a Gaussian distribution about the probable root of the Archimedean spiral favorable propagation path leading from the earth to the sun. This distribution is modified as the detection threshold is lowered. For > 100 MeV solar proton events with fluxes > or = 10 protons (cm2-sec-ster)-1 we find the distribution becomes wider with a secondary peak near the solar central meridian. When the threshold is lowered to 10 MeV the distribution further evolves. For > 10 MeV solar proton events having a flux threshold at 10 protons (cm2-sec-ster)-1 the distribution can be considered to be a composite of two Gaussians. One distribution is centered about the probable root of the Archimedean spiral favorable propagation path leading from the earth to the sun, and the other is centered about the solar central meridian. For large flux solar proton events, those with flux threshold of 1000 (cm2-sec-ster)-1 at energies > 10 MeV, we find the distribution is rather flat for about 40 degrees either side of central meridian.

  1. Solar wind disturbances in th outer heliosphere caused by successive solar flares from the same active region

    NASA Technical Reports Server (NTRS)

    Akasofu, S. I.; Hakamada, K.

    1983-01-01

    Solar wind disturbances caused by successive flares from the same active region are traced to about 20 AU, using the modeling method developed by Hakamada and Akasofu (1982). It is shown that the flare-generated shock waves coalesce with the co-rotating interaction region of the interplanetary magnetic field, resulting in a large-scale magnetic field structure in the outer heliosphere. Such a structure may have considerable effects on the propagation of galactic cosmic rays.

  2. Fast Imaging Solar Spectrograph System in New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Park, Y.-D.; Kim, Y. H.; Chae, J.; Goode, P. R.; Cho, K. S.; Park, H. M.; Nah, J. K.; Jang, B. H.

    2010-12-01

    In 2004, Big Bear Solar Observatory in California, USA launched a project for construction of the world's largest aperture solar telescope (D = 1.6m) called New Solar Telescope(NST). University of Hawaii (UH) and Korea Astronomy and Space Science Institute(KASI) partly collaborate on the project. NST is a designed off-axis parabolic Gregorian reflector with very high spatial resolution(0.07 arcsec at 5000A) and is equipped with several scientific instruments such as Visible Imaging Magnetograph (VIM), InfraRed Imaging Magnetograph IRIM), and so on. Since these scientific instruments are focused on studies of the solar photosphere, we need a post-focus instrument for the NST to study the fine structures and dynamic patterns of the solar chromosphere and low Transition Region (TR) layer, including filaments/prominences, spicules, jets, micro flares, etc. For this reason, we developed and installed a fast imaging solar spectrograph(FISS) system on the NST withadvantages of achieving compact design with high spectral resolution and small aberration as well as recording many solar spectral lines in a single and/or dual band mode. FISS was installed in May, 2010 and now we carry out a test observation. In this talk, we introduce the FISS system and the results of the test observation after FISS installation.

  3. Quasi-periodic pulsations in solar hard X-ray and microwave flares

    NASA Technical Reports Server (NTRS)

    Kosugi, Takeo; Kiplinger, Alan L.

    1986-01-01

    For more than a decade, various studies have pointed out that hard X-ray and microwave time profiles of some solar flares show quasi-periodic fluctuations or pulsations. Nevertheless, it was not until recently that a flare displaying large amplitude quasi-periodic pulsations in X-rays and microwaves was observed with good spectral coverage and with a sufficient time resolution. The event occurred on June 7, 1980, at approximately 0312 UT, and exhibits seven intense pulses with a quasi-periodicity of approximately 8 seconds in microwaves, hard X-rays, and gamma-ray lines. On May 12, 1983, at approximately 0253 UT, another good example of this type of flare was observed both in hard X-rays and in microwaves. Temporal and spectral characteristics of this flare are compared with the event of June 7, 1980. In order to further explore these observational results and theoretical scenarios, a study of nine additional quasi-periodic events were incorporated with the results from the two flares described. Analysis of these events are briefly summarized.

  4. Global Energetics of Solar Flares. Part III; Nonthermal Energies

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Holman, Gordon; O'Flannagain, Aidan; Caspi, Amir; McTiernan, James M.; Kontar, Eduard P.

    2016-01-01

    This study entails the third part of a global flare energetics project, in which Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) data of 191 M and X-class flare events from the first 3.5 years of the Solar Dynamics Observatory mission are analyzed. We fit a thermal and a nonthermal component to RHESSI spectra, yielding the temperature of the differential emission measure (DEM) tail, the nonthermal power-law slope and flux, and the thermal nonthermal cross-over energy eco. From these parameters, we calculate the total nonthermal energy E(sub nt) in electrons with two different methods: (1) using the observed cross-over energy e(sub co) as low-energy cutoff, and (2) using the low-energy cut off e(sub wt) predicted by the warm thick-target bremsstrahlung model of Kontar et al. Based on a mean temperature of T(sub e) = 8.6 MK in active regions, we find low-energy cutoff energies of e(sub wt) = 6.2 +/-1.6 keV for the warm-target model, which is significantly lower than the cross-over energies e(sub co) = 21 +/- 6 keV. Comparing with the statistics of magnetically dissipated energies E(sub mag) and thermal energies E(sub th) from the two previous studies, we find the following mean (logarithmic) energy ratios with the warm-target model: E(sub nt) = 0.41E(sub mag), E(sub th) = 0.08 E(sub mag), and E(sub th) = 0.15 E(sub nt). The total dissipated magnetic energy exceeds the thermal energy in 95% and the nonthermal energy in 71% of the flare events, which confirms that magnetic reconnection processes are sufficient to explain flare energies. The nonthermal energy exceeds the thermal energy in 85% of the events, which largely confirms the warm thick-target model.

  5. Correlative analysis of hard and soft x ray observations of solar flares

    NASA Technical Reports Server (NTRS)

    Zarro, Dominic M.

    1994-01-01

    We have developed a promising new technique for jointly analyzing BATSE hard X-ray observations of solar flares with simultaneous soft X-ray observations. The technique is based upon a model in which electric currents and associated electric fields are responsible for the respective heating and particle acceleration that occur in solar flares. A useful by-product of this technique is the strength and evolution of the coronal electric field. The latter permits one to derive important flare parameters such as the current density, the number of current filaments composing the loop, and ultimately the hard X-ray spectrum produced by the runaway electrons. We are continuing to explore the technique by applying it to additional flares for which we have joint BATSE/Yohkoh observations. A central assumption of our analysis is the constant of proportionality alpha relating the hard X-ray flux above 50 keV and the rate of electron acceleration. For a thick-target model of hard X-ray production, it can be shown that cv is in fact related to the spectral index and low-energy cutoff of precipitating electrons. The next step in our analysis is to place observational constraints on the latter parameters using the joint BATSE/Yohkoh data.

  6. Latitude-dependent delay in the responses of the equatorial electrojet and Sq currents to X-class solar flares

    NASA Astrophysics Data System (ADS)

    Nogueira, Paulo A. B.; Abdu, Mangalathayil A.; Souza, Jonas R.; Denardini, Clezio M.; Barbosa Neto, Paulo F.; Serra de Souza da Costa, João P.; Silva, Ana P. M.

    2018-01-01

    We have analyzed low-latitude ionospheric current responses to two intense (X-class) solar flares that occurred on 13 May 2013 and 11 March 2015. Sudden intensifications, in response to solar flare radiation impulses, in the Sq and equatorial electrojet (EEJ) currents, as detected by magnetometers over equatorial and low-latitude sites in South America, are studied. In particular we show for the first time that a 5 to 8 min time delay is present in the peak effect in the EEJ, with respect that of Sq current outside the magnetic equator, in response to the flare radiation enhancement. The Sq current intensification peaks close to the flare X-ray peak, while the EEJ peak occurs 5 to 8 min later. We have used the Sheffield University Plasmasphere-Ionosphere Model at National Institute for Space Research (SUPIM-INPE) to simulate the E-region conductivity enhancement as caused by the flare enhanced solar extreme ultraviolet (EUV) and soft X-rays flux. We propose that the flare-induced enhancement in neutral wind occurring with a time delay (with respect to the flare radiation) could be responsible for a delayed zonal electric field disturbance driving the EEJ, in which the Cowling conductivity offers enhanced sensitivity to the driving zonal electric field.

  7. Variations in iron and calcium abundances during solar flares

    NASA Astrophysics Data System (ADS)

    Antonucci, E.; Martin, R.

    1995-07-01

    Evidence for variations in iron and calcium abundances during the impulsive phase of solar flares has been obtained by analyzing the Ca XIX and Fe XXV spectra, detected with the Bent Crystal Spectrometer of the Solar Maximum Mission. The plasma thermal conditions have been investigated by considering different temperature indicators: namely, the temperatures TCa and TFe, derived from the intensity ratios of the dielectronic recombination satellites to the resonance line, and the temperature TCaFe, calculated from the ratio of the resonance lines of Ca XIX and Fe XXV, which is also depending on the Fe/Ca abundance ratio. The observed values of TCa and TFe can be ascribed to the specific characteristics of the plasma therma distribution, the corresponding values of TCaFe can be explained by allowing also for variations in the Fe/Ca abundance ratio relative to the photospheric ratio by a factor within 0.2 and 2.4. According to the observed abundance variations, the events analyzed can be divided in Ca-rich and Fe-rich flares.

  8. On the Factors Determining the Eruptive Character of Solar Flares

    NASA Astrophysics Data System (ADS)

    Baumgartner, Christian; Thalmann, Julia K.; Veronig, Astrid M.

    2018-02-01

    We investigated how the magnetic field in solar active regions (ARs) controls flare activity, i.e., whether a confined or eruptive flare occurs. We analyzed 44 flares of GOES class M5.0 and larger that occurred during 2011–2015. We used 3D potential magnetic field models to study their location (using the flare distance from the flux-weighted AR center d FC) and the strength of the magnetic field in the corona above (via decay index n and flux ratio). We also present a first systematic study of the orientation of the coronal magnetic field, using the orientation φ of the flare-relevant polarity inversion line as a measure. We analyzed all quantities with respect to the size of the underlying dipole field, characterized by the distance between the opposite-polarity centers, d PC. Flares originating from underneath the AR dipole (d FC/d PC < 0.5) tend to be eruptive if launched from compact ARs (d PC ≤ 60 Mm) and confined if launched from extended ARs. Flares ejected from the periphery of ARs (d FC/d PC > 0.5) are predominantly eruptive. In confined events, the flare-relevant field adjusts its orientation quickly to that of the underlying dipole with height (Δφ ≳ 40° until the apex of the dipole field), in contrast to eruptive events where it changes more slowly with height. The critical height for torus instability, h crit = h(n = 1.5), discriminates best between confined (h crit ≳ 40 Mm) and eruptive flares (h crit ≲ 40 Mm). It discriminates better than Δφ, implying that the decay of the confining field plays a stronger role than its orientation at different heights.

  9. Dynamical Thermal Structure of Super-arcade Downflows in Solar Flares

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Liu, Rui; Deng, Na; Wang, Haimin

    2015-04-01

    Super­-arcade downflows (SADs) have been frequently observed during the gradual phase of flares near the limb. In coronal emission lines sensitive to flaring plasmas, they appear as tadpole-like dark voids against the bright fan-shape “haze” above the well-defined flare arcade and flow toward the arcade. We carefully studied several selected SADs from two flare events using data observed by Solar Dynamic Observatory / Atmospheric Imaging Assembly and calculated their differential emission measures (DEMs) as well as the DEM-weighted temperature. Our analysis shows that SADs are associated with a substantially decreased DEMs, by 1~3 order of magnitude, compared with the surrounding plasma. None of the SADs indicate DEM solutions above 20 MK, which implies that SADs are indeed density depletion rather than very hot plasma. This depression in DEMs rapidly recovers as SADs pass through, generally in a few minutes. In addition, we found that SADs in one event appear spatio-temporally associated with the formation of postflare loops. These results are examined against models and numerical simulations.

  10. A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felix, Simon; Bolzern, Roman; Battaglia, Marina, E-mail: simon.felix@fhnw.ch, E-mail: roman.bolzern@fhnw.ch, E-mail: marina.battaglia@fhnw.ch

    One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS-CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS-CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation ofmore » quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.« less

  11. Subionospheric VLF Propagation Modelling During a solar flares

    NASA Astrophysics Data System (ADS)

    Akel, A. F.

    2013-05-01

    This work aims to present a preliminary study of the behavior of the lower ionosphere under transient regimes of ionization through the technique of wave propagation of VLF (Very Low Frequency). For this, we characterized the lower ionosphere by two traditional (wait) parameters H' and β which are found by VLF radio modelling using the computational code of subionospheric radio propagation LWPC(Long Wave Propagation Capability). The main effects and behaviors investigated in this study was due to a solar flare 2M class near solar minimum at 03/25/2008. We changed Solar zenith angle dependence of the ionospheric parameters H' and β for diurnal time by a polynomial equation. For this study we used the available data the South America VLF Network (SAVNET) and show the results between modeling and data

  12. A Parameter Study for Modeling Mg ii h and k Emission during Solar Flares

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubio da Costa, Fatima; Kleint, Lucia, E-mail: frubio@stanford.edu

    2017-06-20

    Solar flares show highly unusual spectra in which the thermodynamic conditions of the solar atmosphere are encoded. Current models are unable to fully reproduce the spectroscopic flare observations, especially the single-peaked spectral profiles of the Mg ii h and k lines. We aim to understand the formation of the chromospheric and optically thick Mg ii h and k lines in flares through radiative transfer calculations. We take a flare atmosphere obtained from a simulation with the radiative hydrodynamic code RADYN as input for a radiative transfer modeling with the RH code. By iteratively changing this model atmosphere and varying thermodynamicmore » parameters such as temperature, electron density, and velocity, we study their effects on the emergent intensity spectra. We reproduce the typical single-peaked Mg ii h and k flare spectral shape and approximate the intensity ratios to the subordinate Mg ii lines by increasing either densities, temperatures, or velocities at the line core formation height range. Additionally, by combining unresolved upflows and downflows up to ∼250 km s{sup −1} within one resolution element, we reproduce the widely broadened line wings. While we cannot unambiguously determine which mechanism dominates in flares, future modeling efforts should investigate unresolved components, additional heat dissipation, larger velocities, and higher densities and combine the analysis of multiple spectral lines.« less

  13. The influence of the energy emitted by solar flare soft X-ray bursts on the propagation of their associated interplanetary shock waves

    NASA Technical Reports Server (NTRS)

    Pinter, S.; Dryer, M.

    1985-01-01

    The relationship between the thermal energy released from 29 solar flares and the propagation features of their associated interplanetary shock waves that were detected at 1 AU is investigated. The 29 interplanetary shock waves were identified unambiguously and their tracking from each solar flare was deduced by tracking their associated interplanetary type-II radio emission. The thermal energy released in the solar flares was estimated from the time-intensity profiles of 1-8 A soft X-ray bursts from each flare. A good relationship is found between the flares' thermal energy with the IP shock-waves' transient velocity and arrival time at the earth - that is, the largest flare energy released is associated with the faster shock waves. Finally, a possible scenario of formation of a shock wave during the early phase of the flare and its propagation features is discussed.

  14. Signatures of moderate (M-class) and low (C and B class) intensity solar flares on the equatorial electrojet current: Case studies

    NASA Astrophysics Data System (ADS)

    Chakrabarty, D.; Bagiya, Mala S.; Thampi, Smitha V.; Pathan, B. M.; Sekar, R.

    2013-12-01

    The present investigation brings out, in contrast to the earlier works, the changes in the equatorial electrojet (EEJ) current in response to a few moderate (M-class) and low (C and B class) intensity solar flares during 2005-2010. Special care is taken to pick these flare events in the absence of prompt electric field perturbations associated with geomagnetic storms and substorms that also affect the electrojet current. Interestingly, only the normalized (with respect to the pre-flare level) deviations of daytime EEJ (and not the deviations alone) change linearly with the increases in the EUV and X-ray fluxes. These linear relationships break down during local morning hours when the E-region electric field approaches zero before reversal of polarity. This elicits that the response of EEJ strength corresponding to less-intense flares can be appropriately gauged only when the local time variation of the quiet time E-region zonal electric field is taken into account. The flare events enhanced the EEJ strength irrespective of normal or counter electrojet (CEJ) conditions that shows that solar flares change the E-region ionization density and not the electric field. In addition, the enhancements in the X-ray and EUV fluxes, for these flares occurring during this solar minimum period, are found to be significantly correlated as opposed to the solar maximum period, indicating the differences in the solar processes in different solar epochs.

  15. Solar flare and galactic cosmic ray studies of Apollo 14 and 15 samples.

    NASA Technical Reports Server (NTRS)

    Crozaz, G.; Drozd, R.; Hohenberg, C. M.; Hoyt, H. P., Jr.; Ragan, D.; Walker, R. M.; Yuhas, D.

    1972-01-01

    Thermoluminescence (TL) measurements in rock 14310 show a strong depth dependence consistent with that expected from solar flares. This effect should prove useful in studying solar flare fluctuations in the time interval of 100 to 100,000 years. Rare gas spallation ages for rock 14301, 14306, and 14311 are respectively 102 plus or minus 30, 25 plus or minus 2, and 661 plus or minus 72 m.y. The 14306 value supports the idea that Cone Crater was formed 25 million years ago. Groupings of exposure ages suggest the dates of other major cratering events. Galactic track data in 14310 show little depth dependence.

  16. About 3He Ions Predominant Acceleration During the January 20, 2005 Solar Flare

    NASA Astrophysics Data System (ADS)

    Troitskaya, E. V.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.

    We have studied some properties of the powerful solar flare of January 20, 2005 by methods of nuclear lines analysis. The results of temporal profiles investigation in corresponding to neutron capture energy bands allow the supposition about predominant acceleration of 3He ions in the corona, their subsequent propagation to the low chromosphere and the photosphere where the area of 2.223 MeV γ-line effective productions is located. The characteristics of accelerated 3He ions propagation processes and the basic explanation of observable properties of this solar flare due to the variations of 3He content are discussed in the presented article.

  17. Evidence of Significant Energy Input in the Late Phase of a Solar Flare from NuSTAR X-Ray Observations

    NASA Astrophysics Data System (ADS)

    Kuhar, Matej; Krucker, Säm; Hannah, Iain G.; Glesener, Lindsay; Saint-Hilaire, Pascal; Grefenstette, Brian W.; Hudson, Hugh S.; White, Stephen M.; Smith, David M.; Marsh, Andrew J.; Wright, Paul J.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona A.; Stern, Daniel; Zhang, William W.

    2017-01-01

    We present observations of the occulted active region AR 12222 during the third Nuclear Spectroscopic Telescope ARray (NuSTAR) solar campaign on 2014 December 11, with concurrent Solar Dynamics Observatory (SDO)/AIA and FOXSI-2 sounding rocket observations. The active region produced a medium-size solar flare 1 day before the observations, at ˜18 UT on 2014 December 10, with the post-flare loops still visible at the time of NuSTAR observations. The time evolution of the source emission in the SDO/AIA 335 Å channel reveals the characteristics of an extreme-ultraviolet late-phase event, caused by the continuous formation of new post-flare loops that arch higher and higher in the solar corona. The spectral fitting of NuSTAR observations yields an isothermal source, with temperature 3.8-4.6 MK, emission measure (0.3-1.8) × 1046 cm-3, and density estimated at (2.5-6.0) × 108 cm-3. The observed AIA fluxes are consistent with the derived NuSTAR temperature range, favoring temperature values in the range of 4.0-4.3 MK. By examining the post-flare loops’ cooling times and energy content, we estimate that at least 12 sets of post-flare loops were formed and subsequently cooled between the onset of the flare and NuSTAR observations, with their total thermal energy content an order of magnitude larger than the energy content at flare peak time. This indicates that the standard approach of using only the flare peak time to derive the total thermal energy content of a flare can lead to a large underestimation of its value.

  18. Evidence of Significant Energy Input in the Late Phase of A Solar Flare from NuSTAR X-Ray Observations

    NASA Technical Reports Server (NTRS)

    Kuhar, Matej; Krucker, Sam; Hannah, Iain G.; Glesener, Lindsay; Saint-Hilaire, Pascal; Grefenstette, Brian W.; Hudson, Hugh S.; White, Stephen M.; Smith, David M.; Marsh, Andrew J.; hide

    2017-01-01

    We present observations of the occulted active region AR 12222 during the third Nuclear Spectroscopic Telescope ARray (NuSTAR) solar campaign on 2014 December 11, with concurrent Solar Dynamics Observatory (SDO)/ AIA and FOXSI-2 sounding rocket observations. The active region produced a medium-size solar flare 1 day before the observations, at approximately 18 UT on 2014 December 10, with the post-flare loops still visible at the time of NuSTAR observations. The time evolution of the source emission in the SDO/AIA 335 Å channel reveals the characteristics of an extreme-ultraviolet late-phase event, caused by the continuous formation of new post-flare loops that arch higher and higher in the solar corona. The spectral fitting of NuSTAR observations yields an isothermal source, with temperature 3.8-4.6 MK, emission measure (0.3-1.8) × 1046 cm-3, and density estimated at (2.5-6.0) × 108 cm-3. The observed AIA fluxes are consistent with the derived NuSTAR temperature range, favoring temperature values in the range of 4.0-4.3 MK. By examining the post-flare loops' cooling times and energy content, we estimate that at least 12 sets of post-flare loops were formed and subsequently cooled between the onset of the flare and NuSTAR observations, with their total thermal energy content an order of magnitude larger than the energy content at flare peak time. This indicates that the standard approach of using only the flare peak time to derive the total thermal energy content of a flare can lead to a large underestimation of its value.

  19. High Resolution Flare Observations with the 1.6 m Telescope at Big Bear Solar Observatory

    NASA Astrophysics Data System (ADS)

    Wang, H.

    2017-12-01

    This talk presents some exciting new results of 1.6m Goode Solar Telescope (GST, formally named as NST) at Big Bear Solar Observatory (BBSO). I will report: (1) Flare ribbons and post-flare loops are observed in the scale of around 100 to 200 km. (2) the sudden flare-induced rotation of a sunspot. It is clearly observed that the rotation is non-uniform over the sunspot: as the flare ribbon sweeps across, its different portions accelerate at different times corresponding to peaks of flare hard X-ray emission. The rotation may be driven by the surface Lorentz-force change due to the back reaction of coronal magnetic restructuring and is accompanied by a downward Poynting flux. (3) We found the clear evidence that electron streaming down during a flare can induce extra transient transverse magnetic field that cause apparent rotation only at the propagating ribbon front. Sometimes they are associated with so called negative flares in HeI 10830 and D3 lines. (4) We found evidence that episodes of precursor brightenings are initiated at a small-scale magnetic channel (a form of opposite polarity fluxes) with multiple polarity inversions and enhanced magnetic fluxes and currents, lying near the footpoints of sheared magnetic loops. The low-atmospheric origin of these precursor emissions is corroborated by microwave spectra.

  20. “Dandelion” Filament Eruption and Coronal Waves Associated with a Solar Flare on 2011 February 16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabezas, Denis P.; Ishitsuka, Mutsumi; Ishitsuka, José K.

