Sample records for uh-60 black hawk

  1. UH-60M Black Hawk Helicopter (UH-60M Black Hawk)

    DTIC Science & Technology

    2016-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-341 UH-60M Black Hawk Helicopter (UH-60M Black Hawk) As of FY 2017 President’s Budget Defense...Acquisition Management Information Retrieval (DAMIR) March 21, 2016 18:25:45 UNCLASSIFIED UH-60M Black Hawk December 2015 SAR March 21, 2016 18...Operational Requirements Document OSD - Office of the Secretary of Defense O&S - Operating and Support PAUC - Program Acquisition Unit Cost UH-60M Black Hawk

  2. UH-60A Black Hawk engineering simulation program. Volume 1: Mathematical model

    NASA Technical Reports Server (NTRS)

    Howlett, J. J.

    1981-01-01

    A nonlinear mathematical model of the UR-60A Black Hawk helicopter was developed. This mathematical model, which was based on the Sikorsky General Helicopter (Gen Hel) Flight Dynamics Simulation, provides NASA with an engineering simulation for performance and handling qualities evaluations. This mathematical model is total systems definition of the Black Hawk helicopter represented at a uniform level of sophistication considered necessary for handling qualities evaluations. The model is a total force, large angle representation in six rigid body degrees of freedom. Rotor blade flapping, lagging, and hub rotational degrees of freedom are also represented. In addition to the basic helicopter modules, supportive modules were defined for the landing interface, power unit, ground effects, and gust penetration. Information defining the cockpit environment relevant to pilot in the loop simulation is presented.

  3. Prolonged restricted sitting effects in UH-60 helicopters.

    PubMed

    Games, Kenneth E; Lakin, Joni M; Quindry, John C; Weimar, Wendi H; Sefton, JoEllen M

    2015-01-01

    Advances in flight technologies and the demand for long-range flight have increased mission lengths for U.S. Army Black Hawk UH-60 crewmembers. Prolonged mission times have increased reports of pilot discomfort and symptoms of paresthesia thought to be due to UH-60 seat design and areas of locally high pressure. Discomfort created by the seat-system decreases situational awareness, putting aviators and support crew at risk of injury. Therefore, the purpose of this study was to examine the effects of prolonged restricted sitting in a UH-60 on discomfort, sensory function, and vascular measures in the lower extremities. There were 15 healthy men (age = 23.4 ± 3.1 yr) meeting physical flight status requirements who sat in an unpadded, UH-60 pilot's seat for 4 h while completing a common cognitive task. During the session, subjective discomfort, sensory function, and vascular function were measured. Across 4 h of restricted sitting, subjective discomfort increased using the Category Partitioning Scale (30.27 point increase) and McGill Pain Questionnaire (8.53 point increase); lower extremity sensory function was diminished along the S1 dermatome; and skin temperature decreased on both the lateral (2.85°C decrease) and anterior (2.78°C decrease) aspects of the ankle. The results suggest that prolonged sitting in a UH-60 seat increases discomfort, potentially through a peripheral nervous or vascular system mechanism. Further research is needed to understand the etiology and onset of pain and paresthesia during prolonged sitting in UH-60 pilot seats. Games KE, Lakin JM, Quindry JC, Weimar WH, Sefton JM. Prolonged restricted sitting effects in UH-60 helicopters.

  4. Adaptive Neuro-Fuzzy Modeling of UH-60A Pilot Vibration

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi; Malki, Heidar A.; Langari, Reza

    2003-01-01

    Adaptive neuro-fuzzy relationships have been developed to model the UH-60A Black Hawk pilot floor vertical vibration. A 200 point database that approximates the entire UH-60A helicopter flight envelope is used for training and testing purposes. The NASA/Army Airloads Program flight test database was the source of the 200 point database. The present study is conducted in two parts. The first part involves level flight conditions and the second part involves the entire (200 point) database including maneuver conditions. The results show that a neuro-fuzzy model can successfully predict the pilot vibration. Also, it is found that the training phase of this neuro-fuzzy model takes only two or three iterations to converge for most cases. Thus, the proposed approach produces a potentially viable model for real-time implementation.

  5. Neural Network Modeling of UH-60A Pilot Vibration

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi

    2003-01-01

    Full-scale flight-test pilot floor vibration is modeled using neural networks and full-scale wind tunnel test data for low speed level flight conditions. Neural network connections between the wind tunnel test data and the tlxee flight test pilot vibration components (vertical, lateral, and longitudinal) are studied. Two full-scale UH-60A Black Hawk databases are used. The first database is the NASMArmy UH-60A Airloads Program flight test database. The second database is the UH-60A rotor-only wind tunnel database that was acquired in the NASA Ames SO- by 120- Foot Wind Tunnel with the Large Rotor Test Apparatus (LRTA). Using neural networks, the flight-test pilot vibration is modeled using the wind tunnel rotating system hub accelerations, and separately, using the hub loads. The results show that the wind tunnel rotating system hub accelerations and the operating parameters can represent the flight test pilot vibration. The six components of the wind tunnel N/rev balance-system hub loads and the operating parameters can also represent the flight test pilot vibration. The present neural network connections can significandy increase the value of wind tunnel testing.

  6. Airworthiness and Flight Characteristics Evaluation, UH-60A (Black Hawk) Helicopter

    DTIC Science & Technology

    1981-09-01

    ACTIVITY EDWARDS AIR FORCE BASE, CALIFORNIA 93523 8..30 83 09 0 1 n 04 DISCLoAIMER NOTICE The findings of this report are not to be constrned as an...EDWARDS AIR FORCE BASE, CALIFORNJA 68-0-BH031.-01-68 II. CONTROLLING OFFICE NAME AND ADORESS 1I. REPORT OATS US ARMY AVN RESEARCH & DEVELOPMENT COMMAND...34| conipliance with the applicable paragraphs of the Prime Item Development Specification The UH-60A was tested at Edwards Air Force Base. California

  7. Piloted Evaluation of a UH-60 Mixer Equivalent Turbulence Simulation Model

    NASA Technical Reports Server (NTRS)

    Lusardi, Jeff A.; Blanken, Chris L.; Tischeler, Mark B.

    2002-01-01

    A simulation study of a recently developed hover/low speed Mixer Equivalent Turbulence Simulation (METS) model for the UH-60 Black Hawk helicopter was conducted in the NASA Ames Research Center Vertical Motion Simulator (VMS). The experiment was a continuation of previous work to develop a simple, but validated, turbulence model for hovering rotorcraft. To validate the METS model, two experienced test pilots replicated precision hover tasks that had been conducted in an instrumented UH-60 helicopter in turbulence. Objective simulation data were collected for comparison with flight test data, and subjective data were collected that included handling qualities ratings and pilot comments for increasing levels of turbulence. Analyses of the simulation results show good analytic agreement between the METS model and flight test data, with favorable pilot perception of the simulated turbulence. Precision hover tasks were also repeated using the more complex rotating-frame SORBET (Simulation Of Rotor Blade Element Turbulence) model to generate turbulence. Comparisons of the empirically derived METS model with the theoretical SORBET model show good agreement providing validation of the more complex blade element method of simulating turbulence.

  8. Analysis of propulsion system dynamics in the validation of a high-order state space model of the UH-60

    NASA Technical Reports Server (NTRS)

    Kim, Frederick D.

    1992-01-01

    Frequency responses generated from a high-order linear model of the UH-60 Black Hawk have shown that the propulsion system influences significantly the vertical and yaw dynamics of the aircraft at frequencies important to high-bandwidth control law designs. The inclusion of the propulsion system comprises the latest step in the development of a high-order linear model of the UH-60 that models additionally the dynamics of the fuselage, rotor, and inflow. A complete validation study of the linear model is presented in the frequency domain for both on-axis and off-axis coupled responses in the hoverflight condition, and on-axis responses for forward speeds of 80 and 120 knots.

  9. The Danger Zone for Noise Hazards Around the Black Hawk Helicopter.

    PubMed

    Jones, Heath G; Greene, Nathaniel T; Chen, Michael R; Azcona, Cierrah M; Archer, Brandon J; Reeves, Efrem R

    2018-06-01

    During ground operations, rotary-wing aircraft engines and subsystems produce noise hazards that place airfield personnel at risk for hearing damage. The noise exposure levels outside the aircraft during various operating conditions, and the distances from aircraft at which they drop to safe levels, are not readily available. The current study measured noise levels at various positions around the UH-60 Black Hawk helicopter for three operating conditions typically used when the aircraft is on the ground. Microphones were positioned systematically around the helicopter and A-weighted sound pressure levels (SPLs) were computed from the recordings. In addition, the 85-dBA SPL contour around the aircraft was mapped. The resulting A-weighted SPLs and contour mapping were used to determine the noise hazard area around the helicopter. Measurements reported here show noise levels of 105 dB or greater in all operating conditions. The fueling location at the left rear of the aircraft near the auxiliary power unit (APU) is the area of greatest risk for noise-induced hearing loss (NIHL). Additionally, sound field contours indicate noise hazard areas (>85 dBA SPL) can extend beyond 100 ft from the helicopter. This report details the areas of greatest risk for auditory injury around the UH-60 Black Hawk helicopter. Our findings suggest the area of hazardous noise levels around the aircraft can extend to neighboring aircraft, particularly on the side of the aircraft where the APU is located. Hearing protection should be worn whenever the aircraft is operating, even if working at a distance.Jones HG, Greene NT, Chen MR, Azcona CM, Archer BJ, Reeves ER. The danger zone for noise hazards around the Black Hawk helicopter. Aerosp Med Hum Perform. 2018; 89(6):547-551.

  10. Comparison of NASTRAN analysis with ground vibration results of UH-60A NASA/AEFA test configuration

    NASA Technical Reports Server (NTRS)

    Idosor, Florentino; Seible, Frieder

    1990-01-01

    Preceding program flight tests, a ground vibration test and modal test analysis of a UH-60A Black Hawk helicopter was conducted by Sikorsky Aircraft to complement the UH-60A test plan and NASA/ARMY Modern Technology Rotor Airloads Program. The 'NASA/AEFA' shake test configuration was tested for modal frequencies and shapes and compared with its NASTRAN finite element model counterpart to give correlative results. Based upon previous findings, significant differences in modal data existed and were attributed to assumptions regarding the influence of secondary structure contributions in the preliminary NASTRAN modeling. An analysis of an updated finite element model including several secondary structural additions has confirmed that the inclusion of specific secondary components produces a significant effect on modal frequency and free-response shapes and improves correlations at lower frequencies with shake test data.

  11. Accelerated Testing of UH-60 Viscous Bearings for Degraded Grease Fault

    NASA Technical Reports Server (NTRS)

    Dykas, Brian; Hood, Adrian; Krantz, Timothy; Klemmer, Marko

    2015-01-01

    An accelerated aging investigation of critical aviation bearings lubricated with MIL-PRF- 81322 grease was conducted to derive an understanding of the mechanisms of grease degradation and loss of lubrication over time. The current study focuses on UH-60 Black Hawk viscous damper bearings supporting the tail rotor driveshaft, which were subjected to more than 5800 hours of testing in a heated environment to accelerate the deterioration of the grease. The mechanism of grease degradation is a reduction in the oil/thickener ratio rather than the expected chemical degradation of grease constituents. Over the course of testing, vibration and temperature monitoring of bearings was conducted and trends for failing bearings are presented.

  12. Using Fly-By-Wire Technology in Future Models of the UH-60 and Other Rotary Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Solem, Courtney K.

    2011-01-01

    Several fixed-winged airplanes have successfully used fly-by-wire (FBW) technology for the last 40 years. This technology is now beginning to be incorporated into rotary wing aircraft. By using FBW technology, manufacturers are expecting to improve upon the weight, maintenance time and costs, handling and reliability of the aircraft. Before mass production of this new system begins in new models such as the UH-60MU, testing must be conducted to insure the safety of this technology as well as to reassure others it will be worth the time and money to make such a dramatic change to a perfectly functional machine. The RASCAL JUH-60A has been modified for these purposes. This Black Hawk helicopter has already been equipped with the FBW technology and can be configured as a near perfect representation of the UH-60MU. Because both machines have very similar qualities, the data collected from the RASCAL can be used to make future decisions about the UH-60MU. The U.S. Army AFDD Flight Project Office oversees all the design modifications for every hardware system used in the RASCAL aircraft. This project deals with specific designs and analyses of unique RASCAL aircraft subsystems and their modifications to conduct flight mechanics research.

  13. Modeling of UH-60A Hub Accelerations with Neural Networks

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi

    2002-01-01

    Neural network relationships between the full-scale, flight test hub accelerations and the corresponding three N/rev pilot floor vibration components (vertical, lateral, and longitudinal) are studied. The present quantitative effort on the UH-60A Black Hawk hub accelerations considers the lateral and longitudinal vibrations. An earlier study had considered the vertical vibration. The NASA/Army UH-60A Airloads Program flight test database is used. A physics based "maneuver-effect-factor (MEF)", derived using the roll-angle and the pitch-rate, is used. Fundamentally, the lateral vibration data show high vibration levels (up to 0.3 g's) at low airspeeds (for example, during landing flares) and at high airspeeds (for example, during turns). The results show that the advance ratio and the gross weight together can predict the vertical and the longitudinal vibration. However, the advance ratio and the gross weight together cannot predict the lateral vibration. The hub accelerations and the advance ratio can be used to satisfactorily predict the vertical, lateral, and longitudinal vibration. The present study shows that neural network based representations of all three UH-60A pilot floor vibration components (vertical, lateral, and longitudinal) can be obtained using the hub accelerations along with the gross weight and the advance ratio. The hub accelerations are clearly a factor in determining the pilot vibration. The present conclusions potentially allow for the identification of neural network relationships between the experimental hub accelerations obtained from wind tunnel testing and the experimental pilot vibration data obtained from flight testing. A successful establishment of the above neural network based link between the wind tunnel hub accelerations and the flight test vibration data can increase the value of wind tunnel testing.

  14. Ground shake test of the UH-60A helicopter airframe and comparison with NASTRAN finite element model predictions

    NASA Technical Reports Server (NTRS)

    Howland, G. R.; Durno, J. A.; Twomey, W. J.

    1990-01-01

    Sikorsky Aircraft, together with the other major helicopter airframe manufacturers, is engaged in a study to improve the use of finite element analysis to predict the dynamic behavior of helicopter airframes, under a rotorcraft structural dynamics program called DAMVIBS (Design Analysis Methods for VIBrationS), sponsored by the NASA-Langley. The test plan and test results are presented for a shake test of the UH-60A BLACK HAWK helicopter. A comparison is also presented of test results with results obtained from analysis using a NASTRAN finite element model.

  15. Fidelity assessment of a UH-60A simulation on the NASA Ames vertical motion simulator

    NASA Technical Reports Server (NTRS)

    Atencio, Adolph, Jr.

    1993-01-01

    Helicopter handling qualities research requires that a ground-based simulation be a high-fidelity representation of the actual helicopter, especially over the frequency range of the investigation. This experiment was performed to assess the current capability to simulate the UH-60A Black Hawk helicopter on the Vertical Motion Simulator (VMS) at NASA Ames, to develop a methodology for assessing the fidelity of a simulation, and to find the causes for lack of fidelity. The approach used was to compare the simulation to the flight vehicle for a series of tasks performed in flight and in the simulator. The results show that subjective handling qualities ratings from flight to simulator overlap, and the mathematical model matches the UH-60A helicopter very well over the range of frequencies critical to handling qualities evaluation. Pilot comments, however, indicate a need for improvement in the perceptual fidelity of the simulation in the areas of motion and visual cuing. The methodology used to make the fidelity assessment proved useful in showing differences in pilot work load and strategy, but additional work is needed to refine objective methods for determining causes of lack of fidelity.

  16. Flight Testing and Real-Time System Identification Analysis of a UH-60A Black Hawk Helicopter with an Instrumented External Sling Load

    NASA Technical Reports Server (NTRS)

    McCoy, Allen H.

    1998-01-01

    Helicopter external air transportation plays an important role in today's world. For both military and civilian helicopters, external sling load operations offer an efficient and expedient method of handling heavy, oversized cargo. With the ability to reach areas otherwise inaccessible by ground transportation, helicopter external load operations are conducted in industries such as logging, construction, and fire fighting, as well as in support of military tactical transport missions. Historically, helicopter and load combinations have been qualified through flight testing, requiring considerable time and cost. With advancements in simulation and flight test techniques there is potential to substantially reduce costs and increase the safety of helicopter sling load certification. Validated simulation tools make possible accurate prediction of operational flight characteristics before initial flight tests. Real time analysis of test data improves the safety and efficiency of the testing programs. To advance these concepts, the U.S. Army and NASA, in cooperation with the Israeli Air Force and Technion, under a Memorandum of Agreement, seek to develop and validate a numerical model of the UH-60 with sling load and demonstrate a method of near real time flight test analysis. This thesis presents results from flight tests of a U.S. Army Black Hawk helicopter with various external loads. Tests were conducted as the U.S. first phase of this MOA task. The primary load was a container express box (CONEX) which contained a compact instrumentation package. The flights covered the airspeed range from hover to 70 knots. Primary maneuvers were pitch and roll frequency sweeps, steps, and doublets. Results of the test determined the effect of the suspended load on both the aircraft's handling qualities and its control system's stability margins. Included were calculations of the stability characteristics of the load's pendular motion. Utilizing CIFER(R) software, a method for near

  17. Testing of UH-60A helicopter transmission in NASA Lewis 2240-kW (3000-hp) facility

    NASA Technical Reports Server (NTRS)

    Mitchell, A. M.; Oswald, F. B.; Coe, H. H.

    1986-01-01

    The U.S. Army's UH-60A Black Hawk 2240-kW (3000-hp) class, twin-engine helicopter transmission was tested at the NASA Lewis Research Center. The vibration and efficiency test results will be used to enhance the data base for similar-class helicopters. Most of the data were obtained for a matrix of test conditions of 50 to 100 percent of rated rotor speed and 20 to 100 percent of rated input power. The transmission's mechanical efficiency at 100 percent of rated power was 97.3 and 97.5 percent with its inlet oil maintained at 355 and 372 K (180 and 210 F), respectively. The highest vibration reading was 72 g's rms at the upper housing side wall. Other vibration levels measured near the gear meshes are reported.

  18. Flight-Time Identification of a UH-60A Helicopter and Slung Load

    NASA Technical Reports Server (NTRS)

    Cicolani, Luigi S.; McCoy, Allen H.; Tischler, Mark B.; Tucker, George E.; Gatenio, Pinhas; Marmar, Dani

    1998-01-01

    This paper describes a flight test demonstration of a system for identification of the stability and handling qualities parameters of a helicopter-slung load configuration simultaneously with flight testing, and the results obtained.Tests were conducted with a UH-60A Black Hawk at speeds from hover to 80 kts. The principal test load was an instrumented 8 x 6 x 6 ft cargo container. The identification used frequency domain analysis in the frequency range to 2 Hz, and focussed on the longitudinal and lateral control axes since these are the axes most affected by the load pendulum modes in the frequency range of interest for handling qualities. Results were computed for stability margins, handling qualities parameters and load pendulum stability. The computations took an average of 4 minutes before clearing the aircraft to the next test point. Important reductions in handling qualities were computed in some cases, depending, on control axis and load-slung combination. A database, including load dynamics measurements, was accumulated for subsequent simulation development and validation.

  19. Flight Test Identification and Simulation of a UH-60A Helicopter and Slung Load

    NASA Technical Reports Server (NTRS)

    Cicolani, Luigi S.; Sahai, Ranjana; Tucker, George E.; McCoy, Allen H.; Tyson, Peter H.; Tischler, Mark B.; Rosen, Aviv

    2001-01-01

    Helicopter slung-load operations are common in both military and civil contexts. Helicopters and loads are often qualified for these operations by means of flight tests, which can be expensive and time consuming. There is significant potential to reduce such costs both through revisions in flight-test methods and by using validated simulation models. To these ends, flight tests were conducted at Moffett Field to demonstrate the identification of key dynamic parameters during flight tests (aircraft stability margins and handling-qualities parameters, and load pendulum stability), and to accumulate a data base for simulation development and validation. The test aircraft was a UH-60A Black Hawk, and the primary test load was an instrumented 8- by 6- by 6-ft cargo container. Tests were focused on the lateral and longitudinal axes, which are the axes most affected by the load pendulum modes in the frequency range of interest for handling qualities; tests were conducted at airspeeds from hover to 80 knots. Using telemetered data, the dynamic parameters were evaluated in near real time after each test airspeed and before clearing the aircraft to the next test point. These computations were completed in under 1 min. A simulation model was implemented by integrating an advanced model of the UH-60A aerodynamics, dynamic equations for the two-body slung-load system, and load static aerodynamics obtained from wind-tunnel measurements. Comparisons with flight data for the helicopter alone and with a slung load showed good overall agreement for all parameters and test points; however, unmodeled secondary dynamic losses around 2 Hz were found in the helicopter model and they resulted in conservative stability margin estimates.

  20. Loads Correlation of a Full-Scale UH-60A Airloads Rotor in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Yeo, Hyeonsoo; Romander, Ethan A.

    2012-01-01

    Wind tunnel measurements of the rotor trim, blade airloads, and structural loads of a full-scale UH-60A Black Hawk main rotor are compared with calculations obtained using the comprehensive rotorcraft analysis CAMRAD II and a coupled CAMRAD II/OVERFLOW 2 analysis. A speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed into deep stall are investigated. The coupled analysis shows significant improvement over comprehensive analysis. Normal force phase is better captured and pitching moment magnitudes are better predicted including the magnitude and phase of the two stall events in the fourth quadrant at the deeply stalled condition. Structural loads are, in general, improved with the coupled analysis, but the magnitude of chord bending moment is still significantly underpredicted. As there are three modes around 4 and 5/rev frequencies, the structural responses to the 5/rev airloads due to dynamic stall are magnified and thus care must be taken in the analysis of the deeply stalled condition.

  1. Gear tooth stress measurements on the UH-60A helicopter transmission

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.

    1987-01-01

    The U.S. Army UH-60A (Black Hawk) 2200-kW (3000-hp) class twin-engine helicopter transmission was tested at the NASA Lewis Research Center. Results from these experimental (strain-gage) stress tests will enhance the data base for gear stress levels in transmissions of a similar power level. Strain-gage measurements were performed on the transmission's spiral-bevel combining pinions, the planetary Sun gear, and ring gear. Tests were performed at rated speed and at torque levels 25 to 100 percent that of rated. One measurement series was also taken at a 90 percent speed level. The largest stress found was 760 MPa (110 ksi) on the combining pinion fillet. This is 230 percent greater than the AGMA index stress. Corresponding mean and alternating stresses were 300 and 430 MPa (48 and 62 ksi). These values are within the range of successful test experience reported for other transmissions. On the fillet of the ring gear, the largest stress found was 410 MPa (59 ksi). The ring-gear peak stress was found to be 11 percent less than an analytical (computer simulation) value and it is 24 percent greater than the AGMA index stress. A peak compressive stress of 650 MPa (94 ksi) was found at the center of the Sun gear tooth root.

  2. Investigation of Rotor Performance and Loads of a UH-60A Individual Blade Control System

    NASA Technical Reports Server (NTRS)

    Yeo, Hyeonsoo; Romander, Ethan A.; Norman, Thomas R.

    2011-01-01

    Wind tunnel measurements of performance, loads, and vibration of a full-scale UH-60A Black Hawk main rotor with an individual blade control (IBC) system are compared with calculations obtained using the comprehensive helicopter analysis CAMRAD II and a coupled CAMRAD II/OVERFLOW 2 analysis. Measured data show a 5.1% rotor power reduction (8.6% rotor lift to effective-drag ratio increase) using 2/rev IBC actuation with 2.0 amplitude at = 0.4. At the optimum IBC phase for rotor performance, IBC actuator force (pitch link force) decreased, and neither flap nor chord bending moments changed significantly. CAMRAD II predicts the rotor power variations with the IBC phase reasonably well at = 0.35. However, the correlation degrades at = 0.4. Coupled CAMRAD II/OVERFLOW 2 shows excellent correlation with the measured rotor power variations with the IBC phase at both = 0.35 and = 0.4. Maximum reduction of IBC actuator force is better predicted with CAMRAD II, but general trends are better captured with the coupled analysis. The correlation of vibratory hub loads is generally poor by both methods, although the coupled analysis somewhat captures general trends.

  3. Investigation of Rotor Performance and Loads of a UH-60A Individual Blade Control System

    NASA Technical Reports Server (NTRS)

    Yeo, Hyeonsoo; Romander, Ethan A.; Norman, Thomas R.

    2011-01-01

    Wind tunnel measurements of performance, loads, and vibration of a full-scale UH-60A Black Hawk main rotor with an individual blade control (IBC) system are compared with calculations obtained using the comprehensive helicopter analysis CAMRAD II and a coupled CAMRAD II/OVERFLOW 2 analysis. Measured data show a 5.1% rotor power reduction (8.6% rotor lift to effective-drag ratio increase) using 2/rev IBC actuation with 2.0. amplitude at u = 0.4. At the optimum IBC phase for rotor performance, IBC actuator force (pitch link force) decreased, and neither flap nor chord bending moments changed significantly. CAMRAD II predicts the rotor power variations with IBC phase reasonably well at u = 0.35. However, the correlation degrades at u = 0.4. Coupled CAMRAD II/OVERFLOW 2 shows excellent correlation with the measured rotor power variations with IBC phase at both u = 0.35 and u = 0.4. Maximum reduction of IBC actuator force is better predicted with CAMRAD II, but general trends are better captured with the coupled analysis. The correlation of vibratory hub loads is generally poor by both methods, although the coupled analysis somewhat captures general trends.

  4. Hawking radiation power equations for black holes

    NASA Astrophysics Data System (ADS)

    Mistry, Ravi; Upadhyay, Sudhaker; Ali, Ahmed Farag; Faizal, Mir

    2017-10-01

    We derive the Hawking radiation power equations for black holes in asymptotically flat, asymptotically Anti-de Sitter (AdS) and asymptotically de Sitter (dS) black holes. This is done by using the greybody factor for these black holes. We observe that the radiation power equation for asymptotically flat black holes, corresponding to greybody factor at low frequency, depends on both the Hawking temperature and the horizon radius. However, for the greybody factors at asymptotic frequency, it only depends on the Hawking temperature. We also obtain the power equation for asymptotically AdS black holes both below and above the critical frequency. The radiation power equation for at asymptotic frequency is same for both Schwarzschild AdS and Reissner-Nordström AdS solutions and only depends on the Hawking temperature. We also discuss the power equation for asymptotically dS black holes at low frequency, for both even or odd dimensions.

  5. Hawking radiation from black rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, Umpei; Murata, Keiju

    2008-01-15

    We calculate the quantum radiation from the 5-dimensional charged rotating black rings by demanding the radiation eliminate the possible anomalies on the horizons. It is shown that the temperature, energy flux, and angular-momentum flux exactly coincide with those of the Hawking radiation. The black rings considered in this paper contain the Myers-Perry black hole as a limit, and the quantum radiation for this black hole, obtained in the literature, is recovered in the limit. The results support the picture that the Hawking radiation can be regarded as the anomaly eliminator on horizons and suggest its general applicability to the higher-dimensionalmore » black holes discovered recently.« less

  6. UH-60 Airloads Program Tutorial

    NASA Technical Reports Server (NTRS)

    Bousman, William G.

    2009-01-01

    From the fall of 1993 to late winter of 1994, NASA Ames and the U.S. Army flew a flight test program using a UH-60A helicopter with extensive instrumentation on the rotor and blades, including 242 pressure transducers. Over this period, approximately 30 flights were made, and data were obtained in level flight, maneuver, ascents, and descents. Coordinated acoustic measurements were obtained with a ground-acoustic array in cooperation with NASA Langley, and in-flight acoustic measurements with a YO-3A aircraft. NASA has sponsored the creation of a "tutorial' which covers the depth and breadth of the flight test program with a mixture of text and graphics. The primary purpose of this tutorial is to introduce the student to what is known about rotor aerodynamics based on the UH-60A measurements. The tutorial will also be useful to anyone interested in helicopters who would like to have more detailed knowledge about helicopter aerodynamics.

  7. Hawking temperature of constant curvature black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Ronggen; Myung, Yun Soo; Institute of Basic Science and School of Computer Aided Science, Inje University, Gimhae 621-749

    2011-05-15

    The constant curvature (CC) black holes are higher dimensional generalizations of Banados-Teitelboim-Zanelli black holes. It is known that these black holes have the unusual topology of M{sub D-1}xS{sup 1}, where D is the spacetime dimension and M{sub D-1} stands for a conformal Minkowski spacetime in D-1 dimensions. The unusual topology and time-dependence for the exterior of these black holes cause some difficulties to derive their thermodynamic quantities. In this work, by using a globally embedding approach, we obtain the Hawking temperature of the CC black holes. We find that the Hawking temperature takes the same form when using both themore » static and global coordinates. Also, it is identical to the Gibbons-Hawking temperature of the boundary de Sitter spaces of these CC black holes.« less

  8. Hawking radiation in sonic black holes.

    PubMed

    Giovanazzi, S

    2005-02-18

    I present a microscopic description of Hawking radiation in sonic black holes. A one-dimensional Fermi-degenerate liquid squeezed by a smooth barrier forms a transonic flow, a sonic analog of a black hole. The quantum treatment of the noninteracting case establishes a close relationship between sonic Hawking radiation and quantum tunneling through the barrier. Quasiparticle excitations appear at the barrier and are then radiated with a thermal distribution in exact agreement with Hawking's formula. The signature of the radiation can be found in the dynamic structure factor, which can be measured in a scattering experiment. The possibility for experimental verification of this new transport phenomenon for ultracold atoms is discussed.

  9. Hawking radiation from rotating black holes and gravitational anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murata, Keiju; Soda, Jiro

    2006-08-15

    We study the Hawking radiation from Rotating black holes from the gravitational anomalies point of view. First, we show that the scalar field theory near the Kerr black hole horizon can be reduced to the 2-dimensional effective theory. Then, following Robinson and Wilczek, we derive the Hawking flux by requiring the cancellation of gravitational anomalies. We also apply this method to Hawking radiation from higher dimensional Myers-Perry black holes. In the appendix, we present the trace anomaly derivation of Hawking radiation to argue the validity of the boundary condition at the horizon.

  10. Measurement of the UH-60A Hub Large Rotor Test Apparatus Control System Stiffness

    NASA Technical Reports Server (NTRS)

    Kufeld, Robert M.

    2014-01-01

    This purpose of this report is to provides details of the measurement of the control system stiffness of the UH-60A rotor hub mounted on the Large Rotor Test Apparatus (UH-60A/LRTA). The UH-60A/LRTA was used in the 40- by 80-Foot Wind Tunnel to complete the full-scale wind tunnel test portion of the NASA / ARMY UH-60A Airloads Program. This report describes the LRTA control system and highlights the differences between the LRTA and UH-60A aircraft. The test hardware, test setup, and test procedures are also described. Sample results are shown, including the azimuthal variation of the measured control system stiffness for three different loadings and two different dynamic actuator settings. Finally, the azimuthal stiffness is converted to fixed system values using multi-blade transformations for input to comprehensive rotorcraft prediction codes.

  11. Hawking radiation inside a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Hamilton, Andrew J. S.

    2018-05-01

    The boundary of any observer's spacetime is the boundary that divides what the observer can see from what they cannot see. The boundary of an observer's spacetime in the presence of a black hole is not the true (future event) horizon of the black hole, but rather the illusory horizon, the dimming, redshifting surface of the star that collapsed to the black hole long ago. The illusory horizon is the source of Hawking radiation seen by observers both outside and inside the true horizon. The perceived acceleration (gravity) on the illusory horizon sets the characteristic frequency scale of Hawking radiation, even if that acceleration varies dynamically, as it must do from the perspective of an infalling observer. The acceleration seen by a non-rotating free-faller both on the illusory horizon below and in the sky above is calculated for a Schwarzschild black hole. Remarkably, as an infaller approaches the singularity, the acceleration becomes isotropic, and diverging as a power law. The isotropic, power-law character of the Hawking radiation, coupled with conservation of energy-momentum, the trace anomaly, and the familiar behavior of Hawking radiation far from the black hole, leads to a complete description of the quantum energy-momentum inside a Schwarzschild black hole. The quantum energy-momentum near the singularity diverges as r^{-6}, and consists of relativistic Hawking radiation and negative energy vacuum in the ratio 3 : - 2. The classical back reaction of the quantum energy-momentum on the geometry, calculated using the Einstein equations, serves merely to exacerbate the singularity. All the results are consistent with traditional calculations of the quantum energy-momentum in 1 + 1 spacetime dimensions.

  12. DefenseLink Feature: Comrades, Loved Ones Provide Reminders of Memorial

    Science.gov Websites

    northeast of Baghdad when their UH-60 Black Hawk helicopter was shot down. U.S. Army photo by Sgt. Mary Black Hawk helicopter was shot down near Baghdad on Jan. 20, 2007. Courtesy photo Navy Petty Officer 1st

  13. Hawking radiation of Dirac particles from black strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Jamil; Saifullah, K., E-mail: jamil_051@yahoo.com, E-mail: saifullah@qau.edu.pk

    2011-08-01

    Hawking radiation has been studied as a phenomenon of quantum tunneling in different black holes. In this paper we extend this semi-classical approach to cylindrically symmetric black holes. Using the Hamilton-Jacobi method and WKB approximation we calculate the tunneling probabilities of incoming and outgoing Dirac particles from the event horizon and find the Hawking temperature of these black holes. We obtain results both for uncharged as well as charged particles.

  14. What the White "Squaws" Want from Black Hawk: Gendering the Fan-Celebrity Relationship

    ERIC Educational Resources Information Center

    Helton, Tena L.

    2010-01-01

    Americans in the East were great fans of Black Hawk, whose popularity on tour overtook that of Andrew Jackson's parallel tour of the Northeast. Undoubtedly, then, Black Hawk was a celebrity. He remained popular even in 1837, when he attended Catlin's gallery opening in New York, which included his 1832 painting of Black Hawk. Black Hawk may also…

  15. Hawking's bid to save quantum theory from black holes

    NASA Astrophysics Data System (ADS)

    Cho, Adrian

    2018-03-01

    When Albert Einstein died in 1955, he had spent lonely decades trying in vain to unify the theories of gravity and electromagnetism. Stephen Hawking, the great British physicist who died last week at age 76, also worked until the end. But he focused on perhaps the most important problem in his area of physics, one his own work had posed: How do black holes preserve information encoded in the material that falls into them? Hawking realized in 1974 that through a subtle quantum effect a black hole can radiate energy and evaporate. But then a black hole should destroy any infalling information, which cannot come back out in the random radiation. Such information loss would wreck quantum mechanics, and Hawking spent much of his later years trying to figure out how a black hole could preserve information after all, even as the degenerative nerve disease amyotrophic lateral sclerosis rendered him immobile and able to speak only through a computerized voice synthesizer. Ironically, Hawking's disability may have helped him avoid the isolation that enveloped Einstein, as Hawking had to rely on collaborators to flesh out his ideas and so remained connected to his peers.

  16. Hawking Radiation of Massive Bosons via Tunneling from Black Strings

    NASA Astrophysics Data System (ADS)

    Feng, Zhong-Wen

    2017-12-01

    In the present paper, the Hawking radiation of massive bosons from 4-dimensional and 5-dimensional black strings are studied in quantum tunneling formalism. First, we derive the Hamilton-Jacobi equation set via the Proca equation and WKB approximation. Then, the tunneling rates and Hawking temperatures of the black strings are obtained. Our calculations show that the tunneling rates and Hawking temperatures are related to the properties of black strings' spacetime. When compare our results with those of scalars and fermions cases, it finds that they are the same.

  17. Hawking Radiation of Massive Bosons via Tunneling from Black Strings

    NASA Astrophysics Data System (ADS)

    Feng, Zhong-Wen

    2018-03-01

    In the present paper, the Hawking radiation of massive bosons from 4-dimensional and 5-dimensional black strings are studied in quantum tunneling formalism. First, we derive the Hamilton-Jacobi equation set via the Proca equation and WKB approximation. Then, the tunneling rates and Hawking temperatures of the black strings are obtained. Our calculations show that the tunneling rates and Hawking temperatures are related to the properties of black strings' spacetime. When compare our results with those of scalars and fermions cases, it finds that they are the same.

  18. Hawking radiation from dilatonic black holes via anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang Qingquan; Cai Xu; Wu Shuangqing

    2007-03-15

    Recently, Hawking radiation from a Schwarzschild-type black hole via a gravitational anomaly at the horizon has been derived by Robinson and Wilczek. Their result shows that, in order to demand general coordinate covariance at the quantum level to hold in the effective theory, the flux of the energy-momentum tensor required to cancel the gravitational anomaly at the horizon of the black hole is exactly equal to that of (1+1)-dimensional blackbody radiation at the Hawking temperature. In this paper, we attempt to apply the analysis to derive Hawking radiation from the event horizons of static, spherically symmetric dilatonic black holes withmore » arbitrary coupling constant {alpha}, and that from the rotating Kaluza-Klein ({alpha}={radical}(3)) as well as the Kerr-Sen ({alpha}=1) black holes via an anomalous point of view. Our results support Robinson and Wilczek's opinion. In addition, the properties of the obtained physical quantities near the extreme limit are qualitatively discussed.« less

  19. Renyi entropies of a black hole from Hawking radiation

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.

    2008-09-01

    The Renyi entropies of a black hole are evaluated by counting the states of the Hawking radiation which fills a thin shell surrounding the horizon. The width of the shell is determined from its energy content and the corresponding mass defect. The Bekenstein-Hawking formula for the entropy of the black hole is correctly reproduced.

  20. Hawking radiation of five-dimensional charged black holes with scalar fields

    NASA Astrophysics Data System (ADS)

    Miao, Yan-Gang; Xu, Zhen-Ming

    2017-09-01

    We investigate the Hawking radiation cascade from the five-dimensional charged black hole with a scalar field coupled to higher-order Euler densities in a conformally invariant manner. We give the semi-analytic calculation of greybody factors for the Hawking radiation. Our analysis shows that the Hawking radiation cascade from this five-dimensional black hole is extremely sparse. The charge enhances the sparsity of the Hawking radiation, while the conformally coupled scalar field reduces this sparsity.

  1. Management of Electronic Test Equipment. Volume 3. Organizations, Policies, and Procedures.

    DTIC Science & Technology

    1986-07-01

    is not guaranteed. The best example, probably, is the UH - 60 Black Hawk program, where the specific tools used by organizational maintainers were nailed...tools. This innovative and highly effective approach was large!i, Successful. even though it became obvious once the UH - 60 was fielded, that a special...test set was necessary to cope with the electronic control unit assembly of the turbine engine. The UH - 60 example, however, does illustrate that support

  2. Hawking radiation of scalar particles from accelerating and rotating black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillani, Usman A.; Rehman, Mudassar; Saifullah, K., E-mail: mani_precious2001@yahoo.com, E-mail: mudassar051@yahoo.com, E-mail: saifullah@qau.edu.pk

    2011-06-01

    Hawking radiation of uncharged and charged scalar particles from accelerating and rotating black holes is studied. We calculate the tunneling probabilities of these particles from the rotation and acceleration horizons of these black holes. Using this method we recover the correct Hawking temperature as well.

  3. Nonthermal Hawking radiation from NUT-Taub-like black hole

    NASA Astrophysics Data System (ADS)

    Zhao, GuoMing; Li, PengZhang

    2012-04-01

    Using Damour-Ruffini method, we investigate Hawking radiation from NUT-Taub-like (NT-like) black hole. Considering the total energy conservation and the back reaction of the particle to the spacetime, we get the radiation spectrum on the black hole event horizon, which is related to the change of Bekenstein-Hawking entropy. Meanwhile, we find that the radiation is not exactly thermal, and can take out information from the black hole, which can be used to explain the information loss paradox. The result that we get satisfies the unitary theory of quantum mechanics and is consistent with the work finished before.

  4. Soft hair of dynamical black hole and Hawking radiation

    NASA Astrophysics Data System (ADS)

    Chu, Chong-Sun; Koyama, Yoji

    2018-04-01

    Soft hair of black hole has been proposed recently to play an important role in the resolution of the black hole information paradox. Recent work has emphasized that the soft modes cannot affect the black hole S-matrix due to Weinberg soft theorems. However as soft hair is generated by supertranslation of geometry which involves an angular dependent shift of time, it must have non-trivial quantum effects. We consider supertranslation of the Vaidya black hole and construct a non-spherical symmetric dynamical spacetime with soft hair. We show that this spacetime admits a trapping horizon and is a dynamical black hole. We find that Hawking radiation is emitted from the trapping horizon of the dynamical black hole. The Hawking radiation has a spectrum which depends on the soft hair of the black hole and this is consistent with the factorization property of the black hole S-matrix.

  5. Quantum Gravity Effects on Hawking Radiation of Schwarzschild-de Sitter Black Holes

    NASA Astrophysics Data System (ADS)

    Singh, T. Ibungochouba; Meitei, I. Ablu; Singh, K. Yugindro

    2017-08-01

    The correction of Hawking temperature of Schwarzschild-de Sitter (SdS) black hole is investigated using the generalized Klein-Gordon equation and the generalized Dirac equation by taking the quantum gravity effects into account. We derive the corrected Hawking temperatures for scalar particles and fermions crossing the event horizon. The quantum gravity effects prevent the rise of temperature in the SdS black hole. Besides correction of Hawking temperature, the Hawking radiation of SdS black hole is also investigated using massive particles tunneling method. By considering self gravitation effect of the emitted particles and the space time background to be dynamical, it is also shown that the tunneling rate is related to the change of Bekenstein-Hawking entropy and small correction term (1 + 2 β m 2). If the energy and the angular momentum are taken to be conserved, the derived emission spectrum deviates from the pure thermal spectrum. This result gives a correction to the Hawking radiation and is also in agreement with the result of Parikh and Wilczek.

  6. USAARL NUH-60FS Acoustic Characterization

    DTIC Science & Technology

    2016-11-01

    Performance Division (APPD) previously acoustically characterized the Black Hawk flight simulator (NUH-60FS). Since that characterization, the NUH-60FS...greater than one for higher-level speakers. Black Hawk flight simulator, noise level, third octave band level UNCLAS UNCLAS UNCLAS SAR 52 Loraine St. Onge...Research Laboratory NUH-60FS Black Hawk Flight Simulator

  7. Hawking radiation from squashed Kaluza-Klein black holes: A window to extra dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishihara, Hideki; Soda, Jiro

    2007-09-15

    We explore the observability of extra dimensions through five-dimensional squashed Kaluza-Klein black holes residing in the Kaluza-Klein spacetime. With the expectation that the Hawking radiation reflects the five-dimensional nature of the squashed horizon, we study the Hawking radiation of a scalar field in the squashed black hole background. As a result, we show that the luminosity of Hawking radiation tells us the size of the extra dimension, namely, the squashed Kaluza-Klein black holes open a window to extra dimensions.

  8. Hawking radiation as tunneling from squashed Kaluza-Klein black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuno, Ken; Umetsu, Koichiro

    2011-03-15

    We discuss Hawking radiation from a five-dimensional squashed Kaluza-Klein black hole on the basis of the tunneling mechanism. A simple method, which was recently suggested by Umetsu, may be used to extend the original derivation by Parikh and Wilczek to various black holes. That is, we use the two-dimensional effective metric, which is obtained by the dimensional reduction near the horizon, as the background metric. Using the same method, we derive both the desired result of the Hawking temperature and the effect of the backreaction associated with the radiation in the squashed Kaluza-Klein black hole background.

  9. Anomalies and Hawking fluxes from the black holes of topologically massive gravity

    NASA Astrophysics Data System (ADS)

    Porfyriadis, Achilleas P.

    2009-05-01

    The anomaly cancelation method proposed by Wilczek et al. is applied to the black holes of topologically massive gravity (TMG) and topologically massive gravito-electrodynamics (TMGE). Thus the Hawking temperature and fluxes of the ACL and ACGL black holes are found. The Hawking temperatures obtained agree with the surface gravity formula. Both black holes are rotating and this gives rise to appropriate terms in the effective U (1) gauge field of the reduced (1 + 1)-dimensional theory. It is found that the terms in this U (1) gauge field correspond exactly to the correct angular velocities on the horizon of both black holes as well as the correct electrostatic potential of the ACGL black hole. So the results for the Hawking fluxes derived here from the anomaly cancelation method, are in complete agreement with the ones obtained from integrating the Planck distribution.

  10. Investigation of Rotor Performance and Loads of a UH-60A Individual Blade Control System

    NASA Technical Reports Server (NTRS)

    Yeo, Hyeonsoo; Romander, Ethan A.; Norman, Thomas R.

    2010-01-01

    A full-scale wind tunnel test was recently conducted (March 2009) in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-FootWind Tunnel to evaluate the potential of an individual blade control (IBC) system to improve rotor performance and reduce vibrations, loads, and noise for a UH-60A rotor system [1]. This test was the culmination of a long-termcollaborative effort between NASA, U.S. Army, Sikorsky Aircraft Corporation, and ZF Luftfahrttechnik GmbH (ZFL) to demonstrate the benefits of IBC for a UH-60Arotor. Figure 1 shows the UH-60Arotor and IBC system mounted on the NFAC Large Rotor Test Apparatus (LRTA). The IBC concept used in the current study utilizes actuators placed in the rotating frame, one per blade. In particular, the pitch link of the rotor blade was replacedwith an actuator, so that the blade root pitch can be changed independently. This concept, designed for a full-scale UH-60A rotor, was previously tested in the NFAC 80- by 120-FootWind Tunnel in September 2001 at speeds up to 85 knots [2]. For the current test, the same UH-60A rotor and IBC system were tested in the 40- by 80-FootWind Tunnel at speeds up to 170 knots. Figure 2 shows the servo-hydraulic IBC actuator installed between the swashplate and the blade pitch horn. Although previous wind tunnel experiments [3, 4] and analytical studies on IBC [5, 6] have shown the promise to improve the rotor s performance, in-depth correlation studies have not been performed. Thus, the current test provides a unique resource that can be used to assess the accuracy and reliability of prediction methods and refine theoretical models, with the ultimate goal of providing the technology for timely and cost-effective design and development of new rotors. In this paper, rotor performance and loads calculations are carried out using the analyses CAMRAD II and coupled OVERFLOW-2/CAMRAD II and the results are compared with these UH-60A/IBC wind tunnel test data.

  11. The GUP effect on Hawking radiation of the 2 + 1 dimensional black hole

    NASA Astrophysics Data System (ADS)

    Gecim, Ganim; Sucu, Yusuf

    2017-10-01

    We investigate the Generalized Uncertainty Principle (GUP) effect on the Hawking radiation of the 2 + 1 dimensional Martinez-Zanelli black hole by using the Hamilton-Jacobi method. In this connection, we discuss the tunneling probabilities and Hawking temperature of the spin-1/2 and spin-0 particles for the black hole. Therefore, we use the modified Klein-Gordon and Dirac equations based on the GUP. Then, we observe that the Hawking temperature of the scalar and Dirac particles depend on not only the black hole properties, but also the properties of the tunneling particle, such as angular momentum, energy and mass. And, in this situation, we see that the tunneling probability and the Hawking radiation of the Dirac particle is different from that of the scalar particle.

  12. Entropy is conserved in Hawking radiation as tunneling: A revisit of the black hole information loss paradox

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Baocheng; Graduate University of Chinese Academy of Sciences, Beijing 100049; Cai Qingyu, E-mail: qycai@wipm.ac.cn

    2011-02-15

    Research Highlights: > Information is found to be encoded and carried away by Hawking radiations. > Entropy is conserved in Hawking radiation. > We thus conclude no information is lost. > The dynamics of black hole may be unitary. - Abstract: We revisit in detail the paradox of black hole information loss due to Hawking radiation as tunneling. We compute the amount of information encoded in correlations among Hawking radiations for a variety of black holes, including the Schwarzchild black hole, the Reissner-Nordstroem black hole, the Kerr black hole, and the Kerr-Newman black hole. The special case of tunneling throughmore » a quantum horizon is also considered. Within a phenomenological treatment based on the accepted emission probability spectrum from a black hole, we find that information is leaked out hidden in the correlations of Hawking radiation. The recovery of this previously unaccounted for information helps to conserve the total entropy of a system composed of a black hole plus its radiations. We thus conclude, irrespective of the microscopic picture for black hole collapsing, the associated radiation process: Hawking radiation as tunneling, is consistent with unitarity as required by quantum mechanics.« less

  13. Hawking radiation in a d-dimensional static spherically symmetric black hole surrounded by quintessence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Songbai; Wang Bin; Su Rukeng

    2008-06-15

    We present a solution of Einstein equations with quintessential matter surrounding a d-dimensional black hole, whose asymptotic structures are determined by the state of the quintessential matter. We examine the thermodynamics of this black hole and find that the mass of the black hole depends on the equation of state of the quintessence, while the first law is universal. Investigating the Hawking radiation in this black hole background, we observe that the Hawking radiation dominates on the brane in the low-energy regime. For different asymptotic structures caused by the equation of state of the quintessential matter surrounding the black hole,more » we learn that the influences by the state parameter of the quintessence on Hawking radiation are different.« less

  14. Thermodynamics and Hawking radiation of five-dimensional rotating charged Goedel black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Shuangqing; Peng Junjin; College of Science, Wuhan Textile University, Wuhan, Hubei 430074

    2011-02-15

    We study the thermodynamics of Goedel-type rotating charged black holes in five-dimensional minimal supergravity. These black holes exhibit some peculiar features such as the presence of closed timelike curves and the absence of a globally spatial-like Cauchy surface. We explicitly compute their energies, angular momenta, and electric charges that are consistent with the first law of thermodynamics. Besides, we extend the covariant anomaly cancellation method, as well as the approach of the effective action, to derive their Hawking fluxes. Both the methods of the anomaly cancellation and the effective action give the same Hawking fluxes as those from the Planckmore » distribution for blackbody radiation in the background of the charged rotating Goedel black holes. Our results further support that Hawking radiation is a quantum phenomenon arising at the event horizon.« less

  15. Entropy is conserved in Hawking radiation as tunneling: A revisit of the black hole information loss paradox

    NASA Astrophysics Data System (ADS)

    Zhang, Baocheng; Cai, Qing-yu; Zhan, Ming-sheng; You, Li

    2011-02-01

    We revisit in detail the paradox of black hole information loss due to Hawking radiation as tunneling. We compute the amount of information encoded in correlations among Hawking radiations for a variety of black holes, including the Schwarzchild black hole, the Reissner-Nordström black hole, the Kerr black hole, and the Kerr-Newman black hole. The special case of tunneling through a quantum horizon is also considered. Within a phenomenological treatment based on the accepted emission probability spectrum from a black hole, we find that information is leaked out hidden in the correlations of Hawking radiation. The recovery of this previously unaccounted for information helps to conserve the total entropy of a system composed of a black hole plus its radiations. We thus conclude, irrespective of the microscopic picture for black hole collapsing, the associated radiation process: Hawking radiation as tunneling, is consistent with unitarity as required by quantum mechanics.

  16. Computer Description of Black Hawk Helicopter

    DTIC Science & Technology

    1979-06-01

    Model Combinatorial Geometry Models Black Hawk Helicopter Helicopter GIFT Computer Code Geometric Description of Targets 20. ABSTRACT...description was made using the technique of combinatorial geometry (COM-GEOM) and will be used as input to the GIFT computer code which generates Tliic...rnHp The data used bv the COVART comtmter code was eenerated bv the Geometric Information for Targets ( GIFT )Z computer code. This report documents

  17. Dirac Particles' Hawking Radiation from a Schwarzschild Black Hole

    NASA Astrophysics Data System (ADS)

    He, Xiao-Kai; Liu, Wen-Biao

    2007-08-01

    Considering energy conservation and the backreaction of particles to spacetime, we investigate the massless/massive Dirac particles' Hawking radiation from a Schwarzschild black hole. The exact expression of the emission rate near the horizon is obtained and the result indicates that Hawking radiation spectrum is not purely thermal. The result obtained is consistent with the results obtained before. It satisfies the underlying unitary theory and offers a possible mechanism to explain the information loss paradox. Whereas the improved Damour-Ruffini method is more concise and understandable.

  18. Blade Deflection Measurements of a Full-Scale UH-60A Rotor System

    NASA Technical Reports Server (NTRS)

    Olson, Lawrence E.; Abrego, Anita; Barrows, Danny A.; Burner, Alpheus W.

    2010-01-01

    Blade deflection (BD) measurements using stereo photogrammetry have been made during the individual blade control (IBC) testing of a UH-60A 4-bladed rotor system in the 40 by 80-foot test section of the National Full-Scale Aerodynamic Complex (NFAC). Measurements were made in quadrants one and two, encompassing advance ratios from 0.15 to 0.40, thrust coefficient/solidities from 0.05 to 0.12 and rotor-system drive shaft angles from 0.0 to -9.6 deg. The experiment represents a significant step toward providing benchmark databases to be utilized by theoreticians in the development and validation of rotorcraft prediction techniques. In addition to describing the stereo measurement technique and reporting on preliminary measurements made to date, the intent of this paper is to encourage feedback from the rotorcraft community concerning continued analysis of acquired data and to solicit suggestions for improved test technique and areas of emphasis for measurements in the upcoming UH-60A Airloads test at the NFAC.

  19. Hawking temperature of rotating charged black strings from tunneling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Jamil; Saifullah, K., E-mail: jamil_051@yahoo.com, E-mail: saifullah@qau.edu.pk

    2011-11-01

    Thermal radiations from spherically symmetric black holes have been studied from the point of view of quantum tunneling. In this paper we extend this approach to study radiation of fermions from charged and rotating black strings. Using WKB approximation and Hamilton-Jacobi method we work out the tunneling probabilities of incoming and outgoing fermions and find the correct Hawking temperature for these objects. We show that in appropriate limits the results reduce to those for the uncharged and non-rotating black strings.

  20. Hawking radiation of spin-1 particles from a three-dimensional rotating hairy black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakalli, I.; Ovgun, A., E-mail: ali.ovgun@emu.edu.tr

    We study the Hawking radiation of spin-1 particles (so-called vector particles) from a three-dimensional rotating black hole with scalar hair using a Hamilton–Jacobi ansatz. Using the Proca equation in the WKB approximation, we obtain the tunneling spectrum of vector particles. We recover the standard Hawking temperature corresponding to the emission of these particles from a rotating black hole with scalar hair.

  1. Entropy Conservation of Linear Dilaton Black Holes in Quantum Corrected Hawking Radiation

    NASA Astrophysics Data System (ADS)

    Sakalli, I.; Halilsoy, M.; Pasaoglu, H.

