Sample records for uhf radiation lower range

  1. The electric field changes and UHF radiations caused by the triggered lightning in Japan

    NASA Technical Reports Server (NTRS)

    Kawasaki, Zen-Ichiro; Kanao, Tadashi; Matsuura, Kenji; Nakano, Minoru; Horii, Kenji; Nakamura, Koichi

    1991-01-01

    In the rocket triggered lightning experiment of fiscal 1989, researchers observed electromagnetic field changes and UHF electromagnetic radiation accompanying rocket triggered lightning. It was found that no rapid changes corresponding to the return stroke of natural lightning were observed in the electric field changes accompanying rocket triggered lightning. However, continuous currents were present. In the case of rocket triggered lightning to the tower, electromagnetic field changes corresponding to the initiation of triggered lightning showed a bipolar pulse of a relatively large amplitude. In contrast, the rocket triggered lightning to the ground did not have such a bipolar pulse. The UHF radiation accompanying the rocket triggered lightning preceded the waveform portions corresponding to the first changes in electromagnetic fields. The number of isolated pulses in the UHF radiation showed a correlation with the time duration from rocket launching up to triggered lightning. The time interval between consecutive isolated pulses tended to get shorter with the passage of time, just like the stepped leaders of natural lightning.

  2. Broad-band UHF dipole array

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1985-01-01

    A 6X6 array of fan-dipoles was designed to operate in the 510 to 660 MHz frequency range for aircraft flight test and evaluation of a UHF radiometer system. A broad-band dipole design operating near the first resonance is detailed. Measured VSWR and radiation patterns for the dipole array demonstrate achievable bandwidths in the 35 percent to 40 percent range.

  3. Disordered redox metabolism of brain cells in rats exposed to low doses of ionizing radiation or UHF electromagnetic radiation.

    PubMed

    Burlaka, A P; Druzhyna, M O; Vovk, A V; Lukin, S М

    2016-12-01

    To investigate the changes of redox-state of mammalian brain cells as the critical factor of initiation and formation of radiation damage of biological structures in setting of continuous exposure to low doses of ionizing radiation or fractionated ultra high frequency electromagnetic radiation (UHF EMR) at non-thermal levels. The influence of low-intensity ionizing radiation was studied on outbred female rats kept for 1.5 years in the Chernobyl accident zone. The effects of total EMR in the UHF band of non-thermal spectrum were investigated on Wistar rats. The rate of formation of superoxide radicals and the rate of NO synthesis in mitochondria were determined by the EPR. After exposure to ionizing or UHF radiation, the levels of ubisemiquinone in brain tissue of rats decreased by 3 and 1.8 times, respectively. The content of NO-FeS-protein complexes in both groups increased significantly (р < 0.05). In the conditions of ionizing or EMR the rates of superoxide radical generation in electron-transport chain of brain cell mitochondria increased by 1.5- and 2-fold, respectively (р < 0.05). In brain tissue of rats kept in the Chernobyl zone, significant increase of NO content was registered; similar effect was observed in rats treated with UHFR (р < 0.05). The detected changes in the electron transport chain of mitochondria of brain cells upon low-intensity irradiation or UHF EMR cause the metabolic reprogramming of cell mitochondria that increases the rate of superoxide radical generation and nitric oxide, which may initiate the development of neurodegenerative diseases and cancer. This article is part of a Special Issue entitled "The Chornobyl Nuclear Accident: Thirty Years After".

  4. Investigation into the effects of VHF and UHF band radiation on Hewlett-Packard (HP) Cesium Beam Frequency Standards

    NASA Technical Reports Server (NTRS)

    Dickens, Andrew

    1995-01-01

    This paper documents an investigation into reports which have indicated that exposure to VHF and UHF band radiation has adverse effects on the frequency stability of HP cesium beam frequency standards. Tests carried out on the basis of these reports show that sources of VHF and UHF radiation such as two-way hand held police communications devices do cause reproducible adverse effects. This investigation examines reproducible effects and explores possible causes.

  5. Long range ultra-high frequency (UHF) radio frequency identification (RFID) antenna design

    NASA Astrophysics Data System (ADS)

    Reynolds, Nathan D.

    There is an ever-increasing demand for radio frequency identification (RFID) tags that are passive, long range, and mountable on multiple surfaces. Currently, RFID technology is utilized in numerous applications such as supply chain management, access control, and public transportation. With the combination of sensory systems in recent years, the applications of RFID technology have been extended beyond tracking and identifying. This extension includes applications such as environmental monitoring and healthcare applications. The available sensory systems usually operate in the medium or high frequency bands and have a low read range. However, the range limitations of these systems are being overcome by the development of RFID sensors focused on utilizing tags in the ultra-high frequency (UHF) band. Generally, RFID tags have to be mounted to the object that is being identified. Often the objects requiring identification are metallic. The inherent properties of metallic objects have substantial effects on nearby electromagnetic radiation; therefore, the operation of the tag antenna is affected when mounted on a metallic surface. This outlines one of the most challenging problems for RFID systems today: the optimization of tag antenna performance in a complex environment. In this research, a novel UHF RFID tag antenna, which has a low profile, long range, and is mountable on metallic surfaces, is designed analytically and simulated using a 3-D electromagnetic simulator, ANSYS HFSS. A microstrip patch antenna is selected as the antenna structure, as patch antennas are low profile and suitable for mounting on metallic surfaces. Matching and theoretical models of the microstrip patch antenna are investigated. Once matching and theory of a microstrip patch antenna is thoroughly understood, a unique design technique using electromagnetic band gap (EBG) structures is explored. This research shows that the utilization of an EBG structure in the patch antenna design yields

  6. Space Shuttle UHF Communications Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Loh, Yin-Chung; Kroll, Quin D.; Sham, Catherine C.

    2004-01-01

    An extension boom is to be installed on the starboard side of the Space Shuttle Orbiter (SSO) payload bay for thermal tile inspection and repairing. As a result, the Space Shuttle payload bay Ultra High Frequency (UHF) antenna will be under the boom. This study is to evaluate the Space Shuttle UHF communication performance for antenna at a suitable new location. To insure the RF coverage performance at proposed new locations, the link margin between the UHF payload bay antenna and Extravehicular Activity (EVA) Astronauts at a range distance of 160 meters from the payload bay antenna was analyzed. The communication performance between Space Shuttle Orbiter and International Space Station (SSO-ISS) during rendezvous was also investigated. The multipath effects from payload bay structures surrounding the payload bay antenna were analyzed. The computer simulation tool based on the Geometrical Theory of Diffraction method (GTD) was used to compute the signal strengths. The total field strength was obtained by summing the direct fields from the antennas and the reflected and diffracted fields from the surrounding structures. The computed signal strengths were compared to the signal strength corresponding to the 0 dB link margin. Based on the results obtained in this study, RF coverage for SSO-EVA and SSO- ISS communication links was determined for the proposed payload bay antenna UHF locations. The RF radiation to the Orbiter Docking System (ODS) pyros, the payload bay avionics, and the Shuttle Remote Manipulator System (SRMS) from the new proposed UHF antenna location was also investigated to ensure the EMC/EMI compliances.

  7. Design of miniature type parallel coupled microstrip hairpin filter in UHF range

    NASA Astrophysics Data System (ADS)

    Hasan, Adib Belhaj; Rahman, Maj Tarikur; Kahhar, Azizul; Trina, Tasnim; Saha, Pran Kanai

    2017-12-01

    A microstrip parallel coupled line bandpass filter is designed in UHF range and the filter size is reduced by microstrip hairpin structure. The FR4 substrate is used as base material of the filter. The filter is analyzed by both ADS and CST design studio in the frequency range of 500 MHz to 650 MHz. The Bandwidth is found 13.27% with a center frequency 570 MHz. Simulation from both ADS and CST shows a very good agreement of performance of the filter.

  8. Improving the range of UHF RFID transponders using solar energy harvesting under low light conditions

    NASA Astrophysics Data System (ADS)

    Ascher, A.; Lehner, M.; Eberhardt, M.; Biebl, E.

    2015-11-01

    The sensitivity of passive UHF RFID transponders (Radio Frequency Identification) is the key issue, which determines the maximum read range of an UHF RFID system. During this work the ability of improving the sensitivity using solar energy harvesting, especially for low light conditions, is shown. To use the additional energy harvested from the examined silicon and organic solar cells, the passive RFID system is changed into a semi-active one. This needs no changes on the reader hardware itself, only the used RFIC (Radio Frequency Integrated Circuit) of the transponder has to possess an additional input pin for an external supply voltage. The silicon and organic cells are evaluated and compared to each other regarding their low light performance. The different cells are examined in a shielded box, which is protected from the environmental lighting. Additionally, a demonstrator is shown, which makes the measurement of the extended read range with respect to the lighting conditions possible. If the cells are completely darkened, the sensitivity gain is ascertained using high capacity super caps. Due to the measurements an enhancement in range up to 70 % could be guaranteed even under low light conditions.

  9. Ionospheric Impacts on UHF Space Surveillance

    NASA Astrophysics Data System (ADS)

    Jones, J. C.

    2017-12-01

    Earth's atmosphere contains regions of ionized plasma caused by the interaction of highly energetic solar radiation. This region of ionization is called the ionosphere and varies significantly with altitude, latitude, local solar time, season, and solar cycle. Significant ionization begins at about 100 km (E layer) with a peak in the ionization at about 300 km (F2 layer). Above the F2 layer, the atmosphere is mostly ionized but the ion and electron densities are low due to the unavailability of neutral molecules for ionization so the density decreases exponentially with height to well over 1000 km. The gradients of these variations in the ionosphere play a significant role in radio wave propagation. These gradients induce variations in the index of refraction and cause some radio waves to refract. The amount of refraction depends on the magnitude and direction of the electron density gradient and the frequency of the radio wave. The refraction is significant at HF frequencies (3-30 MHz) with decreasing effects toward the UHF (300-3000 MHz) range. UHF is commonly used for tracking of space objects in low Earth orbit (LEO). While ionospheric refraction is small for UHF frequencies, it can cause errors in range, azimuth angle, and elevation angle estimation by ground-based radars tracking space objects. These errors can cause significant errors in precise orbit determinations. For radio waves transiting the ionosphere, it is important to understand and account for these effects. Using a sophisticated radio wave propagation tool suite and an empirical ionospheric model, we calculate the errors induced by the ionosphere in a simulation of a notional space surveillance radar tracking objects in LEO. These errors are analyzed to determine daily, monthly, annual, and solar cycle trends. Corrections to surveillance radar measurements can be adapted from our simulation capability.

  10. Influence UHF radiation on the process of self-assembly and lethal effect of bacterial lipopolysaccharide

    NASA Astrophysics Data System (ADS)

    Brill, G. E.; Egorova, A. V.; Bugaeva, I. O.; Postnov, D. E.; Melnikov, A. G.; Ushakova, O. V.

    2018-04-01

    The influence of low-intensity electromagnetic radiation on the process of self-assembly, spectral-fluorescent characteristics and lethal effect of bacterial lipopolysaccharide (endotoxin) was performed. A solution of bacterial lipopolysaccharide exposed to electromagnetic waves with a frequency of 1 GHz, the power density of 0.1 μW/cm2 for 10 min. In experiments on a large group of control and irradiated mice, a comparative analysis of the estimated lethal dose of endotoxin was performed. It was proved that UHF radiation of certain parameters reduces the lethal effects of bacterial lipopolysaccharide on 26%.

  11. UHF Television: Breaking the Monolith

    ERIC Educational Resources Information Center

    Oppenheim, Jerrold

    1975-01-01

    Advocates that the Federal Communications Council should remove unnecessary UHF restrictions to dramatically increase the number of UHF stations, put all existing stations on the UHF band, and license new low-power stations on the UHF channels, arguing that television fails to serve a sizable number of viewers. (Author/JM)

  12. Analysis of partial discharge activity by a conducting particle in liquid nitrogen under AC voltages adopting UHF technique

    NASA Astrophysics Data System (ADS)

    Sarathi, R.; Giridhar, A. V.; Sethupathi, K.

    2010-01-01

    Liquid nitrogen (LN 2) is used as an insulant as well as coolant in high temperature superconducting power equipments. Particle contamination in liquid nitrogen is one of the major cause for formation of partial discharges during operation. An attempt has been made in the present study to understand the feasibility of using Ultra High Frequency (UHF) sensors for identification of partial discharge (PD) formed due to particle movement in liquid nitrogen under AC voltages. It is observed that the partial discharge formed in LN 2 radiates UHF signal. The results of the study indicate that the conventional partial discharge measurement and UHF peak amplitude measurement have direct correlation. The Phase Resolved Partial Discharge (PRPD) analysis indicates that the partial discharge formed due to particle movement occurs in the entire phase windows of the AC voltage. The PD magnitude increases with increase in applied voltage. The frequency content of UHF signal generated due to particle movement in liquid nitrogen under AC voltages lies in the range of 0.5-1.5 GHz. The UHF sensor output signal analyzed using spectrum analyzer by operating it in zero-span mode, indicates that burst type PD occurs due to particle movement.

  13. A UHF RFID system with on-chip-antenna tag for short range communication

    NASA Astrophysics Data System (ADS)

    Qi, Peng; Chun, Zhang; Xijin, Zhao; Zhihua, Wang

    2015-05-01

    A UHF RF identification system based on the 0.18 μm CMOS process has been developed for short range and harsh size requirement applications, which is composed of a fully integrated tag and a special reader. The whole tag chip with the antenna takes up an area of 0.36 mm2, which is smaller than other reported tags with an on-chip antenna (OCA) using the standard CMOS process. A self-defined protocol is proposed to reduce the power consumption, and minimize the size of the tag. The specialized SOC reader system consists of the RF transceiver, digital baseband, MCU and host interface. Its power consumption is about 500 mW. Measurement results show that the system's reading range is 2 mm with 20 dBm reader output power. With an inductive antenna printed on a paper substrate around the OCA tag, the reading range can be extended from several centimeters to meters, depending on the shape and size of the inductive antenna.

  14. The design and simulation of UHF RFID microstrip antenna

    NASA Astrophysics Data System (ADS)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; Liu, Liping; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Renheng, Xu

    2018-02-01

    At present, China has delineated UHF RFID communicating frequency range which is 840 ∼ 845 MHz and 920 ∼ 925 MHz, but most UHF microstrip antenna don’t carry out this standard, that leads to radio frequency pollution. In order to solve the problems above, a method combining theory and simulation is adopted. Combining with a new ceramic material, a 925.5 MHz RFID microstrip antenna is designed, which is optimized and simulated by HFSS software. The results show that the VSWR of this RFID microstrip antenna is relatively small in the vicinity of 922.5 MHz, the gain is 2.1 dBi, which can be widely used in China’s UHF RFID communicating equipments.

  15. Determination of the Wavelength of u.h.f. TV Transmissions

    ERIC Educational Resources Information Center

    Gaskell, D. C.

    1973-01-01

    Describes an experiment suitable for high school physics classes in which students determine the wavelength of electromagnetic radiation of u.h.f. television transmissions. Elaborate equipment is not required, and details are given for the construction of a dipole. (JR)

  16. Design of a Miniaturized Meandered Line Antenna for UHF RFID Tags

    PubMed Central

    Islam, Mohammad Tariqul; Rowe, Wayne S. T.; Kibria, Salehin; Jit Singh, Mandeep; Misran, Norbahiah

    2016-01-01

    A semi-circle looped vertically omnidirectional radiation (VOR) patterned tag antenna for UHF (919–923 MHz for Malaysia) frequency is designed to overcome the impedance mismatch issue in this paper. Two impedance matching feeding strips are used in the antenna structure to tune the input impedance of the antenna. Two dipole shaped meandered lines are used to achieve a VOR pattern. The proposed antenna is designed for 23-j224 Ω chip impedance. The antenna is suitable for ‘place and tag’ application. A small size of 77.68×35.5 mm2 is achieved for a read range performance of 8.3 meters using Malaysia regulated maximum power transfer of 2.0 W effective radiated power (ERP). PMID:27533470

  17. Wind Turbine Clutter Mitigation in Coastal UHF Radar

    PubMed Central

    Wang, Caijun; Jiang, Dapeng; Wen, Biyang

    2014-01-01

    Coastal UHF radar provides a unique capability to measure the sea surface dynamic parameters and detect small moving targets, by exploiting the low energy loss of electromagnetic waves propagating along the salty and good conducting ocean surface. It could compensate the blind zone of HF surface wave radar at close range and reach further distance than microwave radars. However, its performance is susceptible to wind turbines which are usually installed on the shore. The size of a wind turbine is much larger than the wavelength of radio waves at UHF band, which results in large radar cross section. Furthermore, the rotation of blades adds time-varying Doppler frequency to the clutter and makes the suppression difficult. This paper proposes a mitigation method which is based on the specific periodicity of wind turbine clutter and performed mainly in the time-frequency domain. Field experimental data of a newly developed UHF radar are used to verify this method, and the results prove its effectiveness. PMID:24550709

  18. Wind turbine clutter mitigation in coastal UHF radar.

    PubMed

    Yang, Jing; Pan, Chao; Wang, Caijun; Jiang, Dapeng; Wen, Biyang

    2014-01-01

    Coastal UHF radar provides a unique capability to measure the sea surface dynamic parameters and detect small moving targets, by exploiting the low energy loss of electromagnetic waves propagating along the salty and good conducting ocean surface. It could compensate the blind zone of HF surface wave radar at close range and reach further distance than microwave radars. However, its performance is susceptible to wind turbines which are usually installed on the shore. The size of a wind turbine is much larger than the wavelength of radio waves at UHF band, which results in large radar cross section. Furthermore, the rotation of blades adds time-varying Doppler frequency to the clutter and makes the suppression difficult. This paper proposes a mitigation method which is based on the specific periodicity of wind turbine clutter and performed mainly in the time-frequency domain. Field experimental data of a newly developed UHF radar are used to verify this method, and the results prove its effectiveness.

  19. Low-cost passive UHF RFID tags on paper substrates

    NASA Astrophysics Data System (ADS)

    Sajal, Sayeed Zebaul Haque

    To reduce the significant cost in the widespread deployment of UHF radio frequency identification (RFID) systems, an UHF RFID tag design is presented on paper substrates. The design is based on meander-line miniaturization techniques and open complementary split ring resonator (OCSRR) elements that reduce required conducting materials by 30%. Another passive UHF RFID tag is designed to sense the moisture based on the antenna's polarization. An inexpensive paper substrate and copper layer are used for flexibility and low-cost. The key characteristic of this design is the sensitivity of the antenna's polarization on the passive RFID tag to the moisture content in the paper substrate. In simulations, the antenna is circularly-polarized when the substrate is dry and is linearly-polarized when the substrate is wet. It was shown that the expected read-ranges and desired performance could be achieved reducing the over-all cost of the both designs.

  20. 47 CFR 74.733 - UHF translator signal boosters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false UHF translator signal boosters. 74.733 Section... Translator, and TV Booster Stations § 74.733 UHF translator signal boosters. (a) The licensee of a UHF television broadcast translator station may be authorized to operate one or more signal boosters for the...

  1. 47 CFR 74.733 - UHF translator signal boosters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false UHF translator signal boosters. 74.733 Section... Translator, and TV Booster Stations § 74.733 UHF translator signal boosters. (a) The licensee of a UHF television broadcast translator station may be authorized to operate one or more signal boosters for the...

  2. 47 CFR 74.733 - UHF translator signal boosters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false UHF translator signal boosters. 74.733 Section... Translator, and TV Booster Stations § 74.733 UHF translator signal boosters. (a) The licensee of a UHF television broadcast translator station may be authorized to operate one or more signal boosters for the...

  3. UHF coplanar-slot antenna for aircraft-to-satellite data communications

    NASA Technical Reports Server (NTRS)

    Myhre, R. W.

    1979-01-01

    A lightweight low drag coplanar slot antenna was developed for use on commercial jet aircraft that will provide upper hemisphere coverage in the UHF band at frequencies of 402 and 468 MHz is described. The antenna is designed to transmit meteorological data from wide body jet aircraft to ground users via synchronous meteorological data relay satellites. The low profile antenna (23.5 cm wide by 38.1 cm long slot by 1.9 cm high) is a conformal antenna utilizing the coplanar approach with the advantages of broad frequency bandwidth and improved electrical integrity over wide range of temperature. The antenna is circular polarized, has anon axis gain of near +2.5 dB, and a HPBW greater than 90 deg. Areas discussed include antenna design, radiation characteristics, flight testing, and system performance.

  4. UHF wearable battery free sensor module for activity and falling detection.

    PubMed

    Nam Trung Dang; Thang Viet Tran; Wan-Young Chung

    2016-08-01

    Falling is one of the most serious medical and social problems in aging population. Therefore taking care of the elderly by detecting activity and falling for preventing and mitigating the injuries caused by falls needs to be concerned. This study proposes a wearable, wireless, battery free ultra-high frequency (UHF) smart sensor tag module for falling and activity detection. The proposed tag is powered by UHF RF wave from reader and read by a standard UHF Electronic Product Code (EPC) Class-1 Generation-2 reader. The battery free sensor module could improve the wearability of the wireless device. The combination of accelerometer signal and received signal strength indication (RSSI) from a reader in the passive smart sensor tag detect the activity and falling of the elderly very successfully. The fabricated smart sensor tag module has an operating range of up to 2.5m and conducting in real-time activity and falling detection.

  5. RFID antenna design for circular polarization in UHF band

    NASA Astrophysics Data System (ADS)

    Shahid, Hamza; Khan, Muhammad Talal Ali; Tayyab, Umais; Irshad, Usama Bin; Alkhazraji, Emad; Javaid, Muhammad Sharjeel

    2017-05-01

    A miniature half cross dipole antenna for defense and aerospace RFID applications in UHF band is presented. The dipole printed line arms are half crossed shape on top of dielectric substrate backed by reactive impedance surface. The antenna fed by a coaxial cable at the gap separating the dipole arms. Our design is intended to work at 2.42 GHz for RFID readers. The radiation pattern obtained has HPBW of 112, return loss of 22.24 dB and 90 MHz bandwidth.

  6. A signature correlation study of ground target VHF/UHF ISAR imagery

    NASA Astrophysics Data System (ADS)

    Gatesman, Andrew J.; Beaudoin, Christopher J.; Giles, Robert H.; Kersey, William T.; Waldman, Jerry; Carter, Steve; Nixon, William E.

    2003-09-01

    VV and HH-polarized radar signatures of several ground targets were acquired in the VHF/UHF band (171-342 MHz) by using 1/35th scale models and an indoor radar range operating from 6 to 12 GHz. Data were processed into medianized radar cross sections as well as focused, ISAR imagery. Measurement validation was confirmed by comparing the radar cross section of a test object with a method of moments radar cross section prediction code. The signatures of several vehicles from three vehicle classes (tanks, trunks, and TELs) were measured and a signature cross-correlation study was performed. The VHF/UHF band is currently being exploited for its foliage penetration ability, however, the coarse image resolution which results from the relatively long radar wavelengths suggests a more challenging target recognition problem. One of the study's goals was to determine the amount of unique signature content in VHF/UHF ISAR imagery of military ground vehicles. Open-field signatures are compared with each other as well as with simplified shapes of similar size. Signatures were also acquired on one vehicle in a variety of configurations to determine the impact of monitor target variations on the signature content at these frequencies.

  7. 47 CFR 73.4195 - Political advertising by UHF translators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Political advertising by UHF translators. 73.4195 Section 73.4195 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO... advertising by UHF translators. See Public Notice, FCC 76936, dated October 8, 1976. 62 FCC 2d 896; 41 FR...

  8. 47 CFR 73.4195 - Political advertising by UHF translators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Political advertising by UHF translators. 73.4195 Section 73.4195 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO... advertising by UHF translators. See Public Notice, FCC 76936, dated October 8, 1976. 62 FCC 2d 896; 41 FR...

  9. Screen printed UHF antennas on flexible substrates

    NASA Astrophysics Data System (ADS)

    Janeczek, Kamil; Młożniak, Anna; Kozioł, Grażyna; Araźna, Aneta; Jakubowska, Małgorzata; Bajurko, Paweł

    2010-09-01

    Printed electronics belongs to the most important developing electronics technologies. It provides new possibilities to produce low cost and large area devices. In its range several applications can be distinguished like printed batteries, OLED, biosensors, photovoltaic cells or RFID tags. In the presented investigation, antennas working in UHF frequency range were elaborated. It can be applied in the future for flexible RFID tags. To produce these antennas polymer paste with silver flakes was used. It was deposited on two flexible substrates (foil and photo paper) with screen printing techniques. After printing process surface profile, electrical and microwave parameters of performed antennas were measured using digital multimeter and network analyzer, relatively. Furthermore, a thickness of printed layers was measured.

  10. Influence of barrier on partial discharge activity by a conducting particle in liquid nitrogen under AC voltages adopting UHF technique

    NASA Astrophysics Data System (ADS)

    Sarathi, R.; Giridhar, A. V.; Sethupathi, K.

    2011-02-01

    The UHF signals are generated due to PD formed by particle movement in liquid nitrogen under AC voltages. The levitation voltage of a particle in liquid nitrogen measured through UHF technique and by conventional PD measurement technique is the same, confirming the sensitivity of UHF technique for identification of PD activity. The frequency content of UHF signal generated due to particle movement in liquid nitrogen, under AC voltages, lies in the range 0.5-1.5 GHz. The characteristics of UHF signal generated due to particle movement between the barrier and high voltage/ground electrode is much similar to the signal generated by particle movement in clean electrode gap. Pseudo resonance phenomena can occur in liquid nitrogen due to particle movement. It is also observed that the partial discharge magnitude, in general, be high when the particle moves between the barrier and high voltage electrode when compared to the barrier and the ground electrode. Percentage of clay in epoxy nanocomposites has not altered the levitation voltage of the particle in the electrode gap. Zero span analysis clearly indicates that pseudo resonance occurs when particle moves (in a short gap) between the barrier and high voltage/ground electrode.

  11. A System Implementation for Cooperation between UHF RFID Reader and TCP/IP Device

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hoon; Jin, Ik Soo

    This paper presents a system implementation for cooperation between UHF RFID reader and TCP/IP device that can be used as a home gateway. The system consists of an UHF RFID tag, an UHF RFID reader, a RF end-device, a RF coordinator and a TCP/IP I/F. The UHF RFID reader is compatible with EPC Class-0/Gen1, Class-1/Gen1, 2 and ISO18000-6B, operating at the 915MHz. In particular, UHF RFID reader can be combined with a RF end device/coordinator for ZigBee(IEEE 802.15.4) interface which is low power wireless standard. The TCP/IP device is communicated with RFID reader via wired type. On the other hand, it is connected with ZigBee end-device via wireless type. The experimental results show that the developed system can provide the right networking.

  12. UHF FM receiver having improved frequency stability and low RFI emission

    DOEpatents

    Lupinetti, Francesco

    1990-02-27

    A UHF receiver which converts UHF modulated carrier signals to baseband video signals without any heterodyne or frequency conversion stages. A bandpass filter having a fixed frequency first filters the signals. A low noise amplifier amplifies the filtered signal and applies the signal through further amplification stages to a limited FM demodulator circuit. The UHF signal is directly converted to a baseband video signal. The baseband video signal is clamped by a clamping circuit before driving a monitor. Frequency stability for the receivers is at a theoretical maximum, and interference to adjacent receivers is eliminated due to the absence of a local oscillator.

  13. Enhanced UHF RFID tags for drug tracing.

    PubMed

    Catarinucci, Luca; Colella, Riccardo; De Blasi, Mario; Patrono, Luigi; Tarricone, Luciano

    2012-12-01

    Radio Frequency Identification (RFID) technology is playing a crucial role for item-level tracing systems in healthcare scenarios. The pharmaceutical supply chain is a fascinating application context, where RFID can guarantee transparency in the drug flow, supporting both suppliers and consumers against the growing counterfeiting problem. In such a context, the choice of the most adequate RFID tag, in terms of shape, frequency, size and reading range, is crucial. The potential presence of items containing materials hostile to the electromagnetic propagation exasperates the problem. In addition, the peculiarities of the different RFID-based checkpoints make even more stringent the requirements for the tag. In this work, the performance of several commercial UHF RFID tags in each step of the pharmaceutical supply chain has been evaluated, confirming the expected criticality. On such basis, a guideline for the electromagnetic design of new high-performance tags capable to overcome such criticalities has been defined. Finally, driven by such guidelines, a new enhanced tag has been designed, realized and tested. Due to patent pending issues, the antenna shape is not shown. Nevertheless, the optimal obtained results do not lose their validity. Indeed, on the one hand they demonstrate that high performance item level tracing systems can actually be implemented also in critical operating conditions. On the other hand, they encourage the tag designer to follow the identified guidelines so to realize enhanced UHF tags.

  14. Detection of moving humans in UHF wideband SAR

    NASA Astrophysics Data System (ADS)

    Sjögren, Thomas K.; Ulander, Lars M. H.; Frölind, Per-Olov; Gustavsson, Anders; Stenström, Gunnar; Jonsson, Tommy

    2014-06-01

    In this paper, experimental results for UHF wideband SAR imaging of humans on an open field and inside a forest is presented. The results show ability to detect the humans and suggest possible ways to improve the results. In the experiment, single channel wideband SAR mode of the UHF UWB system LORA developed by Swedish Defence Research Agency (FOI). The wideband SAR mode used in the experiment was from 220 to 450 MHz, thus with a fractional bandwidth of 0.68. Three humans walking and one stationary were available in the scene with one of the walking humans in the forest. The signature of the human in the forest appeared on the field, due to azimuth shift from the positive range speed component. One human on the field and the one in the forest had approximately the same speed and walking direction. The signatures in the SAR image were compared as a function of integration time based on focusing using the average relative speed of these given by GPS logs. A signal processing gain was obtained for the human in forest until approximately 15 s and 35 s for the human on the field. This difference is likely explained by uneven terrain and trees in the way, causing a non-straight walking path.

  15. Analysis strategies for high-resolution UHF-fMRI data.

    PubMed

    Polimeni, Jonathan R; Renvall, Ville; Zaretskaya, Natalia; Fischl, Bruce

    2018-03-01

    Functional MRI (fMRI) benefits from both increased sensitivity and specificity with increasing magnetic field strength, making it a key application for Ultra-High Field (UHF) MRI scanners. Most UHF-fMRI studies utilize the dramatic increases in sensitivity and specificity to acquire high-resolution data reaching sub-millimeter scales, which enable new classes of experiments to probe the functional organization of the human brain. This review article surveys advanced data analysis strategies developed for high-resolution fMRI at UHF. These include strategies designed to mitigate distortion and artifacts associated with higher fields in ways that attempt to preserve spatial resolution of the fMRI data, as well as recently introduced analysis techniques that are enabled by these extremely high-resolution data. Particular focus is placed on anatomically-informed analyses, including cortical surface-based analysis, which are powerful techniques that can guide each step of the analysis from preprocessing to statistical analysis to interpretation and visualization. New intracortical analysis techniques for laminar and columnar fMRI are also reviewed and discussed. Prospects for single-subject individualized analyses are also presented and discussed. Altogether, there are both specific challenges and opportunities presented by UHF-fMRI, and the use of proper analysis strategies can help these valuable data reach their full potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. UHF Signal Processing and Pattern Recognition of Partial Discharge in Gas-Insulated Switchgear Using Chromatic Methodology

    PubMed Central

    Wang, Xiaohua; Li, Xi; Rong, Mingzhe; Xie, Dingli; Ding, Dan; Wang, Zhixiang

    2017-01-01

    The ultra-high frequency (UHF) method is widely used in insulation condition assessment. However, UHF signal processing algorithms are complicated and the size of the result is large, which hinders extracting features and recognizing partial discharge (PD) patterns. This article investigated the chromatic methodology that is novel in PD detection. The principle of chromatic methodologies in color science are introduced. The chromatic processing represents UHF signals sparsely. The UHF signals obtained from PD experiments were processed using chromatic methodology and characterized by three parameters in chromatic space (H, L, and S representing dominant wavelength, signal strength, and saturation, respectively). The features of the UHF signals were studied hierarchically. The results showed that the chromatic parameters were consistent with conventional frequency domain parameters. The global chromatic parameters can be used to distinguish UHF signals acquired by different sensors, and they reveal the propagation properties of the UHF signal in the L-shaped gas-insulated switchgear (GIS). Finally, typical PD defect patterns had been recognized by using novel chromatic parameters in an actual GIS tank and good performance of recognition was achieved. PMID:28106806

  17. UHF Signal Processing and Pattern Recognition of Partial Discharge in Gas-Insulated Switchgear Using Chromatic Methodology.

    PubMed

    Wang, Xiaohua; Li, Xi; Rong, Mingzhe; Xie, Dingli; Ding, Dan; Wang, Zhixiang

    2017-01-18

    The ultra-high frequency (UHF) method is widely used in insulation condition assessment. However, UHF signal processing algorithms are complicated and the size of the result is large, which hinders extracting features and recognizing partial discharge (PD) patterns. This article investigated the chromatic methodology that is novel in PD detection. The principle of chromatic methodologies in color science are introduced. The chromatic processing represents UHF signals sparsely. The UHF signals obtained from PD experiments were processed using chromatic methodology and characterized by three parameters in chromatic space ( H , L , and S representing dominant wavelength, signal strength, and saturation, respectively). The features of the UHF signals were studied hierarchically. The results showed that the chromatic parameters were consistent with conventional frequency domain parameters. The global chromatic parameters can be used to distinguish UHF signals acquired by different sensors, and they reveal the propagation properties of the UHF signal in the L-shaped gas-insulated switchgear (GIS). Finally, typical PD defect patterns had been recognized by using novel chromatic parameters in an actual GIS tank and good performance of recognition was achieved.

  18. The Effects of Plasma Shield on the Radar Cross Section of a Generic Missile in UHF Band

    NASA Astrophysics Data System (ADS)

    Chung, Shen

    2011-10-01

    RF Stealth is the dominant technology in today's military aircraft, and most is achieved by shape design with a few reductions achieved by RAM, but most of these effects are only valid in X band. With the popularity of UHF radar again rising, the possibility of detecting a stealth object has increased due to resonance effect, and this is difficult to decrease with previous means due to the long wavelength. A plasma shield generated in front of an object may be suitable to alter the RCS in specific band without physically changing its shape. We examine the RCS of a generic missile in UHF band, and compared it with one with a cone-shape plasma generated in front of the missile. We find the plasma effectively changes the RCS of the missile, though not necessarily smaller. The RCS of the missile with the plasma shield is now dominated by the plasma instead of the missile. The RCS is a function of the size, shape, and density of the plasma shield. For higher frequency signals like the X band radar, it can still penetrate the plasma, and sees the original RCS of the missile. Due to the relatively lower UHF frequency, the plasma density needed is lower than one in X band and thus more practical to achieve.

  19. Estimate of the fetal temperature increase due to UHF RFID exposure.

    PubMed

    Fiocchi, S; Markakis, I A; Liorni, I; Parazzini, M; Samaras, T; Ravazzani, P

    2013-01-01

    Exposure from electromagnetic (EM) devices has increased during the last decades due to the rapid development of new technologies. Among them, radiofrequency identification (RFID) applications are used in almost every aspect of everyday life, which could expose people unselectively. This scenario could pose potential risks for certain groups of general population, such as pregnant women, who are more sensitive to thermal effects produced by EM exposure. In this paper, the temperature rise at the steady state in two pregnant women models exposed to UHF RFID has been assessed. Results show that heating of tissues is far from the threshold of biological effects indicated by radiation protection guidelines.

  20. SAR exposure from UHF RFID reader in adult, child, pregnant woman, and fetus anatomical models.

    PubMed

    Fiocchi, Serena; Markakis, Ioannis A; Ravazzani, Paolo; Samaras, Theodoros

    2013-09-01

    The spread of radio frequency identification (RFID) devices in ubiquitous applications without their simultaneous exposure assessment could give rise to public concerns about their potential adverse health effects. Among the various RFID system categories, the ultra high frequency (UHF) RFID systems have recently started to be widely used in many applications. This study addresses a computational exposure assessment of the electromagnetic radiation generated by a realistic UHF RFID reader, quantifying the exposure levels in different exposure scenarios and subjects (two adults, four children, and two anatomical models of women 7 and 9 months pregnant). The results of the computations are presented in terms of the whole-body and peak spatial specific absorption rate (SAR) averaged over 10 g of tissue to allow comparison with the basic restrictions of the exposure guidelines. The SAR levels in the adults and children were below 0.02 and 0.8 W/kg in whole-body SAR and maximum peak SAR levels, respectively, for all tested positions of the antenna. On the contrary, exposure of pregnant women and fetuses resulted in maximum peak SAR(10 g) values close to the values suggested by the guidelines (2 W/kg) in some of the exposure scenarios with the antenna positioned in front of the abdomen and with a 100% duty cycle and 1 W radiated power. Copyright © 2013 Wiley Periodicals, Inc.

  1. Space Station UCS antenna pattern computation and measurement. [UHF Communication Subsystem

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Lu, Ba P.; Johnson, Larry A.; Fournet, Jon S.; Panneton, Robert J.; Ngo, John D.; Eggers, Donald S.; Arndt, G. D.

    1993-01-01

    The purpose of this paper is to analyze the interference to the Space Station Ultrahigh Frequency (UHF) Communication Subsystem (UCS) antenna radiation pattern due to its environment - Space Station. A hybrid Computational Electromagnetics (CEM) technique was applied in this study. The antenna was modeled using the Method of Moments (MOM) and the radiation patterns were computed using the Uniform Geometrical Theory of Diffraction (GTD) in which the effects of the reflected and diffracted fields from surfaces, edges, and vertices of the Space Station structures were included. In order to validate the CEM techniques, and to provide confidence in the computer-generated results, a comparison with experimental measurements was made for a 1/15 scale Space Station mockup. Based on the results accomplished, good agreement on experimental and computed results was obtained. The computed results using the CEM techniques for the Space Station UCS antenna pattern predictions have been validated.

  2. High Latitude Scintillation Monitoring at UHF with the COMMX Experiment on TACSat4

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Siefring, C. L.; Akins, K.; Nurnberger, M.

    2013-12-01

    UHF Beacon Transmissions at 253 MHz have provided high latitude scintillation monitoring from Gakona Alaska using the COMMX instrument on TACSat4. TACSat4 was constructed by the Naval Research Laboratory and was launched in September 2011 as an experimental communications satellite. Ground UHF transmissions are uplinked to TACSat4 using the 4 meter diameter antenna deployed to view the earth. These signals are coherently translated to other UHF frequency to be rebroadcast to the ground. Scintillation monitoring is achieved by taking the 401.25 MHz signals from ground DORIS beacons located in Cold Bay, Alaska; Yellowknife, Canada; Kauai, Hawaii; and Soccoro Island, Mexico. These signals are translated to 253 MHz and broadcast with the 4 meter antenna pointed to the UHF receiver located at Gakona, Alaska. The satellite antenna gain is 18 dB in this UHF band and the transmitter power is 2 Watts. The satellite is in an elliptical orbit with an inclination of 63 degrees and a perigee of 12,000 km. Doppler frequency shifts allow separation of each uplink from the ground DORIS beacons. This new scintillation monitoring system has been used to detect natural and artificial field aligned irregularity effects on the amplitude and phase of UHF carriers where typical scintillation amplitudes are 2dB or less. Using the HAARP transmitter in Alaska, TACSat4 was used to discover the artificial ionization clouds produce scintillation with as much as 16 dB and amplitude indices S4 greater than unity. This is the first demonstration of significant effects on radio scintillations using high power HF radio waves to disturb the ionosphere.

  3. Ultra-Wideband UHF Microstrip Array for GeoSAR Application

    NASA Technical Reports Server (NTRS)

    Thomas, Robert F.; Huang, John

    1998-01-01

    GeoSAR is a program sponsored by DARPA (Defense Advanced Research Projects Agency) and NASA (National Aeronautics and Space Administration) to develop an airborne, radar- based, commercial terrain mapping system for identification of geologic, seismic, and environmental information, it has two (dual-band at X and UHF) state-of-the-art interferometric synthetic aperture radar (SAR) ground mapping systems. The UHF interferometric system is utilized to penetrate the vegetation canopy and obtain true ground surface height information, while the Xband system will provide capability of mapping the top foliage surface. This paper presents the UHF antenna system where the required center frequency is 350 MHz with a 160 MHz of bandwidth (46% from 270 MHz to 430 MHz). The antenna is required to have dual-linear polarization with a peak gain of 10 dB at the center frequency and a minimum gain of 8 dB toward two ends of the frequency band. One of the most challenging tasks, in addition to achieving the 46% bandwidth, is to develop an antenna with small enough size to fit in the wing-tip pod of a Gulfstream II aircraft.

  4. Artificial Ionization and UHF Radar Response Associated with HF Frequencies near Electron Gyro-Harmonics (Invited)

    NASA Astrophysics Data System (ADS)

    Watkins, B. J.; Fallen, C. T.; Secan, J. A.

    2013-12-01

    We present new results from O-mode ionospheric heating experiments at the HAARP facility in Alaska to demonstrate that the magnitude of artificial ionization production is critically dependent on the choice of HF frequency near gyro-harmonics. For O-mode heating in the lower F-region ionosphere, typically about 200 km altitude, artificial ionization enhancements are observed in the lower ionosphere (about 150 - 220 km) and also in the topside ionosphere above about 500 km. Lower ionosphere density enhancements are inferred from HF-enhanced ion and plasma-line signals observed with UHF radar. Upper ionospheric density enhancements have been observed with TEC (total electron content) experiments by monitoring satellite radio beacons where signal paths traverse the HF-modified ionosphere. Both density enhancements and corresponding upward plasma fluxes have also been observed in the upper ionosphere via in-situ satellite observations. The data presented focus mainly on observations near the third and fourth gyro-harmonics. The specific values of the height-dependent gyro-harmonics have been computed from a magnetic model of the field line through the HF heated volume. Experiments with several closely spaced HF frequencies around the gyro-harmonic frequency region show that the magnitude of the lower-ionosphere artificial ionization production maximizes for HF frequencies about 1.0 - 1.5 MHz above the gyro-harmonic frequency. The response is progressively larger as the HF frequency is increased in the frequency region near the gyro-harmonics. For HF frequencies that are initially greater than the gyro-harmonic value the UHF radar scattering cross-section is relatively small, and non-existent or very weak signals are observed; as the signal returns drop in altitude due to density enhancements the HF interaction region passes through lower altitudes where the HF frequency is less than the gyro-harmonic value, for these conditions the radar scattering cross-section is

  5. Multi-stage Depressed Collectors (MDC) for efficiency improvements of UHF broadcast klystrons

    NASA Technical Reports Server (NTRS)

    Kosmahl, H. G.

    1982-01-01

    The consumed primary power is reduced and the efficiency of traveling wave tubes is raised through the use of depressed collectors which passively convert potential energy into electric energy. Efficiency was kept with constant within a 3 dB range while the output power varied by 10 dB. Aspects to be considered in transferring this technology to UHF klystrons are the electron energy spectrum of the klystron and the magnitude of the injection angle required.

  6. Noise and range considerations for close-range radar sensing of life signs underwater.

    PubMed

    Hafner, Noah; Lubecke, Victor

    2011-01-01

    Close-range underwater sensing of motion-based life signs can be performed with low power Doppler radar and ultrasound techniques. Corresponding noise and range performance trade-offs are examined here, with regard to choice of frequency and technology. The frequency range examined includes part of the UHF and microwave spectrum. Underwater detection of motion by radar in freshwater and saltwater are demonstrated. Radar measurements exhibited reduced susceptibility to noise as compared to ultrasound. While higher frequency radar exhibited better signal to noise ratio, propagation was superior for lower frequencies. Radar detection of motion through saltwater was also demonstrated at restricted ranges (1-2 cm) with low power transmission (10 dBm). The results facilitate the establishment of guidelines for optimal choice in technology for the underwater measurement motion-based life signs, with respect to trade offs involving range and noise.

  7. The Anti-RFI Design of Intelligent Electric Energy Meters with UHF RFID

    NASA Astrophysics Data System (ADS)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng

    2018-03-01

    In order to solve the existing artificial meter reading watt-hour meter industry is still slow and inventory of common problems, using the uhf radio frequency identification (RFID) technology and intelligent watt-hour meter depth fusion, which has a one-time read multiple tags, identification distance, high transmission rate, high reliability, etc, while retaining the original asset management functions, in order to ensure the uhf RFID and minimum impact on the operation of the intelligent watt-hour meter, proposed to improve the stability of the electric meter system while working at the same time, this paper designs the uhf RFID intelligent watt-hour meter radio frequency interference resistance, put forward to improve intelligent watt-hour meter electromagnetic compatibility design train of thought, and introduced its power and the hardware circuit design of printed circuit board, etc.

  8. Lowering Juno Radiation Vault

    NASA Image and Video Library

    2010-07-12

    Technicians lowered a special radiation vault onto the propulsion module of NASA Juno spacecraft. The vault will dramatically slow the aging effect radiation has on the electronics for the duration of the mission.

  9. Study of comparison between Ultra-high Frequency (UHF) method and ultrasonic method on PD detection for GIS

    NASA Astrophysics Data System (ADS)

    Li, Yanran; Chen, Duo; Li, Li; Zhang, Jiwei; Li, Guang; Liu, Hongxia

    2017-11-01

    GIS (gas insulated switchgear), is an important equipment in power system. Partial discharge plays an important role in detecting the insulation performance of GIS. UHF method and ultrasonic method frequently used in partial discharge (PD) detection for GIS. However, few studies have been conducted on comparison of this two methods. From the view point of safety, it is necessary to investigate UHF method and ultrasonic method for partial discharge in GIS. This paper presents study aimed at clarifying the effect of UHF method and ultrasonic method for partial discharge caused by free metal particles in GIS. Partial discharge tests were performed in laboratory simulated environment. Obtained results show the ability of anti-interference of signal detection and the accuracy of fault localization for UHF method and ultrasonic method. A new method based on UHF method and ultrasonic method of PD detection for GIS is proposed in order to greatly enhance the ability of anti-interference of signal detection and the accuracy of detection localization.

  10. VHF/UHF imagery and RCS measurements of ground targets in forested terrain

    NASA Astrophysics Data System (ADS)

    Gatesman, Andrew J.; Beaudoin, Christopher J.; Giles, Robert H.; Waldman, Jerry; Nixon, William E.

    2002-08-01

    The monostatic VV and HH-polarized radar signatures of several targets and trees have been measured at foliage penetration frequencies (VHF/UHF) by using 1/35th scale models and an indoor radar range operating at X-band. An array of high-fidelity scale model ground vehicles and test objects as well as scaled ground terrain and trees have been fabricated for the study. Radar measurement accuracy has been confirmed by comparing the signature of a test object with a method of moments radar cross section prediction code. In addition to acquiring signatures of targets located on a smooth, dielectric ground plane, data have also been acquired with targets located in simulated wooded terrain that included scaled tree trunks and tree branches. In order to assure the correct backscattering behavior, all dielectric properties of live tree wood and moist soil were scaled properly to match the complex dielectric constant of the full-scale materials. The impact of the surrounding tree clutter on the VHF/UHF radar signatures of ground vehicles was accessed. Data were processed into high-resolution, polar-formatted ISAR imagery and signature comparisons are made between targets in open-field and forested scenarios.

  11. WISDOM : an UHF GPR on the Exomars Mission

    NASA Astrophysics Data System (ADS)

    Corbel, C.; Hamram, S.; Ney, R.; Plettemeier, D.; Dolon, F.; Jeangeot, A.; Ciarletti, V.; Berthelier, J.

    2006-12-01

    This paper describes the main technical features of WISDOM (Water Ice and Subsurface Deposit Observations on Mars) Ground Penetrating Radar. This radar has been selected on the PASTEUR payload of the ESA ExoMars rover. The launch is scheduled in 2011. The main objective of this mission is to acquire and analyze samples of the shallow subsurface and search for traces of extinct or extant life. The WISDOM GPR aims at providing observations of the structure and layering of the upper layers of the subsurface in order to retrieve geological information that are of prime interest to select optimal sites to drill. It will also localize buried obstacles (rocks, boulders, ?)in the underground that will make the delicate drilling operations safer. WISDOM will operate in the UHF range from 500 MHz to 3 GHz and probe the first few meters of the subsurface with a high resolution (a few centimeters). The large bandwidth requirement (2.5 GHz) led us to select a gated step frequency technique for WISDOM. The Step Frequency technique is based on the analysis of the system in the frequency domain. The phase and amplitude of the reflected signal are measured at about 200 different frequencies effectively measuring the transfer function of the sub-surface between the transmitter and receiver antenna. The impulse response and eventually the distance of the reflecting structures can be obtained by performing an inverse Fourier transform of the measured transfer function. The broad band antennas have been designed in order to have a wide radiation pattern into the sub-surface and to avoid the direct coupling and allow co and cross polar measurements. To decrease the direct signal between the transmitter and the receiver or strong reflections from the surface, hardware range gating is implemented. The performances of the instrument operated in well characterized conditions will be presented

  12. Study of New Method Combined Ultra-High Frequency (UHF) Method and Ultrasonic Method on PD Detection for GIS

    NASA Astrophysics Data System (ADS)

    Li, Yanran; Chen, Duo; Zhang, Jiwei; Chen, Ning; Li, Xiaoqi; Gong, Xiaojing

    2017-09-01

    GIS (gas insulated switchgear), is an important equipment in power system. Partial discharge plays an important role in detecting the insulation performance of GIS. UHF method and ultrasonic method frequently used in partial discharge (PD) detection for GIS. It is necessary to investigate UHF method and ultrasonic method for partial discharge in GIS. However, very few studies have been conducted on the method combined this two methods. From the view point of safety, a new method based on UHF method and ultrasonic method of PD detection for GIS is proposed in order to greatly enhance the ability of anti-interference of signal detection and the accuracy of fault localization. This paper presents study aimed at clarifying the effect of the new method combined UHF method and ultrasonic method. Partial discharge tests were performed in laboratory simulated environment. Obtained results show the ability of anti-interference of signal detection and the accuracy of fault localization for this new method combined UHF method and ultrasonic method.

  13. Evaluation of thermal and non-thermal effects of UHF RFID exposure on biological drugs.

    PubMed

    Calcagnini, Giovanni; Censi, Federica; Maffia, Michele; Mainetti, Luca; Mattei, Eugenio; Patrono, Luigi; Urso, Emanuela

    2012-11-01

    The Radio Frequency Identification (RFID) technology promises to improve several processes in the healthcare scenario, especially those related to traceability of people and things. Unfortunately, there are still some barriers limiting the large-scale deployment of these innovative technologies in the healthcare field. Among these, the evaluation of potential thermal and non-thermal effects due to the exposure of biopharmaceutical products to electromagnetic fields is very challenging, but still slightly investigated. This paper aims to setup a controlled RF exposure environment, in order to reproduce a worst-case exposure of pharmaceutical products to the electromagnetic fields generated by the UHF RFID devices placed along the supply chain. Radiated powers several times higher than recommended by current normative limits were applied (10 W and 20 W). The electric field strength at the exposed sample location, used in tests, was as high as 100 V/m. Non-thermal effects were evaluated by chromatography techniques and in vitro assays. The results obtained for a particular case study, the ActrapidTM human insulin preparation, showed temperature increases lower than 0.5 °C and no significant changes in the structure and performance of the considered drug.

  14. A comparison of thunderstorm reflectivities measured at the VHF and UHF

    NASA Technical Reports Server (NTRS)

    Larsen, M. F.; Rottger, J.

    1986-01-01

    Observations of thunderstorms made with two radars operating at different wavelengths of 70 cm and 5.67 m are compared. The first set of observations was made with the UHF radar at the Arecibo Observatory in Puerto Rico, and the second set was made with the Max-Planck-Institut fur Aeronomie VHF radar in the Harz Mountains in West Germany. Both sets of observations show large echo strengths in the convective region above the -10 C isothem. At UHF, there appears to be a contribution from both the precipitation echoes and the normal echoes due to scatter from turbulent variations in the refractive index.

  15. [The specific features of the development of metabolic and regenerative processes under the action of low-intensity electromagnetic radiation in radiation exposure conditions (an experimental study)].

    PubMed

    Korolev, Yu N; Mihajlik, L V; Nikulina, L A; Geniatulina, M S

    The experiments on male white rats with the use of biochemical, photo-optical, and electron-microscopic techniques have demonstrated that the use of low-intensity electromagnetic radiation of ultrahigh frequency (EMR UHF) and low-intensity low-frequency magnetic field (MF) during the post-irradiation period (within 21 days after exposure to radiation) enhanced the metabolic and regenerative processes in the testes and liver. It was shown that the application of MF largely intensified the antioxidant activity whereas EMR UHF preferentially stimulated the biosynthetic processes as well as the processes of cellular and intracellular regeneration.

  16. Special Semaphore Scheme for UHF Spacecraft Communications

    NASA Technical Reports Server (NTRS)

    Butman, Stanley; Satorius, Edgar; Ilott, Peter

    2006-01-01

    A semaphore scheme has been devised to satisfy a requirement to enable ultrahigh- frequency (UHF) radio communication between a spacecraft descending from orbit to a landing on Mars and a spacecraft, in orbit about Mars, that relays communications between Earth and the lander spacecraft. There are also two subsidiary requirements: (1) to use UHF transceivers, built and qualified for operation aboard the spacecraft that operate with residual-carrier binary phase-shift-keying (BPSK) modulation at a selectable data rate of 8, 32, 128, or 256 kb/s; and (2) to enable low-rate signaling even when received signals become so weak as to prevent communication at the minimum BPSK rate of 8 kHz. The scheme involves exploitation of Manchester encoding, which is used in conjunction with residual-carrier modulation to aid the carrier-tracking loop. By choosing various sequences of 1s, 0s, or 1s alternating with 0s to be fed to the residual-carrier modulator, one would cause the modulator to generate sidebands at a fundamental frequency of 4 or 8 kHz and harmonics thereof. These sidebands would constitute the desired semaphores. In reception, the semaphores would be detected by a software demodulator.

  17. Interoperation of an UHF RFID Reader and a TCP/IP Device via Wired and Wireless Links

    PubMed Central

    Lee, Sang Hoon; Jin, Ik Soo

    2011-01-01

    A main application in radio frequency identification (RFID) sensor networks is the function that processes real-time tag information after gathering the required data from multiple RFID tags. The component technologies that contain an RFID reader, called the interrogator, which has a tag chip, processors, coupling antenna, and a power management system have advanced significantly over the last decade. This paper presents a system implementation for interoperation between an UHF RFID reader and a TCP/IP device that is used as a gateway. The proposed system consists of an UHF RFID tag, an UHF RFID reader, an RF end-device, an RF coordinator, and a TCP/IP I/F. The UHF RFID reader, operating at 915 MHz, is compatible with EPC Class-0/Gen1, Class-1/Gen1 and 2, and ISO18000-6B. In particular, the UHF RFID reader can be combined with the RF end-device/coordinator for a ZigBee (IEEE 802.15.4) interface, which is a low-power wireless standard. The TCP/IP device communicates with the RFID reader via wired links. On the other hand, it is connected to the ZigBee end-device via wireless links. The web based test results show that the developed system can remotely recognize information of multiple tags through the interoperation between the RFID reader and the TCP/IP device. PMID:22346665

  18. Interoperation of an UHF RFID reader and a TCP/IP device via wired and wireless links.

    PubMed

    Lee, Sang Hoon; Jin, Ik Soo

    2011-01-01

    A main application in radio frequency identification (RFID) sensor networks is the function that processes real-time tag information after gathering the required data from multiple RFID tags. The component technologies that contain an RFID reader, called the interrogator, which has a tag chip, processors, coupling antenna, and a power management system have advanced significantly over the last decade. This paper presents a system implementation for interoperation between an UHF RFID reader and a TCP/IP device that is used as a gateway. The proposed system consists of an UHF RFID tag, an UHF RFID reader, an RF end-device, an RF coordinator, and a TCP/IP I/F. The UHF RFID reader, operating at 915 MHz, is compatible with EPC Class-0/Gen1, Class-1/Gen1 and 2, and ISO18000-6B. In particular, the UHF RFID reader can be combined with the RF end-device/coordinator for a ZigBee (IEEE 802.15.4) interface, which is a low-power wireless standard. The TCP/IP device communicates with the RFID reader via wired links. On the other hand, it is connected to the ZigBee end-device via wireless links. The web based test results show that the developed system can remotely recognize information of multiple tags through the interoperation between the RFID reader and the TCP/IP device.

  19. LS Channel Estimation and Signal Separation for UHF RFID Tag Collision Recovery on the Physical Layer.

    PubMed

    Duan, Hanjun; Wu, Haifeng; Zeng, Yu; Chen, Yuebin

    2016-03-26

    In a passive ultra-high frequency (UHF) radio-frequency identification (RFID) system, tag collision is generally resolved on a medium access control (MAC) layer. However, some of collided tag signals could be recovered on a physical (PHY) layer and, thus, enhance the identification efficiency of the RFID system. For the recovery on the PHY layer, channel estimation is a critical issue. Good channel estimation will help to recover the collided signals. Existing channel estimates work well for two collided tags. When the number of collided tags is beyond two, however, the existing estimates have more estimation errors. In this paper, we propose a novel channel estimate for the UHF RFID system. It adopts an orthogonal matrix based on the information of preambles which is known for a reader and applies a minimum-mean-square-error (MMSE) criterion to estimate channels. From the estimated channel, we could accurately separate the collided signals and recover them. By means of numerical results, we show that the proposed estimate has lower estimation errors and higher separation efficiency than the existing estimates.

  20. A low-volume, low-mass, low-power UHF proximity micro-transceiver for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Kuhn, William; Lay, Norman; Grigorian, Edwin

    2005-01-01

    UHF half-duplex micro-transceiver measuring 1 cubic centimeter, weighing less than 10 grams, and operating at 40 mW on receive and 50mW, 300mW, or 3W on transmit is described. The micro-transceiver is being designed for future Mars exploration missions, but can be adapted for other proximity links. It supports transmission rates up to 256 ksps and higher in BPSK or QPSK format for data return and receives command/control instructions at up to 8 ksps. In addition to its low mass/power features, temperature compensated circuit and system design and radiation tolerance allow operation outside of large shielded enclosures, further reducing the mass and complexity of exploration vehicles.

  1. An active UHF RFID localization system for fawn saving

    NASA Astrophysics Data System (ADS)

    Eberhardt, M.; Lehner, M.; Ascher, A.; Allwang, M.; Biebl, E. M.

    2015-11-01

    We present a localization concept for active UHF RFID transponders which enables mowing machine drivers to detect and localize marked fawns. The whole system design and experimental results with transponders located near the ground in random orientations in a meadow area are shown. The communication flow between reader and transponders is realized as a dynamic master-slave concept. Multiple marked fawns will be localized by processing detected transponders sequentially. With an eight-channel-receiver with integrated calibration method one can estimate the direction-of-arrival by measuring the phases of the transponder signals up to a range of 50 m in all directions. For further troubleshooting array manifolds have been measured. An additional hand-held receiver with a two-channel receiver allows a guided approaching search without endangering the fawn by the mowing machine.

  2. HF RFID versus UHF RFID--Technology for Library Service Transformation at City University of Hong Kong

    ERIC Educational Resources Information Center

    Ching, Steve H.; Tai, Alice

    2009-01-01

    Since libraries first used RFID systems in the late 1990s, more and more libraries have identified the advantages of the technology. With advances in HF and UHF RFID, both alternatives are now viable in library applications. While some librarians are still skeptical towards UHF RFID as unproven in the library arena, the City University of Hong…

  3. Analysis and Design of a Long Range PTFE Substrate UHF RFID Tag for Cargo Container Identification

    NASA Astrophysics Data System (ADS)

    Petrariu, Adrian-Ioan; Popa, Valentin

    2016-01-01

    In this paper, a high-performances microstrip antenna for UHF (ultra high frequency) RFID (radio frequency identification) tag is designed, prototyped and tested. The antenna consists of two main components: a 1.52 mm RT/duroid 5880 laminate substrate on which the antenna is designed and a 10 mm polytetrafluoroethylene (PTFE) dielectric material placed as a separator between the antenna and the reference ground plane for the microstrip antenna. With this structure, the RFID tag can reach a maximum reading distance of 19 m, although the antenna has a compact size of 80 mm × 50 mm. The long reading distance is obtained by attaching to the antenna an RFID chip that can provide a reading sensitivity of -20.5 dBm. The high bandwidth from 677 MHz to 947 MHz measured at -10 dB, makes the tag being usable worldwide especially for cargo container identification, the main purpose of this research.

  4. A Quantitative Comparison of the Relative Performance of VHF and UHF Broadcast Systems. Technical Monograph Number 1.

    ERIC Educational Resources Information Center

    Rubin, Philip A.; And Others

    A study was undertaken to: (1) assess problems with UHF television systems; and (2) identify problem-solving activities on which different broadcast institutions could cooperate, The model for comparing UHF with VHF broadcast/reception services assigned performance disparity figures to each of the following elements: (1) transmitter and…

  5. Wide-range radiation dose monitor

    DOEpatents

    Kopp, Manfred K.

    1986-01-01

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  6. Wide-range radiation dose monitor

    DOEpatents

    Kopp, M.K.

    1984-09-20

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  7. Partial Discharge Spectral Characterization in HF, VHF and UHF Bands Using Particle Swarm Optimization.

    PubMed

    Robles, Guillermo; Fresno, José Manuel; Martínez-Tarifa, Juan Manuel; Ardila-Rey, Jorge Alfredo; Parrado-Hernández, Emilio

    2018-03-01

    The measurement of partial discharge (PD) signals in the radio frequency (RF) range has gained popularity among utilities and specialized monitoring companies in recent years. Unfortunately, in most of the occasions the data are hidden by noise and coupled interferences that hinder their interpretation and renders them useless especially in acquisition systems in the ultra high frequency (UHF) band where the signals of interest are weak. This paper is focused on a method that uses a selective spectral signal characterization to feature each signal, type of partial discharge or interferences/noise, with the power contained in the most representative frequency bands. The technique can be considered as a dimensionality reduction problem where all the energy information contained in the frequency components is condensed in a reduced number of UHF or high frequency (HF) and very high frequency (VHF) bands. In general, dimensionality reduction methods make the interpretation of results a difficult task because the inherent physical nature of the signal is lost in the process. The proposed selective spectral characterization is a preprocessing tool that facilitates further main processing. The starting point is a clustering of signals that could form the core of a PD monitoring system. Therefore, the dimensionality reduction technique should discover the best frequency bands to enhance the affinity between signals in the same cluster and the differences between signals in different clusters. This is done maximizing the minimum Mahalanobis distance between clusters using particle swarm optimization (PSO). The tool is tested with three sets of experimental signals to demonstrate its capabilities in separating noise and PDs with low signal-to-noise ratio and separating different types of partial discharges measured in the UHF and HF/VHF bands.

  8. [Application of low-intensity and ultrahigh frequency electromagnetic radiation in modern pediatric practice].

    PubMed

    Azov, N A; Azova, E A

    2009-01-01

    The use of an Amfit-0,2/10-01 apparatus generating low-intensity ultrahigh frequency (UHF) electromagnetic radiation improved efficiency of therapy of sick children. This treatment allowed to reduce the frequency of intake of anesthetics in the post-operative period, correct metabolic disorders in children with type 1 diabetes mellitus, reduce severity of diabetic nephropathy and polyneuropathy, prevent formation of fresh foci of lipoid necrobiosis. The results of the study indicate that the use of low-intensity UHF electromagnetic radiation may be recommended for more extensive introduction into practical clinical work of pediatric endocrinologists and surgeons.

  9. [The influence of ultrahigh-frequency electromagnetic radiation and low-intensity laser radiation on the body core temperature and basal metabolism in rats with systemic inflammation].

    PubMed

    Zhavoronok, I P; Molchanova, A Iu; Ulashik, V S

    2012-01-01

    The effects of ultrahigh-frequency electromagnetic radiation (UHF EMR) and low-intensity laser irradiation (LILI) on the body and skin temperature, oxygen consumption, production of carbon dioxide and heat release were investigated in the experiments on intact rats and during LPS-induced polyphasic fever. It was found that UHF EMR with the wavelength of 4,9 mm, 5,6 mm or 7,1 mm and LILI with the wavelength of 0.47 microm, 0.67 microm and 0.87 microm caused modulation of basal metabolism and thermal response to systemically administered lipopolysaccharide (LPS). These findings suggest that the most pronounced antipyretic and hypometabolic effects were observed after the treatment with UHF EMR at 7,1 mm and LILI at 470 microm.

  10. Detection of Partial Discharge Sources Using UHF Sensors and Blind Signal Separation

    PubMed Central

    Boya, Carlos; Parrado-Hernández, Emilio

    2017-01-01

    The measurement of the emitted electromagnetic energy in the UHF region of the spectrum allows the detection of partial discharges and, thus, the on-line monitoring of the condition of the insulation of electrical equipment. Unfortunately, determining the affected asset is difficult when there are several simultaneous insulation defects. This paper proposes the use of an independent component analysis (ICA) algorithm to separate the signals coming from different partial discharge (PD) sources. The performance of the algorithm has been tested using UHF signals generated by test objects. The results are validated by two automatic classification techniques: support vector machines and similarity with class mean. Both methods corroborate the suitability of the algorithm to separate the signals emitted by each PD source even when they are generated by the same type of insulation defect. PMID:29140267

  11. UHF and VHF radar observations of thunderstorms

    NASA Technical Reports Server (NTRS)

    Holden, D. N.; Ulbrich, C. W.; Larsen, M. F.; Rottger, J.; Ierkic, H. M.; Swartz, W.

    1986-01-01

    A study of thunderstorms was made in the Summer of 1985 with the 430-MHz and 50-MHz radars at the Arecibo Observatory in Puerto Rico. Both radars use the 300-meter dish, which gives a beam width of less than 2 degrees even at these long wavelengths. Though the radars are steerable, only vertical beams were used in this experiment. The height resolution was 300 and 150 meters for the UHF and VHF, respectively. Lightning echoes, as well as returns from precipitation and clear-air turbulence were detected with both wavelengths. Large increases in the returned power were found to be coincident with increasing downward vertical velocities at UHF, whereas at VHF the total power returned was relatively constant during the life of a storm. This was attributed to the fact that the VHF is more sensitive to scattering from the turbulence-induced inhomogeneities in the refractive index and less sensitive to scatter from precipitation particles. On occasion, the shape of the Doppler spectra was observed to change with the occurrence of a lightning discharge in the pulse volume. Though the total power and mean reflectivity weighted Doppler velocity changed little during these events, the power is Doppler frequency bins near that corresponding to the updraft did increase substantially within a fraction of a second after a discharge was detected in the beam. This suggests some interaction between precipitation and lightning.

  12. Study on Miniaturized UHF Antennas for Partial Discharge Detection in High-Voltage Electrical Equipment.

    PubMed

    Liu, Jingcun; Zhang, Guogang; Dong, Jinlong; Wang, Jianhua

    2015-11-20

    Detecting partial discharge (PD) is an effective way to evaluate the condition of high-voltage electrical equipment insulation. The UHF detection method has attracted attention due to its high sensitivity, strong interference resistance, and ability to locate PDs. In this paper, a miniaturized equiangular spiral antenna (ESA) for UHF detection that uses a printed circuit board is proposed. I-shaped, L-shaped, and C-shaped microstrip baluns were designed to match the impedance between the ESA and coaxial cable and were verified by a vector network analyzer. For comparison, three other types of UHF antenna were also designed: A microstrip patch antenna, a microstrip slot antenna, and a printed dipole antenna. Their antenna factors were calibrated in a uniform electric field of different frequencies modulated in a gigahertz transverse electromagnetic cell. We performed comparison experiments on PD signal detection using an artificial defect model based on the international IEC 60270 standard. We also conducted time-delay test experiments on the ESA sensor to locate a PD source. It was found that the proposed ESA sensor meets PD signal detection requirements. The sensor's compact size makes it suitable for internal installation in high-voltage electrical equipment.

  13. Study on Miniaturized UHF Antennas for Partial Discharge Detection in High-Voltage Electrical Equipment

    PubMed Central

    Liu, Jingcun; Zhang, Guogang; Dong, Jinlong; Wang, Jianhua

    2015-01-01

    Detecting partial discharge (PD) is an effective way to evaluate the condition of high-voltage electrical equipment insulation. The UHF detection method has attracted attention due to its high sensitivity, strong interference resistance, and ability to locate PDs. In this paper, a miniaturized equiangular spiral antenna (ESA) for UHF detection that uses a printed circuit board is proposed. I-shaped, L-shaped, and C-shaped microstrip baluns were designed to match the impedance between the ESA and coaxial cable and were verified by a vector network analyzer. For comparison, three other types of UHF antenna were also designed: A microstrip patch antenna, a microstrip slot antenna, and a printed dipole antenna. Their antenna factors were calibrated in a uniform electric field of different frequencies modulated in a gigahertz transverse electromagnetic cell. We performed comparison experiments on PD signal detection using an artificial defect model based on the international IEC 60270 standard. We also conducted time-delay test experiments on the ESA sensor to locate a PD source. It was found that the proposed ESA sensor meets PD signal detection requirements. The sensor’s compact size makes it suitable for internal installation in high-voltage electrical equipment. PMID:26610506

  14. Design of a New Built-in UHF Multi-Frequency Antenna Sensor for Partial Discharge Detection in High-Voltage Switchgears.

    PubMed

    Zhang, Xiaoxing; Cheng, Zheng; Gui, Yingang

    2016-07-26

    In this study a new built-in ultrahigh frequency (UHF) antenna sensor was designed and applied in a high-voltage switchgear for partial discharge (PD) detection. The casing of the switchgear was initially used as the ground plane of the antenna sensor, which integrated the sensor into the high-voltage switchgear. The Koch snowflake patch was adopted as the radiation patch of the antenna to overcome the disadvantages of common microstrip antennas, and the feed position and the dielectric layer thickness were simulated in detail. Simulation results show that the antenna sensor possessed four resonant points with good impedance matching from 300 MHz to 1000 MHz, and it also presented good multi-frequency performance in the entire working frequency band. PD detection experiments were conducted in the high-voltage switchgear, and the fabricated antenna sensor was effectively built into the high-voltage switchgear. In order to reflect the advantages of the built-in antenna sensor, another external UHF antenna sensor was used as a comparison to simultaneously detect PD. Experimental results demonstrated that the built-in antenna sensor possessed high detection sensitivity and strong anti-interference capacity, which ensured the practicability of the design. In addition, it had more high-voltage switchgear PD detection advantages than the external sensor.

  15. Design of a New Built-in UHF Multi-Frequency Antenna Sensor for Partial Discharge Detection in High-Voltage Switchgears

    PubMed Central

    Zhang, Xiaoxing; Cheng, Zheng; Gui, Yingang

    2016-01-01

    In this study a new built-in ultrahigh frequency (UHF) antenna sensor was designed and applied in a high-voltage switchgear for partial discharge (PD) detection. The casing of the switchgear was initially used as the ground plane of the antenna sensor, which integrated the sensor into the high-voltage switchgear. The Koch snowflake patch was adopted as the radiation patch of the antenna to overcome the disadvantages of common microstrip antennas, and the feed position and the dielectric layer thickness were simulated in detail. Simulation results show that the antenna sensor possessed four resonant points with good impedance matching from 300 MHz to 1000 MHz, and it also presented good multi-frequency performance in the entire working frequency band. PD detection experiments were conducted in the high-voltage switchgear, and the fabricated antenna sensor was effectively built into the high-voltage switchgear. In order to reflect the advantages of the built-in antenna sensor, another external UHF antenna sensor was used as a comparison to simultaneously detect PD. Experimental results demonstrated that the built-in antenna sensor possessed high detection sensitivity and strong anti-interference capacity, which ensured the practicability of the design. In addition, it had more high-voltage switchgear PD detection advantages than the external sensor. PMID:27472331

  16. Feed system design and experimental results in the uhf model study for the proposed Urbana phased array

    NASA Technical Reports Server (NTRS)

    Loane, J. T.; Bowhill, S. A.; Mayes, P. E.

    1982-01-01

    The effects of atmospheric turbulence and the basis for the coherent scatter radar techniques are discussed. The reasons are given for upgrading the Radar system to a larger steerable array. Phase array theory pertinent to the system design is reviewed, along with approximations for maximum directive gain and blind angles due to mutual coupling. The methods and construction techniques employed in the UHF model study are explained. The antenna range is described, with a block diagram for the mode of operation used.

  17. Calibration of ultra-high frequency (UHF) partial discharge sensors using FDTD method

    NASA Astrophysics Data System (ADS)

    Ishak, Asnor Mazuan; Ishak, Mohd Taufiq

    2018-02-01

    Ultra-high frequency (UHF) partial discharge sensors are widely used for conditioning monitoring and defect location in insulation system of high voltage equipment. Designing sensors for specific applications often requires an iterative process of manufacturing, testing and mechanical modifications. This paper demonstrates the use of finite-difference time-domain (FDTD) technique as a tool to predict the frequency response of UHF PD sensors. Using this approach, the design process can be simplified and parametric studies can be conducted in order to assess the influence of component dimensions and material properties on the sensor response. The modelling approach is validated using gigahertz transverse electromagnetic (GTEM) calibration system. The use of a transient excitation source is particularly suitable for modeling using FDTD, which is able to simulate the step response output voltage of the sensor from which the frequency response is obtained using the same post-processing applied to the physical measurement.