    Coronal disturbances associated with solar flares, such as H α Moreton waves, X-ray waves, and extreme ultraviolet (EUV) coronal waves, are discussed herein in relation to magnetohydrodynamic fast-mode waves or shocks in the corona. To understand the mechanism of coronal disturbances, full-disk solar observations with high spatial and temporal resolution over multiple wavelengths are of crucial importance. We observed a filament eruption, whose shape is like a “dandelion,” associated with the M1.6 flare that occurred on 2011 February 16 in H α images taken by the Flare Monitoring Telescope at Ica University, Peru. We derive the three-dimensional velocity field ofmore » the erupting filament. We also identify winking filaments that are located far from the flare site in the H α images, whereas no Moreton wave is observed. By comparing the temporal evolution of the winking filaments with those of the coronal wave seen in the EUV images data taken by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and by the Extreme Ultraviolet Imager on board the Solar Terrestrial Relations Observatory-Ahead , we confirm that the winking filaments were activated by the EUV coronal wave.« less

  1. Detection of the Acceleration Site in a Solar Flare

    NASA Astrophysics Data System (ADS)

    Fleishman, Gregory D.; Kontar, E. P.; Nita, G. M.; Gary, D. E.

    2011-05-01

    We report the observation of an unusual cold, tenuous solar flare (ApJL, v. 731, p. L19, 2011), which reveals itself via numerous and prominent non-thermal manifestations, while lacking any noticeable thermal emission signature. RHESSI hard X-rays and 0.1-18 GHz radio data from OVSA and Phoenix-2 show copious electron acceleration (1035 electrons per second above 10 keV) typical for GOES M-class flares with electrons energies up to 100 keV, but GOES temperatures not exceeding 6.1 MK. The HXR footpoints and coronal radio sources belong, supposedly, to a single magnetic loop, which departs strongly from the corresponding potential loop (obtained from a photospheric extrapolation) in agreement with the apparent need of a non-potential magnetic field structure to produce a flare. The imaging, temporal, and spectral characteristics of the flare have led us to a firm conclusion that the bulk of the microwave continuum emission from this flare was produced directly in the acceleration region. We found that the electron acceleration efficiency is very high in the flare, so almost all available thermal electrons are eventually accelerated. However, given a relatively small flaring volume and rather low thermal density at the flaring loop, the total energy release turned out to be insufficient for a significant heating of the coronal plasma or for a prominent chromospheric response giving rise to chromospheric evaporation. Some sort of stochastic acceleration process is needed to account for an approximately energy-independent lifetime of about 3 s for the electrons in the acceleration region. This work was supported in part by NSF grants AGS-0961867, AST-0908344, and NASA grants NNX10AF27G and NNX11AB49G to New Jersey Institute of Technology. This work was supported by a UK STFC rolling grant, STFC/PPARC Advanced Fellowship, and the Leverhulme Trust, UK. Financial support by the European Commission through the SOLAIRE and HESPE Networks is gratefully acknowledged.

  2. Determining the solar-flare photospheric scale height from SMM gamma-ray measurements

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.

    1991-01-01

    A connected series of Monte Carlo programs was developed to make systematic calculations of the energy, temporal and angular dependences of the gamma-ray line and neutron emission resulting from such accelerated ion interactions. Comparing the results of these calculations with the Solar Maximum Mission/Gamma Ray Spectrometer (SMM/GRS) measurements of gamma-ray line and neutron fluxes, the total number and energy spectrum of the flare-accelerated ions trapped on magnetic loops at the Sun were determined and the angular distribution, pitch angle scattering, and mirroring of the ions on loop fields were constrained. Comparing the calculations with measurements of the time dependence of the neutron capture line emission, a determination of the He-3/H ratio in the photosphere was also made. The diagnostic capabilities of the SMM/GRS measurements were extended by developing a new technique to directly determine the effective photospheric scale height in solar flares from the neutron capture gamma-ray line measurements, and critically test current atmospheric models in the flare region.

  3. Transition Region Emission and the Energy Input to Thermal Plasma in Solar Flares

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Holman, Gordon D.; Dennis, Brian R.; Haga, Leah; Raymond, John C.; Panasyuk, Alexander

    2005-01-01

    Understanding the energetics of solar flares depends on obtaining reliable determinations of the energy input to flare plasma. X-ray observations of the thermal bremsstrahlung from hot flare plasma provide temperatures and emission measures which, along with estimates of the plasma volume, allow the energy content of this hot plasma to be computed. However, if thermal energy losses are significant or if significant energy goes directly into cooler plasma, this is only a lower limit on the total energy injected into thermal plasma during the flare. We use SOHO UVCS observations of O VI flare emission scattered by coronal O VI ions to deduce the flare emission at transition region temperatures between 100,000 K and 1 MK for the 2002 July 23 and other flares. We find that the radiated energy at these temperatures significantly increases the deduced energy input to the thermal plasma, but by an amount that is less than the uncertainty in the computed energies. Comparisons of computed thermal and nonthermal electron energies deduced from RHESSI, GOES, and UVCS are shown.

  4. Solar flare activity - Evidence for large-scale changes in the past

    NASA Technical Reports Server (NTRS)

    Zook, H. A.; Hartung, J. B.; Storzer, D.

    1977-01-01

    An analysis of radar and photographic meteor data and of spacecraft meteoroid-penetration data indicates that there probably has not been a large increase in meteoroid impact rates in the last 10,000 yr. The solar-flare tracks observed in the glass linings of meteoroid impact pits on lunar rock 15205 are therefore reanalyzed assuming a meteoroid flux that is constant in time. Based on this assumption, the data suggest that the production rate of Fe-group solar-flare tracks may have varied by as much as a factor of 50 on a time scale of about 10,000 yr. No independently obtained data are known to require conflict with this interpretation. Confidence in this conclusion is somewhat qualified by the experimental and analytical uncertainties involved, but the conclusion nevertheless remains the present 'best' explanation for the observed data trends.

  5. Observations of X-ray and EUV fluxes during X-class solar flares and response of upper ionosphere

    NASA Astrophysics Data System (ADS)

    Mahajan, K. K.; Lodhi, Neelesh K.; Upadhayaya, Arun K.

    2010-12-01

    Most studies dealing with solar flare effects in the upper ionosphere, where ionization is caused by EUV photons, have been based upon X-ray fluxes measured by the SOLRAD and GOES series of satellites. To check the validity of such studies, we compare simultaneous observations of GOES X-ray fluxes and SOHO EUV fluxes for 10 X-class solar flares which occurred during the maximum phase of sunspot cycle 23. These include the greatest flare of 4 November 2003, the fourth greatest flare of 28 October 2003 and the 14 July 2000 Bastille Day flare. We find that the peak intensities of the X-ray and EUV fluxes for these flares are poorly correlated, and this poor correlation is again seen when larger data containing 70 X-class flares, which occurred during the period January 1996 to December 2006, are examined. However, this correlation improves vastly when the central meridian distance (CMD) of the flare location is taken into account. We also study the response of the upper ionosphere to these fluxes by using the midday total electron content (TEC), observed for these flares by Liu et al. (2006). We find that peak enhancement in TEC is highly correlated with peak enhancement in EUV flux. The correlation, though poor with the X-ray flux, improves greatly when the CMD of flare location is considered.

  6. Energetic Particle Estimates for Stellar Flares

    NASA Astrophysics Data System (ADS)

    Youngblood, Allison; Chamberlin, Phil; Woods, Tom

    2018-01-01

    In the heliosphere, energetic particles are accelerated away from the Sun during solar flares and/or coronal mass ejections where they frequently impact the Earth and other solar system bodies. Solar (or stellar) energetic particles (SEPs) not only affect technological assets, but also influence mass loss and chemistry in planetary atmospheres (e.g., depletion of ozone). SEPs are increasingly recognized as an important factor in assessing exoplanet habitability, but we do not yet have constraints on SEP emission from any stars other than the Sun. Until indirect measurements are available, we must assume solar-like particle production and apply correlations between solar flares and SEPs detected near Earth to stellar flares. We present improved scaling relations between solar far-UV flare flux and >10 MeV proton flux near Earth. We apply these solar scaling relations to far-UV flares from exoplanet host stars and discuss the implications for modeling chemistry and mass loss in exoplanet atmospheres.

  7. Statistical properties of correlated solar flares and coronal mass ejections in cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Aarnio, Alicia

    2018-01-01

    Outstanding problems in understanding early stellar systems include mass loss, angular momentum evolution, and the effects of energetic events on the surrounding environs. The latter of these drives much research into our own system's space weather and the development of predictive algorithms for geomagnetic storms. So dually motivated, we have leveraged a big-data approach to combine two decades of GOES and LASCO data to identify a large sample of spatially and temporally correlated solar flares and CMEs. In this presentation, we revisit the analysis of Aarnio et al. (2011), adding 10 years of data and further exploring the relationships between correlated flare and CME properties. We compare the updated data set results to those previously obtained, and discuss the effects of selecting smaller time windows within solar cycles 23 and 24 on the empirically defined relationships between correlated flare and CME properties. Finally, we discuss a newly identified large sample of potentially interesting correlated flares and CMEs perhaps erroneously excluded from previous searches.

  8. Study of the solar flares effect on VLF radio signal propagating along NRK-ALG path using LWPC code

    NASA Astrophysics Data System (ADS)

    Bouderba, Y.; NaitAmor, S.; Tribeche, M.

    2016-07-01

    The X-ray solar flare emissions penetrate down into the D region of the ionosphere (60-90 km of altitude) and affect the propagating very low frequency (VLF) radio signal. In this paper, we will present the effect of the solar flares on the signal mode composition of the NRK-ALG path during the period from 2007 to 2013. In the Long Wave Propagating Capability (LWPC) code theory, the VLF signal is a sum of discrete modes that propagate to the receiver with different attenuation coefficients. Therefore, an interest is given to the behavior of these coefficients under solar flares. Effectively, from the simulation, we give more explanations about the role of the signal mode composition on the fading displacement since this later is a consequence of the destructive modes interferences. Thus, the sign (positive or negative) of the perturbed signal parameters (amplitude and phase) is found to be depending on the distance between the transmitter and the receiver. Finally, we give the Wait parameters and the electron density variations as a function of solar flares.

  9. Analysis of Gamma-Ray Data from Solar Flares in Cycles 21 and 22

    NASA Technical Reports Server (NTRS)

    Vestrand, W. Thomas

    1998-01-01

    One of our primary accomplishments under grant NAGW-35381 was the systematic derivation and compilation, for the first time, of physical parameters for all gamma-ray flares detected by the SMM GRS during its ten year lifetime. The flare parameters derived from the gamma-ray spectra include: bremsstrahlung fluence and best-fit power-law parameters, narrow nuclear line fluence, positron annihilation line fluence, neutron capture line fluence, and an indication of whether or not greater than 10 MeV emissions were present. We combined this compilation of flare parameters with our plots of counting rate time histories and flare spectra to construct an atlas of gamma-ray flare characteristics. The atlas time histories display four energy bands: 56-199 kev, 298526 keV, 4-8 MeV, and 10-25 MeV. These energy bands respectively measure nonrelativistic bremsstrahlung, trans-relativistic bremsstrahlung, nuclear de-excitation, and ultra-relativistic bremsstrahlung. The atlas spectra show the integrated high-energy spectra measured for all GRS flares and dissects them into electron bremsstrahlung, positron annihilation and nuclear emission components. The atlas has been accepted for publication in the Astrophysical Journal Supplements and is currently in press. The atlas materials were also supplied to the Solar Data Analysis Center at Goddard Space Flight Center and were made available through a web site at the University of New Hampshire. Since a uniform methodology was adopted for deriving the flare parameters, this atlas will be very useful for future statistical and correlative studies of solar flares-three independent groups are presently using it to correlate interplanetary energetic particle measurements with our gamma-ray measurements. A better model for the response of the GRS instrument to high energy radiation was also developed. A refined response model was needed because the old model was not adequate for predicting the first and second escape peaks associated with

  10. The flares of August 1972. [solar flare characteristics and spectra

    NASA Technical Reports Server (NTRS)

    Zirin, H.; Tanaka, K.

    1973-01-01

    Observations of the August, 1972 flares at Big Bear and Tel Aviv, involving monochromatic movies, magnetograms, and spectra, are analyzed. The region (McMath 11976) showed inverted polarity from its inception on July 11; the great activity was due to extremely high shear and gradients in the magnetic field, as well as a constant invasion of one polarity into the opposite; observations in lambda 3835 show remarkable fast flashes in the impulsive flare of 18:38 UT on Aug. 2 with lifetimes of 5 sec, which may be due to dumping of particles in the lower chromosphere. Flare loops show evolutionary increases of their tilts to the neutral line in the flares of Aug. 4 and 7. Spectroscopic observations show red asymmetry and red shift of the H alpha emission in the flash phase of the Aug. 7 flare, as well as substantial velocity shear in the photosphere during the flare, somewhat like earthquake movement along a fault. Finally the total H alpha emission of the Aug. 7 flare could be measured accurately as about 2.5 x 10 to the 30th power erg, considerably less than coarser previous estimates for great flares.

  11. Coherent Synchrotron Radiation in Laboratory Accelerators and the Double-Spectral Feature in Solar Flares

    NASA Astrophysics Data System (ADS)

    Cruz, Wellington; Szpigel, Sérgio; Kaufmann, Pierre; Raulin, Jean-Pierre; Klopf, Michael

    2017-10-01

    Recent observations of solar flares at high-frequencies have provided evidence of a new spectral component with fluxes increasing with frequency in the sub-THz to THz range. This new component occurs simultaneously but is separated from the well-known microwave spectral component that maximizes at frequencies of a few to tens of GHz. The aim of this work is to study in detail a mechanism recently suggested to describe the double-spectrum feature observed in solar flares based on the physical process known as microbunching instability, which occurs with high-energy electron beams in laboratory accelerators.

  12. Characteristics of Solar Flare Hard X-ray Emissions: Observations and Models

    NASA Astrophysics Data System (ADS)

    Liu, Wei

    2006-12-01

    The main theme of this thesis is the investigation of the physics of acceleration and transport of particles in solar flares, and their thermal and nonthermal radiative signatures. The observational studies, using hard X-rays (HXRs) observed by the RHESSI mission, concentrate on four flares, which support the classical magnetic reconnection model of solar flares in various ways. In the X3.9 flare occurring on 11/03/2003, there is a monotonic upward motion of the loop top (LT) source accompanied by a systematic increase in the separation of the footpoint (FP) sources at a comparable speed. This is consistent with the reconnection model with an inverted-Y geometry. The 04/30/2002 event exhibits rarely observed two coronal sources. The two sources (with almost identical spectra) show energy-dependent structures, with higher-energy emission being close together. This suggests that reconnection takes place within the region between the sources. In the 10/29/2003 X10 flare, the logarithmic total HXR flux of the FPs correlates with the mean magnetic field. The two FPs show asymmetric HXR fluxes, which is qualitatively consistent with the magnetic mirroring effect. The M1.7 flare on 11/13/2003 reveals evidence of evaporation directly imaged by RHESSI for the first time, in which emission from the legs of the loop appears at intermediate energies. The emission centroid moves toward the LT as time proceeds, indicating an increase of density in the loop. The theoretical modeling of this work combines the stochastic acceleration model with the NRL hydrodynamic model to study the interplay of the particle acceleration, transport, and radiation effects and the atmospheric response to the energy deposition by nonthermal electrons. We find that low-energy electrons in the quasi-thermal portion of the spectrum affects the hydrodynamics by producing more heating in the corona than the previous models that used a power-law spectrum with a low-energy cutoff. The Neupert effect is

  13. Acceleration of runaway electrons and Joule heating in solar flares

    NASA Technical Reports Server (NTRS)

    Holman, G. D.

    1985-01-01

    The electric field acceleration of electrons out of a thermal plasma and the simultaneous Joule heating of the plasma are studied. Acceleration and heating timescales are derived and compared, and upper limits are obtained on the acceleration volume and the rate at which electrons can be accelerated. These upper limits, determined by the maximum magnetic field strength observed in flaring regions, place stringent restrictions upon the acceleration process. The role of the plasma resistivity in these processes is examined, and possible sources of anomalous resistivity are summarized. The implications of these results for the microwave and hard X-ray emission from solar flares are examined.

  14. Acceleration of runaway electrons and Joule heating in solar flares

    NASA Technical Reports Server (NTRS)

    Holman, G. D.

    1984-01-01

    The electric field acceleration of electrons out of a thermal plasma and the simultaneous Joule heating of the plasma are studied. Acceleration and heating timescales are derived and compared, and upper limits are obtained on the acceleration volume and the rate at which electrons can be accelerated. These upper limits, determined by the maximum magnetic field strength observed in flaring regions, place stringent restrictions upon the acceleration process. The role of the plasma resistivity in these processes is examined, and possible sources of anomalous resistivity are summarized. The implications of these results for the microwave and hard X-ray emission from solar flares are examined.

  15. Understanding the connection between the energy released during solar flares and their emission in the lower atmosphere

    NASA Astrophysics Data System (ADS)

    da Costa, F. Rubio

    2017-10-01

    While progress has been made on understanding how energy is released and deposited along the solar atmosphere during explosive events such as solar flares, the chromospheric and coronal heating through the sudden release of magnetic energy remain an open problem in solar physics. Recent hydrodynamic models allow to investigate the energy deposition along a flare loop and to study the response of the chromosphere. These results have been improved with the consideration of transport and acceleration of particles along the loop. RHESSI and Fermi/GBM X-ray and gamma-ray observations help to constrain the spectral properties of the injected electrons. The excellent spatial, spectral and temporal resolution of IRIS will also help us to constrain properties of explosive events, such as the continuum emission during flares or their emission in the chromosphere.

  16. QUASI-PERIODIC PULSATIONS IN THE GAMMA-RAY EMISSION OF A SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakariakov, V. M.; Foullon, C.; Inglis, A. R.

    2010-01-01

    Quasi-periodic pulsations (QPPs) of gamma-ray emission with a period of about 40 s are found in a single loop X-class solar flare on 2005 January 1 at photon energies up to 2-6 MeV with the SOlar Neutrons and Gamma-rays (SONG) experiment aboard the CORONAS-F mission. The oscillations are also found to be present in the microwave emission detected with the Nobeyama Radioheliograph, and in the hard X-ray and low energy gamma-ray channels of RHESSI. Periodogram and correlation analysis shows that the 40 s QPPs of microwave, hard X-ray, and gamma-ray emission are almost synchronous in all observation bands. Analysis ofmore » the spatial structure of hard X-ray and low energy (80-225 keV) gamma-ray QPP with RHESSI reveals synchronous while asymmetric QPP at both footpoints of the flaring loop. The difference between the averaged hard X-ray fluxes coming from the two footpoint sources is found to oscillate with a period of about 13 s for five cycles in the highest emission stage of the flare. The proposed mechanism generating the 40 s QPP is a triggering of magnetic reconnection by a kink oscillation in a nearby loop. The 13 s periodicity could be produced by the second harmonics of the sausage mode of the flaring loop.« less

  17. EVIDENCE OF SIGNIFICANT ENERGY INPUT IN THE LATE PHASE OF A SOLAR FLARE FROM NuSTAR X-RAY OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhar, Matej; Krucker, Säm; Hannah, Iain G.

    We present observations of the occulted active region AR 12222 during the third Nuclear Spectroscopic Telescope ARray ( NuSTAR ) solar campaign on 2014 December 11, with concurrent Solar Dynamics Observatory ( SDO )/AIA and FOXSI-2 sounding rocket observations. The active region produced a medium-size solar flare 1 day before the observations, at ∼18 UT on 2014 December 10, with the post-flare loops still visible at the time of NuSTAR observations. The time evolution of the source emission in the SDO/ AIA 335 Å channel reveals the characteristics of an extreme-ultraviolet late-phase event, caused by the continuous formation of newmore » post-flare loops that arch higher and higher in the solar corona. The spectral fitting of NuSTAR observations yields an isothermal source, with temperature 3.8–4.6 MK, emission measure (0.3–1.8) × 10{sup 46} cm{sup −3}, and density estimated at (2.5–6.0) × 10{sup 8} cm{sup −3}. The observed AIA fluxes are consistent with the derived NuSTAR temperature range, favoring temperature values in the range of 4.0–4.3 MK. By examining the post-flare loops’ cooling times and energy content, we estimate that at least 12 sets of post-flare loops were formed and subsequently cooled between the onset of the flare and NuSTAR observations, with their total thermal energy content an order of magnitude larger than the energy content at flare peak time. This indicates that the standard approach of using only the flare peak time to derive the total thermal energy content of a flare can lead to a large underestimation of its value.« less

  18. The isotropic condition of energetic particles emitted from a large solar flare. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Spalding, J.

    1983-01-01

    Isotope abundance ratios for 5 to 50 MeV/nuc nuclei from a large solar flare were measured. The measurements were made by the heavy isotope spectrometer telescope (HIST) on the ISEE-3 satellite orbiting the Sun near an Earth-Sun liberation point approximately one million miles sunward of the Earth. Finite values for the isotope abundance ratios C-13/C-12, N-15/N-14, O-18/O-16, Ne-22/Ne-20, Mg-25/Mg-24, and Mg-26/Mg-24, and upper limits for the isotope abundance ratios He-3/He-4, C-14/C-12, O-17/O-16 and Ne-21/Ne-20 were reported. Element abundances and spectra were measured to compare the flare with other reported flares. The flare is a typical large flare with low Fe/O abundance or = to 0.1). For C-13/C-12, N-15/N-14, O-18/O-16, Mg-25/Mg-24 and Mg-26/Mg-24 isotope abundance ratios agree with the solar system abundance ratios. Measurement for Ne-22/Ne-20 agree with the isotopic composition of the meteoritic component neon-A.

  19. Comparing Solar-Flare Acceleration of >-20 MeV Protons and Electrons Above Various Energies

    NASA Technical Reports Server (NTRS)

    Shih, Albert Y.

    2010-01-01

    A large fraction (up to tens of percent) of the energy released in solar flares goes into accelerated ions and electrons, and studies indicate that these two populations have comparable energy content. RHESSI observations have shown a striking close linear correlation between the 2.223 MeV neutron-capture gamma-ray line and electron bremsstrahlung emission >300 keV, indicating that the flare acceleration of >^20 MeV protons and >300 keV electrons is roughly proportional over >3 orders of magnitude in fluence. We show that the correlations of neutron-capture line fluence with GOES class or with bremsstrahlung emission at lower energies show deviations from proportionality, primarily for flares with lower fluences. From analyzing thirteen flares, we demonstrate that there appear to be two classes of flares with high-energy acceleration: flares that exhibit only proportional acceleration of ions and electrons down to 50 keV and flares that have an additional soft, low-energy bremsstrahlung component, suggesting two separate populations of accelerated electrons. We use RHESSI spectroscopy and imaging to investigate a number of these flares in detail.

  20. Time behavior of solar flare particles to 5 AU

    NASA Technical Reports Server (NTRS)

    Haffner, J. W.

    1972-01-01

    A simple model of solar flare radiation event particle transport is developed to permit the calculation of fluxes and related quantities as a function of distance from the sun (R). This model assumes the particles spiral around the solar magnetic field lines with a constant pitch angle. The particle angular distributions and onset plus arrival times as functions of energy at 1 AU agree with observations if the pitch angle distribution peaks near 90 deg. As a consequence the time dependence factor is essentially proportional to R/1.7, (R in AU), and the event flux is proportional to R/2.