    2011-10-01

    It has been shown recently that information is lost in the Hawking radiation of the linear dilaton black holes in various theories when applying the tunneling formalism of Parikh and Wilczek without considering quantum gravity effects. In this paper, we recalculate the emission probability by taking into account the log-area correction to the Bekenstein-Hawking entropy and the statistical correlation between quanta emitted. The crucial role of the quantum gravity effects on the information leakage and black hole remnant is highlighted. The entropy conservation of the linear dilaton black holes is discussed in detail. We also model the remnant as an extreme linear dilaton black hole with a pointlike horizon in order to show that such a remnant cannot radiate and its temperature becomes zero. In summary, we show that the information can also leak out of the linear dilaton black holes together with preserving unitarity in quantum mechanics.

  2. Unthermal Hawking Radiation from a General Stationary Black Hole

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Ping; Dai, Qian; Liu, Wen-Biao

    2008-02-01

    Using Damour Ruffini's method, Hawking radiation from a general stationary black hole is investigated again deeply. Considering the back reaction of the particle to the space-time and energy conservation, we find that the radiation is not exactly thermal and can take out information from the black hole. This can be used to explain the information loss paradox, and the result is consistent with the works finished before.

  3. NASTRAN Modeling of Flight Test Components for UH-60A Airloads Program Test Configuration

    NASA Technical Reports Server (NTRS)

    Idosor, Florentino R.; Seible, Frieder

    1993-01-01

    Based upon the recommendations of the UH-60A Airloads Program Review Committee, work towards a NASTRAN remodeling effort has been conducted. This effort modeled and added the necessary structural/mass components to the existing UH-60A baseline NASTRAN model to reflect the addition of flight test components currently in place on the UH-60A Airloads Program Test Configuration used in NASA-Ames Research Center's Modern Technology Rotor Airloads Program. These components include necessary flight hardware such as instrument booms, movable ballast cart, equipment mounting racks, etc. Recent modeling revisions have also been included in the analyses to reflect the inclusion of new and updated primary and secondary structural components (i.e., tail rotor shaft service cover, tail rotor pylon) and improvements to the existing finite element mesh (i.e., revisions of material property estimates). Mode frequency and shape results have shown that components such as the Trimmable Ballast System baseplate and its respective payload ballast have caused a significant frequency change in a limited number of modes while only small percent changes in mode frequency are brought about with the addition of the other MTRAP flight components. With the addition of the MTRAP flight components, update of the primary and secondary structural model, and imposition of the final MTRAP weight distribution, modal results are computed representative of the 'best' model presently available.

  4. Helicopter noise definition report: UH-60A, S-76, A-109, 206-L

    DOT National Transportation Integrated Search

    1981-12-31

    This document presents noise data for the Sikorsky UH-60A Blackhawk, the Sikorsky S-76 Spirit, the Agusta A-109 and the Bell 206-L. The acoustical data are accompanied by phototheodolite tracking data, cockpit instrument panel photo data, and meteoro...

  5. Hawking radiation

    NASA Astrophysics Data System (ADS)

    Parentani, Renaud; Spindel, Philippe

    2011-12-01

    Hawking radiation is the thermal radiation predicted to be spontaneously emitted by black holes. It arises from the steady conversion of quantum vacuum fluctuations into pairs of particles, one of which escaping at infinity while the other is trapped inside the black hole horizon. It is named after the physicist Stephen Hawking who derived its existence in 1974. This radiation reduces the mass of black holes and is therefore also known as black hole evaporation.

  6. Black Hawk Down: Film Zwischen Reflektion und Konstruktion Gesellschaftlicher Wirklichkeit

    NASA Astrophysics Data System (ADS)

    Pötzsch, Holger

    2009-05-01

    BLACK HAWK DOWN: FILM BETWEEN THE REFLECTION AND CONSTRUCTION OF SOCIAL REALITY - In this article, Ridley Scott's film Black Hawk Down (USA 2001) is read in the context of contemporary theories concerning cultural memory (Jan and Aleida Assmann) and media culture (Douglas Kellner). It is argued that film (and representation in general) does not merely reflect a preceding reality; it also actively serves to construct it. It is shown how Scott's film privileges one particular perspective on an actual event and how this point of view is objectified and installed in the memory of Western media culture. What potential implications does an increased blurring of fact and fiction in the representation of war have? What are the consequences for political and pedagogical practice? What role can cultural studies play in these processes?

  7. Hawking radiation, entanglement, and teleportation in the background of an asymptotically flat static black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan Qiyuan; Jing Jiliang

    2008-09-15

    The effect of the Hawking temperature on the entanglement and teleportation for the scalar field in a most general, static, and asymptotically flat black hole with spherical symmetry has been investigated. It has been shown that the same 'initial entanglement' for the state parameter {alpha} and its 'normalized partners'{radical}(1-{alpha}{sup 2}) will be degraded by the Hawking effect with increasing Hawking temperature along two different trajectories except for the maximally entangled state. In the infinite Hawking temperature limit, corresponding to the case of the black hole evaporating completely, the state no longer has distillable entanglement for any {alpha}. It is interestingmore » to note that the mutual information in this limit is equal to just half of the 'initially mutual information'. It has also been demonstrated that the fidelity of teleportation decreases as the Hawking temperature increases, which indicates the degradation of entanglement.« less

  8. Hawking radiation in a rotating Kaluza-Klein black hole with squashed horizons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Songbai; Wang Bin; Su Rukeng

    2008-01-15

    We explore the signature of the extra dimension in the Hawking radiation in a rotating Kaluza-Klein black hole with squashed horizons. Comparing with the spherical case, we find that the rotating parameter brings richer physics. We obtain the appropriate size of the extra dimension which can enhance the Hawking radiation and may open a window to detect the extra dimensions.

  9. Predictability of Pilot Performance from Simulated to Real Flight in the UH-60 (Black Hawk) Helicopter

    DTIC Science & Technology

    2008-02-01

    keratectomy ( PRK ) and laser in-situ keratomileusis ( LASIK ) procedures to determine compatibility, safety, and efficacy of these procedures for rated Army...performance data. Table B- 1. Simulator and aircraft mean flight performance. LASIK PRK Simulator Aircraft Simulator Aircraft Pre-op 60.81 (2.65) 56.41...12 7. Aircraft vs . Simulator scatter plot, hover turn maneuvers

  10. The effect of the Gauss-Bonnet term on Hawking radiation from arbitrary dimensional black brane

    NASA Astrophysics Data System (ADS)

    Kuang, Xiao-Mei; Saavedra, Joel; Övgün, Ali

    2017-09-01

    We investigate the probabilities of the tunneling and the radiation spectra of massive spin-1 particles from arbitrary dimensional Gauss-Bonnet-Axions (GBA) Anti-de Sitter (AdS) black branes, via using the WKB approximation to the Proca spin-1 field equation. The tunneling probabilities and Hawking temperature of the arbitrary dimensional GBA AdS black brane is calculated via the Hamilton-Jacobi approach. We also compute the Hawking temperature via the Parikh-Wilczek tunneling approach. The results obtained from the two methods are consistent. In our setup, the Gauss-Bonnet (GB) coupling affects the Hawking temperature if and only if the momentum of the axion fields is non-vanishing.

  11. A comprehensive noise survey of the S-70A-9 Black Hawk helicopter.

    PubMed

    King, R B; Saliba, A J; Brock, J R

    1999-02-01

    This paper reports the results of a comprehensive noise survey of the Sikorsky S-70A-9 Black Hawk helicopter environment and provides an assessment of the hearing protection devices worn by Australian Army personnel exposed to that environment. At-ear noise levels were measured at 4 positions in the cabin of the Black Hawk under various flight conditions and at 13 positions outside the Black Hawk under various ground running conditions using the Head Acoustic Measurement System (Head, GmbH). The attenuation properties of the hearing protection devices (HPDs) normally worn by aircrew and maintenance crews (the ALPHA helmet and the Roanwell MX-2507 Communications headset) were also assessed. At-ear sound pressure levels that would be experienced by personnel wearing their normal HPDs were determined at the positions they would normally occupy in and around the aircraft. Results indicate that HPDs do not provide adequate hearing protection to meet current hearing conservation regulations which allow a permissible noise exposure of 85 dB(A) for an 8-h day.

  12. Unthermal charged massive Hawking radiation from a Reissner-Nordström-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Khayrul Hasan, M.

    2015-05-01

    We investigate the massive charged particles' Hawking radiation from a Reissner-Nordström-de Sitter (RNdS) black hole by Damour-Ruffini's method. We get the unthermal spectrum when the back-reaction of particles' energy and charge to spacetime is considered. The information will get out from the black hole with the corrected spectrum. The radiation is not exactly thermal and because the derivation obeys conservation laws, the non thermal Hawking radiation can carry information from the black hole. In our work the method is more simple and explicit and it can be used to explain the black hole information loss paradox, and the process satisfies underlying unitary theory.

  13. Hawking radiation via anomaly cancellation for the black holes of five-dimensional minimal gauged supergravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porfyriadis, Achilleas P.

    2009-04-15

    The anomaly cancellation method proposed by Wilczek et al. is applied to the general charged rotating black holes in five-dimensional minimal gauged supergravity. Thus Hawking temperature and fluxes are found. The Hawking temperature obtained agrees with the surface gravity formula. The black holes have charge and two unequal angular momenta, and these give rise to appropriate terms in the effective U(1) gauge field of the reduced (1+1)-dimensional theory. In particular, it is found that the terms in this U(1) gauge field correspond exactly to the correct electrostatic potential and the two angular velocities on the horizon of the black holes,more » and so the results for the Hawking fluxes derived here from the anomaly cancellation method are in complete agreement with the ones obtained from integrating the Planck distribution.« less

  14. Black Hawk. The Story of an American Indian.

    ERIC Educational Resources Information Center

    Cunningham, Maggi

    Born in 1767, Black Hawk was the last great war leader of the Sauk Indians, who lived in the Rock River valley in Illinois. By age 25, he was a famed warrior and leader of his people who raided neighboring tribes until a period of peace and prosperity began about 1800. Various treaties of which the Sauk knew and understood very little deprived the…

  15. Human Factors Assessment of the UH-60M Common Avionics Architecture System (CAAS) Crew Station During the Limited User Evaluation (LEUE)

    DTIC Science & Technology

    2005-12-01

    weapon system evaluation as a high-level architecture and distributed interactive simulation 6 compliant, human-in-the-loop, virtual environment...Directorate to participate in the Limited Early User Evaluation (LEUE) of the Common Avionics Architecture System (CAAS) cockpit. ARL conducted a human...CAAS, the UH-60M PO conducted a limited early user evaluation (LEUE) to evaluate the integration of the CAAS in the UH-60M crew station. The

  16. Hawking radiation of Dirac particles via tunneling from a black plane

    NASA Astrophysics Data System (ADS)

    Li, Hui-Ling; Zhou, Teng-Jiao; Cai, Min

    2008-12-01

    Extending Kerner and Mann’s fermion tunneling, we investigate the Dirac particle’s tunneling radiation from a black plane in Anti-de Sitter space-time. The result shows that the tunneling probability is related to the change of Bekenstein-Hawking entropy.

  17. Hawking Radiation from a Spherically Symmetric Static Black Hole

    NASA Astrophysics Data System (ADS)

    Dai, Qian; Liu, Wenbiao

    2007-08-01

    The massive particles’ Hawking radiation from a spherically symmetric static black hole is investigated with Parikh-Wilczek method, Hamilton Jacobi method and Damour Ruffini’s method. When energy conservation is considered, the same result can be concluded that the radiation spectrum is not precisely thermal. The corrected spectrum is consistent to the underlying unitary quantum theory, which can be used to explain the information loss paradox possibly.

  18. Survivability on the Island of Spice: The Development of the UH-60 Blackhawk and Its Baptism of Fire in Operation Urgent Fury

    DTIC Science & Technology

    2015-06-12

    SURVIVABILITY ON THE ISLAND OF SPICE : THE DEVELOPMENT OF THE UH-60 BLACKHAWK AND ITS BAPTISM OF FIRE IN OPERATION URGENT FURY......THESIS APPROVAL PAGE Name of Candidate: Major Matthew G. Easley Thesis Title: Survivability on the Island of Spice : The Development of the UH

  19. Modified Hawking radiation in a BTZ black hole using Damour Ruffini method

    NASA Astrophysics Data System (ADS)

    He, Xiaokai; Liu, Wenbiao

    2007-09-01

    Considering energy conservation, angular momentum conservation, and the particles' back reaction to space-time, the scalar particles' Hawking radiation from a BTZ black hole was investigated using Damour-Ruffini method. The exact expression of the emission rate near the horizon is obtained and the result indicates that Hawking radiation spectrum is not purely thermal. The result obtained is consistent with the previous literatures. It is in agreement with an underlying unitary theory and offers a possible mechanism to explain the information loss paradox. Whereas, the method is more concise and understandable.

  20. Thermal Hawking radiation of black hole with supertranslation field

    NASA Astrophysics Data System (ADS)

    Iofa, Mikhail Z.

    2018-01-01

    Using the analytical solution for the Schwarzschild metric containing supertranslation field, we consider two main ingredients of calculation of the thermal Hawking black hole radiation: solution for eigenmodes of the d'Alambertian and solution of the geodesic equations for null geodesics. For calculation of Hawking radiation it is essential to determine the behavior of both the eigenmodes and geodesics in the vicinity of horizon. The equation for the eigenmodes is solved, first, perturbatively in the ratio O( C) /M of the supertranslation field to the mass of black hole, and, next, non-perturbatively in the near- horizon region. It is shown that in any order of perturbation theory solution for the eigenmodes in the metric containing supertranslation field differs from solution in the pure Schwarzschild metric by terms of order L 1/2 = (1 - 2 M/r)1/2. In the non-perturbative approach, solution for the eigenmodes differs from solution in the Schwarzschild metric by terms of order L 1/2 which vanish on horizon. Using the simplified form of geodesic equations in vicinity of horizon, it is shown that in vicinity of horizon the null geodesics have the same behavior as in the Schwarzschild metric. As a result, the density matrices of thermal radiation in both cases are the same.

  1. Hawking Radiation from an Acoustic Black Hole on an Ion Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horstmann, B.; Cirac, J. I.; Reznik, B.

    2010-06-25

    In this Letter we propose to simulate acoustic black holes with ions in rings. If the ions are rotating with a stationary and inhomogeneous velocity profile, regions can appear where the ion velocity exceeds the group velocity of the phonons. In these regions phonons are trapped like light in black holes, even though we have a discrete field theory and a nonlinear dispersion relation. We study the appearance of Hawking radiation in this setup and propose a scheme to detect it.

  2. Hawking radiation from an acoustic black hole on an ion ring.

    PubMed

    Horstmann, B; Reznik, B; Fagnocchi, S; Cirac, J I

    2010-06-25

    In this Letter we propose to simulate acoustic black holes with ions in rings. If the ions are rotating with a stationary and inhomogeneous velocity profile, regions can appear where the ion velocity exceeds the group velocity of the phonons. In these regions phonons are trapped like light in black holes, even though we have a discrete field theory and a nonlinear dispersion relation. We study the appearance of Hawking radiation in this setup and propose a scheme to detect it.

  3. Comparison of Computed and Measured Vortex Evolution for a UH-60A Rotor in Forward Flight

    NASA Technical Reports Server (NTRS)

    Ahmad, Jasim Uddin; Yamauchi, Gloria K.; Kao, David L.

    2013-01-01

    A Computational Fluid Dynamics (CFD) simulation using the Navier-Stokes equations was performed to determine the evolutionary and dynamical characteristics of the vortex flowfield for a highly flexible aeroelastic UH-60A rotor in forward flight. The experimental wake data were acquired using Particle Image Velocimetry (PIV) during a test of the fullscale UH-60A rotor in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel. The PIV measurements were made in a stationary cross-flow plane at 90 deg rotor azimuth. The CFD simulation was performed using the OVERFLOW CFD solver loosely coupled with the rotorcraft comprehensive code CAMRAD II. Characteristics of vortices captured in the PIV plane from different blades are compared with CFD calculations. The blade airloads were calculated using two different turbulence models. A limited spatial, temporal, and CFD/comprehensive-code coupling sensitivity analysis was performed in order to verify the unsteady helicopter simulations with a moving rotor grid system.

  4. Long-Range Master Plan, 1986-1989. Black Hawk College, East Campus.

    ERIC Educational Resources Information Center

    Black Hawk Coll. Kewanee, IL. East Campus.

    This 3-year strategic long-range master plan states the intended direction of Black Hawk College-East Campus (BHC) in Illinois for October 1986 to October 1989. The report begins with a series of graphs offering various service area comparisons between rural Illinois residents and BHE students; enrollment data; and student demographics. Next, the…

  5. Computation of UH-60A Airloads Using CFD/CSD Coupling on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Lee-Rausch, Elizabeth M.

    2011-01-01

    An unsteady Reynolds-averaged Navier-Stokes solver for unstructured grids is used to compute the rotor airloads on the UH-60A helicopter at high-speed and high thrust conditions. The flow solver is coupled to a rotorcraft comprehensive code in order to account for trim and aeroelastic deflections. Simulations are performed both with and without the fuselage, and the effects of grid resolution, temporal resolution and turbulence model are examined. Computed airloads are compared to flight data.

  6. Special Inspector General for Iraq Reconstruction Quarterly Report to the United States Congress

    DTIC Science & Technology

    2010-04-30

    fewer than 100,000 troops on the ground in Iraq,24 down from about A UH-60 Black Hawk hovers above the ancient Ziggurat of Ur near Nassiriya. The...sustain- ing) due to political wrangling over the budget and a political stalemate in the Provincial Council. The PRT also noted a significant black ...enforcement authorities. Rus- sell admitted that she subsequently used the crimi- nal proceeds to purchase, among other things, a car, cosmetic surgery, and

  7. Phases of higher spin black holes: Hawking-Page, transitions between black holes, and a critical point

    NASA Astrophysics Data System (ADS)

    Bañados, Máximo; Düring, Gustavo; Faraggi, Alberto; Reyes, Ignacio A.

    2017-08-01

    We study the thermodynamic phase diagram of three-dimensional s l (N ;R ) higher spin black holes. By analyzing the semiclassical partition function we uncover a rich structure that includes Hawking-Page transitions to the AdS3 vacuum, first order phase transitions among black hole states, and a second order critical point. Our analysis is explicit for N =4 but we extrapolate some of our conclusions to arbitrary N . In particular, we argue that even N is stable in the ensemble under consideration but odd N is not.

  8. Preliminary structural design of composite main rotor blades for minimum weight

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.

    1987-01-01

    A methodology is developed to perform minimum weight structural design for composite or metallic main rotor blades subject to aerodynamic performance, material strength, autorotation, and frequency constraints. The constraints and load cases are developed such that the final preliminary rotor design will satisfy U.S. Army military specifications, as well as take advantage of the versatility of composite materials. A minimum weight design is first developed subject to satisfying the aerodynamic performance, strength, and autorotation constraints for all static load cases. The minimum weight design is then dynamically tuned to avoid resonant frequencies occurring at the design rotor speed. With this methodology, three rotor blade designs were developed based on the geometry of the UH-60A Black Hawk titanium-spar rotor blade. The first design is of a single titanium-spar cross section, which is compared with the UH-60A Black Hawk rotor blade. The second and third designs use single and multiple graphite/epoxy-spar cross sections. These are compared with the titanium-spar design to demonstrate weight savings from use of this design methodology in conjunction with advanced composite materials.

  9. A model structure for identification of linear models of the UH-60 helicopter in hover and forward flight

    DOT National Transportation Integrated Search

    1995-08-01

    A linear model structure applicable to identification of the UH-60 flight : dynamics in hover and forward flight without rotor-state data is developed. The : structure of the model is determined through consideration of the important : dynamic modes ...

  10. The Development of the CONDUIT Advanced Control System Design and Evaluation Interface with a Case Study Application to an Advanced Fly by Wire Helicopter Design

    NASA Technical Reports Server (NTRS)

    Colbourne, Jason

    1999-01-01

    This report details the development and use of CONDUIT (Control Designer's Unified Interface). CONDUIT is a design tool created at Ames Research Center for the purpose of evaluating and optimizing aircraft control systems against handling qualities. Three detailed design problems addressing the RASCAL UH-60A Black Hawk are included in this report to show the application of CONDUIT to helicopter control system design.

  11. Confluent Heun functions and the physics of black holes: Resonant frequencies, Hawking radiation and scattering of scalar waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com; Centro de Ciências, Tecnologia e Saúde, Universidade Estadual da Paraíba, CEP 58233-000, Araruna, PB; Bezerra, V.B., E-mail: valdir@fisica.ufpb.br

    We apply the confluent Heun functions to study the resonant frequencies (quasispectrum), the Hawking radiation and the scattering process of scalar waves, in a class of spacetimes, namely, the ones generated by a Kerr–Newman–Kasuya spacetime (dyon black hole) and a Reissner–Nordström black hole surrounded by a magnetic field (Ernst spacetime). In both spacetimes, the solutions for the angular and radial parts of the corresponding Klein–Gordon equations are obtained exactly, for massive and massless fields, respectively. The special cases of Kerr and Schwarzschild black holes are analyzed and the solutions obtained, as well as in the case of a Schwarzschild blackmore » hole surrounded by a magnetic field. In all these special situations, the resonant frequencies, Hawking radiation and scattering are studied. - Highlights: • Charged massive scalar field in the dyon black hole and massless scalar field in the Ernst spacetime are analyzed. • The confluent Heun functions are applied to obtain the solution of the Klein–Gordon equation. • The resonant frequencies are obtained. • The Hawking radiation and the scattering process of scalar waves are examined.« less

  12. Fading Hawking radiation

    NASA Astrophysics Data System (ADS)

    Sakalli, Izzet; Halilsoy, Mustafa; Pasaoglu, Hale

    2012-07-01

    In this study, we explore a particular type Hawking radiation which ends with zero temperature and entropy. The appropriate black holes for this purpose are the linear dilaton black holes. In addition to the black hole choice, a recent formalism in which the Parikh-Wilczek's tunneling formalism amalgamated with quantum corrections to all orders in ħ is considered. The adjustment of the coefficients of the quantum corrections plays a crucial role on this particular Hawking radiation. The obtained tunneling rate indicates that the radiation is not pure thermal anymore, and hence correlations of outgoing quanta are capable of carrying away information encoded within them. Finally, we show in detail that when the linear dilaton black hole completely evaporates through such a particular radiation, entropy of the radiation becomes identical with the entropy of the black hole, which corresponds to "no information loss".

  13. Hawking Tunneling Radiation of Black Holes in de Sitter and ANTI-de Sitter Spacetimes

    NASA Astrophysics Data System (ADS)

    Jiang, Qing-Quan; Li, Hui-Ling; Yang, Shu-Zheng; Chen, De-You

    Applying Parikh-Wilczek's semiclassical quantum tunneling method, we investigate the tunneling radiation characteristics of a torus-like black hole and Kerr-Newman-Kausya de Sitter black hole. Both black holes have the cosmological constant Λ, but a torus-like black hole is in anti-de Sitter spacetime and the other black hole is in de Sitter spacetime. The derived results show that the tunneling rate is related to the change of Bekenstein-Hawking entropy, and the factual radiated spectrum is not precisely thermal, but is consistent with an underlying unitary theory, which gives a might explanation to the paradox of black hole information lost.

  14. Operational Testing of Software-Intensive Systems: Observations and Comments

    DTIC Science & Technology

    2011-03-01

    Hood and Camp Bowie , Texas, October 16–December 8, 2006. This phase included an engineering company, an attack helicopter troop, and a battalion (-) of... Arnold . 2007a. Test data report for the Black Hawk Utility Helicopter (UH-60M) Initial Operational Test Phase IIa, Medical Evacuation Helicopter (HH...60M) Ex- cursion. U.S. Army Operational Test Command, Febru- ary 2007. Manning, W., J. B. Bush, C. Scott, and C. Arnold . 2007b. Test data report for

  15. Evaluation of Wind Tunnel and Scaling Effects with the UH-60A Airloads Rotor

    DTIC Science & Technology

    2011-05-01

    V! free-stream velocity, ft/s x chordwise distance from leading edge, ft #c, #s corrected/geometric shaft angles, deg $1c, $1s cos/sin components...attached to spindles that were retained by elastomeric bearings to a one-piece titanium hub. These bearings permitted blade flap, lead-lag, and...Figure 3. UH-60A small-scale rotor installed in DNW. Main rotor dampers were installed between each of the main rotor spindles and the hub to

  16. Hawking radiation as tunneling in Schwarzschild anti-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Sefiedgar, A. S.; Ashrafinejad, A.

    2017-08-01

    The Hawking radiation from a (d+1) -dimensional Schwarzschild Anti-de Sitter (SAdS) black hole is investigated within rainbow gravity. Based on the method proposed by Kraus, Parikh and Wilczek, the Hawking radiation is considered as a tunneling process across the horizon. The emission rate of massless particles which are tunneling across the quantum-corrected horizon is calculated. Enforcing the energy conservation law leads to a dynamical geometry. Both the dynamical geometry and the quantum effects of space-time yield some corrections to the emission rate. The corrected radiation spectrum is not purely thermal. The emission rate is related to the changes of modified entropy in rainbow gravity and the corrected thermal spectrum may be consistent with an underlying unitary quantum theory. The correlations between emitted particles are also investigated in order to address the recovery of information.

  17. Pilot in the Loop CFD Method Development

    DTIC Science & Technology

    2016-07-31

    Aerospace Engineering 231C Hammond Building University Park, PA 16802 Attn: Joseph F. Horn Phone: 814-865-6434, Fax: 814-865-7092 Email: joehorn...larger main rotor provides propulsion and lift, and thus induces significant flow disturbances on the surrounding air . The CFD coupling interface...J., “UH-60A Black Hawk Engineering Simulation Program: Volume I – Mathematical Model,” NASA CR166309, 1981. 5. Transitions/Impact No major

  18. Predesign study for a modern 4-bladed rotor for RSRA

    NASA Technical Reports Server (NTRS)

    Davis, S. J.

    1981-01-01

    The feasibility of providing a modern four-bladed rotor for flight research testing on a rotor system aircraft was evaluated. The capabilities of a state of the art rotor system and the contributions of key design parameters to these capabilities were investigated. Three candidate rotors were examined: the UH-60A BLACK HAWK rotor with and without root extenders and the H-3 composite blade rotor. It was concluded that the technical/cost objectives could best be accomplished using the basic BLACK HAWK rotor (i.e. without root extenders). Further, the availability of three existing sets of blade tip of varying design, together with a demonstrated capability for altering airfoil geometry should provide early research information on important design variables at reduced cost.

  19. Using Dynamic Interface Modeling and Simulation to Develop a Launch and Recovery Flight Simulation for a UH-60A Blackhawk

    NASA Technical Reports Server (NTRS)

    Sweeney, Christopher; Bunnell, John; Chung, William; Giovannetti, Dean; Mikula, Julie; Nicholson, Bob; Roscoe, Mike

    2001-01-01

    Joint Shipboard Helicopter Integration Process (JSHIP) is a Joint Test and Evaluation (JT&E) program sponsored by the Office of the Secretary of Defense (OSD). Under the JSHDP program is a simulation effort referred to as the Dynamic Interface Modeling and Simulation System (DIMSS). The purpose of DIMSS is to develop and test the processes and mechanisms that facilitate ship-helicopter interface testing via man-in-the-loop ground-based flight simulators. Specifically, the DIMSS charter is to develop an accredited process for using a flight simulator to determine the wind-over-the-deck (WOD) launch and recovery flight envelope for the UH-60A ship/helicopter combination. DIMSS is a collaborative effort between the NASA Ames Research Center and OSD. OSD determines the T&E and warfighter training requirements, provides the programmatics and dynamic interface T&E experience, and conducts ship/aircraft interface tests for validating the simulation. NASA provides the research and development element, simulation facility, and simulation technical experience. This paper will highlight the benefits of the NASA/JSHIP collaboration and detail achievements of the project in terms of modeling and simulation. The Vertical Motion Simulator (VMS) at NASA Ames Research Center offers the capability to simulate a wide range of simulation cueing configurations, which include visual, aural, and body-force cueing devices. The system flexibility enables switching configurations io allow back-to-back evaluation and comparison of different levels of cueing fidelity in determining minimum training requirements. The investigation required development and integration of several major simulation system at the VMS. A new UH-60A BlackHawk interchangeable cab that provides an out-the-window (OTW) field-of-view (FOV) of 220 degrees in azimuth and 70 degrees in elevation was built. Modeling efforts involved integrating Computational Fluid Dynamics (CFD) generated data of an LHA ship airwake and

  20. Hawking radiation from charged black holes via gauge and gravitational anomalies.

    PubMed

    Iso, Satoshi; Umetsu, Hiroshi; Wilczek, Frank

    2006-04-21

    Extending the method of Robinson and Wolczek, we show that in order to avoid a breakdown of general covariance and gauge invariance at the quantum level the total flux of charge and energy in each outgoing partial wave of a charged quantum field in a Reissner-Nordström black hole background must be equal to that of a (1 + 1)-dimensional blackbody at the Hawking temperature with the appropriate chemical potential.

  1. Hawking radiation of charged Dirac particles from a Kerr-Newman black hole

    NASA Astrophysics Data System (ADS)

    Zhou, Shiwei; Liu, Wenbiao

    2008-05-01

    Charged Dirac particles’ Hawking radiation from a Kerr-Newman black hole is calculated using Damour-Ruffini’s method. When energy conservation and the backreaction of particles to the space-time are considered, the emission spectrum is not purely thermal anymore. The leading term is exactly the Boltzman factor, and the deviation from the purely thermal spectrum can bring some information out, which can be treated as an explanation to the information loss paradox. The result can also be treated as a quantum-corrected radiation temperature, which is dependent on the black hole background and the radiation particle’s energy, angular momentum, and charge.

  2. Hawking radiation and covariant anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Rabin; Kulkarni, Shailesh

    2008-01-15

    Generalizing the method of Wilczek and collaborators we provide a derivation of Hawking radiation from charged black holes using only covariant gauge and gravitational anomalies. The reliability and universality of the anomaly cancellation approach to Hawking radiation is also discussed.

  3. Vacuum polarization and Hawking radiation

    NASA Astrophysics Data System (ADS)

    Rahmati, Shohreh

    Quantum gravity is one of the interesting fields in contemporary physics which is still in progress. The purpose of quantum gravity is to present a quantum description for spacetime at 10-33cm or find the 'quanta' of gravitational interaction.. At present, the most viable theory to describe gravitational interaction is general relativity which is a classical theory. Semi-classical quantum gravity or quantum field theory in curved spacetime is an approximation to a full quantum theory of gravity. This approximation considers gravity as a classical field and matter fields are quantized. One interesting phenomena in semi-classical quantum gravity is Hawking radiation. Hawking radiation was derived by Stephen Hawking as a thermal emission of particles from the black hole horizon. In this thesis we obtain the spectrum of Hawking radiation using a new method. Vacuum is defined as the possible lowest energy state which is filled with pairs of virtual particle-antiparticle. Vacuum polarization is a consequence of pair creation in the presence of an external field such as an electromagnetic or gravitational field. Vacuum polarization in the vicinity of a black hole horizon can be interpreted as the cause of the emission from black holes known as Hawking radiation. In this thesis we try to obtain the Hawking spectrum using this approach. We re-examine vacuum polarization of a scalar field in a quasi-local volume that includes the horizon. We study the interaction of a scalar field with the background gravitational field of the black hole in the desired quasi-local region. The quasi-local volume is a hollow cylinder enclosed by two membranes, one inside the horizon and one outside the horizon. The net rate of particle emission can be obtained as the difference of the vacuum polarization from the outer boundary and inner boundary of the cylinder. Thus we found a new method to derive Hawking emission which is unitary and well defined in quantum field theory.

  4. Application of Neural Networks to Predict UH-60L Electrical Generator Condition using (IMD-HUMS) Data

    DTIC Science & Technology

    2006-12-01

    Data transfer unit ( DTU ) • Remote data concentrator (RDC) • Main processor unit (MPU) • 2 junction boxes (JB1/JB2) • 20 drive train and...NETWORKS TO PREDICT UH-60L ELECTRICAL GENERATOR CONDITION USING (IMD-HUMS) DATA by Evangelos Tourvalis December 2006 Thesis Advisor...including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the

  5. Modified Hawking Radiation from a Kerr-Newman Black Hole due to Back-Reaction

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Wang, Gang; Liu, Wenbiao

    Hawking radiation from a general Kerr-Newman black hole is investigated using Damour-Ruffini's method. Considering the back-reaction of particle's energy, charge and angular momentum to the spacetime, we obtain a modified nonthermal spectrum. Maybe the information loss paradox can be explained, furthermore, the result is also consistent with the result obtained using Parikh and Wilczek's method.

  6. S-7OA-9 Black Hawk Helicopter: Internal Panel Cracking Investigation

    DTIC Science & Technology

    1997-01-01

    research into helicopter usage monitoring and is involved with a sub-committee of TTCP HTP 8 looking at issues related to helicopter usage monitoring. He is...Repair Manual . It was subsequently discovered that a majority of the ESSS struts in service had the same damage and this raised an airworthiness issue...Black Hawk Structural Repair Manual , Royal Australian Air Force Publication, DI(AF) AAP7210.015-3,12 May 1994. 15. Fraser, R.C., A One-Pass Method For

  7. Department of Defense 2016 Operational Energy Strategy

    DTIC Science & Technology

    2015-12-03

    forward arming refuel point to refuel a UH-60 Black Hawk, Dec. 21, 2014, Tappita, Liberia . Atkins and a team of crew chiefs set up a forward arming...refueling point from their CH-47 Chinook to ensure the commander of Joint Forces Command - United Assistance and crew made it to Ebola treatment unit...sites throughout Liberia . United Assistance is a Department of Defense operation in Liberia to provide logistics, training and engineering support to

  8. Mobility Research for Future Vehicles: A Methodology to Create a Unified Trade-Off Environment for Advanced Aerospace Vehicle

    DTIC Science & Technology

    2015-10-30

    accurately follow the development of the Black Hawk helicopters , a single main rotor model in NDARC that accurately represented the UH-60A is required. NDARC...Weight changes were based on results from Nixon’s paper, which focused on modeling the structure of a composite rotor blade and using optimization to...conclude that improved composite design to further reduce weight needs to be achieved. An additionally interesting effect is how the rotor technology

  9. Regarding `Information Preservation and Weather Forecasting for Black Holes' by S. W. Hawking

    NASA Astrophysics Data System (ADS)

    Winterberg, Friedwardt

    2014-06-01

    It is proposed that the `apparent horizons' assumed by Hawking to resolve the black hole information paradox, are in reality the regions where in Lorentzian relativity the absolute velocity against a preferred reference system at rest with the zero point vacuum energy reaches the velocity of light, and where an elliptical differential equation holding matter in a stable equilibrium goes over a transluminal Euler-Tricomi equation into a hyperbolic differential equation where such an equilibrium is not more possible, with matter in approaching this region disintegrating into radiation. Hawking's proposal depends on the anti-de Sitter/conformal field theory (AdS/CFT) conjecture which in turn depends on string/M theory which in the absence of super-symmetry will not work.

  10. Unthermal Charged Massive Hawking Radiation from a Reissner-Nordström Black Hole

    NASA Astrophysics Data System (ADS)

    Zhou, Shiwei; Liu, Wenbiao

    2008-03-01

    Using Damour-Ruffini’s method, the massive charged particles’ Hawking radiation from a Reissner-Nordström black hole is investigated. When the back-reaction of particles’ energy and charge to spacetime is considered, we get the unthermal spectrum. It is possible that the information will get out from the black hole with the corrected spectrum. It can be used to explain the information loss paradox, and the underlying unitary theory will be satisfied. The same conclusion as the works finished before can be drawn. However, our work is different from them, and the method is more simple and explicit.

  11. Hidden messenger revealed in Hawking radiation: A resolution to the paradox of black hole information loss

    NASA Astrophysics Data System (ADS)

    Zhang, Baocheng; Cai, Qing-yu; You, Li; Zhan, Ming-sheng

    2009-05-01

    Using standard statistical method, we discover the existence of correlations among Hawking radiations (of tunneled particles) from a black hole. The information carried by such correlations is quantified by mutual information between sequential emissions. Through a careful counting of the entropy taken out by the emitted particles, we show that the black hole radiation as tunneling is an entropy conservation process. While information is leaked out through the radiation, the total entropy is conserved. Thus, we conclude the black hole evaporation process is unitary.

  12. Thermodynamics, stability and Hawking-Page transition of Kerr black holes from Rényi statistics

    NASA Astrophysics Data System (ADS)

    Czinner, Viktor G.; Iguchi, Hideo

    2017-12-01

    Thermodynamics of rotating black holes described by the Rényi formula as equilibrium and zeroth law compatible entropy function is investigated. We show that similarly to the standard Boltzmann approach, isolated Kerr black holes are stable with respect to axisymmetric perturbations in the Rényi model. On the other hand, when the black holes are surrounded by a bath of thermal radiation, slowly rotating black holes can also be in stable equilibrium with the heat bath at a fixed temperature, in contrast to the Boltzmann description. For the question of possible phase transitions in the system, we show that a Hawking-Page transition and a first order small black hole/large black hole transition occur, analogous to the picture of rotating black holes in AdS space. These results confirm the similarity between the Rényi-asymptotically flat and Boltzmann-AdS approaches to black hole thermodynamics in the rotating case as well. We derive the relations between the thermodynamic parameters based on this correspondence.

  13. Zone-tailed Hawk (Buteo albonotatus)

    Treesearch

    Scott H. Stoleson; Giancarlo Sadoti

    2010-01-01

    The Zone-tailed Hawk (Buteo albonotatus) might well be dubbed "the Great Pretender" because it so closely resembles the ubiquitous Turkey Vulture (Cathartes aura) in appearance and behavior as to be frequently mistaken for it. In the border regions where it lives, it may be confused as well with another "Mexican" raptor, the Common Black-Hawk (...

  14. Hawking radiation, the Stefan-Boltzmann law, and unitarization

    NASA Astrophysics Data System (ADS)

    Giddings, Steven B.

    2016-03-01

    Where does Hawking radiation originate? A common picture is that it arises from excitations very near or at the horizon, and this viewpoint has supported the ;firewall; argument and arguments for a key role for the UV-dependent entanglement entropy in describing the quantum mechanics of black holes. However, closer investigation of both the total emission rate and the stress tensor of Hawking radiation supports the statement that its source is a near-horizon quantum region, or ;atmosphere,; whose radial extent is set by the horizon radius scale. This is potentially important, since Hawking radiation needs to be modified to restore unitarity, and a natural assumption is that the scales relevant to such modifications are comparable to those governing the Hawking radiation. Moreover, related discussion suggests a resolution to questions regarding extra energy flux in ;nonviolent; scenarios, that does not spoil black hole thermodynamics as governed by the Bekenstein-Hawking entropy.

  15. The modern rotor aerodynamic limits survey: A report and data survey

    NASA Technical Reports Server (NTRS)

    Cross, J.; Brilla, J.; Kufeld, R.; Balough, D.

    1993-01-01

    The first phase of the Modern Technology Rotor Program, the Modern Rotor Aerodynamic Limits Survey, was a flight test conducted by the United States Army Aviation Engineering Flight Activity for NASA Ames Research Center. The test was performed using a United States Army UH-60A Black Hawk aircraft and the United States Air Force HH-60A Night Hawk instrumented main-rotor blade. The primary purpose of this test was to gather high-speed, steady-state, and maneuvering data suitable for correlation purposes with analytical prediction tools. All aspects of the data base, flight-test instrumentation, and test procedures are presented and analyzed. Because of the high volume of data, only select data points are presented. However, access to the entire data set is available upon request.

  16. Hawking radiation, the Stefan–Boltzmann law, and unitarization

    DOE PAGES

    Giddings, Steven B.

    2016-01-06

    Where does Hawking radiation originate? A common picture is that it arises from excitations very near or at the horizon, and this viewpoint has supported the “firewall” argument and arguments for a key role for the UV-dependent entanglement entropy in describing the quantum mechanics of black holes. Closer investigation of both the total emission rate and the stress tensor of Hawking radiation supports the statement that its source is a near-horizon quantum region, or “atmosphere,” whose radial extent is set by the horizon radius scale. Potentially important, since Hawking radiation needs to be modified to restore unitarity, and a naturalmore » assumption is that the scales relevant to such modifications are comparable to those governing the Hawking radiation. Moreover, related discussion suggests a resolution to questions regarding extra energy flux in “nonviolent” scenarios, that does not spoil black hole thermodynamics as governed by the Bekenstein–Hawking entropy.« less

  17. Naked singularity, firewall, and Hawking radiation.

    PubMed

    Zhang, Hongsheng

    2017-06-21

    Spacetime singularity has always been of interest since the proof of the Penrose-Hawking singularity theorem. Naked singularity naturally emerges from reasonable initial conditions in the collapsing process. A recent interesting approach in black hole information problem implies that we need a firewall to break the surplus entanglements among the Hawking photons. Classically, the firewall becomes a naked singularity. We find some vacuum analytical solutions in R n -gravity of the firewall-type and use these solutions as concrete models to study the naked singularities. By using standard quantum theory, we investigate the Hawking radiation emitted from the black holes with naked singularities. Here we show that the singularity itself does not destroy information. A unitary quantum theory works well around a firewall-type singularity. We discuss the validity of our result in general relativity. Further our result demonstrates that the temperature of the Hawking radiation still can be expressed in the form of the surface gravity divided by 2π. This indicates that a naked singularity may not compromise the Hakwing evaporation process.

  18. Blade Displacement Measurements of the Full-Scale UH-60A Airloads Rotor

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.; Burner, Alpheus W.; Abrego, Anita I.; Olson, Lawrence E.

    2011-01-01

    Blade displacement measurements were acquired during a wind tunnel test of the full-scale UH-60A Airloads rotor. The test was conducted in the 40- by 80-Foot Wind Tunnel of the National Full-Scale Aerodynamics Complex at NASA Ames Research Center. Multi-camera photogrammetry was used to measure the blade displacements of the four-bladed rotor. These measurements encompass a range of test conditions that include advance ratios from 0.15 to unique slowed-rotor simulations as high as 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. The objective of these measurements is to provide a benchmark blade displacement database to be utilized in the development and validation of rotorcraft computational tools. The methodology, system development, measurement techniques, and preliminary sample blade displacement measurements are presented.

  19. Entanglement in a model for Hawking radiation: An application of quadratic algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bambah, Bindu A., E-mail: bbsp@uohyd.ernet.in; Mukku, C., E-mail: mukku@iiit.ac.in; Shreecharan, T., E-mail: shreecharan@gmail.com

    2013-03-15

    Quadratic polynomially deformed su(1,1) and su(2) algebras are utilized in model Hamiltonians to show how the gravitational system consisting of a black hole, infalling radiation and outgoing (Hawking) radiation can be solved exactly. The models allow us to study the long-time behaviour of the black hole and its outgoing modes. In particular, we calculate the bipartite entanglement entropies of subsystems consisting of (a) infalling plus outgoing modes and (b) black hole modes plus the infalling modes, using the Janus-faced nature of the model. The long-time behaviour also gives us glimpses of modifications in the character of Hawking radiation. Finally, wemore » study the phenomenon of superradiance in our model in analogy with atomic Dicke superradiance. - Highlights: Black-Right-Pointing-Pointer We examine a toy model for Hawking radiation with quantized black hole modes. Black-Right-Pointing-Pointer We use quadratic polynomially deformed su(1,1) algebras to study its entanglement properties. Black-Right-Pointing-Pointer We study the 'Dicke Superradiance' in black hole radiation using quadratically deformed su(2) algebras. Black-Right-Pointing-Pointer We study the modification of the thermal character of Hawking radiation due to quantized black hole modes.« less

  20. Time dependence of Hawking radiation entropy

    NASA Astrophysics Data System (ADS)

    Page, Don N.

    2013-09-01

    If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its original Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4πM02, or about 7.509M02 ≈ 6.268 × 1076(M0/Msolar)2, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the black hole. Results are also given for black holes in initially impure states. If the black hole starts in a maximally mixed state, the von Neumann entropy of the Hawking radiation increases from zero up to a maximum of about 119.51% of the original BH entropy, or about 15.018M02 ≈ 1.254 × 1077(M0/Msolar)2, and then decreases back down to 4πM02 = 1.049 × 1077(M0/Msolar)2.

  1. How the Hawking radiation affect quantum Fisher information of Dirac particles in the background of a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Huang, ChunYu; Ma, Wen-chao; Wang, Dong; Ye, Liu

    2018-01-01

    In this work, the effect of Hawking radiation on the quantum Fisher information (QFI) of Dirac particles is investigated in the background of a Schwarzschild black hole. Interestingly, it has been verified that the QFI with respect to the weight parameter θ of a target state is always independent of the Hawking temperature T. This implies that if we encode the information on the weight parameter, then we can affirm that the corresponding accuracy of the parameter estimation will be immune to the Hawking effect. Besides, it reveals that the QFI with respect to the phase parameter φ exhibits a decay behavior with the increase in the Hawking temperature T and converges to a nonzero value in the limit of infinite Hawking temperature T. Remarkably, it turns out that the function F_φ on θ =π \\big /4 symmetry was broken by the influence of the Hawking radiation. Finally, we generalize the case of a three-qubit system to a case of a N-qubit system, i.e., |ψ > _{1,2,3,\\ldots ,N} =(cos θ | 0 > ^{⊗ N}+sin θ e^{iφ }| 1 > ^{⊗ N}) and obtain an interesting result: the number of particles in the initial state does not affect the QFI F_θ , nor the QFI F_φ . However, with the increasing number of particles located near the event horizon, F_φ will be affected by Hawking radiation to a large extent, while F_θ is still free from disturbance resulting from the Hawking effects.

  2. Piloted Evaluation of Modernized Limited Authority Control Laws in the NASA-Ames Vertical Motion Simulator (VMS)

    NASA Technical Reports Server (NTRS)

    Sahasrabudhe, Vineet; Melkers, Edgar; Faynberg, Alexander; Blanken, Chris L.

    2003-01-01

    The UH-60 BLACK HAWK was designed in the 1970s, when the US Army primarily operated during the day in good visual conditions. Subsequently, the introduction of night-vision goggles increased the BLACK HAWK'S mission effectiveness, but the accident rate also increased. The increased accident rate is strongly tied to increased pilot workload as a result of a degradation in visual cues. Over twenty years of research in helicopter flight control and handling qualities has shown that these degraded handling qualities can be recovered by modifying the response type of the helicopter in low speed flight. Sikorsky Aircraft Corporation initiated a project under the National Rotorcraft Technology Center (NRTC) to develop modern flight control laws while utilizing the existing partial authority Stability Augmentation System (SAS) of the BLACK HAWK. This effort resulted in a set of Modernized Control Laws (MCLAWS) that incorporate rate command and attitude command response types. Sikorsky and the US Army Aeroflightdynamics Directorate (AFDD) conducted a piloted simulation on the NASA-Ames Vertical h4otion Simulator, to assess potential handling qualities and to reduce the risk of subsequent implementation and flight test of these modern control laws on AFDD's EH-60L helicopter. The simulation showed that Attitude Command Attitude Hold control laws in pitch and roll improve handling qualities in the low speed flight regime. These improvements are consistent across a range of mission task elements and for both good and degraded visual environments. The MCLAWS perform better than the baseline UH-60A control laws in the presence of wind and turbulence. Finally, while the improved handling qualities in the pitch and roll axis allow the pilot to pay more attention to the vertical axis and hence altitude performance also improves, it is clear from pilot comments and altitude excursions that the addition of an Altitude Hold function would further reduce workload and improve overall

  3. An Examination of Unsteady Airloads on a UH-60A Rotor: Computation Versus Measurement

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Lee-Rausch, Elizabeth

    2012-01-01

    An unsteady Reynolds-averaged Navier-Stokes solver for unstructured grids is used to simulate the flow over a UH-60A rotor. Traditionally, the computed pressure and shear stresses are integrated on the computational mesh at selected radial stations and compared to measured airloads. However, the corresponding integration of experimental data uses only the pressure contribution, and the set of integration points (pressure taps) is modest compared to the computational mesh resolution. This paper examines the difference between the traditional integration of computed airloads and an integration consistent with that used for the experimental data. In addition, a comparison of chordwise pressure distributions between computation and measurement is made. Examination of this unsteady pressure data provides new opportunities to understand differences between computation and flight measurement.

  4. Hawking radiation due to photon and gravitino tunneling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majhi, Bibhas Ranjan, E-mail: bibhas@bose.res.i; Samanta, Saurav, E-mail: srvsmnt@gmail.co

    2010-11-15

    Applying the Hamilton-Jacobi method we investigate the tunneling of photon across the event horizon of a static spherically symmetric black hole. The necessity of the gauge condition on the photon field, to derive the semiclassical Hawking temperature, is explicitly shown. Also, the tunneling of photon and gravitino beyond this semiclassical approximation are presented separately. Quantum corrections of the action for both cases are found to be proportional to the semiclassical contribution. Modifications to the Hawking temperature and Bekenstein-Hawking area law are thereby obtained. Using this corrected temperature and Hawking's periodicity argument, the modified metric for the Schwarzschild black hole ismore » given. This corrected version of the metric, up to h order is equivalent to the metric obtained by including one loop back reaction effect. Finally, the coefficient of the leading order correction of entropy is shown to be related to the trace anomaly.« less

  5. Blade Displacement Predictions for the Full-Scale UH-60A Airloads Rotor

    NASA Technical Reports Server (NTRS)

    Bledron, Robert T.; Lee-Rausch, Elizabeth M.

    2014-01-01

    An unsteady Reynolds-Averaged Navier-Stokes solver for unstructured grids is loosely coupled to a rotorcraft comprehensive code and used to simulate two different test conditions from a wind-tunnel test of a full-scale UH-60A rotor. Performance data and sectional airloads from the simulation are compared with corresponding tunnel data to assess the level of fidelity of the aerodynamic aspects of the simulation. The focus then turns to a comparison of the blade displacements, both rigid (blade root) and elastic. Comparisons of computed root motions are made with data from three independent measurement systems. Finally, comparisons are made between computed elastic bending and elastic twist, and the corresponding measurements obtained from a photogrammetry system. Overall the correlation between computed and measured displacements was good, especially for the root pitch and lag motions and the elastic bending deformation. The correlation of root lead-lag motion and elastic twist deformation was less favorable.

  6. The uranium-bearing nickel-cobalt-native silver deposits in the Black Hawk district, Grant County, New Mexico

    USGS Publications Warehouse

    Gillerman, Elliot; Whitebread, Donald H.

    1953-01-01

    The Black Hawk (Bullard Peak) district, Grant County, N. Mex., is 21 miles by road west of Silver City. From 1881 to 1893 more than $1,000,000.00 of high-grade silver ore is reported to have been shipped from the district. Since 1893 there has been no mining in the district except during a short period in 1917 when the Black Hawk mine was rehabilitated. Pre-Cambrian quartz diorite gneiss, which contains inclusions of quartzite, schist, monzonite, and quartz monzonite, is the most widespread rock in the district. The quartz diorite gneiss is intruded by many pre-Cambrian and younger rocks, including diorite granite, diabase, monzonite porphyry and andesite and is overlain by the Upper Cretaceous Beartooth quartzite. The monzonite porphyry, probably of late Cretaceous or early Tertiary age, forms a small stock along the northwestern edge of the district and numerous dikes and irregular masses throughout the district. The ore deposits are in fissure veins that contain silver, cobalt, and uranium. The ore minerals, which include native silver, niccolite, millerite, skutterudite, nickel skutterudite, bismuthinite, pitchblende, and sphalerite, are in a carbonate gangue in narrow, persistent veins, most of which trend northeasterly. Pitchblende has been identified in the Black Hawk and the Alhabra deposits and unidentified radioactive minerals were found at five other localities. The deposits that contain the radioactive minerals constitude a belt 600 to 1,500 feet wide that trends about N. 45° E., and is approximately parallel to the southeastern boundary of the monzonite porphyry stock. All the major ore deposits are in the quartz diorite gneiss in close proximity to the monzonite porphyry. The ore deposits are similar to the deposits at Great Bear Lake, Canada, and Joachimstahl, Czechoslovakia.

  7. The third order correction on Hawking radiation and entropy conservation during black hole evaporation process

    NASA Astrophysics Data System (ADS)

    Yan, Hao-Peng; Liu, Wen-Biao

    2016-08-01

    Using Parikh-Wilczek tunneling framework, we calculate the tunneling rate from a Schwarzschild black hole under the third order WKB approximation, and then obtain the expressions for emission spectrum and black hole entropy to the third order correction. The entropy contains four terms including the Bekenstein-Hawking entropy, the logarithmic term, the inverse area term, and the square of inverse area term. In addition, we analyse the correlation between sequential emissions under this approximation. It is shown that the entropy is conserved during the process of black hole evaporation, which consists with the request of quantum mechanics and implies the information is conserved during this process. We also compare the above result with that of pure thermal spectrum case, and find that the non-thermal correction played an important role.

  8. Generalized uncertainty principle impact onto the black holes information flux and the sparsity of Hawking radiation

    NASA Astrophysics Data System (ADS)

    Alonso-Serrano, Ana; DÄ browski, Mariusz P.; Gohar, Hussain

    2018-02-01

    We investigate the generalized uncertainty principle (GUP) corrections to the entropy content and the information flux of black holes, as well as the corrections to the sparsity of the Hawking radiation at the late stages of evaporation. We find that due to these quantum gravity motivated corrections, the entropy flow per particle reduces its value on the approach to the Planck scale due to a better accuracy in counting the number of microstates. We also show that the radiation flow is no longer sparse when the mass of a black hole approaches Planck mass which is not the case for non-GUP calculations.

  9. The interaction of Dirac particles with a Hawking charged radiating black hole

    NASA Astrophysics Data System (ADS)

    Kubik, Erik

    2007-08-01

    The interaction of spin 1/2 fields with a charged, evaporating black hole (EBH) is investigated. Using the Vaidya metric to model the Hawking evaporating black hole, the wave equation for a massless spinor field is obtained. The resulting field equation is solved utilizing techniques developed by Brill and Wheeler. Unlike previous efforts, a charged, evaporating black hole has never been used as a background to investigate spin 1/2 quantum field propagation, e.g., Brill and Wheeler considered massless spin 1/2 interactions in a static, Schwarzschild background. Using the WKB approximation, the wave equation is solved for the case of an EBH with constant luminosity. Analysis of the effective potential at different stages of evaporation is made including the dependence on the parameters of the system such as the total angular momentum, energy of the incident field, and luminosity of the evaporating black hole. Utilizing techniques of Mukhopad-hey, the transmission and reflection coefficients for the massless spinors are computed and compared to Schwarzschild result for both the high energy and hard scattering cases. The effect of the time dependence of the space-time metric has an important effect on the behavior of quantum fields over the lifetime of the evaporating black hole and may provide a signature for the detection of such objects.