  18. HF produced ionospheric electron density irregularities diagnosed by UHF radio star scintillations

    NASA Technical Reports Server (NTRS)

    Frey, A.; Gordon, W. E.

    1982-01-01

    Three observations of radio star intensity fluctuations at UHF are reported for HF ionospheric modification experiments carried out at the Arecibo Observatory. Two observations at 430 MHz and one at 1400 MHz suggest that the the thin phase screen theory is a good approximation to the observed power spectra. It is noted, however, that the theory has to be extended to include antenna filtering. This type of filtering is important for UHF radio star scintillations since the antenna usually has a narrow beamwidth. HF power densities of less than 37 microwatts/sq m incident on the ionosphere give rise to electron density irregularities larger than 13% of the ambient density (at 260 km) having scale sizes of approximately 510 m perpendicular to the geomagnetic field. The irregularities are found to form within 20-25 s after the HF power is turned on. The drift velocities of the irregularities can be estimated from the observed power spectra.

  19. Excitation and trapping of lower hybrid waves in striations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borisov, N.; Institute of Terrestrial Magnetism, Ionosphere and Radio Waves Propagation; Honary, F.

    2008-12-15

    The theory of lower hybrid (LH) waves trapped in striations in warm ionospheric plasma in the three-dimensional case is presented. A specific mechanism of trapping associated with the linear transformation of waves is discussed. It is shown analytically that such trapping can take place in elongated plasma depletions with the frequencies below and above the lower hybrid resonance frequency of the ambient plasma. The theory is applied mainly to striations generated artificially in ionospheric modification experiments and partly to natural plasma depletions in the auroral upper ionosphere. Typical amplitudes and transverse scales of the trapped LH waves excited in ionosphericmore » modification experiments are estimated. It is shown that such waves possibly can be detected by backscattering at oblique sounding in very high frequency (VHF) and ultra high frequency (UHF) ranges.« less

  20. View of the MPLM, Destiny and the UHF antenna taken during the second EVA of STS-100

    NASA Image and Video Library

    2001-04-24

    STS100-398-017 (19 April-1 May 2001) --- Backdropped by the Earth with partial cloud cover, the Raffaello Multi-Purpose Logistics Module (MPLM) and the Ultra High Frequency (UHF) antenna are photographed by a crewmember during this STS-100 mission to the International Space Station (ISS). The Raffaello, which was built by the Italian Space Agency (ASI), is the second of three such pressurized modules that will serve as ISS "moving vans", carrying laboratory racks filled with equipment, experiments and supplies to and from the station aboard the space shuttle. The UHF antenna was attached to the station's U.S. Laboratory Destiny by space walking astronauts Chris A. Hadfield and Scott E. Parazynski during the mission's first spacewalk. The antenna, on a 1.2-meter (4-foot) boom, is part of the UHF Communications Subsystem of the station. It will interact with systems already aboard the station, including the Space-to-Space Station Radio transceivers. A second antenna will be delivered on the STS-115/11A next year.

  1. Demonstration Of Ultra HI-FI (UHF) Methods

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.

    2004-01-01

    Computational aero-acoustics (CAA) requires efficient, high-resolution simulation tools. Most current techniques utilize finite-difference approaches because high order accuracy is considered too difficult or expensive to achieve with finite volume or finite element methods. However, a novel finite volume approach (Ultra HI-FI or UHF) which utilizes Hermite fluxes is presented which can achieve both arbitrary accuracy and fidelity in space and time. The technique can be applied to unstructured grids with some loss of fidelity or with multi-block structured grids for maximum efficiency and resolution. In either paradigm, it is possible to resolve ultra-short waves (less than 2 PPW). This is demonstrated here by solving the 4th CAA workshop Category 1 Problem 1.

  2. [The ultrastructure of Sertoli cells and spermatogonia in the rats exposed to radiation under conditions of therapeutic and prophylactic application of low-intensity electromagnetic emission].

    PubMed

    Korolev, Y N; Bobrovnitskii, I P; Geniatulina, M S; Nikulina, L A; Mikhailik, L V

    2018-04-09

    it has been demonstrated in various experimental studies that radiation exposure produces a negative impact on the processes of spermatogenesis associated with the disturbances of the microcirculation processes in the testes and the development of cellular and intracellular disintegration expressed as destructive changes in the cells leading to their death. The objective of the present study was to detect the ultrastructural abnormalities in the cells of Sertoli and spermatogonia under conditions of their exposure to radiation and to identify the peculiarities of their regeneration under the influence of the therapeutic and prophylactic application of low-intensity ultra-high frequency (UHF) electromagnetic radiation (EMR) and low-intensity low-frequency magnetic field (MF). The experiments were carried out on 28 non-pedigree mature male rats with the body weight 180-220 g that were divided into four groups. The first study group was comprised of the animals exposed to radiation followed by the application of low-intensity ultra-high frequency UHF electromagnetic radiation EMR. The rats in the second study group experienced effects of radiation and low-intensity low-frequency MF. The animals of the third (control) group were exposed to radiation alone, and those comprising the fourth group 1 (only radiation exposure) were considered to be intact. The studies with the use of electron microscopy showed that the therapeutic and prophylactic application of low-intensity ultra-high frequency (UHF) electromagnetic radiation and low-intensity low-frequency magnetic field caused the decrease in the number and the severity of post-radiation defects in the treated cells together with the increase of the number and size of mitochondria as well as hyperplasia of ribosomes; moreover, it promoted cellular and intracellular regeneration. UHF electromagnetic radiation had a more pronounced stimulating effect on the regeneration processes as compared with low-frequency MF

  3. EFFECT OF VISIBLE RANGE ELECTROMAGNETIC RADIATIONS ON ESCHERICHIA COLI.

    PubMed

    Azeemi, Samina T Yousuf; Shaukat, Saleem Farooq; Azeemi, Khawaja Shamsuddin; Khan, Idrees; Mahmood, Khalid; Naz, Farah

    2017-01-01

    Escherichia coli is the agent responsible for a range of clinical diseases. With emerging antimicrobial resistance, other treatment options including solar/photo-therapy are becoming increasingly common. Visible Range Radiation Therapy/Colour Therapy is an emerging technique in the field of energy/vibrational medicine that uses visible spectrum of Electromagnetic Radiations to cure different diseases. In this study, our goal was to understand the effect of Visible Range Electromagnetic Radiations on E. coli (in vitro) and therefore find out the most appropriate visible range radiation for the treatment of diseases caused by E. coli. A total of 6 non-repetitive E. coli isolates were obtained from urine samples obtained from hospitalized patients with UTI. Single colony of E. coli was inoculated in 3 ml of Lysogeny Broth (LB) and 40 μl of this E. coli suspension was poured into each of the plastic tubes which were then irradiated with six different wavelengths in the visible region (Table. 1) after 18 hours with one acting as a control. The Optical Densities of these irradiated samples were then measured. Furthermore, scanning electron microscopy (TEFCAN ZEGA3) was carried out. The analysis of the microscopic and SEM images of irradiated E. coli samples with six different visible range radiations is representative of The fact that E. coli responded differently to every applied radiation in the visible region and the most profound inhibitory effects were that of 538nm Visible Range Radiation (Green) which proved to be bactericidal and 590nm Visible Range Radiation (yellow) which was bacteriostatic. The enhanced growth of E. coli with varying degrees was clearly observed in 610nm (orange), 644nm (red), 464nm (Purple) and 453nm (blue). It can be concluded that 538nm (Green) and 590nm (Yellow) can effectively be used for treating E. coli borne diseases.

  4. EFFECT OF VISIBLE RANGE ELECTROMAGNETIC RADIATIONS ON ESCHERICHIA COLI

    PubMed Central

    Azeemi, Samina T. Yousuf; Shaukat, Saleem Farooq; Azeemi, Khawaja Shamsuddin; Khan, Idrees; Mahmood, Khalid; Naz, Farah

    2017-01-01

    Background: Escherichia coli is the agent responsible for a range of clinical diseases. With emerging antimicrobial resistance, other treatment options including solar/photo-therapy are becoming increasingly common. Visible Range Radiation Therapy/Colour Therapy is an emerging technique in the field of energy/vibrational medicine that uses visible spectrum of Electromagnetic Radiations to cure different diseases. In this study, our goal was to understand the effect of Visible Range Electromagnetic Radiations on E. coli (in vitro) and therefore find out the most appropriate visible range radiation for the treatment of diseases caused by E. coli. Materials and Methods: A total of 6 non-repetitive E. coli isolates were obtained from urine samples obtained from hospitalized patients with UTI. Single colony of E. coli was inoculated in 3 ml of Lysogeny Broth (LB) and 40 μl of this E. coli suspension was poured into each of the plastic tubes which were then irradiated with six different wavelengths in the visible region (Table. 1) after 18 hours with one acting as a control. The Optical Densities of these irradiated samples were then measured. Furthermore, scanning electron microscopy (TEFCAN ZEGA3) was carried out. Results: The analysis of the microscopic and SEM images of irradiated E. coli samples with six different visible range radiations is representative of The fact that E. coli responded differently to every applied radiation in the visible region and the most profound inhibitory effects were that of 538nm Visible Range Radiation (Green) which proved to be bactericidal and 590nm Visible Range Radiation (yellow) which was bacteriostatic. The enhanced growth of E. coli with varying degrees was clearly observed in 610nm (orange), 644nm (red), 464nm (Purple) and 453nm (blue). Conclusion: It can be concluded that 538nm (Green) and 590nm (Yellow) can effectively be used for treating E. coli borne diseases. PMID:28331912

  5. UHF front-end feeding RFID-based body sensor networks by exploiting the reader signal

    NASA Astrophysics Data System (ADS)

    Pasca, M.; Colella, R.; Catarinucci, L.; Tarricone, L.; D'Amico, S.; Baschirotto, A.

    2016-05-01

    This paper presents an integrated, high-sensitivity UHF radio frequency identification (RFID) power management circuit for body sensor network applications. The circuit consists of a two-stage RF-DC Dickson's rectifier followed by an integrated five-stage DC-DC Pelliconi's charge pump driven by an ultralow start-up voltage LC oscillator. The DC-DC charge pump interposed between the RF-DC rectifier and the output load provides the RF to load isolation avoiding losses due to the diodes reverse saturation current. The RF-DC rectifier has been realized on FR4 substrate, while the charge pump and the oscillator have been realized in 180 nm complementary metal oxide semiconductor (CMOS) technology. Outdoor measurements demonstrate the ability of the power management circuit to provide 400 mV output voltage at 14 m distance from the UHF reader, in correspondence of -25 dBm input signal power. As demonstrated in the literature, such output voltage level is suitable to supply body sensor network nodes.

  6. Improved Absolute Radiometric Calibration of a UHF Airborne Radar

    NASA Technical Reports Server (NTRS)

    Chapin, Elaine; Hawkins, Brian P.; Harcke, Leif; Hensley, Scott; Lou, Yunling; Michel, Thierry R.; Moreira, Laila; Muellerschoen, Ronald J.; Shimada, Joanne G.; Tham, Kean W.; hide

    2015-01-01

    The AirMOSS airborne SAR operates at UHF and produces fully polarimetric imagery. The AirMOSS radar data are used to produce Root Zone Soil Moisture (RZSM) depth profiles. The absolute radiometric accuracy of the imagery, ideally of better than 0.5 dB, is key to retrieving RZSM, especially in wet soils where the backscatter as a function of soil moisture function tends to flatten out. In this paper we assess the absolute radiometric uncertainty in previously delivered data, describe a method to utilize Built In Test (BIT) data to improve the radiometric calibration, and evaluate the improvement from applying the method.

  7. Heater-induced altitude descent of the EISCAT UHF ion line enhancements: Observations and modelling

    NASA Astrophysics Data System (ADS)

    Ashrafi, M.; Kosch, M. J.; Honary, F.

    2006-01-01

    On 12 November 2001, artificial optical annuli were produced using the EISCAT high-frequency (HF) ionospheric heating facility. This unusual phenomenon was induced using O-mode transmissions at 5.423 MHz with 550 MW effective isotropic radiated power and the pump beam dipped 9° south of the zenith. The pump frequency corresponds to the fourth electron gyroharmonic frequency at 215 km altitude. The EISCAT UHF radar observed a persistent pump-induced enhancement in the ion line backscatter power near the HF reflection altitude. The optical and radar signatures of HF pumping started at ˜230 km and descended to ˜220 km within ˜60 s. This effect has been modelled using the solution to differential equations describing pump-induced electron temperature and density perturbations. The decrease in altitude of the ion line by ˜10 km and changes in electron density have been modelled. The results show that a maximum electron temperature enhancement of up to ˜5700 K can be achieved on average, which is not sufficient to explain the observed optical emissions.

  8. CPW-fed Circularly Polarized Slot Antenna with Small Gap and Stick-shaped Shorted Strip for UHF FRID Readers

    NASA Astrophysics Data System (ADS)

    Pan, Chien-Yuan; Su, Chum-Chieh; Yang, Wei-Lin

    2018-04-01

    A new circularly polarized (CP) slot antenna with a small gap and a stick-shaped shorted strip is presented. The proposed antenna has a sufficient bandwidth for ultrahigh frequency (UHF) radio-frequency identification (RFID) reader applications. The antenna structure consists of a rectangular slot with a small gap, a stick-shaped shorted strip and a 50 Ω coplanar waveguide (CPW) feedline with an asymmetrical ground plane. By using the stick -shaped shorted strip to disturb magnetic current distribution on the slot, the CP radiation can be generated. The measured results demonstrate that the proposed antenna can reach a 10 dB return loss impedance bandwidth of 14.1 % (894-1030 MHz) and a 3 dB axial ratio (AR) bandwidth of 6.4 % (910-970 MHz). The whole antenna size is 80 × 80 × 1.6 mm3.

  9. Long-range correlation in cosmic microwave background radiation.

    PubMed

    Movahed, M Sadegh; Ghasemi, F; Rahvar, Sohrab; Tabar, M Reza Rahimi

    2011-08-01

    We investigate the statistical anisotropy and gaussianity of temperature fluctuations of Cosmic Microwave Background (CMB) radiation data from the Wilkinson Microwave Anisotropy Probe survey, using the Multifractal Detrended Fluctuation Analysis, Rescaled Range, and Scaled Windowed Variance methods. Multifractal Detrended Fluctuation Analysis shows that CMB fluctuations has a long-range correlation function with a multifractal behavior. By comparing the shuffled and surrogate series of CMB data, we conclude that the multifractality nature of the temperature fluctuation of CMB radiation is mainly due to the long-range correlations, and the map is consistent with a gaussian distribution.

  10. Multiport Circular Polarized RFID-Tag Antenna for UHF Sensor Applications.

    PubMed

    Zaid, Jamal; Abdulhadi, Abdulhadi; Kesavan, Arun; Belaizi, Yassin; Denidni, Tayeb A

    2017-07-05

    A circular polarized patch antenna for UHF RFID tag-based sensor applications is presented, with the circular polarization (CP) generated by a new antenna shape, an asymmetric stars shaped slotted microstrip patch antenna (CP-ASSSMP). Four stars etched on the patch allow the antenna's size to be reduced by close to 20%. The proposed antenna is matched with two RFID chips via inductive-loop matching. The first chip is connected to a resistive sensor and acts as a sensor node, and the second is used as a reference node. The proposed antenna is used for two targets, serving as both reference and sensor simultaneously, thereby eliminating the need for a second antenna. Its reader can read the RFID chips at any orientation of the tag due to the CP. The measured reading range is about 25 m with mismatch polarization. The operating frequency band is 902-929 MHz for the two ports, which is covered by the US RFID band, and the axial-ratio bandwidth is about 7 MHz. In addition, the reader can also detect temperature, based on the minimum difference in the power required by the reference and sensor.

  11. Multiport Circular Polarized RFID-Tag Antenna for UHF Sensor Applications

    PubMed Central

    Zaid, Jamal; Abdulhadi, Abdulhadi; Kesavan, Arun; Belaizi, Yassin; Denidni, Tayeb A.

    2017-01-01

    A circular polarized patch antenna for UHF RFID tag-based sensor applications is presented, with the circular polarization (CP) generated by a new antenna shape, an asymmetric stars shaped slotted microstrip patch antenna (CP-ASSSMP). Four stars etched on the patch allow the antenna’s size to be reduced by close to 20%. The proposed antenna is matched with two RFID chips via inductive-loop matching. The first chip is connected to a resistive sensor and acts as a sensor node, and the second is used as a reference node. The proposed antenna is used for two targets, serving as both reference and sensor simultaneously, thereby eliminating the need for a second antenna. Its reader can read the RFID chips at any orientation of the tag due to the CP. The measured reading range is about 25 m with mismatch polarization. The operating frequency band is 902–929 MHz for the two ports, which is covered by the US RFID band, and the axial-ratio bandwidth is about 7 MHz. In addition, the reader can also detect temperature, based on the minimum difference in the power required by the reference and sensor. PMID:28678178

  12. An uncertainty budget for VHF and UHF reflectometers

    NASA Astrophysics Data System (ADS)

    Ridler, N. M.; Medley, C. J.

    1992-05-01

    Details of the derivation of an uncertainty budget for one port immittance or complex voltage reflection coefficient measuring instruments, operating at VHF and UHF in the 14 mm 50 ohm coaxial line size, are reported. The principles of the uncertainty budget are given along with experimental results obtained using six ports and a network analyzer as the measuring instruments. Details of the types of calibration for which the uncertainty budget is suitable are reported. Various aspects of the uncertainty budget are considered and general principles and treatment of the type A and type B contributions are discussed. Experimental results obtained using the uncertainty budget are given. A summary of uncertainties for the six ports and HP8753B automatic network analyzer are also given.

  13. A Novel Displacement and Tilt Detection Method Using Passive UHF RFID Technology.

    PubMed

    Lai, Xiaozheng; Cai, Zhirong; Xie, Zeming; Zhu, Hailong

    2018-05-21

    The displacement and tilt angle of an object are useful information for wireless monitoring applications. In this paper, a low-cost detection method based on passive radio frequency identification (RFID) technology is proposed. This method uses a standard ultrahigh-frequency (UHF) RFID reader to measure the phase variation of the tag response and detect the displacement and tilt angle of RFID tags attached to the targeted object. An accurate displacement result can be detected by the RFID system with a linearly polarized (LP) reader antenna. Based on the displacement results, an accurate tilt angle can also be detected by the RFID system with a circularly polarized (CP) reader antenna, which has been proved to have a linear relationship with the phase parameter of the tag’s backscattered wave. As far as accuracy is concerned, the mean absolute error (MAE) of displacement is less than 2 mm and the MAE of the tilt angle is less than 2.5° for an RFID system with 500 mm working range.

  14. 2-SR-based electrically small antenna for RFID applications

    NASA Astrophysics Data System (ADS)

    Paredes, Ferran; Zuffanelli, Simone; Aguilà, Pau; Zamora, Gerard; Martin, Ferran; Bonache, Jordi

    2016-04-01

    In this work, the 2-turn spiral resonator (2-SR) is proposed as an electrically small antenna for passive radio frequency identification (RFID) tags at the European ultra-high frequency (UHF) band. The radiation properties are studied in order to explore the viability of the 2-SR applied to tag antenna design. Based on analytical calculations, the radiation pattern is found to provide a cancelation of the radiation nulls. This results in a mitigation of the blind spots in the read range, which are present in typical UHF-RFID tags as an undesired feature. As a proof of concept, a passive tag of size 35 mm × 40 mm (λ 0/10 × λ 0/9) based on the 2-SR antenna is designed and fabricated. Good radiation efficiency (75 %) and a quasi-isotropic radiation pattern are obtained. The experimental tag read range for different directions is in good agreement with the simulation results. The measured read range exhibits maximum and minimum values of 6.7 and 3.5 m, respectively.

  15. Nuclear Weapons Effects Mitigation Techniques

    DTIC Science & Technology

    1982-06-01

    ELF ) into the ultra-high (UHF) frequeniese, with much of Its energy concentrated In frequenrv ranges (high frequency (IF) into UHF) employed by Army...tactical Communications equipment. It Is of concern because the damage and upset it causes can occur Rt distances from the burst far beyond where...radiation is scattered from all directions, most of’ it comes from direct line-of-sight to the fireball. Therefore, the flat earth cover of an underground

  16. A dual-mode secure UHF RFID tag with a crypto engine in 0.13-μm CMOS

    NASA Astrophysics Data System (ADS)

    Tao, Yang; Linghao, Zhu; Xi, Tan; Junyu, Wang; Lirong, Zheng; Hao, Min

    2016-07-01

    An ultra-high-frequency (UHF) radio frequency identification (RFID) secure tag chip with a non-crypto mode and a crypto mode is presented. During the supply chain management, the tag works in the non-crypto mode in which the on-chip crypto engine is not enabled and the tag chip has a sensitivity of -12.8 dBm for long range communication. At the point of sales (POS), the tag will be switched to the crypto mode in order to protect the privacy of customers. In the crypto mode, an advanced encryption standard (AES) crypto engine is enabled and the sensitivity of the tag chip is switched to +2 dBm for short range communication, which is a method of physical protection. The tag chip is implemented and verified in a standard 0.13-μm CMOS process. Project supported by the National Science & Technology Pillar Program of China (No. 2015BAK36B01).

  17. Signal distortion on VHF/UHF transionospheric paths: First results from the Wideband Ionospheric Distortion Experiment

    NASA Astrophysics Data System (ADS)

    Cannon, Paul S.; Groves, Keith; Fraser, David J.; Donnelly, William J.; Perrier, Kathleen

    2006-10-01

    To the best of our knowledge, we report the first determination of ionospheric distortion, comprising the simultaneous characterization of both multipath and Doppler, on wideband, transionospheric VHF (158 MHz) and UHF (422 MHz) signals. The measurements took place as part of the test phase of the United Kingdom-United States Wideband Ionospheric Distortion Experiment during the evening (˜1000 UT) of 18 January 2005. This characterization has been achieved using the ALTAIR radar at the Ronald Reagan Ballistic Missile Defense Test Site on Kwajalein Atoll (9.395°N, 167.469°E (12.87°N, 237.16°E corrected geomagnetic)) in the Pacific, in conjunction with a low Earth orbiting, constant radar cross-section, passive satellite (calibration sphere). During the period when the two-way S4 index was above ˜0.8 on both channels, the median coherency times were 43 and 96 ms at VHF and UHF, respectively (at 1.5σ). The corresponding median coherency bandwidths were 0.8 and 2.1 MHz.

  18. Radiation from lightning return strokes over a finitely conducting earth

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Gesell, L.; Kao, Michael

    1986-01-01

    The effects of the conductivity of the earth on radiation from lightning return strokes are examined theoretically using a piecewise linear transmission line model for the return stroke. First, calculations are made of the electric field radiated during the return stroke, and then this electric field is used to compute the response of conventional AM radio receivers and electric field change systems during the return stroke. The calculations apply to the entire transient waveform (they are not restricted to the initial portions of the return stroke) and yield fast field changes and RF radiation in agreement with measurements made during real lightning. This research was motivated by measurements indicating that a time delay exists between the time of arrival of the fast electric field change and the RF radiation from first return strokes. The time delay is on the order of 20 microsec for frequencies in the HF-UHF range for lightning in Florida. The time delay is obtained theoretically in this paper. It occurs when both the effects of attenuation due to conductivity of the earth, and the finite velocity of propagation of the current pulse up the return stroke channel, are taken into account in the model.

  19. Coplanar UHF RFID tag antenna with U-shaped inductively coupled feed for metallic applications

    PubMed Central

    Ismail, Alyani; Raja Abdullah, Raja Syamsul Azmir; Saeedi, Tale

    2017-01-01

    In this paper, we present a novel compact, coplanar, tag antenna design for metallic objects. Electrically small antenna has designed for a UHF RFID (860–960 MHz) based on a proximity-coupled feed through. Furthermore, two symmetrical Via-loaded coplanar grounds fed by a U-shaped inductively coupled feed through an embedded transmission line. This configuration results in an antenna with dimensions of 31 × 19.5 × 3.065 mm3 at 915 MHz, and the total gain for the antenna is 0.12 dBi. The Via-loaded coplanar and U-shaped inductively coupled feeds allow the antenna to provide flexible tuning in terms of antenna impedance. In addition, a figure of merit is applied for the proposed tag antenna, and the results are presented. The read range is measured to be 4.2 m, which is very close to simulated values. This antenna measurement shows very good agreement with simulations. PMID:28570706

  20. Coplanar UHF RFID tag antenna with U-shaped inductively coupled feed for metallic applications.

    PubMed

    Salman, Karrar Naji; Ismail, Alyani; Raja Abdullah, Raja Syamsul Azmir; Saeedi, Tale

    2017-01-01

    In this paper, we present a novel compact, coplanar, tag antenna design for metallic objects. Electrically small antenna has designed for a UHF RFID (860-960 MHz) based on a proximity-coupled feed through. Furthermore, two symmetrical Via-loaded coplanar grounds fed by a U-shaped inductively coupled feed through an embedded transmission line. This configuration results in an antenna with dimensions of 31 × 19.5 × 3.065 mm3 at 915 MHz, and the total gain for the antenna is 0.12 dBi. The Via-loaded coplanar and U-shaped inductively coupled feeds allow the antenna to provide flexible tuning in terms of antenna impedance. In addition, a figure of merit is applied for the proposed tag antenna, and the results are presented. The read range is measured to be 4.2 m, which is very close to simulated values. This antenna measurement shows very good agreement with simulations.

  1. Fiber-Optic Propagation Effects in Long-Haul HF/VHF/UHF Analog Photonic Links

    DTIC Science & Technology

    2014-04-17

    theoretical analysis of crosstalk in fiber optic wavelength division multiplexed systems is presented for the HF/VHF/UHF (1 MHz to 3 GHz) frequency...Street, Suite 1425 Arlington, VA 22203-1995 EW-271-003 6582 ONR Wavelength division multiplexing Crosstalk 05-03-2013 – 20-08-2014 TABLE OF CONTENTS...in optical fiber that can alter the phase relationship between signals in separate fibers or between signals that are multiplexed onto the same

  2. Using UHF proximity loggers to quantify male-female interactions: a scoping study of estrous activity in cattle.

    PubMed

    O'Neill, C J; Bishop-Hurley, G J; Williams, P J; Reid, D J; Swain, D L

    2014-12-10

    Reproductive efficiency is an important determinant of profitable cattle breeding systems and the success of assisted reproductive techniques (ART) in wildlife conservation programs. Methods of estrous detection used in intensive beef and dairy cattle systems lack accuracy and remain the single biggest issue for improvement of reproductive rates and such methods are not practical for either large-scale extensive beef cattle enterprises or free-living mammalian species. Recent developments in UHF (ultra high frequency) proximity logger telemetry devices have been used to provide a continuous pair-wise measure of associations between individual animals for both livestock and wildlife. The objective of this study was to explore the potential of using UHF telemetry to identify the reproductive cycle phenotype in terms of intensity and duration of estrus. The study was conducted using Belmont Red (interbred Africander Brahman Hereford-Shorthorn) cattle grazing irrigated pasture on Belmont Research Station, northeastern Australia. The cow-bull associations from three groups of cows each with one bull were recorded over a 7-week breeding season and the stage of estrus was identified using ultrasonography. Telemetry data from bull and cows, collected over 4 8-day logger deployments, were log transformed and analyzed by ANOVA. Both the number and duration of bull-cow affiliations were significantly (P<0.001) greater in estrous cows compared to anestrus cows. These results support the development of the UHF technology as a hands-off and noninvasive means of gathering socio-sexual information on both wildlife and livestock for reproductive management. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  3. NAEB TECHNICAL REPORT ON THE IMPACT OF AIRBORNE TELEVISION TRANSMISSION ON LAND-BASED UHF TELEVISION ASSIGNMENT PLANS.

    ERIC Educational Resources Information Center

    BRONSON, VERNON; AND OTHERS

    OPERATIONAL EFFECTS OF AIRBORNE EDUCATIONAL TELEVISION ON ULTRAHIGH FREQUENCY (UHF) TELEVISION ASSIGNMENTS ON LAND WERE INVESTIGATED. SPECIFICALLY, THE EFFORT RELATED TO EXPANSION PLANS OF THE MIDWEST PROGRAM ON AIRBORNE TELEVISION INSTRUCTION (MPATI). PREVIOUS STUDIES BY THE NATIONAL ASSOCIATION OF EDUCATIONAL BROADCASTERS (NAEB) LED TO THE…

  4. [Interaction of oxytocin, laser and electromagnetic radiation on the persistence properties of Staphylococcus aureus].

    PubMed

    Kurlaev, P P; Chernova, O L; Kirgizova, S B

    2000-01-01

    The suppressive action of oxytocin, heliumneon radiation and ultrahigh-frequency electromagnetic waves (UHF-therapy) on the persistence properties of S. aureus has been experimentally established. The effectiveness of the therapeutic actions under study in the treatment of patients with the prognosticated unfavorable course of purulent inflammatory diseases of soft tissues has been shown.

  5. A theoretical study on directivity control of multiple-loudspeaker system with a quadrupole radiation pattern in low frequency range

    NASA Astrophysics Data System (ADS)

    Irwansyah, Kuse, Naoyuki; Usagawa, Tsuyoshi

    2017-08-01

    Directivity pattern of an ordinary loudspeaker becomes more directive at higher frequencies. However, because a single loudspeaker tends to radiate uniformly in all directions at low frequencies, reverberation from surrounding building walls may affect speech intelligibility when installing a multiple-loudspeaker system at crossroads. As an alternative, a sharply directive sound source is recommended to be used, but in many cases the directivity of an ordinary loudspeaker is less sharp at lower frequencies. Therefore, in order to overcome such a limitation, this paper discusses the possibility of using four loudspeakers under active control to realize a quadrupole radiation pattern in low frequency range. In this study, the radiation pattern of a primary loudspeaker and three secondary loudspeakers has been modelled. By placing the loudspeakers close together in the direction of 0°, 90°, 180°, and 270°, it was theoretically demonstrated that a quadrupole radiation pattern can be shaped in the target frequency range up to 600 Hz by simply controlling the directivity in three of four directions which are 45°, 135°, 225°, and 315°. Although, the radiation pattern model is far from realistic configurations and conditions, it is possible to realize a quadrupole radiation pattern in the low frequency range.

  6. Changes in mitochondrial functioning with electromagnetic radiation of ultra high frequency as revealed by electron paramagnetic resonance methods.

    PubMed

    Burlaka, Anatoly; Selyuk, Marina; Gafurov, Marat; Lukin, Sergei; Potaskalova, Viktoria; Sidorik, Evgeny

    2014-05-01

    To study the effects of electromagnetic radiation (EMR) of ultra high frequency (UHF) in the doses equivalent to the maximal permitted energy load for the staffs of the radar stations on the biochemical processes that occur in the cell organelles. Liver, cardiac and aorta tissues from the male rats exposed to non-thermal UHF EMR in pulsed and continuous modes were studied during 28 days after the irradiation by the electron paramagnetic resonance (EPR) methods including a spin trapping of superoxide radicals. The qualitative and quantitative disturbances in electron transport chain (ETC) of mitochondria are registered. A formation of the iron-nitrosyl complexes of nitric oxide (NO) radicals with the iron-sulphide (FeS) proteins, the decreased activity of FeS-protein N2 of NADH-ubiquinone oxidoreductase complex and flavo-ubisemiquinone growth combined with the increased rates of superoxide production are obtained. (i) Abnormalities in the mitochondrial ETC of liver and aorta cells are more pronounced for animals radiated in a pulsed mode; (ii) the alterations in the functioning of the mitochondrial ETC cause increase of superoxide radicals generation rate in all samples, formation of cellular hypoxia, and intensification of the oxide-initiated metabolic changes; and (iii) electron paramagnetic resonance methods could be used to track the qualitative and quantitative changes in the mitochondrial ETC caused by the UHF EMR.

  7. An integral equation formulation for predicting radiation patterns of a space shuttle annular slot antenna

    NASA Technical Reports Server (NTRS)

    Jones, J. E.; Richmond, J. H.

    1974-01-01

    An integral equation formulation is applied to predict pitch- and roll-plane radiation patterns of a thin VHF/UHF (very high frequency/ultra high frequency) annular slot communications antenna operating at several locations in the nose region of the space shuttle orbiter. Digital computer programs used to compute radiation patterns are given and the use of the programs is illustrated. Experimental verification of computed patterns is given from measurements made on 1/35-scale models of the orbiter.

  8. Meteoroid Fragmentation as Revealed in Head- and Trail-Echoes Observed with the Arecibo UHF and VHF Radars

    NASA Technical Reports Server (NTRS)

    Mathews, J. D.; Malhorta, A.

    2011-01-01

    We report recent 46.8/430 MHz (VHF/UHF) radar meteor observations at Arecibo Observatory (AO) that reveal many previously unreported features in the radar meteor return - including flare-trails at both UHF and VHF - that are consistent with meteoroid fragmentation. Signature features of fragmentation include strong intra-pulse and pulse-to-pulse fading as the result of interference between or among multiple meteor head-echo returns and between head-echo and impulsive flare or "point" trail-echoes. That strong interference fading occurs implies that these scatterers exhibit well defined phase centers and are thus small compared with the wavelength. These results are consistent with and offer advances beyond a long history of optical and radar meteoroid fragmentation studies. Further, at AO, fragmenting and flare events are found to be a large fraction of the total events even though these meteoroids are likely the smallest observed by the major radars. Fragmentation is found to be a major though not dominate component of the meteors observed at other HPLA radars that are sensitive to larger meteoroids.

  9. 47 CFR 15.33 - Frequency range of radiated measurements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... kHz, up to at least the frequency shown in this paragraph: (1) If the intentional radiator operates... level of radiated emissions within the frequency range 9 kHz to 30 MHz, such as a CB receiver or a... used in the device, without going below 9 kHz (25 MHz for CB receivers), up to the frequency shown in...

  10. 47 CFR 15.33 - Frequency range of radiated measurements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... kHz, up to at least the frequency shown in this paragraph: (1) If the intentional radiator operates... level of radiated emissions within the frequency range 9 kHz to 30 MHz, such as a CB receiver or a... used in the device, without going below 9 kHz (25 MHz for CB receivers), up to the frequency shown in...

  11. 47 CFR 15.33 - Frequency range of radiated measurements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... kHz, up to at least the frequency shown in this paragraph: (1) If the intentional radiator operates... level of radiated emissions within the frequency range 9 kHz to 30 MHz, such as a CB receiver or a... used in the device, without going below 9 kHz (25 MHz for CB receivers), up to the frequency shown in...

  12. 47 CFR 15.33 - Frequency range of radiated measurements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... kHz, up to at least the frequency shown in this paragraph: (1) If the intentional radiator operates... level of radiated emissions within the frequency range 9 kHz to 30 MHz, such as a CB receiver or a... used in the device, without going below 9 kHz (25 MHz for CB receivers), up to the frequency shown in...

  13. No Radiative Heat Transport Through Pyrolitic Lower Mantle

    NASA Astrophysics Data System (ADS)

    Lobanov, S.; Holtgrewe, N.; Badro, J.; Goncharov, A. F.

    2017-12-01

    Transport properties of the lower mantle, such as its thermal conductivity, are key parameters required to understand the nature and dynamics of the core-mantle boundary (CMB) region. Radiative thermal conductivity (krad) of the mantle is determined by its visible-infrared absorption coefficient (α) at high pressure (P) and temperature (T). The latter is highly uncertain at the CMB conditions as optical measurements at high temperature suffer from intense thermal radiation that diminishes the probe contrast. Room-temperature high-pressure studies of bridgmanite and ferropericlase absorption coefficients suggest a steady increase of mantle radiative conductivity with depth mirroring the temperature increase along the geotherm (Goncharov et al., 2008; Keppler et al., 2008). Here we reconstruct optical properties of the mantle as a function of depth by using fast time-resolved spectroscopic technology combined with laser-heated diamond anvil cells. We found a strong increase in the rock absorption coefficient upon heating to 3000 K at 40-135 GPa. Using the pressure- and temperature-dependent pyrolite absorption coefficient we establish that lower mantle radiative thermal conductivity is decreasing with depth from 0.35 W/m/K at 1000 km to 0.15 W/m/K at the CMB, making it 50 times smaller than the corresponding lattice thermal conductivity at such conditions (Ohta et al., 2017; Okuda et al., 2017). Combining our results with models of lattice thermal conductivity in pyrolitic lower mantle we obtain a CMB heat flow of 8.5 TW. This estimate implies an inner core age of 0.7-1.3 Gy and favors a low-to-moderate core thermal conductivity (< 80 W/m/K). A core with higher thermal conductivity (Ohta et al., 2016; Pozzo et al., 2012) would be thermally stratified, halting a thermally driven dynamo prior to the inner core growth, if no other mechanism is invoked, such as MgO (Badro et al., 2016) or SiO2 (Hirose et al., 2017) exsolution. On the other hand, the low iron thermal

  14. Extended range radiation dose-rate monitor

    DOEpatents

    Valentine, Kenneth H.

    1988-01-01

    An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.

  15. Lower prevalence but similar fitness in a parasitic fungus at higher radiation levels near Chernobyl.

    PubMed

    Aguileta, Gabriela; Badouin, Helene; Hood, Michael E; Møller, Anders P; Le Prieur, Stephanie; Snirc, Alodie; Siguenza, Sophie; Mousseau, Timothy A; Shykoff, Jacqui A; Cuomo, Christina A; Giraud, Tatiana

    2016-07-01

    Nuclear disasters at Chernobyl and Fukushima provide examples of effects of acute ionizing radiation on mutations that can affect the fitness and distribution of species. Here, we investigated the prevalence of Microbotryum lychnidis-dioicae, a pollinator-transmitted fungal pathogen of plants causing anther-smut disease in Chernobyl, its viability, fertility and karyotype variation, and the accumulation of nonsynonymous mutations in its genome. We collected diseased flowers of Silene latifolia from locations ranging by more than two orders of magnitude in background radiation, from 0.05 to 21.03 μGy/h. Disease prevalence decreased significantly with increasing radiation level, possibly due to lower pollinator abundance and altered pollinator behaviour. Viability and fertility, measured as the budding rate of haploid sporidia following meiosis from the diploid teliospores, did not vary with increasing radiation levels and neither did karyotype overall structure and level of chromosomal size heterozygosity. We sequenced the genomes of twelve samples from Chernobyl and of four samples collected from uncontaminated areas and analysed alignments of 6068 predicted genes, corresponding to 1.04 × 10(7)  base pairs. We found no dose-dependent differences in substitution rates (neither dN, dS, nor dN/dS). Thus, we found no significant evidence of increased deleterious mutation rates at higher levels of background radiation in this plant pathogen. We even found lower levels of nonsynonymous substitution rates in contaminated areas compared to control regions, suggesting that purifying selection was stronger in contaminated than uncontaminated areas. We briefly discuss the possibilities for a mechanistic basis of radio resistance in this nonmelanized fungus. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  16. Lightning flash density versus altitude and storm structure from observations with UHF- and S-band radars

    NASA Technical Reports Server (NTRS)

    Mazur, V.; Gerlach, J. C.; Rust, W. D.

    1984-01-01

    The UHF-(70.5 cm wavelength) and S-band (10 cm wavelength) radar at NASA/Wallops Island Research Facility in Virginia, U.S.A. have been used to relate lightning activity with altitude and with the reflectivity structure of thunderstorms. Two centers of lightning flash density were found; one between 6 and 8 km altitude and another between 11 and 15 km. Previously announced in STAR as N83-31206

  17. A diagnostic technique used to obtain cross range radiation centers from antenna patterns

    NASA Technical Reports Server (NTRS)

    Lee, T. H.; Burnside, W. D.

    1988-01-01

    A diagnostic technique to obtain cross range radiation centers based on antenna radiation patterns is presented. This method is similar to the synthetic aperture processing of scattered fields in the radar application. Coherent processing of the radiated fields is used to determine the various radiation centers associated with the far-zone pattern of an antenna for a given radiation direction. This technique can be used to identify an unexpected radiation center that creates an undesired effect in a pattern; on the other hand, it can improve a numerical simulation of the pattern by identifying other significant mechanisms. Cross range results for two 8' reflector antennas are presented to illustrate as well as validate that technique.

  18. Lower thresholds for lifetime health effects in mammals from high-LET radiation - Comparison with chronic low-LET radiation.

    PubMed

    Sazykina, Tatiana G; Kryshev, Alexander I

    2016-12-01

    Lower threshold dose rates and confidence limits are quantified for lifetime radiation effects in mammalian animals from internally deposited alpha-emitting radionuclides. Extensive datasets on effects from internal alpha-emitters are compiled from the International Radiobiological Archives. In total, the compiled database includes 257 records, which are analyzed by means of non-parametric order statistics. The generic lower threshold for alpha-emitters in mammalian animals (combined datasets) is 6.6·10 -5  Gy day -1 . Thresholds for individual alpha-emitting elements differ considerably: plutonium and americium - 2.0·10 -5  Gy day -1 ; radium - 2.1·10 -4  Gy day -1 . Threshold for chronic low-LET radiation is previously estimated at 1·10 -3  Gy day -1 . For low exposures, the following values of alpha radiation weighting factor w R for internally deposited alpha-emitters in mammals are quantified: w R (α) = 15 as a generic value for the whole group of alpha-emitters; w R (Pu) = 50 for plutonium; w R (Am) = 50 for americium; w R (Ra) = 5 for radium. These values are proposed to serve as radiation weighting factors in calculations of equivalent doses to non-human biota. The lower threshold dose rate for long-lived mammals (dogs) is significantly lower than comparing with the threshold for short-lived mammals (mice): 2.7·10 -5  Gy day -1 , and 2.0·10 -4  Gy day -1 , respectively. The difference in thresholds is exactly reflecting the relationship between the natural longevity of these two species. Graded scale of severity in lifetime radiation effects in mammals is developed, based on compiled datasets. Being placed on the severity scale, the effects of internal alpha-emitters are situated in the zones of considerably lower dose rates than effects of the same severity caused by low-LET radiation. RBE values, calculated for effects of equal severity, are found to depend on the intensity of chronic exposure: different RBE values are characteristic

  19. A Martian Telecommunications Network: UHF Relay Support of the Mars Exploration Rovers by the Mars Global Surveyor, Mars Odyssey, and Mars Express Orbiters

    NASA Technical Reports Server (NTRS)

    Edwards, Charles D., Jr.; Barbieri, A.; Brower, E.; Estabrook, P.; Gibbs, R.; Horttor, R.; Ludwinski, J.; Mase, R.; McCarthy, C.; Schmidt, R.; hide

    2004-01-01

    NASA and ESA have established an international network of Mars orbiters, outfitted with relay communications payloads, to support robotic exploration of the red planet. Starting in January, 2004, this network has provided the Mars Exploration Rovers with telecommunications relay services, significantly increasing rover engineering and science data return while enhancing mission robustness and operability. Augmenting the data return capabilities of their X-band direct-to-Earth links, the rovers are equipped with UHF transceivers allowing data to be relayed at high rate to the Mars Global Surveyor (MGS), Mars Odyssey, and Mars Express orbiters. As of 21 July, 2004, over 50 Gbits of MER data have been obtained, with nearly 95% of that data returned via the MGS and Odyssey UHF relay paths, allowing a large increase in science return from the Martian surface relative to the X-band direct-to-Earth link. The MGS spacecraft also supported high-rate UHF communications of MER engineering telemetry during the critical period of entry, descent, and landing (EDL), augmenting the very low-rate EDL data collected on the X-band direct-to-Earth link. Through adoption of the new CCSDS Proximity-1 Link Protocol, NASA and ESA have achieved interoperability among these Mars assets, as validated by a successful relay demonstration between Spirit and Mars Express, enabling future interagency cross-support and establishing a truly international relay network at Mars.

  20. NASA Standard Initiator Susceptibility to UHF and S-Band Radio Frequency Power and Lightning Strikes

    NASA Technical Reports Server (NTRS)

    Burnham, Karen; Scully, Robert; Norgard, John

    2013-01-01

    The NASA Standard Initiator (NSI) is an important piece of pyrotechnic equipment used in many space applications. This presentation will outline the results of a series of tests done at UHF and S-Band frequencies to determine NSI susceptibility to Radio Frequency (RF) power. The results show significant susceptibility to pulsed RF power in the S-Band region. Additional testing with lightning pulses injected into the firing line harness, modelling the indirect effects of a lightning strike to a spacecraft, showed no vulnerability

  1. NASA Standard Initiator Susceptibility to UHF and S-Band Radio Frequency Power and Lightning Strikes

    NASA Technical Reports Server (NTRS)

    Burnham, Karen; Scully, Robert C.; Norgard, John D.

    2013-01-01

    The NASA Standard Initiator (NSI) is an important piece of pyrotechnic equipment used in many space applications. This paper outlines the results of a series of tests done at UHF and S-Band frequencies to determine NSI susceptibility to Radio Frequency (RF) power. The results show significant susceptibility to pulsed RF power in the S-Band region. Additional testing with lightning pulses injected into the firing line harness, modelling the indirect effects of a lightning strike to a spacecraft, showed no vulnerability.

  2. UHF Microstrip Antenna Array for Synthetic- Aperture Radar

    NASA Technical Reports Server (NTRS)

    Thomas, Robert F.; Huang, John

    2003-01-01

    An ultra-high-frequency microstrippatch antenna has been built for use in airborne synthetic-aperture radar (SAR). The antenna design satisfies requirements specific to the GeoSAR program, which is dedicated to the development of a terrain-mapping SAR system that can provide information on geology, seismicity, vegetation, and other terrain-related topics. One of the requirements is for ultra-wide-band performance: the antenna must be capable of operating with dual linear polarization in the frequency range of 350 plus or minus 80 MHz, with a peak gain of 10 dB at the middle frequency of 350 MHz and a gain of at least 8 dB at the upper and lower ends (270 and 430 MHz) of the band. Another requirement is compactness: the antenna must fit in the wingtip pod of a Gulfstream II airplane. The antenna includes a linear array of microstrip-patch radiating elements supported over square cavities. Each patch is square (except for small corner cuts) and has a small square hole at its center.

  3. Microprocessors as a tool in determining correlation between sferics and tornado genesis. [Sferics = atmospheric electromagnetic radiation in the kilohertz to UHF range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witte, D.R.

    1978-11-01

    It is believed that sferics, a word that stands for atmospheric electromagnetic radiation, can be correlated to the genesis of tornadoes and severe weather. Sferics are generated by lightning and other atmospheric disturbances that are not yet entirely understood. The recording and analysis of the patterns in which sferic events occur, it is hoped, will lead to accurate real-time prediction of tornadoes and other severe weather. Collection of this data becomes cumbersome when correlation between at least two stations is necessary for triangulation; however, the advent of microprocessors has made the task of data collection and massaging inexpensive and manageable.

  4. Comparison of Stopping Power and Range Databases for Radiation Transport Study

    NASA Technical Reports Server (NTRS)

    Tai, H.; Bichsel, Hans; Wilson, John W.; Shinn, Judy L.; Cucinotta, Francis A.; Badavi, Francis F.

    1997-01-01

    The codes used to calculate stopping power and range for the space radiation shielding program at the Langley Research Center are based on the work of Ziegler but with modifications. As more experience is gained from experiments at heavy ion accelerators, prudence dictates a reevaluation of the current databases. Numerical values of stopping power and range calculated from four different codes currently in use are presented for selected ions and materials in the energy domain suitable for space radiation transport. This study of radiation transport has found that for most collision systems and for intermediate particle energies, agreement is less than 1 percent, in general, among all the codes. However, greater discrepancies are seen for heavy systems, especially at low particle energies.

  5. UHF Radar observations at HAARP with HF pump frequencies near electron gyro-harmonics and associated ionospheric effects

    NASA Astrophysics Data System (ADS)

    Watkins, Brenton; Fallen, Christopher; Secan, James

    Results for HF modification experiments at the HAARP facility in Alaska are presented for experiments with the HF pump frequency near third and fourth electron gyro-harmonics. A UHF diagnostic radar with range resolution of 600 m was used to determine time-dependent altitudes of scattering from plasma turbulence during heating experiments. Experiments were conducted with multiple HF frequencies stepped by 20 kHz above and below the gyro-harmonic values. During times of HF heating the HAARP facility has sufficient power to enhance large-scale ionospheric densities in the lower ionosphere (about 150-200 km altitude) and also in the topside ionosphere (above about 350 km). In the lower ionosphere, time-dependent decreases of the altitude of radar scatter result from electron density enhancements. The effects are substantially different even for relatively small frequency steps of 20 kHz. In all cases the time-varying altitude decrease of radar scatter stops about 5-10 km below the gyro-harmonic altitude that is frequency dependent; we infer that electron density enhancements stop at this altitude where the radar signals stop decreasing with altitude. Experiments with corresponding total electron content (TEC) data show that for HF interaction altitudes above about 170 km there is substantial topside electron density increases due to upward electron thermal conduction. For lower altitudes of HF interaction the majority of the thermal energy is transferred to the neutral gas and no significant topside density increases are observed. By selecting an appropriate HF frequency a little greater than the gyro-harmonic value we have demonstrated that the ionospheric response to HF heating is a self-oscillating mode where the HF interaction altitude moves up and down with a period of several minutes. If the interaction region is above about 170 km this also produces a continuously enhanced topside electron density and upward plasma flux. Experiments using an FM scan with the HF

  6. IMRT delivers lower radiation doses to dental structures than 3DRT in head and neck cancer patients.

    PubMed

    Fregnani, Eduardo Rodrigues; Parahyba, Cláudia Joffily; Morais-Faria, Karina; Fonseca, Felipe Paiva; Ramos, Pedro Augusto Mendes; de Moraes, Fábio Yone; da Conceição Vasconcelos, Karina Gondim Moutinho; Menegussi, Gisela; Santos-Silva, Alan Roger; Brandão, Thais B

    2016-09-07

    Radiotherapy (RT) is frequently used in the treatment of head and neck cancer, but different side-effects are frequently reported, including a higher frequency of radiation-related caries, what may be consequence of direct radiation to dental tissue. The intensity-modulated radiotherapy (IMRT) was developed to improve tumor control and decrease patient's morbidity by delivering radiation beams only to tumor shapes and sparing normal tissue. However, teeth are usually not included in IMRT plannings and the real efficacy of IMRT in the dental context has not been addressed. Therefore, the aim of this study is to assess whether IMRT delivers lower radiation doses to dental structures than conformal 3D radiotherapy (3DRT). Radiation dose delivery to dental structures of 80 patients treated for head and neck cancers (oral cavity, tongue, nasopharynx and oropharynx) with IMRT (40 patients) and 3DRT (40 patients) were assessed by individually contouring tooth crowns on patients' treatment plans. Clinicopathological data were retrieved from patients' medical files. The average dose of radiation to teeth delivered by IMRT was significantly lower than with 3DRT (p = 0.007); however, only patients affected by nasopharynx and oral cavity cancers demonstrated significantly lower doses with IMRT (p = 0.012 and p = 0.011, respectively). Molars received more radiation with both 3DRT and IMRT, but the latter delivered significantly lower radiation in this group of teeth (p < 0.001), whereas no significant difference was found for the other dental groups. Maxillary teeth received lower doses than mandibular teeth, but only IMRT delivered significantly lower doses (p = 0.011 and p = 0.003). Ipsilateral teeth received higher doses than contralateral teeth with both techniques and IMRT delivered significantly lower radiation than 3DRT for contralateral dental structures (p < 0.001). IMRT delivered lower radiation doses to teeth than 3DRT, but only for some

  7. Space radiation studies at the White Sands Missile Range Fast Burst Reactor

    NASA Technical Reports Server (NTRS)

    Delapaz, A.

    1972-01-01

    The operation of the White Sands Missile Range Fast Burst Reactor is discussed. Space radiation studies in radiobiology, dosimetry, and transient radiation effects on electronic systems and components are described. Proposed modifications to increase the capability of the facility are discussed.

  8. Non-Malignant Thyroid Diseases Following a Wide Range of Radiation Exposures

    PubMed Central

    Ron, Elaine; Brenner, Alina

    2013-01-01

    Background The thyroid gland is one of the most radiosensitive human organs. While it is well known that radiation exposure increases the risk of thyroid cancer, less is known about its effects in relation to non-malignant thyroid diseases. Objectives The aim of this review is to evaluate the effects of high and low dose radiation on benign structural and functional diseases of the thyroid. Methods We examined the results of major studies from cancer patients treated with high-dose radiotherapy or thyrotoxicosis patients treated with high doses of iodine-131, patients treated with moderate to high dose radiotherapy for benign diseases, persons exposed to low doses from environmental radiation and survivors of the atomic bombings who were exposed to a range of doses. We evaluated radiation effects on structural (tumors, nodules), functional (hyper- and hypothyroidism), and autoimmune thyroid diseases. Results Following a wide range of doses of ionizing radiation, an increased risk of thyroid adenomas and nodules was observed in a variety of populations and settings. The dose response appeared to be linear at low to moderate doses, but in one study there was some suggestion of a reduction in risk above 5 Gy. The elevated risk for benign tumors continues for decades following exposure. Considerably less consistent findings are available regarding functional thyroid diseases including autoimmune diseases. In general, associations for these outcomes were fairly weak and significant radiation effects were most often observed following high doses, particularly for hypothyroidism. Conclusions A significant radiation dose-response relation was demonstrated for benign nodules and follicular adenomas. The effects of radiation on functional thyroid diseases are less clear, partly due to the greater difficulties studying these diseases. PMID:21128812

  9. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    NASA Astrophysics Data System (ADS)

    Caccia, J.; Guénard, V.; Benech, B.; Campistron, B.; Drobinski, P.

    2004-11-01

    The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program) in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission) in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking), which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the vertical motions are

  10. Short-range solar radiation forecasts over Sweden

    NASA Astrophysics Data System (ADS)

    Landelius, Tomas; Lindskog, Magnus; Körnich, Heiner; Andersson, Sandra

    2018-04-01

    In this article the performance for short-range solar radiation forecasts by the global deterministic and ensemble models from the European Centre for Medium-Range Weather Forecasts (ECMWF) is compared with an ensemble of the regional mesoscale model HARMONIE-AROME used by the national meteorological services in Sweden, Norway and Finland. Note however that only the control members and the ensemble means are included in the comparison. The models resolution differs considerably with 18 km for the ECMWF ensemble, 9 km for the ECMWF deterministic model, and 2.5 km for the HARMONIE-AROME ensemble. The models share the same radiation code. It turns out that they all underestimate systematically the Direct Normal Irradiance (DNI) for clear-sky conditions. Except for this shortcoming, the HARMONIE-AROME ensemble model shows the best agreement with the distribution of observed Global Horizontal Irradiance (GHI) and DNI values. During mid-day the HARMONIE-AROME ensemble mean performs best. The control member of the HARMONIE-AROME ensemble also scores better than the global deterministic ECMWF model. This is an interesting result since mesoscale models have so far not shown good results when compared to the ECMWF models. Three days with clear, mixed and cloudy skies are used to illustrate the possible added value of a probabilistic forecast. It is shown that in these cases the mesoscale ensemble could provide decision support to a grid operator in terms of forecasts of both the amount of solar power and its probabilities.

  11. Ultra-high dynamic range electro-optic sampling for detecting millimeter and sub-millimeter radiation

    PubMed Central

    Ibrahim, Akram; Férachou, Denis; Sharma, Gargi; Singh, Kanwarpal; Kirouac-Turmel, Marie; Ozaki, Tsuneyuki

    2016-01-01

    Time-domain spectroscopy using coherent millimeter and sub-millimeter radiation (also known as terahertz radiation) is rapidly expanding its application, owing greatly to the remarkable advances in generating and detecting such radiation. However, many current techniques for coherent terahertz detection have limited dynamic range, thus making it difficult to perform some basic experiments that need to directly compare strong and weak terahertz signals. Here, we propose and demonstrate a novel technique based on cross-polarized spectral-domain interferometry to achieve ultra-high dynamic range electro-optic sampling measurement of coherent millimeter and sub-millimeter radiation. In our scheme, we exploit the birefringence in a single-mode polarization maintaining fiber in order to measure the phase change induced by the electric field of terahertz radiation in the detection crystal. With our new technique, we have achieved a dynamic range of 7 × 106, which is 4 orders of magnitude higher than conventional electro-optic sampling techniques, while maintaining comparable signal-to-noise ratio. The present technique is foreseen to have great impact on experiments such as linear terahertz spectroscopy of optically thick materials (such as aqueous samples) and nonlinear terahertz spectroscopy, where the higher dynamic range is crucial for proper interpretation of experimentally obtained results. PMID:26976363

  12. Ultra-high dynamic range electro-optic sampling for detecting millimeter and sub-millimeter radiation.

    PubMed

    Ibrahim, Akram; Férachou, Denis; Sharma, Gargi; Singh, Kanwarpal; Kirouac-Turmel, Marie; Ozaki, Tsuneyuki

    2016-03-15

    Time-domain spectroscopy using coherent millimeter and sub-millimeter radiation (also known as terahertz radiation) is rapidly expanding its application, owing greatly to the remarkable advances in generating and detecting such radiation. However, many current techniques for coherent terahertz detection have limited dynamic range, thus making it difficult to perform some basic experiments that need to directly compare strong and weak terahertz signals. Here, we propose and demonstrate a novel technique based on cross-polarized spectral-domain interferometry to achieve ultra-high dynamic range electro-optic sampling measurement of coherent millimeter and sub-millimeter radiation. In our scheme, we exploit the birefringence in a single-mode polarization maintaining fiber in order to measure the phase change induced by the electric field of terahertz radiation in the detection crystal. With our new technique, we have achieved a dynamic range of 7 × 10(6), which is 4 orders of magnitude higher than conventional electro-optic sampling techniques, while maintaining comparable signal-to-noise ratio. The present technique is foreseen to have great impact on experiments such as linear terahertz spectroscopy of optically thick materials (such as aqueous samples) and nonlinear terahertz spectroscopy, where the higher dynamic range is crucial for proper interpretation of experimentally obtained results.

  13. Approximate spin projection of three-component UHF wavefunctions - The states of the pentachlorocyclopentadienyl cation and the croconate dianion, C5O5/2-/

    NASA Technical Reports Server (NTRS)

    Phillips, D. H.; Schug, J. C.

    1974-01-01

    The approximate spin projection method of Amos et al. is extended to handle UHF wave functions having three significant components of differing multiplicity. An expression is given for the energy after single annihilation which differs from that of Amos and Hall. The new expression reproduces the results obtained from a previous exact calculation for which the weights and energies of the components are known. The extended approximate projection method is applied to the pi-electron UHF wave functions for the ground states of the pentachlorocyclopentadienyl cation and the croconate dianion, C5O5(2-). The results indicate a triplet ground state for the former and a singlet ground state for the latter, in agreement with experimental ESR susceptibility measurements for these molecular ions. C5C15(-) cannont be treated by restricted Hartree-Fock theory, due to its open-shell ground state. Incorrect results are obtained for the croconate dianion, if restricted Hartree-Fock theory and singly excited configuration interactions are utilized.

  14. Using a LIDAR Vegetation Model to Predict UHF SAR Attenuation in Coniferous Forests

    PubMed Central

    Swanson, Alan; Huang, Shengli; Crabtree, Robert

    2009-01-01

    Attenuation of radar signals by vegetation can be a problem for target detection and GPS reception, and is an important parameter in models describing vegetation backscatter. Here we first present a model describing the 3D distribution of stem and foliage structure based on small footprint scanning LIDAR data. Secondly we present a model that uses ray-tracing methodology to record detailed interactions between simulated radar beams and vegetation components. These interactions are combined over the SAR aperture and used to predict two-way attenuation of the SAR signal. Accuracy of the model is demonstrated using UHF SAR observations of large trihedral corner reflectors in coniferous forest stands. Our study showed that the model explains between 66% and 81% of the variability in observed attenuation. PMID:22573972

  15. Lower-upper-threshold correlation for underwater range-gated imaging self-adaptive enhancement.

    PubMed

    Sun, Liang; Wang, Xinwei; Liu, Xiaoquan; Ren, Pengdao; Lei, Pingshun; He, Jun; Fan, Songtao; Zhou, Yan; Liu, Yuliang

    2016-10-10

    In underwater range-gated imaging (URGI), enhancement of low-brightness and low-contrast images is critical for human observation. Traditional histogram equalizations over-enhance images, with the result of details being lost. To compress over-enhancement, a lower-upper-threshold correlation method is proposed for underwater range-gated imaging self-adaptive enhancement based on double-plateau histogram equalization. The lower threshold determines image details and compresses over-enhancement. It is correlated with the upper threshold. First, the upper threshold is updated by searching for the local maximum in real time, and then the lower threshold is calculated by the upper threshold and the number of nonzero units selected from a filtered histogram. With this method, the backgrounds of underwater images are constrained with enhanced details. Finally, the proof experiments are performed. Peak signal-to-noise-ratio, variance, contrast, and human visual properties are used to evaluate the objective quality of the global and regions of interest images. The evaluation results demonstrate that the proposed method adaptively selects the proper upper and lower thresholds under different conditions. The proposed method contributes to URGI with effective image enhancement for human eyes.

  16. Fighting in a Contested Space Environment: Training Marines for Operations with Degraded or Denied Space-Enabled Capabilities

    DTIC Science & Technology

    2015-06-01

    System UFG Ulchi Freedom Guardian UFO UHF Follow-On System UHF Ultra-High Frequency URE User Range Error VTC Video Teleconference WGS Wideband...in the UHF band; two legacy systems, Fleet Satellite Communication System (FLTSATCOM) and UHF Follow-on ( UFO ), and the new constellation being

  17. [Investigation of radiation dose for lower tube voltage CT using automatic exposure control].

    PubMed

    Takata, Mitsuo; Matsubara, Kousuke; Koshida, Kichirou; Tarohda, Tohru

    2015-04-01

    The purpose of our study was to investigate radiation dose for lower tube voltage CT using automatic exposure control (AEC). An acrylic body phantom was used, and volume CT dose indices (CTDIvol) for tube voltages of 80, 100, 120, and 135 kV were investigated with combination of AEC. Average absorbed dose in the abdomen for 100 and 120 kV were also measured using thermoluminescence dosimeters. In addition, we examined noise characteristics under the same absorbed doses. As a result, the exposure dose was not decreased even when the tube voltage was lowered, and the organ absorbed dose value became approximately 30% high. And the noise was increased under the radiographic condition to be an equal absorbed dose. Therefore, radiation dose increases when AEC is used for lower tube voltage CT under the same standard deviation (SD) setting with 120 kV, and the optimization of SD setting is crucial.

  18. [Impact of various millimeter-range electromagnetic radiation schedules on immunological parameters in patients with respiratory sarcoidosis].

    PubMed

    Borisov, S B; Shpykov, A S; Terent'eva, N A

    2007-01-01

    The paper analyzes the impact of various millimeter-range electromagnetic radiation schedules on immunological parameters in 152 patients with new-onset respiratory sarcoidosis. It shows that the immunomodulatory effect of millimeter-range therapy depends on the treatment regimen chosen. There is evidence for the advantages of millimeter-range noise electromagnetic radiation.

  19. Application of HFCT and UHF Sensors in On-Line Partial Discharge Measurements for Insulation Diagnosis of High Voltage Equipment

    PubMed Central

    Álvarez, Fernando; Garnacho, Fernando; Ortego, Javier; Sánchez-Urán, Miguel Ángel

    2015-01-01

    Partial discharge (PD) measurements provide valuable information for assessing the condition of high voltage (HV) insulation systems, contributing to their quality assurance. Different PD measuring techniques have been developed in the last years specially designed to perform on-line measurements. Non-conventional PD methods operating in high frequency bands are usually used when this type of tests are carried out. In PD measurements the signal acquisition, the subsequent signal processing and the capability to obtain an accurate diagnosis are conditioned by the selection of a suitable detection technique and by the implementation of effective signal processing tools. This paper proposes an optimized electromagnetic detection method based on the combined use of wideband PD sensors for measurements performed in the HF and UHF frequency ranges, together with the implementation of powerful processing tools. The effectiveness of the measuring techniques proposed is demonstrated through an example, where several PD sources are measured simultaneously in a HV installation consisting of a cable system connected by a plug-in terminal to a gas insulated substation (GIS) compartment. PMID:25815452

  20. A comparison of the UHF Follow-On and MILSTAR satellite communication systems

    NASA Astrophysics Data System (ADS)

    Perkins, Clifton E., Jr.

    1991-09-01

    The author compares the UHF Follow-On and MILSTAR satellite communication systems. The comparison uses an analytical hierarchy process. Although the two systems have been tasked with different missions, a comparison of cost, capability, and orbit is conducted. UFO provides many of the same capabilities as MILSTAR, but on a smaller scale. Since UFO is also a new space system acquisition, it is used to compare dollars spent to field a viable communication system. A review of frequency bands, losses, and problems is conducted to establish the relationship. Cost data is provided to establish the major difference in the systems. While MILSTAR does possess more total capability than UFO, it is 10 times more costly. Additionally, UFO is a satellite that will evolve with new technology while MILSTAR is built to full capability immediately. In the author's opinion, the incremental performance of MILSTAR does not justify its incremental cost.

  1. Quantitative evaluation of radiation oncologists' adaptability to lower reimbursing treatment programs.

    PubMed

    Gill, Beant S; Beriwal, Sushil; Rajagopalan, Malolan S; Wang, Hong; Hodges, Kimberly; Greenberger, Joel S

    2015-01-01

    Rapid development of sophisticated modalities has challenged radiation oncologists to evaluate workflow and care delivery processes. Our study assesses treatment modality use and willingness to alter management with anticipated limitations in reimbursement and resources. A web-based survey was sent to 43 radiation oncologists in a National Cancer Institute-designated comprehensive cancer center network. The survey contained 7 clinical cases with various acceptable treatment options based on our institutional clinical pathways. Each case was presented in 3 modules with varying situations: (1) unlimited resources with current reimbursement, (2) restricted reimbursement (bundled payment), and (3) both restricted reimbursement and resources. Reimbursement rates were based on the 2013 Medicare fee schedule. Adoption of lower reimbursing options (LROs) was defined as the percentage of scenarios in which a respondent selected an LRO compared with baseline. Forty-three physicians completed the survey, 11 (26%) at academic and 32 (74%) at community facilities. When bundled payment was imposed (module 1 vs 2), an increase in willingness to adopt LROs was observed (median 11.1%). When physicians were limited to both bundled payment and resource restriction, adoption of LROs was more pronounced (module 1 vs 3; median 22.2%, P < .01). There was a trend to selecting LROs between module 1 and 2 that reached significance when transitioning from module 1 to 3. A positive correlation between years in clinical practice and adoption of LROs was demonstrated (r(2) = 0.181, P<.01). This association remained significant when stratifying respondents by experience (≤25 vs >25 years, P = .02). Radiation oncologists were more likely to choose lower reimbursing treatment options when both resource restriction and bundled payment were presented. Those with fewer years of clinical practice were less inclined to alter management, perhaps reflecting modern residency training. Future cost

  2. Clinical validation and applications for CT-based atlas for contouring the lower cranial nerves for head and neck cancer radiation therapy.

    PubMed

    Mourad, Waleed F; Young, Brett M; Young, Rebekah; Blakaj, Dukagjin M; Ohri, Nitin; Shourbaji, Rania A; Manolidis, Spiros; Gámez, Mauricio; Kumar, Mahesh; Khorsandi, Azita; Khan, Majid A; Shasha, Daniel; Blakaj, Adriana; Glanzman, Jonathan; Garg, Madhur K; Hu, Kenneth S; Kalnicki, Shalom; Harrison, Louis B

    2013-09-01

    Radiation induced cranial nerve palsy (RICNP) involving the lower cranial nerves (CNs) is a serious complication of head and neck radiotherapy (RT). Recommendations for delineating the lower CNs on RT planning studies do not exist. The aim of the current study is to develop a standardized methodology for contouring CNs IX-XII, which would help in establishing RT limiting doses for organs at risk (OAR). Using anatomic texts, radiologic data, and guidance from experts in head and neck anatomy, we developed step-by-step instructions for delineating CNs IX-XII on computed tomography (CT) imaging. These structures were then contoured on five consecutive patients who underwent definitive RT for locally-advanced head and neck cancer (LAHNC). RT doses delivered to the lower CNs were calculated. We successfully developed a contouring atlas for CNs IX-XII. The median total dose to the planning target volume (PTV) was 70Gy (range: 66-70Gy). The median CN (IX-XI) and (XII) volumes were 10c.c (range: 8-12c.c) and 8c.c (range: 7-10c.c), respectively. The median V50, V60, V66, and V70 of the CN (IX-XI) and (XII) volumes were (85, 77, 71, 65) and (88, 80, 74, 64) respectively. The median maximal dose to the CN (IX-XI) and (XII) were 72Gy (range: 66-77) and 71Gy (range: 64-78), respectively. We have generated simple instructions for delineating the lower CNs on RT planning imaging. Further analyses to explore the relationship between lower CN dosing and the risk of RICNP are recommended in order to establish limiting doses for these OARs. Published by Elsevier Ltd.

  3. Ultra-compact UHF Band-pass Filter Designed by Archimedes Spiral Capacitor and Shorted-loaded Stubs

    NASA Astrophysics Data System (ADS)

    Peng, Lin; Jiang, Xing

    2015-01-01

    UHF microstrip band-pass filters (BPFs) that much smaller than the referred BPFs are proposed in this communication. For the designing purpose of compactness, archimedes spiral capacitor and ground-loaded stubs are utilized to enhance capacitances and inductance of a filter. Two compact BPFs denoted as BPF 1 and BPF 2 are designed by applying these techniques. The size of BPF 1 and BPF 2 are 0.062 λg × 0.056 λg and 0.047 λg × 0.043 λg, respectively, where λg are guided wavelengths of the centre frequencies of the corresponding filters. The proposed filters were constructed and measured, and the measured results are in good agreement with the simulated ones.

  4. Some characteristics of the glutathione cycle revealed by ionising and non-ionising electromagnetic radiation.

    PubMed

    Holt, J A

    1995-10-01

    The cyclic reaction of GSH-->GSSG-->GSH (designated R(exp) or R(e)) obeys the three specific features of life by producing energy in exponential quantities relative to time, is in effect irreversible and is inherited from generation to generation. In multicellular life, this reaction produces the energy for mitosis and is kept in controlled inactivity until needed to maintain perfection of form and function by energising mitosis. The immediate control of Re appears to be feedback process-dependent on the concentration of GSSG. Ultra high-frequency electromagnetic radiation of 434 MHz (UHF) will change Re from inactive to active and, in so doing, it causes resonance and/or fluorescence of the glutathione cycle which changes its radiosensitivity. Re is the primary direct target of ionising radiation and produces the energy for mitosis. Clinical observations suggest that, in the normal cell, Re is inactive and is not killed by 3 x 2700 rads or 6 x 1650 rads yet, when active, its sensitivity value (DO) is approximately 160 rads. Using the standard radiobiological equation of response to ionising radiation, it can be deduced that radiosensitive cancers have two or three Re units active per cell and radioresistance increases in proportion to the number of potentially active Re units per cell. Re appears to be the main cause of cancers' increased conductivity of electricity compared with normal tissue. In cancer therapy, UHF is the best radiosensitiser ever discovered (up to two or more decades). Re is also intelligent compared with non-exponential reactions but cannot be the basis of intellectual brain functions which must be based on non-electrical chemical processes.

  5. Near-field thermal radiation of deep- subwavelength slits in the near infrared range.

    PubMed

    Guo, Yan; Li, Kuanbiao; Xu, Ying; Wei, Kaihua

    2017-09-18

    We numerically investigate the thermal radiation of one-dimensional deep subwavelength slits in the near infrared range. Using numerical calculations of single-slit and multi-slit structures, we find that high-level radiation efficiency can be achieved for a wide spectrum when ultra-thin intermediate layers are used, and it is less affected by structure parameters. The underlying mechanisms involve Surface Plasmon Polaritons resonance and Fabry-Perot interference at each slit and the interaction between adjacent slits. This structure helps understand and improve the design of thermal radiation control devices.

  6. Diagnostic performance and radiation dose of lower extremity CT angiography using a 128-slice dual source CT at 80 kVp and high pitch.

    PubMed

    Kim, Jin Woo; Choo, Ki Seok; Jeon, Ung Bae; Kim, Tae Un; Hwang, Jae Yeon; Yeom, Jeong A; Jeong, Hee Seok; Choi, Yoon Young; Nam, Kyung Jin; Kim, Chang Won; Jeong, Dong Wook; Lim, Soo Jin

    2016-07-01

    Multi-detector computed tomography (MDCT) angiography is now used for the diagnosing patients with peripheral arterial disease. The dose of radiation is related to variable factors, such as tube current, tube voltage, and helical pitch. To assess the diagnostic performance and radiation dose of lower extremity CT angiography (CTA) using a 128-slice dual source CT at 80 kVp and high pitch in patients with critical limb ischemia (CLI). Twenty-eight patients (mean, 64.1 years; range, 39-80 years) with CLI were enrolled in this retrospective study and underwent CTA using a 128-slice dual source CT at 80 kVp and high pitch and subsequent intra-arterial digital subtraction angiography (DSA), which was used as a reference standard for assessing diagnostic performance. For arterial segments with significant disease (>50% stenosis), overall sensitivity, specificity, and accuracy of lower extremity CTA were 94.8% (95% CI, 91.7-98.0%), 91.5% (95% CI, 87.7-95.2%), and 93.1% (95% CI, 90.6-95.6%), respectively, and its positive and negative predictive values were 91.0% (95% CI, 87.1-95.0%), and 95.1% (95% CI, 92.1-98.1%), respectively. Mean radiation dose delivered to lower extremities was 266.6 mGy.cm. Lower extremity CTA using a 128-slice dual source CT at 80 kVp and high pitch was found to have good diagnostic performance for the assessment of patients with CLI using an extremely low radiation dose. © The Foundation Acta Radiologica 2015.