  1. MAGNETIC NON-POTENTIALITY OF SOLAR ACTIVE REGIONS AND PEAK X-RAY FLUX OF THE ASSOCIATED FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Sanjiv Kumar; Venkatakrishnan, P.; Gosain, Sanjay, E-mail: pvk@prl.res.i, E-mail: sgosain@prl.res.i

    Predicting the severity of solar eruptive phenomena such as flares and coronal mass ejections remains a great challenge despite concerted efforts to do so over the past several decades. However, the advent of high-quality vector magnetograms obtained from Hinode (SOT/SP) has increased the possibility of meeting this challenge. In particular, the spatially averaged signed shear angle (SASSA) seems to be a unique parameter for quantifying the non-potentiality of active regions. We demonstrate the usefulness of the SASSA for predicting flare severity. For this purpose, we present case studies of the evolution of magnetic non-potentiality using 115 vector magnetograms of fourmore » active regions, namely, ARs NOAA 10930, 10960, 10961, and 10963 during 2006 December 8-15, 2007 June 3-10, 2007 June 28-July 5, and 2007 July 10-17, respectively. The NOAA ARs 10930 and 10960 were very active and produced X and M class flares, respectively, along with many smaller X-ray flares. On the other hand, the NOAA ARs 10961 and 10963 were relatively less active and produced only very small (mostly A- and B-class) flares. For this study, we have used a large number of high-resolution vector magnetograms obtained from Hinode (SOT/SP). Our analysis shows that the peak X-ray flux of the most intense solar flare emanating from the active regions depends on the magnitude of the SASSA at the time of the flare. This finding of the existence of a lower limit of the SASSA for a given class of X-ray flares will be very useful for space weather forecasting. We have also studied another non-potentiality parameter called the mean weighted shear angle (MWSA) of the vector magnetograms along with the SASSA. We find that the MWSA does not show such distinction as the SASSA for upper limits of the GOES X-ray flux of solar flares; however, both the quantities show similar trends during the evolution of all active regions studied.« less

  2. Millimeter and hard x ray/gamma ray observations of solar flares during the June 1991 GRO campaign

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; White, S. M.; Gopalswamy, N.; Lim, J.

    1992-01-01

    We have carried out high-spatial-resolution millimeter observations of solar flares using the Berkeley-Illinois-Maryland Array (BIMA). At the present time, BIMA consists of only three elements, which is not adequate for mapping highly variable solar phenomena, but is excellent for studies of the temporal structure of flares at millimeter wavelengths at several different spatial scales. We present BIMA observations made during the Gamma Ray Observatories (GRO)/Solar Max 1991 campaign in Jun. 1991 when solar activity was unusually high. Our observations covered the period 8-9 Jun. 1991; this period overlapped the period 4-15 Jun. when the Compton Telescope made the Sun a target of opportunity because of the high level of solar activity.

  3. Solar flare hard and soft x ray relationship determined from SMM HXRBS and BCS data

    NASA Technical Reports Server (NTRS)

    Toot, G. David

    1989-01-01

    The exact nature of the solar flare process is still somewhat a mystery. A key element to understanding flares if the relationship between the hard x rays emitted by the most energetic portions of the flare and the soft x rays from other areas and times. This relationship was studied by comparing hard x ray light curved from the Hard X-Ray Burst Spectrometer (HXRBS) with the soft x ray light curve and its derivation from the Bent Crystal Spectrometer (BCS) which is part of the X-Ray Polychrometer (XRP), these instruments being on the Solar Maximum Mission spacecraft (SMM). Data sample was taken from flares observed with the above instruments during 1980, the peak of the previous maximum of solar activity. Flares were chosen based on complete coverage of the event by several instruments. The HXRBS data covers the x ray spectrum from about 25 keV to about 440 keV in 15 spectral channels, while the BCS data used covers a region of the Spectrum around 3 angstroms including emission from the Ca XIX ion. Both sets of data were summed over their spectral ranges and plotted against time at a maximum time resolution of around 3 seconds. The most popular theory of flares holds that a beam of electrons produces the hard x rays by bremsstrahlung while the soft x rays are the thermal response to this energy deposition. The question is whether the rate of change of soft x ray emission might reflect the variability of the electron beam and hence the variability of the hard x rays. To address this, we took the time derivative of the soft x ray light curve and compared it to the hard flares, 12 of them showed very closed agreement between the soft x ray derivative and the hard x ray light curve. The other five did not show this behavior but were similar to each other in general soft x ray behavior. Efforts to determine basic differences between the two kinds of flares continue. In addition the behavior of soft x ray temperature of flares was examined.

  4. Solar flare hard and soft X ray relationship determined from SMM HXRBS and BCS data

    NASA Astrophysics Data System (ADS)

    Toot, G. David

    1989-09-01

    The exact nature of the solar flare process is still somewhat a mystery. A key element to understanding flares if the relationship between the hard x rays emitted by the most energetic portions of the flare and the soft x rays from other areas and times. This relationship was studied by comparing hard x ray light curved from the Hard X-Ray Burst Spectrometer (HXRBS) with the soft x ray light curve and its derivation from the Bent Crystal Spectrometer (BCS) which is part of the X-Ray Polychrometer (XRP), these instruments being on the Solar Maximum Mission spacecraft (SMM). Data sample was taken from flares observed with the above instruments during 1980, the peak of the previous maximum of solar activity. Flares were chosen based on complete coverage of the event by several instruments. The HXRBS data covers the x ray spectrum from about 25 keV to about 440 keV in 15 spectral channels, while the BCS data used covers a region of the Spectrum around 3 angstroms including emission from the Ca XIX ion. Both sets of data were summed over their spectral ranges and plotted against time at a maximum time resolution of around 3 seconds. The most popular theory of flares holds that a beam of electrons produces the hard x rays by bremsstrahlung while the soft x rays are the thermal response to this energy deposition. The question is whether the rate of change of soft x ray emission might reflect the variability of the electron beam and hence the variability of the hard x rays. To address this, we took the time derivative of the soft x ray light curve and compared it to the hard flares, 12 of them showed very closed agreement between the soft x ray derivative and the hard x ray light curve. The other five did not show this behavior but were similar to each other in general soft x ray behavior. Efforts to determine basic differences between the two kinds of flares continue. In addition the behavior of soft x ray temperature of flares was examined.

  5. ABRUPT LONGITUDINAL MAGNETIC FIELD CHANGES AND ULTRAVIOLET EMISSIONS ACCOMPANYING SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, B. M.; Petrie, G. J. D.; Sudol, J. J.

    2012-11-20

    We have used Transition Region and Coronal Explorer 1600 A images and Global Oscillation Network Group (GONG) magnetograms to compare ultraviolet (UV) emissions from the chromosphere to longitudinal magnetic field changes in the photosphere during four X-class solar flares. An abrupt, significant, and persistent change in the magnetic field occurred across more than 10 pixels in the GONG magnetograms for each flare. These magnetic changes lagged the GOES flare start times in all cases, showing that they were consequences and not causes of the flares. Ultraviolet emissions were spatially coincident with the field changes. The UV emissions tended to lagmore » the GOES start times for the flares and led the changes in the magnetic field in all pixels except one. The UV emissions led the photospheric field changes by 4 minutes on average with the longest lead being 9 minutes; however, the UV emissions continued for tens of minutes, and more than an hour in some cases, after the field changes were complete. The observations are consistent with the picture in which an Alfven wave from the field reconnection site in the corona propagates field changes outward in all directions near the onset of the impulsive phase, including downward through the chromosphere and into the photosphere, causing the photospheric field changes, whereas the chromosphere emits in the UV in the form of flare kernels, ribbons, and sequential chromospheric brightenings during all phases of the flare.« less

  6. Study of non-thermal photon production under different scenarios in solar flares. 1: Scenarios and formulations

    NASA Technical Reports Server (NTRS)

    Perez-Peraza, J.; Alvarez, M.; Gallegos, A.

    1985-01-01

    In order to study the overall phenomenology involved in solar flares, it is necessary to understand their individual manifestation before building a corresponding description of the global phenomenon. Here the concern is with the production of X and gamma rays in solar flares. Flares are initiated very often within the closed magnetic field configurations of active centers. According (2) when beta = kinetic energy density/magnetic energy density approximately 0.2, the magnetic trap configuration is destructed within the time scale of the impulsive phase of flares ( 100 s). A first particle acceleration stage occurs during this phase as indicated by impulsive microwave and hard X-rays bursts. In some flare events, when the field strength beta is very high, the broken field lines may close again, such that later, in the course of the flash and main phases more hot plasma of very high conductivity is created, and so, the field and frozen plasma expand outward, as the kinetic pressure inside the closed loops increases. The magnetically trapped particles excite strong Alfven wave turbulence of small transverse scale.

  7. The size of coronal hard X-ray sources in solar flares: How big are they?

    NASA Astrophysics Data System (ADS)

    Effenberger, F.; Krucker, S.; Rubio da Costa, F.

    2017-12-01

    Coronal hard X-ray sources are considered to be one of the key signatures of non-thermal particle acceleration and heating during the energy release in solar flares. In some cases, X-ray observations reveal multiple components spatially located near and above the loop top and even further up in the corona. Here, we combine a detailed RHESSI imaging analysis of near-limb solar flares with occulted footpoints and a multi-wavelength study of the flare loop evolution in SDO/AIA. We connect our findings to different current sheet formation and magnetic break-out scenarios and relate it to particle acceleration theory. We find that the upper and usually fainter emission regions can be underestimated in their size due to the majority of flux originating from the lower loops.

  8. Principle of Minimum Energy in Magnetic Reconnection in a Self-organized Critical Model for Solar Flares

    NASA Astrophysics Data System (ADS)

    Farhang, Nastaran; Safari, Hossein; Wheatland, Michael S.

    2018-05-01

    Solar flares are an abrupt release of magnetic energy in the Sun’s atmosphere due to reconnection of the coronal magnetic field. This occurs in response to turbulent flows at the photosphere that twist the coronal field. Similar to earthquakes, solar flares represent the behavior of a complex system, and expectedly their energy distribution follows a power law. We present a statistical model based on the principle of minimum energy in a coronal loop undergoing magnetic reconnection, which is described as an avalanche process. We show that the distribution of peaks for the flaring events in this self-organized critical system is scale-free. The obtained power-law index of 1.84 ± 0.02 for the peaks is in good agreement with satellite observations of soft X-ray flares. The principle of minimum energy can be applied for general avalanche models to describe many other phenomena.

  9. Solar flare ionization in the mesosphere observed by coherent-scatter radar

    NASA Technical Reports Server (NTRS)

    Parker, J. W.; Bowhill, S. A.

    1986-01-01

    The coherent-scatter technique, as used with the Urbana radar, is able to measure relative changes in electron density at one altitude during the progress of a solar flare when that altitude contains a statistically steady turbulent layer. This work describes the analysis of Urbana coherent-scatter data from the times of 13 solar flares in the period from 1978 to 1983. Previous methods of measuring electron density changes in the D-region are summarized. Models of X-ray spectra, photoionization rates, and ion-recombination reaction schemes are reviewed. The coherent-scatter technique is briefly described, and a model is developed which relates changes in scattered power to changes in electron density. An analysis technique is developed using X-ray flux data from geostationary satellites and coherent scatter data from the Urbana radar which empirically distinguishes between proposed D-region ion-chemical schemes, and estimates the nonflare ion-pair production rate.

  10. Energetic-particle abundances in impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; Cane, H. V.; Von Rosenvinge, T. T.

    1990-01-01

    The abundances of elements and of He-3 in 90 solar electron events have been examined. It is found that the events fall into two distinct groups based upon their F/C ratio. Events in the F-rich group frequently have high He-3/He-4 ratios and are associated with type III and type V radio bursts in the parent flare. The F-poor events are associated with type IV bursts. These results on individual events support the conclusions of earlier work done with daily-averaged abundances.

  11. Testing the Impulsiveness of Solar Flare Heating through Analysis of Dynamic Atmospheric Response

    NASA Astrophysics Data System (ADS)

    Newton, E. K.; Emslie, A. G.; Mariska, J. T.

    1996-03-01

    One crucial test of a solar flare energy transport model is its ability to reproduce the characteristics of the atmospheric motions inferred from soft X-ray line spectra. Using a recently developed diagnostic, the velocity differential emission measure (VDEM), we can obtain from observations a physical measure of the amount of soft X-ray mitting plasma flowing at each velocity, v, and hence the total momentum of the upflowing plasma, without approximation or parametric fitting. We have correlated solar hard X-ray emission profiles by the Yohkoh Hard X-ray telescope with the mass and momentum histories inferred from soft X-ray line profiles observed by the Yohkoh Bragg crystal spectrometers. For suitably impulsive hard X-ray emission, an analysis of the hydrodynamic equations predicts a proportionality between the hard X-ray intensity and the second time derivative of the soft X-ray mitting plasma's momentum. This relationship is borne out by an analysis of 18 disk-center impulsive flares of varying durations, thereby lending support to the hypothesis that a prompt energy deposition mechanism, such as an energetic electron flux, is indeed responsible for the soft X-ray response observed in the rise phase of sufficiently impulsive solar flares.

  12. OBSERVATIONS OF LOW ENERGY SOLAR COSMIC RAYS FROM THE FLARE OF AUGUST 22, 1958

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, K.A.; Arnoldy, R.; Hoffman, R.

    1959-10-31

    Observations were made of protons at balloon altitudes in the energy range 100 to 300 Mev following a solar sequence of optical flare, r-f noise bursts, and long enduring noise storm. Other particles are shown to have low upper limits to their abundance. The flare particles continue to be observed for at least 2 days and arguments are given to show that their storage and emission takes place in the solar atmosphere. The differential energy spectrum is derived from ionization versus atmospheric depth data and is found to be E/sup -5/ dE. Observations by riometer and VHF scatter propagation pathsmore » over the polar regions indicate that solar acceleration of protons up to roughly 100 Mev energy is rather frequent. (auth)« less

  13. Temporal and spectral characteristics of solar flare hard X-ray emission

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Kiplinger, A. L.; Orwig, L. E.; Frost, K. J.

    1985-01-01

    Solar Maximum Mission observations of three flares that impose stringent constraints on physical models of the hard X-ray production during the impulsive phase are presented. Hard X-ray imaging observations of the flares on 1980 November 5 at 22:33 UT show two patches in the 16 to 30 keV images that are separated by 70,000 km and that brighten simultaneously to within 5 s. Observations to O V from one of the footprints show simultaneity of the brightening in this transition zone line and in the total hard X-ray flux to within a second or two. These results suggest but do not require the existence of electron beams in this flare. The rapid fluctuations of the hard X-ray flux within some flares on the time scales of 1 s also provide evidence for electron beams and limits on the time scale of the energy release mechanism. Observations of a flare on 1980 June 6 at 22:34 UT show variations in the 28 keV X-ray counting rate from one 20 ms interval to the next over a period of 10 s. The hard X-ray spectral variations measured with 128 ms time resolution for one 0.5 s spike during this flare are consistent with the predictions of thick-target non-thermal beam model.

  14. Solar-flare-induced Forbush decreases - Dependence on shock wave geometry

    NASA Technical Reports Server (NTRS)

    Thomas, B. T.; Gall, R.

    1984-01-01

    It is argued that the principal mechanism for the association of Forbush decreases with the passage of a solar flare shock wave is prolonged containment of cosmic ray particles behind the flare compression region, which acts as a semipermeable obstacle to particle motion along the field lines, leading to additional adiabatic cooling of the particles. Liouville's theorem is used to calculate the instantaneous distribution function at 1 AU for each particle arriving at the earth. By averaging over a large number of individual estimates, a representative estimate of the omnidirectional phase space density and the corresponding particle intensity is obtained. The energy change of individual particles at the shocks is found to be small in comparison to the energy lost by adiabatic cooling of the cosmic rays between the shock wave and the sun. The effects of particle rigidity, diffusion coefficient, and flare longitude on the magnitude of the Forbush decrease are quantitatively investigated.

  15. FLARES ON A-TYPE STARS: EVIDENCE FOR HEATING OF SOLAR CORONA BY NANOFLARES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Švanda, Michal; Karlický, Marian, E-mail: michal@astronomie.cz

    We analyzed the occurrence rates of flares on stars of spectral types K, G, F, and A, observed by Kepler . We found that the histogram of occurrence frequencies of stellar flares is systematically shifted toward a high-energy tail for A-type stars compared to stars of cooler spectral types. We extrapolated the fitted power laws toward flares with smaller energies (nanoflares) and made estimates for total energy flux to stellar atmospheres by flares. We found that, for A-type stars, the total energy flux density was at least four-times smaller than for G stars. We speculate that this deficit in energymore » supply may explain the lack of hot coronae on A-type stars. Our results indicate the importance of nanoflares for heating and formation of the solar corona.« less

  16. Solar flare impulsive phase emission observed with SDO/EVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Michael B.; Milligan, Ryan O.; Mathioudakis, Mihalis

    2013-12-10

    Differential emission measures (DEMs) during the impulsive phase of solar flares were constructed using observations from the EUV Variability Experiment (EVE) and the Markov-Chain Monte Carlo method. Emission lines from ions formed over the temperature range log T{sub e} = 5.8-7.2 allow the evolution of the DEM to be studied over a wide temperature range at 10 s cadence. The technique was applied to several M- and X-class flares, where impulsive phase EUV emission is observable in the disk-integrated EVE spectra from emission lines formed up to 3-4 MK and we use spatially unresolved EVE observations to infer the thermalmore » structure of the emitting region. For the nine events studied, the DEMs exhibited a two-component distribution during the impulsive phase, a low-temperature component with peak temperature of 1-2 MK, and a broad high-temperature component from 7 to 30 MK. A bimodal high-temperature component is also found for several events, with peaks at 8 and 25 MK during the impulsive phase. The origin of the emission was verified using Atmospheric Imaging Assembly images to be the flare ribbons and footpoints, indicating that the constructed DEMs represent the spatially average thermal structure of the chromospheric flare emission during the impulsive phase.« less

  17. Solar Flares with some Flair

    NASA Image and Video Library

    2016-07-23

    The Sun produced three M-class (medium-sized) flares in less than 13 hours and the third one had an interesting flourish at the end (July 22-23, 2016). These were the largest flares the Sun had produced this year. The first two flares occurred in quick succession. The third one (see the still taken at 5:38 UT on the 23rd), besides the familiar bright flash of a flare, also spewed out into space a curving string of plasma. http://photojournal.jpl.nasa.gov/catalog/PIA17912

  18. Solar flare activity in 2006 - 2016 according to PAMELA and ARINA spectrometers

    NASA Astrophysics Data System (ADS)

    Rodenko, S. A.; Borkut, I. K.; Mayorov, A. G.; Malakhov, V. V.; PAMELA Collaboration

    2018-01-01

    From 2006 to 2016 years on the board of RESURS-DK1 satellite PAMELA and ARINA cosmic rays experiments was carried out. The main goal of experiments is measurement of galactic component of cosmic rays; it also registers solar particles accelerated in powerful explosive processes on the sun (solar flares) in wide energy range. The article includes the list of solar events when PAMELA or ARINA spectrometers have registered increasing of proton flux intensities for energies more than 4 MeV.

  19. Turbulence as a contributor to intermediate energy storage during solar flares

    NASA Technical Reports Server (NTRS)

    Bornmann, P. L.

    1987-01-01

    Turbulence is considered as a method for converting the energy observed as mass motions during the impulsive phase into thermal energy observed during the gradual phase of solar flares. The kinetic energy of the large-scale eddies driven by the upflowing material continuously cascades to smaller scale eddies until viscosity is able to convert it into thermal energy. The general properties of steady state, homogeneous, fluid turbulence is a nonmagnetic plasma and the properties of turbulent decay are reviewed. The time-dependent behavior of the velocities and energies observed by the X-Ray Polychromator (XRP) instrument on the SMM during the November 5, 1980 flare are compared with the properties of turbulence. This study indicates that turbulence may play a role in flare energies and may account for a fraction of the total amount of thermal energy observed during the gradual phase. The rate at which the observed flare velocities decrease is consistent with the decay of turbulent energy but may be too rapid to account for the entire time delay between the impulsive and gradual phases.

  20. Turbulence as a contributor to intermediate energy storage during solar flares

    NASA Astrophysics Data System (ADS)

    Bornmann, P. L.

    1987-02-01

    Turbulence is considered as a method for converting the energy observed as mass motions during the impulsive phase into thermal energy observed during the gradual phase of solar flares. The kinetic energy of the large-scale eddies driven by the upflowing material continuously cascades to smaller scale eddies until viscosity is able to convert it into thermal energy. The general properties of steady state, homogeneous, fluid turbulence is a nonmagnetic plasma and the properties of turbulent decay are reviewed. The time-dependent behavior of the velocities and energies observed by the X-Ray Polychromator (XRP) instrument on the SMM during the November 5, 1980 flare are compared with the properties of turbulence. This study indicates that turbulence may play a role in flare energies and may account for a fraction of the total amount of thermal energy observed during the gradual phase. The rate at which the observed flare velocities decrease is consistent with the decay of turbulent energy but may be too rapid to account for the entire time delay between the impulsive and gradual phases.

  1. A mechanism for deep chromospheric heating during solar flares

    NASA Technical Reports Server (NTRS)

    Machado, M. E.; Emslie, A. G.; Mauas, P. J.

    1986-01-01

    The role of the negative hydrogen ion, H(-), in the energy balance of the deep solar chromosphere is reexamined and it is found, in contrast with earlier authors, that H(-) is a source of heating at these levels. The response of this region to an ionizing flux of flare-associated UV radiation (1500 to 1900 A) is then addressed: it is found that the excess ionization of Si to Si(+) increases the local electron number density considerably, since most species are largely neutral at deep chromospheric levels. This in turn increases the electron-hydrogen atom association rate, the H(-) abundance, and the rate of absorption of photospheric radiation by this ion. It is found that the excess absorption by this process may lead to a substantial temperature enhancement at temperature minimum levels during flares.

  2. Response of the solar atmosphere to a simple flare burst: UV emission from the flare transition layer.

    NASA Astrophysics Data System (ADS)

    Shmeleva, O. P.

    The flare transition layer exists as a relatively steady formation even during impulsive heating. It is maintained by a heat flow from the high-temperature plasma, where the major part of the electron beam energy is absorbed. The lifetime of this plasma is much greater than the impulsive heating time. Intensities of resonance UV lines are calculated using both the model of impulsive nonthermal heating by energetic electrons and the model of continuous thermal heating. The calculated line intensity is almost constant during a long time. The line Doppler shifts predicted by the former model match observations. This suggests that the model represents sufficiently well the actual dynamics of the flare plasma. The flare transition layer is a thin formation, its thickness being Δξ = 1021m-2. It is therefore described adequately within the p = const approximation though the picture of hydrodynamic response of the solar atmosphere to the impulsive heating by energy flows is rather complicated and nonsteady, of course. The intensities of the C IV λλ154.8, 155.1 nm and O VI λλ103.2, 103.8 nm lines are calculated within the scope of the model of continuous thermal heating, in which the conductive heating of the flare transition layer is balanced by radiative cooling. The line intensities are proportional to the pressure in the layer, which permits the pressure to be found from the observed line intensities. The analysis reveals that both heating models adequately represent the actual structure and dynamics of plasma in a flare. In the flare transition layer, the classical heat conduction always does work.