  10. Understanding Hawking radiation in the framework of open quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Hongwei; Zhang Jialin

    2008-01-15

    We study the Hawking radiation in the framework of open quantum systems by examining the time evolution of a detector (modeled by a two-level atom) interacting with vacuum massless scalar fields. The dynamics of the detector is governed by a master equation obtained by tracing over the field degrees of freedom from the complete system. The nonunitary effects are studied by analyzing the time behavior of a particular observable of the detector, i.e., its admissible state, in the Unruh, Hartle-Hawking, as well as Boulware vacua outside a Schwarzschild black hole. We find that the detector in both the Unruh andmore » Hartle-Hawking vacua would spontaneously excite with a nonvanishing probability the same as what one would obtain if there is thermal radiation at the Hawking temperature from the black hole, thus reproducing the basic results concerning the Hawking effect in the framework of open quantum systems.« less

  11. Detached Eddy Simulation of the UH-60 Rotor Wake Using Adaptive Mesh Refinement

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.; Ahmad, Jasim U.

    2012-01-01

    Time-dependent Navier-Stokes flow simulations have been carried out for a UH-60 rotor with simplified hub in forward flight and hover flight conditions. Flexible rotor blades and flight trim conditions are modeled and established by loosely coupling the OVERFLOW Computational Fluid Dynamics (CFD) code with the CAMRAD II helicopter comprehensive code. High order spatial differences, Adaptive Mesh Refinement (AMR), and Detached Eddy Simulation (DES) are used to obtain highly resolved vortex wakes, where the largest turbulent structures are captured. Special attention is directed towards ensuring the dual time accuracy is within the asymptotic range, and verifying the loose coupling convergence process using AMR. The AMR/DES simulation produced vortical worms for forward flight and hover conditions, similar to previous results obtained for the TRAM rotor in hover. AMR proved to be an efficient means to capture a rotor wake without a priori knowledge of the wake shape.

  12. Hawking radiation of a vector field and gravitational anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murata, Keiju; Miyamoto, Umpei

    2007-10-15

    Recently, the relation between Hawking radiation and gravitational anomalies has been used to estimate the flux of Hawking radiation for a large class of black objects. In this paper, we extend the formalism, originally proposed by Robinson and Wilczek, to the Hawking radiation of vector particles (photons). It is explicitly shown, with the Hamiltonian formalism, that the theory of an electromagnetic field on d-dimensional spherical black holes reduces to one of an infinite number of massive complex scalar fields on 2-dimensional spacetime, for which the usual anomaly-cancellation method is available. It is found that the total energy emitted from themore » horizon for the electromagnetic field is just (d-2) times that for a scalar field. The results support the picture that Hawking radiation can be regarded as an anomaly eliminator on horizons. Possible extensions and applications of the analysis are discussed.« less

  13. Time dependence of Hawking radiation entropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, Don N., E-mail: profdonpage@gmail.com

    2013-09-01

    If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its originalmore » Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4πM{sub 0}{sup 2}, or about 7.509M{sub 0}{sup 2} ≈ 6.268 × 10{sup 76}(M{sub 0}/M{sub s}un){sup 2}, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the black hole. Results are also given for black holes in initially impure states. If the black hole starts in a maximally mixed state, the von Neumann entropy of the Hawking radiation increases from zero up to a maximum of about 119.51% of the original BH entropy, or about 15.018M{sub 0}{sup 2} ≈ 1.254 × 10{sup 77}(M{sub 0}/M{sub s}un){sup 2}, and then decreases back down to 4πM{sub 0}{sup 2} = 1.049 × 10{sup 77}(M{sub 0}/M{sub s}un){sup 2}.« less

  14. Modulated Hawking radiation and a nonviolent channel for information release

    NASA Astrophysics Data System (ADS)

    Giddings, Steven B.

    2014-11-01

    Unitarization of black hole evaporation requires that quantum information escapes a black hole; an important question is to identify the mechanism or channel by which it does so. Accurate counting of black hole states via the Bekenstein-Hawking entropy would indicate this information should be encoded in radiation with average energy flux matching Hawking's. Information can be encoded with no change in net flux via fine-grained modulation of the Hawking radiation. In an approximate effective field theory description, couplings to the stress tensor of the black hole atmosphere that depend on the internal state of the black hole are a promising alternative for inducing such modulation. These can be picturesquely thought of as due to state-dependent metric fluctuations in the vicinity of the horizon. Such couplings offer the prospect of emitting information without extra energy flux, and can be shown to do so at linear order in the couplings, with motivation given for possible extension of this result to higher orders. The potential advantages of such couplings to the stress tensor thus extend beyond their universality, which is helpful in addressing constraints from black hole mining.

  15. Quasinormal modes, scattering, and Hawking radiation of Kerr-Newman black holes in a magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokkotas, K. D.; Konoplya, R. A.; Zhidenko, A.

    2011-01-15

    We perform a comprehensive analysis of the spectrum of proper oscillations (quasinormal modes), transmission/reflection coefficients, and Hawking radiation for a massive charged scalar field in the background of the Kerr-Newman black hole immersed in an asymptotically homogeneous magnetic field. There are two main effects: the Zeeman shift of the particle energy in the magnetic field and the difference of values of an electromagnetic potential between the horizon and infinity, i.e. the Faraday induction. We have shown that 'turning on' the magnetic field induces a stronger energy-emission rate and leads to 'recharging' of the black hole. Thus, a black hole immersedmore » in a magnetic field evaporates much quicker, achieving thereby an extremal state in a shorter period of time. Quasinormal modes are moderately affected by the presence of a magnetic field which is assumed to be relatively small compared to the gravitational field of the black hole.« less

  16. Thermodynamics phase transition and Hawking radiation of the Schwarzschild black hole with quintessence-like matter and a deficit solid angle

    NASA Astrophysics Data System (ADS)

    Rodrigue, Kamiko Kouemeni Jean; Saleh, Mahamat; Thomas, Bouetou Bouetou; Kofane, Timoleon Crepin

    2018-05-01

    In this paper, we investigate the thermodynamics and Hawking radiation of Schwarzschild black hole with quintessence-like matter and deficit solid angle. From the metric of the black hole, we derive the expressions of temperature and specific heat using the laws of black hole thermodynamics. Using the null geodesics method and Parikh-Wilczeck tunneling method, we derive the expressions of Boltzmann factor and the change of Bekenstein-Hawking entropy for the black hole. The behaviors of the temperature, specific heat, Boltzmann factor and the change of Bekenstein entropy versus the deficit solid angle (ɛ 2) and the density of static spherically symmetric quintessence-like matter (ρ 0) were explicitly plotted. The results show that, when the deficit solid angle (ɛ 2) and the density of static spherically symmetric quintessence-like matter at r=1 (ρ 0) vanish (ρ 0=ɛ =0), these four thermodynamics quantities are reduced to those obtained for the simple case of Schwarzschild black hole. For low entropies, the presence of quintessence-like matter induces a first order phase transition of the black hole and for the higher values of the entropies, we observe the second order phase transition. When increasing ρ 0, the transition points are shifted to lower entropies. The same thing is observed when increasing ɛ 2. In the absence of quintessence-like matter (ρ 0=0), these transition phenomena disappear. Moreover the rate of radiation decreases when increasing ρ 0 or (ɛ ^2).

  17. Higher curvature self-interaction corrections to Hawking radiation

    NASA Astrophysics Data System (ADS)

    Fairoos, C.; Sarkar, Sudipta; Yogendran, K. P.

    2017-07-01

    The purely thermal nature of Hawking radiation from evaporating black holes leads to the information loss paradox. A possible route to its resolution could be if (enough) correlations are shown to be present in the radiation emitted from evaporating black holes. A reanalysis of Hawking's derivation including the effects of self-interactions in general relativity shows that the emitted radiation does deviate from pure thermality; however no correlations exist between successively emitted Hawking quanta. We extend the calculations to Einstein-Gauss-Bonnet gravity and investigate if higher curvature corrections to the action lead to some new correlations in the Hawking spectra. The effective trajectory of a massless shell is determined by solving the constraint equations and the semiclassical tunneling probability is calculated. As in the case of general relativity, the radiation is no longer thermal and there is no correlation between successive emissions. The absence of any extra correlations in the emitted radiations even in Gauss-Bonnet gravity suggests that the resolution of the paradox is beyond the scope of semiclassical gravity.

  18. Precast concrete elements for accelerated bridge construction : laboratory testing, field testing, and evaluation of a precast concrete bridge, Black Hawk County.

    DOT National Transportation Integrated Search

    2009-01-01

    The importance of rapid construction technologies has been recognized by the Federal Highway Administration (FHWA) and the Iowa : DOT Office of Bridges and Structures. Black Hawk County (BHC) has developed a precast modified beam-in-slab bridge (PMBI...

  19. Hawking Radiation of the Charged Particle Via Tunneling from the Reissner-Nordström Black Hole

    NASA Astrophysics Data System (ADS)

    Pu, Jin; Han, Yan

    2017-08-01

    Since Parikh and Wilczek proposed a semiclassical tunneling method to investigate the Hawking radiation of static and spherically symmetric black holes, the method has been extensively developed to study various black holes. However, in almost all of the subsequent papers, there exists a important shortcoming that the geodesic equation of the massive particle is defined inconsistently with that of the massless particle. In this paper, we propose a new idea to reinvestigate the tunneling radiation from the event horizon of the Reissner-Nordström black hole. In our treatment, by starting from the Lagrangian analysis on the action, we redefine the geodesic equation of the massive and massless particle via tunneling from the event horizon of the Reissner-Nordström black hole, which overcomes the shortcoming mentioned above. The highlight of our work is a new and important development for the Parikh-Wilczek's semiclassical tunneling method.

  20. Hawking radiation and interacting fields

    NASA Astrophysics Data System (ADS)

    Frasca, Marco

    2017-11-01

    Hawking radiation is generally derived using a non-interacting field theory. Some time ago, Leahy and Unruh showed that, in two dimensions with a Schwarzschild geometry, a scalar field theory with a quartic interaction gets the coupling switched off near the horizon of the black hole. This would imply that interaction has no effect on Hawking radiation and free theory for particles can be used. Recently, a set of exact classical solutions for the quartic scalar field theory has been obtained. These solutions display a massive dispersion relation even if the starting theory is massless. When one considers the corresponding quantum field theory, this mass gap becomes a tower of massive excitations and, at the leading order, the theory is trivial. We apply these results to Hawking radiation for a Kerr geometry and prove that the Leahy-Unruh effect is at work. Approaching the horizon the scalar field theory has the mass gap going to zero. We devise a technique to study the interacting scalar theory very near the horizon increasing the coupling. As these solutions are represented by a Fourier series of plane waves, Hawking radiation can be immediately obtained with well-known techniques. These results open a question about the behavior of the Standard Model of particles very near the horizon of a black hole where the interactions turn out to be switched off and the electroweak symmetry could be restored.

  1. Navier-Stokes Simulation of UH-60A Rotor/Wake Interaction Using Adaptive Mesh Refinement

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.

    2017-01-01

    Time-dependent Navier-Stokes simulations have been carried out for a flexible UH-60A rotor in forward flight, where the rotor wake interacts with the rotor blades. These flow conditions involved blade vortex interaction and dynamic stall, two common conditions that occur as modern helicopter designs strive to achieve greater flight speeds and payload capacity. These numerical simulations utilized high-order spatial accuracy and delayed detached eddy simulation. Emphasis was placed on understanding how improved rotor wake resolution affects the prediction of the normal force, pitching moment, and chord force of the rotor. Adaptive mesh refinement was used to highly resolve the turbulent rotor wake in a computationally efficient manner. Moreover, blade vortex interaction was found to trigger dynamic stall. Time-dependent flow visualization was utilized to provide an improved understanding of the numerical and physical mechanisms involved with three-dimensional dynamic stall.

  2. Suppression of Bekenstein-Hawking radiation in f(T)-gravity

    NASA Astrophysics Data System (ADS)

    Addazi, Andrea

    2018-01-01

    We discuss semiclassical Nariai black holes in the framework of f(T)-gravity. For a diagonal choice of tetrads, stable Nariai metrics can be found, emitting Bekenstein-Hawking radiation in semiclassical limit. However, for a nondiagonal choice of tetrads, evaporation and anti-evaporation instabilities are turned on. In turn, this causes a backreaction effect suppressing the Bekenstein-Hawking radiation. In particular, evaporation instabilities produce a new radiation — different by Bekenstein-Hawking emission — nonviolating unitarity in particle physics sector.

  3. A high fidelity real-time simulation of a small turboshaft engine

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.

    1988-01-01

    A high-fidelity component-type model and real-time digital simulation of the General Electric T700-GE-700 turboshaft engine were developed for use with current generation real-time blade-element rotor helicopter simulations. A control system model based on the specification fuel control system used in the UH-60A Black Hawk helicopter is also presented. The modeling assumptions and real-time digital implementation methods particular to the simulation of small turboshaft engines are described. The validity of the simulation is demonstrated by comparison with analysis-oriented simulations developed by the manufacturer, available test data, and flight-test time histories.

  4. The NASA modern technology rotors program

    NASA Technical Reports Server (NTRS)

    Watts, M. E.; Cross, J. L.

    1986-01-01

    Existing data bases regarding helicopters are based on work conducted on 'old-technology' rotor systems. The Modern Technology Rotors (MTR) Program is to provide extensive data bases on rotor systems using present and emerging technology. The MTR is concerned with modern, four-bladed, rotor systems presently being manufactured or under development. Aspects of MTR philosophy are considered along with instrumentation, the MTR test program, the BV 360 Rotor, and the UH-60 Black Hawk. The program phases include computer modelling, shake test, model-scale test, minimally instrumented flight test, extensively pressure-instrumented-blade flight test, and full-scale wind tunnel test.

  5. Army Aircraft Safety Performance Review, FY 87-FY 91. UH-60, OH-58D, AH-64, MH/CH-47D

    DTIC Science & Technology

    1992-12-01

    is $10,000 or more, but less than $200,000; a nonfatal injury that causes any loss of time from work beyond the day or shift on which it occurred; or...a nonfatal illness or disability that causes loss of time from work or disability at any time (lost-time case). Class D accident The resulting...flex horoscope so that a complete inspection of the drive shaft can be made. Wire strike While on approach to land at the scene of a UH-60 wire

  6. Navier-Stokes Simulation of UH-60A Rotor/Wake Interaction Using Adaptive Mesh Refinement

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.

    2017-01-01

    High-resolution simulations of rotor/vortex-wake interaction for a UH60-A rotor under BVI and dynamic stallconditions were carried out with the OVERFLOW Navier-Stokes code.a. The normal force and pitching moment variation with azimuth angle were in good overall agreementwith flight-test data, similar to other CFD results reported in the literature.b. The wake-grid resolution did not have a significant effect on the rotor-blade airloads. This surprisingresult indicates that a wake grid spacing of (Delta)S=10% ctip is sufficient for engineering airloads predictionfor hover and forward flight. This assumes high-resolution body grids, high-order spatial accuracy, anda hybrid RANS/DDES turbulence model.c. Three-dimensional dynamic stall was found to occur due the presence of blade-tip vortices passing overa rotor blade on the retreating side. This changed the local airfoil angle of attack, causing stall, unlikethe 2D perspective of pure pitch oscillation of the local airfoil section.

  7. Finite upper bound for the Hawking decay time of an arbitrarily large black hole in anti-de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Page, Don N.

    2018-01-01

    In an asymptotically flat spacetime of dimension d >3 and with the Newtonian gravitational constant G , a spherical black hole of initial horizon radius rh and mass M ˜rhd -3/G has a total decay time to Hawking emission of td˜rhd -1/G ˜G2 /(d -3 )M(d -1 )/(d -3 ) which grows without bound as the radius rh and mass M are taken to infinity. However, in asymptotically anti-de Sitter spacetime with a length scale ℓ and with absorbing boundary conditions at infinity, the total Hawking decay time does not diverge as the mass and radius go to infinity but instead remains bounded by a time of the order of ℓd-1/G .

  8. Quantum potential induced UV-IR coupling in analogue Hawking radiation: From Bose-Einstein condensates to canonical acoustic black holes

    NASA Astrophysics Data System (ADS)

    Sarkar, Supratik; Bhattacharyay, A.

    2017-09-01

    Arising out of a nonlocal nonrelativistic Bose-Einstein condensates (BEC), we present an analogue gravity model up to O (ξ2) accuracy (ξ being the healing length of the condensate) in the presence of the quantum potential term for a canonical acoustic black hole in (3 +1 )D spacetime, where the series solution of the free minimally coupled KG equation for the large-length-scale massive scalar modes is derived. We systematically address the issues of the presence of the quantum potential term being the root cause of a UV-IR coupling between short-wavelength primary modes which are supposedly Hawking-radiated through the sonic horizon and the large-wavelength secondary modes. In the quantum gravity experiments of analogue Hawking radiation within the scope of the laboratory set up, this UV-IR coupling is inevitable, and one cannot get rid of these large-wavelength excitations which would grow over space by gaining energy from the short-wavelength Hawking-radiated modes. We identify the characteristic feature in the growth rate(s) that would distinguish these primary and secondary modes.

  9. Information Conservation is Fundamental: Recovering the Lost Information in Hawking Radiation

    NASA Astrophysics Data System (ADS)

    Zhang, Baocheng; Cai, Qing-Yu; Zhan, Ming-Sheng; You, Li

    2013-06-01

    In both classical and quantum world, information cannot appear or disappear. This fundamental principle, however, is questioned for a black hole, by the acclaimed "information loss paradox." Based on the conservation laws of energy, charge, and angular momentum, we recently show the total information encoded in the correlations among Hawking radiations equals exactly to the same amount previously considered lost, assuming the nonthermal spectrum of Parikh and Wilczek. Thus the information loss paradox can be falsified through experiments by detecting correlations, for instance, through measuring the covariances of Hawking radiations from black holes, such as the manmade ones speculated to appear in LHC experiments. The affirmation of information conservation in Hawking radiation will shine new light on the unification of gravity with quantum mechanics.

  10. Effects of Microclimate Cooling on Physiology and Performance While Flying the UH-60 Helicopter Simulator in NBC Conditions in a Controlled Heat Environment

    DTIC Science & Technology

    1992-08-01

    including instrumenting and dressing the subjects, monitoring the physiological parameters in the simulator, and collecting and processing data. They...also was decided to extend the recruiting process to include all helicopter aviators, even if not UH-60 qualified. There is little in the flight profile...parameter channels, and the data were processed to produce a single root mean square (RMS) error value for each channel appropriate to each of the 9

  11. Horizon state, Hawking radiation, and boundary Liouville model.

    PubMed

    Solodukhin, Sergey N

    2004-02-13

    We demonstrate that the near-horizon physics, the Hawking radiation, and the reflection off the radial potential barrier can be understood entirely within a conformal field theory picture in terms of one- and two-point functions in the boundary Liouville theory. An important element in this demonstration is the notion of horizon state, the Hawking radiation being interpreted as a result of the transition of horizon state to the ordinary states propagating outside the black hole horizon.

  12. Experimental study of main rotor tip geometry and tail rotor interactions in hover. Volume 1. Text and figures

    NASA Technical Reports Server (NTRS)

    Balch, D. T.; Lombardi, J.

    1985-01-01

    A model scale hover test was conducted in the Sikorsky Aircraft Model rotor hover Facility to identify and quantify the impact of the tail rotor on the demonstrated advantages of advanced geometry tip configurations. The test was conducted using the Basic Model Test Rig and two scaled main rotor systems, one representing a 1/5.727 scale UH-60A BLACK HAWK and the others a 1/4.71 scale S-76. Eight alternate rotor tip configurations were tested, 3 on the BLACK HAWK rotor and 6 on the S-76 rotor. Four of these tips were then selected for testing in close proximity to an operating tail rotor (operating in both tractor and pusher modes) to determine if the performance advantages that could be obtained from the use of advanced geometry tips in a main rotor only environment would still exist in the more complex flow field involving a tail rotor. The test showed that overall the tail rotor effects on the advanced tip configurations tested are not substantially different from the effects on conventional tips.

  13. Experimental study of main rotor tip geometry and tail rotor interactions in hover. Volume 2: Run log and tabulated data

    NASA Technical Reports Server (NTRS)

    Balch, D. T.; Lombardi, J.

    1985-01-01

    A model scale hover test was conducted in the Sikorsky Aircraft Model Rotor hover Facility to identify and quantify the impact of the tail rotor on the demonstrated advantages of advanced geometry tip configurations. The existence of mutual interference between hovering main rotor and a tail rotor was acknowledged in the test. The test was conducted using the Basic Model Test Rig and two scaled main rotor systems, one representing a 1/5.727 scale UH-60A BLACK HAWK and the others a 1/4.71 scale S-76. Eight alternate rotor tip configurations were tested, 3 on the BLACK HAWK rotor and 6 on the S-76 rotor. Four of these tips were then selected for testing in close proximity to an operating tail rotor (operating in both tractor and pusher modes) to determine if the performance advantages that could be obtained from the use of advanced geometry tips in a main rotor only environment would still exist in the more complex flow field involving a tail rotor. This volume contains the test run log and tabulated data.

  14. Correlate Life Predictions and Condition Indicators in Helicopter Tail Gearbox Bearings

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Bolander, Nathan; Haynes, Chris; Branning, Jeremy; Wade, Daniel R.

    2010-01-01

    Research to correlate bearing remaining useful life (RUL) predictions with Helicopter Health Usage Monitoring Systems (HUMS) condition indicators (CI) to indicate the damage state of a transmission component has been developed. Condition indicators were monitored and recorded on UH-60M (Black Hawk) tail gearbox output shaft thrust bearings, which had been removed from helicopters and installed in a bearing spall propagation test rig. Condition indicators monitoring the tail gearbox output shaft thrust bearings in UH-60M helicopters were also recorded from an on-board HUMS. The spal-lpropagation data collected in the test rig was used to generate condition indicators for bearing fault detection. A damage progression model was also developed from this data. Determining the RUL of this component in a helicopter requires the CI response to be mapped to the damage state. The data from helicopters and a test rig were analyzed to determine if bearing remaining useful life predictions could be correlated with HUMS condition indicators (CI). Results indicate data fusion analysis techniques can be used to map the CI response to the damage levels.

  15. Measurement of stimulated Hawking emission in an analogue system.

    PubMed

    Weinfurtner, Silke; Tedford, Edmund W; Penrice, Matthew C J; Unruh, William G; Lawrence, Gregory A

    2011-01-14

    Hawking argued that black holes emit thermal radiation via a quantum spontaneous emission. To address this issue experimentally, we utilize the analogy between the propagation of fields around black holes and surface waves on moving water. By placing a streamlined obstacle into an open channel flow we create a region of high velocity over the obstacle that can include surface wave horizons. Long waves propagating upstream towards this region are blocked and converted into short (deep-water) waves. This is the analogue of the stimulated emission by a white hole (the time inverse of a black hole), and our measurements of the amplitudes of the converted waves demonstrate the thermal nature of the conversion process for this system. Given the close relationship between stimulated and spontaneous emission, our findings attest to the generality of the Hawking process.

  16. Airworthiness and Flight Characteristics Test of a Ski Assembly for the UH-60A Black Hawk Helicopter

    DTIC Science & Technology

    1987-08-01

    DENSITY OAT ROTOR CALIBRATED WEIGHT LONG LAT ALTITUDE SPEED AIRSPEED (LB) (FS) (BL) (FT) (DEG C) (RPM) (KTS) 22270 ... 22270 361.4 0.3 11 AVG AVG AVG IRIM 5AS 0ENSI1Y 0A1 R010R CAUBRAUD CONDI IION AITI1UDE SPEED AIRSPEED in) (OEG C) (RPM) («is) 6200 13.0 258

  17. Total spectral distributions from Hawking radiation

    NASA Astrophysics Data System (ADS)

    Broda, Bogusław

    2017-11-01

    Taking into account the time dependence of the Hawking temperature and finite evaporation time of the black hole, the total spectral distributions of the radiant energy and of the number of particles have been explicitly calculated and compared to their temporary (initial) blackbody counterparts (spectral exitances).

  18. Helicopter simulation validation using flight data

    NASA Technical Reports Server (NTRS)

    Key, D. L.; Hansen, R. S.; Cleveland, W. B.; Abbott, W. Y.

    1982-01-01

    A joint NASA/Army effort to perform a systematic ground-based piloted simulation validation assessment is described. The best available mathematical model for the subject helicopter (UH-60A Black Hawk) was programmed for real-time operation. Flight data were obtained to validate the math model, and to develop models for the pilot control strategy while performing mission-type tasks. The validated math model is to be combined with motion and visual systems to perform ground based simulation. Comparisons of the control strategy obtained in flight with that obtained on the simulator are to be used as the basis for assessing the fidelity of the results obtained in the simulator.

  19. Nesting habitat relationships of sympatric Crested Caracaras, Red-tailed Hawks, and White-tailed Hawks in South Texas

    USGS Publications Warehouse

    Actkinson, M.A.; Kuvlesky, W.P.; Boal, C.W.; Brennan, L.A.; Hernandez, F.

    2007-01-01

    We quantified nesting-site habitats for sympatric White-tailed Hawks (Buteo albicaudatus) (n = 40), Red-tailed Hawks (B. jamaicensis) (n = 39), and Crested Caracaras (Caracara cheriway) (n = 24) in the Coastal Sand Plain of south Texas. White-tailed Hawks and Crested Caracara nest sites occurred in savannas, whereas Red-tailed Hawk nest sites occurred in woodlands on the edge of savannas. White-tailed Hawk nest sites were in shrubs and trees that were shorter (3.5 ?? 1.0 m) and had smaller canopy diameters (5.5 ?? 2.1 m) than those of Red-tailed Hawks (10.1 ?? 2.0 m, 13.7 ?? 5.8 m) and Crested Caracaras (5.6 ?? 1.7 m, 8.5 ?? 3.5 m). Red-tailed Hawk nest sites had higher woody densities (15.7 ?? 9.6 plants) and more woody cover (84 ?? 19%) than those of White-tailed Hawks (5.6 ?? 5.8 plants, 20 ?? 21%) and Crested Caracaras (9.9 ?? 6.7 plants, 55 ?? 34%). Crested Caracara nest sites were in dense, multi-branched shrubs composed of more living material (97 ?? 3%) than those of White-tailed (88 ?? 18%) and Red-tailed hawks (88 ?? 18%). Nest sites of White-tailed Hawks, Red-tailed Hawks, and Crested Caracaras were similar to random samples from the surrounding habitat indicating that preferred nesting habitat was available for each of these species at least within 60 m of active nest sites. Nest tree height, along with woody plant and native grass cover best discriminated nest sites among the three raptor species. There was no overlap at Red-tailed and White-tailed hawk nest sites in vegetation structure, while Crested Caracara nests were in habitat intermediate between the two other species. Partitioning of nesting habitat may be how these raptor species co-exist at the broader landscape scale of our study area in the Coastal Sand Plain of Texas.

  20. Modulated Hawking radiation and a nonviolent channel for information release

    DOE PAGES

    Giddings, Steven B.

    2014-09-16

    The unitarization of black hole evaporation requires that quantum information escapes a black hole; an important question is to identify the mechanism or channel by which it does so. Accurate counting of black hole states via the Bekenstein–Hawking entropy would indicate this information should be encoded in radiation with average energy flux matching Hawking’s. Information can be encoded with no change in net flux via fine-grained modulation of the Hawking radiation. In an approximate effective field theory description, couplings to the stress tensor of the black hole atmosphere that depend on the internal state of the black hole are amore » promising alternative for inducing such modulation. These can be picturesquely thought of as due to state-dependent metric fluctuations in the vicinity of the horizon. Such couplings offer the prospect of emitting information without extra energy flux, and can be shown to do so at linear order in the couplings, with motivation given for possible extension of this result to higher orders. The potential advantages of such couplings to the stress tensor thus extend beyond their universality, which is helpful in addressing constraints from black hole mining.« less

  1. Experimental Investigation and Fundamental Understanding of a Slowed UH-60A Rotor at High Advance Ratios

    NASA Technical Reports Server (NTRS)

    Datta, Anubhav; Yeo, Hyeonsoo; Norman, Thomas R.

    2011-01-01

    This paper describes and analyzes the measurements from a full-scale, slowed RPM, UH-60A rotor tested at the National Full-Scale Aerodynamics Complex 40- by 80- ft wind tunnel up to an advance ratio of 1.0. A comprehensive set of measurements, that includes performance, blade loads, hub loads and pressures/airloads makes this data set unique. The measurements reveal new and rich aeromechanical phenomena that are special to this exotic regime. These include reverse chord dynamic stall, retreating side impulse in pitch-link load, large inboard-outboard elastic twist differential, supersonic flow at low subsonic advancing tip Mach numbers, diminishing rotor forces yet dramatic build up of blade loads, and dramatic blade loads yet benign levels of vibratory hub loads. The objective of this research is the fundamental understanding of these unique aeromechanical phenomena. The intent is to provide useful knowledge for the design of high speed, high efficiency, slowed RPM rotors of the future and a challenging database for advanced analyses validation.

  2. Summary of Full-Scale Blade Displacement Measurements of the UH- 60A Airloads Rotor

    NASA Technical Reports Server (NTRS)

    Abrego, Anita I.; Meyn, Larry; Burner, Alpheus W.; Barrows, Danny A.

    2016-01-01

    Blade displacement measurements using multi-camera photogrammetry techniques were acquired for a full-scale UH-60A rotor, tested in the National Full-Scale Aerodynamic Complex 40-Foot by 80-Foot Wind Tunnel. The measurements, acquired over the full rotor azimuth, encompass a range of test conditions that include advance ratios from 0.15 to 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. The objective was to measure the blade displacements and deformations of the four rotor blades and provide a benchmark blade displacement database to be utilized in the development and validation of rotorcraft prediction techniques. An overview of the blade displacement measurement methodology, system development, and data analysis techniques are presented. Sample results based on the final set of camera calibrations, data reduction procedures and estimated corrections that account for registration errors due to blade elasticity are shown. Differences in blade root pitch, flap and lag between the previously reported results and the current results are small. However, even small changes in estimated root flap and pitch can lead to significant differences in the blade elasticity values.

  3. Insensitivity of Hawking radiation to an invariant Planck-scale cutoff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agullo, Ivan; Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Facultad de Fisica, Universidad de Valencia, Burjassot-46100, Valencia; Navarro-Salas, Jose

    2009-08-15

    A disturbing aspect of Hawking's derivation of black hole radiance is the need to invoke extreme conditions for the quantum field that originates the emitted quanta. It is widely argued that the derivation requires the validity of the conventional relativistic field theory to arbitrarily high, trans-Planckian scales. We stress in this note that this is not necessarily the case if the question is presented in a covariant way. We point out that Hawking radiation is immediately robust against an invariant Planck-scale cutoff. This important feature of Hawking radiation is relevant for a quantum gravity theory that preserves, in some way,more » the Lorentz symmetry.« less

  4. Four-center bubbled BPS solutions with a Gibbons-Hawking base

    NASA Astrophysics Data System (ADS)

    Heidmann, Pierre

    2017-10-01

    We construct four-center bubbled BPS solutions with a Gibbons-Hawking base space. We give a systematic procedure to build scaling solutions: starting from three-supertube configurations and using generalized spectral flows and gauge transformations to extend to solutions with four Gibbons-Hawking centers. This allows us to construct very large families of smooth horizonless solutions that have the same charges and angular momentum as supersymmetric black holes with a macroscopically large horizon area. Our construction reveals that all scaling solutions with four Gibbons Hawking centers have an angular momentum at around 99% of the cosmic censorship bound. We give both an analytical and a numerical explanation for this unexpected feature.

  5. A Model-based Health Monitoring and Diagnostic System for the UH-60 Helicopter. Appendix D

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, Ann; Hindson, William; Sanderfer, Dwight; Deb, Somnath; Domagala, Chuck

    2001-01-01

    Model-based reasoning techniques hold much promise in providing comprehensive monitoring and diagnostics capabilities for complex systems. We are exploring the use of one of these techniques, which utilizes multi-signal modeling and the TEAMS-RT real-time diagnostic engine, on the UH-60 Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) flight research aircraft. We focus on the engine and transmission systems, and acquire sensor data across the 1553 bus as well as by direct analog-to-digital conversion from sensors to the QHuMS (Qualtech health and usage monitoring system) computer. The QHuMS computer uses commercially available components and is rack-mounted in the RASCAL facility. A multi-signal model of the transmission and engine subsystems enables studies of system testability and analysis of the degree of fault isolation available with various instrumentation suites. The model and examples of these analyses will be described and the data architectures enumerated. Flight tests of this system will validate the data architecture and provide real-time flight profiles to be further analyzed in the laboratory.

  6. Spin zero Hawking radiation for non-zero-angular momentum mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngampitipan, Tritos; Bonserm, Petarpa; Visser, Matt

    2015-05-15

    Black hole greybody factors carry some quantum black hole information. Studying greybody factors may lead to understanding the quantum nature of black holes. However, solving for exact greybody factors in many black hole systems is impossible. One way to deal with this problem is to place some rigorous analytic bounds on the greybody factors. In this paper, we calculate rigorous bounds on the greybody factors for spin zero hawking radiation for non-zero-angular momentum mode from the Kerr-Newman black holes.

  7. Hawking radiation and propagation of massive charged scalar field on a three-dimensional Gödel black hole

    NASA Astrophysics Data System (ADS)

    González, P. A.; Övgün, Ali; Saavedra, Joel; Vásquez, Yerko

    2018-06-01

    In this paper we consider the three-dimensional Gödel black hole as a background and we study the vector particle tunneling from this background in order to obtain the Hawking temperature. Then, we study the propagation of a massive charged scalar field and we find the quasinormal modes analytically, which turns out be unstable as a consequence of the existence of closed time-like curves. Also, we consider the flux at the horizon and at infinity, and we compute the reflection and transmission coefficients as well as the absorption cross section. Mainly, we show that massive charged scalar waves can be superradiantly amplified by the three-dimensional Gödel black hole and that the coefficients have an oscillatory behavior. Moreover, the absorption cross section is null at the high frequency limit and for certain values of the frequency.

  8. Relationship between Hawking radiation and gravitational anomalies.

    PubMed

    Robinson, Sean P; Wilczek, Frank

    2005-07-01

    We show that in order to avoid a breakdown of general covariance at the quantum level the total flux in each outgoing partial wave of a quantum field in a black hole background must be equal to that of a (1+1)-dimensional blackbody at the Hawking temperature.

  9. Mechanism of stimulated Hawking radiation in a laboratory Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Jacobson, Ted; Wang, Yi-Hsieh; Edwards, Mark; Clark, Charles W.

    2017-01-01

    Analog black/white hole pairs have been achieved in recent experiment by J. Steinhauer, using an elongated Bose-Einstein condensate. He reported observations of self-amplifying Hawking radiation, via a lasing mechanism operating between the black and white hole horizons. Through the simulations using the 1D Gross-Pitaevskii equation, we find that the experimental observations should be attributed not to the black hole laser effect, but rather to a growing zero-frequency bow wave, generated at the white-hole horizon. The relative motion of the black and white hole horizons produces a Doppler shift of the bow wave at the black hole, where it stimulates the emission of monochromatic Hawking radiation. This mechanism is confirmed using temporal and spatial windowed Fourier spectra of the condensate. We also find that shot-to-shot atom number variations, of the type normally realized in ultracold-atom experiments, and quantum fluctuations of condensates, as computed in the Bogoliubov-De Gennes approximation, give density-density correlations consistent with those reported in the experiments. In particular, atom number variations can produce a spurious correlation signal.

  10. Quantum corrections to Bekenstein-Hawking black hole entropy and gravity partition functions

    NASA Astrophysics Data System (ADS)

    Bytsenko, A. A.; Tureanu, A.

    2013-08-01

    Algebraic aspects of the computation of partition functions for quantum gravity and black holes in AdS3 are discussed. We compute the sub-leading quantum corrections to the Bekenstein-Hawking entropy. It is shown that the quantum corrections to the classical result can be included systematically by making use of the comparison with conformal field theory partition functions, via the AdS3/CFT2 correspondence. This leads to a better understanding of the role of modular and spectral functions, from the point of view of the representation theory of infinite-dimensional Lie algebras. Besides, the sum of known quantum contributions to the partition function can be presented in a closed form, involving the Patterson-Selberg spectral function. These contributions can be reproduced in a holomorphically factorized theory whose partition functions are associated with the formal characters of the Virasoro modules. We propose a spectral function formulation for quantum corrections to the elliptic genus from supergravity states.

  11. Quantum Signature of Analog Hawking Radiation in Momentum Space.

    PubMed

    Boiron, D; Fabbri, A; Larré, P-É; Pavloff, N; Westbrook, C I; Ziń, P

    2015-07-10

    We consider a sonic analog of a black hole realized in the one-dimensional flow of a Bose-Einstein condensate. Our theoretical analysis demonstrates that one- and two-body momentum distributions accessible by present-day experimental techniques provide clear direct evidence (i) of the occurrence of a sonic horizon, (ii) of the associated acoustic Hawking radiation, and (iii) of the quantum nature of the Hawking process. The signature of the quantum behavior persists even at temperatures larger than the chemical potential.

  12. Destruction and recreation of black holes

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Even though the existence of the gravitationally collapsed concentrations of matter in space known as ‘black holes’ is accepted at all educational levels in our society, the basis for the black hole concept is really only the result of approximate calculations done over 40 years ago. The concept of the black hole is an esoteric subject, and recently the mathematical and physical frailties of the concept have come to light in an interesting round of theoretical shuffling. The recent activity in theorizing about black holes began about 10 years ago, when Cambridge University mathematican Stephen Hawking calculated that black holes could become unstable by losing mass and thus ‘evaporate.’ Hawking's results were surprisingly well received, considering the lack of theoretical understanding of the relations between quantum mechanics and relativity. (There is no quantized theory of gravitation, even today.) Nonetheless, his semiclassical calculations implied that the rate of ‘evaporation’ of a black hole would be slower than the rate of degradation of the universe. In fact, based on these and other calculations, the British regard Hawking as ‘the nearest thing we have to a new Einstein’ [New Scientist, Oct. 9, 1980]. Within the last few months, Frank Tipler, provocative mathematical physicist at the University of Texas, has reexamined Hawking's calculations [Physical Review Letters, 45, 941, 1980], concluding, in simple terms, (1) that because of possible vital difficulties in the assumptions, the very concept of black holes could be wrong; (2) that Hawkings' evaporation hypothesis is so efficient that a black hole once created must disappear in less than a second; or (3) that he, Tipler, may be wrong. The latter possibility has been the conclusion of physicist James Bardeen of the University of Washington, who calculated that black hole masses do evaporate but they do so according to Hawking's predicted rate and that Tipler's findings cause only a second

  13. "I Leave It with the People of the United States to Say": Autobiographical Disruption in the Personal Narratives of Black Hawk and Ely S. Parker

    ERIC Educational Resources Information Center

    Raheja, Michelle H.

    2006-01-01

    This essay demonstrates how American Indian autobiographical narratives work to construct a sense of American Indian subjectivity for competing communities--indigenous and white--by simultaneously promoting and protecting tribal knowledge. Both Black Hawk and Parker understood the power of print circulation in the dominant culture. One of the…

  14. Main rotor six degree-of-freedom isolation system analysis

    NASA Technical Reports Server (NTRS)

    Eastman, L. B.

    1981-01-01

    The design requirements of the system have been defined and an isolator concept satisfies these requirements identified. Primary design objectives for the isolation system are 90% attenuation of all NP main rotor shaft loads at a weight penalty less than or equal to 1% of design gross weight. The configuration is sized for a UH-60A BLACK HAWK helicopter and its performance, risk, and system integration were evaluated through a series of parametric studies. Preliminary design was carried forward to insure that the design is practical and that the details of the integration of the isolator into the helicopter system are considered. Alternate ground and flight test demonstration programs necessary to verify the proposed isolator design are defined.

  15. Hawking radiation spectra for scalar fields by a higher-dimensional Schwarzschild-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Pappas, T.; Kanti, P.; Pappas, N.

    2016-07-01

    In this work, we study the propagation of scalar fields in the gravitational background of a higher-dimensional Schwarzschild-de Sitter black hole as well as on the projected-on-the-brane four-dimensional background. The scalar fields have also a nonminimal coupling to the corresponding, bulk or brane, scalar curvature. We perform a comprehensive study by deriving exact numerical results for the greybody factors, and study their profile in terms of particle and spacetime properties. We then proceed to derive the Hawking radiation spectra for a higher-dimensional Schwarzschild-de Sitter black hole, and we study both bulk and brane channels. We demonstrate that the nonminimal field coupling, which creates an effective mass term for the fields, suppresses the energy emission rates while the cosmological constant assumes a dual role. By computing the relative energy rates and the total emissivity ratio for bulk and brane emission, we demonstrate that the combined effect of a large number of extra dimensions and value of the field coupling gives to the bulk channel the clear domination in the bulk-brane energy balance.

  16. Charged Particles' Hawking Radiation via Tunneling of Both Horizons from Reissner-Nordström-Taub-NUT Black Holes

    NASA Astrophysics Data System (ADS)

    Ali, M. Hossain; Sultana, Kausari

    2013-08-01

    In some recent derivations thermal characters of the inner horizon have been employed; however, the understanding of possible role that may play the inner horizons of black holes in black hole thermodynamics is still somewhat incomplete. Motivated by this problem we investigate Hawking radiation of the Reissner-Nordström-Taub-NUT (RNTN) black hole by considering thermal characters of both the outer and inner horizons. We apply Damour-Ruffini method and the thin film brick wall model to calculate the temperature and the entropy of the inner horizon of the RNTN black hole. The inner horizon admits thermal character with positive temperature and entropy proportional to its area, and it thus may contribute to the total entropy of the black hole in the context of Nernst theorem. Considering conservations of energy and charge and the back-reaction of emitting particles to the spacetime, the emission spectra are obtained for both the inner and outer horizons. The total emission rate is the product of the emission rates of the inner and outer horizons, and it deviates from the purely thermal spectrum and can bring some information out. Thus, the result can be treated as an explanation to the information loss paradox.

  17. A rotorcraft flight/propulsion control integration study

    NASA Technical Reports Server (NTRS)

    Ruttledge, D. G. C.

    1986-01-01

    An eclectic approach was taken to a study of the integration of digital flight and propulsion controls for helicopters. The basis of the evaluation was the current Gen Hel simulation of the UH-60A Black Hawk helicopter with a model of the GE T700 engine. A list of flight maneuver segments to be used in evaluating the effectiveness of such an integrated control system was composed, based on past experience and an extensive survey of the U.S. Army Air-to-Air Combat Test data. A number of possible features of an integrated system were examined and screened. Those that survived the screening were combined into a design that replaced the T700 fuel control and part of the control system in the UH-60A Gen Hel simulation. This design included portions of an existing pragmatic adaptive fuel control designed by the Chandler-Evans Company and an linear quadratic regulator (LQR) based N(p) governor designed by the GE company, combined with changes in the basic Sikorsky Aircraft designed control system. The integrated system exhibited improved total performance in many areas of the flight envelope.

  18. Mechanism of stimulated Hawking radiation in a laboratory Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Hsieh; Jacobson, Ted; Edwards, Mark; Clark, Charles W.

    2017-08-01

    We model a sonic black-hole analog in a quasi-one-dimensional Bose-Einstein condensate, using a Gross-Pitaevskii equation matching the configuration of a recent experiment by Steinhauer [Nat. Phys. 10, 864 (2014), 10.1038/nphys3104]. The model agrees well with important features of the experimental observations, demonstrating their hydrodynamic nature. We find that a zero-frequency bow wave is generated at the inner (white-hole) horizon, which grows in proportion to the square of the background condensate density. The relative motion of the black- and white-hole horizons produces a Doppler shift of the bow wave at the black hole, where it stimulates the emission of monochromatic Hawking radiation. The mechanism is confirmed using temporal and spatial windowed Fourier spectra of the condensate. Mean field behavior similar to that in the experiment can thus be fully explained without the presence of self-amplifying Hawking radiation.

  19. Dielectric black holes induced by a refractive index perturbation and the Hawking effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belgiorno, F.; Cacciatori, S. L.; Gorini, V.

    2011-01-15

    We consider a 4D model for photon production induced by a refractive index perturbation in a dielectric medium. We show that, in this model, we can infer the presence of a Hawking type effect. This prediction shows up both in the analogue Hawking framework, which is implemented in the pulse frame and relies on the peculiar properties of the effective geometry in which quantum fields propagate, as well as in the laboratory frame, through standard quantum field theory calculations. Effects of optical dispersion are also taken into account, and are shown to provide a limited energy bandwidth for the emissionmore » of Hawking radiation.« less

  20. Performance and Loads Correlation of a UH-60A Slowed Rotor at High Advance Ratios

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi B.

    2012-01-01

    Measured data from the slowed rotor part of the 2010 UH-60A Airloads Rotor test in the NASA Ames 40- by 80- Foot Wind Tunnel are compared with CAMRAD II calculations. The emphasis in this initial study is to correlate overall trends. This analytical effort considers advance ratios from 0.3 to 1.0, with the rotor rotational speed at 40%NR. The rotor performance parameters considered are the thrust coefficient, power coefficient, L/DE, torque, and H-force. The blade loads considered are the half peak-to-peak, mid-span and outboard torsion, flatwise, and chordwise moments, and the pitch link load. For advance ratios . 0.7, the overall trends for the performance and loads (excluding the pitch link load) could be captured, but with substantial overprediction or underprediction. The correlation gradually deteriorates as the advance ratio is increased and for advance ratios . 0.8 there is no correlation. The pitch link load correlation is not good. There is considerable scope for improvement in the prediction of the blade loads. Considering the modeling complexity associated with the unconventional operating condition under consideration, the current predictive ability to capture overall trends is encouraging.

  1. Correlating CFD Simulation with Wind Tunnel Test for the Full-Scale UH-60A Airloads Rotor

    NASA Technical Reports Server (NTRS)

    Romandr, Ethan; Norman, Thomas R.; Chang, I-Chung

    2011-01-01

    Data from the recent UH-60A Airloads Test in the National Full-Scale Aerodynamics Complex 40- by 80- Foot Wind Tunnel at NASA Ames Research Center are presented and compared to predictions computed by a loosely coupled Computational Fluid Dynamics (CFD)/Comprehensive analysis. Primary calculations model the rotor in free-air, but initial calculations are presented including a model of the tunnel test section. The conditions studied include a speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed into deep stall. Predictions show reasonable agreement with measurement for integrated performance indicators such as power and propulsive but occasionally deviate significantly. Detailed analysis of sectional airloads reveals good correlation in overall trends for normal force and pitching moment but pitching moment mean often differs. Chord force is frequently plagued by mean shifts and an overprediction of drag on the advancing side. Locations of significant aerodynamic phenomena are predicted accurately although the magnitude of individual events is often missed.

  2. Airloads Correlation of the UH-60A Rotor Inside the 40- by 80-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Chang, I-Chung; Norman, Thomas R.; Romander, Ethan A.

    2013-01-01

    The presented research validates the capability of a loosely-coupled computational fluid dynamics (CFD) and comprehensive rotorcraft analysis (CRA) code to calculate the flowfield around a rotor and test stand mounted inside a wind tunnel. The CFD/CRA predictions for the full-scale UH-60A Airloads Rotor inside the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center are compared with the latest measured airloads and performance data. The studied conditions include a speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed up to and including stall. For the speed sweep, wind tunnel modeling becomes important at advance ratios greater than 0.37 and test stand modeling becomes increasingly important as the advance ratio increases. For the thrust sweep, both the wind tunnel and test stand modeling become important as the rotor approaches stall. Despite the beneficial effects of modeling the wind tunnel and test stand, the new models do not completely resolve the current airload discrepancies between prediction and experiment.

  3. Hawking radiation from ultrashort laser pulse filaments.

    PubMed

    Belgiorno, F; Cacciatori, S L; Clerici, M; Gorini, V; Ortenzi, G; Rizzi, L; Rubino, E; Sala, V G; Faccio, D

    2010-11-12

    Event horizons of astrophysical black holes and gravitational analogues have been predicted to excite the quantum vacuum and give rise to the emission of quanta, known as Hawking radiation. We experimentally create such a gravitational analogue using ultrashort laser pulse filaments and our measurements demonstrate a spontaneous emission of photons that confirms theoretical predictions.

  4. Conformal Field Theory and black hole physics

    NASA Astrophysics Data System (ADS)

    Sidhu, Steve

    2012-01-01

    This thesis reviews the use of 2-dimensional conformal field theory applied to gravity, specifically calculating Bekenstein-Hawking entropy of black holes in (2+1) dimensions. A brief review of general relativity, Conformal Field Theory, energy extraction from black holes, and black hole thermodynamics will be given. The Cardy formula, which calculates the entropy of a black hole from the AdS/CFT duality, will be shown to calculate the correct Bekenstein-Hawking entropy of the static and rotating BTZ black holes. The first law of black hole thermodynamics of the static, rotating, and charged-rotating BTZ black holes will be verified.

  5. Fermions tunnelling from the charged dilatonic black holes

    NASA Astrophysics Data System (ADS)

    Chen, De-You; Jiang, Qing-Quan; Zu, Xiao-Tao

    2008-10-01

    Kerner and Mann's recent work shows that for an uncharged and non-rotating black hole its Hawking temperature can be correctly derived by fermions tunnelling from its horizons. In this paper, our main work is to improve the analysis to deal with charged fermion tunnelling from the general dilatonic black holes, specifically including the charged, spherically symmetric dilatonic black hole, the rotating Einstein Maxwell dilaton axion (EMDA) black hole and the rotating Kaluza Klein (KK) black hole. As a result, the correct Hawking temperatures are well recovered by charged fermions tunnelling from these black holes.

  6. Timing and magnitude of Broad-winged Hawk migration at Montclair Hawk Lookout, New Jersey, and Hawk Mountain Sanctuary, Pennsylvania

    USGS Publications Warehouse

    Miller, M.W.; Greenstone, E.M.; Greenstone, W.; Bildstein, K.L.

    2002-01-01

    The Broad-winged Hawk (Buteo platypterus) breeds in eastern and central Canada and the United States, and winters in Central America and northern and central South America. Birders and ornithologists count migrating Broad-winged Hawks at dozens of traditional watch sites throughout the northeastern United States. We modeled counts of migrating Broad-winged Hawks from two raptor migration watch sites: Montclair Hawk Lookout, New Jersey, and Hawk Mountain Sanctuary, Pennsylvania, to determine whether annual abundance and trend estimates from individual sites within the mid-Atlantic states are representative of the region as a whole. We restricted ourselves to counts made between 10:00 and 16:00 EST during September to standardize count effort between sites. We created one model set for annual counts and another model set for daily counts. When modeling daily counts we incorporated weather and identity of individual observers. Akaike's Information Criteria were used to select the best model from an initial set of competing models. Annual counts declined at both sites during 1979-1998. Broad-winged Hawk migration began, peaked, and ended later at Montclair than at Hawk Mountain, even though Hawk Mountain is 155 km west-southwest of Montclair. Mean annual counts of hawks at Montclair were more than twice those at Hawk Mountain, but were not correlated. Broad-winged Hawks counted at Montclair may not be the same birds as those counted at Hawk Mountain. Rather, the two sites may be monitoring different regional subpopulations. Broad-winged Hawks counted at the two sites may use different migration tactics, with those counted at Hawk Mountain being more likely to slope soar, and those at Montclair more likely to use thermal soaring. A system of multiple watch sites is needed to monitor various breeding populations of this widely dispersed migrant.

  7. Development of the Hawk/Nike Hawk sounding rocket vehicles

    NASA Technical Reports Server (NTRS)

    Flowers, B. J.

    1976-01-01

    A new sounding rocket family, the Hawk and Nike-Hawk Vehicles, have been developed, flight tested and added to the NASA Sounding Rocket Vehicle Stable. The Hawk is a single-stage vehicle that will carry 35.6 cm diameter payloads weighing 45.5 kg to 91 kg to altitudes of 78 km to 56 km, respectively. The two-stage Nike-Hawk will carry payloads weighing 68 kg to 136 kg to altitudes of 118 km to 113 km, respectively. Both vehicles utilize the XM22E8 Hawk rocket motor which is available in large numbers as a surplus item from the U.S. Army. The Hawk fin and tail can hardware were designed in-house. The Nike tail can and fin hardware are surplus Nike-Ajax booster hardware. Development objectives were to provide a vehicle family with a larger diameter, larger volume payload capability than the Nike-Apache and Nike-Tomahawk vehicles at comparable cost. Both vehicles performed nominally in flight tests.

  8. Hawking Radiation of the Charged Particles via Tunneling from the ( n+2)-Dimensional Topological Reissner-Nordström-de Sitter Black Hole

    NASA Astrophysics Data System (ADS)

    Yan, Han

    2012-08-01

    Extending Parikh-Wilczek's semi-classical tunneling method, we discuss the Hawking radiation of the charged massive particles via tunneling from the cosmological horizon of ( n+2)-dimensional Topological Reissner-Nordström-de Sitter black hole.The result shows that, when energy conservation and electric charge conservation are taken into account, the derived spectrum deviates from the pure thermal one, but satisfies the unitary theory, which provides a probability for the solution of the information loss paradox.

  9. The capacity to transmit classical information via black holes

    NASA Astrophysics Data System (ADS)

    Adami, Christoph; Ver Steeg, Greg

    2013-03-01

    One of the most vexing problems in theoretical physics is the relationship between quantum mechanics and gravity. According to an argument originally by Hawking, a black hole must destroy any information that is incident on it because the only radiation that a black hole releases during its evaporation (the Hawking radiation) is precisely thermal. Surprisingly, this claim has never been investigated within a quantum information-theoretic framework, where the black hole is treated as a quantum channel to transmit classical information. We calculate the capacity of the quantum black hole channel to transmit classical information (the Holevo capacity) within curved-space quantum field theory, and show that the information carried by late-time particles sent into a black hole can be recovered with arbitrary accuracy, from the signature left behind by the stimulated emission of radiation that must accompany any absorption event. We also show that this stimulated emission turns the black hole into an almost-optimal quantum cloning machine, where the violation of the no-cloning theorem is ensured by the noise provided by the Hawking radiation. Thus, rather than threatening the consistency of theoretical physics, Hawking radiation manages to save it instead.