  7. Coherent radiation of relativistic electrons in dielectric fibers in the millimeter wavelength range

    NASA Astrophysics Data System (ADS)

    Naumenko, G. A.; Potylitsyn, A. P.; Bleko, V. V.; Soboleva, V. V.

    2015-02-01

    The generation of visible light by a relativistic electron beam in dielectric fibers was considered in X. Artru and C. Ray, Nucl. Inst. Meth. B 309, 4 (2013), where the characteristics of radiation induced in a fiber by the electromagnetic field of a relativistic charged particle were studied and it was emphasized that they differ from those in the traditional mechanisms of radiation such as transition and diffraction. We have experimentally studied the characteristics of such a radiation in the millimeter wavelength range. It has been shown that radiation can be generated through different mechanisms depending on the geometry of the position of a fiber with respect to the trajectory of the charged particle. Fibers have been shown to be promising for nondestructive diagnostics of accelerator beams.

  8. Effects of Various Wavelength Ranges of Vacuum Ultraviolet Radiation on Teflon FEP Film Investigated

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; McCracken, Cara A.

    2004-01-01

    Teflon Fluorinated Ethylene Propylene (FTP) films (DuPont) have been widely used for spacecraft thermal control and have been observed to become embrittled and cracked upon exposure to the space environment. This degradation has been attributed to a synergistic combination of radiation and thermal effects. A research study was undertaken at the NASA Glenn Research Center to examine the effects of different wavelength ranges of vacuum ultraviolet (VUV) radiation on the degradation of the mechanical properties of FEP. This will contribute to an overall understanding of space radiation effects on Teflon FEP, and will provide information necessary to determine appropriate techniques for using laboratory tests to estimate space VUV degradation. Research was conducted using inhouse facilities at Glenn and was carried out, in part, through a grant with the Cleveland State University. Samples of Teflon FEP film of 50.8 microns thickness were exposed to radiation from a VUV lamp from beneath different cover windows to provide different exposure wavelength ranges: MgF2 (115 to 400 nm), crystalline quartz (140 to 400 nm), and fused silica (FS, 155 to 400 nm). Following exposure, FEP film specimens were tensile tested to determine the ultimate tensile strength and elongation at failure as a function of the exposure duration for each wavelength range. The graphs show the effect of ultraviolet exposure on the mechanical properties of the FEP samples.

  9. Monitoring dynamic reactions of red blood cells to UHF electromagnetic waves radiation using a novel micro-imaging technology.

    PubMed

    Ruan, Ping; Yong, Junguang; Shen, Hongtao; Zheng, Xianrong

    2012-12-01

    Multiple state-of-the-art techniques, such as multi-dimensional micro-imaging, fast multi-channel micro-spetrophotometry, and dynamic micro-imaging analysis, were used to dynamically investigate various effects of cell under the 900 MHz electromagnetic radiation. Cell changes in shape, size, and parameters of Hb absorption spectrum under different power density electromagnetic waves radiation were presented in this article. Experimental results indicated that the isolated human red blood cells (RBCs) do not have obviously real-time responses to the ultra-low density (15 μW/cm(2), 31 μW/cm(2)) electromagnetic wave radiation when the radiation time is not more than 30 min; however, the cells do have significant reactions in shape, size, and the like, to the electromagnetic waves radiation with power densities of 1 mW/cm(2) and 5 mW/cm(2). The data also reveal the possible influences and statistical relationships among living human cell functions, radiation amount, and exposure time with high-frequency electromagnetic waves. The results of this study may be significant on protection of human being and other living organisms against possible radiation affections of the high-frequency electromagnetic waves.

  10. Comparison of Phase-Based 3D Near-Field Source Localization Techniques for UHF RFID.

    PubMed

    Parr, Andreas; Miesen, Robert; Vossiek, Martin

    2016-06-25

    In this paper, we present multiple techniques for phase-based narrowband backscatter tag localization in three-dimensional space with planar antenna arrays or synthetic apertures. Beamformer and MUSIC localization algorithms, known from near-field source localization and direction-of-arrival estimation, are applied to the 3D backscatter scenario and their performance in terms of localization accuracy is evaluated. We discuss the impact of different transceiver modes known from the literature, which evaluate different send and receive antenna path combinations for a single localization, as in multiple input multiple output (MIMO) systems. Furthermore, we propose a new Singledimensional-MIMO (S-MIMO) transceiver mode, which is especially suited for use with mobile robot systems. Monte-Carlo simulations based on a realistic multipath error model ensure spatial correlation of the simulated signals, and serve to critically appraise the accuracies of the different localization approaches. A synthetic uniform rectangular array created by a robotic arm is used to evaluate selected localization techniques. We use an Ultra High Frequency (UHF) Radiofrequency Identification (RFID) setup to compare measurements with the theory and simulation. The results show how a mean localization accuracy of less than 30 cm can be reached in an indoor environment. Further simulations demonstrate how the distance between aperture and tag affects the localization accuracy and how the size and grid spacing of the rectangular array need to be adapted to improve the localization accuracy down to orders of magnitude in the centimeter range, and to maximize array efficiency in terms of localization accuracy per number of elements.

  11. How do air ions reflect variations in ionising radiation in the lower atmosphere in a boreal forest?

    NASA Astrophysics Data System (ADS)

    Chen, Xuemeng; Kerminen, Veli-Matti; Paatero, Jussi; Paasonen, Pauli; Manninen, Hanna E.; Nieminen, Tuomo; Petäjä, Tuukka; Kulmala, Markku

    2016-11-01

    Most of the ion production in the atmosphere is attributed to ionising radiation. In the lower atmosphere, ionising radiation consists mainly of the decay emissions of radon and its progeny, gamma radiation of the terrestrial origin as well as photons and elementary particles of cosmic radiation. These types of radiation produce ion pairs via the ionisation of nitrogen and oxygen as well as trace species in the atmosphere, the rate of which is defined as the ionising capacity. Larger air ions are produced out of the initial charge carriers by processes such as clustering or attachment to pre-existing aerosol particles. This study aimed (1) to identify the key factors responsible for the variability in ionising radiation and in the observed air ion concentrations, (2) to reveal the linkage between them and (3) to provide an in-depth analysis into the effects of ionising radiation on air ion formation, based on measurement data collected during 2003-2006 from a boreal forest site in southern Finland. In general, gamma radiation dominated the ion production in the lower atmosphere. Variations in the ionising capacity came from mixing layer dynamics, soil type and moisture content, meteorological conditions, long-distance transportation, snow cover attenuation and precipitation. Slightly similar diurnal patterns to variations in the ionising capacity were observed in air ion concentrations of the cluster size (0.8-1.7 nm in mobility diameters). However, features observed in the 0.8-1 nm ion concentration were in good connection to variations of the ionising capacity. Further, by carefully constraining perturbing variables, a strong dependency of the cluster ion concentration on the ionising capacity was identified, proving the functionality of ionising radiation in air ion production in the lower atmosphere. This relationship, however, was only clearly observed on new particle formation (NPF) days, possibly indicating that charges after being born underwent different

  12. Menhaden oil administration to dogs treated with radiation for nasal tumors demonstrates lower levels of tissue eicosanoids.

    PubMed

    Hansen, Rodney A; Anderson, Christine; Fettman, Martin J; Larue, Susan M; Davenport, Deborah J; Gross, Kathleen L; Richardson, Kristine L; Ogilvie, Gregory K

    2011-12-01

    Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) or menhaden oil may reduce inflammatory eicosanoids (prostaglandin E₂, thromboxane B₂, leukotriene B₄, and 11-dehydro thromboxane B₂), matrix metalloproteinases (MMPs), and blood lactate in dogs with nasal carcinomas receiving radiation therapy. We hypothesized that menhaden oil would reduce inflammation from radiation damage and lower blood lactate levels in dogs with nasal carcinoma. In a randomized, double-blind, placebo-controlled clinical study, 12 dogs with malignant carcinomas of the nasal cavity were given dietary menhaden oil (DHA and EPA) or soybean oil (control) and then received radiation therapy. Megavoltage radiation was delivered in 18 fractions to a total dose of 56 Gy. Blood levels of DHA, EPA, insulin, glucose, lactic acid, and MMPs 2 and 9; resting energy expenditure; and inflammatory eicosanoids from nasal biopsies were measured throughout radiation therapy. Samples were obtained from each patient 1 week before the start of radiation therapy, at start of radiation, and 7, 18 (end of radiation therapy), and 42 days after radiation was initiated. Dogs that are fed with menhaden oil had significantly (P < .05) higher plasma concentration of DHA by 500% and EPA by 200% and had significantly lower tissue inflammatory eicosanoids and decreased resting energy expenditure by 20% when compared with controls. Increased plasma DHA was significantly associated (P < .05) with decreased plasma lactic acid and MMPs. These data may suggest that dietary fish oil could reduce some detrimental inflammatory eicosanoids and metabolic consequences of radiation therapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Effect of radar frequency on the detection of shaped (low RCS) targets

    NASA Astrophysics Data System (ADS)

    Moraitis, D.; Alland, S.

    The use of shaping to reduce the radar cross-section (RCS) of aircraft and missiles can result in the RCS varying significantly with radar operating frequency. This RCS sensitivity to frequency should be considered when selecting radar frequency and should be accounted for when evaluating radar performance. A detection range increase for shaped (low RCS) targets of a factor of two or greater can be realized for lower frequency radar (e.g., UHF-Band or L-Band) when compared to higher frequency radar (C-Band or X-Band). For low flying (sea skimming) targets, the RCS variation with frequency for shaped (low RCS) targets neutralizes the advantage that higher radar frequencies realize in multipath propagation resulting in approximately the same detection range across the radar bands from UHF to X-Band.

  14. Extension of On-Surface Radiation Condition (OSRC) theory to full-vector electromagnetic wave scattering by three-dimensional conducting, dielectric, and coated targets

    NASA Astrophysics Data System (ADS)

    Taflove, Allen; Umashankar, Korada R.

    1993-08-01

    This project introduced radiation boundary condition (RBC) and absorbing boundary condition (ABC) theory to the engineering electromagnetics community. An approximate method for obtaining the scattering of 2-D and 3-D bodies, the on-surface radiation condition (OSRC) method, was formulated and validated. RBC's and ABC's were shown to work well at points closer to scatterers than anyone had expected. Finite-difference time domain (FD-TD) methods exploiting these ABC's were pursued for applications in scattering, radiation, penetration, biomedical studies, and nonlinear optics. Multiprocessing supercomputer software was developed for FD-TD, leading to the largest scale detailed electromagnetic wave interaction models ever conducted, including entire jet fighter aircraft modeled for radar cross section (RCS) at UHF frequencies up to 500 MHz.

  15. The radiative response of the lower troposphere to moisture intrusions into the Arctic

    NASA Astrophysics Data System (ADS)

    Johansson, Erik; Devasthale, Abhay; Tjernström, Michael; Ekman, Annica M. L.; L'Ecuyer, Tristan

    2016-04-01

    Water vapour (WV) transport into the Arctic occurs on daily to seasonal time scales and affects the Arctic atmosphere and surface energy balance in a number of ways. Extreme transport events, hereafter referred to as WV intrusions (WVI), account for a significant fraction of the total transport of water vapour into the Arctic. Considering their overall impact on the total moisture transport, WVIs are expected to strongly influence the radiative properties of the lower troposphere. Being a potent greenhouse gas, WV has a warming effect on the surface via its longwave forcing. As a result, WVIs have potential to warm the sea-ice surface and depending on their strength and degree of persistence, precondition accelerated melting of sea ice in subsequent months following the intrusion WVIs also affect the prevalent thermodynamical characteristics of the lowermost troposphere such as the presence of temperature and humidity inversions. They can further modulate cloud formation processes by changing the local thermodynamics. Characterizing the response of the lower troposphere to WVIs is therefore important, mainly to improve our understanding of the processes, affecting, air-sea-ice interactions. In this context, the aim of the present study is to provide observationally based insights into how the lower troposphere radiatively responds to WVIs, defined as events that exceed 90-percentile value of the poleward meridional moisture flux across 70° N. Using the combined lidar and radar (CloudSat+CALIPSO) data from the A-Train constellation of satellites from 2006 through 2010 together with data from AMSR-E, AIRS and MODIS, we examine the dominant circulation patterns that favour WVI and the surface response to WVI. We further quantify changes in cloudiness and cloud radiative effects during WVI.

  16. Passive UHF RFID Tag for Multispectral Assessment

    PubMed Central

    Escobedo, Pablo; Carvajal, Miguel A.; Capitán-Vallvey, Luis F.; Fernández-Salmerón, José; Martínez-Olmos, Antonio; Palma, Alberto J.

    2016-01-01

    This work presents the design, fabrication, and characterization of a passive printed radiofrequency identification tag in the ultra-high-frequency band with multiple optical sensing capabilities. This tag includes five photodiodes to cover a wide spectral range from near-infrared to visible and ultraviolet spectral regions. The tag antenna and circuit connections have been screen-printed on a flexible polymeric substrate. An ultra-low-power microcontroller-based switch has been included to measure the five magnitudes issuing from the optical sensors, providing a spectral fingerprint of the incident electromagnetic radiation from ultraviolet to infrared, without requiring energy from a battery. The normalization procedure has been designed applying illuminants, and the entire system was tested by measuring cards from a colour chart and sensing fruit ripening. PMID:27428973

  17. Passive UHF RFID Tag for Multispectral Assessment.

    PubMed

    Escobedo, Pablo; Carvajal, Miguel A; Capitán-Vallvey, Luis F; Fernández-Salmerón, José; Martínez-Olmos, Antonio; Palma, Alberto J

    2016-07-14

    This work presents the design, fabrication, and characterization of a passive printed radiofrequency identification tag in the ultra-high-frequency band with multiple optical sensing capabilities. This tag includes five photodiodes to cover a wide spectral range from near-infrared to visible and ultraviolet spectral regions. The tag antenna and circuit connections have been screen-printed on a flexible polymeric substrate. An ultra-low-power microcontroller-based switch has been included to measure the five magnitudes issuing from the optical sensors, providing a spectral fingerprint of the incident electromagnetic radiation from ultraviolet to infrared, without requiring energy from a battery. The normalization procedure has been designed applying illuminants, and the entire system was tested by measuring cards from a colour chart and sensing fruit ripening.

  18. A research on radiation calibration of high dynamic range based on the dual channel CMOS

    NASA Astrophysics Data System (ADS)

    Ma, Kai; Shi, Zhan; Pan, Xiaodong; Wang, Yongsheng; Wang, Jianghua

    2017-10-01

    The dual channel complementary metal-oxide semiconductor (CMOS) can get high dynamic range (HDR) image through extending the gray level of the image by using image fusion with high gain channel image and low gain channel image in a same frame. In the process of image fusion with dual channel, it adopts the coefficients of radiation response of a pixel from dual channel in a same frame, and then calculates the gray level of the pixel in the HDR image. For the coefficients of radiation response play a crucial role in image fusion, it has to find an effective method to acquire these parameters. In this article, it makes a research on radiation calibration of high dynamic range based on the dual channel CMOS, and designs an experiment to calibrate the coefficients of radiation response for the sensor it used. In the end, it applies these response parameters in the dual channel CMOS which calibrates, and verifies the correctness and feasibility of the method mentioned in this paper.

  19. [Range of Hip Joint Motion and Weight of Lower Limb Function under 3D Dynamic Marker].

    PubMed

    Xia, Q; Zhang, M; Gao, D; Xia, W T

    2017-12-01

    To explore the range of reasonable weight coefficient of hip joint in lower limb function. When the hip joints of healthy volunteers under normal conditions or fixed at three different positions including functional, flexed and extension positions, the movements of lower limbs were recorded by LUKOtronic motion capture and analysis system. The degree of lower limb function loss was calculated using Fugl-Meyer lower limb function assessment form when the hip joints were fixed at the aforementioned positions. One-way analysis of variance and Tamhane's T2 method were used to proceed statistics analysis and calculate the range of reasonable weight coefficient of hip joint. There were significant differences between the degree of lower limb function loss when the hip joints fixed at flexed and extension positions and at functional position. While the differences between the degree of lower limb function loss when the hip joints fixed at flexed position and extension position had no statistical significance. In 95% confidence interval, the reasonable weight coefficient of hip joint in lower limb function was between 61.05% and 73.34%. Expect confirming the reasonable weight coefficient, the effects of functional and non-functional positions on the degree of lower limb function loss should also be considered for the assessment of hip joint function loss. Copyright© by the Editorial Department of Journal of Forensic Medicine

  20. Orbit characteristics of the tristatic EISCAT UHF meteors

    NASA Astrophysics Data System (ADS)

    Szasz, C.; Kero, J.; Meisel, D. D.; Pellinen-Wannberg, A.; Wannberg, G.; Westman, A.

    2008-07-01

    The tristatic EISCAT 930-MHz UHF system is used to determine the absolute geocentric velocities of meteors detected with all three receivers simultaneously at 96 km, the height of the common radar volume. The data used in this study were taken between 2002 and 2005, during four 24-h runs at summer/winter solstice and vernal/autumnal equinox to observe the largest seasonal difference. The observed velocities of 410 tristatic meteors are integrated back through the Earth atmosphere to find their atmospheric entry velocities using an ablation model. Orbit calculations are performed by taking zenith attraction, Earth rotation as well as obliquity of the ecliptic into account. The results are presented in the form of different orbital characteristics. None of the observed meteors appears to be of extrasolar or asteroidal origin; comets, particularly short-period (<200 yr) ones, may be the dominant source for the particles observed. About 40 per cent of the radiants can be associated with the north apex sporadic meteor source and 58 per cent of the orbits are retrograde. There is evidence of resonance gaps at semimajor axis values corresponding to commensurabilities with Jupiter, which may be the first convincing evidence of Jupiter's gravitational influence on the population of small sporadic meteoroids surveyed by radar. The geocentric velocity distribution is bimodal with a prograde population centred around 38 kms-1 and a retrograde population peaking at 59 kms-1. The EISCAT radar system is located close to the Arctic Circle, which means that the North Ecliptic Pole (NEP) is near zenith once every 24 h, i.e. during each observational period. In this particular geometry, the local horizon coincides with the ecliptic plane. The meteoroid influx should therefore be directly comparable throughout the year.

  1. Plagioclase-dominated Seismic Anisotropy in the Basin and Range Lower Crust

    NASA Astrophysics Data System (ADS)

    Bernard, R. E.; Behr, W. M.

    2017-12-01

    Observations of seismic anisotropy have the ability to provide important information on deformation and structures within the lithosphere. While the mechanisms controlling seismic anisotropy in the upper mantle are fairly well understood (i.e., olivine "lattice preferred orientation" or LPO), less is known about the minerals and structures controlling regional lower crustal anisotropy. We use lower crustal xenoliths from young cinder cones in the eastern Mojave/western Basin and Range to investigate mineral LPOs and their effect on seismic anisotropy. Lower crustal gabbros were collected from two areas roughly 80 km apart — the Cima and Deadman Lake Volcanic Fields. Lower crustal fabrics measured using EBSD are dominated by LPOs in plagioclase associated with both plastic deformation and magmatic flow. In all fabric types, plagioclase LPOs produce seismic fast axes oriented perpendicular to the foliation plane. This is in contrast to mantle peridotite xenoliths from the same locations, which preserve olivine LPOs with fast axes aligned parallel to the foliation plane. The orthogonal orientations of mantle and lower crustal fast axes relative to foliation implies that even where fabric development in both layers is coeval and kinematically compatible, their measured anisotropies can be perpendicular to each other, therefore appearing anti-correlated when measured seismically. Furthermore, our observation of plagioclase-dominated LPO and negligible concentrations of mica is at odds with the common assumption that lower crustal anisotropy is dominated by micaceous minerals, whose slow axes reliably align parallel to lineation or flow. In contrast, our data show that for plagioclase, fast axes align perpendicular to flow and the slow axes are variably aligned within the foliation plane. Therefore, for a crustal section dominated by plagioclase LPO with assumed horizontal foliation, there would be a vertical rather than a horizontal axis of symmetry, resulting in a

  2. Design and Optimization of Passive UHF RFID Tag Antenna for Mounting on or inside Material Layers

    NASA Astrophysics Data System (ADS)

    Shao, Shuai

    There is great desire to employ passive UHF RFID tags for inventory tracking and sensing in a diversity of applications and environments. Owing to its battery-free operation, non-line-of sight detection, low cost, long read range and small form factor, each year billions of RFID tags are being deployed in retail, logistics, manufacturing, biomedical inventories, among many other applications. However, the performance of these RFID systems has not met expectations. This is because a tag's performance deteriorates significantly when mounted on or inside arbitrary materials. The tag antenna is optimized only for a given type of material at a certain location of placement, and detuning takes place when attached to or embedded in materials with dielectric properties outside the design range. Thereby, different customized tags may be needed for identifying objects even within the same class of products. This increases the overall cost of the system. Furthermore, conventional copper foil-based RFID tag antennas are prone to metal fatigue and wear, and cannot survive hostile environments where antennas could be deformed by external forces and failures occur. Therefore, it is essential to understand the interaction between the antenna and the material in the vicinity of the tag, and design general purpose RFID tag antennas possessing excellent electrical performance as well as robust mechanical structure. A particularly challenging application addressed here is designing passive RFID tag antennas for automotive tires. Tires are composed of multiple layers of rubber with different dielectric properties and thicknesses. Furthermore, metallic plies are embedded in the sidewalls and steel belts lie beneath the tread to enforce mechanical integrity. To complicate matters even more, a typical tire experiences a 10% stretching during the construction process. This dissertation focuses on intuitively understanding the interaction between the antenna and the material in the

  3. Shock tube studies of thermal radiation of diesel-spray combustion under a range of spray conditions

    NASA Astrophysics Data System (ADS)

    Tsuboi, T.; Kurihara, Y.; Takasaki, M.; Katoh, R.; Ishii, K.

    2007-05-01

    A tailored interface shock tube and an over-tailored interface shock tube were used to measure the thermal energy radiated during diesel-spray combustion of light oil, α-methylnaphthalene and cetane by changing the injection pressure. The ignition delay of methanol and the thermal radiation were also measured. Experiments were performed in a steel shock tube with a 7 m low-pressure section filled with air and a 6 m high-pressure section. Pre-compressed fuel was injected through a throttle nozzle into air behind a reflected shock wave. Monochromatic emissive power and the power emitted across all infrared wavelengths were measured with IR-detectors set along the central axis of the tube. Time-dependent radii where soot particles radiated were also determined, and the results were as follows. For diesel spray combustion with high injection pressures (from 10 to 80 MPa), the thermal radiation energy of light oil per injection increased with injection pressure from 10 to 30 MPa. The energy was about 2% of the heat of combustion of light oil at P inj = about 30 MPa. At injection pressure above 30 MPa the thermal radiation decreased with increasing injection pressure. This profile agreed well with the combustion duration, the flame length, the maximum amount of soot in the flame, the time-integrated soot volume and the time-integrated flame volume. The ignition delay of light oil was observed to decrease monotonically with increasing fuel injection pressure. For diesel spray combustion of methanol, the thermal radiation including that due to the gas phase was 1% of the combustion heat at maximum, and usually lower than 1%. The thermal radiation due to soot was lower than 0.05% of the combustion heat. The ignition delays were larger (about 50%) than those of light oil. However, these differences were within experimental error.

  4. A > 4 MGy radiation tolerant 8 THzOhm transimpedance amplifier with 50 dB dynamic range

    NASA Astrophysics Data System (ADS)

    Verbeeck, J.; Steyaert, M.; Leroux, P.

    2013-02-01

    A 130 nm Transimpedance Amplifier has been developed with a 255 MHz bandwidth, 90 dBΩ transimpedance gain and a dynamic input range of 1:325 or 50 dB for a photo-diode capacitance of 0.75 pF. The equivalent integrated input noise is 160 nA @ 25°C. The gain of the voltage amplifier, used in the transimpedance amplifier (TIA), degrades less than 3% over a temperature range from -40 °C up to 125 °C. The TIA and attenuator exhibit a radiation tolerance larger than 4 MGy, as evidenced by radiation assessment.

  5. Alternative chitosan-based EPR dosimeter applicable for a relatively wide range of gamma radiation doses

    NASA Astrophysics Data System (ADS)

    Piroonpan, Thananchai; Katemake, Pichayada; Panritdam, Eagkapong; Pasanphan, Wanvimol

    2017-12-01

    Chitosan biopolymer is proposed as an alternative EPR dosimeter. Its ability to be EPR dosimeter was studied in comparison with the conventional alanine, sugars (i.e., glucose and sucrose), formate derivatives (i.e., lithium (Li), magnesium (Mg), and calcium (Ca) formate). Ethylene vinyl acetate (EVA) and paraffin were used as binder for the preparation of composite EPR dosimeter. Dose responses of all materials were investigated in a wide dose range of radiation doses, i.e., low-level (0-1 kGy), medium-level (1-10 kGy) and high-level (10-100 kGy). The EPR dosimeter properties were studied under different parameters, i.e., microwave power, materials contents, absorbed doses, storage conditions and post-irradiation effects. Li-formate showed a simple EPR spectrum and exhibited superior radiation response for low-dose range; whereas chitosan and sucrose exhibited linear dose response in all studied dose ranges. The EPR signals of chitosan exhibited similar stability as glucose, Li-formate and alanine at ambient temperature after irradiation as long as a year. All EPR signals of the studied materials were affected post-irradiation temperature and humidity after gamma irradiation. The EPR signal of chitosan exhibited long-term stability and it was not sensitive to high storage temperatures and humidity values after irradiation. Chitosan has a good merit as the alternative bio-based material for a stable EPR dosimeter in a wide range of radiation-absorbed doses.

  6. MSG-7: Atmospheric Penetration of Solar Radiation in the Range of Schumann-runge Bands

    NASA Technical Reports Server (NTRS)

    Frederick, J. E.

    1982-01-01

    There have been major efforts in measuring extraterrestrial solar irradiance for use in atmospheric studies. The quantity of immediate relevance to theoretical studies is the number of photons which reach a given altitude in the middle atmosphere. Current models compute the attenuated radiation field but the cross sections available for the major absorbers, O2 and O3, often come from experiments that are now quite old. Balloon measurements show some significant differences between the predicted and observed ultraviolet radiation field between 30 and 40 km. The wavelength region to be studied includes Lyman alpha plus the range 175 nm to the visible. Specific topics to be addressed are as follows: (1) the cross sections of the major absorbers, O2 and O3 including the Schumann-Runge bands as a subset; (2) comparison of the in situ measurements of the attenuated radiation field with calculations; and (3) the relevance of the scattered and reflected radiation fields for middle atmospheric processes.

  7. MSG-7: atmospheric penetration of solar radiation in the range of Schumann-Runge bands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick, J.E.

    1982-12-01

    There have been major efforts in measuring extraterrestrial solar irradiance for use in atmospheric studies. The quantity of immediate relevance to theoretical studies is the number of photons which reach a given altitude in the middle atmosphere. Current models compute the attenuated radiation field but the cross sections available for the major absorbers, O2 and O3, often come from experiments that are now quite old. Balloon measurements show some significant differences between the predicted and observed ultraviolet radiation field between 30 and 40 km. The wavelength region to be studied includes Lyman alpha plus the range 175 nm to themore » visible. Specific topics to be addressed are as follows: (1) the cross sections of the major absorbers, O2 and O3 including the Schumann-Runge bands as a subset (2) comparison of the in situ measurements of the attenuated radiation field with calculations and (3) the relevance of the scattered and reflected radiation fields for middle atmospheric processes.« less

  8. Raman micro-spectroscopy analysis of human lens epithelial cells exposed to a low-dose-range of ionizing radiation.

    PubMed

    Allen, Christian Harry; Kumar, Achint; Qutob, Sami; Nyiri, Balazs; Chauhan, Vinita; Murugkar, Sangeeta

    2018-01-09

    Recent findings in populations exposed to ionizing radiation (IR) indicate dose-related lens opacification occurs at much lower doses (<2 Gy) than indicated in radiation protection guidelines. As a result, research efforts are now being directed towards identifying early predictors of lens degeneration resulting in cataractogenesis. In this study, Raman micro-spectroscopy was used to investigate the effects of varying doses of radiation, ranging from 0.01 Gy to 5 Gy, on human lens epithelial (HLE) cells which were chemically fixed 24 h post-irradiation. Raman spectra were acquired from the nucleus and cytoplasm of the HLE cells. Spectra were collected from points in a 3  ×  3 grid pattern and then averaged. The raw spectra were preprocessed and principal component analysis followed by linear discriminant analysis was used to discriminate between dose and control for 0.25, 0.5, 2, and 5 Gy. Using leave-one-out cross-validation accuracies of greater than 74% were attained for each dose/control combination. The ultra-low doses 0.01 and 0.05 Gy were included in an analysis of band intensities for Raman bands found to be significant in the linear discrimination, and an induced repair model survival curve was fit to a band-difference-ratio plot of this data, suggesting HLE cells undergo a nonlinear response to low-doses of IR. A survival curve was also fit to clonogenic assay data done on the irradiated HLE cells, showing a similar nonlinear response.

  9. Raman micro-spectroscopy analysis of human lens epithelial cells exposed to a low-dose-range of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Allen, Christian Harry; Kumar, Achint; Qutob, Sami; Nyiri, Balazs; Chauhan, Vinita; Murugkar, Sangeeta

    2018-01-01

    Recent findings in populations exposed to ionizing radiation (IR) indicate dose-related lens opacification occurs at much lower doses (<2 Gy) than indicated in radiation protection guidelines. As a result, research efforts are now being directed towards identifying early predictors of lens degeneration resulting in cataractogenesis. In this study, Raman micro-spectroscopy was used to investigate the effects of varying doses of radiation, ranging from 0.01 Gy to 5 Gy, on human lens epithelial (HLE) cells which were chemically fixed 24 h post-irradiation. Raman spectra were acquired from the nucleus and cytoplasm of the HLE cells. Spectra were collected from points in a 3  ×  3 grid pattern and then averaged. The raw spectra were preprocessed and principal component analysis followed by linear discriminant analysis was used to discriminate between dose and control for 0.25, 0.5, 2, and 5 Gy. Using leave-one-out cross-validation accuracies of greater than 74% were attained for each dose/control combination. The ultra-low doses 0.01 and 0.05 Gy were included in an analysis of band intensities for Raman bands found to be significant in the linear discrimination, and an induced repair model survival curve was fit to a band-difference-ratio plot of this data, suggesting HLE cells undergo a nonlinear response to low-doses of IR. A survival curve was also fit to clonogenic assay data done on the irradiated HLE cells, showing a similar nonlinear response.

  10. Performance Evaluation of UHF RFID Technologies for Real-Time Bus Recognition in the Taipei Bus Station

    PubMed Central

    Own, Chung-Ming; Lee, Da-Sheng; Wang, Ti-Ho; Wang, De-Jun; Ting, Yu-Lun

    2013-01-01

    Transport stations such as airports, ports, and railways have adopted blocked-type pathway management to process and control travel systems in a one-directional manner. However, this excludes highway transportation where large buses have great variability and mobility; thus, an instant influx of numerous buses increases risks and complicates station management. Focusing on Taipei Bus Station, this study employed RFID technology to develop a system platform integrated with modern information technology that has numerous characteristics. This modern information technology comprised the following systems: ultra-high frequency (UHF) radio-frequency identification (RFID), ultrasound and license number identification, and backstage graphic controls. In conclusion, the system enabled management, bus companies, and passengers to experience the national bus station's new generation technology, which provides diverse information and synchronization functions. Furthermore, this technology reached a new milestone in the energy-saving and efficiency-increasing performance of Taiwan's buses. PMID:23778192

  11. Energy deposition processes in biological tissue: nonthermal biohazards seem unlikely in the ultra-high frequency range.

    PubMed

    Pickard, W F; Moros, E G

    2001-02-01

    The prospects of ultra high frequency (UHF, 300--3000 MHz) irradiation producing a nonthermal bioeffect are considered theoretically and found to be small. First, a general formula is derived within the framework of macroscopic electrodynamics for the specific absorption rate of microwaves in a biological tissue; this involves the complex Poynting vector, the mass density of the medium, the angular frequency of the electromagnetic field, and the three complex electromagnetic constitutive parameters of the medium. In the frequency ranges used for cellular telephony and personal communication systems, this model predicts that the chief physical loss mechanism will be ionic conduction, with increasingly important contributions from dielectric relaxation as the frequency rises. However, even in a magnetite unit cell within a magnetosome the deposition rate should not exceed 1/10 k(B)T per second. This supports previous arguments for the improbability of biological effects at UHF frequencies unless a mechanism can be found for accumulating energy over time and space and focussing it. Second, three possible nonthermal accumulation mechanisms are then considered and shown to be unlikely: (i) multiphoton absorption processes; (ii) direct electric field effects on ions; (iii) cooperative effects and/or coherent excitations. Finally, it is concluded that the rate of energy deposition from a typical field and within a typical tissue is so small as to make unlikely any significant nonthermal biological effect. Copyright 2001 Wiley-Liss, Inc.

  12. The influence of ground conductivity on the structure of RF radiation from return strokes

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Gesell, L.

    1984-01-01

    The combination of the finite conductivity of the Earth plus the propagation of the return stroke current up the channel which results in an apparent time delay between the fast field changes and RF radiation for distant observers is shown. The time delay predicted from model return strokes is on the order of 20 micro and the received signal has the characteristics of the data observed in Virginia and Florida. A piecewise linear model for the return stroke channel and a transmission line model for current propagation on each segment was used. Radiation from each segment is calculated over a flat Earth with finite conductivity using asymptotics approximations for the Sommerfeld integrals. The radiation at the observer is processed by a model AM radio receiver. The output voltage was calculated for several frequencies between HF-UHF assuming a system bandwidth (300 kHz) characteristic of the system used to collect data in Florida and Virginia. Comparison with the theoretical fast field changes indicates a time delay of 20 microns.

  13. Development of a large-area planar surface-wave plasma source with a cavity launcher driven by a 915 MHz UHF wave

    NASA Astrophysics Data System (ADS)

    Chang, Xijiang; Kunii, Kazuki; Liang, Rongqing; Nagatsu, Masaaki

    2013-04-01

    A large-area planar surface-wave plasma (SWP) source driven by a 915 MHz ultrahigh frequency (UHF) wave was developed. To avoid using large, thick dielectric plates as vacuum windows, we propose a cavity launcher consisting of a cylindrical cavity with several small quartz discs at the bottom. Three types of launchers with quartz discs located at different positions were tested to compare their plasma production efficiencies and spatial distributions of electron density. With the optimum launcher, large-area plasma discharges with a radial uniformity within ±10% were obtained in a radius of about 25-30 cm in Ar gas at 8 Pa for incident power in the range 0.5-2.5 kW. The maximum electron density and temperature were approximately (0.95-1.1) × 1011 cm-3 and 1.9-2.0 eV, respectively, as measured by a Langmuir probe located 24 cm below the bottom of the cavity launcher. Using an Ar/NH3 SWP with the optimum launcher, we demonstrated large-area amino-group surface modification of polyurethane sheets. Experimental results indicated that a uniform amino-group modification was achieved over a radius of approximately 40 cm, which is slightly larger than the radial uniformity of the electron density distribution.

  14. Infrared Radiation Filament And Metnod Of Manufacture

    DOEpatents

    Johnson, Edward A.

    1998-11-17

    An improved IR radiation source is provided by the invention. A radiation filament has a textured surface produced by seeded ion bombardment of a metal foil which is cut to a serpentine shape and mounted in a windowed housing. Specific ion bombardment texturing techniques tune the surface to maximize emissions in the desired wavelength range and to limit emissions outside that narrow range, particularly at longer wavelengths. A combination of filament surface texture, thickness, material, shape and power circuit feedback control produce wavelength controlled and efficient radiation at much lower power requirements than devices of the prior art.

  15. Host range, host specificity and hypothesized host shift events among viruses of lower vertebrates

    PubMed Central

    2011-01-01

    The successful replication of a viral agent in a host is a complex process that often leads to a species specificity of the virus and can make interspecies transmission difficult. Despite this difficulty, natural host switch seems to have been frequent among viruses of lower vertebrates, especially fish viruses, since there are several viruses known to be able to infect a wide range of species. In the present review we will focus on well documented reports of broad host range, variations in host specificity, and host shift events hypothesized for viruses within the genera Ranavirus, Novirhabdovirus, Betanodavirus, Isavirus, and some herpesvirus. PMID:21592358

  16. Adaptive statistical iterative reconstruction use for radiation dose reduction in pediatric lower-extremity CT: impact on diagnostic image quality.

    PubMed

    Shah, Amisha; Rees, Mitchell; Kar, Erica; Bolton, Kimberly; Lee, Vincent; Panigrahy, Ashok

    2018-06-01

    For the past several years, increased levels of imaging radiation and cumulative radiation to children has been a significant concern. Although several measures have been taken to reduce radiation dose during computed tomography (CT) scan, the newer dose reduction software adaptive statistical iterative reconstruction (ASIR) has been an effective technique in reducing radiation dose. To our knowledge, no studies are published that assess the effect of ASIR on extremity CT scans in children. To compare radiation dose, image noise, and subjective image quality in pediatric lower extremity CT scans acquired with and without ASIR. The study group consisted of 53 patients imaged on a CT scanner equipped with ASIR software. The control group consisted of 37 patients whose CT images were acquired without ASIR. Image noise, Computed Tomography Dose Index (CTDI) and dose length product (DLP) were measured. Two pediatric radiologists rated the studies in subjective categories: image sharpness, noise, diagnostic acceptability, and artifacts. The CTDI (p value = 0.0184) and DLP (p value <0.0002) were significantly decreased with the use of ASIR compared with non-ASIR studies. However, the subjective ratings for sharpness (p < 0.0001) and diagnostic acceptability of the ASIR images (p < 0.0128) were decreased compared with standard, non-ASIR CT studies. Adaptive statistical iterative reconstruction reduces radiation dose for lower extremity CTs in children, but at the expense of diagnostic imaging quality. Further studies are warranted to determine the specific utility of ASIR for pediatric musculoskeletal CT imaging.

  17. UHF RiverSonde observations of water surface velocity at Threemile Slough, California

    USGS Publications Warehouse

    Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.; Ruhl, C.A.

    2005-01-01

    A UHF RiverSonde system, operating near 350 MHz, has been in operation at Threemile Slough in central California, USA since September 2004. The water in the slough is dominated by tidal effects, with flow reversals four times a day and a peak velocity of about 0.8 m/s in each direction. Water level and water velocity are continually measured by the U. S. Geological Survey at the experiment site. The velocity is measured every 15 minutes by an ultrasonic velocity meter (UVM) which determines the water velocity from two-way acoustic propagation time-difference measurements made across the channel. The RiverSonde also measures surface velocity every 15 minutes using radar resonant backscatter techniques. Velocity and water level data are retrieved through a radio data link and a wideband internet connection. Over a period of several months, the radar-derived mean surface velocity has been very highly correlated with the UVM index velocity several meters below the surface, with a coefficient of determination R2 of 0.976 and an RMS difference of less than 10 cm/s. The wind has a small but measurable effect on the velocities measured by both instruments. In addition to the mean surface velocity across the channel, the RiverSonde system provides an estimate of the cross-channel variation of the surface velocity. ?? 2005 IEEE.

  18. Fully Integrated Passive UHF RFID Tag for Hash-Based Mutual Authentication Protocol.

    PubMed

    Mikami, Shugo; Watanabe, Dai; Li, Yang; Sakiyama, Kazuo

    2015-01-01

    Passive radio-frequency identification (RFID) tag has been used in many applications. While the RFID market is expected to grow, concerns about security and privacy of the RFID tag should be overcome for the future use. To overcome these issues, privacy-preserving authentication protocols based on cryptographic algorithms have been designed. However, to the best of our knowledge, evaluation of the whole tag, which includes an antenna, an analog front end, and a digital processing block, that runs authentication protocols has not been studied. In this paper, we present an implementation and evaluation of a fully integrated passive UHF RFID tag that runs a privacy-preserving mutual authentication protocol based on a hash function. We design a single chip including the analog front end and the digital processing block. We select a lightweight hash function supporting 80-bit security strength and a standard hash function supporting 128-bit security strength. We show that when the lightweight hash function is used, the tag completes the protocol with a reader-tag distance of 10 cm. Similarly, when the standard hash function is used, the tag completes the protocol with the distance of 8.5 cm. We discuss the impact of the peak power consumption of the tag on the distance of the tag due to the hash function.

  19. Fully Integrated Passive UHF RFID Tag for Hash-Based Mutual Authentication Protocol

    PubMed Central

    Mikami, Shugo; Watanabe, Dai; Li, Yang; Sakiyama, Kazuo

    2015-01-01

    Passive radio-frequency identification (RFID) tag has been used in many applications. While the RFID market is expected to grow, concerns about security and privacy of the RFID tag should be overcome for the future use. To overcome these issues, privacy-preserving authentication protocols based on cryptographic algorithms have been designed. However, to the best of our knowledge, evaluation of the whole tag, which includes an antenna, an analog front end, and a digital processing block, that runs authentication protocols has not been studied. In this paper, we present an implementation and evaluation of a fully integrated passive UHF RFID tag that runs a privacy-preserving mutual authentication protocol based on a hash function. We design a single chip including the analog front end and the digital processing block. We select a lightweight hash function supporting 80-bit security strength and a standard hash function supporting 128-bit security strength. We show that when the lightweight hash function is used, the tag completes the protocol with a reader-tag distance of 10 cm. Similarly, when the standard hash function is used, the tag completes the protocol with the distance of 8.5 cm. We discuss the impact of the peak power consumption of the tag on the distance of the tag due to the hash function. PMID:26491714

  20. Gender-related differences in lower limb alignment, range of joint motion, and the incidence of sports injuries in Japanese university athletes.

    PubMed

    Mitani, Yasuhiro

    2017-01-01

    [Purpose] To investigate the gender-related differences in lower limb alignment, range of joint motion, and history of lower limb sports injuries in Japanese university athletes. [Subjects and Methods] The subjects were 224 Japanese university athletes (154 males and 70 females). The quadriceps angle (Q-angle), arch height index, and ranges of internal and external rotation of the hip joints were measured. History of lower limb sports injury was surveyed using a questionnaire. [Results] Females had a significantly higher Q-angle and hip joint internal rotation angle and a significantly lower arch height index than males. The survey revealed that a significantly higher proportion of females had a history of lower limb sports injuries, and that the proportion of those with a history of foot/ankle injuries was particularly high. [Conclusion] These results suggested that females experience more lower limb sports injuries than males, and that a large proportion of these injuries involve the foot/ankle. Reduced lower limb alignment and increased range of joint motion in females may be risk factors for injury because they lead to increased physical stress being exerted on the lower legs during sporting activities.

  1. Higher latitude and lower solar radiation influence on anaphylaxis in Chilean children.

    PubMed

    Hoyos-Bachiloglu, Rodrigo; Morales, Pamela S; Cerda, Jaime; Talesnik, Eduardo; González, Gilberto; Camargo, Carlos A; Borzutzky, Arturo

    2014-06-01

    Recent studies suggest an association between higher latitude, a proxy of vitamin D (VD) status, and allergic diseases. Chile provides an ideal setting to study this association due to its latitude span and high rates of VD deficiency in southern regions. The aim of this study is to explore the associations of latitude and solar radiation with anaphylaxis admission rates. We reviewed anaphylaxis admissions in Chile's hospital discharge database between 2001 and 2010 and investigated associations with latitude and solar radiation. 2316 anaphylaxis admissions were registered. Median age of patients was 41 yr; 53% were female. National anaphylaxis admission rate was 1.41 per 100,000 persons per year. We observed a strong north-south increasing gradient of anaphylaxis admissions (β 0.04, p = 0.01), with increasing rates south of latitude 34°S. A significant association was also observed between solar radiation and anaphylaxis admissions (β -0.11, p = 0.009). Latitude was associated with food-induced (β 0.05, p = 0.02), but not drug-induced (β -0.002, p = 0.27), anaphylaxis. The association between latitude and food-induced anaphylaxis was significant in children (β 0.01, p = 0.006), but not adults (β 0.003, p = 0.16). Anaphylaxis admissions were not associated with regional sociodemographic factors like poverty, rurality, educational level, ethnicity, or physician density. Anaphylaxis admission rates in Chile are highest at higher latitudes and lower solar radiation, used as proxies of VD status. The associations appear driven by food-induced anaphylaxis. Our data support a possible role of VD deficiency as an etiological factor in the high anaphylaxis admission rates found in southern Chile. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Higher latitude and lower solar radiation influence on anaphylaxis in Chilean children

    PubMed Central

    Hoyos-Bachiloglu, Rodrigo; Morales, Pamela S.; Cerda, Jaime; Talesnik, Eduardo; González, Gilberto; Camargo, Carlos A.; Borzutzky, Arturo

    2014-01-01

    Background Recent studies suggest an association between higher latitude, a proxy of vitamin D (VD) status, and allergic diseases. Chile provides an ideal setting to study this association due to its latitude span and high rates of VD deficiency in southern regions. The aim of this study is to explore the associations of latitude and solar radiation with anaphylaxis admission rates. Methods We reviewed anaphylaxis admissions in Chile’s hospital discharge database between 2001 and 2010 and investigated associations with latitude and solar radiation. Results 2316 anaphylaxis admissions were registered. Median age of patients was 41 years; 53% were female. National anaphylaxis admission rate was 1.41 per 100,000 persons per year. We observed a strong north-south increasing gradient of anaphylaxis admissions (β 0.04, P=0.01), with increasing rates south of latitude 34°S. A significant association was also observed between solar radiation and anaphylaxis admissions (β −0.11, P=0.009). Latitude was associated with food-induced (β 0.05, P=0.02), but not drug-induced (β −0.002, P=0.27), anaphylaxis. The association between latitude and food-induced anaphylaxis was significant in children (β 0.01, P=0.006), but not adults (β 0.003, P=0.16). Anaphylaxis admissions were not associated with regional sociodemographic factors like poverty, rurality, educational level, ethnicity, or physician density. Conclusions Anaphylaxis admission rates in Chile are highest at higher latitudes and lower solar radiation, used as proxies of VD status. The associations appear driven by food-induced anaphylaxis. Our data support a possible role of VD deficiency as an etiological factor in the high anaphylaxis admission rates found in southern Chile. PMID:24628618

  3. Intensity-modulated radiation therapy to bilateral lower limb extremities concurrently: a planning case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzgerald, Emma, E-mail: emmafitz1390@gmail.com; Miles, Wesley; Fenton, Paul

    2014-09-15

    Non-melanomatous skin cancers represent 80% of all newly diagnosed cancers in Australia with basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) being the most common. A previously healthy 71-year-old woman presented with widespread and tender superficial skin cancers on the lower bilateral limbs. External beam radiation therapy through the use of intensity-modulated radiation therapy (IMRT) was employed as the treatment modality of choice as this technique provides conformal dose distribution to a three-dimensional treatment volume while reducing toxicity to surrounding tissues. The patient was prescribed a dose of 60 Gy to the planning target volume (PTV) with 1.0 cmmore » bolus over the ventral surface of each limb. The beam arrangement consisted of six treatment fields that avoided entry and exit through the contralateral limb. The treatment plans met the International Commission on Radiation Units and Measurements (ICRU) guidelines and produced highly conformal dosimetric results. Skin toxicity was measured against the National Cancer Institute: Common Terminology Criteria for Adverse Events (NCI: CTCAE) version 3. A well-tolerated treatment was delivered with excellent results given the initial extent of the disease. This case study has demonstrated the feasibility and effectiveness of IMRT for skin cancers as an alternative to surgery and traditional superficial radiation therapy, utilising a complex PTV of the extremities for patients with similar presentations.« less

  4. Intensity-modulated radiation therapy to bilateral lower limb extremities concurrently: a planning case study

    PubMed Central

    Fitzgerald, Emma; Miles, Wesley; Fenton, Paul; Frantzis, Jim

    2014-01-01

    Non-melanomatous skin cancers represent 80% of all newly diagnosed cancers in Australia with basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) being the most common. A previously healthy 71-year-old woman presented with widespread and tender superficial skin cancers on the lower bilateral limbs. External beam radiation therapy through the use of intensity-modulated radiation therapy (IMRT) was employed as the treatment modality of choice as this technique provides conformal dose distribution to a three-dimensional treatment volume while reducing toxicity to surrounding tissues. The patient was prescribed a dose of 60 Gy to the planning target volume (PTV) with 1.0 cm bolus over the ventral surface of each limb. The beam arrangement consisted of six treatment fields that avoided entry and exit through the contralateral limb. The treatment plans met the International Commission on Radiation Units and Measurements (ICRU) guidelines and produced highly conformal dosimetric results. Skin toxicity was measured against the National Cancer Institute: Common Terminology Criteria for Adverse Events (NCI: CTCAE) version 3. A well-tolerated treatment was delivered with excellent results given the initial extent of the disease. This case study has demonstrated the feasibility and effectiveness of IMRT for skin cancers as an alternative to surgery and traditional superficial radiation therapy, utilising a complex PTV of the extremities for patients with similar presentations. PMID:26229657

  5. Natural constraints on the rheology of the lower continental crust (Musgrave Ranges, Central Australia)

    NASA Astrophysics Data System (ADS)

    Hawemann, Friedrich; Mancktelow, Neil; Wex, Sebastian; Camacho, Alfredo; Pennacchioni, Giorgio

    2015-04-01

    Current models and extrapolated laboratory data generally predict viscous flow in the lower continental crust and any localized brittle deformation at these depths has been proposed to reflect downward propagation of the frictional-viscous transition zone during short-term seismic events and related high strain rates. Better natural constraints on this proposed rheological behaviour can be obtained directly from currently exposed lower crust that has not been strongly overprinted during its exhumation. One of the largest and best preserved lower crustal sections is located in the Musgrave Ranges, Central Australia. The Petermann Orogeny (550 Ma) in this area is characterized by the development of localized shear zones on a wide range of scales, overprinting water-deficient granulites of Musgravian age (1.2 Ga) as well as younger granites and gabbros. Shearing is rarely localized on lithological inhomogeneities, but rather on precursor fractures and on commonly associated pseudotachylytes. The only exception is that older dolerite dykes are often exploited, possibly because they are planar layers of markedly smaller grain size. Sheared pseudotachylyte often appears caramel-coloured in the field and has a fine grained assemblage of Grt+Cpx+Fsp. Multiple generations of pseudotachylyte formed broadly coeval with shearing are indicated by clasts of sheared pseudotachylyte within pseudotachylyte veins that then themselves subsequently sheared. The ductile shear zones formed under sub-eclogitic conditions of ca. 650°C and 1.2 GPa, generally typical of the lower continental crust. However, the P-T conditions during pseudotachylyte formation cannot be readily determined using classical geothermobarometry, because of the fine grain sizes and possible disequilibrium. The software "Xmaptools" (by Pierre Lanari) allows the quantification of X-ray maps produced by EDS or WDS. It provides both very precise definition of local mineral compositions for exchange geothermobarometry

  6. Enhanced resistance of the Pamirs high-mountain strain of Cryptococcus albidus to UV radiation of an ecological range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strakhovskaya, M.G.; Lavrukhina, O.G.; Fraikin, G.Y.

    The results of a comparative analysis of the resistance of Pamirs high-mountain and lowland strains of the yeast Cryptococcus albidus to UV radiation of an ecological range are presented. A high-mountain strain, adapted to elevated UV radiation in its habitat, was found to be more resistant to UV light of a total ecorange (290-400 nm), including medium-wave (290-320 nm) and long-wave (320-400 nm) UV ranges. The enhanced UV light resistance of the high-mountain strain can be explained by efficient functioning of the excision DNA repair system. 7 refs., 3 tabs.

  7. Ultra Low Power, Radiation Tolerant UHF Radio Technologies for In Situ Communication Applications

    NASA Technical Reports Server (NTRS)

    Lay, N. E.

    2001-01-01

    For future deep space missions, significant reductions in the mass and power requirements for short-range telecommunication systems will be critical in enabling a wide variety of new mission concepts. These possibilities include penetrators, gliders, miniature rovers, and sensor networks. Under joint funding from NASA's Cross Enterprise and JPL's Telecommunications and Mission technology programs, recent development activity has focused on the design of ultralow mass and power transceiver systems and subsystems suitable for operation in a flight environment. For these efforts, the functionality of the transceiver has been targeted towards a specific Mars communications scenario. However, the overall architecture is well suited to any short or medium range application where a remote probe will aperiodically communicate with a base station, possibly an orbiter, for the eventual purpose of relaying science information back to Earth. In 2001, these sponsors have been augmented with collaborative expertise and funding from JPL's Center for Integrated Space Microsystems in order to migrate existing concepts and designs to a System on a Chip (SOAC) solution. Additional information is contained in the original extended abstract.

  8. Role of connexin43 and ATP in long-range bystander radiation damage and oncogenesis in vivo.

    PubMed

    Mancuso, M; Pasquali, E; Leonardi, S; Rebessi, S; Tanori, M; Giardullo, P; Borra, F; Pazzaglia, S; Naus, C C; Di Majo, V; Saran, A

    2011-11-10

    Ionizing radiation is a genotoxic agent and human carcinogen. Recent work has questioned long-held dogmas by showing that cancer-associated genetic alterations occur in cells and tissues not directly exposed to radiation, questioning the robustness of the current system of radiation risk assessment. In vitro, diverse mechanisms involving secreted soluble factors, gap junction intercellular communication (GJIC) and oxidative metabolism are proposed to mediate these indirect effects. In vivo, the mechanisms behind long-range 'bystander' responses remain largely unknown. Here, we investigate the role of GJIC in propagating radiation stress signals in vivo, and in mediating radiation-associated bystander tumorigenesis in mouse central nervous system using a mouse model in which intercellular communication is downregulated by targeted deletion of the connexin43 (Cx43) gene. We show that GJIC is critical for transmission of oncogenic radiation damage to the non-targeted cerebellum, and that a mechanism involving adenosine triphosphate release and upregulation of Cx43, the major GJIC constituent, regulates transduction of oncogenic damage to unirradiated tissues in vivo. Our data provide a novel hypothesis for transduction of distant bystander effects and suggest that the highly branched nervous system, similar to the vascular network, has an important role.

  9. Thermal annealing of radiation damage in CMOS ICs in the temperature range -140 C to +375 C

    NASA Technical Reports Server (NTRS)

    Danchenko, V.; Fang, P. H.; Brashears, S. S.

    1982-01-01

    Annealing of radiation damage was investigated in the commercial, Z- and J-processes of the RCA CD4007A ICs in the temperature range from -140 C to +375 C. Tempering curves were analyzed for activation energies of thermal annealing, following irradiation at -140 C. It was found that at -140 C, the radiation-induced shifts in the threshold potentials were similar for all three processes. The radiation hardness of the Z- and J-process is primarily due to rapid annealing of radiation damage at room temperature. In the region -140 to 20 C, no dopant-dependent charge trapping is seen, similar to that observed at higher temperatures. In the unbiased Z-process n-channels, after 1 MeV electron irradiation, considerable negative charge remains in the gate oxide.

  10. Development of a Coherent Bistatic Vegetation Model for Signal of Opportunity Applications at VHF UHF-Bands

    NASA Technical Reports Server (NTRS)

    Kurum, Mehmet; Deshpande, Manohar; Joseph, Alicia T.; O'Neill, Peggy E.; Lang, Roger H.; Eroglu, Orhan

    2017-01-01

    A coherent bistatic vegetation scattering model, based on a Monte Carlo simulation, is being developed to simulate polarimetric bi-static reflectometry at VHF/UHF-bands (240-270 MHz). The model is aimed to assess the value of geostationary satellite signals of opportunity to enable estimation of the Earth's biomass and root-zone soil moisture. An expression for bistatic scattering from a vegetation canopy is derived for the practical case of a ground-based/low altitude platforms with passive receivers overlooking vegetation. Using analytical wave theory in conjunction with distorted Born approximation (DBA), the transmit and receive antennas effects (i.e., polarization, orientation, height, etc.) are explicitly accounted for. Both the coherency nature of the model (joint phase and amplitude information) and the explicit account of system parameters (antenna, altitude, polarization, etc) enable one to perform various beamforming techniques to evaluate realistic deployment configurations. In this paper, several test scenarios will be presented and the results will be evaluated for feasibility for future biomass and root-zone soil moisture application using geostationary communication satellite signals of opportunity at low frequencies.

  11. High Speed Link Radiated Emission Reduction

    NASA Astrophysics Data System (ADS)

    Bisognin, P.; Pelissou, P.; Cissou, R.; Giniaux, M.; Vargas, O.

    2016-05-01

    To control the radiated emission of high-speed link and associated unit, the current approach is to implement overall harness shielding on cables bundles. This method is very efficient in the HF/ VHF (high frequency/ very high frequency) and UHF (ultra-high frequency) ranges when the overall harness shielding is properly bonded on EMC back-shell. Unfortunately, with the increasing frequency, the associated half wavelength matches with the size of Sub-D connector that is the case for the L band. Therefore, the unit connectors become the main source of interference emission. For the L-band and S-band, the current technology of EMC back-shell leaves thin aperture matched with the L band half wavelength and therefore, the shielding effectiveness is drastically reduced. In addition, overall harness shielding means significant increases of the harness mass.Airbus D&S Toulouse and Elancourt investigated a new solution to avoid the need of overall harness shielding. The objective is to procure EM (Electro-Magnetic) clean unit connected to cables bundles free of any overall harness shielding. The proposed solution is to implement EMC common mode filtering on signal interfaces directly on unit PCB as close as possible the unit connector.Airbus D&S Elancourt designed and manufactured eight mock-ups of LVDS (Low Voltage Differential Signaling) interface PCBs' with different solutions of filtering. After verification of the signal integrity, three mock-ups were retained (RC filter and two common mode choke coil) in addition to the reference one (without EMC filter).Airbus D&S Toulouse manufactured associated LVDS cable bundles and integrated the RX (Receiver) and TX (Transmitter) LVDS boards in shielded boxes.Then Airbus D&S performed radiated emission measurement of the LVDS links subassemblies (e.g. RX and TX boxes linked by LVDS cables) according to the standard test method. This paper presents the different tested solutions and main conclusions on the feasibility of such

  12. Upper Cretaceous and lower Eocene conglomerates of Western Transverse Ranges: evidence for tectonic rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, W.E.; Krause, R.G.F.

    1989-04-01

    Stratigraphic and paleomagnetic studies have suggested that the western Transverse Ranges (WTR) microplate is allochthonous, and may have experienced translational and rotational motions. Present paleocurrent directions from the Upper Cretaceous Jalama Formation of the Santa Ynez Mountains are north-directed; these forearc sediments (Great Valley sequence) contain magmatic arc-derived conglomerate clasts from the Peninsular Ranges in southern California. Paleocurrents in the lower Eocene Juncal and Cozy Dell Formations are south-directed. This juxtaposition is best explained by 90/degrees/ or more of clockwise rotation of the WTR microplate, so that Upper Cretaceous forearc sediments sourced from the Peninsular Ranges magmatic arc were depositedmore » by west-directed currents. Eocene sediments were derived from an uplifted portion of the western basin margin and deposited by east-directed currents. Franciscan olistoliths in the Upper Cretaceous sediments indicate deposition adjacent to an accretionary wedge; conglomeratic clasts recycled from the Upper Cretaceous sequence, and radiolarian cherts and ophiolitic boulders in the Eocene strata indicate derivation from an outer accretionary ridge.« less

  13. Ozone formation in pulsed SDBD in a wide pressure range

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Nudnova, Maryia; mipt Team

    2011-10-01

    Ozone concentration in surface anode-directed DBD for wide pressure range (150 - 1300 torr) was experimentally measured. Voltage and pressure effect were investigated. Reduced electric field was measured for anode-directed and cathode-directed SDBD. E/n values in cathode-directed SDBD is higher than in cathode-directed on 50 percent at atmospheric pressure. E/n value increase leads to decrease the rate of oxygen dissociation and Ozone formation at lower pressures. Radiating region thickness of sliding discharge was measured. Typical thickness of radiating zone is 0.4-1.0 mm within pressure range 220-740 torr. It was shown that high-voltage pulsed nanosecond discharge due to high E/n value produces less Ozone with compare to other discharges. Kinetic model was proposed to describe Ozone formation in the pulsed nanosecond SDBD.

  14. Lower Current Large Deviations for Zero-Range Processes on a Ring

    NASA Astrophysics Data System (ADS)

    Chleboun, Paul; Grosskinsky, Stefan; Pizzoferrato, Andrea

    2017-04-01

    We study lower large deviations for the current of totally asymmetric zero-range processes on a ring with concave current-density relation. We use an approach by Jensen and Varadhan which has previously been applied to exclusion processes, to realize current fluctuations by travelling wave density profiles corresponding to non-entropic weak solutions of the hyperbolic scaling limit of the process. We further establish a dynamic transition, where large deviations of the current below a certain value are no longer typically attained by non-entropic weak solutions, but by condensed profiles, where a non-zero fraction of all the particles accumulates on a single fixed lattice site. This leads to a general characterization of the rate function, which is illustrated by providing detailed results for four generic examples of jump rates, including constant rates, decreasing rates, unbounded sublinear rates and asymptotically linear rates. Our results on the dynamic transition are supported by numerical simulations using a cloning algorithm.

  15. Long-Range Self-Assembly via the Mutual Lorentz Force of Plasmon Radiation.

    PubMed

    Ji, Haojie; Trevino, Jacob; Tu, Raymond; Knapp, Ellen; McQuade, James; Yurkiv, Vitaliy; Mashayek, Farzad; Vuong, Luat T

    2018-04-11

    Long-range interactions often proceed as a sequence of hopping through intermediate, statistically favored events. Here, we demonstrate predictable mechanical dynamics of particles that arise from the Lorentz force between plasmons. Even if the radiation is weak, the nonconservative Lorentz force produces stable locations perpendicular to the plasmon oscillation; over time, distinct patterns emerge. Experimentally, linearly polarized light illumination leads to the formation of 80 nm diameter Au nanoparticle chains, perpendicularly aligned, with lengths that are orders of magnitude greater than their plasmon near-field interaction. There is a critical intensity threshold and optimal concentration for observing self-assembly.

  16. Transient versus long-term strength of the "dry" lower continental crust (Musgrave Ranges, Central Australia)

    NASA Astrophysics Data System (ADS)

    Mancktelow, Neil; Hawemann, Friedrich; Wex, Sebastian; Pennacchioni, Giorgio; Camacho, Alfredo

    2017-04-01

    One-dimensional yield strength envelope or "Christmas tree" models for the strength of the continental lithosphere assume homogeneous deformation at constant strain-rate and generally predict that felsic lower crust should be viscous and relatively weak. Over the longer term, distributed flow of this supposedly weak lower crust should tend to flatten any irregularities in the Moho. However, these model predictions are in direct contradiction to observations from the well-exposed lower-crustal Fregon Subdomain in the Musgrave Ranges, Central Australia. This unit underwent dehydrating granulite facies metamorphism during the ca. 1200 Ma Musgravian Orogeny. During the subsequent Petermann Orogeny (ca. 550 Ma), these effectively "dry" rocks were very heterogeneously deformed under sub-eclogitic, lower-crustal conditions (ca. 650°C, 1.2 GPa). Shear zones localized over a wide range of thickness and length scales, from mm to km. Widespread and repeated fracturing and pseudotachylyte generation also occurred during the same deformation event, providing weak and approximately planar precursors on which viscous shear zones subsequently localized. On the lithospheric scale, the present day Moho still preserves an offset on the order of 20 km that was caused by the Petermann Orogeny. Brittle fracturing of dry rocks and related pseudotachylyte formation at pressures of ca. 1.2 GPa imply high differential stresses on the order of 1 GPa, if the Mohr-Coulomb yield criterion is still approximately correct at such high confining pressure. High stresses, at least transiently, are also implied by the observed local fracturing of granulite-facies garnets in the vicinity of pseudotachylytes. However, the stress associated with slower crystal-plastic flow appears to be much less, on the order of 10's of MPa, as indicated by the dynamically recrystallized grain size of quartz. Several other observations also indicate that the long-term viscous strength could not have been maintained at

  17. Latitudinal distributions and composition of radiation on open drift shells in the altitude range 200 to 400 km

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsaplin, V.S.; Shavrin, P.I.; Savun, O.I.

    1973-01-01

    S>Translated from Kosm. Issled.; 11: No. 4, 563-573(1973). An account of ihe results of measurements made on the satellites Kosmos 138, Kosmos 137, and Kosmos 219 in 1966-1967 is given. The latitudinal distributions of radiation in different energy ranges in the region with h/sub min/< 0 were obtained. A relationship between the intensity of the soft component and the geomagnetic activity was found. Information regarding the composition of the rsdiation on open drift shells in a wide range of latitudes is derived from a comparison of the data of various detectors. The paper concludes with a brief review of ihemore » results of measurement of local radiation on different vehicles. (auth)« less

  18. Large dynamic range radiation detector and methods thereof

    DOEpatents

    Marrs, Roscoe E [Livermore, CA; Madden, Norman W [Sparks, NV

    2012-02-14

    According to one embodiment, a radiation detector comprises a scintillator and a photodiode optically coupled to the scintillator. The radiation detector also includes a bias voltage source electrically coupled to the photodiode, a first detector operatively electrically coupled to the photodiode for generating a signal indicative of a level of a charge at an output of the photodiode, and a second detector operatively electrically coupled to the bias voltage source for generating a signal indicative of an amount of current flowing through the photodiode.

  19. Range estimation of passive infrared targets through the atmosphere

    NASA Astrophysics Data System (ADS)

    Cho, Hoonkyung; Chun, Joohwan; Seo, Doochun; Choi, Seokweon

    2013-04-01

    Target range estimation is traditionally based on radar and active sonar systems in modern combat systems. However, jamming signals tremendously degrade the performance of such active sensor devices. We introduce a simple target range estimation method and the fundamental limits of the proposed method based on the atmosphere propagation model. Since passive infrared (IR) sensors measure IR signals radiating from objects in different wavelengths, this method has robustness against electromagnetic jamming. The measured target radiance of each wavelength at the IR sensor depends on the emissive properties of target material and various attenuation factors (i.e., the distance between sensor and target and atmosphere environment parameters). MODTRAN is a tool that models atmospheric propagation of electromagnetic radiation. Based on the results from MODTRAN and atmosphere propagation-based modeling, the target range can be estimated. To analyze the proposed method's performance statistically, we use maximum likelihood estimation (MLE) and evaluate the Cramer-Rao lower bound (CRLB) via the probability density function of measured radiance. We also compare CRLB and the variance of MLE using Monte-Carlo simulation.

  20. 47 CFR 74.705 - TV broadcast analog station protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... from the authorized maximum radiated power (without depression angle correction), the horizontal... application for a new UHF low power TV or TV translator construction permit, a change of channel, or a major...

  1. 47 CFR 74.705 - TV broadcast analog station protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... from the authorized maximum radiated power (without depression angle correction), the horizontal... application for a new UHF low power TV or TV translator construction permit, a change of channel, or a major...

  2. 47 CFR 74.705 - TV broadcast analog station protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... from the authorized maximum radiated power (without depression angle correction), the horizontal... application for a new UHF low power TV or TV translator construction permit, a change of channel, or a major...

  3. 47 CFR 74.705 - TV broadcast analog station protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... from the authorized maximum radiated power (without depression angle correction), the horizontal... application for a new UHF low power TV or TV translator construction permit, a change of channel, or a major...

  4. 47 CFR 74.705 - TV broadcast analog station protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... from the authorized maximum radiated power (without depression angle correction), the horizontal... application for a new UHF low power TV or TV translator construction permit, a change of channel, or a major...

  5. Generating circularly polarized radiation in the extreme ultraviolet spectral range at the free-electron laser FLASH

    NASA Astrophysics Data System (ADS)

    von Korff Schmising, Clemens; Weder, David; Noll, Tino; Pfau, Bastian; Hennecke, Martin; Strüber, Christian; Radu, Ilie; Schneider, Michael; Staeck, Steffen; Günther, Christian M.; Lüning, Jan; Merhe, Alaa el dine; Buck, Jens; Hartmann, Gregor; Viefhaus, Jens; Treusch, Rolf; Eisebitt, Stefan

    2017-05-01

    A new device for polarization control at the free electron laser facility FLASH1 at DESY has been commissioned for user operation. The polarizer is based on phase retardation upon reflection off metallic mirrors. Its performance is characterized in three independent measurements and confirms the theoretical predictions of efficient and broadband generation of circularly polarized radiation in the extreme ultraviolet spectral range from 35 eV to 90 eV. The degree of circular polarization reaches up to 90% while maintaining high total transmission values exceeding 30%. The simple design of the device allows straightforward alignment for user operation and rapid switching between left and right circularly polarized radiation.

  6. Optical fiber design and the trapping of Cerenkov radiation.

    PubMed

    Law, S H; Fleming, S C; Suchowerska, N; McKenzie, D R

    2006-12-20

    Cerenkov radiation is generated in optical fibers immersed in radiation fields and can interfere with signal transmission. We develop a theory for predicting the intensity of Cerenkov radiation generated within the core of a multimode optical fiber by using a ray optic approach and use it to make predictions of the intensity of radiation transmitted down the fiber in propagating modes. The intensity transmitted down the fiber is found to be dominated by bound rays with a contribution from tunneling rays. It is confirmed that for relativistic particles the intensity of the radiation that is transmitted along the fiber is a function of the angle between the particle beam and the fiber axis. The angle of peak intensity is found to be a function of the fiber refractive index difference as well as the core refractive index, with larger refractive index differences shifting the peak significantly toward lower angles. The angular range of the distribution is also significantly increased in both directions by increasing the fiber refractive index difference. The intensity of the radiation is found to be proportional to the cube of the fiber core radius in addition to its dependence on refractive index difference. As the particle energy is reduced into the nonrelativistic range the entire distribution is shifted toward lower angles. Recommendations on minimizing the quantity of Cerenkov light transmitted in the fiber optic system in a radiation field are given.

  7. 47 CFR 15.33 - Frequency range of radiated measurements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200... kHz, up to at least the frequency shown in this paragraph: (1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is...

  8. W(h)ither human cardiac and body magnetic resonance at ultrahigh fields? technical advances, practical considerations, applications, and clinical opportunities.

    PubMed

    Niendorf, Thoralf; Paul, Katharina; Oezerdem, Celal; Graessl, Andreas; Klix, Sabrina; Huelnhagen, Till; Hezel, Fabian; Rieger, Jan; Waiczies, Helmar; Frahm, Jens; Nagel, Armin M; Oberacker, Eva; Winter, Lukas

    2016-09-01

    The objective of this study was to document and review advances and groundbreaking progress in cardiac and body MR at ultrahigh fields (UHF, B0 ≥ 7.0 T) with the goal to attract talent, clinical adopters, collaborations and resources to the biomedical and diagnostic imaging communities. This review surveys traits, advantages and challenges of cardiac and body MR at 7.0 T. The considerations run the gamut from technical advances to clinical opportunities. Key concepts, emerging technologies, practical considerations, frontier applications and future directions of UHF body and cardiac MR are provided. Examples of UHF cardiac and body imaging strategies are demonstrated. Their added value over the kindred counterparts at lower fields is explored along with an outline of research promises. The achievements of cardiac and body UHF-MR are powerful motivators and enablers, since extra speed, signal and imaging capabilities may be invested to overcome the fundamental constraints that continue to hamper traditional cardiac and body MR applications. If practical obstacles, concomitant physics effects and technical impediments can be overcome in equal measure, sophisticated cardiac and body UHF-MR will help to open the door to new MRI and MRS approaches for basic research and clinical science, with the lessons learned at 7.0 T being transferred into broad clinical use including diagnostics and therapy guiding at lower fields. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Lower limits of detection in using carbon nanotubes as thermoluminescent dosimeters of beta radiation

    NASA Astrophysics Data System (ADS)

    Alanazi, Abdulaziz; Jurewicz, Izabela; Alalawi, Amani I.; Alyahyawi, Amjad; Alsubaie, Abdullah; Hinder, Steven; Bañuls-Ciscar, Jorge; Alkhorayef, Mohammed; Bradley, D. A.

    2017-11-01

    World-wide, on-going intensive research is being seen in adaptation of carbon nanotubes (CNTs) for a wide variety of applications, particular interest herein being in the thermoluminescent (TL) properties of CNTs and their sensitivity towards energetic radiations. Using beta radiation delivering dose levels of a few Gy it has been observed in previous study that strain and impurity defects in CNTs give rise to significant TL yields, providing an initial measure of the extent to which electron trapping centres exist in various qualities of CNT, from super-pure to raw. This in turn points to the possibility that there may be considerable advantage in using such media for radiation dosimetry applications, including for in vivo dosimetry. CNTs also have an effective atomic number similar to that of adipose tissue, making them suitable for soft tissue dosimetry. In present investigations various single-wall carbon nanotubes (SWCNT) samples in the form of buckypaper have been irradiated to doses in the range 35-1.3 Gy, use being made of a 90Sr beta source, the response of the CNTs buckypaper with dose showing a trend towards linearity. It is shown for present production methodology for buckypaper samples that the raw SWCNT buckypaper offer the greatest sensitivity, detecting doses down to some few tens of mGy.

  10. Temperature Dependence of Power Reflectivity of the First-Wall Materials in the Synchrotron Radiation Range

    NASA Astrophysics Data System (ADS)

    Takada, Noriharu; Nagatsu, Masaaki; Shimada, Michiya

    1995-07-01

    The temperature dependence of power reflectivity in the synchrotron radiation range was measured for candidate first-wall materials of the fusion reactor, such as B4C-coated isotropic graphite, C/C composite material, silicon carbide (SiC), tungsten (W), molybdenum (Mo) and SUS-316. The measurements were carried out using a vacuum vessel with a pressure of about 3 mTorr to avoid oxidation. Distinct temperature dependence of reflectivity was observed only for B4C-coated isotropic graphite. For the other materials, power reflectivities were insensitive to temperature in the range from 300 K to ˜900 K. Theoretical analysis of the results is also presented.

  11. Image quality and radiation dose of lower extremity CT angiography at 70 kVp on an integrated circuit detector dual-source computed tomography.

    PubMed

    Qi, Li; Zhao, Yan'E; Zhou, Chang Sheng; Spearman, James V; Renker, Matthias; Schoepf, U Joseph; Zhang, Long Jiang; Lu, Guang Ming

    2015-06-01

    Despite the well-established requirement for radiation dose reduction there are few studies examining the potential for lower extremity CT angiography (CTA) at 70 kVp. To compare the image quality and radiation dose of lower extremity CTA at 70 kVp using a dual-source CT system with an integrated circuit detector to similar studies at 120 kVp. A total of 62 patients underwent lower extremity CTA. Thirty-one patients were examined at 70 kVp using a second generation dual-source CT with an integrated circuit detector (70 kVp group) and 31 patients were evaluated at 120 kVp using a first generation dual-source CT (120 kVp group). The attenuation and image noise were measured and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Two radiologists assessed image quality. Radiation dose was compared. The mean attenuation of the 70 kVp group was higher than the 120 kVp group (575 ± 149 Hounsfield units [HU] vs. 258 ± 38 HU, respectively, P < 0.001) as was SNR (44.0 ± 22.0 vs 32.7 ± 13.3, respectively, P = 0.017), CNR (39.7 ± 20.6 vs 26.6 ± 11.7, respectively, P = 0.003) and the mean image quality score (3.7 ± 0.1 vs. 3.2 ± 0.3, respectively, P < 0.001). The inter-observer agreement was good for the 70 kVp group and moderate for the 120 kVp group. The dose-length product was lower in the 70 kVp group (264.5 ± 63.1 mGy × cm vs. 412.4 ± 81.5 mGy × cm, P < 0.001). Lower extremity CTA at 70 kVp allows for lower radiation dose with higher SNR, CNR, and image quality when compared with standard 120 kVp. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. Theoretical Study of Radiation from a Broad Range of Impurity Ions for Magnetic Fusion Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safronova, Alla

    Spectroscopy of radiation emitted by impurities plays an important role in the study of magnetically confined fusion plasmas. The measurements of these impurities are crucial for the control of the general machine conditions, for the monitoring of the impurity levels, and for the detection of various possible fault conditions. Low-Z impurities, typically present in concentrations of 1%, are lithium, beryllium, boron, carbon, and oxygen. Some of the common medium-Z impurities are metals such as iron, nickel, and copper, and high-Z impurities, such as tungsten, are present in smaller concentrations of 0.1% or less. Despite the relatively small concentration numbers, themore » aforementioned impurities might make a substantial contribution to radiated power, and also influence both plasma conditions and instruments. A detailed theoretical study of line radiation from impurities that covers a very broad spectral range from less than 1 Å to more than 1000 Å has been accomplished and the results were applied to the LLNL Electron Beam Ion Trap (EBIT) and the Sustained Spheromak Physics Experiment (SSPX) and to the National Spherical Torus Experiment (NSTX) at Princeton. Though low- and medium-Z impurities were also studied, the main emphasis was made on the comprehensive theoretical study of radiation from tungsten using different state-of-the-art atomic structure codes such as Relativistic Many-Body Perturbation Theory (RMBPT). The important component of this research was a comparison of the results from the RMBPT code with other codes such as the Multiconfigurational Hartree–Fock developed by Cowan (COWAN code) and the Multiconfiguration Relativistic Hebrew University Lawrence Atomic Code (HULLAC code), and estimation of accuracy of calculations. We also have studied dielectronic recombination, an important recombination process for fusion plasma, for variety of highly and low charged tungsten ions using COWAN and HULLAC codes. Accurate DR rate coefficients are

  13. Silver Clear Nylon Dressing is Effective in Preventing Radiation-Induced Dermatitis in Patients With Lower Gastrointestinal Cancer: Results From a Phase III Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niazi, Tamim M.; Vuong, Te, E-mail: tvuong@jgh.mcgill.ca; Azoulay, Laurant

    2012-11-01

    Purpose: For patients with anal canal and advanced rectal cancer, chemoradiation therapy is a curative modality or an important adjunct to surgery. Nearly all patients treated with chemoradiation experience some degree of radiation-induced dermatitis (RID). Prevention and effective treatment of RID, therefore, is of considerable clinical relevance. The present phase III randomized trial compared the efficacy of silver clear nylon dressing (SCND) with that of standard skin care for these patients. Methods and Materials: A total of 42 rectal or anal canal cancer patients were randomized to either a SCND or standard skin care group. SCND was applied from Daymore » 1 of radiation therapy (RT) until 2 weeks after treatment completion. In the control arm, sulfadiazine cream was applied at the time of skin dermatitis. Printed digital photographs taken 2 weeks prior to, on the last day, and two weeks after the treatment completion were scored by 10 blinded readers, who used the common toxicity scoring system for skin dermatitis. Results: The radiation dose ranged from 50.4 to 59.4 Gy, and there were no differences between the 2 groups. On the last day of RT, when the most severe RID occurs, the mean dermatitis score was 2.53 (standard deviation [SD], 1.17) for the standard and 1.67 (SD, 1.2; P=.01) for the SCND arm. At 2 weeks after RT, the difference was 0.39 points in favor of SCND (P=.39). There was considerable intraclass correlation among the 10 observers. Conclusions: Silver clear nylon dressing is effective in reducing RID in patients with lower gastrointestinal cancer treated with combined chemotherapy and radiation treatment.« less

  14. The C-patch - A small microstrip element

    NASA Astrophysics Data System (ADS)

    Kossiavas, G.; Papiernik, A.; Boisset, J. P.; Sauvan, M.

    1989-02-01

    A radiating element operating in the UHF and L-bands is presented. The element has dimensions smaller than those of conventional square or circular elements. For this type of antenna, good matching is obtained with a coaxial feed, and the omnidirectional radiation pattern is achieved using linear polarization. The bandwidth, however, remains somewhat narrow.

  15. Homodyne detection of short-range Doppler radar using a forced oscillator model

    NASA Astrophysics Data System (ADS)

    Kittipute, Kunanon; Saratayon, Peerayudh; Srisook, Suthasin; Wardkein, Paramote

    2017-03-01

    This article presents the homodyne detection in a self-oscillation system, which represented by a short-range radar (SRR) circuit, that is analysed using a multi-time forced oscillator (MTFO) model. The MTFO model is based on a forced oscillation perspective with the signal and system theory, a second-order differential equation, and the multiple time variable technique. This model can also apply to analyse the homodyne phenomenon in a difference kind of the oscillation system under same method such as the self-oscillation system, and the natural oscillation system with external forced. In a free oscillation system, which forced by the external source is represented by a pendulum with an oscillating support experiment, and a modified Colpitts oscillator circuit in the UHF band with input as a Doppler signal is a representative of self-oscillation system. The MTFO model is verified with the experimental result, which well in line with the theoretical analysis.

  16. Homodyne detection of short-range Doppler radar using a forced oscillator model

    PubMed Central

    Kittipute, Kunanon; Saratayon, Peerayudh; Srisook, Suthasin; Wardkein, Paramote

    2017-01-01

    This article presents the homodyne detection in a self-oscillation system, which represented by a short-range radar (SRR) circuit, that is analysed using a multi-time forced oscillator (MTFO) model. The MTFO model is based on a forced oscillation perspective with the signal and system theory, a second-order differential equation, and the multiple time variable technique. This model can also apply to analyse the homodyne phenomenon in a difference kind of the oscillation system under same method such as the self-oscillation system, and the natural oscillation system with external forced. In a free oscillation system, which forced by the external source is represented by a pendulum with an oscillating support experiment, and a modified Colpitts oscillator circuit in the UHF band with input as a Doppler signal is a representative of self-oscillation system. The MTFO model is verified with the experimental result, which well in line with the theoretical analysis. PMID:28252000

  17. FinFET-based Miller encoder for UHF and SHF RFID application

    NASA Astrophysics Data System (ADS)

    Srinivasulu, Avireni; Sravanthi, G.; Sarada, M.; Pal, Dipankar

    2018-01-01

    This paper proposes a T-flip-flop and a Miller encoder design for ultra-high frequency and super high frequency, radio-frequency identification (RFID) application using FinFETs. Miller encoder is used in magnetic recording, in optical domain and also in RFID. Performance of the proposed circuit was examined by installing the model parameters of 20-nm FinFET (obtained from open source) on Cadence platform with +0.4 V supply rail at frequencies of 1, 2 and 10 GHz. Simulation results have confirmed that proposed Miller encoder offers a simpler design with reduced transistor count and gives lower power dissipation, higher frequency range of operation at lower supply rail as compared to other candidate designs. Proposed design also promises less propagation delay.

  18. Phase-slope and phase measurements of tunable CW-THz radiation with terahertz comb for wide-dynamic-range, high-resolution, distance measurement of optically rough object.

    PubMed

    Yasui, Takeshi; Fujio, Makoto; Yokoyama, Shuko; Araki, Tsutomu

    2014-07-14

    Phase measurement of continuous-wave terahertz (CW-THz) radiation is a potential tool for direct distance and imaging measurement of optically rough objects due to its high robustness to optical rough surfaces. However, the 2π phase ambiguity in the phase measurement of single-frequency CW-THz radiation limits the dynamic range of the measured distance to the order of the wavelength used. In this article, phase-slope measurement of tunable CW-THz radiation with a THz frequency comb was effectively used to extend the dynamic range up to 1.834 m while maintaining an error of a few tens µm in the distance measurement of an optically rough object. Furthermore, a combination of phase-slope measurement of tunable CW-THz radiation and phase measurement of single-frequency CW-THz radiation enhanced the distance error to a few µm within the dynamic range of 1.834 m without any influence from the 2π phase ambiguity. The proposed method will be a powerful tool for the construction and maintenance of large-scale structures covered with optically rough surfaces.

  19. Consolidated Ground Segment Requirements for a UHF Radar for the ESSAS

    NASA Astrophysics Data System (ADS)

    Muller, Florent; Vera, Juan

    2009-03-01

    ESA has launched a nine months long study to define the requirements associated to the ground segment of a UHF (300-3000 MHz) radar system. The study has been awarded in open competition to a consortium led by Onera, associated to the Spanish companies Indra and its sub-contractor Deimos. After a phase of consolidation of the requirements, different monostatic and bistatic concepts of radars will be proposed and evaluated. Two concepts will be selected for further design studies. ESA will then select the best one, for detailed design as well as cost and performance evaluation. The aim of this paper is to present the results of the first phase of the study concerning the consolidation of the radar system requirements. The main mission for the system is to be able to build and maintain a catalogue of the objects in low Earth orbit (apogee lower than 2000km) in an autonomous way, for different sizes of objects, depending on the future successive development phases of the project. The final step must give the capability of detecting and tracking 10cm objects, with a possible upgrade to 5 cm objects. A demonstration phase must be defined for 1 m objects. These different steps will be considered during all the phases of the study. Taking this mission and the different steps of the study as a starting point, the first phase will define a set of requirements for the radar system. It was finished at the end of January 2009. First part will describe the constraints derived from the targets and their environment. Orbiting objects have a given distribution in space, and their observability and detectability are based on it. It is also related to the location of the radar system But they are also dependant on the natural propagation phenomenon, especially ionospheric issues, and the characteristics of the objects. Second part will focus on the mission itself. To carry out the mission, objects must be detected and tracked regularly to refresh the associated orbital parameters

  20. Radiation associated tumors following therapeutic cranial radiation

    PubMed Central

    Chowdhary, Abhineet; Spence, Alex M.; Sales, Lindsay; Rostomily, Robert C.; Rockhill, Jason K.; Silbergeld, Daniel L.

    2012-01-01

    Background: A serious, albeit rare, sequel of therapeutic ionizing radiotherapy is delayed development of a new, histologically distinct neoplasm within the radiation field. Methods: We identified 27 cases, from a 10-year period, of intracranial tumors arising after cranial irradiation. The original lesions for which cranial radiation was used for treatment included: tinea capitis (1), acute lymphoblastic leukemia (ALL; 5), sarcoma (1), scalp hemangioma (1), cranial nerve schwannoma (1) and primary (13) and metastatic (1) brain tumors, pituitary tumor (1), germinoma (1), pinealoma (1), and unknown histology (1). Dose of cranial irradiation ranged from 1800 to 6500 cGy, with a mean of 4596 cGy. Age at cranial irradiation ranged from 1 month to 43 years, with a mean of 13.4 years. Results: Latency between radiotherapy and diagnosis of a radiation-induced neoplasm ranged from 4 to 47 years (mean 18.8 years). Radiation-induced tumors included: meningiomas (14), sarcomas (7), malignant astrocytomas (4), and medulloblastomas (2). Data were analyzed to evaluate possible correlations between gender, age at irradiation, dose of irradiation, latency, use of chemotherapy, and radiation-induced neoplasm histology. Significant correlations existed between age at cranial irradiation and development of either a benign neoplasm (mean age 8.5 years) versus a malignant neoplasm (mean age 20.3; P = 0.012), and development of either a meningioma (mean age 7.0 years) or a sarcoma (mean age 27.4 years; P = 0.0001). There was also a significant positive correlation between latency and development of either a meningioma (mean latency 21.8 years) or a sarcoma (mean latency 7.7 years; P = 0.001). The correlation between dose of cranial irradiation and development of either a meningioma (mean dose 4128 cGy) or a sarcoma (mean dose 5631 cGy) approached significance (P = 0.059). Conclusions: Our study is the first to show that younger patients had a longer latency period and were more likely

  1. Association of lower extremity range of motion and muscle strength with physical performance of community-dwelling older women.

    PubMed

    Jung, Hungu; Yamasaki, Masahiro

    2016-12-08

    Reduced lower extremity range of motion (ROM) and muscle strength are related to functional disability in older adults who cannot perform one or more activities of daily living (ADL) independently. The purpose of this study was to determine which factors of seven lower extremity ROMs and two muscle strengths play dominant roles in the physical performance of community-dwelling older women. Ninety-five community-dwelling older women (mean age ± SD, 70.7 ± 4.7 years; age range, 65-83 years) were enrolled in this study. Seven lower extremity ROMs (hip flexion, hip extension, knee flexion, internal and external hip rotation, ankle dorsiflexion, and ankle plantar flexion) and two muscle strengths (knee extension and flexion) were measured. Physical performance tests, including functional reach test (FRT), 5 m gait test, four square step test (FSST), timed up and go test (TUGT), and five times sit-to-stand test (FTSST) were performed. Stepwise regression models for each of the physical performance tests revealed that hip extension ROM and knee flexion strength were important explanatory variables for FRT, FSST, and FTSST. Furthermore, ankle plantar flexion ROM and knee extension strength were significant explanatory variables for the 5 m gait test and TUGT. However, ankle dorsiflexion ROM was a significant explanatory variable for FRT alone. The amount of variance on stepwise multiple regression for the five physical performance tests ranged from 25 (FSST) to 47% (TUGT). Hip extension, ankle dorsiflexion, and ankle plantar flexion ROMs, as well as knee extension and flexion strengths may play primary roles in the physical performance of community-dwelling older women. Further studies should assess whether specific intervention programs targeting older women may achieve improvements in lower extremity ROM and muscle strength, and thereby play an important role in the prevention of dependence on daily activities and loss of physical function, particularly

  2. Radiative Properties of Thin Films of Common Dielectric Materials in the IR Spectral Range of 1.5-14.2 μm: Application to Infrared Imaging

    NASA Astrophysics Data System (ADS)

    Bañobre, Asahel; Marthi, Sita Rajyalaxmi; Ravindra, N. M.

    2018-05-01

    To measure, map and control temperature, imaging of materials in a thermal furnace routinely utilizes non-contact sensors, such as pyrometers. These pyrometers require a pre-knowledge of the radiative properties of materials in the desired infrared range of wavelengths. In this study, radiative properties of some commonly used thin films of dielectric materials are investigated within the infrared (IR) spectral range of 1.5-14.2 μm. Radiative properties of aluminum oxide (Al2O3), silicon dioxide (SiO2), aluminum nitride (AlN) and silicon nitride (Si3N4) have been simulated and compared, utilizing a matrix method of representing the optical properties. The simulated results of the radiative properties show that Si3N4 is an excellent choice for the infrared radiation absorbing layer that is currently used in infrared uncooled detectors (microbolometers) because of its optical, mechanical and electrical properties. A case study of the radiative properties of an infrared uncooled microbolometer (Honeywell structure) is presented and discussed in the infrared spectral range of 8-14 μm. The results obtained serve as useful information for the design and fabrication of infrared imaging systems and components such as coatings, detectors, filters, lenses and waveguides.

  3. Reaction of the high-latitude lower ionosphere to solar proton events from observations in the ELF range

    NASA Astrophysics Data System (ADS)

    Lebed', O. M.; Larchenko, A. V.; Pil'gaev, S. V.; Fedorenko, Yu. V.

    2017-01-01

    The reaction of the lower ionosphere to the solar proton events that occurred in 2011-2012 is studied in this paper based on the results of measurements of the propagation velocity and the E z / H τ ratio of the low-frequency electromagnetic pulses (atmospherics) in the ELF range at the high-latitude observatories Lovozero and Barentsburg. With numerical modeling methods, it is shown that horizontal local irregularities of the lower ionosphere conductivity profile could be a cause of the splashes in the E z / H τ ratio observed in the experiment during the solar proton event of March 7, 2012, which was a unique event in both the proton flux value and energy.

  4. Radiation Therapy for Primary Cutaneous Anaplastic Large Cell Lymphoma: An International Lymphoma Radiation Oncology Group Multi-institutional Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Million, Lynn, E-mail: lmillion@stanford.edu; Yi, Esther J.; Wu, Frank

    Purpose: To collect response rates of primary cutaneous anaplastic large cell lymphoma, a rare cutaneous T-cell lymphoma, to radiation therapy (RT), and to determine potential prognostic factors predictive of outcome. Methods and Materials: The study was a retrospective analysis of patients with primary cutaneous anaplastic large cell lymphoma who received RT as primary therapy or after surgical excision. Data collected include initial stage of disease, RT modality (electron/photon), total dose, fractionation, response to treatment, and local recurrence. Radiation therapy was delivered at 8 participating International Lymphoma Radiation Oncology Group institutions worldwide. Results: Fifty-six patients met the eligibility criteria, and 63 tumorsmore » were treated: head and neck (27%), trunk (14%), upper extremities (27%), and lower extremities (32%). Median tumor size was 2.25 cm (range, 0.6-12 cm). T classification included T1, 40 patients (71%); T2, 12 patients (21%); and T3, 4 patients (7%). The median radiation dose was 35 Gy (range, 6-45 Gy). Complete clinical response (CCR) was achieved in 60 of 63 tumors (95%) and partial response in 3 tumors (5%). After CCR, 1 tumor recurred locally (1.7%) after 36 Gy and 7 months after RT. This was the only patient to die of disease. Conclusions: Primary cutaneous anaplastic large cell lymphoma is a rare, indolent cutaneous lymphoma with a low death rate. This analysis, which was restricted to patients selected for treatment with radiation, indicates that achieving CCR was independent of radiation dose. Because there were too few failures (<2%) for statistical analysis on dose response, 30 Gy seems to be adequate for local control, and even lower doses may suffice.« less

  5. Radiance and atmosphere propagation-based method for the target range estimation

    NASA Astrophysics Data System (ADS)

    Cho, Hoonkyung; Chun, Joohwan

    2012-06-01

    Target range estimation is traditionally based on radar and active sonar systems in modern combat system. However, the performance of such active sensor devices is degraded tremendously by jamming signal from the enemy. This paper proposes a simple range estimation method between the target and the sensor. Passive IR sensors measures infrared (IR) light radiance radiating from objects in dierent wavelength and this method shows robustness against electromagnetic jamming. The measured target radiance of each wavelength at the IR sensor depends on the emissive properties of target material and is attenuated by various factors, in particular the distance between the sensor and the target and atmosphere environment. MODTRAN is a tool that models atmospheric propagation of electromagnetic radiation. Based on the result from MODTRAN and measured radiance, the target range is estimated. To statistically analyze the performance of proposed method, we use maximum likelihood estimation (MLE) and evaluate the Cramer-Rao Lower Bound (CRLB) via the probability density function of measured radiance. And we also compare CRLB and the variance of and ML estimation using Monte-Carlo.

  6. Lowering the Radiation Dose in Dental Offices.

    PubMed

    Radan, Elham

    2017-04-01

    While the use of dental imaging continues to evolve into more advanced modalities such as 3-D cone beam computed tomography, in addition to conventional 2-D imaging (intraoral, panoramic and cephalometric), the public concern for radiation safety is also increasing. This article is a guide for how to reduce patients’ exposure to the minimum with proper selection criteria (as needed only if it benefits the patient) and knowledge of effective doses, exposure parameters and proper collimation.

  7. A synchrotron-radiation-based variable angle ellipsometer for the visible to vacuum ultraviolet spectral range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neumann, M. D., E-mail: maciej.neumann@isas.de; Cobet, C.; Esser, N.

    2014-05-15

    A rotating analyzer spectroscopic polarimeter and ellipsometer with a wide-range θ-2θ goniometer installed at the Insertion Device Beamline of the Metrology Light Source in Berlin is presented. With a combination of transmission- and reflection-based polarizing elements and the inherent degree of polarization of the undulator radiation, this ellipsometer is able to cover photon energies from about 2 eV up to 40 eV. Additionally, a new compensator design based on a CaF{sub 2} Fresnel rhomb is presented. This compensator allows ellipsometric measurements with circular polarization in the vacuum ultraviolet spectral range and thus, for example, the characterization of depolarizing samples. The new instrumentmore » was initially used for the characterization of the polarization of the beamline. The technical capabilities of the ellipsometer are demonstrated by a cohesive wide-range measurement of the dielectric function of epitaxially grown ZnO.« less

  8. Studies of Lower Hybrid Range of Frequencies Actuators in the ARC Device

    NASA Astrophysics Data System (ADS)

    Bonoli, P. T.; Lin, Y.; Shiraiwa, S.; Wallace, G. M.; Wright, J. C.; Wukitch, S. J.

    2017-10-01

    High field side (HFS) placement of lower hybrid range of frequencies (LHRF) actuators is attractive from both the standpoint of a more quiescent scrape off layer (SOL) and from the improved LH wave accessibility and penetration to higher electron temperature that results from the higher magnetic field on the HFS. The resulting profiles of LH current drive (LHCD) are also more suitable for advanced tokamak (AT) operation where it is most desirable to provide a significant ( 20-30%) contribution to the total current density with a broad profile extending from r/a 0.5-0.85. Here we re-assess HFS LHCD in the ARC device using a hierarchy of LHCD models that include a combined adjoint plus ray tracing calculation, a ray tracing plus 3D Fokker Planck calculation, and a full-wave plus Fokker Planck simulation. Work supported by the U.S. DoE, Office of Science, Office of Fusion Energy Sciences, User Facility Alcator C-Mod under DE-FC02-99ER54512 and a PSFC Theory Grant under DE-FG02-91-ER54109.

  9. Radiosensitization: enhancing the radiation inactivation of foodborne bacteria

    NASA Astrophysics Data System (ADS)

    Borsa, J.; Lacroix, M.; Ouattara, B.; Chiasson, F.

    2004-09-01

    Irradiation of meat products to kill pathogens can be limited by radiation-induced detriment of sensory quality. Since such detriment is directly related to dose, one approach to reduce it is by devising means to lower the dose of radiation required for processing. Increasing the radiation sensitivity of the target microorganisms would lower the dose required for a given level of microbial kill. In this work, the radiation sensitivities of inoculated Escherichia coli and Salmonella typhi in ground beef were examined under a variety of conditions. Results showed that specific manipulations of treatment conditions significantly increased the radiation sensitivity of the test organisms, ranging from a few percent to several-fold reduction in D10. In particular, radiation sensitization could be effected by certain additives, including carvacrol, thymol and trans-cinnamaldehyde, and also by certain compositions of modified atmosphere in the package headspace. A combination of additives and modified atmosphere effected a greater radiosensitization effect than could be achieved by either factor applied alone. Radiosensitization could be demonstrated with irradiation of either fresh or frozen ground meat. The radiosensitization phenomenon may be of practical utility in enhancing the technical effectiveness and feasibility of irradiation of a variety of meat and other food products.

  10. Radiation-induced lymphocyte apoptosis to predict radiation therapy late toxicity in prostate cancer patients.

    PubMed

    Schnarr, Kara; Boreham, Douglas; Sathya, Jinka; Julian, Jim; Dayes, Ian S

    2009-08-01

    To examine a potential correlation between the in vitro apoptotic response of lymphocytes to radiation and the risk of developing late gastrointestinal (GI)/genitourinary (GU) toxicity from radiotherapy for prostate cancer. Prostate cancer patients formerly enrolled in a randomized study were tested for radiosensitivity by using a radiation-induced lymphocyte apoptosis assay. Apoptosis was measured using flow cytometry-based Annexin-FITC/7AAD and DiOC(6)/7AAD assays in subpopulations of lymphocytes (total lymphocytes, CD4+, CD8+ and CD4-/CD8-) after exposure to an in vitro dose of 0, 2, 4, or 8 Gy. Patients with late toxicity after radiotherapy showed lower lymphocyte apoptotic responses to 8 Gy than patients who had not developed late toxicity (p = 0.01). All patients with late toxicity had apoptosis levels that were at or below the group mean. The negative predictive value in both apoptosis assays ranged from 95% to 100%, with sensitivity values of 83% to 100%. Apoptosis at lower dose points and in lymphocyte subpopulations had a weaker correlation with the occurrence of late toxicity. Lymphocyte apoptosis after 8 Gy of radiation has the potential to predict which patients will be spared late toxicity after radiation therapy. Further research should be performed to identify the specific subset of lymphocytes that correlates with late toxicity, followed by a corresponding prospective study.

  11. Reduction of scatter radiation during transradial percutaneous coronary angiography: a randomized trial using a lead-free radiation shield.

    PubMed

    Politi, Luigi; Biondi-Zoccai, Giuseppe; Nocetti, Luca; Costi, Tiziana; Monopoli, Daniel; Rossi, Rosario; Sgura, Fabio; Modena, Maria Grazia; Sangiorgi, Giuseppe M

    2012-01-01

    Occupational radiation exposure is a growing problem due to the increasing number and complexity of interventional procedures performed. Radial artery access has reduced the number of complications at the price of longer procedure duration. Radpad® scatter protection is a sterile, disposable bismuth-barium radiation shield drape that should be able to decrease the dose of operator radiation during diagnostic and interventional procedures. Such radiation shield has never been tested in a randomized study in humans. Sixty consecutive patients undergoing coronary angiography by radial approach were randomized 1:1 to Radpad use versus no radiation shield protection. The sterile shield was placed around the area of right radial artery sheath insertion and extended medially to the patient trunk. All diagnostic procedures were performed by the same operator to reduce variability in radiation absorption. Radiation exposure was measured blindly using thermoluminescence dosimeters positioned at the operator's chest, left eye, left wrist, and thyroid. Despite similar fluoroscopy time (3.52 ± 2.71 min vs. 3.46 ± 2.77 min, P = 0.898) and total examination dose (50.5 ± 30.7 vs. 45.8 ± 18.0 Gycm(2), P = 0.231), the mean total radiation exposure to the operator was significantly lower when Radpad was utilized (282.8 ± 32.55 μSv vs. 367.8 ± 105.4 μSv, P < 0.0001) corresponding to a 23% total reduction. Moreover, mean radiation exposure was lower with Radpad utilization at all body locations ranging from 13 to 34% reduction. This first-in-men randomized trial demonstrates that Radpad significantly reduces occupational radiation exposure during coronary angiography performed through right radial artery access. Copyright © 2011 Wiley Periodicals, Inc.

  12. Metal-ferroelectric-metal capacitor based persistent memory for electronic product code class-1 generation-2 uhf passive radio-frequency identification tag

    NASA Astrophysics Data System (ADS)

    Yoon, Bongno; Sung, Man Young; Yeon, Sujin; Oh, Hyun S.; Kwon, Yoonjoo; Kim, Chuljin; Kim, Kyung-Ho

    2009-03-01

    With the circuits using metal-ferroelectric-metal (MFM) capacitor, rf operational signal properties are almost the same or superior to those of polysilicon-insulator-polysilicon, metal-insulator-metal, and metal-oxide-semiconductor (MOS) capacitors. In electronic product code global class-1 generation-2 uhf radio-frequency identification (RFID) protocols, the MFM can play a crucial role in satisfying the specifications of the inventoried flag's persistence times (Tpt) for each session (S0-S3, SL). In this paper, we propose and design a new MFM capacitor based memory scheme of which persistence time for S1 flag is measured at 2.2 s as well as indefinite for S2, S3, and SL flags during the period of power-on. A ferroelectric random access memory embedded RFID tag chip is fabricated with an industry-standard complementary MOS process. The chip size is around 500×500 μm2 and the measured power consumption is about 10 μW.

  13. Effect of dispersal at range edges on the structure of species ranges

    USGS Publications Warehouse

    Bahn, V.; O'Connor, R.J.; Krohn, W.B.

    2006-01-01

    Range edges are of particular interest to ecology because they hold key insights into the limits of the realized niche and associated population dynamics. A recent feature of Oikos summarized the state of the art on range edge ecology. While the typical question is what causes range edges, another important question is how range edges influence the distribution of abundances across a species geographic range when dispersal is present. We used a single species population dynamics model on a coupled-lattice to determine the effects of dispersal on peripheral populations as compared to populations at the core of the range. In the absence of resource gradients, the reduced neighborhood and thus lower connectivity or higher isolation among populations at the range edge alone led to significantly lower population sizes in the periphery of the range than in the core. Lower population sizes mean higher extinction risks and lower adaptability at the range edge, which could inhibit or slow range expansions, and thus effectively stabilize range edges. The strength of this effect depended on the potential population growth rate and the maximum dispersal distance. Lower potential population growth rates led to a stronger effect of dispersal resulting in a higher difference in population sizes between the two areas. The differential effect of dispersal on population sizes at the core and periphery of the range in the absence of resource gradients implies that traditional, habitat-based distribution models could result in misleading conclusions about the habitat quality in the periphery. Lower population sizes at the periphery are also relevant to conservation, because habitat removal not only eliminates populations but also creates new edges. Populations bordering these new edges may experience declines, due to their increased isolation. ?? OIKOS.

  14. Predicting commuter flows in spatial networks using a radiation model based on temporal ranges

    NASA Astrophysics Data System (ADS)

    Ren, Yihui; Ercsey-Ravasz, Mária; Wang, Pu; González, Marta C.; Toroczkai, Zoltán

    2014-11-01

    Understanding network flows such as commuter traffic in large transportation networks is an ongoing challenge due to the complex nature of the transportation infrastructure and human mobility. Here we show a first-principles based method for traffic prediction using a cost-based generalization of the radiation model for human mobility, coupled with a cost-minimizing algorithm for efficient distribution of the mobility fluxes through the network. Using US census and highway traffic data, we show that traffic can efficiently and accurately be computed from a range-limited, network betweenness type calculation. The model based on travel time costs captures the log-normal distribution of the traffic and attains a high Pearson correlation coefficient (0.75) when compared with real traffic. Because of its principled nature, this method can inform many applications related to human mobility driven flows in spatial networks, ranging from transportation, through urban planning to mitigation of the effects of catastrophic events.

  15. Radiation Hydrodynamics Simulations of Photoevaporation of Protoplanetary Disks by Ultraviolet Radiation: Metallicity Dependence

    NASA Astrophysics Data System (ADS)

    Nakatani, Riouhei; Hosokawa, Takashi; Yoshida, Naoki; Nomura, Hideko; Kuiper, Rolf

    2018-04-01

    Protoplanetary disks are thought to have lifetimes of several million yr in the solar neighborhood, but recent observations suggest that the disk lifetimes are shorter in a low-metallicity environment. We perform a suite of radiation hydrodynamics simulations of photoevaporating protoplanetary disks to study their long-term evolution of ∼10,000 yr and the metallicity dependence of mass-loss rates. Our simulations follow hydrodynamics, extreme and far-ultraviolet (FUV) radiative transfer, and nonequilibrium chemistry in a self-consistent manner. Dust-grain temperatures are also calculated consistently by solving the radiative transfer of the stellar irradiation and grain (re-)emission. We vary the disk metallicity over a wide range of {10}-4 {Z}ȯ ≤slant Z≤slant 10 {Z}ȯ . The photoevaporation rate is lower with higher metallicity in the range of {10}-1 {Z}ȯ ≲ Z≲ 10 {Z}ȯ , because dust shielding effectively prevents FUV photons from penetrating and heating the dense regions of the disk. The photoevaporation rate sharply declines at even lower metallicities in {10}-2 {Z}ȯ ≲ Z≲ {10}-1 {Z}ȯ , because FUV photoelectric heating becomes less effective than dust–gas collisional cooling. The temperature in the neutral region decreases, and photoevaporative flows are excited only in an outer region of the disk. At {10}-4 {Z}ȯ ≤slant Z≲ {10}-2 {Z}ȯ , H I photoionization heating acts as a dominant gas heating process and drives photoevaporative flows with a roughly constant rate. The typical disk lifetime is shorter at Z = 0.3 {Z}ȯ than at Z={Z}ȯ , being consistent with recent observations of the extreme outer galaxy.

  16. Preliminary exploration of the measurement of walking speed for the apoplectic people based on UHF RFID.

    PubMed

    Huang Hua-Lin; Mo Ling-Fei; Liu Ying-Jie; Li Cheng-Yang; Xu Qi-Meng; Wu Zhi-Tong

    2015-08-01

    The number of the apoplectic people is increasing while population aging is quickening its own pace. The precise measurement of walking speed is very important to the rehabilitation guidance of the apoplectic people. The precision of traditional measuring methods on speed such as stopwatch is relatively low, and high precision measurement instruments because of the high cost cannot be used widely. What's more, these methods have difficulty in measuring the walking speed of the apoplectic people accurately. UHF RFID tag has the advantages of small volume, low price, long reading distance etc, and as a wearable sensor, it is suitable to measure walking speed accurately for the apoplectic people. In order to measure the human walking speed, this paper uses four reader antennas with a certain distance to reads the signal strength of RFID tag. Because RFID tag has different RSSI (Received Signal Strength Indicator) in different distances away from the reader, researches on the changes of RSSI with time have been done by this paper to calculate walking speed. The verification results show that the precise measurement of walking speed can be realized by signal processing method with Gaussian Fitting-Kalman Filter. Depending on the variance of walking speed, doctors can predict the rehabilitation training result of the apoplectic people and give the appropriate rehabilitation guidance.

  17. Performance Analysis of Effective Range and Orientation of UHF Passive RFID

    DTIC Science & Technology

    2008-03-01

    they can be found in the retail world as anti - theft devices . On the opposite end of the capacity realm, tags can include microprocessors and... theft or explosive devices set to detonate when in the presence of an American passport. Along with privacy risks, unsecure RFID tags in retail business...Thoughput for Unmodified Bluetooth Communication Devices ,” AFIT Thesis AFIT/GCS/ENG/03-08. 54 REPORT DOCUMENTATION

  18. High-frequency (13.56-MHz) and ultrahigh-frequency (915-MHz) radio identification systems do not affect platelet activation and functions.

    PubMed

    Rogowska, Anna; Chabowska, Anna Małgorzata; Lipska, Alina; Boczkowska-Radziwon, Barbara; Bujno, Magdalena; Rusak, Tomasz; Dziemianczuk, Mateusz; Radziwon, Piotr

    2016-05-01

    In radiofrequency identification (RFID) systems used in labeling of blood components, blood cells are subjected to the direct influence of electromagnetic waves throughout the storage period. The aim of this study was to prove the safety of storage of platelet concentrates (PCs) in containers labeled with RFID tags. Ten pooled PCs obtained from 12 buffy coats each suspended in additive solution were divided into three separate containers that were assigned to three groups: control, PCs labeled with ultrahigh frequency (UHF) range tags and exposed to 915-MHz radio waves, and PCs labeled with high-frequency (HF) range tags and exposed to 13.56-MHz radio waves. PCs were stored at 20 to 24°C for 7 days. In vitro tests of platelet (PLT) function were performed on the first, fifth, and seventh days of storage. There were no significant differences in pH; hypotonic shock resistance; surface expression of CD62P, CD42a, or CD63; release of PLT-derived microparticles; PLT aggregation; and number of PLTs between PCs stored at a constant exposure to radio waves of two different frequencies and the control group on the first, fifth, and seventh days of storage. The results of the study indicate no impact of electromagnetic radiation generated in HF and UHF RFID systems and constant contact with the tags on the quality of stored PCs. © 2016 AABB.

  19. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    NASA Technical Reports Server (NTRS)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low

  20. Analysis of the atmospheric upward radiation in low latitude area

    NASA Astrophysics Data System (ADS)

    Li, Haiying; Wu, Zhensen; Lin, Leke; Lu, Changsheng

    2016-10-01

    Remote sensing using THz wave has irreplaceable advantage comparing to the microwave and the infrared waves, and study on the THz remote sensing become more and more popular in recent years. The major applications of the remote sensing in THz wavelengths are the retrieval of the atmospheric parameters and the microphysical information of the ice cloud. The remote sensing of the atmosphere is based on the radiation of THz wave along the earth-space path of which the most significant part is the upward radiation of the atmosphere. The upward radiation of the atmosphere in sunny day in the low latitude area is computed and analyzed in this paper. The absorption of THz wave by the atmosphere is calculated using the formulations illustrated in the Recommendation ITU-R P.676 to save machine hour, the frequency range is then restricted below 1THz. The frequencies used for the retrieval of atmospheric parameters such as temperature and water content are usually a few hundred GHz, at the lower end of THz wavelengths, so this frequency range is sufficient. The radiation contribution of every atmospheric layer for typical frequencies such as absorption window frequencies and peak frequencies are analyzed. Results show that at frequencies which absorption is severe, information about lower atmosphere cannot reach the receiver onboard a satellite or other high platforms due to the strong absorption along the path.

  1. Radiation dose and magnification in pelvic X-ray: EOS™ imaging system versus plain radiographs.

    PubMed

    Chiron, P; Demoulin, L; Wytrykowski, K; Cavaignac, E; Reina, N; Murgier, J

    2017-12-01

    In plain pelvic X-ray, magnification makes measurement unreliable. The EOS™ (EOS Imaging, Paris France) imaging system is reputed to reproduce patient anatomy exactly, with a lower radiation dose. This, however, has not been assessed according to patient weight, although both magnification and irradiation are known to vary with weight. We therefore conducted a prospective comparative study, to compare: (1) image magnification and (2) radiation dose between the EOS imaging system and plain X-ray. The EOS imaging system reproduces patient anatomy exactly, regardless of weight, unlike plain X-ray. A single-center comparative study of plain pelvic X-ray and 2D EOS radiography was performed in 183 patients: 186 arthroplasties; 104 male, 81 female; mean age 61.3±13.7years (range, 24-87years). Magnification and radiation dose (dose-area product [DAP]) were compared between the two systems in 186 hips in patients with a mean body-mass index (BMI) of 27.1±5.3kg/m 2 (range, 17.6-42.3kg/m 2 ), including 7 with morbid obesity. Mean magnification was zero using the EOS system, regardless of patient weight, compared to 1.15±0.05 (range, 1-1.32) on plain X-ray (P<10 -5 ). In patients with BMI<25, mean magnification on plain X-ray was 1.15±0.05 (range, 1-1.25) and, in patients with morbid obesity, 1.22±0.06 (range, 1.18-1.32). The mean radiation dose was 8.19±2.63dGy/cm 2 (range, 1.77-14.24) with the EOS system, versus 19.38±12.37dGy/cm 2 (range, 4.77-81.75) with plain X-ray (P<10 -4 ). For BMI >40, mean radiation dose was 9.36±2.57dGy/cm 2 (range, 7.4-14.2) with the EOS system, versus 44.76±22.21 (range, 25.2-81.7) with plain X-ray. Radiation dose increased by 0.20dGy with each extra BMI point for the EOS system, versus 0.74dGy for plain X-ray. Magnification did not vary with patient weight using the EOS system, unlike plain X-ray, and radiation dose was 2.5-fold lower. 3, prospective case-control study. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Development of Radiated Power Diagnostics for NSTX-U

    NASA Astrophysics Data System (ADS)

    Reinke, Matthew; van Eden, G. G.; Lovell, Jack; Peterson, Byron; Gray, Travis; Chandra, Rian; Stratton, Brent; Ellis, Robert; NSTX-U Team

    2016-10-01

    New tools to measure radiated power in NSTX-U are under development to support a range of core and boundary physics research. Multiple resistive bolometer pinhole cameras are being built and calibrated to support FY17 operations, all utilizing standard Au-foil sensors from IPT-Albrecht. The radiation in the lower divertor will be measured using two, 8 channel arrays viewing both vertically and radially to enable estimates of the 2D radiation structure. The core radiation will be measured using a 24 channel array viewing tangentially near the midplane, observing the full cross-section from the inner to outer limiter. This enables characterization of the centrifugally-driven in/out radiation asymmetry expected from mid-Z and high-Z impurities in highly rotating NSTX-U plasmas. All sensors utilize novel FPGA-based BOLO8BLF analyzers from D-tAcq Solutions. Resistive bolometer measurements are complemented by an InfraRed Video Bolometer (IRVB) which measures the temperature change of radiation absorber using an IR camera. A prototype IRVB system viewing the lower divertor was installed on NSTX-U for FY16 operations. Initial results from the plasma and benchtop testing are used to demonstrate the relative advantages between IRVB and resistive bolometers. Supported in Part by DE-AC05-00OR22725 & DE-AC02-09CH11466.

  3. 47 CFR 74.733 - UHF translator signal boosters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., vertical, or circular polarization of the electric field of the radiated signal may be employed. If the... signals of the parent translator without significantly altering any electrical characteristic of the...

  4. Ranging behavior relates to welfare indicators pre- and post-range access in commercial free-range broilers.

    PubMed

    Taylor, Peta S; Hemsworth, Paul H; Groves, Peter J; Gebhardt-Henrich, Sabine G; Rault, Jean-Loup

    2018-06-01

    Little is known about the effect of accessing an outdoor range on chicken welfare. We tracked individual ranging behavior of 538 mixed-sex Ross 308 chickens on a commercial farm across 4 flocks in winter and summer. Before range access, at 17 to 19 d of age, and post-range access, at 30 to 33 and 42 to 46 d of age in winter and summer flocks respectively, welfare indicators were measured on chickens (pre-range: winter N = 292; summer N = 280; post-range: winter N = 131; summer N = 140), including weight, gait score, dermatitis and plumage condition. Post-ranging autopsies were performed (winter: N = 170; summer: N = 60) to assess breast burn, leg health, and ascites. Fewer chickens accessed the range in winter flocks (32.5%) than summer flocks (82.1%). Few relationships between welfare and ranging were identified in winter, likely due to minimal ranging and the earlier age of post-ranging data collection compared to summer flocks. In summer flocks prior to range access, chickens that accessed the range weighed 4.9% less (P = 0.03) than chickens that did not access the range. Pre-ranging weight, gait score, and overall plumage cover predicted the amount of range use by ranging chickens in summer flocks (P < 0.01), but it explained less than 5% of the variation, suggesting other factors are associated with ranging behavior. In summer flocks post-range access, ranging chickens weighed 12.8% less than non-ranging chickens (P < 0.001). More range visits were associated with lower weight (P < 0.01), improved gait scores (P = 0.02), greater breast plumage cover (P = 0.02), lower ascites index (P = 0.01), and less pericardial fluid (P = 0.04). More time spent on the range was associated with lower weight (P < 0.01) and better gait scores (P < 0.01). These results suggest that accessing an outdoor range in summer is partly related to changes in broiler chicken welfare. Further investigations are required to determine causation.

  5. Magnetic zenith effect in the ionospheric modification by an X-mode HF heater wave

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Haggstrom, I.; Rietveld, M. T.; Yeoman, T. K.

    2013-12-01

    We report experimental results aimed at an investigation of the magnetic zenith effect in the high latitude ionosphere F region from ionospheric modification by powerful HF heater wave with X-polarization. The ionospheric modification was produced by the HF heating facility at Tromsø (Norway) using the phased array with a narrow beam with of 6 degrees. Effective radiated power was varied between 450 and 1000 MW. The HF pump wave radiated in different directions relative to the magnetic field from 90 degrees (vertical) to 78 degrees (magnetic zenith) at frequencies near or above the ordinary-mode critical frequency. The response of the ionosphere plasma to the HF pump wave impact was checked by the UHF incoherent scatter radar located in the immediate vicinity of the HF heater. UHF radar was probing the plasma parameters, such as electron density and temperature (Ne and Te), HF-induced plasma and ion lines in the altitude range from 90 to 600 km. It was running in a scanning mode when UHF radar look angles were changed from 74 to 90 degrees by 1 or 2 degree step. It was clearly demonstrated that the strongest heater-induced effects took place in the magnetic field-aligned direction when HF pointing was also to the magnetic zenith. It was found that strong Ne enhancement of up to 80 % along magnetic field (artificial density ducts) were excited only under HF pumping towards magnetic zenith. The width of the artificial ducts comes to only 2 degrees. The Ne increases were accompanied by the Te enhancements of up to about 50 %. Less pronounced Te increases were also observed in the directions of 84 and 90 degrees. Strong Ne enhancements can be accompanied by excitation of strong HF-induced plasma and ion lines. Thus experimental results obtained points to the strong magnetic zenith effect due to self-focusing powerful HF radio wave with X-mode polarization.

  6. 47 CFR 74.733 - UHF translator signal boosters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV.... Care shall be taken in the design of the apparatus to insure that out-of-band radiation is not...

  7. Lowering whole-body radiation doses in pediatric intensity-modulated radiotherapy through the use of unflattened photon beams.

    PubMed

    Cashmore, Jason; Ramtohul, Mark; Ford, Dan

    2011-07-15

    Intensity modulated radiotherapy (IMRT) has been linked with an increased risk of secondary cancer induction due to the extra leakage radiation associated with delivery of these techniques. Removal of the flattening filter offers a simple way of reducing head leakage, and it may be possible to generate equivalent IMRT plans and to deliver these on a standard linear accelerator operating in unflattened mode. An Elekta Precise linear accelerator has been commissioned to operate in both conventional and unflattened modes (energy matched at 6 MV) and a direct comparison made between the treatment planning and delivery of pediatric intracranial treatments using both approaches. These plans have been evaluated and delivered to an anthropomorphic phantom. Plans generated in unflattened mode are clinically identical to those for conventional IMRT but can be delivered with greatly reduced leakage radiation. Measurements in an anthropomorphic phantom at clinically relevant positions including the thyroid, lung, ovaries, and testes show an average reduction in peripheral doses of 23.7%, 29.9%, 64.9%, and 70.0%, respectively, for identical plan delivery compared to conventional IMRT. IMRT delivery in unflattened mode removes an unwanted and unnecessary source of scatter from the treatment head and lowers leakage doses by up to 70%, thereby reducing the risk of radiation-induced second cancers. Removal of the flattening filter is recommended for IMRT treatments. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. The space radiation environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, D E

    There are three primary sources of space radiation: galactic cosmic rays (GCR), trapped belt radiation, and solar particle events (SPE). All are composed of ions, the nuclei of atoms. Their energies range from a few MeV u{sup -1} to over a GeV u{sup -1}. These ions can fragment when they interact with spacecraft materials and produce energetic neutrons and ions of lower atomic mass. Absorbed dose rates inside a typical spacecraft (like the Space Shuttle) in a low inclination (28.5 degrees) orbit range between 0.05 and 2 mGy d{sup -1} depending on the altitude and flight inclination (angle of orbitmore » with the equator). The quality factor of radiation in orbit depends on the relative contributions of trapped belt radiation and GCR, and the dose rate varies both with orbital altitude and inclination. The corresponding equivalent dose rate ranges between 0.1 and 4 mSv d{sup -1}. In high inclination orbits, like that of the Mir Space Station and as is planned for the International Space Station, blood-forming organ (BFO) equivalent dose rates as high as 1.5 mSv d{sup -1}. Thus, on a 1 y mission, a crew member could obtain a total dose of 0.55 Sv. Maximum equivalent dose rates measured in high altitude passes through the South Atlantic Anomaly (SAA) were 10 mSv h{sup -1}. For an interplanetary space mission (e.g., to Mars) annual doses from GCR alone range between 150 mSv y{sup -1} at solar maximum and 580 mSv y{sup -1} at solar minimum. Large SPE, like the October 1989 series, are more apt to occur in the years around solar maximum. In free space, such an event could contribute another 300 mSv, assuming that a warning system and safe haven can be effectively used with operational procedures to minimize crew exposures. Thus, the total dose for a 3 y mission to Mars could exceed 2 Sv.« less

  9. A Simple Semaphore Signaling Technique for Ultra-High Frequency Spacecraft Communications

    NASA Technical Reports Server (NTRS)

    Butman, S.; Satorius, E.; Ilott, P.

    2005-01-01

    For planetary lander missions such as the upcoming Phoenix mission to Mars, the most challenging phase of the spacecraft-to-ground communications is during the critical phase termed entry, descent, and landing (EDL). At 8.4 GHz (X-band), the signals received by the largest Deep Space Network (DSN) antennas can be too weak for even 1 bit per second (bps) and therefore not able to communicate critical information to Earth. Fortunately, the lander s ultra-high frequency (UHF) link to an orbiting relay can meet the EDL requirements, but the data rate needs to be low enough to fit the capability of the UHF link during some or all of EDL. On Phoenix, the minimum data rate of the as-built UHF radio is 8 kbps and requires a signal level at the Odyssey orbiter of at least -120 dBm. For lower signaling levels, the effective data rate needs to be reduced, but without incurring the cost of rebuilding and requalifying the equipment. To address this scenario, a simple form of frequency-shift keying (FSK) has been devised by appropriately programming the data stream that is input to the UHF transceiver. This article describes this technique and provides performance estimates. Laboratory testing reveals that input signal levels at -140 dBm and lower can routinely be demodulated with the proposed signaling scheme, thereby providing a 20-dB and greater margin over the 8-kbps threshold.

  10. A Simple Semaphore Signaling Technique for Ultra-High Frequency Spacecraft Communications

    NASA Astrophysics Data System (ADS)

    Butman, S.; Satorius, E.; Illott, P.

    2005-11-01

    For planetary lander missions such as the upcoming Phoenix mission to Mars, the most challenging phase of the spacecraft-to-ground communications is during the critical phase termed entry, descent, and landing (EDL). At 8.4 GHz (X-band), the signals received by the largest Deep Space Network (DSN) antennas can be too weak for even 1 bit per second (bps) and therefore not able to communicate critical information to Earth. Fortunately, the lander's ultra-high frequency (UHF) link to an orbiting relay can meet the EDL requirements, but the data rate needs to be low enough to fit the capability of the UHF link during some or all of EDL. On Phoenix, the minimum data rate of the as-built UHF radio is 8 kbps and requires a signal level at the Odyssey orbiter of at least minus 120 dBm. For lower signaling levels, the effective data rate needs to be reduced, but without incurring the cost of rebuilding and requalifying the equipment. To address this scenario, a simple form of frequency-shift keying (FSK) has been devised by appropriately programming the data stream that is input to the UHF transceiver. This article describes this technique and provides performance estimates. Laboratory testing reveals that input signal levels at minus 140 dBm and lower can routinely be demodulated with the proposed signaling scheme, thereby providing a 20-dB and greater margin over the 8-kbps threshold.

  11. Holographic thermalization with initial long range correlation

    DOE PAGES

    Lin, Shu

    2016-01-19

    Here, we studied the evolution of the Wightman correlator in a thermalizing state modeled by AdS 3-Vaidya background. A prescription was given for calculating the Wightman correlator in coordinate space without using any approximation. For equal-time correlator , we obtained an enhancement factor v 2 due to long range correlation present in the initial state. This was missed by previous studies based on geodesic approximation. Moreover, we found that the long range correlation in initial state does not lead to significant modification to thermalization time as compared to known results with generic initial state. We also studied the spatially integratedmore » Wightman correlator and showed evidence on the distinction between long distance and small momentum physics for an out-of-equilibrium state. We also calculated the radiation spectrum of particles weakly coupled to O and found that lower frequency mode approaches thermal spectrum faster than high frequency mode.« less

  12. A UHF RFID positioning system for use in warehouse navigation by employees with cognitive disability.

    PubMed

    Gunther, Eric J M; Sliker, Levin J; Bodine, Cathy

    2017-11-01

    Unemployment among the almost 5 million working-age adults with cognitive disabilities in the USA is a costly problem in both tax dollars and quality of life. Job coaching is an effective tool to overcome this, but the cost of job coaching services sums with every new employee or change of employment roles. There is a need for a cost-effective, automated alternative to job coaching that incurs a one-time cost and can be reused for multiple employees or roles. An effective automated job coach must be aware of its location and the location of destinations within the job site. This project presents a design and prototype of a cart-mounted indoor positioning and navigation system with necessary original software using Ultra High Frequency Radio Frequency Identification (UHF RFID). The system presented in this project for use within a warehouse setting is one component of an automated job coach to assist in the job of order filler. The system demonstrated accuracy to within 0.3 m under the correct conditions with strong potential to serve as the basis for an effective indoor navigation system to assist warehouse workers with disabilities. Implications for rehabilitation An automated job coach could improve employability of and job retention for people with cognitive disabilities. An indoor navigation system using ultra high frequency radio frequency identification was proposed with an average positioning accuracy of 0.3 m. The proposed system, in combination with a non-linear context-aware prompting system, could be used as an automated job coach for warehouse order fillers with cognitive disabilities.

  13. Impact of Coupled Radiation and Ablation on the Aerothermodynamics of Meteor Entries

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Stern, Eric C.

    2017-01-01

    A high-fidelity approach for simulating the aerothermodynamic environments of meteor entries is developed. Two primary components of this model are coupled radiation and coupled ablation. Coupled radiation accounts for the impact of radiation on the flow field energy equations, while coupled ablation explicitly models the injection of ablation products within the flow field and radiation simulations. For a meteoroid with a velocity of 20 km/s, coupled radiation reduces the stagnation point radiative heating by over 60%. For altitudes below 40 km, the impact of coupled radiation on the flow field structure is shown to be fundamentally different, as a result of the large optical thicknesses, than that seen for reentry vehicles, which do not reach such altitudes at velocities greater than 10 km/s. The impact of coupled ablation (with coupled radiation) is shown to provide at least a 70% reduction in the radiative heating relative to the coupled-radiation-only cases. This large reduction is partially the result of the low ionization energies, relative to air species, of ablation products. The low ionization energies of ablation products, such as Mg and Ca, provide strong photoionization and atomic line absorption in regions of the spectrum that air species do not. MgO and CaO are also shown to provide significant absorption. Turbulence is shown to impact the distribution of ablation products through the shock- layer, which results in up to a 100% increase in the radiative heating downstream of the stagnation point. To create a database of heat transfer coefficients the developed model was applied to a range of cases. This database considered velocities ranging from 14 to 20 km/s, altitudes ranging from 20 to 50 km, and nose radii ranging from 1 to 100 m. The heat transfer coefficients from these simulations are below 0.045 for the range of cases (with turbulence), which is significantly lower than the canonical value of 0.1.

  14. Radical protection by differently composed creams in the UV/VIS and IR spectral ranges.

    PubMed

    Meinke, Martina C; Syring, Felicia; Schanzer, Sabine; Haag, Stefan F; Graf, Rüdiger; Loch, Manuela; Gersonde, Ingo; Groth, Norbert; Pflücker, Frank; Lademann, Jürgen

    2013-01-01

    Modern sunscreens are well suited to provide sufficient protection in the UV range because the filter substances absorb or scatter UV radiation. Although up to 50% of radicals are formed in the visible and infrared spectral range during solar radiation protection strategies are not provided in this range. Previous investigations of commercially available products have shown that in addition to physical filters, antioxidants (AO) are necessary to provide protective effects in the infrared range by neutralizing already formed radicals. In this study, the efficacy of filter substances and AO to reduce radical formation in both spectral ranges was investigated after UV/VIS or IR irradiation. Optical properties and radical protection were determined for the investigated creams. It was found that organic UV filters lower radical formation in the UV/VIS range to 35% compared to untreated skin, independent of the presence of AO. Further reduction to 14% was reached by addition of 2% physical filters, whereas physical filters alone were ineffective in the UV/VIS range due to the low concentration. In contrast, this filter type reduced radical formation in the IR range significantly to 65%; similar effects were aroused after application of AO. Sunscreens which contain organic UV filters, physical filters and AO ensure protection in the complete solar spectrum. © 2013 The American Society of Photobiology.

  15. Research on infrared radiation characteristics of Pyromark1200 high-temperature coating

    NASA Astrophysics Data System (ADS)

    Song, Xuyao; Huan, Kewei; Dong, Wei; Wang, Jinghui; Zang, Yanzhe; Shi, Xiaoguang

    2014-11-01

    Pyromark 1200 (Tempil Co, USA), which is a type of high-temperature high-emissivity coating, is silicon-based with good thermal radiation performance. Its stably working condition is at the temperature range 589~922 K thus a wide range of applications in industrial, scientific research, aviation, aerospace and other fields. Infrared emissivity is one of the most important factors in infrared radiation characteristics. Data on infrared spectral emissivity of Pyromark 1200 is in shortage, as well as the reports on its infrared radiation characteristics affected by its spray painting process, microstructure and thermal process. The results of this research show that: (1) The coating film critical thickness on the metal base is 10μm according to comparison among different types of spray painting process, coating film thickness, microstructure, which would influence the infrared radiation characteristics of Pyromark 1200 coating. The infrared spectral emissivity will attenuate when the coating film thickness is lower or much higher than that. (2) Through measurements, the normal infrared radiation characteristics is analyzed within the range at the temperature range 573~873 K under normal atmospheric conditions, and the total infrared spectral emissivity of Pyromark 1200 coating is higher than 0.93 in the 3~14 μm wavelength range. (3) The result of 72-hour aging test at the temperature 673 K which studied the effect of thermal processes on the infrared radiation characteristics of the coating shows that the infrared spectral emissivity variation range is approximately 0.01 indicating that Pyromark 1200 coating is with good stability. Compared with Nextel Velvet Coating (N-V-C) which is widely used in optics field, Pyromark 1200 high-temperature coating has a higher applicable temperature and is more suitable for spraying on the material surface which is in long-term operation under high temperature work conditions and requires high infrared spectral emissivity.

  16. Metasurface Reflector (MSR) Loading for High Performance Small Microstrip Antenna Design

    PubMed Central

    Ahsan, Md Rezwanul; Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Ali, Mohd Tarmizi

    2015-01-01

    A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (ε r = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%), 467 to 606 MHz (29%) and 758 MHz to 1062 MHz (40%) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB) and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz) RFID, WiMAX (3.5/5.5 GHz) and WLAN (5.2/5.8 GHz) applications. PMID:26018795

  17. Metasurface Reflector (MSR) Loading for High Performance Small Microstrip Antenna Design.

    PubMed

    Ahsan, Md Rezwanul; Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Ali, Mohd Tarmizi

    2015-01-01

    A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (εr = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10 dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%), 467 to 606 MHz (29%) and 758 MHz to 1062 MHz (40%) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB) and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz) RFID, WiMAX (3.5/5.5 GHz) and WLAN (5.2/5.8 GHz) applications.

  18. The SATRAM Timepix spacecraft payload in open space on board the Proba-V satellite for wide range radiation monitoring in LEO orbit

    NASA Astrophysics Data System (ADS)

    Granja, Carlos; Polansky, Stepan; Vykydal, Zdenek; Pospisil, Stanislav; Owens, Alan; Kozacek, Zdenek; Mellab, Karim; Simcak, Marek

    2016-06-01

    The Space Application of Timepix based Radiation Monitor (SATRAM) is a spacecraft platform radiation monitor on board the Proba-V satellite launched in an 820 km altitude low Earth orbit in 2013. The is a technology demonstration payload is based on the Timepix chip equipped with a 300 μm silicon sensor with signal threshold of 8 keV/pixel to low-energy X-rays and all charged particles including minimum ionizing particles. For X-rays the energy working range is 10-30 keV. Event count rates can be up to 106 cnt/(cm2 s) for detailed event-by-event analysis or over 1011 cnt/(cm2 s) for particle-counting only measurements. The single quantum sensitivity (zero-dark current noise level) combined with per-pixel spectrometry and micro-scale pattern recognition analysis of single particle tracks enables the composition (particle type) and spectral characterization (energy loss) of mixed radiation fields to be determined. Timepix's pixel granularity and particle tracking capability also provides directional sensitivity for energetic charged particles. The payload detector response operates in wide dynamic range in terms of absorbed dose starting from single particle doses in the pGy level, particle count rate up to 106-10 /cm2/s and particle energy loss (threshold at 150 eV/μm). The flight model in orbit was successfully commissioned in 2013 and has been sampling the space radiation field in the satellite environment along its orbit at a rate of several frames per minute of varying exposure time. This article describes the design and operation of SATRAM together with an overview of the response and resolving power to the mixed radiation field including summary of the principal data products (dose rate, equivalent dose rate, particle-type count rate). The preliminary evaluation of response of the embedded Timepix detector to space radiation in the satellite environment is presented together with first results in the form of a detailed visualization of the mixed radiation

  19. Radiation protection guidelines for space missions

    NASA Technical Reports Server (NTRS)

    Fry, R. J. M.; Nachtwey, D. S.

    1986-01-01

    NASA's current radiation protection guidelines date from 1970, when the career limit was set at 400 rem. Today, using the same approach, but with the current risk estimates, a considerably lower career limit would obtain. Also, there is considerably more information about the radiation environments to be experienced in different missions than previously. Since 1970 women have joined the ranks. For these and other reasons it was necessary to reexamine the radiation protection guidelines. This task was undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75 (NCRP SC 75). Below the magnetosphere the radiation environment varies with altitude and orbit inclination. In outer space missions galactic cosmic rays, with the small but important heavy ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 100 rem (4.0Sv) for a 24 year old female to 400 rem for a 55 year old male compared to the previous single limit of 400 rem (4.0 Sv). The career limit for the lens of the eye was reduced from 600 to 400 rem (6.0 to 4.0 Sv.)

  20. Radionuclide bone scan SPECT-CT: lowering the dose of CT significantly reduces radiation dose without impacting CT image quality

    PubMed Central

    Gupta, Sandeep Kumar; Trethewey, Scott; Brooker, Bree; Rutherford, Natalie; Diffey, Jenny; Viswanathan, Suresh; Attia, John

    2017-01-01

    The CT component of SPECT-CT is required for attenuation correction and anatomical localization of the uptake on SPECT but there is no guideline about the optimal CT acquisition parameters. In our department, a standard CT acquisition protocol was changed in 2013 to give lower radiation dose to the patient. In this study, we retrospectively compared the effects on patient dose as well as the CT image quality with current versus older CT protocols. Ninety nine consecutive patients [n=51 Standard dose ‘old’ protocol (SDP); n=48 lower dose ‘new’ protocol (LDP)] with lumbar spine SPECT-CT for bone scan were examined. The main differences between the two protocols were that SDP used 130 kVp tube voltage and reference current-time product of 70 mAs whereas the LDP used 110 kVp and 40 mAs respectively. Various quantitative parameters from the CT images were obtained and the images were also rated blindly by two experienced nuclear medicine physicians for bony definition and noise. The mean calculated dose length product of the LDP group (121.5±39.6 mGy.cm) was significantly lower compared to the SDP group patients (266.9±96.9 mGy.cm; P<0.0001). This translated into a significant reduction in the mean effective dose to 1.8 mSv from 4.0 mSv. The physicians reported better CT image quality for the bony structures in LDP group although for soft tissue structures, the SDP group had better image quality. The optimized new CT acquisition protocol significantly reduced the radiation dose to the patient and in-fact improved CT image quality for the assessment of bony structures. PMID:28533938

  1. Upgrades of DARWIN, a dose and spectrum monitoring system applicable to various types of radiation over wide energy ranges

    NASA Astrophysics Data System (ADS)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira; Shigyo, Nobuhiro; Watanabe, Fusao; Sakurai, Hiroki; Arai, Yoichi

    2011-05-01

    A dose and spectrum monitoring system applicable to neutrons, photons and muons over wide ranges of energy, designated as DARWIN, has been developed for radiological protection in high-energy accelerator facilities. DARWIN consists of a phoswitch-type scintillation detector, a data-acquisition (DAQ) module for digital waveform analysis, and a personal computer equipped with a graphical-user-interface (GUI) program for controlling the system. The system was recently upgraded by introducing an original DAQ module based on a field programmable gate array, FPGA, and also by adding a function for estimating neutron and photon spectra based on an unfolding technique without requiring any specific scientific background of the user. The performance of the upgraded DARWIN was examined in various radiation fields, including an operational field in J-PARC. The experiments revealed that the dose rates and spectra measured by the upgraded DARWIN are quite reasonable, even in radiation fields with peak structures in terms of both spectrum and time variation. These results clearly demonstrate the usefulness of DARWIN for improving radiation safety in high-energy accelerator facilities.

  2. The NASA B-757 HIRF Test Series: Flight Test Results

    NASA Technical Reports Server (NTRS)

    Moeller, Karl J.; Dudley, Kenneth L.

    1997-01-01

    In 1995, the NASA Langley Research Center conducted a series of aircraft tests aimed at characterizing the electromagnetic environment (EME) in and around a Boeing 757 airliner. Measurements were made of the electromagnetic energy coupled into the aircraft and the signals induced on select structures as the aircraft was flown past known RF transmitters. These measurements were conducted to provide data for the validation of computational techniques for the assessment of electromagnetic effects in commercial transport aircraft. This paper reports on the results of flight tests using RF radiators in the HF, VHF, and UHF ranges and on efforts to use computational and analytical techniques to predict RF field levels inside the airliner at these frequencies.

  3. Coherent Synchrotron Radiation for Rotational Spectroscopy: Application to the Rotational Spectrum of Propynal in the 200-750 GHz Range

    NASA Astrophysics Data System (ADS)

    Barros, J.; Roy, P.; Appadoo, D.; Naughton, D. Mc; Robertson, E.; Manceron, L.

    2013-06-01

    In storage rings, short electron bunches can produce an intense THz radiation called Coherent Synchrotron Radiation (CSR). The flux of this emission between 250 and 750 GHz (in the mW range, up the 10000 times the regular synchrotron emission) is very advantageous for broad band absorption spectroscopy, using interferometric techniques. This source is, however, inherently difficult to stabilize, and intensity fluctuations lead to artifacts on the FT-based measurements, which strongly limit the use of CSR in particular for high-resolution measurements. At SOLEIL however, by screening different currents and bunch lengths, we defined stable CSR conditions for which the signal-to-noise ratio (S/N) allows for measurements at high resolution. Moreover, we developed an artifact correction system, based on a simultaneous detection of the input and the output signals of the interferometer, which allows to further improve the S/N. For this purpose, the optics and electronics of two bolometers were matched. The stable CSR combined with this ingenious technique allowed us to record for the first time high-resolution FT spectra in the sub-THz range, with a S/N of 100 in a few hours. This enables many applications such as broadband rotational spectra in the THz range, studies of molecules with low frequency torsional modes, absolute intensities determinations, or studies of unstable species. Results obtained on Propynal illustrate these possibilities and enabled to improve significantly the ground state spectroscopic constants.

  4. Home-range and activity pattern of rehabilitated malayan sun bears (Helarctos malayanus) in the Tembat Forest Reserve, Terengganu

    NASA Astrophysics Data System (ADS)

    Abidin, Mohammad Kamaruddin Zainal; Mohammed, Ahmad Azhar; Nor, Shukor Md

    2018-04-01

    Re-introduction programme has been adopted in solving the conflict issues related with the Malayan sun bears in Peninsular Malaysia. Two rehabilitated sun bears (#1533 and #1532) were collared and released in Tembat Forest Reserve, Hulu Terengganu to study the home-range and activity pattern. Tracking of sun bear in wild have be conducted manually by using telemetry devices namely radio frequency systems and GPS-UHF download system. A total of 912 locations were recorded. The home range size (indicate by the size of convex polygon) of bear #1533 is larger than bear #1532, with value of 95% minimum convex polygon was 130 km2 compared to its counterpart was 33.28 km2. Bears moved to forest (primary and secondary) and oil palm area. Bear #1533 and #1532 were more active in daytime (diurnal) especially from sunrise to midday. Activity pattern of both rehabilitated bears suggested influence by their daily activity in captivity. This study has proposed two guidelines in re-introduction, 1) minimum distance between release site and possible conflict area is 10-13 km and 2) release during the bear's active time.

  5. Tracking Cumulative Radiation Exposure in Orthopaedic Surgeons and Residents: What Dose Are We Getting?

    PubMed

    Gausden, Elizabeth B; Christ, Alexander B; Zeldin, Roseann; Lane, Joseph M; McCarthy, Moira M

    2017-08-02

    The purpose of this study was to determine the amount of cumulative radiation exposure received by orthopaedic surgeons and residents in various subspecialties. We obtained dosimeter measures over 12 months on 24 residents and 16 attending surgeons. Monthly radiation exposure was measured over a 12-month period for 24 orthopaedic residents and 16 orthopaedic attending surgeons. The participants wore a Landauer Luxel dosimeter on the breast pocket of their lead apron. The dosimeters were exchanged every rotation (5 to 7 weeks) for the resident participants and every month for the attending surgeon participants. Radiation exposure was compared by orthopaedic subspecialty, level of training, and type of fluoroscopy used (regular C-arm compared with mini C-arm). Orthopaedic residents participating in this study received monthly mean radiation exposures of 0.2 to 79 mrem/month, lower than the dose limits of 5,000 mrem/year recommended by the United States Nuclear Regulatory Commission (U.S. NRC). Senior residents rotating on trauma were exposed to the highest monthly radiation (79 mrem/month [range, 15 to 243 mrem/month]) compared with all other specialty rotations (p < 0.001). Similarly, attending orthopaedic surgeons who specialize in trauma or deformity surgery received the highest radiation exposure of their peers, and the mean exposure was 53 mrem/month (range, 0 to 355 mrem/month). Residents and attending surgeons performing trauma or deformity surgical procedures are exposed to significantly higher doses of radiation compared with all other subspecialties within orthopaedic surgery, but the doses are still within the recommended limits. The use of ionizing radiation in the operating room has become an indispensable part of orthopaedic surgery. Although all surgeons in our study received lower than the yearly recommended dose limit, it is important to be aware of how much radiation we are exposed to as surgeons and to take measures to further limit that exposure.

  6. Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; Kinne, S.; Myhre, G.; Schulz, M.; Stier, P.; Fischer, J.; Doppler, L.; Highwood, E.; Ryder, C.; Harris, B.; Huttunen, J.; Ma, Y.; Pinker, R. T.; Mayer, B.; Neubauer, D.; Hitzenberger, R.; Oreopoulos, L.; Lee, D.; Pitari, G.; Di Genova, G.; Quaas, J.; Rose, Fred G.; Kato, S.; Rumbold, S. T.; Vardavas, I.; Hatzianastassiou, N.; Matsoukas, C.; Yu, H.; Zhang, F.; Zhang, H.; Lu, P.

    2012-12-01

    In this study we examine the performance of 31 global model radiative transfer schemes in cloud-free conditions with prescribed gaseous absorbers and no aerosols (Rayleigh atmosphere), with prescribed scattering-only aerosols, and with more absorbing aerosols. Results are compared to benchmark results from high-resolution, multi-angular line-by-line radiation models. For purely scattering aerosols, model bias relative to the line-by-line models in the top-of-the atmosphere aerosol radiative forcing ranges from roughly -10 to 20%, with over- and underestimates of radiative cooling at higher and lower sun elevation, respectively. Inter-model diversity (relative standard deviation) increases from ~10 to 15% as sun elevation increases. Inter-model diversity in atmospheric and surface forcing decreases with increased aerosol absorption, indicating that the treatment of multiple-scattering is more variable than aerosol absorption in the models considered. Aerosol radiative forcing results from multi-stream models are generally in better agreement with the line-by-line results than the simpler two-stream schemes. Considering radiative fluxes, model performance is generally the same or slightly better than results from previous radiation scheme intercomparisons. However, the inter-model diversity in aerosol radiative forcing remains large, primarily as a result of the treatment of multiple-scattering. Results indicate that global models that estimate aerosol radiative forcing with two-stream radiation schemes may be subject to persistent biases introduced by these schemes, particularly for regional aerosol forcing.

  7. Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; Kinne, S.; Myhre, G.; Schulz, M.; Stier, P.; Fischer, J.; Doppler, L.; Highwood, E.; Ryder, C.; Harris, B.; Huttunen, J.; Ma, Y.; Pinker, R. T.; Mayer, B.; Neubauer, D.; Hitzenberger, R.; Oreopoulos, L.; Lee, D.; Pitari, G.; Di Genova, G.; Quaas, J.; Rose, F. G.; Kato, S.; Rumbold, S. T.; Vardavas, I.; Hatzianastassiou, N.; Matsoukas, C.; Yu, H.; Zhang, F.; Zhang, H.; Lu, P.

    2013-03-01

    In this study we examine the performance of 31 global model radiative transfer schemes in cloud-free conditions with prescribed gaseous absorbers and no aerosols (Rayleigh atmosphere), with prescribed scattering-only aerosols, and with more absorbing aerosols. Results are compared to benchmark results from high-resolution, multi-angular line-by-line radiation models. For purely scattering aerosols, model bias relative to the line-by-line models in the top-of-the atmosphere aerosol radiative forcing ranges from roughly -10 to 20%, with over- and underestimates of radiative cooling at lower and higher solar zenith angle, respectively. Inter-model diversity (relative standard deviation) increases from ~10 to 15% as solar zenith angle decreases. Inter-model diversity in atmospheric and surface forcing decreases with increased aerosol absorption, indicating that the treatment of multiple-scattering is more variable than aerosol absorption in the models considered. Aerosol radiative forcing results from multi-stream models are generally in better agreement with the line-by-line results than the simpler two-stream schemes. Considering radiative fluxes, model performance is generally the same or slightly better than results from previous radiation scheme intercomparisons. However, the inter-model diversity in aerosol radiative forcing remains large, primarily as a result of the treatment of multiple-scattering. Results indicate that global models that estimate aerosol radiative forcing with two-stream radiation schemes may be subject to persistent biases introduced by these schemes, particularly for regional aerosol forcing.

  8. Johnson Noise Thermometry in the range 505 K to 933 K

    NASA Astrophysics Data System (ADS)

    Tew, Weston; Labenski, John; Nam, Sae Woo; Benz, Samuel; Dresselhaus, Paul; Martinis, John

    2006-03-01

    The International Temperature Scale of 1990 (ITS-90) is an artifact-based temperature scale, T90, designed to approximate thermodynamic temperature T. The thermodynamic errors of the ITS-90, characterized as the value of T-T90, only recently have been quantified by primary thermodynamic methods. Johnson Noise Thermometry (JNT) is a primary method which can be applied over wide temperature ranges, and NIST is currently using JNT to determine T-T90 in the range 505 K to 933 K, overlapping both acoustic gas-based and radiation-based thermometry. Advances in digital electronics have now made the computationally intensive processing required for JNT viable using noise voltage correlation in the frequency domain. We have also optimized the design of the 5-wire JNT temperature probes to minimize electromagnetic interference and transmission line effects. Statistical uncertainties under 50 μK/K are achievable using relatively modest bandwidths of ˜100 kHz. The NIST JNT system will provide critical data for T-T90 linking together the highly accurate acoustic gas-based data at lower temperatures with the higher-temperature radiation-based data, forming the basis for a new International Temperature Scale with greatly improved thermodynamic accuracy.

  9. Composition of dust deposited to snow cover in the Wasatch Range (Utah, USA): Controls on radiative properties of snow cover and comparison to some dust-source sediments

    USGS Publications Warehouse

    Reynolds, Richard L.; Goldstein, Harland L.; Moskowitz, Bruce M.; Bryant, Ann C.; Skiles, S. McKenzie; Kokaly, Raymond F.; Flagg, Cody B.; Yauk, Kimberly; Berquó, Thelma S.; Breit, George N.; Ketterer, Michael; Fernandez, Daniel; Miller, Mark E.; Painter, Thomas H.

    2014-01-01

    Dust layers deposited to snow cover of the Wasatch Range (northern Utah) in 2009 and 2010 provide rare samples to determine the relations between their compositions and radiative properties. These studies are required to comprehend and model how such dust-on-snow (DOS) layers affect rates of snow melt through changes in the albedo of snow surfaces. We evaluated several constituents as potential contributors to the absorption of solar radiation indicated by values of absolute reflectance determined from bi-conical reflectance spectroscopy. Ferric oxide minerals and carbonaceous matter appear to be the primary influences on lowering snow-cover albedo. Techniques of reflectance and Mössbauer spectroscopy as well as rock magnetism provide information about the types, amounts, and grain sizes of ferric oxide minerals. Relatively high amounts of ferric oxide, indicated by hard isothermal remanent magnetization (HIRM), are associated with relatively low average reflectance (<0.25) across the visible wavelengths of the electromagnetic spectrum. Mössbauer spectroscopy indicates roughly equal amounts of hematite and goethite, representing about 35% of the total Fe-bearing phases. Nevertheless, goethite (α-FeOOH) is the dominant ferric oxide found by reflectance spectroscopy and thus appears to be the main iron oxide control on absorption of solar radiation. At least some goethite occurs as nano-phase grain coatings less than about 50 nm thick. Relatively high amounts of organic carbon, indicating as much as about 10% organic matter, are also associated with lower reflectance values. The organic matter, although not fully characterized by type, correlates strongly with metals (e.g., Cu, Pb, As, Cd, Mo, Zn) derived from distal urban and industrial settings, probably including mining and smelting sites. This relation suggests anthropogenic sources for at least some of the carbonaceous matter, such as emissions from transportation and industrial activities. The composition

  10. Determining the neutrino mass with cyclotron radiation emission spectroscopy—Project 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esfahani, Ali Ashtari; Asner, David M.; Böser, Sebastian

    The most sensitive direct method to establish the absolute neutrino mass is observation of the endpoint of the tritium beta-decay spectrum. Cyclotron radiation emission spectroscopy (CRES) is a precision spectrographic technique that can probe much of the unexplored neutrino mass range withmore » $${ \\mathcal O }(\\mathrm{eV})$$ resolution. A lower bound of $$m({\

  11. Determining the neutrino mass with cyclotron radiation emission spectroscopy—Project 8

    DOE PAGES

    Esfahani, Ali Ashtari; Asner, David M.; Böser, Sebastian; ...

    2017-03-30

    The most sensitive direct method to establish the absolute neutrino mass is observation of the endpoint of the tritium beta-decay spectrum. Cyclotron radiation emission spectroscopy (CRES) is a precision spectrographic technique that can probe much of the unexplored neutrino mass range withmore » $${ \\mathcal O }(\\mathrm{eV})$$ resolution. A lower bound of $$m({\

  12. The feasibility of contralateral lower neck sparing intensity modulation radiated therapy for nasopharyngeal carcinoma patients with unilateral cervical lymph node involvement.

    PubMed

    Tang, Ling-Long; Tang, Xin-Ran; Li, Wen-Fei; Chen, Lei; Tian, Li; Lin, Ai-Hua; Sun, Ying; Ma, Jun

    2017-06-01

    To investigate the feasibility of contralateral lower neck sparing intensity modulation radiated therapy (IMRT) for nasopharyngeal carcinoma patients (NPC) with unilateral cervical lymph node metastasis. Retrospective review of 546 patients with unilateral cervical lymph node metastasis treated between November 2009 and February 2012 at one institution. All patients were staged using magnetic resonance imaging and received radical IMRT. Patients were classified into two groups: the inferior border of the negative neck irradiation field only covered Levels III to Va in Group 1; the inferior border covered entire neck down to Levels IV to Vb in Group 2. Median follow-up was 49.9months (range, 1.3-69.2months). Four-year overall survival (OS:89.3% vs. 88.9%, P=0.91), disease-free survival (DFS:81.7% vs. 81.0%, P=0.91), distant metastasis-free survival (DMFS:88.2% vs. 87.9%, P=0.95), local relapse-free survival (LRFS:96.7% vs. 94.7%, P=0.70) and nodal relapse-free survival (NRFS: 96.1% vs. 95.9%, P=0.94) were not significantly different between Group 1 and Group 2. Twenty-two patients developed cervical lymph node relapse; of whom 20/22 (91.0%) developed unilateral relapse within pretreatment positive neck. Only one patient developed out-of-field relapse, though this patient also relapsed within the neck irradiation field (Level II). No clinicopathological feature tested had significant prognostic value for NRFS in multivariate analysis. In the IMRT and MRI era, contralateral lower neck sparing IMRT seems to be feasible for NPC patients with unilateral cervical lymph node metastasis. Copyright © 2017. Published by Elsevier Ltd.

  13. Analytical dependence of effective atomic number on the elemental composition of matter and radiation energy in the range 10-1000 keV

    NASA Astrophysics Data System (ADS)

    Eritenko, A. N.; Tsvetiansky, A. L.; Polev, A. A.

    2018-01-01

    In the present paper, a universal analytical dependence of effective atomic number on the composition of matter and radiation energy is proposed. This enables one to consider the case of a strong difference in the elemental composition with respect to their atomic numbers over a wide energy range. The contribution of photoelectric absorption and incoherent and coherent scattering during the interaction between radiation and matter is considered. For energy values over 40 keV, the contribution of coherent scattering does not exceed approximately 10% that can be neglected at a further consideration. The effective atomic numbers calculated on the basis of the proposed relationships are compared to the results of calculations based on other methods considered by different authors on the basis of experimental and tabulated data on mass and atomic attenuation coefficients. The examination is carried out for both single-element (e.g., 6C, 14Si, 28Cu, 56Ba, and 82Pb) and multi-element materials. Calculations are performed for W1-xCux alloys (x = 0.35; x = 0.4), PbO, ther moluminescent dosimetry compounds (56Ba, 48Cd, 41Sr, 20Ca, 12Mg, and 11Na), and SO4 in a wide energy range. A case with radiation energy between the K- and L1-absorption edges is considered for 82Pb, 74W, 56Ba, 48Cd, and 38Sr. This enables to substantially simplify the calculation of the atomic number and will be useful in technical and scientific fields related to the interaction between X-ray/gamma radiation and matter.

  14. Equatorial jet in the lower to middle cloud layer of Venus revealed by Akatsuki

    NASA Astrophysics Data System (ADS)

    Horinouchi, Takeshi; Murakami, Shin-Ya; Satoh, Takehiko; Peralta, Javier; Ogohara, Kazunori; Kouyama, Toru; Imamura, Takeshi; Kashimura, Hiroki; Limaye, Sanjay S.; McGouldrick, Kevin; Nakamura, Masato; Sato, Takao M.; Sugiyama, Ko-Ichiro; Takagi, Masahiro; Watanabe, Shigeto; Yamada, Manabu; Yamazaki, Atsushi; Young, Eliot F.

    2017-09-01

    The Venusian atmosphere is in a state of superrotation where prevailing westward winds move much faster than the planet's rotation. Venus is covered with thick clouds that extend from about 45 to 70 km altitude, but thermal radiation emitted from the lower atmosphere and the surface on the planet's nightside escapes to space at narrow spectral windows of the near-infrared. The radiation can be used to estimate winds by tracking the silhouettes of clouds in the lower and middle cloud regions below about 57 km in altitude. Estimates of wind speeds have ranged from 50 to 70 m s-1 at low to mid-latitudes, either nearly constant across latitudes or with winds peaking at mid-latitudes. Here we report the detection of winds at low latitude exceeding 80 m s-1 using IR2 camera images from the Akatsuki orbiter taken during July and August 2016. The angular speed around the planetary rotation axis peaks near the equator, which we suggest is consistent with an equatorial jet, a feature that has not been observed previously in the Venusian atmosphere. The mechanism producing the jet remains unclear. Our observations reveal variability in the zonal flow in the lower and middle cloud region that may provide clues to the dynamics of Venus's atmospheric superrotation.

  15. Equatorial jet in the lower to middle cloud layer of Venus revealed by Akatsuki.

    PubMed

    Horinouchi, Takeshi; Murakami, Shin-Ya; Satoh, Takehiko; Peralta, Javier; Ogohara, Kazunori; Kouyama, Toru; Imamura, Takeshi; Kashimura, Hiroki; Limaye, Sanjay S; McGouldrick, Kevin; Nakamura, Masato; Sato, Takao M; Sugiyama, Ko-Ichiro; Takagi, Masahiro; Watanabe, Shigeto; Yamada, Manabu; Yamazaki, Atsushi; Young, Eliot F

    2017-01-01

    The Venusian atmosphere is in a state of superrotation where prevailing westward winds move much faster than the planet's rotation. Venus is covered with thick clouds that extend from about 45 to 70 km altitude, but thermal radiation emitted from the lower atmosphere and the surface on the planet's night-side escapes to space at narrow spectral windows of near-infrared. The radiation can be used to estimate winds by tracking the silhouettes of clouds in the lower and middle cloud regions below about 57 km in altitude. Estimates of wind speeds have ranged from 50 to 70 m/s at low- to mid-latitudes, either nearly constant across latitudes or with winds peaking at mid-latitudes. Here we report the detection of winds at low latitude exceeding 80 m/s using IR2 camera images from the Akatsuki orbiter taken during July and August 2016. The angular speed around the planetary rotation axis peaks near the equator, which we suggest is consistent with an equatorial jet, a feature that has not been observed previously in the Venusian atmosphere. The mechanism producing the jet remains unclear. Our observations reveal variability in the zonal flow in the lower and middle cloud region that may provide new challenges and clues to the dynamics of Venus's atmospheric superrotation.

  16. Integrator Circuitry for Single Channel Radiation Detector

    NASA Technical Reports Server (NTRS)

    Holland, Samuel D. (Inventor); Delaune, Paul B. (Inventor); Turner, Kathryn M. (Inventor)

    2008-01-01

    Input circuitry is provided for a high voltage operated radiation detector to receive pulses from the detector having a rise time in the range of from about one nanosecond to about ten nanoseconds. An integrator circuit, which utilizes current feedback, receives the incoming charge from the radiation detector and creates voltage by integrating across a small capacitor. The integrator utilizes an amplifier which closely follows the voltage across the capacitor to produce an integrator output pulse with a peak value which may be used to determine the energy which produced the pulse. The pulse width of the output is stretched to approximately 50 to 300 nanoseconds for use by subsequent circuits which may then use amplifiers with lower slew rates.

  17. Integrated Solar Concentrator and Shielded Radiator

    NASA Technical Reports Server (NTRS)

    Clark, David Larry

    2010-01-01

    A shielded radiator is integrated within a solar concentrator for applications that require protection from high ambient temperatures with little convective heat transfer. This innovation uses a reflective surface to deflect ambient thermal radiation, shielding the radiator. The interior of the shield is also reflective to provide a view factor to deep space. A key feature of the shield is the parabolic shape that focuses incoming solar radiation to a line above the radiator along the length of the trough. This keeps the solar energy from adding to the radiator load. By placing solar cells along this focal line, the concentration of solar energy reduces the number and mass of required cells. By shielding the radiator, the effective reject temperature is much lower, allowing lower radiator temperatures. This is particularly important for lower-temperature processes, like habitat heat rejection and fuel cell operations where a high radiator temperature is not feasible. Adding the solar cells in the focal line uses the concentrating effect of the shield to advantage to accomplish two processes with a single device. This shield can be a deployable, lightweight Mylar structure for compact transport.

  18. Radiation-induced moyamoya syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Snehal S.; Paulino, Arnold C.; Mai, Wei Y.

    2006-07-15

    Purpose: The moyamoya syndrome is an uncommon late complication after radiotherapy (RT). Methods and Materials: A PubMed search of English-language articles, with radiation, radiotherapy, and moyamoya syndrome used as search key words, yielded 33 articles from 1967 to 2002. Results: The series included 54 patients with a median age at initial RT of 3.8 years (range, 0.4 to 47). Age at RT was less than 5 years in 56.3%, 5 to 10 years in 22.9%, 11 to 20 years in 8.3%, 21 to 30 years in 6.3%, 31 to 40 years in 2.1%, and 41 to 50 years in 4.2%.more » Fourteen of 54 patients (25.9%) were diagnosed with neurofibromatosis type 1 (NF-1). The most common tumor treated with RT was low-grade glioma in 37 tumors (68.5%) of which 29 were optic-pathway glioma. The average RT dose was 46.5 Gy (range, 22-120 Gy). For NF-1-positive patients, the average RT dose was 46.5 Gy, and for NF-1-negative patients, it was 58.1 Gy. The median latent period for development of moyamoya syndrome was 40 months after RT (range, 4-240). Radiation-induced moyamoya syndrome occurred in 27.7% of patients by 2 years, 53.2% of patients by 4 years, 74.5% of patients by 6 years, and 95.7% of patients by 12 years after RT. Conclusions: Patients who received RT to the parasellar region at a young age (<5 years) are the most susceptible to moyamoya syndrome. The incidence for moyamoya syndrome continues to increase with time, with half of cases occurring within 4 years of RT and 95% of cases occurring within 12 years. Patients with NF-1 have a lower radiation-dose threshold for development of moyamoya syndrome.« less

  19. Bandwidth enhancement of a dual band planar monopole antenna using meandered microstrip feeding.

    PubMed

    Ahsan, M R; Islam, M T; Habib Ullah, M; Misran, N

    2014-01-01

    A meandered-microstrip fed circular shaped monopole antenna loaded with vertical slots on a high dielectric material substrate (ε r = 15) is proposed in this paper. The performance criteria of the proposed antenna have been experimentally verified by fabricating a printed prototype. The experimental results show that the proposed antenna has achieved wider bandwidth with satisfactory gain by introducing meandered-microstrip feeding in assistant of partial ground plane. It is observed that, the -10 dB impedance bandwidth of the proposed antenna at lower band is 44.4% (600 MHz-1 GHz) and at upper band is 28% (2.25 GHz-2.95 GHz). The measured maximum gains of -1.18 dBi and 4.87 dBi with maximum radiation efficiencies have been observed at lower band and upper band, respectively. The antenna configuration and parametric study have been carried out with the help of commercially available computer-aided EM simulator, and a good accordance is perceived in between the simulated and measured results. The analysis of performance criteria and almost consistent radiation pattern make the proposed antenna a suitable candidate for UHF RFID, WiMAX, and WLAN applications.

  20. [Corrective effects of electromagnetic radiation in a millimeter wavelength range on the parameters of oxidative stress after standard anti-helicobacterial therapy in patients with ulcer disease].

    PubMed

    Ivanishkina, E V; Podoprigorova, V G

    2012-01-01

    We assessed the possibilities of correction of oxidative stress parameters in the serum and gastroduodenal mucosa using electromagnetic radiation in a millimeter wavelength range in 127 patients with gastric and duodenal ulcer after eradication therapy. Control group included 230 healthy subjects. Parameter of lipid oxidation by free radicals were measured by direct methods (hemiluminescence and EPR-spectroscopy). The results show that standard eradication therapy does not influence parameters of oxidative stress. More pronounced effect of electromagnetic radiation in a millimeter wavelength range may be due to the correction of prooxidant-antioxidant and antioxidant disbalance. This observation provides pathogenetic substantiation for the inclusion of this physical method in modern therapeutic modalities.

  1. Radiative Forcing of the Lower Stratosphere over the Arctic by Light Absorbing Particles

    NASA Technical Reports Server (NTRS)

    Baumgardner, D.; Raga, G.; Kok, G.

    2003-01-01

    Light absorbing particles (LAP), such as soot and dust, change the thermodynamic structure of the atmosphere and contribute to regional and global climate change. The lower stratosphere (LS) is particularly sensitive to the presence of LAP since the lifetime of particles in the LS may extend from months to years, in contrast to tropospheric lifetimes of at most a few days. The source of particles in the LS may be aircraft, meteorites or emissions from tropospheric sources. There has been a lack, however, of accurate, quantitative measurements made with sufficiently sensitive instruments. This limits our understanding of the origin and lifetime of aerosols in this region of the atmosphere. Here we present recent measurements in the Arctic UT/LS with a new, highly sensitive instrument that has detected black carbon (BC) mass concentrations of 20-1000 ng m(exp -3) that are 10-1000 times larger than those reported in previous studies and are at least 30 times larger than predicted masses based on fuel consumption by commercial aircraft that fly in these regions. Scattering and absorption of solar and terrestrial radiation by the particles in a layer from 8- 12 Km leads to a negative net forcing of -0.5 W sq m at the top of the atmosphere and 9C of heating in this layer during the average aerosol lifetime at these altitudes. The new measurements suggest that the influence of aircraft emissions have been underestimated or that aircraft may not be the only significant source of light absorbing particles in the UT/LS. The presence of these aerosols can cause local changes in the thermal structure of the lower stratosphere and a subsequent modification of stratosphere/tropopause exchange of gases and particles.

  2. Radiation protection guidelines for space missions

    NASA Technical Reports Server (NTRS)

    Fry, R. J.; Nachtwey, D. S.

    1988-01-01

    The current radiation protection guidelines of the National Aeronautics and Space Administration (NASA) were recommended in 1970. The career limit was set at 4.0 Sv (400 rem). Using the same approach as in 1970 but current risk estimates, a considerably lower career limit would obtain today. Also, there is now much more information about the radiation environments that will be experienced in different missions. Furthermore, since 1970 women have joined the ranks of the astronauts. For these and other reasons, it was considered necessary to re-examine the radiation protection guidelines. This task has been undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75. Within the magnetosphere, the radiation environment varies with altitude and inclination of the orbit. In outer space missions, galactic cosmic rays, with the small but important heavy-ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 1.0 Sv (100 rem) for a 24-y-old female up to 4.0 Sv (400 rem) for a 55-y-old male, compared with the previous single limit of 4.0 Sv (400 rem). The career limit for the lens of the eye has been reduced from 6.0 Sv (600 rem) to 4.0 Sv (400 rem).

  3. Theoretical and practical aspects of application of a low-energy electromagnetic radiation of the extremely high-frequency range in medicine

    NASA Astrophysics Data System (ADS)

    Lyapina, Elena P.; Chesnokov, Igor A.; Bushuev, Nikolay A.; Kuzyutkina, Svetlana E.; Shuldjakov, Andrey A.

    2006-02-01

    The questions concerning the mechanism of action of a low-energy electromagnetic radiation of the extremely high frequency range (EMR EHF) are considered. Also the features of biological effects are considered in their application as therapeutic actions. As an example the advantages of EHF treatment of patients with chronic brucellosis are shown, the algorithm of a choice of the scheme of treatment using EMR EHF is offered.

  4. Estimate of the risk of radiation-induced cancers after linear-accelerator-based breast-cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Koh, Eui Kwan; Seo, Jungju; Baek, Tae Seong; Chung, Eun Ji; Yoon, Myonggeun; Lee, Hyun-ho

    2013-07-01

    The aim of this study is to assess and compare the excess absolute risks (EARs) of radiation-induced cancers following conformal (3D-CRT), fixed-field intensity-modulated (IMRT) and volumetric modulated arc (RapidArc) radiation therapy in patients with breast cancer. 3D-CRT, IMRT and RapidArc were planned for 10 breast cancer patients. The organ-specific EAR for cancer induction was estimated using the organ equivalent dose (OED) based on computed dose volume histograms (DVHs) and the secondary doses measured at various points from the field edge. The average secondary dose per Gy treatment dose from 3D-CRT, measured 10 to 50 cm from the field edge, ranged from 8.27 to 1.04 mGy. The secondary doses per Gy from IMRT and RapidArc, however, ranged between 5.86 and 0.54 mGy, indicating that IMRT and RapidArc are associated with smaller doses of secondary radiation than 3D-CRT. The organ specific EARs for out-of-field organs, such as the thyroid, liver and colon, were higher with 3D-CRT than with IMRT or RapidArc. In contrast, EARs for in-field organs were much lower with 3D-CRT than with IMRT or RapidArc. The overall estimate of EAR indicated that the radiation-induced cancer risk was 1.8-2.0 times lower with 3D-CRT than with IMRT or RapidArc. Comparisons of EARs during breast irradiation suggested that the predicted risk of secondary cancers was lower with 3D-CRT than with IMRT or RapidArc.

  5. Current worldwide nuclear cardiology practices and radiation exposure: results from the 65 country IAEA Nuclear Cardiology Protocols Cross-Sectional Study (INCAPS)

    PubMed Central

    Einstein, Andrew J.; Pascual, Thomas N. B.; Mercuri, Mathew; Karthikeyan, Ganesan; Vitola, João V.; Mahmarian, John J.; Better, Nathan; Bouyoucef, Salah E.; Hee-Seung Bom, Henry; Lele, Vikram; Magboo, V. Peter C.; Alexánderson, Erick; Allam, Adel H.; Al-Mallah, Mouaz H.; Flotats, Albert; Jerome, Scott; Kaufmann, Philipp A.; Luxenburg, Osnat; Shaw, Leslee J.; Underwood, S. Richard; Rehani, Madan M.; Kashyap, Ravi; Paez, Diana; Dondi, Maurizio

    2015-01-01

    Aims To characterize patient radiation doses from nuclear myocardial perfusion imaging (MPI) and the use of radiation-optimizing ‘best practices’ worldwide, and to evaluate the relationship between laboratory use of best practices and patient radiation dose. Methods and results We conducted an observational cross-sectional study of protocols used for all 7911 MPI studies performed in 308 nuclear cardiology laboratories in 65 countries for a single week in March–April 2013. Eight ‘best practices’ relating to radiation exposure were identified a priori by an expert committee, and a radiation-related quality index (QI) devised indicating the number of best practices used by a laboratory. Patient radiation effective dose (ED) ranged between 0.8 and 35.6 mSv (median 10.0 mSv). Average laboratory ED ranged from 2.2 to 24.4 mSv (median 10.4 mSv); only 91 (30%) laboratories achieved the median ED ≤ 9 mSv recommended by guidelines. Laboratory QIs ranged from 2 to 8 (median 5). Both ED and QI differed significantly between laboratories, countries, and world regions. The lowest median ED (8.0 mSv), in Europe, coincided with high best-practice adherence (mean laboratory QI 6.2). The highest doses (median 12.1 mSv) and low QI (4.9) occurred in Latin America. In hierarchical regression modelling, patients undergoing MPI at laboratories following more ‘best practices’ had lower EDs. Conclusion Marked worldwide variation exists in radiation safety practices pertaining to MPI, with targeted EDs currently achieved in a minority of laboratories. The significant relationship between best-practice implementation and lower doses indicates numerous opportunities to reduce radiation exposure from MPI globally. PMID:25898845

  6. Ion beam generated modes in the lower hybrid frequency range in a laboratory magnetoplasma

    NASA Astrophysics Data System (ADS)

    Van Compernolle, B.; Tripathi, S.; Gekelman, W. N.; Colestock, P. L.; Pribyl, P.

    2012-12-01

    The generation of waves by ion ring distributions is of great importance in many instances in space plasmas. They occur naturally in the magnetosphere through the interaction with substorms, or they can be man-made in ionospheric experiments by photo-ionization of neutral atoms injected perpendicular to the earth's magnetic field. The interaction of a fast ion beam with a low β plasma has been studied in the laboratory. Experiments were performed at the LArge Plasma Device (LAPD) at UCLA. The experiments were done in a Helium plasma (n ≃ 1012 \\ cm-3, B0 = 1000 G - 1800 G, fpe}/f{ce ≃ 1 - 5, Te = 0.25\\ eV, vte ≤ vA). The ion beam \\cite{Tripathi_ionbeam} is a Helium beam with energies ranging from 5 keV to 18 keV. The fast ion velocity is on the order of the Alfvén velocity. The beam is injected from the end of the machine, and spirals down the linear device. Waves were observed below fci in the shear Alfvén wave regime, and in a broad spectrum above fci in the lower hybrid frequency range, the focus of this paper. The wave spectra have distinct peaks close to ion cyclotron harmonics, extending out to the 100th harmonic in some cases. The wave generation was studied for various magnetic fields and background plasma densities, as well as for different beam energies and pitch angles. The waves were measured with 3-axis electric and magnetic probes. Detailed measurements of the perpendicular mode structure will be shown. Langmuir probes were used to measure density and temperature evolution due to the beam-plasma interaction. Retarding field energy analyzers captured the ion beam profiles. The work was performed at the LArge Plasma Device at the Basic Plasma Science Facility (BaPSF) at UCLA, funded by DOE/NSF.

  7. Lightweight, High-Temperature Radiator for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Hyers, R. W.; Tomboulian, B. N.; Crave, Paul D.; Rogers, J. R.

    2012-01-01

    For high-power nuclear-electric spacecraft, the radiator can account for 40% or more of the power system mass and a large fraction of the total vehicle mass. Improvements in the heat rejection per unit mass rely on lower-density and higher-thermal conductivity materials. Current radiators achieve near-ideal surface radiation through high-emissivity coatings, so improvements in heat rejection per unit area can be accomplished only by raising the temperature at which heat is rejected. We have been investigating materials that have the potential to deliver significant reductions in mass density and significant improvements in thermal conductivity, while expanding the feasible range of temperature for heat rejection up to 1000 K and higher. The presentation will discuss the experimental results and models of the heat transfer in matrix-free carbon fiber fins. Thermal testing of other carbon-based fin materials including carbon nanotube cloth and a carbon nanotube composite will also be presented.

  8. Thermal radiative and thermodynamic properties of solid and liquid uranium and plutonium carbides in the visible-near-infrared range

    NASA Astrophysics Data System (ADS)

    Fisenko, Anatoliy I.; Lemberg, Vladimir F.

    2016-09-01

    The knowledge of thermal radiative and thermodynamic properties of uranium and plutonium carbides under extreme conditions is essential for designing a new metallic fuel materials for next generation of a nuclear reactor. The present work is devoted to the study of the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides at their melting/freezing temperatures. The Stefan-Boltzmann law, total energy density, number density of photons, Helmholtz free energy density, internal energy density, enthalpy density, entropy density, heat capacity at constant volume, pressure, and normal total emissivity are calculated using experimental data for the frequency dependence of the normal spectral emissivity of liquid and solid uranium and plutonium carbides in the visible-near infrared range. It is shown that the thermal radiative and thermodynamic functions of uranium carbide have a slight difference during liquid-to-solid transition. Unlike UC, such a difference between these functions have not been established for plutonium carbide. The calculated values for the normal total emissivity of uranium and plutonium carbides at their melting temperatures is in good agreement with experimental data. The obtained results allow to calculate the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides for any size of samples. Based on the model of Hagen-Rubens and the Wiedemann-Franz law, a new method to determine the thermal conductivity of metals and carbides at the melting points is proposed.

  9. Rapid and Decentralized Human Waste Treatment by Microwave Radiation.

    PubMed

    Nguyen, Tu Anh; Babel, Sandhya; Boonyarattanakalin, Siwarutt; Koottatep, Thammarat

    2017-07-01

      This study evaluates the technical feasibility of using microwave radiation for the rapid treatment of human feces. Human feces of 1000 g were radiated with a commercially available household microwave oven (with rotation) at different exposure time lengths (30, 50, 60, 70, and 75 mins) and powers (600, 800, and 1000 W). Volume reduction over 90% occurred after 1000 W microwave radiation for 75 mins. Pathogen eradiation performances of six log units or more at a high range of microwave powers were achieved. Treatments with the same energy input of 1000 Wh, but at lower powers with prolonged exposure times, significantly enhanced moisture removal and volume reduction. Microwave radiation caused carbonization and resulted in a more stable end product. The energy content of the samples after microwave treatment at 1000 W and 75 mins is 3517 ± 8.85 calories/g of dried sample, and the product can also be used as compost.

  10. RADIO RANGING DEVICE

    DOEpatents

    Bogle, R.W.

    1960-11-22

    A description is given of a super-regenerative oscillator ranging device provided with radiating and receiving means and being capable of indicating the occurrence of that distance between itself and a reflecting object which so phases the received echo of energy of a preceding emitted oscillation that the intervals between oscillations become uniform.

  11. Assessment of the effects of environmental radiation on wind chill equivalent temperatures.

    PubMed

    Shitzer, Avraham

    2008-09-01

    Combinations of wind-driven convection and environmental radiation in cold weather, make the environment "feel" colder. The relative contributions of these mechanisms, which form the basis for estimating wind chill equivalent temperatures (WCETs), are studied over a wide range of environmental conditions. Distinction is made between direct solar radiation and environmental radiation. Solar radiation, which is not included in the analysis, has beneficial effects, as it counters and offsets some of the effects due to wind and low air temperatures. Environmental radiation effects, which are included, have detrimental effects in enhancing heat loss from the human body, thus affecting the overall thermal sensation due to the environment. The analysis is performed by a simple, steady-state analytical model of human-environment thermal interaction using upper and lower bounds of environmental radiation heat exchange. It is shown that, over a wide range of relevant air temperatures and reported wind speeds, convection heat losses dominate over environmental radiation. At low wind speeds radiation contributes up to about 23% of the overall heat loss from exposed skin areas. Its relative contributions reduce considerably as the time of the exposure prolongs and exposed skin temperatures drop. At still higher wind speeds, environmental radiation effects become much smaller contributing about 5% of the total heat loss. These values fall well within the uncertainties associated with the parameter values assumed in the computation of WCETs. It is also shown that environmental radiation effects may be accommodated by adjusting reported wind speeds slightly above their reported values.

  12. Multifrequency Measurements of Radar Ground Clutter at 42 Sites. Volume 3: Appendix E

    DTIC Science & Technology

    1991-11-15

    pulse, horizontal polarization. E-33 76260-22 0 0 -10 + + X.0 Ox + IL 0 tD -20 0 U. 0 4w + RANGE POL. RES. (m) 150 H e -30 + 150 V 0so 0 15/36 H + 15/36...10 _ +. x U- 0 tD - 00. 2 Z + 4 0 x0 w 0 0+ 0 -30 VHF UHF L -X-BAND FREQUENCY (MHz) Figure E-53. Mean clutter strength versus frequency at Woking. For...76260-3 -10 RANGE POL. RES. (in) 150 H . 150 V 0 15/36 H + 15/36 V X -20 x ’U0 + U. 0 tD -30- 0 0+ IL.0 0 2 0 4w + x -40- VHF UHF L- S- X-BAND FREQUENCY

  13. Direct Radiative Impacts of Central American Biomass Burning Smoke Aerosols: Analysis from a Coupled Aerosol-Radiation-Meteorology Model RAMS-AROMA

    NASA Astrophysics Data System (ADS)

    Wang, J.; Christopher, S. A.; Nair, U. S.; Reid, J. S.; Prins, E. M.

    2005-12-01

    Considerable efforts including various field experiments have been carried out in the last decade for studying the regional climatic impact of smoke aerosols produced by biomass burning activities in Africa and South America. In contrast, only few investigations have been conducted for Central American Biomass Burning (CABB) region. Using a coupled aerosol-radiation-meteorology model called RAMS-AROMA together with various ground-based observations, we present a comprehensive analysis of the smoke direct radiative impacts on the surface energy budget, boundary layer evolution, and e precipitation process during the CABB events in Spring 2003. Quantitative estimates are also made regarding the transboundary carbon mass to the U.S. in the form of smoke particles. Buult upon the Regional Atmospheric Modeling System (RAMS) mesoscale model, the RAMS AROMA has several features including Assimilation and Radiation Online Modeling of Aerosols (AROMA) algorithms. The model simulates smoke transport by using hourly smoke emission inventory from the Fire Locating and Modeling of Burning Emissions (FLAMBE) geostationary satellite database. It explicitly considers the smoke effects on the radiative transfer at each model time step and model grid, thereby coupling the dynamical processes and aerosol transport. Comparison with ground-based observation show that the simulation realistically captured the smoke transport timeline and distribution from daily to hourly scales. The effects of smoke radiative extinction on the decrease of 2m air temperature (2mT), diurnal temperature range (DTR), and boundary layer height over the land surface are also quantified. Warming due to smoke absorption of solar radiation can be found in the lower troposphere over the ocean, but not near the underlying land surface. The increase of boundary layer stability produces a positive feedback where more smoke particles are trapped in the lower boundary layer. These changes in temperature, surface

  14. Weakly superconducting, thin-film structures as radiation detectors.

    NASA Technical Reports Server (NTRS)

    Kirschman, R. K.

    1972-01-01

    Measurements were taken with weakly superconducting quantum structures of the Notarys-Mercereau type, representing a thin superconductor film with a short region that is weakened in the sense that its transition temperature is lower than in the remaining portion of the film. The structure acts as a superconducting relaxation oscillator in which the supercurrent increases with time until the critical current of the weakened section is attained, at which moment the supercurrent decays and the cycle repeats. Under applied radiation, a series of constant-voltage steps appears in the current-voltage curve, and the size of the steps varies periodically with the amplitude of applied radiation. Measurements of the response characteristics were made in the frequency range of 10 to 450 MHz.

  15. [The effect of rehabilitation with therapeutic Akhtala muds and electromagnetic radiation of millimeter range on biochemical indices in patients with post discectomy syndrome].

    PubMed

    Dokhnadze, T D

    2011-06-01

    The impact of therapeutic Akhtala muds and electromagnetic radiation of millimeter range on biochemical indices in patients with post discectomy syndrome has been investigated. The research showed that medical rehabilitation with Akhtala medical muds and electromagnetic radiation of millimeter range stimulates sympathetic-adrenal system, adrenocorticotrophic function of the hypophysis and glucocorticoid function of adrenal cortex, induces a weakening/removal of an inflammatory process in the operated area, enhances antioxidant defense of the organism, oppresses calcium metabolism and peroxide oxidation of lipids. The noted positive process was manifested in the increase up to upper limit of the norm of daily excretion of adrenalin and noradrenalin, the content of adrenocorticotrophic hormone and cortisol in blood plasma and in the decrease of the amount of malonic dialdehyde in it, also in the increase of antioxidative activity of blood plasma, in the decrease of the content of "С"-reactive protein, haptoglobin, seroglicoids, common and ionic calcium in blood serum.

  16. Ionizing Radiation: The issue of radiation quality

    NASA Astrophysics Data System (ADS)

    Prise, Kevin; Schettino, Giuseppe

    Types of Ionising radiations are differentiated from each other by fundamental characteristics of their energy deposition patterns when they interact with biological materials. At the level of the DNA these non-random patterns drive differences in the yields and distributions of DNA damage patterns and specifically the production of clustered damage or complex lesions. The complex radiation fields found in space bring significant challenges for developing a mechanistic understanding of radiation effects from the perspective of radiation quality as these consist of a diverse range of particle and energy types unique to the space environment. Linear energy transfer, energy deposited per unit track length in units of keV per micron, has long been used as a comparator for different types of radiation but has limitations in that it is an average value. Difference in primary core ionizations relative to secondary delta ray ranges vary significantly with particle mass and energy leading to complex interrelationships with damage production at the cellular level. At the cellular level a greater mechanistic understanding is necessary, linking energy deposition patterns to DNA damage patterns and cellular response, to build appropriate biophysical models that are predictive for different radiation qualities and mixed field exposures. Defined studies using monoenergetic beams delivered under controlled conditions are building quantitative data sets of both initial and long term changes in cells as a basis for a great mechanistic understanding of radiation quality effects of relevance to not only space exposures but clinical application of ion-beams.

  17. Effects of a home-exercise therapy programme on cervical and lumbar range of motion among nurses with neck and lower back pain: a quasi-experimental study.

    PubMed

    Freimann, Tiina; Merisalu, Eda; Pääsuke, Mati

    2015-01-01

    Cervical and lumbar range of motion limitations are usually associated with musculoskeletal pain in the neck and lower back, and are a major health problem among nurses. Physical exercise has been evaluated as an effective intervention method for improving cervical and lumbar range of motion, and for preventing and reducing musculoskeletal pain. The purpose of this study was to investigate the effects of a home-exercise therapy programme on cervical and lumbar range of motion among intensive care unit nurses who had experienced mild to moderate musculoskeletal pain in the neck and or lower back during the previous six months. A quasi-experimental study was conducted among intensive care unit nurses at Tartu University Hospital (Estonia) between May and July 2011. Thirteen nurses who had suffered musculoskeletal pain episodes in the neck and or lower back during the previous six months underwent an 8-week home-exercise therapy programme. Eleven nurses without musculoskeletal pain formed a control group. Questions from the Nordic Musculoskeletal Questionnaire and the 11-point Visual Analogue Scale were used to select potential participants for the experimental group via an assessment of the prevalence and intensity of musculoskeletal pain. Cervical range of motion and lumbar range of motion in flexion, extension, lateral flexion and (cervical range of motion only) rotation were measured with a digital goniometer. A paired t-test was used to compare the measured parameters before and after the home-exercise therapy programme. A Student's t-test was used to analyse any differences between the experimental and control groups. After the home-exercise therapy, there was a significant increase (p < 0.05) in cervical range of motion in flexion, extension, lateral flexion and rotation, and in lumbar range of motion in lateral flexion. Cervical range of motion in flexion was significantly higher (p < 0.01) in the experimental group compared to the control group after

  18. Lowering Whole-Body Radiation Doses in Pediatric Intensity-Modulated Radiotherapy Through the Use of Unflattened Photon Beams;Flattening filter; Pediatric; Intensity-modulated radiotherapy; Second cancers; Radiation-induced malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cashmore, Jason, E-mail: Jason.cashmore@uhb.nhs.uk; Ramtohul, Mark; Ford, Dan

    Purpose: Intensity modulated radiotherapy (IMRT) has been linked with an increased risk of secondary cancer induction due to the extra leakage radiation associated with delivery of these techniques. Removal of the flattening filter offers a simple way of reducing head leakage, and it may be possible to generate equivalent IMRT plans and to deliver these on a standard linear accelerator operating in unflattened mode. Methods and Materials: An Elekta Precise linear accelerator has been commissioned to operate in both conventional and unflattened modes (energy matched at 6 MV) and a direct comparison made between the treatment planning and delivery ofmore » pediatric intracranial treatments using both approaches. These plans have been evaluated and delivered to an anthropomorphic phantom. Results: Plans generated in unflattened mode are clinically identical to those for conventional IMRT but can be delivered with greatly reduced leakage radiation. Measurements in an anthropomorphic phantom at clinically relevant positions including the thyroid, lung, ovaries, and testes show an average reduction in peripheral doses of 23.7%, 29.9%, 64.9%, and 70.0%, respectively, for identical plan delivery compared to conventional IMRT. Conclusions: IMRT delivery in unflattened mode removes an unwanted and unnecessary source of scatter from the treatment head and lowers leakage doses by up to 70%, thereby reducing the risk of radiation-induced second cancers. Removal of the flattening filter is recommended for IMRT treatments.« less

  19. Metabolic differences between short children with GH peak levels in the lower normal range and healthy children of normal height.

    PubMed

    Tidblad, Anders; Gustafsson, Jan; Marcus, Claude; Ritzén, Martin; Ekström, Klas

    2017-06-01

    Severe growth hormone deficiency (GHD) leads to several metabolic effects in the body ranging from abnormal body composition to biochemical disturbances. However, less is known regarding these parameters in short children with GH peak levels in the lower normal range during provocation tests. Our aim was to study the metabolic profile of this group and compare it with that of healthy children of normal height. Thirty-five pre-pubertal short children (<-2.5 SDS) aged between 7 and 10years, with peak levels of GH between 7 and 14μg/L in an arginine insulin tolerance test (AITT), were compared with twelve age- and sex-matched children of normal height. The metabolic profile of the subjects was analysed by blood samples, DEXA, frequently sampled intravenous glucose tolerance test, microdialysis and stable isotope examinations of rates of glucose production and lipolysis. There were no overall significant metabolic differences between the groups. However, in the subgroup analysis, the short children with GH peaks <10μg/L had significantly lower fasting insulin levels which also correlated to other metabolic parameters. The short pre-pubertal children with GH peak levels between 7 and 14μg/L did not differ significantly from healthy children of normal height but subpopulations within this group show significant metabolic differences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Equatorial jet in the lower to middle cloud layer of Venus revealed by Akatsuki

    PubMed Central

    Horinouchi, Takeshi; Murakami, Shin-ya; Satoh, Takehiko; Peralta, Javier; Ogohara, Kazunori; Kouyama, Toru; Imamura, Takeshi; Kashimura, Hiroki; Limaye, Sanjay S.; McGouldrick, Kevin; Nakamura, Masato; Sato, Takao M.; Sugiyama, Ko-ichiro; Takagi, Masahiro; Watanabe, Shigeto; Yamada, Manabu; Yamazaki, Atsushi; Young, Eliot F.

    2018-01-01

    The Venusian atmosphere is in a state of superrotation where prevailing westward winds move much faster than the planet’s rotation. Venus is covered with thick clouds that extend from about 45 to 70 km altitude, but thermal radiation emitted from the lower atmosphere and the surface on the planet’s night-side escapes to space at narrow spectral windows of near-infrared. The radiation can be used to estimate winds by tracking the silhouettes of clouds in the lower and middle cloud regions below about 57 km in altitude. Estimates of wind speeds have ranged from 50 to 70 m/s at low- to mid-latitudes, either nearly constant across latitudes or with winds peaking at mid-latitudes. Here we report the detection of winds at low latitude exceeding 80 m/s using IR2 camera images from the Akatsuki orbiter taken during July and August 2016. The angular speed around the planetary rotation axis peaks near the equator, which we suggest is consistent with an equatorial jet, a feature that has not been observed previously in the Venusian atmosphere. The mechanism producing the jet remains unclear. Our observations reveal variability in the zonal flow in the lower and middle cloud region that may provide new challenges and clues to the dynamics of Venus’s atmospheric superrotation. PMID:29887914

  1. Generation of auroral kilometric radiation and the structure of auroral acceleration region

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Kan, J. R.; Wu, C. S.

    1980-01-01

    Generation of auroral kilometric radiation (AKR) in the auroral acceleration region is studied. It is shown that auroral kilometric radiation can be generated by backscattered electrons trapped in the acceleration region via a cyclotron maser process. The parallel electric field in the acceleration region is required to be distributed over 1-2 earth radii. The observed AKR frequency spectrum can be used to estimate the altitude range of the auroral acceleration region. The altitudes of the lower and upper boundaries of the acceleration region determined from the AKR data are respectively approximately 2000 and 9000 km.

  2. Current worldwide nuclear cardiology practices and radiation exposure: results from the 65 country IAEA Nuclear Cardiology Protocols Cross-Sectional Study (INCAPS).

    PubMed

    Einstein, Andrew J; Pascual, Thomas N B; Mercuri, Mathew; Karthikeyan, Ganesan; Vitola, João V; Mahmarian, John J; Better, Nathan; Bouyoucef, Salah E; Hee-Seung Bom, Henry; Lele, Vikram; Magboo, V Peter C; Alexánderson, Erick; Allam, Adel H; Al-Mallah, Mouaz H; Flotats, Albert; Jerome, Scott; Kaufmann, Philipp A; Luxenburg, Osnat; Shaw, Leslee J; Underwood, S Richard; Rehani, Madan M; Kashyap, Ravi; Paez, Diana; Dondi, Maurizio

    2015-07-07

    To characterize patient radiation doses from nuclear myocardial perfusion imaging (MPI) and the use of radiation-optimizing 'best practices' worldwide, and to evaluate the relationship between laboratory use of best practices and patient radiation dose. We conducted an observational cross-sectional study of protocols used for all 7911 MPI studies performed in 308 nuclear cardiology laboratories in 65 countries for a single week in March-April 2013. Eight 'best practices' relating to radiation exposure were identified a priori by an expert committee, and a radiation-related quality index (QI) devised indicating the number of best practices used by a laboratory. Patient radiation effective dose (ED) ranged between 0.8 and 35.6 mSv (median 10.0 mSv). Average laboratory ED ranged from 2.2 to 24.4 mSv (median 10.4 mSv); only 91 (30%) laboratories achieved the median ED ≤ 9 mSv recommended by guidelines. Laboratory QIs ranged from 2 to 8 (median 5). Both ED and QI differed significantly between laboratories, countries, and world regions. The lowest median ED (8.0 mSv), in Europe, coincided with high best-practice adherence (mean laboratory QI 6.2). The highest doses (median 12.1 mSv) and low QI (4.9) occurred in Latin America. In hierarchical regression modelling, patients undergoing MPI at laboratories following more 'best practices' had lower EDs. Marked worldwide variation exists in radiation safety practices pertaining to MPI, with targeted EDs currently achieved in a minority of laboratories. The significant relationship between best-practice implementation and lower doses indicates numerous opportunities to reduce radiation exposure from MPI globally. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.

  3. Solar Storm's Radiation at Martian Orbit and Surface

    NASA Image and Video Library

    2017-09-29

    Energetic particles from a large solar storm in September 2017 were seen both in Mars orbit and on the surface of Mars by NASA missions to the Red Planet. The horizontal axis for both parts of this graphic is the time from Sept. 10 to Sept. 15, 2017. The upper portion of this graphic shows the increase in protons in two ranges of energy levels (15- to-100 million electron volts and 80-to-220 million electron volts), as recorded by the Solar Energetic Particle instrument on NASA's on NASA's Mars Atmosphere and Volatile Evolution orbiter, or MAVEN. The lower portion shows the radiation dose on the Martian surface, in micrograys per day, as measured by the Radiation Assessment Monitor instrument on NASA' Curiosity Mars rover. Micrograys are unit of measurement for absorbed radiation dose. Note that only protons in the higher bracket of energy levels penetrate the atmosphere enough to be detected on the surface. https://photojournal.jpl.nasa.gov/catalog/PIA21856

  4. Mechanism of inverted-chirp infrasonic radiation from sprites

    NASA Astrophysics Data System (ADS)

    de Larquier, Sebastien; Pasko, Victor P.

    2010-12-01

    Farges and Blanc (2010) reported inverted-chirp infrasonic signals with high frequencies arriving before low frequencies, possibly emitted by sprite discharges and observed on the ground at close range (<100 km) from the source. In the present work a parallel version of a 2-D FDTD model of infrasound propagation in a realistic atmosphere is applied to demonstrate that the observed morphology of infrasound signals is consistent with general scaling of diameters of sprite streamers inversely proportionally to the air density. The smaller structures at lower altitudes radiate higher infrasonic frequencies that arrive first at the observational point on the ground, while the low frequency components are delayed because they originate at lower air densities at higher altitudes. The results demonstrate that strong absorption of high frequency infrasonic components at high altitudes (i.e., ˜0.2 dB/km for 8 Hz at 70 km) may also contribute to formation of inverted-chirp signals observed on the ground at close range.

  5. Cloud Radiative Effect to Downward Longwave Radiation in the Polar Regions

    NASA Astrophysics Data System (ADS)

    Yamada, K.; Hayasaka, T.

    2014-12-01

    Downward longwave radiation is important factor to affect climate change. In polar regions, estimation of the radiative effect of cloud on the downward longwave radiation has large uncertainty. Relatively large cloud effect to the radiation occurs there due to low temperature, small amount of water vapor, and strong inversion layer. The cloud effect is, however, not evaluated sufficiently because the long term polar night and high surface albedo make satellite retrieval difficult. The intent of the present study is to quantify cloud radiative effect for downward longwave radiation in the polar regions by in-situ observation and radiative transfer calculation. The observation sites in this study are Ny-Ålesund (NYA), Syowa (SYO), and South Pole (SPO). These stations belong to the Baseline Surface Radiation Network. The period of data analysis is from 2003 to 2012. The effect of cloud on the downward longwave radiation is evaluated by subtraction of calculated downward longwave radiation under clear-sky condition from observed value under all-sky condition. Radiative transfer model was used for the evaluation of clear sky radiation with vertical temperature and humidity profile obtained by radiosonde observations. Calculated result shows good correlation with observation under clear-sky condition. The RMSE is +0.83±5.0. The cloud effect varied from -10 - +110 W/m2 (-10 - +40 %). Cloud effect increased with increasing of cloud fraction and decreasing of cloud base height and precipitable water. In SYO negative effects were sometimes obtained. The negative cloud effect emerged under dry and temperature inversion condition lower than 2 km. One of reasons of negative effect is considered to be existence of cloud at temperature inversion altitude. When the cloud effect is smaller than -5 W/m2 (standard deviation between calculation and observation), 50 % of them have a condition with cloud base height estimated by micro pulse lidar lower than 2 km.

  6. SU-E-J-146: A Research of PET-CT SUV Range for the Online Dose Verification in Carbon Ion Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, L; Hu, W; Moyers, M

    2015-06-15

    Purpose: Positron-emitting isotope distributions can be used for the image fusion of the carbon ion planning CT and online target verification PETCT, after radiation in the same decay period,the relationship between the same target volume and the SUV value of different every single fraction dose can be found,then the range of SUV for the radiation target could be decided.So this online range also can provide reference for the correlation and consistency in planning target dose verification and evaluation for the clinical trial. Methods: The Rando head phantom can be used as real body,the 10cc cube volume target contouring is done,beammore » ISO Center depth is 7.6cm and the 90 degree fixed carbon ion beams should be delivered in single fraction effective dose of 2.5GyE,5GyE and 8GyE.After irradiation,390 seconds later the 30 minutes PET-CT scanning is performed,parameters are set to 50Kg virtual weight,0.05mCi activity.MIM Maestro is used for the image processing and fusion,five 16mm diameter SUV spheres have been chosen in the different direction in the target.The average SUV in target for different fraction dose can be found by software. Results: For 10cc volume target,390 seconds decay period,the Single fraction effective dose equal to 2.5Gy,Ethe SUV mean value is 3.42,the relative range is 1.72 to 6.83;Equal to 5GyE,SUV mean value is 9.946,the relative range is 7.016 to 12.54;Equal or above to 8GyE,SUV mean value is 20.496,the relative range is 11.16 to 34.73. Conclusion: Making an evaluation for accuracy of the dose distribution using the SUV range which is from the planning CT with after treatment online PET-CT fusion for the normal single fraction carbon ion treatment is available.Even to the plan which single fraction dose is above 2GyE,in the condition of other parameters all the same,the SUV range is linearly dependent with single fraction dose,so this method also can be used in the hyper-fraction treatment plan.« less

  7. The 27-day versus 13.5-day variations in the solar Lyman-alpha radiation and the radio wave absorption in the lower ionosphere over Europe

    NASA Technical Reports Server (NTRS)

    Delamorena, B. A.; Lastovicka, Jan; Rapoport, Z. TS.; Alberca, L.

    1989-01-01

    In order to clarify the question of solar periods in absorption, the pattern was studied of the solar Lyman-alpha radiation (the principal ionizing agent of the lower ionosphere) and of the radio wave absorption at five widely spaced places in Europe. When the solar Lyman-alpha flux variability is very well developed, then it dominates in the lower ionospheric variability. The most pronounced Lyman-alpha variation on time scale day-month is the solar rotation variation (about 27 days). When the Lyman-alpha variability is developed rather poorly, as it is typical for periods dominated by the 13.5 day variability, then the lower ionospheric variability appears to be dominated by variations of meteorological origin. The conclusions hold for all five widely spaced placed in Europe.

  8. Intestinal radiation injury: the lower bowel syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, M.F.; Ruemmler, P.S.; Beamer, J.L.

    1975-01-01

    Newborn, weanling, and adult rats were gavaged with the strong beta emitting nuclide complex ruthenium-106/rhodium-106. The LD/sub 50/ doses obtained were 2, 20, and 9 mCi/kg. Average survival times were 10, 4.5, and 8.4 days respectively. Deaths of weanlings and adults were caused by damage to the large bowel but damage to the lower ileum caused by incorporation of /sup 106/Ru into the epithelium was usually more severe than large bowel injury in the neonates. Beagle dogs given /sup 106/Ru per os showed an LD/sub 50/ of approximately 3.7 mCi/kg, and an average survival time of about 15 days. Themore » symptoms exhibited by this large animal species differed markedly from that seen in rodents, being expressed mainly by vomiting, anorexia, and a bloody diarrhea that often persisted for 3 or 4 weeks after /sup 106/Ru ingestion. Damage to the colon was severe, consisting of a flattening of the mucosa, and a complete loss of glandular structures. In the animals that survived high doses a chronic ulcerative colitis persisted which showed little tendency to repair during the 60 day observation period. These results indicate that the radiosensitivity of the G.I. tract to ingested ''non-absorbed'' radionuclide is dependent on both age, and the passage time of the contents through the gastrointestinal tract; damage being confined almost exclusively to the lower bowel. Further, they suggest that the response of a large animal, and perhaps man, to an ingested lethal dose of a nuclide may be very different than has been observed in small animals.« less

  9. Resistance of Feather-Associated Bacteria to Intermediate Levels of Ionizing Radiation near Chernobyl.

    PubMed

    Ruiz-González, Mario Xavier; Czirják, Gábor Árpád; Genevaux, Pierre; Møller, Anders Pape; Mousseau, Timothy Alexander; Heeb, Philipp

    2016-03-15

    Ionizing radiation has been shown to produce negative effects on organisms, although little is known about its ecological and evolutionary effects. As a study model, we isolated bacteria associated with feathers from barn swallows Hirundo rustica from three study areas around Chernobyl differing in background ionizing radiation levels and one control study site in Denmark. Each bacterial community was exposed to four different γ radiation doses ranging from 0.46 to 3.96 kGy to test whether chronic exposure to radiation had selected for resistant bacterial strains. Experimental radiation duration had an increasingly overall negative effect on the survival of all bacterial communities. After exposure to γ radiation, bacteria isolated from the site with intermediate background radiation levels survived better and produced more colonies than the bacterial communities from other study sites with higher or lower background radiation levels. Long-term effects of radiation in natural populations might be an important selective pressure on traits of bacteria that facilitate survival in certain environments. Our findings indicate the importance of further studies to understand the proximate mechanisms acting to buffer the negative effects of ionizing radiation in natural populations.

  10. Resistance of Feather-Associated Bacteria to Intermediate Levels of Ionizing Radiation near Chernobyl

    PubMed Central

    Ruiz-González, Mario Xavier; Czirják, Gábor Árpád; Genevaux, Pierre; Møller, Anders Pape; Mousseau, Timothy Alexander; Heeb, Philipp

    2016-01-01

    Ionizing radiation has been shown to produce negative effects on organisms, although little is known about its ecological and evolutionary effects. As a study model, we isolated bacteria associated with feathers from barn swallows Hirundo rustica from three study areas around Chernobyl differing in background ionizing radiation levels and one control study site in Denmark. Each bacterial community was exposed to four different γ radiation doses ranging from 0.46 to 3.96 kGy to test whether chronic exposure to radiation had selected for resistant bacterial strains. Experimental radiation duration had an increasingly overall negative effect on the survival of all bacterial communities. After exposure to γ radiation, bacteria isolated from the site with intermediate background radiation levels survived better and produced more colonies than the bacterial communities from other study sites with higher or lower background radiation levels. Long-term effects of radiation in natural populations might be an important selective pressure on traits of bacteria that facilitate survival in certain environments. Our findings indicate the importance of further studies to understand the proximate mechanisms acting to buffer the negative effects of ionizing radiation in natural populations. PMID:26976674

  11. RF characteristics of the hoop column antenna for the land mobile satellite system mission

    NASA Astrophysics Data System (ADS)

    Foldes, P.

    1984-11-01

    A communication system using a satellite with a 118 meter diameter quad aperture antenna to provide telephone service to mobile users remotely located from the large metropolitan areas where the telephone companies are presently implementing their cellular system is described. In this system, which is compatible with the cellular system, the mobile user communicates with the satellite at UHF frequencies. The satellite connects him at S-Band, to the existing telephone network via a base station. The results of the RF definition work for the quad aperture antenna are presented. The elements of the study requirements for the LMSS are summarized, followed by a beam topology plan which satisfies the mission requirements with a practical and realiable configuration. The geometry of the UHF antenna and its radiation characteristics are defined. The various feed alternatives, and the S-band aperture are described.

  12. RF characteristics of the hoop column antenna for the land mobile satellite system mission

    NASA Technical Reports Server (NTRS)

    Foldes, P.

    1984-01-01

    A communication system using a satellite with a 118 meter diameter quad aperture antenna to provide telephone service to mobile users remotely located from the large metropolitan areas where the telephone companies are presently implementing their cellular system is described. In this system, which is compatible with the cellular system, the mobile user communicates with the satellite at UHF frequencies. The satellite connects him at S-Band, to the existing telephone network via a base station. The results of the RF definition work for the quad aperture antenna are presented. The elements of the study requirements for the LMSS are summarized, followed by a beam topology plan which satisfies the mission requirements with a practical and realiable configuration. The geometry of the UHF antenna and its radiation characteristics are defined. The various feed alternatives, and the S-band aperture are described.

  13. Transatlantic Comparison of CT Radiation Doses in the Era of Radiation Dose-Tracking Software.

    PubMed

    Parakh, Anushri; Euler, Andre; Szucs-Farkas, Zsolt; Schindera, Sebastian T

    2017-12-01

    The purpose of this study is to compare diagnostic reference levels from a local European CT dose registry, using radiation-tracking software from a large patient sample, with preexisting European and North American diagnostic reference levels. Data (n = 43,761 CT scans obtained over the course of 2 years) for the European local CT dose registry were obtained from eight CT scanners at six institutions. Means, medians, and interquartile ranges of volumetric CT dose index (CTDI vol ), dose-length product (DLP), size-specific dose estimate, and effective dose values for CT examinations of the head, paranasal sinuses, thorax, pulmonary angiogram, abdomen-pelvis, renal-colic, thorax-abdomen-pelvis, and thoracoabdominal angiogram were obtained using radiation-tracking software. Metrics from this registry were compared with diagnostic reference levels from Canada and California (published in 2015), the American College of Radiology (ACR) dose index registry (2015), and national diagnostic reference levels from local CT dose registries in Switzerland (2010), the United Kingdom (2011), and Portugal (2015). Our local registry had a lower 75th percentile CTDI vol for all protocols than did the individual internationally sourced data. Compared with our study, the ACR dose index registry had higher 75th percentile CTDI vol values by 55% for head, 240% for thorax, 28% for abdomen-pelvis, 42% for thorax-abdomen-pelvis, 128% for pulmonary angiogram, 138% for renal-colic, and 58% for paranasal sinus studies. Our local registry had lower diagnostic reference level values than did existing European and North American diagnostic reference levels. Automated radiation-tracking software could be used to establish and update existing diagnostic reference levels because they are capable of analyzing large datasets meaningfully.

  14. An advanced generation land mobile satellite system and its critical technologies

    NASA Technical Reports Server (NTRS)

    Naderi, F.

    1982-01-01

    A conceptual design for a Land Mobile Satellite System (LMSS) for the 1990s is presented. LMSS involves small tranceivers accessing satellites directly, with ground reception through small car-top antennas. The satellite would have a large antenna and blanket coverage areas in the UHF. The call may originate from a home, be carried by wire to a gateway, transmitted to satellite on the S-band, converted to UHF on the satellite, and transmitted to the vehicle. The system design is constrained by the number of users in an area during the busiest hours, Shuttle storage, controllability factors, and the total area served. A 55-m antenna has been selected, with 87 spot beams and two 10 MHz UHF bands in the 806-890 MHz band. A 17 dB interbeam isolation level is required, implying that sufficient sub-bands can be generated to assure 8265 total channels. The mobile satellite (MSAT) would have an 83 m mast lower segment, a 34 m upper segment, and a second, 10 m antenna made of a deployable mesh. Various antenna function modes are considered.

  15. Effective radiation dose of ProMax 3D cone-beam computerized tomography scanner with different dental protocols.

    PubMed

    Qu, Xing-min; Li, Gang; Ludlow, John B; Zhang, Zu-yan; Ma, Xu-chen

    2010-12-01

    The aim of this study was to compare effective doses resulting from different scan protocols for cone-beam computerized tomography (CBCT) using International Commission on Radiological Protection (ICRP) 1990 and 2007 calculations of dose. Average tissue-absorbed dose, equivalent dose, and effective dose for a ProMax 3D CBCT with different dental protocols were calculated using thermoluminescent dosimeter chips in a human equivalent phantom. Effective doses were derived using ICRP 1990 and the superseding 2007 recommendations. Effective doses (ICRP 2007) for default patient sizes from small to large ranged from 102 to 298 μSv. The coefficient of determination (R(2)) between tube current and effective dose (ICRP 2007) was 0.90. When scanning with lower resolution settings, the effective doses were reduced significantly (P < .05). ProMax 3D can provide a wide range of radiation dose levels. Reduction in radiation dose can be achieved when using lower settings of exposure parameters. Copyright © 2010 Mosby, Inc. All rights reserved.

  16. Development of novel wireless sensor for food quality detection

    NASA Astrophysics Data System (ADS)

    Son Nguyen, Dat; Ngan Le, Nguyen; Phat Lam, Tan; Fribourg-Blanc, Eric; Chien Dang, Mau; Tedjini, Smail

    2015-12-01

    In this paper we present a wireless sensor for the monitoring of food quality. We integrate sensing capability into ultrahigh frequency (UHF) radio-frequency identification (RFID) tags through the relationship between the physical read-range and permittivity of the object we label with the RFID tags. Using the known variations of food permittivity as a function of time, we can detect the contamination time at which a food product becomes unacceptable for consumption based on the measurement of read-range with the as-designed sensing tags. This low-cost UHF RFID passive sensor was designed and experimentally tested on beef, pork, and cheese with the same storage conditions as in supermarkets. The agreement between the experimental and simulation results show the potential of this technique for practical application in food-quality tracking.

  17. Ionizing radiation detector

    DOEpatents

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  18. Tailoring Meridional and Seasonal Radiative Forcing by Sulfate Aerosol Solar Geoengineering

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Weisenstein, D. K.; Keith, D. W.

    2018-01-01

    We study the possibility of designing solar radiation management schemes to achieve a desired meridional radiative forcing (RF) profile using a two-dimensional chemistry-transport-aerosol model. Varying SO2 or H2SO4 injection latitude, altitude, and season, we compute RF response functions for a broad range of possible injection schemes, finding that linear combinations of these injection cases can roughly achieve RF profiles that have been proposed to accomplish various climate objectives. Globally averaged RF normalized by the sulfur injection rate (the radiative efficacy) is largest for injections at high altitudes, near the equator, and using emission of H2SO4 vapor into an aircraft wake to produce accumulation-mode particles. There is a trade-off between radiative efficacy and control as temporal and spatial control is best achieved with injections at lower altitudes and higher latitudes. These results may inform studies using more realistic models that couple aerosol microphysics, chemistry, and stratospheric dynamics.

  19. Asymptotic normalization coefficients and radiative widths

    NASA Astrophysics Data System (ADS)

    Mukhamedzhanov, A. M.; Pang, D. Y.

    2015-07-01

    The asymptotic normalization coefficient (ANC) is an important quantity in the calculation of radiative width amplitudes, providing limits on the radiative width. Here we present some examples showing the connection between the ANC and radiative width. In particular, the radiative width of the E 1 transition 17F(1 /2-,Ex=3.104 MeV ) to 17F(1 /2+,Ex=0.495 MeV ) reported by Rolfs [Nucl. Phys. A 217, 29 (1973), 10.1016/0375-9474(73)90622-2] is (1.2 ±0.2 ) ×10-2 eV. Meanwhile the ANC for the first excited state in 17F puts a lower limit on the radiative width, which is (3.4 ±0.50 ) ×10-2 eV. Such a strong disagreement between the measured radiative width and the lower limit imposed by the ANC calls for a new measurement of this radiative width. Other examples are also considered.

  20. Radiation dose to the esophagus from breast cancer radiation therapy, 1943-1996: an international population-based study of 414 patients.

    PubMed

    Lamart, Stephanie; Stovall, Marilyn; Simon, Steven L; Smith, Susan A; Weathers, Rita E; Howell, Rebecca M; Curtis, Rochelle E; Aleman, Berthe M P; Travis, Lois; Kwon, Deukwoo; Morton, Lindsay M

    2013-07-15

    To provide dosimetric data for an epidemiologic study on the risk of second primary esophageal cancer among breast cancer survivors, by reconstructing the radiation dose incidentally delivered to the esophagus of 414 women treated with radiation therapy for breast cancer during 1943-1996 in North America and Europe. We abstracted the radiation therapy treatment parameters from each patient's radiation therapy record. Treatment fields included direct chest wall (37% of patients), medial and lateral tangentials (45%), supraclavicular (SCV, 64%), internal mammary (IM, 44%), SCV and IM together (16%), axillary (52%), and breast/chest wall boosts (7%). The beam types used were (60)Co (45% of fields), orthovoltage (33%), megavoltage photons (11%), and electrons (10%). The population median prescribed dose to the target volume ranged from 21 Gy to 40 Gy. We reconstructed the doses over the length of the esophagus using abstracted patient data, water phantom measurements, and a computational model of the human body. Fields that treated the SCV and/or IM lymph nodes were used for 85% of the patients and delivered the highest doses within 3 regions of the esophagus: cervical (population median 38 Gy), upper thoracic (32 Gy), and middle thoracic (25 Gy). Other fields (direct chest wall, tangential, and axillary) contributed substantially lower doses (approximately 2 Gy). The cervical to middle thoracic esophagus received the highest dose because of its close proximity to the SCV and IM fields and less overlying tissue in that part of the chest. The location of the SCV field border relative to the midline was one of the most important determinants of the dose to the esophagus. Breast cancer patients in this study received relatively high incidental radiation therapy doses to the esophagus when the SCV and/or IM lymph nodes were treated, whereas direct chest wall, tangentials, and axillary fields contributed lower doses. Published by Elsevier Inc.

  1. Model atmospheres and radiation of magnetic neutron stars: Anisotropic thermal emission

    NASA Technical Reports Server (NTRS)

    Pavlov, G. G.; Shibanov, Yu. A.; Ventura, J.; Zavlin, V. E.

    1994-01-01

    We investigate the anisotropy of the thermal radiation emitted by a surface element of a neutron star atmosphere (e.g., by a polar cap of a radio pulsar). Angular dependences of the partial fluxes at various photon energies, and spectra at various angles are obtained for different values of the effective temperature T(sub eff) and magnetic field strength B, and for different directions of the magnetic field. It is shown that the local radiation of the magnetized neutron star atmospheres is highly anisotropic, with the maximum flux emitted in the magnetic field direction. At high B the angular dependences in the soft X-ray range have two maxima, a high narrow peak along B and a lower and broader maximum at intermediate angles. The radiation is strongly polarized, the modulation of the degree of polarization due to the rotation of the neurtron star may be much higher than that for the radiative flux. The results obtained are compared with recent ROSAT observations of the thermal-like radiation from the radio pulsars PSR 1929+10 and PSR J0437-4715.

  2. Is Radiation Dangerous?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    Radiation is all around us, ranging from the non-dangerous to the lethal. In this video, Fermilab’s Dr. Don Lincoln talks about radiation and gives you the real deal on whether it is dangerous or not.

  3. International collaboration in medical radiation science.

    PubMed

    Denham, Gary; Allen, Carla; Platt, Jane

    2016-06-01

    International collaboration is recognised for enhancing the ability to approach complex problems from a variety of perspectives, increasing development of a wider range of research skills and techniques and improving publication and acceptance rates. The aim of this paper is to describe the current status of international collaboration in medical radiation science and compare this to other allied health occupations. This study utilised a content analysis approach where co-authorship of a journal article was used as a proxy for research collaboration and the papers were assigned to countries based on the corporate address given in the by-line of the publication. A convenience sample method was employed and articles published in the professional medical radiation science journals in the countries represented within our research team - Australia, the United Kingdom (UK) and the United States of America (USA) were sampled. Physiotherapy, speech pathology, occupational therapy and nursing were chosen for comparison. Rates of international collaboration in medical radiation science journals from Australia, the UK and the USA have steadily increased over the 3-year period sampled. Medical radiation science demonstrated lower average rates of international collaboration than the other allied health occupations sampled. The average rate of international collaboration in nursing was far below that of the allied health occupations sampled. Overall, the UK had the highest average rate of international collaboration, followed by Australia and the USA, the lowest. Overall, medical radiation science is lagging in international collaboration in comparison to other allied health fields.

  4. [Laserotherapy of diabetic angiopathy of the lower extremities].

    PubMed

    Zolotova, N B; Zolotnitskaia, V P

    2009-01-01

    Low-intensity laser radiation was included in combined therapy of lower limb angiopathy in patients with diabetes mellitus. The course and results of the treatment were monitored by means of perfusion scintiography.

  5. Effect of solar radiation on severity of soybean rust.

    PubMed

    Young, Heather M; George, Sheeja; Narváez, Dario F; Srivastava, Pratibha; Schuerger, Andrew C; Wright, David L; Marois, James J

    2012-08-01

    Soybean rust (SBR), caused by Phakopsora pachyrhizi, is a damaging fungal disease of soybean (Glycine max). Although solar radiation can reduce SBR urediniospore survival, limited information is available on how solar radiation affects SBR progress within soybean canopies. Such information can aid in developing accurate SBR prediction models. To manipulate light penetration into soybean canopies, structures of shade cloth attenuating 30, 40, and 60% sunlight were constructed over soybean plots. In each plot, weekly evaluations of severity in lower, middle, and upper canopies, and daily temperature and relative humidity were recorded. Final plant height and leaf area index were also recorded for each plot. The correlation between amount of epicuticular wax and susceptibility of leaves in the lower, middle, and upper canopies was assessed with a detached leaf assay. Final disease severity was 46 to 150% greater in the lower canopy of all plots and in the middle canopy of 40 and 60% shaded plots. While daytime temperature within the canopy of nonshaded soybean was greater than shaded soybean by 2 to 3°C, temperatures recorded throughout typical evenings and mornings of the growing season in all treatments were within the range (10 to 28.5°C) for SBR development as was relative humidity. This indicates temperature and relative humidity were not limiting factors in this experiment. Epicuticular wax and disease severity in detached leaf assays from the upper canopy had significant negative correlation (P = 0.009, R = -0.84) regardless of shade treatment. In laboratory experiments, increasing simulated total solar radiation (UVA, UVB, and PAR) from 0.15 to 11.66 MJ m(-2) increased mortality of urediniospores from 2 to 91%. Variability in disease development across canopy heights in early planted soybean may be attributed to the effects of solar radiation not only on urediniospore viability, but also on plant height, leaf area index, and epicuticular wax, which influence

  6. Implications of the Observed Mesoscale Variations of Clouds for Earth's Radiation Budget

    NASA Technical Reports Server (NTRS)

    Rossow, William B.; Delo, Carl; Cairns, Brian; Hansen, James E. (Technical Monitor)

    2001-01-01

    The effect of small-spatial-scale cloud variations on radiative transfer in cloudy atmospheres currently receives a lot of research attention, but the available studies are not very clear about which spatial scales are important and report a very large range of estimates of the magnitude of the effects. Also, there have been no systematic investigations of how to measure and represent these cloud variations. We exploit the cloud climatology produced by the International Satellite Cloud Climatology Project (ISCCP) to: (1) define and test different methods of representing cloud variation statistics, (2) investigate the range of spatial scales that should be included, (3) characterize cloud variations over a range of space and time scales covering mesoscale (30 - 300 km, 3-12 hr) into part of the lower part of the synoptic scale (300 - 3000 km, 1-30 days), (4) obtain a climatology of the optical thickness, emissivity and cloud top temperature variability of clouds that can be used in weather and climate GCMS, together with the parameterization proposed by Cairns et al. (1999), to account for the effects of small-scale cloud variations on radiative fluxes, and (5) evaluate the effect of observed cloud variations on Earth's radiation budget. These results lead to the formulation of a revised conceptual model of clouds for use in radiative transfer calculations in GCMS. The complete variability climatology can be obtained from the ISCCP Web site at http://isccp.giss.nasa.gov.

  7. Variability of Diurnal Temperature Range During Winter Over Western Himalaya: Range- and Altitude-Wise Study

    NASA Astrophysics Data System (ADS)

    Shekhar, M. S.; Devi, Usha; Dash, S. K.; Singh, G. P.; Singh, Amreek

    2018-04-01

    The current trends in diurnal temperature range, maximum temperature, minimum temperature, mean temperature, and sun shine hours over different ranges and altitudes of Western Himalaya during winter have been studied. Analysis of 25 years of data shows an increasing trend in diurnal temperature range over all the ranges and altitudes of Western Himalaya during winter, thereby confirming regional warming of the region due to present climate change and global warming. Statistical studies show significant increasing trend in maximum temperature over all the ranges and altitudes of Western Himalaya. Minimum temperature shows significant decreasing trend over Pir Panjal and Shamshawari range and significant increasing trend over higher altitude of Western Himalaya. Similarly, sunshine hours show significant decreasing trend over Karakoram range. There exists strong positive correlation between diurnal temperature range and maximum temperature for all the ranges and altitudes of Western Himalaya. Strong negative correlation exists between diurnal temperature range and minimum temperature over Shamshawari and Great Himalaya range and lower altitude of Western Himalaya. Sunshine hours show strong positive correlation with diurnal temperature range over Pir Panjal and Great Himalaya range and lower and higher altitudes.

  8. Individual differences in BEV drivers' range stress during first encounter of a critical range situation.

    PubMed

    Franke, Thomas; Rauh, Nadine; Krems, Josef F

    2016-11-01

    It is commonly held that range anxiety, in the form of experienced range stress, constitutes a usage barrier, particularly during the early period of battery electric vehicle (BEV) usage. To better understand factors that play a role in range stress during this critical period of adaptation to limited-range mobility, we examined individual differences in experienced range stress in the context of a critical range situation. In a field experiment, 74 participants drove a BEV on a 94-km round trip, which was tailored to lead to a critical range situation (i.e., small available range safety buffer). Higher route familiarity, trust in the range estimation system, system knowledge, subjective range competence, and internal control beliefs in dealing with technology were clearly related to lower experienced range stress; emotional stability (i.e., low neuroticism) was partly related to lower range stress. These results can inform strategies aimed at reducing range stress during early BEV usage, as well as contribute to a better understanding of factors that drive user experience in low-resource systems, which is a key topic in the field of green ergonomics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Laser action by optically depumping lower states

    DOEpatents

    Krupke, William F.

    1977-01-01

    A method and apparatus for obtaining laser action between an upper energy level and a lower energy level of a gaseous medium, which comprises populating the upper energy level to some degree (short of achieving a conventional inverted population) by any suitable pumping means, and thereafter establishing an inverted population by transiently and selectively depumping the lower energy level such as by exposing the medium to an intense source of radiation which selectively causes the transformation of the lower energy level species to some other energy level. Thus, a thermally pumped/optically depumped gas laser system is produced.

  10. Laser action by optically depumping lower states

    DOEpatents

    Krupke, W.F.

    1975-11-26

    A method and apparatus are described for obtaining laser action between an upper energy level and a lower energy level of a gaseous medium. The upper energy level is populated to some degree (short of achieving a conventional inverted population) by any suitable pumping means, and an inverted population is established by transiently and selectively depumping the lower energy level. The depumping may be done by exposing the medium to an intense source of radiation which selectively causes the transformation of the lower energy level species to some other energy level. Thus, a thermally pumped/optically depumped gas laser system is produced.

  11. Bandwidth Enhancement of a Dual Band Planar Monopole Antenna Using Meandered Microstrip Feeding

    PubMed Central

    Ahsan, M. R.; Islam, M. T.; Habib Ullah, M.; Misran, N.

    2014-01-01

    A meandered-microstrip fed circular shaped monopole antenna loaded with vertical slots on a high dielectric material substrate (ε r = 15) is proposed in this paper. The performance criteria of the proposed antenna have been experimentally verified by fabricating a printed prototype. The experimental results show that the proposed antenna has achieved wider bandwidth with satisfactory gain by introducing meandered-microstrip feeding in assistant of partial ground plane. It is observed that, the −10 dB impedance bandwidth of the proposed antenna at lower band is 44.4% (600 MHz–1 GHz) and at upper band is 28% (2.25 GHz–2.95 GHz). The measured maximum gains of −1.18 dBi and 4.87 dBi with maximum radiation efficiencies have been observed at lower band and upper band, respectively. The antenna configuration and parametric study have been carried out with the help of commercially available computer-aided EM simulator, and a good accordance is perceived in between the simulated and measured results. The analysis of performance criteria and almost consistent radiation pattern make the proposed antenna a suitable candidate for UHF RFID, WiMAX, and WLAN applications. PMID:24723832

  12. Radiation analysis devices, radiation analysis methods, and articles of manufacture

    DOEpatents

    Roybal, Lyle Gene

    2010-06-08

    Radiation analysis devices include circuitry configured to determine respective radiation count data for a plurality of sections of an area of interest and combine the radiation count data of individual of sections to determine whether a selected radioactive material is present in the area of interest. An amount of the radiation count data for an individual section is insufficient to determine whether the selected radioactive material is present in the individual section. An article of manufacture includes media comprising programming configured to cause processing circuitry to perform processing comprising determining one or more correction factors based on a calibration of a radiation analysis device, measuring radiation received by the radiation analysis device using the one or more correction factors, and presenting information relating to an amount of radiation measured by the radiation analysis device having one of a plurality of specified radiation energy levels of a range of interest.

  13. The Impact of Moisture Intrusions from Lower Latitudes on Arctic Net Surface Radiative Fluxes and Sea Ice Growth in Fall and Winter

    NASA Astrophysics Data System (ADS)

    Hegyi, B. M.; Taylor, P. C.

    2017-12-01

    The fall and winter seasons mark an important period in the evolution of Arctic sea ice, where energy is transferred away from the surface to facilitate the cooling of the surface and the growth of Arctic sea ice extent and thickness. Climatologically, these seasons are characterized by distinct periods of increased and reduced surface cooling and sea ice growth. Periods of reduced sea ice growth and surface cooling are associated with cloudy conditions and the transport of warm and moist air from lower latitudes, termed moisture intrusions. In the research presented, we explore the regional and Arctic-wide impact of moisture intrusions on the surface net radiative fluxes and sea ice growth for each fall and winter season from 2000/01-2015/16, utilizing MERRA2 reanalysis data, PIOMAS sea ice thickness data, and daily CERES radiative flux data. Consistent with previous studies, we find that positive anomalies in downwelling longwave surface flux are associated with increased temperature and water vapor content in the atmospheric column contained within the moisture intrusions. Interestingly, there are periods of increased downwelling LW flux anomalies that persist for one week or longer (i.e. longer than synoptic timescales) that are associated with persistent poleward flux of warm, moist air from lower latitudes. These persistent anomalies significantly reduce the regional growth of Arctic sea ice, and may in part explain the interannual variability of fall and winter Arctic sea ice growth.

  14. Statins and Metformin Use Is Associated with Lower PSA Levels in Prostate Cancer Patients Presenting for Radiation Therapy.

    PubMed

    Liu, Xiaonan; Li, Jing; Schild, Steven E; Schild, Michael H; Wong, William; Vora, Sujay; Herman, Michael G; Fatyga, Mirek

    2017-02-01

    A possible association between the level of prostate specific antigen (PSA) and the use of some commonly prescribed medications has been reported in recent studies. Most of these studies were carried out in general populations of men who were screened for prostate cancer using the PSA test. We reported on the association between the initial PSA level and the use of statins, metformin and alpha-blockers in patients who were diagnosed with prostate cancer and presented for radiation therapy. Three hundred and eighty one patients treated between the years of 2000-2005 and 2009-2012 were included in this retrospective study. The information about statin, metformin and alpha-blockers use was recorded immediately prior to treatment. Differences in PSA levels prior to treatment by medication status were estimated using univa-riate and multivariate linear regression on log PSA values. Compared with men who were not on these medications, the PSA level at presentation was 20% lower for statin users (p = 0.002) and 33% lower for metformin users (p = 0.004). We did not observe statistically significant associations between the use of statins or metformin and cancer stage, National Comprehensive Cancer Network (NCCN) risk score, or therapy outcome. A statistically significant association between the NCCN risk score and the use of alpha-blockers was observed (p = 0.002). We found that statins and metformin were associated with lower PSA levels in prostate cancer patients to an extent that could influence management decisions. We found no statistically significant associations between the use of these medications and treatment outcomes.

  15. Early development and characterization of a DNA-based radiation dosimeter

    NASA Astrophysics Data System (ADS)

    Avarmaa, Kirsten A.

    It is the priority of first responders to minimize damage to persons and infrastructure in the case of a nuclear emergency due to an accident or deliberate terrorist attack -- if this emergency includes a radioactive hazard, first responders require a simple-to-use, accurate and complete dosimeter for radiation protection purposes in order to minimize the health risk to these individuals and the general population at large. This work consists of the early evaluation of the design and performance of a biologically relevant dosimeter which uses DNA material that can respond to the radiation of any particle type. The construct consists of fluorescently tagged strands of DNA. The signalling components of this dosimeter are also investigated for their sensitivity to radiation damage and light exposure. The dual-labelled dosimeter that is evaluated in this work gave a measurable response to gamma radiation at dose levels of 10 Gy for the given detector design and experimental setup. Further testing outside of this work confirmed this finding and indicated a working range of 100 mGy to 10 Gy using a custom-built fluorimeter as part of a larger CRTI initiative. Characterization of the chromatic components of the dosimeter showed that photobleaching is not expected to have an effect on dosimeter performance, but that radiation can damage the non-DNA signalling components at higher dose levels, although this damage is minimal at lower doses over the expected operating ranges. This work therefore describes the early steps in the quantification of the behaviour of the DNA dosimeter as a potential biologically-based device to measure radiation dose.

  16. Dosimetric Analysis of Radiation-induced Gastric Bleeding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Mary, E-mail: maryfeng@umich.edu; Normolle, Daniel; Pan, Charlie C.

    2012-09-01

    Purpose: Radiation-induced gastric bleeding has been poorly understood. In this study, we described dosimetric predictors for gastric bleeding after fractionated radiation therapy. Methods and Materials: The records of 139 sequential patients treated with 3-dimensional conformal radiation therapy (3D-CRT) for intrahepatic malignancies were reviewed. Median follow-up was 7.4 months. The parameters of a Lyman normal tissue complication probability (NTCP) model for the occurrence of {>=}grade 3 gastric bleed, adjusted for cirrhosis, were fitted to the data. The principle of maximum likelihood was used to estimate parameters for NTCP models. Results: Sixteen of 116 evaluable patients (14%) developed gastric bleeds at amore » median time of 4.0 months (mean, 6.5 months; range, 2.1-28.3 months) following completion of RT. The median and mean maximum doses to the stomach were 61 and 63 Gy (range, 46-86 Gy), respectively, after biocorrection of each part of the 3D dose distributions to equivalent 2-Gy daily fractions. The Lyman NTCP model with parameters adjusted for cirrhosis predicted gastric bleed. Best-fit Lyman NTCP model parameters were n=0.10 and m=0.21 and with TD{sub 50} (normal) = 56 Gy and TD{sub 50} (cirrhosis) = 22 Gy. The low n value is consistent with the importance of maximum dose; a lower TD{sub 50} value for the cirrhosis patients points out their greater sensitivity. Conclusions: This study demonstrates that the Lyman NTCP model has utility for predicting gastric bleeding and that the presence of cirrhosis greatly increases this risk. These findings should facilitate the design of future clinical trials involving high-dose upper abdominal radiation.« less

  17. Time and Origin of Cichlid Colonization of the Lower Congo Rapids

    PubMed Central

    Schwarzer, Julia; Misof, Bernhard; Ifuta, Seraphin N.; Schliewen, Ulrich K.

    2011-01-01

    Most freshwater diversity is arguably located in networks of rivers and streams, but, in contrast to lacustrine systems riverine radiations, are largely understudied. The extensive rapids of the lower Congo River is one of the few river stretches inhabited by a locally endemic cichlid species flock as well as several species pairs, for which we provide evidence that they have radiated in situ. We use more that 2,000 AFLP markers as well as multilocus sequence datasets to reconstruct their origin, phylogenetic history, as well as the timing of colonization and speciation of two Lower Congo cichlid genera, Steatocranus and Nanochromis. Based on a representative taxon sampling and well resolved phylogenetic hypotheses we demonstrate that a high level of riverine diversity originated in the lower Congo within about 5 mya, which is concordant with age estimates for the hydrological origin of the modern lower Congo River. A spatial genetic structure is present in all widely distributed lineages corresponding to a trisection of the lower Congo River into major biogeographic areas, each with locally endemic species assemblages. With the present study, we provide a phylogenetic framework for a complex system that may serve as a link between African riverine cichlid diversity and the megadiverse cichlid radiations of the East African lakes. Beyond this we give for the first time a biologically estimated age for the origin of the lower Congo River rapids, one of the most extreme freshwater habitats on earth. PMID:21799840

  18. Integrated, Reactor Relevant Solutions for Lower Hybrid Range of Frequencies Actuators

    NASA Astrophysics Data System (ADS)

    Shiraiwa, S.; Bonoli, P. T.; Lin, Y.; Wallace, G. M.; Wukitch, S. J.

    2017-10-01

    RF (radiofrequency) actuators with high system efficiency (wall-plug to plasma) and ability for continuous operation have long be recognized as essential tools for realizing a steady state tokamak. A number of physics and technological challenges to utilization remain including current drive efficiency and location, efficient coupling, and impurity contamination. In a reactor environment, plasma material interaction (PMI) issues associated with coupling structures are similar to the first wall and have been identified as a potential show-stopper. High field side (HFS) launch of LHRF power represents an integrated solution that both improves core wave physics and mitigates PMI/coupling issues. For HFS LHRF, wave penetration is vastly improves because wave accessibility scales as 1/B allowing for launching the wave at lower n|| (parallel refractive index). The lower n|| penetrate to higher electron temperature resulting in higher current drive efficiency (1/n||2). HFS RF launch also provides for a means to dramatically improve launcher robustness in a reactor environment. On the HFS, the SOL is quiescent; local density profile is steep and controlled through magnetic shape; fast particle, neutron, turbulent heat and particle fluxes are eliminated or minim Work supported by the U.S. DoE, Office of Science, Office of Fusion Energy Sciences, User Facility Alcator C-Mod under DE-FC02-99ER54512 and US DoE Contract No. DE-FC02-01ER54648 under a Scientific Discovery through Advanced Computing Initiative.

  19. Radiative human body cooling by nanoporous polyethylene textile.

    PubMed

    Hsu, Po-Chun; Song, Alex Y; Catrysse, Peter B; Liu, Chong; Peng, Yucan; Xie, Jin; Fan, Shanhui; Cui, Yi

    2016-09-02

    Thermal management through personal heating and cooling is a strategy by which to expand indoor temperature setpoint range for large energy saving. We show that nanoporous polyethylene (nanoPE) is transparent to mid-infrared human body radiation but opaque to visible light because of the pore size distribution (50 to 1000 nanometers). We processed the material to develop a textile that promotes effective radiative cooling while still having sufficient air permeability, water-wicking rate, and mechanical strength for wearability. We developed a device to simulate skin temperature that shows temperatures 2.7° and 2.0°C lower when covered with nanoPE cloth and with processed nanoPE cloth, respectively, than when covered with cotton. Our processed nanoPE is an effective and scalable textile for personal thermal management. Copyright © 2016, American Association for the Advancement of Science.

  20. Electromagnetic fields (UHF) increase voltage sensitivity of membrane ion channels; possible indication of cell phone effect on living cells.

    PubMed

    Ketabi, N; Mobasheri, H; Faraji-Dana, R

    2015-03-01

    The effects of ultra high frequency (UHF) nonionizing electromagnetic fields (EMF) on the channel activities of nanopore forming protein, OmpF porin, were investigated. The voltage clamp technique was used to study the single channel activity of the pore in an artificial bilayer in the presence and absence of the electromagnetic fields at 910 to 990 MHz in real time. Channel activity patterns were used to address the effect of EMF on the dynamic, arrangement and dielectric properties of water molecules, as well as on the hydration state and arrangements of side chains lining the channel barrel. Based on the varied voltage sensitivity of the channel at different temperatures in the presence and absence of EMF, the amount of energy transferred to nano-environments of accessible groups was estimated to address the possible thermal effects of EMF. Our results show that the effects of EMF on channel activities are frequency dependent, with a maximum effect at 930 MHz. The frequency of channel gating and the voltage sensitivity is increased when the channel is exposed to EMF, while its conductance remains unchanged at all frequencies applied. We have not identified any changes in the capacitance and permeability of membrane in the presence of EMF. The effect of the EMF irradiated by cell phones is measured by Specific Absorption Rate (SAR) in artificial model of human head, Phantom. Thus, current approach applied to biological molecules and electrolytes might be considered as complement to evaluate safety of irradiating sources on biological matter at molecular level.

  1. Storm-time radiation belt electron dynamics: Repeatability in the outer radiation belt

    NASA Astrophysics Data System (ADS)

    Murphy, K. R.; Mann, I. R.; Rae, J.; Watt, C.; Boyd, A. J.; Turner, D. L.; Claudepierre, S. G.; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Fennell, J. F.

    2017-12-01

    During intervals of enhanced solar wind driving the outer radiation belt becomes extremely dynamic leading to geomagnetic storms. During these storms the flux of energetic electrons can vary by over 4 orders of magnitude. Despite recent advances in understanding the nature of competing storm-time electron loss and acceleration processes the dynamic behavior of the outer radiation belt remains poorly understood; the outer radiation belt can exhibit either no change, an enhancement, or depletion in radiation belt electrons. Using a new analysis of the total radiation belt electron content, calculated from the Van Allen probes phase space density (PSD), we statistically analyze the time-dependent and global response of the outer radiation belt during storms. We demonstrate that by removing adiabatic effects there is a clear and repeatable sequence of events in storm-time radiation belt electron dynamics. Namely, the relativistic (μ=1000 MeV/G) and ultra-relativistic (μ=4000 MeV/G) electron populations can be separated into two phases; an initial phase dominated by loss followed by a second phase dominated by acceleration. At lower energies, the radiation belt seed population of electrons (μ=150 MeV/G) shows no evidence of loss but rather a net enhancement during storms. Further, we investigate the dependence of electron dynamics as a function of the second adiabatic invariant, K. These results demonstrate a global coherency in the dynamics of the source, relativistic and ultra-relativistic electron populations as function of the second adiabatic invariant K. This analysis demonstrates two key aspects of storm-time radiation belt electron dynamics. First, the radiation belt responds repeatably to solar wind driving during geomagnetic storms. Second, the response of the radiation belt is energy dependent, relativistic electrons behaving differently than lower energy seed electrons. These results have important implications in radiation belt research. In particular

  2. 47 CFR 15.202 - Certified operating frequency range.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Certified operating frequency range. 15.202 Section 15.202 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators § 15.202 Certified operating frequency range. Client devices that operate in a master...

  3. Time-Reversal Based Range Extension Technique for Ultra-Wideband (UWB) Sensors and Applications in Tactical Communications and Networking

    DTIC Science & Technology

    2009-10-16

    than 2 GHz ( HF , VHF, UHF and L bands), the rather low IF frequency image rejection is difficult to implement and image rejection mixer techniques are...energy of the signal in the integration window at the receiver should be maximized [4] [5] [6] [7]. For navigation and geolocation , the ultra short...vectors h/, hi/ hyv/, hf = [hjf h T f • • h T Nf] T (3.25) 20 CHAPTER 3. THEORETICAL WORK (U \\ -j \\hnf(fi-i)\\,i = l ,,,,. (h"^-lv^|/l„/(/i-i

  4. Radiation absorbed dose estimates for 18F-BPA PET.

    PubMed

    Kono, Yuzuru; Kurihara, Hiroaki; Kawamoto, Hiroshi; Yasui, Naoko; Honda, Naoki; Igaki, Hiroshi; Itami, Jun

    2017-09-01

    Background Boron neutron capture therapy (BNCT) is a molecular radiation therapy approach based on the 10 B (n, α) 7 Li nuclear reaction in cancer cells. In BNCT, delivery of 10 B in the form of 4-borono-phenylalanine conjugated with fructose (BPA-fr) to the cancer cells is important. The PET tracer 4-borono-2-18F-fluoro-phenylalanine (FBPA) has been used to predict the accumulation of BPA-fr before BNCT. Purpose To determine the biodistribution and dosimetric parameters in 18F-BPA PET/CT studies. Material and Methods Human biokinetic data were obtained during clinical 18F-BPA PET studies between February and June 2015 at one institution. Nine consecutive patients were studied prospectively. The internal radiation dose was calculated on the basis of radioactivity data from blood, urine, and normal tissue of the heart, liver, spleen, kidney, and other parts of the body at each time point using OLINDA/EXM1.1 program. We compared our calculations with published 18F-FDG data. Results Adult patients (3 men, 3 women; age range, 28-68 years) had significantly smaller absorbed doses than pediatric patients (3 patients; age range, 5-12 years) ( P = 0.003). The mean effective dose was 57% lower in adult patients compared with pediatric patients. Mean effective doses for 18F-BPA were 25% lower than those for 18F-FDG presented in International Commission of Radiation Protection (ICRP) publication 106. Conclusion We found significant differences in organ absorbed doses for 18F-BPA against those for 18F-FDG presented in ICRP publication 106. Mean effective doses for 18F-BPA were smaller than those for 18F-FDG in the publication by 0.5-38% (mean difference, 25%).

  5. Predicted levels of human radiation tolerance extrapolated from clinical studies of radiation effects

    NASA Technical Reports Server (NTRS)

    Lushbaugh, C. C.

    1972-01-01

    Results of clinical studies of radiation effects on man are used to evaluate space radiation hazards encountered during manned space travel. Considered are effects of photons as well as of mixed fission neutrons and gamma irradiations in establishing body radiosensitivity and tolerance levels. Upper and lower dose-response-time relations for acute radiation syndromes in patients indicate that man is more than sufficiently radioresistant to make the risks of an early radiation effect during one short space mission intangibly small in relation to the other nonradiation risks involved.

  6. Photoluminescence emission spectra of Makrofol® DE 1-1 upon irradiation with ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M.; Aydarous, Abdulkadir

    Photoluminescence (PL) emission spectra of Makrofol® DE 1-1 (bisphenol-A based polycarbonate) upon irradiation with ultraviolet radiation of different wavelengths were investigated. The absorption-and attenuation coefficient measurements revealed that the Makrofol® DE 1-1 is characterized by high absorbance in the energy range 6.53-4.43 eV but for a lower energy than 4.43 eV, it is approximately transparent. Makrofol® DE 1-1 samples were irradiated with ultraviolet radiation of wavelength in the range from 250 (4.28 eV) to 400 (3.10 eV) nm in step of 10 nm and the corresponding photoluminescence (PL) emission spectra were measured with a spectrofluorometer. It is found that the integrated counts and the peak height of the photoluminescence emission (PL) bands are strongly correlated with the ultraviolet radiation wavelength. They are increased at the ultraviolet radiation wavelength 280 nm and have maximum at 290 nm, thereafter they decrease and diminish at 360 nm of ultraviolet wavelength. The position of the PL emission band peak was red shifted starting from 300 nm, which increased with the increase the ultraviolet radiation wavelength. The PL bandwidth increases linearly with the increase of the ultraviolet radiation wavelength. When Makrofol® DE 1-1 is irradiated with ultraviolet radiation of short wavelength (UVC), the photoluminescence emission spectra peaks also occur in the UVC but of a relatively longer wavelength. The current new findings should be considered carefully when using Makrofol® DE 1-1 in medical applications related to ultraviolet radiation.

  7. Profiling Transboundary Aerosols over Taiwan and Assessing Their Radiative Effects

    NASA Technical Reports Server (NTRS)

    Wang, Sheng-Hsiang; Lin, Neng-Huei; Chou, Ming-Dah; Tsay, Si-Chee; Welton, Ellsworth J.; Hsu, N. Christina; Giles, David M.; Liu, Gin-Rong; Holben, Brent N.

    2010-01-01

    A synergistic process was developed to study the vertical distributions of aerosol optical properties and their effects on solar heating using data retrieved from ground-based radiation measurements and radiative transfer simulations. Continuous MPLNET and AERONET observations were made at a rural site in northern Taiwan from 2005 to 2007. The aerosol vertical extinction profiles retrieved from ground-based lidar measurements were categorized into near-surface, mixed, and two-layer transport types, representing 76% of all cases. Fine-mode (Angstrom exponent, alpha, approx.1.4) and moderate-absorbing aerosols (columnar single-scattering albedo approx.0.93, asymmetry factor approx.0.73 at 440 nm wavelength) dominated in this region. The column-integrated aerosol optical thickness at 500 nm (tau(sub 500nm)) ranges from 0.1 to 0.6 for the near-surface transport type, but can be doubled in the presence of upper-layer aerosol transport. We utilize aerosol radiative efficiency (ARE; the impact on solar radiation per unit change of tau(sub 500nm)) to quantify the radiative effects due to different vertical distributions of aerosols. Our results show that the ARE at the top-of-atmosphere (-23 W/ sq m) is weakly sensitive to aerosol vertical distributions confined in the lower troposphere. On the other hand, values of the ARE at the surface are -44.3, -40.6 and -39.7 W/sq m 38 for near-surface, mixed, and two-layer transport types, respectively. Further analyses show that the impact of aerosols on the vertical profile of solar heating is larger for the near-surface transport type than that of two-layer transport type. The impacts of aerosol on the surface radiation and the solar heating profiles have implications for the stability and convection in the lower troposphere.

  8. Human radiation tolerance

    NASA Technical Reports Server (NTRS)

    Lushbaugh, C. C.

    1974-01-01

    The acute radiation syndrome in man is clinically bounded by death at high dose levels and by the prodromal syndrome of untoward physiological effects at minimal levels of clinically effective exposure. As in lower animals, man experiences principally three acute modes of death from radiation exposure (Bond et al., 1965). These are known collectively as the lethal radiation syndromes: central nervous system death, gastrointestinal death, and hematopoietic death. The effect of multiple exposure on lethality, the effect of multiple exposure on hematopoietic recovery, and quantitative aspects of cell and tissue repair are discussed.

  9. Edison and radiatively-cooled IR space observatories

    NASA Technical Reports Server (NTRS)

    Thronson, H. A.; Hawarden, T. G.; Bally, J.; Burnell, S. J. Bell; Penny, A. J.; Rapp, D.

    1993-01-01

    Radiative cooling of IR space telescopes is an alternative to embedding within massive cryostats and should offer advantages for future missions, including longer life, larger aperture for a fixed spacecraft size, lower cost due to less complex engineering, and easier ground handling. Relatively simple analyses of conventional designs show that it is possible to achieve telescope temperatures in the range of 25 to 40 K at distances from the sun of about 1 AU. Lower temperatures may be possible with 'open' designs or distant orbits. At approximately 25 K, an observatory will be limited by the celestial thermal background in the near- and mid-IR and by the confusion limit in the far-IR. We outline here our concept for a moderate aperture (approximately 1.75 m; Ariane 4 or Atlas launch) international space observatory for the next decade.

  10. Tolerance to Gamma Radiation in the Marine Heterotardigrade, Echiniscoides sigismundi.

    PubMed

    Jönsson, K Ingemar; Hygum, Thomas L; Andersen, Kasper N; Clausen, Lykke K B; Møbjerg, Nadja

    2016-01-01

    Tardigrades belong to the most radiation tolerant animals on Earth, as documented by a number of studies using both low-LET and high-LET ionizing radiation. Previous studies have focused on semi-terrestrial species, which are also very tolerant to desiccation. The predominant view on the reason for the high radiation tolerance among these semi-terrestrial species is that it relies on molecular mechanisms that evolved as adaptations for surviving dehydration. In this study we report the first study on radiation tolerance in a marine tardigrade, Echiniscoides sigismundi. Adult specimens in the hydrated active state were exposed to doses of gamma radiation from 100 to 5000 Gy. The results showed little effect of radiation at 100 and 500 Gy but a clear decline in activity at 1000 Gy and higher. The highest dose survived was 4000 Gy, at which ca. 8% of the tardigrades were active 7 days after irradiation. LD50 in the first 7 days after irradiation was in the range of 1100-1600 Gy. Compared to previous studies on radiation tolerance in semi-terrestrial and limnic tardigrades, Echiniscoides sigismundi seems to have a lower tolerance. However, the species still fits into the category of tardigrades that have high tolerance to both desiccation and radiation, supporting the hypothesis that radiation tolerance is a by-product of adaptive mechanisms to survive desiccation. More studies on radiation tolerance in tardigrade species adapted to permanently wet conditions, both marine and freshwater, are needed to obtain a more comprehensive picture of the patterns of radiation tolerance.

  11. Tolerance to Gamma Radiation in the Marine Heterotardigrade, Echiniscoides sigismundi

    PubMed Central

    Hygum, Thomas L.; Andersen, Kasper N.; Clausen, Lykke K. B.; Møbjerg, Nadja

    2016-01-01

    Tardigrades belong to the most radiation tolerant animals on Earth, as documented by a number of studies using both low-LET and high-LET ionizing radiation. Previous studies have focused on semi-terrestrial species, which are also very tolerant to desiccation. The predominant view on the reason for the high radiation tolerance among these semi-terrestrial species is that it relies on molecular mechanisms that evolved as adaptations for surviving dehydration. In this study we report the first study on radiation tolerance in a marine tardigrade, Echiniscoides sigismundi. Adult specimens in the hydrated active state were exposed to doses of gamma radiation from 100 to 5000 Gy. The results showed little effect of radiation at 100 and 500 Gy but a clear decline in activity at 1000 Gy and higher. The highest dose survived was 4000 Gy, at which ca. 8% of the tardigrades were active 7 days after irradiation. LD50 in the first 7 days after irradiation was in the range of 1100–1600 Gy. Compared to previous studies on radiation tolerance in semi-terrestrial and limnic tardigrades, Echiniscoides sigismundi seems to have a lower tolerance. However, the species still fits into the category of tardigrades that have high tolerance to both desiccation and radiation, supporting the hypothesis that radiation tolerance is a by-product of adaptive mechanisms to survive desiccation. More studies on radiation tolerance in tardigrade species adapted to permanently wet conditions, both marine and freshwater, are needed to obtain a more comprehensive picture of the patterns of radiation tolerance. PMID:27997621

  12. Ultra-High-Field Magnetic Resonance Spectroscopy in Psychiatry.

    PubMed

    Godlewska, Beata R; Clare, Stuart; Cowen, Philip J; Emir, Uzay E

    2017-01-01

    The advantages of ultra-high-field (UHF ≥ 7T) MR have been demonstrated in a variety of MR acquisition modalities. Magnetic resonance spectroscopy (MRS) can particularly benefit from substantial gains in signal-to-noise ratio (SNR) and spectral resolution at UHF, enabling the quantification of numerous metabolites, including glutamate, glutamine, glutathione, and γ-aminobutyric acid that are relevant to psychiatric disorders. The aim of this review is to give an overview about the advantages and advances of UHF MRS and its application to psychiatric disorders. In order to provide a practical guide for potential applications of MRS at UHF, a literature review is given, surveying advantages and disadvantages of MRS at UHF. Key concepts, emerging technologies, practical considerations, and applications of UHF MRS are provided. Second, the strength of UHF MRS is demonstrated using some examples of its application in psychiatric disorders.

  13. Ultra-High-Field Magnetic Resonance Spectroscopy in Psychiatry

    PubMed Central

    Godlewska, Beata R.; Clare, Stuart; Cowen, Philip J.; Emir, Uzay E.

    2017-01-01

    The advantages of ultra-high-field (UHF ≥ 7T) MR have been demonstrated in a variety of MR acquisition modalities. Magnetic resonance spectroscopy (MRS) can particularly benefit from substantial gains in signal-to-noise ratio (SNR) and spectral resolution at UHF, enabling the quantification of numerous metabolites, including glutamate, glutamine, glutathione, and γ-aminobutyric acid that are relevant to psychiatric disorders. The aim of this review is to give an overview about the advantages and advances of UHF MRS and its application to psychiatric disorders. In order to provide a practical guide for potential applications of MRS at UHF, a literature review is given, surveying advantages and disadvantages of MRS at UHF. Key concepts, emerging technologies, practical considerations, and applications of UHF MRS are provided. Second, the strength of UHF MRS is demonstrated using some examples of its application in psychiatric disorders. PMID:28744229

  14. The Concentration Of Tritium In Urine And Internal Radiation Dose Estimation Of PTNBR Radiation Workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tjahaja, Poppy Intan; Sukmabuana, Putu; Aisyah, Neneng Nur

    2010-12-23

    The operation of Triga 2000 reactor in Nuclear Technology Center for Materials and Radiometry (PTNBR BATAN) normally produce tritium radionuclide which is the activation product of deuterium atom in reactor primary cooling water. According to previous monitoring, tritium was detected with the concentration of 8.236{+-}0.677 kBq/L and 1.704{+-}0.046 Bq/L in the primary cooling water and in reactor hall air, respectively. The tritium in reactor hall air chronically can be inhaled by the workers. In this research, tritium content in radiation workers' urine was determined to estimate the internal radiation doses received by the workers. About 50-100 mL of urine samplesmore » were collected from 48 PTNBR workers that is classified as 24 radiation workers and 24 administration staffs as a control. Urine samples of 25 mL were then prepared by active charcoal and KMnO{sub 4} addition and followed with complete distillation. The 2 mL of distillate was added with 13 mL scintillator, shaked vigorously and remained in cool and dark condition for about 24 hours. The tritium in the samples was then measured using liquid scintillation counter (LSC) for 1 hour. From the measurement results it was obtained that the tritium concentration in the urine of radiation workers were in the range of not detected and 5.191 Bq/mL, whereas in the administration staffs the concentration were between not detected and 4.607 Bq/mL. Internally radiation doses were calculated using the tritium concentration data, and it was found the averages about 0.602 {mu}Sv/year and 0.532 {mu}Sv/year for radiation workers and administration staffs, respectively. The doses received by the workers were lower than that of the permissible doses from tritium, i.e. 40 {mu}Sv/year.« less

  15. Dynamics of Quasi-Electrostatic Whistler waves in Earth's Radiation belts

    NASA Astrophysics Data System (ADS)

    Goyal, R.; Sharma, R. P.; Gupta, D. N.

    2017-12-01

    A numerical model is proposed to study the dynamics of high amplitude quasi-electrostatic whistler waves propagating near resonance cone angle and their interaction with finite frequency kinetic Alfvén waves (KAWs) in Earth's radiation belts. The quasi-electrostatic character of whistlers is narrated by dynamics of wave propagating near resonance cone. A high amplitude whistler wave packet is obtained using the present analysis which has also been observed by S/WAVES instrument onboard STEREO. The numerical simulation technique employed to study the dynamics, leads to localization (channelling) of waves as well as turbulent spectrum suggesting the transfer of wave energy over a range of frequencies. The turbulent spectrum also indicates the presence of quasi-electrostatic whistlers and density fluctuations associated with KAW in radiation belts plasma. The ponderomotive force of pump quasi-electrostatic whistlers (high frequency) is used to excite relatively much lower frequency waves (KAWs). The wave localization and steeper spectra could be responsible for particle energization or heating in radiation belts.

  16. Kinetic and radiative power from optically thin accretion flows

    NASA Astrophysics Data System (ADS)

    Sądowski, Aleksander; Gaspari, Massimo

    2017-06-01

    We perform a set of general relativistic, radiative, magneto-hydrodynamical simulations (GR-RMHD) to study the transition from radiatively inefficient to efficient state of accretion on a non-rotating black hole. We study ion to electron temperature ratios ranging from TI/Te = 10 to 100, and simulate flows corresponding to accretion rates as low as 10^{-6}\\dot{M}_Edd, and as high as 10^{-2}\\dot{M}_Edd. We have found that the radiative output of accretion flows increases with accretion rate, and that the transition occurs earlier for hotter electrons (lower TI/Te ratio). At the same time, the mechanical efficiency hardly changes and accounts to ≈3 per cent of the accreted rest mass energy flux, even at the highest simulated accretion rates. This is particularly important for the mechanical active galactic nuclei (AGN) feedback regulating massive galaxies, groups and clusters. Comparison with recent observations of radiative and mechanical AGN luminosities suggests that the ion to electron temperature ratio in the inner, collisionless accretion flow should fall within 10 < TI/Te < 30, I.e. the electron temperature should be several percent of the ion temperature.

  17. The unrestricted local properties: application in nanoelectronics and for predicting radicals reactivity.

    PubMed

    Dral, Pavlo O

    2014-03-01

    The local electron affinity (EA(L)) and the local ionization energy (IE(L)) are successfully used for predicting properties of closed-shell species for drug design and for nanoelectronics. Here the respective unrestricted Hartree-Fock variants of EA(L) and IE(L), i.e., the unrestricted local electron affinity (UHF-EA(L)) and ionization energy (UHF-IE(L)), have been shown to be useful for predicting properties of open-shell species. UHF-EA(L) and UHF-IE(L) have been applied for explaining unique electronic properties of an exemplary nanomaterial carbon peapod. It is also demonstrated that UHF-EA(L) is useful for predicting and better understanding reactivity of radicals related to alkanes activation.

  18. Radiative decay lifetime of neutrinos and the evolution of the universe after the recombination era

    NASA Astrophysics Data System (ADS)

    Rephaeli, Yoel; Szalay, Alexander S.

    1981-10-01

    If the radiative decay lifetime τ of massive neutrinos is less than 1025 s, but exceeding present constraints, the epoch of neutral hydrogen in the history of the universe could have been short or altogether absent. Erasure of small scale fluctuations in the cosmic microwave background radiation and other consequences of such lifetimes are discussed. From observations of neutral hydrogen in the nearby galaxy M 31 a lower limit τ >= 1024 s is obtained (for neutrino masses in the range 30 eV <= m <= 150 eV). Permanent address: Department of Atomic Physics, R. Eotvos University, 1088 Budapest, Hungary.

  19. Effective mie-scattering and CO2 absorption in the dust-laden Martian atmosphere and its impact on radiative-convective temperature changes in the lower scale heights

    NASA Technical Reports Server (NTRS)

    Pallmann, A. J.

    1976-01-01

    A time dependent computer model of radiative-convective-conductive heat transfer in the Martian ground-atmosphere system was refined by incorporating an intermediate line strength CO2 band absorption which together with the strong-and weak-line approximation closely simulated the radiative transmission through a vertically inhomogeneous stratification. About 33,000 CO2 lines were processed to cover the spectral range of solar and planetary radiation. Absorption by silicate dust particulates, was taken into consideration to study its impact on the ground-atmosphere temperature field as a function of time. This model was subsequently attuned to IRIS, IR-radiometric and S-band occultation data. Satisfactory simulations of the measured IRIS spectra were accomplished for the dust-free condition. In the case of variable dust loads, the simulations were sufficiently fair so that some inferences into the effect of dust on temperature were justified.

  20. Circular polarization of synchrotron radiation in high magnetic fields

    NASA Astrophysics Data System (ADS)

    de Búrca, D.; Shearer, A.

    2015-06-01

    The general model for incoherent synchrotron radiation has long been known, with the first theory being published by Westfold in 1959 and continued by Westfold and Legg in 1968. When this model was first developed, it was applied to radiation from Jupiter, with a magnetic field of ≈1G. Pulsars have a magnetic field of ≈1012 G. The Westfold and Legg model predict a circular polarization which is proportional to the square root of the magnetic field, and consequently predicts greater than 100 per cent circular polarization at high magnetic fields. Here a new model is derived based upon a more detailed analysis of the pitch angle distribution. This model is concerned with the frequency range f_{B_0}/γ ≪ f≲ f_{B_0}, noting that f_{B_0} = 2.7× 10^7B, which for a relatively high magnetic field (˜106-108 G) leaves emission in the optical range. This is much lower than the expected frequency peak for a mono-energetic particle of 0.293eB/4π m_e cγ ^2. We predict the circular polarization peaks around 107G in the optical regime with the radiation almost 15 per cent circularly polarized. The linear polarization changes from about 60 to 80 per cent in the same regime. We examine implications of this for pulsar studies.

  1. Skeletal sequelae of radiation therapy for malignant childhood tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, M.S.; Robertson, W.W. Jr.; Rate, W.

    1990-02-01

    One hundred forty-three patients who received radiation therapy for childhood tumors, and survived to the age of skeletal maturity, were studied by retrospective review of oncology records and roentgenograms. Diagnoses for the patients were the following: Hodgkin's lymphoma (44), Wilms's tumor (30), acute lymphocytic leukemia (26), non-Hodgkin's lymphoma (18), Ewing's sarcoma (nine), rhabdomyosarcoma (six), neuroblastoma (six), and others (four). Age at the follow-up examination averaged 18 years (range, 14-28 years). Average length of follow-up study was 9.9 years (range, two to 18 years). Asymmetry of the chest and ribs was seen in 51 (36%) of these children. Fifty (35%) hadmore » scoliosis; 14 had kyphosis. In two children, the scoliosis was treated with a brace, while one developed significant kyphosing scoliosis after laminectomy and had spinal fusion. Twenty-three (16%) patients complained of significant pain at the radiation sites. Twelve of the patients developed leg-length inequality; eight of those were symptomatic. Three patients developed second primary tumors. Currently, the incidence of significant skeletal sequelae is lower and the manifestations are less severe than reported in the years from 1940 to 1970. The reduction in skeletal complications may be attributed to shielding of growth centers, symmetric field selection, decreased total radiation doses, and sequence changes in chemotherapy.« less

  2. Wireless wearable range-of-motion sensor system for upper and lower extremity joints: a validation study.

    PubMed

    Kumar, Yogaprakash; Yen, Shih-Cheng; Tay, Arthur; Lee, Wangwei; Gao, Fan; Zhao, Ziyi; Li, Jingze; Hon, Benjamin; Tian-Ma Xu, Tim; Cheong, Angela; Koh, Karen; Ng, Yee-Sien; Chew, Effie; Koh, Gerald

    2015-02-01

    Range-of-motion (ROM) assessment is a critical assessment tool during the rehabilitation process. The conventional approach uses the goniometer which remains the most reliable instrument but it is usually time-consuming and subject to both intra- and inter-therapist measurement errors. An automated wireless wearable sensor system for the measurement of ROM has previously been developed by the current authors. Presented is the correlation and accuracy of the automated wireless wearable sensor system against a goniometer in measuring ROM in the major joints of upper (UEs) and lower extremities (LEs) in 19 healthy subjects and 20 newly disabled inpatients through intra (same) subject comparison of ROM assessments between the sensor system against goniometer measurements by physical therapists. In healthy subjects, ROM measurements using the new sensor system were highly correlated with goniometry, with 95% of differences < 20° and 10° for most movements in major joints of UE and LE, respectively. Among inpatients undergoing rehabilitation, ROM measurements using the new sensor system were also highly correlated with goniometry, with 95% of the differences being < 20° and 25° for most movements in the major joints of UE and LE, respectively.

  3. Impact of radiation frequency, precipitation radiative forcing, and radiation column aggregation on convection-permitting West African monsoon simulations

    NASA Astrophysics Data System (ADS)

    Matsui, Toshi; Zhang, Sara Q.; Lang, Stephen E.; Tao, Wei-Kuo; Ichoku, Charles; Peters-Lidard, Christa D.

    2018-03-01

    In this study, the impact of different configurations of the Goddard radiation scheme on convection-permitting simulations (CPSs) of the West African monsoon (WAM) is investigated using the NASA-Unified WRF (NU-WRF). These CPSs had 3 km grid spacing to explicitly simulate the evolution of mesoscale convective systems (MCSs) and their interaction with radiative processes across the WAM domain and were able to reproduce realistic precipitation and energy budget fields when compared with satellite data, although low clouds were overestimated. Sensitivity experiments reveal that (1) lowering the radiation update frequency (i.e., longer radiation update time) increases precipitation and cloudiness over the WAM region by enhancing the monsoon circulation, (2) deactivation of precipitation radiative forcing suppresses cloudiness over the WAM region, and (3) aggregating radiation columns reduces low clouds over ocean and tropical West Africa. The changes in radiation configuration immediately modulate the radiative heating and low clouds over ocean. On the 2nd day of the simulations, patterns of latitudinal air temperature profiles were already similar to the patterns of monthly composites for all radiation sensitivity experiments. Low cloud maintenance within the WAM system is tightly connected with radiation processes; thus, proper coupling between microphysics and radiation processes must be established for each modeling framework.

  4. A Three Degrees of Freedom Test-Bed for Nanosatellite and CubeSat Attitude Dynamics, Determination, and Control

    DTIC Science & Technology

    2009-12-01

    Tactical Imaging Nano-sat Yielding Small-Cost Operations and Persistent Earth-coverage UFO UHF Follow On UHF Ultra-High Frequency USCG United...replaced by UHF Follow On ( UFO ) satellites in the 1990s. The UFO satellites are being updated and scheduled for replacement by the Mobile User

  5. Simulation Comparisons of Three Different Meander Line Dipoles

    DTIC Science & Technology

    2015-01-01

    Paez C I. Design formulas for a meandered dipole. IEEE Xplore Digital Library, 2014: n. pag. Web. 2 September 2014. 2. Nguyen, VH, Phan, HP, Hoang...MH. Improving radiation characteristics of UHF RFID antennas by zigzag structures. IEEE Xplore Digital Library, 2014: n. pag. Web. 2 September 2014...geometry-based, frequency-independent lumped element model. IEEE Xplore Digital Library, 2014: n. pag. Web. 2 September 2014. 5. Olaode OO, Palmer WD

  6. Long-term outcome of patients treated by radiation therapy alone for salivary gland carcinomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Allen M.; Bucci, M. Kara; Quivey, Jeanne M.

    2006-11-15

    Purpose: To review a single-institution experience with the management of salivary gland cancers treated by radiation alone. Methods and Materials: Between 1960 and 2004, 45 patients with newly diagnosed salivary gland carcinomas were treated with definitive radiation to a median dose of 66 Gy (range, 57-74 Gy). Distribution of T-stage was: 24% T1, 18% T2, 31% T3, and 27% T4. Histology was: 14 mucoepidermoid (31%), 10 adenocarcinoma (22%), 8 adenoid cystic (18%), 4 undifferentiated (9%), 4 acinic (9%), 2 malignant mixed (4%), 2 squamous (4%), and 1 salivary duct carcinoma (2%). No patient had clinical or pathologic evidence of lymphmore » node disease. Median follow-up was 101 months (range, 3-285 months). Results: The 5-year and 10-year rate estimates of local control were 70% and 57%, respectively. A Cox proportional hazard model identified T3-4 disease (p = 0.004) and radiation dose lower than 66 Gy (p = 0.001) as independent predictors of local recurrence. The 10-year overall survival and distant metastasis-free rates were 46% and 67%, respectively. Conclusion: Radiation therapy alone is a reasonable alternative to surgery in the definitive management of salivary gland cancers and results in long-term survival in a significant proportion of patients. Radiation dose in excess of 66 Gy is recommended.« less

  7. Multi-MGy Radiation Hardened Camera for Nuclear Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girard, Sylvain; Boukenter, Aziz; Ouerdane, Youcef

    There is an increasing interest in developing cameras for surveillance systems to monitor nuclear facilities or nuclear waste storages. Particularly, for today's and the next generation of nuclear facilities increasing safety requirements consecutive to Fukushima Daiichi's disaster have to be considered. For some applications, radiation tolerance needs to overcome doses in the MGy(SiO{sub 2}) range whereas the most tolerant commercial or prototypes products based on solid state image sensors withstand doses up to few kGy. The objective of this work is to present the radiation hardening strategy developed by our research groups to enhance the tolerance to ionizing radiations ofmore » the various subparts of these imaging systems by working simultaneously at the component and system design levels. Developing radiation-hardened camera implies to combine several radiation-hardening strategies. In our case, we decided not to use the simplest one, the shielding approach. This approach is efficient but limits the camera miniaturization and is not compatible with its future integration in remote-handling or robotic systems. Then, the hardening-by-component strategy appears mandatory to avoid the failure of one of the camera subparts at doses lower than the MGy. Concerning the image sensor itself, the used technology is a CMOS Image Sensor (CIS) designed by ISAE team with custom pixel designs used to mitigate the total ionizing dose (TID) effects that occur well below the MGy range in classical image sensors (e.g. Charge Coupled Devices (CCD), Charge Injection Devices (CID) and classical Active Pixel Sensors (APS)), such as the complete loss of functionality, the dark current increase and the gain drop. We'll present at the conference a comparative study between these radiation-hardened pixel radiation responses with respect to conventional ones, demonstrating the efficiency of the choices made. The targeted strategy to develop the complete radiation hard camera

  8. [Passive ranging of infrared target using oxygen A-band and Elsasser model].

    PubMed

    Li, Jin-Hua; Wang, Zhao-Ba; Wang Zhi

    2014-09-01

    Passive ranging method of short range and single band was developed based on target radiation and attenuation characteristic of oxygen spectrum absorption. The relation between transmittance of oxygen A band and range of measured target was analyzed. Radiation strength distribution of measured target can be obtained according to the distribution law of absorption coefficient with environmental parameters. Passive ranging mathematical model of short ranges was established using Elsasser model with Lorentz line shape based on the computational methods of band average transmittance and high-temperature gas radiation narrowband model. The range of measured object was obtained using transmittance fitting with test data calculation and theoretical model. Besides, ranging precision was corrected considering the influence of oxygen absorption with enviromental parameter. The ranging experiment platform was established. The source was a 10 watt black body, and a grating spectrometer with 17 cm(-1) resolution was used. In order to improve the light receiving efficiency, light input was collected with 23 mm calibre telescope. The test data was processed for different range in 200 m. The results show that the transmittance accuracy was better than 2.18% in short range compared to the test data with predicted value in the same conditions.

  9. Network Management System for Tactical Mobile Ad Hoc Network Segments

    DTIC Science & Technology

    2011-09-01

    Protocol UFO UHF Follow-On UHF Ultra High Frequency USB Universal Serial Bus VHF Very High Frequency VIRT Valuable Information at the Right Time...military satellite system known as the UHF Follow-on system ( UFO ) only provides capacity for 600 concurrent users. DoD users also have commercial

  10. AGN radiative feedback in dusty quasar populations

    NASA Astrophysics Data System (ADS)

    Ishibashi, W.; Banerji, M.; Fabian, A. C.

    2017-08-01

    New populations of hyper-luminous, dust-obscured quasars have been recently discovered around the peak epoch of galaxy formation (z ˜ 2-3), in addition to similar sources found at lower redshifts. Such dusty quasars are often interpreted as sources 'in transition', from dust-enshrouded starbursts to unobscured luminous quasars, along the evolutionary sequence. Here we consider the role of the active galactic nucleus (AGN) radiative feedback, driven by radiation pressure on dust, in high-luminosity, dust-obscured sources. We analyse how the radiation pressure-driven dusty shell models, with different shell mass configurations, may be applied to the different populations of dusty quasars reported in recent observations. We find that expanding shells, sweeping up matter from the surrounding environment, may account for prolonged obscuration in dusty quasars, e.g. for a central luminosity of L ˜ 1047 erg s-1, a typical obscured phase (with extinction in the range AV ˜ 1-10 mag) may last a few ˜106 yr. On the other hand, fixed-mass shells, coupled with high dust-to-gas ratios, may explain the extreme outflows recently discovered in red quasars at high redshifts. We discuss how the interaction between AGN radiative feedback and the ambient medium at different temporal stages in the evolutionary sequence may contribute to shape the observational appearance of dusty quasar populations.

  11. Effect of 935-MHz phone-simulating electromagnetic radiation on endometrial glandular cells during mouse embryo implantation.

    PubMed

    Liu, Wenhui; Zheng, Xinmin; Qu, Zaiqing; Zhang, Ming; Zhou, Chun; Ma, Ling; Zhang, Yuanzhen

    2012-10-01

    This study examined the impact of 935MHz phone-simulating electromagnetic radiation on embryo implantation of pregnant mice. Each 7-week-old Kunming (KM) female white mouse was set up with a KM male mouse in a single cage for mating overnight after induction of ovulation. In the first three days of pregnancy, the pregnant mice was exposed to electromagnetic radiation at low-intensity (150 μW/cm(2), ranging from 130 to 200 μW/cm(2), for 2- or 4-h exposure every day), mid-intensity (570 μW/cm(2), ranging from 400 to 700 μW/cm(2), for 2- or 4-h exposure every day) or high-intensity (1400 μW/cm(2), ranging from 1200 to 1500 μW/cm(2), for 2- or 4-h exposure every day), respectively. On the day 4 after gestation (known as the window of murine embryo implantation), the endometrium was collected and the suspension of endometrial glandular cells was made. Laser scanning microscopy was employed to detect the mitochondrial membrane potential and intracellular calcium ion concentration. In high-intensity, 2- and 4-h groups, mitochondrial membrane potential of endometrial glandular cells was significantly lower than that in the normal control group (P<0.05). The calcium ion concentration was increased in low-intensity 2-h group but decreased in high-intensity 4-h group as compared with the normal control group (P<0.05). However, no significant difference was found in mitochondrial membrane potential of endometrial glandular cells between low- or mid-intensity groups and the normal control group, indicating stronger intensity of the electromagnetic radiation and longer length of the radiation are required to inflict a remarkable functional and structural damage to mitochondrial membrane. Our data demonstrated that electromagnetic radiation with a 935-MHz phone for 4 h conspicuously decreased mitochondrial membrane potential and lowered the calcium ion concentration of endometrial glandular cells. It is suggested that high-intensity electromagnetic radiation is very likely

  12. Helical prospective ECG-gating in cardiac computed tomography: radiation dose and image quality.

    PubMed

    DeFrance, Tony; Dubois, Eric; Gebow, Dan; Ramirez, Alex; Wolf, Florian; Feuchtner, Gudrun M

    2010-01-01

    Helical prospective ECG-gating (pECG) may reduce radiation dose while maintaining the advantages of helical image acquisition for coronary computed tomography angiography (CCTA). Aim of this study was to evaluate helical pECG-gating in CCTA in regards to radiation dose and image quality. 86 patients undergoing 64-multislice CCTA were enrolled. pECG-gating was performed in patients with regular heart rates (HR) < 65 bpm; with the gating window set at 70-85% of the cardiac cycle. All patients received oral and some received additional IV beta-blockers to achieve HR < 65 bpm. In patients with higher or irregular HR, or for functional evaluation, retrospective ECG-gating (rECG) was performed. The average X-ray dose was estimated from the dose length product. Each arterial segment (modified AHA/ACC 17-segment-model) was evaluated on a 4-point image quality scale (4 = excellent; 3 = good, mild artefact; 2 = acceptable, some artefact, 1 = uninterpretable). pECG-gating was applied in 57 patients, rECG-gating in 29 patients. There was no difference in age, gender, body mass index, scan length or tube output settings between both groups. HR in the pECG-group was 54.7 bpm (range, 43-64). The effective radiation dose was significantly lower for patients scanned with pECG-gating with mean 6.9 mSv +/- 1.9 (range, 2.9-10.7) compared to rECG with 16.9 mSv +/- 4.1 (P < 0.001), resulting in a mean dose reduction of 59.2%. For pECG-gating, out of 969 coronary segments, 99.3% were interpretable. Image quality was excellent in 90.2%, good in 7.8%, acceptable in 1.3% and non-interpretable in 0.7% (n = 7 segments). For patients with steady heart rates <65 bpm, helical prospective ECG-gating can significantly lower the radiation dose while maintaining high image quality.

  13. Stable room-temperature LiF:F2+* tunable color-center laser for the 830-1060-nm spectral range pumped by second-harmonic radiation from a neodymium laser

    NASA Astrophysics Data System (ADS)

    Ter-Mikirtychev, V. V.

    1995-09-01

    Simultaneous photostability and thermostability of a room-temperature LiF:F2+ * tunable color-center laser, with an operating range over 830-1060 nm, pumped by second-harmonic radiation of a YAG:Nd3+ laser with a 532-nm wavelength has been achieved. The main lasing characteristics of the obtained LiF:F2+* laser have been measured. Twenty-five percent real efficiency in a nonselective resonator cavity and 15% real efficiency in a selective resonator cavity have been obtained. The stable LiF:F2 +* laser operates at a 1-100-Hz pulse-repetition rate with a 15-ns pulse duration, a 1-1.5-cm-1 narrow-band oscillation bandwidth, and divergency of better than 6 \\times 10-4. Doubling the fundamental frequencies of F2+ * oscillation made it possible to obtain stable blue-green tunable radiation over the 415-530-nm range.

  14. Elevated Aerosol Layers and Their Radiative Impact over Kanpur During Monsoon Onset Period

    NASA Technical Reports Server (NTRS)

    Sarangi, Chandan; Tripathi, S. N.; Mishra, A. K.; Welton, E. J.

    2016-01-01

    Accurate information about aerosol vertical distribution is needed to reduce uncertainties in aerosol radiative forcing and its effect on atmospheric dynamics. The present study deals with synergistic analyses of aerosol vertical distribution and aerosol optical depth (AOD) with meteorological variables using multisatellite and ground-based remote sensors over Kanpur in central Indo-Gangetic Plain (IGP). Micro-Pulse Lidar Network-derived aerosol vertical extinction (sigma) profiles are analyzed to quantify the interannual and daytime variations during monsoon onset period (May-June) for 2009-2011. The mean aerosol profile is broadly categorized into two layers viz., a surface layer (SL) extending up to 1.5 km (where sigma decreased exponentially with height) and an elevated aerosol layer (EAL) extending between 1.5 and 5.5 km. The increase in total columnar aerosol loading is associated with relatively higher increase in contribution from EAL loading than that from SL. The mean contributions of EALs are about 60%, 51%, and 50% to total columnar AOD during 2009, 2010, and 2011, respectively. We observe distinct parabolic EALs during early morning and late evening but uniformly mixed EALs during midday. The interannual and daytime variations of EALs are mainly influenced by long-range transport and convective capacity of the local emissions, respectively. Radiative flux analysis shows that clear-sky incoming solar radiation at surface is reduced with increase in AOD, which indicates significant cooling at surface. Collocated analysis of atmospheric temperature and aerosol loading reveals that increase in AOD not only resulted in surface dimming but also reduced the temperature (approximately 2-3 C) of lower troposphere (below 3 km altitude). Radiative transfer simulations indicate that the reduction of incoming solar radiation at surface is mainly due to increased absorption by EALs (with increase in total AOD). The observed cooling in lower troposphere in high

  15. Radiation Dose to the Esophagus From Breast Cancer Radiation Therapy, 1943-1996: An International Population-Based Study of 414 Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamart, Stephanie, E-mail: stephanie.lamart@nih.gov; Stovall, Marilyn; Simon, Steven L.

    2013-07-15

    Purpose: To provide dosimetric data for an epidemiologic study on the risk of second primary esophageal cancer among breast cancer survivors, by reconstructing the radiation dose incidentally delivered to the esophagus of 414 women treated with radiation therapy for breast cancer during 1943-1996 in North America and Europe. Methods and Materials: We abstracted the radiation therapy treatment parameters from each patient’s radiation therapy record. Treatment fields included direct chest wall (37% of patients), medial and lateral tangentials (45%), supraclavicular (SCV, 64%), internal mammary (IM, 44%), SCV and IM together (16%), axillary (52%), and breast/chest wall boosts (7%). The beam typesmore » used were {sup 60}Co (45% of fields), orthovoltage (33%), megavoltage photons (11%), and electrons (10%). The population median prescribed dose to the target volume ranged from 21 Gy to 40 Gy. We reconstructed the doses over the length of the esophagus using abstracted patient data, water phantom measurements, and a computational model of the human body. Results: Fields that treated the SCV and/or IM lymph nodes were used for 85% of the patients and delivered the highest doses within 3 regions of the esophagus: cervical (population median 38 Gy), upper thoracic (32 Gy), and middle thoracic (25 Gy). Other fields (direct chest wall, tangential, and axillary) contributed substantially lower doses (approximately 2 Gy). The cervical to middle thoracic esophagus received the highest dose because of its close proximity to the SCV and IM fields and less overlying tissue in that part of the chest. The location of the SCV field border relative to the midline was one of the most important determinants of the dose to the esophagus. Conclusions: Breast cancer patients in this study received relatively high incidental radiation therapy doses to the esophagus when the SCV and/or IM lymph nodes were treated, whereas direct chest wall, tangentials, and axillary fields contributed

  16. THE METABOLIC RESPONSE TO RADIATION IN THE PRIMATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, C.G.

    1959-10-31

    At present there is little information available concerning the metabolism of man following exposure to ionizing radiation in the lethal range. Reference is made in vague terms to the maintenance of fluid and electrolytes, the administration of a bland diet, intravenous glucose, salines etc., with little experimental evidence from primate studies to indicate the benefit of these modes of therapy. It is felt, therefore, that results of metabolic studies made in sub-human primates will be of therapeutic interest. Adult monkeys of both sexes were exposed to whole-body irradiation with x and gamma rays. The absorbed doses were in the sub-lethalmore » and lower lethal range for monkeys (400 to 500 r), and were administered at rates varying from 7 to 124 r/min. Observations were made on eleven monkeys that were kept in metabolic cages before and after irradiation. The derangement of metabolism consequent to irradiation was studied. After physioiogical recovery of eight surviving animals, the experiment was repeated using identical dietary intake and experimental technique but omitting irradiation. Comparisons were then raade between the results of the irradiation study and those obtained after physiological recovery. Data are presented on the clinical physiology of representative animals, including data on body weights, food and fluid intakes, urine and faecal outputs, insensible losses, metabolic rates, balances of water, nitrogen and electrolytes, nitrogen utilization, and caloric intakes. It is concluded that the metabolic response to radiation injury in the lethal range does not differ qualitatively in the primate from that of any injury and that the irradiated primate is not at a disadvantage until the time of anabolic response. At that time the tissues responsible for normal reparative processes, themselves injured by the radiation, are no longer able to perform normal restorative functions, the resultant catabolism being in excess of that from equivalent injury

  17. Seasonal radiative modeling of Titan's stratospheric temperatures at low latitudes

    NASA Astrophysics Data System (ADS)

    Bézard, Bruno; Vinatier, Sandrine; Achterberg, Richard K.

    2018-03-01

    We have developed a seasonal radiative-dynamical model of Titan's stratosphere to investigate the temporal variation of temperatures in the 0.2-4 mbar range observed by the Cassini/CIRS spectrometer. The model incorporates gas and aerosol vertical profiles derived from Cassini/CIRS and Huygens/DISR data to calculate the radiative heating and cooling rate profiles as a function of time and latitude. At 20°S in 2007, the heating rate is larger than the cooling rate at all altitudes, and more specifically by 20-35% in the 0.1-5 mbar range. A new calculation of the radiative relaxation time as a function of pressure level is presented, leading to time constants significantly lower than previous estimates. At 6°N around spring equinox, the radiative equilibrium profile is warmer than the observed one at all levels. Adding adiabatic cooling in the energy equation, with a vertical upward velocity profile approximately constant in pressure coordinates below the 0.02-mbar level (corresponding to 0.03-0.05 cm s-1 at 1 mbar), allows us to reproduce the observed profile quite well. The velocity profile above the ∼0.5-mbar level is however affected by uncertainties in the haze density profile. The model shows that the change in insolation due to Saturn's orbital eccentricity is large enough to explain the observed 4-K decrease in equatorial temperatures around 1 mbar between 2009 and 2016. At 30°N and S, the radiative model predicts seasonal variations of temperature much larger than observed. A seasonal modulation of adiabatic cooling/heating is needed to reproduce the temperature variations observed from 2005 to 2016 between 0.2 and 4 mbar. At 1 mbar, the derived vertical velocities vary in the range -0.05 (winter solstice) to 0.16 (summer solstice) cm s-1 at 30°S, -0.01 (winter solstice) to 0.14 (summer solstice) cm s-1 at 30°N, and 0.03-0.07 cm s-1 at the equator.

  18. Low power arcjet system spacecraft impacts

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Sarmiento, Charles J.; Lichtin, D. A.; Palchefsky, J. W.; Bogorad, A. L.

    1993-01-01

    Application of electrothermal arcjets on communications satellites requires assessment of integration concerns identified by the user community. Perceived risks include plume contamination of spacecraft materials, induced arcing or electrostatic discharges between differentially charged spacecraft surfaces, and conducted and radiated electromagnetic interference (EMI) for both steady state and transient conditions. A Space Act agreement between Martin Marietta Astro Space, the Rocket Research Company, and NASA's Lewis Research Center was established to experimentally examine these issues. Spacecraft materials were exposed to an arcjet plume for 40 hours, representing 40 weeks of actual spacecraft life, and contamination was characterized by changes in surface properties. With the exception of the change in emittance of one sample, all measurable changes in surface properties resulted in acceptable end of life characteristics. Charged spacecraft samples were benignly and consistently reduced to ground potential during exposure to the powered arcjet plume, suggesting that the arcjet could act as a charge control device on spacecraft. Steady state EMI signatures obtained using two different power processing units were similar to emissions measured in a previous test. Emissions measured in UHF, S, C, Ku and Ka bands obtained a null result which verified previous work in the UHF, S, and C bands. Characteristics of conducted and radiated transient emissions appear within standard spacecraft susceptibility criteria.

  19. 131I-tositumomab myeloablative radioimmunotherapy for non-Hodgkin’s lymphoma: radiation dose to the testes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattori, Naoya; Gopal, Ajay K.; Shields, Andrew T.

    Purpose: To investigate radiation doses to the testes delivered by a radiolabeled anti-CD20 antibody and its effects on male sex hormone levels. Materials and methods: Testicular uptake and retention of 131I-tositumomab were measured, and testicular absorbed doses were calculated for 67 male patients (54+/-11 years of age) with non-Hodgkin's lymphoma who had undergone myeloablative radioimmunotherapy (RIT) using 131I-tositumomab. Time-activity curves for the major organs, testes, and whole body were generated from planar imaging studies. In a subset of patients, male sex hormones were measured before and 1 year after the therapy. Results: The absorbed dose to the testes showed considerablemore » variability (range=4.4-70.2 Gy). Pretherapy levels of total testosterone were below the lower limit of the reference range, and post-therapy evaluation demonstrated further reduction [4.6+/-1.8 nmol/l (pre-RIT) vs. 3.8+/-2.9 nmol/l (post-RIT), P<0.05]. Patients receiving higher radiation doses to the testes (>=25 Gy) showed a greater reduction [4.7+/-1.6 nmol/l (pre-RIT) vs. 3.3+/-2.7 nmol/l (post-RIT), P<0.05] compared with patients receiving lower doses (<25 Gy), who showed no significant change in total testosterone levels. Conclusion: The testicular radiation absorbed dose varied highly among individual patients. Finally, patients receiving higher doses to the testes were more likely to show post-RIT suppression of testosterone levels.« less

  20. Testing the effects of temperature and humidity on printed passive UHF RFID tags on paper substrate

    NASA Astrophysics Data System (ADS)

    Linnea Merilampi, Sari; Virkki, Johanna; Ukkonen, Leena; Sydänheimo, Lauri

    2014-05-01

    This article is an interesting substrate material for environmental-friendly printable electronics. In this study, screen-printed RFID tags on paper substrate are examined. Their reliability was tested with low temperature, high temperature, slow temperature cycling, high temperature and high humidity and water dipping test. Environmental stresses affect the tag antenna impedance, losses and radiation characteristics due to their impact on the ink film and paper substrate. Low temperature, temperature cycling and high humidity did not have a radical effect on the measured parameters: threshold power, backscattered signal power or read range of the tags. However, the frequency response and the losses of the tags were slightly affected. Exposure to high temperature was found to even improve the tag performance due to the positive effect of high temperature on the ink film. The combined high humidity and high temperature had the most severe effect on the tag performance. The threshold power increased, backscattered power decreased and the read range was shortened. On the whole, the results showed that field use of these tags in high, low and changing temperature conditions and high humidity conditions is possible. Use of these tags in combined high-humidity and high-temperature conditions should be carefully considered.

  1. Study on the Application of an Ultra-High-Frequency Fractal Antenna to Partial Discharge Detection in Switchgears

    PubMed Central

    Yao, Chenguo; Chen, Pan; Huang, Congjian; Chen, Yu; Qiao, Panpan

    2013-01-01

    The ultra-high-frequency (UHF) method is used to analyze the insulation condition of electric equipment by detecting the UHF electromagnetic (EM) waves excited by partial discharge (PD). As part of the UHF detection system, the UHF sensor determines the detection system performance in signal extraction and recognition. In this paper, a UHF antenna sensor with the fractal structure for PD detection in switchgears was designed by means of modeling, simulation and optimization. This sensor, with a flat-plate structure, had two resonance frequencies of 583 MHz and 732 MHz. In the laboratory, four kinds of insulation defect models were positioned in the testing switchgear for typical PD tests. The results show that the sensor could reproduce the electromagnetic waves well. Furthermore, to optimize the installation position of the inner sensor for achieving best detection performance, the precise simulation model of switchgear was developed to study the propagation characteristics of UHF signals in switchgear by finite-difference time-domain (FDTD) method. According to the results of simulation and verification test, the sensor should be positioned at the right side of bottom plate in the front cabinet. This research established the foundation for the further study on the application of UHF technique in switchgear PD online detection. PMID:24351641

  2. Shock Layer Radiation Modeling and Uncertainty for Mars Entry

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Brandis, Aaron M.; Sutton, Kenneth

    2012-01-01

    A model for simulating nonequilibrium radiation from Mars entry shock layers is presented. A new chemical kinetic rate model is developed that provides good agreement with recent EAST and X2 shock tube radiation measurements. This model includes a CO dissociation rate that is a factor of 13 larger than the rate used widely in previous models. Uncertainties in the proposed rates are assessed along with uncertainties in translational-vibrational relaxation modeling parameters. The stagnation point radiative flux uncertainty due to these flowfield modeling parameter uncertainties is computed to vary from 50 to 200% for a range of free-stream conditions, with densities ranging from 5e-5 to 5e-4 kg/m3 and velocities ranging from of 6.3 to 7.7 km/s. These conditions cover the range of anticipated peak radiative heating conditions for proposed hypersonic inflatable aerodynamic decelerators (HIADs). Modeling parameters for the radiative spectrum are compiled along with a non-Boltzmann rate model for the dominant radiating molecules, CO, CN, and C2. A method for treating non-local absorption in the non-Boltzmann model is developed, which is shown to result in up to a 50% increase in the radiative flux through absorption by the CO 4th Positive band. The sensitivity of the radiative flux to the radiation modeling parameters is presented and the uncertainty for each parameter is assessed. The stagnation point radiative flux uncertainty due to these radiation modeling parameter uncertainties is computed to vary from 18 to 167% for the considered range of free-stream conditions. The total radiative flux uncertainty is computed as the root sum square of the flowfield and radiation parametric uncertainties, which results in total uncertainties ranging from 50 to 260%. The main contributors to these significant uncertainties are the CO dissociation rate and the CO heavy-particle excitation rates. Applying the baseline flowfield and radiation models developed in this work, the

  3. Accuracy and Radiation Dose Reduction of Limited-Range CT in the Evaluation of Acute Appendicitis in Pediatric Patients.

    PubMed

    Jin, Michael; Sanchez, Thomas R; Lamba, Ramit; Fananapazir, Ghaneh; Corwin, Michael T

    2017-09-01

    The purpose of this article is to determine the accuracy and radiation dose reduction of limited-range CT prescribed from the top of L2 to the top of the pubic symphysis in children with suspected acute appendicitis. We performed a retrospective study of 210 consecutive pediatric patients from December 11, 2012, through December 11, 2014, who underwent abdominopelvic CT for suspected acute appendicitis. Two radiologists independently reviewed the theoretic limited scans from the superior L2 vertebral body to the top of the pubic symphysis, to assess for visualization of the appendix, acute appendicitis, alternative diagnoses, and incidental findings. Separately, the same parameters were assessed on the full scan by the same two reviewers. Whole-body effective doses were determined for the full- and limited-range scans and were compared using the paired t test. The appendix or entire cecum was visualized on the limited scan in all cases, and no cases of acute appendicitis were missed on the simulated limited scan compared with the full scan. Two alternative diagnoses were missed with the limited scan: one case of hydronephrosis and one of acute acalculous cholecystitis. The mean effective dose for the original scan was 5.6 mSv and that for the simulated limited scan was 3.0 mSv, resulting in a dose reduction of 46.4% (p < 0.001). A limited-range CT examination performed from the top of L2 to the top of the pubic symphysis is as accurate as a full-range abdominopelvic CT in evaluating pediatric patients with suspected appendicitis and reduces the dose by approximately 46%.

  4. Accretion tori and cones of ionizing radiation in Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Acosta-Pulido, Jose A.; Perez-Fournon, Ismael; Calvani, Massimo; Wilson, Andrew S.

    1990-01-01

    The photoionization of extended narrow-line regions in Seyfert galaxies by the radiation produced in a thick accretion disk is studied. The emission-line spectrum is calculated for a range of black hole masses, varying the values of the ionization parameter and the disk size. It is found that models with a million solar masses fit observations of very large accretion disk sizes, while models with 10 million solar masses fit them better with smaller disks. The latter models are preferable since they have lower super-Eddington accretion rates.

  5. Development of a radiation-sensitive indicator

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, A. A.; El-Kelany, M.; Abdel-Rehim, F.

    1996-10-01

    A poly(vinyl alcohol) (PVA) film containing acid-sensitive dye (bromophenol red, BPR) and water soluble chlorine-containing substance [CCl 3COONa or chloral hydrate (CCl 3CH(OH) 2, 2,2,2-trichloroethan-1,1-diol)] may be useful as a radiation-sensitive indicator. The acid-sensitive dye in the film changes its color from violet to pale yellow by irradiation due to the consequent lowering of the pH of the film caused by the HCl generated from the radiolysis of the Cl-containing substance. This film can be used as a dosimeter in a relatively low dose range up to 5 kGy. This response range makes this film useful in some food irradiation, pasteurization and water purification applications. The effects of temperature and relative humidity during irradiation and post-irradiation storage on the response of the film are discussed. It is inexpensive, does not require toxic solvents in preparation and easy to prepare in a laboratory.

  6. Radiation Exposure of Abdominal Cone Beam Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sailer, Anna M., E-mail: anni.sailer@mumc.nl; Schurink, Geert Willem H., E-mail: gwh.schurink@mumc.nl; Wildberger, Joachim E., E-mail: j.wildberger@mumc.nl

    2015-02-15

    PurposeTo evaluate patients radiation exposure of abdominal C-arm cone beam computed tomography (CBCT).MethodsThis prospective study was approved by the institutional review board; written, informed consent was waived. Radiation exposure of abdominal CBCT was evaluated in 40 patients who underwent CBCT during endovascular interventions. Dose area product (DAP) of CBCT was documented and effective dose (ED) was estimated based on organ doses using dedicated Monte Carlo simulation software with consideration of X-ray field location and patients’ individual body weight and height. Weight-dependent ED per DAP conversion factors were calculated. CBCT radiation dose was compared to radiation dose of procedural fluoroscopy. CBCTmore » dose-related risk for cancer was assessed.ResultsMean ED of abdominal CBCT was 4.3 mSv (95 % confidence interval [CI] 3.9; 4.8 mSv, range 1.1–7.4 mSv). ED was significantly higher in the upper than in the lower abdomen (p = 0.003) and increased with patients’ weight (r = 0.55, slope = 0.045 mSv/kg, p < 0.001). Radiation exposure of CBCT corresponded to the radiation exposure of on average 7.2 fluoroscopy minutes (95 % CI 5.5; 8.8 min) in the same region of interest. Lifetime risk of exposure related cancer death was 0.033 % or less depending on age and weight.ConclusionsMean ED of abdominal CBCT was 4.3 mSv depending on X-ray field location and body weight.« less

  7. Channeling STIM analysis of radiation damage in single crystal diamond membrane

    NASA Astrophysics Data System (ADS)

    Sudić, I.; Cosic, D.; Ditalia Tchernij, S.; Olivero, P.; Pomorski, M.; Skukan, N.; Jakšić, M.

    2017-08-01

    The use of focused ion beam transmission channeling patterns to monitor the damage creation process in thin diamond single crystal membrane is described. A 0.8 MeV proton beam from the Ruđer Bošković Institute nuclear microprobe was used to perform Channeling Scanning Transmission Ion Microscopy (CSTIM) measurements. CSTIM was used instead of RBS channeling because of (several orders of magnitude) lower damage done to the sample during the measurements. Damage was introduced in selected areas by 15 MeV carbon beam in range of fluences 3·1015-2·1017 ions/cm2. Contrary to Ion Beam Induced Charge (IBIC), CSTIM is shown to be sensitive to the large fluences of ion beam radiation. Complementary studies of both IBIC and CSTIM are presented to show that very high fluence range can be covered by these two microprobe techniques, providing much wider information about the diamond radiation hardness. In addition micro Raman measurements were performed and the height of the GR 1 peak was correlated to the ion beam fluence.

  8. Ultra-wide Range Gamma Detector System for Search and Locate Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odell, D. Mackenzie Odell; Harpring, Larry J.; Moore, Frank S. Jr.

    2005-10-26

    Collecting debris samples following a nuclear event requires that operations be conducted from a considerable stand-off distance. An ultra-wide range gamma detector system has been constructed to accomplish both long range radiation search and close range hot sample collection functions. Constructed and tested on a REMOTEC Andros platform, the system has demonstrated reliable operation over six orders of magnitude of gamma dose from 100's of uR/hr to over 100 R/hr. Functional elements include a remotely controlled variable collimator assembly, a NaI(Tl)/photomultiplier tube detector, a proprietary digital radiation instrument, a coaxially mounted video camera, a digital compass, and both local andmore » remote control computers with a user interface designed for long range operations. Long range sensitivity and target location, as well as close range sample selection performance are presented.« less

  9. Radiation Protection for Lunar Mission Scenarios

    NASA Technical Reports Server (NTRS)

    Clowdsley, Martha S.; Nealy, John E.; Wilson, John W.; Anderson, Brooke M.; Anderson, Mark S.; Krizan, Shawn A.

    2005-01-01

    Preliminary analyses of shielding requirements to protect astronauts from the harmful effects of radiation on both short-term and long-term lunar missions have been performed. Shielding needs for both solar particle events (SPEs) and galactic cosmic ray (GCR) exposure are discussed for transit vehicles and surface habitats. This work was performed under the aegis of two NASA initiatives. The first study was an architecture trade study led by Langley Research Center (LaRC) in which a broad range of vehicle types and mission scenarios were compared. The radiation analysis for this study primarily focused on the additional shielding mass required to protect astronauts from the rare occurrence of a large SPE. The second study, led by Johnson Space Center (JSC), involved the design of lunar habitats. Researchers at LaRC were asked to evaluate the changes to mission architecture that would be needed if the surface stay were lengthened from a shorter mission duration of 30 to 90 days to a longer stay of 500 days. Here, the primary radiation concern was GCR exposure. The methods used for these studies as well as the resulting shielding recommendations are discussed. Recommendations are also made for more detailed analyses to minimize shielding mass, once preliminary vehicle and habitat designs have been completed. Here, methodologies are mapped out and available radiation analysis tools are described. Since, as yet, no dosimetric limits have been adopted for missions beyond low earth orbit (LEO), radiation exposures are compared to LEO limits. Uncertainties associated with the LEO career effective dose limits and the effects of lowering these limits on shielding mass are also discussed.

  10. Characterization of the mutual influence of Ion Cyclotron and Lower Hybrid Range of frequencies systems on EAST

    NASA Astrophysics Data System (ADS)

    Urbanczyk, Guillaume; Zhang, Xinjun; Qin, Chengming; Zhao, Yanping; Zhang, Tao; Zhang, Ling; Li, Jiangang; Yuan, Shuai; Chen, Liang; Zhang, Heng; Zhang, Jiahui; Wang, Jianhua; Yang, Xiuda; Qian, Jinping

    2017-10-01

    Waves in the Ion Cyclotron (ICRF) and Lower Hybrid (LH) Range of Frequencies are efficient techniques respectively to heat the plasma and drive current. Main difficulties come from a trade-off between good RF coupling and acceptable level of impurities release. The mutual influence of both systems makes such equilibrium often hard to reach [1]. In order to investigate those interactions based on Scrape-Off Layer (SOL) plasma parameters, a new reciprocating probe was designed allying a three tips Langmuir probe with an emissive wire. The emissive filament provides a precise measure of plasma potential [2], which can be used to calibrate Langmuir probe's results. This paper reports on experimental results obtained on EAST, where there are two ICRF antennas and two LH launchers. Among others diagnostics, the new reciprocating probe enabled to evidence the deleterious influence of ICRF power on LHWs coupling in L-mode plasmas. In areas connected with an active ICRF antenna, SOL potentials increase while densities tend to decrease, respectively enhancing impurities release and deteriorating LHWs coupling. This phenomenon has mostly been attributed to RF sheath; the one that forms on top of Plasma Facing Components (PFCs) and causes ExB density convections [3]. From those experiments it seems ICRF has a strong influence on magnetically connected areas, both in the near field - influencing ICRF waves coupling - and in farther locations such as in front of LH grills. Moreover, influence of ICRF on LH system was observed both in L and H modes. Those results are consistent with RF sheath rectification process. Concerning the influence of LHWs on ICRF coupling, nothing was observed in L-mode. Besides during H-mode experiments, LHWs have been identified as having a mitigating effect on ELMs [4], which on average lowers the pedestal, increasing edge densities to the profit of ICRF waves coupling.

  11. Ice-based altitude distribution of natural radiation annual exposure rate in the Antarctica zone over the latitude range 69 degrees S-77 degrees S using a pair-filter thermoluminescence method.

    PubMed

    Nakajima, T; Kamiyama, T; Fujii, Y; Motoyama, H; Esumi, S

    1995-12-01

    Both ice-based altitude distributions of natural ionizing radiation exposure and the quasi-effective energy of natural radiation over Antartica over the latitude range 69 degrees S - 77 degrees S during approx. 500 days were measured using thermoluminescent dosimeters. The results shows that dependence on altitude above sea level of the exposure rate increases by almost three-fold with each increase of 2000 m of altitude, thus deviating from the general rule stating that the exposure rate should double with each 2000 m. Although the exposure rate shows a dependence on altitude, altitude dependence of the quasi-effective energy of natural radiation over Antartica is not observed. In the present study it is observed that natural radiation occurring over the ice base of Antartica consists mainly of cosmic rays.

  12. The SIGMA CubeSat Mission for Space Research and Technology Demonstration

    NASA Astrophysics Data System (ADS)

    Lee, S.; Lee, J. K.; Lee, H.; Shin, J.; Jeong, S.; Jin, H.; Nam, U. W.; Kim, H.; Lessard, M.; Lee, R.

    2016-12-01

    The Scientific cubesat with Instrument for Global Magnetic field and rAdiation (SIGMA) is the 3U standard CubeSat measuring the space radiation and magnetic field on a 450 × 720 km sun-synchronous orbit. Its mass is 2.95 kg and the communication system consists of Very High Frequency (VHF) uplink and Ultra High Frequency (UHF) downlink. The SIGMA mission has two academic purposes which are space research and technology demonstration. For the space research, SIGMA has two instruments such as Tissue Equivalent Proportional Counter (TEPC) and a miniaturized fluxgate MAGnetometer (MAG). The TEPC primary instrument measures the Linear Energy Transfer (LET) spectrum and calculates the equivalent dose in the range from 0.3 to 1,000 keV/μm with a single Multi-Channel Analyzer. The secondary is a miniaturized fluxgate magnetometer which have 1 nT resolution with the dynamic range of ±42000 nT. The MAG is deployed by 0.7 m folding boom to avoid CubeSat body's Electromagnetic Interference (EMI). This boom is one of our mechanical technology demonstrations. After launch, we expect that the SIGMA give us new scientific data and technologic verification. This CubeSat is supported by Korean CubeSat contest program.

  13. Light-Cone Effect of Radiation Fields in Cosmological Radiative Transfer Simulations

    NASA Astrophysics Data System (ADS)

    Ahn, Kyungjin

    2015-02-01

    We present a novel method to implement time-delayed propagation of radiation fields in cosmo-logical radiative transfer simulations. Time-delayed propagation of radiation fields requires construction of retarded-time fields by tracking the location and lifetime of radiation sources along the corresponding light-cones. Cosmological radiative transfer simulations have, until now, ignored this "light-cone effect" or implemented ray-tracing methods that are computationally demanding. We show that radiative trans-fer calculation of the time-delayed fields can be easily achieved in numerical simulations when periodic boundary conditions are used, by calculating the time-discretized retarded-time Green's function using the Fast Fourier Transform (FFT) method and convolving it with the source distribution. We also present a direct application of this method to the long-range radiation field of Lyman-Werner band photons, which is important in the high-redshift astrophysics with first stars.

  14. Does this range suit me? Range satisfaction of battery electric vehicle users.

    PubMed

    Franke, Thomas; Günther, Madlen; Trantow, Maria; Krems, Josef F

    2017-11-01

    User satisfaction is a vital design criterion for sustainable systems. The present research aimed to understand factors relating to individually perceived range satisfaction of battery electric vehicle (BEV) users. Data from a large-scale BEV field trial (N = 72) were analyzed. Apart from an initial drop in range satisfaction, increasing practical experience was related to increased range satisfaction. Classical indicators of users' mobility profiles (daily travel distances) were only weakly related to lower range satisfaction (not significant), after controlling for practical experience and preferred coverage of mobility needs. The regularity/predictability of users' mobility patterns, the percentage of journeys not coverable because of range issues, and users' individual comfortable range accounted for variance in range satisfaction. Finally, range satisfaction was related to key indicators of general BEV acceptance (e.g., purchase intentions). These results underline the complex dynamics involved in individual range satisfaction, as well as its central role for BEV acceptance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Spectral characterisation of aperiodic normal-incidence Sb/B4C multilayer mirrors for the λ < 124 Å range

    NASA Astrophysics Data System (ADS)

    Vishnyakov, E. A.; Kopylets, I. A.; Kondratenko, V. V.; Kolesnikov, A. O.; Pirozhkov, A. S.; Ragozin, E. N.; Shatokhin, A. N.

    2018-03-01

    Three broadband aperiodic Sb/B4C multilayer mirrors were synthesised for the purposes of soft X-ray optics and spectroscopy in the wavelength range beyond the L-edge of Si (λ < 124 Å), and their reflection spectra were measured. The multilayer structures were optimised for maximum uniform reflectivity in the ranges 100–120 Å, 95–105 Å and 90–100 Å. The reflection spectra were recorded using a laboratory laser-plasma radiation source and an electronic detector with a 2D spatial resolution (a CCD matrix with 13 × 13 μm sized pixels). The experimental spectra are compared with theoretical calculations. The effect of lower antimony and B4C layer densities on the reflection spectra is discussed.

  16. Metallic single-walled carbon nanotube for ionized radiation detection

    NASA Astrophysics Data System (ADS)

    Banadaki, Yaser M.; Srivastava, Ashok; Sharifi, Safura

    2016-04-01

    In this paper, we have explored the feasibility of a metallic single-walled carbon nanotube (SWCNT) as a radiation detector. The effect of SWCNTs' exposure to different ion irradiations is considered with the displacement damage dose (DDD) methodology. The analytical model of the irradiated resistance of metallic SWCNT has been developed and verified by the experimental data for increasing DDD from 1012 MeV/g to 1017 MeV/g. It has been found that the resistance variation of SWCNT by increasing DDD can be significant depending on the length and diameter of SWCNT, such that the DDD as low as 1012 (MeV/g) can be detected using the SWCNT with 1cm length and 5nm diameter. Increasing the length and diameter of SWCNT can result in both the higher radiation sensitivity of resistance and the extension of detection range to lower DDD.

  17. Environmental analysis of Lower Pueblo/Lower Los Alamos Canyon, Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.

    1994-12-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, Pueblo Canyon, and Los Alamos Canyon found residual contamination at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons all the way to the Rio Grande. The largest reservoir of residual radioactivity is in lower Pueblo Canyon, which is on DOE property. However, residual radioactivity does not exceed proposed cleanup criteria in either lower Pueblo or lower Los Alamos Canyons. The three alternatives proposed are (1) to take no action, (2) to construct a sediment trap in lowermore » Pueblo Canyon to prevent further transport of residual radioactivity onto San Ildefonso Indian Pueblo land, and (3) to clean the residual radioactivity from the canyon system. Alternative 2, to cleanup the canyon system, is rejected as a viable alternative. Thousands of truckloads of sediment would have to be removed and disposed of, and this effort is unwarranted by the low levels of contamination present. Residual radioactivity levels, under either present conditions or projected future conditions, will not result in significant radiation doses to persons exposed. Modeling efforts show that future transport activity will not result in any residual radioactivity concentrations higher than those already existing. Thus, although construction of a sediment trap in lower Pueblo Canyon is a viable alternative, this effort also is unwarranted, and the no-action alternative is the preferred alternative.« less

  18. The Integrated Radiation Mapper Assistant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlton, R.E.; Tripp, L.R.

    1995-03-01

    The Integrated Radiation Mapper Assistant (IRMA) system combines state-of-the-art radiation sensors and microprocessor based analysis techniques to perform radiation surveys. Control of the survey function is from a control station located outside the radiation thus reducing time spent in radiation areas performing radiation surveys. The system consists of a directional radiation sensor, a laser range finder, two area radiation sensors, and a video camera mounted on a pan and tilt platform. THis sensor package is deployable on a remotely operated vehicle. The outputs of the system are radiation intensity maps identifying both radiation source intensities and radiation levels throughout themore » room being surveyed. After completion of the survey, the data can be removed from the control station computer for further analysis or archiving.« less

  19. Global radiative effects of solid fuel cookstove aerosol emissions

    NASA Astrophysics Data System (ADS)

    Huang, Yaoxian; Unger, Nadine; Storelvmo, Trude; Harper, Kandice; Zheng, Yiqi; Heyes, Chris

    2018-04-01

    We apply the NCAR CAM5-Chem global aerosol-climate model to quantify the net global radiative effects of black and organic carbon aerosols from global and Indian solid fuel cookstove emissions for the year 2010. Our assessment accounts for the direct radiative effects, changes to cloud albedo and lifetime (aerosol indirect effect, AIE), impacts on clouds via the vertical temperature profile (semi-direct effect, SDE) and changes in the surface albedo of snow and ice (surface albedo effect). In addition, we provide the first estimate of household solid fuel black carbon emission effects on ice clouds. Anthropogenic emissions are from the IIASA GAINS ECLIPSE V5a inventory. A global dataset of black carbon (BC) and organic aerosol (OA) measurements from surface sites and aerosol optical depth (AOD) from AERONET is used to evaluate the model skill. Compared with observations, the model successfully reproduces the spatial patterns of atmospheric BC and OA concentrations, and agrees with measurements to within a factor of 2. Globally, the simulated AOD agrees well with observations, with a normalized mean bias close to zero. However, the model tends to underestimate AOD over India and China by ˜ 19 ± 4 % but overestimate it over Africa by ˜ 25 ± 11 % (± represents modeled temporal standard deviations for n = 5 run years). Without BC serving as ice nuclei (IN), global and Indian solid fuel cookstove aerosol emissions have net global cooling radiative effects of -141 ± 4 mW m-2 and -12 ± 4 mW m-2, respectively (± represents modeled temporal standard deviations for n = 5 run years). The net radiative impacts are dominated by the AIE and SDE mechanisms, which originate from enhanced cloud condensation nuclei concentrations for the formation of liquid and mixed-phase clouds, and a suppression of convective transport of water vapor from the lower troposphere to the upper troposphere/lower stratosphere that in turn leads to reduced ice cloud formation. When BC is allowed

  20. Lessons Learned from Radiative Transfer Simulations of the Venus Atmosphere

    NASA Technical Reports Server (NTRS)

    Arney, G.; Meadows, V. S.; Lincowski, A.

    2017-01-01

    The Venus atmosphere is extremely complex, and because of this the spectrum of Earths sister planet is likewise intricate and a challenge to model accurately. However, accurate modeling of Venus spectrum opens up multiple opportunities to better understand the planet next door, and even for understanding Venus-like planets beyond our solar system. Near-infrared (1-2.5 um, NIR) spectral windows observable on the Venus nigthside present the opportunity to probe beneath the Venusian cloud deck and measure thermal emission from the surface and lower atmosphere remotely from Earth or from orbit. These nigthside spectral windows were discovered by Allen and Crawford (1984) and have since been used measure trace gas abundances in the Venus lower atmosphere (less than 45 km), map surface emissivity varisions, and measure properties of the lower cloud deck. These windows sample radiation from below the cloud base at roughly 45 km, and pressures in this region range from roughly Earthlike (approx. 1 bar) up to 90 bars at the surface. Temperatures in this region are high: they range from about 400 K at the base of the cloud deck up to about 740 K at the surface. This high temperature and pressure presents several challenges to modelers attempting radiative transfer simulations of this region of the atmosphere, which we will review. Venus is also important to spectrally model to predict the remote observables of Venus-like exoplanets in anticipation of data from future observatories. Venus-like planets are likely one of the most common types of terrestrial planets and so simulations of them are valuable for planning observatory and detector properties of future telescopes being designed, as well as predicting the types of observations required to characterize them.

  1. Readout and Data Acquisition for a Liquid Radiator Radiation Exposure Test

    NASA Astrophysics Data System (ADS)

    Lantz, Chad

    2017-09-01

    The ATLAS Zero Degree Calorimeter (ZDC) prototype is a tungsten-sampling, oil/quartz radiating calorimeter placed on each side of the interaction point. The ZDC is used in heavy ion runs for centrality measurements. The UIUC group develops a ZDC that is significantly more radiation hard than the currently employed detector. The current ZDC uses scintillating quartz rods placed directly in the beamline whose optical transmission is known to degrade as a function of radiation dosage. Our prototype uses organic wavelength shifters (WLS) dissolved in oil in two stages to take Cherenkov light produced in the oil by the particle shower and guide it to a photodetector. This design allows the quartz rods be located away from the beam center to experience a lower radiation dose, and the oil containing WLS can be replaced periodically to negate radiation damage. Quantum dots are studied as a more radiation hard alternative to WLS. This increase in radiation hardness will allow ATLAS to operate the ZDC after the luminosity upgrades planned for the LHC. A test setup has been developed for the study of radiation hardness of liquid Cherenkov radiators and wavelength shifters. The setup will be described in this presentation with a focus on the readout electronics and data acquisition.

  2. A Comparison of EAST Shock-Tube Radiation Measurements with a New Air Radiation Model

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.

    2008-01-01

    This paper presents a comparison between the recent EAST shock tube radiation measurements (Grinstead et al., AIAA 2008-1244) and the HARA radiation model. The equilibrium and nonequilibrium radiation measurements are studied for conditions relevant to lunar-return shock-layers; specifically shock velocities ranging from 9 to 11 kilometers per second at initial pressures of 0.1 and 0.3 Torr. The simulated shock-tube flow is assumed one-dimensional and is calculated using the LAURA code, while a detailed nonequilibrium radiation prediction is obtained in an uncoupled manner from the HARA code. The measured and predicted intensities are separated into several spectral ranges to isolate significant spectral features, mainly strong atomic line multiplets. The equations and physical data required for the prediction of these strong atomic lines are reviewed and their uncertainties identified. The 700-1020 nm wavelength range, which accounts for roughly 30% of the radiative flux to a peak-heating lunar return shock-layer, is studied in detail and the measurements and predictions are shown to agree within 15% in equilibrium. The plus or minus 1.5% uncertainty on the measured shock velocity is shown to cause up to a plus or minus 30% difference in the predicted radiation. This band of predictions contains the measured values in almost all cases. For the highly nonequilibrium 0.1 Torr cases, the nonequilibrium radiation peaks are under-predicted by about half. This under-prediction is considered acceptable when compared to the order-of-magnitude over-prediction obtained using a Boltzmann population of electronic states. The reasonable comparison in the nonequilibrium regions provides validation for both the non-Boltzmann modeling in HARA and the thermochemical nonequilibrium modeling in LAURA. The N2 (+)(1-) and N2(2+) molecular band systems are studied in the 290 480 nm wavelength range for both equilibrium and nonequilibrium regimes. The non-Boltzmann rate models for these

  3. Outcome of Patients Treated With a Single-Fraction Dose of Palliative Radiation for Cutaneous T-Cell Lymphoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Tarita O.; Agrawal, Priya; Guitart, Joan

    2013-03-01

    Purpose: Cutaneous T-cell lymphoma (CTCL) is a radiosensitive tumor. Presently, treatment with radiation is given in multiple fractions. The current literature lacks data that support single-fraction treatment for CTCL. This retrospective review assesses the clinical response in patients treated with a single fraction of radiation. Methods and Materials: This study reviewed the records of 58 patients with CTCL, primarily mycosis fungoides, treated with a single fraction of palliative radiation therapy (RT) between October 1991 and January 2011. Patient and tumor characteristics were reviewed. Response rates were compared using Fisher's exact test and multiple logistic regressions. Survival rates were determined usingmore » the Kaplan-Meier method. Cost-effectiveness analysis was performed to assess the cost of a single vs a multifractionated treatment regimen. Results: Two hundred seventy individual lesions were treated, with the majority (97%) treated with ≥700 cGy; mean follow-up was 41.3 months (range, 3-180 months). Response rate by lesion was assessed, with a complete response (CR) in 255 (94.4%) lesions, a partial response in 10 (3.7%) lesions, a partial response converted to a CR after a second treatment in 4 (1.5%) lesions, and no response in 1 (0.4%) lesion. The CR in lower extremity lesions was lower than in other sites (P=.0016). Lesions treated with photons had lower CR than those treated with electrons (P=.017). Patients with lesions exhibiting large cell transformation and tumor morphology had lower CR (P=.04 and P=.035, respectively). Immunophenotype did not impact response rate (P=.23). Overall survival was significantly lower for patients with Sézary syndrome (P=.0003) and erythroderma (P<.0001). The cost of multifractionated radiation was >200% higher than that for single-fraction radiation. Conclusions: A single fraction of 700 cGy-800 cGy provides excellent palliation for CTCL lesions and is cost effective and convenient for the patient.« less

  4. Solar radiation in Iceland

    NASA Astrophysics Data System (ADS)

    Ólafsson, Haraldur; Cataldi, Maxime; Zehouf, Hafsa; Pálmason, Bolli

    2014-05-01

    Short wave radiation has been observed at several locations in Iceland in recent years. The observations reveal that there is large spatial variability in the incoming radiation. There are indications of a coast-to-inland gradient and there is much greater radiation at central-inland locations than further west as well in the far east. The results are in line with Markús Á. Einarsson's reports where estimation of radiation was based on manned cloud observations shortly after the middle of the 20th century. Values of radiation retrieved from the operational simulations of the European Centre for Medium-range Weather Forecasts (ECMWF) compare in general well with the observations.

  5. Can Radiation Dose Be Reduced and Image Quality Improved With 80-kV and Dual-Phase Scanning of the Lower Extremities With 64-Slice Computed Tomography Angiography?

    PubMed

    Zhou, Yunfeng; Wang, Juan; Dassarath, Meera; Wang, Minhong; Zhang, Qiang; Xiong, Yuwei; Yuan, Quan

    2015-01-01

    To prospectively compare the new computed tomographic angiography (CTA) protocol (NCP) using 80-kV and dual-phase scanning with the routine CTA protocol (RCP) using 120-kV and single-phase scanning in patients with peripheral arterial disease. A total of 60 patients were randomized to undergo the NCP (30 patients) or RCP (30 patients) scan. We compared the arterial attenuation values, overriding of the contrast bolus, signal-to-noise ratio, and radiation dose between 2 groups. The occurrence rate of contrast bolus overriding was not statistically significant (P = 0.69). The average arterial attenuation value in the NCP group was significantly higher (P < 0.05) than that in the RCP group. The radiation dose in the RCP group was significantly higher (P < 0.001) than that in the NCP group. The mean signal-to-noise ratio in the NCP group was significantly lower (P < 0.001). Sixty-four-slice CTA with the NCP can significantly reduce the radiation dose and improve the arterial enhancement and calf arteries imaging.

  6. Cumulative detection probabilities and range accuracy of a pulsed Geiger-mode avalanche photodiode laser ranging system

    NASA Astrophysics Data System (ADS)

    Luo, Hanjun; Ouyang, Zhengbiao; Liu, Qiang; Chen, Zhiliang; Lu, Hualan

    2017-10-01

    Cumulative pulses detection with appropriate cumulative pulses number and threshold has the ability to improve the detection performance of the pulsed laser ranging system with GM-APD. In this paper, based on Poisson statistics and multi-pulses cumulative process, the cumulative detection probabilities and their influence factors are investigated. With the normalized probability distribution of each time bin, the theoretical model of the range accuracy and precision is established, and the factors limiting the range accuracy and precision are discussed. The results show that the cumulative pulses detection can produce higher target detection probability and lower false alarm probability. However, for a heavy noise level and extremely weak echo intensity, the false alarm suppression performance of the cumulative pulses detection deteriorates quickly. The range accuracy and precision is another important parameter evaluating the detection performance, the echo intensity and pulse width are main influence factors on the range accuracy and precision, and higher range accuracy and precision is acquired with stronger echo intensity and narrower echo pulse width, for 5-ns echo pulse width, when the echo intensity is larger than 10, the range accuracy and precision lower than 7.5 cm can be achieved.

  7. Below-Background Ionizing Radiation as an Environmental Cue for Bacteria

    DOE PAGES

    Castillo, Hugo; Smith, Geoffrey B.

    2017-02-14

    All organisms on earth grow under the influence of a natural and relatively constant dose of ionizing radiation referred to as background radiation, and so cells have different mechanisms to prevent the accumulation of damage caused by its different components. However, current knowledge of the deleterious effects of radiation on cells is based on the exposure to acute and high or to chronic, above background doses of radiation and therefore is not appropriate to explain the cellular and biochemical mechanisms that cells employ to sense and respond to chronic below-background levels. Studies at below-background radiation doses can provide insight intomore » the biological role of radiation, as suggested by several examples of what appears to be a stress response in cells grown at doses that range from 10 to 79 times lower than background. Here, we discuss some of the technical constraints to shield cells from radiation to below-background levels, as well as different approaches used to detect and measure responses to such unusual environmental conditions. Then, we present data from Shewanella oneidensis and Deinococcus radiodurans experiments that show how two taxonomically distant bacterial species sense and respond to unnaturally low levels of radiation. Finally, in brief, we grew S. oneidensis and D. radiodurans in liquid culture at dose rates of 72.05 (control) and 0.91 (treatment) nGy hr -1 (including radon) for up to 72 h and measured cell density and the expression of stress-related genes. Our results suggest that a stress response is triggered in the absence of normal levels of radiation.« less

  8. Below-Background Ionizing Radiation as an Environmental Cue for Bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castillo, Hugo; Smith, Geoffrey B.

    All organisms on earth grow under the influence of a natural and relatively constant dose of ionizing radiation referred to as background radiation, and so cells have different mechanisms to prevent the accumulation of damage caused by its different components. However, current knowledge of the deleterious effects of radiation on cells is based on the exposure to acute and high or to chronic, above background doses of radiation and therefore is not appropriate to explain the cellular and biochemical mechanisms that cells employ to sense and respond to chronic below-background levels. Studies at below-background radiation doses can provide insight intomore » the biological role of radiation, as suggested by several examples of what appears to be a stress response in cells grown at doses that range from 10 to 79 times lower than background. Here, we discuss some of the technical constraints to shield cells from radiation to below-background levels, as well as different approaches used to detect and measure responses to such unusual environmental conditions. Then, we present data from Shewanella oneidensis and Deinococcus radiodurans experiments that show how two taxonomically distant bacterial species sense and respond to unnaturally low levels of radiation. Finally, in brief, we grew S. oneidensis and D. radiodurans in liquid culture at dose rates of 72.05 (control) and 0.91 (treatment) nGy hr -1 (including radon) for up to 72 h and measured cell density and the expression of stress-related genes. Our results suggest that a stress response is triggered in the absence of normal levels of radiation.« less

  9. Radiation-Induced Cranial Nerve Palsy: A Cross-Sectional Study of Nasopharyngeal Cancer Patients After Definitive Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Lin, E-mail: konglinj@gmail.co; Lu, Jiade J.; Department of Radiation Oncology, National University Cancer Institute of Singapore

    2011-04-01

    Purpose: To address the characteristics and the causative factors of radiation-induced cranial nerve palsy (CNP) in nasopharyngeal carcinoma (NPC) patients with an extensive period of followed-up. Patients and Methods: A total of 317 consecutive and nonselected patients treated with definitive external-beam radiotherapy between November 1962 and February 1995 participated in this study. The median doses to the nasopharynx and upper neck were 71 Gy (range, 55-86 Gy) and 61 Gy (range, 34-72 Gy), respectively. Conventional fractionation was used in 287 patients (90.5%). Forty-five patients (14.2%) received chemotherapy. Results: The median follow-up was 11.4 years (range, 5.1-38.0 years). Ninety-eight patients (30.9%)more » developed CNP, with a median latent period of 7.6 years (range, 0.3-34 years). Patients had a higher rate of CNP (81 cases, 25.5%) in lower-group cranial nerves compared with upper group (44 cases, 13.9%) ({chi}{sup 2} = 34.444, p < 0.001). Fifty-nine cases experienced CNP in more than one cranial nerve. Twenty-two of 27 cases (68.8%) of intragroup CNP and 11 of 32 cases (40.7%) of intergroup CNP occurred synchronously ({chi}{sup 2} = 4.661, p = 0.031). The cumulative incidences of CNP were 10.4%, 22.4%, 35.5%, and 44.5% at 5, 10, 15, and 20 years, respectively. Multivariate analyses revealed that CNP at diagnosis, chemotherapy, total radiation dose to the nasopharynx, and upper neck fibrosis were independent risk factors for developing radiation-induced CNP. Conclusion: Radiation-induced fibrosis may play an important role in radiation-induced CNP. The incidence of CNP after definitive radiotherapy for NPC remains high after long-term follow-up and is dose and fractionation dependent.« less

  10. Photodissociation of HCN and HNC isomers in the 7-10 eV energy range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chenel, Aurelie; Roncero, Octavio, E-mail: octavio.roncero@csic.es; Aguado, Alfredo

    2016-04-14

    The ultraviolet photoabsorption spectra of the HCN and HNC isomers have been simulated in the 7-10 eV photon energy range. For this purpose, the three-dimensional adiabatic potential energy surfaces of the 7 lowest electronic states, and the corresponding transition dipole moments, have been calculated, at multireference configuration interaction level. The spectra are calculated with a quantum wave packet method on these adiabatic potential energy surfaces. The spectra for the 3 lower excited states, the dissociative electronic states, correspond essentially to predissociation peaks, most of them through tunneling on the same adiabatic state. The 3 higher electronic states are bound, hereaftermore » electronic bound states, and their spectra consist of delta lines, in the adiabatic approximation. The radiative lifetime towards the ground electronic states of these bound states has been calculated, being longer than 10 ns in all cases, much longer that the characteristic predissociation lifetimes. The spectra of HCN is compared with the available experimental and previous theoretical simulations, while in the case of HNC there are no previous studies to our knowledge. The spectrum for HNC is considerably more intense than that of HCN in the 7-10 eV photon energy range, which points to a higher photodissociation rate for HNC, compared to HCN, in astrophysical environments illuminated by ultraviolet radiation.« less

  11. Radiation Risk From Medical Imaging

    PubMed Central

    Lin, Eugene C.

    2010-01-01

    This review provides a practical overview of the excess cancer risks related to radiation from medical imaging. Primary care physicians should have a basic understanding of these risks. Because of recent attention to this issue, patients are more likely to express concerns over radiation risk. In addition, physicians can play a role in reducing radiation risk to their patients by considering these risks when making imaging referrals. This review provides a brief overview of the evidence pertaining to low-level radiation and excess cancer risks and addresses the radiation doses and risks from common medical imaging studies. Specific subsets of patients may be at greater risk from radiation exposure, and radiation risk should be considered carefully in these patients. Recent technical innovations have contributed to lowering the radiation dose from computed tomography, and the referring physician should be aware of these innovations in making imaging referrals. PMID:21123642

  12. Solar Radiation Measurements Onboard the Research Aircraft HALO

    NASA Astrophysics Data System (ADS)

    Lohse, I.; Bohn, B.; Werner, F.; Ehrlich, A.; Wendisch, M.

    2014-12-01

    Airborne measurements of the separated upward and downward components of solar spectral actinic flux densities for the determination of photolysis frequencies and of upward nadir spectral radiance were performed with the HALO Solar Radiation (HALO-SR) instrument package onboard the High Altitude and Long Range Research Aircraft (HALO). The instrumentation of HALO-SR is characterized and first measurement data from the Next-generation Aircraft Remote-Sensing for Validation Studies (NARVAL) campaigns in 2013 and 2014 are presented. The measured data are analyzed in the context of the retrieved microphysical and optical properties of clouds which were observed underneath the aircraft. Detailed angular sensitivities of the two optical actinic flux receivers were determined in the laboratory. The effects of deviations from the ideal response are investigated using radiative transfer calculations of atmospheric radiance distributions under various atmospheric conditions and different ground albedos. Corresponding correction factors are derived. Example photolysis frequencies are presented, which were sampled in the free troposphere and lower stratosphere over the Atlantic Ocean during the 2013/14 HALO NARVAL campaigns. Dependencies of photolysis frequencies on cloud cover, flight altitude and wavelength range of the photolysis process are investigated. Calculated actinic flux densities in the presence of clouds benefit from the measured spectral radiances. Retrieved cloud optical thicknesses and effective droplet radii are used as model input for the radiative transfer calculations. By comparison with the concurrent measurements of actinic flux densities the retrieval approach is validated. Acknowledgements: Funding by the Deutsche Forschungsgemeinschaft within the priority program HALO (BO 1580/4-1, WE 1900/21-1) is gratefully acknowledged.

  13. Exploring structure and function of sensory cortex with 7T MRI.

    PubMed

    Schluppeck, Denis; Sanchez-Panchuelo, Rosa-Maria; Francis, Susan T

    2018-01-01

    In this paper, we present an overview of 7T magnetic resonance imaging (MRI) studies of the detailed function and anatomy of sensory areas of the human brain. We discuss the motivation for the studies, with particular emphasis on increasing the spatial resolution of functional MRI (fMRI) using reduced field-of-view (FOV) data acquisitions. MRI at ultra-high-field (UHF) - defined here as 7T and above - has several advantages over lower field strengths. The intrinsic signal-to-noise ratio (SNR) of images is higher at UHF, and coupled with the increased blood-oxygen-level-dependent (BOLD) signal change, this results in increased BOLD contrast-to-noise ratio (CNR), which can be exploited to improve spatial resolution or detect weaker signals. Additionally, the BOLD signal from the intra-vascular (IV) compartment is relatively diminished compared to lower field strengths. Together, these properties make 7T functional MRI an attractive proposition for high spatial specificity measures. But with the advantages come some challenges. For example, increased vulnerability to susceptibility-induced geometric distortions and signal loss in EPI acquisitions tend to be much larger. Some of these technical issues can be addressed with currently available tools and will be discussed. We highlight the key methodological considerations for high resolution functional and structural imaging at 7 T. We then present recent data using the high spatial resolution available at UHF in studies of the visual and somatosensory cortex to highlight promising developments in this area. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Radiation measurements aboard the fourth Gemini flight.

    PubMed

    Janni, J F; Schneider, M F

    1967-01-01

    Two special tissue-equivalent ionization chambers and 5 highly sensitive passive dosimetry packages were flown aboard the recent Gemini 4 flight for the purpose of obtaining precise values of instantaneous dose rate, accumulated dose. and shielding effectiveness. This experiment marked the first time that well-defined tissue dose and radiation survey measurements have been carried out in manned spaceflight operations. Since all measurements were accomplished under normal spacecraft environmental conditions, the biological dose resulted primarily from trapped inner Van Allen Belt radiation encountered by the spacecraft in the South Atlantic Anomaly. The experiment determined the particle type, ionizing and penetrating power, and variation with time and position within the Gemini spacecraft. Measured dose rates ranged from 100 mrad/hr for passes penetrating deeply into the South Atlantic Anomaly to less than 0.1 mrad/hr from lower latitude cosmic radiation. The accumulated tissue dose measured by the active ionization chambers, shielded by 0.4 gm/cm2 for the 4-day mission, was 82 mrad. Since the 5 passive dosimetry packages were each located in different positions within the spacecraft, the total mission surface dose measured by these detectors varied from 73 to 27 mrad, depending upon location and shielding. The particles within the spacecraft were recorded in nuclear emulsion, which established that over 90% of the tissue dose was attributable to penetrating protons. This experiment indicates that the radiation environment under shielded conditions at Gemini altitudes was not hazardous.

  15. Societal Impacts of Solar Electromagnetic Radiation

    NASA Astrophysics Data System (ADS)

    Lean, J. L.

    2000-05-01

    Changes in solar electromagnetic radiation, which occur continuously and at all wavelengths of the spectrum, can have significant societal impacts on a wide range of time scales. Detection of climate change and ozone depletion requires reliable specification of solar-induced processes that mask or exacerbate anthropogenic effects. Living with, and mitigating, climate change and ozone depletion has significant economic, habitat and political impacts of international extent. As an example, taxes to restrict carbon emission may cause undue economic stress if the role of greenhouse gases in global warming is incorrectly diagnosed. Ignoring solar-induced ozone changes in the next century may lead to incorrect assessment of the success of the Montreal Protocol in protecting the ozone layer by limiting the use of ozone-destroying chlorofluorocarbons. Societal infrastructure depends in many ways on space-based technological assets. Communications and navigation for commerce, industry, science and defense rely on satellite signals transmitted through, and reflected by, electrons in the ionosphere. Electron densities change in response to solar flares, and by orders of magnitude in response to EUV and X-ray flux variations during the Sun's 11-year activity cycle. Spacecraft and space debris experience enhanced drag on their orbits when changing EUV radiation causes upper atmosphere densities to increase. Especially affected are spacecraft and debris in lower altitude orbits, such as Iridium-type communication satellites, and the International Space Station (ISS). Proper specification of solar-induced fluctuations in the neutral upper atmosphere can, for example, aid in tracking the ISS and surrounding space debris, reducing the chance of ISS damage from collisions, and maximizing its operations. Aspects of solar electromagnetic radiation variability will be briefly illustrated on a range of time scales, with specific identification of the societal impacts of different

  16. Novel Reactor Relevant RF Actuator Schemes for the Lower Hybrid and the Ion Cyclotron Range of Frequencies

    NASA Astrophysics Data System (ADS)

    Bonoli, Paul

    2014-10-01

    This paper presents a fresh physics perspective on the onerous problem of coupling and successfully utilizing ion cyclotron range of frequencies (ICRF) and lower hybrid range of frequencies (LHRF) actuators in the harsh environment of a nuclear fusion reactor. The ICRF and LH launchers are essentially first wall components in a fusion reactor and as such will be subjected to high heat fluxes. The high field side (HFS) of the plasma offers a region of reduced heat flux together with a quiescent scrape off layer (SOL). Placement of the ICRF and LHRF launchers on the tokamak HFS also offers distinct physics advantages: The higher toroidal magnetic field makes it possible to couple faster phase velocity LH waves that can penetrate farther into the plasma core and be absorbed by higher energy electrons, thereby increasing the current drive efficiency. In addition, re-location of the LH launcher off the mid-plane (i.e., poloidal ``steering'') allows further control of the deposition location. Also ICRF waves coupled from the HFS couple strongly to mode converted ion Bernstein waves and ion cyclotron waves waves as the minority density is increased, thus opening the possibility of using this scheme for flow drive and pressure control. Finally the quiescent nature of the HFS scrape off layer should minimize the effects of RF wave scattering from density fluctuations. Ray tracing / Fokker Planck simulations will be presented for LHRF applications in devices such as the proposed Advanced Divertor Experiment (ADX) and extending to ITER and beyond. Full-wave simulations will also be presented which demonstrate the possible combinations of electron and ion heating via ICRF mode conversion. Work supported by the US DoE under Contract Numbers DE-FC02-01ER54648 and DE-FC02-99ER54512.

  17. New semiconductor laser technology for gas sensing applications in the 1650nm range

    NASA Astrophysics Data System (ADS)

    Morrison, Gordon B.; Sherman, Jes; Estrella, Steven; Moreira, Renan L.; Leisher, Paul O.; Mashanovitch, Milan L.; Stephen, Mark; Numata, Kenji; Wu, Stewart; Riris, Haris

    2017-08-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. CH4 also contributes to pollution in the lower atmosphere through chemical reactions leading to ozone production. Recent developments of LIDAR measurement technology for CH4 have been previously reported by Goddard Space Flight Center (GSFC). In this paper, we report on a novel, high-performance tunable semiconductor laser technology developed by Freedom Photonics for the 1650nm wavelength range operation, and for LIDAR detection of CH4. Devices described are monolithic, with simple control, and compatible with low-cost fabrication techniques. We present 3 different types of tunable lasers implemented for this application.

  18. Effect of Radiofrequency Radiation Emitted from 2G and 3G Cell Phone on Developing Liver of Chick Embryo - A Comparative Study.

    PubMed

    D'Silva, Mary Hydrina; Swer, Rijied Thompson; Anbalagan, J; Rajesh, Bhargavan

    2017-07-01

    The increasing scientific evidence of various health hazards on exposure of Radiofrequency Radiation (RFR) emitted from both the cell phones and base stations have caused significant media attention and public discussion in recent years. The mechanism of interaction of RF fields with developing tissues of children and fetuses may be different from that of adults due to their smaller physical size and variation in tissue electromagnetic properties. The present study may provide an insight into the basic mechanisms by which RF fields interact with developing tissues in an embryo. To evaluate the possible tissue and DNA damage in developing liver of chick embryo following chronic exposure to Ultra-High Frequency/Radiofrequency Radiation (UHF/RFR) emitted from 2G and 3G cell phone. Fertilized chick embryos were incubated in four groups. Group A-experimental group exposed to 2G radiation (60 eggs), Group B- experimental group exposed to 3G radiation (60 eggs), Group C- sham exposed control group (60 eggs) and Group D- control group (48 eggs). On completion of scheduled duration, the embryos were collected and processed for routine histological studies to check structural changes in liver. The nuclear diameter and karyorrhexis changes of hepatocytes were analysed using oculometer and square reticule respectively. The liver procured from one batch of eggs from all the four groups was subjected to alkaline comet assay technique to assess DNA damage. The results were compared using one-way ANOVA test. In our study, the exposure of developing chick embryos to 2G and 3G cell phone radiations caused structural changes in liver in the form of dilated sinusoidal spaces with haemorrhage, increased vacuolations in cytoplasm, increased nuclear diameter and karyorrhexis and significantly increased DNA damage. The chronic exposure of chick embryo liver to RFR emitted from 2G and 3G cell phone resulted in various structural changes and DNA damage. The changes were more pronounced in 3

  19. Biologically Inspired Network (BiONet) Authentication using Logical and Pathological RF DNA Credential Pairs

    DTIC Science & Technology

    2017-09-14

    e.g. 000111) may be emitted along an ultra- high frequency (UHF) communications path as a possible waveform state generated by some circuit...Positive Rate TN True Negative TNR True Negative Rate TVR True Verification Rate Tx Transmitter UHF Ultra High Frequency 21 BIOLOGICALLY...otherwise healthy RF networks. More specifically, a representative miniaturized ultra- high frequency (UHF) CubeSat uplink access boundary, protected

  20. Inward diffusion and loss of radiation belt protons

    NASA Astrophysics Data System (ADS)

    Selesnick, R. S.; Baker, D. N.; Jaynes, A. N.; Li, X.; Kanekal, S. G.; Hudson, M. K.; Kress, B. T.

    2016-03-01

    Radiation belt protons in the kinetic energy range 24 to 76 MeV are being measured by the Relativistic Electron Proton Telescope on each of the two Van Allen Probes. Data have been processed for the purpose of studying variability in the trapped proton intensity during October 2013 to August 2015. For the lower energies (≲32 MeV), equatorial proton intensity near L = 2 showed a steady increase that is consistent with inward diffusion of trapped solar protons, as shown by positive radial gradients in phase space density at fixed values of the first two adiabatic invariants. It is postulated that these protons were trapped with enhanced efficiency during the 7 March 2012 solar proton event. A model that includes radial diffusion, along with known trapped proton source and loss processes, shows that the observed average rate of increase near L = 2 is predicted by the same model diffusion coefficient that is required to form the entire proton radiation belt, down to low L, over an extended (˜103 year) interval. A slower intensity decrease for lower energies near L = 1.5 may also be caused by inward diffusion, though it is faster than predicted by the model. Higher-energy (≳40 MeV) protons near the L = 1.5 intensity maximum are from cosmic ray albedo neutron decay. Their observed intensity is lower than expected by a factor ˜2, but the discrepancy is resolved by adding an unspecified loss process to the model with a mean lifetime ˜120 years.

  1. Low-level radiation: biological interactions, risks, and benefits. A bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1978-09-01

    The bibliography contains 3294 references that were selected from the Department of Energy's data base (EDB). The subjects covered are lower-level radiation effects on man, environmental radiation, and other biological interactions of radiation that appear to be applicable to the low-level radiation problem.

  2. Aerosol Absorption and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Stier, Philip; Seinfeld, J. H.; Kinne, Stefan; Boucher, Olivier

    2007-01-01

    We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006) significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the shortwave anthropogenic aerosol top-of-atmosphere (TOA) radiative forcing clear-sky from -0.79 to -0.53 W m(sup -2) (33%) and all-sky from -0.47 to -0.13W m(sup -2 (72%). Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19W m(sup -2) (36%) clear-sky and of 0.12W m(sup -2) (92%) all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05W m(sup -2) and a positive TOA forcing perturbation of 0

  3. Breast Cancer After Chest Radiation Therapy for Childhood Cancer

    PubMed Central

    Moskowitz, Chaya S.; Chou, Joanne F.; Wolden, Suzanne L.; Bernstein, Jonine L.; Malhotra, Jyoti; Friedman, Danielle Novetsky; Mubdi, Nidha Z.; Leisenring, Wendy M.; Stovall, Marilyn; Hammond, Sue; Smith, Susan A.; Henderson, Tara O.; Boice, John D.; Hudson, Melissa M.; Diller, Lisa R.; Bhatia, Smita; Kenney, Lisa B.; Neglia, Joseph P.; Begg, Colin B.; Robison, Leslie L.; Oeffinger, Kevin C.

    2014-01-01

    Purpose The risk of breast cancer is high in women treated for a childhood cancer with chest irradiation. We sought to examine variations in risk resulting from irradiation field and radiation dose. Patients and Methods We evaluated cumulative breast cancer risk in 1,230 female childhood cancer survivors treated with chest irradiation who were participants in the CCSS (Childhood Cancer Survivor Study). Results Childhood cancer survivors treated with lower delivered doses of radiation (median, 14 Gy; range, 2 to 20 Gy) to a large volume (whole-lung field) had a high risk of breast cancer (standardized incidence ratio [SIR], 43.6; 95% CI, 27.2 to 70.3), as did survivors treated with high doses of delivered radiation (median, 40 Gy) to the mantle field (SIR, 24.2; 95% CI, 20.7 to 28.3). The cumulative incidence of breast cancer by age 50 years was 30% (95% CI, 25 to 34), with a 35% incidence among Hodgkin lymphoma survivors (95% CI, 29 to 40). Breast cancer–specific mortality at 5 and 10 years was 12% (95% CI, 8 to 18) and 19% (95% CI, 13 to 25), respectively. Conclusion Among women treated for childhood cancer with chest radiation therapy, those treated with whole-lung irradiation have a greater risk of breast cancer than previously recognized, demonstrating the importance of radiation volume. Importantly, mortality associated with breast cancer after childhood cancer is substantial. PMID:24752044

  4. Enhanced radiation detectors using luminescent materials

    DOEpatents

    Vardeny, Zeev V.; Jeglinski, Stefan A.; Lane, Paul A.

    2001-01-01

    A radiation detecting device comprising a radiation sensing element, and a layer of luminescent material to expand the range of wavelengths over which the sensing element can efficiently detect radiation. The luminescent material being selected to absorb radiation at selected wavelengths, causing the luminescent material to luminesce, and the luminescent radiation being detected by the sensing element. Radiation sensing elements include photodiodes (singly and in arrays), CCD arrays, IR detectors and photomultiplier tubes. Luminescent materials include polymers, oligomers, copolymers and porphyrines, Luminescent layers include thin films, thicker layers, and liquid polymers.

  5. [Radiometers performance attenuation and data correction in long-term observation of total radiation and photosynthetically active radiation in typical forest ecosystems in China].

    PubMed

    Zhu, Zhi-Lin; Sun, Xiao-Min; Yu, Gui-Rui; Wen, Xue-Fa; Zhang, Yi-Ping; Han, Shi-Jie; Yan, Jun-Hua; Wang, Hui-Min

    2011-11-01

    Based on the total radiation and photosynthetically active radiation (PAR) observations with net radiometer (CNR1) and quantum sensor (Li-190SB) in 4 ChinaFLUX forest sites (Changbaishan, Qianyanzhou, Dinghushan, and Xishuangbanna) in 2003-2008, this paper analyzed the uncertainties and the radiometers performance changes in long-term and continuous field observation. The results showed that the 98% accuracy of the total radiation measured with CNR1 (Q(cNR1)) could satisfy the technical criterion for the sites except Xishuangbanna where the Q(CNR1) was averagely about 7% lower than Q(CM11), the radiation measured with high accuracy pyranometer CM11. For most sites, though the temperature had definite effects on the performance of CNR1, the effects were still within the allowable range of the accuracy of the instrument. Besides temperature, the seasonal fog often occurred in tropical rain forests in Xishuangbanna also had effects on the performance of CNR1. Based on the long-term variations of PAR, especially its ratio to total radiation in the 4 sites, it was found that quantum sensor (Li-190SB) had obvious performance attenuation, with the mean annual attenuation rate being about 4%. To correct the observation error caused by Li-190SB, an attempt was made to give a post-correction of the PAR observations, which could basically eliminate the quantum sensor's performance attenuation due to long-term field measurement.

  6. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  7. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  8. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  9. Next Generation of Magneto-Dielectric Antennas and Optimum Flux Channels

    NASA Astrophysics Data System (ADS)

    Yousefi, Tara

    There is an ever-growing need for broadband conformal antennas to not only reduce the number of antennas utilized to cover a broad range of frequencies (VHF-UHF) but also to reduce visual and RF signatures associated with communication systems. In many applications antennas needs to be very close to low-impedance mediums or embedded inside low-impedance mediums. However, for conventional metal and dielectric antennas to operate efficiently in such environments either a very narrow bandwidth must be tolerated, or enough loss added to expand the bandwidth, or they must be placed one quarter of a wavelength above the conducting surface. The latter is not always possible since in the HF through low UHF bands, critical to Military and Security functions, this quarter-wavelength requirement would result in impractically large antennas. Despite an error based on a false assumption in the 1950’s, which had severely underestimated the efficiency of magneto-dielectric antennas, recently demonstrated magnetic-antennas have been shown to exhibit extraordinary efficiency in conformal applications. Whereas conventional metal-and-dielectric antennas carrying radiating electric currents suffer a significant disadvantage when placed conformal to the conducting surface of a platform, because they induce opposing image currents in the surface, magnetic-antennas carrying magnetic radiating currents have no such limitation. Their magnetic currents produce co-linear image currents in electrically conducting surfaces. However, the permeable antennas built to date have not yet attained the wide bandwidth expected because the magnetic-flux-channels carrying the wave have not been designed to guide the wave near the speed of light at all frequencies. Instead, they tend to lose the wave by a leaky fast-wave mechanism at low frequencies or they over-bind a slow-wave at high frequencies. In this dissertation, we have studied magnetic antennas in detail and presented the design approach and

  10. C-arm flat-panel CT arthrography of the shoulder: Radiation dose considerations and preliminary data on diagnostic performance.

    PubMed

    Guggenberger, Roman; Ulbrich, Erika J; Dietrich, Tobias J; Scholz, Rosemarie; Kaelin, Pascal; Köhler, Christoph; Elsässer, Thilo; Le Corroller, Thomas; Pfammatter, Thomas; Alkadhi, Hatem; Andreisek, Gustav

    2017-02-01

    To investigate radiation dose and diagnostic performance of C-arm flat-panel CT (FPCT) versus standard multi-detector CT (MDCT) shoulder arthrography using MRI-arthrography as reference standard. Radiation dose of two different FPCT acquisitions (5 and 20 s) and standard MDCT of the shoulder were assessed using phantoms and thermoluminescence dosimetry. FPCT arthrographies were performed in 34 patients (mean age 44 ± 15 years). Different joint structures were quantitatively and qualitatively assessed by two independent radiologists. Inter-reader agreement and diagnostic performance were calculated. Effective radiation dose was markedly lower in FPCT 5 s (0.6 mSv) compared to MDCT (1.7 mSv) and FPCT 20 s (3.4 mSv). Contrast-to-noise ratios (CNRs) were significantly (p < 0.05) higher in FPCT 20-s versus 5-s protocols. Inter-reader agreements of qualitative ratings ranged between к = 0.47-1.0. Sensitivities for cartilage and rotator cuff pathologies were low for FPCT 5-s (40 % and 20 %) and moderate for FPCT 20-s protocols (75 % and 73 %). FPCT showed high sensitivity (81-86 % and 89-99 %) for bone and acromioclavicular-joint pathologies. Using a 5-s protocol FPCT shoulder arthrography provides lower radiation dose compared to MDCT but poor sensitivity for cartilage and rotator cuff pathologies. FPCT 20-s protocol is moderately sensitive for cartilage and rotator cuff tendon pathology with markedly higher radiation dose compared to MDCT. • FPCT shoulder arthrography is feasible with fluoroscopy and CT in one workflow. • A 5-s FPCT protocol applies a lower radiation dose than MDCT. • A 20-s FPCT protocol is moderately sensitive for cartilage and tendon pathology.

  11. Ranging Behaviour of Commercial Free-Range Laying Hens

    PubMed Central

    Chielo, Leonard Ikenna; Pike, Tom; Cooper, Jonathan

    2016-01-01

    Simple Summary Commercial free-range production has become a significant sector of the fresh egg market due to legislation banning conventional cages and consumer preference for products perceived as welfare friendly, as access to outdoor range can lead to welfare benefits such as greater freedom of movement and enhanced behavioural opportunities. This study investigated dispersal patterns, feather condition and activity of laying hens in three distinct zones of the range area; the apron area near shed; enriched zone 10–50 m from shed; and outer range beyond 50 m, in six flocks of laying hens under commercial free-range conditions varying in size between 4000 and 24,000 hens. Each flock was visited for four days to record number of hens in each zone, their behaviour, feather condition and nearest neighbour distances (NND), as well as record temperature and relative humidity during the visit. Temperature and relative humidity varied across the study period in line with seasonal variations and influenced the use of range with fewer hens out of shed as temperature fell or relative humidity rose. On average, 12.5% of the hens were observed on the range and most of these hens were recorded in the apron zone as hen density decreased rapidly with increasing distance from the shed. Larger flocks appeared to have a lower proportion of hens on range. The hens used the range more in the early morning followed by a progressive decrease through to early afternoon. The NND was greatest in the outer range and decreased towards the shed. Feather condition was generally good and hens observed in the outer range had the best overall feather condition. Standing, pecking, walking and foraging were the most commonly recorded behaviours and of these, standing occurred most in the apron whereas walking and foraging behaviours were recorded most in the outer range. This study supported the findings of previous studies that reported few hens in the range and greater use of areas closer

  12. Inhibition by ultraviolet and photosynthetically available radiation lowers model estimates of depth-integrated picophytoplankton photosynthesis: global predictions for Prochlorococcus and Synechococcus.

    PubMed

    Neale, Patrick J; Thomas, Brian C

    2017-01-01

    Phytoplankton photosynthesis is often inhibited by ultraviolet (UV) and intense photosynthetically available radiation (PAR), but the effects on ocean productivity have received little consideration aside from polar areas subject to periodic enhanced UV-B due to depletion of stratospheric ozone. A more comprehensive assessment is important for understanding the contribution of phytoplankton production to the global carbon budget, present and future. Here, we consider responses in the temperate and tropical mid-ocean regions typically dominated by picophytoplankton including the prokaryotic lineages, Prochlorococcus and Synechococcus. Spectral models of photosynthetic response for each lineage were constructed using model strains cultured at different growth irradiances and temperatures. In the model, inhibition becomes more severe once exposure exceeds a threshold (E max ) related to repair capacity. Model parameters are presented for Prochlorococcus adding to those previously presented for Synechococcus. The models were applied to estimate midday, water column photosynthesis based on an atmospheric model of spectral radiation, satellite-derived spectral water transparency and temperature. Based on a global survey of inhibitory exposure severity, a full-latitude section of the mid-Pacific and near-equatorial region of the east Pacific were identified as representative regions for prediction of responses over the entire water column. Comparing predictions integrated over the water column including versus excluding inhibition, production was 7-28% lower due to inhibition depending on strain and site conditions. Inhibition was consistently greater for Prochlorococcus compared to two strains of Synechococcus. Considering only the surface mixed layer, production was inhibited 7-73%. On average, including inhibition lowered estimates of midday productivity around 20% for the modeled region of the Pacific with UV accounting for two-thirds of the reduction. In contrast

  13. Faculty of Radiation Oncology 2010 workforce survey.

    PubMed

    Leung, John; Vukolova, Natalia

    2011-12-01

    This paper outlines the key results of the Faculty of Radiation Oncology 2010 workforce survey and compares these results with earlier data. The workforce survey was conducted in mid-2010 using a custom-designed 17-question survey. The overall response rate was 76%. The majority of radiation oncologist respondents were male (n = 212, 71%), but the majority of trainee respondents were female (n = 59, 52.7%). The age range of fellows was 32-92 years (median: 47 years; mean: 49 years) and that of trainees was 27-44 years (median: 31 years; mean: 31.7 years). Most radiation oncologists worked at more than one practice (average: two practices). The majority of radiation oncologists worked in the public sector (n = 169, 64.5%), with some working in 'combination' of public and private sectors (n = 65, 24.8%) and a minority working in the private sector only (n = 28, 10.7%). The hours worked per week ranged from 1 to 85 (mean: 44 h; median: 45 h) for radiation oncologists, while for trainees the range was 16-90 (mean: 47 h; median: 45 h). The number of new cases seen in a year ranged from 1 to 1100 (mean: 275; median: 250). Most radiation oncologists considered themselves generalists with a preferred sub-specialty (43.3%) or specialists (41.9%), while a minority considered themselves as generalists (14.8%). There are a relatively large and increasing number of radiation oncologists and trainees compared with previous years. The excessive workloads evident in previous surveys appear to have diminished. However, further work is required on assessing the impact of ongoing feminisation and sub-specialisation. © 2011 The Authors. Journal of Medical Imaging and Radiation Oncology © 2011 The Royal Australian and New Zealand College of Radiologists.

  14. Relationships between outgoing longwave radiation and diabatic heating in reanalyses

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Randel, William J.; Fu, Rong

    2017-10-01

    This study investigates relationships between daily variability in National Oceanographic and Atmospheric Administration (NOAA) outgoing longwave radiation (OLR), as a proxy for deep convection, and the global diabatic heat budget derived from reanalysis data sets. Results are evaluated based on data from ECMWF Reanalysis (ERA-Interim), Japanese 55-year Reanalysis (JRA-55) and Modern-Era Retrospective Analysis for Research and Applications (MERRA2). The diabatic heating is separated into components linked to `physics' (mainly latent heat fluxes), plus longwave (LW) and shortwave (SW) radiative tendencies. Transient variability in deep convection is highly correlated with diabatic heating throughout the troposphere and stratosphere. Correlation patterns and composite analyses show that enhanced deep convection (lower OLR) is linked to amplified heating in the tropical troposphere and in the mid-latitude storm tracks, tied to latent heat release. Enhanced convection is also linked to radiative cooling in the lower stratosphere, due to weaker upwelling LW from lower altitudes. Enhanced transient deep convection increases LW and decreases SW radiation in the lower troposphere, with opposite effects in the mid to upper troposphere. The compensating effects in LW and SW radiation are largely linked to variations in cloud fraction and water content (vapor, liquid and ice). These radiative balances in reanalyses are in agreement with idealized calculations using a column radiative transfer model. The overall relationships between OLR and diabatic heating are robust among the different reanalyses, although there are differences in radiative tendencies in the tropics due to large differences of cloud water and ice content among the reanalyses. These calculations provide a simple statistical method to quantify variations in diabatic heating linked to transient deep convection in the climate system.

  15. Soliton microcomb range measurement

    NASA Astrophysics Data System (ADS)

    Suh, Myoung-Gyun; Vahala, Kerry J.

    2018-02-01

    Laser-based range measurement systems are important in many application areas, including autonomous vehicles, robotics, manufacturing, formation flying of satellites, and basic science. Coherent laser ranging systems using dual-frequency combs provide an unprecedented combination of long range, high precision, and fast update rate. We report dual-comb distance measurement using chip-based soliton microcombs. A single pump laser was used to generate dual-frequency combs within a single microresonator as counterpropagating solitons. We demonstrated time-of-flight measurement with 200-nanometer precision at an averaging time of 500 milliseconds within a range ambiguity of 16 millimeters. Measurements at distances up to 25 meters with much lower precision were also performed. Our chip-based source is an important step toward miniature dual-comb laser ranging systems that are suitable for photonic integration.

  16. EISCAT observations during MAC/SINE and MAC/Epsilon

    NASA Technical Reports Server (NTRS)

    Roettger, J.; Hoppe, U.-P.; Hall, C.

    1989-01-01

    The EISCAT incoherent scatter radar facility in Tromsoe, Norway was operated during the MAC/SINE campaign for 78 hours in the period 10 June to 17 July 1987, and during the MAC/Epsilon campaign for 90 hours in the period 15 October to 5 November 1987. The VHF (224 MHz) radar operations during MAC/SINE yielded most interesting observations of strong coherent echoes from the mesopause region. Characteristic data of these polar mesospheric summer echoes are presented. The UHF (933 MHz) radar operations during MAC/Epsilon were done with 18 deg off zenith beam and allows the deduction of meridonal and horizontal wind components as well as radial velocity spectra in addition to the usual electron density profiles in the D and lower E regions. Some results from the VHF and UHF radars indicating the presence of gravity waves are examined.

  17. Magnitude determination using duration of high frequency energy radiation and displacement amplitude: application to waveform data recorded in regional distance range

    NASA Astrophysics Data System (ADS)

    Hara, T.

    2012-12-01

    Hara (2007. EPS, 59, 227 - 231) developed a method to determine earthquake magnitudes using durations of high frequency energy radiation and displacement amplitudes of tele-seismic events, and showed that it was applicable to huge events such as the 2004 Sumatra earthquake (Mw 9.0 after the Global CMT catalog. In the following the moment magnitude are from their estimates). Since Hara (2007) developed this method, we have been applying it to large shallow events, and confirmed its effectiveness. The results for several events are available at the web site of our institute (http://iisee.kenken.go.jp/quakes.htm). Also, Hara (2011. EPS, 63, 525-528) applied this method to the 2011 Off the Pacific Coast of Tohoku Earthquake (Mw 9.1), and showed that it worked well. In these applications, we used only waveform data recorded in the tele-seismic distance range (30 - 85 degrees). In order to have a magnitude estimate faster, it is necessary to analyze regional distance range data. In this study, we applied the method of Hara (2007) to waveform data recorded in the regional distance range (8 - 30 degrees) to investigate its applicability. We slightly modified the method by changing durations of times series used for analysis considering arrivals of high amplitude Rayleigh waves. We selected the six recent huge (their moment magnitude are equal to or greater than 8.5) earthquakes; they are the December 26, 2004 Sumatra (Mw 9.0), the March 28, 2005 Northern Sumatra (Mw 8,6), the September 12, 2007 Southern Sumatra (Mw 8.5), the February 27, 2010 Chile (Mw 8.8), the March 11, 2011 off the Pacific Coast of Tohoku (Mw 9.1), the April 11, 2012 off West Coast of Northern Sumatra (Mw 8.6). We retrieved BHZ channel waveform data from IRIS DMC. For the 2004 Sumatra and 2010 Chile earthquakes, only a few waveform data are available. The estimated magnitudes are 9.16, 8.66, 8.53, 8.83, 9.15, and 8.70, respectively. Also, the estimated high frequency energy radiation durations are

  18. Does iterative reconstruction lower CT radiation dose: evaluation of 15,000 examinations.

    PubMed

    Noël, Peter B; Renger, Bernhard; Fiebich, Martin; Münzel, Daniela; Fingerle, Alexander A; Rummeny, Ernst J; Dobritz, Martin

    2013-01-01

    Evaluation of 15,000 computed tomography (CT) examinations to investigate if iterative reconstruction (IR) reduces sustainably radiation exposure. Information from 15,000 CT examinations was collected, including all aspects of the exams such as scan parameter, patient information, and reconstruction instructions. The examinations were acquired between January 2010 and December 2012, while after 15 months a first generation IR algorithm was installed. To collect the necessary information from PACS, RIS, MPPS and structured reports a Dose Monitoring System was developed. To harvest all possible information an optical character recognition system was integrated, for example to collect information from the screenshot CT-dose report. The tool transfers all data to a database for further processing such as the calculation of effective dose and organ doses. To evaluate if IR provides a sustainable dose reduction, the effective dose values were statistically analyzed with respect to protocol type, diagnostic indication, and patient population. IR has the potential to reduce radiation dose significantly. Before clinical introduction of IR the average effective dose was 10.1±7.8mSv and with IR 8.9±7.1mSv (p*=0.01). Especially in CTA, with the possibility to use kV reduction protocols, such as in aortic CTAs (before IR: average14.2±7.8mSv; median11.4mSv /with IR:average9.9±7.4mSv; median7.4mSv), or pulmonary CTAs (before IR: average9.7±6.2mSV; median7.7mSv /with IR: average6.4±4.7mSv; median4.8mSv) the dose reduction effect is significant(p*=0.01). On the contrary for unenhanced low-dose scans of the cranial (for example sinuses) the reduction is not significant (before IR:average6.6±5.8mSv; median3.9mSv/with IR:average6.0±3.1mSV; median3.2mSv). The dose aspect remains a priority in CT research. Iterative reconstruction algorithms reduce sustainably and significantly radiation dose in the clinical routine. Our results illustrate that not only in studies with a limited

  19. Internal inertia-gravity waves in the tropical lower stratosphere observed by the Arecibo radar

    NASA Technical Reports Server (NTRS)

    Maekawa, Y.; Kato, S.; Fukao, S.; Sato, T.; Woodman, R. F.

    1984-01-01

    A quasi-periodic wind oscillation with an apparent 20-50 hour period was observed at between 16 and 20 km in every experiment conducted during three periods from 1979 to 1981 with the Arecibo UHF radar. The wave disappeared near 20 km, where the mean zonal flow had easterly shear with height. This phenomenon is discussed in terms of wave absorption at a critical level, and it is suggested that the wave had a westward horizontal phase speed of 10-20 m/sec. On the basis of a relationship from f-plane theory in which the Doppler-shifted wave frequency approaches the Coriolis frequency at the critical level, an intrinsic period and horizontal wavelength at the wave-generated height of 20-30 hours and about 2000 km, respectively, are inferred.

  20. Initial Human Response to Nuclear Radiation

    DTIC Science & Technology

    1982-04-01

    radiation from a linear accelerator . Victim A , age 31, received a dose of 100 rads; victim B, age 29... The radiation has always been in the million-electron- volt range, usually from a cobalt 60 source but sometimes using linear accelerators prouucing up...more recent medical experience, Appendix B presents comments by a radiation oncologist on the

  1. Radiative and Thermal Impacts of Smoke Aerosol Longwave Absorption during Fires in the Moscow Region in Summer 2010

    NASA Astrophysics Data System (ADS)

    Gorchakova, I. A.; Mokhov, I. I.; Anikin, P. P.; Emilenko, A. S.

    2018-03-01

    The aerosol longwave radiative forcing of the atmosphere and heating rate of the near-surface aerosol layer are estimated for the extreme smoke conditions in the Moscow region in summer 2010. Thermal radiation fluxes in the atmosphere are determined using the integral transmission function and semiempirical aerosol model developed on the basis of standard aerosol models and measurements at the Zvenigorod Scientific Station, Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences. The aerosol radiative forcing reached 33 W/m2 at the lower atmospheric boundary and ranged between-1.0 and 1.0 W/m2 at the upper atmospheric boundary. The heating rate of the 10-m atmospheric layer near surface was up to 0.2 K/h during the maximum smoke conditions on August 7-9. The sensitivity of the aerosol longwave radiative forcing to the changes in the aerosol absorption coefficient and aerosol optical thickness are estimated.

  2. Structure and Dynamical Influence of Water Vapor in the Lower Tropical Troposphere

    NASA Astrophysics Data System (ADS)

    Stevens, Bjorn; Brogniez, Hélène; Kiemle, Christoph; Lacour, Jean-Lionel; Crevoisier, Cyril; Kiliani, Johannes

    2017-11-01

    In situ, airborne and satellite measurements are used to characterize the structure of water vapor in the lower tropical troposphere—below the height, z_*, of the triple-point isotherm, T_*. The measurements are evaluated in light of understanding of how lower-tropospheric water vapor influences clouds, convection and circulation, through both radiative and thermodynamic effects. Lower-tropospheric water vapor, which concentrates in the first few kilometers above the boundary layer, controls the radiative cooling profile of the boundary layer and lower troposphere. Elevated moist layers originating from a preferred level of convective detrainment induce a profile of radiative cooling that drives circulations which reinforce such features. A theory for this preferred level of cumulus termination is advanced, whereby the difference between T_* and the temperature at which primary ice forms gives a `first-mover advantage' to glaciating cumulus convection, thereby concentrating the regions of the deepest convection and leading to more clouds and moisture near the triple point. A preferred level of convective detrainment near T_* implies relative humidity reversals below z* which are difficult to identify using retrievals from satellite-borne microwave and infrared sounders. Isotopologues retrievals provide a hint of such features and their ability to constrain the structure of the vertical humidity profile merits further study. Nonetheless, it will likely remain challenging to resolve dynamically important aspects of the vertical structure of water vapor from space using only passive sensors.

  3. Ionospheric Coherence Bandwidth Measurements in the Lower VHF Frequency Range

    NASA Astrophysics Data System (ADS)

    Suszcynsky, D. M.; Light, M. E.; Pigue, M. J.

    2015-12-01

    The United States Department of Energy's Radio Frequency Propagation (RFProp) experiment consists of a satellite-based radio receiver suite to study various aspects of trans-ionospheric signal propagation and detection in four frequency bands, 2 - 55 MHz, 125 - 175 MHz, 365 - 415 MHz and 820 - 1100 MHz. In this paper, we present simultaneous ionospheric coherence bandwidth and S4 scintillation index measurements in the 32 - 44 MHz frequency range collected during the ESCINT equatorial scintillation experiment. 40-MHz continuous wave (CW) and 32 - 44 MHz swept frequency signals were transmitted simultaneously to the RFProp receiver suite from the Reagan Test Site at Kwajalein Atoll in the Marshall Islands (8.7° N, 167.7° E) in three separate campaigns during the 2014 and 2015 equinoxes. Results show coherence bandwidths as small as ~ 1 kHz for strong scintillation (S4 > 0.7) and indicate a high degree of ionospheric variability and irregularity on 10-m spatial scales. Spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities are also observed and are dominant at low elevation angles. The results are compared to previous measurements and available scaling laws.

  4. A quiescent state of 3 to 8 MeV radiation belt electrons

    NASA Astrophysics Data System (ADS)

    Selesnick, R. S.; Blake, J. B.; Kolasinski, W. A.; Fritz, T. A.

    During a ∼3 month period in mid-1996 outer radiation belt electrons in the energy range from ∼ 3 to 8 MeV were diffusing inward and decaying in intensity with no internal or external source. Measurements from the HIST instrument on POLAR are used to constrain a model for time dependent lossy radial diffusion of these electrons, and to obtain estimates of a parameterized radial diffusion coefficient and lifetime. For lower energy electrons, of ∼ 1 to 3 MeV, a source at L > 6 is apparent throughout most of the same period.

  5. Water vapor radiative effects on short-wave radiation in Spain

    NASA Astrophysics Data System (ADS)

    Vaquero-Martínez, Javier; Antón, Manuel; Ortiz de Galisteo, José Pablo; Román, Roberto; Cachorro, Victoria E.

    2018-06-01

    In this work, water vapor radiative effect (WVRE) is studied by means of the Santa Barbara's Disort Radiative Transfer (SBDART) model, fed with integrated water vapor (IWV) data from 20 ground-based GPS stations in Spain. Only IWV data recorded during cloud-free days (selected using daily insolation data) were used in this study. Typically, for SZA = 60.0 ± 0.5° WVRE values are around - 82 and - 66 Wm-2 (first and third quartile), although it can reach up - 100 Wm-2 or decrease to - 39 Wm-2. A power dependence of WVRE on IWV and cosine of solar zenith angle (SZA) was found by an empirical fit. This relation is used to determine the water vapor radiative efficiency (WVEFF = ∂WVRE/∂IWV). Obtained WVEFF values range from - 9 and 0 Wm-2 mm-1 (- 2.2 and 0% mm-1 in relative terms). It is observed that WVEFF decreases as IWV increases, but also as SZA increases. On the other hand, when relative WVEFF is calculated from normalized WVRE, an increase of SZA results in an increase of relative WVEFF. Heating rates were also calculated, ranging from 0.2 Kday-1 to 1.7 Kday-1. WVRE was also calculated at top of atmosphere, where values ranged from 4 Wm-2 to 37 Wm-2.

  6. Ranging Behaviour of Commercial Free-Range Laying Hens.

    PubMed

    Chielo, Leonard Ikenna; Pike, Tom; Cooper, Jonathan

    2016-04-26

    In this study, the range use and behaviour of laying hens in commercial free-range flocks was explored. Six flocks were each visited on four separate days and data collected from their outdoor area (divided into zones based on distance from shed and available resources). These were: apron (0-10 m from shed normally without cover or other enrichments); enriched belt (10-50 m from shed where resources such as manmade cover, saplings and dust baths were provided); and outer range (beyond 50 m from shed with no cover and mainly grass pasture). Data collection consisted of counting the number of hens in each zone and recording behaviour, feather condition and nearest neighbour distance (NND) of 20 birds per zone on each visit day. In addition, we used techniques derived from ecological surveys to establish four transects perpendicular to the shed, running through the apron, enriched belt and outer range. Number of hens in each 10 m × 10 m quadrat was recorded four times per day as was the temperature and relative humidity of the outer range. On average, 12.5% of hens were found outside. Of these, 5.4% were found in the apron; 4.3% in the enriched zone; and 2.8% were in the outer range. This pattern was supported by data from quadrats, where the density of hens sharply dropped with increasing distance from shed. Consequently, NND was greatest in the outer range, least in the apron and intermediate in the enriched belt. Hens sampled in outer range and enriched belts had better feather condition than those from the apron. Standing, ground pecking, walking and foraging were the most commonly recorded activities with standing and pecking most likely to occur in the apron, and walking and foraging more common in the outer range. Use of the outer range declined with lower temperatures and increasing relative humidity, though use of apron and enriched belt was not affected by variation in these measures. These data support previous findings that outer range areas tend to be

  7. Variability in effective radiating area and output power of new ultrasound transducers at 3 MHz.

    PubMed

    Johns, Lennart D; Straub, Stephen J; Howard, Samuel M

    2007-01-01

    Spatial average intensity (SAI) is often used by clinicians to gauge therapeutic ultrasound dosage, yet SAI measures are not directly regulated by US Food and Drug Administration (FDA) standards. Current FDA guidelines permit a possible 50% to 150% minimum to maximum range of SAI values, potentially contributing to variability in clinical outcomes. To measure clinical values that describe ultrasound transducers and to determine the degree of intramanufacturer and intermanufacturer variability in effective radiating area, power, and SAI when the transducer is functioning at 3 MHz. A descriptive and interferential approach was taken to this quasi-experimental design. Measurement laboratory. Sixty-six 5-cm(2) ultrasound transducers were purchased from 6 different manufacturers. All transducers were calibrated and then assessed using standardized measurement techniques; SAI was normalized to account for variability in effective radiating area, resulting in an nSAI. Effective radiating area, power, and nSAI. All manufacturers with the exception of Omnisound (P = .534) showed a difference between the reported and measured effective radiating area values (P < .001). All transducers were within FDA guidelines for power (+/-20%). Chattanooga (0.85 +/- 0.05 W/cm(2)) had a lower nSAI (P < .05) than all other manufacturers functioning at 3 MHz. Intramanufacturer variability in SAI ranged from 16% to 35%, and intermanufacturer variability ranged from 22% to 61%. Clinicians should consider treatment values of each individual transducer, regardless of the manufacturer. In addition, clinicians should scrutinize the power calibration and recalibration record of the transducer and adjust clinical settings as needed for the desired level of heating. Our data may aid in explaining the reported heating differences among transducers from different manufacturers. Stricter FDA standards regarding effective radiating area and total power are needed, and standards regulating SAI should be

  8. Variability in Effective Radiating Area and Output Power of New Ultrasound Transducers at 3 MHz

    PubMed Central

    Johns, Lennart D; Straub, Stephen J; Howard, Samuel M

    2007-01-01

    Context: Spatial average intensity (SAI) is often used by clinicians to gauge therapeutic ultrasound dosage, yet SAI measures are not directly regulated by US Food and Drug Administration (FDA) standards. Current FDA guidelines permit a possible 50% to 150% minimum to maximum range of SAI values, potentially contributing to variability in clinical outcomes. Objective: To measure clinical values that describe ultrasound transducers and to determine the degree of intramanufacturer and intermanufacturer variability in effective radiating area, power, and SAI when the transducer is functioning at 3 MHz. Design: A descriptive and interferential approach was taken to this quasi-experimental design. Setting: Measurement laboratory. Patients or Other Participants: Sixty-six 5-cm2 ultrasound transducers were purchased from 6 different manufacturers. Intervention(s): All transducers were calibrated and then assessed using standardized measurement techniques; SAI was normalized to account for variability in effective radiating area, resulting in an nSAI. Main Outcome Measure(s): Effective radiating area, power, and nSAI. Results: All manufacturers with the exception of Omnisound (P = .534) showed a difference between the reported and measured effective radiating area values (P < .001). All transducers were within FDA guidelines for power (±20%). Chattanooga (0.85 ± 0.05 W/cm2) had a lower nSAI (P < .05) than all other manufacturers functioning at 3 MHz. Intramanufacturer variability in SAI ranged from 16% to 35%, and intermanufacturer variability ranged from 22% to 61%. Conclusions: Clinicians should consider treatment values of each individual transducer, regardless of the manufacturer. In addition, clinicians should scrutinize the power calibration and recalibration record of the transducer and adjust clinical settings as needed for the desired level of heating. Our data may aid in explaining the reported heating differences among transducers from different manufacturers

  9. Radiation-Hardened Electronics for the Space Environment

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.

    2007-01-01

    RHESE covers a broad range of technology areas and products. - Radiation Hardened Electronics - High Performance Processing - Reconfigurable Computing - Radiation Environmental Effects Modeling - Low Temperature Radiation Hardened Electronics. RHESE has aligned with currently defined customer needs. RHESE is leveraging/advancing SOA space electronics, not duplicating. - Awareness of radiation-related activities through out government and industry allow advancement rather than duplication of capabilities.

  10. Biologically Inspired Radiation Reflector

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M. (Inventor); Lawson, John W. (Inventor); Squire, Thomas H. (Inventor); Gusman, Michael (Inventor)

    2018-01-01

    A thermal protection system (TPS) comprising a mixture of silicon carbide and SiOx that has been converted from Si that is present in a collection of diatom frustules and at least one diatom has quasi-periodic pore-to-pore separation distance d(p-p) in a selected range. Where a heat shield comprising the converted SiC/SiOx frustules receives radiation, associated with atmospheric (re)entry, a portion of this radiation is reflected so that radiation loading of the heat shield is reduced.

  11. Ionizing radiation and taxonomic, functional and evolutionary diversity of bird communities.

    PubMed

    Morelli, Federico; Benedetti, Yanina; Mousseau, Timothy A; Møller, Anders Pape

    2018-08-15

    Ionizing radiation from nuclear accidents at Chernobyl, Fukushima and elsewhere has reduced the abundance, species richness and diversity of ecosystems. Here we analyzed the taxonomic, functional and evolutionary diversity of bird communities in forested areas around Chernobyl. Species richness decreased with increasing radiation, mainly in 2007. Functional richness, but not functional evenness and divergence, decreased with increasing level of ionizing radiation. Evolutionary distinctiveness of bird communities was higher in areas with higher levels of ionizing radiation. Regression tree models revealed that species richness was higher in bird communities in areas with radiation levels lower than 0.7 μSv/h. In contrast, when radiation levels were higher than 16.67 μSv/h, bird species richness reached a minimum. Functional richness was affected by two variables: Forest cover and radiation level. Higher functional richness was found in bird communities in areas with forest cover lower than 50%. In the areas with forest cover higher than 50%, the functional richness was lower when radiation level was higher than 0.91 μSv/h. Finally, the average evolutionary distinctiveness of bird communities was higher in areas with forest cover exceeding 50%. These findings imply that level of ionizing radiation interacted with forest cover to affect species richness and its component parts, i.e. taxonomic, functional, and evolutionary diversity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Optimizing the Navy’s Investment in Space Professionals

    DTIC Science & Technology

    2011-09-01

    UFO Ultra High Frequency Follow-On UHF Ultra High Frequency URL Unrestricted Line USA United States Army USAF United States Air Force USCYBERCOM...LEASAT), and eight UHF Follow-On ( UFO ) satellites all flying in geostationary orbit (GEO). NAVSOC is the principle Navy command that operates, manages...and maintains the DoD’s narrowband UHF capability from five different ground stations. The replacement satellite for the aging UFO system is the

  13. Design of an adaptive CubeSat transmitter for achieving optimum signal-to-noise ratio (SNR)

    NASA Astrophysics Data System (ADS)

    Jaswar, F. D.; Rahman, T. A.; Hindia, M. N.; Ahmad, Y. A.

    2017-12-01

    CubeSat technology has opened the opportunity to conduct space-related researches at a relatively low cost. Typical approach to maintain an affordable cubeSat mission is to use a simple communication system, which is based on UHF link with fixed-transmit power and data rate. However, CubeSat in the Low Earth Orbit (LEO) does not have relative motion with the earth rotation, resulting in variable propagation path length that affects the transmission signal. A transmitter with adaptive capability to select multiple sets of data rate and radio frequency (RF) transmit power is proposed to improve and optimise the link. This paper presents the adaptive UHF transmitter design as a solution to overcome the variability of the propagation path. The transmitter output power is adjustable from 0.5W to 2W according to the mode of operations and satellite power limitations. The transmitter is designed to have four selectable modes to achieve the optimum signal-to-noise ratio (SNR) and efficient power consumption based on the link budget analysis and satellite requirement. Three prototypes are developed and tested for space-environment conditions such as the radiation test. The Total Ionizing Dose measurements are conducted in the radiation test done at Malaysia Nuclear Agency Laboratory. The results from this test have proven that the adaptive transmitter can perform its operation with estimated more than seven months in orbit. This radiation test using gamma source with 1.5krad exposure is the first one conducted for a satellite program in Malaysia.

  14. New Approaches to Radiation Protection

    PubMed Central

    Rosen, Eliot M.; Day, Regina; Singh, Vijay K.

    2015-01-01

    Radioprotectors are compounds that protect against radiation injury when given prior to radiation exposure. Mitigators can protect against radiation injury when given after exposure but before symptoms appear. Radioprotectors and mitigators can potentially improve the outcomes of radiotherapy for cancer treatment by allowing higher doses of radiation and/or reduced damage to normal tissues. Such compounds can also potentially counteract the effects of accidental exposure to radiation or deliberate exposure (e.g., nuclear reactor meltdown, dirty bomb, or nuclear bomb explosion); hence they are called radiation countermeasures. Here, we will review the general principles of radiation injury and protection and describe selected examples of radioprotectors/mitigators ranging from small-molecules to proteins to cell-based treatments. We will emphasize agents that are in more advanced stages of development. PMID:25653923

  15. RF radiation from lightning

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1978-01-01

    Radiation from lightning in the RF band from 3-300 MHz were monitored. Radiation in this frequency range is of interest as a potential vehicle for monitoring severe storms and for studying the lightning itself. Simultaneous measurements were made of RF radiation and fast and slow field changes. Continuous analogue recordings with a system having 300 kHz of bandwidth were made together with digital records of selected events (principally return strokes) at greater temporal resolution. The data reveal patterns in the RF radiation for the entire flash which are characteristic of flash type and independent of the frequency of observation. Individual events within the flash also have characteristic RF patterns. Strong radiation occurs during the first return strokes, but delayed about 20 micron sec with respect to the begining of the return stroke; whereas, RF radiation from subsequent return strokes tends to be associated with cloud processes preceding the flash with comparatively little radiation occurring during the return stroke itself.

  16. Radiation Tests of Single Photon Avalanche Diode for Space Applications

    NASA Technical Reports Server (NTRS)

    Moscatelli, Francesco; Marisaldi, Martino; MacCagnani, Piera; Labanti, Claudio; Fuschino, Fabio; Prest, Michela; Berra, Alessandro; Bolognini, Davide; Ghioni, Massimo; Rech, Ivan; hide

    2013-01-01

    Single photon avalanche diodes (SPADs) have been recently studied as photodetectors for applications in space missions. In this presentation we report the results of radiation hardness test on large area SPAD (actual results refer to SPADs having 500 micron diameter). Dark counts rate as low as few kHz at -10 degC has been obtained for the 500 micron devices, before irradiation. We performed bulk damage and total dose radiation tests with protons and gamma-rays in order to evaluate their radiation hardness properties and their suitability for application in a Low Earth Orbit (LEO) space mission. With this aim SPAD devices have been irradiated using up to 20 krad total dose with gamma-rays and 5 krad with protons. The test performed show that large area SPADs are very sensitive to proton doses as low as 2×10(exp 8) (1 MeV eq) n/cm2 with a significant increase in dark counts rate (DCR) as well as in the manifestation of the "random telegraph signal" effect. Annealing studies at room temperature (RT) and at 80 degC have been carried out, showing a high decrease of DCR after 24-48 h at RT. Lower protons doses in the range 1-10×10(exp 7) (1 MeV eq) n/cm(exp 2) result in a lower increase of DCR suggesting that the large-area SPADs tested in this study are well suitable for application in low-inclination LEO, particularly useful for gamma-ray astrophysics.

  17. LASER RADIATION CHARACTERISTICS (BRIEF COMMUNICATIONS): Conversion of KrCl and XeCl laser radiation to the visible spectral range by stimulated Raman scattering in lead vapor

    NASA Astrophysics Data System (ADS)

    Evtushenko, Gennadii S.; Mel'chenko, S. V.; Panchenko, Aleksei N.; Tarasenko, Viktor F.

    1990-04-01

    Conversion of KrCl and XeCl laser radiation by stimulated Raman scattering was achieved in lead vapor. The KrCl laser radiation was converted into three lines in the visible region at λ = 406, 590, and 723 nm by transitions from both the ground and first excited levels of the lead atom. The conversion efficiency of XeCl laser radiation of low spatial coherence was found to be limited by the activation of a competing nonlinear process.

  18. Genetic susceptibility: radiation effects relevant to space travel.

    PubMed

    Peng, Yuanlin; Nagasawa, Hatsumi; Warner, Christy; Bedford, Joel S

    2012-11-01

    Genetic variation in the capacity to repair radiation damage is an important factor influencing both cellular and tissue radiosensitivity variation among individuals as well as dose rate effects associated with such damage. This paper consists of two parts. The first part reviews some of the available data relating to genetic components governing such variability among individuals in susceptibility to radiation damage relevant for radiation protection and discusses the possibility and extent to which these may also apply for space radiations. The second part focuses on the importance of dose rate effects and genetic-based variations that influence them. Very few dose rate effect studies have been carried out for the kinds of radiations encountered in space. The authors present here new data on the production of chromosomal aberrations in noncycling low passage human ATM+/+ or ATM+/- cells following irradiations with protons (50 MeV or 1 GeV), 1 GeV(-1) n iron ions and gamma rays, where doses were delivered at a high dose rate of 700 mGy(-1) min, or a lower dose rate of 5 mGy min(-1). Dose responses were essentially linear over the dose ranges tested and not significantly different for the two cell strains. Values of the dose rate effectiveness factor (DREF) were expressed as the ratio of the slopes of the dose-response curves for the high versus the lower (5 mGy min(-1)) dose rate exposures. The authors refer to this as the DREF5. For the gamma ray standard, DREF5 values of approximately two were observed. Similar dose rate effects were seen for both energies of protons (DREF5 ≈ 2.2 in both cases). For 1 GeV(-1) n iron ions [linear energy transfer (LET) ≈ 150 keV μ(-1)], the DREF5 was not 1 as might have been expected on the basis of LET alone but was approximately 1.3. From these results and conditions, the authors estimate that the relative biological effectiveness for 1 GeV(-1) n iron ions for high and low dose rates, respectively, were about 10 and 15

  19. Analytical modeling of polarization transformation of laser radiation of various spectral ranges by birefringent structures

    NASA Astrophysics Data System (ADS)

    Motrich, A. V.; Ushenko, O. G.

    2018-01-01

    The results of statistical dependence and correlation structures of two-dimensional Mueller matrix elements in various spectral regions of laser radiation by changes in the distribution of orientations of optical axes and birefringence of protein crystals. Namely, a two-wave ("red-blue") approach - layer of biological tissues irradiated by He-Ne laser (λ1 = 0,63μm ) and He-Cd laser (λ1 = 0,41μm )was used Conducted analysis of polarimetric sensitivity was made, a state of polarization points that contain volumetric structures of biological objects to spectral region of laser radiation was detected.

  20. Lower Cognitive Function in Older Patients with Lower Muscle Strength and Muscle Mass.

    PubMed

    van Dam, Romee; Van Ancum, Jeanine M; Verlaan, Sjors; Scheerman, Kira; Meskers, Carel G M; Maier, Andrea B

    2018-06-18

    Low muscle strength and muscle mass are associated with adverse outcomes in older hospitalized patients. The aim of this study was to assess the association between cognitive functioning and muscle strength and muscle mass in hospitalized older patients. This prospective inception cohort included 378 patients aged 70 years or older. At admission patients were assessed for cognitive functioning by use of the Six-Item Cognitive Impairment Test (6-CIT). Muscle strength and muscle mass were assessed using handheld dynamometry and segmental multifrequency bioelectrical impedance analysis, within 48 h after admission and on day 7, or earlier on the day of discharge. The data of 371 patients (mean age ± standard deviation 80.1 ± 6.4 years, 49.3% female) were available for analyses. The median (interquartile range) 6-CIT score was 4 (0-8) points. At admission, lower cognitive functioning was associated with lower muscle strength, lower skeletal muscle mass (SMM), lower appendicular lean mass, and lower SMM index. Cognitive functioning was not associated with change in muscle strength and muscle mass during hospitalization. This study further strengthens evidence for an association between lower cognitive functioning and lower muscle strength and muscle mass, but without a further decline during hospitalization. © 2018 The Author(s) Published by S. Karger AG, Basel.

  1. High Dose-Rate Intracavitary Brachytherapy for Cervical Carcinomas With Lower Vaginal Infiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazumoto, Tomoko; Kato, Shingo; Tabushi, Katsuyoshi

    2007-11-15

    Purpose: This report presents the clinical applications of an automated treatment-planning program of high-dose-rate intracavitary brachytherapy (HDR-ICBT) for advanced uterine cervical cancer infiltrating the parametrium and the lower vagina. Methods and Materials: We adopted HDR-ICBT under optimized dose distribution for 22 cervical cancer patients with tumor infiltration of the lower half of the vagina. All patients had squamous cell carcinoma with International Federation of Gynecology and Obstetrics clinical stages IIB-IVA. After whole pelvic external beam irradiation with a median dose of 30.6 Gy, a conventional ICBT was applied as 'pear-shaped' isodose curve. Then 3-4 more sessions per week of thismore » new method of ICBT were performed. With a simple determination of the treatment volume, the cervix-parametrium, and the lower vagina were covered automatically and simultaneously by this program, that was designated as 'utero-vaginal brachytherapy'. The mean follow-up period was 87.4 months (range, 51.8-147.9 months). Results: Isodose curve for this program was 'galaxy-shaped'. Five-year local-progression-free survival and overall survival rates were 90.7% and 81.8%, respectively. Among those patients with late complications higher than Grade 2 Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer morbidity score, only one (4.5%) developed severe proctitis. Conclusions: Because of the favorable treatment outcomes, this treatment-planning program with a simplified target-volume based dosimetry was proposed for cervical cancer with lower vaginal infiltration.« less

  2. Evaluation of a radiation protection cabin for invasive electrophysiological procedures.

    PubMed

    Dragusin, Octavian; Weerasooriya, Rukshen; Jaïs, Pierre; Hocini, Mélèze; Ector, Joris; Takahashi, Yoshihide; Haïssaguerre, Michel; Bosmans, Hilde; Heidbüchel, Hein

    2007-01-01

    Complex invasive electrophysiological procedures may result in high cumulative operator radiation exposure. Classical protection with lead aprons results in discomfort while radioprotection is still incomplete. This study evaluated the usefulness of a radiation protection cabin (RPC) that completely surrounds the operator. The evaluation was performed independently in two electrophysiology laboratories (E1-Leuven, Belgium; E2-Bordeaux, France), comparing operator radiation exposure using the RPC vs. a 0.5 mm lead-equivalent apron (total of 135 procedures). E1 used thermoluminiscent dosimeters (TLDs) placed at 16 positions in and out of the RPC and nine positions in and out of the apron. E2 used more sensitive electronic personal dosimeters (EPD), placed at waist and neck. The sensitivity thresholds of the TLDs and EPDs were 10-20 microSv and 1-1.5 microSv, respectively. All procedures could be performed unimpeded with the RPC. Median TLD dose values outside protected areas were in the range of 57-452 microSv, whereas doses under the apron or inside the RPC were all at the background radiation level, irrespective of procedure and fluoroscopy duration and of radiation energy delivered. In addition, the RPC was protecting the entire body (except the hands), whereas lead apron protection is incomplete. Also with the more sensitive EPDs, the radiation dose within the RPC was at the sensitivity threshold/background level (1.3+/-0.6 microSv). Again, radiation to the head was significantly lower within the RPC (1.9+/-1.2 microSv) than with the apron (102+/-23 microSv, P<0.001). The use of the RPC allows performing catheter ablation procedures without compromising catheter manipulation, and with negligible radiation exposure for the operator.

  3. Radiation sensitivity and EPR dosimetric potential of gallic acid and its esters

    NASA Astrophysics Data System (ADS)

    Tuner, Hasan; Oktay Bal, M.; Polat, Mustafa

    2015-02-01

    In the preset work the radiation sensitivities of Gallic Acid anhydrous and monohydrate, Octyl, Lauryl, and Ethyl Gallate (GA, GAm, OG, LG, and EG) were investigated in the intermediate (0.5-20 kGy) and low radiation (<10 Gy) dose range using Electron Paramagnetic Resonance (EPR) spectroscopy. While OG, LG, and EG are presented a singlet EPR spectra, their radiation sensitivity found to be very different in the intermediate dose range. At low radiation dose range (<10 Gy) only LG is found to be present a signal that easily distinguished from the noise signals. The intermediate and low dose range radiation sensitivities are compared using well known EPR dosimeter alanine. The radiation yields (G) of the interested material were found to be 1.34×10-2, 1.48×10-2, 4.14×10-2, and 6.03×10-2, 9.44×10-2 for EG, GA, GAm, OG, and LG, respectively at the intermediate dose range. It is found that the simple EPR spectra and the noticeable EPR signal of LG make it a promising dosimetric material to be used below 10 Gy of radiation dose.

  4. Responses of selected neutron monitors to cosmic radiation at aviation altitudes.

    PubMed

    Yasuda, Hiroshi; Yajima, Kazuaki; Sato, Tatsuhiko; Takada, Masashi; Nakamura, Takashi

    2009-06-01

    Cosmic radiation exposure of aircraft crew, which is generally evaluated by numerical simulations, should be verified by measurements. From the perspective of radiological protection, the most contributing radiation component at aviation altitude is neutrons. Measurements of cosmic neutrons, however, are difficult in a civilian aircraft because of the limitations of space and electricity; a small, battery-operated dosimeter is required whereas larger-size instruments are generally used to detect neutrons with a broad range of energy. We thus examined the applicability of relatively new transportable neutron monitors for use in an aircraft. They are (1) a conventional rem meter with a polyethylene moderator (NCN1), (2) an extended energy-range rem meter with a tungsten-powder mixed moderator (WENDI-II), and (3) a recoil-proton scintillation rem meter (PRESCILA). These monitors were installed onto the racks of a business jet aircraft that flew two times near Japan. Observed data were compared to model calculations using a PHITS-based Analytical Radiation Model in the Atmosphere (PARMA). Excellent agreement between measured and calculated values was found for the WENDI-II. The NCN1 showed approximately half of predicted values, which were lower than those expected from its response function. The observations made with PRESCILA showed much higher than expected values; which is attributable to the presence of cosmic-ray protons and muons. These results indicate that careful attention must be paid to the dosimetric properties of a detector employed for verification of cosmic neutron dose.

  5. Comprehensibility of patient consent forms for radiation therapy of cervical cancer.

    PubMed

    MacDougall, Deborah Skinner; Connor, Ulla M; Johnstone, Peter A S

    2012-06-01

    The construct of Health Literacy (HL) deals with patients' capacity to understand their health-related instructions, consent forms, and other documents. A significant challenge of providing healthcare to patients with low HL is the complex nature of the disease process, and of requisite treatments. In radiation oncology specifically, the delivery of ionizing radiation is difficult enough to describe; describing radiation toxicity in terms of the underlying physics and biology is daunting. A multimodal analysis of a small sample of patient consent forms was undertaken in order to address this issue more closely, and identify the extent to which such literature contributes to the challenges faced by patients with low HL. Members of national cooperative group panels dealing with gynecologic cancer were asked to submit copies of consent forms provided to patients with stage II cervical cancer. Four such forms were submitted and reviewed by a single person with expertise in linguistics using standard tools. Three of the four consents scored within the lower portion of the "adequate" range. One consent was not suitable. Consent readability ranged from grades 12.18 to 16.13; this means that they required at least a high school education to interpret, and in two cases required post-graduate coursework. There is significant room for improvement in consent form design and structure. When considering cultural and socioeconomic appropriateness of patient consent forms, input of staff with expertise in linguistics should be sought. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Radiation exposure from Chest CT: Issues and Strategies

    PubMed Central

    Maher, Michael M.; Rizzo, Stefania; Kanarek, David; Shephard, Jo-Anne O.

    2004-01-01

    Concerns have been raised over alleged overuse of CT scanning and inappropriate selection of scanning methods, all of which expose patients to unnecessary radiation. Thus, it is important to identify clinical situations in which techniques with lower radiation dose such as plain radiography or no radiation such as MRI and occasionally ultrasonography can be chosen over CT scanning. This article proposes the arguments for radiation dose reduction in CT scanning of the chest and discusses recommended practices and studies that address means of reducing radiation exposure associated with CT scanning of the chest. PMID:15082885

  7. Leveraging an SNMP Agent in Terminal Equipment for Network Monitoring of U.S. Navy SATCOM

    DTIC Science & Technology

    2011-09-01

    Network Topology TWT Traveling-wave Tube TX Transmitter UCD Uplink Channel Descriptor UDP User Datagram Protocol UFO UHF Follow-On UHF Ultra High...through DSCS III, UFO , and Milstar” (Martin, n.d.a).  “Capabilities have grown dramatically with the development of satellite and electronics...Communication Systems (DSCS) II and III and the Global Broadcast Service (GBS) payload on the UHF Follow-On ( UFO ) satellite  In 1971, the DSCS II

  8. Does Iterative Reconstruction Lower CT Radiation Dose: Evaluation of 15,000 Examinations

    PubMed Central

    Noël, Peter B.; Renger, Bernhard; Fiebich, Martin; Münzel, Daniela; Fingerle, Alexander A.; Rummeny, Ernst J.; Dobritz, Martin

    2013-01-01

    Purpose Evaluation of 15,000 computed tomography (CT) examinations to investigate if iterative reconstruction (IR) reduces sustainably radiation exposure. Method and Materials Information from 15,000 CT examinations was collected, including all aspects of the exams such as scan parameter, patient information, and reconstruction instructions. The examinations were acquired between January 2010 and December 2012, while after 15 months a first generation IR algorithm was installed. To collect the necessary information from PACS, RIS, MPPS and structured reports a Dose Monitoring System was developed. To harvest all possible information an optical character recognition system was integrated, for example to collect information from the screenshot CT-dose report. The tool transfers all data to a database for further processing such as the calculation of effective dose and organ doses. To evaluate if IR provides a sustainable dose reduction, the effective dose values were statistically analyzed with respect to protocol type, diagnostic indication, and patient population. Results IR has the potential to reduce radiation dose significantly. Before clinical introduction of IR the average effective dose was 10.1±7.8mSv and with IR 8.9±7.1mSv (p*=0.01). Especially in CTA, with the possibility to use kV reduction protocols, such as in aortic CTAs (before IR: average14.2±7.8mSv; median11.4mSv /with IR:average9.9±7.4mSv; median7.4mSv), or pulmonary CTAs (before IR: average9.7±6.2mSV; median7.7mSv /with IR: average6.4±4.7mSv; median4.8mSv) the dose reduction effect is significant(p*=0.01). On the contrary for unenhanced low-dose scans of the cranial (for example sinuses) the reduction is not significant (before IR:average6.6±5.8mSv; median3.9mSv/with IR:average6.0±3.1mSV; median3.2mSv). Conclusion The dose aspect remains a priority in CT research. Iterative reconstruction algorithms reduce sustainably and significantly radiation dose in the clinical routine. Our results

  9. Higher glucocorticoid secretion in the physiological range is associated with lower bone strength at the proximal radius in healthy children: importance of protein intake adjustment.

    PubMed

    Shi, Lijie; Sánchez-Guijo, Alberto; Hartmann, Michaela F; Schönau, Eckhard; Esche, Jonas; Wudy, Stefan A; Remer, Thomas

    2015-02-01

    Whether higher production of glucocorticoids (GCs) within the physiological range may already be affecting bone status in healthy children is unknown. Because dietary protein intake affects both bone and GCs, we examined the association of urinary measures of glucocorticoid status and cortical bone in healthy non-obese children, after particularly controlling for protein intake. Proximal forearm bone parameters were measured by peripheral quantitative computed tomography (pQCT). Subjects studied (n = 175, 87 males, aged 6 to 18 years) had two 24-hour urine samples collected: the first sample at 1 year before bone measurement, and the second sample at the time of bone measurement. Major urinary GC metabolites were measured by mass spectrometry and summed to assess daily adrenal GC secretion (∑C21). Urinary free cortisol (UFF) and cortisone (UFE) were summed to assess potentially bioactive free GCs (UFF + UFE). After controlling for several covariates and especially urinary nitrogen (the biomarker of protein intake) cortisol secretion ∑C21 was inversely associated with all analyzed pQCT measures of bone quality. ∑C21 also predicted a higher endosteal and lower periosteal circumference, explaining both a smaller cortical area and (together with lower BMD) a lower strength-strain-index (SSI). UFF + UFE, UFE itself, and a urinary metabolite-estimate of 11beta-hydroxysteroid dehydrogenase type1 (11beta-HSD1) activity showed corresponding reciprocal associations (p < 0.05) with BMD and bone mineral content, but not with SSI and bone geometry variables. In conclusion, higher GC levels, even within the physiological range, appear to exert negative influences on bone modeling and remodeling already during growth. Our physiological data also suggest a relevant role of cortisone as the direct source for intracrine-generated cortisol by bone cell 11beta-HSD1. © 2014 American Society for Bone and Mineral Research.

  10. Lexical Range and Communicative Competence of Learners in Bilingual Schools in Lower Austria

    ERIC Educational Resources Information Center

    Mewald, Claudia

    2015-01-01

    This article discusses the impact of lexical range on the learners' ability to communicate in English when taught as a foreign language in bilingual schools, and emphasizes the importance of explicit vocabulary instruction. It draws on data from classroom observation, lexis-retrieval tasks, written and spoken performance in bilingual…

  11. Comparison of Paleogene paleogeography: Southern Coast Ranges and western Transverse Ranges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schussler, S.A.

    1991-02-01

    The paleogene stratigraphic sequence exposed in the southwestern San Rafael Mountains at the southern terminus of the Coast Ranges, consists of up to 850 m (2,800 ft) of the marine limestone, sandstone, and mudstone that lies with a unique depositional contact upon Franciscan Complex rocks. Lithofacies identified represent four sedimentary environments: (1) foreslope talus deposits of a neritic algal bank (Sierra Blanca limestone), (2) bathyal basin plain and outer submarine fan deposits (Juncal/Anita Formation and Cozy Dell Shale), (3) suprafan lobe deposits of a bathyal submarine fan (lower Mitilija Sandstone), and (4) sublittoral shelf deposits (upper Matilija Sandstone). Similarities betweenmore » paleogene rocks in the southwest San Rafael mountains and the western Santa Ynez Mountains of the Transverse Ranges, approximately 60 km (40 mi) to the west, suggest deposition in a similar paleogeographic setting. Paleomagnetic data suggests post-Paleogene clockwise rotations of the western Transverse Ranges of 90{degree}+. Counterclockwise rotation of the western Transverse Ranges by this amount aligns the similar depositional sequences of the western Transverse Ranges with the northwest-trending Paleogene forearc basin of the southern Coast Ranges and eliminates the necessity for an east-west-oriented Paleogene basin at the site of the present western Transverse Ranges.« less

  12. Functional proteomic analysis revealed ground-base ion radiations cannot reflect biological effects of space radiations of rice

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Sun, Yeqing; Zhao, Qian; Han, Lu

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects. Radiobiological studies during space flights are unrepeatable due to the variable space radiation environment, ground-base ion radiations are usually performed to simulate of the space biological effect. Spaceflights present a low-dose rate (0.1˜~0.3mGy/day) radiation environment inside aerocrafts while ground-base ion radiations present a much higher dose rate (100˜~500mGy/min). Whether ground-base ion radiation can reflect effects of space radiation is worth of evaluation. In this research, we compared the functional proteomic profiles of rice plants between on-ground simulated HZE particle radiation and spaceflight treatments. Three independent ground-base seed ionizing radiation experiments with different cumulative doses (dose range: 2˜~20000mGy) and different liner energy transfer (LET) values (13.3˜~500keV/μμm) and two independent seed spaceflight experiments onboard Chinese 20th satellite and SZ-6 spacecraft were carried out. Alterations in the proteome were analyzed by two-dimensional difference gel electrophoresis (2-D DIGE) with MALDI-TOF/TOF mass spectrometry identifications. 45 and 59 proteins showed significant (p<0.05) and reproducible quantitative differences in ground-base ion radiation and spaceflight experiments respectively. The functions of ground-base radiation and spaceflight proteins were both involved in a wide range of biological processes. Gene Ontology enrichment analysis further revealed that ground-base radiation responsive proteins were mainly involved in removal of superoxide radicals, defense response to stimulus and photosynthesis, while spaceflight responsive proteins mainly participate in nucleoside metabolic process, protein folding and phosphorylation. The results implied that ground-base radiations cannot truly reflect effects of spaceflight radiations, ground-base radiation was a kind of indirect effect to rice causing

  13. Electromagnetic radiation screening of semiconductor devices for long life applications

    NASA Technical Reports Server (NTRS)

    Hall, T. C.; Brammer, W. G.

    1972-01-01

    A review is presented of the mechanism of interaction of electromagnetic radiation in various spectral ranges, with various semiconductor device defects. Previous work conducted in this area was analyzed as to its pertinence to the current problem. The task was studied of implementing electromagnetic screening methods in the wavelength region determined to be most effective. Both scanning and flooding type stimulation techniques are discussed. While the scanning technique offers a considerably higher yield of useful information, a preliminary investigation utilizing the flooding approach is first recommended because of the ease of implementation, lower cost and ability to provide go-no-go information in semiconductor screening.

  14. Lower Eyelid Retraction Repair with Resorbable Polydioxanone Implants.

    PubMed

    Alsuhaibani, Adel H; Al-Faky, Yasser H

    2016-01-01

    To report a unique technique to repair lower eyelid retraction using resorbable polydioxanone implants. This was a retrospective, consecutive, nonrandomized interventional case series. Patients with lower eyelid retraction after trauma repaired facial fracture, thyroid eye disease, lower eyelid blepharoplasty, and long-standing facial palsy were treated with middle lamellar spacer using absorbable polydioxanone implant. All patients were recruited from the King Abdulaziz University Hospital, Riyadh, Saudi Arabia. Only patients with minimum follow-up of 12 months were included in the study. Eight patients (4 males and 4 females) underwent lower eyelid retraction repair using absorbable polydioxanone implant. The mean age was 43 years (range, 23-63 years). All patients noted improved ocular surface symptoms. The improvement in eyelid retraction ranged from 1.5 to 4 mm with an average of 2.7 mm postoperatively. The implant was well tolerated with no major complications. Several options for spacer materials are available. Absorbable polydioxanone implants seem to be an effective middle lamellar spacer that is a good alternative for repairing middle lamella related lower eyelid retraction and lower eyelid support.

  15. Titan's stratospheric temperature asymmetry: a radiative origin?

    PubMed

    Bézard, B; Coustenis, A; McKay, C P

    1995-02-01

    During the 1981 Voyager encounter, Titan's stratosphere exhibited a large thermal asymmetry, with high northern latitudes being colder than comparable southern latitudes. Given the short radiative time constant, this asymmetry would not be expected at the season of the Voyager observations (spring equinox), if the infrared and solar opacity sources were distributed symmetrically. We have investigated the radiative budget of Titan's stratosphere, using two selections of Voyager IRIS spectra recorded at symmetric northern and southern latitudes. In the region 0.1-1 mbar, temperatures are 7 K colder at 50 degrees N than at 53 degrees S and the difference reaches approximately 13 K at 5 mbar. On the other hand, the northern region is strongly enriched in nitriles and hydrocarbons, and the haze optical depth derived from the continuum emission between 8 and 15 micrometers is twice as large as in the south. Cooling rate profiles have been computed at the two locations, using the gas and haze abundances derived from the IRIS measurements. We find that, despite lower temperatures, the cooling rate profiles in the pressure range 0.15-5 mbar are 20 to 40% larger in the north than in the south, because of the enhanced concentrations of infrared radiators. Because the northern hemisphere appears darker than the southern one in the Voyager images, enhanced solar heating is also expected to take place at 50 degrees N. Solar heating rate profiles have been calculated, with two different assumptions on the origin of the hemispheric asymmetry. In the most likely case where it results from a variation in the absorbance of the haze material, the heating rates are found to be 12-15% larger at the northern location than at the southern one, a smaller increase than that in the cooling rates. If the lower albedo in the north results from an increase in the particle number density, a 55 to 75% difference is found for the pressure range 0.15-5 mbar, thus larger than that calculated for the

  16. Gradient and shim technologies for ultra high field MRI

    PubMed Central

    Winkler, Simone A.; Schmitt, Franz; Landes, Hermann; DeBever, Josh; Wade, Trevor; Alejski, Andrew

    2017-01-01

    Ultra High Field (UHF) MRI requires improved gradient and shim performance to fully realize the promised gains (SNR as well as spatial, spectral, diffusion resolution) that higher main magnetic fields offer. Both the more challenging UHF environment by itself, as well as the higher currents used in high performance coils, require a deeper understanding combined with sophisticated engineering modeling and construction, to optimize gradient and shim hardware for safe operation and for highest image quality. This review summarizes the basics of gradient and shim technologies, and outlines a number of UHF-related challenges and solutions. In particular, Lorentz forces, vibroacoustics, eddy currents, and peripheral nerve stimulation are discussed. Several promising UHF-relevant gradient concepts are described, including insertable gradient coils aimed at higher performance neuroimaging. PMID:27915120

  17. A Tower-based Prototype VHF/UHF Radar for Subsurface Sensing: System Description and Data Inversion Results

    NASA Technical Reports Server (NTRS)

    Moghaddam, Mahta; Pierce, Leland; Tabatabaeenejad, Alireza; Rodriguez, Ernesto

    2005-01-01

    Knowledge of subsurface characteristics such as permittivity variations and layering structure could provide a breakthrough in many terrestrial and planetary science disciplines. For Earth science, knowledge of subsurface and subcanopy soil moisture layers can enable the estimation of vertical flow in the soil column linking surface hydrologic processes with that in the subsurface. For planetary science, determining the existence of subsurface water and ice is regarded as one of the most critical information needs for the study of the origins of the solar system. The subsurface in general can be described as several near-parallel layers with rough interfaces. Each homogenous rough layer can be defined by its average thickness, permittivity, and rms interface roughness assuming a known surface spectral distribution. As the number and depth of layers increase, the number of measurements needed to invert for the layer unknowns also increases, and deeper penetration capability would be required. To nondestructively calculate the characteristics of the rough layers, a multifrequency polarimetric radar backscattering approach can be used. One such system is that we have developed for data prototyping of the Microwave Observatory of Subcanopy and Subsurface (MOSS) mission concept. A tower-mounted radar makes backscattering measurements at VHF, UHF, and L-band frequencies. The radar is a pulsed CW system, which uses the same wideband antenna to transmit and receive the signals at all three frequencies. To focus the beam at various incidence angles within the beamwidth of the antenna, the tower is moved vertically and measurements made at each position. The signals are coherently summed to achieve focusing and image formation in the subsurface. This requires an estimate of wave velocity profiles. To solve the inverse scattering problem for subsurface velocity profile simultaneously with radar focusing, we use an iterative technique based on a forward numerical solution of

  18. White Sands Missile Range Overview & Introduction: Test Capabilities Briefing

    DTIC Science & Technology

    2011-11-07

    PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Army Test and Evaluation Command (ATEC),White Sands Missile Range,White Sands Missile Range,NM,88002...5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR...solar radiation, icing, salt fog, etc. • Instrumented for system performance / diagnostics  Climatics testing capabilities • Fixed and mobile test

  19. Temporal variability patterns in solar radiation estimations

    NASA Astrophysics Data System (ADS)

    Vindel, José M.; Navarro, Ana A.; Valenzuela, Rita X.; Zarzalejo, Luis F.

    2016-06-01

    In this work, solar radiation estimations obtained from a satellite and a numerical weather prediction model in mainland Spain have been compared. Similar comparisons have been formerly carried out, but in this case, the methodology used is different: the temporal variability of both sources of estimation has been compared with the annual evolution of the radiation associated to the different study climate zones. The methodology is based on obtaining behavior patterns, using a Principal Component Analysis, following the annual evolution of solar radiation estimations. Indeed, the adjustment degree to these patterns in each point (assessed from maps of correlation) may be associated with the annual radiation variation (assessed from the interquartile range), which is associated, in turn, to different climate zones. In addition, the goodness of each estimation source has been assessed comparing it with data obtained from the radiation measurements in ground by pyranometers. For the study, radiation data from Satellite Application Facilities and data corresponding to the reanalysis carried out by the European Centre for Medium-Range Weather Forecasts have been used.

  20. Detection of electromagnetic radiation using nonlinear materials

    DOEpatents

    Hwang, Harold Y.; Liu, Mengkun; Averitt, Richard D.; Nelson, Keith A.; Sternbach, Aaron; Fan, Kebin

    2016-06-14

    An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the target electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.

  1. Data acquisition and analysis of range-finding systems for spacing construction

    NASA Technical Reports Server (NTRS)

    Shen, C. N.

    1981-01-01

    For space missions of future, completely autonomous robotic machines will be required to free astronauts from routine chores of equipment maintenance, servicing of faulty systems, etc. and to extend human capabilities in hazardous environments full of cosmic and other harmful radiations. In places of high radiation and uncontrollable ambient illuminations, T.V. camera based vision systems cannot work effectively. However, a vision system utilizing directly measured range information with a time of flight laser rangefinder, can successfully operate under these environments. Such a system will be independent of proper illumination conditions and the interfering effects of intense radiation of all kinds will be eliminated by the tuned input of the laser instrument. Processing the range data according to certain decision, stochastic estimation and heuristic schemes, the laser based vision system will recognize known objects and thus provide sufficient information to the robot's control system which can develop strategies for various objectives.

  2. Link between Miocene compression of Lower Austroalpine Rust Range and subsidence of neighboring Eisenstadt Basin: Results from high-resolution geophysics at the Oslip section (Northern Burgenland, Austria)

    NASA Astrophysics Data System (ADS)

    Häusler, Hermann; Scheibz, Jürgen; Chwatal, Werner; Kohlbeck, Franz

    2014-05-01

    The Eisenstadt Basin is the Austrian sub basin of the Neogene Eisenstadt-Sopron Basin, which is surrounded by mountain chains belonging to the Lower Austroalpine. The Rust Range is composed of crystalline overlain by Neogene formations, mainly fluvial Rust Formation of Karpatian age passing into marine Leitha Limestone of Middle Badenian age. Neogene of the Eisenstadt Basin comprises deposits of Karpatian to Pannonian age, which are characterized by deposits of fluvial, shallow marine, deeper marine and lacustrine environment with rapid facies changes at short distances complicating the interpretation of geophysical profiles. The geophysical profile measured east of Oslip (Scheibz, 2010) crosses the eastern margin of the Eisenstadt Basin, which is bordered by the north-south trending Rust Range. Application of complementary geophysical methods enables a profound interpretation of subsurface structures correlating different geophysical properties for the geologic interpretation. To obtain a full high-resolution image from a few meters down to a maximum of 350 m in depth electrical resistivity tomography (ERT), seismics and gravimetry were applied, and for topographical correction all data points were geodetically surveyed. The listric St. Margarethen Fault separates the Neogene of the Eisenstadt Basin from the crystalline basement of the Rust Range. West of this fault the seismic section clearly reveals reflectors, which we interpret as eastward dipping and eastward thickening beds of Miocene age. East of this fault a basal reflector above the crystalline basement images an open fold structure which domes up towards the crest of the Rust Range. Based on very detailed biostratigraphic investigations and our recent findings from geophysical campaigns we interpret the development of the Eisenstadt Basin in front of the Rust Range as follows (1-7): 1) In Karpatian times fluvial Rust Formation was deposited along the Lower Austroalpine of the Northern Burgenland. 2

  3. Note: A 102 dB dynamic-range charge-sampling readout for ionizing particle/radiation detectors based on an application-specific integrated circuit (ASIC)

    NASA Astrophysics Data System (ADS)

    Pullia, A.; Zocca, F.; Capra, S.

    2018-02-01

    An original technique for the measurement of charge signals from ionizing particle/radiation detectors has been implemented in an application-specific integrated circuit form. The device performs linear measurements of the charge both within and beyond its output voltage swing. The device features an unprecedented spectroscopic dynamic range of 102 dB and is suitable for high-resolution ion and X-γ ray spectroscopy. We believe that this approach may change a widespread paradigm according to which no high-resolution spectroscopy is possible when working close to or beyond the limit of the preamplifier's output voltage swing.

  4. Note: A 102 dB dynamic-range charge-sampling readout for ionizing particle/radiation detectors based on an application-specific integrated circuit (ASIC).

    PubMed

    Pullia, A; Zocca, F; Capra, S

    2018-02-01

    An original technique for the measurement of charge signals from ionizing particle/radiation detectors has been implemented in an application-specific integrated circuit form. The device performs linear measurements of the charge both within and beyond its output voltage swing. The device features an unprecedented spectroscopic dynamic range of 102 dB and is suitable for high-resolution ion and X-γ ray spectroscopy. We believe that this approach may change a widespread paradigm according to which no high-resolution spectroscopy is possible when working close to or beyond the limit of the preamplifier's output voltage swing.

  5. Air Force Research Laboratory Sensors Directorate Communications Branch History from 1960-2011

    DTIC Science & Technology

    2011-12-01

    transponders on three UHF Follow-On ( UFO ) satellites to provide high data rate (i.e. up to 23.5 Mbps) broadcast service to ground and shipboard users...Luneberg Lens antenna. The Milstar system was also used as a reach-back channel to Norfolk to request changes in the test sequence. Figure 5 UFO ...UHF SATCOM use a pair of Raytheon ARC- 231 radios through the UHF Follow-On ( UFO ) satellites into military ground entry stations to provide secure

  6. Soft X-ray continuum radiation from low-energy pinch discharges of hydrogen

    NASA Astrophysics Data System (ADS)

    Mills, R.; Booker, R.; Lu, Y.; Lu

    2013-10-01

    Under a study contracted by GEN3 Partners, spectra of high current pinch discharges in pure hydrogen and helium were recorded in the extreme ultraviolet radiation region at the Harvard Smithsonian Center for Astrophysics (CfA) in an attempt to reproduce experimental results published by BlackLight Power, Inc. (BLP) showing predicted continuum radiation due to hydrogen in the 10-30 nm region (Mills, R. L. and Lu, Y. 2010 Hydrino continuum transitions with cutoffs at 22.8 nm and 10.1 nm. Int. J. Hydrog. Energy 35, 8446-8456, doi:10.1016?j.ijhydene.2010.05.098). Alternative explanations were considered to the claimed interpretation of the continuum radiation as being that emitted during transitions of H to lower-energy states (hydrinos). Continuum radiation was observed at CfA in the 10-30 nm region that matched BLP's results. Considering the low energy of 5.2 J per pulse, the observed radiation in the energy range of about 120-40 eV, reference experiments and analysis of plasma gases, cryofiltration to remove contaminants, and spectra of the electrode metal, no conventional explanation was found in the prior or present work to be plausible including contaminants, electrode metal emission, and Bremsstrahlung, ion recombination, molecular or molecular ion band radiation, and instrument artifacts involving radicals and energetic ions reacting at the charge-coupled device and H2 re-radiation at the detector chamber. Moreover, predicted selective extraordinarily high-kinetic energy H was observed by the corresponding Doppler broadening of the Balmer α line.

  7. Preventing radiation retinopathy with hyperfractionation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monroe, Alan T.; Bhandare, Niranjan; Morris, Christopher G.

    2005-03-01

    Purpose: The purpose of this study was to determine factors associated with the development of radiation retinopathy in a large series of patients with head-and-neck cancer. In particular, we addressed whether the use of hyperfractionated radiation therapy was effective in reducing the risk of retinopathy. Methods and materials: One hundred eighty-six patients received a significant dose to the retina as part of curative radiotherapy. Primary sites included: nasopharynx, 46; paranasal sinus, 64; nasal cavity, 69; and palate, 7. Prescription doses varied depending on primary site and histology. Hyperfractionated (twice-daily) radiation was delivered to 42% of the patients in this study,more » typically at 1.10 to 1.20 Gy per fraction. The remainder were treated once-daily. Retinal doses were determined from computerized dosimetry plans when available. For all other patients, retinal doses were retrospectively calculated using reconstructed off-axis dosimetry taken from contours through the center of the globes. Retinal dose was defined as the minimum dose received by at least 25% of the globe. The median retinal dose was 56.85 Gy. Patients were followed for a median of 7.6 years. Results: Thirty-one eyes in 30 patients developed radiation retinopathy, resulting in monocular blindness in 25, bilateral blindness in 1, and decreased visual acuity in 4. The median time to the diagnosis of retinopathy was 2.6 years (range, 11 months to 5.3 years). The actuarial incidence of developing radiation retinopathy was 20% at both 5 and 10 years. The incidence of developing ipsilateral blindness due to retinopathy was 16% at 5 years and 17% at 10 years. Site-specific incidences varied considerably, with ethmoid sinus (9 of 25, 36%), nasal cavity (13 of 69, 19%), and maxillary sinus (6 of 35, 17%) being the most common sites associated with radiation retinopathy. Three of 72 patients (4%) receiving retinal doses less than 50 Gy developed retinopathy. Higher retinal doses

  8. The Pilatus Unmanned Aircraft System for Lower Atmospheric Research

    NASA Technical Reports Server (NTRS)

    de Boer, Gijs; Palo, Scott; Argrow, Brian; LoDolce, Gabriel; Mack, James; Gao, Ru-shan; Telg, Hagen; Trussel, Cameron; Fromm, Joshua; Long, Charles N.; hide

    2016-01-01

    This paper presents details of the University of Colorado (CU) "Pilatus" unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might

  9. The Pilatus unmanned aircraft system for lower atmospheric research

    DOE PAGES

    de Boer, Gijs; Palo, Scott; Argrow, Brian; ...

    2016-04-28

    This study presents details of the University of Colorado (CU) “Pilatus” unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. Inmore » order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured

  10. The Pilatus unmanned aircraft system for lower atmospheric research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Boer, Gijs; Palo, Scott; Argrow, Brian

    This study presents details of the University of Colorado (CU) “Pilatus” unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. Inmore » order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured

  11. The pilatus unmanned aircraft system for lower atmospheric research

    NASA Astrophysics Data System (ADS)

    de Boer, G.; Palo, S.; Argrow, B.; LoDolce, G.; Mack, J.; Gao, R.-S.; Telg, H.; Trussel, C.; Fromm, J.; Long, C. N.; Bland, G.; Maslanik, J.; Schmid, B.; Hock, T.

    2015-11-01

    This paper presents details of the University of Colorado (CU) Pilatus unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take off weight of 25 kg and is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and it's orientation to the upward looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be

  12. The Pilatus unmanned aircraft system for lower atmospheric research

    NASA Astrophysics Data System (ADS)

    de Boer, Gijs; Palo, Scott; Argrow, Brian; LoDolce, Gabriel; Mack, James; Gao, Ru-Shan; Telg, Hagen; Trussel, Cameron; Fromm, Joshua; Long, Charles N.; Bland, Geoff; Maslanik, James; Schmid, Beat; Hock, Terry

    2016-04-01

    This paper presents details of the University of Colorado (CU) "Pilatus" unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might

  13. Radiative and Kinetic Feedback by Low-Mass Primordial Stars

    NASA Astrophysics Data System (ADS)

    Whalen, Daniel; Hueckstaedt, Robert M.; McConkie, Thomas O.

    2010-03-01

    Ionizing UV radiation and supernova (SN) flows amidst clustered minihalos at high redshift regulated the rise of the first stellar populations in the universe. Previous studies have addressed the effects of very massive primordial stars on the collapse of nearby halos into new stars, but the absence of the odd-even nucleosynthetic signature of pair-instability SNe in ancient metal-poor stars suggests that Population III stars may have been less than 100 M sun. We extend our earlier survey of local UV feedback on star formation to 25-80 M sun stars and include kinetic feedback by SNe for 25-40 M sun stars. We find radiative feedback to be relatively uniform over this mass range, primarily because the larger fluxes of more massive stars are offset by their shorter lifetimes. Our models demonstrate that prior to the rise of global UV backgrounds, Lyman-Werner (LW) photons from nearby stars cannot prevent halos from forming new stars. These calculations also reveal that violent dynamical instabilities can erupt in the UV radiation front enveloping a primordial halo, but that they ultimately have no effect on the formation of a star. Finally, our simulations suggest that relic H II regions surrounding partially evaporated halos may expel LW backgrounds at lower redshifts, allowing stars to form that were previously suppressed. We provide fits to radiative and kinetic feedback on star formation for use in both semianalytic models and numerical simulations.

  14. Evaluation of Stiffness of the Spastic Lower Extremity Muscles in Early Spinal Cord Injury by Acoustic Radiation Force Impulse Imaging

    PubMed Central

    Cho, Kang Hee

    2015-01-01

    Objective To investigate intrinsic viscoelastic changes using shear wave velocities (SWVs) of spastic lower extremity muscles in patients with early spinal cord injury (SCI) via acoustic radiation force impulse (ARFI) imaging and to evaluate correlation between the SWV values and spasticity. Methods Eighteen patients with SCI within 3 months and 10 healthy adults participated. We applied the ARFI technique to measure SWV of gastrocnemius muscle (GCM) and long head of biceps femoris muscle. Spasticity of ankle and knee joint was assessed by original Ashworth Scale. Results Ten patients with SCI had spasticity. Patients with spasticity had significantly faster SWV for GCM and biceps femoris muscle than those without spasticity (Mann-Whitney U test, p=0.007 and p=0.008) and normal control (p=0.011 and p=0.037, respectively). The SWV values of GCM correlated with the ankle spasticity (Spearman rank teat, p=0.026). There was significant correlation between the SWV values for long head of biceps femoris muscle and knee spasticity (Spearman rank teat, p=0.022). Conclusion ARFI demonstrated a difference in muscle stiffness in the GCM between patients with spastic SCI and those without spasticity. This finding suggested that stiffness of muscles increased in spastic lower extremity of early SCI patients. ARFI imaging is a valuable tool for noninvasive assessment of the stiffness of the spastic muscle and has the potential to identify pathomechanical changes of the tissue associated with SCI. PMID:26161345

  15. [Radiation-induced bystander effect: the important part of ionizing radiation response. Potential clinical implications].

    PubMed

    Wideł, Maria; Przybyszewski, Waldemar; Rzeszowska-Wolny, Joanna

    2009-08-18

    It has long been a central radiobiological dogma that the damaging effects of ionizing radiation, such as cell death, cytogenetic changes, apoptosis, mutagenesis, and carcinogenesis, are the results of the direct ionization of cell structures, particularly DNA, or indirect damage via water radiolysis products. However, several years ago attention turned to a third mechanism of radiation, termed the "bystander effect" or "radiation-induced bystander effect" (RIBE). This is induced by agents and signals emitted by directly irradiated cells and manifests as a lowering of survival, cytogenetic damage, apoptosis enhancement, and biochemical changes in neighboring non-irradiated cells. The bystander effect is mainly observed in in vitro experiments using very low doses of alpha particles (range; mGy, cGy), but also after conventional irradiation (X-rays, gamma rays) at low as well as conventional doses. The mechanisms responsible for the bystander effect are complex and still poorly understood. It is believed that molecular signals released from irradiated cells induce different signaling ways in non-irradiated neighboring cells, leading to the observed events. The molecular signals may be transmitted through gap junction intercellular communication and through a medium transfer mechanism. The nature of these transmitted factors are diverse, and still not definitely established. It seems that RIBE may have important clinical implications for health risk associated with radiation exposure. Potentially, this effect may have important implications in the creation of whole-body or localized side effects in tissues beyond the irradiation field and also in low-dose radiological and radioisotope diagnostics. Factors emitted by irradiated cells may result in the risk of genetic instability, mutations, and second primary cancer induction. They might also have their own part in inducing and extending post-radiation side effects in normal tissue. The bystander effect may be a

  16. Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950-2003.

    PubMed

    Shimizu, Yukiko; Kodama, Kazunori; Nishi, Nobuo; Kasagi, Fumiyoshi; Suyama, Akihiko; Soda, Midori; Grant, Eric J; Sugiyama, Hiromi; Sakata, Ritsu; Moriwaki, Hiroko; Hayashi, Mikiko; Konda, Manami; Shore, Roy E

    2010-01-14

    To investigate the degree to which ionising radiation confers risk of mortality from heart disease and stroke. Prospective cohort study with more than 50 years of follow-up. Atomic bomb survivors in Hiroshima and Nagasaki, Japan. 86 611 Life Span Study cohort members with individually estimated radiation doses from 0 to >3 Gy (86% received <0.2 Gy). Mortality from stroke or heart disease as the underlying cause of death and dose-response relations with atomic bomb radiation. About 9600 participants died of stroke and 8400 died of heart disease between 1950 and 2003. For stroke, the estimated excess relative risk per gray was 9% (95% confidence interval 1% to 17%, P=0.02) on the basis of a linear dose-response model, but an indication of possible upward curvature suggested relatively little risk at low doses. For heart disease, the estimated excess relative risk per gray was 14% (6% to 23%, P<0.001); a linear model provided the best fit, suggesting excess risk even at lower doses. However, the dose-response effect over the restricted dose range of 0 to 0.5 Gy was not significant. Prospective data on smoking, alcohol intake, education, occupation, obesity, and diabetes had almost no impact on the radiation risk estimates for either stroke or heart disease, and misdiagnosis of cancers as circulatory diseases could not account for the associations seen. Doses above 0.5 Gy are associated with an elevated risk of both stroke and heart disease, but the degree of risk at lower doses is unclear. Stroke and heart disease together account for about one third as many radiation associated excess deaths as do cancers among atomic bomb survivors.

  17. Metamaterial-based transmit and receive system for whole-body magnetic resonance imaging at ultra-high magnetic fields.

    PubMed

    Herrmann, Tim; Liebig, Thorsten; Mallow, Johannes; Bruns, Christian; Stadler, Jörg; Mylius, Judith; Brosch, Michael; Svedja, Jan Taro; Chen, Zhichao; Rennings, Andreas; Scheich, Henning; Plaumann, Markus; Hauser, Marcus J B; Bernarding, Johannes; Erni, Daniel

    2018-01-01

    Magnetic resonance imaging (MRI) at ultra-high fields (UHF), such as 7 T, provides an enhanced signal-to-noise ratio and has led to unprecedented high-resolution anatomic images and brain activation maps. Although a variety of radio frequency (RF) coil architectures have been developed for imaging at UHF conditions, they usually are specialized for small volumes of interests (VoI). So far, whole-body coil resonators are not available for commercial UHF human whole-body MRI systems. The goal of the present study was the development and validation of a transmit and receive system for large VoIs that operates at a 7 T human whole-body MRI system. A Metamaterial Ring Antenna System (MRAS) consisting of several ring antennas was developed, since it allows for the imaging of extended VoIs. Furthermore, the MRAS not only requires lower intensities of the irradiated RF energy, but also provides a more confined and focused injection of excitation energy on selected body parts. The MRAS consisted of several antennas with 50 cm inner diameter, 10 cm width and 0.5 cm depth. The position of the rings was freely adjustable. Conformal resonant right-/left-handed metamaterial was used for each ring antenna with two quadrature feeding ports for RF power. The system was successfully implemented and demonstrated with both a silicone oil and a water-NaCl-isopropanol phantom as well as in vivo by acquiring whole-body images of a crab-eating macaque. The potential for future neuroimaging applications was demonstrated by the acquired high-resolution anatomic images of the macaque's head. Phantom and in vivo measurements of crab-eating macaques provided high-resolution images with large VoIs up to 40 cm in xy-direction and 45 cm in z-direction. The results of this work demonstrate the feasibility of the MRAS system for UHF MRI as proof of principle. The MRAS shows a substantial potential for MR imaging of larger volumes at 7 T UHF. This new technique may provide new diagnostic potential

  18. Metamaterial-based transmit and receive system for whole-body magnetic resonance imaging at ultra-high magnetic fields

    PubMed Central

    Liebig, Thorsten; Mallow, Johannes; Bruns, Christian; Stadler, Jörg; Mylius, Judith; Brosch, Michael; Svedja, Jan Taro; Chen, Zhichao; Rennings, Andreas; Scheich, Henning; Plaumann, Markus; Hauser, Marcus J. B.; Bernarding, Johannes; Erni, Daniel

    2018-01-01

    Magnetic resonance imaging (MRI) at ultra-high fields (UHF), such as 7 T, provides an enhanced signal-to-noise ratio and has led to unprecedented high-resolution anatomic images and brain activation maps. Although a variety of radio frequency (RF) coil architectures have been developed for imaging at UHF conditions, they usually are specialized for small volumes of interests (VoI). So far, whole-body coil resonators are not available for commercial UHF human whole-body MRI systems. The goal of the present study was the development and validation of a transmit and receive system for large VoIs that operates at a 7 T human whole-body MRI system. A Metamaterial Ring Antenna System (MRAS) consisting of several ring antennas was developed, since it allows for the imaging of extended VoIs. Furthermore, the MRAS not only requires lower intensities of the irradiated RF energy, but also provides a more confined and focused injection of excitation energy on selected body parts. The MRAS consisted of several antennas with 50 cm inner diameter, 10 cm width and 0.5 cm depth. The position of the rings was freely adjustable. Conformal resonant right-/left-handed metamaterial was used for each ring antenna with two quadrature feeding ports for RF power. The system was successfully implemented and demonstrated with both a silicone oil and a water-NaCl-isopropanol phantom as well as in vivo by acquiring whole-body images of a crab-eating macaque. The potential for future neuroimaging applications was demonstrated by the acquired high-resolution anatomic images of the macaque’s head. Phantom and in vivo measurements of crab-eating macaques provided high-resolution images with large VoIs up to 40 cm in xy-direction and 45 cm in z-direction. The results of this work demonstrate the feasibility of the MRAS system for UHF MRI as proof of principle. The MRAS shows a substantial potential for MR imaging of larger volumes at 7 T UHF. This new technique may provide new diagnostic potential

  19. Risk of whole body radiation exposure and protective measures in fluoroscopically guided interventional techniques: a prospective evaluation.

    PubMed

    Manchikanti, Laxmaiah; Cash, Kim A; Moss, Tammy L; Rivera, Jose; Pampati, Vidyasagar

    2003-08-06

    BACKGROUND: Fluoroscopic guidance is frequently utilized in interventional pain management. The major purpose of fluoroscopy is correct needle placement to ensure target specificity and accurate delivery of the injectate. Radiation exposure may be associated with risks to physician, patient and personnel. While there have been many studies evaluating the risk of radiation exposure and techniques to reduce this risk in the upper part of the body, the literature is scant in evaluating the risk of radiation exposure in the lower part of the body. METHODS: Radiation exposure risk to the physician was evaluated in 1156 patients undergoing interventional procedures under fluoroscopy by 3 physicians. Monitoring of scattered radiation exposure in the upper and lower body, inside and outside the lead apron was carried out. RESULTS: The average exposure per procedure was 12.0 PlusMinus; 9.8 seconds, 9.0 PlusMinus; 0.37 seconds, and 7.5 PlusMinus; 1.27 seconds in Groups I, II, and III respectively. Scatter radiation exposure ranged from a low of 3.7 PlusMinus; 0.29 seconds for caudal/interlaminar epidurals to 61.0 PlusMinus; 9.0 seconds for discography. Inside the apron, over the thyroid collar on the neck, the scatter radiation exposure was 68 mREM in Group I consisting of 201 patients who had a total of 330 procedures with an average of 0.2060 mREM per procedure and 25 mREM in Group II consisting of 446 patients who had a total of 662 procedures with average of 0.0378 mREM per procedure. The scatter radiation exposure was 0 mREM in Group III consisting of 509 patients who had a total 827 procedures. Increased levels of exposures were observed in Groups I and II compared to Group III, and Group I compared to Group II.Groin exposure showed 0 mREM exposure in Groups I and II and 15 mREM in Group III. Scatter radiation exposure for groin outside the apron in Group I was 1260 mREM and per procedure was 3.8182 mREM. In Group II the scatter radiation exposure was 400 mREM and with

  20. Treatment of esophageal cancer with radiation therapy -a pan-Chinese survey of radiation oncologists.

    PubMed

    Zhang, Yun; Liu, Jing; Zhang, Wencheng; Deng, Weiye; Yue, Jinbo

    2017-05-23

    Lots of controversies were found about the treatment in relation to radiation therapy (RT) for esophageal squamous cell carcinoma (ESCC). We designed a questionnaire of these controversies to do a pan-Chinese survey of radiation oncologists (ROs). For operable ESCC, 53% ROs chose surgery plus postoperative chemoradiotherapy (CRT), while 40% chose preoperative CRT plus surgery. For target volume of postoperative RT, most ROs (92%) would delineate tumor bed plus involved lymph nodes region before surgery. For definitive RT, most ROs (81%) would give patients higher RT dose to 60-65Gy. For radiation target volume, most ROs would give patients prophylactic irradiation of the bilateral superclavicular-lymph nodes region for cervical ESCC (93%), and the left gastric lymph nodes region for lower thoracic ESCC (72%). For the treatment of mediastinal lymph nodes, 72% ROs preferred elective nodal irradiation, while 28% did the involved nodal irradiation. For concurrent chemotherapy regimen, PF (5-Fu + cisplatin) and TP (cisplatin + paclitaxel) were used widely (49% and 46%, respectively). During simulation, four-dimensional computer tomography (4D CT) was not widely used (48%), even for cervical or lower thoracic ESCC (52%). For daily RT delivery, only 66% ROs would perform imaging guidance RT daily. In summary, more controversies existed in the treatment of ESCC with RT in China, including treatment strategy, radiation dose and target contour. Future goals include standardization of treatment strategy, radiation dose, and target contour, and application of 4D CT and daily imaging guidance, and pursuit of randomized trials in Chinese population.