  3. Study of Two Successive Three-ribbon Solar Flares on 2012 July 6

    NASA Astrophysics Data System (ADS)

    Wang, Haimin; Liu, Chang; Deng, Na; Zeng, Zhicheng; Xu, Yan; Jing, Ju; Cao, Wenda

    2014-01-01

    This Letter reports two rarely observed three-ribbon flares (M1.9 and C9.2) on 2012 July 6 in NOAA AR 11515, which we found using Hα observations of 0.''1 resolution from the New Solar Telescope and Ca II H images from Hinode. The flaring site is characterized by an intriguing "fish-bone-like" morphology evidenced by both Hα images and a nonlinear force-free field (NLFFF) extrapolation, where two semi-parallel rows of low-lying, sheared loops connect an elongated, parasitic negative field with the sandwiching positive fields. The NLFFF model also shows that the two rows of loops are asymmetric in height and have opposite twists, and are enveloped by large-scale field lines including open fields. The two flares occurred in succession within half an hour and are located at the two ends of the flaring region. The three ribbons of each flare run parallel to the magnetic polarity inversion line, with the outer two lying in the positive field and the central one in the negative field. Both flares show surge-like flows in Hα apparently toward the remote region, while the C9.2 flare is also accompanied by EUV jets possibly along the open field lines. Interestingly, the 12-25 keV hard X-ray sources of the C9.2 flare first line up with the central ribbon then shift to concentrate on the top of the higher branch of loops. These results are discussed in favor of reconnection along the coronal null line, producing the three flare ribbons and the associated ejections.

  4. Study of Two Successive Three-ribbon Solar Flares Using BBSO/NST Observations

    NASA Astrophysics Data System (ADS)

    Wang, Haimin; Liu, Chang; Deng, Na; Zeng, Zhicheng; Xu, Yan; Jing, Ju; Cao, Wenda

    2014-06-01

    We studied two rarely observed three-ribbon flares (M1.9 and C9.2) on 2012 July 6 in NOAA AR 11515, which we found using Hα observations of 0.1 arcsec resolution from the New Solar Telescope and Ca II H images from Hinode. The flaring site is characterized by an intriguing "fish-bone-like" morphology evidenced by both Halpha images and a nonlinear force-free field (NLFFF) extrapolation, where two semi-parallel rows of low-lying, sheared loops connect an elongated, parasitic negative field with the sandwiching positive fields. The NLFFF model also shows that the two rows of loops are asymmetric in height and have opposite twists, and are enveloped by large-scale field lines including open fields. The two flares occurred in succession within half an hour and are located at the two ends of the flaring region. The three ribbons of each flare run parallel to the magnetic polarity inversion line, with the outer two lying in the positive field and the central one in the negative field. Both flares show surge-like flows in Halpha apparently toward the remote region, while the C9.2 flare is also accompanied by EUV jets possibly along the open field lines. Interestingly, the 12-25 keV hard X-ray sources of the C9.2 flare first line up with the central ribbon then shift to concentrate on the top of the higher branch of loops. These results are discussed in favor of reconnection along the coronal null line, producing the three flare ribbons and the associated ejections.

  5. Magnetohydrodynamic Simulation of the X2.2 Solar Flare on 2011 February 15. I. Comparison with the Observations

    NASA Astrophysics Data System (ADS)

    Inoue, S.; Hayashi, K.; Magara, T.; Choe, G. S.; Park, Y. D.

    2014-06-01

    We performed a magnetohydrodynamic (MHD) simulation using a nonlinear force-free field (NLFFF) in solar active region 11158 to clarify the dynamics of an X2.2-class solar flare. We found that the NLFFF never shows the dramatic dynamics seen in observations, i.e., it is in a stable state against the perturbations. On the other hand, the MHD simulation shows that when the strongly twisted lines are formed at close to the neutral line, which are produced via tether-cutting reconnection in the twisted lines of the NLFFF, they consequently erupt away from the solar surface via the complicated reconnection. This result supports the argument that the strongly twisted lines formed in NLFFF via tether-cutting reconnection are responsible for breaking the force balance condition of the magnetic fields in the lower solar corona. In addition to this, the dynamical evolution of these field lines reveals that at the initial stage the spatial pattern of the footpoints caused by the reconnection of the twisted lines appropriately maps the distribution of the observed two-ribbon flares. Interestingly, after the flare, the reconnected field lines convert into a structure like the post-flare loops, which is analogous to the extreme ultraviolet image taken by the Solar Dynamics Observatory. Eventually, we found that the twisted lines exceed a critical height at which the flux tube becomes unstable to the torus instability. These results illustrate the reliability of our simulation and also provide an important relationship between flare and coronal mass ejection dynamics.

  6. Modeling of UH-60A Hub Accelerations with Neural Networks

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi

    2002-01-01

    Neural network relationships between the full-scale, flight test hub accelerations and the corresponding three N/rev pilot floor vibration components (vertical, lateral, and longitudinal) are studied. The present quantitative effort on the UH-60A Black Hawk hub accelerations considers the lateral and longitudinal vibrations. An earlier study had considered the vertical vibration. The NASA/Army UH-60A Airloads Program flight test database is used. A physics based "maneuver-effect-factor (MEF)", derived using the roll-angle and the pitch-rate, is used. Fundamentally, the lateral vibration data show high vibration levels (up to 0.3 g's) at low airspeeds (for example, during landing flares) and at high airspeeds (for example, during turns). The results show that the advance ratio and the gross weight together can predict the vertical and the longitudinal vibration. However, the advance ratio and the gross weight together cannot predict the lateral vibration. The hub accelerations and the advance ratio can be used to satisfactorily predict the vertical, lateral, and longitudinal vibration. The present study shows that neural network based representations of all three UH-60A pilot floor vibration components (vertical, lateral, and longitudinal) can be obtained using the hub accelerations along with the gross weight and the advance ratio. The hub accelerations are clearly a factor in determining the pilot vibration. The present conclusions potentially allow for the identification of neural network relationships between the experimental hub accelerations obtained from wind tunnel testing and the experimental pilot vibration data obtained from flight testing. A successful establishment of the above neural network based link between the wind tunnel hub accelerations and the flight test vibration data can increase the value of wind tunnel testing.

  7. Sun Unleashes Mid-level Flare

    NASA Image and Video Library

    2015-06-22

    The sun emitted a mid-level solar flare, peaking at 2:23 EDT on June 22, 2015. NASA’s Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. To see how this event may affect Earth, please visit NOAA's Space Weather Prediction Center at spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings. This flare is classified as a M6.6 flare. M-class flares are a tenth the size of the most intense flares, the X-class flares. The number provides more information about its strength. An M2 is twice as intense as an M1, an M3 is three times as intense, etc. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. QUASI-PERIODIC WIGGLES OF MICROWAVE ZEBRA STRUCTURES IN A SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Sijie; Tan, Baolin; Yan, Yihua

    2013-11-10

    Quasi-periodic wiggles of microwave zebra pattern (ZP) structures with periods ranging from about 0.5 s to 1.5 s are found in an X-class solar flare on 2006 December 13 at the 2.6-3.8 GHz with the Chinese Solar Broadband Radio Spectrometer (SBRS/Huairou). Periodogram and correlation analysis show that the wiggles have two to three significant periodicities and are almost in phase between stripes at different frequencies. The Alfvén speed estimated from the ZP structures is about 700 km s{sup –1}. We find the spatial size of the wave-guiding plasma structure to be about 1 Mm with a detected period of aboutmore » 1 s. This suggests that the ZP wiggles can be associated with the fast magnetoacoustic oscillations in the flaring active region. The lack of a significant phase shift between wiggles of different stripes suggests that the ZP wiggles are caused by a standing sausage oscillation.« less

  9. Transient rotation of photospheric vector magnetic fields associated with a solar flare.

    PubMed

    Xu, Yan; Cao, Wenda; Ahn, Kwangsu; Jing, Ju; Liu, Chang; Chae, Jongchul; Huang, Nengyi; Deng, Na; Gary, Dale E; Wang, Haimin

    2018-01-03

    As one of the most violent eruptions on the Sun, flares are believed to be powered by magnetic reconnection. The fundamental physics involving the release, transfer, and deposition of energy have been studied extensively. Taking advantage of the unprecedented resolution provided by the 1.6 m Goode Solar Telescope, here, we show a sudden rotation of vector magnetic fields, about 12-20° counterclockwise, associated with a flare. Unlike the permanent changes reported previously, the azimuth-angle change is transient and cospatial/temporal with Hα emission. The measured azimuth angle becomes closer to that in potential fields suggesting untwist of flare loops. The magnetograms were obtained in the near infrared at 1.56 μm, which is minimally affected by flare emission and no intensity profile change was detected. We believe that these transient changes are real and discuss the possible explanations in which the high-energy electron beams or Alfve'n waves play a crucial role.

  10. Numerical simulations of loops heated to solar flare temperatures. III - Asymmetrical heating

    NASA Technical Reports Server (NTRS)

    Cheng, C.-C.; Doschek, G. A.; Karpen, J. T.

    1984-01-01

    A numerical model is defined for asymmetric full solar flare loop heating and comparisons are made with observational data. The Dynamic Flux Tube Model is used to describe the heating process in terms of one-dimensional, two fluid conservation equations of mass, energy and momentum. An adaptive grid allows for the downward movement of the transition region caused by an advancing conduction front. A loop 20,000 km long is considered, along with a flare heating system and the hydrodynamic evolution of the loop. The model was applied to generating line profiles and spatial X-ray and UV line distributions, which were compared with SMM, P78-1 and Hintori data for Fe, Ca and Mg spectra. Little agreement was obtained, and it is suggested that flares be treated as multi-loop phenomena. Finally, it is concluded that chromospheric evaporation is not an effective mechanism for generating the soft X-ray bursts associated with flares.

  11. On the Origin of Pulsations of Sub-THz Emission from Solar Flares

    NASA Astrophysics Data System (ADS)

    Zaitsev, V. V.; Stepanov, A. V.; Kaufmann, P.

    2014-08-01

    We propose a model to explain fast pulsations in sub-THz emission from solar flares. The model is based on the approach of a flaring loop as an equivalent electric circuit and explains the pulse-repetition rate, the high-quality factor, Q≥103, low modulation depth, pulse synchronism at different frequencies, and the dependence of the pulse-repetition rate on the emission flux, observed by Kaufmann et al. ( Astrophys. J. 697, 420, 2009). We solved the nonlinear equation for electric current oscillations using a Van der Pol method and found the steady-state value for the amplitude of the current oscillations. Using the pulse rate variation during the flare on 4 November 2003, we found a decrease of the electric current from 1.7×1012 A in the flare maximum to 4×1010 A just after the burst. Our model is consistent with the plasma mechanism of sub-THz emission suggested recently by Zaitsev, Stepanov, and Melnikov ( Astron. Lett. 39, 650, 2013).

  12. Testing Solar Flare Models with BATSE

    NASA Astrophysics Data System (ADS)

    Zarro, Dominic M.

    1995-07-01

    We propose to use high-sensitivity Burst and Transient Source Experiment (BATSE) hard X-ray observations to test the thick-target and electric field acceleration models of solar flares. We will compare the predictions made by these models with hard X-ray spectral observations obtained with BATSE and simultaneous soft X-ray Ca XIX emission observed with the Yohkoh Bragg Crystal Spectrometer (BCS). The increased sensitivities of the BATSE and BCS (relative to previous detectors) permits a renewed study of the relationship between heating and dynamical motions during the crucial rise phase of flares. With these observations, we will: (1) investigate the ability of the thick-target model to explain the temporal evolution of hard X-ray emission relative to the soft X-ray blueshift during the earliest stages of the impulsive phase; and (2) search for evidence of electric-field acceleration as implied by temporal correlations between hard X-ray spectral breaks and the Ca XIX blueshift. The proposed study will utilize hard X-ray lightcurve and spectral measurements in the 10-100 keV energy range obtained with the BATSE Large Area Detectors (LAD). The DISCLA and CONT data will be the primary data products used in this analysis.

  13. The 2014 March 29 X-Flare: Results from the Best-Ever Flare Observation

    NASA Astrophysics Data System (ADS)

    Young, P.

    2014-12-01

    An X1 class solar flare occurred on 2014 March 29, peaking at 17:48 UT, and producing a filament eruption and EUV wave. It was observed as part of a Sac Peak-IRIS-Hinode observing program, delivering unprecedented coverage at all layers of the solar atmosphere. This talk will summarize new results obtained for this flare, with a particular focus on spectroscopic results obtained from IRIS and Hinode/EIS. Topics include mass flows prior and during the filament eruption, dynamics of 10 MK plasma during the flare rise phase, and the evolution of the flare ribbons

  14. Solar Flare Track Exposure Ages in Regolith Particles: A Calibration for Transmission Electron Microscope Measurements

    NASA Technical Reports Server (NTRS)

    Berger, Eve L.; Keller, Lindsay P.

    2015-01-01

    Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Space weathering effects result from multiple processes including: exposure to the solar wind, which results in ion damage and implantation effects that are preserved in the rims of grains (typically the outermost 100 nm); cosmic ray and solar flare activity, which result in track formation; and impact processes that result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. Determining the rate at which these effects accumulate in the grains during their space exposure is critical to studies of the surface evolution of airless bodies. Solar flare energetic particles (mainly Fe-group nuclei) have a penetration depth of a few millimeters and leave a trail of ionization damage in insulating materials that is readily observable by transmission electron microscope (TEM) imaging. The density of solar flare particle tracks is used to infer the length of time an object was at or near the regolith surface (i.e., its exposure age). Track measurements by TEM methods are routine, yet track production rate calibrations have only been determined using chemical etching techniques [e.g., 1, and references therein]. We used focused ion beam-scanning electron microscope (FIB-SEM) sample preparation techniques combined with TEM imaging to determine the track density/exposure age relations for lunar rock 64455. The 64455 sample was used earlier by [2] to determine a track production rate by chemical etching of tracks in anorthite. Here, we show that combined FIB/TEM techniques provide a more accurate determination of a track production rate and also allow us to extend the calibration to solar flare tracks in olivine.

  15. Observations of Reconnection Flows in a Flare on the Solar Disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Juntao; Simões, P. J. A.; Jeffrey, N. L. S.

    Magnetic reconnection is a well-accepted part of the theory of solar eruptive events, though the evidence is still circumstantial. Intrinsic to the reconnection picture of a solar eruptive event, particularly in the standard model for two-ribbon flares (CSHKP model), are an advective flow of magnetized plasma into the reconnection region, expansion of field above the reconnection region as a flux rope erupts, retraction of heated post-reconnection loops, and downflows of cooling plasma along those loops. We report on a unique set of Solar Dynamics Observatory /Atmospheric Imaging Assembly imaging and Hinode /EUV Imaging Spectrometer spectroscopic observations of the disk flaremore » SOL2016-03-23T03:54 in which all four flows are present simultaneously. This includes spectroscopic evidence for a plasma upflow in association with large-scale expanding closed inflow field. The reconnection inflows are symmetric, and consistent with fast reconnection, and the post-reconnection loops show a clear cooling and deceleration as they retract. Observations of coronal reconnection flows are still rare, and most events are observed at the solar limb, obscured by complex foregrounds, making their relationship to the flare ribbons, cusp field, and arcades formed in the lower atmosphere difficult to interpret. The disk location and favorable perspective of this event have removed these ambiguities giving a clear picture of the reconnection dynamics.« less

  16. ULTRA-NARROW NEGATIVE FLARE FRONT OBSERVED IN HELIUM-10830 Å USING THE 1.6 m NEW SOLAR TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yan; Liu, Chang; Jing, Ju

    2016-03-10

    Solar flares are sudden flashes of brightness on the Sun and are often associated with coronal mass ejections and solar energetic particles that have adverse effects on the near-Earth environment. By definition, flares are usually referred to as bright features resulting from excess emission. Using the newly commissioned 1.6 m New Solar Telescope at Big Bear Solar Observatory, we show a striking “negative” flare with a narrow but unambiguous “dark” moving front observed in He i 10830 Å, which is as narrow as 340 km and is associated with distinct spectral characteristics in Hα and Mg ii lines. Theoretically, such negativemore » contrast in He i 10830 Å can be produced under special circumstances by nonthermal electron collisions or photoionization followed by recombination. Our discovery, made possible due to unprecedented spatial resolution, confirms the presence of the required plasma conditions and provides unique information in understanding the energy release and radiative transfer in astronomical objects.« less

  17. A Comparative Study of the Eruptive and Non-eruptive Flares Produced by the Largest Active Region of Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Sarkar, Ranadeep; Srivastava, Nandita

    2018-02-01

    We investigate the morphological and magnetic characteristics of solar active region (AR) NOAA 12192. AR 12192 was the largest region of Solar Cycle 24; it underwent noticeable growth and produced 6 X-class flares, 22 M-class flares, and 53 C-class flares in the course of its disc passage. However, the most peculiar fact of this AR is that it was associated with only one CME in spite of producing several X-class flares. In this work, we carry out a comparative study between the eruptive and non-eruptive flares produced by AR 12192. We find that the magnitude of abrupt and permanent changes in the horizontal magnetic field and Lorentz force are significantly smaller in the case of the confined flares compared to the eruptive one. We present the areal evolution of AR 12192 during its disc passage. We find the flare-related morphological changes to be weaker during the confined flares, whereas the eruptive flare exhibits a rapid and permanent disappearance of penumbral area away from the magnetic neutral line after the flare. Furthermore, from the extrapolated non-linear force-free magnetic field, we examine the overlying coronal magnetic environment over the eruptive and non-eruptive zones of the AR. We find that the critical decay index for the onset of torus instability was achieved at a lower height over the eruptive flaring region, than for the non-eruptive core area. These results suggest that the decay rate of the gradient of overlying magnetic-field strength may play a decisive role to determine the CME productivity of the AR. In addition, the magnitude of changes in the flare-related magnetic characteristics are found to be well correlated with the nature of solar eruptions.

  18. The triggering and subsequent development of a solar flare

    NASA Technical Reports Server (NTRS)

    Vorpahl, J. A.

    1975-01-01

    High temporal and spatial resolution solar X-ray pictures of a flare at 1827 UT on 5 September 1973 were taken with the S-056 telescope on the Apollo telescope mount. Photographs taken at 9 sec intervals allow detailed information to be obtained about the site of the energy release, as well as about the evolution of the flare itself. Observations suggest that the flare occurred in an entire arcade of loops rather than in any single loop. Sequential brightening of different X-ray features indicates that some excitation moved perpendicular to the magnetic field of the arcade at velocities of 180 to 280 km/sec. The most intense X-ray features were located in places where the magnetic field composing the arcade had a small radius of curvature with horizontal field gradients higher than the surroundings region and where the axis of the arcade changed direction. It was felt that the arcade geometry strongly influenced the propagation of the triggering disturbance, as well as the storage and site of the subsequent deposition of energy. A magnetosonic wave is suggested as the propagating mechanism triggering instabilities that may have existed in the preflare structure.

  19. Long- and Mid-Term Variations of the Soft X-ray Flare Type in Solar Cycles

    NASA Astrophysics Data System (ADS)

    Chertok, I. M.; Belov, A. V.

    2017-10-01

    Using data from the Geostationary Operational Environmental Satellites (GOES) spacecraft in the 1 - 8 Å wavelength range for Solar Cycles 23, 24, and part of Cycles 21 and 22, we compare mean temporal parameters (rise and decay times, and duration) and the proportion of impulsive short-duration events (SDE) and gradual long-duration events (LDE) among C- and ≥ M1.0-class flares. It is found that the fraction of the SDE ≥ M1.0-class flares (including spikes) in Cycle 24 exceeds that in Cycle 23 in all three temporal parameters at the maximum phase and in the decay time during the ascending cycle phase. However, Cycles 23 and 24 barely differ in the fraction of the SDE C-class flares. The temporal parameters of SDEs, their fraction, and consequently the relationship between the SDE and LDE flares do not remain constant, but reveal regular changes within individual cycles and during the transition from one cycle to another. In all phases of all four cycles, these changes have the character of pronounced, large-amplitude "quasi-biennial" oscillations (QBOs). In different cycles and at the separate phases of individual cycles, such QBOs are superimposed on various systematic trends displayed by the analyzed temporal flare parameters. In Cycle 24, the fraction of the SDE ≥ M1.0-class flares from the N- and S-hemispheres displays the most pronounced synchronous QBOs. The QBO amplitude and general variability of the intense ≥ M1.0-class flares almost always markedly exceeds those of the moderate C-class flares. The ordered quantitative and qualitative variations of the flare type revealed in the course of the solar cycles are discussed within the framework of the concept that the SDE flares are associated mainly with small sunspots (including those in developed active regions) and that small and large sunspots behave differently during cycles and form two distinct populations.

  20. Determination of the calcium elemental abundance for 43 flares from SMM-XRP solar X-ray spectra

    NASA Astrophysics Data System (ADS)

    Lemen, J. R.; Sylwester, J.; Bentley, R. D.

    The helium and lithium-like X-ray transitions of Ca XVIII-XIX have been used to make an absolute measurement of the coronal calcium elemental abundance relative to hydrogen (ACa) in solar flares. Cooling phase spectra of 43 flares obtained in channel 1 of the Bent Crystal Spectrometer on the Solar Maximum Mission have been analyzed. The abundance is determined from the intensity ratio of the Ca XIX resonance line (1S0 - 1P1) and nearby continuum. Attempts to correlate the ACa measurements with other observable features are discussed.

  1. Modeling VLF signal modulation during solar flares with GEANT4 Monte Carlo simulation, a simple chemical model and LWPC

    NASA Astrophysics Data System (ADS)

    Palit, Sourav; Chakrabarti, Sandip Kumar; Pal, Sujay; Basak, Tamal

    Extra ionization by X-rays during solar flares affects VLF signal propagation through D-region ionosphere. Ionization produced in the lower ionosphere due to X-ray spectra of solar flares are simulated with an efficient detector simulation program, GEANT4. The balancing between the ionization and loss processes, causing the lower ionosphere to settle back to its undisturbed state is handled with a simple chemical model consisting of four broad species of ion densities. Using the electron densities, modified VLF signal amplitude is then computed with LWPC code. VLF signal along NWC (Australia) to IERC/ICSP (India) propagation path is examined during a M and a X-type solar flares and observational deviations are compared with simulated results. The agreement is found to be excellent.

  2. Solar flare particle propagation: Comparision of a new analytic solution with spacecraft measurements. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lupton, J. E.

    1972-01-01

    An analytic solution was obtained to the complete Fokker-Planck equation for solar flare particle propagation including the effects of convection, energy-change, corotation, and diffusion. It is assumed that the particles are injected impulsively at a single point in space, and that a boundary exists beyond which the particles are free to escape. Several solar flare particle events were observed with solar and galactic cosmic ray experiment aboard OGO 6. Detailed comparisons of the predictions of the solution with observations of 1 to 70 MeV protons show that the model adequately describes both the rise and decay times. The solution also yields a time evolution for the vector anisotropy which agrees well with reported observations.

  3. Multi-thermal observations of flares and eruptions with the Atmospheric Imaging Assembly on the Solar Dynamics Observatory. (Invited)

    NASA Astrophysics Data System (ADS)

    Schrijver, C. J.; Aia Science Team

    2010-12-01

    The revolutionary advance in observational capabilities offered by SDO's AIA offers new views of solar flares and eruptions. The high cadence and spatial resolution, the full-Sun coverage, and the variety of thermal responses of the AIA channels from thousands to millions of degrees enable the study the source regions of solar explosions, as well as the responses of the solar corona from their immediate vicinity to regions over a solar radius away. These observations emphasize the importance of magnetic connectivity and topology, the frequent occurrence of fast wave-like perturbations, and the contrasts between impulsive compact X-ray-bright flares and long-duration EUV-bright phenomena.