  10. The isotype repertoire of antibodies against novel UH-RA peptides in rheumatoid arthritis.

    PubMed

    De Winter, Liesbeth M; Geusens, Piet; Lenaerts, Jan; Vanhoof, Johan; Stinissen, Piet; Somers, Veerle

    2016-06-07

    Recently, autoantibodies against novel UH-RA peptides (UH-RA.1 and UH-RA.21) were identified as candidate biomarkers for patients with rheumatoid arthritis (RA) who are seronegative for the current diagnostic markers rheumatoid factor and anticitrullinated protein antibodies. Previously, screening for anti-UH-RA autoantibodies was based on measuring the immunoglobulin (Ig) G response. We aimed to investigate whether measurement of other isotypes could improve the performance of diagnostic testing. In addition, assigning the isotype profile might provide valuable information on effector functions of the antibodies. The isotype profile of antibodies against UH-RA.1 and UH-RA.21 was studied. The IgG, IgM, and IgA classes, together with the 4 different IgG subclasses, were determined in 285 patients with RA, 88 rheumatic control subjects, and 90 healthy control subjects. Anti-UH-RA.1 antibodies were primarily of the IgM isotype and twice as prevalent as IgG (IgG3-dominated) and IgA. RA sensitivity when testing for anti-UH-RA.1 IgM was shown to be higher than when testing for the IgG isotype: 18 % versus 9 % sensitivity when RA specificity was set to 90 %. Within antibodies against UH-RA.21, IgG and IgA were more common than IgM. Different anti-UH-RA.21 IgG subclasses were found, with the highest prevalence found for IgG2. Combined testing for IgG and IgA slightly increased RA sensitivity of UH-RA.21-specific antibody testing to 27 % compared with solely testing for IgG (23 %). Notably, a higher number of anti-UH-RA.21 antibody isotypes was related to increased levels of erythrocyte sedimentation rate. Finally, for both antibody responses, the full antibody isotype use was demonstrated in early and seronegative disease. The isotype distribution of anti-UH-RA.1 and anti-UH-RA.21 antibodies was successfully outlined, and, for antibodies against UH-RA.1, we found that isotype-specific testing might have implications for diagnostic testing. The exact mechanisms by

  11. Pre-Hawking radiation cannot prevent the formation of apparent horizon

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Unruh, William G.; Wu, Chih-Hung; Yeom, Dong-Han

    2018-03-01

    As an attempt to solve the black hole information loss paradox, recently there has been the suggestion that, due to semiclassical effects, a pre-Hawking radiation must exist during the gravitational collapse of matter, which in turn prevents the apparent horizon from forming. Assuming the pre-Hawking radiation does exist, here we argue the opposite. First we note that the stress energy tensor near the horizon for the pre-Hawking radiation is far too small to do anything to the motion of a collapsing shell. Thus the shell will always cross the apparent horizon within a finite proper time. Moreover, the amount of energy that can be radiated must be less than half of the total initial energy (if the particle starts at rest at infinity) before the shell becomes a null shell and cannot radiate any more without becoming tachyonic. We conclude that for any gravitational collapsing process within Einstein gravity and semiclassical quantum field theory, the formation of the apparent horizon is inevitable. Pre-Hawking radiation is therefore not a valid solution to the information paradox.

  12. Towards experimentally testing the paradox of black hole information loss

    NASA Astrophysics Data System (ADS)

    Zhang, Baocheng; Cai, Qing-yu; Zhan, Ming-sheng; You, Li

    2013-02-01

    Information about the collapsed matter in a black hole will be lost if Hawking radiations are truly thermal. Recent studies discover that information can be transmitted from a black hole by Hawking radiations, due to their spectrum deviating from exact thermality when backreaction is considered. In this paper, we focus on the spectroscopic features of Hawking radiation from a Schwarzschild black hole, contrasting the differences between the nonthermal and thermal spectra. Of great interest, we find that the energy covariances of Hawking radiations for the thermal spectrum are exactly zero, while the energy covariances are nontrivial for the nonthermal spectrum. Consequently, the nonthermal spectrum can be distinguished from the thermal one by counting the energy covariances of successive emissions, which provides an avenue towards experimentally testing the long-standing “information loss paradox.”

  13. Thermodynamic phase transition of a black hole in rainbow gravity

    NASA Astrophysics Data System (ADS)

    Feng, Zhong-Wen; Yang, Shu-Zheng

    2017-09-01

    In this letter, using the rainbow functions that were proposed by Magueijo and Smolin, we investigate the thermodynamics and the phase transition of rainbow Schwarzschild black hole. First, we calculate the rainbow gravity corrected Hawking temperature. From this modification, we then derive the local temperature, free energy, and other thermodynamic quantities in an isothermal cavity. Finally, we analyze the critical behavior, thermodynamic stability, and phase transition of the rainbow Schwarzschild black hole. The results show that the rainbow gravity can stop the Hawking radiation in the final stages of black holes' evolution and lead to the remnants of black holes. Furthermore, one can observe that the rainbow Schwarzschild black hole has one first-order phase transition, two second-order phase transitions, and three Hawking-Page-type phase transitions in the framework of rainbow gravity theory.

  14. Two autographs: Cecile Dewitt and Robert Hawking (for Steven Hawking)

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    2007-12-01

    Two autographs given to author by professor Cecile Dewitt and Robert Hawking (the son of Steven Hawking for his father) in 1987 during the Quantum Gravity Seminar in Moscow are presented. The first was given during a visit to Physical Institute of the Academy of sciences of the USSR, where a seminar held in the Theoretical department. the second was given during a lunch with Steven Hawking, Andrei Linde and Robert Hawking at the 2-nd floor of the Conference floor.

  15. Entropy of the information retrieved from black holes

    NASA Astrophysics Data System (ADS)

    Mersini-Houghton, Laura

    2016-07-01

    The retrieval of black hole information was recently presented in two interesting proposals in the ‘Hawking Radiation’ conference: a revised version by Hooft of a proposal he initially suggested 20 years ago and, a new proposal by Hawking. Both proposals address the problem of black hole information loss at the classical level and derive an expression for the scattering matrix. The former uses gravitation back reaction of incoming particles that imprints its information on the outgoing modes. The latter uses supertranslation symmetry of horizons to relate a phase delay of the outgoing wave packet compared to their incoming wave partners. The difficulty in both proposals is that the entropy obtained from them appears to be infinite. By including quantum effects into the Hawking and Hooft’s proposals, I show that a subtlety arising from the inescapable measurement process, the quantum Zeno effect, not only tames divergences but it actually recovers the correct 1/4 of the area Bekenstein-Hawking entropy law of black holes.

  16. Hawking radiation and the boomerang behavior of massive modes near a horizon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jannes, G.; Low Temperature Laboratory, Aalto University School of Science, PO Box 15100, 00076 Aalto; Maiessa, P.

    2011-05-15

    We discuss the behavior of massive modes near a horizon based on a study of the dispersion relation and wave packet simulations of the Klein-Gordon equation. We point out an apparent paradox between two (in principle equivalent) pictures of black-hole evaporation through Hawking radiation. In the picture in which the evaporation is due to the emission of positive-energy modes, one immediately obtains a threshold for the emission of massive particles. In the picture in which the evaporation is due to the absorption of negative-energy modes, such a threshold apparently does not exist. We resolve this paradox by tracing the evolutionmore » of the positive-energy massive modes with an energy below the threshold. These are seen to be emitted and move away from the black-hole horizon, but they bounce back at a 'red horizon' and are reabsorbed by the black hole, thus compensating exactly for the difference between the two pictures. For astrophysical black holes, the consequences are curious but do not affect the terrestrial constraints on observing Hawking radiation. For analogue-gravity systems with massive modes, however, the consequences are crucial and rather surprising.« less

  17. Hawking radiation and the boomerang behavior of massive modes near a horizon

    NASA Astrophysics Data System (ADS)

    Jannes, G.; Maïssa, P.; Philbin, T. G.; Rousseaux, G.

    2011-05-01

    We discuss the behavior of massive modes near a horizon based on a study of the dispersion relation and wave packet simulations of the Klein-Gordon equation. We point out an apparent paradox between two (in principle equivalent) pictures of black-hole evaporation through Hawking radiation. In the picture in which the evaporation is due to the emission of positive-energy modes, one immediately obtains a threshold for the emission of massive particles. In the picture in which the evaporation is due to the absorption of negative-energy modes, such a threshold apparently does not exist. We resolve this paradox by tracing the evolution of the positive-energy massive modes with an energy below the threshold. These are seen to be emitted and move away from the black-hole horizon, but they bounce back at a “red horizon” and are reabsorbed by the black hole, thus compensating exactly for the difference between the two pictures. For astrophysical black holes, the consequences are curious but do not affect the terrestrial constraints on observing Hawking radiation. For analogue-gravity systems with massive modes, however, the consequences are crucial and rather surprising.

  18. How sensitive is Hawking radiation to superluminal dispersion relations?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jannes, G.; Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid; Barcelo, C.

    2009-05-01

    We discuss the Hawking radiation process in a collapse scenario with superluminal dispersion relations. Due to these superluminal modifications, the horizon effectively becomes frequency-dependent. At every moment of the collapse, a critical frequency can be calculated such that frequencies higher than this critical frequency do not couple to the collapsing geometry and hence do not see any horizon. We discuss three important consequences. First, the late-time radiation in general has a lower intensity than in the standard Hawking picture. Second, the thermal output spectrum depends on the surface gravity, thereby effectively exploring the physics inside the black hole. Third, themore » radiation dies off as time advances.« less

  19. The black hole quantum atmosphere

    NASA Astrophysics Data System (ADS)

    Dey, Ramit; Liberati, Stefano; Pranzetti, Daniele

    2017-11-01

    Ever since the discovery of black hole evaporation, the region of origin of the radiated quanta has been a topic of debate. Recently it was argued by Giddings that the Hawking quanta originate from a region well outside the black hole horizon by calculating the effective radius of a radiating body via the Stefan-Boltzmann law. In this paper we try to further explore this issue and end up corroborating this claim, using both a heuristic argument and a detailed study of the stress energy tensor. We show that the Hawking quanta originate from what might be called a quantum atmosphere around the black hole with energy density and fluxes of particles peaked at about 4 MG, running contrary to the popular belief that these originate from the ultra high energy excitations very close to the horizon. This long distance origin of Hawking radiation could have a profound impact on our understanding of the information and transplanckian problems.

  20. Hawking effects as a noisy quantum channel

    NASA Astrophysics Data System (ADS)

    Ahn, Doyeol

    2018-01-01

    In this work, we have shown that the evolution of the bipartite entangled state near the black hole with the Hawking radiation can be described by a noisy quantum channel, having a complete positive map with an "operator sum representation." The entanglement fidelity is obtained in analytic form from the "operator sum representation." The bipartite entangled state becomes bipartite mixed Gaussian state as the black hole evaporates. By comparing negativity and entanglement monotone with the analytical form of the entanglement fidelity, we found that the negativity and the entanglement monotone for s = 1/2 provide the upper and the lower bounds of the entanglement fidelity, respectively.

  1. Accelerating Plasma Mirrors to Investigate the Black Hole Information Loss Paradox.

    PubMed

    Chen, Pisin; Mourou, Gerard

    2017-01-27

    The question of whether Hawking evaporation violates unitarity, and therefore results in the loss of information, has remained unresolved since Hawking's seminal discovery. To date, the investigations have remained mostly theoretical since it is almost impossible to settle this paradox through direct astrophysical black hole observations. Here, we point out that relativistic plasma mirrors can be accelerated drastically and stopped abruptly by impinging intense x-ray pulses on solid plasma targets with a density gradient. This is analogous to the late time evolution of black hole Hawking evaporation. A conception of such an experiment is proposed and a self-consistent set of physical parameters is presented. Critical issues, such as how the black hole unitarity may be preserved, can be addressed through the entanglement between the analog Hawking radiation photons and their partner modes.

  2. Accelerating Plasma Mirrors to Investigate the Black Hole Information Loss Paradox

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Mourou, Gerard

    2017-01-01

    The question of whether Hawking evaporation violates unitarity, and therefore results in the loss of information, has remained unresolved since Hawking's seminal discovery. To date, the investigations have remained mostly theoretical since it is almost impossible to settle this paradox through direct astrophysical black hole observations. Here, we point out that relativistic plasma mirrors can be accelerated drastically and stopped abruptly by impinging intense x-ray pulses on solid plasma targets with a density gradient. This is analogous to the late time evolution of black hole Hawking evaporation. A conception of such an experiment is proposed and a self-consistent set of physical parameters is presented. Critical issues, such as how the black hole unitarity may be preserved, can be addressed through the entanglement between the analog Hawking radiation photons and their partner modes.

  3. Renyi Entropies of a Black Hole

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.

    2008-08-01

    The Renyi entropies, Hl, of Hawking radiation contained in a thin shell surrounding the black hole are evaluated. When the width of the shell is adjusted to the energy content corresponding to the mass defect, the Bekenstein-Hawking formula for the Shannon (S=H1) entropy of a black hole is reproduced. This result does not depend on the distance of the shell from the horizon. The Renyi entropies of higher order, however, are sensitive to it.

  4. Pre-Hawking radiation cannot prevent the formation of apparent horizon

    DOE PAGES

    Chen, Pisin; Unruh, William G.; Wu, Chih-Hung; ...

    2018-03-30

    As an attempt to solve the black hole information loss paradox, recently there has been the suggestion that, due to semiclassical effects, a pre-Hawking radiation must exist during the gravitational collapse of matter, which in turn prevents the apparent horizon from forming. Assuming the pre-Hawking radiation does exist, here we argue the opposite. First we note that the stress energy tensor near the horizon for the pre-Hawking radiation is far too small to do anything to the motion of a collapsing shell. Thus the shell will always cross the apparent horizon within a finite proper time. Moreover, the amount ofmore » energy that can be radiated must be less than half of the total initial energy (if the particle starts at rest at infinity) before the shell becomes a null shell and cannot radiate any more without becoming tachyonic. Here, we conclude that for any gravitational collapsing process within Einstein gravity and semiclassical quantum field theory, the formation of the apparent horizon is inevitable. Pre-Hawking radiation is therefore not a valid solution to the information paradox.« less

  5. Pre-Hawking radiation cannot prevent the formation of apparent horizon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin; Unruh, William G.; Wu, Chih-Hung

    As an attempt to solve the black hole information loss paradox, recently there has been the suggestion that, due to semiclassical effects, a pre-Hawking radiation must exist during the gravitational collapse of matter, which in turn prevents the apparent horizon from forming. Assuming the pre-Hawking radiation does exist, here we argue the opposite. First we note that the stress energy tensor near the horizon for the pre-Hawking radiation is far too small to do anything to the motion of a collapsing shell. Thus the shell will always cross the apparent horizon within a finite proper time. Moreover, the amount ofmore » energy that can be radiated must be less than half of the total initial energy (if the particle starts at rest at infinity) before the shell becomes a null shell and cannot radiate any more without becoming tachyonic. Here, we conclude that for any gravitational collapsing process within Einstein gravity and semiclassical quantum field theory, the formation of the apparent horizon is inevitable. Pre-Hawking radiation is therefore not a valid solution to the information paradox.« less

  6. Grand unification scale primordial black holes: consequences and constraints.

    PubMed

    Anantua, Richard; Easther, Richard; Giblin, John T

    2009-09-11

    A population of very light primordial black holes which evaporate before nucleosynthesis begins is unconstrained unless the decaying black holes leave stable relics. We show that gravitons Hawking radiated from these black holes would source a substantial stochastic background of high frequency gravititational waves (10(12) Hz or more) in the present Universe. These black holes may lead to a transient period of matter-dominated expansion. In this case the primordial Universe could be temporarily dominated by large clusters of "Hawking stars" and the resulting gravitational wave spectrum is independent of the initial number density of primordial black holes.

  7. Breeding chronology, molt, and measurements of accipiter hawks in northeastern Oregon

    USGS Publications Warehouse

    Henny, C.J.; Olson, R.A.; Fleming, T.L.

    1985-01-01

    Most northern goshawks completed laying eggs in April, while most Cooper's hawks completed their clutches in May with essentially no overlap. The sharp-shinned hawks laid in late May and June. Juvenile females represented 4% of the northern goshawk breeding population; 22% of the Cooper's hawk breeding population (highest reported for the species) and 60% of the sharp-shinned hawk breeding population, northern goshawks and Cooper's hawks in juvenal plumage generally nested later in the season, but not sharp-shinned hawks. Females of each species began molting first. Primaries were molted from the innermost outward in all species, but rectrix molt sequence was variable. Usually R1 was molted first. Primary molt of the 2 wings was usually synchronous; however, the rectrix molt was not as orderly. Arrested molt was observed in some individuals of all species; it probably has an energy-saving function. Wing chords of adult northern goshawks from Oregon were not different from Wisconsin fall migrants or birds from Alaska; however, rectrices were significantly shorter in Oregon than Wisconsin. Cooper's hawks nesting in Oregon were much smaller than those trapped in Wisconsin. Wing chords and rectrices were significantly shorter for both sexes, and, although weights were not directly comparable, Oregon Cooper's hawks also weighed much less. The limited number of sharp-shinned hawks measured precluded statistical analyses.

  8. Stephen Hawking bags big new 3m physics prize

    NASA Astrophysics Data System (ADS)

    Johnston, Hamish

    2013-01-01

    A massive 3m in prize money has gone to the British cosmologist Stephen Hawking for his work on black holes, quantum gravity and the early universe. The award is one of two "special fundamental physics prizes" from the Fundamental Physics Prize Foundation, which was set up earlier this year by the Russian physicist-turned-entrepreneur Yuri Milner.

  9. Hawking radiation in an electromagnetic waveguide?

    PubMed

    Schützhold, Ralf; Unruh, William G

    2005-07-15

    It is demonstrated that the propagation of electromagnetic waves in an appropriately designed waveguide is (for large wavelengths) analogous to that within a curved space-time--such as around a black hole. As electromagnetic radiation (e.g., microwaves) can be controlled, amplified, and detected (with present-day technology) much easier than sound, for example, we propose a setup for the experimental verification of the Hawking effect. Apart from experimentally testing this striking prediction, this would facilitate the investigation of the trans-Planckian problem.

  10. The Black Hole Information Problem

    NASA Astrophysics Data System (ADS)

    Polchinski, Joseph

    The black hole information problem has been a challenge since Hawking's original 1975 paper. It led to the discovery of AdS/CFT, which gave a partial resolution of the paradox. However, recent developments, in particular the firewall puzzle, show that there is much that we do not understand. I review the black hole, Hawking radiation, and the Page curve, and the classic form of the paradox. I discuss AdS/CFT as a partial resolution. I then discuss black hole complementarity and its limitations, leading to many proposals for different kinds of `drama.' I conclude with some recent ideas. Presented at the 2014-15 Jerusalem Winter School and the 2015 TASI.

  11. Helicopter Noise Definition Report UH-60A, S-76, A-109, 206-L

    DTIC Science & Technology

    1981-12-01

    ALL THE WORLDS AIRCRAF~ 25 -.. H., . . . I - I’I Fi.I 2.3. Sikrsk UH .0A "Bla *khaw -" | r a’ Fig. 2.3.2 Sikoraky S-76, "Spirit" -. q A,~ ~ j A. "I...1305 1:2 -04830 8545 82+9 75*1 O1,6 87,b Sete 11,5 10s5 1#2 -1*0 31 85.7 83,3 75,1 80.0 86#6 67,7 16#5 150 1#1 -0#7 32 83.7 81.2 73.5 79.3 85,6 8669...RIO. TIMITIKE PNLTP WAR REOORDED RAOD TIMiTIME PNLTM WAS RADIATED R/OlAIORAFT RPATE OLI•ND OR DS6ENT O’D-ANGtOL•IM OR DESCENT ANGE.E G*6GROUND SPEED

  12. A self-consistency check for unitary propagation of Hawking quanta

    NASA Astrophysics Data System (ADS)

    Baker, Daniel; Kodwani, Darsh; Pen, Ue-Li; Yang, I.-Sheng

    2017-11-01

    The black hole information paradox presumes that quantum field theory in curved space-time can provide unitary propagation from a near-horizon mode to an asymptotic Hawking quantum. Instead of invoking conjectural quantum-gravity effects to modify such an assumption, we propose a self-consistency check. We establish an analogy to Feynman’s analysis of a double-slit experiment. Feynman showed that unitary propagation of the interfering particles, namely ignoring the entanglement with the double-slit, becomes an arbitrarily reliable assumption when the screen upon which the interference pattern is projected is infinitely far away. We argue for an analogous self-consistency check for quantum field theory in curved space-time. We apply it to the propagation of Hawking quanta and test whether ignoring the entanglement with the geometry also becomes arbitrarily reliable in the limit of a large black hole. We present curious results to suggest a negative answer, and we discuss how this loss of naive unitarity in QFT might be related to a solution of the paradox based on the soft-hair-memory effect.

  13. The Thermodynamics of Black Holes.

    PubMed

    Wald, Robert M

    2001-01-01

    We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.

  14. The black hole information paradox and highly squeezed interior quantum fluctuations

    NASA Astrophysics Data System (ADS)

    Oshita, Naritaka

    2017-10-01

    Almheiri, Marolf, Polchinski, and Sully argued that, for a consistent black hole evaporation process, the horizon of a sufficiently old black hole should be replaced by a ‘firewall’ at which an infalling observer burns up, which obviously leads to the violation of the equivalence principle. We propose that once the infalling partner of an outgoing Hawking particle approaches a black hole singularity, it experiences decoherence and the loss of its entanglement with the outgoing Hawking particle. This implies we would no longer need firewalls to avoid the black hole information paradox.

  15. Quantum gravity effects on scalar particle tunneling from rotating BTZ black hole

    NASA Astrophysics Data System (ADS)

    Meitei, I. Ablu; Singh, T. Ibungochouba; Devi, S. Gayatri; Devi, N. Premeshwari; Singh, K. Yugindro

    2018-04-01

    Tunneling of scalar particles across the event horizon of rotating BTZ black hole is investigated using the Generalized Uncertainty Principle to study the corrected Hawking temperature and entropy in the presence of quantum gravity effects. We have determined explicitly the various correction terms in the entropy of rotating BTZ black hole including the logarithmic term of the Bekenstein-Hawking entropy (SBH), the inverse term of SBH and terms with inverse powers of SBH, in terms of properties of the black hole and the emitted particles — mass, energy and angular momentum. In the presence of quantum gravity effects, for the emission of scalar particles, the Hawking radiation and thermodynamics of rotating BTZ black hole are observed to be related to the metric element, hence to the curvature of space-time.

  16. Uh and um revisited: are they interjections for signaling delay?

    PubMed

    O'Connell, Daniel C; Kowal, Sabine

    2005-11-01

    Clark and Fox Tree (2002) have presented empirical evidence, based primarily on the London-Lund corpus (LL; Svartvik & Quirk, 1980), that the fillers uh and um are conventional English words that signal a speaker's intention to initiate a minor and a major delay, respectively. We present here empirical analyses of uh and um and of silent pauses (delays) immediately following them in six media interviews of Hillary Clinton. Our evidence indicates that uh and um cannot serve as signals of upcoming delay, let alone signal it differentially: In most cases, both uh and um were not followed by a silent pause, that is, there was no delay at all; the silent pauses that did occur after um were too short to be counted as major delays; finally, the distributions of durations of silent pauses after uh and um were almost entirely overlapping and could therefore not have served as reliable predictors for a listener. The discrepancies between Clark and Fox Tree's findings and ours are largely a consequence of the fact that their LL analyses reflect the perceptions of professional coders, whereas our data were analyzed by means of acoustic measurements with the PRAAT software (www.praat.org). A comparison of our findings with those of O'Connell, Kowal, and Ageneau (2005) did not corroborate the hypothesis of Clark and Fox Tree that uh and um are interjections: Fillers occurred typically in initial, interjections in medial positions; fillers did not constitute an integral turn by themselves, whereas interjections did; fillers never initiated cited speech, whereas interjections did; and fillers did not signal emotion, whereas interjections did. Clark and Fox Tree's analyses were embedded within a theory of ideal delivery that we find inappropriate for the explication of these phenomena.

  17. NASA/UH signing of memorandum of understanding

    NASA Image and Video Library

    1996-10-02

    NASA/University of Houston (UH) signing of memorandum of understanding. Johnson Space Center (JSC) Director George Abbey signs a memorandum of understanding with University of Houston's President Glenn Goerke and University of Houston Clear Lake President Williams Staples. UH will supply post-doctoral researchers to JSC for more than 15 projects of scientific interest to both JSC and the university. Seated from left are, Abbey, Goerke and Staples. Standing from left are David Criswell, director of the Institute of Space Systems Operations; Texas State Representatives Michael Jackson, Robert Talton and Talmadge Heflin. View appears in Space News Roundup v35 n41 p4, 10-18-96.

  18. The hawk-dove game in a sexually reproducing species explains a colourful polymorphism of an endangered bird.

    PubMed

    Kokko, Hanna; Griffith, Simon C; Pryke, Sarah R

    2014-10-22

    The hawk-dove game famously introduced strategic game theory thinking into biology and forms the basis of arguments for limited aggression in animal populations. However, aggressive 'hawks' and peaceful 'doves', with strategies inherited in a discrete manner, have never been documented in a real animal population. Thus, the applicability of game-theoretic arguments to real populations might be contested. Here, we show that the head-colour polymorphism of red and black Gouldian finches (Erythrura gouldiae) provides a real-life example. The aggressive red morph is behaviourally dominant and successfully invades black populations, but when red 'hawks' become too common, their fitness is severely compromised (via decreased parental ability). We also investigate the effects of real-life deviations, particularly sexual reproduction, from the simple original game, which assumed asexual reproduction. A protected polymorphism requires mate choice to be sufficiently assortative. Assortative mating is adaptive for individuals because of genetic incompatibilities affecting hybrid offspring fitness, but by allowing red 'hawks' to persist, it also leads to significantly reduced population sizes. Because reductions in male contributions to parental care are generally known to lead to lower population productivity in birds, we expect zero-sum competition to often have wide ranging population consequences. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Integral method for the calculation of Hawking radiation in dispersive media. II. Asymmetric asymptotics.

    PubMed

    Robertson, Scott

    2014-11-01

    Analog gravity experiments make feasible the realization of black hole space-times in a laboratory setting and the observational verification of Hawking radiation. Since such analog systems are typically dominated by dispersion, efficient techniques for calculating the predicted Hawking spectrum in the presence of strong dispersion are required. In the preceding paper, an integral method in Fourier space is proposed for stationary 1+1-dimensional backgrounds which are asymptotically symmetric. Here, this method is generalized to backgrounds which are different in the asymptotic regions to the left and right of the scattering region.

  20. Hawking from Catalan

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, A. Liam; Kaplan, Jared; Walters, Matthew T.; Wang, Junpu

    2016-05-01

    The Virasoro algebra determines all `graviton' matrix elements in AdS3/CFT2. We study the explicit exchange of any number of Virasoro gravitons between heavy and light CFT2 operators at large central charge. These graviton exchanges can be written in terms of new on-shell tree diagrams, organized in a perturbative expansion in h H /c, the heavy operator dimension divided by the central charge. The Virasoro vacuum conformal block, which is the sum of all the tree diagrams, obeys a differential recursion relation generalizing that of the Catalan numbers. We use this recursion relation to sum the on-shell diagrams to all orders, computing the Virasoro vacuum block. Extrapolating to large h H /c determines the Hawking temperature of a BTZ black hole in dual AdS3 theories.

  1. "Uh" and "Um" Revisited: Are They Interjections for Signaling Delay?

    ERIC Educational Resources Information Center

    O'Connell, Daniel C.; Kowal, Sabine

    2005-01-01

    Clark and Fox Tree (2002) have presented empirical evidence, based primarily on the London-Lund corpus (LL; Svartvik & Quirk, 1980), that the fillers "uh" and "um" are conventional English words that signal a speaker's intention to initiate a minor and a major delay, respectively. We present here empirical analyses of "uh" and "um" and of silent…

  2. Hawk migration over White Marsh, Maryland

    USGS Publications Warehouse

    Hackman, C.D.; Henny, C.J.

    1971-01-01

    The average number of hawks observed per hour in autumn migration between 1951-1954 and 1958-1961 at White Marsh, Maryland, was compared. The counts indicated that the status of the ten species observed may be divided into three categories: (1) relatively stable species (red-tailed hawk), (2) declining species (sparrow hawk, red-shouldered hawk, osprey, marsh hawk, and broad-winged hawk), and (3) rapidly declining species (peregrine falcon, Cooper?s hawk, bald eagle, and sharp-shinned hawk). The findings from this study are in agreement with the available literature and the status of the populations appears to be related to the food habits of the species.

  3. NASA Global Hawk Overview

    NASA Technical Reports Server (NTRS)

    Naftel, Chris

    2014-01-01

    The NASA Global Hawk Project is supporting Earth Science research customers. These customers include: US Government agencies, civilian organizations, and universities. The combination of the Global Hawks range, endurance, altitude, payload power, payload volume and payload weight capabilities separates the Global Hawk platform from all other platforms available to the science community. This presentation includes an overview of the concept of operations and an overview of the completed science campaigns. In addition, the future science plans, using the NASA Global Hawk System, will be presented.

  4. Comparison of Test Stand and Helicopter Oil Cooler Bearing Condition Indicators

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Branning, Jeremy; Wade, Damiel R.; Bolander, Nathan

    2010-01-01

    The focus of this paper was to compare the performance of HUMS condition indicators (CI) when detecting a bearing fault in a test stand or on a helicopter. This study compared data from two sources: first, CI data collected from accelerometers installed on two UH-60 Black Hawk helicopters when oil cooler bearing faults occurred, along with data from helicopters with no bearing faults; and second, CI data that was collected from ten cooler bearings, healthy and faulted, that were removed from fielded helicopters and installed in a test stand. A method using Receiver Operating Characteristic (ROC) curves to compare CI performance was demonstrated. Results indicated the bearing energy CI responded differently for the helicopter and the test stand. Future research is required if test stand data is to be used validate condition indicator performance on a helicopter.

  5. Black holes radiate mainly on the brane.

    PubMed

    Emparan, R; Horowitz, G T; Myers, R C

    2000-07-17

    We examine the evaporation of a small black hole on a brane in a world with large extra dimensions. Since the masses of many Kaluza-Klein modes are much smaller than the Hawking temperature of the black hole, it has been claimed that most of the energy is radiated into these modes. We show that this is incorrect. Most of the energy goes into the modes on the brane. This raises the possibility of observing Hawking radiation in future high energy colliders if there are large extra dimensions.

  6. Charged Dirac Particles' Hawking Radiation via Tunneling of Both Horizons and Thermodynamics Properties of Kerr-Newman-Kasuya-Taub-NUT-AdS Black Holes

    NASA Astrophysics Data System (ADS)

    Ali, M. Hossain; Sultana, Kausari

    2013-12-01

    We investigate Hawking radiation of electrically and magnetically charged Dirac particles from a dyonic Kerr-Newman-Kasuya-Taub-NUT-Anti-de Sitter (KNKTN-AdS) black hole by considering thermal characters of both the outer and inner horizons. We apply Damour-Ruffini method and membrane method to calculate the temperature and the entropy of the inner horizon of the KNKTN-AdS black hole. The inner horizon admits thermal character with positive temperature and entropy proportional to its area. The inner horizon entropy contributes to the total entropy of the black hole in the context of Nernst theorem. Considering conservation of energy, charges, angular momentum, and the back-reaction of emitting particles to the spacetime, we obtain the emission spectra for both the inner and outer horizons. The total emission rate is obtained as the product of the emission rates of the inner and outer horizons. It deviates from the purely thermal spectrum with the leading term exactly the Boltzman factor and can bring some information out. The result thus can be treated as an explanation to the information loss paradox.

  7. Development and Operation of an Automatic Rotor Trim Control System for the UH-60 Individual Blade Control Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Theodore, Colin R.; Tischler, Mark B.

    2010-01-01

    An automatic rotor trim control system was developed and successfully used during a wind tunnel test of a full-scale UH-60 rotor system with Individual Blade Control (IBC) actuators. The trim control system allowed rotor trim to be set more quickly, precisely and repeatably than in previous wind tunnel tests. This control system also allowed the rotor trim state to be maintained during transients and drift in wind tunnel flow, and through changes in IBC actuation. The ability to maintain a consistent rotor trim state was key to quickly and accurately evaluating the effect of IBC on rotor performance, vibration, noise and loads. This paper presents details of the design and implementation of the trim control system including the rotor system hardware, trim control requirements, and trim control hardware and software implementation. Results are presented showing the effect of IBC on rotor trim and dynamic response, a validation of the rotor dynamic simulation used to calculate the initial control gains and tuning of the control system, and the overall performance of the trim control system during the wind tunnel test.

  8. Entropy/information flux in Hawking radiation

    NASA Astrophysics Data System (ADS)

    Alonso-Serrano, Ana; Visser, Matt

    2018-01-01

    Blackbody radiation contains (on average) an entropy of 3.9 ± 2.5 bits per photon. If the emission process is unitary, then this entropy is exactly compensated by "hidden information" in the correlations. We extend this argument to the Hawking radiation from GR black holes, demonstrating that the assumption of unitarity leads to a perfectly reasonable entropy/information budget. The key technical aspect of our calculation is a variant of the "average subsystem" approach developed by Page, which we extend beyond bipartite pure systems, to a tripartite pure system that considers the influence of the environment.

  9. Hawking from Catalan

    DOE PAGES

    Fitzpatrick, A. Liam; Kaplan, Jared; Walters, Matthew T.; ...

    2016-05-12

    The Virasoro algebra determines all ‘graviton’ matrix elements in AdS 3/CFT 2. We study the explicit exchange of any number of Virasoro gravitons between heavy and light CFT 2 operators at large central charge. These graviton exchanges can be written in terms of new on-shell tree diagrams, organized in a perturbative expansion in h H/c, the heavy operator dimension divided by the central charge. The Virasoro vacuum conformal block, which is the sum of all the tree diagrams, obeys a differential recursion relation generalizing that of the Catalan numbers. Here, we use this recursion relation to sum the on-shell diagramsmore » to all orders, computing the Virasoro vacuum block. Extrapolating to large h H/c determines the Hawking temperature of a BTZ black hole in dual AdS 3 theories.« less

  10. Analog gravity by an optical vortex: Resonance enhancement of Hawking radiation

    NASA Astrophysics Data System (ADS)

    Ornigotti, Marco; Bar-Ad, Shimshon; Szameit, Alexander; Fleurov, Victor

    2018-01-01

    Propagation of coherent light in a Kerr nonlinear medium can be mapped onto a flow of an equivalent fluid. Here we use this mapping to model the conditions in the vicinity of a rotating black hole as a Laguerre-Gauss vortex beam. We describe weak fluctuations of the phase and amplitude of the electric field by wave equations in curved space, with a metric that is similar to the Kerr metric. We find the positions of event horizons and ergoregion boundaries, and the conditions for the onset of superradiance, which are simultaneously the conditions for a resonance in the analog Hawking radiation. The resonance strongly enhances the otherwise exponentially weak Hawking radiation at certain frequencies and makes its experimental observation feasible.

  11. Schwarzschild fuzzball and explicitly unitary Hawking radiation

    NASA Astrophysics Data System (ADS)

    Zeng, Ding-fang

    2018-05-01

    We provide a fuzzball picture for Schwarzschild black holes, in which matters and energy consisting the hole are not positioned on the central point exclusively but oscillate around there in a serial of eigen-modes, each of which features a special level of binding degrees and are quantum mechanically possible to be measured outside the horizon. By listing these modes explicitly for holes as large as 6Mpl, we find that their number increases exponentially with the area. Basing on these results, we construct a simple but explicitly unitary formulation of Hawking radiations.

  12. The Effect of Hawking Radation on Fermion Re-Inflation of a Schwartszchild Kugelblitz

    NASA Astrophysics Data System (ADS)

    Lee, J. S.

    The implementation of laser-created subatomic black holes (Schwarzschild Kugelblitzes or SKs) as propulsive and power sources for interstellar starships has been presented in the literature [l]. SKs with life expectancies of only several years resulting from petawatt Hawking Radiation suggest the appeal of a mechanism to "re-inflate" the SK. This paper calculates the absorption cross-sections and absorption probabilities of attometer Schwarzschild Kugelblitzes, and demonstrates the need for incoming inflating particles to have an energy in the TeV-PeV range. The interaction between collimated re-inflating fermions and the instantaneous spectrum of Hawking radiation, and the challenges associated with subnuclear-scale beam collimation are examined.

  13. Hawking's acting roles

    NASA Astrophysics Data System (ADS)

    Castell, Stephen

    2012-06-01

    In the wake of Stephen Hawking's appearance on the TV show The Big Bang Theory, last month's "Quanta" page (May p3), included a request: "If you think Hawking should appear in any other TV shows, then let us know".

  14. Quantum information cannot be completely hidden in correlations: implications for the black-hole information paradox.

    PubMed

    Braunstein, Samuel L; Pati, Arun K

    2007-02-23

    Can quantum-information theory shed light on black-hole evaporation? By entangling the in-fallen matter with an external system we show that the black-hole information paradox becomes more severe, even for cosmologically sized black holes. We rule out the possibility that the information about the in-fallen matter might hide in correlations between the Hawking radiation and the internal states of the black hole. As a consequence, either unitarity or Hawking's semiclassical predictions must break down. Any resolution of the black-hole information crisis must elucidate one of these possibilities.

  15. Hawking fluxes, fermionic currents, W{sub 1+{infinity}} algebra, and anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonora, L.; Cvitan, M.; Theoretical Physics Department, Faculty of Science, University of Zagreb Bijenicka cesta 32, HR-10002 Zagreb

    2009-10-15

    We complete the analysis carried out in previous papers by studying the Hawking radiation for a Kerr black hole carried to infinity by fermionic currents of any spin. We find agreement with the thermal spectrum of the Hawking radiation for fermionic degrees of freedom. We start by showing that the near-horizon physics for a Kerr black hole is approximated by an effective two-dimensional field theory of fermionic fields. Then, starting from two-dimensional currents of any spin that form a W{sub 1+{infinity}} algebra, we construct an infinite set of covariant currents, each of which carries the corresponding moment of the Hawkingmore » radiation. All together they agree with the thermal spectrum of the latter. We show that the predictive power of this method is based not on the anomalies of the higher-spin currents (which are trivial) but on the underlying W{sub 1+{infinity}} structure. Our results point toward the existence in the near-horizon geometry of a symmetry larger than the Virasoro algebra, which very likely takes the form of a W{sub {infinity}} algebra.« less

  16. Measurements of Tip Vortices from a Full-Scale UH-60A Rotor by Retro- Reflective Background Oriented Schlieren and Stereo Photogrammetry

    NASA Technical Reports Server (NTRS)

    Schairer, Edward; Kushner, Laura K.; Heineck, James T.

    2013-01-01

    Positions of vortices shed by a full-scale UH-60A rotor in forward flight were measured during a test in the National Full- Scale Aerodynamics Complex at NASA Ames Research Center. Vortices in a region near the tip of the advancing blade were visualized from two directions by Retro-Reflective Background-Oriented Schlieren (RBOS). Correspondence of points on the vortex in the RBOS images from both cameras was established using epipolar geometry. The object-space coordinates of the vortices were then calculated from the image-plane coordinates using stereo photogrammetry. One vortex from the tip of the blade that had most recently passed was visible in most of the data. The visibility of the vortices was greatest at high thrust and low advance ratios. At these favorable conditions, vortices from the most recent passages of all four blades were detected. The vortex positions were in good agreement with PIV data for a case where PIV measurements were also made. RBOS and photogrammetry provided measurements of the angle at which each vortex passed through the PIV plane.

  17. Fermion tunneling from a non-static black hole with the internal global monopole

    NASA Astrophysics Data System (ADS)

    Li, Hui-Ling; Cai, Min; Lin, Rong

    2009-10-01

    Kerner and Mann’s recent research shows that the Hawking temperature and tunneling rate can be obtained by the fermion tunneling method from the Rindler space-time and a general non-rotating black hole. In this paper, considering the tunneling particles with spin 1/2 and taking into account the particle’s self-gravitation in the dynamical background space-time, we further improve Kerner and Man’s fermion tunneling method to investigate Hawking radiation via tunneling from a non-static black hole with the internal global monopole. The result shows that the tunneling rate of the non-static black hole is related to the integral of the changing horizon besides the change of Bekenstein-Hawking entropy, which is different from the stationary cases. It also essentially implies that the unitary is violated for the reason that the black hole is non-stationary and cannot be treated as an isolated system.

  18. A failure effects simulation of a low authority flight control augmentation system on a UH-1H helicopter

    NASA Technical Reports Server (NTRS)

    Corliss, L. D.; Talbot, P. D.

    1977-01-01

    A two-pilot moving base simulator experiment was conducted to assess the effects of servo failures of a flight control system on the transient dynamics of a Bell UH-1H helicopter. The flight control hardware considered was part of the V/STOLAND system built with control authorities of from 20-40%. Servo hardover and oscillatory failures were simulated in each control axis. Measurements were made to determine the adequacy of the failure monitoring system time delay and the servo center and lock time constant, the pilot reaction times, and the altitude and attitude excursions of the helicopter at hover and 60 knots. Safe recoveries were made from all failures under VFR conditions. Pilot reaction times were from 0.5 to 0.75 sec. Reduction of monitor delay times below these values resulted in significantly reduced excursion envelopes. A subsequent flight test was conducted on a UH-1H helicopter with the V/STOLAND system installed. Series servo hardovers were introduced in hover and at 60 knots straight and level. Data from these tests are included for comparison.

  19. Horizon in random matrix theory, the Hawking radiation, and flow of cold atoms.

    PubMed

    Franchini, Fabio; Kravtsov, Vladimir E

    2009-10-16

    We propose a Gaussian scalar field theory in a curved 2D metric with an event horizon as the low-energy effective theory for a weakly confined, invariant random matrix ensemble (RME). The presence of an event horizon naturally generates a bath of Hawking radiation, which introduces a finite temperature in the model in a nontrivial way. A similar mapping with a gravitational analogue model has been constructed for a Bose-Einstein condensate (BEC) pushed to flow at a velocity higher than its speed of sound, with Hawking radiation as sound waves propagating over the cold atoms. Our work suggests a threefold connection between a moving BEC system, black-hole physics and unconventional RMEs with possible experimental applications.

  20. Black hole remnants and the information loss paradox

    NASA Astrophysics Data System (ADS)

    Chen, P.; Ong, Y. C.; Yeom, D.-h.

    2015-11-01

    Forty years after the discovery of Hawking radiation, its exact nature remains elusive. If Hawking radiation does not carry any information out from the ever shrinking black hole, it seems that unitarity is violated once the black hole completely evaporates. On the other hand, attempts to recover information via quantum entanglement lead to the firewall controversy. Amid the confusions, the possibility that black hole evaporation stops with a "remnant" has remained unpopular and is often dismissed due to some "undesired properties" of such an object. Nevertheless, as in any scientific debate, the pros and cons of any proposal must be carefully scrutinized. We fill in the void of the literature by providing a timely review of various types of black hole remnants, and provide some new thoughts regarding the challenges that black hole remnants face in the context of the information loss paradox and its latest incarnation, namely the firewall controversy. The importance of understanding the role of curvature singularity is also emphasized, after all there remains a possibility that the singularity cannot be cured even by quantum gravity. In this context a black hole remnant conveniently serves as a cosmic censor. We conclude that a remnant remains a possible end state of Hawking evaporation, and if it contains large interior geometry, may help to ameliorate the information loss paradox and the firewall controversy. We hope that this will raise some interests in the community to investigate remnants more critically but also more thoroughly.

  1. Non-strictly black body spectrum from the tunnelling mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corda, Christian, E-mail: cordac.galilei@gmail.com

    2013-10-15

    The tunnelling mechanism is widely used to explain Hawking radiation. However, in many cases the analysis used to obtain the Hawking temperature only involves comparing the emission probability for an outgoing particle with the Boltzmann factor. Banerjee and Majhi improved this approach by explicitly finding a black body spectrum associated with black holes. Their result, obtained using a reformulation of the tunnelling mechanism, is in contrast to that of Parikh and Wilczek, who found an emission probability that is compatible with a non-strictly thermal spectrum. Using the recently identified effective state for a black hole, we solve this contradiction viamore » a slight modification of the analysis by Banerjee and Majhi. The final result is a non-strictly black body spectrum from the tunnelling mechanism. We also show that for an effective temperature, we can express the corresponding effective metric using Hawking’s periodicity arguments. Potential important implications for the black hole information puzzle are discussed. -- Highlights: •We review an important result by Banerjee and Majhi on the tunnelling mechanism in the framework of Hawking radiation. •This result is in contrast to another result reported by Parikh and Wilczek. •We introduce the effective state of a black hole. •We explain the contrast via a slight modification of the analysis by Banerjee and Majhi. •We discuss potential important implications for the black hole information puzzle.« less

  2. Experimental study of main rotor/tail rotor/airframe interactions in hover. Volume 1: Text and figures

    NASA Technical Reports Server (NTRS)

    Balch, D. T.; Saccullo, A.; Sheehy, T. W.

    1983-01-01

    To assist in identifying and quantifying the relevant parameters associated with the complex topic of main rotor/fuselage/tail rotor interference, a model scale hover test was conducted in the Model Rotor Hover Facility. The test was conducted using the basic model test rig, fuselage skins to represent a UH-60A BLACK HAWK helicopter, 4 sets of rotor blades of varying geometry (i.e., twist, airfoils and solidity) and a model tail rotor that could be relocated to give changes in rotor clearance (axially, laterally, and vertically), can't angle and operating model (pusher or tractor). The description of the models and the tests, data analysis and summary (including plots) are included. The customary system of units gas used for principal measurements and calculations. Expressions in both SI units and customary units are used with the SI units stated first and the customary units afterwords, in parenthesis.

  3. Signal Detection Theory Applied to Helicopter Transmission Diagnostic Thresholds

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Keller, Jonathan A.; Wade, Daniel R.

    2008-01-01

    Helicopter Health Usage Monitoring Systems (HUMS) have potential for providing data to support increasing the service life of a dynamic mechanical component in the transmission of a helicopter. Data collected can demonstrate the HUMS condition indicator responds to a specific component fault with appropriate alert limits and minimal false alarms. Defining thresholds for specific faults requires a tradeoff between the sensitivity of the condition indicator (CI) limit to indicate damage and the number of false alarms. A method using Receiver Operating Characteristic (ROC) curves to assess CI performance was demonstrated using CI data collected from accelerometers installed on several UH60 Black Hawk and AH64 Apache helicopters and an AH64 helicopter component test stand. Results of the analysis indicate ROC curves can be used to reliably assess the performance of commercial HUMS condition indicators to detect damaged gears and bearings in a helicopter transmission.

  4. Signal Detection Theory Applied to Helicopter Transmission Diagnostic Thresholds

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Keller, Jonathan A.; Wade, Daniel R.

    2009-01-01

    Helicopter Health Usage Monitoring Systems (HUMS) have potential for providing data to support increasing the service life of a dynamic mechanical component in the transmission of a helicopter. Data collected can demonstrate the HUMS condition indicator responds to a specific component fault with appropriate alert limits and minimal false alarms. Defining thresholds for specific faults requires a tradeoff between the sensitivity of the condition indicator (CI) limit to indicate damage and the number of false alarms. A method using Receiver Operating Characteristic (ROC) curves to assess CI performance was demonstrated using CI data collected from accelerometers installed on several UH60 Black Hawk and AH64 Apache helicopters and an AH64 helicopter component test stand. Results of the analysis indicate ROC curves can be used to reliably assess the performance of commercial HUMS condition indicators to detect damaged gears and bearings in a helicopter transmission.

  5. Some Simple Black Hole Thermodynamics

    NASA Astrophysics Data System (ADS)

    Lopresto, Michael C.

    2003-05-01

    In his recent popular book The Universe in a Nutshell, Steven Hawking gives expressions for the entropy1 and temperature (often referred to as the ``Hawking temperature''2 ) of a black hole:3 S = kc34ℏG A T = ℏc38πkGM, where A is the area of the event horizon, M is the mass, k is Boltzmann's constant, ℏ = h2π (h being Planck's constant), c is the speed of light, and G is the universal gravitational constant. These expressions can be used as starting points for some interesting approximations on the thermodynamics of a Schwarzschild black hole, of mass M, which by definition is nonrotating and spherical with an event horizon of radius R = 2GMc2.4,5

  6. Ophthalmologic and oculopathologic findings in red-tailed hawks and Cooper's hawks with naturally acquired West Nile virus infection.

    PubMed

    Pauli, Amy M; Cruz-Martinez, Luis A; Ponder, Julia B; Redig, Patrick T; Glaser, Amy L; Klauss, Gia; Schoster, James V; Wünschmann, Arno

    2007-10-15

    To assess ophthalmologic features and ocular lesions in red-tailed hawks and Cooper's hawks naturally infected with West Nile virus (WNV). Original study. 13 hawks. All hawks underwent complete ophthalmic examinations including slit lamp biomicroscopy and binocular indirect ophthalmoscopy. Eleven hawks were euthanized because of a grave prognosis; complete necropsies were performed. Eyes, brain, heart, and kidneys were processed for histologic and immunohistochemical examinations. Pooled tissue homogenates and aqueous humor samples were assessed for WNV nucleic acid via PCR assay, and anti-WNV antibody titers in aqueous humor and plasma were determined. All birds had similar funduscopic abnormalities including exudative chorioretinal lesions and chorioretinal scarring in a geographic or linear pattern. Eleven birds were euthanized, and 2 birds were released. Plasma from both released hawks and plasma and aqueous humor of all euthanized hawks that were evaluated contained anti-WNV antibodies. Except for 1 hawk, all euthanized hawks had WNV-associated disease (determined via detection of WNV antigen or nucleic acid in at least 1 organ). Histopathologic ocular abnormalities, most commonly pectenitis, were detected in all euthanized birds; several birds had segmental choroiditis, often with corresponding segmental retinal atrophy. West Nile virus antigen was detected in the retinas of 9 of the euthanized birds. In 2 hawks, WNV antigen was detected in the retina only. Results indicated that funduscopically detectable chorioretinal lesions appear to be associated with WNV disease in hawks. Detection of ocular lesions may aid in antemortem or postmortem diagnosis of this condition.

  7. Organophosphate insecticide (famphur) topically applied to cattle kills magpies and hawks

    USGS Publications Warehouse

    Henny, C.J.; Blus, L.J.; Kolbe, E.J.; Fitzner, R.E.

    1985-01-01

    A systematic field study of a black-billed magpie (P. pica) population revealed that magpies and red-tailed hawks (B. jamaicensis) were killed by famphur (= famophos, Warbex) used as a pour-on to control cattle warbles (Hypoderma sp.). Magpie mortality began on treatment day and continued for more than 3 mo. (38 found death); mortality peaked between Day 5 an Day 13. Estimates of magpie density (based on transects) decreased in both the control and treatment areas, but the decrease was greater in the treatment area. A red-tailed hawk found dead on Day 10 had eaten a famphur-contaminated magpie. Another red-tailed hawk was found alive but immobilized, and a 3rd died outside the study area. Brain cholinesterse (ChE) activity was 70-92% depressed in all dead birds examined; famphur residues were detected in all 17 magpies and the 2 hawks analyzed. The amount of famphur obtained by the dead magpies was estimated at 5.2-6.1 mg/kg (based on residue concentrations in the gizzard), which was above the acute oral LD50 for several bird species. The cow hair portion (12%) of the pooled gizzard contents from 13 other dead magpies produced extremely high famphur residues (4600 ppm). The residues persisted on cattle hair for more than 90 days post-treatment. Magpie populations in the far western states declined between 1968 and 1979, which corresponds with widespread use of famphur, although other factors may be involved.

  8. Hawking tunneling and boomerang behaviour of massive particles with E < m

    NASA Astrophysics Data System (ADS)

    Jannes, Gil; Philbin, Thomas G.; Rousseaux, Germain

    2012-07-01

    Massive particles are radiated from black holes through the Hawking mechanism together with the more familiar radiation of massless particles. For E >= m, the emission rate is identical to the massless case. But E < m particles can also tunnel across the horizon. A study of the dispersion relation and wave packet simulations show that their classical trajectory is similar to that of a boomerang. The tunneling formalism is used to calculate the probability for detecting such E < m particles, for a Schwarzschild black hole of astrophysical size or in an analogue gravity experiment, as a function of the distance from the horizon and the energy of the particle.

  9. A remark on the energy conditions for Hawking's area theorem

    NASA Astrophysics Data System (ADS)

    Lesourd, Martin

    2018-06-01

    Hawking's area theorem is a fundamental result in black hole theory that is universally associated with the null energy condition. That this condition can be weakened is illustrated by the formulation of a strengthened version of the theorem based on an energy condition that allows for violations of the null energy condition. With the semi-classical context in mind, some brief remarks pertaining to the suitability of the area theorem and its energy condition are made.

  10. Black hole radiation with modified dispersion relation in tunneling paradigm: Static frame

    NASA Astrophysics Data System (ADS)

    Tao, Jun; Wang, Peng; Yang, Haitang

    2017-09-01

    To study possible deviations from the Hawking's prediction, we assume that the dispersion relations of matter fields are modified at high energies and use the Hamilton-Jacobi method to investigate the corresponding effects on the Hawking radiation in this paper. The preferred frame is the static frame of the black hole. The dispersion relation adopted agrees with the relativistic one at low energies but is modified near the Planck mass mp. We calculate the corrections to the Hawking temperature for massive and charged particles to O (mp-2) and massless and neutral particles to all orders. Our results suggest that the thermal spectrum of radiations near horizon is robust, e.g. corrections to the Hawking temperature are suppressed by mp. After the spectrum of radiations near the horizon is obtained, we use the brick wall model to compute the thermal entropy of a massless scalar field near the horizon of a 4D spherically symmetric black hole. We find that the subleading logarithmic term of the entropy does not depend on how the dispersion relations of matter fields are modified. Finally, the luminosities of black holes are computed by using the geometric optics approximation.

  11. Notes on breeding sharp-shinned hawks and cooper’s hawks in Barnwell County, South Carolina

    Treesearch

    Mark Vukovich; John C. Kilgo

    2009-01-01

    Breeding records of Accipiter striatus (Sharp-shinned Hawks) in the southeastern US are scattered and isolated. We documented a Sharp-shinned Hawk and Accipiter cooperii (Cooper’s Hawk) nest while conducting a telemetry study on Melanerpes erythrocephalus (Red-headed Woodpeckers) in Barnwell County, SC in 2006 and 2007. We report the first known nest of a Sharp-shinned...