  4. Time-resolved spectroscopic observations of an M-dwarf flare star EV Lacertae during a flare

    NASA Astrophysics Data System (ADS)

    Honda, Satoshi; Notsu, Yuta; Namekata, Kosuke; Notsu, Shota; Maehara, Hiroyuki; Ikuta, Kai; Nogami, Daisaku; Shibata, Kazunari

    2018-05-01

    We have performed five night spectroscopic observations of the Hα line of EV Lac with a medium wavelength resolution (R ˜ 10000) using the 2 m Nayuta telescope at the Nishi-Harima Astronomical Observatory. EV Lac always possesses the Hα emission line; however, its intensity was stronger on 2015 August 15 than during the other four night periods. On this night, we observed a rapid rise (˜20 min) and a subsequent slow decrease (˜1.5 hr) of the emission-line intensity of Hα, which was probably caused by a flare. We also found an asymmetrical change in the Hα line on the same night. The enhancement has been observed in the blue wing of the Hα line during each phase of this flare (from the flare start to the flare end), and absorption components were present in its red wing during the early and later phases of the flare. Such blue enhancement (blue asymmetry) of the Hα line is sometimes seen during solar flares, but only during the early phases. Even for solar flares, little is known about the origin of the blue asymmetry. Compared with solar flare models, the presented results can lead to better understanding of the dynamics of stellar flares.

  5. One Small Flare

    NASA Image and Video Library

    2018-02-15

    The sun's only visible active region sputtered and spurted and eventually unleashed a small (C-class) flare (Feb. 7, 2018). The flare appears as a brief, bright flash about mid-way through the half-day clip. Normally, we do not pay much attention to flares this small, but it was just about the only real solar activity over the past week as the sun is slowly approaching its quiet period of the 11-year solar cycle. These images were taken in a wavelength of extreme ultraviolet light. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA22244

  6. Internal and External reconnection in a Series of Homologous Solar Flares

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Using data from the Extreme Ultraviolet Telescope (EIT) on SOHO and the Soft X-ray Telescope (SXT) on Yohkoh, we examine a series of morphologically homologous solar flares occurring in NOAA AR 8210 over May 1-2, 1998. An emerging flux region (EFR) impacted against a sunspot to the west and next to a coronal hole to the east is the source of the repeated flaring. An SXT sigmoid parallels the EFR's neutral line at the site of the initial flaring in soft X-rays. In EIT, each flaring episode begins with the formation of a crinkle pattern external to the EFR. These EIT crinkles move out from, and then in toward, the EFR with velocities approximately 20 km/s. A shrinking and expansion of the width of the coronal hole coincides with the crinkle activity, and generation and evolution of a postflare loop system begins near the. time of crinkle formation. Using a schematic based on magnetograms of the region, we suggest that these observations are consistent with the standard reconnection-based model for solar eruptions, but modified by the presence of the additional magnetic fields of the sunspot and coronal hole. In the schematic, internal reconnection begins inside of the EFR-associated fields, unleashing a flare, postflare loops, and a CME. External reconnection, first occurring between the escaping CME and the coronal hole field, and second occurring between fields formed as a result of the first external reconnection, results in the EIT crinkles and changes in the coronal hole boundary. By the end of the second external reconnection, the initial setup is reinstated; thus the sequence can repeat, resulting in morphologically homologous eruptions. Our inferred magnetic topology is similar to that suggested in the "breakout model" of eruptions [Antiochos, 1998], although we cannot determine if our eruptions are released primarily by the breakout mechanism (external reconnection) or, alternatively, are released primarily by the internal reconnection.

  7. The study on the new approach to the prediction of the solar flares: The statistical relation from the SOHO archive

    NASA Astrophysics Data System (ADS)

    Lee, S.; Oh, S.; Lee, J.; Hong, S.

    2013-12-01

    We have investigated the statistical relationship of the solar active region to predict the solar flare event analyzing the sunspot catalogue, which has been newly constructed from the SOHO MDI observation data during the period from 1996 to 2011 (Solar Cycle 23 & 24) by ASSA(Automatic Solar Synoptic Analyzer) algorithms. The prediction relation has been made by machine-learning algorithms to establish a short- term flare prediction model for operational use in near future. In this study, continuum and magnetogram images observed by SOHO has been processed to yield 15-year sunspot group catalogue that contains various physical parameters such as sunspot area, extent, asymmetry measure of largest penumbral sunspot, roughness of magnetic neutral line as well as McIntosh and Mt. Wilson classification results.The latest result of our study will be presented and the new approach to the prediction of the solar flare will be discussed.

  8. Probing the Production of Extreme-ultraviolet Late-phase Solar Flares Using the Model Enthalpy-based Thermal Evolution of Loops

    NASA Astrophysics Data System (ADS)

    Dai, Yu; Ding, Mingde

    2018-04-01

    Recent observations in extreme-ultraviolet (EUV) wavelengths reveal an EUV late phase in some solar flares that is characterized by a second peak in warm coronal emissions (∼3 MK) several tens of minutes to a few hours after the soft X-ray (SXR) peak. Using the model enthalpy-based thermal evolution of loops (EBTEL), we numerically probe the production of EUV late-phase solar flares. Starting from two main mechanisms of producing the EUV late phase, i.e., long-lasting cooling and secondary heating, we carry out two groups of numerical experiments to study the effects of these two processes on the emission characteristics in late-phase loops. In either of the two processes an EUV late-phase solar flare that conforms to the observational criteria can be numerically synthesized. However, the underlying hydrodynamic and thermodynamic evolutions in late-phase loops are different between the two synthetic flare cases. The late-phase peak due to a long-lasting cooling process always occurs during the radiative cooling phase, while that powered by a secondary heating is more likely to take place in the conductive cooling phase. We then propose a new method for diagnosing the two mechanisms based on the shape of EUV late-phase light curves. Moreover, from the partition of energy input, we discuss why most solar flares are not EUV late flares. Finally, by addressing some other factors that may potentially affect the loop emissions, we also discuss why the EUV late phase is mainly observed in warm coronal emissions.

  9. Energy release in solar flares

    NASA Technical Reports Server (NTRS)

    Brown, John C.; Correia, Emilia; Farnik, Frantisek; Garcia, Howard; Henoux, Jean-Claude; La Rosa, Ted N.; Machado, Marcos E. (Compiler); Nakajima, Hiroshi; Priest, Eric R.

    1994-01-01

    Team 2 of the Ottawa Flares 22 Workshop dealt with observational and theoretical aspects of the characteristics and processes of energy release in flares. Main results summarized in this article stress the global character of the flaring phenomenon in active regions, the importance of discontinuities in magnetic connectivity, the role of field-aligned currents in free energy storage, and the fragmentation of energy release in time and space.

  10. Stochastic Particle Acceleration in Impulsive Solar Flares

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    2001-01-01

    The acceleration of a huge number of electrons and ions to relativistic energies over timescales ranging from several seconds to several tens of seconds is the fundamental problem in high-energy solar physics. The cascading turbulence model we have developed has been shown previously (e.g., Miller 2000; Miller & Roberts 1995; Miner, LaRosa, & Moore 1996) to account for all the bulk features (such as acceleration timescales, fluxes, total number of energetic particles, and maximum energies) of electron and proton acceleration in impulsive solar flares. While the simulation of this acceleration process is involved, the essential idea of the model is quite simple, and consists of just a few parts: 1. During the primary flare energy release phase, we assume that low-amplitude MHD Alfven and fast mode waves are excited at long wavelengths, say comparable to the size of the event (although the results are actually insensitive to this initial wavelength). While an assumption, this appears reasonable in light of the likely highly turbulent nature of the flare. 2. These waves then cascade in a Kolmogorov-like fashion to smaller wavelengths (e.g., Verma et al. 1996), forming a power-law spectral density in wavenumber space through the inertial range. 3. When the mean wavenumber of the fast mode waves has increased sufficiently, the transit-time acceleration rate (Miller 1997) for superAlfvenic electrons can overcome Coulomb energy losses, and these electrons are accelerated out of the thermal distribution and to relativistic energies (Miller et al. 1996). As the Alfven waves cascade to higher wavenumbers, they can cyclotron resonate with progressively lower energy protons. Eventually, they will resonate with protons in the tail of the thermal distribution, which will then be accelerated to relativistic energies as well (Miller & Roberts 1995). Hence, both ions and electrons are stochastically accelerated, albeit by different mechanisms and different waves. 4. When the

  11. Slipping magnetic reconnection during an X-class solar flare observed by SDO/AIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudík, J.; Del Zanna, G.; Mason, H. E.

    2014-04-01

    We present SDO/AIA observations of an eruptive X-class flare of 2012 July 12, and compare its evolution with the predictions of a three-dimensional (3D) numerical simulation. We focus on the dynamics of flare loops that are seen to undergo slipping reconnection during the flare. In the Atmospheric Imaging Assembly (AIA) 131 Å observations, lower parts of 10 MK flare loops exhibit an apparent motion with velocities of several tens of km s{sup –1} along the developing flare ribbons. In the early stages of the flare, flare ribbons consist of compact, localized bright transition-region emission from the footpoints of the flaremore » loops. A differential emission measure analysis shows that the flare loops have temperatures up to the formation of Fe XXIV. A series of very long, S-shaped loops erupt, leading to a coronal mass ejection observed by STEREO. The observed dynamics are compared with the evolution of magnetic structures in the 'standard solar flare model in 3D.' This model matches the observations well, reproducing the apparently slipping flare loops, S-shaped erupting loops, and the evolution of flare ribbons. All of these processes are explained via 3D reconnection mechanisms resulting from the expansion of a torus-unstable flux rope. The AIA observations and the numerical model are complemented by radio observations showing a noise storm in the metric range. Dm-drifting pulsation structures occurring during the eruption indicate plasmoid ejection and enhancement of the reconnection rate. The bursty nature of radio emission shows that the slipping reconnection is still intermittent, although it is observed to persist for more than an hour.« less

  12. Prompt particle acceleration around moving X-point magnetic field during impulsive phase of solar flares

    NASA Technical Reports Server (NTRS)

    Sakai, Jun-Ichi

    1992-01-01

    We present a model for high-energy solar flares to explain prompt proton and electron acceleration, which occurs around moving X-point magnetic field during the implosion phase of the current sheet. We derive the electromagnetic fields during the strong implosion phase of the current sheets, which is driven by the converging flow derived from the magnetohydrodynamic equations. It is shown that both protons and electrons can be promptly (within 1 second) accelerated to approximately 70 MeV and approximately 200 MeV, respectively. This acceleration mechanism can be applicable for the impulsive phase of the gradual gamma ray and proton flares (gradual GR/P flare), which have been called two-ribbon flares.

  13. Flare Characteristics from X-ray Light Curves

    NASA Astrophysics Data System (ADS)

    Gryciuk, M.; Siarkowski, M.; Sylwester, J.; Gburek, S.; Podgorski, P.; Kepa, A.; Sylwester, B.; Mrozek, T.

    2017-06-01

    A new methodology is given to determine basic parameters of flares from their X-ray light curves. Algorithms are developed from the analysis of small X-ray flares occurring during the deep solar minimum of 2009, between Solar Cycles 23 and 24, observed by the Polish Solar Photometer in X-rays (SphinX) on the Complex Orbital Observations Near-Earth of Activity of the Sun-Photon (CORONAS- Photon) spacecraft. One is a semi-automatic flare detection procedure that gives start, peak, and end times for single ("elementary") flare events under the assumption that the light curve is a simple convolution of a Gaussian and exponential decay functions. More complex flares with multiple peaks can generally be described by a sum of such elementary flares. Flare time profiles in the two energy ranges of SphinX (1.16 - 1.51 keV, 1.51 - 15 keV) are used to derive temperature and emission measure as a function of time during each flare. The result is a comprehensive catalogue - the SphinX Flare Catalogue - which contains 1600 flares or flare-like events and is made available for general use. The methods described here can be applied to observations made by Geosynchronous Operational Environmental Satellites (GOES), the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and other broad-band spectrometers.

  14. Global Energetics of Solar Flares. VI. Refined Energetics of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.

    2017-09-01

    In this study, we refine the coronal mass ejection (CME) model that was presented in an earlier study of the global energetics of solar flares and associated CMEs and apply it to all (860) GOES M- and X-class flare events observed during the first seven years (2010-2016) of the Solar Dynamics Observatory (SDO) mission. The model refinements include (1) the CME geometry in terms of a 3D volume undergoing self-similar adiabatic expansion, (2) the solar gravitational deceleration during the propagation of the CME, which discriminates between eruptive and confined CMEs, (3) a self-consistent relationship between the CME center-of-mass motion detected during EUV dimming and the leading-edge motion observed in white-light coronagraphs, (4) the equipartition of the CME’s kinetic and thermal energies, and (5) the Rosner-Tucker-Vaiana scaling law. The refined CME model is entirely based on EUV-dimming observations (using Atmospheric Imager Assembly (AIA)/SDO data) and complements the traditional white-light scattering model (using Large-Angle and Spectrometric Coronagraph Experiment (LASCO)/Solar and Heliospheric Observatory data), and both models are independently capable of determining fundamental CME parameters. Comparing the two methods, we find that (1) LASCO is less sensitive than AIA in detecting CMEs (in 24% of the cases), (2) CME masses below {m}{cme}≲ {10}14 g are underestimated by LASCO, (3) AIA and LASCO masses, speeds, and energies agree closely in the statistical mean after the elimination of outliers, and (4) the CME parameters speed v, emission measure-weighted flare peak temperature T e , and length scale L are consistent with the following scaling laws: v\\propto {T}e1/2, v\\propto {({m}{cme})}1/4, and {m}{cme}\\propto {L}2.

  15. THE SPATIO-TEMPORAL EVOLUTION OF SOLAR FLARES OBSERVED WITH AIA/SDO: FRACTAL DIFFUSION, SUB-DIFFUSION, OR LOGISTIC GROWTH?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aschwanden, Markus J., E-mail: aschwanden@lmsal.com

    2012-09-20

    We explore the spatio-temporal evolution of solar flares by fitting a radial expansion model r(t) that consists of an exponentially growing acceleration phase, followed by a deceleration phase that is parameterized by the generalized diffusion function r(t){proportional_to}{kappa}(t - t{sub 1}){sup {beta}/2}, which includes the logistic growth limit ({beta} = 0), sub-diffusion ({beta} = 0-1), classical diffusion ({beta} = 1), super-diffusion ({beta} = 1-2), and the linear expansion limit ({beta} = 2). We analyze all M- and X-class flares observed with Geostationary Operational Environmental Satellite and Atmospheric Imaging Assembly/Solar Dynamics Observatory (SDO) during the first two years of the SDO mission,more » amounting to 155 events. We find that most flares operate in the sub-diffusive regime ({beta} = 0.53 {+-} 0.27), which we interpret in terms of anisotropic chain reactions of intermittent magnetic reconnection episodes in a low plasma-{beta} corona. We find a mean propagation speed of v = 15 {+-} 12 km s{sup -1}, with maximum speeds of v{sub max} = 80 {+-} 85 km s{sup -1} per flare, which is substantially slower than the sonic speeds expected for thermal diffusion of flare plasmas. The diffusive characteristics established here (for the first time for solar flares) is consistent with the fractal-diffusive self-organized criticality model, which predicted diffusive transport merely based on cellular automaton simulations.« less

  16. Space radiation dose analysis for solar flare of August 1989

    NASA Technical Reports Server (NTRS)

    Nealy, John E.; Simonsen, Lisa C.; Sauer, Herbert H.; Wilson, John W.; Townsend, Lawrence W.

    1990-01-01

    Potential dose and dose rate levels to astronauts in deep space are predicted for the solar flare event which occurred during the week of August 13, 1989. The Geostationary Operational Environmental Satellite (GOES-7) monitored the temporal development and energy characteristics of the protons emitted during this event. From these data, differential fluence as a function of energy was obtained in order to analyze the flare using the Langley baryon transport code, BRYNTRN, which describes the interactions of incident protons in matter. Dose equivalent estimates for the skin, ocular lens, and vital organs for 0.5 to 20 g/sq cm of aluminum shielding were predicted. For relatively light shielding (less than 2 g/sq cm), the skin and ocular lens 30-day exposure limits are exceeded within several hours of flare onset. The vital organ (5 cm depth) dose equivalent is exceeded only for the thinnest shield (0.5 g/sq cm). Dose rates (rem/hr) for the skin, ocular lens, and vital organs are also computed.

  17. Space radiation dose analysis for solar flare of August 1989

    NASA Astrophysics Data System (ADS)

    Nealy, John E.; Simonsen, Lisa C.; Sauer, Herbert H.; Wilson, John W.; Townsend, Lawrence W.

    1990-12-01

    Potential dose and dose rate levels to astronauts in deep space are predicted for the solar flare event which occurred during the week of August 13, 1989. The Geostationary Operational Environmental Satellite (GOES-7) monitored the temporal development and energy characteristics of the protons emitted during this event. From these data, differential fluence as a function of energy was obtained in order to analyze the flare using the Langley baryon transport code, BRYNTRN, which describes the interactions of incident protons in matter. Dose equivalent estimates for the skin, ocular lens, and vital organs for 0.5 to 20 g/sq cm of aluminum shielding were predicted. For relatively light shielding (less than 2 g/sq cm), the skin and ocular lens 30-day exposure limits are exceeded within several hours of flare onset. The vital organ (5 cm depth) dose equivalent is exceeded only for the thinnest shield (0.5 g/sq cm). Dose rates (rem/hr) for the skin, ocular lens, and vital organs are also computed.

  18. HARD X-RAY ASYMMETRY LIMITS IN SOLAR FLARE CONJUGATE FOOTPOINTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daou, Antoun G.; Alexander, David, E-mail: agdaou@rice.edu, E-mail: dalex@rice.edu

    2016-11-20

    The transport of energetic electrons in a solar flare is modeled using a time-dependent one-dimensional Fokker–Planck code that incorporates asymmetric magnetic convergence. We derive the temporal and spectral evolution of the resulting hard X-ray (HXR) emission in the conjugate chromospheric footpoints, assuming thick target photon production, and characterize the time evolution of the numerically simulated footpoint asymmetry and its relationship to the photospheric magnetic configuration. The thick target HXR asymmetry in the conjugate footpoints is found to increase with magnetic field ratio as expected. However, we find that the footpoint HXR asymmetry saturates for conjugate footpoint magnetic field ratios ≥4.more » This result is borne out in a direct comparison with observations of 44 double-footpoint flares. The presence of such a limit has not been reported before, and may serve as both a theoretical and observational benchmark for testing a range of particle transport and flare morphology constraints, particularly as a means to differentiate between isotropic and anisotropic particle injection.« less

  19. Flare Seismology from SDO Observations

    NASA Astrophysics Data System (ADS)

    Lindsey, Charles; Martinez Oliveros, Juan Carlos; Hudson, Hugh

    2011-10-01

    Some flares release intense seismic transients into the solar interior. These transients are the sole instance we know of in which the Sun's corona exerts a conspicuous influence on the solar interior through flares. The desire to understand this phenomenon has led to ambitious efforts to model the mechanisms by which energy stored in coronal magnetic fields drives acoustic waves that penetrate deep into the Sun's interior. These mechanisms potentially involve the hydrodynamic response of the chromosphere to thick-target heating by high-energy particles, radiative exchange in the chromosphere and photosphere, and Lorentz-force transients to account for acoustic energies estimated up to at 5X10^27 erg and momenta of order 6X10^19 dyne sec. An understanding of these components of flare mechanics promises more than a powerful diagnostic for local helioseismology. It could give us fundamental new insight into flare mechanics themselves. The key is appropriate observations to match the models. Helioseismic observations have identified the compact sources of transient seismic emission at the foot points of flares. The Solar Dynamics Observatory is now giving us high quality continuum-brightness and Doppler observations of acoustically active flares from HMI concurrent with high-resolution EUV observations from AIA. Supported by HXR observations from RHESSI and a broad variety of other observational resources, the SDO promises a leading role in flare research in solar cycle 24.

  20. Port of Galveston Solar Energy Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falcioni, Diane; Cuclis, Alex; Freundlich, Alex

    This study on the performance characteristics of existing solar technologies in a maritime environment was funded by an award given to The Port of Galveston (POG) from the U.S. Department of Energy (DOE). The study includes research performed by The Center for Advanced Materials at the University of Houston (UH). The UH researchers examined how solar cell efficiencies and life spans can be improved by examining the performance of a variety of antireflective (AR) coatings mounted on the top of one of the POG’s Cruise Terminals. Supplemental supporting research was performed at the UH laboratories. An educational Kiosk was constructedmore » with a 55” display screen providing information about solar energy, the research work UH performed at POG and real time data from the solar panels located on the roof of the Cruise Terminal. The Houston Advanced Research Center (HARC) managed the project.« less

  1. Turbulence as a contributor to intermediate energy storage during solar flares

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bornmann, P.L.

    Turbulence is considered as a method for converting the energy observed as mass motions during the impulsive phase into thermal energy observed during the gradual phase of solar flares. The kinetic energy of the large-scale eddies driven by the upflowing material continuously cascades to smaller scale eddies until viscosity is able to convert it into thermal energy. The general properties of steady state, homogeneous, fluid turbulence is a nonmagnetic plasma and the properties of turbulent decay are reviewed. The time-dependent behavior of the velocities and energies observed by the X-Ray Polychromator (XRP) instrument on the SMM during the November 5,more » 1980 flare are compared with the properties of turbulence. This study indicates that turbulence may play a role in flare energies and may account for a fraction of the total amount of thermal energy observed during the gradual phase. The rate at which the observed flare velocities decrease is consistent with the decay of turbulent energy but may be too rapid to account for the entire time delay between the impulsive and gradual phases. 19 references.« less

  2. The BATSE experiment on the Gamma Ray Observatory: Solar flare hard x ray and gamma-ray capabilities

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.; Meegan, C. A.; Wilson, R. B.; Parnell, T. A.; Paciesas, W. S.; Pendleton, G. N.; Hudson, H. S.; Matteson, J. L.; Peterson, L. E.; Cline, T. L.

    1989-01-01

    The Burst and Transient Source Experiment (BATSE) for the Gamma Ray Observatory (GRO) consists of eight detector modules that provide full-sky coverage for gamma-ray bursts and other transient phenomena such as solar flares. Each detector module has a thin, large-area scintillation detector (2025 sq cm) for high time-resolution studies, and a thicker spectroscopy detector (125 sq cm) to extend the energy range and provide better spectral resolution. The total energy range of the system is 15 keV to 100 MeV. These 16 detectors and the associated onboard data system should provide unprecedented capabilities for observing rapid spectral changes and gamma-ray lines from solar flares. The presence of a solar flare can be detected in real-time by BATSE; a trigger signal is sent to two other experiments on the GRO. The launch of the GRO is scheduled for June 1990, so that BATSE can be an important component of the Max '91 campaign.

  3. Preliminary estimates of radiation exposures for manned interplanetary missions from anomalously large solar flare events

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Nealy, John E.; Wilson, John W.

    1988-01-01

    Preliminary estimates of radiation exposures for manned interplanetary missions resulting from anomalously large solar flare events are presented. The calculations use integral particle fluences for the February 1956, November 1960, and August 1972 events as inputs into the Langley Research Center nucleon transport code BRYNTRN. This deterministic code transports primary and secondary nucleons (protons and neutrons) through any number of layers of target material of arbitrary thickness and composition. Contributions from target nucleus fragmentation and recoil are also included. Estimates of 5 cm depth doses and dose equivalents in tissue are presented behind various thicknesses of aluminum, water, and composite aluminum/water shields for each of the three solar flare events.

  4. FIRST DETECTION OF >100 MeV GAMMA-RAYS ASSOCIATED WITH A BEHIND-THE-LIMB SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pesce-Rollins, M.; Omodei, N.; Petrosian, V.

    2015-06-01

    We report the first detection of >100 MeV gamma-rays associated with a behind-the-limb solar flare, which presents a unique opportunity to probe the underlying physics of high-energy flare emission and particle acceleration. On 2013 October 11 a GOES M1.5 class solar flare occurred ∼9.°9 behind the solar limb as observed by STEREO-B. RHESSI observed hard X-ray (HXR) emission above the limb, most likely from the flare loop-top, as the footpoints were occulted. Surprisingly, the Fermi Large Area Telescope (LAT) detected >100 MeV gamma-rays for ∼30 minutes with energies up to 3 GeV. The LAT emission centroid is consistent with themore » RHESSI HXR source, but its uncertainty does not constrain the source to be located there. The gamma-ray spectra can be adequately described by bremsstrahlung radiation from relativistic electrons having a relatively hard power-law (PL) spectrum with a high-energy exponential cutoff, or by the decay of pions produced by accelerated protons and ions with an isotropic pitch-angle distribution and a PL spectrum with a number index of ∼3.8. We show that high optical depths rule out the gamma-rays originating from the flare site and a high-corona trap model requires very unusual conditions, so a scenario in which some of the particles accelerated by the CME shock travel to the visible side of the Sun to produce the observed gamma-rays may be at work.« less

  5. First detection of >100 MeV gamma-rays associated with a behind-the-limb solar flare

    DOE PAGES

    Pesce-Rollins, Melissa; Omodei, Nicola; Petrosian, V.; ...

    2015-05-28

    Here, we report the first detection of >100 MeV gamma-rays associated with a behind-the-limb solar flare, which presents a unique opportunity to probe the underlying physics of high-energy flare emission and particle acceleration. On 2013 October 11 a GOES M1.5 class solar flare occurred ~9°.9 behind the solar limb as observed by STEREO-B. RHESSI observed hard X-ray (HXR) emission above the limb, most likely from the flare loop-top, as the footpoints were occulted. Surprisingly, the Fermi Large Area Telescope (LAT) detected >100 MeV gamma-rays for ~30 minutes with energies up to 3 GeV. The LAT emission centroid is consistent withmore » the RHESSI HXR source, but its uncertainty does not constrain the source to be located there. The gamma-ray spectra can be adequately described by bremsstrahlung radiation from relativistic electrons having a relatively hard power-law (PL) spectrum with a high-energy exponential cutoff, or by the decay of pions produced by accelerated protons and ions with an isotropic pitch-angle distribution and a PL spectrum with a number index of ~3.8. Furthermore, we show that high optical depths rule out the gamma-rays originating from the flare site and a high-corona trap model requires very unusual conditions, so a scenario in which some of the particles accelerated by the CME shock travel to the visible side of the Sun to produce the observed gamma-rays may be at work.« less

  6. Empirical studies of solar flares: Comparison of X-ray and H alpha filtergrams and analysis of the energy balance of the X-ray plasma

    NASA Technical Reports Server (NTRS)

    Moore, R. L.

    1979-01-01

    The physics of solar flares was investigated through a combined analysis of X-ray filtergrams of the high temperature coronal component of flares and H alpha filtergrams of the low temperature chromospheric component. The data were used to study the magnetic field configuration and its changes in solar flares, and to examine the chromospheric location and structure of X-ray bright points (XPB) and XPB flares. Each topic and the germane data are discussed. The energy balance of the thermal X-ray plasma in flares, while not studied, is addressed.

  7. Estimating the Properties of Hard X-Ray Solar Flares by Constraining Model Parameters

    NASA Technical Reports Server (NTRS)

    Ireland, J.; Tolbert, A. K.; Schwartz, R. A.; Holman, G. D.; Dennis, B. R.

    2013-01-01

    We wish to better constrain the properties of solar flares by exploring how parameterized models of solar flares interact with uncertainty estimation methods. We compare four different methods of calculating uncertainty estimates in fitting parameterized models to Ramaty High Energy Solar Spectroscopic Imager X-ray spectra, considering only statistical sources of error. Three of the four methods are based on estimating the scale-size of the minimum in a hypersurface formed by the weighted sum of the squares of the differences between the model fit and the data as a function of the fit parameters, and are implemented as commonly practiced. The fourth method is also based on the difference between the data and the model, but instead uses Bayesian data analysis and Markov chain Monte Carlo (MCMC) techniques to calculate an uncertainty estimate. Two flare spectra are modeled: one from the Geostationary Operational Environmental Satellite X1.3 class flare of 2005 January 19, and the other from the X4.8 flare of 2002 July 23.We find that the four methods give approximately the same uncertainty estimates for the 2005 January 19 spectral fit parameters, but lead to very different uncertainty estimates for the 2002 July 23 spectral fit. This is because each method implements different analyses of the hypersurface, yielding method-dependent results that can differ greatly depending on the shape of the hypersurface. The hypersurface arising from the 2005 January 19 analysis is consistent with a normal distribution; therefore, the assumptions behind the three non- Bayesian uncertainty estimation methods are satisfied and similar estimates are found. The 2002 July 23 analysis shows that the hypersurface is not consistent with a normal distribution, indicating that the assumptions behind the three non-Bayesian uncertainty estimation methods are not satisfied, leading to differing estimates of the uncertainty. We find that the shape of the hypersurface is crucial in understanding

  8. Multispacecraft Observations of Solar Flare Particles in the Inner Heliosphere

    NASA Technical Reports Server (NTRS)

    Wibberenz, G.; Cane, H. V.

    2007-01-01

    For a number of impulsive solar particle events we examine variations of maximum intensities and times to maximum intensity as a function of longitude, using observations from the two Helios spacecraft and near the Earth. We find that electrons in the MeV range can be detected more than 80 deg. from the flare longitude, corresponding to a considerably wider "well connected" region than that (approx. 20 deg. half width) reported for He-3-rich impulsive solar events. This wide range and the decrease of peak intensities with increasing connection angle revive the concept of some propagation process in the low corona that has a diffusive nature. Delays to the intensity maximum are not systematically correlated with connection angles. We argue that interplanetary scattering parallel to the average interplanetary magnetic field, that varies with position in space, plays an important role in flare particle events. In a specific case variations of the time profiles with radial distance and with particle rigidity are used to quantitatively confirm spatial diffusion. For a few cases near the edges of the well connected region the very long times to maximum intensity might result from interplanetary lateral transport.

  9. Studies of Particle Acceleration, Transport and Radiation in Impulsive Phase of Solar Flares

    NASA Technical Reports Server (NTRS)

    Petrosian, Vahe

    2005-01-01

    Solar activity and its most prominent aspect, the solar flares, have considerable influence on terrestrial and space weather. Solar flares also provide a suitable laboratory for the investigation of many plasma and high energy processes important in the magnetosphere of the Earth and many other space and astrophysical situations. Hence, progress in understanding of flares will have considerable scientific and societal impact. The primary goal of this grant is the understanding of two of the most important problems of solar flare physics, namely the determination of the energy release mechanism and how this energy accelerates particles. This is done through comparison of the observations with theoretical models, starting from observations and gradually proceeding to theoretically more complex situations as the lower foundations of our understanding are secured. It is generally agreed that the source of the flare energy is the annihilation of magnetic fields by the reconnection process. Exactly how this energy is released or how it is dissipated remains controversial. Moreover, the exact mechanism of the acceleration of the particles is still a matter of debate. Data from many spacecrafts and ground based instruments obtained over the past decades have given us some clues. Theoretical analyses of these data have led to the standard thick target model (STT) where most of the released energy goes into an (assumed) power law spectrum of accelerated particles, and where all the observed radiations are the consequence of the interaction of these particles with the flare plasma. However, some theoretical arguments, and more importantly some new observations, have led us to believe that the above picture is not complete. It appears that plasma turbulence plays a more prominent role than suspected previously, and that it is the most likely agent for accelerating particles. The model we have developed is based on production of a high level of plasma waves and turbulence in

  10. Long Duration Gamma-Ray Flares & Solar Energetic Particles — Is there a Connection?

    NASA Astrophysics Data System (ADS)

    de Nolfo, G. A.; Boezio, M.; Bruno, A.; Christian, E. R.; Martucci, M.; Mergè, M.; Munini, R.; Ricci, M.; Ryan, J. M.; Share, G.; Stochaj, S.

    2017-12-01

    Little is known still about the origin of the high-energy and sustained emission from Long Duration Gamma-Ray Flares (LDGRFs), identified with Compton Gamma-Ray Observatory (CGRO), the Solar Maximum Mission (SMM), and now Fermi. Though Fermi/LAT has identified dozens of flares with LDGRF emission, the nature of this emission has been a challenge to explain both due to the extreme energies and long durations. The highest energy emission has generally been attributed to pion production from the interaction of high-energy protons with the ambient matter, suggesting that particle acceleration occurs over large volumes extending high in the corona, either from stochastic acceleration within large coronal loops or from back precipitation from CME-driven shocks. It is possible to test these models by making direct comparisons between the accelerated ion population at the flare derived from the observations of Fermi/LAT with PAMELA measurements of solar energetic particles in the energy range corresponding to the pion-related emission observed with Fermi. For nearly a dozen SEP events, we compare the two populations (SEPs in space and the interacting population at the Sun) and discuss the implications in terms of particle acceleration and transport models.

  11. Evidence for explosive chromospheric evaporation in a solar flare observed with SMM

    NASA Technical Reports Server (NTRS)

    Zarro, D. M.; Saba, J. L. R.; Strong, K. T.; Canfield, R. C.; Metcalf, T.

    1986-01-01

    SMM soft X-ray data and Sacramento Peak Observatory H-alpha observations are combined in a study of the impulsive phase of a solar flare. A blue asymmetry, indicative of upflow motions, was observed in the coronal Ca XIX line during the soft X-ray rise phase. H-alpha redshifts, indicative of downward motions, were observed simultaneously in bright flare kernels during the period of hard X-ray emission. It is shown that, to within observational errors, the impulsive phase momentum transported by the upflowing soft X-ray plasma is equivalent to that of the downward moving chromospheric material.

  12. Multi-Wavelength Imaging of Solar Plasma - High-Beta Disruption Model of Solar Flares -

    NASA Astrophysics Data System (ADS)

    Shibasaki, Kiyoto

    Solar atmosphere is filled with plasma and magnetic field. Activities in the atmosphere are due to plasma instabilities in the magnetic field. To understand the physical mechanisms of activities / instabilities, it is necessary to know the physical conditions of magnetized plasma, such as temperature, density, magnetic field, and their spatial structures and temporal developments. Multi-wavelength imaging is essential for this purpose. Imaging observations of the Sun at microwave, X-ray, EUV and optical ranges are routinely going on. Due to free exchange of original data among solar physics and related field communities, we can easily combine images covering wide range of spectrum. Even under such circumstances, we still do not understand the cause of activities in the solar atmosphere well. The current standard model of solar activities is based on magnetic reconnection: release of stored magnetic energy by reconnection is the cause of solar activities on the Sun such as solar flares. However, recent X-ray, EUV and microwave observations with high spatial and temporal resolution show that dense plasma is involved in activities from the beginning. Based on these observations, I propose a high-beta model of solar activities, which is very similar to high-beta disruptions in magnetically confined fusion experiments.

  13. Transient behavior of flare-associated solar wind. II - Gas dynamics in a nonradial open field region

    NASA Technical Reports Server (NTRS)

    Nagai, F.

    1984-01-01

    Transient behavior of flare-associated solar wind in the nonradial open field region is numerically investigated, taking into account the thermal and dynamical coupling between the chromosphere and the corona. A realistic steady solar wind is constructed which passes through the inner X-type critical point in the rapidly diverging region. The wind speed shows a local maximum at the middle, O-type, critical point. The wind's density and pressure distributions decrease abruptly in the rapidly diverging region of the flow tube. The transient behavior of the wind following flare energy deposition includes ascending and descending conduction fronts. Thermal instability occurs in the lower corona, and ascending material flows out through the throat after the flare energy input ceases. A local density distribution peak is generated at the shock front due to the pressure deficit just behind the shock front.

  14. COMPTEL Gamma-Ray Observations of the C4 Solar Flare on 20 January 2000

    NASA Astrophysics Data System (ADS)

    Young, C. A.; COMPTEL Collaboration

    2003-05-01

    The Solar Maximum Mission (SMM) greatly changed the picture of gamma-ray line (GRL) flares. Once thought to be relatively rare and confined to only the largest of flares, SMM observations put this view in question. SMM observed over 100 GRL flares from very large (GOES class X12) to several orders of magnitude smaller (GOES class M2). It was argued by some (Bai 1986) that this was still consistent with the idea that GRL events are rare. Others, however, argued the opposite (Vestrand 1988; Cliver, Crosby and Dennis 1994), stating that the lower end of this distribution was just a function of SMM's sensitivity. They stated that the launch of the Compton Gamma-ray Observatory (CGRO) would in fact continue this distribution to show even smaller GRL flares. In response to a BACODINE cosmic gamma-ray burst alert, COMPTEL on the CGRO recorded gamma rays above 1 MeV from the C4 flare at 0221 UT 20 January 2000. This event, though at the limits of COMPTEL's sensitivity, clearly showed a nuclear line excess above the continuum. Using new spectroscopy techniques we were able to resolve individual lines. This has allowed us to make a basic comparison of this event with the GRL flare distribution from SMM and also compare this flare with a well-observed large GRL flare seen by OSSE. We show that this flare is normal, i.e., it is a natural extension of the SMM distribution of flares. The analysis of this flare means there is no evidence for a lower flare size for proton acceleration. Protons even in small flares contain a large part of the accelerated particle energy.

  15. Flare Prediction Using Photospheric and Coronal Image Data

    NASA Astrophysics Data System (ADS)

    Jonas, E.; Shankar, V.; Bobra, M.; Recht, B.

    2016-12-01

    We attempt to forecast M-and X-class solar flares using a machine-learning algorithm and five years of image data from both the Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) instruments aboard the Solar Dynamics Observatory. HMI is the first instrument to continuously map the full-disk photospheric vector magnetic field from space (Schou et al., 2012). The AIA instrument maps the transition region and corona using various ultraviolet wavelengths (Lemen et al., 2012). HMI and AIA data are taken nearly simultaneously, providing an opportunity to study the entire solar atmosphere at a rapid cadence. Most flare forecasting efforts described in the literature use some parameterization of solar data - typically of the photospheric magnetic field within active regions. These numbers are considered to capture the information in any given image relevant to predicting solar flares. In our approach, we use HMI and AIA images of solar active regions and a deep convolutional kernel network to predict solar flares. This is effectively a series of shallow-but-wide random convolutional neural networks stacked and then trained with a large-scale block-weighted least squares solver. This algorithm automatically determines which patterns in the image data are most correlated with flaring activity and then uses these patterns to predict solar flares. Using the recently-developed KeystoneML machine learning framework, we construct a pipeline to process millions of images in a few hours on commodity cloud computing infrastructure. This is the first time vector magnetic field images have been combined with coronal imagery to forecast solar flares. This is also the first time such a large dataset of solar images, some 8.5 terabytes of images that together capture over 3000 active regions, has been used to forecast solar flares. We evaluate our method using various flare prediction windows defined in the literature (e.g. Ahmed et al., 2013) and a novel per

  16. Study of solar flare induced D-region ionosphere changes using VLF amplitude observations at a low latitude site

    NASA Astrophysics Data System (ADS)

    Tan, L. M.; Thu, N. N.; Ha, T. Q.; Marbouti, M.

    2014-06-01

    About 26 solar flare events from C2.56 to X3.2 classes were obtained and analyzed at Tay Nguyen University, Vietnam (12.56°N, 108.02°E) during May - December 2013 using very low frequency remote sensing to understand the responses of low latitude D-region ionosphere during solar flares. The observed VLF amplitude perturbations are used as the input parameters for the simulated Long Wavelength Propagation Capability (LWPC) program, using Wait's model of lower ionosphere, to calculate two Wait's parameters, viz. the reflection height (H') and the sharpness factor (?). The results reveal that when X-ray irradiance is increased, ? increased from 0.3 to 0.506 km-1, while H' decreased from 74 to 60 km. The electron density increased at the height of 74 km with 1-3 orders of magnitude during solar flares. These phenomena can be explained as: the ionization due to X-ray irradiance becomes greater than that due to cosmic rays and Lyman-α radiation, which increases the electron density profile. The present results are in agreement with the earlier results. The 3D representation of the electron density changes with altitude and time supports to fully understand the shape of the electron density changes due to X-ray flares. The shape variation of electron density is roughly followed to the variation of the amplitude perturbation and keeps this rule for different altitudes. It is also found that the electron density versus the height in lower latitude D-region ionosphere increases more rapidly during solar flares.

  17. What can He II 304 Å tell us about transient seismic emission from solar flares?

    NASA Astrophysics Data System (ADS)

    Lindsey, C.; Donea, A. C.

    2017-10-01

    After neary 20 years since their discovery by Kosovichev and Zharkova, the mechanics of the release of seismic transients into the solar interior from some flares remain a mystery. Seismically emissive flares invariably show the signatures of intense chromosphere heating consistent with pressure variations sufficient to drive seismic transients commensurate with helioseismic observations-under certain conditions. Magnetic observations show the signatures of apparent magnetic changes, suggesting Lorentz-force transients that could likewise drive seismic transients-similarly subject to certain conditions. But, the diagnostic signatures of both of these prospective drivers are apparent over vast regions from which no significant seismic emission emanates. What distinguishes the source regions of transient seismic emission from the much vaster regions that show the signatures of both transient heating and magnetic variations but are acoustically unproductive? Observations of acoustically active flares in He II 304 Å by the Atomospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory (SDO) offer a promising new resource with which to address this question.

  18. Real-Time flare detection using guided filter

    NASA Astrophysics Data System (ADS)

    Lin, Jiaben; Deng, Yuanyong; Yuan, Fei; Guo, Juan

    2017-04-01

    A procedure is introduced for the automatic detection of solar flare using full-disk solar images from Huairou Solar Observing Station (HSOS), National Astronomical Observatories of China. In image preprocessing, median filter is applied to remove the noises. And then we adopt guided filter, which is first introduced into the astronomical image detection, to enhance the edges of flares and restrain the solar limb darkening. Flares are then detected by modified Otsu algorithm and further threshold processing technique. Compared with other automatic detection procedure, the new procedure has some advantages such as real time and reliability as well as no need of image division and local threshold. Also, it reduces the amount of computation largely, which is benefited from the efficient guided filter algorithm. The procedure has been tested on one month sequences (December 2013) of HSOS full-disk solar images and the result of flares detection shows that the number of flares detected by our procedure is well consistent with the manual one.

  19. Probing Twisted Magnetic Field Using Microwave Observations in an M Class Solar Flare on 11 February, 2014

    NASA Astrophysics Data System (ADS)

    Sharykin, I. N.; Kuznetsov, A. A.; Myshyakov, I. I.

    2018-02-01

    This work demonstrates the possibility of magnetic-field topology investigations using microwave polarimetric observations. We study a solar flare of GOES M1.7 class that occurred on 11 February, 2014. This flare revealed a clear signature of spatial inversion of the radio-emission polarization sign. We show that the observed polarization pattern can be explained by nonthermal gyrosynchrotron emission from the twisted magnetic structure. Using observations of the Reuven Ramaty High Energy Solar Spectroscopic Imager, Nobeyama Radio Observatory, Radio Solar Telescope Network, and Solar Dynamics Observatory, we have determined the parameters of nonthermal electrons and thermal plasma and identified the magnetic structure where the flare energy release occurred. To reconstruct the coronal magnetic field, we use nonlinear force-free field (NLFFF) and potential magnetic-field approaches. Radio emission of nonthermal electrons is simulated by the GX Simulator code using the extrapolated magnetic field and the parameters of nonthermal electrons and thermal plasma inferred from the observations; the model radio maps and spectra are compared with observations. We have found that the potential-magnetic-field approach fails to explain the observed circular polarization pattern; on the other hand, the Stokes-V map is successfully explained by assuming nonthermal electrons to be distributed along the twisted magnetic structure determined by the NLFFF extrapolation approach. Thus, we show that the radio-polarization maps can be used for diagnosing the topology of the flare magnetic structures where nonthermal electrons are injected.

  20. Coronal mass ejection and solar flare initiation processes without appreciable

    NASA Astrophysics Data System (ADS)

    Veselovsky, I.

    TRACE and SOHO/EIT movies clearly show the cases of the coronal mass ejection and solar flare initiations without noticeable large-scale topology modifications in observed features. Instead of this, the appearance of new intermediate scales is often omnipresent in the erupting region structures when the overall configuration is preserved. Examples of this kind are presented and discussed in the light of the existing magnetic field reconnection paradigms. It is demonstrated that spurious large-scale reconnections and detachments are often produced due to the projection effects in poorly resolved images of twisted loops and sheared arcades especially when deformed parts of them are underexposed and not seen in the images only because of this reason. Other parts, which are normally exposed or overexposed, can make the illusion of "islands" or detached elements in these situations though in reality they preserve the initial magnetic connectivity. Spurious "islands" of this kind could be wrongly interpreted as signatures of topological transitions in the large-scale magnetic fields in many instances described in the vast literature in the past based mainly on fuzzy YOHKOH images, which resulted in the myth about universal solar flare models and the scenario of detached magnetic island formations with new null points in the large scale magnetic field. The better visualization with higher resolution and sensitivity limits allowed to clarify this confusion and to avoid this unjustified interpretation. It is concluded that topological changes obviously can happen in the coronal magnetic fields, but these changes are not always necessary ingredients at least of all coronal mass ejections and solar flares. The scenario of the magnetic field opening is not universal for all ejections. Otherwise, expanding ejections with closed magnetic configurations can be produced by the fast E cross B drifts in strong inductive electric fields, which appear due to the emergence of the new

  1. Can we explain atypical solar flares?

    NASA Astrophysics Data System (ADS)

    Dalmasse, K.; Chandra, R.; Schmieder, B.; Aulanier, G.