  12. Horizon in Random Matrix Theory, the Hawking Radiation, and Flow of Cold Atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franchini, Fabio; Kravtsov, Vladimir E.

    2009-10-16

    We propose a Gaussian scalar field theory in a curved 2D metric with an event horizon as the low-energy effective theory for a weakly confined, invariant random matrix ensemble (RME). The presence of an event horizon naturally generates a bath of Hawking radiation, which introduces a finite temperature in the model in a nontrivial way. A similar mapping with a gravitational analogue model has been constructed for a Bose-Einstein condensate (BEC) pushed to flow at a velocity higher than its speed of sound, with Hawking radiation as sound waves propagating over the cold atoms. Our work suggests a threefold connectionmore » between a moving BEC system, black-hole physics and unconventional RMEs with possible experimental applications.« less

  13. Black-hole/near-horizon-CFT duality and 4 dimensional classical spacetimes

    NASA Astrophysics Data System (ADS)

    Rodriguez, Leo L.

    2011-09-01

    In this thesis we accomplish two goals: We construct a two dimensional conformal field theory (CFT), in the form of a Liouville theory, in the near horizon limit for three and four dimensions black holes. The near horizon CFT assumes the two dimensional black hole solutions that were first introduced by Christensen and Fulling (1977 Phys. Rev. D 15 2088-104) and later expanded to a greater class of black holes via Robinson and Wilczek (2005 Phys. Rev. Lett. 95 011303). The two dimensions black holes admit a Diff( S1) or Witt subalgebra, which upon quantization in the horizon limit becomes Virasoro with calculable central charge. These charges and lowest Virasoro eigen-modes reproduce the correct Bekenstein-Hawking entropy of the four and three dimensions black holes via the Cardy formula (Blote et al 1986 Phys. Rev. Lett. 56 742; Cardy 1986 Nucl. Phys. B 270 186). Furthermore, the two dimensions CFT's energy momentum tensor is anomalous, i.e. its trace is nonzero. However, In the horizon limit the energy momentum tensor becomes holomorphic equaling the Hawking flux of the four and three dimensions black holes. This encoding of both entropy and temperature provides a uniformity in the calculation of black hole thermodynamics and statistical quantities for the non local effective action approach. We also show that the near horizon regime of a Kerr-Newman-AdS (KNAdS) black hole, given by its two dimensional analogue a la Robinson and Wilczek, is asymptotically AdS 2 and dual to a one dimensional quantum conformal field theory (CFT). The s-wave contribution of the resulting CFT's energy-momentum-tensor together with the asymptotic symmetries, generate a centrally extended Virasoro algebra, whose central charge reproduces the Bekenstein-Hawking entropy via Cardy's Formula. Our derived central charge also agrees with the near extremal Kerr/CFT Correspondence in the appropriate limits. We also compute the Hawking temperature of the KNAdS black hole by coupling its

  14. Effect of the refractive index on the hawking temperature: an application of the Hamilton-Jacobi method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakalli, I., E-mail: izzet.sakalli@emu.edu.tr; Mirekhtiary, S. F., E-mail: fatemeh.mirekhtiary@emu.edu.tr

    2013-10-15

    Hawking radiation of a non-asymptotically flat 4-dimensional spherically symmetric and static dilatonic black hole (BH) via the Hamilton-Jacobi (HJ) method is studied. In addition to the naive coordinates, we use four more different coordinate systems that are well-behaved at the horizon. Except for the isotropic coordinates, direct computation by the HJ method leads to the standard Hawking temperature for all coordinate systems. The isotropic coordinates allow extracting the index of refraction from the Fermat metric. It is explicitly shown that the index of refraction determines the value of the tunneling rate and its natural consequence, the Hawking temperature. The isotropicmore » coordinates in the conventional HJ method produce a wrong result for the temperature of the linear dilaton. Here, we explain how this discrepancy can be resolved by regularizing the integral possessing a pole at the horizon.« less

  15. Comparison of the breeding biology of sympatric red-tailed Hawks, White-tailed Hawks, and Crested Caracaras in south Texas

    USGS Publications Warehouse

    Actkinson, M.A.; Kuvlesky, W.P.; Boal, C.W.; Brennan, L.A.; Hernandez, F.

    2009-01-01

    We compared the breeding biology of sympatric nesting Red-tailed Hawks (Buteo jamaicensis), White-tailed Hawks (Buteo albicaudatus), and Crested Caracaras (Caracara cheriway) in south Texas during 2003 and 2004. We monitored 46 breeding attempts by Red-tailed Hawks, 56 by White-tailed Hawks, and 27 by Crested Caracaras. Observed nesting success was similar for Red-tailed Hawks (62%) and Crested Caracaras (61%), but lower for White-tailed Hawks (51%). Daily survival rates (0.99) were the same for all three species. Red-tailed Hawks and White-tailed Hawks both fledged 1.13 young per nesting pair and Crested Caracaras fledged 1.39 young per nesting pair. All three species nested earlier in 2004 than in 2003; in addition, the overall nesting density of these three species almost doubled from 2003 (1.45 pairs/km2) to 2004 (2.71 pairs/km2). Estimated productivity of all three species was within the ranges reported from other studies. Given extensive and progressive habitat alteration in some areas of south Texas, and the limited distributions of White-tailed Hawks and Crested Caracaras, the presence of large ranches managed for free-range cattle production and hunting leases likely provides important habitat and may be key areas for conservation of these two species. ?? 2009 The Raptor Research Foundation, Inc.

  16. Tensile strength and the mining of black holes.

    PubMed

    Brown, Adam R

    2013-11-22

    There are a number of important thought experiments that involve raising and lowering boxes full of radiation in the vicinity of black hole horizons. This Letter looks at the limitations placed on these thought experiments by the null energy condition, which imposes a fundamental bound on the tensile-strength-to-weight ratio of the materials involved, makes it impossible to build a box near the horizon that is wider than a single wavelength of the Hawking quanta, and puts a severe constraint on the operation of "space elevators" near black holes. In particular, it is shown that proposals for mining black holes by lowering boxes near the horizon, collecting some Hawking radiation, and dragging it out to infinity cannot proceed nearly as rapidly as has previously been claimed. As a consequence of this limitation, the boxes and all the moving parts are superfluous and black holes can be destroyed equally rapidly by threading the horizon with strings.

  17. Stephen Hawking NASA 50th

    NASA Image and Video Library

    2008-06-12

    Dr. Stephen Hawking, a professor of mathematics at the University of Cambridge, left, and his daughter Lucy Hawking talk about their co-authored children's book "George's Secret Key to the Universe" Monday, April 21, 2008, at George Washington University's Morton Auditorium in Washington. Stephen Hawking also delivered a speech entitled "Why we should go into space" during a lecture that is part of a series honoring NASA's 50th Anniversary, Photo Credit: (NASA/Paul. E. Alers)

  18. Helicopter Approach Capability Using the Differential Global Positioning System

    NASA Technical Reports Server (NTRS)

    Kaufmann, David N.

    1994-01-01

    The results of flight tests to determine the feasibility of using the Global Positioning System (GPS) in the Differential mode (DGPS) to provide high accuracy, precision navigation and guidance for helicopter approaches to landing are presented. The airborne DGPS receiver and associated equipment is installed in a NASA UH-60 Black Hawk helicopter. The ground-based DGPS reference receiver is located at a surveyed test site and is equipped with a real-time VHF data link to transmit correction information to the airborne DGPS receiver. The corrected airborne DGPS information, together with the preset approach geometry, is used to calculate guidance commands which are sent to the aircraft's approach guidance instruments. The use of DGPS derived guidance for helicopter approaches to landing is evaluated by comparing the DGPS data with the laser tracker truth data. The errors indicate that the helicopter position based on DGPS guidance satisfies the International Civil Aviation Organization (ICAO) Category 1 (CAT 1) lateral and vertical navigational accuracy requirements.

  19. Quantum Non-thermal Effect from Black Holes Surrounded by Quintessence

    NASA Astrophysics Data System (ADS)

    Gong, Tian-Xi; Wang, Yong-Jiu

    2009-11-01

    We present a short and direct derivation of Hawking radiation as a tunneling process across the horizon and compute the tunneling probability. Considering the self-gravitation and energy conservation, we use the Keskiy Vakkuri, Kraus, and Wilczek (KKW) analysis to compute the temperature and entropy of the black holes surrounded by quintessence and obtain the temperature and entropy are different from the Hawking temperature and the Bekenstein-Hawking entropy. The result we get can offer a possible mechanism to deal with the information loss paradox because the spectrum is not purely thermal.

  20. Icezones instead of firewalls: extended entanglement beyond the event horizon and unitary evaporation of a black hole

    NASA Astrophysics Data System (ADS)

    Hutchinson, John; Stojkovic, Dejan

    2016-07-01

    We examine the basic assumptions in the original setup of the firewall paradox. The main claim is that a single mode of the lathe radiation is maximally entangled with the mode inside the horizon and simultaneously with the modes of early Hawking radiation. We argue that this situation never happens during the evolution of a black hole. Quantum mechanics tells us that while the black hole exists, unitary evolution maximally entangles a late mode located just outside the horizon with a combination of early radiation and black hole states, instead of either of them separately. One of the reasons for this is that the black hole radiation is not random and strongly depends on the geometry and charge of the black hole, as detailed numerical calculations of Hawking evaporation clearly show. As a consequence, one can not factor out the state of the black hole. However, this extended entanglement between the black hole and modes of early and late radiation indicates that, as the black hole ages, the local Rindler horizon is modified out to macroscopic distances from the black hole. Fundamentally non-local physics nor firewalls are not necessary to explain this result. We propose an infrared mechanism called icezone that is mediated by low energy interacting modes and acts near any event horizon to entangle states separated by long distances. These interactions at first provide small corrections to the thermal Hawking radiation. At the end of evaporation however the effect of interactions is as large as the Hawking radiation and information is recovered for an outside observer. We verify this in an explicit construction and calculation of the density matrix of a spin model.

  1. Avian pox in a red-tailed hawk (Buteo jamaicensis)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzner, R.E.; Miller, R.A. Pierce, C.A.; Rowe, S.E.

    1985-07-01

    Avian pox has been reported in at least 60 species of birds belonging to 20 different families. However, poxvirus infection in birds of prey is apparently uncommon. On 18 May 1981, an adult male red-tailed hawk was found on the US Department of Energy's Arid Land Ecology Reserve in Benton County, Washington. The bird was incapable of flight and was extremely thin. Nodular proliferations were noted on both feet and cutaneous scab-like lesions around the beak and eyes. The bird was killed in the field and submitted promptly to the diagnostic laboratory for necropsy. This report of pox infection inmore » a free-living adult red-tailed hawk represents one of the few such cases reported in the US. The potential for spread of the virus to other hawks may occur particularly during the nesting season when an infected adult could conceivably pass the virus to a mate and nestlings by direct contact or fomites. Little is known of the natural of avian pox infection in birds of prey. In other birds it is generally considered mild and self-limiting; however, eye lesions resulting in impaired vision may lead to starvation.« less

  2. Performance updates of HAWK-I and preparation for the commissioning of the system GRAAL+HAWK-I

    NASA Astrophysics Data System (ADS)

    Hibon, Pascale; Paufique, Jerome; Kuntschner, Harald; Dobrzycka, Danuta; Le Louarn, Miska; Valenti, Elena; Neeser, Mark; Pompei, Emanuela; Arsenault, Robin; Siebenmorgen, Ralf; Madec, Pierre-Yves; Petr-Gotzens, Monika; La Fuente, Carlos; Urrutia, Josefina; Valenzuela, Javier; Castillo, Roberto; Baksai, Pedro; Garcia Dabo, Cesar Enrique; Jost, Andreas; Argomedo, Javier; Kolb, Johann; Kiekebusch, Mario; Hubin, Norbert; Duhoux, Philippe; Conzelmann, Ralf Dieter; Donaldson, Robert; Tordo, Sebastien; Huber, Stefan

    2016-08-01

    The High Acuity Wide field K-band Imager (HAWK-I) instrument is a cryogenic wide field imager operating in the wavelength range 0.9 to 2.5 microns. It has been in operations since 2007 on the UT4 at the Very Large Telescope Observatory in seeing-limited mode. In 2017-2018, GRound Layer Adaptive optics Assisted by Lasers module (GRAAL) will be in operation and the system GRAAL+HAWK-I will be commissioned. It will allow: deeper exposures for nearly point-source objects, or shorter exposure times for reaching the same magnitude, and/or deeper detection limiting magnitude. With GRAAL, HAWK-I will operate more than 80% of the time with an equivalent K-band seeing of 0.55" (instead of 0.7" without GRAAL). GRAAL is already installed and the operations without adaptive optics were commissioned in 2015. We discuss here the latest updates on performance from HAWK-I without Adaptive Optics (AO) and the preparation for the commissioning of the system GRAAL+HAWK-I.

  3. Hawking, Stephen W (1942-)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Cosmologist and theoretical astrophysicist, born in Oxford, England, where he studied physics at University College. Moved to Cambridge to take up research in general relativity and cosmology, became Lucasian professor (an appointment earlier held by ISAAC NEWTON, with whom Hawking has been compared). Hawking worked to develop a valid mathematical treatment of the `singularities' in the theor...

  4. Cooper's Hawk (Accipiter cooperii)

    Treesearch

    Jean-Luc E. Cartron; Patricia L. Kennedy; Rob Yaksich; Scott H. Stoleson

    2010-01-01

    The Cooper's Hawk (Accipiter cooperii) is intermediate in size between the Northern Goshawk (Accipiter gentilis) and the Sharp-shinned Hawk (A. striatus), northern North America's other two accipiters. The two sexes are almost alike in plumage, but as in both of the other species, the female is noticeably larger. According to Wheeler and Clark (1995), a...

  5. Uniformly accelerated black holes

    NASA Astrophysics Data System (ADS)

    Letelier, Patricio S.; Oliveira, Samuel R.

    2001-09-01

    The static and stationary C metric are examined in a generic framework and their interpretations studied in some detail, especially those with two event horizons, one for the black hole and another for the acceleration. We find that (i) the spacetime of an accelerated static black hole is plagued by either conical singularities or a lack of smoothness and compactness of the black hole horizon, (ii) by using standard black hole thermodynamics we show that accelerated black holes have a higher Hawking temperature than Unruh temperature of the accelerated frame, and (iii) the usual upper bound on the product of the mass and acceleration parameters (<1/27) is just a coordinate artifact. The main results are extended to accelerated rotating black holes with no significant changes.

  6. Development and Operation of an Automatic Rotor Trim Control System for use During the UH-60 Individual Blade Control Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Theodore, Colin R.

    2010-01-01

    A full-scale wind tunnel test to evaluate the effects of Individual Blade Control (IBC) on the performance, vibration, noise and loads of a UH-60A rotor was recently completed in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel [1]. A key component of this wind tunnel test was an automatic rotor trim control system that allowed the rotor trim state to be set more precisely, quickly and repeatably than was possible with the rotor operator setting the trim condition manually. The trim control system was also able to maintain the desired trim condition through changes in IBC actuation both in open- and closed-loop IBC modes, and through long-period transients in wind tunnel flow. This ability of the trim control system to automatically set and maintain a steady rotor trim enabled the effects of different IBC inputs to be compared at common trim conditions and to perform these tests quickly without requiring the rotor operator to re-trim the rotor. The trim control system described in this paper was developed specifically for use during the IBC wind tunnel test

  7. Growth of Primordial Black Holes

    NASA Astrophysics Data System (ADS)

    Harada, Tomohiro

    Primordial black holes have important observational implications through Hawking evaporation and gravitational radiation as well as being a candidate for cold dark matter. Those black holes are assumed to have formed in the early universe typically with the mass scale contained within the Hubble horizon at the formation epoch and subsequently accreted mass surrounding them. Numerical relativity simulation shows that primordial black holes of different masses do not accrete much, which contrasts with a simplistic Newtonian argument. We see that primordial black holes larger than the 'super-horizon' primordial black holes have decreasing energy and worm-hole like struture, suggesting the formation through quamtum processes.

  8. Hawking temperature: an elementary approach based on Newtonian mechanics and quantum theory

    NASA Astrophysics Data System (ADS)

    Pinochet, Jorge

    2016-01-01

    In 1974, the British physicist Stephen Hawking discovered that black holes have a characteristic temperature and are therefore capable of emitting radiation. Given the scientific importance of this discovery, there is a profuse literature on the subject. Nevertheless, the available literature ends up being either too simple, which does not convey the true physical significance of the issue, or too technical, which excludes an ample segment of the audience interested in science, such as physics teachers and their students. The present article seeks to remedy this shortcoming. It develops a simple and plausible argument that provides insight into the fundamental aspects of Hawking’s discovery, which leads to an approximate equation for the so-called Hawking temperature. The exposition is mainly intended for physics teachers and their students, and it only requires elementary algebra, as well as basic notions of Newtonian mechanics and quantum theory.

  9. Extremal noncommutative black holes as dark matter furnaces

    NASA Astrophysics Data System (ADS)

    Kawamoto, Shoichi; Wei, Chun-Yu; Wen, Wen-Yu

    2017-09-01

    In this paper, we consider dark matter annihilation in the gravitational field of noncommutative black holes. Instead of a violent fate predicted in the usual Hawking radiation, we propose a thermal equilibrium state where a mildly burning black hole relic is fueled by dark matter accretion at the final stage of evaporation.

  10. Entropy and temperature from black-hole/near-horizon-CFT duality

    NASA Astrophysics Data System (ADS)

    Rodriguez, Leo; Yildirim, Tuna

    2010-08-01

    We construct a two-dimensional CFT, in the form of a Liouville theory, in the near-horizon limit of four- and three-dimensional black holes. The near-horizon CFT assumes two-dimensional black hole solutions first introduced by Christensen and Fulling (1977 Phys. Rev. D 15 2088-104) and expanded to a greater class of black holes via Robinson and Wilczek (2005 Phys. Rev. Lett. 95 011303). The two-dimensional black holes admit a Diff(S1) subalgebra, which upon quantization in the horizon limit becomes Virasoro with calculable central charge. This charge and the lowest Virasoro eigen-mode reproduce the correct Bekenstein-Hawking entropy of the four- and three-dimensional black holes via the known Cardy formula (Blöte et al 1986 Phys. Rev. Lett. 56 742; Cardy 1986 Nucl. Phys. B 270 186). Furthermore, the two-dimensional CFT's energy-momentum tensor is anomalous. However, in the horizon limit the energy-momentum tensor becomes holomorphic equaling the Hawking flux of the four- and three-dimensional black holes. This encoding of both entropy and temperature provides a uniformity in the calculation of black hole thermodynamic and statistical quantities for the non-local effective action approach.

  11. UH1-Y - Benefits and Deficiencies

    DTIC Science & Technology

    2009-02-20

    Report, NA 01 HCG -1 (hereinafter Test and Evaluation Report). 2 author’s experience. 3 Test and Evaluation Report. 4 Test and Evaluation Report...Critical Intelligence. Aug 14, 24(33). - - - 2008. DOD Approves Full Production for UH-1Y Despite Major Deficiency. Oct 2, 24(40). NA 01-11- HCG -2-1...2008. Operational Test and Evaluation Report, NA 01 HCG -1. Parmalee, Patricia, ed. 2005. Test Time. Aviation Week & Space Technology. Jun 20, 162

  12. Cold black holes in the Harlow–Hayden approach to firewalls

    DOE PAGES

    Ong, Yen Chin; McInnes, Brett; Chen, Pisin

    2014-12-31

    Firewalls are controversial principally because they seem to imply departures from general relativistic expectations in regions of spacetime where the curvature need not be particularly large. One of the virtues of the Harlow–Hayden approach to the firewall paradox, concerning the time available for decoding of Hawking radiation emanating from charged AdS black holes, is precisely that it operates in the context of cold black holes, which are not strongly curved outside the event horizon. Here we clarify this point. The approach is based on ideas borrowed from applications of the AdS/CFT correspondence to the quark–gluon plasma. Firewalls aside, our workmore » presents a detailed analysis of the thermodynamics and evolution of evaporating charged AdS black holes with flat event horizons. We show that, in one way or another, these black holes are always eventually destroyed in a time which, while long by normal standards, is short relative to the decoding time of Hawking radiation.« less

  13. Hawking radiation by Kerr black holes and conformal symmetry.

    PubMed

    Agullo, Ivan; Navarro-Salas, José; Olmo, Gonzalo J; Parker, Leonard

    2010-11-19

    The exponential blueshift associated with the event horizon of a black hole makes conformal symmetry play a fundamental role in accounting for its thermal properties. Using a derivation based on two-point functions, we show that the full spectrum of thermal radiation of scalar particles by Kerr black holes can be explicitly derived on the basis of a conformal symmetry arising in the wave equation near the horizon. The simplicity of our approach emphasizes the depth of the connection between conformal symmetry and black hole radiance.

  14. Wind Tunnel Measurements of the Wake of a Full-Scale UH-60A Rotor in Forward Flight

    NASA Technical Reports Server (NTRS)

    Wadcock, Alan J.; Yamauchi, Gloria K.; Schairer, Edward T.

    2013-01-01

    A full-scale UH-60A rotor was tested in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel in May 2010. The test was designed to acquire a suite of measurements to validate state-of-the-art modeling tools. Measurements include blade airloads (from a single pressure-instrumented blade), blade structural loads (strain gages), rotor performance (rotor balance and torque measurements), blade deformation (stereo-photogrammetry), and rotor wake measurements (Particle Image Velocimetry (PIV) and Retro-reflective Backward Oriented Schlieren (RBOS)). During the test, PIV measurements of flow field velocities were acquired in a stationary cross-flow plane located on the advancing side of the rotor disk at approximately 90 deg rotor azimuth. At each test condition, blade position relative to the measurement plane was varied. The region of interest (ROI) was 4-ft high by 14-ft wide and covered the outer half of the blade radius. Although PIV measurements were acquired in only one plane, much information can be gleaned by studying the rotor wake trajectory in this plane, especially when such measurements are augmented by blade airloads and RBOS data. This paper will provide a comparison between PIV and RBOS measurements of tip vortex position and vortex filament orientation for multiple rotor test conditions. Blade displacement measurements over the complete rotor disk will also be presented documenting blade-to-blade differences in tip-path-plane and providing additional information for correlation with PIV and RBOS measurements of tip vortex location. In addition, PIV measurements of tip vortex core diameter and strength will be presented. Vortex strength will be compared with measurements of maximum bound circulation on the rotor blade determined from pressure distributions obtained from 235 pressure sensors distributed over 9 radial stations.

  15. Ferruginous hawk

    USGS Publications Warehouse

    Hall, R.S.; Glinski, R.L.; Ellis, D.H.; Ramakka, J.M.; Base, D.L.; Glinski, Richard L.; Pendleton, Beth Giron; Moss, Mary Beth; LeFranc, Maurice N.=; Millsap, Brian A.; Hoffman, Stephen W.

    1988-01-01

    In the Southwest, the ferruginous hawk is a local and isolated breeder and an uncommon but consistent winter visitor. Apparently, the breeding range of this species in the Southwest was historically much greater than today. The ferruginous hawk is being considered for listing by the U.S. Fish and Wildlife Service but remains unclassified by the individual states comprising the Southwest region. Habitat and diet information is summarized. Nest location and structure, breeding, and wintering biology are also discussed. Long-term and seasonal monitoring is conducted annually at several nest locations in New Mexico, while documented reproductive efforts in Arizona, Texas and Oklahoma are extremely rare and isolated. Research and management recommendations include population and habitat surveys, dietary and reproductive investigations, and habitat protection.

  16. Black hole evaporation in conformal gravity

    NASA Astrophysics Data System (ADS)

    Bambi, Cosimo; Modesto, Leonardo; Porey, Shiladitya; Rachwał, Lesław

    2017-09-01

    We study the formation and the evaporation of a spherically symmetric black hole in conformal gravity. From the collapse of a spherically symmetric thin shell of radiation, we find a singularity-free non-rotating black hole. This black hole has the same Hawking temperature as a Schwarzschild black hole with the same mass, and it completely evaporates either in a finite or in an infinite time, depending on the ensemble. We consider the analysis both in the canonical and in the micro-canonical statistical ensembles. Last, we discuss the corresponding Penrose diagram of this physical process.

  17. Black hole evaporation in conformal gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bambi, Cosimo; Rachwał, Lesław; Modesto, Leonardo

    We study the formation and the evaporation of a spherically symmetric black hole in conformal gravity. From the collapse of a spherically symmetric thin shell of radiation, we find a singularity-free non-rotating black hole. This black hole has the same Hawking temperature as a Schwarzschild black hole with the same mass, and it completely evaporates either in a finite or in an infinite time, depending on the ensemble. We consider the analysis both in the canonical and in the micro-canonical statistical ensembles. Last, we discuss the corresponding Penrose diagram of this physical process.

  18. NASA Global Hawk: Project Overview and Future Plans

    NASA Technical Reports Server (NTRS)

    Naftel, J. Chris

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Global Hawk Project became operational in 2009 and began support of Earth science in 2010. Thus far, the NASA Global Hawk has completed three Earth science campaigns and preparations are under way for two extensive multi-year campaigns. One of the most desired performance capabilities of the Global Hawk aircraft is very long endurance: the Global Hawk aircraft can remain airborne longer than almost all other jet-powered aircraft currently flying, and longer than all other aircraft available for airborne science use. This paper describes the NASA Global Hawk system, payload accommodations, concept of operations, and the scientific data-gathering campaigns.

  19. The enhancement of quantum entanglement under an open Dirac system with the Hawking effect in Schwarzschild space-time

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Yang; Wang, Dong; Fang, Bao-Long; Shi, Jia-Dong; Ye, Liu

    2018-06-01

    In this letter, we mainly investigate how to enhance the damaged quantum entanglement under an open Dirac system with the Hawking effect within Schwarzschild space-time. We consider that particle A held by Alice undergoes generalized amplitude damping noise in a flat space-time, and that another particle B by Bob entangled with A is under a Schwarzschild space-time. Subsequently, we put forward a physical scheme to recover the damaged quantum entanglement by prior weak measurement on subsystem A before the interaction with the decoherence noise followed by post-measurement filtering operation. The results indicate that our scheme can effectively recover the damaged quantum entanglement affected by the Hawking effect and the noisy channel. Thus, our work might be beneficial to understand the dynamic behavior of the quantum state and recover the damaged quantum entanglement with open Dirac systems under the Hawking effect in the background of a Schwarzschild black hole.

  20. Hawking radiation As tunneling

    PubMed

    Parikh; Wilczek

    2000-12-11

    We present a short and direct derivation of Hawking radiation as a tunneling process, based on particles in a dynamical geometry. The imaginary part of the action for the classically forbidden process is related to the Boltzmann factor for emission at the Hawking temperature. Because the derivation respects conservation laws, the exact spectrum is not precisely thermal. We compare and contrast the problem of spontaneous emission of charged particles from a charged conductor.

  1. BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension

    NASA Astrophysics Data System (ADS)

    Dai, De-Chang; Starkman, Glenn; Stojkovic, Dejan; Issever, Cigdem; Rizvi, Eram; Tseng, Jeff

    2008-04-01

    We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can be interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/~issever/BlackMax/blackmax.html.

  2. Fermions tunneling from a general static Riemann black hole

    NASA Astrophysics Data System (ADS)

    Chen, Ge-Rui; Huang, Yong-Chang

    2015-05-01

    In this paper we investigate the tunneling of fermions from a general static Riemann black hole by following Kerner and Mann (Class Quantum Gravit 25:095014, 2008a; Phys Lett B 665:277-283, 2008b) methods. By applying the WKB approximation and the Hamilton-Jacobi ansatz to the Dirac equation, we obtain the standard Hawking temperature. Furthermore, Kerner and Mann (Class Quantum Gravit 25:095014, 2008a; Phys Lett B 665:277-283, 2008b) only calculated the tunneling spectrum of the Dirac particles with spin-up, and we extend the methods to investigate the tunneling of Dirac particles with arbitrary spin directions and also obtain the expected Hawking temperature. Our result provides further evidence for the universality of black hole radiation.

  3. State Estimation of Main Rotor Flap and Lead-Lag Using Accelerometers and Laser Transducers on the RASCAL UH-60 Helicopter

    NASA Technical Reports Server (NTRS)

    Fletcher, Jay W.; Chen, Robert T. N.; Strasilla, Eric; Aiken, Edwin W. (Technical Monitor)

    1995-01-01

    Modern rotorcraft flight control system designs which promise to yield high vehicle response bandwidth and good gust rejection can benefit from the use of rotor-state feedbacks. The measurement of main rotor blade motions is also desirable to validate and improve rotorcraft simulation models, to identify high-order linear flight dynamics models, to provide rotor system health monitoring; during flight test, and to provide for correlation with acoustic measurements from wind tunnel and flight tests. However, few attempts have been made to instrument a flight vehicle in this manner, and no previous system has had the robustness and accuracy required for these diverse applications. A rotor blade motion measurement and estimation system has been developed by NASA and the U.S. Army for use on the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) helicopter. RASCAL is a UH-60 Blackhawk which is being modified at Ames Research Center in a phased development program for use in flight dynamics and controls, navigation, airspace management, and rotorcraft human factors research. The aircraft will feature a full-authority, digital, fly-by-wire research flight control system; a coupled ring laser gyro, differential GPS based navigation system; a stereoscopic color wide field of view helmet, mounted display; programmable panel mounted displays; and advanced navigation sensors. The rotor blade motion system is currently installed for data acquisition only, but will be integrated with the research flight control system when it is installed later this year.

  4. Qubit transport model for unitary black hole evaporation without firewalls*

    NASA Astrophysics Data System (ADS)

    Osuga, Kento; Page, Don N.

    2018-03-01

    We give an explicit toy qubit transport model for transferring information from the gravitational field of a black hole to the Hawking radiation by a continuous unitary transformation of the outgoing radiation and the black hole gravitational field. The model has no firewalls or other drama at the event horizon, and it avoids a counterargument that has been raised for subsystem transfer models as resolutions of the firewall paradox. Furthermore, it fits the set of six physical constraints that Giddings has proposed for models of black hole evaporation. It does utilize nonlocal qubits for the gravitational field but assumes that the radiation interacts locally with these nonlocal qubits, so in some sense the nonlocality is confined to the gravitational sector. Although the qubit model is too crude to be quantitatively correct for the detailed spectrum of Hawking radiation, it fits qualitatively with what is expected.

  5. On the pattern of black hole information release

    NASA Astrophysics Data System (ADS)

    Park, I. Y.; James, F.

    2014-03-01

    We propose a step towards a resolution to black hole information paradox by analyzing scattering amplitudes of a complex scalar field around a Schwarzschild black hole. The scattering cross-section reveals much information on the incoming state but exhibits flux loss at the same time. The flux loss should be temporary, and indicate mass growth of the black hole. The black hole should Hawking-radiate subsequently, thereby, compensating for the flux loss. By examining the purity issue, we comment on the possibility that information bleaching may be the key to the paradox.

  6. Are black holes springlike?

    NASA Astrophysics Data System (ADS)

    Good, Michael R. R.; Ong, Yen Chin

    2015-02-01

    A (3 +1 )-dimensional asymptotically flat Kerr black hole angular speed Ω+ can be used to define an effective spring constant, k =m Ω+2. Its maximum value is the Schwarzschild surface gravity, k =κ , which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: 2 π T =κ -k . Hooke's law, in the extremal limit, provides the force F =1 /4 , which is consistent with the conjecture of maximum force in general relativity.

  7. On exponentially suppressed corrections to BMPV black hole entropy

    NASA Astrophysics Data System (ADS)

    Lal, Shailesh; Narayan, Prithvi

    2018-05-01

    The microscopic formula for the degeneracy of BMPV black hole microstates contains a series of exponentially suppressed corrections to the leading Bekenstein Hawking expression. We identify saddle points of the quantum entropy function for the BMPV black hole which are natural counterparts to these corrections and discuss the matching of leading and next-to-leading terms from the microscopic and macroscopic sides in a limit where the black hole charges are large.

  8. The persistence of the large volumes in black holes

    NASA Astrophysics Data System (ADS)

    Ong, Yen Chin

    2015-08-01

    Classically, black holes admit maximal interior volumes that grow asymptotically linearly in time. We show that such volumes remain large when Hawking evaporation is taken into account. Even if a charged black hole approaches the extremal limit during this evolution, its volume continues to grow; although an exactly extremal black hole does not have a "large interior". We clarify this point and discuss the implications of our results to the information loss and firewall paradoxes.

  9. 76 FR 35396 - Black Hills National Forest, Mystic Ranger District, South Dakota, Section 30 Limestone Mining...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... DEPARTMENT OF AGRICULTURE Forest Service Black Hills National Forest, Mystic Ranger District... INFORMATION CONTACT: Dave Slepnikoff, Project Coordinator, Black Hills National Forest, Mystic Ranger District... regulations at 36 CFR 228 Subpart A. The Project is located between Rapid City and Black Hawk, South Dakota...

  10. BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai Dechang; Starkman, Glenn; Stojkovic, Dejan

    2008-04-01

    We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can bemore » interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/{approx}issever/BlackMax/blackmax.html.« less

  11. FUN3D Airload Predictions for the Full-Scale UH-60A Airloads Rotor in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, Elizabeth M.; Biedron, Robert T.

    2013-01-01

    An unsteady Reynolds-Averaged Navier-Stokes solver for unstructured grids, FUN3D, is used to compute the rotor performance and airloads of the UH-60A Airloads Rotor in the National Full-Scale Aerodynamic Complex (NFAC) 40- by 80-foot Wind Tunnel. The flow solver is loosely coupled to a rotorcraft comprehensive code, CAMRAD-II, to account for trim and aeroelastic deflections. Computations are made for the 1-g level flight speed-sweep test conditions with the airloads rotor installed on the NFAC Large Rotor Test Apparatus (LRTA) and in the 40- by 80-ft wind tunnel to determine the influence of the test stand and wind-tunnel walls on the rotor performance and airloads. Detailed comparisons are made between the results of the CFD/CSD simulations and the wind tunnel measurements. The computed trends in solidity-weighted propulsive force and power coefficient match the experimental trends over the range of advance ratios and are comparable to previously published results. Rotor performance and sectional airloads show little sensitivity to the modeling of the wind-tunnel walls, which indicates that the rotor shaft-angle correction adequately compensates for the wall influence up to an advance ratio of 0.37. Sensitivity of the rotor performance and sectional airloads to the modeling of the rotor with the LRTA body/hub increases with advance ratio. The inclusion of the LRTA in the simulation slightly improves the comparison of rotor propulsive force between the computation and wind tunnel data but does not resolve the difference in the rotor power predictions at mu = 0.37. Despite a more precise knowledge of the rotor trim loads and flight condition, the level of comparison between the computed and measured sectional airloads/pressures at an advance ratio of 0.37 is comparable to the results previously published for the high-speed flight test condition.

  12. The theory of optical black hole lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaona-Reyes, José L., E-mail: jgaona@fis.cinvestav.mx; Bermudez, David, E-mail: dbermudez@fis.cinvestav.mx

    The event horizon of black holes and white holes can be achieved in the context of analogue gravity. It was proven for a sonic case that if these two horizons are close to each other their dynamics resemble a laser, a black hole laser, where the analogue of Hawking radiation is trapped and amplified. Optical analogues are also very successful and a similar system can be achieved there. In this work we develop the theory of optical black hole lasers and prove that the amplification is also possible. Then, we study the optical system by determining the forward propagation ofmore » modes, obtaining an approximation for the phase difference which governs the amplification, and performing numerical simulations of the pulse propagation of our system. - Highlights: • We develop the conditions to obtain the kinematics of the optical black hole laser. • We prove the amplification of Hawking radiation for the optical case. • We derive the forward propagation of modes and check the result of the backward case. • A model is proposed to calculate the phase difference and the amplification rate. • We perform numerical simulations of a pulse between two solitons forming a cavity.« less

  13. Military Potential Test of the UH-2A Helicopter.

    DTIC Science & Technology

    1963-10-25

    required to fully service two engines during engine change. 3. One quart of hydr aulic fluid , MIL 5606. Used to replace spillage while disconnecting...Maryland , dated 24 January 1963. 7. Report Nr. 1, Final Report, Climatic Laboratory Environ- mental Test of the Model UH- 2A Helicopter , by US

  14. Entropy emission properties of near-extremal Reissner-Nordström black holes

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2016-05-01

    Bekenstein and Mayo have revealed an interesting property of evaporating (3 +1 )-dimensional Schwarzschild black holes: their entropy emission rates S˙Sch are related to their energy emission rates P by the simple relation S˙Sch=CSch×(P /ℏ)1/2, where CSch is a numerically computed dimensionless coefficient. Remembering that (1 +1 )-dimensional perfect black-body emitters are characterized by the same functional relation, S˙1 +1=C1 +1×(P /ℏ)1/2 [with C1 +1=(π /3 )1/2], Bekenstein and Mayo have concluded that, in their entropy emission properties, (3 +1 )-dimensional Schwarzschild black holes behave effectively as (1 +1 )-dimensional entropy emitters. Later studies have shown that this intriguing property is actually a generic feature of all radiating (D +1 )-dimensional Schwarzschild black holes. One naturally wonders whether all black holes behave as simple (1 +1 )-dimensional entropy emitters? In order to address this interesting question, we shall study in this paper the entropy emission properties of Reissner-Nordström black holes. We shall show, in particular, that the physical properties which characterize the neutral sector of the Hawking emission spectra of these black holes can be studied analytically in the near-extremal TBH→0 regime (here TBH is the Bekenstein-Hawking temperature of the black hole). We find that the Hawking radiation spectra of massless neutral scalar fields and coupled electromagnetic-gravitational fields are characterized by the nontrivial entropy-energy relations S˙RNScalar=-CRNScalar×(A P3/ℏ3)1/4ln (A P /ℏ) and S˙RN Elec -Grav=-CRNElec -Grav×(A4P9/ℏ9)1 /10ln (A P /ℏ) in the near-extremal TBH→0 limit (here {CRNScalar,CRNElec -Grav} are analytically calculated dimensionless coefficients and A is the surface area of the Reissner-Nordström black hole). Our analytical results therefore indicate that not all black holes behave as simple (1 +1 )-dimensional entropy emitters.

  15. SCAT Classifications of 5 Supernovae with the UH88/SNIFS

    NASA Astrophysics Data System (ADS)

    Tucker, Michael A.; Huber, Mark; Shappee, Benjamin J.; Dong, Subo; Bose, S.; Chen, Ping

    2018-03-01

    We present the first classifications from the newly formed Spectral Classification of Astronomical Transients (SCAT) survey. SCAT is a transient identification survey utilizing the SuperNova Integral Field Spectrograph (SNIFS) on the University of Hawaii (UH) 88-inch telescope.

  16. Simulated Guide Stars: Adapting the Robo-AO Telescope Simulator to UH 88”

    NASA Astrophysics Data System (ADS)

    Ashcraft, Jaren; Baranec, Christoph

    2018-01-01

    Robo-AO is an autonomous adaptive optics system that is in development for the UH 88” Telescope on the Mauna Kea Observatory. This system is capable of achieving near diffraction limited imaging for astronomical telescopes, and has seen successful deployment and use at the Palomar and Kitt Peak Observatories previously. A key component of this system, the telescope simulator, will be adapted from the Palomar Observatory design to fit the UH 88” Telescope. The telescope simulator will simulate the exit pupil of the UH 88” telescope so that the greater Robo-AO system can be calibrated before observing runs. The system was designed in Code V, and then further improved upon in Zemax for later development. Alternate design forms were explored for the potential of adapting the telescope simulator to the NASA Infrared Telescope Facility, where simulating the exit pupil of the telescope proved to be more problematic. A proposed design composed of solely catalog optics was successfully produced for both telescopes, and they await assembly as time comes to construct the new Robo-AO system.

  17. Quantum jump from singularity to outside of black hole

    NASA Astrophysics Data System (ADS)

    Dündar, Furkan Semih; Hajian, Kamal

    2016-02-01

    Considering the role of black hole singularity in quantum evolution, a resolution to the firewall paradox is presented. It is emphasized that if an observer has the singularity as a part of his spacetime, then the semi-classical evolution would be non-unitary as viewed by him. Specifically, a free-falling observer inside the black hole would have a Hilbert space with non-unitary evolution; a quantum jump for particles encountering the singularity to outside of the horizon as late Hawking radiations. The non-unitarity in the jump resembles the one in collapse of wave function, but preserves entanglements. Accordingly, we elaborate the first postulate of black hole complementarity: freely falling observers who pass through the event horizon would have non-unitary evolution, while it does not have physically measurable effects for them. Besides, no information would be lost in the singularity. Taking the modified picture into account, the firewall paradox can be resolved, respecting No Drama. A by-product of our modification is that roughly half of the entropy of the black hole is released close to the end of evaporation in the shape of very hot Hawking radiation.

  18. Black Hats and White Hats: The Effect of Organizational Culture and Institutional Identity on the Twenty-third Air Force

    DTIC Science & Technology

    2006-12-01

    comments, and insight. Finally, I must offer a special thank-you to Gen Norton Schwartz; Brig Gen Eric Fiel; Col Tracy “Moose” Amos; Col Dennis...the two communities, their institutional histories have played a significant role in their organizational development. According to Col Ken Pribyla...Low IIIs, UH-60 Blackhawks (the Army’s first operational company of UH-60s), CH-47C Chi- nooks from the 101st Airborne Division, and OH-6 Loach

  19. Preliminary design features of the RASCAL - A NASA/Army rotorcraft in-flight simulator

    NASA Technical Reports Server (NTRS)

    Aiken, Edwin W.; Jacobsen, Robert A.; Eshow, Michelle M.; Hindson, William S.; Doane, Douglas H.

    1992-01-01

    Salient design features of a new NASA/Army research rotorcraft - the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) - are described. Using a UH-60A Black Hawk helicopter as a baseline vehicle, the RASCAL will be a flying laboratory capable of supporting the research requirements of major NASA and Army guidance, control, and display research programs. The paper describes the research facility requirements of these programs together with other critical constraints on the design of the research system, including safety-of-flight. Research program schedules demand a phased development approach, wherein specific research capability milestones are met and flight research projects are flown throughout the complete development cycle of the RASCAL. This development approach is summarized, and selected features of the research system are described. The research system includes a full-authority, programmable, fault-tolerant/fail-safe, fly-by-wire flight control system and a real-time obstacle detection and avoidance system which will generate low-latitude guidance commands to the pilot on a wide field-of-view, color helmet-mounted display.

  20. Preliminary design features of the RASCAL: A NASA /Army rotorcraft in-flight simulator

    NASA Technical Reports Server (NTRS)

    Aiken, Edwin W.; Jacobsen, Robert A.; Eshow, Michelle M.; Hindson, William S.; Doane, Douglas H.

    1993-01-01

    Salient design features of a new NASA/Army research rotorcraft - the Rotorcraft-Aircrew Systems Concepts Airborne Laboratory (RASCAL) - are described. Using a UH-60A Black Hawk helicopter as a baseline vehicle, the RASCAL will be a flying laboratory capable of supporting the research requirements of major NASA and Army guidance, control, and display research programs. The paper describes the research facility requirements of these programs together with other critical constraints on the design of the research system, including safety-of-flight. Research program schedules demand a phased development approach, wherein specific research capability milestones are met and flight research projects are flown throughout the complete development cycle of the RASCAL. This development approach is summarized, and selected features of the research system are described. The research system includes a full-authority, programmable, fault-tolerant/fail-safe, fly-by-wire flight control system and a real-time obstacle detection and avoidance system which will generate low-altitude guidance commands to the pilot on a wide field-of-view, color helmet-mounted display.

  1. NASA Flight Operations of Ikhana and Global Hawk

    NASA Technical Reports Server (NTRS)

    Posada, Herman D.

    2009-01-01

    This viewgraph presentation reviews the flight operations of Ikhana and Global Hawk Fire missions. The Ikhana fire missions modifications, ground systems, flight operations, range safety zones, primary and secondary emergency landing sites, and the Ikhana western states fire missions of 2007 are described, along with The Global Hawk specs, a description of the Global Hawk Pacific Science Campaign (GloPac '09) and GloPac payloads.

  2. NASA Global Hawk: A New Tool for Earth Science Research

    NASA Technical Reports Server (NTRS)

    Naftel, J. Chris

    2009-01-01

    Scientists have eagerly anticipated the performance capability of the National Aeronautics and Space Administration (NASA) Global Hawk for over a decade. In 2009 this capability becomes operational. One of the most desired performance capabilities of the Global Hawk aircraft is very long endurance. The Global Hawk aircraft can remain airborne longer than almost all other jet-powered aircraft currently flying, and longer than all other aircraft available for airborne science use. This paper describes the NASA Global Hawk system, payload accommodations, concept of operations, and the first scientific data-gathering mission: Global Hawk Pacific 2009.

  3. Search for Primordial Black Holes with the Whipple Atmospheric Cerenkov Telescope

    NASA Astrophysics Data System (ADS)

    Linton, Eric

    2005-04-01

    Stephen Hawking's prediction that black holes should radiate like black bodies has several important consequences, including the possibility for the detection of small (˜10^15 g) black holes created in the very early universe. The detection of such primordial black holes (PBHs) would not only validate Hawking's theory, but would provide useful insights into the history of the early universe. A search through 5.5 years of archival data from the Whipple Atmospheric Cerenkov Telescope was made for TeV gamma-ray bursts on 1 s, 3 s, and 5 s timescales. Based on a null result, an upper-limit on the evaporation rate of PBHs of 2.69 x10^6 pc-3 yr^- 1 (99% CL) was made, assuming the Standard Model of particle physics. When combined with the results of an earlier search through Whipple data, this limit was lowered to 1.33 x10^6 pc-3 yr-1, which is nearly a factor of 2 better than the previous limit at this energy range.

  4. Mass of a black hole firewall.

    PubMed

    Abramowicz, M A; Kluźniak, W; Lasota, J-P

    2014-03-07

    Quantum entanglement of Hawking radiation has been supposed to give rise to a Planck density "firewall" near the event horizon of old black holes. We show that Planck density firewalls are excluded by Einstein's equations for black holes of mass exceeding the Planck mass. We find an upper limit of 1/(8πM) to the surface density of a firewall in a Schwarzschild black hole of mass M, translating for astrophysical black holes into a firewall density smaller than the Planck density by more than 30 orders of magnitude. A strict upper limit on the firewall density is given by the Planck density times the ratio M(Pl)/(8πM).

  5. Black hole thermodynamics from Euclidean horizon constraints.

    PubMed

    Carlip, S

    2007-07-13

    To explain black hole thermodynamics in quantum gravity, one must introduce constraints to ensure that a black hole is actually present. I show that for a large class of black holes, such "horizon constraints" allow the use of conformal field theory techniques to compute the density of states, reproducing the Bekenstein-Hawking entropy in a nearly model-independent manner. One standard string theory approach to black hole entropy arises as a special case, lending support to the claim that the mechanism may be "universal." I argue that the relevant degrees of freedom are Goldstone-boson-like excitations arising from the weak breaking of symmetry by the constraints.

  6. Absorption and radiation of nonminimally coupled scalar field from charged BTZ black hole

    NASA Astrophysics Data System (ADS)

    Huang, Lu; Chen, Juhua; Wang, Yongjiu

    2018-06-01

    In this paper we investigate the absorption and radiation of nonminimally coupled scalar field from the charged BTZ black hole. We find the analytical expressions for the reflection coefficient, the absorption cross section and the decay rate in strong coupling case. We find that the reflection coefficient is directly governed by Hawking temperature TH, scalar wave frequency ω , Bekenstein-Hawking entropy S_{BH}, angular momentum m and coupling constant ξ.

  7. AN F-16 COMMUNITY PUSHED TO THE LIMIT: CAN THEY HANDLE ADDING COMBAT SEARCH AND RESCUE (CSAR)

    DTIC Science & Technology

    2015-10-01

    recovery. Traditionally, the HH-60G Pave Hawk is the RV expected to be used in a majority of scenarios. An article from www.military.com stated that...the HH-60G Pave Hawk is the U.S. Air Force’s primary combat search and rescue helicopter used by Air Force special tactics teams and pararescuemen...16 This aircraft is a version of the Army Black Hawk helicopter that has been modified to meet the needs of the Air Force.17 The locations of

  8. Schwarzschild-de Sitter spacetime: The role of temperature in the emission of Hawking radiation

    NASA Astrophysics Data System (ADS)

    Pappas, Thomas; Kanti, Panagiota

    2017-12-01

    We consider a Schwarzschild-de Sitter (SdS) black hole, and focus on the emission of massless scalar fields either minimally or non-minimally coupled to gravity. We use six different temperatures, two black-hole and four effective ones for the SdS spacetime, as the question of the proper temperature for such a background is still debated in the literature. We study their profiles under the variation of the cosmological constant, and derive the corresponding Hawking radiation spectra. We demonstrate that only few of these temperatures may support significant emission of radiation. We finally compute the total emissivities for each temperature, and show that the non-minimal coupling constant of the scalar field to gravity also affects the relative magnitudes of the energy emission rates.

  9. Surveying woodland hawks with broadcasts of great horned owl vocalization

    USGS Publications Warehouse

    Mosher, James A.; Fuller, Mark R.

    1996-01-01

    Pre-recorded vocalizations of great horned owls (Bubo virginianus) broadcast into predominantly wooded habitat along roadside survey routes resulted in as many detections of resident red-shouldered hawks (Buteo lineatus) and Cooper's hawks (Accipiter cooperii) as broadcasts of each conspecific calls. Survey results for 3 species, expressed as average number of contacts/route, were directly related to the number of resident pairs located during systematic searches conducted on foot across the study area. Regression models based on road-transect counts were significant for predicting abundance of red-shouldered hawks, broad-winged hawks (Buteo platypterus), and Cooper's hawks from our study areas.

  10. Conservation status assessment of an endangered insular raptor: the Sharp-shinned Hawk in Puerto Rico

    USGS Publications Warehouse

    Gallardo, Julio C.; Vilella, Francisco

    2017-01-01

    Sharp‐shinned Hawks (Accipiter striatus) are forest raptors that are widely distributed in the Americas. A subspecies endemic to Puerto Rico (A. s. venator) is listed as endangered and restricted to mature and old secondary montane forests and shade coffee plantations. However, recent information about the population status and distribution of Puerto Rican Sharp‐shinned Hawks is lacking. We developed a spatial geographic distribution model for Sharp‐shinned Hawks in Puerto Rico from 33 locations collected during four breeding seasons (2013–2016) using biologically relevant landscape variables (aspect, canopy closure, elevation, rainfall, slope, and terrain roughness). Elevation accounted for 89.8% of the model fit and predicted that the greatest probability of occurrence of Sharp‐shinned Hawks in Puerto Rico (> 60%) was at elevations above 900 m. Based on our model, an estimated 56.1 km2 of habitat exists in Puerto Rico with a high probability of occurrence. This total represents ~0.6% of the island's area. Public lands included 43.8% of habitat with high probability of occurrence (24.6 km2), 96% of which was located within four protected areas. Our results suggest that Sharp‐shinned Hawks are rare in Puerto Rico and restricted to the higher elevations of the Cordillera Central. Additional research is needed to identify and address ecological limiting factors, and recovery actions are needed to avoid the extinction of this endemic island raptor.

  11. Fatal pox infection in a rough-legged hawk

    USGS Publications Warehouse

    Pearson, G.L.; Pass, D.A.; Beggs, E.C.

    1975-01-01

    Natural pox infection occurred in a free-living rough-legged hawk (Buteo lagopus) in northeastern North Dakota. Gross, histological and electron microscopic findings were typical of pox infection, and characteristic lesions developed in red-tailed hawks (Buteo jamaicensis) but not in great horned owls (Bubo virginianus) following inoculation with case material. Death of the rough-legged hawk was attributed to starvation resulting from inability to capture prey and to blood loss from foot lesions.

  12. Black hole mining in the RST model

    NASA Astrophysics Data System (ADS)

    Basavaraju, Rohitvarma; Lowe, David A.

    2017-06-01

    We consider the possibility of mining black holes in the 1  +  1-dimensional dilaton gravity model of Russo, Susskind and Thorlacius. The model correctly incorporates Hawking radiation and back-reaction in a semiclassical expansion in 1/N, where N is the number of matter species. It is shown that the lifetime of a perturbed black hole is independent of the addition of any extra apparatus when realized by an arbitrary positive energy matter source. We conclude that mining does not occur in the RST model and comment on the implications of this for the black hole information paradox.

  13. Dark information of black hole radiation raised by dark energy

    NASA Astrophysics Data System (ADS)

    Ma, Yu-Han; Chen, Jin-Fu; Sun, Chang-Pu

    2018-06-01

    The "lost" information of black hole through the Hawking radiation was discovered being stored in the correlation among the non-thermally radiated particles (Parikh and Wilczek, 2000 [31], Zhang et al., 2009 [16]). This correlation information, which has not yet been proved locally observable in principle, is named by dark information. In this paper, we systematically study the influences of dark energy on black hole radiation, especially on the dark information. Calculating the radiation spectrum in the existence of dark energy by the approach of canonical typicality, which is reconfirmed by the quantum tunneling method, we find that the dark energy will effectively lower the Hawking temperature, and thus makes the black hole has longer life time. It is also discovered that the non-thermal effect of the black hole radiation is enhanced by dark energy so that the dark information of the radiation is increased. Our observation shows that, besides the mechanical effect (e.g., gravitational lensing effect), the dark energy rises the stored dark information, which could be probed by a non-local coincidence measurement similar to the coincidence counting of the Hanbury-Brown-Twiss experiment in quantum optics.

  14. The fall of the black hole firewall: natural nonmaximal entanglement for the Page curve

    NASA Astrophysics Data System (ADS)

    Hotta, Masahiro; Sugita, Ayumu

    2015-12-01

    The black hole firewall conjecture is based on the Page curve hypothesis, which claims that entanglement between a black hole and its Hawking radiation is almost maximum. Adopting canonical typicality for nondegenerate systems with nonvanishing Hamiltonians, we show the entanglement becomes nonmaximal, and energetic singularities (firewalls) do not emerge for general systems. An evaporating old black hole must evolve in Gibbs states with exponentially small error probability after the Page time as long as the states are typical. This means that the ordinarily used microcanonical states are far from typical. The heat capacity computed from the Gibbs states should be nonnegative in general. However, the black hole heat capacity is actually negative due to the gravitational instability. Consequently the states are not typical until the last burst. This requires inevitable modification of the Page curve, which is based on the typicality argument. For static thermal pure states of a large AdS black hole and its Hawking radiation, the entanglement entropy equals the thermal entropy of the smaller system.

  15. Hawking-like radiation does not require a trapped region.

    PubMed

    Barceló, Carlos; Liberati, Stefano; Sonego, Sebastiano; Visser, Matt

    2006-10-27

    We discuss the issue of quasiparticle production by "analogue black holes" with particular attention paid to the possibility of reproducing Hawking radiation in a laboratory. By constructing simple geometric acoustic models, we obtain a somewhat unexpected result: We show that, in order to obtain a stationary and Planckian emission of quasiparticles, it is not necessary to create a trapped region in the acoustic spacetime (corresponding to a supersonic regime in the fluid flow). It is sufficient to set up a dynamically changing flow asymptotically approaching a sonic regime with sufficient rapidity in laboratory time. This result is generic to curved-space quantum field theory, the "analogue spacetimes" we consider providing a guide to physical intuition, and a possible route to laboratory experiments.

  16. Andreev reflections and the quantum physics of black holes

    NASA Astrophysics Data System (ADS)

    Manikandan, Sreenath K.; Jordan, Andrew N.

    2017-12-01

    We establish an analogy between superconductor-metal interfaces and the quantum physics of a black hole, using the proximity effect. We show that the metal-superconductor interface can be thought of as an event horizon and Andreev reflection from the interface is analogous to the Hawking radiation in black holes. We describe quantum information transfer in Andreev reflection with a final state projection model similar to the Horowitz-Maldacena model for black hole evaporation. We also propose the Andreev reflection analogue of Hayden and Preskill's description of a black hole final state, where the black hole is described as an information mirror. The analogy between crossed Andreev reflections and Einstein-Rosen bridges is discussed: our proposal gives a precise mechanism for the apparent loss of quantum information in a black hole by the process of nonlocal Andreev reflection, transferring the quantum information through a wormhole and into another universe. Given these established connections, we conjecture that the final quantum state of a black hole is exactly the same as the ground state wave function of the superconductor/superfluid in the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity; in particular, the infalling matter and the infalling Hawking quanta, described in the Horowitz-Maldacena model, forms a Cooper pairlike singlet state inside the black hole. A black hole evaporating and shrinking in size can be thought of as the analogue of Andreev reflection by a hole where the superconductor loses a Cooper pair. Our model does not suffer from the black hole information problem since Andreev reflection is unitary. We also relate the thermodynamic properties of a black hole to that of a superconductor, and propose an experiment which can demonstrate the negative specific heat feature of black holes in a growing/evaporating condensate.

  17. Observation of Noise Correlated by the Hawking Effect in a Water Tank.

    PubMed

    Euvé, L-P; Michel, F; Parentani, R; Philbin, T G; Rousseaux, G

    2016-09-16

    We measured the power spectrum and two-point correlation function for the randomly fluctuating free surface on the downstream side of a stationary flow with a maximum Froude number F_{max}≈0.85 reached above a localized obstacle. On such a flow the scattering of incident long wavelength modes is analogous to that responsible for black hole radiation (the Hawking effect). Our measurements of the noise show a clear correlation between pairs of modes of opposite energies. We also measure the scattering coefficients by applying the same analysis of correlations to waves produced by a wave maker.

  18. Experimental observations of nonlinearly enhanced 2omega-UH electromagnetic radiation excited by steady-state colliding electron beams

    NASA Technical Reports Server (NTRS)

    Intrator, T.; Hershkowitz, N.; Chan, C.

    1984-01-01

    Counterstreaming large-diameter electron beams in a steady-state laboratory experiment are observed to generate transverse radiation at twice the upper-hybrid frequency (2omega-UH) with a quadrupole radiation pattern. The electromagnetic wave power density is nonlinearly enhanced over the power density obtained from a single beam-plasma system. Electromagnetic power density scales exponentially with beam energy and increases with ion mass. Weak turbulence theory can predict similar (but weaker) beam energy scaling but not the high power density, or the predominance of the 2omega-UH radiation peak over the omega-UH peak. Significant noise near the upper-hybrid and ion plasma frequencies is also measured, with normalized electrostatic wave energy density W(ES)/n(e)T(e) approximately 0.01.

  19. Quantum electron levels in the field of a charged black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dokuchaev, V. I.; Eroshenko, Yu. N., E-mail: eroshenko@ms2.inr.ac.ru

    2015-12-15

    Stationary solutions of the Dirac equation in the metric of the charged Reissner–Nordstrom black hole are found. In the case of an extremal black hole, the normalization integral of the wave functions is finite, and the regular stationary solution is physically self-consistent. The presence of quantum electron levels under the Cauchy horizon can have an impact on the final stage of the Hawking evaporation of the black hole, as well as on the particle scattering in the field of the black hole.

  20. Semiclassical (qft) and Quantum (string) Rotating Black Holes and Their Evaporation:. New Results

    NASA Astrophysics Data System (ADS)

    Bouchareb, A.; Ramón Medrano, M.; Sánchez, N. G.

    Combination of both quantum field theory (QFT) and string theory in curved backgrounds in a consistent framework, the string analogue model, allows us to provide a full picture of the Kerr-Newman black hole and its evaporation going beyond the current picture. We compute the quantum emission cross-section of strings by a Kerr-Newman black hole (KNbh). It shows the black hole emission at the Hawking temperature Tsem in the early stage of evaporation and the new string emission featuring a Hagedorn transition into a string state of temperature Ts at the last stages. New bounds on J and Q emerge in the quantum string regime (besides the known ones of the classical/semiclassical QFT regime). The last state of evaporation of a semiclassical Kerr-Newman black hole with mass M > mPl, angular momentum J and charge Q is a string state of temperature Ts, string mass Ms, J = 0 and Q = 0, decaying as usual quantum strings do into all kinds of particles. (Naturally, in this framework, there is no loss of information, (there is no paradox at all).) We compute the string entropy Ss(m, j) from the microscopic string density of states of mass m and spin mode j, ρ(m, j). (Besides the Hagedorn transition at Ts) we find for high j (extremal string states j → m2α‧c), a new phase transition at a temperature Tsj = √ {j/hbar }Ts, higher than Ts. By precisely identifying the semiclassical and quantum (string) gravity regimes, we find a new formula for the Kerr black hole entropy Ssem(M, J), as a function of the usual Bekenstein-Hawking entropy S sem(0). For M ≫ mPl and J < GM2/c, S sem(0) is the leading term, but for high angular momentum, (nearly extremal case J = GM2/c), a gravitational phase transition operates and the whole entropy Ssem is drastically different from the Bekenstein-Hawking entropy S sem(0). This new extremal black hole transition occurs at a temperature Tsem J = (J/ℏ)Tsem, higher than the Hawking temperature Tsem.

  1. Black holes by analytic continuation

    NASA Astrophysics Data System (ADS)

    Amati, D.; Russo, J. G.

    1997-07-01

    In the context of a two-dimensional exactly solvable model, the dynamics of quantum black holes is obtained by analytically continuing the description of the regime where no black hole is formed. The resulting spectrum of outgoing radiation departs from the one predicted by the Hawking model in the region where the outgoing modes arise from the horizon with Planck-order frequencies. This occurs early in the evaporation process, and the resulting physical picture is unconventional. The theory predicts that black holes will only radiate out an energy of Planck mass order, stabilizing after a transitory period. The continuation from a regime without black hole formation-accessible in the 1+1 gravity theory considered-is implicit in an S-matrix approach and suggests in this way a possible solution to the problem of information loss.

  2. Escape of black holes from the brane.

    PubMed

    Flachi, Antonino; Tanaka, Takahiro

    2005-10-14

    TeV-scale gravity theories allow the possibility of producing small black holes at energies that soon will be explored at the CERN LHC or at the Auger observatory. One of the expected signatures is the detection of Hawking radiation that might eventually terminate if the black hole, once perturbed, leaves the brane. Here, we study how the "black hole plus brane" system evolves once the black hole is given an initial velocity that mimics, for instance, the recoil due to the emission of a graviton. The results of our dynamical analysis show that the brane bends around the black hole, suggesting that the black hole eventually escapes into the extra dimensions once two portions of the brane come in contact and reconnect. This gives a dynamical mechanism for the creation of baby branes.

  3. Health evaluation of Galapagos Hawks (Buteo galapagoensis) on Santiago Island, Galapagos.

    PubMed

    Deem, Sharon L; Rivera-Parra, Jose Luis; Parker, Patricia G

    2012-01-01

    Galapagos Hawks (Buteo galapagoensis), the only endemic, diurnal raptor species in Galapagos, are currently distributed on eight Galapagos Islands having been extirpated from three of the human-inhabited islands. In January 2009, we performed health assessments of 89 Galapagos Hawks on Santiago Island, Galapagos. Four of the 89 Galapagos Hawks (4%) evaluated had physical abnormalities. Blood parameters did not differ between males and females, except for aspartate transaminase values, which were significantly higher in females than males. No Galapagos Hawks tested positive for antibodies to avian encephalitis virus, Marek virus, and paramyxovirus-1 or to haemosporidian antigen. Chlamydophila psittaci antigen was detected in 2 of 86 Galapagos Hawks (2%), with 24 of 43 Galapagos Hawks (56%) antibody-positive for avian adenovirus-1 and 1 of 48 Galapagos Hawks (2%) antibody positive for Toxoplasma gondii. There were no significant differences in infectious disease results based on sex. This study contributes to the understanding of the health status of the Galapagos Hawk and to the establishment of baseline information for the species.

  4. Recent trends in counts of migrant hawks from northeastern North America

    USGS Publications Warehouse

    Titus, K.; Fuller, M.R.

    1990-01-01

    Using simple regression, pooled-sites route-regression, and nonparametric rank-trend analyses, we evaluated trends in counts of hawks migrating past 6 eastern hawk lookouts from 1972 to 1987. The indexing variable was the total count for a season. Bald eagle (Haliaeetus leucocephalus), peregrine falcon (Falco peregrinus), merlin (F. columbarius), osprey (Pandion haliaetus), and Cooper's hawk (Accipiter cooperii) counts increased using route-regression and nonparametric methods (P 0.10). We found no consistent trends (P > 0.10) in counts of sharp-shinned hawks (A. striatus), northern goshawks (A. gentilis) red-shouldered hawks (Buteo lineatus), red-tailed hawks (B. jamaicensis), rough-legged hawsk (B. lagopus), and American kestrels (F. sparverius). Broad-winged hawk (B. platypterus) counts declined (P < 0.05) based on the route-regression method. Empirical comparisons of our results with those for well-studied species such as the peregrine falcon, bald eagle, and osprey indicated agreement with nesting surveys. We suggest that counts of migrant hawks are a useful and economical method for detecting long-term trends in species across regions, particularly for species that otherwise cannot be easily surveyed.

  5. How to Recover a Qubit That Has Fallen into a Black Hole

    NASA Astrophysics Data System (ADS)

    Chatwin-Davies, Aidan; Jermyn, Adam S.; Carroll, Sean M.

    2015-12-01

    We demonstrate an algorithm for the retrieval of a qubit, encoded in spin angular momentum, that has been dropped into a no-firewall black hole. Retrieval is achieved analogously to quantum teleportation by collecting Hawking radiation and performing measurements on the black hole. Importantly, these methods require only the ability to perform measurements from outside the event horizon.

  6. How to Recover a Qubit That Has Fallen into a Black Hole.

    PubMed

    Chatwin-Davies, Aidan; Jermyn, Adam S; Carroll, Sean M

    2015-12-31

    We demonstrate an algorithm for the retrieval of a qubit, encoded in spin angular momentum, that has been dropped into a no-firewall black hole. Retrieval is achieved analogously to quantum teleportation by collecting Hawking radiation and performing measurements on the black hole. Importantly, these methods require only the ability to perform measurements from outside the event horizon.

  7. UNBROKEN: UH 1N AIRCREW CONTINUE OPS DESPITE WEAK HEARING PROTECTION

    DTIC Science & Technology

    2016-02-29

    AU/ACSC/2016 AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY UNBROKEN: UH-1N AIRCREW CONTINUE OPS DESPITE WEAK HEARING... student training. The final one at Fairchild AFB, Washington, is focused on search and rescue operations and supports the Survival, Evasion

  8. Tachyon condensation and black hole entropy.

    PubMed

    Dabholkar, Atish

    2002-03-04

    String propagation on a cone with deficit angle 2pi(1-1 / N) is considered for the purpose of computing the entropy of a large mass black hole. The entropy computed using the recent results on condensation of twisted-sector tachyons in this theory is found to be in precise agreement with the Bekenstein-Hawking entropy.

  9. Anthropogenic effects on winter behavior of ferruginous hawks

    USGS Publications Warehouse

    Plumpton, D.L.; Andersen, D.E.

    1998-01-01

    Little information is known about the ecology of ferruginous hawks (Buteo regalis) in winter versus the breeding season and less about how the species adapts to fragmented grassland habitats. Accordingly, we studied the behavior of 38 radiotagged ferruginous hawks during 3 winters from 1992 to 1995. We used 2 adjacent sites in Colorado that were characterized by low and high levels of anthropogenic influence and habitat fragmentation: the Rocky Mountain Arsenal National Wildlife Refuge (RMANWR; low-level influence), and several adjacent Denver suburbs (high-level influence). Relative abundance of ferruginous hawks differed by treatment area and year (P 0.05) at RMANWR and suburban sites. Ferruginous hawks appear to modify their behavior in fragmented, largely human-altered habitats, provided some foraging habitats with adequate populations of suitable prey species are present.

  10. Soft-Hair-Enhanced Entanglement Beyond Page Curves in a Black Hole Evaporation Qubit Model

    NASA Astrophysics Data System (ADS)

    Hotta, Masahiro; Nambu, Yasusada; Yamaguchi, Koji

    2018-05-01

    We propose a model with multiple qubits that reproduces the thermal properties of four-dimensional Schwarzschild black holes (BHs) by simultaneously taking account of the emission of Hawking particles and the zero-energy soft-hair evaporation at the horizon. The results verify that the entanglement entropy between a qubit and other subsystems, including emitted radiation, is much larger than the BH entropy analogue of the qubit, as opposed to the Page curve prediction. Our result suggests that early Hawking radiation is entangled with soft hair and that late Hawking radiation can be highly entangled with the degrees of freedom of a BH, avoiding the emergence of a firewall at the horizon.

  11. Distribution, density, and productivity of accipiter hawks breeding in Oregon

    Treesearch

    Richard T. Reynolds; Howard M. Wight

    1978-01-01

    Density of nests and productivity of Sharp-shinned Hawks (Accipiter striatus), Cooper's Hawks (A. cooperii), and Goshawks (A. gentilis) within Oregon are of interest because of recent declines of accipiter hawks in the eastern United States (Schriver 1969, Hackman and Henny 1971, Henny and Wight 1972). One...

  12. 'Tool' use by the red-tailed hawk (Buteo jamaicensis)

    USGS Publications Warehouse

    Ellis, David H.; Brunson, Shawn

    1993-01-01

    Perhaps the best documented example of regular tool use for a falconiform is the Egyptian Vulture (Neophron percnopterus) striking an Ostrich (Struthio camelus) egg with a stone (J. van Lawick-Goodall and H. van Lawick-Goodall 1966, Nature 212:1468-1469; R.K. Brooke 1979, Ostrich 50:257-258). Another species, the Lammergeier (Gypaetus barbatus), routinely drops bones on stone slabs to gain access to the marrow within (L. Brown and D Amadon 1968, Eagles, hawks and falcons of the world, McGraw-Hill, New York, NY U.S.A.). Some, however, would argue that, because the stone is not manipulated, the bone-dropping Lammergeier is not actually using a tool. Another reported example of tool use is the Ferruginous Hawk (Buteo regalis) that allegedly cast a stone at a human intruder near its nest (C.L. Blair 1981, Raptor Research 15:120).]The following may be yet another example of tool use by a raptor. On 5 June 1985, we observed an adult Red-tailed Hawk (Buteo jamaicensis) soaring low (ca 15 m) over the grass-covered slopes of the Galiuro Mountains in southern Arizona. The bird had, probably just moments before, captured a ca I m snake (probably a glossy snake, Arizona elegans, judging by size, shape and color). When the hawk passed near us, it was holding the snake by both feet near the snake's midpoint. With head elevated and mouth open, the snake appeared intent upon biting the hawk. When the hawk was ca 100 m distant from us, it made several shallow stoops over a scattered group of large boulders. On some (and perhaps all) passes, the bird swept sharply upward as it passed over and nearly collided with a boulder. The centrifugal force associated with this change in direction caused the snake to pendulate below the hawk's talons and strike the boulder. During one pass, we observed the snake's head and tail flipping up behind the hawk after slapping the boulder. Not all swoops were over the same boulder, but one particularly obtrusive (ca 1 m tall) boulder was used at least

  13. Soyuz over Kitty Hawk

    NASA Image and Video Library

    2003-04-24

    ISS006-E-50419 (2003) --- This digital still camera image of Cape Hatteras and Cape Lookout, North Carolina, with a Soyuz vehicle docked to the orbital outpost in the foreground was taken by Expedition 6 crewmember Don Pettit during his 5 1/2 month stay on the International Space Station (ISS). The largest inland body of water is Pamlico Sound. Kitty Hawk, on North Carolina's Outer Banks is also visible. On Dec. 17, 2003, the world celebrates a century of human flight with the anniversary of the Wright Brothers' first flight at Kitty Hawk. The brothers used the Outer Banks' prevailing winds and a 90-foot hill (Kill Devil Hill) to successfully demonstrate powered flight.

  14. The Multipurpose Black Hawk Utility Helicopter: Rotary-wing Versatility Required for U.S. Marine Corps Enhanced Company Operations

    DTIC Science & Technology

    2009-01-01

    THE FOREGOING STATEMENT. QUOTATION FROM, ABSTRACTION FROM, OR REPRODUCTION OF ALL OR ANY PART OF THIS DOCVMENT IS PERMITTED PROVIDED PROPER...Capabilities and Limitations 7 AH-IW/Z Cobra’s Role in Support ofECO 8 CH-53E Super Stallion Capabilities and Limitations 9 CH-53E Super Stallion’s Role...of aircraft. Analysis of the roles and capabilities of the AH-IW Super Cobra, CH-53E Super Stallion , MV-22B Osprey, and the UH- IN Huey will identify

  15. Rotating black hole solutions in relativistic analogue gravity

    NASA Astrophysics Data System (ADS)

    Giacomelli, Luca; Liberati, Stefano

    2017-09-01

    Simulation and experimental realization of acoustic black holes in analogue gravity systems have lead to a novel understanding of relevant phenomena such as Hawking radiation or superradiance. We explore here the possibility of using relativistic systems for simulating rotating black hole solutions and possibly get an acoustic analogue of a Kerr black hole. In doing so, we demonstrate a precise relation between nonrelativistic and relativistic solutions and provide a new class of vortex solutions for relativistic systems. Such solutions might be used in the future as a test bed in numerical simulations as well as concrete experiments.

  16. Quantum information erasure inside black holes

    DOE PAGES

    Lowe, David A.; Thorlacius, Larus

    2015-12-15

    An effective field theory for infalling observers in the vicinity of a quasi-static black hole is given in terms of a freely falling lattice discretization. The lattice model successfully reproduces the thermal spectrum of outgoing Hawking radiation, as was shown by Corley and Jacobson, but can also be used to model observations made by a typical low-energy observer who enters the black hole in free fall at a prescribed time. The explicit short distance cutoff ensures that, from the viewpoint of the infalling observer, any quantum information that entered the black hole more than a scrambling time earlier has beenmore » erased by the black hole singularity. Furthermore, this property, combined with the requirement that outside observers need at least of order the scrambling time to extract quantum information from the black hole, ensures that a typical infalling observer does not encounter drama upon crossing the black hole horizon in a theory where black hole information is preserved for asymptotic observers.« less

  17. Origin of Hawking radiation: firewall or atmosphere?

    NASA Astrophysics Data System (ADS)

    Kim, Wontae

    2017-02-01

    The Unruh vacuum not admitting any outgoing flux at the horizon implies that the origin of the outgoing Hawking radiation is the atmosphere of a near-horizon quantum region without resort to the firewall; however, the existence of the firewall of superplanckian excitations at the horizon can be supported by the infinite Tolman temperature at the horizon. In an exactly soluble model, we explicitly show that the firewall necessarily emerges out of the Unruh vacuum so that the Tolman temperature in the Unruh vacuum is divergent in essence due to the infinitely blueshifted negative ingoing flux crossing the horizon rather than the outgoing flux. We also show that the outgoing Hawking radiation in the Unruh vacuum indeed originates from the atmosphere, not just at the horizon, which is of no relevance to the infinite blueshift. Consequently, the firewall from the infinite Tolman temperature and the Hawking radiation from the atmosphere turn out to be compatible, once we waive the claim that the Hawking radiation in the Unruh vacuum originates from the infinitely blueshifted outgoing excitations at the horizon.

  18. Regional variation in diets of breeding Red-shouldered hawks

    USGS Publications Warehouse

    Strobel, Bradley N.; Boal, Clint W.

    2010-01-01

    We collected data on breeding season diet composition of Red-shouldered Hawks (Buteo lineatus) in south Texas and compared these data, and those reported from studies elsewhere to examine large scale spatial variation in prey use in eastern North America. Red-shouldered Hawk diets aligned into two significantly different groups, which appear to correlate with latitude. The diets of Red-shouldered Hawks in group 1, which are of more northern latitudes, had significantly more mammalian prey and significantly less amphibian prey than those in group 2, which are at more southerly latitudes. Our meta-analysis demonstrated the dietary flexibility of Red-shouldered Hawks, which likely accounts for their broad distribution by exploiting regional variations in taxon-specific prey availability.

  19. Soft black hole absorption rates as conservation laws

    DOE PAGES

    Avery, Steven G.; Schwab, Burkhard U. W.

    2017-04-10

    The absorption rate of low-energy, or soft, electromagnetic radiation by spherically symmetric black holes in arbitrary dimensions is shown to be fixed by conservation of energy and large gauge transformations. Here, we interpret this result as the explicit realization of the Hawking-Perry-Strominger Ward identity for large gauge transformations in the background of a non-evaporating black hole. Along the way we rederive and extend our previous analytic results regarding the absorption rate for the minimal scalar and the photon.

  20. Soft black hole absorption rates as conservation laws

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avery, Steven G.; Schwab, Burkhard U. W.

    The absorption rate of low-energy, or soft, electromagnetic radiation by spherically symmetric black holes in arbitrary dimensions is shown to be fixed by conservation of energy and large gauge transformations. Here, we interpret this result as the explicit realization of the Hawking-Perry-Strominger Ward identity for large gauge transformations in the background of a non-evaporating black hole. Along the way we rederive and extend our previous analytic results regarding the absorption rate for the minimal scalar and the photon.

  1. The cosmological model with a wormhole and Hawking temperature near apparent horizon

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Won

    2018-05-01

    In this paper, a cosmological model with an isotropic form of the Morris-Thorne type wormhole was derived in a similar way to the McVittie solution to the black hole in the expanding universe. By solving Einstein's field equation with plausible matter distribution, we found the exact solution of the wormhole embedded in Friedmann-Lemaître-Robertson-Walker universe. We also found the apparent cosmological horizons from the redefined metric and analyzed the geometric natures, including causal and dynamic structures. The Hawking temperature for thermal radiation was obtained by the WKB approximation using the Hamilton-Jacobi equation and Hamilton's equation, near the apparent cosmological horizon.

  2. The Black Hole Information Paradox and the Collapse of the Wave Function

    NASA Astrophysics Data System (ADS)

    Okon, Elias; Sudarsky, Daniel

    2015-04-01

    The black hole information paradox arises from an apparent conflict between the Hawking black hole radiation and the fact that time evolution in quantum mechanics is unitary. The trouble is that while the former suggests that information of a system falling into a black hole disappears, the latter implies that information must be conserved. In this work we discuss the current divergence in views regarding the paradox, we evaluate the role that objective collapse theories could play in its resolution and we propose a link between spontaneous collapse events and microscopic virtual black holes.

  3. Implementing the UH Asynchronous Learning Network: Practices, Issues and Challenges

    ERIC Educational Resources Information Center

    Odin, Jaishree K.

    2002-01-01

    In spite of ten campuses spread over four islands, access to higher education at the University of Hawai'i (UH) is unevenly distributed across the state. In an effort to address the problem of access, the Alfred P. Sloan Foundation has funded the University of Hawai'i to develop online courses and programs. In this article, the author describes…

  4. Entropy in the interior of a higher-dimensional black hole

    NASA Astrophysics Data System (ADS)

    Yang, Jian-Zhi; Liu, Wen-Biao

    2018-07-01

    Recently Christodoulou and Rovelli brought out a sensible description for the black hole volume as the largest volume. Later the entropy related to this volume in a 4-dimensional Schwarzschild black hole was investigated, which showed that such entropy is proportional to the surface area of the black hole. We will probe into these issues in the context of higher-dimensional case. It is found that the proportion between this entropy and the Bekenstein-Hawking entropy will go down through dramatic change along with the increase of spacetime dimension.

  5. Band-aid for information loss from black holes

    NASA Astrophysics Data System (ADS)

    Israel, Werner; Yun, Zinkoo

    2010-12-01

    We summarize, simplify and extend recent work showing that small deviations from exact thermality in Hawking radiation, first uncovered by Kraus and Wilczek, have the capacity to carry off the maximum information content of a black hole. This goes a considerable way toward resolving a long-standing “information loss paradox.”

  6. Gravitational wave production by Hawking radiation from rotating primordial black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Ruifeng; Kinney, William H.; Stojkovic, Dejan, E-mail: ruifengd@buffalo.edu, E-mail: whkinney@buffalo.edu, E-mail: ds77@buffalo.edu

    In this paper we analyze in detail a rarely discussed question of gravity wave production from evaporating primordial black holes. These black holes emit gravitons which are, at classical level, registered as gravity waves. We use the latest constraints on their abundance, and calculate the power emitted in gravitons at the time of their evaporation. We then solve the coupled system of equations that gives us the evolution of the frequency and amplitude of gravity waves during the expansion of the universe. The spectrum of gravitational waves that can be detected today depends on multiple factors: fraction of the totalmore » energy density which was occupied by primordial black holes, the epoch in which they were formed, and quantities like their mass and angular momentum. We conclude that very small primordial black holes which evaporate before the big-bang nucleosynthesis emit gravitons whose spectral energy fraction today can be as large as 10{sup −7.5}. On the other hand, those which are massive enough so that they still exist now can yield a signal as high as 10{sup −6.5}. However, typical frequencies of the gravity waves from primordial black holes are still too high to be observed with the current and near future gravity wave observations.« less

  7. Lee-Wick black holes

    NASA Astrophysics Data System (ADS)

    Bambi, Cosimo; Modesto, Leonardo; Wang, Yixu

    2017-01-01

    We derive and study an approximate static vacuum solution generated by a point-like source in a higher derivative gravitational theory with a pair of complex conjugate ghosts. The gravitational theory is local and characterized by a high derivative operator compatible with Lee-Wick unitarity. In particular, the tree-level two-point function only shows a pair of complex conjugate poles besides the massless spin two graviton. We show that singularity-free black holes exist when the mass of the source M exceeds a critical value Mcrit. For M >Mcrit the spacetime structure is characterized by an outer event horizon and an inner Cauchy horizon, while for M =Mcrit we have an extremal black hole with vanishing Hawking temperature. The evaporation process leads to a remnant that approaches the zero-temperature extremal black hole state in an infinite amount of time.

  8. Magnetized black holes and nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    2017-08-01

    A new model of nonlinear electrodynamics with two parameters is proposed. We study the phenomenon of vacuum birefringence, the causality and unitarity in this model. There is no singularity of the electric field in the center of pointlike charges and the total electrostatic energy is finite. We obtain corrections to the Coulomb law at r →∞. The weak, dominant and strong energy conditions are investigated. Magnetized charged black hole is considered and we evaluate the mass, metric function and their asymptotic at r →∞ and r → 0. The magnetic mass of the black hole is calculated. The thermodynamic properties and thermal stability of regular black holes are discussed. We calculate the Hawking temperature of black holes and show that there are first-order and second-order phase transitions. The parameters of the model when the black hole is stable are found.

  9. Hypertension in african americans aged 60 to 79 years: statement from the international society of hypertension in blacks.

    PubMed

    Egan, Brent M; Bland, Veita J; Brown, Angela L; Ferdinand, Keith C; Hernandez, German T; Jamerson, Kenneth A; Johnson, Wallace R; Kountz, David S; Li, Jiexiang; Osei, Kwame; Reed, James W; Saunders, Elijah

    2015-04-01

    A 2014 hypertension guideline raised goal systolic blood pressure (SBP) from <140 mm Hg to <150 mm Hg for adults 60 years and older without diabetes mellitus (DM) or chronic kidney disease (CKD). The authors aimed to define the status of hypertension in black adults 60 to 79 years from the National Health and Nutrition Examination Survey 2005-2012 and provide practical guidance. Black patients were more often aware and treated (P≤.005) for hypertension than whites and had higher rates of DM/CKD (P<.001), similar control to <140/<90 mm Hg with DM/CKD (P=.59), and lower control without DM/CKD (<140/<90 mm Hg and <150/<90 mm Hg, P≤.01). Limited awareness (<30%) and infrequent health care (>30% 0-1 health-care visits per year) occurred in untreated black and white hypertensive patients without DM/CKD and BP ≥140/<90 mm Hg. The literature suggests benefits of treated SBP <140 mm Hg in adults 60 to 79 years without DM/CKD. The International Society of Hypertension in Blacks recommends: (1) continuing efforts to achieve BP <140/<90 mm Hg in those with DM/CK, and (2) identifying hypertensive patients without DM/CKD and BP ≥140/<90 mm Hg and treat to an SBP <140 mm Hg in black adults 60-79 years. © 2015 Wiley Periodicals, Inc.

  10. Probing loop quantum gravity with evaporating black holes.

    PubMed

    Barrau, A; Cailleteau, T; Cao, X; Diaz-Polo, J; Grain, J

    2011-12-16

    This Letter aims at showing that the observation of evaporating black holes should allow the usual Hawking behavior to be distinguished from loop quantum gravity (LQG) expectations. We present a full Monte Carlo simulation of the evaporation in LQG and statistical tests that discriminate between competing models. We conclude that contrarily to what was commonly thought, the discreteness of the area in LQG leads to characteristic features that qualify evaporating black holes as objects that could reveal quantum gravity footprints. © 2011 American Physical Society

  11. NASA Global Hawk: A New Tool for Earth Science Research

    NASA Technical Reports Server (NTRS)

    Hall, Phill

    2009-01-01

    This slide presentation reviews the Global Hawk, a unmanned aerial vehicle (UAV) that NASA plans to use for Earth Sciences research. The Global Hawk is the world's first fully autonomous high-altitude, long-endurance aircraft, and is capable of conducting long duration missions. Plans are being made for the use of the aircraft on missions in the Arctic, Pacific and Western Atlantic Oceans. There are slides showing the Global Hawk Operations Center (GHOC), Flight Control and Air Traffic Control Communications Architecture, and Payload Integration and Accommodations on the Global Hawk. The first science campaign, planned for a study of the Pacific Ocean, is reviewed.

  12. Renormalized vacuum polarization of rotating black holes

    NASA Astrophysics Data System (ADS)

    Ferreira, Hugo R. C.

    2015-04-01

    Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle-Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2 + 1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization, for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.

  13. Gaussian black holes in Rastall gravity

    NASA Astrophysics Data System (ADS)

    Spallucci, Euro; Smailagic, Anais

    In this short note we present the solution of Rastall gravity equations sourced by a Gaussian matter distribution. We find that the black hole metric shares all the common features of other regular, General Relativity BH solutions discussed in the literature: there is no curvature singularity and the Hawking radiation leaves a remnant at zero temperature in the form of a massive ordinary particle.

  14. Black hole radiation and S-matrix.

    NASA Astrophysics Data System (ADS)

    Russo, J. G.

    1999-04-01

    The existence of an S-matrix below the threshold of black hole formation would be enough to exhibit, through its analytic structure, eventual thresholds for the creation of new objects and to describe, through analytic continuation, the physics above them in a unitary framework. In the context of a two-dimensional exactly soluble model, the semiclassical dynamics of quantum black holes is obtained by analytically continuing the description of the regime where no black hole is formed. The resulting spectrum of outgoing radiation departs from the one predicted by the Hawking model by the time the outgoing modes arise from the horizon with Planck-order frequencies. The theory predicts an unconventional scenario for the evolution: black holes only radiate out an energy of Planck mass order, stabilizing after a transitory period. A similar picture is obtained in 3+1 dimensions with spherical symmetry.

  15. Thermodynamics of a class of regular black holes with a generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Maluf, R. V.; Neves, Juliano C. S.

    2018-05-01

    In this article, we present a study on thermodynamics of a class of regular black holes. Such a class includes Bardeen and Hayward regular black holes. We obtained thermodynamic quantities like the Hawking temperature, entropy, and heat capacity for the entire class. As part of an effort to indicate some physical observable to distinguish regular black holes from singular black holes, we suggest that regular black holes are colder than singular black holes. Besides, contrary to the Schwarzschild black hole, that class of regular black holes may be thermodynamically stable. From a generalized uncertainty principle, we also obtained the quantum-corrected thermodynamics for the studied class. Such quantum corrections provide a logarithmic term for the quantum-corrected entropy.

  16. Planckian charged black holes in ultraviolet self-complete quantum gravity

    NASA Astrophysics Data System (ADS)

    Nicolini, Piero

    2018-03-01

    We present an analysis of the role of the charge within the self-complete quantum gravity paradigm. By studying the classicalization of generic ultraviolet improved charged black hole solutions around the Planck scale, we showed that the charge introduces important differences with respect to the neutral case. First, there exists a family of black hole parameters fulfilling the particle-black hole condition. Second, there is no extremal particle-black hole solution but quasi extremal charged particle-black holes at the best. We showed that the Hawking emission disrupts the condition of particle-black hole. By analyzing the Schwinger pair production mechanism, the charge is quickly shed and the particle-black hole condition can ultimately be restored in a cooling down phase towards a zero temperature configuration, provided non-classical effects are taken into account.

  17. Hawking radiation from a Reissner-Nordstroem black hole with a global monopole via covariant anomalies and effective action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangopadhyay, Sunandan

    2008-08-15

    We adopt the covariant anomaly cancellation method as well as the effective action approach to obtain the Hawking radiation from the Reissner-Nordstroem blackhole with a global monopole falling in the class of the most general spherically symmetric charged blackhole ({radical}(-g){ne}1), using only covariant boundary conditions at the event horizon.

  18. Habitat use by Swainson's Hawks on their austral winter grounds in Argentina

    USGS Publications Warehouse

    Canavelli, Sonia B.; Bechard, Marc J.; Woodbridge, B.; Kochert, Michael N.; Maceda, Juan J.; Zaccagnini, Maria E.

    2003-01-01

    We examined the use of agricultural habitats by Swainson's Hawks (Buteo swainsoni)in La Pampa and Santa Fe provinces, Argentina. We found an association of foraging Swainson's Hawks with permanent pastures such as fallow, natural, and alfalfa fields. The hawks also used plowed fields for sunning, resting, and preening. Fields planted with annual crops and pastures were used very little, except when they were cut for hay, plowed, and harvested, or when low crop height and cover allowed the hawks to land in fields. The availability of abundant, yet widely-spaced and transient food-sources, such as insect outbreaks, appeared to be the principal factor influencing habitat use by the hawks. Their reliance on agricultural habitats makes Swainson's Hawks highly vulnerable to pesticide contamination and has contributed to the occurrence of significant mortality events on their wintering grounds.

  19. Characteristics of polycyclic aromatic hydrocarbon (PAH) emissions from a UH-1H helicopter engine and its impact on the ambient environment

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Cheng; Lee, Wen-Jhy; Uang, Shi-Nian; Lee, Su-Hsing; Tsai, Perng-Jy

    The objective of this study is to characterize the emissions of polycyclic aromatic hydrocarbons (PAHs) from a UH-1H helicopter turboshaft engine and its impact on the ambient environment. Five power settings of the ground idle (GI), fly idle (FI), beed band check (BBC), inlet guide vane (IGV), and take off (TO) were selected and samples were collected from the exhaust by using an isokinetic sampling system. Twenty-two PAH compounds were analyzed by gas chromatograph (GC)/MS. We found the mean total PAH concentration in the exhaust of the UH-1H engine (843 μg m -3) is 1.05-51.7 times in magnitude higher than those of the heavy-duty diesel (HDD) engine, motor vehicle engine, and F101 aircraft engine. Two- and three-ringed PAHs account for 97.5% of total PAH emissions from the UH-1H engine. The mean total PAH and total BaP eq emission factors for the UH-1H engine (63.4 and 0.309 mg L -1·fuel) is 1.65-23.4 and 1.30-7.54 times in magnitude higher than those for the motor vehicle engine, HDD engine, and F101 aircraft engine. The total emission level of the single PAH compound, BaP, for the UH-1H engine (EL BaP) during one landing and take off (LTO) cycle (2.19 mg LTO -1) was higher than the European Commission standard (1.24 mg LTO -1) suggesting that appropriate measures should be taken to reduce PAH emissions from UH-1H engines in the future.

  20. The rigorous bound on the transmission probability for massless scalar field of non-negative-angular-momentum mode emitted from a Myers-Perry black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngampitipan, Tritos, E-mail: tritos.ngampitipan@gmail.com; Particle Physics Research Laboratory, Department of Physics, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330; Boonserm, Petarpa, E-mail: petarpa.boonserm@gmail.com

    Hawking radiation is the evidence for the existence of black hole. What an observer can measure through Hawking radiation is the transmission probability. In the laboratory, miniature black holes can successfully be generated. The generated black holes are, most commonly, Myers-Perry black holes. In this paper, we will derive the rigorous bounds on the transmission probabilities for massless scalar fields of non-negative-angular-momentum modes emitted from a generated Myers-Perry black hole in six, seven, and eight dimensions. The results show that for low energy, the rigorous bounds increase with the increase in the energy of emitted particles. However, for high energy,more » the rigorous bounds decrease with the increase in the energy of emitted particles. When the black holes spin faster, the rigorous bounds decrease. For dimension dependence, the rigorous bounds also decrease with the increase in the number of extra dimensions. Furthermore, as comparison to the approximate transmission probability, the rigorous bound is proven to be useful.« less

  1. The rigorous bound on the transmission probability for massless scalar field of non-negative-angular-momentum mode emitted from a Myers-Perry black hole

    NASA Astrophysics Data System (ADS)

    Ngampitipan, Tritos; Boonserm, Petarpa; Chatrabhuti, Auttakit; Visser, Matt

    2016-06-01

    Hawking radiation is the evidence for the existence of black hole. What an observer can measure through Hawking radiation is the transmission probability. In the laboratory, miniature black holes can successfully be generated. The generated black holes are, most commonly, Myers-Perry black holes. In this paper, we will derive the rigorous bounds on the transmission probabilities for massless scalar fields of non-negative-angular-momentum modes emitted from a generated Myers-Perry black hole in six, seven, and eight dimensions. The results show that for low energy, the rigorous bounds increase with the increase in the energy of emitted particles. However, for high energy, the rigorous bounds decrease with the increase in the energy of emitted particles. When the black holes spin faster, the rigorous bounds decrease. For dimension dependence, the rigorous bounds also decrease with the increase in the number of extra dimensions. Furthermore, as comparison to the approximate transmission probability, the rigorous bound is proven to be useful.

  2. Corrected black hole thermodynamics in Damour-Ruffini’s method with generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Zhou, Shiwei; Chen, Ge-Rui

    Recently, some approaches to quantum gravity indicate that a minimal measurable length lp ˜ 10-35 should be considered, a direct implication of the minimal measurable length is the generalized uncertainty principle (GUP). Taking the effect of GUP into account, Hawking radiation of massless scalar particles from a Schwarzschild black hole is investigated by the use of Damour-Ruffini’s method. The original Klein-Gordon equation is modified. It is obtained that the corrected Hawking temperature is related to the energy of emitting particles. Some discussions appear in the last section.

  3. Dressed Hard States and Black Hole Soft Hair.

    PubMed

    Mirbabayi, Mehrdad; Porrati, Massimo

    2016-11-18

    A recent, intriguing Letter by Hawking, Perry, and Strominger suggests that soft photons and gravitons can be regarded as black hole hair and may be relevant to the black hole information paradox. In this Letter we make use of factorization theorems for infrared divergences of the S matrix to argue that by appropriately dressing in and out hard states, the soft-quanta-dependent part of the S matrix becomes essentially trivial. The information paradox can be fully formulated in terms of dressed hard states, which do not depend on soft quanta.

  4. An analytically linearized helicopter model with improved modeling accuracy

    NASA Technical Reports Server (NTRS)

    Jensen, Patrick T.; Curtiss, H. C., Jr.; Mckillip, Robert M., Jr.

    1991-01-01

    An analytically linearized model for helicopter flight response including rotor blade dynamics and dynamic inflow, that was recently developed, was studied with the objective of increasing the understanding, the ease of use, and the accuracy of the model. The mathematical model is described along with a description of the UH-60A Black Hawk helicopter and flight test used to validate the model. To aid in utilization of the model for sensitivity analysis, a new, faster, and more efficient implementation of the model was developed. It is shown that several errors in the mathematical modeling of the system caused a reduction in accuracy. These errors in rotor force resolution, trim force and moment calculation, and rotor inertia terms were corrected along with improvements to the programming style and documentation. Use of a trim input file to drive the model is examined. Trim file errors in blade twist, control input phase angle, coning and lag angles, main and tail rotor pitch, and uniform induced velocity, were corrected. Finally, through direct comparison of the original and corrected model responses to flight test data, the effect of the corrections on overall model output is shown.

  5. A review of ice accretion data from a model rotor icing test and comparison with theory

    NASA Technical Reports Server (NTRS)

    Britton, Randall K.; Bond, Thomas H.

    1991-01-01

    An experiment was conducted by the Helicopter Icing Consortium (HIC) in the NASA Lewis Icing Research Tunnel (IRT) in which a 1/6 scale fuselage model of a UH-60A Black Hawk helicopter with a generic rotor was subjected to a wide range of icing conditions. The HIC consists of members from NASA, Bell Helicopter, Boeing Helicopter, McDonnell Douglas Helicopters, Sikorsky Aircraft, and Texas A&M University. Data was taken in the form of rotor torque, internal force balance measurements, blade strain gage loading, and two dimensional ice shape tracings. A review of the ice shape data is performed with special attention given to repeatability and correctness of trends in terms of radial variation, rotational speed, icing time, temperature, liquid water content, and volumetric median droplet size. Moreover, an indepth comparison between the experimental data and the analysis of NASA's ice accretion code LEWICE is given. Finally, conclusions are drawn as to the quality of the ice accretion data and the predictability of the data base as a whole. Recommendations are also given for improving data taking technique as well as potential future work.

  6. Hawking radiation and classical tunneling: A ray phase space approach

    NASA Astrophysics Data System (ADS)

    Tracy, E. R.; Zhigunov, D.

    2016-01-01

    Acoustic waves in fluids undergoing the transition from sub- to supersonic flow satisfy governing equations similar to those for light waves in the immediate vicinity of a black hole event horizon. This acoustic analogy has been used by Unruh and others as a conceptual model for "Hawking radiation." Here, we use variational methods, originally introduced by Brizard for the study of linearized MHD, and ray phase space methods, to analyze linearized acoustics in the presence of background flows. The variational formulation endows the evolution equations with natural Hermitian and symplectic structures that prove useful for later analysis. We derive a 2 × 2 normal form governing the wave evolution in the vicinity of the "event horizon." This shows that the acoustic model can be reduced locally (in ray phase space) to a standard (scalar) tunneling process weakly coupled to a unidirectional non-dispersive wave (the "incoming wave"). Given the normal form, the Hawking "thermal spectrum" can be derived by invoking standard tunneling theory, but only by ignoring the coupling to the incoming wave. Deriving the normal form requires a novel extension of the modular ray-based theory used previously to study tunneling and mode conversion in plasmas. We also discuss how ray phase space methods can be used to change representation, which brings the problem into a form where the wave functions are less singular than in the usual formulation, a fact that might prove useful in numerical studies.

  7. Wildlife Photography - Hawks

    NASA Image and Video Library

    2018-02-07

    A Red-shouldered hawk soars in clear skies above NASA's Kennedy Space Center in Florida. The center shares a border with the 140,000-acre Merritt Island National Wildlife Refuge. More than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles call Kennedy and the wildlife refuge home.

  8. Nature Photography - Hawks

    NASA Image and Video Library

    2017-01-30

    A Cooper's hawk walks through underbrush at NASA's Kennedy Space Center in Florida. The center shares a border with the Merritt Island National Wildlife Refuge. The bird is one of more than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles that call Kennedy and the wildlife refuge home.

  9. Before Inflation and after Black Holes

    NASA Astrophysics Data System (ADS)

    Stoltenberg, Henry

    This dissertation covers work from three research projects relating to the physics before the start of inflation and information after the decay of a black hole. For the first project, we analyze the cosmological role of terminal vacua in the string theory landscape, and point out that existing work on this topic makes very strong assumptions about the properties of the terminal vacua. We explore the implications of relaxing these assumptions (by including "arrival" as well as "departure" terminals) and demonstrate that the results in earlier work are highly sensitive to their assumption of no arrival terminals. We use our discussion to make some general points about tuning and initial conditions in cosmology. The second project is a discussion of the black hole information problem. Under certain conditions the black hole information puzzle and the (related) arguments that firewalls are a typical feature of black holes can break down. We first review the arguments of Almheiri, Marolf, Polchinski and Sully (AMPS) favoring firewalls, focusing on entanglements in a simple toy model for a black hole and the Hawking radiation. By introducing a large and inaccessible system entangled with the black hole (representing perhaps a de Sitter stretched horizon or inaccessible part of a landscape) we show complementarity can be restored and firewalls can be avoided throughout the black hole's evolution. Under these conditions black holes do not have an "information problem". We point out flaws in some of our earlier arguments that such entanglement might be generically present in some cosmological scenarios, and call out certain ways our picture may still be realized. The third project also examines the firewall argument. A fundamental limitation on the behavior of quantum entanglement known as "monogamy" plays a key role in the AMPS argument. Our goal is to study and apply many-body entanglement theory to consider the entanglement among different parts of Hawking radiation and

  10. NASA's Global Hawk

    NASA Image and Video Library

    2014-09-23

    View from a Chase Plane; HS3 Science Flight 8 Wraps Up The chase plane accompanying NASA's Global Hawk No. 872 captured this picture on Sept. 19 after the Global Hawk completed science flight #8 where it gathered data from a weakening Tropical Storm Edouard over the North Atlantic Ocean. Credit: NASA -- The Hurricane and Severe Storm Sentinel (HS3) is a five-year mission specifically targeted to investigate the processes that underlie hurricane formation and intensity change in the Atlantic Ocean basin. HS3 is motivated by hypotheses related to the relative roles of the large-scale environment and storm-scale internal processes. Read more: espo.nasa.gov/missions/hs3/mission-gallery NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Influence of poisoned prey on foraging behavior of ferruginous hawks

    USGS Publications Warehouse

    Vyas, Nimish B.; Kuncir, Frank; Clinton, Criss C.

    2017-01-01

    We recorded 19 visits by ferruginous hawks (Buteo regalis) over 6 d at two black–tailed prairie dog (Cynomys ludovicianus) subcolonies poisoned with the rodenticide Rozol® Prairie Dog Bait (0.005% chlorophacinone active ingredient) and at an adjacent untreated subcolony. Before Rozol® application ferruginous hawks foraged in the untreated and treated subcolonies but after Rozol® application predation by ferruginous hawks was only observed in the treated subcolonies. We suggest that ferruginous hawks' preference for hunting in the treated subcolonies after Rozol® application was influenced by the availability of easy-to-capture prey, presumably due to Rozol® poisoning. The energetically beneficial behavior of favoring substandard prey may increase raptor encounters with rodenticide exposed animals if prey vulnerability has resulted from poisoning.

  12. Black hole squeezers

    NASA Astrophysics Data System (ADS)

    Su, Daiqin; Ho, C. T. Marco; Mann, Robert B.; Ralph, Timothy C.

    2017-09-01

    We show that the gravitational quasinormal modes (QNMs) of a Schwarzschild black hole play the role of a multimode squeezer that can generate particles. For a minimally coupled scalar field, the QNMs "squeeze" the initial state of the scalar field (even for the vacuum) and produce scalar particles. The maximal squeezing amplitude is inversely proportional to the cube of the imaginary part of the QNM frequency, implying that the particle generation efficiency is higher for lower decaying QNMs. Our results show that the gravitational perturbations can amplify Hawking radiation.

  13. Magnonic Black Holes.

    PubMed

    Roldán-Molina, A; Nunez, Alvaro S; Duine, R A

    2017-02-10

    We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons-the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the implications of magnonic horizons for spin-wave scattering and transport experiments, and for magnon entanglement.

  14. Black hole thermodynamics based on unitary evolutions

    NASA Astrophysics Data System (ADS)

    Feng, Yu-Lei; Chen, Yi-Xin

    2015-10-01

    In this paper, we try to construct black hole thermodynamics based on the fact that the formation and evaporation of a black hole can be described by quantum unitary evolutions. First, we show that the Bekenstein-Hawking entropy SBH may not be a Boltzmann or thermal entropy. To confirm this statement, we show that the original black hole's ‘first law’ may not simply be treated as the first law of thermodynamics formally, due to some missing metric perturbations caused by matter. Then, by including those (quantum) metric perturbations, we show that the black hole formation and evaporation can be described effectively in a unitary manner, through a quantum channel between the exterior and interior of the event horizon. In this way, the paradoxes of information loss and firewall can be resolved effectively. Finally, we show that black hole thermodynamics can be constructed in an ordinary way, by constructing statistical mechanics.

  15. Thermal stability of black holes with arbitrary hairs

    NASA Astrophysics Data System (ADS)

    Sinha, Aloke Kumar

    2018-02-01

    We have derived the criteria for thermal stability of charged rotating black holes, for horizon areas that are large relative to the Planck area (in these dimensions). In this paper, we generalized it for black holes with arbitrary hairs. The derivation uses results of loop quantum gravity and equilibrium statistical mechanics of the grand canonical ensemble and there is no explicit use of classical spacetime geometry at all in this analysis. The assumption is that the mass of the black hole is a function of its horizon area and all the hairs. Our stability criteria are then tested in detail against some specific black holes, whose metrics provide us with explicit relations for the dependence of the mass on the area and other hairs of the black holes. This enables us to predict which of these black holes are expected to be thermally unstable under Hawking radiation.

  16. Behavioral ecology of the Swainson's Hawk (Buteo swainsoni) in Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzner, R.E.

    1980-12-01

    This study examines the breeding ecology and behavior of the Swainson's Hawk (Buteo swainsoni) on its breeding ground in southeastern Washington. Seasonal movements and distribution of the buteo are also described. The birds were observed from blinds, or filmed by Super-8mm time-lapse cameras, during courtship, nest building, egg laying, incubation, and nestling and post-fledging development. Food habits were examined during the nestling and post-fledging periods. Snakes, especially the abundant Western Yellow-bellied racers, were a prey staple, and insects became an important food source during the post-fledging period. It was apparent that Swainson's Hawks feed on smaller and more diverse preymore » than sympatric buteos (Red-tailed and Ferruginous Hawks), thus reducing competition with neighboring congenerics. Interactions with buteos and other raptor genera were observed, and nearest neighbor distances measured. Organochlorine pesticides in prey species consumed by Swainson's Hawks are concentrated from prey to predator through the food chain. The hawk pellets (regurgitated castings) would contain those concentrations and could easily be monitored without sacrificing any part of the food chain.« less

  17. Evaporation of (quantum) black holes and energy conservation

    NASA Astrophysics Data System (ADS)

    Torres, R.; Fayos, F.; Lorente-Espín, O.

    2013-03-01

    We consider Hawking radiation as due to a tunneling process in a black hole were quantum corrections, derived from Quantum Einstein Gravity, are taken into account. The consequent derivation, satisfying conservation laws, leads to a deviation from an exact thermal spectrum. This has consequences for the information loss paradox since the non-thermal radiation is shown to carry information out of the black hole. Under the appropriate approximation, a quantum corrected temperature is assigned to the black hole. The evolution of the quantum black hole as it evaporates is then described by taking into account the full implications of energy conservation as well as the backscattered radiation. It is shown that, as a critical mass of the order of Planck's mass is reached, the evaporation process decelerates abruptly while the black hole mass decays towards this critical mass.

  18. Black string in dRGT massive gravity

    NASA Astrophysics Data System (ADS)

    Tannukij, Lunchakorn; Wongjun, Pitayuth; Ghosh, Suchant G.

    2017-12-01

    We present a cylindrically symmetric solution, both charged and uncharged, which is known as a black string solution to the nonlinear ghost-free massive gravity found by de Rham, Gabadadze, and Tolley (dRGT). This "dRGT black string" can be thought of as a generalization of the black string solution found by Lemos. Moreover, the dRGT black string solution includes other classes of black string solution such as the monopole-black string ones since the graviton mass contributes to the global monopole term as well as the cosmological-constant term. To investigate the solution, we compute mass, temperature, and entropy of the dRGT black string. We found that the existence of the graviton mass drastically affects the thermodynamics of the black string. Furthermore, the Hawking-Page phase transition is found to be possible for the dRGT black string as well as the charged dRGT black string. The dRGT black string solution is thermodynamically stable for r>r_c with negative thermodynamical potential and positive heat capacity while it is unstable for r

  19. Covariance Method of the Tunneling Radiation from High Dimensional Rotating Black Holes

    NASA Astrophysics Data System (ADS)

    Li, Hui-Ling; Han, Yi-Wen; Chen, Shuai-Ru; Ding, Cong

    2018-04-01

    In this paper, Angheben-Nadalini-Vanzo-Zerbini (ANVZ) covariance method is used to study the tunneling radiation from the Kerr-Gödel black hole and Myers-Perry black hole with two independent angular momentum. By solving the Hamilton-Jacobi equation and separating the variables, the radial motion equation of a tunneling particle is obtained. Using near horizon approximation and the distance of the proper pure space, we calculate the tunneling rate and the temperature of Hawking radiation. Thus, the method of ANVZ covariance is extended to the research of high dimensional black hole tunneling radiation.

  20. The Information Loss for QCD Matter in Cylindrical Black Holes at LHC

    NASA Astrophysics Data System (ADS)

    Ghaffary, Tooraj; Pincak, Richard

    2018-03-01

    In this paper, the information loss was found for QCD matter in cylindrical black holes at LHC by developing the Gottesman and Preskill approach to cylindrical black holes and determine the information transformation from the collapsing matter to the outgoing Hawking radiation state for gluons and quarks. It is found that for all gluon and quark with finite values of energies, all information from all emission processes experiences some degree of loss.

  1. The Information Loss for QCD Matter in Cylindrical Black Holes at LHC

    NASA Astrophysics Data System (ADS)

    Ghaffary, Tooraj; Pincak, Richard

    2017-12-01

    In this paper, the information loss was found for QCD matter in cylindrical black holes at LHC by developing the Gottesman and Preskill approach to cylindrical black holes and determine the information transformation from the collapsing matter to the outgoing Hawking radiation state for gluons and quarks. It is found that for all gluon and quark with finite values of energies, all information from all emission processes experiences some degree of loss.

  2. Extraocular muscle architecture in hawks and owls.

    PubMed

    Plochocki, Jeffrey H; Segev, Tamar; Grow, Wade; Hall, Margaret I

    2018-02-06

    A complete and accurate understanding of extraocular muscle function is important to the veterinary care of the avian eye. This is especially true for birds of prey, which rely heavily on vision for survival and yet are prone to ocular injury and disease. To better understand the function of extraocular muscles in birds of prey, we studied extraocular muscle architecture grossly and histologically. This sample was composed of two each of the following species: red-tailed hawk (Buteo jamaicensis), Harris's hawk (Parabuteo unicinctus), great horned owl (Bubo virginianus), and barn owl (Tyto alba). All extraocular muscles were dissected and weighed. To analyze muscle fiber architecture, the superior oblique and quadratus muscles were dissected, weighed, and sectioned at 5 μm thickness in the transverse plane. We calculated the physiologic cross-sectional area and the ratio of muscle mass to predicted effective maximum tetanic tension. Hawk and owl extraocular muscles exhibit significant physiological differences that play roles in ocular movements and closure of the nictitating membrane. Owls, which do not exhibit extraocular movement, have muscle architecture suited to stabilize the position of a massive, tubular eye that protrudes significantly from the orbit. Hawks, which have a more globose eye that is largely contained within the orbit, do not require as much muscular stability and instead have muscle architecture that facilitates rapid eye movement. © 2018 American College of Veterinary Ophthalmologists.

  3. Spizaetus hawk-eagles as predators of arboreal colobines.

    PubMed

    Fam, S D; Nijman, V

    2011-04-01

    The predation pressure put on primates by diurnal birds of prey differs greatly between continents. Africa and South America have specialist raptors (e.g. crowned hawk-eagle Stephanoaetus coronatus and harpy eagle Harpia harpyja) whereas in Asia the only such specialist's (Philippine eagle Pithecophaga jefferyi) distribution is largely allopatric with primates. The almost universal absence of polyspecific groups in Asia (common in Africa and South America) may indicate reduced predation pressure. As such there is almost no information on predation pressures on primates in Asia by raptors. Here we report successful predation of a juvenile banded langur Presbytis femoralis (~2 kg) by a changeable hawk-eagle Spizaetus cirrhatus. The troop that was attacked displayed no signs of being alarmed, and no calls were made before the event. We argue that in insular Southeast Asia, especially, large Spizaetus hawk-eagles (~2 kg) are significant predators of arboreal colobines. Using data on the relative size of sympatric Spizaetus hawk-eagles and colobines we make predictions on where geographically we can expect the highest predation pressure (Thai-Malay Peninsula) and which colobines are least (Nasalis larvatus, Trachypithecus auratus, P. thomasi) and most (P. femoralis, T. cristatus) affected.

  4. Near-horizon conformal symmetry and black hole entropy.

    PubMed

    Carlip, S

    2002-06-17

    Near an event horizon, the action of general relativity acquires a new asymptotic conformal symmetry. For two-dimensional dilaton gravity, this symmetry results in a chiral Virasoro algebra, and Cardy's formula for the density of states reproduces the Bekenstein-Hawking entropy. This lends support to the notion that black hole entropy is controlled universally by conformal symmetry near the horizon.

  5. Thermodynamic phase transition in the rainbow Schwarzschild black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gim, Yongwan; Kim, Wontae, E-mail: yongwan89@sogang.ac.kr, E-mail: wtkim@sogang.ac.kr

    2014-10-01

    We study the thermodynamic phase transition in the rainbow Schwarzschild black hole where the metric depends on the energy of the test particle. Identifying the black hole temperature with the energy from the modified dispersion relation, we obtain the modified entropy and thermodynamic energy along with the modified local temperature in the cavity to provide well defined black hole states. It is found that apart from the conventional critical temperature related to Hawking-Page phase transition there appears an additional critical temperature which is of relevance to the existence of a locally stable tiny black hole; however, the off-shell free energymore » tells us that this black hole should eventually tunnel into the stable large black hole. Finally, we discuss the reason why the temperature near the horizon is finite in the rainbow black hole by employing the running gravitational coupling constant, whereas it is divergent near the horizon in the ordinary Schwarzschild black hole.« less

  6. Theory of nonstationary Hawkes processes

    NASA Astrophysics Data System (ADS)

    Tannenbaum, Neta Ravid; Burak, Yoram

    2017-12-01

    We expand the theory of Hawkes processes to the nonstationary case, in which the mutually exciting point processes receive time-dependent inputs. We derive an analytical expression for the time-dependent correlations, which can be applied to networks with arbitrary connectivity, and inputs with arbitrary statistics. The expression shows how the network correlations are determined by the interplay between the network topology, the transfer functions relating units within the network, and the pattern and statistics of the external inputs. We illustrate the correlation structure using several examples in which neural network dynamics are modeled as a Hawkes process. In particular, we focus on the interplay between internally and externally generated oscillations and their signatures in the spike and rate correlation functions.

  7. Thermodynamic studies of different black holes with modifications of entropy

    NASA Astrophysics Data System (ADS)

    Haldar, Amritendu; Biswas, Ritabrata

    2018-02-01

    In recent years, the thermodynamic properties of black holes are topics of interests. We investigate the thermodynamic properties like surface gravity and Hawking temperature on event horizon of regular black holes viz. Hayward Class and asymptotically AdS (Anti-de Sitter) black holes. We also analyze the thermodynamic volume and naive geometric volume of asymptotically AdS black holes and show that the entropy of these black holes is simply the ratio of the naive geometric volume to thermodynamic volume. We plot the different graphs and interpret them physically. We derive the `cosmic-Censorship-Inequality' for both type of black holes. Moreover, we calculate the thermal heat capacity of aforesaid black holes and study their stabilities in different regimes. Finally, we compute the logarithmic correction to the entropy for both the black holes considering the quantum fluctuations around the thermal equilibrium and study the corresponding thermodynamics.

  8. The High Altitude MMIC Sounding Radiometer on the GLOBAL HAWK: From Technology Development to Science Discovery

    NASA Technical Reports Server (NTRS)

    Brown, Shannon; Denning, Richard; Lambrigtsen, Bjorn; Lim, Boon; Tanabe, Jordan; Tanner, Alan

    2013-01-01

    This paper presents results from the High Altitude MMIC Sounding Radiometer (HAMSR) during three recent field campaigns on the Global Hawk Unmanned Ariel Vehicles (UAV), focusing on the enabling technology that led to unprecedented observations of significant weather phenomenon, such as thermodynamic evolution of the tropical cyclone core during rapid intensification and the high resolution three dimensional mapping of several atmospheric river events. HAMSR is a 25 channel cross-track scanning microwave sounder with channels near the 60 and 118 GHz oxygen lines and the 183 GHz water vapor line. HAMSR was originally designed and built at the Jet Propulsion Laboratory as a technology demonstrator in 1998. Subsequent to this, HAMSR participated in three NASA hurricane field campaigns, CAMEX-4, TCSP and NAMMA. Beginning in 2008, HAMSR was extensively upgraded to deploy on the NASA Global Hawk (GH) platform and serve as an asset to the NASA sub-orbital program. HAMSR has participated on the Global Hawk during the 2010 Genesis and Rapid Intensification (GRIP) campaign, the 2011 Winter Storms and Atmospheric Rivers (WISPAR) campaign and is currently participating in the NASA Ventures Hurricane and Severe Storm Sentinel (HS3) campaign (2011-2015).

  9. Characterization of Sarcocystis from four species of hawks from Georgia, USA.

    PubMed

    Yabsley, Michael J; Ellis, Angela E; Stallknecht, David E; Howerth, Elizabeth W

    2009-02-01

    During 2001 to 2004, 4 species of hawks (Buteo and Accipiter spp.) from Georgia were surveyed for Sarcocystis spp. infections by examining intestinal sections. In total, 159 of 238 (66.8%) hawks examined were infected with Sarcocystis spp. Samples from 10 birds were characterized by sequence analysis of a portion of the 18S rRNA gene (783 base pairs). Only 3 of the 10 sequences from the hawks were identical; the remainder differed by at least 1 nucleotide. Phylogenetic analysis failed to resolve the position of the hawk Sarcocystis species, but they were closely related several Sarcocystis species from raptors, rodents, and Sarcocystis neurona. The high genetic diversity of Sarcocystis suggests that more than 1 species infects these 4 hawk species; however, additional molecular or experimental work will be required to determine the speciation and diversity of parasites infecting these avian hosts. In addition to assisting with determining species richness of Sarcocystis in raptors, molecular analysis should be useful in the identification of potential intermediate hosts.

  10. Almost certain escape from black holes in final state projection models.

    PubMed

    Lloyd, Seth

    2006-02-17

    Recent models of the black-hole final state suggest that quantum information can escape from a black hole by a process akin to teleportation. These models rely on a controversial process called final-state projection. This Letter discusses the self-consistency of the final-state projection hypothesis and investigates escape from black holes for arbitrary final states and for generic interactions between matter and Hawking radiation. Quantum information escapes with fidelity approximately = (8/3pi)2: only half a bit of quantum information is lost on average, independent of the number of bits that escape from the hole.

  11. Pulsation of black holes

    NASA Astrophysics Data System (ADS)

    Gao, Changjun; Lu, Youjun; Shen, You-Gen; Faraoni, Valerio

    2018-01-01

    The Hawking-Penrose singularity theorem states that a singularity forms inside a black hole in general relativity. To remove this singularity one must resort to a more fundamental theory. Using a corrected dynamical equation arising in loop quantum cosmology and braneworld models, we study the gravitational collapse of a perfect fluid sphere with a rather general equation of state. In the frame of an observer comoving with this fluid, the sphere pulsates between a maximum and a minimum size, avoiding the singularity. The exterior geometry is also constructed. There are usually an outer and an inner apparent horizon, resembling the Reissner-Nordström situation. For a distant observer the horizon crossing occurs in an infinite time and the pulsations of the black hole quantum "beating heart" are completely unobservable. However, it may be observable if the black hole is not spherical symmetric and radiates gravitational wave due to the quadrupole moment, if any.

  12. Unparticle may be a remedy to the information loss in the scattering of fermion off dilaton black-hole

    NASA Astrophysics Data System (ADS)

    Rahaman, Anisur

    2018-07-01

    We study s-wave scattering of fermion off dilaton black-hole. With one loop correction it was found to suffer from nonpreservation of information and that of course, went against Hawking's revised suggestion on this issue. A nonstandard approach, e.g. the probable existence of unparticle in (1 + 1) dimension has been adopted here that shows a remedy to get rid of the danger of information loss to bring it in agrees with the Hawking's revised suggestion.

  13. A mystery of black-hole gravitational resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hod, Shahar; The Hadassah Academic College, Jerusalem 91010

    More than three decades ago, Detweiler provided an analytical formula for the gravitational resonant frequencies of rapidly-rotating Kerr black holes. In the present work we shall discuss an important discrepancy between the famous analytical prediction of Detweiler and the recent numerical results of Zimmerman et al. In addition, we shall refute the claim that recently appeared in the physics literature that the Detweiler-Teukolsky-Press resonance equation for the characteristic gravitational eigenfrequencies of rapidly-rotating Kerr black holes is not valid in the regime of damped quasinormal resonances with ℑω/T{sub BH}≫1 (here ω and T{sub BH} are respectively the characteristic quasinormal resonant frequencymore » of the Kerr black hole and its Bekenstein-Hawking temperature). The main goal of the present paper is to highlight and expose this important black-hole quasinormal mystery (that is, the intriguing discrepancy between the analytical and numerical results regarding the gravitational quasinormal resonance spectra of rapidly-rotating Kerr black holes).« less

  14. NASA Global Hawk Overview

    NASA Technical Reports Server (NTRS)

    2011-01-01

    NASA Global Hawk is operational and supporting Earth science research. 29 Flights were conducted during the first year of operations, with a total of 253 flight hours. Three major science campaigns have been conducted with all objectives met. Two new science campaigns are in the planning stage

  15. Thermal stability of charged rotating quantum black holes

    NASA Astrophysics Data System (ADS)

    Sinha, Aloke Kumar; Majumdar, Parthasarathi

    2017-12-01

    Criteria for thermal stability of charged rotating black holes of any dimension are derived for horizon areas that are large relative to the Planck area (in these dimensions). The derivation is based on generic assumptions of quantum geometry, supported by some results of loop quantum gravity, and equilibrium statistical mechanics of the Grand Canonical ensemble. There is no explicit use of classical spacetime geometry in this analysis. The only assumption is that the mass of the black hole is a function of its horizon area, charge and angular momentum. Our stability criteria are then tested in detail against specific classical black holes in spacetime dimensions 4 and 5, whose metrics provide us with explicit relations for the dependence of the mass on the charge and angular momentum of the black holes. This enables us to predict which of these black holes are expected to be thermally unstable under Hawking radiation.

  16. Hawking receives top US award at White House

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2009-09-01

    The Cambridge physicist Stephen Hawking has been awarded the highest US civilian honour - the presidential medal of freedom. At a ceremony at the White House last month, Hawking, together with 15 other recipients, received the 2009 award from President Barack Obama. The medal is given to individuals who make a contribution "to the security or national interests of the US, world peace, cultural or other significant public or private endeavours".

  17. Winter prey caching by northern hawk owls in Minnesota

    Treesearch

    Richard R. Schaefer; D. Craig Rudolph; Jesse F. Fagan

    2007-01-01

    Northern Hawk Owls (Surnia ulula) have been reported to cache prey during the breeding season for later consumption, but detailed reports of prey caching during the non-breeding season are comparatively rare. We provided prey to four individual Northern Hawk Owls in wintering areas in northeastern Minnesota during 2001 and 2005 and observed their...

  18. NASA Global Hawk: A Unique Capability for the Pursuit of Earth Science

    NASA Technical Reports Server (NTRS)

    Naftel, J. Chris

    2007-01-01

    For more than 2 years, the NASA Dryden Flight Research Center has been preparing for the receipt of two Advanced Concept Technology Demonstration Global Hawk air vehicles from the United States Air Force. NASA Dryden intends to establish a Global Hawk Project Office, which will be responsible for developing the infrastructure required to operate this unmanned aerial system and establishing a trained maintenance and operations team. The first flight of a NASA Global Hawk air vehicle is expected to occur in 2008. The NASA Global Hawk system can be used by a variety of customers, including U.S. Government agencies, civilian organizations, universities, and state governments. A combination of the vehicle s range, endurance, altitude, payload power, payload volume, and payload weight capabilities separates the Global Hawk unmanned aerial system from all other platforms available to the science community.

  19. Violations of the equivalence principle by a nonlocally reconstructed vacuum at the black hole horizon.

    PubMed

    Bousso, Raphael

    2014-01-31

    If information escapes from an evaporating black hole, then field modes just outside the horizon must be thermally entangled with distant Hawking radiation. But for an infalling observer to find empty space at the horizon, the same modes would have to be entangled with the black hole interior. Thus, unitarity appears to require a "firewall" at the horizon. Identifying the interior with the distant radiation promises to resolve the entanglement conflict and restore the vacuum. But the map must adjust for any interactions, or else the firewall will reappear if the Hawking radiation scatters off the cosmic microwave background. Such a map produces a "frozen vacuum," a phenomenon that is arguably worse than a firewall. An infalling observer is unable to excite the vacuum near the horizon. This allows the horizon to be locally detected and so violates the equivalence principle.

  20. News and Views: Very short GRBs may be Hawking radiation source; CubeSat for the UK: UKube1 seeks payloads; Galactic centre? It's just up there… There could be a lot of Earths out there

    NASA Astrophysics Data System (ADS)

    2010-12-01

    A particular group of gamma-ray bursts, those of very short duration, have characteristics that suggest they may be the signature of an evaporating primordial black hole - the Hawking radiation proposed by Stephen Hawking in 1974. The UK Space Agency is seeking small innovative payloads for the pilot UK CubeSat, UKube1. Planet-hunters have examined the distribution of exoplanets around stars like the Sun in our galaxy, and concluded that they can expect to find planets the size of Earth around a quarter of them - 46 billion or thereabouts.

  1. Branching-ratio approximation for the self-exciting Hawkes process

    NASA Astrophysics Data System (ADS)

    Hardiman, Stephen J.; Bouchaud, Jean-Philippe

    2014-12-01

    We introduce a model-independent approximation for the branching ratio of Hawkes self-exciting point processes. Our estimator requires knowing only the mean and variance of the event count in a sufficiently large time window, statistics that are readily obtained from empirical data. The method we propose greatly simplifies the estimation of the Hawkes branching ratio, recently proposed as a proxy for market endogeneity and formerly estimated using numerical likelihood maximization. We employ our method to support recent theoretical and experimental results indicating that the best fitting Hawkes model to describe S&P futures price changes is in fact critical (now and in the recent past) in light of the long memory of financial market activity.

  2. Minimal conditions for the existence of a Hawking-like flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barcelo, Carlos; Liberati, Stefano; Sonego, Sebastiano

    2011-02-15

    We investigate the minimal conditions that an asymptotically flat general relativistic spacetime must satisfy in order for a Hawking-like Planckian flux of particles to arrive at future null infinity. We demonstrate that there is no requirement that any sort of horizon form anywhere in the spacetime. We find that the irreducible core requirement is encoded in an approximately exponential 'peeling' relationship between affine coordinates on past and future null infinity. As long as a suitable adiabaticity condition holds, then a Planck-distributed Hawking-like flux will arrive at future null infinity with temperature determined by the e-folding properties of the outgoing nullmore » geodesics. The temperature of the Hawking-like flux can slowly evolve as a function of time. We also show that the notion of peeling of null geodesics is distinct from the usual notion of 'inaffinity' used in Hawking's definition of surface gravity.« less

  3. Losing Stuff Down a Black Hole

    NASA Astrophysics Data System (ADS)

    Okon, Elias; Sudarsky, Daniel

    2018-03-01

    Over the years, the so-called black hole information loss paradox has generated an amazingly diverse set of (often radical) proposals. However, 40 years after the introduction of Hawking's radiation, there continues to be a debate regarding whether the effect does, in fact, lead to an actual problem. In this paper we try to clarify some aspect of the discussion by describing two possible perspectives regarding the landscape of the information loss issue. Moreover, we advance a fairly conservative point of view regarding the relation between evaporating black holes and the rest of physics, which leads us to advocate a generalized breakdown of unitarity. We conclude by exploring some implications of our proposal in relation with conservation laws.

  4. NASA Global Hawk: A Unique Capability for the Pursuit of Earth Science

    NASA Technical Reports Server (NTRS)

    Naftel, J. Chris

    2007-01-01

    For more than 2 years, the NASA Dryden Flight Research Center has been preparing for the receipt of two Advanced Concept Technology Demonstration Global Hawk air vehicles from the United States Air Force. NASA Dryden intends to establish a Global Hawk Project Office, which will be responsible for developing the infrastructure required to operate this unmanned aerial system and establishing a trained maintenance and operations team. The first flight of a NASA Global Hawk air vehicle is expected to occur in 2008. The NASA Global Hawk system can be used by a variety of customers, including U.S. Government agencies, civilian organizations, universities, and state governments. Initially, the main focus of the research activities is expected to be Earth science related. A combination of the vehicle s range, endurance, altitude, payload power, payload volume, and payload weight capabilities separates the Global Hawk unmanned aerial system from all other platforms available to the science community. This report describes the NASA Global Hawk system and current plans for the NASA air vehicle concept of operations, and provides examples of potential missions with an emphasis on science missions.

  5. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (1/3)

    ScienceCinema

    Giddings, Steve

    2018-02-02

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  6. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (3/3)

    ScienceCinema

    Giddings, Steve

    2018-05-23

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  7. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (2/3)

    ScienceCinema

    Giddings, Steven

    2018-02-09

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  8. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (1/3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giddings, Steve

    2010-09-08

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking'smore » discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.« less

  9. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (2/3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giddings, Steven

    2010-09-07

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking'smore » discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.« less

  10. Hazard Avoidance Products for Convectively-Induced Turbulence in Support of High-Altitude Global Hawk Aircraft Missions

    NASA Astrophysics Data System (ADS)

    Griffin, Sarah M.; Velden, Christopher S.

    2018-01-01

    A combination of satellite-based and ground-based information is used to identify regions of intense convection that may act as a hazard to high-altitude aircraft. Motivated by concerns that Global Hawk pilotless aircraft, flying near 60,000 feet, might encounter significant convectively-induced turbulence during research overflights of tropical cyclones, strict rules were put in place to avoid such hazards. However, these rules put constraints on science missions focused on sampling convection with onboard sensors. To address these concerns, three hazard avoidance tools to aid in real-time mission decision support are used to more precisely identify areas of potential turbulence: Satellite-derived Cloud-top height and tropical overshooting tops, and ground-based global network lightning flashes. These tools are used to compare an ER-2 aircraft overflight of tropical cyclone Emily in 2005, which experienced severe turbulence, to Global Hawk overflights of tropical cyclones Karl and Matthew in 2010 that experienced no turbulence. It is found that the ER-2 overflew the lowest cloud tops and had the largest vertical separation from them compared to the Global Hawk flights. Therefore, cold cloud tops alone cannot predict turbulence. Unlike the overflights of Matthew and Karl, Emily exhibited multiple lightning flashes and a distinct overshooting top coincident with the observed turbulence. Therefore, these tools in tandem can better assist in identifying likely regions/periods of intense active convection. The primary outcome of this study is an altering of the Global Hawk overflight rules to be more flexible based on the analyzed conditions.

  11. Dynamics of flexural gravity waves: from sea ice to Hawking radiation and analogue gravity

    NASA Astrophysics Data System (ADS)

    Das, S.; Sahoo, T.; Meylan, M. H.

    2018-01-01

    The propagation of flexural gravity waves, routinely used to model wave interaction with sea ice, is studied, including the effect of compression and current. A number of significant and surprising properties are shown to exist. The occurrence of blocking above a critical value of compression is illustrated. This is analogous to propagation of surface gravity waves in the presence of opposing current and light wave propagation in the curved space-time near a black hole, therefore providing a novel system for studying analogue gravity. Between the blocking and buckling limit of the compressive force, the dispersion relation possesses three positive real roots, contrary to an earlier observation of having a single positive real root. Negative energy waves, in which the phase and group velocity point in opposite directions, are also shown to exist. In the presence of an opposing current and certain critical ranges of compressive force, the second blocking point shifts from the positive to the negative branch of the dispersion relation. Such a shift is known as the Hawking effect from the analogous behaviour in the theory of relativity which leads to Hawking radiation. The theory we develop is illustrated with simulations of linear waves in the time domain.

  12. Dynamics of flexural gravity waves: from sea ice to Hawking radiation and analogue gravity.

    PubMed

    Das, S; Sahoo, T; Meylan, M H

    2018-01-01

    The propagation of flexural gravity waves, routinely used to model wave interaction with sea ice, is studied, including the effect of compression and current. A number of significant and surprising properties are shown to exist. The occurrence of blocking above a critical value of compression is illustrated. This is analogous to propagation of surface gravity waves in the presence of opposing current and light wave propagation in the curved space-time near a black hole, therefore providing a novel system for studying analogue gravity. Between the blocking and buckling limit of the compressive force, the dispersion relation possesses three positive real roots, contrary to an earlier observation of having a single positive real root. Negative energy waves, in which the phase and group velocity point in opposite directions, are also shown to exist. In the presence of an opposing current and certain critical ranges of compressive force, the second blocking point shifts from the positive to the negative branch of the dispersion relation. Such a shift is known as the Hawking effect from the analogous behaviour in the theory of relativity which leads to Hawking radiation. The theory we develop is illustrated with simulations of linear waves in the time domain.

  13. A 38-year Summary of Raptor Banding at Hawk Ridge, Duluth, Minnesota, USA

    EPA Science Inventory

    Consistent banding of raptors at Hawk Ridge was initiated in 1972 and has continued for 38 years to the present. A total of 99,505 raptors or 2,619 per year have been banded at Hawk Ridge including 23 different species. The majority of birds banded were Sharp-shinned Hawks (Acci...

  14. Low-frequency analogue Hawking radiation: The Bogoliubov-de Gennes model

    NASA Astrophysics Data System (ADS)

    Coutant, Antonin; Weinfurtner, Silke

    2018-01-01

    We analytically study the low-frequency properties of the analogue Hawking effect in Bose-Einstein condensates. We show that in one-dimensional flows displaying an analogue horizon, the Hawking effect is dominant in the low-frequency regime. This happens despite nonvanishing grey-body factors, that is, the coupling of the Hawking mode and its partner to the mode propagating with the flow. To show this, we obtained analytical expressions for the scattering coefficients, in general flows and taking into account the full Bogoliubov dispersion relation. We discuss the obtained expressions for the grey-body factors. In particular, we show that they can be significantly decreased if the flow obeys a conformal coupling condition. We argue that in the presence of a small but non-zero temperature, reducing grey-body factors greatly facilitates the observation of entanglement, that is, establishing that the state of the Hawking mode and its partner is non-separable.

  15. Regular black holes in Einstein-Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Ghosh, Sushant G.; Singh, Dharm Veer; Maharaj, Sunil D.

    2018-05-01

    Einstein-Gauss-Bonnet theory, a natural generalization of general relativity to a higher dimension, admits a static spherically symmetric black hole which was obtained by Boulware and Deser. This black hole is similar to its general relativity counterpart with a curvature singularity at r =0 . We present an exact 5D regular black hole metric, with parameter (k >0 ), that interpolates between the Boulware-Deser black hole (k =0 ) and the Wiltshire charged black hole (r ≫k ). Owing to the appearance of the exponential correction factor (e-k /r2), responsible for regularizing the metric, the thermodynamical quantities are modified, and it is demonstrated that the Hawking-Page phase transition is achievable. The heat capacity diverges at a critical radius r =rC, where incidentally the temperature is maximum. Thus, we have a regular black hole with Cauchy and event horizons, and evaporation leads to a thermodynamically stable double-horizon black hole remnant with vanishing temperature. The entropy does not satisfy the usual exact horizon area result of general relativity.

  16. Quantum capacity of quantum black holes

    NASA Astrophysics Data System (ADS)

    Adami, Chris; Bradler, Kamil

    2014-03-01

    The fate of quantum entanglement interacting with a black hole has been an enduring mystery, not the least because standard curved space field theory does not address the interaction of black holes with matter. We discuss an effective Hamiltonian of matter interacting with a black hole that has a precise analogue in quantum optics and correctly reproduces both spontaneous and stimulated Hawking radiation with grey-body factors. We calculate the quantum capacity of this channel in the limit of perfect absorption, as well as in the limit of a perfectly reflecting black hole (a white hole). We find that the white hole is an optimal quantum cloner, and is isomorphic to the Unruh channel with positive quantum capacity. The complementary channel (across the horizon) is entanglement-breaking with zero capacity, avoiding a violation of the quantum no-cloning theorem. The black hole channel on the contrary has vanishing capacity, while its complement has positive capacity instead. Thus, quantum states can be reconstructed faithfully behind the black hole horizon, but not outside. This work sheds new light on black hole complementarity because it shows that black holes can both reflect and absorb quantum states without violating the no-cloning theorem, and makes quantum firewalls obsolete.

  17. The predatory behavior of wintering Accipiter hawks: temporal patterns in activity of predators and prey.

    PubMed

    Roth, Timothy C; Lima, Steven L

    2007-05-01

    Studies focused on how prey trade-off predation and starvation risk are prevalent in behavioral ecology. However, our current understanding of these trade-offs is limited in one key respect: we know little about the behavior of predators. In this study, we provide some of the first detailed information on temporal patterns in the daily hunting behavior of bird-eating Accipiter hawks and relate that to their prey. During the winters of 1999-2004, twenty-one sharp-shinned hawks (A. striatus) and ten Cooper's hawks (A. cooperii) were intensively radio tracked in rural and urban habitats in western Indiana, USA. Cooper's hawks left roost before sunrise and usually returned to roost around sunset, while sharp-shinned hawks left roost at sunrise or later and returned to roost well before sunset. An overall measure of Cooper's-hawk-induced risk (a composite variable of attack rate and activity patterns) generally reflected the timing of prey activity, with peaks occurring around sunrise and sunset. In contrast, risk induced by the smaller sharp-shinned hawk did not strongly reflect the activity of their prey. Specifically, an early morning peak in prey activity did not correspond to a period with intense hawk activity. The lack of early morning hunting by sharp-shinned hawks may reflect the high risk of owl-induced predation experienced by these hawks. The net effect of this intraguild predation may be to "free" small birds from much hawk-induced predation risk prior to sunrise. This realization presents an alternative to energetics as an explanation for the early morning peak in small bird activity during the winter.

  18. MIGRATION PATTERNS, USE OF STOPOVER AREAS, AND AUSTRAL SUMMER MOVEMENTS OF SWAINSON'S HAWKS.

    PubMed

    Kochert, Michael N; Fuller, Mark R; Schueck, Linda S; Bond, Laura; Bechard, Marc J; Woodbridge, Brian; Holroyd, Geoff; Martell, Mark; Banasch, Ursula

    From 1995-1998, we tracked movements of adult Swainson's Hawks ( Buteo swainsoni ) using satellite telemetry to characterize migration, important stopover areas, and austral summer movements. We tagged 46 hawks from July - September on their nesting grounds in seven U.S. states and two Canadian provinces. Swainson's Hawks basically followed three routes south on a broad front, converged along the east coast of central Mexico, and followed a concentrated corridor to a communal austral summer area in central Argentina. North of 20° N, southward and northward tracks differed little for individuals from east of the Continental Divide but differed greatly (up to 1700 km) for individuals from west of the Continental Divide. Hawks left the breeding grounds mid-August to mid-October; departure dates did not differ by location, year, or sex. South migration lasted 42 to 98 days, and north migration took 51 to 82 days. On south migration, 36% of the Swainson's Hawks departed the nesting grounds nearly 3 weeks earlier than the other radio marked hawks and made stopovers 9.0 - 26.0 days long in seven separate areas, mainly in the southern Great Plains, southern Arizona and New Mexico, and north-central Mexico. The austral period lasted 76 to 128 days. All Swainson's Hawks used a core area in central Argentina within 23% of the 738800 km 2 austral summer range where they frequently moved long distances (up to 1600 km). Conservation of Swainson's Hawks must be an international effort that considers habitats used during nesting and non-nesting seasons including migration stopovers.

  19. Scalar resonant frequencies and Hawking effect of an f ( R ) global monopole

    NASA Astrophysics Data System (ADS)

    Vieira, H. S.; Morais Graça, J. P.; Bezerra, V. B.

    2017-09-01

    Massive scalar fields are considered in the gravitational field produced by a Schwarzschild black hole with a global monopole in f(R) gravity. The exact solution of the radial part of the Klein-Gordon equation in this background is obtained and is given in terms of the general Heun functions. We apply the properties of the general Heun functions to study the Hawking radiation and the resonant frequencies of scalar particles. H.S.V. is funded by the Brazilian research agencies CNPq (research Project No. 140612/2014-9) and CAPES (PDSE Process No. 88881.133092/2016-01). J.P.M.G. is funded by the CNPq through the research Project No. 150565/2016-0. V.B.B. is partially supported by the CNPq through the research Project No. 304553/2010-7

  20. Hawking radiation, covariant boundary conditions, and vacuum states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Rabin; Kulkarni, Shailesh

    2009-04-15

    The basic characteristics of the covariant chiral current and the covariant chiral energy-momentum tensor are obtained from a chiral effective action. These results are used to justify the covariant boundary condition used in recent approaches of computing the Hawking flux from chiral gauge and gravitational anomalies. We also discuss a connection of our results with the conventional calculation of nonchiral currents and stress tensors in different (Unruh, Hartle-Hawking and Boulware) states.

  1. Low prevalence of Trichomonas gallinae in urban and migratory Cooper's Hawks in northcentral North America

    USGS Publications Warehouse

    Rosenfield, Robert N.; Taft, Stephen J.; Stout, William E.; Driscoll, Timothy G.; Evans, David L.; Bozek, Michael A.

    2009-01-01

    Trichomoniasis is a digestive tract disease caused by ingestion of the protozoan Trichomonas gallinae. This disease can be a significant source of mortality. No deaths of nestlings could be attributed to trichomoniasis in Cooper's Hawks (Accipiter cooperii) breeding in urban and rural environs in Wisconsin, North Dakota, and British Columbia. We detected T. gallinae in four (5.2%) of 77 nestling Cooper's Hawks during 2006 and 2007 among 42 urban nests on new study areas in southeast Wisconsin and eastern North Dakota/western Minnesota. All four infected young fledged. We did not detect T. gallinae in 52 breeding adult Cooper's Hawks on two urban study sites, nor in 28 migrant hatching year (n  =  24) and adult (n  =  4) Cooper's Hawks at Hawk Ridge Nature Reserve, Duluth, Minnesota in 2006–2007. Overall, we detected T. gallinae in only 2.5% of 157 Cooper's Hawks in northcentral North America. These results suggest a low prevalence of T. gallinae in Cooper's Hawks in the northern part of this hawk's breeding range.

  2. Breeding biology and nest-site selection of red-tailed hawks in an altered desert grassland

    USGS Publications Warehouse

    Hobbs, R.J.; DeStefano, S.; Halvorson, W.L.

    2006-01-01

    Red-tailed Hawks (Buteo jamaicensis) have expanded their range as trees have invaded formerly-open grasslands. Desert grasslands of southern Arizona have been invaded by mesquite trees (Prosopis velutina) since Anglo-American settlement and now support a large population of Red-tailed Hawks. We studied a population of Red-tailed Hawks in an altered desert grassland in southern Arizona. Our objectives were to determine what environmental characteristics influence Red-tailed Hawk habitat selection in mesquite-invaded desert grasslands and to evaluate the habitat quality of these grasslands for Red-tailed Hawks based on nesting density, nest success, and productivity. Red-tailed Hawks had 86% (95% C.I. = 73-99) nest success and 1.82 young per breeding pair (95% C.I. = 1.41-2.23). Nesting density was 0.15 (95% CI = 0.08-0.21) breeding pairs/km2 and the mean nearest-neighbor distance was 1.95 km (95% C.I. = 1.74-2.16). Red-tailed Hawks selected nest-sites with taller nest-trees and greater tree height and cover than were available at random. Mesquite trees in desert grasslands provide abundant potential nesting structures for Red-tailed Hawks. ?? 2006 The Raptor Research Foundation, Inc.

  3. Hawking's Israel boycott sparks heated response

    NASA Astrophysics Data System (ADS)

    Dacey, James

    2013-06-01

    The controversial decision by Stephen Hawking to boycott a prominent conference in Jerusalem in protest against the policies of the Israeli government has provoked strong responses from academics and commentators.

  4. Black-hole evaporation and ultrashort distances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, T.

    1991-09-15

    The role played by ultrahigh frequencies of ultrashort distances in the usual derivations of the Hawking effect is discussed and criticized. The question would a blackhole radiate if there were a Planck scale cutoff in the rest frame of the hole '' is posed. Guidance is sought from Unruh's fluid-flow analogue of black-hole radiation, by taking into account the atomic nature of the fluid. Two arguments for black-hole radiation are given which assume a Planck length cutoff. One involves the response of static accelerated detectors outside the horizon, and the other involves conservation of the expectation value of the stressmore » tensor. Neither argument is conclusive, but they do strongly suggest that, in spite of reasonable doubt about the usual derivations of black-hole radiation, a safe'' derivation which avoids our ignorance of ultrashort-distance physics can likely be formulated. Remaining open questions are discussed.« less

  5. Operator’s Manual for UH-60A Helicopter, UH-60L Helicopter, EH-60A Helicopter

    DTIC Science & Technology

    1996-10-31

    electrolyte is harmful to the skin and clothing. If potassium hydroxide is spilled on clothing or other material, wash immediately with clean water . If spilled...on personnel, immediately flush the affected area with clean water . Continue washing until medical assistance arrives. Neutralize any spilled...electrolyte by thoroughly flushing contacted area with water . CARBON MONOXIDE When smoke, suspected carbon monoxide fumes, or symptoms of anoxia exist, the

  6. Hawking radiation from a Reisner-Nordström domain wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenwood, Eric, E-mail: esg3@buffalo.edu

    2010-01-01

    We investigate the effect on the Hawking radiation given off during the time of collapse of a Reisner-Nordström domain wall. Using the functional Schrödinger formalism we are able to probe the time-dependent regime, which is out of the reach of the standard approximations like the Bogolyubov method. We calculate the occupation number of particles for a scalar field and complex scalar field. We demonstrate that the particles from the scalar field are unaffected by the charge of the Reisner-Nordström domain wall, as is expected since the scalar field doesn't carry any charge, which would couple to the charge of themore » Reisner-Nordström domain wall. Here the situation effectively reduces to the uncharged case, a spherically symmetric domain wall. To take the charge into account, we consider the complex scalar field which represents charged particles and anti-particles. Here investigate two different cases, first the non-extremal case and second the extremal case. In the non-extremal case we demonstrate that when the particle (anti-particle) carries charge opposite to that of the domain wall, the occupation number becomes suppressed during late times of the collapse. Therefore the dominate occupation number is when the particle (anti-particle) carries the same charge as the domain wall, as expected due to the Coulomb potential carried by the domain walls. In the extremal case we demonstrate that as time increases the temperature of the radiation decreases until when the domain wall reaches the horizon and the temperature then goes to zero. This is in agreement with the Hawking temperature for charged black holes.« less

  7. Reduced MHC and neutral variation in the Galápagos hawk, an island endemic

    PubMed Central

    2011-01-01

    Background Genes at the major histocompatibility complex (MHC) are known for high levels of polymorphism maintained by balancing selection. In small or bottlenecked populations, however, genetic drift may be strong enough to overwhelm the effect of balancing selection, resulting in reduced MHC variability. In this study we investigated MHC evolution in two recently diverged bird species: the endemic Galápagos hawk (Buteo galapagoensis), which occurs in small, isolated island populations, and its widespread mainland relative, the Swainson's hawk (B. swainsoni). Results We amplified at least two MHC class II B gene copies in each species. We recovered only three different sequences from 32 Galápagos hawks, while we amplified 20 unique sequences in 20 Swainson's hawks. Most of the sequences clustered into two groups in a phylogenetic network, with one group likely representing pseudogenes or nonclassical loci. Neutral genetic diversity at 17 microsatellite loci was also reduced in the Galápagos hawk compared to the Swainson's hawk. Conclusions The corresponding loss in neutral diversity suggests that the reduced variability present at Galápagos hawk MHC class II B genes compared to the Swainson's hawk is primarily due to a founder event followed by ongoing genetic drift in small populations. However, purifying selection could also explain the low number of MHC alleles present. This lack of variation at genes involved in the adaptive immune response could be cause for concern should novel diseases reach the archipelago. PMID:21612651

  8. Nesting ecology and behavior of Broad-winged Hawks in moist karst forests of Puerto Rico

    USGS Publications Warehouse

    Hengstenberg, D.W.; Vilella, F.J.

    2005-01-01

    The Puerto Rican Broad-winged Hawk (Buteo platypterus brunnescens) is an endemic and endangered subspecies inhabiting upland montane forests of Puerto Rico. The reproductive ecology, behavior, and nesting habitat of the Broad-winged Hawk were studied in Ri??o Abajo Forest, Puerto Rico, from 2001-02. We observed 158 courtship displays by Broad-winged Hawks. Also, we recorded 25 territorial interactions between resident Broad-winged Hawks and intruding Red-tailed Hawks (Buteo jamaicensis jamaicensis). Broad-winged Hawks displaced intruding Red-tailed Hawks from occupied territories (P = 0.009). Mayfield nest survival was 0.67 across breeding seasons (0.81 in 2001, N = 6; 0.51 in 2002, N = 4), and pairs averaged 1.1 young per nest (years combined). The birds nested in mixed species timber plantations and mature secondary forest. Nests were placed in the upper reaches of large trees emerging from the canopy. Nest tree DBH, understory stem density, and distance to karst cliff wall correctly classified (77.8%) nest sites. ?? 2005 The Raptor Research Foundation, Inc.

  9. Semiclassical S-matrix for black holes

    DOE PAGES

    Bezrukov, Fedor; Levkov, Dmitry; Sibiryakov, Sergey

    2015-12-01

    In this study, we propose a semiclassical method to calculate S-matrix elements for two-stage gravitational transitions involving matter collapse into a black hole and evaporation of the latter. The method consistently incorporates back-reaction of the collapsing and emitted quanta on the metric. We illustrate the method in several toy models describing spherical self-gravitating shells in asymptotically flat and AdS space-times. We find that electrically neutral shells reflect via the above collapse-evaporation process with probability exp(–B), where B is the Bekenstein-Hawking entropy of the intermediate black hole. This is consistent with interpretation of exp(B) as the number of black hole states.more » The same expression for the probability is obtained in the case of charged shells if one takes into account instability of the Cauchy horizon of the intermediate Reissner-Nordström black hole. As a result, our semiclassical method opens a new systematic approach to the gravitational S-matrix in the non-perturbative regime.« less

  10. Black hole quantum spectrum

    NASA Astrophysics Data System (ADS)

    Corda, Christian

    2013-12-01

    Introducing a black hole (BH) effective temperature, which takes into account both the non-strictly thermal character of Hawking radiation and the countable behavior of emissions of subsequent Hawking quanta, we recently re-analysed BH quasi-normal modes (QNMs) and interpreted them naturally in terms of quantum levels. In this work we improve such an analysis removing some approximations that have been implicitly used in our previous works and obtaining the corrected expressions for the formulas of the horizon's area quantization and the number of quanta of area and hence also for Bekenstein-Hawking entropy, its subleading corrections and the number of micro-states, i.e. quantities which are fundamental to realize the underlying quantum gravity theory, like functions of the QNMs quantum "overtone" number n and, in turn, of the BH quantum excited level. An approximation concerning the maximum value of n is also corrected. On the other hand, our previous results were strictly corrected only for scalar and gravitational perturbations. Here we show that the discussion holds also for vector perturbations. The analysis is totally consistent with the general conviction that BHs result in highly excited states representing both the "hydrogen atom" and the "quasi-thermal emission" in quantum gravity. Our BH model is somewhat similar to the semi-classical Bohr's model of the structure of a hydrogen atom. The thermal approximation of previous results in the literature is consistent with the results in this paper. In principle, such results could also have important implications for the BH information paradox.

  11. Stephen Hawking's Universe. Teacher's Guide.

    ERIC Educational Resources Information Center

    Thompson, Malcolm H.; Rameau, Jonathan D.

    This program guide is meant to help teachers assist their students in viewing the six-part public television series, "Stephen Hawking's Universe." The guide features program summaries that give background information and brief synopses of the programs; previewing activities that familiarize students with the subject; vocabulary that…

  12. A new search for primordial black hole evaporations using the Whipple gamma-ray telescope

    NASA Astrophysics Data System (ADS)

    Linton, E. T.; Atkins, R. W.; Badran, H. M.; Blaylock, G.; Boyle, P. J.; Buckley, J. H.; Byrum, K. L.; Carter-Lewis, D. A.; Celik, O.; Chow, Y. C. K.; Cogan, P.; Daniel, M. K.; Dowdall, C.; Falcone, A. D.; Fegan, D. J.; Fegan, S. J.; Finley, J. P.; Fortin, P.; Guiterrez, K. J.; Hall, J.; Hanna, D.; Holder, J.; Horan, D.; Hughes, S. B.; Humensky, T. B.; Jung, I.; Kenny, G. E.; Kertzman, M.; Kieda, D. B.; Kildea, J.; Knapp, J.; Krawczynski, H.; Lang, M. J.; LeBohec, S.; Maier, G.; Moriarty, P.; Ong, R. A.; Perkins, J. S.; Pizlo, F.; Pohl, M.; Quinn, J.; Ragan, K.; Rebillot, P. F.; Reynolds, P. T.; Sembroski, G. H.; Steele, D.; Swordy, S. P.; Valcarcel, L.; Wakely, S. P.; Weekes, T. C.; White, R. J.

    2006-01-01

    Stephen Hawking's prediction that black holes should radiate like black bodies has several important consequences, including the possibility of the detection of small (~1015 g) black holes created in the very early universe. The detection of such primordial black holes (PBHs) would be an important discovery, not only confirming Hawking's theory, but also providing valuable insights into the history of the early universe. A search through 5.5 years of archival data from the Whipple Atmospheric Cerenkov Telescope is made for TeV gamma-ray bursts on 1, 3, and 5 s timescales. On the basis of a null result from this direct search for PBH evaporations, an upper limit of 1.08 × 106 pc-3 yr-1 (99% CL) is set on the PBH evaporation rate in the local region of the galaxy, assuming the Standard Model of particle physics. This is more than a factor of two better than the previous limit at this energy range and includes longer timescales than have previously been explored. Comparison of this result with previous limits on the fraction of the critical density comprised by PBHs, Ωpbh, depends strongly on assumptions made about PBH clustering; in models predicting strong PBH clustering, the limit in this work could be as many as ten orders of magnitude more stringently than those set by diffuse MeV gamma-ray observations.

  13. Apollo Command/Service Modules photographed against black sky

    NASA Image and Video Library

    1971-02-04

    AS14-66-9344 (February 1971) --- The Apollo Command and Service Modules (CSM) are photographed against a black sky background from the Lunar Module (LM) above the moon. While astronauts Alan B. Shepard Jr., commander, and Edgar D. Mitchell, lunar module pilot, descended in the LM "Antares" to explore the Fra Mauro region of the moon, astronaut Stuart A. Roosa , command module pilot, remained with the CSM "Kitty Hawk" in lunar orbit.

  14. GlobalHawk_SHOUT_ElNino

    NASA Image and Video Library

    2016-05-01

    NASA’s autonomously flown Global Hawk aircraft flew a series of flights over the Pacific Ocean during February 2016, as part of the NOAA-led mission called Sensing Hazards Operational Unmanned Technology, or SHOUT. This year’s El Nino season offered a unique opportunity for the aircraft to contribute data directly to NOAA’s El Nino Rapid Response field campaign. The campaign is seeking to determine key mechanisms affecting El Niño's impacts on the U.S. and their implications for improving NOAA's observational systems, models and predictions. The Global Hawk aircraft offers both NASA and NOAA scientists an exclusive vantage point to observe atmospheric conditions with the plane's ability to fly at 65,000 feet for a time period up to 30 hours. These long-endurance and high-altitude observations give NOAA scientists the opportunity to see a larger picture of how atmospheric changes in the tropics are directly impacting weather activity in the Western U.S.

  15. Identifying habitat sinks: A case study of Cooper's hawks in an urban environment

    USGS Publications Warehouse

    Mannan, R.W.; Steidl, R.J.; Boal, C.W.

    2008-01-01

    We studied a population of Cooper's hawks (Accipiter cooperii) in Tucson, Arizona from 1994 to 2005. High rates of mortality of nestlings from an urban-related disease prompted speculation that the area represented an ecological trap and habitat sink for Cooper's hawks. In this paper, we used estimates of survival and productivity from 11years of monitoring to develop an estimate of the rate of population change, ??, for Cooper's hawks in the area. We used a Cormack-Jolly-Seber approach to estimate survival of breeding hawks, and a stochastic, stage-based matrix to estimate ??. Despite the urban-related disease, the estimate of ?? indicated that the area does not function as a habitat sink for Cooper's hawks (?? = 1.11 ?? 0.047; P = 0.0073 for the null of ?? 1). Because data required to reliably identify habitat sinks are extensive and difficult to acquire, we suggest that the concept of habitat sinks be applied cautiously until substantiated with reliable empirical evidence. ?? 2008 Springer Science+Business Media, LLC.

  16. Comment on self-consistent model of black hole formation and evaporation

    NASA Astrophysics Data System (ADS)

    Ho, Pei-Ming

    2015-08-01

    In an earlier work, Kawai et al. proposed a model of black-hole formation and evaporation, in which the geometry of a collapsing shell of null dust is studied, including consistently the back reaction of its Hawking radiation. In this note, we illuminate the implications of their work, focusing on the resolution of the information loss paradox and the problem of the firewall.

  17. A feasibility study regarding the addition of a fifth control to a rotorcraft in-flight simulator

    NASA Technical Reports Server (NTRS)

    Turner, Simon; Andrisani, Dominick, II

    1992-01-01

    The addition of a large movable horizontal tail surface to the control system of a rotorcraft in-flight simulator being developed from a Sikorsky UH-60A Black Hawk Helicopter is evaluated. The capabilities of the control surface as a trim control and as an active control are explored. The helicopter dynamics are modeled using the Generic Helicopter simulation program developed by Sikorsky Aircraft. The effect of the horizontal tail on the helicopter trim envelope is examined by plotting trim maps of the aircraft attitude and controls as a function of the flight speed and horizontal tail incidence. The control power of the tail surface relative to that of the other controls is examined by comparing control derivatives extracted from the simulation program over the flight speed envelope. The horizontal tail's contribution as an active control is evaluated using an explicit model following control synthesis involving a linear model of the helicopter in steady, level flight at a flight speed of eighty knots. The horizontal tail is found to provide additional control flexibility in the longitudinal axis. As a trim control, it provides effective control of the trim pitch attitude at mid to high forward speeds. As an active control, the horizontal tail provides useful pitching moment generating capabilities at mid to high forward speeds.

  18. Stroboscopic Vision as a Treatment for Retinal Slip Induced Motion Sickness

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Somers, J. T.; Ford, G.; Krnavek, J. M.; Hwang, E. J.; Leigh, R. J.; Estrada, A.

    2007-01-01

    Motion sickness in the general population is a significant problem driven by the increasingly more sophisticated modes of transportation, visual displays, and virtual reality environments. It is important to investigate non-pharmacological alternatives for the prevention of motion sickness for individuals who cannot tolerate the available anti-motion sickness drugs, or who are precluded from medication because of different operational environments. Based on the initial work of Melvill Jones, in which post hoc results indicated that motion sickness symptoms were prevented during visual reversal testing when stroboscopic vision was used to prevent retinal slip, we have evaluated stroboscopic vision as a method of preventing motion sickness in a number of different environments. Specifically, we have undertaken a five part study that was designed to investigate the effect of stroboscopic vision (either with a strobe light or LCD shutter glasses) on motion sickness while: (1) using visual field reversal, (2) reading while riding in a car (with or without external vision present), (3) making large pitch head movements during parabolic flight, (4) during exposure to rough seas in a small boat, and (5) seated and reading in the cabin area of a UH60 Black Hawk Helicopter during 20 min of provocative flight patterns.

  19. Rotorcraft In-Flight Simulation Research at NASA Ames Research Center: A Review of the 1980's and plans for the 1990's

    NASA Technical Reports Server (NTRS)

    Aiken, Edwin W.; Hindson, William S.; Lebacqz, J. Victor; Denery, Dallas G.; Eshow, Michelle M.

    1991-01-01

    A new flight research vehicle, the Rotorcraft-Aircrew System Concepts Airborne Laboratory (RASCAL), is being developed by the U.S. Army and NASA at ARC. The requirements for this new facility stem from a perception of rotorcraft system technology requirements for the next decade together with operational experience with the Boeing Vertol CH-47B research helicopter that was operated as an in-flight simulator at ARC during the past 10 years. Accordingly, both the principal design features of the CH-47B variable-stability system and the flight-control and cockpit-display programs that were conducted using this aircraft at ARC are reviewed. Another U.S Army helicopter, a Sikorsky UH-60A Black Hawk, was selected as the baseline vehicle for the RASCAL. The research programs that influence the design of the RASCAL are summarized, and the resultant requirements for the RASCAL research system are described. These research programs include investigations of advanced, integrated control concepts for achieving high levels of agility and maneuverability, and guidance technologies, employing computer/sensor-aiding, designed to assist the pilot during low-altitude flight in conditions of limited visibility. The approach to the development of the new facility is presented and selected plans for the preliminary design of the RASCAL are described.

  20. Self-consistent geodesic equation and quantum tunneling from charged AdS black holes

    NASA Astrophysics Data System (ADS)

    Deng, Gao-Ming

    2017-12-01

    Some urgent shortcomings in previous derivations of geodesic equations are remedied in this paper. In contrast to the unnatural and awkward treatment in previous works, here we derive the geodesic equations of massive and massless particles in a unified and self- consistent manner. Furthermore, we extend to investigate the Hawking radiation via tunneling from charged black holes in the context of AdS spacetime. Of special interest, the application of the first law of black hole thermodynamics in tunneling integration manifestly simplifies the calculation.

  1. On the Effect of Energy Conservation on Black Hole Evaporation

    NASA Astrophysics Data System (ADS)

    Torres, R.; Fayos, F.; Lorente-Espín, O.

    2013-06-01

    We consider the emission of Hawking radiation by black holes as a consequence of a tunneling process. By requiring energy conservation in the derivation of the emission rate we get a well-known deviation from an exact thermal spectrum. A model that takes into account the implications of energy conservation, as well as the back-scattered radiation, is then constructed in order to describe the evolution of black holes as they evaporate. The evaporation process in this model is compared with the results in the standard "thermal" approximation. This allows us to point out the relevance that energy conservation might have in the last stages of black hole evaporation. We also comment about the possible implications of energy conservation in the information loss paradox.

  2. Hawk-Eyes on Science and in Space

    NASA Astrophysics Data System (ADS)

    Durow, Lillie

    2017-08-01

    For more than ten years the successful and well received outreach programs, Hawk-Eyes On Science and Hawk-Eyes in Space, have brought the excitement of science demonstrations to Iowans of all ages. However, the creation of a successful, sustainable outreach program requires the coordination of many aspects. In many respects, the demonstrations and hands-on activities are of secondary importance when weighed against the problems of funding, transportation, staffing, etc. In addition to showing examples of demonstrations that we use, I will also focus on a few of the problems and some of the solutions that we have found while coordinating our long running outreach programs at the University of Iowa Department of Physics and Astronomy.

  3. Implementation of a Helicopter Flight Simulator with Individual Blade Control

    NASA Astrophysics Data System (ADS)

    Zinchiak, Andrew G.

    2011-12-01

    Nearly all modern helicopters are designed with a swashplate-based system for control of the main rotor blades. However, the swashplate-based approach does not provide the level of redundancy necessary to cope with abnormal actuator conditions. For example, if an actuator fails (becomes locked) on the main rotor, the cyclic inputs are consequently fixed and the helicopter may become stuck in a flight maneuver. This can obviously be seen as a catastrophic failure, and would likely lead to a crash. These types of failures can be overcome with the application of individual blade control (IBC). IBC is achieved using the blade pitch control method, which provides complete authority of the aerodynamic characteristics of each rotor blade at any given time by replacing the normally rigid pitch links between the swashplate and the pitch horn of the blade with hydraulic or electronic actuators. Thus, IBC can provide the redundancy necessary for subsystem failure accommodation. In this research effort, a simulation environment is developed to investigate the potential of the IBC main rotor configuration for fault-tolerant control. To examine the applications of IBC to failure scenarios and fault-tolerant controls, a conventional, swashplate-based linear model is first developed for hover and forward flight scenarios based on the UH-60 Black Hawk helicopter. The linear modeling techniques for the swashplate-based helicopter are then adapted and expanded to include IBC. Using these modified techniques, an IBC based mathematical model of the UH-60 helicopter is developed for the purposes of simulation and analysis. The methodology can be used to model and implement a different aircraft if geometric, gravimetric, and general aerodynamic data are available. Without the kinetic restrictions of the swashplate, the IBC model effectively decouples the cyclic control inputs between different blades. Simulations of the IBC model prove that the primary control functions can be manually

  4. Street Hawking: Oppressing the Girl Child or Family Economic Supplement?

    ERIC Educational Resources Information Center

    Umar, Fatima M.

    2009-01-01

    Street hawking in its simplest form is the selling of things along the roads and from one place to the other. In Nigeria this is done almost all the time by young children both males and females. The girl hawkers come to the cities in groups and then go in different directions of the city to hawk their goods. They remain in the city from the early…

  5. Hawk Eyes I: Diurnal Raptors Differ in Visual Fields and Degree of Eye Movement

    PubMed Central

    O'Rourke, Colleen T.; Hall, Margaret I.; Pitlik, Todd; Fernández-Juricic, Esteban

    2010-01-01

    Background Different strategies to search and detect prey may place specific demands on sensory modalities. We studied visual field configuration, degree of eye movement, and orbit orientation in three diurnal raptors belonging to the Accipitridae and Falconidae families. Methodology/Principal Findings We used an ophthalmoscopic reflex technique and an integrated 3D digitizer system. We found inter-specific variation in visual field configuration and degree of eye movement, but not in orbit orientation. Red-tailed Hawks have relatively small binocular areas (∼33°) and wide blind areas (∼82°), but intermediate degree of eye movement (∼5°), which underscores the importance of lateral vision rather than binocular vision to scan for distant prey in open areas. Cooper's Hawks' have relatively wide binocular fields (∼36°), small blind areas (∼60°), and high degree of eye movement (∼8°), which may increase visual coverage and enhance prey detection in closed habitats. Additionally, we found that Cooper's Hawks can visually inspect the items held in the tip of the bill, which may facilitate food handling. American Kestrels have intermediate-sized binocular and lateral areas that may be used in prey detection at different distances through stereopsis and motion parallax; whereas the low degree eye movement (∼1°) may help stabilize the image when hovering above prey before an attack. Conclusions We conclude that: (a) there are between-species differences in visual field configuration in these diurnal raptors; (b) these differences are consistent with prey searching strategies and degree of visual obstruction in the environment (e.g., open and closed habitats); (c) variations in the degree of eye movement between species appear associated with foraging strategies; and (d) the size of the binocular and blind areas in hawks can vary substantially due to eye movements. Inter-specific variation in visual fields and eye movements can influence behavioral

  6. Hawk eyes I: diurnal raptors differ in visual fields and degree of eye movement.

    PubMed

    O'Rourke, Colleen T; Hall, Margaret I; Pitlik, Todd; Fernández-Juricic, Esteban

    2010-09-22

    Different strategies to search and detect prey may place specific demands on sensory modalities. We studied visual field configuration, degree of eye movement, and orbit orientation in three diurnal raptors belonging to the Accipitridae and Falconidae families. We used an ophthalmoscopic reflex technique and an integrated 3D digitizer system. We found inter-specific variation in visual field configuration and degree of eye movement, but not in orbit orientation. Red-tailed Hawks have relatively small binocular areas (∼33°) and wide blind areas (∼82°), but intermediate degree of eye movement (∼5°), which underscores the importance of lateral vision rather than binocular vision to scan for distant prey in open areas. Cooper's Hawks' have relatively wide binocular fields (∼36°), small blind areas (∼60°), and high degree of eye movement (∼8°), which may increase visual coverage and enhance prey detection in closed habitats. Additionally, we found that Cooper's Hawks can visually inspect the items held in the tip of the bill, which may facilitate food handling. American Kestrels have intermediate-sized binocular and lateral areas that may be used in prey detection at different distances through stereopsis and motion parallax; whereas the low degree eye movement (∼1°) may help stabilize the image when hovering above prey before an attack. We conclude that: (a) there are between-species differences in visual field configuration in these diurnal raptors; (b) these differences are consistent with prey searching strategies and degree of visual obstruction in the environment (e.g., open and closed habitats); (c) variations in the degree of eye movement between species appear associated with foraging strategies; and (d) the size of the binocular and blind areas in hawks can vary substantially due to eye movements. Inter-specific variation in visual fields and eye movements can influence behavioral strategies to visually search for and track prey while

  7. Red-shouldered hawk nesting habitat preference in south Texas

    USGS Publications Warehouse

    Strobel, Bradley N.; Boal, Clint W.

    2010-01-01

    We examined nesting habitat preference by red-shouldered hawks Buteo lineatus using conditional logistic regression on characteristics measured at 27 occupied nest sites and 68 unused sites in 2005–2009 in south Texas. We measured vegetation characteristics of individual trees (nest trees and unused trees) and corresponding 0.04-ha plots. We evaluated the importance of tree and plot characteristics to nesting habitat selection by comparing a priori tree-specific and plot-specific models using Akaike's information criterion. Models with only plot variables carried 14% more weight than models with only center tree variables. The model-averaged odds ratios indicated red-shouldered hawks selected to nest in taller trees and in areas with higher average diameter at breast height than randomly available within the forest stand. Relative to randomly selected areas, each 1-m increase in nest tree height and 1-cm increase in the plot average diameter at breast height increased the probability of selection by 85% and 10%, respectively. Our results indicate that red-shouldered hawks select nesting habitat based on vegetation characteristics of individual trees as well as the 0.04-ha area surrounding the tree. Our results indicate forest management practices resulting in tall forest stands with large average diameter at breast height would benefit red-shouldered hawks in south Texas.

  8. Black holes as quantum gravity condensates

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele; Pranzetti, Daniele; Sindoni, Lorenzo

    2018-03-01

    We model spherically symmetric black holes within the group field theory formalism for quantum gravity via generalized condensate states, involving sums over arbitrarily refined graphs (dual to three-dimensional triangulations). The construction relies heavily on both the combinatorial tools of random tensor models and the quantum geometric data of loop quantum gravity, both part of the group field theory formalism. Armed with the detailed microscopic structure, we compute the entropy associated with the black hole horizon, which turns out to be equivalently the Boltzmann entropy of its microscopic degrees of freedom and the entanglement entropy between the inside and outside regions. We recover the area law under very general conditions, as well as the Bekenstein-Hawking formula. The result is also shown to be generically independent of any specific value of the Immirzi parameter.

  9. Large Randall-Sundrum II black holes

    NASA Astrophysics Data System (ADS)

    Abdolrahimi, Shohreh; Cattoën, Céline; Page, Don N.; Yaghoobpour-Tari, Shima

    2013-03-01

    Using a novel numerical spectral method, we have constructed an AdS5-CFT4 solution to the Einstein equation with a negative cosmological constant Λ that is asymptotically conformal to the Schwarzschild metric. This method is independent of the Ricci-DeTurck-flow method used by Figueras, Lucietti, and Wiseman. We have perturbed the solution to get large static black hole solutions to the Randall-Sundrum II (RSII) braneworld model. Our solution agrees closely with that of Figueras et al. and also allows us to deduce the new results that to first order in 1 / (- ΛM2), the Hawking temperature and entropy of an RSII static black hole have the same values as the Schwarzschild metric with the same mass, but the horizon area is increased by about 4.7 / (- Λ).

  10. Baryon asymmetry from primordial black holes

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Iso, Satoshi

    2017-03-01

    We propose a new scenario of the baryogenesis from primordial black holes (PBH). Assuming the presence of microscopic baryon (or lepton) number violation, and the presence of an effective CP-violating operator such as ∂αF (R…)Jα , where F (R…) is a scalar function of the Riemann tensor and Jα is a baryonic (leptonic) current, the time evolution of an evaporating black hole generates baryonic (leptonic) chemical potential at the horizon; consequently PBH emanates asymmetric Hawking radiation between baryons (leptons) and antibaryons (leptons). Though the operator is higher-dimensional and largely suppressed by a high mass scale M* , we show that a sufficient amount of asymmetry can be generated for a wide range of parameters of the PBH mass MPBH , its abundance ΩPBH , and the scale M*.

  11. A hawk is ready for flight

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This Broad-Winged Hawk is ready for flight from its perch on a utility pole at Kennedy Space Center. This hawk's habitat is chiefly deciduous woodland, ranging from southern Canada south throughout the eastern United States, including a small area of Central Florida. It winters in tropical South America. The Center shares a boundary with the Merritt Island National Wildlife Refuge, a haven and habitat for more than 331 species of birds. The Refuge encompasses 92,000 acres that are also a habitat for 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  12. MIGRATION PATTERNS, USE OF STOPOVER AREAS, AND AUSTRAL SUMMER MOVEMENTS OF SWAINSON’S HAWKS

    PubMed Central

    Kochert, Michael N.; Fuller, Mark R.; Schueck, Linda S.; Bond, Laura; Bechard, Marc J.; Woodbridge, Brian; Holroyd, Geoff; Martell, Mark; Banasch, Ursula

    2015-01-01

    From 1995–1998, we tracked movements of adult Swainson’s Hawks (Buteo swainsoni) using satellite telemetry to characterize migration, important stopover areas, and austral summer movements. We tagged 46 hawks from July - September on their nesting grounds in seven U.S. states and two Canadian provinces. Swainson’s Hawks basically followed three routes south on a broad front, converged along the east coast of central Mexico, and followed a concentrated corridor to a communal austral summer area in central Argentina. North of 20° N, southward and northward tracks differed little for individuals from east of the Continental Divide but differed greatly (up to 1700 km) for individuals from west of the Continental Divide. Hawks left the breeding grounds mid-August to mid-October; departure dates did not differ by location, year, or sex. South migration lasted 42 to 98 days, and north migration took 51 to 82 days. On south migration, 36% of the Swainson’s Hawks departed the nesting grounds nearly 3 weeks earlier than the other radio marked hawks and made stopovers 9.0 – 26.0 days long in seven separate areas, mainly in the southern Great Plains, southern Arizona and New Mexico, and north-central Mexico. The austral period lasted 76 to 128 days. All Swainson’s Hawks used a core area in central Argentina within 23% of the 738800 km2 austral summer range where they frequently moved long distances (up to 1600 km). Conservation of Swainson’s Hawks must be an international effort that considers habitats used during nesting and non-nesting seasons including migration stopovers. PMID:26380528

  13. Discrete quantum spectrum of black holes

    NASA Astrophysics Data System (ADS)

    Lochan, Kinjalk; Chakraborty, Sumanta

    2016-04-01

    The quantum genesis of Hawking radiation is a long-standing puzzle in black hole physics. Semi-classically one can argue that the spectrum of radiation emitted by a black hole look very much sparse unlike what is expected from a thermal object. It was demonstrated through a simple quantum model that a quantum black hole will retain a discrete profile, at least in the weak energy regime. However, it was suggested that this discreteness might be an artifact of the simplicity of eigen-spectrum of the model considered. Different quantum theories can, in principle, give rise to different complicated spectra and make the radiation from black hole dense enough in transition lines, to make them look continuous in profile. We show that such a hope from a geometry-quantized black hole is not realized as long as large enough black holes are dubbed with a classical mass area relation in any gravity theory ranging from GR, Lanczos-Lovelock to f(R) gravity. We show that the smallest frequency of emission from black hole in any quantum description, is bounded from below, to be of the order of its inverse mass. That leaves the emission with only two possibilities. It can either be non-thermal, or it can be thermal only with the temperature being much larger than 1/M.

  14. The state of Hawking radiation is non-classical

    NASA Astrophysics Data System (ADS)

    Brustein, Ram; Medved, A. J. M.; Zigdon, Yoav

    2018-01-01

    We show that the state of the Hawking radiation emitted from a large Schwarzschild black hole (BH) deviates significantly from a classical state, in spite of its apparent thermal nature. For this state, the occupation numbers of single modes of massless asymptotic fields, such as photons, gravitons and possibly neutrinos, are small and, as a result, their relative fluctuations are large. The occupation numbers of massive fields are much smaller and suppressed beyond even the expected Boltzmann suppression. It follows that this type of thermal state cannot be viewed as classical or even semiclassical. We substantiate this claim by showing that, in a state with low occupation numbers, physical observables have large quantum fluctuations and, as such, cannot be faithfully described by a mean-field or by a WKB-like semiclassical state. Since the evolution of the BH is unitary, our results imply that the state of the BH interior must also be non-classical when described in terms of the asymptotic fields. We show that such a non-classical interior cannot be described in terms of a semiclassical geometry, even though the average curvature is sub-Planckian.

  15. Critical reflexivity in financial markets: a Hawkes process analysis

    NASA Astrophysics Data System (ADS)

    Hardiman, Stephen J.; Bercot, Nicolas; Bouchaud, Jean-Philippe

    2013-10-01

    We model the arrival of mid-price changes in the E-mini S&P futures contract as a self-exciting Hawkes process. Using several estimation methods, we find that the Hawkes kernel is power-law with a decay exponent close to -1.15 at short times, less than ≈ 103 s, and crosses over to a second power-law regime with a larger decay exponent ≈-1.45 for longer times scales in the range [ 103,106 ] seconds. More importantly, we find that the Hawkes kernel integrates to unity independently of the analysed period, from 1998 to 2011. This suggests that markets are and have always been close to criticality, challenging a recent study which indicates that reflexivity (endogeneity) has increased in recent years as a result of increased automation of trading. However, we note that the scale over which market events are correlated has decreased steadily over time with the emergence of higher frequency trading.

  16. Nonminimally coupled massive scalar field in a 2D black hole: Exactly solvable model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, V.; Zelnikov, A.

    2001-06-15

    We study a nonminimal massive scalar field in the background of a two-dimensional black hole spacetime. We consider the black hole which is the solution of the 2D dilaton gravity derived from string-theoretical models. We find an explicit solution in a closed form for all modes and the Green function of the scalar field with an arbitrary mass and a nonminimal coupling to the curvature. Greybody factors, the Hawking radiation, and 2>{sup ren} are calculated explicitly for this exactly solvable model.

  17. Migration patterns, use of stopover areas, and austral summer movements of Swainson's hawks

    USGS Publications Warehouse

    Kocher, Michael N.; Fuller, Mark R.; Schueck, Linda S.; Bond, Laura; Bechard, Marc J.; Woodbridge, Brian; Holroyd, Geoff L.; Martell, Mark S.; Banasch, Ursula

    2011-01-01

    from 1995 to 1998, we tracked movements of adult Swainson's Hawks (Buteo swainsoni), using satellite telemetry to characterize migration, important stopover areas, and movements in the austral summer. we tagged 46 hawks from July to September on their nesting grounds in seven U.S. states and two Canadian provinces. Swainson's Hawks followed three basic routes south on a broad front, converged along the east coast of cen-tral Mexico, and followed a concentrated corridor to a communal area in central Argentina for the austral summer. North of 20° N, southward and northward tracks differed little for individuals from east of the continental divide but differed greatly (up to 1700 km) for individuals from west of the continental divide. Hawks left the breeding grounds mid-August to mid-October; departure dates did not differ by location, year, or sex. Southbound migra-tion lasted 42 to 98 days, northbound migration 51 to 82 days. Southbound, 36% of the Swainson's Hawks departed the nesting grounds nearly 3 weeks earlier than the other radio-marked hawks and made stopovers 9.0–26.0 days long in seven separate areas, mainly in the southern great Plains, southern Arizona and New Mexico, and north-central Mexico. The birds stayed in their nonbreeding range for 76 to 128 days. All used a core area in central Ar-gentina within 23% of the 738 800-km2 austral summer range, where they frequently moved long distances (up to 1600 km). Conservation of Swainson's Hawks must be an international effort that considers habitats used during nesting and non-nesting seasons, including migration stopovers.

  18. On the Preservation of Unitarity during Black Hole Evolution and Information Extraction from its Interior

    NASA Astrophysics Data System (ADS)

    Pappas, Nikolaos D.

    2012-06-01

    For more than 30 years the discovery that black holes radiate like black bodies of specific temperature has triggered a multitude of puzzling questions concerning their nature and the fate of information that goes down the black hole during its lifetime. The most tricky issue in what is known as information loss paradox is the apparent violation of unitarity during the formation/evaporation process of black holes. A new idea is proposed based on the combination of our knowledge on Hawking radiation as well as the Einstein-Podolsky-Rosen phenomenon, that could resolve the paradox and spare physicists from the unpalatable idea that unitarity can ultimately be irreversibly violated even under special conditions.

  19. Black-hole production at LHC: Special features, problems, and expectations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savina, M. V., E-mail: savina@cern.ch

    2011-03-15

    A brief survey of the present-day status of the problem of multidimensional-black-hole production at accelerators according to models featuring large extra dimensions is given. The respective production cross section and the Hawking temperature and decay rate are estimated versus model parameters. Possible flaws and assumptions whose accurate inclusion can reduce significantly the probability of blackhole production at accelerators in relation to earlier optimistic estimates are also discussed.

  20. Stephen Hawking NASA 50th

    NASA Image and Video Library

    2008-06-12

    Dr. Stephen Hawking, a professor of mathematics at the University of Cambridge, delivers a speech entitled "Why we should go into space" during a lecture that is part of a series honoring NASA's 50th Anniversary, Monday, April 21, 2008, at George Washington University's Morton Auditorium in Washington. Photo Credit: (NASA/Paul. E. Alers)

  1. Stephen Hawking NASA 50th

    NASA Image and Video Library

    2008-04-20

    Dr. Stephen Hawking, a professor of mathematics at the University of Cambridge, delivers a speech entitled "Why we should go into space" during a lecture that is part of a series honoring NASA's 50th Anniversary, Monday, April 21, 2008, at George Washington University's Morton Auditorium in Washington. Photo Credit: (NASA/Paul. E. Alers)

  2. The Future of Theoretical Physics and Cosmology

    NASA Astrophysics Data System (ADS)

    Gibbons, G. W.; Shellard, E. P. S.; Rankin, S. J.

    2003-11-01

    Based on lectures given in honor of Stephen Hawking's 60th birthday, this book comprises contributions from the world's leading theoretical physicists. Popular lectures progress to a critical evaluation of more advanced subjects in modern cosmology and theoretical physics. Topics covered include the origin of the universe, warped spacetime, cosmological singularities, quantum gravity, black holes, string theory, quantum cosmology and inflation. The volume provides a fascinating overview of the variety of subjects to which Stephen Hawking has contributed.

  3. An exact solution for the Hawking effect in a dispersive fluid

    NASA Astrophysics Data System (ADS)

    Philbin, T. G.

    2016-09-01

    We consider the wave equation for sound in a moving fluid with a fourth-order anomalous dispersion relation. The velocity of the fluid is a linear function of position, giving two points in the flow where the fluid velocity matches the group velocity of low-frequency waves. We find the exact solution for wave propagation in the flow. The scattering shows amplification of classical waves, leading to spontaneous emission when the waves are quantized. In the dispersionless limit the system corresponds to a 1 +1 -dimensional black-hole or white-hole binary and there is a thermal spectrum of Hawking radiation from each horizon. Dispersion changes the scattering coefficients so that the quantum emission is no longer thermal. The scattering coefficients were previously obtained by Busch and Parentani in a study of dispersive fields in de Sitter space [Phys. Rev. D 86, 104033 (2012)]. Our results give further details of the wave propagation in this exactly solvable case, where our focus is on laboratory systems.

  4. Spherically symmetric charged black holes in f(R) gravitational theories

    NASA Astrophysics Data System (ADS)

    Nashed, G. G. L.

    2018-01-01

    In this study, we have derived electric and magnetic spherically symmetric black holes for the class f(R)=R+ζ R2 without assuming any restrictions on the Ricci scalar. These black holes asymptotically behave as the de Sitter spacetime under certain constrains. We have shown that the magnetic charge contributes in the metric spacetime similarly to the electric charge. The most interesting feature of some of these black holes is the fact that the Cauchy horizon is not identical to the event horizon. We have calculated the invariants of Ricci and Kretschmann scalars to investigate the nature of singularities of such black holes. Also, we have calculated the conserved quantities to match the constants of integration with the physical quantities. Finally, the thermodynamical quantities, like Hawking temperature, entropy, etc., have been evaluated and the validity of the first law of thermodynamics has been verified.

  5. Black holes with su(N) gauge field hair and superconducting horizons

    NASA Astrophysics Data System (ADS)

    Shepherd, Ben L.; Winstanley, Elizabeth

    2017-01-01

    We present new planar dyonic black hole solutions of the su(N) Einstein-Yang-Mills equations in asymptotically anti-de Sitter space-time, focussing on su(2) and su(3) gauge groups. The magnetic part of the gauge field forms a condensate close to the planar event horizon. We compare the free energy of a non-Abelian hairy black hole with that of an embedded Reissner-Nordström-anti-de Sitter (RN-AdS) black hole having the same Hawking temperature and electric charge. We find that the hairy black holes have lower free energy. We present evidence that there is a phase transition at a critical temperature, above which the only solutions are embedded RN-AdS black holes. At the critical temperature, an RN-AdS black hole can decay into a hairy black hole, and it is thermodynamically favourable to do so. Working in the probe limit, we compute the frequency-dependent conductivity, and find that enlarging the gauge group from su(2) to su(3) eliminates a divergence in the conductivity at nonzero frequency.

  6. Cyanide poisoning of a Cooper’s hawk (Accipiter cooperii)

    USGS Publications Warehouse

    Franson, J. Christian

    2017-01-01

    A Cooper’s hawk (Accipiter cooperii) was found dead in a ditch leading from a heap leach pad at a gold mine in Nevada. Observations at autopsy included an absence of external lesions, traces of subcutaneous and coronary fat, no food in the upper gastrointestinal tract, and no lesions in the viscera. Cyanide concentrations (µg/g ww) were 5.04 in blood, 3.88 in liver, and 1.79 in brain. No bacteria or viruses were isolated from tissues, and brain cholinesterase activity was within the normal range for a Cooper’s hawk.

  7. Charged BTZ black holes in the context of massive gravity's rainbow

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Panahiyan, S.; Upadhyay, S.; Eslam Panah, B.

    2017-04-01

    Banados, Teitelboim, and Zanelli (BTZ) black holes are excellent laboratories for studying black hole thermodynamics, which is a bridge between classical general relativity and the quantum nature of gravitation. In addition, three-dimensional gravity could have equipped us for exploring some of the ideas behind the two-dimensional conformal field theory based on the AdS3/CFT2 . Considering the significant interest in these regards, we examine charged BTZ black holes. We consider the system contains massive gravity with energy dependent spacetime to enrich the results. In order to make high curvature (energy) BTZ black holes more realistic, we modify the theory by energy dependent constants. We investigate thermodynamic properties of the solutions by calculating heat capacity and free energy. We also analyze thermal stability and study the possibility of the Hawking-Page phase transition. At last, we study the geometrical thermodynamics of these black holes and compare the results of various approaches.

  8. Global Hawk, NASA's New Remote-Controlled Plane

    NASA Image and Video Library

    2017-12-08

    NASA image acquired October 23, 2009. At NASA’s Dryden Research Center in California, a group of engineers, scientists, and aviation technicians have set up camp in a noisy, chilly hangar on Edwards Air Force base. For the past two weeks, they have been working to mount equipment—from HD video cameras to ozone sensors—onto NASA’s Global Hawk, a remote-controlled airplane that can fly for up to 30 hours at altitudes up to 65,000 feet. The team is gearing up for the Global Hawk Pacific campaign, a series of four or five scientific research flights that will take the Global Hawk over the Pacific Ocean and Arctic regions. The 44-foot-long aircraft, with its comically large nose and 116-foot wingspan is pictured in the photograph above, banking for landing over Rogers Dry Lake in California at the end of a test flight on October 23, 2009. The long wings carry the plane’s fuel, and the bulbous nose is one of the payload bays, which house the science instruments. For the Global Hawk Pacific campaign, the robotic aircraft will carry ten science instruments that will sample the chemical composition of air in the troposphere (the atmospheric layer closest to Earth) and the stratosphere (the layer above the troposphere). The mission will also observe clouds and aerosol particles in the troposphere. The primary purpose of the mission is to collect observations that can be used to check the accuracy of simultaneous observations collected by NASA’s Aura satellite. Co-lead scientist Paul Newman from Goddard Space Flight Center is writing about the ground-breaking mission for the Earth Observatory’s Notes from the Field blog. NASA Photograph by Carla Thomas. NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. To learn more about this image go to: earthobservatory

  9. Quantum Liouville theory and BTZ black hole entropy

    NASA Astrophysics Data System (ADS)

    Chen, Yujun

    In this thesis I give an explicit conformal field theory description of (2+1)-dimensional BTZ black hole entropy. In the boundary Liouville field theory I investigate the reducible Verma modules in the elliptic sector, which correspond to certain irreducible representations of the quantum algebra Uq(sl2) ⊙ Uq̂(sl2). I show that there are states that decouple from these reducible Verma modules in a similar fashion to the decoupling of null states in minimal models. Because of the nonstandard form of the Ward identity for the two-point correlation functions in quantum Liouville field theory, these decoupling states have positive-definite norms. The unitary representations built on these decoupling states give the Bekenstein-Hawking entropy of the BTZ black hole.

  10. Black Holes, Worm Holes, and Future Space Propulsion

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    2000-01-01

    NASA has begun examining the technologies needed for an Interstellar Mission. In 1998, a NASA Interstellar Mission Workshop was held at the California Institute of Technology to examine the technologies required. Since then, a spectrum of research efforts to support such a mission has been underway, including many advanced and futuristic space propulsion concepts which are being explored. The study of black holes and wormholes may provide some of the breakthrough physics needed to travel to the stars. The first black hole, CYGXI, was discovered in 1972 in the constellation Cygnus X-1. In 1993, a black hole was found in the center of our Milky Way Galaxy. In 1994, the black hole GRO J1655-40 was discovered by the NASA Marshall Space Flight center using the Gamma Ray Observatory. Today, we believe we have found evidence to support the existence of 19 black holes, but our universe may contain several thousands. This paper discusses the dead star states - - both stable and unstable, white dwarfs, neutron stars, pulsars, quasars, the basic features and types of black holes: nonspinning, nonspinning with charge, spinning, and Hawking's mini black holes. The search for black holes, gravitational waves, and Laser Interferometer Gravitational Wave Observatory (LIGO) are reviewed. Finally, concepts of black hole powered space vehicles and wormhole concepts for rapid interstellar travel are discussed in relation to the NASA Interstellar Mission.

  11. Analogue Hawking radiation in a dc-SQUID array transmission line.

    PubMed

    Nation, P D; Blencowe, M P; Rimberg, A J; Buks, E

    2009-08-21

    We propose the use of a superconducting transmission line formed from an array of direct-current superconducting quantum interference devices for investigating analogue Hawking radiation. Biasing the array with a space-time varying flux modifies the propagation velocity of the transmission line, leading to an effective metric with a horizon. Being a fundamentally quantum mechanical device, this setup allows for investigations of quantum effects such as backreaction and analogue space-time fluctuations on the Hawking process.

  12. A red-tailed hawk at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At KSC, a red-tailed hawk waits on top of a utility pole for the slightest movement in the grass below. It feeds mostly on small rodents. Ranging in height from 18 inches to 25 inches, the species has a stocky build with a whitish breast and rust-colored tail. It has a high-pitched descending scream with a hoarse quality. The hawk inhabits mainly deciduous forest and adjacent open country from Alaska and Nova Scotia south to Panama. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  13. A red-tailed hawk at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    From the top of a utility pole, a red-tailed hawk launches into flight, perhaps after spotting prey, typically a small rodent. Ranging in height from 18 inches to 25 inches, the species has a stocky build with a whitish breast and rust-colored tail. It has a high-pitched descending scream with a hoarse quality. The hawk inhabits mainly deciduous forest and adjacent open country from Alaska and Nova Scotia south to Panama. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  14. Ecology of a nesting red-shouldered hawk population

    USGS Publications Warehouse

    Stewart, R.E.

    1949-01-01

    An ecological study of a nesting Red-shouldered Hawk population was made over a 185 square mile area on the Coastal Plain of Maryland in 1947. The courting and nesting season extended from late February until late June.....During the nesting season a combination of fairly extensive flood-plain forest with adjacent clearings appears to meet the major ecological requirements of the Red-shouldered Hawk in this region. A total of 51 pairs was found in the study area, occupying about 42 square miles or 23% of the total area studied. The population density on the land that was suitable for this species was about 1 pair per .8 of a square mile, while the density for the entire study area would be only about 1 pair per 3.6 square miles.....Nests were spaced fairly evenly over most of the flood-plain forests, especially in areas where the width.of the flood plain was relatively constant. There was an inverse correlation between the width of the flood plain and the distances between nests in adjacent territories. The nests were all situated in fairly large trees and were from 28 feet to 77 feet above the ground, averaging 50. They were found in 14 different species of trees, all deciduous.....The Barred Owl and Red-shouldered Hawk were commonly associated together in the same lowland habitats. Other raptores were all largely restricted to upland habitats....The average number of young in 47 occupied nests following the hatching period was 2.7 with extremes of 1 and 4. Only 3 out of 52 nests (6%) were found deserted at this time....The food habits of nestling Red-shouldered Hawks are very diversified. They feed on many types of warm-blooded and cold-blooded vertebrates as well as invertebrates.

  15. Photogrammetric Measurements of an EH-60L Brownout Cloud

    NASA Technical Reports Server (NTRS)

    Wong, Oliver D.; Tanner, Philip E.

    2010-01-01

    There is a critical lack of quantitative data regarding the mechanism of brownout cloud formation. Recognizing this, tests were conducted during the Air Force Research Lab 3D-LZ Brownout Test at the US Army Yuma Proving Ground. Photogrammetry was utilized during two rounds of flight tests with an instrumented EH-60L Black Hawk to determine if this technique could quantitatively measure the formation and evolution of a brownout cloud. Specific areas of interest include the location, size, and average convective velocity of the cloud, along with the characteristics of any defined structures within it. Following the first flight test, photogrammetric data were validated through comparison with onboard vehicle data. Lessons learned from this test were applied to the development of an improved photogrammetry system. A second flight test, utilizing the improved system, demonstrated that obtaining quantitative measurements of the brownout cloud are possible. Results from these measurements are presented in the paper. Flow visualization with chalk dust seeding was also tested. It was observed that pickup forces of the brownout cloud appear to be very low. Overall, these tests demonstrate the viability of photogrammetry as a means for quantifying brownout cloud formation and evolution.

  16. Canadian institute honours Hawking

    NASA Astrophysics Data System (ADS)

    Durrani, Matin

    2009-11-01

    The Perimeter Institute for Theoretical Physics in Waterloo, Canada, has announced that a major new extension to its campus will be known as the Stephen Hawking Centre. The extension, which is currently being built, is due to open in 2011 and will double the size of the institute. It will also provide a home for the institute's Masters students, the first of whom joined the Perimeter Institute this autumn as part of its Perimeter Scholars international programme.

  17. TOPICAL REVIEW: TeV mini black hole decay at future colliders

    NASA Astrophysics Data System (ADS)

    Casanova, Alex; Spallucci, Euro

    2006-02-01

    It is generally believed that mini black holes decay by emitting elementary particles with a black body energy spectrum. The original calculation leads to the conclusion that about the 90% of the black hole mass is radiated away in the form of photons, neutrinos and light leptons, mainly electrons and muons. With the advent of string theory, such a scenario must be updated by including new effects coming from the stringy nature of particles and interactions. The main modifications with respect to the original picture of black hole evaporation come from recent developments in non-perturbative string theory globally referred to as TeV-scale gravity. By taking for granted that black holes can be produced in hadronic collisions, then their decay must take into account that: (i) we live in a D3 brane embedded into a higher dimensional bulk spacetime; (ii) fundamental interactions, including gravity, are unified at the TeV energy scale. Thus, the formal description of the Hawking radiation mechanism has to be extended to the case of more than four spacetime dimensions and includes the presence of D-branes. This kind of topological defect in the bulk spacetime fabric acts as a sort of 'cosmic fly-paper' trapping electro-weak standard model elementary particles in our (3 + 1)-dimensional universe. Furthermore, unification of fundamental interactions at an energy scale many orders of magnitude lower than the Planck energy implies that any kind of fundamental particle, not only leptons, is expected to be emitted. A detailed understanding of the new scenario is instrumental for optimal tuning of detectors at future colliders, where, hopefully, this exciting new physics will be tested. In this review, we study higher dimensional black hole decay, considering not only the emission of particles according to the Hawking mechanism, but also their near-horizon QED/QCD interactions. The ultimate motivation is to build up a phenomenologically reliable scenario, allowing a clear

  18. NASA HS3 Global Hawk on the Wing

    NASA Image and Video Library

    2013-08-30

    The NASA Wallops T-34 chase aircraft intercepted Global Hawk 872 on its descent to runway 28 at NASA's Wallops Flight Facility in Wallops Island, Va. This photo of the Global Hawk was taken from the chase plane after finishing its third science flight. For more information about NASA's HS3 mission, visit: www.nasa.gov/HS3 Credit: NASA/ Brea Reeves NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Red-shouldered Hawk (Buteo lineatus) abundance and habitat in a reclaimed mine landscape

    USGS Publications Warehouse

    Balcerzak, M.J.; Wood, P.B.

    2003-01-01

    Fragmentation of the landscape by large-scale mining may affect Red-shouldered Hawk (Buteo lineatus) populations by reducing the amount of forested habitat available in a landscape and by creating fragmented forest parches surrounded by reclaimed mine lands. We examined habitat characteristics and relative abundance of Red-shouldered Hawks in reclaimed mine landscapes within four treatments: early-successional grassland habitat, mid-successional shrub/pole habitat, late-successional fragmented forest habitat, and late-successional intact forest habitat. We quantified microhabitat characteristics within an 11.3-m-radius plot centered on 156 vegetation plots throughout the four treatments. We surveyed 48 stations on and adjacent to three mines for Red-shouldered Hawks using standardized broadcast call techniques during February 2000-January 2001 and measured landscape characteristics within 1000-m buffer zones centered on each station from digitized aerial photographs. Mean abundance of Red-shouldered Hawks was significantly higher in the intact forest (x?? = 0.07 detections/ point, SE = 0.03) than the grassland (x?? = 0.01, SE = 0.01) treatment, but did not differ from the fragmented forest (x?? = 0.03, SE = 0.01) or shrub/pole (x?? = 0.03, SE = 0.01) treatments. Most microhabitat characteristics in both fragmented and intact forest differed from shrub/pole and grasslands. Amount of wetland was the most important characteristic determining presence of Red-shouldered Hawks in a forest-dominated landscape. More wetlands in the landscape may provide abundant amphibians and reptiles, which are important in the diet of Red-shouldered Hawks. ?? 2003 The Raptor Research Foundation, Inc.

  20. A unitary model of the black hole evaporation

    NASA Astrophysics Data System (ADS)

    Feng, Yu-Lei; Chen, Yi-Xin

    2014-12-01

    A unitary effective field model of the black hole evaporation is proposed to satisfy almost the four postulates of the black hole complementarity (BHC). In this model, we enlarge a black hole-scalar field system by adding an extra radiation detector that couples with the scalar field. After performing a partial trace over the scalar field space, we obtain an effective entanglement between the black hole and the detector (or radiation in it). As the whole system evolves, the S-matrix formula can be constructed formally step by step. Without local quantum measurements, the paradoxes of the information loss and AMPS's firewall can be resolved. However, the information can be lost due to quantum decoherence, as long as some local measurement has been performed on the detector to acquire the information of the radiation in it. But unlike Hawking's completely thermal spectrum, some residual correlations can be found in the radiations. All these considerations can be simplified in a qubit model that provides a modified quantum teleportation to transfer the information via an EPR pairs.

  1. V/STOL AND digital avionics system for UH-1H

    NASA Technical Reports Server (NTRS)

    Liden, S.

    1978-01-01

    A hardware and software system for the Bell UH-1H helicopter was developed that provides sophisticated navigation, guidance, control, display, and data acquisition capabilities for performing terminal area navigation, guidance and control research. Two Sperry 1819B general purpose digital computers were used. One contains the development software that performs all the specified system flight computations. The second computer is available to NASA for experimental programs that run simultaneously with the other computer programs and which may, at the push of a button, replace selected computer computations. Other features that provide research flexibility include keyboard selectable gains and parameters and software generated alphanumeric and CRT displays.

  2. One-Shot Decoupling and Page Curves from a Dynamical Model for Black Hole Evaporation.

    PubMed

    Brádler, Kamil; Adami, Christoph

    2016-03-11

    One-shot decoupling is a powerful primitive in quantum information theory and was hypothesized to play a role in the black hole information paradox. We study black hole dynamics modeled by a trilinear Hamiltonian whose semiclassical limit gives rise to Hawking radiation. An explicit numerical calculation of the discretized path integral of the S matrix shows that decoupling is exact in the continuous limit, implying that quantum information is perfectly transferred from the black hole to radiation. A striking consequence of decoupling is the emergence of an output radiation entropy profile that follows Page's prediction. We argue that information transfer and the emergence of Page curves is a robust feature of any multilinear interaction Hamiltonian with a bounded spectrum.

  3. Terrestrial black holes as sources of super-high energy radiation

    NASA Astrophysics Data System (ADS)

    Trofimenko, A. P.; Gurin, V. S.

    1993-04-01

    The study proposes small black holes which can be located in the earth's interior as sources of superhigh energy radiation; their origin is not constrained to the big bang. The intensity and spectrum of massless and massive particle radiation due to the Hawking effect for black holes with masses of 10 exp 8 to 10 exp 16 are estimated. The possibility of their detection according to a number of features (high particle energies, thermal energetic spectrum, transientness or an explicit trend to intensity and energy increase, and some expressed direction of emission associated with source localization) is explored. The rates of the radiation of massless particles with spin-1/2 and with spin-1 are illustrated in graphic form.

  4. Autumn raptor banding at hawk Ridge, Duluth, Minnesota USA, 1972-2009: An overview

    EPA Science Inventory

    This manuscript is targeted to a specialized audience: ornithologists who work specifically on raptors (hawks and owls). The goal of the paper is to describe the last 38 years of banding at Hawk Ridge Bird Observatory and to put out some preliminary results on species’ annual dy...

  5. Bee-hawking by the wasp, Vespa velutina, on the honeybees Apis cerana and A. mellifera.

    PubMed

    Tan, K; Radloff, S E; Li, J J; Hepburn, H R; Yang, M X; Zhang, L J; Neumann, P

    2007-06-01

    The vespine wasps, Vespa velutina, specialise in hawking honeybee foragers returning to their nests. We studied their behaviour in China using native Apis cerana and introduced A. mellifera colonies. When the wasps are hawking, A. cerana recruits threefold more guard bees to stave off predation than A. mellifera. The former also utilises wing shimmering as a visual pattern disruption mechanism, which is not shown by A. mellifera. A. cerana foragers halve the time of normal flight needed to dart into the nest entrance, while A. mellifera actually slows down in sashaying flight manoeuvres. V. velutina preferentially hawks A. mellifera foragers when both A. mellifera and A. cerana occur in the same apiary. The pace of wasp-hawking was highest in mid-summer but the frequency of hawking wasps was three times higher at A. mellifera colonies than at the A. cerana colonies. The wasps were taking A. mellifera foragers at a frequency eightfold greater than A. cerana foragers. The final hawking success rates of the wasps were about three times higher for A. mellifera foragers than for A. cerana. The relative success of native A. cerana over European A. mellifera in thwarting predation by the wasp V. velutina is interpreted as the result of co-evolution between the Asian wasp and honeybee, respectively.

  6. Street hawking among in-school adolescents in a south-western town in Nigeria: pattern, determinants and effects on school performance.

    PubMed

    Ijadunola, Macellina Y; Ojo, Temitope O; Babatunde, Adelekan; Olatunji, Gbajumo J; Owolabi, Gbolagade K; Adewale, Ibiyemi A; Ifedayo, Ibukun F; Friday, Ijuewe S

    2015-02-01

    Street hawking is the commonest form of child labor in Nigeria. Although street hawking is very pervasive, there is the increasing need to fully understand its pattern and effects on those involved in hawking particularly adolescents who combine schooling with hawking. In Nigeria, data on the effects of street hawking on in-school adolescents are generally scanty. Therefore, the present study was undertaken in Ife Central Local Government Area (LGA) of Osun State, Nigeria to assess the pattern, determinants of street hawking among in-school adolescents and its effect on school performance. A cross-sectional study of 435 adolescents (aged 10-19) attending public secondary schools was done. Data were collected using facilitated self-administered questionnaires alongside a review of class records. Appropriate statistical analysis including multiple regression was done. Results showed mean age of respondents to be 14.6±2.1 years with prevalence of street hawking at 37.2%. Early adolescents (10-13 years) were more likely to engage in street hawking compared to their counterparts in late adolescence (aged 17-19). Female adolescents and students of trading mothers were significantly more likely to engage in street hawking. Respondents engaged in street hawking were significantly more likely to have failed the last academic term examination. The findings from this study will be useful for stakeholders as they develop policies and programmes to address the challenge of street hawking among adolescent school goers.

  7. Interior of black holes and information recovery

    NASA Astrophysics Data System (ADS)

    Kawai, Hikaru; Yokokura, Yuki

    2016-02-01

    We analyze time evolution of a spherically symmetric collapsing matter from a point of view that black holes evaporate by nature. We first consider a spherical thin shell that falls in the metric of an evaporating Schwarzschild black hole of which the radius a (t ) decreases in time. The important point is that the shell can never reach a (t ) but it approaches a (t )-a (t )d/a (t ) d t . This situation holds at any radius because the motion of a shell in a spherically symmetric system is not affected by the outside. In this way, we find that the collapsing matter evaporates without forming a horizon. Nevertheless, a Hawking-like radiation is created in the metric, and the object looks the same as a conventional black hole from the outside. We then discuss how the information of the matter is recovered. We also consider a black hole that is adiabatically grown in the heat bath and obtain the interior metric. We show that it is the self-consistent solution of Gμ ν=8 π G ⟨Tμ ν⟩ and that the four-dimensional Weyl anomaly induces the radiation and a strong angular pressure. Finally, we analyze the internal structures of the charged and the slowly rotating black holes.

  8. Thermodynamics and luminosities of rainbow black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Benrong; Wang, Peng; Yang, Haitang, E-mail: mubenrong@uestc.edu.cn, E-mail: pengw@scu.edu.cn, E-mail: hyanga@scu.edu.cn

    2015-11-01

    Doubly special relativity (DSR) is an effective model for encoding quantum gravity in flat spacetime. As result of the nonlinearity of the Lorentz transformation, the energy-momentum dispersion relation is modified. One simple way to import DSR to curved spacetime is ''Gravity's rainbow'', where the spacetime background felt by a test particle would depend on its energy. Focusing on the ''Amelino-Camelia dispersion relation'' which is E{sup 2} = m{sup 2}+p{sup 2}[1−η(E/m{sub p}){sup n}] with n > 0, we investigate the thermodynamical properties of a Schwarzschild black hole and a static uncharged black string for all possible values of η and n in the framework ofmore » rainbow gravity. It shows that there are non-vanishing minimum masses for these two black holes in the cases with η < 0 and n ≥ 2. Considering effects of rainbow gravity on both the Hawking temperature and radius of the event horizon, we use the geometric optics approximation to compute luminosities of a 2D black hole, a Schwarzschild one and a static uncharged black string. It is found that the luminosities can be significantly suppressed or boosted depending on the values of η and n.« less

  9. Buteo Nesting Ecology: Evaluating Nesting of Swainson's Hawks in the Northern Great Plains.

    PubMed

    Inselman, Will M; Datta, Shubham; Jenks, Jonathan A; Jensen, Kent C; Grovenburg, Troy W

    2015-01-01

    Swainson's hawks (Buteo swainsoni) are long-distance migratory raptors that nest primarily in isolated trees located in areas of high grassland density. In recent years, anthropogenic conversion of grassland habitat has raised concerns about the status of the breeding population in the northern Great Plains. In 2013, we initiated a study to investigate the influence of extrinsic factors influencing Swainson's hawk nesting ecology in north-central South Dakota and south-central North Dakota. Using ground and aerial surveys, we located and monitored nesting Swainson's hawk pairs: 73 in 2013 and 120 in 2014. We documented 98 successful breeding attempts that fledged 163 chicks; 1.52 and 1.72 fledglings per successful nest in 2013 and 2014, respectively. We used Program MARK to evaluate the influence of land cover on nest survival. The top model, SDist2Farm+%Hay, indicated that nest survival (fledging at least one chick) decreased as nests were located farther from farm sites and as the percent of hay cover increased within 1200-m of the nest site (34.4%; 95% CI = 27.6%-42.3%). We used logistic regression analysis to evaluate the influence of landscape variables on nest-site selection; Swainson's hawks selected for nest sites located closer to roads. We suggest that tree belts associated with farm sites, whether occupied or not, provide critical breeding sites for Swainson's hawks. Additionally, poor breeding success may be related to the late migratory behavior of this species which requires them to occupy marginal habitat due to other raptors occupying the most suitable habitat prior to Swainson's hawks arriving to the breeding grounds.

  10. Aircraft Survivability. Fall 2011

    DTIC Science & Technology

    2011-01-01

    test the Mi-24 Hind, UH - 60 , and AH-64 Longbow rotorcraft. Bill also sat on the source selection boards for the Utility Tactical Transport Aircraft...medical evacuation (MEDEVAC, UH -60As and Air Force HH- 60s ), RW Attack (Army AH-64s and Marine AH-1s), RW Observation (Army OH-58s), and RW Utility... UH - 60s and UH -1s). Only a very small percentage of the incidents involved fixed wing aircraft with most of those involving C-130 variants that

  11. Hawking radiation from the holographic screen

    NASA Astrophysics Data System (ADS)

    Zhao, Ying-Jie

    2017-10-01

    In this paper, we generalize the Parikh-Wilczek scheme to a holographic screen in the framework of the ultraviolet self-complete quantum gravity. We calculate that the tunneling probability depends on the energy of the particle and the mass of the holographic screen. The radiating temperature has not been the standard Hawking temperature.

  12. Exact microstate counting for dyonic black holes in AdS4

    NASA Astrophysics Data System (ADS)

    Benini, Francesco; Hristov, Kiril; Zaffaroni, Alberto

    2017-08-01

    We present a counting of microstates of a class of dyonic BPS black holes in AdS4 which precisely reproduces their Bekenstein-Hawking entropy. The counting is performed in the dual boundary description, that provides a non-perturbative definition of quantum gravity, in terms of a twisted and mass-deformed ABJM theory. We evaluate its twisted index and propose an extremization principle to extract the entropy, which reproduces the attractor mechanism in gauged supergravity.

  13. Sensitivity of Hawking radiation to superluminal dispersion relations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barcelo, C.; Garay, L. J.; Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid

    2009-01-15

    We analyze the Hawking radiation process due to collapsing configurations in the presence of superluminal modifications of the dispersion relation. With such superluminal dispersion relations, the horizon effectively becomes a frequency-dependent concept. In particular, at every moment of the collapse, there is a critical frequency above which no horizon is experienced. We show that, as a consequence, the late-time radiation suffers strong modifications, both quantitative and qualitative, compared to the standard Hawking picture. Concretely, we show that the radiation spectrum becomes dependent on the measuring time, on the surface gravities associated with different frequencies, and on the critical frequency. Evenmore » if the critical frequency is well above the Planck scale, important modifications still show up.« less

  14. Thermodynamics and Phase Transition from Regular Bardeen Black Hole Surrounded by Quintessence

    NASA Astrophysics Data System (ADS)

    Saleh, Mahamat; Thomas, Bouetou Bouetou; Kofane, Timoleon Crepin

    2018-05-01

    In this paper, thermodynamics and phase transition are investigated for the regular Bardeen black hole surrounded by quintessence. Considering the metric of the Bardeen spacetime surrounded by quintessence, we derived the Unruh-Verlinde temperature. Using the first law of thermodynamics, we derived the expressions of the Hawking temperature as well as the specific heat for the black hole. Explicitly, their behaviors were plotted. It results that the magnetic monopole charge β as well as the presence of quintessence decrease the temperature and induce a thermodynamics phase transition in the spacetime. Moreover, when increasing the density of quintessence, the transition point moves to lower entropies.

  15. Red-tailed hawk dietary overlap with northern goshawks on the Kaibab Plateau, AZ

    Treesearch

    Angela E. Gatto; Teryl G. Grubb; Carol L. Chambers

    2006-01-01

    We determined food habits of Red-tailed Hawks (Buteo jamaicensis) for comparison with published information for Northern Goshawks (Accipiter gentilis) to evaluate potential competition on the Kaibab Plateau, Arizona. We collected prey remains and pellets from 42 Red-tailed Hawk nests at the end of the nesting season between August-...

  16. Wildlife Photography - Hawks

    NASA Image and Video Library

    2017-12-12

    A red-shouldered hawk sits on a tree branch while snacking on a snake at NASA’s Kennedy Space Center in Florida. Kennedy shares a boundary with the Merritt Island National Wildlife Refuge. The Refuge encompasses 140,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  17. Wildlife Photography - Hawks

    NASA Image and Video Library

    2017-12-12

    A red-shouldered hawk sits on a tree branch at NASA’s Kennedy Space Center in Florida. Kennedy shares a boundary with the Merritt Island National Wildlife Refuge. The Refuge encompasses 140,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  18. Red-tailed Hawk movements and use of habitat in the Luquillo Mountains of Puerto Rico

    USGS Publications Warehouse

    Vilella, Francisco; Nimitz, Wyatt F.

    2012-01-01

    The Red-tailed Hawk (Buteo jamaicensis) is a top predator of upland ecosystems in the Greater Antilles. Little information exists on the ecology of the insular forms of this widely distributed species. We studied movements and resource use of the Red-tailed Hawk from 2000 to 2002 in the montane forests of northeastern Puerto Rico. We captured 32 and used 21 radio-marked Red-tailed Hawks to delineate home range, core area shifts, and macrohabitat use in the Luquillo Mountains. Red-tailed Hawks in the Luquillo Mountains frequently perched near the top of canopy emergent trees and were characterized by wide-ranging capabilities and extensive spatial overlap. Home range size averaged 5,022.6 6 832.1 ha (305–11,288 ha) and core areas averaged 564.8 6 90.7 ha (150–1,230 ha). This species had large mean weekly movements (3,286.2 6 348.5 m) and a preference for roadside habitats. Our findings suggest fragmentation of contiguous forest outside protected areas in Puerto Rico may benefit the Red-tailed Hawk

  19. Effective temperatures and radiation spectra for a higher-dimensional Schwarzschild-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Kanti, P.; Pappas, T.

    2017-07-01

    The absence of a true thermodynamical equilibrium for an observer located in the causal area of a Schwarzschild-de Sitter spacetime has repeatedly raised the question of the correct definition of its temperature. In this work, we consider five different temperatures for a higher-dimensional Schwarzschild-de Sitter black hole: the bare T0, the normalized TBH, and three effective ones given in terms of both the black-hole and cosmological horizon temperatures. We find that these five temperatures exhibit similarities but also significant differences in their behavior as the number of extra dimensions and the value of the cosmological constant are varied. We then investigate their effect on the energy emission spectra of Hawking radiation. We demonstrate that the radiation spectra for the normalized temperature TBH—proposed by Bousso and Hawking over twenty years ago—leads to the dominant emission curve, while the other temperatures either support a significant emission rate only in a specific Λ regime or have their emission rates globally suppressed. Finally, we compute the bulk-over-brane emissivity ratio and show that the use of different temperatures may lead to different conclusions regarding the brane or bulk dominance.

  20. Pain-Suppressed Behaviors in the Red-tailed Hawk 1 (Buteo jamaicensis)

    PubMed Central

    Mazor-Thomas, Jana E.; Mann, Phyllis E.; Karas, Alicia Z.; Tseng, Flo

    2014-01-01

    Our ability to provide analgesia in wild and exotic patients is hampered by a lack of species-specific information on effective drugs and protocols. One contributing factor is the difficulty of applying data from traditional laboratory tests of nociception to clinical conditions frequently involving combinations of inflammatory, mechanical, and neuropathic pain. Pain-suppressed behaviors have become a valuable predictor of clinical utility in other species; in this study we extend this framework to red -tailed hawks in a wildlife hospital, in an attempt to develop a new, humane testing method for birds of prey. We scored six behaviors in hawks hospitalized either for orthopedic trauma or for non-painful conditions. These behaviors included: movement about the cage, grooming, head motions, foot shifts, beak clacks, and rouse. Movement, head motions, and beak clacks were all significantly reduced in hawks with recent orthopedic injury, but not in hawks with healed or minor injuries (P<0.05 for all behaviors). However, it should be noted that due to stringent admission criteria, and the difficulties inherent in studying naturally-occuring injury in wild patients, this study only included -subjects in four experimental groups, and this limited our ability to fully investigate confounds within our data. A follow-up experiment was conducted to determine potential effects of buprenorphine, a mu opioid agonist, on the behaviors listed above. Buprenorphine in the absence of pain caused minor, non-significant decreases in most behaviors, and had no effect on head movement frequency. This suggests that head movements in particular may be sensitive to pain but not to sedative side-effects of buprenorphine. Overall, red -tailed hawks with recent orthopedic trauma show consistent and marked red uctions in several normal maintenance behaviors. Head movements, reported for the first time in this study as a potential marker of pain in birds, in particular seem to be insensitive to