    2015-02-01

    Context. We used multiwavelength high-resolution data from ARIES, THEMIS, and SDO instruments to analyze a non-standard, C3.3 class flare produced within the active region NOAA 11589 on 2012 October 16. Magnetic flux emergence and cancellation were continuously detected within the active region, the latter leading to the formation of two filaments. Aims: Our aim is to identify the origins of the flare taking the complex dynamics of its close surroundings into account. Methods: We analyzed the magnetic topology of the active region using a linear force-free field extrapolation to derive its 3D magnetic configuration and the location of quasi-separatrix layers (QSLs), which are preferred sites for flaring activity. Because the active region's magnetic field was nonlinear force-free, we completed a parametric study using different linear force-free field extrapolations to demonstrate the robustness of the derived QSLs. Results: The topological analysis shows that the active region presented a complex magnetic configuration comprising several QSLs. The considered data set suggests that an emerging flux episode played a key role in triggering the flare. The emerging flux probably activated the complex system of QSLs, leading to multiple coronal magnetic reconnections within the QSLs. This scenario accounts for the observed signatures: the two extended flare ribbons developed at locations matched by the photospheric footprints of the QSLs and were accompanied with flare loops that formed above the two filaments, which played no important role in the flare dynamics. Conclusions: This is a typical example of a complex flare that can a priori show standard flare signatures that are nevertheless impossible to interpret with any standard model of eruptive or confined flare. We find that a topological analysis, however, permitted us to unveil the development of such complex sets of flare signatures. Movies associated to Figs. 1, 3, and 9 are only available at the CDS via

  2. Solar modulation of cosmic ray intensity and solar flare events inferred from (14)C contents in dated tree rings

    NASA Technical Reports Server (NTRS)

    Fan, C. Y.; Chen, T. M.; Yun, S. X.; Dai, K. M.

    1985-01-01

    The delta 14C values in 42 rings of a white spruce grown in Mackenzie Delta was measured as a continuing effort of tracing the history of solar modulation of cosmic ray intensity. The delta 14C values in six rings were measured, in search of a 14C increase due to two large solar flares that occurred in 1942. The results are presented.

  3. Multiwavelength analysis of a well observed flare from SMM. [Solar Maximum Mission

    NASA Technical Reports Server (NTRS)

    Macneice, P.; Pallavicini, R.; Mason, H. E.; Simnett, G. M.; Antonucci, E.; Shine, R. A.; Dennis, B. R.

    1985-01-01

    Observations of an M 1.4 flare which began at 17:00 UT on November 12, 1980, are presented and analyzed. Ground based H-alpha and magnetogram data have been combined with EUV, soft and hard X-ray observations made with instruments on-board the Solar Maximum Mission satellite. The preflare phase was marked by a gradual brightening of the flare site in O v and the disappearance of an H-alpha filament. Filament ejecta were seen in O v moving southward at a speed of about 60 km/s, before the impulsive phase. The flare loop footpoints brightened in H-alpha and the Ca XIX resonance line broadened dramatically 2 min before the impulsive phase. Nonthermal hard X-ray emission was detected from the loop footpoints during the impulsive phase, while during the same period blue-shifts corresponding to upflows of 200-250 km/s were seen in Ca XIX. Evidence was found for energy deposition in both the chromosphere and corona at a number of stages during the flare. Two widely studied mechanisms for the production of the high temperature soft X-ray flare plasma in the corona are considered, i.e. chromospheric evaporation, and a model in which the heating and transfer of material occurs between flux tubes during reconnection.

  4. Thermal and Nonthermal Contributions to the Solar Flare X-Ray Flux

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Phillips, K. J. H.; Sylwester, Janusz; Sylwester, Barbara; Schwartz, Richard A.; Tolbert, A. Kimberley

    2004-01-01

    The relative thermal and nonthermal contributions to the total energy budget of a solar flare are being determined through analysis of RHESSI X-ray imaging and spectral observations in the energy range from approx. 5 to approx. 50 keV. The classic ways of differentiating between the thermal and nonthermal components - exponential vs. sources - can now be combined for individual flares. In addition, RHESSI's sensitivity down to approx. 4 keV and energy resolution of approx. 1 keV FWHM allow the intensities and equivalent widths of the complex of highly ionized iron lines at approx. 6.7 keV and the complex of highly ionized iron and nickel lines at approx. 8 keV to be measured as a function of time. Using the spectral line and continuum intensities from the Chianti (version 4.2) atomic code, the thermal component of the total flare emission can be more reliably separated from the nonthermal component in the measured X-ray spectrum. The abundance of iron can also be determined from RHESSI line-to-continuum measurements as a function of time during larger flares. Results will be shown of the intensity and equivalent widths of these line complexes for several flares and the temperatures, emission measures, and iron abundances derived from them. Comparisons will be made with 6.7-keV Fe-line fluxes measured with the RESIK bent crystal spectrometer on the Coronas-F spacecraft operating in third order during the peak times of three flares (2002 May 31 at 00:12 UT, 2002 December 2 at 19:26 UT, and 2003 April 26 at 03:OO UT). During the rise and decay of these flares, RESIK was operating in first order allowing the continuum flux to be measured between 2.9 and 3.7 keV for comparison with RHESSI fluxes at its low-energy end.

  5. Microwave, soft and hard X-ray imaging observations of two solar flares

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Erskine, F. T.; Schmahl, E. J.; Machado, M. E.; Rovira, M. G.

    1984-01-01

    A set of microwave and hard X-ray observations of two flares observed simultaneously with the Very Large Array (VLA) and the Solar Maximum Mission Hard X-ray Imaging Spectrometer (SMM-HXIS) are presented. The LVA was used at 6 cm to map the slowly varying and burst components in three neighboring solar active regions (Boulder Nos. 2522, 2530, and 2519) from approximately 14:00 UT until 01:00 UT on June 24-25, 1980. Six microwave bursts less than 30 sfu were observed, and for the strongest of these, two-dimensional 'snapshot' (10 s) maps with spatial resolution of 5 in. were synthesized. HXIS data show clear interconnections between regions 2522 and 2530. The X-ray observations present a global picture of flaring activity, while the VLA data show the complexity of the small magnetic structures associated with the impulsive phase phenomena. It is seen that energy release did not occur in a single isolated magnetic structure, but over a large area of intermingled loop structures.

  6. Suppression of Hydrogen Emission in an X-Class White-Light Solar Flare

    NASA Technical Reports Server (NTRS)

    Prochazka, Ondrej; Milligan, Ryan O.; Allred, Joel C.; Kowalski, Adam F.; Kotrc, Pavel; Mathioudakis, Mihalis

    2017-01-01

    We present unique NUV observations of a well-observed X-class flare from NOAA 12087 obtained at the Ondrejov Observatory. The flare shows a strong white-light continuum but no detectable emission in the higher Balmer and Lyman lines. Reuven Ramaty High-Energy Solar Spectroscopic Imager and Fermi observations indicate an extremely hard X-ray spectrum and gamma-ray emission. We use the RADYN radiative hydrodynamic code to perform two types of simulations: one where an energy of 3 x 10(exp 11) erg/sq cm/s is deposited by an electron beam with a spectral index of approx. = 3, and a second where the same energy is applied directly to the photosphere. The combination of observations and simulations allows us to conclude that the white-light emission and the suppression or complete lack of hydrogen emission lines is best explained by a model where the dominant energy deposition layer is located in the lower layers of the solar atmosphere, rather than the chromosphere.

  7. Transient behavior of a flare-associated solar wind. I - Gas dynamics in a radial open field region

    NASA Technical Reports Server (NTRS)

    Nagai, F.

    1984-01-01

    A numerical investigation is conducted into the way in which a solar wind model initially satisfying both steady state and energy balance conditions is disturbed and deformed, under the assumption of heating that correspoonds to the energy release of solar flares of an importance value of approximately 1 which occur in radial open field regions. Flare-associated solar wind transient behavior is modeled for 1-8 solar radii. The coronal temperature around the heat source region rises, and a large thermal conductive flux flows inward to the chromosphere and outward to interplanetary space along field lines. The speed of the front of expanding chromospheric material generated by the impingement of the conduction front on the upper chromosphere exceeds the local sound velocity in a few minutes and eventually exceeds 100 million cm/sec.

  8. Gamma-ray emission and electron acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Petrosian, Vahe; Mctiernan, James M.; Marschhauser, Holger

    1994-01-01

    Recent observations have extended the spectra of the impulsive phase of flares to the GeV range. Such high-energy photons can be produced either by electron bremsstrahlung or by decay of pions produced by accelerated protons. In this paper we investigate the effects of processes which become important at high energies. We examine the effects of synchrotron losses during the transport of electrons as they travel from the acceleration region in the corona to the gamma-ray emission sites deep in the chromosphere and photosphere, and the effects of scattering and absorption of gamma rays on their way from the photosphere to space instruments. These results are compared with the spectra from so-called electron-dominated flares, observed by GRS on the Solar Maximum Mission, which show negligible or no detectable contribution from accelerated protons. The spectra of these flares show a distinct steepening at energies below 100 keV and a rapid falloff at energies above 50 MeV. Following our earlier results based on lower energy gamma-ray flare emission we have modeled these spectra. We show that neither the radiative transfer effects, which are expected to become important at higher energies, nor the transport effects (Coulomb collisions, synchrotron losses, or magnetic field convergence) can explain such sharp spectral deviations from a simple power law. These spectral deviations from a power law are therefore attributed to the acceleration process. In a stochastic acceleration model the low-energy steepening can be attributed to Coulomb collision and the rapid high-energy steepening can result from synchrotron losses during the acceleration process.

  9. PARTICLE ACCELERATION IN SOLAR FLARES AND ASSOCIATED CME SHOCKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrosian, Vahé; Department of Applied Physics, Stanford University, Stanford, CA 94305

    2016-10-10

    Observations relating the characteristics of electrons seen near Earth (solar energetic particles [SEPs]) and those producing flare radiation show that in certain (prompt) events the origin of both populations appears to be the flare site, which shows strong correlation between the number and spectral index of SEP and hard X-ray radiating electrons, but in others (delayed), which are associated with fast coronal mass ejections (CMEs), this relation is complex and SEPs tend to be harder. Prompt event spectral relation disagrees with that expected in thick or thin target models. We show that using a more accurate treatment of the transportmore » of the accelerated electrons to the footpoints and to Earth can account for this discrepancy. Our results are consistent with those found by Chen and Petrosian for two flares using nonparametric inversion methods, according to which we have weak diffusion conditions, and trapping mediated by magnetic field convergence. The weaker correlations and harder spectra of delayed events can come about by reacceleration of electrons in the CME shock environment. We describe under what conditions such a hardening can be achieved. Using this (acceleration at the flare and reacceleration in the CME) scenario, we show that we can describe the similar dichotomy that exists between the so-called impulsive, highly enriched ({sup 3}He and heavy ions), and softer SEP events and stronger, more gradual SEP events with near-normal ionic abundances and harder spectra. These methods can be used to distinguish the acceleration mechanisms and to constrain their characteristics.« less

  10. NASA Captures Images of a Late Summer Flare

    NASA Image and Video Library

    2014-08-25

    On Aug. 24, 2014, the sun emitted a mid-level solar flare, peaking at 8:16 a.m. EDT. NASA's Solar Dynamics Observatory captured images of the flare, which erupted on the left side of the sun. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. To see how this event may affect Earth, please visit NOAA's Space Weather Prediction Center at spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings. This flare is classified as an M5 flare. M-class flares are ten times less powerful than the most intense flares, called X-class flares. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Far-IR and Radio Continua in Solar Flares

    NASA Astrophysics Data System (ADS)

    Heinzel, P.; Kasparova, J.; Varady, M.; Karlicky, M.; Moravec, Z.

    2008-09-01

    With the invention of new far-infrared (FIR) and radio mm and sub-mm instruments (DESIR on SMESE satellite, ESO ALMA), there is a growing interest in observations and analysis of solar flares in this so far unexplored wavelength region. Two principal radition mechanisms play a role: the synchrotron emission due to accelerated particle beams moving in the magnetic field and the thermal emission due to energy deposit in the lower atmospheric layers. The latter one was recently explored for the case of semiempirical flare models, without considering the temporal evolution. However, as the radiation-hydrodynamical simulations do show, the lower atmosphere heated by beams exhibits fast temporal changes which are typically reflected in variations of spectral-line intensities. In this contribution we explore the time-dependent effects of beams on FIR and radio continua. We show how and where these continua are formed in the presence of time dependent beam heating and non-thermal excitation/ionization of the chromospheric hydrogen plasma. Our results should contribute to planning of new observations in FIR and radio domain.

  12. ON THE RELATIONSHIP BETWEEN SUNSPOT STRUCTURE AND MAGNETIC FIELD CHANGES ASSOCIATED WITH SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Y. L.; Zhang, M., E-mail: ylsong@bao.ac.cn

    Many previous studies have shown that magnetic fields and sunspot structures present rapid and irreversible changes associated with solar flares. In this paper, we first use five X-class flares observed by Solar Dynamics Observatory /Helioseismic and Magnetic Imager to show that not only do magnetic fields and sunspot structures show rapid, irreversible changes, but also that these changes are closely related both spatially and temporally. The magnitudes of the correlation coefficients between the temporal variations of the horizontal magnetic field and sunspot intensity are all larger than 0.90, with a maximum value of 0.99 and an average value of 0.96.more » Then, using four active regions during quiescent periods, three observed and one simulated, we show that in sunspot penumbra regions there also exists a close correlation between sunspot intensity and horizontal magnetic field strength in addition to the well-known correlation between sunspot intensity and the normal magnetic field strength. By connecting these two observational phenomena, we show that the sunspot structure change and magnetic field change are two facets of the same phenomena of solar flares; one change might be induced by the change of the other due to a linear correlation between sunspot intensity and magnetic field strength out of a local force balance.« less

  13. A long-term study of the impact of solar flares on ionospheric characteristics measured by digisondes and GNSS receivers

    NASA Astrophysics Data System (ADS)

    Tripathi, Sharad Chandra; Haralambous, Haris; Das, Tanmay

    2016-07-01

    Solar Flares are highly transient phenomena radiating over a wide spectrum of wavelengths with EUV and X-rays imposing the most significant effect on ionospheric characteristics. This study presents an attempt to examine qualitatively and quantitatively these effects as measured by digisondes and GNSS receivers on a global scale. For this purpose we have divided the whole globe in three sectors (American, African-European and Asian) based on longitude. We have extracted data for ionospheric characteristics by scaling, manually, the ionograms being provided by DIDBase (Digital Ionogram Database) as provided by the Global Ionospheric Radio Observatory (GIRO) during X-class flares for an approximate period of a solar cycle . We have also used TEC data extracted from GPS observations from collocated IGS Stations. Spectral analysis of Solar Flares are added to the methodology to compare the effects in terms of spectral characteristics.

  14. Reconstruction of a Large-scale Pre-flare Coronal Current Sheet Associated with a Homologous X-shaped Flare

    NASA Astrophysics Data System (ADS)

    Jiang, Chaowei; Yan, Xiaoli; Feng, Xueshang; Duan, Aiying; Hu, Qiang; Zuo, Pingbing; Wang, Yi

    2017-11-01

    As a fundamental magnetic structure in the solar corona, electric current sheets (CSs) can form either prior to or during a solar flare, and they are essential for magnetic energy dissipation in the solar corona because they enable magnetic reconnection. However, the static reconstruction of a CS is rare, possibly due to limitations that are inherent in the available coronal field extrapolation codes. Here we present the reconstruction of a large-scale pre-flare CS in solar active region 11967 using an MHD-relaxation model constrained by the SDO/HMI vector magnetogram. The CS is associated with a set of peculiar homologous flares that exhibit unique X-shaped ribbons and loops occurring in a quadrupolar magnetic configuration.This is evidenced by an ’X’ shape, formed from the field lines traced from the CS to the photosphere. This nearly reproduces the shape of the observed flare ribbons, suggesting that the flare is a product of the dissipation of the CS via reconnection. The CS forms in a hyperbolic flux tube, which is an intersection of two quasi-separatrix layers. The recurrence of the X-shaped flares might be attributed to the repetitive formation and dissipation of the CS, as driven by the photospheric footpoint motions. These results demonstrate the power of a data-constrained MHD model in reproducing a CS in the corona as well as providing insight into the magnetic mechanism of solar flares.

  15. Temporal relationship between high-energy proton acceleration and magnetic field changes during solar flares

    NASA Astrophysics Data System (ADS)

    Kurt, Victoria; Yushkov, Boris

    Understanding of the association of the magnetic field evolution in the corona and the temporal evolution of electromagnetic emissions produced by the accelerated particles during a solar flare can provide information about the nature of the energy-release process and its location. Recent high-spatial-resolution observations in HXR, UV and radio emissions allow one to study in detail a structure of two-ribbon flare site. According to these observations, the flare process can be divided into two different intervals with different temporal evolution of morphological structure: loop contraction during impulsive phase and subsequent loop expansion. On the other hand, the appearance of high-energy protons (with energy >300 MeV - an energy threshold of the pion production) in the solar atmosphere can be revealed from an emerging pion-decay component of high-energy gamma-ray emission. The present work is based on comparison of measurements of high-energy gamma-rays performed with the SONG detector onboard the CORONAS-F mission and reported observations of magnetic field evolution, such as HXR foot points (FP) separation and flare shear temporal behavior, or motion of UV/radio loops. We reliably identified the pion-decay component of gamma-ray emission in the course of five events attended with suitable spatial observations, namely, 2001 August 25, 2002 August 24, 2003 October 28, 2003 October 29, and 2005 January 20, and determined its onset time. We found that in these events the pion-decay emission occurred when the distance between conjugated foot-points of flare loops ceased to decrease and began to increase, i.e. changed from shrinkage to expansion. This result leads to the conclusion that the most efficient proton acceleration up to >300 MeV coincided in time with the radical reconfiguration of the magnetic field in the flare site. Earlier we found that the pion-decay emission onset in the 2003 October 28 flare was close to the time of maximum change rate of the

  16. High-resolution X-ray spectra of solar flares. III - General spectral properties of X1-X5 type flares

    NASA Technical Reports Server (NTRS)

    Doschek, G. A.; Feldman, U.; Kreplin, R. W.; Cohen, L.

    1980-01-01

    High-resolution X-ray spectra of six class X1-X5 solar flares are discussed. The spectra were recorded by spaceborne Bragg crystal spectrometers in the ranges 1.82-1.97, 2.98-3.07 and 3.14-3.24 A. Electron temperatures derived from dielectronic satellite line to resonance line ratios for Fe XXV and Ca XIX are found to remain fairly constant around 22,000,000 and 16,000,000 K respectively during the rise phase of the flares, then decrease by approximately 6,000,000 K during the decay phase. Nonthermal motions derived from line widths for the April 27, 1979 event are found to be greatest during the rise phase (approximately 130 km/sec) and decrease to about 60 km/sec during decay. Volume emission measures for Fe XXV, Ca XIX and Ca XX are derived from photon fluxes as a function of temperature, and examination of the intensity behavior of the Fe K alpha emission as a function of time indicates that it is a result of fluorescence. Differences between the present and previous observations of temperature variation are discussed, and it is concluded that the flare plasmas are close to ionization equilibrium for the flares investigated.

  17. Properties of quasi-periodic pulsations in solar flares from a single active region

    NASA Astrophysics Data System (ADS)

    Pugh, C. E.; Nakariakov, V. M.; Broomhall, A.-M.; Bogomolov, A. V.; Myagkova, I. N.

    2017-12-01

    Context. Quasi-periodic pulsations (QPPs) are a common feature of solar and stellar flares, and so the nature of these pulsations should be understood in order to fully understand flares. Aims: We investigate the properties of a set of solar flares originating from a single active region (AR) that exhibit QPPs, and in particular look for any indication of QPP periods relating to AR properties, as might be expected if the characteristic timescale of the pulsations corresponds to a characteristic length scale of the structure from which the pulsations originate. The three AR properties used for this study are the photospheric area, bipole separation distance, and average magnetic field strength at the photosphere. The AR studied, known as NOAA 12172/12192/12209, was unusually long-lived and persisted for over three Carrington rotations between September and November 2014. During this time a total of 181 flares were observed by GOES. Methods: Data from the GOES/XRS, SDO/EVE/ESP, Fermi/GBM, Vernov/DRGE and Nobeyama Radioheliograph observatories were used to determine if QPPs were present in the flares. For the soft X-ray GOES/XRS and EVE/ESP data, the time derivative of the signal was used so that any variability in the impulsive phase of the flare was emphasised. Periodogram power spectra of the time series data, without any form of detrending, were inspected and flares with a peak above the 95% confidence level in the power spectrum were labelled as having candidate QPPs. The confidence levels were determined taking full account of data uncertainties and the possible presence of red noise. Active region properties were determined using SDO/HMI line of sight magnetogram data. Results: A total of 37 flares, i.e. 20% of the sample, show good evidence of having stationary or weakly non-stationary QPPs, and some of the pulsations can be seen in data from multiple instruments and in different wavebands. Because the detection method used was rather conservative, this may be

  18. Flare physics at high energies

    NASA Technical Reports Server (NTRS)

    Ramaty, R.

    1990-01-01

    High-energy processes, involving a rich variety of accelerated particle phenomena, lie at the core of the solar flare problem. The most direct manifestation of these processes are high-energy radiations, gamma rays, hard X-rays and neutrons, as well as the accelerated particles themselves, which can be detected in interplanetary space. In the study of astrophysics from the moon, the understanding of these processes should have great importance. The inner solar system environment is strongly influenced by activity on the sun; the physics of solar flares is of great intrinsic interest; and much high-energy astrophysics can be learned from investigations of flare physics at high energies.

  19. The evolution of energetic particles and the emitted radiation in solar flares. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lu, Edward Tsang

    1989-01-01

    The evolution of accelerated particle distributions in a magnetized plasma and the resulting radiation are calculated, and the results are applied to solar flares. To study the radiation on timescales of order the particle lifetimes, the evolution of the particle distribution is determined by the use of the Fokker-Planck equation including Coulomb collisions and magnetic mirroring. Analytic solution to the equations are obtained for limiting cases such as homogeneous injection in a homogeneous plasma, and for small pitch angle. These analytic solutions are then used to place constraints on flare parameters such as density, loop length, and the injection timescale for very short implusive solar flares. For general particle distributions in arbitrary magnetic field and background density, the equation is solved numerically. The relative timing of microwaves and X-rays during individual flares is investigated. A number of possible sources for excessive microwave flux are discussed including a flattening in the electron spectrum above hard X-ray energies, thermal synchrotron emission, and trapping of electron by converging magnetic fields. Over shorter timescales, the Fokker-Planck equation is solved numerically to calculate the temporal evolution of microwaves and X-rays from nonthermal thick target models. It is shown that magnetic trapping will not account for the observed correlation of microwaves of approximately 0.15 seconds behind X-rays in flares with rapid time variation, and thus higher energy electrons must be accelerated later than lower energy electrons.

  20. Sun Emits Mid-Level Flare on October 2, 2014

    NASA Image and Video Library

    2017-12-08

    The sun emitted a mid-level solar flare, peaking at 3:01 p.m. EDT on Oct. 2, 2014. NASA's Solar Dynamics Observatory, which watches the sun 24-hours a day, captured images of the flare. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This flare is classified as an M7.3 flare. M-class flares are one-tenth as powerful as the most powerful flares, which are designated X-class flares. Download high res: svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=11670 Credit: NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. The 26 December 2001 Solar Event Responsible for GLE63. I. Observations of a Major Long-Duration Flare with the Siberian Solar Radio Telescope

    NASA Astrophysics Data System (ADS)

    Grechnev, V. V.; Kochanov, A. A.

    2016-12-01

    Ground level enhancements (GLEs) of cosmic-ray intensity occur, on average, once a year. Because they are rare, studying the solar sources of GLEs is especially important to approach understanding their origin. The SOL2001-12-26 eruptive-flare event responsible for GLE63 seems to be challenging in some aspects. Deficient observations limited our understanding of it. Analysis of additional observations found for this event provided new results that shed light on the flare configuration and evolution. This article addresses the observations of this flare with the Siberian Solar Radio Telescope (SSRT). Taking advantage of its instrumental characteristics, we analyze the detailed SSRT observations of a major long-duration flare at 5.7 GHz without cleaning the images. The analysis confirms that the source of GLE63 was associated with an event in active region 9742 that comprised two flares. The first flare (04:30 - 05:03 UT) reached a GOES importance of about M1.6. Two microwave sources were observed, whose brightness temperatures at 5.7 GHz exceeded 10 MK. The main flare, up to an importance of M7.1, started at 05:04 UT and occurred in strong magnetic fields. The observed microwave sources reached a brightness temperature of about 250 MK. They were not static. After appearing on the weaker-field periphery of the active region, the microwave sources moved toward each other nearly along the magnetic neutral line, approaching the stronger-field core of the active region, and then moved away from the neutral line like expanding ribbons. These motions rule out an association of the non-thermal microwave sources with a single flaring loop.

  2. Solar Flare Prediction Science-to-Operations: the ESA/SSA SWE A-EFFort Service

    NASA Astrophysics Data System (ADS)

    Georgoulis, Manolis K.; Tziotziou, Konstantinos; Themelis, Konstantinos; Magiati, Margarita; Angelopoulou, Georgia

    2016-07-01

    We attempt a synoptical overview of the scientific origins of the Athens Effective Solar Flare Forecasting (A-EFFort) utility and the actions taken toward transitioning it into a pre-operational service of ESA's Space Situational Awareness (SSA) Programme. The preferred method for solar flare prediction, as well as key efforts to make it function in a fully automated environment by coupling calculations with near-realtime data-downloading protocols (from the Solar Dynamics Observatory [SDO] mission), pattern recognition (solar active-region identification) and optimization (magnetic connectivity by simulated annealing) will be highlighted. In addition, the entire validation process of the service will be described, with its results presented. We will conclude by stressing the need for across-the-board efforts and synergistic work in order to bring science of potentially limited/restricted interest into realizing a much broader impact and serving the best public interests. The above presentation was partially supported by the ESA/SSA SWE A-EFFort project, ESA Contract No. 4000111994/14/D/MRP. Special thanks go to the ESA Project Officers R. Keil, A. Glover, and J.-P. Luntama (ESOC), M. Bobra and C. Balmer of the SDO/HMI team at Stanford University, and M. Zoulias at the RCAAM of the Academy of Athens for valuable technical help.

  3. OBSERVATIONS OF ENHANCED EXTREME ULTRAVIOLET CONTINUA DURING AN X-CLASS SOLAR FLARE USING SDO/EVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milligan, Ryan O.; Mathioudakis, Mihalis; Keenan, Francis P.

    2012-03-20

    Observations of extreme ultraviolet (EUV) emission from an X-class solar flare that occurred on 2011 February 15 at 01:44 UT are presented, obtained using the EUV Variability Experiment (EVE) on board the Solar Dynamics Observatory. The complete EVE spectral range covers the free-bound continua of H I (Lyman continuum), He I, and He II, with recombination edges at 91.2, 50.4, and 22.8 nm, respectively. By fitting the wavelength ranges blueward of each recombination edge with an exponential function, light curves of each of the integrated continua were generated over the course of the flare, as was emission from the free-freemore » continuum (6.5-37 nm). The He II 30.4 nm and Ly{alpha} 121.6 nm lines, and soft X-ray (SXR; 0.1-0.8 nm) emission from GOES are also included for comparison. Each free-bound continuum was found to have a rapid rise phase at the flare onset similar to that seen in the 25-50 keV light curves from RHESSI, suggesting that they were formed by recombination with free electrons in the chromosphere. However, the free-free emission exhibited a slower rise phase seen also in the SXR emission from GOES, implying a predominantly coronal origin. By integrating over the entire flare the total energy emitted via each process was determined. We find that the flare energy in the EVE spectral range amounts to at most a few percent of the total flare energy, but EVE gives us a first comprehensive look at these diagnostically important continuum components.« less

  4. Lower Ionosphere Sensitivity to Solar X-ray Flares Over a Complete Solar Cycle Evaluated From VLF Signal Measurements

    NASA Astrophysics Data System (ADS)

    Macotela, Edith L.; Raulin, Jean-Pierre; Manninen, Jyrki; Correia, Emília; Turunen, Tauno; Magalhães, Antonio

    2017-12-01

    The daytime lower ionosphere behaves as a solar X-ray flare detector, which can be monitored using very low frequency (VLF) radio waves that propagate inside the Earth-ionosphere waveguide. In this paper, we infer the lower ionosphere sensitivity variation over a complete solar cycle by using the minimum X-ray fluence (FXmin) necessary to produce a disturbance of the quiescent ionospheric conductivity. FXmin is the photon energy flux integrated over the time interval from the start of a solar X-ray flare to the beginning of the ionospheric disturbance recorded as amplitude deviation of the VLF signal. FXmin is computed for ionospheric disturbances that occurred in the time interval of December-January from 2007 to 2016 (solar cycle 24). The computation of FXmin uses the X-ray flux in the wavelength band below 0.2 nm and the amplitude of VLF signals transmitted from France (HWU), Turkey (TBB), and U.S. (NAA), which were recorded in Brazil, Finland, and Peru. The main result of this study is that the long-term variation of FXmin is correlated with the level of solar activity, having FXmin values in the range (1 - 12) × 10-7 J/m2. Our result suggests that FXmin is anticorrelated with the lower ionosphere sensitivity, confirming that the long-term variation of the ionospheric sensitivity is anticorrelated with the level of solar activity. This result is important to identify the minimum X-ray fluence that an external source of ionization must overcome in order to produce a measurable ionospheric disturbance during daytime.

  5. Diagnostics of electron-heated solar flare models. III - Effects of tapered loop geometry and preheating

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.; Li, Peng; Mariska, John T.

    1992-01-01

    A series of hydrodynamic numerical simulations of nonthermal electron-heated solar flare atmospheres and their corresponding soft X-ray Ca XIX emission-line profiles, under the conditions of tapered flare loop geometry and/or a preheated atmosphere, is presented. The degree of tapering is parameterized by the magnetic mirror ratio, while the preheated atmosphere is parameterized by the initial upper chromospheric pressure. In a tapered flare loop, it is found that the upward motion of evaporated material is faster compared with the case where the flare loop is uniform. This is due to the diverging nozzle seen by the upflowing material. In the case where the flare atmosphere is preheated and the flare geometry is uniform, the response of the atmosphere to the electron collisional heating is slow. The upward velocity of the hydrodynamic gas is reduced due not only to the large coronal column depth, but also to the increased inertia of the overlying material. It is concluded that the only possible electron-heated scenario in which the predicted Ca XIX line profiles agree with the BCS observations is when the impulsive flare starts in a preheated dense corona.

  6. STEREO Observations of Energetic Neutral Hydrogen Atoms during the 5 December 2006 Solar Flare

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Leske, R. A.; Stone, E. C.; Barghouty, A. F.; Labrador, A. W.; Cohen, C. M. S.; Cummings, A. C.; Davis, A. J.; vonRosenvinge, T. T.; Wiedenbeck, M. E.

    2009-01-01

    We report the discovery of energetic neutral hydrogen atoms emitted during the X9 solar event of December 5, 2006. Beginning 1 hour following the onset of this E79 flare, the Low Energy Telescopes (LETs) on both the STEREO A and B spacecraft observed a sudden burst of 1.6 to 15 MeV protons beginning hours before the onset of the main solar energetic particle (SEP) event at Earth. More than 70% of these particles arrived from a longitude within 10 of the Sun, consistent with the measurement resolution. The derived emission profile at the Sun had onset and peak times remarkably similar to the GOES soft X-ray profile and continued for more than an hour. The observed arrival directions and energy spectrum argue strongly that the particle events less than 5 MeV were due to energetic neutral hydrogen atoms (ENAs). To our knowledge, this is the first reported observation of ENA emission from a solar flare/coronal mass ejection. Possible origins for the production of ENAs in a large solar event are considered. We conclude that the observed ENAs were most likely produced in the high corona and that charge-transfer reactions between accelerated protons and partially-stripped coronal ions are an important source of ENAs in solar events.

  7. A survey of approximately 1 MeV/nucleon solar flare particle abundances, in the Z ? 1-26 range, during the 1973-1977 solar minimum period

    NASA Technical Reports Server (NTRS)

    Mason, G. M.; Gloeckler, G.; Fisk, L. A.; Hovestadt, D.

    1980-01-01

    The abundances of the major elements over the range H-Fe in solar flare energetic particles near 1 MeV/nucleon were surveyed for a large number of flares during the period 1973-1977; observations were carried out by the IMP 8 spacecraft in interplanetary space. The survey considered two types of solar flare events: (1) large events from which the average boundaries were deduced, and (2) events which have significant abundance differences from average. In addition, two He-3-rich events with abundance features that are different from previous examples are reported: one case with no enhancements of heavy ions, and a second case in which, compared to O, the heavy-ion enhancements are confined to the charge range Si-Fe rather than the usual case in which all elements Ne-Fe are enriched.

  8. Flare Observations

    NASA Astrophysics Data System (ADS)

    Benz, Arnold O.

    2017-12-01

    Solar flares are observed at all wavelengths from decameter radio waves to gamma-rays beyond 1 GeV. This review focuses on recent observations in EUV, soft and hard X-rays, white light, and radio waves. Space missions such as RHESSI, Yohkoh, TRACE, SOHO, and more recently Hinode and SDO have enlarged widely the observational base. They have revealed a number of surprises: Coronal sources appear before the hard X-ray emission in chromospheric footpoints, major flare acceleration sites appear to be independent of coronal mass ejections, electrons, and ions may be accelerated at different sites, there are at least 3 different magnetic topologies, and basic characteristics vary from small to large flares. Recent progress also includes improved insights into the flare energy partition, on the location(s) of energy release, tests of energy release scenarios and particle acceleration. The interplay of observations with theory is important to deduce the geometry and to disentangle the various processes involved. There is increasing evidence supporting magnetic reconnection as the basic cause. While this process has become generally accepted as the trigger, it is still controversial how it converts a considerable fraction of the energy into non-thermal particles. Flare-like processes may be responsible for large-scale restructuring of the magnetic field in the corona as well as for its heating. Large flares influence interplanetary space and substantially affect the Earth's ionosphere. Flare scenarios have slowly converged over the past decades, but every new observation still reveals major unexpected results, demonstrating that solar flares, after 150 years since their discovery, remain a complex problem of astrophysics including major unsolved questions.

  9. Plasma dynamics above solar flare soft x-ray loop tops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doschek, G. A.; Warren, H. P.; McKenzie, D. E.

    2014-06-10

    We measure non-thermal motions in flare loop tops and above the loop tops using profiles of highly ionized spectral lines of Fe XXIV and Fe XXIII formed at multimillion-degree temperatures. Non-thermal motions that may be due to turbulence or multiple flow regions along the line of sight are extracted from the line profiles. The non-thermal motions are measured for four flares seen at or close to the solar limb. The profile data are obtained using the Extreme-ultraviolet Imaging Spectrometer on the Hinode spacecraft. The multimillion-degree non-thermal motions are between 20 and 60 km s{sup –1} and appear to increase withmore » height above the loop tops. Motions determined from coronal lines (i.e., lines formed at about 1.5 MK) tend to be smaller. The multimillion-degree temperatures in the loop tops and above range from about 11 MK to 15 MK and also tend to increase with height above the bright X-ray-emitting loop tops. The non-thermal motions measured along the line of sight, as well as their apparent increase with height, are supported by Solar Dynamics Observatory Atmospheric Imaging Assembly measurements of turbulent velocities in the plane of the sky.« less

  10. Flare differentially rotates sunspot on Sun's surface

    PubMed Central

    Liu, Chang; Xu, Yan; Cao, Wenda; Deng, Na; Lee, Jeongwoo; Hudson, Hugh S.; Gary, Dale E.; Wang, Jiasheng; Jing, Ju; Wang, Haimin

    2016-01-01

    Sunspots are concentrations of magnetic field visible on the solar surface (photosphere). It was considered implausible that solar flares, as resulted from magnetic reconnection in the tenuous corona, would cause a direct perturbation of the dense photosphere involving bulk motion. Here we report the sudden flare-induced rotation of a sunspot using the unprecedented spatiotemporal resolution of the 1.6 m New Solar Telescope, supplemented by magnetic data from the Solar Dynamics Observatory. It is clearly observed that the rotation is non-uniform over the sunspot: as the flare ribbon sweeps across, its different portions accelerate (up to ∼50° h−1) at different times corresponding to peaks of flare hard X-ray emission. The rotation may be driven by the surface Lorentz-force change due to the back reaction of coronal magnetic restructuring and is accompanied by a downward Poynting flux. These results have direct consequences for our understanding of energy and momentum transportation in the flare-related phenomena. PMID:27721463

  11. DEPARTURE OF HIGH-TEMPERATURE IRON LINES FROM THE EQUILIBRIUM STATE IN FLARING SOLAR PLASMAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawate, T.; Keenan, F. P.; Jess, D. B., E-mail: t.kawate@qub.ac.uk

    2016-07-20

    The aim of this study is to clarify if the assumption of ionization equilibrium and a Maxwellian electron energy distribution is valid in flaring solar plasmas. We analyze the 2014 December 20 X1.8 flare, in which the Fe xxi 187 Å, Fe xxii 253 Å, Fe xxiii 263 Å, and Fe xxiv 255 Å emission lines were simultaneously observed by the EUV Imaging Spectrometer on board the Hinode satellite. Intensity ratios among these high-temperature Fe lines are compared and departures from isothermal conditions and ionization equilibrium examined. Temperatures derived from intensity ratios involving these four lines show significant discrepancies atmore » the flare footpoints in the impulsive phase, and at the looptop in the gradual phase. Among these, the temperature derived from the Fe xxii/Fe xxiv intensity ratio is the lowest, which cannot be explained if we assume a Maxwellian electron distribution and ionization equilibrium, even in the case of a multithermal structure. This result suggests that the assumption of ionization equilibrium and/or a Maxwellian electron energy distribution can be violated in evaporating solar plasma around 10 MK.« less

  12. COMPTEL gamma-ray observations of the C4 solar flare on 20 January 2000

    NASA Astrophysics Data System (ADS)

    Young, C. A.; Arndt, M. B.; Bennett, K.; Connors, A.; Debrunner, H.; Diehl, R.; McConnell, M.; Miller, R. S.; Rank, G.; Ryan, J. M.; Schoenfelder, V.; Winkler, C.

    2001-10-01

    The ``Pre-SMM'' (Vestrand and Miller 1998) picture of gamma-ray line (GRL) flares was that they are relatively rare events. This picture was quickly put in question with the launch of the Solar Maximum Mission (SMM). Over 100 GRL flares were seen with sizes ranging from very large GOES class events (X12) down to moderately small events (M2). It was argued by some (Bai 1986) that this was still consistent with the idea that GRL events are rare. Others, however, argued the opposite (Vestrand 1988; Cliver, Crosby and Dennis 1994), stating that the lower end of this distribution was just a function of SMM's sensitivity. They stated that the launch of the Compton Gamma-ray Observatory (CGRO) would in fact continue this distribution to show even smaller GRL flares. In response to a BACODINE cosmic gamma-ray burst alert, COMPtonTELescope on the CGRO recorded gamma rays above 1 MeV from the C4 flare at 0221 UT 20 January 2000. This event, though at the limits of COMPTEL's sensitivity, clearly shows a nuclear line excess above the continuum. Using new spectroscopy techniques we were able to resolve individual lines. This has allowed us to make a basic comparison of this event with the GRL flare distribution from SMM and also compare this flare with a well-observed large GRL flare seen by OSSE. .

  13. WHY IS THE GREAT SOLAR ACTIVE REGION 12192 FLARE-RICH BUT CME-POOR?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xudong; Bobra, Monica G.; Hoeksema, J. Todd

    Solar active region (AR) 12192 of 2014 October hosts the largest sunspot group in 24 years. It is the most prolific flaring site of Cycle 24 so far, but surprisingly produced no coronal mass ejection (CME) from the core region during its disk passage. Here, we study the magnetic conditions that prevented eruption and the consequences that ensued. We find AR 12192 to be “big but mild”; its core region exhibits weaker non-potentiality, stronger overlying field, and smaller flare-related field changes compared to two other major flare-CME-productive ARs (11429 and 11158). These differences are present in the intensive-type indices (e.g.,more » means) but generally not the extensive ones (e.g., totals). AR 12192's large amount of magnetic free energy does not translate into CME productivity. The unexpected behavior suggests that AR eruptiveness is limited by some relative measure of magnetic non-potentiality over the restriction of background field, and that confined flares may leave weaker photospheric and coronal imprints compared to their eruptive counterparts.« less

  14. Flares, ejections, proton events

    NASA Astrophysics Data System (ADS)

    Belov, A. V.

    2017-11-01

    Statistical analysis is performed for the relationship of coronal mass ejections (CMEs) and X-ray flares with the fluxes of solar protons with energies >10 and >100 MeV observed near the Earth. The basis for this analysis was the events that took place in 1976-2015, for which there are reliable observations of X-ray flares on GOES satellites and CME observations with SOHO/LASCO coronagraphs. A fairly good correlation has been revealed between the magnitude of proton enhancements and the power and duration of flares, as well as the initial CME speed. The statistics do not give a clear advantage either to CMEs or the flares concerning their relation with proton events, but the characteristics of the flares and ejections complement each other well and are reasonable to use together in the forecast models. Numerical dependences are obtained that allow estimation of the proton fluxes to the Earth expected from solar observations; possibilities for improving the model are discussed.

  15. Two X Flares in Quick Succession

    NASA Image and Video Library

    2014-06-16

    A powerful active region just rotating into view produced two X-class flares (the strongest category) about an hour apart on June 9, 2014. An X-2.3 flare peaked at 11:52 UT followed by an X-1.5 flare at 12:52 UT. This image shows the first of the two flares. The same active region produced another X class flare and a medium (M-class) flare the following day. Credit: NASA/Goddard/Solar Dynamics Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Short duration flares in GALEX data

    NASA Astrophysics Data System (ADS)

    Brasseur, Clara; Osten, Rachel A.

    2018-06-01

    Flares on cool stars indicate short time-scale magnetic reconnection processes that provide temporary increases in the stellar radiative output. While recent work has focused on long-duration flares from solar-like stars and those of lower mass, the existence of short-duration flares in the ultraviolet has not been systematically probed before. We will present an interesting population of short duration flares we discovered in a sample of ~37,000 light curves observed from 2009-2012 by the GALEX and Kepler missions. These flares range in duration from under a minute to a few minutes and are almost entirely distinct from a previous flare survey of Kepler data. We were able to detect this unique population of flares because the time resolution of the GALEX data allowed us to construct light curves with a 10 second cadence and thus detect shorter duration flares than could be detected within Kepler data. We applied algorithmic flare detection to a sample of ~37,000 stars, and identified a final count of 2,065 flares on 1,121 stars. We discuss the implication of these events for the flare frequency distributions of solar-like stars.

  17. Solar Flare Prediction Model with Three Machine-learning Algorithms using Ultraviolet Brightening and Vector Magnetograms

    NASA Astrophysics Data System (ADS)

    Nishizuka, N.; Sugiura, K.; Kubo, Y.; Den, M.; Watari, S.; Ishii, M.

    2017-02-01

    We developed a flare prediction model using machine learning, which is optimized to predict the maximum class of flares occurring in the following 24 hr. Machine learning is used to devise algorithms that can learn from and make decisions on a huge amount of data. We used solar observation data during the period 2010-2015, such as vector magnetograms, ultraviolet (UV) emission, and soft X-ray emission taken by the Solar Dynamics Observatory and the Geostationary Operational Environmental Satellite. We detected active regions (ARs) from the full-disk magnetogram, from which ˜60 features were extracted with their time differentials, including magnetic neutral lines, the current helicity, the UV brightening, and the flare history. After standardizing the feature database, we fully shuffled and randomly separated it into two for training and testing. To investigate which algorithm is best for flare prediction, we compared three machine-learning algorithms: the support vector machine, k-nearest neighbors (k-NN), and extremely randomized trees. The prediction score, the true skill statistic, was higher than 0.9 with a fully shuffled data set, which is higher than that for human forecasts. It was found that k-NN has the highest performance among the three algorithms. The ranking of the feature importance showed that previous flare activity is most effective, followed by the length of magnetic neutral lines, the unsigned magnetic flux, the area of UV brightening, and the time differentials of features over 24 hr, all of which are strongly correlated with the flux emergence dynamics in an AR.

  18. Solar Flare Prediction Model with Three Machine-learning Algorithms using Ultraviolet Brightening and Vector Magnetograms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishizuka, N.; Kubo, Y.; Den, M.

    We developed a flare prediction model using machine learning, which is optimized to predict the maximum class of flares occurring in the following 24 hr. Machine learning is used to devise algorithms that can learn from and make decisions on a huge amount of data. We used solar observation data during the period 2010–2015, such as vector magnetograms, ultraviolet (UV) emission, and soft X-ray emission taken by the Solar Dynamics Observatory and the Geostationary Operational Environmental Satellite . We detected active regions (ARs) from the full-disk magnetogram, from which ∼60 features were extracted with their time differentials, including magnetic neutralmore » lines, the current helicity, the UV brightening, and the flare history. After standardizing the feature database, we fully shuffled and randomly separated it into two for training and testing. To investigate which algorithm is best for flare prediction, we compared three machine-learning algorithms: the support vector machine, k-nearest neighbors (k-NN), and extremely randomized trees. The prediction score, the true skill statistic, was higher than 0.9 with a fully shuffled data set, which is higher than that for human forecasts. It was found that k-NN has the highest performance among the three algorithms. The ranking of the feature importance showed that previous flare activity is most effective, followed by the length of magnetic neutral lines, the unsigned magnetic flux, the area of UV brightening, and the time differentials of features over 24 hr, all of which are strongly correlated with the flux emergence dynamics in an AR.« less

  19. Suppression of Hydrogen Emission in an X-class White-light Solar Flare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Procházka, Ondrej; Milligan, Ryan O.; Mathioudakis, Mihalis

    We present unique NUV observations of a well-observed X-class flare from NOAA 12087 obtained at the Ondřejov Observatory. The flare shows a strong white-light continuum but no detectable emission in the higher Balmer and Lyman lines. Reuven Ramaty High-Energy Solar Spectroscopic Imager and Fermi observations indicate an extremely hard X-ray spectrum and γ -ray emission. We use the RADYN radiative hydrodynamic code to perform two types of simulations: one where an energy of 3 × 10{sup 11} erg cm{sup −2} s{sup −1} is deposited by an electron beam with a spectral index of ≈3, and a second where the samemore » energy is applied directly to the photosphere. The combination of observations and simulations allows us to conclude that the white-light emission and the suppression or complete lack of hydrogen emission lines is best explained by a model where the dominant energy deposition layer is located in the lower layers of the solar atmosphere, rather than the chromosphere.« less

  20. Sun Emits an X2.2 Flare

    NASA Image and Video Library

    2015-03-11

    The sun emitted a significant solar flare, peaking at 12:22 p.m. EDT on March 11, 2015. NASA’s Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This flare is classified as an X2.2-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram