Sample records for uhf radiation upper range

  1. The electric field changes and UHF radiations caused by the triggered lightning in Japan

    NASA Technical Reports Server (NTRS)

    Kawasaki, Zen-Ichiro; Kanao, Tadashi; Matsuura, Kenji; Nakano, Minoru; Horii, Kenji; Nakamura, Koichi

    1991-01-01

    In the rocket triggered lightning experiment of fiscal 1989, researchers observed electromagnetic field changes and UHF electromagnetic radiation accompanying rocket triggered lightning. It was found that no rapid changes corresponding to the return stroke of natural lightning were observed in the electric field changes accompanying rocket triggered lightning. However, continuous currents were present. In the case of rocket triggered lightning to the tower, electromagnetic field changes corresponding to the initiation of triggered lightning showed a bipolar pulse of a relatively large amplitude. In contrast, the rocket triggered lightning to the ground did not have such a bipolar pulse. The UHF radiation accompanying the rocket triggered lightning preceded the waveform portions corresponding to the first changes in electromagnetic fields. The number of isolated pulses in the UHF radiation showed a correlation with the time duration from rocket launching up to triggered lightning. The time interval between consecutive isolated pulses tended to get shorter with the passage of time, just like the stepped leaders of natural lightning.

  2. Broad-band UHF dipole array

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1985-01-01

    A 6X6 array of fan-dipoles was designed to operate in the 510 to 660 MHz frequency range for aircraft flight test and evaluation of a UHF radiometer system. A broad-band dipole design operating near the first resonance is detailed. Measured VSWR and radiation patterns for the dipole array demonstrate achievable bandwidths in the 35 percent to 40 percent range.

  3. Disordered redox metabolism of brain cells in rats exposed to low doses of ionizing radiation or UHF electromagnetic radiation.

    PubMed

    Burlaka, A P; Druzhyna, M O; Vovk, A V; Lukin, S М

    2016-12-01

    To investigate the changes of redox-state of mammalian brain cells as the critical factor of initiation and formation of radiation damage of biological structures in setting of continuous exposure to low doses of ionizing radiation or fractionated ultra high frequency electromagnetic radiation (UHF EMR) at non-thermal levels. The influence of low-intensity ionizing radiation was studied on outbred female rats kept for 1.5 years in the Chernobyl accident zone. The effects of total EMR in the UHF band of non-thermal spectrum were investigated on Wistar rats. The rate of formation of superoxide radicals and the rate of NO synthesis in mitochondria were determined by the EPR. After exposure to ionizing or UHF radiation, the levels of ubisemiquinone in brain tissue of rats decreased by 3 and 1.8 times, respectively. The content of NO-FeS-protein complexes in both groups increased significantly (р < 0.05). In the conditions of ionizing or EMR the rates of superoxide radical generation in electron-transport chain of brain cell mitochondria increased by 1.5- and 2-fold, respectively (р < 0.05). In brain tissue of rats kept in the Chernobyl zone, significant increase of NO content was registered; similar effect was observed in rats treated with UHFR (р < 0.05). The detected changes in the electron transport chain of mitochondria of brain cells upon low-intensity irradiation or UHF EMR cause the metabolic reprogramming of cell mitochondria that increases the rate of superoxide radical generation and nitric oxide, which may initiate the development of neurodegenerative diseases and cancer. This article is part of a Special Issue entitled "The Chornobyl Nuclear Accident: Thirty Years After".

  4. Investigation into the effects of VHF and UHF band radiation on Hewlett-Packard (HP) Cesium Beam Frequency Standards

    NASA Technical Reports Server (NTRS)

    Dickens, Andrew

    1995-01-01

    This paper documents an investigation into reports which have indicated that exposure to VHF and UHF band radiation has adverse effects on the frequency stability of HP cesium beam frequency standards. Tests carried out on the basis of these reports show that sources of VHF and UHF radiation such as two-way hand held police communications devices do cause reproducible adverse effects. This investigation examines reproducible effects and explores possible causes.

  5. Long range ultra-high frequency (UHF) radio frequency identification (RFID) antenna design

    NASA Astrophysics Data System (ADS)

    Reynolds, Nathan D.

    There is an ever-increasing demand for radio frequency identification (RFID) tags that are passive, long range, and mountable on multiple surfaces. Currently, RFID technology is utilized in numerous applications such as supply chain management, access control, and public transportation. With the combination of sensory systems in recent years, the applications of RFID technology have been extended beyond tracking and identifying. This extension includes applications such as environmental monitoring and healthcare applications. The available sensory systems usually operate in the medium or high frequency bands and have a low read range. However, the range limitations of these systems are being overcome by the development of RFID sensors focused on utilizing tags in the ultra-high frequency (UHF) band. Generally, RFID tags have to be mounted to the object that is being identified. Often the objects requiring identification are metallic. The inherent properties of metallic objects have substantial effects on nearby electromagnetic radiation; therefore, the operation of the tag antenna is affected when mounted on a metallic surface. This outlines one of the most challenging problems for RFID systems today: the optimization of tag antenna performance in a complex environment. In this research, a novel UHF RFID tag antenna, which has a low profile, long range, and is mountable on metallic surfaces, is designed analytically and simulated using a 3-D electromagnetic simulator, ANSYS HFSS. A microstrip patch antenna is selected as the antenna structure, as patch antennas are low profile and suitable for mounting on metallic surfaces. Matching and theoretical models of the microstrip patch antenna are investigated. Once matching and theory of a microstrip patch antenna is thoroughly understood, a unique design technique using electromagnetic band gap (EBG) structures is explored. This research shows that the utilization of an EBG structure in the patch antenna design yields

  6. Space Shuttle UHF Communications Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Loh, Yin-Chung; Kroll, Quin D.; Sham, Catherine C.

    2004-01-01

    An extension boom is to be installed on the starboard side of the Space Shuttle Orbiter (SSO) payload bay for thermal tile inspection and repairing. As a result, the Space Shuttle payload bay Ultra High Frequency (UHF) antenna will be under the boom. This study is to evaluate the Space Shuttle UHF communication performance for antenna at a suitable new location. To insure the RF coverage performance at proposed new locations, the link margin between the UHF payload bay antenna and Extravehicular Activity (EVA) Astronauts at a range distance of 160 meters from the payload bay antenna was analyzed. The communication performance between Space Shuttle Orbiter and International Space Station (SSO-ISS) during rendezvous was also investigated. The multipath effects from payload bay structures surrounding the payload bay antenna were analyzed. The computer simulation tool based on the Geometrical Theory of Diffraction method (GTD) was used to compute the signal strengths. The total field strength was obtained by summing the direct fields from the antennas and the reflected and diffracted fields from the surrounding structures. The computed signal strengths were compared to the signal strength corresponding to the 0 dB link margin. Based on the results obtained in this study, RF coverage for SSO-EVA and SSO- ISS communication links was determined for the proposed payload bay antenna UHF locations. The RF radiation to the Orbiter Docking System (ODS) pyros, the payload bay avionics, and the Shuttle Remote Manipulator System (SRMS) from the new proposed UHF antenna location was also investigated to ensure the EMC/EMI compliances.

  7. UHF coplanar-slot antenna for aircraft-to-satellite data communications

    NASA Technical Reports Server (NTRS)

    Myhre, R. W.

    1979-01-01

    A lightweight low drag coplanar slot antenna was developed for use on commercial jet aircraft that will provide upper hemisphere coverage in the UHF band at frequencies of 402 and 468 MHz is described. The antenna is designed to transmit meteorological data from wide body jet aircraft to ground users via synchronous meteorological data relay satellites. The low profile antenna (23.5 cm wide by 38.1 cm long slot by 1.9 cm high) is a conformal antenna utilizing the coplanar approach with the advantages of broad frequency bandwidth and improved electrical integrity over wide range of temperature. The antenna is circular polarized, has anon axis gain of near +2.5 dB, and a HPBW greater than 90 deg. Areas discussed include antenna design, radiation characteristics, flight testing, and system performance.

  8. Design of miniature type parallel coupled microstrip hairpin filter in UHF range

    NASA Astrophysics Data System (ADS)

    Hasan, Adib Belhaj; Rahman, Maj Tarikur; Kahhar, Azizul; Trina, Tasnim; Saha, Pran Kanai

    2017-12-01

    A microstrip parallel coupled line bandpass filter is designed in UHF range and the filter size is reduced by microstrip hairpin structure. The FR4 substrate is used as base material of the filter. The filter is analyzed by both ADS and CST design studio in the frequency range of 500 MHz to 650 MHz. The Bandwidth is found 13.27% with a center frequency 570 MHz. Simulation from both ADS and CST shows a very good agreement of performance of the filter.

  9. Improving the range of UHF RFID transponders using solar energy harvesting under low light conditions

    NASA Astrophysics Data System (ADS)

    Ascher, A.; Lehner, M.; Eberhardt, M.; Biebl, E.

    2015-11-01

    The sensitivity of passive UHF RFID transponders (Radio Frequency Identification) is the key issue, which determines the maximum read range of an UHF RFID system. During this work the ability of improving the sensitivity using solar energy harvesting, especially for low light conditions, is shown. To use the additional energy harvested from the examined silicon and organic solar cells, the passive RFID system is changed into a semi-active one. This needs no changes on the reader hardware itself, only the used RFIC (Radio Frequency Integrated Circuit) of the transponder has to possess an additional input pin for an external supply voltage. The silicon and organic cells are evaluated and compared to each other regarding their low light performance. The different cells are examined in a shielded box, which is protected from the environmental lighting. Additionally, a demonstrator is shown, which makes the measurement of the extended read range with respect to the lighting conditions possible. If the cells are completely darkened, the sensitivity gain is ascertained using high capacity super caps. Due to the measurements an enhancement in range up to 70 % could be guaranteed even under low light conditions.

  10. Ionospheric Impacts on UHF Space Surveillance

    NASA Astrophysics Data System (ADS)

    Jones, J. C.

    2017-12-01

    Earth's atmosphere contains regions of ionized plasma caused by the interaction of highly energetic solar radiation. This region of ionization is called the ionosphere and varies significantly with altitude, latitude, local solar time, season, and solar cycle. Significant ionization begins at about 100 km (E layer) with a peak in the ionization at about 300 km (F2 layer). Above the F2 layer, the atmosphere is mostly ionized but the ion and electron densities are low due to the unavailability of neutral molecules for ionization so the density decreases exponentially with height to well over 1000 km. The gradients of these variations in the ionosphere play a significant role in radio wave propagation. These gradients induce variations in the index of refraction and cause some radio waves to refract. The amount of refraction depends on the magnitude and direction of the electron density gradient and the frequency of the radio wave. The refraction is significant at HF frequencies (3-30 MHz) with decreasing effects toward the UHF (300-3000 MHz) range. UHF is commonly used for tracking of space objects in low Earth orbit (LEO). While ionospheric refraction is small for UHF frequencies, it can cause errors in range, azimuth angle, and elevation angle estimation by ground-based radars tracking space objects. These errors can cause significant errors in precise orbit determinations. For radio waves transiting the ionosphere, it is important to understand and account for these effects. Using a sophisticated radio wave propagation tool suite and an empirical ionospheric model, we calculate the errors induced by the ionosphere in a simulation of a notional space surveillance radar tracking objects in LEO. These errors are analyzed to determine daily, monthly, annual, and solar cycle trends. Corrections to surveillance radar measurements can be adapted from our simulation capability.

  11. Influence UHF radiation on the process of self-assembly and lethal effect of bacterial lipopolysaccharide

    NASA Astrophysics Data System (ADS)

    Brill, G. E.; Egorova, A. V.; Bugaeva, I. O.; Postnov, D. E.; Melnikov, A. G.; Ushakova, O. V.

    2018-04-01

    The influence of low-intensity electromagnetic radiation on the process of self-assembly, spectral-fluorescent characteristics and lethal effect of bacterial lipopolysaccharide (endotoxin) was performed. A solution of bacterial lipopolysaccharide exposed to electromagnetic waves with a frequency of 1 GHz, the power density of 0.1 μW/cm2 for 10 min. In experiments on a large group of control and irradiated mice, a comparative analysis of the estimated lethal dose of endotoxin was performed. It was proved that UHF radiation of certain parameters reduces the lethal effects of bacterial lipopolysaccharide on 26%.

  12. UHF Television: Breaking the Monolith

    ERIC Educational Resources Information Center

    Oppenheim, Jerrold

    1975-01-01

    Advocates that the Federal Communications Council should remove unnecessary UHF restrictions to dramatically increase the number of UHF stations, put all existing stations on the UHF band, and license new low-power stations on the UHF channels, arguing that television fails to serve a sizable number of viewers. (Author/JM)

  13. Analysis of partial discharge activity by a conducting particle in liquid nitrogen under AC voltages adopting UHF technique

    NASA Astrophysics Data System (ADS)

    Sarathi, R.; Giridhar, A. V.; Sethupathi, K.

    2010-01-01

    Liquid nitrogen (LN 2) is used as an insulant as well as coolant in high temperature superconducting power equipments. Particle contamination in liquid nitrogen is one of the major cause for formation of partial discharges during operation. An attempt has been made in the present study to understand the feasibility of using Ultra High Frequency (UHF) sensors for identification of partial discharge (PD) formed due to particle movement in liquid nitrogen under AC voltages. It is observed that the partial discharge formed in LN 2 radiates UHF signal. The results of the study indicate that the conventional partial discharge measurement and UHF peak amplitude measurement have direct correlation. The Phase Resolved Partial Discharge (PRPD) analysis indicates that the partial discharge formed due to particle movement occurs in the entire phase windows of the AC voltage. The PD magnitude increases with increase in applied voltage. The frequency content of UHF signal generated due to particle movement in liquid nitrogen under AC voltages lies in the range of 0.5-1.5 GHz. The UHF sensor output signal analyzed using spectrum analyzer by operating it in zero-span mode, indicates that burst type PD occurs due to particle movement.

  14. A UHF RFID system with on-chip-antenna tag for short range communication

    NASA Astrophysics Data System (ADS)

    Qi, Peng; Chun, Zhang; Xijin, Zhao; Zhihua, Wang

    2015-05-01

    A UHF RF identification system based on the 0.18 μm CMOS process has been developed for short range and harsh size requirement applications, which is composed of a fully integrated tag and a special reader. The whole tag chip with the antenna takes up an area of 0.36 mm2, which is smaller than other reported tags with an on-chip antenna (OCA) using the standard CMOS process. A self-defined protocol is proposed to reduce the power consumption, and minimize the size of the tag. The specialized SOC reader system consists of the RF transceiver, digital baseband, MCU and host interface. Its power consumption is about 500 mW. Measurement results show that the system's reading range is 2 mm with 20 dBm reader output power. With an inductive antenna printed on a paper substrate around the OCA tag, the reading range can be extended from several centimeters to meters, depending on the shape and size of the inductive antenna.

  15. The design and simulation of UHF RFID microstrip antenna

    NASA Astrophysics Data System (ADS)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; Liu, Liping; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Renheng, Xu

    2018-02-01

    At present, China has delineated UHF RFID communicating frequency range which is 840 ∼ 845 MHz and 920 ∼ 925 MHz, but most UHF microstrip antenna don’t carry out this standard, that leads to radio frequency pollution. In order to solve the problems above, a method combining theory and simulation is adopted. Combining with a new ceramic material, a 925.5 MHz RFID microstrip antenna is designed, which is optimized and simulated by HFSS software. The results show that the VSWR of this RFID microstrip antenna is relatively small in the vicinity of 922.5 MHz, the gain is 2.1 dBi, which can be widely used in China’s UHF RFID communicating equipments.

  16. Determination of the Wavelength of u.h.f. TV Transmissions

    ERIC Educational Resources Information Center

    Gaskell, D. C.

    1973-01-01

    Describes an experiment suitable for high school physics classes in which students determine the wavelength of electromagnetic radiation of u.h.f. television transmissions. Elaborate equipment is not required, and details are given for the construction of a dipole. (JR)

  17. Design of a Miniaturized Meandered Line Antenna for UHF RFID Tags

    PubMed Central

    Islam, Mohammad Tariqul; Rowe, Wayne S. T.; Kibria, Salehin; Jit Singh, Mandeep; Misran, Norbahiah

    2016-01-01

    A semi-circle looped vertically omnidirectional radiation (VOR) patterned tag antenna for UHF (919–923 MHz for Malaysia) frequency is designed to overcome the impedance mismatch issue in this paper. Two impedance matching feeding strips are used in the antenna structure to tune the input impedance of the antenna. Two dipole shaped meandered lines are used to achieve a VOR pattern. The proposed antenna is designed for 23-j224 Ω chip impedance. The antenna is suitable for ‘place and tag’ application. A small size of 77.68×35.5 mm2 is achieved for a read range performance of 8.3 meters using Malaysia regulated maximum power transfer of 2.0 W effective radiated power (ERP). PMID:27533470

  18. Wind Turbine Clutter Mitigation in Coastal UHF Radar

    PubMed Central

    Wang, Caijun; Jiang, Dapeng; Wen, Biyang

    2014-01-01

    Coastal UHF radar provides a unique capability to measure the sea surface dynamic parameters and detect small moving targets, by exploiting the low energy loss of electromagnetic waves propagating along the salty and good conducting ocean surface. It could compensate the blind zone of HF surface wave radar at close range and reach further distance than microwave radars. However, its performance is susceptible to wind turbines which are usually installed on the shore. The size of a wind turbine is much larger than the wavelength of radio waves at UHF band, which results in large radar cross section. Furthermore, the rotation of blades adds time-varying Doppler frequency to the clutter and makes the suppression difficult. This paper proposes a mitigation method which is based on the specific periodicity of wind turbine clutter and performed mainly in the time-frequency domain. Field experimental data of a newly developed UHF radar are used to verify this method, and the results prove its effectiveness. PMID:24550709

  19. Wind turbine clutter mitigation in coastal UHF radar.

    PubMed

    Yang, Jing; Pan, Chao; Wang, Caijun; Jiang, Dapeng; Wen, Biyang

    2014-01-01

    Coastal UHF radar provides a unique capability to measure the sea surface dynamic parameters and detect small moving targets, by exploiting the low energy loss of electromagnetic waves propagating along the salty and good conducting ocean surface. It could compensate the blind zone of HF surface wave radar at close range and reach further distance than microwave radars. However, its performance is susceptible to wind turbines which are usually installed on the shore. The size of a wind turbine is much larger than the wavelength of radio waves at UHF band, which results in large radar cross section. Furthermore, the rotation of blades adds time-varying Doppler frequency to the clutter and makes the suppression difficult. This paper proposes a mitigation method which is based on the specific periodicity of wind turbine clutter and performed mainly in the time-frequency domain. Field experimental data of a newly developed UHF radar are used to verify this method, and the results prove its effectiveness.

  20. Low-cost passive UHF RFID tags on paper substrates

    NASA Astrophysics Data System (ADS)

    Sajal, Sayeed Zebaul Haque

    To reduce the significant cost in the widespread deployment of UHF radio frequency identification (RFID) systems, an UHF RFID tag design is presented on paper substrates. The design is based on meander-line miniaturization techniques and open complementary split ring resonator (OCSRR) elements that reduce required conducting materials by 30%. Another passive UHF RFID tag is designed to sense the moisture based on the antenna's polarization. An inexpensive paper substrate and copper layer are used for flexibility and low-cost. The key characteristic of this design is the sensitivity of the antenna's polarization on the passive RFID tag to the moisture content in the paper substrate. In simulations, the antenna is circularly-polarized when the substrate is dry and is linearly-polarized when the substrate is wet. It was shown that the expected read-ranges and desired performance could be achieved reducing the over-all cost of the both designs.

  1. 47 CFR 74.733 - UHF translator signal boosters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false UHF translator signal boosters. 74.733 Section... Translator, and TV Booster Stations § 74.733 UHF translator signal boosters. (a) The licensee of a UHF television broadcast translator station may be authorized to operate one or more signal boosters for the...

  2. 47 CFR 74.733 - UHF translator signal boosters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false UHF translator signal boosters. 74.733 Section... Translator, and TV Booster Stations § 74.733 UHF translator signal boosters. (a) The licensee of a UHF television broadcast translator station may be authorized to operate one or more signal boosters for the...

  3. 47 CFR 74.733 - UHF translator signal boosters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false UHF translator signal boosters. 74.733 Section... Translator, and TV Booster Stations § 74.733 UHF translator signal boosters. (a) The licensee of a UHF television broadcast translator station may be authorized to operate one or more signal boosters for the...

  4. WISDOM : an UHF GPR on the Exomars Mission

    NASA Astrophysics Data System (ADS)

    Corbel, C.; Hamram, S.; Ney, R.; Plettemeier, D.; Dolon, F.; Jeangeot, A.; Ciarletti, V.; Berthelier, J.

    2006-12-01

    This paper describes the main technical features of WISDOM (Water Ice and Subsurface Deposit Observations on Mars) Ground Penetrating Radar. This radar has been selected on the PASTEUR payload of the ESA ExoMars rover. The launch is scheduled in 2011. The main objective of this mission is to acquire and analyze samples of the shallow subsurface and search for traces of extinct or extant life. The WISDOM GPR aims at providing observations of the structure and layering of the upper layers of the subsurface in order to retrieve geological information that are of prime interest to select optimal sites to drill. It will also localize buried obstacles (rocks, boulders, ?)in the underground that will make the delicate drilling operations safer. WISDOM will operate in the UHF range from 500 MHz to 3 GHz and probe the first few meters of the subsurface with a high resolution (a few centimeters). The large bandwidth requirement (2.5 GHz) led us to select a gated step frequency technique for WISDOM. The Step Frequency technique is based on the analysis of the system in the frequency domain. The phase and amplitude of the reflected signal are measured at about 200 different frequencies effectively measuring the transfer function of the sub-surface between the transmitter and receiver antenna. The impulse response and eventually the distance of the reflecting structures can be obtained by performing an inverse Fourier transform of the measured transfer function. The broad band antennas have been designed in order to have a wide radiation pattern into the sub-surface and to avoid the direct coupling and allow co and cross polar measurements. To decrease the direct signal between the transmitter and the receiver or strong reflections from the surface, hardware range gating is implemented. The performances of the instrument operated in well characterized conditions will be presented

  5. UHF wearable battery free sensor module for activity and falling detection.

    PubMed

    Nam Trung Dang; Thang Viet Tran; Wan-Young Chung

    2016-08-01

    Falling is one of the most serious medical and social problems in aging population. Therefore taking care of the elderly by detecting activity and falling for preventing and mitigating the injuries caused by falls needs to be concerned. This study proposes a wearable, wireless, battery free ultra-high frequency (UHF) smart sensor tag module for falling and activity detection. The proposed tag is powered by UHF RF wave from reader and read by a standard UHF Electronic Product Code (EPC) Class-1 Generation-2 reader. The battery free sensor module could improve the wearability of the wireless device. The combination of accelerometer signal and received signal strength indication (RSSI) from a reader in the passive smart sensor tag detect the activity and falling of the elderly very successfully. The fabricated smart sensor tag module has an operating range of up to 2.5m and conducting in real-time activity and falling detection.

  6. RFID antenna design for circular polarization in UHF band

    NASA Astrophysics Data System (ADS)

    Shahid, Hamza; Khan, Muhammad Talal Ali; Tayyab, Umais; Irshad, Usama Bin; Alkhazraji, Emad; Javaid, Muhammad Sharjeel

    2017-05-01

    A miniature half cross dipole antenna for defense and aerospace RFID applications in UHF band is presented. The dipole printed line arms are half crossed shape on top of dielectric substrate backed by reactive impedance surface. The antenna fed by a coaxial cable at the gap separating the dipole arms. Our design is intended to work at 2.42 GHz for RFID readers. The radiation pattern obtained has HPBW of 112, return loss of 22.24 dB and 90 MHz bandwidth.

  7. A signature correlation study of ground target VHF/UHF ISAR imagery

    NASA Astrophysics Data System (ADS)

    Gatesman, Andrew J.; Beaudoin, Christopher J.; Giles, Robert H.; Kersey, William T.; Waldman, Jerry; Carter, Steve; Nixon, William E.

    2003-09-01

    VV and HH-polarized radar signatures of several ground targets were acquired in the VHF/UHF band (171-342 MHz) by using 1/35th scale models and an indoor radar range operating from 6 to 12 GHz. Data were processed into medianized radar cross sections as well as focused, ISAR imagery. Measurement validation was confirmed by comparing the radar cross section of a test object with a method of moments radar cross section prediction code. The signatures of several vehicles from three vehicle classes (tanks, trunks, and TELs) were measured and a signature cross-correlation study was performed. The VHF/UHF band is currently being exploited for its foliage penetration ability, however, the coarse image resolution which results from the relatively long radar wavelengths suggests a more challenging target recognition problem. One of the study's goals was to determine the amount of unique signature content in VHF/UHF ISAR imagery of military ground vehicles. Open-field signatures are compared with each other as well as with simplified shapes of similar size. Signatures were also acquired on one vehicle in a variety of configurations to determine the impact of monitor target variations on the signature content at these frequencies.

  8. 47 CFR 73.4195 - Political advertising by UHF translators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Political advertising by UHF translators. 73.4195 Section 73.4195 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO... advertising by UHF translators. See Public Notice, FCC 76936, dated October 8, 1976. 62 FCC 2d 896; 41 FR...

  9. 47 CFR 73.4195 - Political advertising by UHF translators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Political advertising by UHF translators. 73.4195 Section 73.4195 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO... advertising by UHF translators. See Public Notice, FCC 76936, dated October 8, 1976. 62 FCC 2d 896; 41 FR...

  10. Screen printed UHF antennas on flexible substrates

    NASA Astrophysics Data System (ADS)

    Janeczek, Kamil; Młożniak, Anna; Kozioł, Grażyna; Araźna, Aneta; Jakubowska, Małgorzata; Bajurko, Paweł

    2010-09-01

    Printed electronics belongs to the most important developing electronics technologies. It provides new possibilities to produce low cost and large area devices. In its range several applications can be distinguished like printed batteries, OLED, biosensors, photovoltaic cells or RFID tags. In the presented investigation, antennas working in UHF frequency range were elaborated. It can be applied in the future for flexible RFID tags. To produce these antennas polymer paste with silver flakes was used. It was deposited on two flexible substrates (foil and photo paper) with screen printing techniques. After printing process surface profile, electrical and microwave parameters of performed antennas were measured using digital multimeter and network analyzer, relatively. Furthermore, a thickness of printed layers was measured.

  11. Influence of barrier on partial discharge activity by a conducting particle in liquid nitrogen under AC voltages adopting UHF technique

    NASA Astrophysics Data System (ADS)

    Sarathi, R.; Giridhar, A. V.; Sethupathi, K.

    2011-02-01

    The UHF signals are generated due to PD formed by particle movement in liquid nitrogen under AC voltages. The levitation voltage of a particle in liquid nitrogen measured through UHF technique and by conventional PD measurement technique is the same, confirming the sensitivity of UHF technique for identification of PD activity. The frequency content of UHF signal generated due to particle movement in liquid nitrogen, under AC voltages, lies in the range 0.5-1.5 GHz. The characteristics of UHF signal generated due to particle movement between the barrier and high voltage/ground electrode is much similar to the signal generated by particle movement in clean electrode gap. Pseudo resonance phenomena can occur in liquid nitrogen due to particle movement. It is also observed that the partial discharge magnitude, in general, be high when the particle moves between the barrier and high voltage electrode when compared to the barrier and the ground electrode. Percentage of clay in epoxy nanocomposites has not altered the levitation voltage of the particle in the electrode gap. Zero span analysis clearly indicates that pseudo resonance occurs when particle moves (in a short gap) between the barrier and high voltage/ground electrode.

  12. A System Implementation for Cooperation between UHF RFID Reader and TCP/IP Device

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hoon; Jin, Ik Soo

    This paper presents a system implementation for cooperation between UHF RFID reader and TCP/IP device that can be used as a home gateway. The system consists of an UHF RFID tag, an UHF RFID reader, a RF end-device, a RF coordinator and a TCP/IP I/F. The UHF RFID reader is compatible with EPC Class-0/Gen1, Class-1/Gen1, 2 and ISO18000-6B, operating at the 915MHz. In particular, UHF RFID reader can be combined with a RF end device/coordinator for ZigBee(IEEE 802.15.4) interface which is low power wireless standard. The TCP/IP device is communicated with RFID reader via wired type. On the other hand, it is connected with ZigBee end-device via wireless type. The experimental results show that the developed system can provide the right networking.

  13. UHF FM receiver having improved frequency stability and low RFI emission

    DOEpatents

    Lupinetti, Francesco

    1990-02-27

    A UHF receiver which converts UHF modulated carrier signals to baseband video signals without any heterodyne or frequency conversion stages. A bandpass filter having a fixed frequency first filters the signals. A low noise amplifier amplifies the filtered signal and applies the signal through further amplification stages to a limited FM demodulator circuit. The UHF signal is directly converted to a baseband video signal. The baseband video signal is clamped by a clamping circuit before driving a monitor. Frequency stability for the receivers is at a theoretical maximum, and interference to adjacent receivers is eliminated due to the absence of a local oscillator.

  14. Enhanced UHF RFID tags for drug tracing.

    PubMed

    Catarinucci, Luca; Colella, Riccardo; De Blasi, Mario; Patrono, Luigi; Tarricone, Luciano

    2012-12-01

    Radio Frequency Identification (RFID) technology is playing a crucial role for item-level tracing systems in healthcare scenarios. The pharmaceutical supply chain is a fascinating application context, where RFID can guarantee transparency in the drug flow, supporting both suppliers and consumers against the growing counterfeiting problem. In such a context, the choice of the most adequate RFID tag, in terms of shape, frequency, size and reading range, is crucial. The potential presence of items containing materials hostile to the electromagnetic propagation exasperates the problem. In addition, the peculiarities of the different RFID-based checkpoints make even more stringent the requirements for the tag. In this work, the performance of several commercial UHF RFID tags in each step of the pharmaceutical supply chain has been evaluated, confirming the expected criticality. On such basis, a guideline for the electromagnetic design of new high-performance tags capable to overcome such criticalities has been defined. Finally, driven by such guidelines, a new enhanced tag has been designed, realized and tested. Due to patent pending issues, the antenna shape is not shown. Nevertheless, the optimal obtained results do not lose their validity. Indeed, on the one hand they demonstrate that high performance item level tracing systems can actually be implemented also in critical operating conditions. On the other hand, they encourage the tag designer to follow the identified guidelines so to realize enhanced UHF tags.

  15. Detection of moving humans in UHF wideband SAR

    NASA Astrophysics Data System (ADS)

    Sjögren, Thomas K.; Ulander, Lars M. H.; Frölind, Per-Olov; Gustavsson, Anders; Stenström, Gunnar; Jonsson, Tommy

    2014-06-01

    In this paper, experimental results for UHF wideband SAR imaging of humans on an open field and inside a forest is presented. The results show ability to detect the humans and suggest possible ways to improve the results. In the experiment, single channel wideband SAR mode of the UHF UWB system LORA developed by Swedish Defence Research Agency (FOI). The wideband SAR mode used in the experiment was from 220 to 450 MHz, thus with a fractional bandwidth of 0.68. Three humans walking and one stationary were available in the scene with one of the walking humans in the forest. The signature of the human in the forest appeared on the field, due to azimuth shift from the positive range speed component. One human on the field and the one in the forest had approximately the same speed and walking direction. The signatures in the SAR image were compared as a function of integration time based on focusing using the average relative speed of these given by GPS logs. A signal processing gain was obtained for the human in forest until approximately 15 s and 35 s for the human on the field. This difference is likely explained by uneven terrain and trees in the way, causing a non-straight walking path.

  16. Analysis strategies for high-resolution UHF-fMRI data.

    PubMed

    Polimeni, Jonathan R; Renvall, Ville; Zaretskaya, Natalia; Fischl, Bruce

    2018-03-01

    Functional MRI (fMRI) benefits from both increased sensitivity and specificity with increasing magnetic field strength, making it a key application for Ultra-High Field (UHF) MRI scanners. Most UHF-fMRI studies utilize the dramatic increases in sensitivity and specificity to acquire high-resolution data reaching sub-millimeter scales, which enable new classes of experiments to probe the functional organization of the human brain. This review article surveys advanced data analysis strategies developed for high-resolution fMRI at UHF. These include strategies designed to mitigate distortion and artifacts associated with higher fields in ways that attempt to preserve spatial resolution of the fMRI data, as well as recently introduced analysis techniques that are enabled by these extremely high-resolution data. Particular focus is placed on anatomically-informed analyses, including cortical surface-based analysis, which are powerful techniques that can guide each step of the analysis from preprocessing to statistical analysis to interpretation and visualization. New intracortical analysis techniques for laminar and columnar fMRI are also reviewed and discussed. Prospects for single-subject individualized analyses are also presented and discussed. Altogether, there are both specific challenges and opportunities presented by UHF-fMRI, and the use of proper analysis strategies can help these valuable data reach their full potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. UHF Signal Processing and Pattern Recognition of Partial Discharge in Gas-Insulated Switchgear Using Chromatic Methodology

    PubMed Central

    Wang, Xiaohua; Li, Xi; Rong, Mingzhe; Xie, Dingli; Ding, Dan; Wang, Zhixiang

    2017-01-01

    The ultra-high frequency (UHF) method is widely used in insulation condition assessment. However, UHF signal processing algorithms are complicated and the size of the result is large, which hinders extracting features and recognizing partial discharge (PD) patterns. This article investigated the chromatic methodology that is novel in PD detection. The principle of chromatic methodologies in color science are introduced. The chromatic processing represents UHF signals sparsely. The UHF signals obtained from PD experiments were processed using chromatic methodology and characterized by three parameters in chromatic space (H, L, and S representing dominant wavelength, signal strength, and saturation, respectively). The features of the UHF signals were studied hierarchically. The results showed that the chromatic parameters were consistent with conventional frequency domain parameters. The global chromatic parameters can be used to distinguish UHF signals acquired by different sensors, and they reveal the propagation properties of the UHF signal in the L-shaped gas-insulated switchgear (GIS). Finally, typical PD defect patterns had been recognized by using novel chromatic parameters in an actual GIS tank and good performance of recognition was achieved. PMID:28106806

  18. UHF Signal Processing and Pattern Recognition of Partial Discharge in Gas-Insulated Switchgear Using Chromatic Methodology.

    PubMed

    Wang, Xiaohua; Li, Xi; Rong, Mingzhe; Xie, Dingli; Ding, Dan; Wang, Zhixiang

    2017-01-18

    The ultra-high frequency (UHF) method is widely used in insulation condition assessment. However, UHF signal processing algorithms are complicated and the size of the result is large, which hinders extracting features and recognizing partial discharge (PD) patterns. This article investigated the chromatic methodology that is novel in PD detection. The principle of chromatic methodologies in color science are introduced. The chromatic processing represents UHF signals sparsely. The UHF signals obtained from PD experiments were processed using chromatic methodology and characterized by three parameters in chromatic space ( H , L , and S representing dominant wavelength, signal strength, and saturation, respectively). The features of the UHF signals were studied hierarchically. The results showed that the chromatic parameters were consistent with conventional frequency domain parameters. The global chromatic parameters can be used to distinguish UHF signals acquired by different sensors, and they reveal the propagation properties of the UHF signal in the L-shaped gas-insulated switchgear (GIS). Finally, typical PD defect patterns had been recognized by using novel chromatic parameters in an actual GIS tank and good performance of recognition was achieved.

  19. High-speed upper-airway imaging using full-range optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jing, Joseph; Zhang, Jun; Loy, Anthony Chin; Wong, Brian J. F.; Chen, Zhongping

    2012-11-01

    Obstruction in the upper airway can often cause reductions in breathing or gas exchange efficiency and lead to rest disorders such as sleep apnea. Imaging diagnosis of the obstruction region has been accomplished using computed tomography (CT) and magnetic resonance imaging (MRI). However CT requires the use of ionizing radiation, and MRI typically requires sedation of the patient to prevent motion artifacts. Long-range optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images with high resolution and without the use of ionizing radiation. In this paper, we present work on the development of a long-range OCT endoscopic probe with 1.2 mm OD and 20 mm working distance used in conjunction with a modified Fourier domain swept source OCT system to acquire structural and anatomical datasets of the human airway. Imaging from the bottom of the larynx to the end of the nasal cavity is completed within 40 s.

  20. Radiative Heating of the ISCCP Upper Level Cloud Regimes and its Impact on the Large-scale Tropical Circulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Schumacher, Courtney; McFarlane, Sally A.

    2013-01-31

    Radiative heating profiles of the International Satellite Cloud Climatology Project (ISCCP) cloud regimes (or weather states) were estimated by matching ISCCP observations with radiative properties derived from cloud radar and lidar measurements from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) sites at Manus, Papua New Guinea, and Darwin, Australia. Focus was placed on the ISCCP cloud regimes containing the majority of upper level clouds in the tropics, i.e., mesoscale convective systems (MCSs), deep cumulonimbus with cirrus, mixed shallow and deep convection, and thin cirrus. At upper levels, these regimes have average maximum cloud occurrences ranging from 30% tomore » 55% near 12 km with variations depending on the location and cloud regime. The resulting radiative heating profiles have maxima of approximately 1 K/day near 12 km, with equal heating contributions from the longwave and shortwave components. Upper level minima occur near 15 km, with the MCS regime showing the strongest cooling of 0.2 K/day and the thin cirrus showing no cooling. The gradient of upper level heating ranges from 0.2 to 0.4 K/(day∙km), with the most convectively active regimes (i.e., MCSs and deep cumulonimbus with cirrus) having the largest gradient. When the above heating profiles were applied to the 25-year ISCCP data set, the tropics-wide average profile has a radiative heating maximum of 0.45Kday-1 near 250 hPa. Column-integrated radiative heating of upper level cloud accounts for about 20% of the latent heating estimated by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The ISCCP radiative heating of tropical upper level cloud only slightly modifies the response of an idealized primitive equation model forced with the tropics-wide TRMM PR latent heating, which suggests that the impact of upper level cloud is more important to large-scale tropical circulation variations because of convective feedbacks rather than direct

  1. Estimate of the fetal temperature increase due to UHF RFID exposure.

    PubMed

    Fiocchi, S; Markakis, I A; Liorni, I; Parazzini, M; Samaras, T; Ravazzani, P

    2013-01-01

    Exposure from electromagnetic (EM) devices has increased during the last decades due to the rapid development of new technologies. Among them, radiofrequency identification (RFID) applications are used in almost every aspect of everyday life, which could expose people unselectively. This scenario could pose potential risks for certain groups of general population, such as pregnant women, who are more sensitive to thermal effects produced by EM exposure. In this paper, the temperature rise at the steady state in two pregnant women models exposed to UHF RFID has been assessed. Results show that heating of tissues is far from the threshold of biological effects indicated by radiation protection guidelines.

  2. SAR exposure from UHF RFID reader in adult, child, pregnant woman, and fetus anatomical models.

    PubMed

    Fiocchi, Serena; Markakis, Ioannis A; Ravazzani, Paolo; Samaras, Theodoros

    2013-09-01

    The spread of radio frequency identification (RFID) devices in ubiquitous applications without their simultaneous exposure assessment could give rise to public concerns about their potential adverse health effects. Among the various RFID system categories, the ultra high frequency (UHF) RFID systems have recently started to be widely used in many applications. This study addresses a computational exposure assessment of the electromagnetic radiation generated by a realistic UHF RFID reader, quantifying the exposure levels in different exposure scenarios and subjects (two adults, four children, and two anatomical models of women 7 and 9 months pregnant). The results of the computations are presented in terms of the whole-body and peak spatial specific absorption rate (SAR) averaged over 10 g of tissue to allow comparison with the basic restrictions of the exposure guidelines. The SAR levels in the adults and children were below 0.02 and 0.8 W/kg in whole-body SAR and maximum peak SAR levels, respectively, for all tested positions of the antenna. On the contrary, exposure of pregnant women and fetuses resulted in maximum peak SAR(10 g) values close to the values suggested by the guidelines (2 W/kg) in some of the exposure scenarios with the antenna positioned in front of the abdomen and with a 100% duty cycle and 1 W radiated power. Copyright © 2013 Wiley Periodicals, Inc.

  3. Space Station UCS antenna pattern computation and measurement. [UHF Communication Subsystem

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Lu, Ba P.; Johnson, Larry A.; Fournet, Jon S.; Panneton, Robert J.; Ngo, John D.; Eggers, Donald S.; Arndt, G. D.

    1993-01-01

    The purpose of this paper is to analyze the interference to the Space Station Ultrahigh Frequency (UHF) Communication Subsystem (UCS) antenna radiation pattern due to its environment - Space Station. A hybrid Computational Electromagnetics (CEM) technique was applied in this study. The antenna was modeled using the Method of Moments (MOM) and the radiation patterns were computed using the Uniform Geometrical Theory of Diffraction (GTD) in which the effects of the reflected and diffracted fields from surfaces, edges, and vertices of the Space Station structures were included. In order to validate the CEM techniques, and to provide confidence in the computer-generated results, a comparison with experimental measurements was made for a 1/15 scale Space Station mockup. Based on the results accomplished, good agreement on experimental and computed results was obtained. The computed results using the CEM techniques for the Space Station UCS antenna pattern predictions have been validated.

  4. 41. Upper level, electronic racks, left to rightprogrammer group, status ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Upper level, electronic racks, left to right--programmer group, status command message processing group, UHF radio, impss rack security - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  5. High Latitude Scintillation Monitoring at UHF with the COMMX Experiment on TACSat4

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Siefring, C. L.; Akins, K.; Nurnberger, M.

    2013-12-01

    UHF Beacon Transmissions at 253 MHz have provided high latitude scintillation monitoring from Gakona Alaska using the COMMX instrument on TACSat4. TACSat4 was constructed by the Naval Research Laboratory and was launched in September 2011 as an experimental communications satellite. Ground UHF transmissions are uplinked to TACSat4 using the 4 meter diameter antenna deployed to view the earth. These signals are coherently translated to other UHF frequency to be rebroadcast to the ground. Scintillation monitoring is achieved by taking the 401.25 MHz signals from ground DORIS beacons located in Cold Bay, Alaska; Yellowknife, Canada; Kauai, Hawaii; and Soccoro Island, Mexico. These signals are translated to 253 MHz and broadcast with the 4 meter antenna pointed to the UHF receiver located at Gakona, Alaska. The satellite antenna gain is 18 dB in this UHF band and the transmitter power is 2 Watts. The satellite is in an elliptical orbit with an inclination of 63 degrees and a perigee of 12,000 km. Doppler frequency shifts allow separation of each uplink from the ground DORIS beacons. This new scintillation monitoring system has been used to detect natural and artificial field aligned irregularity effects on the amplitude and phase of UHF carriers where typical scintillation amplitudes are 2dB or less. Using the HAARP transmitter in Alaska, TACSat4 was used to discover the artificial ionization clouds produce scintillation with as much as 16 dB and amplitude indices S4 greater than unity. This is the first demonstration of significant effects on radio scintillations using high power HF radio waves to disturb the ionosphere.

  6. Ultra-Wideband UHF Microstrip Array for GeoSAR Application

    NASA Technical Reports Server (NTRS)

    Thomas, Robert F.; Huang, John

    1998-01-01

    GeoSAR is a program sponsored by DARPA (Defense Advanced Research Projects Agency) and NASA (National Aeronautics and Space Administration) to develop an airborne, radar- based, commercial terrain mapping system for identification of geologic, seismic, and environmental information, it has two (dual-band at X and UHF) state-of-the-art interferometric synthetic aperture radar (SAR) ground mapping systems. The UHF interferometric system is utilized to penetrate the vegetation canopy and obtain true ground surface height information, while the Xband system will provide capability of mapping the top foliage surface. This paper presents the UHF antenna system where the required center frequency is 350 MHz with a 160 MHz of bandwidth (46% from 270 MHz to 430 MHz). The antenna is required to have dual-linear polarization with a peak gain of 10 dB at the center frequency and a minimum gain of 8 dB toward two ends of the frequency band. One of the most challenging tasks, in addition to achieving the 46% bandwidth, is to develop an antenna with small enough size to fit in the wing-tip pod of a Gulfstream II aircraft.

  7. 40. Upper level, electronic racks, left to rightstatus command message ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. Upper level, electronic racks, left to right--status command message processing group, UHF radio, impss rack security, power supply group rack - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  8. 42. Upper level, electronic racks, left to rightguidance and control ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Upper level, electronic racks, left to right--guidance and control coupler rack, programmer group, status command message processing group, UHF radio - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  9. Multi-stage Depressed Collectors (MDC) for efficiency improvements of UHF broadcast klystrons

    NASA Technical Reports Server (NTRS)

    Kosmahl, H. G.

    1982-01-01

    The consumed primary power is reduced and the efficiency of traveling wave tubes is raised through the use of depressed collectors which passively convert potential energy into electric energy. Efficiency was kept with constant within a 3 dB range while the output power varied by 10 dB. Aspects to be considered in transferring this technology to UHF klystrons are the electron energy spectrum of the klystron and the magnitude of the injection angle required.

  10. Artificial Ionization and UHF Radar Response Associated with HF Frequencies near Electron Gyro-Harmonics (Invited)

    NASA Astrophysics Data System (ADS)

    Watkins, B. J.; Fallen, C. T.; Secan, J. A.

    2013-12-01

    We present new results from O-mode ionospheric heating experiments at the HAARP facility in Alaska to demonstrate that the magnitude of artificial ionization production is critically dependent on the choice of HF frequency near gyro-harmonics. For O-mode heating in the lower F-region ionosphere, typically about 200 km altitude, artificial ionization enhancements are observed in the lower ionosphere (about 150 - 220 km) and also in the topside ionosphere above about 500 km. Lower ionosphere density enhancements are inferred from HF-enhanced ion and plasma-line signals observed with UHF radar. Upper ionospheric density enhancements have been observed with TEC (total electron content) experiments by monitoring satellite radio beacons where signal paths traverse the HF-modified ionosphere. Both density enhancements and corresponding upward plasma fluxes have also been observed in the upper ionosphere via in-situ satellite observations. The data presented focus mainly on observations near the third and fourth gyro-harmonics. The specific values of the height-dependent gyro-harmonics have been computed from a magnetic model of the field line through the HF heated volume. Experiments with several closely spaced HF frequencies around the gyro-harmonic frequency region show that the magnitude of the lower-ionosphere artificial ionization production maximizes for HF frequencies about 1.0 - 1.5 MHz above the gyro-harmonic frequency. The response is progressively larger as the HF frequency is increased in the frequency region near the gyro-harmonics. For HF frequencies that are initially greater than the gyro-harmonic value the UHF radar scattering cross-section is relatively small, and non-existent or very weak signals are observed; as the signal returns drop in altitude due to density enhancements the HF interaction region passes through lower altitudes where the HF frequency is less than the gyro-harmonic value, for these conditions the radar scattering cross-section is

  11. The Anti-RFI Design of Intelligent Electric Energy Meters with UHF RFID

    NASA Astrophysics Data System (ADS)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng

    2018-03-01

    In order to solve the existing artificial meter reading watt-hour meter industry is still slow and inventory of common problems, using the uhf radio frequency identification (RFID) technology and intelligent watt-hour meter depth fusion, which has a one-time read multiple tags, identification distance, high transmission rate, high reliability, etc, while retaining the original asset management functions, in order to ensure the uhf RFID and minimum impact on the operation of the intelligent watt-hour meter, proposed to improve the stability of the electric meter system while working at the same time, this paper designs the uhf RFID intelligent watt-hour meter radio frequency interference resistance, put forward to improve intelligent watt-hour meter electromagnetic compatibility design train of thought, and introduced its power and the hardware circuit design of printed circuit board, etc.

  12. Study of comparison between Ultra-high Frequency (UHF) method and ultrasonic method on PD detection for GIS

    NASA Astrophysics Data System (ADS)

    Li, Yanran; Chen, Duo; Li, Li; Zhang, Jiwei; Li, Guang; Liu, Hongxia

    2017-11-01

    GIS (gas insulated switchgear), is an important equipment in power system. Partial discharge plays an important role in detecting the insulation performance of GIS. UHF method and ultrasonic method frequently used in partial discharge (PD) detection for GIS. However, few studies have been conducted on comparison of this two methods. From the view point of safety, it is necessary to investigate UHF method and ultrasonic method for partial discharge in GIS. This paper presents study aimed at clarifying the effect of UHF method and ultrasonic method for partial discharge caused by free metal particles in GIS. Partial discharge tests were performed in laboratory simulated environment. Obtained results show the ability of anti-interference of signal detection and the accuracy of fault localization for UHF method and ultrasonic method. A new method based on UHF method and ultrasonic method of PD detection for GIS is proposed in order to greatly enhance the ability of anti-interference of signal detection and the accuracy of detection localization.

  13. VHF/UHF imagery and RCS measurements of ground targets in forested terrain

    NASA Astrophysics Data System (ADS)

    Gatesman, Andrew J.; Beaudoin, Christopher J.; Giles, Robert H.; Waldman, Jerry; Nixon, William E.

    2002-08-01

    The monostatic VV and HH-polarized radar signatures of several targets and trees have been measured at foliage penetration frequencies (VHF/UHF) by using 1/35th scale models and an indoor radar range operating at X-band. An array of high-fidelity scale model ground vehicles and test objects as well as scaled ground terrain and trees have been fabricated for the study. Radar measurement accuracy has been confirmed by comparing the signature of a test object with a method of moments radar cross section prediction code. In addition to acquiring signatures of targets located on a smooth, dielectric ground plane, data have also been acquired with targets located in simulated wooded terrain that included scaled tree trunks and tree branches. In order to assure the correct backscattering behavior, all dielectric properties of live tree wood and moist soil were scaled properly to match the complex dielectric constant of the full-scale materials. The impact of the surrounding tree clutter on the VHF/UHF radar signatures of ground vehicles was accessed. Data were processed into high-resolution, polar-formatted ISAR imagery and signature comparisons are made between targets in open-field and forested scenarios.

  14. Upper limits to the interstellar radiation field between 775 and 1050 A

    NASA Technical Reports Server (NTRS)

    Paresce, F.; Bowyer, S.

    1976-01-01

    A 40-A resolution extreme-ultraviolet spectrometer, sensitive to radiation in the 775-1050 A band, was flown on a Black Brant VC rocket to measure the night sky brightness in this region of the electromagnetic spectrum. A weak signal above background was recorded in most channels as the spectrometer's field of view scanned the sky in the vicinity of the galactic plane from Monoceros to Andromeda. Because the earth's upper atmosphere may produce some radiation in this wavelength region, the possibility cannot be excluded that some or all of the observed signal is terrestrial in origin. However, observational upper limits can be established at the 95-per cent confidence level for the intensity of an extraterrestrial extreme ultraviolet background which ranges from 6 millionths erg/sq cm/s/sr/A at 1050 A to 4 ten-millionths erg/sq cm/s/sr/A at 775 A. These results are consistent with existing theoretical predictions.

  15. Study of New Method Combined Ultra-High Frequency (UHF) Method and Ultrasonic Method on PD Detection for GIS

    NASA Astrophysics Data System (ADS)

    Li, Yanran; Chen, Duo; Zhang, Jiwei; Chen, Ning; Li, Xiaoqi; Gong, Xiaojing

    2017-09-01

    GIS (gas insulated switchgear), is an important equipment in power system. Partial discharge plays an important role in detecting the insulation performance of GIS. UHF method and ultrasonic method frequently used in partial discharge (PD) detection for GIS. It is necessary to investigate UHF method and ultrasonic method for partial discharge in GIS. However, very few studies have been conducted on the method combined this two methods. From the view point of safety, a new method based on UHF method and ultrasonic method of PD detection for GIS is proposed in order to greatly enhance the ability of anti-interference of signal detection and the accuracy of fault localization. This paper presents study aimed at clarifying the effect of the new method combined UHF method and ultrasonic method. Partial discharge tests were performed in laboratory simulated environment. Obtained results show the ability of anti-interference of signal detection and the accuracy of fault localization for this new method combined UHF method and ultrasonic method.

  16. Numerical analysis of THz radiation wave using upper hybrid wave wiggler

    NASA Astrophysics Data System (ADS)

    Malik, Pratibha; Sharma, Suresh C.; Panwar, Jyotsna; Sharma, Rinku

    2018-03-01

    A theory for upper hybrid wave induced by relativistic electron beam in magnetized plasma emits tuneable and coherent terahertz radiation. The nonlinear interaction with REB is used to generate terahertz radiation. The enhancement in the amplitude of THz wave is also observed when pre-bunched REB is used. The ponderomotive force applied on beam electrons due to radiation wave and upper wave wiggler modifies the dispersion relation. By solving the dispersion relation, we have derived the growth rate of the radiation wave. Numerical studies indicate that by increasing the beam energy the growth rate of the radiation wave decreases, while it increases with wiggler frequency. Besides this, the growth rate of the radiation wave increases with beam density and decreases with radiation frequency and static magnetic field.

  17. Temporal Variability of Upper-level Winds at the Eastern Range, Western Range and Wallops Flight Facility

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.

    2014-01-01

    Space launch vehicles incorporate upper-level wind profiles to determine wind effects on the vehicle and for a commit to launch decision. These assessments incorporate wind profiles measured hours prior to launch and may not represent the actual wind the vehicle will fly through. Uncertainty in the upper-level winds over the time period between the assessment and launch can be mitigated by a statistical analysis of wind change over time periods of interest using historical data from the launch range. Five sets of temporal wind pairs at various times (.75, 1.5, 2, 3 and 4-hrs) at the Eastern Range, Western Range and Wallops Flight Facility were developed for use in upper-level wind assessments. Database development procedures as well as statistical analysis of temporal wind variability at each launch range will be presented.

  18. A comparison of thunderstorm reflectivities measured at the VHF and UHF

    NASA Technical Reports Server (NTRS)

    Larsen, M. F.; Rottger, J.

    1986-01-01

    Observations of thunderstorms made with two radars operating at different wavelengths of 70 cm and 5.67 m are compared. The first set of observations was made with the UHF radar at the Arecibo Observatory in Puerto Rico, and the second set was made with the Max-Planck-Institut fur Aeronomie VHF radar in the Harz Mountains in West Germany. Both sets of observations show large echo strengths in the convective region above the -10 C isothem. At UHF, there appears to be a contribution from both the precipitation echoes and the normal echoes due to scatter from turbulent variations in the refractive index.

  19. [The specific features of the development of metabolic and regenerative processes under the action of low-intensity electromagnetic radiation in radiation exposure conditions (an experimental study)].

    PubMed

    Korolev, Yu N; Mihajlik, L V; Nikulina, L A; Geniatulina, M S

    The experiments on male white rats with the use of biochemical, photo-optical, and electron-microscopic techniques have demonstrated that the use of low-intensity electromagnetic radiation of ultrahigh frequency (EMR UHF) and low-intensity low-frequency magnetic field (MF) during the post-irradiation period (within 21 days after exposure to radiation) enhanced the metabolic and regenerative processes in the testes and liver. It was shown that the application of MF largely intensified the antioxidant activity whereas EMR UHF preferentially stimulated the biosynthetic processes as well as the processes of cellular and intracellular regeneration.

  20. Perioperative patient radiation exposure in the endoscopic removal of upper urinary tract calculi.

    PubMed

    Jamal, Joseph E; Armenakas, Noel A; Sosa, R Ernest; Fracchia, John A

    2011-11-01

    The efficacy of computed tomography (CT) in detailing upper urinary tract calculi is well established. There is no established acceptable annual recommended limit for medical exposure, yet the global accepted upper limit for occupational radiation exposure is <50 millisieverts (mSv) in any one year. We sought to appreciate the CT and fluoroscopic radiation exposure to our patients undergoing endoscopic removal of upper tract calculi during the periprocedure period. All patients undergoing upper urinary endoscopic stone removal between 2005 and 2009 were identified. To calculate the cumulative radiation exposure, we included all ionizing radiation imaging performed during a periprocedure period, which we defined as ≤90 days pre- and post-therapeutic procedure. A total of 233 upper urinary tract therapeutic patient stone procedures were identified; 127 patients underwent ureteroscopy (URS) and 106 patients underwent percutaneous nephrolithotomy (PCNL). A mean 1.58 CTs were performed per patient. Ninety (38.6%) patients underwent ≥2 CTs in the periprocedure period, with an average number in this group of 2.49 CT/patient, resulting in approximately 49.8 mSv of CT radiation exposure. Patients who were undergoing URS were significantly more likely to have multiple CTs (P=0.003) than those undergoing PCNL. Median fluoroscopic procedure exposures were 43.3 mGy for patients who were undergoing PCNL and 27.6 mGy for those patients undergoing URS. CT radiation exposure in the periprocedure period for patients who were undergoing endoscopic upper tract stone removal is considerable. Added to this is the procedure-related fluoroscopic radiation exposure. Urologic surgeons should be aware of the cumulative amount of ionizing radiation received by their patients from multiple sources.

  1. Special Semaphore Scheme for UHF Spacecraft Communications

    NASA Technical Reports Server (NTRS)

    Butman, Stanley; Satorius, Edgar; Ilott, Peter

    2006-01-01

    A semaphore scheme has been devised to satisfy a requirement to enable ultrahigh- frequency (UHF) radio communication between a spacecraft descending from orbit to a landing on Mars and a spacecraft, in orbit about Mars, that relays communications between Earth and the lander spacecraft. There are also two subsidiary requirements: (1) to use UHF transceivers, built and qualified for operation aboard the spacecraft that operate with residual-carrier binary phase-shift-keying (BPSK) modulation at a selectable data rate of 8, 32, 128, or 256 kb/s; and (2) to enable low-rate signaling even when received signals become so weak as to prevent communication at the minimum BPSK rate of 8 kHz. The scheme involves exploitation of Manchester encoding, which is used in conjunction with residual-carrier modulation to aid the carrier-tracking loop. By choosing various sequences of 1s, 0s, or 1s alternating with 0s to be fed to the residual-carrier modulator, one would cause the modulator to generate sidebands at a fundamental frequency of 4 or 8 kHz and harmonics thereof. These sidebands would constitute the desired semaphores. In reception, the semaphores would be detected by a software demodulator.

  2. Interoperation of an UHF RFID Reader and a TCP/IP Device via Wired and Wireless Links

    PubMed Central

    Lee, Sang Hoon; Jin, Ik Soo

    2011-01-01

    A main application in radio frequency identification (RFID) sensor networks is the function that processes real-time tag information after gathering the required data from multiple RFID tags. The component technologies that contain an RFID reader, called the interrogator, which has a tag chip, processors, coupling antenna, and a power management system have advanced significantly over the last decade. This paper presents a system implementation for interoperation between an UHF RFID reader and a TCP/IP device that is used as a gateway. The proposed system consists of an UHF RFID tag, an UHF RFID reader, an RF end-device, an RF coordinator, and a TCP/IP I/F. The UHF RFID reader, operating at 915 MHz, is compatible with EPC Class-0/Gen1, Class-1/Gen1 and 2, and ISO18000-6B. In particular, the UHF RFID reader can be combined with the RF end-device/coordinator for a ZigBee (IEEE 802.15.4) interface, which is a low-power wireless standard. The TCP/IP device communicates with the RFID reader via wired links. On the other hand, it is connected to the ZigBee end-device via wireless links. The web based test results show that the developed system can remotely recognize information of multiple tags through the interoperation between the RFID reader and the TCP/IP device. PMID:22346665

  3. Interoperation of an UHF RFID reader and a TCP/IP device via wired and wireless links.

    PubMed

    Lee, Sang Hoon; Jin, Ik Soo

    2011-01-01

    A main application in radio frequency identification (RFID) sensor networks is the function that processes real-time tag information after gathering the required data from multiple RFID tags. The component technologies that contain an RFID reader, called the interrogator, which has a tag chip, processors, coupling antenna, and a power management system have advanced significantly over the last decade. This paper presents a system implementation for interoperation between an UHF RFID reader and a TCP/IP device that is used as a gateway. The proposed system consists of an UHF RFID tag, an UHF RFID reader, an RF end-device, an RF coordinator, and a TCP/IP I/F. The UHF RFID reader, operating at 915 MHz, is compatible with EPC Class-0/Gen1, Class-1/Gen1 and 2, and ISO18000-6B. In particular, the UHF RFID reader can be combined with the RF end-device/coordinator for a ZigBee (IEEE 802.15.4) interface, which is a low-power wireless standard. The TCP/IP device communicates with the RFID reader via wired links. On the other hand, it is connected to the ZigBee end-device via wireless links. The web based test results show that the developed system can remotely recognize information of multiple tags through the interoperation between the RFID reader and the TCP/IP device.

  4. A low-volume, low-mass, low-power UHF proximity micro-transceiver for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Kuhn, William; Lay, Norman; Grigorian, Edwin

    2005-01-01

    UHF half-duplex micro-transceiver measuring 1 cubic centimeter, weighing less than 10 grams, and operating at 40 mW on receive and 50mW, 300mW, or 3W on transmit is described. The micro-transceiver is being designed for future Mars exploration missions, but can be adapted for other proximity links. It supports transmission rates up to 256 ksps and higher in BPSK or QPSK format for data return and receives command/control instructions at up to 8 ksps. In addition to its low mass/power features, temperature compensated circuit and system design and radiation tolerance allow operation outside of large shielded enclosures, further reducing the mass and complexity of exploration vehicles.

  5. An active UHF RFID localization system for fawn saving

    NASA Astrophysics Data System (ADS)

    Eberhardt, M.; Lehner, M.; Ascher, A.; Allwang, M.; Biebl, E. M.

    2015-11-01

    We present a localization concept for active UHF RFID transponders which enables mowing machine drivers to detect and localize marked fawns. The whole system design and experimental results with transponders located near the ground in random orientations in a meadow area are shown. The communication flow between reader and transponders is realized as a dynamic master-slave concept. Multiple marked fawns will be localized by processing detected transponders sequentially. With an eight-channel-receiver with integrated calibration method one can estimate the direction-of-arrival by measuring the phases of the transponder signals up to a range of 50 m in all directions. For further troubleshooting array manifolds have been measured. An additional hand-held receiver with a two-channel receiver allows a guided approaching search without endangering the fawn by the mowing machine.

  6. HF RFID versus UHF RFID--Technology for Library Service Transformation at City University of Hong Kong

    ERIC Educational Resources Information Center

    Ching, Steve H.; Tai, Alice

    2009-01-01

    Since libraries first used RFID systems in the late 1990s, more and more libraries have identified the advantages of the technology. With advances in HF and UHF RFID, both alternatives are now viable in library applications. While some librarians are still skeptical towards UHF RFID as unproven in the library arena, the City University of Hong…

  7. Analysis and Design of a Long Range PTFE Substrate UHF RFID Tag for Cargo Container Identification

    NASA Astrophysics Data System (ADS)

    Petrariu, Adrian-Ioan; Popa, Valentin

    2016-01-01

    In this paper, a high-performances microstrip antenna for UHF (ultra high frequency) RFID (radio frequency identification) tag is designed, prototyped and tested. The antenna consists of two main components: a 1.52 mm RT/duroid 5880 laminate substrate on which the antenna is designed and a 10 mm polytetrafluoroethylene (PTFE) dielectric material placed as a separator between the antenna and the reference ground plane for the microstrip antenna. With this structure, the RFID tag can reach a maximum reading distance of 19 m, although the antenna has a compact size of 80 mm × 50 mm. The long reading distance is obtained by attaching to the antenna an RFID chip that can provide a reading sensitivity of -20.5 dBm. The high bandwidth from 677 MHz to 947 MHz measured at -10 dB, makes the tag being usable worldwide especially for cargo container identification, the main purpose of this research.

  8. A Quantitative Comparison of the Relative Performance of VHF and UHF Broadcast Systems. Technical Monograph Number 1.

    ERIC Educational Resources Information Center

    Rubin, Philip A.; And Others

    A study was undertaken to: (1) assess problems with UHF television systems; and (2) identify problem-solving activities on which different broadcast institutions could cooperate, The model for comparing UHF with VHF broadcast/reception services assigned performance disparity figures to each of the following elements: (1) transmitter and…

  9. Wide-range radiation dose monitor

    DOEpatents

    Kopp, Manfred K.

    1986-01-01

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  10. Wide-range radiation dose monitor

    DOEpatents

    Kopp, M.K.

    1984-09-20

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  11. Partial Discharge Spectral Characterization in HF, VHF and UHF Bands Using Particle Swarm Optimization.

    PubMed

    Robles, Guillermo; Fresno, José Manuel; Martínez-Tarifa, Juan Manuel; Ardila-Rey, Jorge Alfredo; Parrado-Hernández, Emilio

    2018-03-01

    The measurement of partial discharge (PD) signals in the radio frequency (RF) range has gained popularity among utilities and specialized monitoring companies in recent years. Unfortunately, in most of the occasions the data are hidden by noise and coupled interferences that hinder their interpretation and renders them useless especially in acquisition systems in the ultra high frequency (UHF) band where the signals of interest are weak. This paper is focused on a method that uses a selective spectral signal characterization to feature each signal, type of partial discharge or interferences/noise, with the power contained in the most representative frequency bands. The technique can be considered as a dimensionality reduction problem where all the energy information contained in the frequency components is condensed in a reduced number of UHF or high frequency (HF) and very high frequency (VHF) bands. In general, dimensionality reduction methods make the interpretation of results a difficult task because the inherent physical nature of the signal is lost in the process. The proposed selective spectral characterization is a preprocessing tool that facilitates further main processing. The starting point is a clustering of signals that could form the core of a PD monitoring system. Therefore, the dimensionality reduction technique should discover the best frequency bands to enhance the affinity between signals in the same cluster and the differences between signals in different clusters. This is done maximizing the minimum Mahalanobis distance between clusters using particle swarm optimization (PSO). The tool is tested with three sets of experimental signals to demonstrate its capabilities in separating noise and PDs with low signal-to-noise ratio and separating different types of partial discharges measured in the UHF and HF/VHF bands.

  12. [Application of low-intensity and ultrahigh frequency electromagnetic radiation in modern pediatric practice].

    PubMed

    Azov, N A; Azova, E A

    2009-01-01

    The use of an Amfit-0,2/10-01 apparatus generating low-intensity ultrahigh frequency (UHF) electromagnetic radiation improved efficiency of therapy of sick children. This treatment allowed to reduce the frequency of intake of anesthetics in the post-operative period, correct metabolic disorders in children with type 1 diabetes mellitus, reduce severity of diabetic nephropathy and polyneuropathy, prevent formation of fresh foci of lipoid necrobiosis. The results of the study indicate that the use of low-intensity UHF electromagnetic radiation may be recommended for more extensive introduction into practical clinical work of pediatric endocrinologists and surgeons.

  13. [The influence of ultrahigh-frequency electromagnetic radiation and low-intensity laser radiation on the body core temperature and basal metabolism in rats with systemic inflammation].

    PubMed

    Zhavoronok, I P; Molchanova, A Iu; Ulashik, V S

    2012-01-01

    The effects of ultrahigh-frequency electromagnetic radiation (UHF EMR) and low-intensity laser irradiation (LILI) on the body and skin temperature, oxygen consumption, production of carbon dioxide and heat release were investigated in the experiments on intact rats and during LPS-induced polyphasic fever. It was found that UHF EMR with the wavelength of 4,9 mm, 5,6 mm or 7,1 mm and LILI with the wavelength of 0.47 microm, 0.67 microm and 0.87 microm caused modulation of basal metabolism and thermal response to systemically administered lipopolysaccharide (LPS). These findings suggest that the most pronounced antipyretic and hypometabolic effects were observed after the treatment with UHF EMR at 7,1 mm and LILI at 470 microm.

  14. Driving of the solar p-modes by radiative pumping in the upper photosphere

    NASA Technical Reports Server (NTRS)

    Fontenla, Juan M.; Emslie, A. G.; Moore, Ronald L.

    1989-01-01

    It is shown that one viable driver of the solar p-modes is radiative pumping in the upper photosphere where the opacity is dominated by the negative hydrogen ion. This new option is suggested by the similar magnitudes of two energy flows that have been evaluated by independent empirical methods. The similarity indicates that the p-modes are radiatively pumped in the upper photosphere and therefore provide the required nonradiative cooling.

  15. Detection of Partial Discharge Sources Using UHF Sensors and Blind Signal Separation

    PubMed Central

    Boya, Carlos; Parrado-Hernández, Emilio

    2017-01-01

    The measurement of the emitted electromagnetic energy in the UHF region of the spectrum allows the detection of partial discharges and, thus, the on-line monitoring of the condition of the insulation of electrical equipment. Unfortunately, determining the affected asset is difficult when there are several simultaneous insulation defects. This paper proposes the use of an independent component analysis (ICA) algorithm to separate the signals coming from different partial discharge (PD) sources. The performance of the algorithm has been tested using UHF signals generated by test objects. The results are validated by two automatic classification techniques: support vector machines and similarity with class mean. Both methods corroborate the suitability of the algorithm to separate the signals emitted by each PD source even when they are generated by the same type of insulation defect. PMID:29140267

  16. UHF and VHF radar observations of thunderstorms

    NASA Technical Reports Server (NTRS)

    Holden, D. N.; Ulbrich, C. W.; Larsen, M. F.; Rottger, J.; Ierkic, H. M.; Swartz, W.

    1986-01-01

    A study of thunderstorms was made in the Summer of 1985 with the 430-MHz and 50-MHz radars at the Arecibo Observatory in Puerto Rico. Both radars use the 300-meter dish, which gives a beam width of less than 2 degrees even at these long wavelengths. Though the radars are steerable, only vertical beams were used in this experiment. The height resolution was 300 and 150 meters for the UHF and VHF, respectively. Lightning echoes, as well as returns from precipitation and clear-air turbulence were detected with both wavelengths. Large increases in the returned power were found to be coincident with increasing downward vertical velocities at UHF, whereas at VHF the total power returned was relatively constant during the life of a storm. This was attributed to the fact that the VHF is more sensitive to scattering from the turbulence-induced inhomogeneities in the refractive index and less sensitive to scatter from precipitation particles. On occasion, the shape of the Doppler spectra was observed to change with the occurrence of a lightning discharge in the pulse volume. Though the total power and mean reflectivity weighted Doppler velocity changed little during these events, the power is Doppler frequency bins near that corresponding to the updraft did increase substantially within a fraction of a second after a discharge was detected in the beam. This suggests some interaction between precipitation and lightning.

  17. Study on Miniaturized UHF Antennas for Partial Discharge Detection in High-Voltage Electrical Equipment.

    PubMed

    Liu, Jingcun; Zhang, Guogang; Dong, Jinlong; Wang, Jianhua

    2015-11-20

    Detecting partial discharge (PD) is an effective way to evaluate the condition of high-voltage electrical equipment insulation. The UHF detection method has attracted attention due to its high sensitivity, strong interference resistance, and ability to locate PDs. In this paper, a miniaturized equiangular spiral antenna (ESA) for UHF detection that uses a printed circuit board is proposed. I-shaped, L-shaped, and C-shaped microstrip baluns were designed to match the impedance between the ESA and coaxial cable and were verified by a vector network analyzer. For comparison, three other types of UHF antenna were also designed: A microstrip patch antenna, a microstrip slot antenna, and a printed dipole antenna. Their antenna factors were calibrated in a uniform electric field of different frequencies modulated in a gigahertz transverse electromagnetic cell. We performed comparison experiments on PD signal detection using an artificial defect model based on the international IEC 60270 standard. We also conducted time-delay test experiments on the ESA sensor to locate a PD source. It was found that the proposed ESA sensor meets PD signal detection requirements. The sensor's compact size makes it suitable for internal installation in high-voltage electrical equipment.

  18. Study on Miniaturized UHF Antennas for Partial Discharge Detection in High-Voltage Electrical Equipment

    PubMed Central

    Liu, Jingcun; Zhang, Guogang; Dong, Jinlong; Wang, Jianhua

    2015-01-01

    Detecting partial discharge (PD) is an effective way to evaluate the condition of high-voltage electrical equipment insulation. The UHF detection method has attracted attention due to its high sensitivity, strong interference resistance, and ability to locate PDs. In this paper, a miniaturized equiangular spiral antenna (ESA) for UHF detection that uses a printed circuit board is proposed. I-shaped, L-shaped, and C-shaped microstrip baluns were designed to match the impedance between the ESA and coaxial cable and were verified by a vector network analyzer. For comparison, three other types of UHF antenna were also designed: A microstrip patch antenna, a microstrip slot antenna, and a printed dipole antenna. Their antenna factors were calibrated in a uniform electric field of different frequencies modulated in a gigahertz transverse electromagnetic cell. We performed comparison experiments on PD signal detection using an artificial defect model based on the international IEC 60270 standard. We also conducted time-delay test experiments on the ESA sensor to locate a PD source. It was found that the proposed ESA sensor meets PD signal detection requirements. The sensor’s compact size makes it suitable for internal installation in high-voltage electrical equipment. PMID:26610506

  19. Design of a New Built-in UHF Multi-Frequency Antenna Sensor for Partial Discharge Detection in High-Voltage Switchgears.

    PubMed

    Zhang, Xiaoxing; Cheng, Zheng; Gui, Yingang

    2016-07-26

    In this study a new built-in ultrahigh frequency (UHF) antenna sensor was designed and applied in a high-voltage switchgear for partial discharge (PD) detection. The casing of the switchgear was initially used as the ground plane of the antenna sensor, which integrated the sensor into the high-voltage switchgear. The Koch snowflake patch was adopted as the radiation patch of the antenna to overcome the disadvantages of common microstrip antennas, and the feed position and the dielectric layer thickness were simulated in detail. Simulation results show that the antenna sensor possessed four resonant points with good impedance matching from 300 MHz to 1000 MHz, and it also presented good multi-frequency performance in the entire working frequency band. PD detection experiments were conducted in the high-voltage switchgear, and the fabricated antenna sensor was effectively built into the high-voltage switchgear. In order to reflect the advantages of the built-in antenna sensor, another external UHF antenna sensor was used as a comparison to simultaneously detect PD. Experimental results demonstrated that the built-in antenna sensor possessed high detection sensitivity and strong anti-interference capacity, which ensured the practicability of the design. In addition, it had more high-voltage switchgear PD detection advantages than the external sensor.

  20. Design of a New Built-in UHF Multi-Frequency Antenna Sensor for Partial Discharge Detection in High-Voltage Switchgears

    PubMed Central

    Zhang, Xiaoxing; Cheng, Zheng; Gui, Yingang

    2016-01-01

    In this study a new built-in ultrahigh frequency (UHF) antenna sensor was designed and applied in a high-voltage switchgear for partial discharge (PD) detection. The casing of the switchgear was initially used as the ground plane of the antenna sensor, which integrated the sensor into the high-voltage switchgear. The Koch snowflake patch was adopted as the radiation patch of the antenna to overcome the disadvantages of common microstrip antennas, and the feed position and the dielectric layer thickness were simulated in detail. Simulation results show that the antenna sensor possessed four resonant points with good impedance matching from 300 MHz to 1000 MHz, and it also presented good multi-frequency performance in the entire working frequency band. PD detection experiments were conducted in the high-voltage switchgear, and the fabricated antenna sensor was effectively built into the high-voltage switchgear. In order to reflect the advantages of the built-in antenna sensor, another external UHF antenna sensor was used as a comparison to simultaneously detect PD. Experimental results demonstrated that the built-in antenna sensor possessed high detection sensitivity and strong anti-interference capacity, which ensured the practicability of the design. In addition, it had more high-voltage switchgear PD detection advantages than the external sensor. PMID:27472331

  1. Feed system design and experimental results in the uhf model study for the proposed Urbana phased array

    NASA Technical Reports Server (NTRS)

    Loane, J. T.; Bowhill, S. A.; Mayes, P. E.

    1982-01-01

    The effects of atmospheric turbulence and the basis for the coherent scatter radar techniques are discussed. The reasons are given for upgrading the Radar system to a larger steerable array. Phase array theory pertinent to the system design is reviewed, along with approximations for maximum directive gain and blind angles due to mutual coupling. The methods and construction techniques employed in the UHF model study are explained. The antenna range is described, with a block diagram for the mode of operation used.

  2. New upper limits on the local metagalactic ionizing radiation density

    NASA Technical Reports Server (NTRS)

    Vogel, Stuart N.; Weymann, Ray; Rauch, Michael; Hamilton, Tom

    1995-01-01

    We have obtained H-alpha observations with the Maryland-Caltech Fabry-Perot Spectrometer attached to the Cassegrain focus of the 1.5 m telescope at Palomer Observatory in order to set limits on the number of ionizing photons from the local metagalactic radiation field. We have observed the SW component of the Haynes-Giovanelli cloud H I 1225+01, an intergalactic cloud which should be optimum for measuring the metagalactic flux because it is nearly opaque to ionizing photons, it does not appear to be significantly shielded from the metagalactic radiation field, and the limits on embedded or nearby ionizing sources are unusually low. For the area of the cloud with an H I column density greater than 10(exp 19)/sq cm we set a 2 sigma limit of 1.1 x 10(exp -19) ergs/sq cm/s/sq arcsec (20 mR) for the surface brightness of diffuse H-alpha. This implies a 2 sigma upper limit on the incident one-sided ionizing flux of Phi(sub ex) is less than 3 x 10(exp 4)/sq cm/s. For a radiation field of the form J(sub nu) is approximately nu(exp -1.4), this yields a firm 2 sigma upper limit on the local metagalactic photoionization rate of Gamma is less than 2 x 10(exp -13)/s, and an upper limit for the radiation field J(sub nu) at the Lyman limit of J(sub nu0) is less than 8 x 10(exp -23) ergs/sq cm/Hz/sr. We discuss previous efforts to constrain the metagalactic ionizing flux using H-alpha surface brightness observations and also other methods, and conclude that our result places the firmest upper limit on this flux. We also observed the 7 min diameter region centered on 3C 273 in which H-alpha emission at a velocity of approximately 1700 km/s was initially reported by Williams and Schommer. In agreement with T. B. Williams (private communication) we find the initial detection was spurious. We obtain a 2 sigma upper limit of 1.8 x 10(exp -19) ergs/sq cm/s/sq arcsec (32 mR) for the mean surface brightness of diffuse H-alpha, about a factor of 6 below the published value.

  3. Calibration of ultra-high frequency (UHF) partial discharge sensors using FDTD method

    NASA Astrophysics Data System (ADS)

    Ishak, Asnor Mazuan; Ishak, Mohd Taufiq

    2018-02-01

    Ultra-high frequency (UHF) partial discharge sensors are widely used for conditioning monitoring and defect location in insulation system of high voltage equipment. Designing sensors for specific applications often requires an iterative process of manufacturing, testing and mechanical modifications. This paper demonstrates the use of finite-difference time-domain (FDTD) technique as a tool to predict the frequency response of UHF PD sensors. Using this approach, the design process can be simplified and parametric studies can be conducted in order to assess the influence of component dimensions and material properties on the sensor response. The modelling approach is validated using gigahertz transverse electromagnetic (GTEM) calibration system. The use of a transient excitation source is particularly suitable for modeling using FDTD, which is able to simulate the step response output voltage of the sensor from which the frequency response is obtained using the same post-processing applied to the physical measurement.

  4. Upper limit on the inner radiation belt MeV electron intensity.

    PubMed

    Li, X; Selesnick, R S; Baker, D N; Jaynes, A N; Kanekal, S G; Schiller, Q; Blum, L; Fennell, J; Blake, J B

    2015-02-01

    No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (tens of MeV to GeV). The inner belt proton flux level, however, is relatively stable; thus, for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment on board Colorado Student Space Weather Experiment CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because their flux level is orders of magnitude higher than the background, while higher-energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about 1 order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt. Quantified upper limit of MeV electrons in the inner beltActual MeV electron intensity likely much lower than the upper limitMore detailed understanding of relativistic electrons in the magnetosphere.

  5. Upper limit on the inner radiation belt MeV electron intensity

    PubMed Central

    Li, X; Selesnick, RS; Baker, DN; Jaynes, AN; Kanekal, SG; Schiller, Q; Blum, L; Fennell, J; Blake, JB

    2015-01-01

    No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (tens of MeV to GeV). The inner belt proton flux level, however, is relatively stable; thus, for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment on board Colorado Student Space Weather Experiment CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because their flux level is orders of magnitude higher than the background, while higher-energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about 1 order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt. Key Points Quantified upper limit of MeV electrons in the inner belt Actual MeV electron intensity likely much lower than the upper limit More detailed understanding of relativistic electrons in the magnetosphere PMID:26167446

  6. Lower-upper-threshold correlation for underwater range-gated imaging self-adaptive enhancement.

    PubMed

    Sun, Liang; Wang, Xinwei; Liu, Xiaoquan; Ren, Pengdao; Lei, Pingshun; He, Jun; Fan, Songtao; Zhou, Yan; Liu, Yuliang

    2016-10-10

    In underwater range-gated imaging (URGI), enhancement of low-brightness and low-contrast images is critical for human observation. Traditional histogram equalizations over-enhance images, with the result of details being lost. To compress over-enhancement, a lower-upper-threshold correlation method is proposed for underwater range-gated imaging self-adaptive enhancement based on double-plateau histogram equalization. The lower threshold determines image details and compresses over-enhancement. It is correlated with the upper threshold. First, the upper threshold is updated by searching for the local maximum in real time, and then the lower threshold is calculated by the upper threshold and the number of nonzero units selected from a filtered histogram. With this method, the backgrounds of underwater images are constrained with enhanced details. Finally, the proof experiments are performed. Peak signal-to-noise-ratio, variance, contrast, and human visual properties are used to evaluate the objective quality of the global and regions of interest images. The evaluation results demonstrate that the proposed method adaptively selects the proper upper and lower thresholds under different conditions. The proposed method contributes to URGI with effective image enhancement for human eyes.

  7. HF produced ionospheric electron density irregularities diagnosed by UHF radio star scintillations

    NASA Technical Reports Server (NTRS)

    Frey, A.; Gordon, W. E.

    1982-01-01

    Three observations of radio star intensity fluctuations at UHF are reported for HF ionospheric modification experiments carried out at the Arecibo Observatory. Two observations at 430 MHz and one at 1400 MHz suggest that the the thin phase screen theory is a good approximation to the observed power spectra. It is noted, however, that the theory has to be extended to include antenna filtering. This type of filtering is important for UHF radio star scintillations since the antenna usually has a narrow beamwidth. HF power densities of less than 37 microwatts/sq m incident on the ionosphere give rise to electron density irregularities larger than 13% of the ambient density (at 260 km) having scale sizes of approximately 510 m perpendicular to the geomagnetic field. The irregularities are found to form within 20-25 s after the HF power is turned on. The drift velocities of the irregularities can be estimated from the observed power spectra.

  8. View of the MPLM, Destiny and the UHF antenna taken during the second EVA of STS-100

    NASA Image and Video Library

    2001-04-24

    STS100-398-017 (19 April-1 May 2001) --- Backdropped by the Earth with partial cloud cover, the Raffaello Multi-Purpose Logistics Module (MPLM) and the Ultra High Frequency (UHF) antenna are photographed by a crewmember during this STS-100 mission to the International Space Station (ISS). The Raffaello, which was built by the Italian Space Agency (ASI), is the second of three such pressurized modules that will serve as ISS "moving vans", carrying laboratory racks filled with equipment, experiments and supplies to and from the station aboard the space shuttle. The UHF antenna was attached to the station's U.S. Laboratory Destiny by space walking astronauts Chris A. Hadfield and Scott E. Parazynski during the mission's first spacewalk. The antenna, on a 1.2-meter (4-foot) boom, is part of the UHF Communications Subsystem of the station. It will interact with systems already aboard the station, including the Space-to-Space Station Radio transceivers. A second antenna will be delivered on the STS-115/11A next year.

  9. Demonstration Of Ultra HI-FI (UHF) Methods

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.

    2004-01-01

    Computational aero-acoustics (CAA) requires efficient, high-resolution simulation tools. Most current techniques utilize finite-difference approaches because high order accuracy is considered too difficult or expensive to achieve with finite volume or finite element methods. However, a novel finite volume approach (Ultra HI-FI or UHF) which utilizes Hermite fluxes is presented which can achieve both arbitrary accuracy and fidelity in space and time. The technique can be applied to unstructured grids with some loss of fidelity or with multi-block structured grids for maximum efficiency and resolution. In either paradigm, it is possible to resolve ultra-short waves (less than 2 PPW). This is demonstrated here by solving the 4th CAA workshop Category 1 Problem 1.

  10. Upper Cretaceous and lower Eocene conglomerates of Western Transverse Ranges: evidence for tectonic rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, W.E.; Krause, R.G.F.

    1989-04-01

    Stratigraphic and paleomagnetic studies have suggested that the western Transverse Ranges (WTR) microplate is allochthonous, and may have experienced translational and rotational motions. Present paleocurrent directions from the Upper Cretaceous Jalama Formation of the Santa Ynez Mountains are north-directed; these forearc sediments (Great Valley sequence) contain magmatic arc-derived conglomerate clasts from the Peninsular Ranges in southern California. Paleocurrents in the lower Eocene Juncal and Cozy Dell Formations are south-directed. This juxtaposition is best explained by 90/degrees/ or more of clockwise rotation of the WTR microplate, so that Upper Cretaceous forearc sediments sourced from the Peninsular Ranges magmatic arc were depositedmore » by west-directed currents. Eocene sediments were derived from an uplifted portion of the western basin margin and deposited by east-directed currents. Franciscan olistoliths in the Upper Cretaceous sediments indicate deposition adjacent to an accretionary wedge; conglomeratic clasts recycled from the Upper Cretaceous sequence, and radiolarian cherts and ophiolitic boulders in the Eocene strata indicate derivation from an outer accretionary ridge.« less

  11. [The ultrastructure of Sertoli cells and spermatogonia in the rats exposed to radiation under conditions of therapeutic and prophylactic application of low-intensity electromagnetic emission].

    PubMed

    Korolev, Y N; Bobrovnitskii, I P; Geniatulina, M S; Nikulina, L A; Mikhailik, L V

    2018-04-09

    it has been demonstrated in various experimental studies that radiation exposure produces a negative impact on the processes of spermatogenesis associated with the disturbances of the microcirculation processes in the testes and the development of cellular and intracellular disintegration expressed as destructive changes in the cells leading to their death. The objective of the present study was to detect the ultrastructural abnormalities in the cells of Sertoli and spermatogonia under conditions of their exposure to radiation and to identify the peculiarities of their regeneration under the influence of the therapeutic and prophylactic application of low-intensity ultra-high frequency (UHF) electromagnetic radiation (EMR) and low-intensity low-frequency magnetic field (MF). The experiments were carried out on 28 non-pedigree mature male rats with the body weight 180-220 g that were divided into four groups. The first study group was comprised of the animals exposed to radiation followed by the application of low-intensity ultra-high frequency UHF electromagnetic radiation EMR. The rats in the second study group experienced effects of radiation and low-intensity low-frequency MF. The animals of the third (control) group were exposed to radiation alone, and those comprising the fourth group 1 (only radiation exposure) were considered to be intact. The studies with the use of electron microscopy showed that the therapeutic and prophylactic application of low-intensity ultra-high frequency (UHF) electromagnetic radiation and low-intensity low-frequency magnetic field caused the decrease in the number and the severity of post-radiation defects in the treated cells together with the increase of the number and size of mitochondria as well as hyperplasia of ribosomes; moreover, it promoted cellular and intracellular regeneration. UHF electromagnetic radiation had a more pronounced stimulating effect on the regeneration processes as compared with low-frequency MF

  12. Upper limit on the inner radiation belt MeV electron intensity

    NASA Astrophysics Data System (ADS)

    Li, X.; Selesnick, R. S.; Baker, D. N.; Jaynes, A. N.; Kanekal, S. G.; Schiller, Q.; Blum, L.; Fennell, J.; Blake, J. B.

    2015-02-01

    No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (tens of MeV to GeV). The inner belt proton flux level, however, is relatively stable; thus, for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment on board Colorado Student Space Weather Experiment CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because their flux level is orders of magnitude higher than the background, while higher-energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about 1 order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt.

  13. Combination of Anti-IGF-1R Antibody A12 and Ionizing Radiation in Upper Respiratory Tract Cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riesterer, Oliver; Yang Qiuan; Raju, Uma

    2011-03-15

    Purpose: The IGF1/IGF-1R signaling pathway has emerged as a potential determinant of radiation resistance in human cancer cell lines. Therefore we investigated the potency of monoclonal anti-IGF-1R antibody, A12, to enhance radiation response in upper respiratory tract cancers. Methods and Materials: Cell lines were assessed for IGF-1R expression and IGF1-dependent response to A12 or radiation using viability and clonogenic cancer cell survival assays. In vivo response of tumor xenografts to 10 or 20 Gy and A12 (0.25-2 mg x 3) was assessed using growth delay assays. Combined treatment effects were also analyzed by immunohistochemical assays for tumor cell proliferation, apoptosis,more » necrosis, and vascular endothelial growth factor expression at Days 1 and 6 after start of treatment. Results: A12 enhanced the radiosensitivity of HN5 and FaDu head-and-neck carcinomas in vitro (p < 0.05) and amplified the radioresponse of FaDu xenografts in a dose-dependent manner, with enhancement factors ranging from 1.2 to 1.8 (p < 0.01). Immunohistochemical analysis of FaDu xenografts demonstrated that A12 inhibited tumor cell proliferation (p < 0.05) and vascular endothelial growth factor expression. When A12 was combined with radiation, this resulted in apoptosis induction that persisted until 6 days from the start of treatment and in increased necrosis at Day 1 (p < 0.01, respectively). Combined treatment with A12 and radiation resulted in additive or subadditive growth delay in H460 or A549 xenografts, respectively. Conclusions: The results of this study strengthen the evidence for investigating how anti-IGF-1R strategies can be integrated into radiation and radiation-cetuximab regimen in the treatment of cancer of the upper aerodigestive tract cancers.« less

  14. EFFECT OF VISIBLE RANGE ELECTROMAGNETIC RADIATIONS ON ESCHERICHIA COLI.

    PubMed

    Azeemi, Samina T Yousuf; Shaukat, Saleem Farooq; Azeemi, Khawaja Shamsuddin; Khan, Idrees; Mahmood, Khalid; Naz, Farah

    2017-01-01

    Escherichia coli is the agent responsible for a range of clinical diseases. With emerging antimicrobial resistance, other treatment options including solar/photo-therapy are becoming increasingly common. Visible Range Radiation Therapy/Colour Therapy is an emerging technique in the field of energy/vibrational medicine that uses visible spectrum of Electromagnetic Radiations to cure different diseases. In this study, our goal was to understand the effect of Visible Range Electromagnetic Radiations on E. coli (in vitro) and therefore find out the most appropriate visible range radiation for the treatment of diseases caused by E. coli. A total of 6 non-repetitive E. coli isolates were obtained from urine samples obtained from hospitalized patients with UTI. Single colony of E. coli was inoculated in 3 ml of Lysogeny Broth (LB) and 40 μl of this E. coli suspension was poured into each of the plastic tubes which were then irradiated with six different wavelengths in the visible region (Table. 1) after 18 hours with one acting as a control. The Optical Densities of these irradiated samples were then measured. Furthermore, scanning electron microscopy (TEFCAN ZEGA3) was carried out. The analysis of the microscopic and SEM images of irradiated E. coli samples with six different visible range radiations is representative of The fact that E. coli responded differently to every applied radiation in the visible region and the most profound inhibitory effects were that of 538nm Visible Range Radiation (Green) which proved to be bactericidal and 590nm Visible Range Radiation (yellow) which was bacteriostatic. The enhanced growth of E. coli with varying degrees was clearly observed in 610nm (orange), 644nm (red), 464nm (Purple) and 453nm (blue). It can be concluded that 538nm (Green) and 590nm (Yellow) can effectively be used for treating E. coli borne diseases.

  15. EFFECT OF VISIBLE RANGE ELECTROMAGNETIC RADIATIONS ON ESCHERICHIA COLI

    PubMed Central

    Azeemi, Samina T. Yousuf; Shaukat, Saleem Farooq; Azeemi, Khawaja Shamsuddin; Khan, Idrees; Mahmood, Khalid; Naz, Farah

    2017-01-01

    Background: Escherichia coli is the agent responsible for a range of clinical diseases. With emerging antimicrobial resistance, other treatment options including solar/photo-therapy are becoming increasingly common. Visible Range Radiation Therapy/Colour Therapy is an emerging technique in the field of energy/vibrational medicine that uses visible spectrum of Electromagnetic Radiations to cure different diseases. In this study, our goal was to understand the effect of Visible Range Electromagnetic Radiations on E. coli (in vitro) and therefore find out the most appropriate visible range radiation for the treatment of diseases caused by E. coli. Materials and Methods: A total of 6 non-repetitive E. coli isolates were obtained from urine samples obtained from hospitalized patients with UTI. Single colony of E. coli was inoculated in 3 ml of Lysogeny Broth (LB) and 40 μl of this E. coli suspension was poured into each of the plastic tubes which were then irradiated with six different wavelengths in the visible region (Table. 1) after 18 hours with one acting as a control. The Optical Densities of these irradiated samples were then measured. Furthermore, scanning electron microscopy (TEFCAN ZEGA3) was carried out. Results: The analysis of the microscopic and SEM images of irradiated E. coli samples with six different visible range radiations is representative of The fact that E. coli responded differently to every applied radiation in the visible region and the most profound inhibitory effects were that of 538nm Visible Range Radiation (Green) which proved to be bactericidal and 590nm Visible Range Radiation (yellow) which was bacteriostatic. The enhanced growth of E. coli with varying degrees was clearly observed in 610nm (orange), 644nm (red), 464nm (Purple) and 453nm (blue). Conclusion: It can be concluded that 538nm (Green) and 590nm (Yellow) can effectively be used for treating E. coli borne diseases. PMID:28331912

  16. Generation of ordinary mode electromagnetic radiation near the upper hybrid frequency in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; Okuda, H.

    1984-01-01

    It is shown by means of plasma numerical simulations that long-wavelength ordinary mode electromagnetic radiation can be generated from short-wavelength electrostatic waves near the upper hybrid resonance frequency in an inhomogeneous plasma. A possible relation of this process to nonthermal continuum radiation in the magnetosphere is discussed.

  17. UHF front-end feeding RFID-based body sensor networks by exploiting the reader signal

    NASA Astrophysics Data System (ADS)

    Pasca, M.; Colella, R.; Catarinucci, L.; Tarricone, L.; D'Amico, S.; Baschirotto, A.

    2016-05-01

    This paper presents an integrated, high-sensitivity UHF radio frequency identification (RFID) power management circuit for body sensor network applications. The circuit consists of a two-stage RF-DC Dickson's rectifier followed by an integrated five-stage DC-DC Pelliconi's charge pump driven by an ultralow start-up voltage LC oscillator. The DC-DC charge pump interposed between the RF-DC rectifier and the output load provides the RF to load isolation avoiding losses due to the diodes reverse saturation current. The RF-DC rectifier has been realized on FR4 substrate, while the charge pump and the oscillator have been realized in 180 nm complementary metal oxide semiconductor (CMOS) technology. Outdoor measurements demonstrate the ability of the power management circuit to provide 400 mV output voltage at 14 m distance from the UHF reader, in correspondence of -25 dBm input signal power. As demonstrated in the literature, such output voltage level is suitable to supply body sensor network nodes.

  18. Improved Absolute Radiometric Calibration of a UHF Airborne Radar

    NASA Technical Reports Server (NTRS)

    Chapin, Elaine; Hawkins, Brian P.; Harcke, Leif; Hensley, Scott; Lou, Yunling; Michel, Thierry R.; Moreira, Laila; Muellerschoen, Ronald J.; Shimada, Joanne G.; Tham, Kean W.; hide

    2015-01-01

    The AirMOSS airborne SAR operates at UHF and produces fully polarimetric imagery. The AirMOSS radar data are used to produce Root Zone Soil Moisture (RZSM) depth profiles. The absolute radiometric accuracy of the imagery, ideally of better than 0.5 dB, is key to retrieving RZSM, especially in wet soils where the backscatter as a function of soil moisture function tends to flatten out. In this paper we assess the absolute radiometric uncertainty in previously delivered data, describe a method to utilize Built In Test (BIT) data to improve the radiometric calibration, and evaluate the improvement from applying the method.

  19. Heater-induced altitude descent of the EISCAT UHF ion line enhancements: Observations and modelling

    NASA Astrophysics Data System (ADS)

    Ashrafi, M.; Kosch, M. J.; Honary, F.

    2006-01-01

    On 12 November 2001, artificial optical annuli were produced using the EISCAT high-frequency (HF) ionospheric heating facility. This unusual phenomenon was induced using O-mode transmissions at 5.423 MHz with 550 MW effective isotropic radiated power and the pump beam dipped 9° south of the zenith. The pump frequency corresponds to the fourth electron gyroharmonic frequency at 215 km altitude. The EISCAT UHF radar observed a persistent pump-induced enhancement in the ion line backscatter power near the HF reflection altitude. The optical and radar signatures of HF pumping started at ˜230 km and descended to ˜220 km within ˜60 s. This effect has been modelled using the solution to differential equations describing pump-induced electron temperature and density perturbations. The decrease in altitude of the ion line by ˜10 km and changes in electron density have been modelled. The results show that a maximum electron temperature enhancement of up to ˜5700 K can be achieved on average, which is not sufficient to explain the observed optical emissions.

  20. UHF Microstrip Antenna Array for Synthetic- Aperture Radar

    NASA Technical Reports Server (NTRS)

    Thomas, Robert F.; Huang, John

    2003-01-01

    An ultra-high-frequency microstrippatch antenna has been built for use in airborne synthetic-aperture radar (SAR). The antenna design satisfies requirements specific to the GeoSAR program, which is dedicated to the development of a terrain-mapping SAR system that can provide information on geology, seismicity, vegetation, and other terrain-related topics. One of the requirements is for ultra-wide-band performance: the antenna must be capable of operating with dual linear polarization in the frequency range of 350 plus or minus 80 MHz, with a peak gain of 10 dB at the middle frequency of 350 MHz and a gain of at least 8 dB at the upper and lower ends (270 and 430 MHz) of the band. Another requirement is compactness: the antenna must fit in the wingtip pod of a Gulfstream II airplane. The antenna includes a linear array of microstrip-patch radiating elements supported over square cavities. Each patch is square (except for small corner cuts) and has a small square hole at its center.

  1. CPW-fed Circularly Polarized Slot Antenna with Small Gap and Stick-shaped Shorted Strip for UHF FRID Readers

    NASA Astrophysics Data System (ADS)

    Pan, Chien-Yuan; Su, Chum-Chieh; Yang, Wei-Lin

    2018-04-01

    A new circularly polarized (CP) slot antenna with a small gap and a stick-shaped shorted strip is presented. The proposed antenna has a sufficient bandwidth for ultrahigh frequency (UHF) radio-frequency identification (RFID) reader applications. The antenna structure consists of a rectangular slot with a small gap, a stick-shaped shorted strip and a 50 Ω coplanar waveguide (CPW) feedline with an asymmetrical ground plane. By using the stick -shaped shorted strip to disturb magnetic current distribution on the slot, the CP radiation can be generated. The measured results demonstrate that the proposed antenna can reach a 10 dB return loss impedance bandwidth of 14.1 % (894-1030 MHz) and a 3 dB axial ratio (AR) bandwidth of 6.4 % (910-970 MHz). The whole antenna size is 80 × 80 × 1.6 mm3.

  2. Long-range correlation in cosmic microwave background radiation.

    PubMed

    Movahed, M Sadegh; Ghasemi, F; Rahvar, Sohrab; Tabar, M Reza Rahimi

    2011-08-01

    We investigate the statistical anisotropy and gaussianity of temperature fluctuations of Cosmic Microwave Background (CMB) radiation data from the Wilkinson Microwave Anisotropy Probe survey, using the Multifractal Detrended Fluctuation Analysis, Rescaled Range, and Scaled Windowed Variance methods. Multifractal Detrended Fluctuation Analysis shows that CMB fluctuations has a long-range correlation function with a multifractal behavior. By comparing the shuffled and surrogate series of CMB data, we conclude that the multifractality nature of the temperature fluctuation of CMB radiation is mainly due to the long-range correlations, and the map is consistent with a gaussian distribution.

  3. Multiport Circular Polarized RFID-Tag Antenna for UHF Sensor Applications.

    PubMed

    Zaid, Jamal; Abdulhadi, Abdulhadi; Kesavan, Arun; Belaizi, Yassin; Denidni, Tayeb A

    2017-07-05

    A circular polarized patch antenna for UHF RFID tag-based sensor applications is presented, with the circular polarization (CP) generated by a new antenna shape, an asymmetric stars shaped slotted microstrip patch antenna (CP-ASSSMP). Four stars etched on the patch allow the antenna's size to be reduced by close to 20%. The proposed antenna is matched with two RFID chips via inductive-loop matching. The first chip is connected to a resistive sensor and acts as a sensor node, and the second is used as a reference node. The proposed antenna is used for two targets, serving as both reference and sensor simultaneously, thereby eliminating the need for a second antenna. Its reader can read the RFID chips at any orientation of the tag due to the CP. The measured reading range is about 25 m with mismatch polarization. The operating frequency band is 902-929 MHz for the two ports, which is covered by the US RFID band, and the axial-ratio bandwidth is about 7 MHz. In addition, the reader can also detect temperature, based on the minimum difference in the power required by the reference and sensor.

  4. Multiport Circular Polarized RFID-Tag Antenna for UHF Sensor Applications

    PubMed Central

    Zaid, Jamal; Abdulhadi, Abdulhadi; Kesavan, Arun; Belaizi, Yassin; Denidni, Tayeb A.

    2017-01-01

    A circular polarized patch antenna for UHF RFID tag-based sensor applications is presented, with the circular polarization (CP) generated by a new antenna shape, an asymmetric stars shaped slotted microstrip patch antenna (CP-ASSSMP). Four stars etched on the patch allow the antenna’s size to be reduced by close to 20%. The proposed antenna is matched with two RFID chips via inductive-loop matching. The first chip is connected to a resistive sensor and acts as a sensor node, and the second is used as a reference node. The proposed antenna is used for two targets, serving as both reference and sensor simultaneously, thereby eliminating the need for a second antenna. Its reader can read the RFID chips at any orientation of the tag due to the CP. The measured reading range is about 25 m with mismatch polarization. The operating frequency band is 902–929 MHz for the two ports, which is covered by the US RFID band, and the axial-ratio bandwidth is about 7 MHz. In addition, the reader can also detect temperature, based on the minimum difference in the power required by the reference and sensor. PMID:28678178

  5. The Effects of Plasma Shield on the Radar Cross Section of a Generic Missile in UHF Band

    NASA Astrophysics Data System (ADS)

    Chung, Shen

    2011-10-01

    RF Stealth is the dominant technology in today's military aircraft, and most is achieved by shape design with a few reductions achieved by RAM, but most of these effects are only valid in X band. With the popularity of UHF radar again rising, the possibility of detecting a stealth object has increased due to resonance effect, and this is difficult to decrease with previous means due to the long wavelength. A plasma shield generated in front of an object may be suitable to alter the RCS in specific band without physically changing its shape. We examine the RCS of a generic missile in UHF band, and compared it with one with a cone-shape plasma generated in front of the missile. We find the plasma effectively changes the RCS of the missile, though not necessarily smaller. The RCS of the missile with the plasma shield is now dominated by the plasma instead of the missile. The RCS is a function of the size, shape, and density of the plasma shield. For higher frequency signals like the X band radar, it can still penetrate the plasma, and sees the original RCS of the missile. Due to the relatively lower UHF frequency, the plasma density needed is lower than one in X band and thus more practical to achieve.

  6. Upper limits to the annihilation radiation luminosity of Centaurus A

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cline, T. L.; Paciesas, W. S.; Teegarden, B. J.; Tueller, J.; Dirouchoux, P.; Hameury, J. M.

    1983-01-01

    A high resolution observation of the active nucleus galaxy Centaurus A (NGC 5128) was made by the GSFC low energy gamma-ray spectrometer (LEGS) during a balloon flight on 1981 November 19. The measured spectrum between 70 and 500 keV is well represented by a power law of the form 1.05 x 10 (-4) (E/100 keV) (-1.59) ph/sq cm/s with no breaks or line features observed. The 98 percent confidence (2 sigma) flux upper limit for a narrow (3 keV) 511-keV positron annihilation line is 9.9 x 10 (-4) ph/sq cm/s. Using this upper limit, the ratio of the narrow-line annihilation radiation luminosity to the integral or = 511 keV luminosity is estimated to be 0.09 (2 sigma upper limit). This is compared with the measured value for our Galactic center in the Fall of 1979 of 0.10 to 0.13, indicating a difference in the emission regions in the nuclei of the two galaxies.

  7. Upper Limits to the Annihilation Radiation Luminosity of Centaurus a

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cline, T. L.; Paciesas, W. S.; Teegarden, B. J.; Tueller, J.; Dirouchoux, P.; Hameury, J. M.

    1983-01-01

    A high resolution observation of the active nucleus galaxy Centaurus A (NGC 5128) was made by the GSFC low energy gamma-ray spectrometer (LEGS) during a balloon flight on 1981 November 19. The measured spectrum between 70 and 500 keV is well represented by a power law of the form 1.05 x 10 (-4) (E/100 keV) (-1.59) ph/sq cm /s with no breaks or line features observed. The 98% confidence (2 sigma) flux upper limit for a narrow ( 3 keV) 511-keV positron annihilation line is 9.9 x 10 (-4) ph/ sq cm /s. Using this upper limit, the ratio of the narrow-line annihilation radiation luminosity to the integral or = 511 keV luminosity is estimated to be 0.09 (2 sigma upper limit). This is compared with the measured value for our galactic center in the Fall of 1979 of 0.10 to 0.13, indicating a difference in he emission regions in the nuclei of the two galaxies.

  8. An uncertainty budget for VHF and UHF reflectometers

    NASA Astrophysics Data System (ADS)

    Ridler, N. M.; Medley, C. J.

    1992-05-01

    Details of the derivation of an uncertainty budget for one port immittance or complex voltage reflection coefficient measuring instruments, operating at VHF and UHF in the 14 mm 50 ohm coaxial line size, are reported. The principles of the uncertainty budget are given along with experimental results obtained using six ports and a network analyzer as the measuring instruments. Details of the types of calibration for which the uncertainty budget is suitable are reported. Various aspects of the uncertainty budget are considered and general principles and treatment of the type A and type B contributions are discussed. Experimental results obtained using the uncertainty budget are given. A summary of uncertainties for the six ports and HP8753B automatic network analyzer are also given.

  9. Noise and range considerations for close-range radar sensing of life signs underwater.

    PubMed

    Hafner, Noah; Lubecke, Victor

    2011-01-01

    Close-range underwater sensing of motion-based life signs can be performed with low power Doppler radar and ultrasound techniques. Corresponding noise and range performance trade-offs are examined here, with regard to choice of frequency and technology. The frequency range examined includes part of the UHF and microwave spectrum. Underwater detection of motion by radar in freshwater and saltwater are demonstrated. Radar measurements exhibited reduced susceptibility to noise as compared to ultrasound. While higher frequency radar exhibited better signal to noise ratio, propagation was superior for lower frequencies. Radar detection of motion through saltwater was also demonstrated at restricted ranges (1-2 cm) with low power transmission (10 dBm). The results facilitate the establishment of guidelines for optimal choice in technology for the underwater measurement motion-based life signs, with respect to trade offs involving range and noise.

  10. A Novel Displacement and Tilt Detection Method Using Passive UHF RFID Technology.

    PubMed

    Lai, Xiaozheng; Cai, Zhirong; Xie, Zeming; Zhu, Hailong

    2018-05-21

    The displacement and tilt angle of an object are useful information for wireless monitoring applications. In this paper, a low-cost detection method based on passive radio frequency identification (RFID) technology is proposed. This method uses a standard ultrahigh-frequency (UHF) RFID reader to measure the phase variation of the tag response and detect the displacement and tilt angle of RFID tags attached to the targeted object. An accurate displacement result can be detected by the RFID system with a linearly polarized (LP) reader antenna. Based on the displacement results, an accurate tilt angle can also be detected by the RFID system with a circularly polarized (CP) reader antenna, which has been proved to have a linear relationship with the phase parameter of the tag’s backscattered wave. As far as accuracy is concerned, the mean absolute error (MAE) of displacement is less than 2 mm and the MAE of the tilt angle is less than 2.5° for an RFID system with 500 mm working range.

  11. 2-SR-based electrically small antenna for RFID applications

    NASA Astrophysics Data System (ADS)

    Paredes, Ferran; Zuffanelli, Simone; Aguilà, Pau; Zamora, Gerard; Martin, Ferran; Bonache, Jordi

    2016-04-01

    In this work, the 2-turn spiral resonator (2-SR) is proposed as an electrically small antenna for passive radio frequency identification (RFID) tags at the European ultra-high frequency (UHF) band. The radiation properties are studied in order to explore the viability of the 2-SR applied to tag antenna design. Based on analytical calculations, the radiation pattern is found to provide a cancelation of the radiation nulls. This results in a mitigation of the blind spots in the read range, which are present in typical UHF-RFID tags as an undesired feature. As a proof of concept, a passive tag of size 35 mm × 40 mm (λ 0/10 × λ 0/9) based on the 2-SR antenna is designed and fabricated. Good radiation efficiency (75 %) and a quasi-isotropic radiation pattern are obtained. The experimental tag read range for different directions is in good agreement with the simulation results. The measured read range exhibits maximum and minimum values of 6.7 and 3.5 m, respectively.

  12. Evaluation of thermal and non-thermal effects of UHF RFID exposure on biological drugs.

    PubMed

    Calcagnini, Giovanni; Censi, Federica; Maffia, Michele; Mainetti, Luca; Mattei, Eugenio; Patrono, Luigi; Urso, Emanuela

    2012-11-01

    The Radio Frequency Identification (RFID) technology promises to improve several processes in the healthcare scenario, especially those related to traceability of people and things. Unfortunately, there are still some barriers limiting the large-scale deployment of these innovative technologies in the healthcare field. Among these, the evaluation of potential thermal and non-thermal effects due to the exposure of biopharmaceutical products to electromagnetic fields is very challenging, but still slightly investigated. This paper aims to setup a controlled RF exposure environment, in order to reproduce a worst-case exposure of pharmaceutical products to the electromagnetic fields generated by the UHF RFID devices placed along the supply chain. Radiated powers several times higher than recommended by current normative limits were applied (10 W and 20 W). The electric field strength at the exposed sample location, used in tests, was as high as 100 V/m. Non-thermal effects were evaluated by chromatography techniques and in vitro assays. The results obtained for a particular case study, the ActrapidTM human insulin preparation, showed temperature increases lower than 0.5 °C and no significant changes in the structure and performance of the considered drug.

  13. Upper triassic continental margin strata of the central alaska range: Implications for paleogeographic reconstruction

    USGS Publications Warehouse

    Till, A.B.; Harris, A.G.; Wardlaw, B.R.; Mullen, M.

    2007-01-01

    Reexamination of existing conodont collections from the central Alaska Range indicates that Upper Triassic marine slope and basin rocks range in age from at least as old as the late Carnian to the early middle Norian. The conodont assemblages typical of these rocks are generally cosmopolitan and do not define a distinct paleogeographic faunal realm. One collection, however, containsEpigondolella multidentata sensu Orchard 1991c, which appears to be restricted to western North American autochthonous rocks. Although paleogeographic relations cannot be determined with specificity, the present distribution of biofaces within the Upper Triassic sequence could not have been the result of simple accordion-style collapse of the Late Triassic margin.

  14. Nuclear Weapons Effects Mitigation Techniques

    DTIC Science & Technology

    1982-06-01

    ELF ) into the ultra-high (UHF) frequeniese, with much of Its energy concentrated In frequenrv ranges (high frequency (IF) into UHF) employed by Army...tactical Communications equipment. It Is of concern because the damage and upset it causes can occur Rt distances from the burst far beyond where...radiation is scattered from all directions, most of’ it comes from direct line-of-sight to the fireball. Therefore, the flat earth cover of an underground

  15. A dual-mode secure UHF RFID tag with a crypto engine in 0.13-μm CMOS

    NASA Astrophysics Data System (ADS)

    Tao, Yang; Linghao, Zhu; Xi, Tan; Junyu, Wang; Lirong, Zheng; Hao, Min

    2016-07-01

    An ultra-high-frequency (UHF) radio frequency identification (RFID) secure tag chip with a non-crypto mode and a crypto mode is presented. During the supply chain management, the tag works in the non-crypto mode in which the on-chip crypto engine is not enabled and the tag chip has a sensitivity of -12.8 dBm for long range communication. At the point of sales (POS), the tag will be switched to the crypto mode in order to protect the privacy of customers. In the crypto mode, an advanced encryption standard (AES) crypto engine is enabled and the sensitivity of the tag chip is switched to +2 dBm for short range communication, which is a method of physical protection. The tag chip is implemented and verified in a standard 0.13-μm CMOS process. Project supported by the National Science & Technology Pillar Program of China (No. 2015BAK36B01).

  16. Signal distortion on VHF/UHF transionospheric paths: First results from the Wideband Ionospheric Distortion Experiment

    NASA Astrophysics Data System (ADS)

    Cannon, Paul S.; Groves, Keith; Fraser, David J.; Donnelly, William J.; Perrier, Kathleen

    2006-10-01

    To the best of our knowledge, we report the first determination of ionospheric distortion, comprising the simultaneous characterization of both multipath and Doppler, on wideband, transionospheric VHF (158 MHz) and UHF (422 MHz) signals. The measurements took place as part of the test phase of the United Kingdom-United States Wideband Ionospheric Distortion Experiment during the evening (˜1000 UT) of 18 January 2005. This characterization has been achieved using the ALTAIR radar at the Ronald Reagan Ballistic Missile Defense Test Site on Kwajalein Atoll (9.395°N, 167.469°E (12.87°N, 237.16°E corrected geomagnetic)) in the Pacific, in conjunction with a low Earth orbiting, constant radar cross-section, passive satellite (calibration sphere). During the period when the two-way S4 index was above ˜0.8 on both channels, the median coherency times were 43 and 96 ms at VHF and UHF, respectively (at 1.5σ). The corresponding median coherency bandwidths were 0.8 and 2.1 MHz.

  17. Radiation from lightning return strokes over a finitely conducting earth

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Gesell, L.; Kao, Michael

    1986-01-01

    The effects of the conductivity of the earth on radiation from lightning return strokes are examined theoretically using a piecewise linear transmission line model for the return stroke. First, calculations are made of the electric field radiated during the return stroke, and then this electric field is used to compute the response of conventional AM radio receivers and electric field change systems during the return stroke. The calculations apply to the entire transient waveform (they are not restricted to the initial portions of the return stroke) and yield fast field changes and RF radiation in agreement with measurements made during real lightning. This research was motivated by measurements indicating that a time delay exists between the time of arrival of the fast electric field change and the RF radiation from first return strokes. The time delay is on the order of 20 microsec for frequencies in the HF-UHF range for lightning in Florida. The time delay is obtained theoretically in this paper. It occurs when both the effects of attenuation due to conductivity of the earth, and the finite velocity of propagation of the current pulse up the return stroke channel, are taken into account in the model.

  18. Finite-size scaling above the upper critical dimension in Ising models with long-range interactions

    NASA Astrophysics Data System (ADS)

    Flores-Sola, Emilio J.; Berche, Bertrand; Kenna, Ralph; Weigel, Martin

    2015-01-01

    The correlation length plays a pivotal role in finite-size scaling and hyperscaling at continuous phase transitions. Below the upper critical dimension, where the correlation length is proportional to the system length, both finite-size scaling and hyperscaling take conventional forms. Above the upper critical dimension these forms break down and a new scaling scenario appears. Here we investigate this scaling behaviour by simulating one-dimensional Ising ferromagnets with long-range interactions. We show that the correlation length scales as a non-trivial power of the linear system size and investigate the scaling forms. For interactions of sufficiently long range, the disparity between the correlation length and the system length can be made arbitrarily large, while maintaining the new scaling scenarios. We also investigate the behavior of the correlation function above the upper critical dimension and the modifications imposed by the new scaling scenario onto the associated Fisher relation.

  19. Coplanar UHF RFID tag antenna with U-shaped inductively coupled feed for metallic applications

    PubMed Central

    Ismail, Alyani; Raja Abdullah, Raja Syamsul Azmir; Saeedi, Tale

    2017-01-01

    In this paper, we present a novel compact, coplanar, tag antenna design for metallic objects. Electrically small antenna has designed for a UHF RFID (860–960 MHz) based on a proximity-coupled feed through. Furthermore, two symmetrical Via-loaded coplanar grounds fed by a U-shaped inductively coupled feed through an embedded transmission line. This configuration results in an antenna with dimensions of 31 × 19.5 × 3.065 mm3 at 915 MHz, and the total gain for the antenna is 0.12 dBi. The Via-loaded coplanar and U-shaped inductively coupled feeds allow the antenna to provide flexible tuning in terms of antenna impedance. In addition, a figure of merit is applied for the proposed tag antenna, and the results are presented. The read range is measured to be 4.2 m, which is very close to simulated values. This antenna measurement shows very good agreement with simulations. PMID:28570706

  20. Coplanar UHF RFID tag antenna with U-shaped inductively coupled feed for metallic applications.

    PubMed

    Salman, Karrar Naji; Ismail, Alyani; Raja Abdullah, Raja Syamsul Azmir; Saeedi, Tale

    2017-01-01

    In this paper, we present a novel compact, coplanar, tag antenna design for metallic objects. Electrically small antenna has designed for a UHF RFID (860-960 MHz) based on a proximity-coupled feed through. Furthermore, two symmetrical Via-loaded coplanar grounds fed by a U-shaped inductively coupled feed through an embedded transmission line. This configuration results in an antenna with dimensions of 31 × 19.5 × 3.065 mm3 at 915 MHz, and the total gain for the antenna is 0.12 dBi. The Via-loaded coplanar and U-shaped inductively coupled feeds allow the antenna to provide flexible tuning in terms of antenna impedance. In addition, a figure of merit is applied for the proposed tag antenna, and the results are presented. The read range is measured to be 4.2 m, which is very close to simulated values. This antenna measurement shows very good agreement with simulations.

  1. Fiber-Optic Propagation Effects in Long-Haul HF/VHF/UHF Analog Photonic Links

    DTIC Science & Technology

    2014-04-17

    theoretical analysis of crosstalk in fiber optic wavelength division multiplexed systems is presented for the HF/VHF/UHF (1 MHz to 3 GHz) frequency...Street, Suite 1425 Arlington, VA 22203-1995 EW-271-003 6582 ONR Wavelength division multiplexing Crosstalk 05-03-2013 – 20-08-2014 TABLE OF CONTENTS...in optical fiber that can alter the phase relationship between signals in separate fibers or between signals that are multiplexed onto the same

  2. Microscale patterns of tree establishment near upper treeline, Snowy Range, Wyoming, USA

    Treesearch

    W. H. Moir; Shannon G. Rochelle; A. W. Schoettle

    1999-01-01

    We report tree seedling (mostly Picea engelmannii, some Abies lasiocarpa, very infrequent Pinus contorta) invasion into meadows at upper timberline in the Snowy Range, Wyoming, from 1994 to 1996. We used gradient analysis to relate this to environmental patterns, particularly plant community structure (as aggregates of plant life-forms) and persistence of snowpack in...

  3. Using UHF proximity loggers to quantify male-female interactions: a scoping study of estrous activity in cattle.

    PubMed

    O'Neill, C J; Bishop-Hurley, G J; Williams, P J; Reid, D J; Swain, D L

    2014-12-10

    Reproductive efficiency is an important determinant of profitable cattle breeding systems and the success of assisted reproductive techniques (ART) in wildlife conservation programs. Methods of estrous detection used in intensive beef and dairy cattle systems lack accuracy and remain the single biggest issue for improvement of reproductive rates and such methods are not practical for either large-scale extensive beef cattle enterprises or free-living mammalian species. Recent developments in UHF (ultra high frequency) proximity logger telemetry devices have been used to provide a continuous pair-wise measure of associations between individual animals for both livestock and wildlife. The objective of this study was to explore the potential of using UHF telemetry to identify the reproductive cycle phenotype in terms of intensity and duration of estrus. The study was conducted using Belmont Red (interbred Africander Brahman Hereford-Shorthorn) cattle grazing irrigated pasture on Belmont Research Station, northeastern Australia. The cow-bull associations from three groups of cows each with one bull were recorded over a 7-week breeding season and the stage of estrus was identified using ultrasonography. Telemetry data from bull and cows, collected over 4 8-day logger deployments, were log transformed and analyzed by ANOVA. Both the number and duration of bull-cow affiliations were significantly (P<0.001) greater in estrous cows compared to anestrus cows. These results support the development of the UHF technology as a hands-off and noninvasive means of gathering socio-sexual information on both wildlife and livestock for reproductive management. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  4. NAEB TECHNICAL REPORT ON THE IMPACT OF AIRBORNE TELEVISION TRANSMISSION ON LAND-BASED UHF TELEVISION ASSIGNMENT PLANS.

    ERIC Educational Resources Information Center

    BRONSON, VERNON; AND OTHERS

    OPERATIONAL EFFECTS OF AIRBORNE EDUCATIONAL TELEVISION ON ULTRAHIGH FREQUENCY (UHF) TELEVISION ASSIGNMENTS ON LAND WERE INVESTIGATED. SPECIFICALLY, THE EFFORT RELATED TO EXPANSION PLANS OF THE MIDWEST PROGRAM ON AIRBORNE TELEVISION INSTRUCTION (MPATI). PREVIOUS STUDIES BY THE NATIONAL ASSOCIATION OF EDUCATIONAL BROADCASTERS (NAEB) LED TO THE…

  5. SU-F-BRE-01: A Rapid Method to Determine An Upper Limit On a Radiation Detector's Correction Factor During the QA of IMRT Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamio, Y; Bouchard, H

    2014-06-15

    Purpose: Discrepancies in the verification of the absorbed dose to water from an IMRT plan using a radiation dosimeter can be wither caused by 1) detector specific nonstandard field correction factors as described by the formalism of Alfonso et al. 2) inaccurate delivery of the DQA plan. The aim of this work is to develop a simple/fast method to determine an upper limit on the contribution of composite field correction factors to these discrepancies. Methods: Indices that characterize the non-flatness of the symmetrised collapsed delivery (VSC) of IMRT fields over detector-specific regions of interest were shown to be correlated withmore » IMRT field correction factors. The indices introduced are the uniformity index (UI) and the mean fluctuation index (MF). Each one of these correlation plots have 10 000 fields generated with a stochastic model. A total of eight radiation detectors were investigated in the radial orientation. An upper bound on the correction factors was evaluated by fitting values of high correction factors for a given index value. Results: These fitted curves can be used to compare the performance of radiation dosimeters in composite IMRT fields. Highly water-equivalent dosimeters like the scintillating detector (Exradin W1) and a generic alanine detector have been found to have corrections under 1% over a broad range of field modulations (0 – 0.12 for MF and 0 – 0.5 for UI). Other detectors have been shown to have corrections of a few percent over this range. Finally, a full Monte Carlo simulations of 18 clinical and nonclinical IMRT field showed good agreement with the fitted curve for the A12 ionization chamber. Conclusion: This work proposes a rapid method to evaluate an upper bound on the contribution of correction factors to discrepancies found in the verification of DQA plans.« less

  6. Non-climatic constraints on upper elevational plant range expansion under climate change

    PubMed Central

    Brown, Carissa D.; Vellend, Mark

    2014-01-01

    We are limited in our ability to predict climate-change-induced range shifts by our inadequate understanding of how non-climatic factors contribute to determining range limits along putatively climatic gradients. Here, we present a unique combination of observations and experiments demonstrating that seed predation and soil properties strongly limit regeneration beyond the upper elevational range limit of sugar maple, a tree species of major economic importance. Most strikingly, regeneration beyond the range limit occurred almost exclusively when seeds were experimentally protected from predators. Regeneration from seed was depressed on soil from beyond the range edge when this soil was transplanted to sites within the range, with indirect evidence suggesting that fungal pathogens play a role. Non-climatic factors are clearly in need of careful attention when attempting to predict the biotic consequences of climate change. At minimum, we can expect non-climatic factors to create substantial time lags between the creation of more favourable climatic conditions and range expansion. PMID:25253462

  7. LS Channel Estimation and Signal Separation for UHF RFID Tag Collision Recovery on the Physical Layer.

    PubMed

    Duan, Hanjun; Wu, Haifeng; Zeng, Yu; Chen, Yuebin

    2016-03-26

    In a passive ultra-high frequency (UHF) radio-frequency identification (RFID) system, tag collision is generally resolved on a medium access control (MAC) layer. However, some of collided tag signals could be recovered on a physical (PHY) layer and, thus, enhance the identification efficiency of the RFID system. For the recovery on the PHY layer, channel estimation is a critical issue. Good channel estimation will help to recover the collided signals. Existing channel estimates work well for two collided tags. When the number of collided tags is beyond two, however, the existing estimates have more estimation errors. In this paper, we propose a novel channel estimate for the UHF RFID system. It adopts an orthogonal matrix based on the information of preambles which is known for a reader and applies a minimum-mean-square-error (MMSE) criterion to estimate channels. From the estimated channel, we could accurately separate the collided signals and recover them. By means of numerical results, we show that the proposed estimate has lower estimation errors and higher separation efficiency than the existing estimates.

  8. [Interaction of oxytocin, laser and electromagnetic radiation on the persistence properties of Staphylococcus aureus].

    PubMed

    Kurlaev, P P; Chernova, O L; Kirgizova, S B

    2000-01-01

    The suppressive action of oxytocin, heliumneon radiation and ultrahigh-frequency electromagnetic waves (UHF-therapy) on the persistence properties of S. aureus has been experimentally established. The effectiveness of the therapeutic actions under study in the treatment of patients with the prognosticated unfavorable course of purulent inflammatory diseases of soft tissues has been shown.

  9. Intensity-modulated radiation therapy with concurrent chemotherapy for locally advanced cervical and upper thoracic esophageal cancer.

    PubMed

    Wang, Shu-Lian; Liao, Zhongxing; Liu, Helen; Ajani, Jaffer; Swisher, Stephen; Cox, James D; Komaki, Ritsuko

    2006-09-14

    To evaluate the dosimetry, efficacy and toxicity of intensity-modulated radiation therapy (IMRT) and concurrent chemotherapy for patients with locally advanced cervical and upper thoracic esophageal cancer. A retrospective study was performed on 7 patients who were definitively treated with IMRT and concurrent chemotherapy. Patients who did not receive IMRT radiation and concurrent chemotherapy were not included in this analysis. IMRT plans were evaluated to assess the tumor coverage and normal tissue avoidance. Treatment response was evaluated and toxicities were assessed. Five- to nine-beam IMRT were used to deliver a total dose of 59.4-66 Gy (median: 64.8 Gy) to the primary tumor with 6-MV photons. The minimum dose received by the planning tumor volume (PTV) of the gross tumor volume boost was 91.2%-98.2% of the prescription dose (standard deviation [SD]: 3.7%-5.7%). The minimum dose received by the PTV of the clinical tumor volume was 93.8%-104.8% (SD: 4.3%-11.1%) of the prescribed dose. With a median follow-up of 15 mo (range: 3-21 mo), all 6 evaluable patients achieved complete response. Of them, 2 developed local recurrences and 2 had distant metastases, 3 survived with no evidence of disease. After treatment, 2 patients developed esophageal stricture requiring frequent dilation and 1 patient developed tracheal-esophageal fistula. Concurrent IMRT and chemotherapy resulted in an excellent early response in patients with locally advanced cervical and upper thoracic esophageal cancer. However, local and distant recurrence and toxicity remain to be a problem. Innovative approaches are needed to improve the outcome.

  10. Changes in mitochondrial functioning with electromagnetic radiation of ultra high frequency as revealed by electron paramagnetic resonance methods.

    PubMed

    Burlaka, Anatoly; Selyuk, Marina; Gafurov, Marat; Lukin, Sergei; Potaskalova, Viktoria; Sidorik, Evgeny

    2014-05-01

    To study the effects of electromagnetic radiation (EMR) of ultra high frequency (UHF) in the doses equivalent to the maximal permitted energy load for the staffs of the radar stations on the biochemical processes that occur in the cell organelles. Liver, cardiac and aorta tissues from the male rats exposed to non-thermal UHF EMR in pulsed and continuous modes were studied during 28 days after the irradiation by the electron paramagnetic resonance (EPR) methods including a spin trapping of superoxide radicals. The qualitative and quantitative disturbances in electron transport chain (ETC) of mitochondria are registered. A formation of the iron-nitrosyl complexes of nitric oxide (NO) radicals with the iron-sulphide (FeS) proteins, the decreased activity of FeS-protein N2 of NADH-ubiquinone oxidoreductase complex and flavo-ubisemiquinone growth combined with the increased rates of superoxide production are obtained. (i) Abnormalities in the mitochondrial ETC of liver and aorta cells are more pronounced for animals radiated in a pulsed mode; (ii) the alterations in the functioning of the mitochondrial ETC cause increase of superoxide radicals generation rate in all samples, formation of cellular hypoxia, and intensification of the oxide-initiated metabolic changes; and (iii) electron paramagnetic resonance methods could be used to track the qualitative and quantitative changes in the mitochondrial ETC caused by the UHF EMR.

  11. Hydroxyl Impurities Enhance Radiative Transfer in the Upper Mantle

    NASA Astrophysics Data System (ADS)

    Hofmeister, A. M.

    2002-12-01

    Modelling radiative heat transfer is essential to geodynamics because the increase of the diffusive radiative thermal conductivity (krdf) with temperature promotes stability through feedback (Dubuffet et al., 2002, Nonlinear Proc. Geophys., 9: 1-13). Measuring krdf is virtually impossible, and therefore krdf is calculated from spectroscopic measurements. Previous efforts show that Fe2+ impurities in olivine engender radiative transfer when luminous emissions of "hot" grains are absorbed by slightly cooler nearest-neighbor grains. Hydroxyl impurities provide a similar mechanism of emission/absorption. Hydroxyl is important to radiative transfer because (1) OH absorptions are located in the transparent gap between the lattice modes and the Fe2+ transitions (2) small amounts of OH produce intense absorptions, (3) the specific frequencies enable transfer at lower temperatures than is possible with Fe transitions, i.e. even in the cold interiors of slabs, and (4) OH is preferentially located in mineral phases such as garnet and wadsleyite, whereas Fe contents are distributed more or less uniformly. The effect of changing OH concentration on krdf is explored using forsteritic olivine to represent mantle material. Polarized (absorption and reflection) spectroscopic measurements from 77 to 623 K show that the changes in frequency, width, and intensity of the OH bands are small, and that peak area is constant. This allows the effect of OH to be treated independently of temperature. However, OH content and grain size (d) cannot be separated, because the strength of the emissions within a self-emitting medium depends on d. For d = 3 mm, concentrations below 200 H/10{6) Si atoms contribute negligibly to radiative transfer. With low OH contents krdf increases, whereas above ca 1000 H /106 Si, krdf is inverse with concentration. The maxima for krdf depends on d and OH content. Kimberlite samples suggest that the upper mantle has evolved to towards conditions which maximize krdf

  12. Upper bound dose values for meson radiation in heavy-ion therapy.

    PubMed

    Rabin, C; Gonçalves, M; Duarte, S B; González-Sprinberg, G A

    2018-06-01

    Radiation treatment of cancer has evolved to include massive particle beams, instead of traditional irradiation procedures. Thus, patient doses and worker radiological protection have become issues of constant concern in the use of these new technologies, especially for proton- and heavy-ion-therapy. In the beam energies of interest of heavy-ion-therapy, secondary particle radiation comes from proton, neutron, and neutral and charged pions produced in the nuclear collisions of the beam with human tissue atoms. This work, for the first time, offers the upper bound of meson radiation dose in organic tissues due to secondary meson radiation in heavy-ion therapy. A model based on intranuclear collision has been used to follow in time the nuclear reaction and to determine the secondary radiation due to the meson yield produced in the beam interaction with nuclei in the tissue-equivalent media and water. The multiplicity, energy spectrum, and angular distribution of these pions, as well as their decay products, have been calculated in different scenarios for the nuclear reaction mechanism. The results of the produced secondary meson particles has been used to estimate the energy deposited in tissue using a cylindrical phantom by a transport Monte Carlo simulation and we have concluded that these mesons contribute at most 0.1% of the total prescribed dose.

  13. Laboratory Kinetic Studies of OH and CO2 Relevant to Upper Atmospheric Radiation Balance

    NASA Technical Reports Server (NTRS)

    Nelson, David D.; Villalta, Peter; Zahniser, Mark S.; Kolb, Charles E.

    1997-01-01

    The purpose of this project was to quantify the rates of two processes which are crucial to our understanding of radiative energy balance in the upper atmosphere. The first process is radiative emission from vibrationally hot OH radicals following the H + O3 reaction in the upper mesosphere. The importance of this process depends strongly on the OH radiative emission coefficients. Our goal was to measure the OH permanent dipole moment in excited vibrational states and to use these measurements to construct an improved OH dipole moment function and improved radiative emission coefficients. Significant progress was made on these experiments including the construction of a supersonic jet source for vibrationally excited OH radicals. Unfortunately, our efforts to transport the OH radicals into a second lower pressure vacuum chamber were not successful, and we were unable to make improved dipole moment measurements for OH. The second key kinetic process which we attempted to quantify during this project is the rate of relaxation of bend-excited CO2 by oxygen atoms. Since excitation of the bending vibrational mode of CO2 is the major cooling mechanism in the upper mesosphere/lower thermosphere, the cooling rate of this region depends crucially on the rate of energy transfer out of this state. It is believed that the most efficient transfer mechanism is via atomic oxygen but the rate for this process has not been directly measured in the laboratory at appropriate temperatures and even the room temperature rate remains controversial. We attempted to directly measure the relaxation rate Of CO2 (010) by oxygen atoms using the discharge flow technique. This experiment was set up at Aerodyne Research. Again, significant progress was achieved in this experiment. A hot CO2 source was set up, bend excited CO2 was detected and the rate of relaxation of bend excited CO2 by He atoms was measured. Unfortunately, the project ran out of time before the oxygen atom kinetic studies could

  14. Tolerance to solar ultraviolet-B radiation in the citrus red mite, an upper surface user of host plant leaves.

    PubMed

    Fukaya, Midori; Uesugi, Ryuji; Ohashi, Hirokazu; Sakai, Yuta; Sudo, Masaaki; Kasai, Atsushi; Kishimoto, Hidenari; Osakabe, Masahiro

    2013-01-01

    Plant-dwelling mites are potentially exposed to solar ultraviolet-B (UVB) radiation that causes deleterious and often lethal effects, leading most mites to inhabit the lower (underside) leaf surfaces. However, in species of spider mite belonging to the Genus Panonychus, a substantial portion of individuals occur on upper leaf surfaces. We investigated whether the upper leaf surfaces of citrus trees are favorable for P. citri, and to what extent they are tolerant to UVB radiation. If eggs are not adequately protected from UVB damage, females may avoid ovipositing on the upper surfaces of sunny leaves. To test this, we conducted laboratory experiments using a UVB lamp, and semioutdoor manipulative experiments. As a result, P. citri eggs are tolerant to UVB. Field studies revealed that the ratio of eggs and adult females on upper leaf surfaces were larger for shaded than for sunny leaves. However, 64-89% of eggs hatched successfully even on sunny upper leaf surfaces. Nutritional evaluation revealed that whether on sunny or shaded leaves, in fecundity and juvenile development P. citri reaped the fitness benefits of upper leaf surfaces. Consequently, P. citri is tolerant to UVB damage, and inhabiting the upper surfaces of shaded leaves is advantageous to this mite. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  15. An integral equation formulation for predicting radiation patterns of a space shuttle annular slot antenna

    NASA Technical Reports Server (NTRS)

    Jones, J. E.; Richmond, J. H.

    1974-01-01

    An integral equation formulation is applied to predict pitch- and roll-plane radiation patterns of a thin VHF/UHF (very high frequency/ultra high frequency) annular slot communications antenna operating at several locations in the nose region of the space shuttle orbiter. Digital computer programs used to compute radiation patterns are given and the use of the programs is illustrated. Experimental verification of computed patterns is given from measurements made on 1/35-scale models of the orbiter.

  16. Meteoroid Fragmentation as Revealed in Head- and Trail-Echoes Observed with the Arecibo UHF and VHF Radars

    NASA Technical Reports Server (NTRS)

    Mathews, J. D.; Malhorta, A.

    2011-01-01

    We report recent 46.8/430 MHz (VHF/UHF) radar meteor observations at Arecibo Observatory (AO) that reveal many previously unreported features in the radar meteor return - including flare-trails at both UHF and VHF - that are consistent with meteoroid fragmentation. Signature features of fragmentation include strong intra-pulse and pulse-to-pulse fading as the result of interference between or among multiple meteor head-echo returns and between head-echo and impulsive flare or "point" trail-echoes. That strong interference fading occurs implies that these scatterers exhibit well defined phase centers and are thus small compared with the wavelength. These results are consistent with and offer advances beyond a long history of optical and radar meteoroid fragmentation studies. Further, at AO, fragmenting and flare events are found to be a large fraction of the total events even though these meteoroids are likely the smallest observed by the major radars. Fragmentation is found to be a major though not dominate component of the meteors observed at other HPLA radars that are sensitive to larger meteoroids.

  17. 47 CFR 15.33 - Frequency range of radiated measurements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... kHz, up to at least the frequency shown in this paragraph: (1) If the intentional radiator operates... level of radiated emissions within the frequency range 9 kHz to 30 MHz, such as a CB receiver or a... used in the device, without going below 9 kHz (25 MHz for CB receivers), up to the frequency shown in...

  18. 47 CFR 15.33 - Frequency range of radiated measurements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... kHz, up to at least the frequency shown in this paragraph: (1) If the intentional radiator operates... level of radiated emissions within the frequency range 9 kHz to 30 MHz, such as a CB receiver or a... used in the device, without going below 9 kHz (25 MHz for CB receivers), up to the frequency shown in...

  19. 47 CFR 15.33 - Frequency range of radiated measurements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... kHz, up to at least the frequency shown in this paragraph: (1) If the intentional radiator operates... level of radiated emissions within the frequency range 9 kHz to 30 MHz, such as a CB receiver or a... used in the device, without going below 9 kHz (25 MHz for CB receivers), up to the frequency shown in...

  20. 47 CFR 15.33 - Frequency range of radiated measurements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... kHz, up to at least the frequency shown in this paragraph: (1) If the intentional radiator operates... level of radiated emissions within the frequency range 9 kHz to 30 MHz, such as a CB receiver or a... used in the device, without going below 9 kHz (25 MHz for CB receivers), up to the frequency shown in...

  1. Content Range and Precision of a Computer Adaptive Test of Upper Extremity Function for Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Montpetit, Kathleen; Haley, Stephen; Bilodeau, Nathalie; Ni, Pengsheng; Tian, Feng; Gorton, George, III; Mulcahey, M. J.

    2011-01-01

    This article reports on the content range and measurement precision of an upper extremity (UE) computer adaptive testing (CAT) platform of physical function in children with cerebral palsy. Upper extremity items representing skills of all abilities were administered to 305 parents. These responses were compared with two traditional standardized…

  2. Extended range radiation dose-rate monitor

    DOEpatents

    Valentine, Kenneth H.

    1988-01-01

    An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.

  3. General upper bound on single-event upset rate. [due to ionizing radiation in orbiting vehicle avionics

    NASA Technical Reports Server (NTRS)

    Chlouber, Dean; O'Neill, Pat; Pollock, Jim

    1990-01-01

    A technique of predicting an upper bound on the rate at which single-event upsets due to ionizing radiation occur in semiconducting memory cells is described. The upper bound on the upset rate, which depends on the high-energy particle environment in earth orbit and accelerator cross-section data, is given by the product of an upper-bound linear energy-transfer spectrum and the mean cross section of the memory cell. Plots of the spectrum are given for low-inclination and polar orbits. An alternative expression for the exact upset rate is also presented. Both methods rely only on experimentally obtained cross-section data and are valid for sensitive bit regions having arbitrary shape.

  4. Roles of hot electrons in generating upper-hybrid waves in the earth's radiation belt

    DOE PAGES

    Hwang, J.; Shin, D. K.; Yoon, P. H.; ...

    2017-05-01

    Electrostatic fluctuations near upper-hybrid frequency, which are sometimes accompanied by multiple-harmonic electron cyclotron frequency bands above and below the upper-hybrid frequency, are common occurrences in the Earth's radiation belt, as revealed through the twin Van Allen Probe spacecrafts. It is customary to use the upper-hybrid emissions for estimating the background electron density, which in turn can be used to determine the plasmapause locations, but the role of hot electrons in generating such fluctuations has not been discussed in detail. The present paper carries out detailed analyses of data from the Waves instrument, which is part of the Electric and Magneticmore » Field Instrument Suite and Integrated Science suite onboard the Van Allen Probes. Combined with the theoretical calculation, it is shown that the peak intensity associated with the upper-hybrid fluctuations might be predominantly determined by tenuous but hot electrons and that denser cold background electrons do not seem to contribute much to the peak intensity. This finding shows that upper-hybrid fluctuations detected during quiet time are not only useful for the determination of the background cold electron density but also contain information on the ambient hot electrons population as well.« less

  5. Roles of hot electrons in generating upper-hybrid waves in the earth's radiation belt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, J.; Shin, D. K.; Yoon, P. H.

    Electrostatic fluctuations near upper-hybrid frequency, which are sometimes accompanied by multiple-harmonic electron cyclotron frequency bands above and below the upper-hybrid frequency, are common occurrences in the Earth's radiation belt, as revealed through the twin Van Allen Probe spacecrafts. It is customary to use the upper-hybrid emissions for estimating the background electron density, which in turn can be used to determine the plasmapause locations, but the role of hot electrons in generating such fluctuations has not been discussed in detail. The present paper carries out detailed analyses of data from the Waves instrument, which is part of the Electric and Magneticmore » Field Instrument Suite and Integrated Science suite onboard the Van Allen Probes. Combined with the theoretical calculation, it is shown that the peak intensity associated with the upper-hybrid fluctuations might be predominantly determined by tenuous but hot electrons and that denser cold background electrons do not seem to contribute much to the peak intensity. This finding shows that upper-hybrid fluctuations detected during quiet time are not only useful for the determination of the background cold electron density but also contain information on the ambient hot electrons population as well.« less

  6. Lightning flash density versus altitude and storm structure from observations with UHF- and S-band radars

    NASA Technical Reports Server (NTRS)

    Mazur, V.; Gerlach, J. C.; Rust, W. D.

    1984-01-01

    The UHF-(70.5 cm wavelength) and S-band (10 cm wavelength) radar at NASA/Wallops Island Research Facility in Virginia, U.S.A. have been used to relate lightning activity with altitude and with the reflectivity structure of thunderstorms. Two centers of lightning flash density were found; one between 6 and 8 km altitude and another between 11 and 15 km. Previously announced in STAR as N83-31206

  7. Radiation to the head, neck, and upper thorax of the young and thyroid neoplasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiner, R.L.

    1976-03-01

    It is now generally accepted that an association exists between external radiation administered to the head, neck and upper thorax of infants, children and adolescents and the subsequent development of neoplastic changes in the thyroid gland. Until recent years external radiation was frequently administered to shrink an enlarged thymus, or for the treatment of tonsillitis, adenoiditis, hearing loss, hemangioma, acne, tinea capitis and other conditions. During the course of these treatments, the thyroid gland was exposed to scattered radiation. It is stressed that the use of external radiation therapy was then accepted practice and its value was attested by many.more » The likelihood of adverse effects was not initially apparent, primarily because of the long periods of time between the administration of the therapy and the recognition of changes in the thyroid. The availability and effectiveness of other therapeutic measures and the growing concern about the delayed effects of radiation therapy when administered to the young for relatively benign conditions has, in recent years, largely eliminated use of this form of therapy, except in a few unusual conditions.« less

  8. Content range and precision of a computer adaptive test of upper extremity function for children with cerebral palsy.

    PubMed

    Montpetit, Kathleen; Haley, Stephen; Bilodeau, Nathalie; Ni, Pengsheng; Tian, Feng; Gorton, George; Mulcahey, M J

    2011-02-01

    This article reports on the content range and measurement precision of an upper extremity (UE) computer adaptive testing (CAT) platform of physical function in children with cerebral palsy. Upper extremity items representing skills of all abilities were administered to 305 parents. These responses were compared with two traditional standardized measures: Pediatric Outcomes Data Collection Instrument and Functional Independence Measure for Children. The UE CAT correlated strongly with the upper extremity component of these measures and had greater precision when describing individual functional ability. The UE item bank has wider range with items populating the lower end of the ability spectrum. This new UE item bank and CAT have the capability to quickly assess children of all ages and abilities with good precision and, most importantly, with items that are meaningful and appropriate for their age and level of physical function.

  9. A diagnostic technique used to obtain cross range radiation centers from antenna patterns

    NASA Technical Reports Server (NTRS)

    Lee, T. H.; Burnside, W. D.

    1988-01-01

    A diagnostic technique to obtain cross range radiation centers based on antenna radiation patterns is presented. This method is similar to the synthetic aperture processing of scattered fields in the radar application. Coherent processing of the radiated fields is used to determine the various radiation centers associated with the far-zone pattern of an antenna for a given radiation direction. This technique can be used to identify an unexpected radiation center that creates an undesired effect in a pattern; on the other hand, it can improve a numerical simulation of the pattern by identifying other significant mechanisms. Cross range results for two 8' reflector antennas are presented to illustrate as well as validate that technique.

  10. [The effect of rehabilitation with therapeutic Akhtala muds and electromagnetic radiation of millimeter range on biochemical indices in patients with post discectomy syndrome].

    PubMed

    Dokhnadze, T D

    2011-06-01

    The impact of therapeutic Akhtala muds and electromagnetic radiation of millimeter range on biochemical indices in patients with post discectomy syndrome has been investigated. The research showed that medical rehabilitation with Akhtala medical muds and electromagnetic radiation of millimeter range stimulates sympathetic-adrenal system, adrenocorticotrophic function of the hypophysis and glucocorticoid function of adrenal cortex, induces a weakening/removal of an inflammatory process in the operated area, enhances antioxidant defense of the organism, oppresses calcium metabolism and peroxide oxidation of lipids. The noted positive process was manifested in the increase up to upper limit of the norm of daily excretion of adrenalin and noradrenalin, the content of adrenocorticotrophic hormone and cortisol in blood plasma and in the decrease of the amount of malonic dialdehyde in it, also in the increase of antioxidative activity of blood plasma, in the decrease of the content of "С"-reactive protein, haptoglobin, seroglicoids, common and ionic calcium in blood serum.

  11. A Martian Telecommunications Network: UHF Relay Support of the Mars Exploration Rovers by the Mars Global Surveyor, Mars Odyssey, and Mars Express Orbiters

    NASA Technical Reports Server (NTRS)

    Edwards, Charles D., Jr.; Barbieri, A.; Brower, E.; Estabrook, P.; Gibbs, R.; Horttor, R.; Ludwinski, J.; Mase, R.; McCarthy, C.; Schmidt, R.; hide

    2004-01-01

    NASA and ESA have established an international network of Mars orbiters, outfitted with relay communications payloads, to support robotic exploration of the red planet. Starting in January, 2004, this network has provided the Mars Exploration Rovers with telecommunications relay services, significantly increasing rover engineering and science data return while enhancing mission robustness and operability. Augmenting the data return capabilities of their X-band direct-to-Earth links, the rovers are equipped with UHF transceivers allowing data to be relayed at high rate to the Mars Global Surveyor (MGS), Mars Odyssey, and Mars Express orbiters. As of 21 July, 2004, over 50 Gbits of MER data have been obtained, with nearly 95% of that data returned via the MGS and Odyssey UHF relay paths, allowing a large increase in science return from the Martian surface relative to the X-band direct-to-Earth link. The MGS spacecraft also supported high-rate UHF communications of MER engineering telemetry during the critical period of entry, descent, and landing (EDL), augmenting the very low-rate EDL data collected on the X-band direct-to-Earth link. Through adoption of the new CCSDS Proximity-1 Link Protocol, NASA and ESA have achieved interoperability among these Mars assets, as validated by a successful relay demonstration between Spirit and Mars Express, enabling future interagency cross-support and establishing a truly international relay network at Mars.

  12. Morphology of upper laurentian fan using GLORIA long-range side-scan sonar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masson, D.G.; Field, M.E.; Gardner, J.V.

    1985-06-01

    A long-range side-scan sonar (GLORIA) survey of the upper Laurentian Fan shows, for the first time, the regional geomorphology of this large and complex sedimentary body. The channels of the upper continental slope coalesce on the upper fan to form four major fan valleys. The largest of these, Eastern Valley, is U-shaped in cross section and up to 25 km (15 mi) wide with a large levee on the western flank that reaches a maximum height of more than 1 km (3,300 ft) above the valley floor. The remaining valleys, Western, Central, and Grand Banks, are typically more V-shaped inmore » cross section and are up to 5 km (3 mi) wide. Extensive gullying is observed on the walls of all the channels. Sonographs of the floor of Eastern Valley show a strong, linear fabric elongated parallel with the valley walls that appears to be related to mesoscale relief on the valley floor. At water depths between 3,500 and 4,100 m (11,550 and 13,530 ft), two major fan valleys are created by the merging of the four major valleys of the upper fan. Both fan valleys are associated with large, asymmetric levee complexes that reach heights of more than 500 m (1,650 ft) above the valley floors. The GLORIA data show evidence for several amphitheaterlike slump scars in the region of the 1929 earthquake epicenter. However, the authors see no evidence for movement of large coherent sediment blocks as postulated by earlier workers. They suggest that the turbidity currents that occurred after the 1929 earthquake may have formed by the coalescence of many small slumps rather than from a single large slump.« less

  13. NASA Standard Initiator Susceptibility to UHF and S-Band Radio Frequency Power and Lightning Strikes

    NASA Technical Reports Server (NTRS)

    Burnham, Karen; Scully, Robert; Norgard, John

    2013-01-01

    The NASA Standard Initiator (NSI) is an important piece of pyrotechnic equipment used in many space applications. This presentation will outline the results of a series of tests done at UHF and S-Band frequencies to determine NSI susceptibility to Radio Frequency (RF) power. The results show significant susceptibility to pulsed RF power in the S-Band region. Additional testing with lightning pulses injected into the firing line harness, modelling the indirect effects of a lightning strike to a spacecraft, showed no vulnerability

  14. NASA Standard Initiator Susceptibility to UHF and S-Band Radio Frequency Power and Lightning Strikes

    NASA Technical Reports Server (NTRS)

    Burnham, Karen; Scully, Robert C.; Norgard, John D.

    2013-01-01

    The NASA Standard Initiator (NSI) is an important piece of pyrotechnic equipment used in many space applications. This paper outlines the results of a series of tests done at UHF and S-Band frequencies to determine NSI susceptibility to Radio Frequency (RF) power. The results show significant susceptibility to pulsed RF power in the S-Band region. Additional testing with lightning pulses injected into the firing line harness, modelling the indirect effects of a lightning strike to a spacecraft, showed no vulnerability.

  15. Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhong; Forrister, Haviland; Liu, Jiumeng; Dibb, Jack; Anderson, Bruce; Schwarz, Joshua P.; Perring, Anne E.; Jimenez, Jose L.; Campuzano-Jost, Pedro; Wang, Yuhang; Nenes, Athanasios; Weber, Rodney J.

    2017-07-01

    Carbonaceous aerosols affect the global radiative balance by absorbing and scattering radiation, which leads to warming or cooling of the atmosphere, respectively. Black carbon is the main light-absorbing component. A portion of the organic aerosol known as brown carbon also absorbs light. The climate sensitivity to absorbing aerosols rapidly increases with altitude, but brown carbon measurements are limited in the upper troposphere. Here we present aircraft observations of vertical aerosol distributions over the continental United States in May and June 2012 to show that light-absorbing brown carbon is prevalent in the troposphere, and absorbs more short-wavelength radiation than black carbon at altitudes between 5 and 12 km. We find that brown carbon is transported to these altitudes by deep convection, and that in-cloud heterogeneous processing may produce brown carbon. Radiative transfer calculations suggest that brown carbon accounts for about 24% of combined black and brown carbon warming effect at the tropopause. Roughly two-thirds of the estimated brown carbon forcing occurs above 5 km, although most brown carbon is found below 5 km. The highest radiative absorption occurred during an event that ingested a wildfire plume. We conclude that high-altitude brown carbon from biomass burning is an unappreciated component of climate forcing.

  16. Electromagnetic radiation by parametric decay of upper hybrid waves in ionospheric modification experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leyser, T.B.

    1994-06-01

    A nonlinear dispersion relation for the parametric decay of an electrostatic upper hybrid wave into an ordinary mode electromagnetic wave, propagating parallel to the ambient magnetic field, and an electrostatic low frequency wave, being either a lower hybrid wave or a high harmonic ion Bernstein wave, is derived. The coherent and resonant wave interaction is considered to take place in a weakly magnetized and collisionless Vlasov plasma. The instability growth rate is computed for parameter values typical of ionospheric modification experiments, in which a powerful high frequency electromagnetic pump wave is injected into the ionospheric F-region from ground-based transmitters. Themore » electromagnetic radiation which is excited by the decaying upper hybrid wave is found to be consistent with the prominent and commonly observed downshifted maximum (DM) emission in the spectrum of stimulated electromagnetic emission.« less

  17. The influence of upper-crust lithology on topographic development in the central Coast Ranges of California

    USGS Publications Warehouse

    Garcia, A.F.; Mahan, S.A.

    2012-01-01

    A fundamental geological tenet is that as landscapes evolve over graded to geologic time, geologic structures control patterns of topographic distribution in mountainous areas such that terrain underlain by competent rock will be higher than terrain underlain by incompetent rock. This paper shows that in active orogens where markedly weak and markedly strong rocks are juxtaposed along contacts that parallel regional structures, relatively high topography can form where strain is localized in the weak rock. Such a relationship is illustrated by the topography of the central Coast Ranges between the Pacific coastline and the San Andreas fault zone (SAFZ), and along the length of the Gabilan Mesa (the "Gabilan Mesa segment" of the central Coast Ranges). Within the Gabilan Mesa segment, the granitic upper crust of the Salinian terrane is in contact with the accretionary-prism m??lange upper crust of the Nacimiento terrane along the inactive Nacimiento fault zone. A prominent topographic lineament is present along most of this lithologic boundary, approximately 50 to 65. km southwest of the SAFZ, with the higher topography formed in the m??lange on the southwest side of the Nacimiento fault. This paper investigates factors influencing the pattern of topographic development in the Gabilan Mesa segment of the central Coast Ranges by correlating shortening magnitude with the upper-crust compositions of the Salinian and Nacimiento terranes. The fluvial geomorphology of two valleys in the Gabilan Mesa, which is within the Salinian terrane, and alluvial geochronology based on optically-stimulated luminescence (OSL) age estimates, reveal that the magnitude of shortening accommodated by down-to-the-southwest tilting of the mesa since 400ka is less than 1 to 2m. Our results, combined with those of previous studies, indicate that at least 63% to 78% of late-Cenozoic, northeast-southwest directed, upper-crustal shortening across the Gabilan Mesa segment has been accommodated

  18. Microprocessors as a tool in determining correlation between sferics and tornado genesis. [Sferics = atmospheric electromagnetic radiation in the kilohertz to UHF range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witte, D.R.

    1978-11-01

    It is believed that sferics, a word that stands for atmospheric electromagnetic radiation, can be correlated to the genesis of tornadoes and severe weather. Sferics are generated by lightning and other atmospheric disturbances that are not yet entirely understood. The recording and analysis of the patterns in which sferic events occur, it is hoped, will lead to accurate real-time prediction of tornadoes and other severe weather. Collection of this data becomes cumbersome when correlation between at least two stations is necessary for triangulation; however, the advent of microprocessors has made the task of data collection and massaging inexpensive and manageable.

  19. Comparison of Stopping Power and Range Databases for Radiation Transport Study

    NASA Technical Reports Server (NTRS)

    Tai, H.; Bichsel, Hans; Wilson, John W.; Shinn, Judy L.; Cucinotta, Francis A.; Badavi, Francis F.

    1997-01-01

    The codes used to calculate stopping power and range for the space radiation shielding program at the Langley Research Center are based on the work of Ziegler but with modifications. As more experience is gained from experiments at heavy ion accelerators, prudence dictates a reevaluation of the current databases. Numerical values of stopping power and range calculated from four different codes currently in use are presented for selected ions and materials in the energy domain suitable for space radiation transport. This study of radiation transport has found that for most collision systems and for intermediate particle energies, agreement is less than 1 percent, in general, among all the codes. However, greater discrepancies are seen for heavy systems, especially at low particle energies.

  20. Space radiation studies at the White Sands Missile Range Fast Burst Reactor

    NASA Technical Reports Server (NTRS)

    Delapaz, A.

    1972-01-01

    The operation of the White Sands Missile Range Fast Burst Reactor is discussed. Space radiation studies in radiobiology, dosimetry, and transient radiation effects on electronic systems and components are described. Proposed modifications to increase the capability of the facility are discussed.

  1. Evidence for an upper mantle low velocity zone beneath the southern Basin and Range-Colorado Plateau transition zone

    USGS Publications Warehouse

    Benz, H.M.; McCarthy, J.

    1994-01-01

    A 370-km-long seismic refraction/wide-angle reflection profile recorded during the Pacific to Arizona Crustal Experiment (PACE) detected an upper mantle P-wave low-velocity zone (LVZ) in the depth range 40 to 55 km beneath the Basin and Range in southern Arizona. Interpretation of seismic data places constraints on the sub-crustal lithosphere of the southern Basin and Range Province, which is important in light of the active tectonics of the region and the unknown role of the sub-crustal lithosphere in the development of the western United States. Forward travel time and synthetic seismogram techniques are used to model this shallow upper mantle LVZ. Modeling results show that the LVZ is defined by a 5% velocity decrease relative to a Pn velocity of 7.95 km s−1, suggesting either a ∼3–5% mafic partial melt or high-temperature, sub-solidus peridotite.

  2. Non-Malignant Thyroid Diseases Following a Wide Range of Radiation Exposures

    PubMed Central

    Ron, Elaine; Brenner, Alina

    2013-01-01

    Background The thyroid gland is one of the most radiosensitive human organs. While it is well known that radiation exposure increases the risk of thyroid cancer, less is known about its effects in relation to non-malignant thyroid diseases. Objectives The aim of this review is to evaluate the effects of high and low dose radiation on benign structural and functional diseases of the thyroid. Methods We examined the results of major studies from cancer patients treated with high-dose radiotherapy or thyrotoxicosis patients treated with high doses of iodine-131, patients treated with moderate to high dose radiotherapy for benign diseases, persons exposed to low doses from environmental radiation and survivors of the atomic bombings who were exposed to a range of doses. We evaluated radiation effects on structural (tumors, nodules), functional (hyper- and hypothyroidism), and autoimmune thyroid diseases. Results Following a wide range of doses of ionizing radiation, an increased risk of thyroid adenomas and nodules was observed in a variety of populations and settings. The dose response appeared to be linear at low to moderate doses, but in one study there was some suggestion of a reduction in risk above 5 Gy. The elevated risk for benign tumors continues for decades following exposure. Considerably less consistent findings are available regarding functional thyroid diseases including autoimmune diseases. In general, associations for these outcomes were fairly weak and significant radiation effects were most often observed following high doses, particularly for hypothyroidism. Conclusions A significant radiation dose-response relation was demonstrated for benign nodules and follicular adenomas. The effects of radiation on functional thyroid diseases are less clear, partly due to the greater difficulties studying these diseases. PMID:21128812

  3. A Pilot Randomized Controlled Trial on the Effects of a Progressive Exercise Program on the Range of Motion and Upper Extremity Grip Strength in Young Adults With Breast Cancer.

    PubMed

    Ibrahim, Marize; Muanza, Thierry; Smirnow, Nadia; Sateren, Warren; Fournier, Beatrice; Kavan, Petr; Palumbo, Michael; Dalfen, Richard; Dalzell, Mary-Ann

    2018-02-01

    The diagnosis of breast cancer in young women (aged 18-45 years) has been increasing. Women are commonly left coping with treatment-related disabilities of the upper limb that can persist for > 2 years postoperatively. A total of 59 young breast cancer patients (29 in the intervention group and 30 in the control group) participated in a pilot prospective randomized controlled trial to determine whether a 12-week postradiation exercise program would improve long-term arm mobility, pain, and handgrip strength. During an 18-month period, range of motion, handgrip strength, and pain with shoulder movements were evaluated at 6 points. Although the differences were not statistically significant, external rotation and horizontal abduction of the shoulder improved in the intervention group immediately after the exercise intervention (3 months) and showed a trend toward less pain on movement. However, at 18 months after radiation the control and intervention groups both retained a residual loss of range and persistent pain with movement. Radiation to the axilla and/or chest wall yielded long-term (18 months) limitations in flexion and horizontal abduction compared with hypofractionation, which resulted in greater flexion and external rotation at 18 months. The median grip strength of the study participants corresponded to the 10th percentile of healthy aged-matched white women. The exercise intervention timed shortly after radiation improved short-term shoulder mobility and pain; however, these gains were not sustained at 18 months after radiation. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Short-range solar radiation forecasts over Sweden

    NASA Astrophysics Data System (ADS)

    Landelius, Tomas; Lindskog, Magnus; Körnich, Heiner; Andersson, Sandra

    2018-04-01

    In this article the performance for short-range solar radiation forecasts by the global deterministic and ensemble models from the European Centre for Medium-Range Weather Forecasts (ECMWF) is compared with an ensemble of the regional mesoscale model HARMONIE-AROME used by the national meteorological services in Sweden, Norway and Finland. Note however that only the control members and the ensemble means are included in the comparison. The models resolution differs considerably with 18 km for the ECMWF ensemble, 9 km for the ECMWF deterministic model, and 2.5 km for the HARMONIE-AROME ensemble. The models share the same radiation code. It turns out that they all underestimate systematically the Direct Normal Irradiance (DNI) for clear-sky conditions. Except for this shortcoming, the HARMONIE-AROME ensemble model shows the best agreement with the distribution of observed Global Horizontal Irradiance (GHI) and DNI values. During mid-day the HARMONIE-AROME ensemble mean performs best. The control member of the HARMONIE-AROME ensemble also scores better than the global deterministic ECMWF model. This is an interesting result since mesoscale models have so far not shown good results when compared to the ECMWF models. Three days with clear, mixed and cloudy skies are used to illustrate the possible added value of a probabilistic forecast. It is shown that in these cases the mesoscale ensemble could provide decision support to a grid operator in terms of forecasts of both the amount of solar power and its probabilities.

  5. Ultra-high dynamic range electro-optic sampling for detecting millimeter and sub-millimeter radiation

    PubMed Central

    Ibrahim, Akram; Férachou, Denis; Sharma, Gargi; Singh, Kanwarpal; Kirouac-Turmel, Marie; Ozaki, Tsuneyuki

    2016-01-01

    Time-domain spectroscopy using coherent millimeter and sub-millimeter radiation (also known as terahertz radiation) is rapidly expanding its application, owing greatly to the remarkable advances in generating and detecting such radiation. However, many current techniques for coherent terahertz detection have limited dynamic range, thus making it difficult to perform some basic experiments that need to directly compare strong and weak terahertz signals. Here, we propose and demonstrate a novel technique based on cross-polarized spectral-domain interferometry to achieve ultra-high dynamic range electro-optic sampling measurement of coherent millimeter and sub-millimeter radiation. In our scheme, we exploit the birefringence in a single-mode polarization maintaining fiber in order to measure the phase change induced by the electric field of terahertz radiation in the detection crystal. With our new technique, we have achieved a dynamic range of 7 × 106, which is 4 orders of magnitude higher than conventional electro-optic sampling techniques, while maintaining comparable signal-to-noise ratio. The present technique is foreseen to have great impact on experiments such as linear terahertz spectroscopy of optically thick materials (such as aqueous samples) and nonlinear terahertz spectroscopy, where the higher dynamic range is crucial for proper interpretation of experimentally obtained results. PMID:26976363

  6. Ultra-high dynamic range electro-optic sampling for detecting millimeter and sub-millimeter radiation.

    PubMed

    Ibrahim, Akram; Férachou, Denis; Sharma, Gargi; Singh, Kanwarpal; Kirouac-Turmel, Marie; Ozaki, Tsuneyuki

    2016-03-15

    Time-domain spectroscopy using coherent millimeter and sub-millimeter radiation (also known as terahertz radiation) is rapidly expanding its application, owing greatly to the remarkable advances in generating and detecting such radiation. However, many current techniques for coherent terahertz detection have limited dynamic range, thus making it difficult to perform some basic experiments that need to directly compare strong and weak terahertz signals. Here, we propose and demonstrate a novel technique based on cross-polarized spectral-domain interferometry to achieve ultra-high dynamic range electro-optic sampling measurement of coherent millimeter and sub-millimeter radiation. In our scheme, we exploit the birefringence in a single-mode polarization maintaining fiber in order to measure the phase change induced by the electric field of terahertz radiation in the detection crystal. With our new technique, we have achieved a dynamic range of 7 × 10(6), which is 4 orders of magnitude higher than conventional electro-optic sampling techniques, while maintaining comparable signal-to-noise ratio. The present technique is foreseen to have great impact on experiments such as linear terahertz spectroscopy of optically thick materials (such as aqueous samples) and nonlinear terahertz spectroscopy, where the higher dynamic range is crucial for proper interpretation of experimentally obtained results.

  7. Approximate spin projection of three-component UHF wavefunctions - The states of the pentachlorocyclopentadienyl cation and the croconate dianion, C5O5/2-/

    NASA Technical Reports Server (NTRS)

    Phillips, D. H.; Schug, J. C.

    1974-01-01

    The approximate spin projection method of Amos et al. is extended to handle UHF wave functions having three significant components of differing multiplicity. An expression is given for the energy after single annihilation which differs from that of Amos and Hall. The new expression reproduces the results obtained from a previous exact calculation for which the weights and energies of the components are known. The extended approximate projection method is applied to the pi-electron UHF wave functions for the ground states of the pentachlorocyclopentadienyl cation and the croconate dianion, C5O5(2-). The results indicate a triplet ground state for the former and a singlet ground state for the latter, in agreement with experimental ESR susceptibility measurements for these molecular ions. C5C15(-) cannont be treated by restricted Hartree-Fock theory, due to its open-shell ground state. Incorrect results are obtained for the croconate dianion, if restricted Hartree-Fock theory and singly excited configuration interactions are utilized.

  8. Dosimetric effect of beam arrangement for intensity-modulated radiation therapy in the treatment of upper thoracic esophageal carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Yuchuan; Deng, Min; Zhou, Xiaojuan

    To evaluate the lung sparing in intensity-modulated radiation therapy (IMRT) for patients with upper thoracic esophageal tumors extending inferiorly to the thorax by different beam arrangement. Overall, 15 patient cases with cancer of upper thoracic esophagus were selected for a retrospective treatment-planning study. Intensity-modulated radiation therapy plans using 4, 5, and 7 beams (4B, 5B, and 7B) were developed for each patient by direct machine parameter optimization (DMPO). All plans were evaluated with respect to dose volumes to irradiated targets and normal structures, with statistical comparisons made between 4B with 5B and 7B intensity-modulated radiation therapy plans. Differences among plansmore » were evaluated using a two-tailed Friedman test at a statistical significance of p < 0.05. The maximum dose, average dose, and the conformity index (CI) of planning target volume 1 (PTV1) were similar for 3 plans for each case. No significant difference of coverage for planning target volume 1 and maximum dose for spinal cords were observed among 3 plans in present study (p > 0.05). The average V{sub 5}, V{sub 13}, V{sub 20}, mean lung dose, and generalized equivalent uniform dose (gEUD) for the total lung were significantly lower in 4B-plans than those data in 5B-plans and 7B-plans (p < 0.01). Although the average V{sub 30} for the total lung were significantly higher in 4B-plans than those in 5B-plans and 7B-plans (p < 0.05). In addition, when comparing with the 4B-plans, the conformity/heterogeneity index of the 5B- and 7B-plans were significantly superior (p < 0.05). The 4B-intensity-modulated radiation therapy plan has advantage to address the specialized problem of lung sparing to low- and intermediate-dose exposure in the thorax when dealing with relative long tumors extended inferiorly to the thoracic esophagus for upper esophageal carcinoma with the cost for less conformity. Studies are needed to compare the superiority of volumetric modulated arc

  9. Dosimetric effect of beam arrangement for intensity-modulated radiation therapy in the treatment of upper thoracic esophageal carcinoma.

    PubMed

    Fu, Yuchuan; Deng, Min; Zhou, Xiaojuan; Lin, Qiang; Du, Bin; Tian, Xue; Xu, Yong; Wang, Jin; Lu, You; Gong, Youling

    2017-01-01

    To evaluate the lung sparing in intensity-modulated radiation therapy (IMRT) for patients with upper thoracic esophageal tumors extending inferiorly to the thorax by different beam arrangement. Overall, 15 patient cases with cancer of upper thoracic esophagus were selected for a retrospective treatment-planning study. Intensity-modulated radiation therapy plans using 4, 5, and 7 beams (4B, 5B, and 7B) were developed for each patient by direct machine parameter optimization (DMPO). All plans were evaluated with respect to dose volumes to irradiated targets and normal structures, with statistical comparisons made between 4B with 5B and 7B intensity-modulated radiation therapy plans. Differences among plans were evaluated using a two-tailed Friedman test at a statistical significance of p < 0.05. The maximum dose, average dose, and the conformity index (CI) of planning target volume 1 (PTV1) were similar for 3 plans for each case. No significant difference of coverage for planning target volume 1 and maximum dose for spinal cords were observed among 3 plans in present study (p > 0.05). The average V 5 , V 13 , V 20 , mean lung dose, and generalized equivalent uniform dose (gEUD) for the total lung were significantly lower in 4B-plans than those data in 5B-plans and 7B-plans (p < 0.01). Although the average V 30 for the total lung were significantly higher in 4B-plans than those in 5B-plans and 7B-plans (p < 0.05). In addition, when comparing with the 4B-plans, the conformity/heterogeneity index of the 5B- and 7B-plans were significantly superior (p < 0.05). The 4B-intensity-modulated radiation therapy plan has advantage to address the specialized problem of lung sparing to low- and intermediate-dose exposure in the thorax when dealing with relative long tumors extended inferiorly to the thoracic esophagus for upper esophageal carcinoma with the cost for less conformity. Studies are needed to compare the superiority of volumetric modulated arc therapy with intensity

  10. Using a LIDAR Vegetation Model to Predict UHF SAR Attenuation in Coniferous Forests

    PubMed Central

    Swanson, Alan; Huang, Shengli; Crabtree, Robert

    2009-01-01

    Attenuation of radar signals by vegetation can be a problem for target detection and GPS reception, and is an important parameter in models describing vegetation backscatter. Here we first present a model describing the 3D distribution of stem and foliage structure based on small footprint scanning LIDAR data. Secondly we present a model that uses ray-tracing methodology to record detailed interactions between simulated radar beams and vegetation components. These interactions are combined over the SAR aperture and used to predict two-way attenuation of the SAR signal. Accuracy of the model is demonstrated using UHF SAR observations of large trihedral corner reflectors in coniferous forest stands. Our study showed that the model explains between 66% and 81% of the variability in observed attenuation. PMID:22573972

  11. Fighting in a Contested Space Environment: Training Marines for Operations with Degraded or Denied Space-Enabled Capabilities

    DTIC Science & Technology

    2015-06-01

    System UFG Ulchi Freedom Guardian UFO UHF Follow-On System UHF Ultra-High Frequency URE User Range Error VTC Video Teleconference WGS Wideband...in the UHF band; two legacy systems, Fleet Satellite Communication System (FLTSATCOM) and UHF Follow-on ( UFO ), and the new constellation being

  12. [Impact of various millimeter-range electromagnetic radiation schedules on immunological parameters in patients with respiratory sarcoidosis].

    PubMed

    Borisov, S B; Shpykov, A S; Terent'eva, N A

    2007-01-01

    The paper analyzes the impact of various millimeter-range electromagnetic radiation schedules on immunological parameters in 152 patients with new-onset respiratory sarcoidosis. It shows that the immunomodulatory effect of millimeter-range therapy depends on the treatment regimen chosen. There is evidence for the advantages of millimeter-range noise electromagnetic radiation.

  13. Impact of errors in short wave radiation and its attenuation on modeled upper ocean heat content

    DTIC Science & Technology

    Photosynthetically available radiation (PAR) and its attenuation with the depth represent a forcing (source) term in the governing equation for the...and vertical attenuation of PAR have on the upper ocean model heat content. In the Monterey Bay area, we show that with a decrease in water clarity...attenuation coefficient. For Jerlov’s type IA water (attenuation coefficient is 0.049 m1), the relative error in surface PAR introduces an error

  14. Upper stellar mass limit by radiative feedback at low-metallicities: metallicity and accretion rate dependence

    NASA Astrophysics Data System (ADS)

    Fukushima, Hajime; Omukai, Kazuyuki; Hosokawa, Takashi

    2018-02-01

    We investigate the upper stellar mass limit set by radiative feedback for a forming star with various accretion rates and metallicities. Thus, we numerically solve the structures of both a protostar and its surrounding accretion envelope assuming a spherical symmetric and steady flow. The optical depth of the dust cocoon, a dusty part of the accretion envelope, differs for direct light from the stellar photosphere and diffuse light re-emitted as dust thermal emission. As a result, varying the metallicity qualitatively changes the way that the radiative feedback suppresses the accretion flow. With a fixed accretion rate of 10-3 M⊙ yr-1, both direct and diffuse light jointly operate to prevent mass accretion at Z ≳ 10-1 Z⊙. At Z ≲ 10-1 Z⊙, the diffuse light is no longer effective and the direct light solely limits the mass accretion. At Z ≲ 10-3 Z⊙, formation of the H II region plays an important role in terminating the accretion. The resultant upper mass limit increases with decreasing metallicity, from a few × 10 M⊙ to ∼103 M⊙ over Z = 1 Z⊙-10-4 Z⊙. We also illustrate how the radiation spectrum of massive star-forming cores changes with decreasing metallicity. First, the peak wavelength of the spectrum, which is located around 30 μm at 1 Z⊙, shifts to < 3 μm at Z ≲ 0.1 Z⊙. Secondly, a characteristic feature at 10 μm due to the amorphous silicate band appears as a dip at 1 Z⊙, but changes to a bump at Z ≲ 0.1 Z⊙. Using these spectral signatures, we can search massive accreting protostars in nearby low-metallicity environments with upcoming observations.

  15. Application of HFCT and UHF Sensors in On-Line Partial Discharge Measurements for Insulation Diagnosis of High Voltage Equipment

    PubMed Central

    Álvarez, Fernando; Garnacho, Fernando; Ortego, Javier; Sánchez-Urán, Miguel Ángel

    2015-01-01

    Partial discharge (PD) measurements provide valuable information for assessing the condition of high voltage (HV) insulation systems, contributing to their quality assurance. Different PD measuring techniques have been developed in the last years specially designed to perform on-line measurements. Non-conventional PD methods operating in high frequency bands are usually used when this type of tests are carried out. In PD measurements the signal acquisition, the subsequent signal processing and the capability to obtain an accurate diagnosis are conditioned by the selection of a suitable detection technique and by the implementation of effective signal processing tools. This paper proposes an optimized electromagnetic detection method based on the combined use of wideband PD sensors for measurements performed in the HF and UHF frequency ranges, together with the implementation of powerful processing tools. The effectiveness of the measuring techniques proposed is demonstrated through an example, where several PD sources are measured simultaneously in a HV installation consisting of a cable system connected by a plug-in terminal to a gas insulated substation (GIS) compartment. PMID:25815452

  16. A comparison of the UHF Follow-On and MILSTAR satellite communication systems

    NASA Astrophysics Data System (ADS)

    Perkins, Clifton E., Jr.

    1991-09-01

    The author compares the UHF Follow-On and MILSTAR satellite communication systems. The comparison uses an analytical hierarchy process. Although the two systems have been tasked with different missions, a comparison of cost, capability, and orbit is conducted. UFO provides many of the same capabilities as MILSTAR, but on a smaller scale. Since UFO is also a new space system acquisition, it is used to compare dollars spent to field a viable communication system. A review of frequency bands, losses, and problems is conducted to establish the relationship. Cost data is provided to establish the major difference in the systems. While MILSTAR does possess more total capability than UFO, it is 10 times more costly. Additionally, UFO is a satellite that will evolve with new technology while MILSTAR is built to full capability immediately. In the author's opinion, the incremental performance of MILSTAR does not justify its incremental cost.

  17. Upper limits to submillimetre-range forces from extra space-time dimensions.

    PubMed

    Long, Joshua C; Chan, Hilton W; Churnside, Allison B; Gulbis, Eric A; Varney, Michael C M; Price, John C

    2003-02-27

    String theory is the most promising approach to the long-sought unified description of the four forces of nature and the elementary particles, but direct evidence supporting it is lacking. The theory requires six extra spatial dimensions beyond the three that we observe; it is usually supposed that these extra dimensions are curled up into small spaces. This 'compactification' induces 'moduli' fields, which describe the size and shape of the compact dimensions at each point in space-time. These moduli fields generate forces with strengths comparable to gravity, which according to some recent predictions might be detected on length scales of about 100 microm. Here we report a search for gravitational-strength forces using planar oscillators separated by a gap of 108 micro m. No new forces are observed, ruling out a substantial portion of the previously allowed parameter space for the strange and gluon moduli forces, and setting a new upper limit on the range of the string dilaton and radion forces.

  18. Ultra-compact UHF Band-pass Filter Designed by Archimedes Spiral Capacitor and Shorted-loaded Stubs

    NASA Astrophysics Data System (ADS)

    Peng, Lin; Jiang, Xing

    2015-01-01

    UHF microstrip band-pass filters (BPFs) that much smaller than the referred BPFs are proposed in this communication. For the designing purpose of compactness, archimedes spiral capacitor and ground-loaded stubs are utilized to enhance capacitances and inductance of a filter. Two compact BPFs denoted as BPF 1 and BPF 2 are designed by applying these techniques. The size of BPF 1 and BPF 2 are 0.062 λg × 0.056 λg and 0.047 λg × 0.043 λg, respectively, where λg are guided wavelengths of the centre frequencies of the corresponding filters. The proposed filters were constructed and measured, and the measured results are in good agreement with the simulated ones.

  19. Upper limit on magnetic monopole flux from Baksan experiment

    NASA Technical Reports Server (NTRS)

    Alexeyev, E. N.; Boliev, M. M.; Chudakov, A. E.; Mikheyev, S. P.

    1985-01-01

    No indication of slowly moving penetrating particles in cosmic radiation underground was found during two years observation. Particle velocity and pulse shape are main criteria for search. Probability of the imitation of slow particles (Beta 0.1) by atmospheric muons is negligible. Our upper limit on superheavy magnetic monopole flux is now 1.86 x 10 to the minus 15th power cm(-2) sr(-1) s(-1) (90% c.l.) for velocity range 2 x 0.0001 beta 0.1.

  20. Some characteristics of the glutathione cycle revealed by ionising and non-ionising electromagnetic radiation.

    PubMed

    Holt, J A

    1995-10-01

    The cyclic reaction of GSH-->GSSG-->GSH (designated R(exp) or R(e)) obeys the three specific features of life by producing energy in exponential quantities relative to time, is in effect irreversible and is inherited from generation to generation. In multicellular life, this reaction produces the energy for mitosis and is kept in controlled inactivity until needed to maintain perfection of form and function by energising mitosis. The immediate control of Re appears to be feedback process-dependent on the concentration of GSSG. Ultra high-frequency electromagnetic radiation of 434 MHz (UHF) will change Re from inactive to active and, in so doing, it causes resonance and/or fluorescence of the glutathione cycle which changes its radiosensitivity. Re is the primary direct target of ionising radiation and produces the energy for mitosis. Clinical observations suggest that, in the normal cell, Re is inactive and is not killed by 3 x 2700 rads or 6 x 1650 rads yet, when active, its sensitivity value (DO) is approximately 160 rads. Using the standard radiobiological equation of response to ionising radiation, it can be deduced that radiosensitive cancers have two or three Re units active per cell and radioresistance increases in proportion to the number of potentially active Re units per cell. Re appears to be the main cause of cancers' increased conductivity of electricity compared with normal tissue. In cancer therapy, UHF is the best radiosensitiser ever discovered (up to two or more decades). Re is also intelligent compared with non-exponential reactions but cannot be the basis of intellectual brain functions which must be based on non-electrical chemical processes.

  1. Temporal Variability of Upper-level Winds at the Eastern Range, Western Range and Wallops Flight Facility

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.

    2014-01-01

    Space launch vehicle commit-to-launch decisions include an assessment of the upper-level (UL) atmospheric wind environment to assess the vehicle's controllability and structural integrity during ascent. These assessments occur at predetermined times during the launch countdown based on measured wind data obtained prior to the assessment. However, the pre-launch measured winds may not represent the wind environment during the vehicle ascent. Uncertainty in the UL winds over the time period between the assessment and launch can be mitigated by a statistical analysis of wind change over time periods of interest using historical data from the launch range. Without historical data, theoretical wind models must be used, which can result in inaccurate wind placards that misrepresent launch availability. Using an overconservative model could result in overly restrictive vehicle wind placards, thus potentially reducing launch availability. Conversely, using an under-conservative model could result in launching into winds that might damage or destroy the vehicle. A large sample of measured wind profiles best characterizes the wind change environment. These historical databases consist of a certain number of wind pairs, where two wind profile measurements spaced by the time period of interest define a pair.

  2. Upper flow regime sheets, lenses and scour fills: Extending the range of architectural elements for fluvial sediment bodies

    NASA Astrophysics Data System (ADS)

    Fielding, Christopher R.

    2006-08-01

    Fluvial strata dominated internally by sedimentary structures of interpreted upper flow regime origin are moderately common in the rock record, yet their abundance is not appreciated and many examples may go unnoticed. A spectrum of sedimentary structures is recognised, all of which occur over a wide range of scale: 1. cross-bedding with humpback, sigmoidal and ultimately low-angle cross-sectional foreset geometries (interpreted as recording the transition from dune to upper plane bed bedform stability field), 2. planar/flat lamination with parting lineation, characteristic of the upper plane bed phase, 3. flat and low-angle lamination with minor convex-upward elements, characteristic of the transition from upper plane bed to antidune stability fields, 4. convex-upward bedforms, down- and up-palaeocurrent-dipping, low-angle cross-bedding and symmetrical drapes, interpreted as the product of antidunes, and 5. backsets terminating updip against an upstream-dipping erosion surface, interpreted as recording chute and pool conditions. In some fluvial successions, the entirety or substantial portions of channel sandstone bodies may be made up of such structures. These Upper Flow Regime Sheets, Lenses and Scour Fills (UFR) are defined herein as an extension of Miall's [Miall, A.D., 1985. Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth Sci. Rev. 22: 261-308.] Laminated Sand Sheets architectural element. Given the conditions that favour preservation of upper flow regime structures (rapid changes in flow strength), it is suggested that the presence of UFR elements in ancient fluvial successions may indicate sediment accumulation under the influence of a strongly seasonal palaeoclimate that involves a pronounced seasonal peak in precipitation and runoff.

  3. Critical Two-Point Function for Long-Range O( n) Models Below the Upper Critical Dimension

    NASA Astrophysics Data System (ADS)

    Lohmann, Martin; Slade, Gordon; Wallace, Benjamin C.

    2017-12-01

    We consider the n-component |φ|^4 lattice spin model (n ≥ 1) and the weakly self-avoiding walk (n=0) on Z^d, in dimensions d=1,2,3. We study long-range models based on the fractional Laplacian, with spin-spin interactions or walk step probabilities decaying with distance r as r^{-(d+α )} with α \\in (0,2). The upper critical dimension is d_c=2α . For ɛ >0, and α = 1/2 (d+ɛ ), the dimension d=d_c-ɛ is below the upper critical dimension. For small ɛ , weak coupling, and all integers n ≥ 0, we prove that the two-point function at the critical point decays with distance as r^{-(d-α )}. This "sticking" of the critical exponent at its mean-field value was first predicted in the physics literature in 1972. Our proof is based on a rigorous renormalisation group method. The treatment of observables differs from that used in recent work on the nearest-neighbour 4-dimensional case, via our use of a cluster expansion.

  4. Near-field thermal radiation of deep- subwavelength slits in the near infrared range.

    PubMed

    Guo, Yan; Li, Kuanbiao; Xu, Ying; Wei, Kaihua

    2017-09-18

    We numerically investigate the thermal radiation of one-dimensional deep subwavelength slits in the near infrared range. Using numerical calculations of single-slit and multi-slit structures, we find that high-level radiation efficiency can be achieved for a wide spectrum when ultra-thin intermediate layers are used, and it is less affected by structure parameters. The underlying mechanisms involve Surface Plasmon Polaritons resonance and Fabry-Perot interference at each slit and the interaction between adjacent slits. This structure helps understand and improve the design of thermal radiation control devices.

  5. Coherent radiation of relativistic electrons in dielectric fibers in the millimeter wavelength range

    NASA Astrophysics Data System (ADS)

    Naumenko, G. A.; Potylitsyn, A. P.; Bleko, V. V.; Soboleva, V. V.

    2015-02-01

    The generation of visible light by a relativistic electron beam in dielectric fibers was considered in X. Artru and C. Ray, Nucl. Inst. Meth. B 309, 4 (2013), where the characteristics of radiation induced in a fiber by the electromagnetic field of a relativistic charged particle were studied and it was emphasized that they differ from those in the traditional mechanisms of radiation such as transition and diffraction. We have experimentally studied the characteristics of such a radiation in the millimeter wavelength range. It has been shown that radiation can be generated through different mechanisms depending on the geometry of the position of a fiber with respect to the trajectory of the charged particle. Fibers have been shown to be promising for nondestructive diagnostics of accelerator beams.

  6. Microbial Isolates from the Upper Atmosphere Support Panspermia Hypothesis

    NASA Astrophysics Data System (ADS)

    Yang, Yinjie; Yokobori, Shin-Ichi; Yamagishi, Akihiko

    Terrestrial microbes may be transported into the upper atmosphere via various means. Due to the environmental similarity of the upper atmosphere to outer space, knowledge of microbes in the upper atmosphere would be valuable for assessing the chances and limits of microbial transfer from the earth to extraterrestrial bodies (i.e., Panspermia of terrestrial microbes). We collected air dust samples in the upper troposphere and the stratosphere over Japan by using aircrafts or balloons. Microbial isolates from the samples were endospore-forming species (Bacillus, Paenibacillus, Streptomyces) and non-spore-forming Deinococci. Besides the evidence of microbial presence in the upper atmosphere, we show the possible presence of terrestrial microbes in space by extrapolated height-dependent distribution of microbes. High resistance to radiation and desiccation was common for our upper-atmospheric isolates and likely the most important feature enabled their survival in the environment of elevated radiation and desiccation. In this regard, Panspermia of viable Deinococci and endospores would be more likely than other terrestrial microbes. Specifically, the Deinococcus isolates exhibited extreme resistance to radiation (several times higher than bacterial endospores), the principle threat for microbial survival during interplanetary transfer. Based on detailed characterization of the Deinococcus isolates, we proposed two new species Deinococcus aerius sp. nov. and Deinococcus aetherius sp. nov., which are now candidate microbes for exposure experiment in space.

  7. Effects of Various Wavelength Ranges of Vacuum Ultraviolet Radiation on Teflon FEP Film Investigated

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; McCracken, Cara A.

    2004-01-01

    Teflon Fluorinated Ethylene Propylene (FTP) films (DuPont) have been widely used for spacecraft thermal control and have been observed to become embrittled and cracked upon exposure to the space environment. This degradation has been attributed to a synergistic combination of radiation and thermal effects. A research study was undertaken at the NASA Glenn Research Center to examine the effects of different wavelength ranges of vacuum ultraviolet (VUV) radiation on the degradation of the mechanical properties of FEP. This will contribute to an overall understanding of space radiation effects on Teflon FEP, and will provide information necessary to determine appropriate techniques for using laboratory tests to estimate space VUV degradation. Research was conducted using inhouse facilities at Glenn and was carried out, in part, through a grant with the Cleveland State University. Samples of Teflon FEP film of 50.8 microns thickness were exposed to radiation from a VUV lamp from beneath different cover windows to provide different exposure wavelength ranges: MgF2 (115 to 400 nm), crystalline quartz (140 to 400 nm), and fused silica (FS, 155 to 400 nm). Following exposure, FEP film specimens were tensile tested to determine the ultimate tensile strength and elongation at failure as a function of the exposure duration for each wavelength range. The graphs show the effect of ultraviolet exposure on the mechanical properties of the FEP samples.

  8. Monitoring dynamic reactions of red blood cells to UHF electromagnetic waves radiation using a novel micro-imaging technology.

    PubMed

    Ruan, Ping; Yong, Junguang; Shen, Hongtao; Zheng, Xianrong

    2012-12-01

    Multiple state-of-the-art techniques, such as multi-dimensional micro-imaging, fast multi-channel micro-spetrophotometry, and dynamic micro-imaging analysis, were used to dynamically investigate various effects of cell under the 900 MHz electromagnetic radiation. Cell changes in shape, size, and parameters of Hb absorption spectrum under different power density electromagnetic waves radiation were presented in this article. Experimental results indicated that the isolated human red blood cells (RBCs) do not have obviously real-time responses to the ultra-low density (15 μW/cm(2), 31 μW/cm(2)) electromagnetic wave radiation when the radiation time is not more than 30 min; however, the cells do have significant reactions in shape, size, and the like, to the electromagnetic waves radiation with power densities of 1 mW/cm(2) and 5 mW/cm(2). The data also reveal the possible influences and statistical relationships among living human cell functions, radiation amount, and exposure time with high-frequency electromagnetic waves. The results of this study may be significant on protection of human being and other living organisms against possible radiation affections of the high-frequency electromagnetic waves.

  9. Comparison of Phase-Based 3D Near-Field Source Localization Techniques for UHF RFID.

    PubMed

    Parr, Andreas; Miesen, Robert; Vossiek, Martin

    2016-06-25

    In this paper, we present multiple techniques for phase-based narrowband backscatter tag localization in three-dimensional space with planar antenna arrays or synthetic apertures. Beamformer and MUSIC localization algorithms, known from near-field source localization and direction-of-arrival estimation, are applied to the 3D backscatter scenario and their performance in terms of localization accuracy is evaluated. We discuss the impact of different transceiver modes known from the literature, which evaluate different send and receive antenna path combinations for a single localization, as in multiple input multiple output (MIMO) systems. Furthermore, we propose a new Singledimensional-MIMO (S-MIMO) transceiver mode, which is especially suited for use with mobile robot systems. Monte-Carlo simulations based on a realistic multipath error model ensure spatial correlation of the simulated signals, and serve to critically appraise the accuracies of the different localization approaches. A synthetic uniform rectangular array created by a robotic arm is used to evaluate selected localization techniques. We use an Ultra High Frequency (UHF) Radiofrequency Identification (RFID) setup to compare measurements with the theory and simulation. The results show how a mean localization accuracy of less than 30 cm can be reached in an indoor environment. Further simulations demonstrate how the distance between aperture and tag affects the localization accuracy and how the size and grid spacing of the rectangular array need to be adapted to improve the localization accuracy down to orders of magnitude in the centimeter range, and to maximize array efficiency in terms of localization accuracy per number of elements.

  10. Using Proton Radiation from the Moon to Probe Regolith Hydrogenation in the Upper 1-10 cm

    NASA Astrophysics Data System (ADS)

    Schwadron, N.; Wilson, J. K.; Jordan, A.; Looper, M. D.; Zeitlin, C. J.; Townsend, L.; Spence, H. E.; Farrell, W. M.; Petro, N. E.; Stubbs, T. J.; Pieters, C. M.

    2017-12-01

    Detection of proton radiation from the Moon offers a new observational method for mapping compositional variations over the lunar surface. Recently, it was discovered that the yield of high energy "albedo" proton radiation coming from the lunar regolith due to bombardment by galactic cosmic rays (GCRs) depends on latitude: the yield increases toward higher latitudes. This dependence was attributed to a surface layer of hydrogenated regolith near the poles. Here, an improved technique is developed to use the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter to detect proton radiation from the lunar horizon and from lunar nadir and to use this to investigate diurnal variation in near-surface hydrogenation. Based on measurements taken in 2015, CRaTER observes an average proton albedo rate with a higher yield of protons from the lunar horizon than from the nadir. Both the average proton radiation albedo rate and the excess of proton radiation from the lunar horizon agree well with simulations. The measurements provide further evidence for the existence of the lunar hydrogenation layer. Lastly, CRaTER finds a yield (defined by the proton albedo divided by the GCR input) that is higher on the morning terminator compared to the evening terminator. Based on the observational statistics, there is a significant likelihood that the AM terminator produces a higher yield in the proton radiation albedo than the PM terminator during the period studied. While this presents some possible evidence of an AM enhancement, the excess could also potentially be explained by variation in GCR heavy species (He and heavier species). While initial results of an improved technique for measuring the proton radiation albedo are promising, the observational dataset utilized by CRaTER must be expanded significantly to reduce uncertainties in the search for temporal evolution and the excess of proton radiation from the lunar horizon as we probe

  11. Extension of On-Surface Radiation Condition (OSRC) theory to full-vector electromagnetic wave scattering by three-dimensional conducting, dielectric, and coated targets

    NASA Astrophysics Data System (ADS)

    Taflove, Allen; Umashankar, Korada R.

    1993-08-01

    This project introduced radiation boundary condition (RBC) and absorbing boundary condition (ABC) theory to the engineering electromagnetics community. An approximate method for obtaining the scattering of 2-D and 3-D bodies, the on-surface radiation condition (OSRC) method, was formulated and validated. RBC's and ABC's were shown to work well at points closer to scatterers than anyone had expected. Finite-difference time domain (FD-TD) methods exploiting these ABC's were pursued for applications in scattering, radiation, penetration, biomedical studies, and nonlinear optics. Multiprocessing supercomputer software was developed for FD-TD, leading to the largest scale detailed electromagnetic wave interaction models ever conducted, including entire jet fighter aircraft modeled for radar cross section (RCS) at UHF frequencies up to 500 MHz.

  12. Radiation-Induced Cranial Nerve Palsy: A Cross-Sectional Study of Nasopharyngeal Cancer Patients After Definitive Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Lin, E-mail: konglinj@gmail.co; Lu, Jiade J.; Department of Radiation Oncology, National University Cancer Institute of Singapore

    2011-04-01

    Purpose: To address the characteristics and the causative factors of radiation-induced cranial nerve palsy (CNP) in nasopharyngeal carcinoma (NPC) patients with an extensive period of followed-up. Patients and Methods: A total of 317 consecutive and nonselected patients treated with definitive external-beam radiotherapy between November 1962 and February 1995 participated in this study. The median doses to the nasopharynx and upper neck were 71 Gy (range, 55-86 Gy) and 61 Gy (range, 34-72 Gy), respectively. Conventional fractionation was used in 287 patients (90.5%). Forty-five patients (14.2%) received chemotherapy. Results: The median follow-up was 11.4 years (range, 5.1-38.0 years). Ninety-eight patients (30.9%)more » developed CNP, with a median latent period of 7.6 years (range, 0.3-34 years). Patients had a higher rate of CNP (81 cases, 25.5%) in lower-group cranial nerves compared with upper group (44 cases, 13.9%) ({chi}{sup 2} = 34.444, p < 0.001). Fifty-nine cases experienced CNP in more than one cranial nerve. Twenty-two of 27 cases (68.8%) of intragroup CNP and 11 of 32 cases (40.7%) of intergroup CNP occurred synchronously ({chi}{sup 2} = 4.661, p = 0.031). The cumulative incidences of CNP were 10.4%, 22.4%, 35.5%, and 44.5% at 5, 10, 15, and 20 years, respectively. Multivariate analyses revealed that CNP at diagnosis, chemotherapy, total radiation dose to the nasopharynx, and upper neck fibrosis were independent risk factors for developing radiation-induced CNP. Conclusion: Radiation-induced fibrosis may play an important role in radiation-induced CNP. The incidence of CNP after definitive radiotherapy for NPC remains high after long-term follow-up and is dose and fractionation dependent.« less

  13. Radiative lifetimes, branching fractions, and oscillator strengths of some levels in Be I

    NASA Astrophysics Data System (ADS)

    Wang, Xinghao; Quinet, Pascal; Li, Qiu; Yu, Qi; Li, Yongfan; Wang, Qian; Gong, Yimin; Dai, Zhenwen

    2018-06-01

    Radiative lifetimes of five levels in Be I lying in the energy range 64,506.45-71,160.52 cm-1 were measured by the time-resolved laser-induced fluorescence technique. These new data, together with previously measured radiative lifetimes and two reliable calculated lifetimes, were combined with branching fractions obtained from pseudo-relativistic Hartree-Fock calculations to deduce semi-empirical transition probabilities and oscillator strengths for 90 Be I spectral lines involving upper levels ranging from 42,565.35 to 72,251.27 cm-1.

  14. Increased seedling establishment via enemy release at the upper elevational range limit of sugar maple.

    PubMed

    Urli, Morgane; Brown, Carissa D; Narváez Perez, Rosela; Chagnon, Pierre-Luc; Vellend, Mark

    2016-11-01

    The enemy release hypothesis is frequently invoked to explain invasion by nonnative species, but studies focusing on the influence of enemies on natural plant range expansion due to climate change remain scarce. We combined multiple approaches to study the influence of plant-enemy interactions on the upper elevational range limit of sugar maple (Acer saccharum) in southeastern Québec, Canada, where a previous study had demonstrated intense seed predation just beyond the range limit. Consistent with the hypothesis of release from natural enemies at the range limit, data from both natural patterns of regeneration and from seed and seedling transplant experiments showed higher seedling densities at the range edge than in the core of the species' distribution. A growth chamber experiment manipulating soil origin and temperature indicated that this so-called "happy edge" was not likely caused by temperature (i.e., the possibility that climate warming has made high elevation temperatures optimal for sugar maple) or by abiotic soil factors that vary along the elevational gradient. Finally, an insect-herbivore-exclusion experiment showed that insect herbivory was a major cause of seedling mortality in the core of sugar maple's distribution, whereas seedlings transplanted at or beyond the range edge experienced minimal herbivory (i.e., enemy release). Insect herbivory did not completely explain the high levels of seedling mortality in the core of the species' distribution, suggesting that seedlings at or beyond the range edge may also experience release from pathogens. In sum, while some effects of enemies are magnified beyond range edges (e.g., seed predation), others are dampened at and beyond the range edge (e.g., insect herbivory), such that understanding the net outcome of different biotic interactions within, at and beyond the edge of distribution is critical to predicting species' responses to global change. © 2016 by the Ecological Society of America.

  15. Passive UHF RFID Tag for Multispectral Assessment

    PubMed Central

    Escobedo, Pablo; Carvajal, Miguel A.; Capitán-Vallvey, Luis F.; Fernández-Salmerón, José; Martínez-Olmos, Antonio; Palma, Alberto J.

    2016-01-01

    This work presents the design, fabrication, and characterization of a passive printed radiofrequency identification tag in the ultra-high-frequency band with multiple optical sensing capabilities. This tag includes five photodiodes to cover a wide spectral range from near-infrared to visible and ultraviolet spectral regions. The tag antenna and circuit connections have been screen-printed on a flexible polymeric substrate. An ultra-low-power microcontroller-based switch has been included to measure the five magnitudes issuing from the optical sensors, providing a spectral fingerprint of the incident electromagnetic radiation from ultraviolet to infrared, without requiring energy from a battery. The normalization procedure has been designed applying illuminants, and the entire system was tested by measuring cards from a colour chart and sensing fruit ripening. PMID:27428973

  16. Passive UHF RFID Tag for Multispectral Assessment.

    PubMed

    Escobedo, Pablo; Carvajal, Miguel A; Capitán-Vallvey, Luis F; Fernández-Salmerón, José; Martínez-Olmos, Antonio; Palma, Alberto J

    2016-07-14

    This work presents the design, fabrication, and characterization of a passive printed radiofrequency identification tag in the ultra-high-frequency band with multiple optical sensing capabilities. This tag includes five photodiodes to cover a wide spectral range from near-infrared to visible and ultraviolet spectral regions. The tag antenna and circuit connections have been screen-printed on a flexible polymeric substrate. An ultra-low-power microcontroller-based switch has been included to measure the five magnitudes issuing from the optical sensors, providing a spectral fingerprint of the incident electromagnetic radiation from ultraviolet to infrared, without requiring energy from a battery. The normalization procedure has been designed applying illuminants, and the entire system was tested by measuring cards from a colour chart and sensing fruit ripening.

  17. A research on radiation calibration of high dynamic range based on the dual channel CMOS

    NASA Astrophysics Data System (ADS)

    Ma, Kai; Shi, Zhan; Pan, Xiaodong; Wang, Yongsheng; Wang, Jianghua

    2017-10-01

    The dual channel complementary metal-oxide semiconductor (CMOS) can get high dynamic range (HDR) image through extending the gray level of the image by using image fusion with high gain channel image and low gain channel image in a same frame. In the process of image fusion with dual channel, it adopts the coefficients of radiation response of a pixel from dual channel in a same frame, and then calculates the gray level of the pixel in the HDR image. For the coefficients of radiation response play a crucial role in image fusion, it has to find an effective method to acquire these parameters. In this article, it makes a research on radiation calibration of high dynamic range based on the dual channel CMOS, and designs an experiment to calibrate the coefficients of radiation response for the sensor it used. In the end, it applies these response parameters in the dual channel CMOS which calibrates, and verifies the correctness and feasibility of the method mentioned in this paper.

  18. The Immediate Effects of Upper Thoracic Translatoric Spinal Manipulation on Cervical Pain and Range of Motion: A Randomized Clinical Trial

    PubMed Central

    Krauss, John; Creighton, Doug; Ely, Jonathan D.; Podlewska-Ely, Joanna

    2008-01-01

    This study examined the effect of translatoric spinal manipulation (TSM) on cervical pain and cervical active motion restriction when applied to upper thoracic (T1-T4) segments. Active cervical rotation range of motion was measured re- and post-intervention with a cervical inclinometer (CROM), and cervical pain status was monitored before and after manipulation with a Faces Pain Scale. Study participants included a sample of convenience that included 32 patients referred to physical therapy with complaints of pain in the mid-cervical region and restricted active cervical rotation. Twenty-two patients were randomly assigned to the experimental group and ten were assigned to the control group. Pre- and post-intervention cervical range of motion and pain scale measurements were taken by a physical therapist assistant who was blinded to group assignment. The experimental group received TSM to hypomobile upper thoracic segments. The control group received no intervention. Paired t-tests were used to analyze within-group changes in cervical rotation and pain, and a 2-way repeated-measure ANOVA was used to analyze between-group differences in cervical rotation and pain. Significance was accepted at p = 0.05. Significant changes that exceeded the MDC95 were detected for cervical rotation both within group and between groups with the TSM group demonstrating increased mean (SD) in right rotation of 8.23° (7.41°) and left rotation of 7.09° (5.83°). Pain levels perceived during post-intervention cervical rotation showed significant improvement during right rotation for patients experiencing pain during bilateral rotation only (p=.05). This study supports the hypothesis that spinal manipulation applied to the upper thoracic spine (T1-T4 motion segments) significantly increases cervical rotation ROM and may reduce cervical pain at end range rotation for patients experiencing pain during bilateral cervical rotation. PMID:19119394

  19. Orbit characteristics of the tristatic EISCAT UHF meteors

    NASA Astrophysics Data System (ADS)

    Szasz, C.; Kero, J.; Meisel, D. D.; Pellinen-Wannberg, A.; Wannberg, G.; Westman, A.

    2008-07-01

    The tristatic EISCAT 930-MHz UHF system is used to determine the absolute geocentric velocities of meteors detected with all three receivers simultaneously at 96 km, the height of the common radar volume. The data used in this study were taken between 2002 and 2005, during four 24-h runs at summer/winter solstice and vernal/autumnal equinox to observe the largest seasonal difference. The observed velocities of 410 tristatic meteors are integrated back through the Earth atmosphere to find their atmospheric entry velocities using an ablation model. Orbit calculations are performed by taking zenith attraction, Earth rotation as well as obliquity of the ecliptic into account. The results are presented in the form of different orbital characteristics. None of the observed meteors appears to be of extrasolar or asteroidal origin; comets, particularly short-period (<200 yr) ones, may be the dominant source for the particles observed. About 40 per cent of the radiants can be associated with the north apex sporadic meteor source and 58 per cent of the orbits are retrograde. There is evidence of resonance gaps at semimajor axis values corresponding to commensurabilities with Jupiter, which may be the first convincing evidence of Jupiter's gravitational influence on the population of small sporadic meteoroids surveyed by radar. The geocentric velocity distribution is bimodal with a prograde population centred around 38 kms-1 and a retrograde population peaking at 59 kms-1. The EISCAT radar system is located close to the Arctic Circle, which means that the North Ecliptic Pole (NEP) is near zenith once every 24 h, i.e. during each observational period. In this particular geometry, the local horizon coincides with the ecliptic plane. The meteoroid influx should therefore be directly comparable throughout the year.

  20. The microwave limb sounder for the Upper Atmosphere Research Satellite

    NASA Technical Reports Server (NTRS)

    Waters, J. W.; Peckham, G. E.; Suttie, R. A.; Curtis, P. D.; Maddison, B. J.; Harwood, R. S.

    1988-01-01

    The Microwave Limb Sounder was designed to map the concentrations of trace gases from the stratosphere to the lower thermosphere, to improve understanding of the photochemical reactions which take place in this part of the atmosphere. The instrument will measure the intensity of thermal radiation from molecules in the atmosphere at frequencies corresponding to rotational absorption bands of chlorine monoxide, ozone, and water vapor. Molecular concentration profiles will be determined over a height range of 15 to 80 km (20 to 45 km for C10). The 57 deg inclination orbit proposed for the Upper Atmosphere Research Satellite will allow global coverage.

  1. Design and Optimization of Passive UHF RFID Tag Antenna for Mounting on or inside Material Layers

    NASA Astrophysics Data System (ADS)

    Shao, Shuai

    There is great desire to employ passive UHF RFID tags for inventory tracking and sensing in a diversity of applications and environments. Owing to its battery-free operation, non-line-of sight detection, low cost, long read range and small form factor, each year billions of RFID tags are being deployed in retail, logistics, manufacturing, biomedical inventories, among many other applications. However, the performance of these RFID systems has not met expectations. This is because a tag's performance deteriorates significantly when mounted on or inside arbitrary materials. The tag antenna is optimized only for a given type of material at a certain location of placement, and detuning takes place when attached to or embedded in materials with dielectric properties outside the design range. Thereby, different customized tags may be needed for identifying objects even within the same class of products. This increases the overall cost of the system. Furthermore, conventional copper foil-based RFID tag antennas are prone to metal fatigue and wear, and cannot survive hostile environments where antennas could be deformed by external forces and failures occur. Therefore, it is essential to understand the interaction between the antenna and the material in the vicinity of the tag, and design general purpose RFID tag antennas possessing excellent electrical performance as well as robust mechanical structure. A particularly challenging application addressed here is designing passive RFID tag antennas for automotive tires. Tires are composed of multiple layers of rubber with different dielectric properties and thicknesses. Furthermore, metallic plies are embedded in the sidewalls and steel belts lie beneath the tread to enforce mechanical integrity. To complicate matters even more, a typical tire experiences a 10% stretching during the construction process. This dissertation focuses on intuitively understanding the interaction between the antenna and the material in the

  2. Impact of Jovian radiation environmental hazard on spacecraft and mission development design

    NASA Technical Reports Server (NTRS)

    Divita, E.

    1972-01-01

    The environmental impact on the TOPS 12L configuration is discussed. The activities in system environmental design and testing are described, and radiation design restraints based on the upper limit model are given. Range energy cutoffs in aluminum are also presented and the effective shielding thicknesses for electrons and protons of different energies are included. Design integration problems and radiation testing aspects are considered. Data are given for selecting the parts which should be tested in a formal test program, and the piece-part radiation thresholds are tabulated for electrons and protons.

  3. A > 4 MGy radiation tolerant 8 THzOhm transimpedance amplifier with 50 dB dynamic range

    NASA Astrophysics Data System (ADS)

    Verbeeck, J.; Steyaert, M.; Leroux, P.

    2013-02-01

    A 130 nm Transimpedance Amplifier has been developed with a 255 MHz bandwidth, 90 dBΩ transimpedance gain and a dynamic input range of 1:325 or 50 dB for a photo-diode capacitance of 0.75 pF. The equivalent integrated input noise is 160 nA @ 25°C. The gain of the voltage amplifier, used in the transimpedance amplifier (TIA), degrades less than 3% over a temperature range from -40 °C up to 125 °C. The TIA and attenuator exhibit a radiation tolerance larger than 4 MGy, as evidenced by radiation assessment.

  4. Alternative chitosan-based EPR dosimeter applicable for a relatively wide range of gamma radiation doses

    NASA Astrophysics Data System (ADS)

    Piroonpan, Thananchai; Katemake, Pichayada; Panritdam, Eagkapong; Pasanphan, Wanvimol

    2017-12-01

    Chitosan biopolymer is proposed as an alternative EPR dosimeter. Its ability to be EPR dosimeter was studied in comparison with the conventional alanine, sugars (i.e., glucose and sucrose), formate derivatives (i.e., lithium (Li), magnesium (Mg), and calcium (Ca) formate). Ethylene vinyl acetate (EVA) and paraffin were used as binder for the preparation of composite EPR dosimeter. Dose responses of all materials were investigated in a wide dose range of radiation doses, i.e., low-level (0-1 kGy), medium-level (1-10 kGy) and high-level (10-100 kGy). The EPR dosimeter properties were studied under different parameters, i.e., microwave power, materials contents, absorbed doses, storage conditions and post-irradiation effects. Li-formate showed a simple EPR spectrum and exhibited superior radiation response for low-dose range; whereas chitosan and sucrose exhibited linear dose response in all studied dose ranges. The EPR signals of chitosan exhibited similar stability as glucose, Li-formate and alanine at ambient temperature after irradiation as long as a year. All EPR signals of the studied materials were affected post-irradiation temperature and humidity after gamma irradiation. The EPR signal of chitosan exhibited long-term stability and it was not sensitive to high storage temperatures and humidity values after irradiation. Chitosan has a good merit as the alternative bio-based material for a stable EPR dosimeter in a wide range of radiation-absorbed doses.

  5. The upper crust laid on its side: tectonic implications of steeply tilted crustal slabs for extension in the basin and range

    USGS Publications Warehouse

    Howard, Keith A.

    2005-01-01

    Tilted slabs expose as much as the top 8–15 km of the upper crust in many parts of the Basin and Range province. Exposures of now-recumbent crustal sections in these slabs allow analysis of pre-tilt depth variations in dike swarms, plutons, and thermal history. Before tilting the slabs were panels between moderately dipping, active Tertiary normal faults. The slabs and their bounding normal faults were tilted to piggyback positions on deeper footwalls that warped up isostatically beneath them during tectonic unloading. Stratal dips within the slabs are commonly tilted to vertical or even slightly overturned, especially in the southern Basin and Range where the thin stratified cover overlies similarly tilted basement granite and gneiss. Some homoclinal recumbent slabs of basement rock display faults that splay upward into forced folds in overlying cover sequences, which thereby exhibit shallower dips. The 15-km maximum exposed paleodepth for the slabs represents the base of the brittle upper crust, as it coincides with the depth of the modern base of the seismogenic zone and the maximum focal depths of large normal-fault earthquakes in the Basin and Range. Many upended slabs accompany metamorphic core complexes, but not all core complexes have corresponding thick recumbent hanging-wall slabs. The Ruby Mountains core complex, for example, preserves only scraps of upper-plate rocks as domed-up extensional klippen, and most of the thick crustal section that originally overlay the uplifted metamorphic core now must reside below little-tilted hanging-wall blocks in the Elko-Carlin area to the west. The Whipple and Catalina Mountains core complexes in contrast are footwall to large recumbent hanging-wall slabs of basement rock exposing 8-15 km paleodepths that originally roofed the metamorphic cores; the exposed paleodepths require that a footwall rolled up beneath the slabs.

  6. A theoretical study on directivity control of multiple-loudspeaker system with a quadrupole radiation pattern in low frequency range

    NASA Astrophysics Data System (ADS)

    Irwansyah, Kuse, Naoyuki; Usagawa, Tsuyoshi

    2017-08-01

    Directivity pattern of an ordinary loudspeaker becomes more directive at higher frequencies. However, because a single loudspeaker tends to radiate uniformly in all directions at low frequencies, reverberation from surrounding building walls may affect speech intelligibility when installing a multiple-loudspeaker system at crossroads. As an alternative, a sharply directive sound source is recommended to be used, but in many cases the directivity of an ordinary loudspeaker is less sharp at lower frequencies. Therefore, in order to overcome such a limitation, this paper discusses the possibility of using four loudspeakers under active control to realize a quadrupole radiation pattern in low frequency range. In this study, the radiation pattern of a primary loudspeaker and three secondary loudspeakers has been modelled. By placing the loudspeakers close together in the direction of 0°, 90°, 180°, and 270°, it was theoretically demonstrated that a quadrupole radiation pattern can be shaped in the target frequency range up to 600 Hz by simply controlling the directivity in three of four directions which are 45°, 135°, 225°, and 315°. Although, the radiation pattern model is far from realistic configurations and conditions, it is possible to realize a quadrupole radiation pattern in the low frequency range.

  7. MSG-7: Atmospheric Penetration of Solar Radiation in the Range of Schumann-runge Bands

    NASA Technical Reports Server (NTRS)

    Frederick, J. E.

    1982-01-01

    There have been major efforts in measuring extraterrestrial solar irradiance for use in atmospheric studies. The quantity of immediate relevance to theoretical studies is the number of photons which reach a given altitude in the middle atmosphere. Current models compute the attenuated radiation field but the cross sections available for the major absorbers, O2 and O3, often come from experiments that are now quite old. Balloon measurements show some significant differences between the predicted and observed ultraviolet radiation field between 30 and 40 km. The wavelength region to be studied includes Lyman alpha plus the range 175 nm to the visible. Specific topics to be addressed are as follows: (1) the cross sections of the major absorbers, O2 and O3 including the Schumann-Runge bands as a subset; (2) comparison of the in situ measurements of the attenuated radiation field with calculations; and (3) the relevance of the scattered and reflected radiation fields for middle atmospheric processes.

  8. MSG-7: atmospheric penetration of solar radiation in the range of Schumann-Runge bands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick, J.E.

    1982-12-01

    There have been major efforts in measuring extraterrestrial solar irradiance for use in atmospheric studies. The quantity of immediate relevance to theoretical studies is the number of photons which reach a given altitude in the middle atmosphere. Current models compute the attenuated radiation field but the cross sections available for the major absorbers, O2 and O3, often come from experiments that are now quite old. Balloon measurements show some significant differences between the predicted and observed ultraviolet radiation field between 30 and 40 km. The wavelength region to be studied includes Lyman alpha plus the range 175 nm to themore » visible. Specific topics to be addressed are as follows: (1) the cross sections of the major absorbers, O2 and O3 including the Schumann-Runge bands as a subset (2) comparison of the in situ measurements of the attenuated radiation field with calculations and (3) the relevance of the scattered and reflected radiation fields for middle atmospheric processes.« less

  9. An integrated model-driven method for in-treatment upper airway motion tracking using cine MRI in head and neck radiation therapy.

    PubMed

    Li, Hua; Chen, Hsin-Chen; Dolly, Steven; Li, Harold; Fischer-Valuck, Benjamin; Victoria, James; Dempsey, James; Ruan, Su; Anastasio, Mark; Mazur, Thomas; Gach, Michael; Kashani, Rojano; Green, Olga; Rodriguez, Vivian; Gay, Hiram; Thorstad, Wade; Mutic, Sasa

    2016-08-01

    For the first time, MRI-guided radiation therapy systems can acquire cine images to dynamically monitor in-treatment internal organ motion. However, the complex head and neck (H&N) structures and low-contrast/resolution of on-board cine MRI images make automatic motion tracking a very challenging task. In this study, the authors proposed an integrated model-driven method to automatically track the in-treatment motion of the H&N upper airway, a complex and highly deformable region wherein internal motion often occurs in an either voluntary or involuntary manner, from cine MRI images for the analysis of H&N motion patterns. Considering the complex H&N structures and ensuring automatic and robust upper airway motion tracking, the authors firstly built a set of linked statistical shapes (including face, face-jaw, and face-jaw-palate) using principal component analysis from clinically approved contours delineated on a set of training data. The linked statistical shapes integrate explicit landmarks and implicit shape representation. Then, a hierarchical model-fitting algorithm was developed to align the linked shapes on the first image frame of a to-be-tracked cine sequence and to localize the upper airway region. Finally, a multifeature level set contour propagation scheme was performed to identify the upper airway shape change, frame-by-frame, on the entire image sequence. The multifeature fitting energy, including the information of intensity variations, edge saliency, curve geometry, and temporal shape continuity, was minimized to capture the details of moving airway boundaries. Sagittal cine MR image sequences acquired from three H&N cancer patients were utilized to demonstrate the performance of the proposed motion tracking method. The tracking accuracy was validated by comparing the results to the average of two manual delineations in 50 randomly selected cine image frames from each patient. The resulting average dice similarity coefficient (93.28%  ±  1

  10. Performance Evaluation of UHF RFID Technologies for Real-Time Bus Recognition in the Taipei Bus Station

    PubMed Central

    Own, Chung-Ming; Lee, Da-Sheng; Wang, Ti-Ho; Wang, De-Jun; Ting, Yu-Lun

    2013-01-01

    Transport stations such as airports, ports, and railways have adopted blocked-type pathway management to process and control travel systems in a one-directional manner. However, this excludes highway transportation where large buses have great variability and mobility; thus, an instant influx of numerous buses increases risks and complicates station management. Focusing on Taipei Bus Station, this study employed RFID technology to develop a system platform integrated with modern information technology that has numerous characteristics. This modern information technology comprised the following systems: ultra-high frequency (UHF) radio-frequency identification (RFID), ultrasound and license number identification, and backstage graphic controls. In conclusion, the system enabled management, bus companies, and passengers to experience the national bus station's new generation technology, which provides diverse information and synchronization functions. Furthermore, this technology reached a new milestone in the energy-saving and efficiency-increasing performance of Taiwan's buses. PMID:23778192

  11. Energy deposition processes in biological tissue: nonthermal biohazards seem unlikely in the ultra-high frequency range.

    PubMed

    Pickard, W F; Moros, E G

    2001-02-01

    The prospects of ultra high frequency (UHF, 300--3000 MHz) irradiation producing a nonthermal bioeffect are considered theoretically and found to be small. First, a general formula is derived within the framework of macroscopic electrodynamics for the specific absorption rate of microwaves in a biological tissue; this involves the complex Poynting vector, the mass density of the medium, the angular frequency of the electromagnetic field, and the three complex electromagnetic constitutive parameters of the medium. In the frequency ranges used for cellular telephony and personal communication systems, this model predicts that the chief physical loss mechanism will be ionic conduction, with increasingly important contributions from dielectric relaxation as the frequency rises. However, even in a magnetite unit cell within a magnetosome the deposition rate should not exceed 1/10 k(B)T per second. This supports previous arguments for the improbability of biological effects at UHF frequencies unless a mechanism can be found for accumulating energy over time and space and focussing it. Second, three possible nonthermal accumulation mechanisms are then considered and shown to be unlikely: (i) multiphoton absorption processes; (ii) direct electric field effects on ions; (iii) cooperative effects and/or coherent excitations. Finally, it is concluded that the rate of energy deposition from a typical field and within a typical tissue is so small as to make unlikely any significant nonthermal biological effect. Copyright 2001 Wiley-Liss, Inc.

  12. The influence of ground conductivity on the structure of RF radiation from return strokes

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Gesell, L.

    1984-01-01

    The combination of the finite conductivity of the Earth plus the propagation of the return stroke current up the channel which results in an apparent time delay between the fast field changes and RF radiation for distant observers is shown. The time delay predicted from model return strokes is on the order of 20 micro and the received signal has the characteristics of the data observed in Virginia and Florida. A piecewise linear model for the return stroke channel and a transmission line model for current propagation on each segment was used. Radiation from each segment is calculated over a flat Earth with finite conductivity using asymptotics approximations for the Sommerfeld integrals. The radiation at the observer is processed by a model AM radio receiver. The output voltage was calculated for several frequencies between HF-UHF assuming a system bandwidth (300 kHz) characteristic of the system used to collect data in Florida and Virginia. Comparison with the theoretical fast field changes indicates a time delay of 20 microns.

  13. Development of a large-area planar surface-wave plasma source with a cavity launcher driven by a 915 MHz UHF wave

    NASA Astrophysics Data System (ADS)

    Chang, Xijiang; Kunii, Kazuki; Liang, Rongqing; Nagatsu, Masaaki

    2013-04-01

    A large-area planar surface-wave plasma (SWP) source driven by a 915 MHz ultrahigh frequency (UHF) wave was developed. To avoid using large, thick dielectric plates as vacuum windows, we propose a cavity launcher consisting of a cylindrical cavity with several small quartz discs at the bottom. Three types of launchers with quartz discs located at different positions were tested to compare their plasma production efficiencies and spatial distributions of electron density. With the optimum launcher, large-area plasma discharges with a radial uniformity within ±10% were obtained in a radius of about 25-30 cm in Ar gas at 8 Pa for incident power in the range 0.5-2.5 kW. The maximum electron density and temperature were approximately (0.95-1.1) × 1011 cm-3 and 1.9-2.0 eV, respectively, as measured by a Langmuir probe located 24 cm below the bottom of the cavity launcher. Using an Ar/NH3 SWP with the optimum launcher, we demonstrated large-area amino-group surface modification of polyurethane sheets. Experimental results indicated that a uniform amino-group modification was achieved over a radius of approximately 40 cm, which is slightly larger than the radial uniformity of the electron density distribution.

  14. Effects of the use of multi-layer filter on radiation exposure and the quality of upper airway radiographs compared to the traditional copper filter.

    PubMed

    Klandima, Somphan; Kruatrachue, Anchalee; Wongtapradit, Lawan; Nithipanya, Narong; Ratanaprakarn, Warangkana

    2014-06-01

    The problem of image quality in a large number of upper airway obstructed patients is the superimposition of the airway over the bone of the spine on the AP view. This problem was resolved by increasing KVp to high KVp technique and adding extra radiographic filters (copper filter) to reduce the sharpness of the bone and increase the clarity of the airway. However, this raises a concern that patients might be receiving an unnecessarily higher dose of radiation, as well as the effectiveness of the invented filter compared to the traditional filter. To evaluate the level of radiation dose that patients receive with the use of multi-layer filter compared to non-filter and to evaluate the image quality of the upper airways between using the radiographic filter (multi-layer filter) and the traditional filter (copperfilter). The attenuation curve of both filter materials was first identified. Then, both the filters were tested with Alderson Rando phantom to determine the appropriate exposure. Using the method described, a new type of filter called the multi-layer filter for imaging patients was developed. A randomized control trial was then performed to compare the effectiveness of the newly developed multi-layer filter to the copper filter. The research was conducted in patients with upper airway obstruction treated at Queen Sirikit National Institute of Child Health from October 2006 to September 2007. A total of 132 patients were divided into two groups. The experimental group used high kVp technique with multi-layer filter, while the control group used copper filter. A comparison of film interpretation between the multi-layer filter and the copper filter was made by a number of radiologists who were blinded to both to the technique and type of filter used. Patients had less radiation from undergoing the kVp technique with copper filter and multi-layer filter compared to the conventional technique, where no filter is used. Patients received approximately 65.5% less

  15. Discrete response patterns in the upper range of hypnotic suggestibility: A latent profile analysis.

    PubMed

    Terhune, Devin Blair

    2015-05-01

    High hypnotic suggestibility is a heterogeneous condition and there is accumulating evidence that highly suggestible individuals may be comprised of discrete subtypes with dissimilar cognitive and phenomenological profiles. This study applied latent profile analysis to response patterns on a diverse battery of difficult hypnotic suggestions in a sample of individuals in the upper range of hypnotic suggestibility. Comparisons among models indicated that a four-class model was optimal. One class was comprised of very highly suggestible (virtuoso) participants, two classes included highly suggestible participants who were alternately more responsive to inhibitory cognitive suggestions or posthypnotic amnesia suggestions, and the fourth class consisted primarily of medium suggestible participants. These results indicate that there are discrete response profiles in high hypnotic suggestibility. They further provide a number of insights regarding the optimization of hypnotic suggestibility measurement and have implications for the instrumental use of hypnosis for the modeling of different psychological conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. The immediate effects of manual stretching and cervicothoracic junction manipulation on cervical range of motion and upper trapezius pressure pain thresholds.

    PubMed

    Hanney, William J; Puentedura, Emilio J; Kolber, Morey J; Liu, Xinliang; Pabian, Patrick S; Cheatham, Scott W

    2017-09-22

    Myofascial pain is a common impairment treated with various manual interventions including spinal thrust manipulation and stretching; however, the comparative efficacy of each intervention is uncertain. Therefore, the purpose of this investigation was to evaluate thrust manipulation targeting the cervicothoracic junction compared to a manual stretch of the upper trapezius muscle on cervical range of motion and upper trapezius pressure pain thresholds (PPTs). Healthy participants with no significant history of neck pain were randomized into a thrust manipulation group, a stretching group, or a control group. Within group differences were evaluated via a dependent t-test, and group by time interactions were evaluated by a two-way repeated measures ANOVA. One hundred and two participants were recruited to participate. Baseline demographics revealed no significant differences between groups. Significant group by time interactions were found for changes in PPTs for both the right and left upper trapezius. Also, significant differences were found for changes in cervical extension, as well as right and left cervical side bending favoring the treatment groups. This study demonstrates the potential independent effectiveness of spinal thrust manipulation or stretching for reducing PPTs at the upper trapezius. Future research should further evaluate the limitation of PPTs as a measure of muscle sensitivity as well as factors that may contribute to variability in the measurements among individuals seeking care.

  17. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    NASA Astrophysics Data System (ADS)

    Caccia, J.; Guénard, V.; Benech, B.; Campistron, B.; Drobinski, P.

    2004-11-01

    The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program) in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission) in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking), which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the vertical motions are

  18. Global upper ocean heat storage response to radiative forcing from changing solar irradiance and increasing greenhouse gas/aerosol concentrations

    NASA Astrophysics Data System (ADS)

    White, Warren B.; Cayan, Daniel R.; Lean, Judith

    1998-09-01

    We constructed gridded fields of diabatic heat storage changes in the upper ocean from 20°S to 60°N from historical temperature profiles collected from 1955 to 1996. We filtered these 42 year records for periods of 8 to 15 years and 15 to 30 years, producing depth-weighted vertical average temperature (DVT) changes from the sea surface to the top of the main pycnocline. Basin and global averages of these DVT changes reveal decadal and interdecadal variability in phase across the Indian, Pacific, Atlantic, and Global Oceans, each significantly correlated with changing surface solar radiative forcing at a lag of 0+/-2 years. Decadal and interdecadal changes in global average DVT are 0.06°+/-0.01°K and 0.04°K+/-0.01°K, respectively, the same as those expected from consideration of the Stefan-Boltzmann radiation balance (i.e., 0.3°K per Wm-2) in response to 0.1% changes in surface solar radiative forcing of 0.2 Wm-2 and 0.15 Wm-2, respectively. Global spatial patterns of DVT changes are similar to temperature changes simulated in coupled ocean-atmosphere models, suggesting that natural modes of Earth's variability are phase-locked to the solar irradiance cycle. A trend in global average DVT of 0.15°K over this 42 year record cannot be explained by changing surface solar radiative forcing. But when we consider the 0.5 Wm-2 increase in surface radiative forcing estimated from the increase in atmospheric greenhouse gas and aerosol (GGA) concentrations over this period [Intergovernmental Panel on Climate Change, 1995], the Stefan-Boltzmann radiation balance yields this observed change. Moreover, the sum of solar and GGA surface radiative forcing can explain the relatively sharp increase in global and basin average DVT in the late 1970's.

  19. Bandwidth enhancement of a dual band planar monopole antenna using meandered microstrip feeding.

    PubMed

    Ahsan, M R; Islam, M T; Habib Ullah, M; Misran, N

    2014-01-01

    A meandered-microstrip fed circular shaped monopole antenna loaded with vertical slots on a high dielectric material substrate (ε r = 15) is proposed in this paper. The performance criteria of the proposed antenna have been experimentally verified by fabricating a printed prototype. The experimental results show that the proposed antenna has achieved wider bandwidth with satisfactory gain by introducing meandered-microstrip feeding in assistant of partial ground plane. It is observed that, the -10 dB impedance bandwidth of the proposed antenna at lower band is 44.4% (600 MHz-1 GHz) and at upper band is 28% (2.25 GHz-2.95 GHz). The measured maximum gains of -1.18 dBi and 4.87 dBi with maximum radiation efficiencies have been observed at lower band and upper band, respectively. The antenna configuration and parametric study have been carried out with the help of commercially available computer-aided EM simulator, and a good accordance is perceived in between the simulated and measured results. The analysis of performance criteria and almost consistent radiation pattern make the proposed antenna a suitable candidate for UHF RFID, WiMAX, and WLAN applications.

  20. An integrated model-driven method for in-treatment upper airway motion tracking using cine MRI in head and neck radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hua, E-mail: huli@radonc.wustl.edu; Chen, Hsin

    Purpose: For the first time, MRI-guided radiation therapy systems can acquire cine images to dynamically monitor in-treatment internal organ motion. However, the complex head and neck (H&N) structures and low-contrast/resolution of on-board cine MRI images make automatic motion tracking a very challenging task. In this study, the authors proposed an integrated model-driven method to automatically track the in-treatment motion of the H&N upper airway, a complex and highly deformable region wherein internal motion often occurs in an either voluntary or involuntary manner, from cine MRI images for the analysis of H&N motion patterns. Methods: Considering the complex H&N structures andmore » ensuring automatic and robust upper airway motion tracking, the authors firstly built a set of linked statistical shapes (including face, face-jaw, and face-jaw-palate) using principal component analysis from clinically approved contours delineated on a set of training data. The linked statistical shapes integrate explicit landmarks and implicit shape representation. Then, a hierarchical model-fitting algorithm was developed to align the linked shapes on the first image frame of a to-be-tracked cine sequence and to localize the upper airway region. Finally, a multifeature level set contour propagation scheme was performed to identify the upper airway shape change, frame-by-frame, on the entire image sequence. The multifeature fitting energy, including the information of intensity variations, edge saliency, curve geometry, and temporal shape continuity, was minimized to capture the details of moving airway boundaries. Sagittal cine MR image sequences acquired from three H&N cancer patients were utilized to demonstrate the performance of the proposed motion tracking method. Results: The tracking accuracy was validated by comparing the results to the average of two manual delineations in 50 randomly selected cine image frames from each patient. The resulting average dice similarity

  1. Herbicide and conifer options for reforesting upper slopes in the Cascade Range.

    Treesearch

    Edward J. Dimock

    1981-01-01

    Nine herbicides were compared for aiding establishment of four conifer species on upper-slope forest sites dominated by sedge and beargrass. Both glyphosate and a mixture of atrazine + dalapon produced substantial and consistent gains in survival of all four conifers after 3 years.

  2. Net radiation estimated by remote sensing in Cerrado areas in the Upper Paraguay River Basin

    NASA Astrophysics Data System (ADS)

    Fausto, Marcos Alves; Machado, Nadja Gomes; de Souza Nogueira, José; Biudes, Marcelo Sacardi

    2014-01-01

    The Cerrado is a heterogeneous landscape which is shrinking due to deforestation, giving rise to managed ecosystems. The land cover changes alter net radiation (Rn), which determines the quantity of available energy to the energy balance partition. The objectives of this study were (1) to determine the spatial pattern of the vegetation indices, albedo, and land surface temperature (LST) and (2) to evaluate the Rn estimated by Landsat 5 Thematic Mapper (TM) images over Cerrado areas in the Upper Paraguay River Basin. We estimated the vegetation indices, albedo, LST, and Rn of five selected vegetation types. The values estimated by Landsat 5 TM images had seasonal variations with higher values of the vegetation indices and lower values of the albedo and the LST during the wet season. The riparian and Cerrado strictu sensu had higher values of vegetation indices and lower albedo and LST than grasslands. The Rn estimated by Landsat 5 TM images was highly correlated with the measured Rn. The Rn had a seasonal pattern, following the solar radiation, with higher values during the wet season and varied spatially with higher values in the riparian forest and Cerrado strictu sensu and lower in the grasslands. This study showed the applicability of the Landsat 5 TM images to estimate Rn, which can help to understand the heterogeneity in the study area.

  3. The effects of density gradients on the convective amplification of upper hybrid waves in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Engel, J.; Kennel, C.

    1985-01-01

    Intense (at least 10 mV/m) electrostatic plasma waves have been detected near the upper hybrid frequency between + or -50 deg MLAT during recent GEOS-1 crossings. Wave growth rate and convective amplification calculations were carried out in order to explain the occurrence of intense upper hybrid (IUH) events over such a wide range of latitudes. The effects of wave refractions were taken into account in the convective amplification calculations. Specific results are presented for the upper hybrid wave growth of an IUH event occurring at 10 deg MLAT. It is shown that a density gradient may be necessary to explain the observed amplification at 10 deg MLAT. At the equator, however, the long scale length of the magnetic field gradient enables large amplitudes to be attained without a density gradient. The results of a UH ray tracing analysis are discussed within the framework of current theories concerning magnetospheric continuum radiation.

  4. UHF RiverSonde observations of water surface velocity at Threemile Slough, California

    USGS Publications Warehouse

    Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.; Ruhl, C.A.

    2005-01-01

    A UHF RiverSonde system, operating near 350 MHz, has been in operation at Threemile Slough in central California, USA since September 2004. The water in the slough is dominated by tidal effects, with flow reversals four times a day and a peak velocity of about 0.8 m/s in each direction. Water level and water velocity are continually measured by the U. S. Geological Survey at the experiment site. The velocity is measured every 15 minutes by an ultrasonic velocity meter (UVM) which determines the water velocity from two-way acoustic propagation time-difference measurements made across the channel. The RiverSonde also measures surface velocity every 15 minutes using radar resonant backscatter techniques. Velocity and water level data are retrieved through a radio data link and a wideband internet connection. Over a period of several months, the radar-derived mean surface velocity has been very highly correlated with the UVM index velocity several meters below the surface, with a coefficient of determination R2 of 0.976 and an RMS difference of less than 10 cm/s. The wind has a small but measurable effect on the velocities measured by both instruments. In addition to the mean surface velocity across the channel, the RiverSonde system provides an estimate of the cross-channel variation of the surface velocity. ?? 2005 IEEE.

  5. Fully Integrated Passive UHF RFID Tag for Hash-Based Mutual Authentication Protocol.

    PubMed

    Mikami, Shugo; Watanabe, Dai; Li, Yang; Sakiyama, Kazuo

    2015-01-01

    Passive radio-frequency identification (RFID) tag has been used in many applications. While the RFID market is expected to grow, concerns about security and privacy of the RFID tag should be overcome for the future use. To overcome these issues, privacy-preserving authentication protocols based on cryptographic algorithms have been designed. However, to the best of our knowledge, evaluation of the whole tag, which includes an antenna, an analog front end, and a digital processing block, that runs authentication protocols has not been studied. In this paper, we present an implementation and evaluation of a fully integrated passive UHF RFID tag that runs a privacy-preserving mutual authentication protocol based on a hash function. We design a single chip including the analog front end and the digital processing block. We select a lightweight hash function supporting 80-bit security strength and a standard hash function supporting 128-bit security strength. We show that when the lightweight hash function is used, the tag completes the protocol with a reader-tag distance of 10 cm. Similarly, when the standard hash function is used, the tag completes the protocol with the distance of 8.5 cm. We discuss the impact of the peak power consumption of the tag on the distance of the tag due to the hash function.

  6. Fully Integrated Passive UHF RFID Tag for Hash-Based Mutual Authentication Protocol

    PubMed Central

    Mikami, Shugo; Watanabe, Dai; Li, Yang; Sakiyama, Kazuo

    2015-01-01

    Passive radio-frequency identification (RFID) tag has been used in many applications. While the RFID market is expected to grow, concerns about security and privacy of the RFID tag should be overcome for the future use. To overcome these issues, privacy-preserving authentication protocols based on cryptographic algorithms have been designed. However, to the best of our knowledge, evaluation of the whole tag, which includes an antenna, an analog front end, and a digital processing block, that runs authentication protocols has not been studied. In this paper, we present an implementation and evaluation of a fully integrated passive UHF RFID tag that runs a privacy-preserving mutual authentication protocol based on a hash function. We design a single chip including the analog front end and the digital processing block. We select a lightweight hash function supporting 80-bit security strength and a standard hash function supporting 128-bit security strength. We show that when the lightweight hash function is used, the tag completes the protocol with a reader-tag distance of 10 cm. Similarly, when the standard hash function is used, the tag completes the protocol with the distance of 8.5 cm. We discuss the impact of the peak power consumption of the tag on the distance of the tag due to the hash function. PMID:26491714

  7. The upper mantle beneath the Cascade Range: A comparison with the Gulf of California

    NASA Technical Reports Server (NTRS)

    Walck, M. C.

    1984-01-01

    Seismograms from 22 earthquakes along the northeast Pacific rim recorded in southern California form the data set for investigation of the upper mantle beneath the Cascade Range-Juan de Fuca region, a transitional area encompassing both very young ocean floor and a continental margin. These data consist of 853 seismograms (6 deg delta 42 deg) which produce 1068 travel times and 40 ray parameter estimates. These data are compared directly to another large suite of records representative of structure beneath the Gulf of California, an active spreading center. The spreading center model, GCA, was used as a starting point in WKBJ synthetic seismogram modeling and perturb GCA until the northeast Pacific data are matched. Application of wave field continuation to these two groups of data provides checks on model's consistency with the data as well as an estimate of the resolvability of differences between the two areas. Differences between the models derived from these two data sets are interpretable in terms of lateral structural variation beneath the two regimes.

  8. Diffuse gamma radiation

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Simpson, G. A.; Thompson, D. J.

    1977-01-01

    An examination of the intensity, energy spectrum, and spatial distribution of the diffuse gamma-radiation observed by SAS-2 satellite away from the galactic plane in the energy range above 35 MeV has shown that it consists of two components. One component is generally correlated with galactic latitudes, the atomic hydrogen column density was deduced from 21 cm measurements, and the continuum radio emission, believed to be synchrotron emission. It has an energy spectrum similar to that in the plane and joins smoothly to the intense radiation from the plane. It is therefore presumed to be of galactic origin. The other component is apparently isotropic, at least on a coarse scale, and has a steep energy spectrum. No evidence is found for a cosmic ray halo surrounding the galaxy in the shape of a sphere or oblate spheroid with galactic dimensions. Constraints for a halo model with significantly larger dimensions are set on the basis of an upper limit to the gamma-ray anisotropy.

  9. Ultra-high field upper extremity peripheral nerve and non-contrast enhanced vascular imaging

    PubMed Central

    Raval, Shailesh B.; Britton, Cynthia A.; Zhao, Tiejun; Krishnamurthy, Narayanan; Santini, Tales; Gorantla, Vijay S.; Ibrahim, Tamer S.

    2017-01-01

    Objective The purpose of this study was to explore the efficacy of Ultra-high field [UHF] 7 Tesla [T] MRI as compared to 3T MRI in non-contrast enhanced [nCE] imaging of structural anatomy in the elbow, forearm, and hand [upper extremity]. Materials and method A wide range of sequences including T1 weighted [T1] volumetric interpolate breath-hold exam [VIBE], T2 weighted [T2] double-echo steady state [DESS], susceptibility weighted imaging [SWI], time-of-flight [TOF], diffusion tensor imaging [DTI], and diffusion spectrum imaging [DSI] were optimized and incorporated with a radiofrequency [RF] coil system composed of a transverse electromagnetic [TEM] transmit coil combined with an 8-channel receive-only array for 7T upper extremity [UE] imaging. In addition, Siemens optimized protocol/sequences were used on a 3T scanner and the resulting images from T1 VIBE and T2 DESS were compared to that obtained at 7T qualitatively and quantitatively [SWI was only qualitatively compared]. DSI studio was utilized to identify nerves based on analysis of diffusion weighted derived fractional anisotropy images. Images of forearm vasculature were extracted using a paint grow manual segmentation method based on MIPAV [Medical Image Processing, Analysis, and Visualization]. Results High resolution and high quality signal-to-noise ratio [SNR] and contrast-to-noise ratio [CNR]—images of the hand, forearm, and elbow were acquired with nearly homogeneous 7T excitation. Measured [performed on the T1 VIBE and T2 DESS sequences] SNR and CNR values were almost doubled at 7T vs. 3T. Cartilage, synovial fluid and tendon structures could be seen with higher clarity in the 7T T1 and T2 weighted images. SWI allowed high resolution and better quality imaging of large and medium sized arteries and veins, capillary networks and arteriovenous anastomoses at 7T when compared to 3T. 7T diffusion weighted sequence [not performed at 3T] demonstrates that the forearm nerves are clearly delineated by

  10. Enhanced resistance of the Pamirs high-mountain strain of Cryptococcus albidus to UV radiation of an ecological range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strakhovskaya, M.G.; Lavrukhina, O.G.; Fraikin, G.Y.

    The results of a comparative analysis of the resistance of Pamirs high-mountain and lowland strains of the yeast Cryptococcus albidus to UV radiation of an ecological range are presented. A high-mountain strain, adapted to elevated UV radiation in its habitat, was found to be more resistant to UV light of a total ecorange (290-400 nm), including medium-wave (290-320 nm) and long-wave (320-400 nm) UV ranges. The enhanced UV light resistance of the high-mountain strain can be explained by efficient functioning of the excision DNA repair system. 7 refs., 3 tabs.

  11. H20 and CH4 abundances under non-LTE conditions from MIPAS upper atmosphere measurements.

    NASA Astrophysics Data System (ADS)

    Koukouli, M. E.; Imk-Iaa Mipas/Envisat Team

    Vertical profiles of water vapour and methane have been retrieved from measurements of the Earth's Upper Atmosphere made by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board the polar orbiting ENVISAT satellite. The spectral range targeted is 685-2410 cm-1 (4.1-14.6 μm) and the retrieval altitude range is ˜25-80 km. The Generic RAdiative traNsfer AnD non-LTE population Algorithm (GRANADA), jointly developed by IAA and IMK, has been used to analyse two days' worth of upper atmosphere orbits, from July 2002 and June 2003. The vertical profiles retrieved are compared and calibrated against other known water vapour experiments (e.g. HALOE) in the corresponding vertical and spacial co-locations. Global three-dimensional maps are also presented and validated against modelling results (e.g. Garcia and Solomon). The total hydrogen content of the Earth's middle atmosphere will also be investigated as means of identifying possible sinks or sources in the water vapour and methane day-night variability. A comprehensive systematic error analysis will complement the presentation of the results.

  12. Method and system for determining depth distribution of radiation-emitting material located in a source medium and radiation detector system for use therein

    DOEpatents

    Benke, Roland R.; Kearfott, Kimberlee J.; McGregor, Douglas S.

    2003-03-04

    A method, system and a radiation detector system for use therein are provided for determining the depth distribution of radiation-emitting material distributed in a source medium, such as a contaminated field, without the need to take samples, such as extensive soil samples, to determine the depth distribution. The system includes a portable detector assembly with an x-ray or gamma-ray detector having a detector axis for detecting the emitted radiation. The radiation may be naturally-emitted by the material, such as gamma-ray-emitting radionuclides, or emitted when the material is struck by other radiation. The assembly also includes a hollow collimator in which the detector is positioned. The collimator causes the emitted radiation to bend toward the detector as rays parallel to the detector axis of the detector. The collimator may be a hollow cylinder positioned so that its central axis is perpendicular to the upper surface of the large area source when positioned thereon. The collimator allows the detector to angularly sample the emitted radiation over many ranges of polar angles. This is done by forming the collimator as a single adjustable collimator or a set of collimator pieces having various possible configurations when connected together. In any one configuration, the collimator allows the detector to detect only the radiation emitted from a selected range of polar angles measured from the detector axis. Adjustment of the collimator or the detector therein enables the detector to detect radiation emitted from a different range of polar angles. The system further includes a signal processor for processing the signals from the detector wherein signals obtained from different ranges of polar angles are processed together to obtain a reconstruction of the radiation-emitting material as a function of depth, assuming, but not limited to, a spatially-uniform depth distribution of the material within each layer. The detector system includes detectors having

  13. Ultra Low Power, Radiation Tolerant UHF Radio Technologies for In Situ Communication Applications

    NASA Technical Reports Server (NTRS)

    Lay, N. E.

    2001-01-01

    For future deep space missions, significant reductions in the mass and power requirements for short-range telecommunication systems will be critical in enabling a wide variety of new mission concepts. These possibilities include penetrators, gliders, miniature rovers, and sensor networks. Under joint funding from NASA's Cross Enterprise and JPL's Telecommunications and Mission technology programs, recent development activity has focused on the design of ultralow mass and power transceiver systems and subsystems suitable for operation in a flight environment. For these efforts, the functionality of the transceiver has been targeted towards a specific Mars communications scenario. However, the overall architecture is well suited to any short or medium range application where a remote probe will aperiodically communicate with a base station, possibly an orbiter, for the eventual purpose of relaying science information back to Earth. In 2001, these sponsors have been augmented with collaborative expertise and funding from JPL's Center for Integrated Space Microsystems in order to migrate existing concepts and designs to a System on a Chip (SOAC) solution. Additional information is contained in the original extended abstract.

  14. Societal Impacts of Solar Electromagnetic Radiation

    NASA Astrophysics Data System (ADS)

    Lean, J. L.

    2000-05-01

    Changes in solar electromagnetic radiation, which occur continuously and at all wavelengths of the spectrum, can have significant societal impacts on a wide range of time scales. Detection of climate change and ozone depletion requires reliable specification of solar-induced processes that mask or exacerbate anthropogenic effects. Living with, and mitigating, climate change and ozone depletion has significant economic, habitat and political impacts of international extent. As an example, taxes to restrict carbon emission may cause undue economic stress if the role of greenhouse gases in global warming is incorrectly diagnosed. Ignoring solar-induced ozone changes in the next century may lead to incorrect assessment of the success of the Montreal Protocol in protecting the ozone layer by limiting the use of ozone-destroying chlorofluorocarbons. Societal infrastructure depends in many ways on space-based technological assets. Communications and navigation for commerce, industry, science and defense rely on satellite signals transmitted through, and reflected by, electrons in the ionosphere. Electron densities change in response to solar flares, and by orders of magnitude in response to EUV and X-ray flux variations during the Sun's 11-year activity cycle. Spacecraft and space debris experience enhanced drag on their orbits when changing EUV radiation causes upper atmosphere densities to increase. Especially affected are spacecraft and debris in lower altitude orbits, such as Iridium-type communication satellites, and the International Space Station (ISS). Proper specification of solar-induced fluctuations in the neutral upper atmosphere can, for example, aid in tracking the ISS and surrounding space debris, reducing the chance of ISS damage from collisions, and maximizing its operations. Aspects of solar electromagnetic radiation variability will be briefly illustrated on a range of time scales, with specific identification of the societal impacts of different

  15. Role of connexin43 and ATP in long-range bystander radiation damage and oncogenesis in vivo.

    PubMed

    Mancuso, M; Pasquali, E; Leonardi, S; Rebessi, S; Tanori, M; Giardullo, P; Borra, F; Pazzaglia, S; Naus, C C; Di Majo, V; Saran, A

    2011-11-10

    Ionizing radiation is a genotoxic agent and human carcinogen. Recent work has questioned long-held dogmas by showing that cancer-associated genetic alterations occur in cells and tissues not directly exposed to radiation, questioning the robustness of the current system of radiation risk assessment. In vitro, diverse mechanisms involving secreted soluble factors, gap junction intercellular communication (GJIC) and oxidative metabolism are proposed to mediate these indirect effects. In vivo, the mechanisms behind long-range 'bystander' responses remain largely unknown. Here, we investigate the role of GJIC in propagating radiation stress signals in vivo, and in mediating radiation-associated bystander tumorigenesis in mouse central nervous system using a mouse model in which intercellular communication is downregulated by targeted deletion of the connexin43 (Cx43) gene. We show that GJIC is critical for transmission of oncogenic radiation damage to the non-targeted cerebellum, and that a mechanism involving adenosine triphosphate release and upregulation of Cx43, the major GJIC constituent, regulates transduction of oncogenic damage to unirradiated tissues in vivo. Our data provide a novel hypothesis for transduction of distant bystander effects and suggest that the highly branched nervous system, similar to the vascular network, has an important role.

  16. EGRET upper limits to the high-energy gamma-ray emission from the millisecond pulsars in nearby globular clusters

    NASA Technical Reports Server (NTRS)

    Michelson, P. F.; Bertsch, D. L.; Brazier, K.; Chiang, J.; Dingus, B. L.; Fichtel, C. E.; Fierro, J.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.

    1994-01-01

    We report upper limits to the high-energy gamma-ray emission from the millisecond pulsars (MSPs) in a number of globular clusters. The observations were done as part of an all-sky survey by the energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) during Phase I of the CGRO mission (1991 June to 1992 November). Several theoretical models suggest that MSPs may be sources of high-energy gamma radiation emitted either as primary radiation from the pulsar magnetosphere or as secondary radiation generated by conversion into photons of a substantial part of the relativistic e(+/-) pair wind expected to flow from the pulsar. To date, no high-energy emission has been detected from an individual MSP. However, a large number of MSPs are expected in globular cluster cores where the formation rate of accreting binary systems is high. Model predictions of the total number of pulsars range in the hundreds for some clusters. These expectations have been reinforced by recent discoveries of a substantial number of radio MSPs in several clusters; for example, 11 have been found in 47 Tucanae (Manchester et al.). The EGRET observations have been used to obtain upper limits for the efficiency eta of conversion of MSP spin-down power into hard gamma rays. The upper limits are also compared with the gamma-ray fluxes predicted from theoretical models of pulsar wind emission (Tavani). The EGRET limits put significant constraints on either the emission models or the number of pulsars in the globular clusters.

  17. Thermal annealing of radiation damage in CMOS ICs in the temperature range -140 C to +375 C

    NASA Technical Reports Server (NTRS)

    Danchenko, V.; Fang, P. H.; Brashears, S. S.

    1982-01-01

    Annealing of radiation damage was investigated in the commercial, Z- and J-processes of the RCA CD4007A ICs in the temperature range from -140 C to +375 C. Tempering curves were analyzed for activation energies of thermal annealing, following irradiation at -140 C. It was found that at -140 C, the radiation-induced shifts in the threshold potentials were similar for all three processes. The radiation hardness of the Z- and J-process is primarily due to rapid annealing of radiation damage at room temperature. In the region -140 to 20 C, no dopant-dependent charge trapping is seen, similar to that observed at higher temperatures. In the unbiased Z-process n-channels, after 1 MeV electron irradiation, considerable negative charge remains in the gate oxide.

  18. Modeling Radiation Fog

    NASA Astrophysics Data System (ADS)

    K R, Sreenivas; Mohammad, Rafiuddin

    2016-11-01

    Predicting the fog-onset, its growth and dissipation helps in managing airports and other modes of transport. After sunset, occurrence of fog requires moist air, low wind and clear-sky conditions. Under these circumstances radiative heat transfer plays a vital role in the NBL. Locally, initiation of fog happens when the air temperature falls below the dew-point. Thus, to predict the onset of fog at a given location, one has to compute evolution of vertical temperature profile. Earlier,our group has shown that the presence of aerosols and vertical variation in their number density determines the radiative-cooling and hence development of vertical temperature profile. Aerosols, through radiation in the window-band, provides an efficient path for air layers to lose heat to the cold, upper atmosphere. This process creates cooler air layer between warmer ground and upper air layers and resulting temperature profile facilitate the initiation of fog. Our results clearly indicates that accounting for the presence of aerosols and their radiative-transfer is important in modeling micro-meteorological process of fog formation and its evolution. DST, Govt. INDIA.

  19. Development of a Coherent Bistatic Vegetation Model for Signal of Opportunity Applications at VHF UHF-Bands

    NASA Technical Reports Server (NTRS)

    Kurum, Mehmet; Deshpande, Manohar; Joseph, Alicia T.; O'Neill, Peggy E.; Lang, Roger H.; Eroglu, Orhan

    2017-01-01

    A coherent bistatic vegetation scattering model, based on a Monte Carlo simulation, is being developed to simulate polarimetric bi-static reflectometry at VHF/UHF-bands (240-270 MHz). The model is aimed to assess the value of geostationary satellite signals of opportunity to enable estimation of the Earth's biomass and root-zone soil moisture. An expression for bistatic scattering from a vegetation canopy is derived for the practical case of a ground-based/low altitude platforms with passive receivers overlooking vegetation. Using analytical wave theory in conjunction with distorted Born approximation (DBA), the transmit and receive antennas effects (i.e., polarization, orientation, height, etc.) are explicitly accounted for. Both the coherency nature of the model (joint phase and amplitude information) and the explicit account of system parameters (antenna, altitude, polarization, etc) enable one to perform various beamforming techniques to evaluate realistic deployment configurations. In this paper, several test scenarios will be presented and the results will be evaluated for feasibility for future biomass and root-zone soil moisture application using geostationary communication satellite signals of opportunity at low frequencies.

  20. Enhancement in the upper tropospheric humidity associated with aerosol loading over tropical Pacific

    NASA Astrophysics Data System (ADS)

    Kottayil, Ajil; Satheesan, K.

    2015-12-01

    Many modeling studies have indicated that aerosol interactions with clouds increase the upper tropospheric humidity (UTH), but observational evidences are sparse. Using satellite datasets of upper tropospheric humidity and aerosols, this study shows that aerosols increase the upper tropospheric humidity over the tropical North West Pacific (NWP) and North East Pacific (NEP). The observations show an increase in the UTH by 2.8%RH over NEP for an increment of 0.12 in aerosol optical depth (AOD) and 2%RH increase in UTH over NWP for an increment of 0.19 in AOD. The study also quantifies the change in longwave cloud radiative forcing (LWCRF) as a consequence of the increase in UTH due to aerosols. The LWCRF increases by 3.38 W m-2 over NEP and by 4.46 W m-2 over NWP. The result that aerosols increase the upper tropospheric humidity is significant since the latter plays a crucial role in regulating the Earth's radiation budget and water vapor feedback.

  1. Generation of auroral kilometric radiation and the structure of auroral acceleration region

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Kan, J. R.; Wu, C. S.

    1980-01-01

    Generation of auroral kilometric radiation (AKR) in the auroral acceleration region is studied. It is shown that auroral kilometric radiation can be generated by backscattered electrons trapped in the acceleration region via a cyclotron maser process. The parallel electric field in the acceleration region is required to be distributed over 1-2 earth radii. The observed AKR frequency spectrum can be used to estimate the altitude range of the auroral acceleration region. The altitudes of the lower and upper boundaries of the acceleration region determined from the AKR data are respectively approximately 2000 and 9000 km.

  2. Upper limits for gravitational radiation from supermassive coalescing binaries

    NASA Technical Reports Server (NTRS)

    Anderson, J. D.; Armstrong, J. W.; Lau, E. L.

    1993-01-01

    We report a search for waves from supermassive coalescing binaries using a 10.5 day Pioneer 10 data set taken in 1988. Depending on the time to coalescence, the initial frequency of the wave, and the length of the observing interval, a coalescing binary waveform appears in the tracking record either as a sinusoid, a 'chirp', or as a more complicated signal. We searched our data for coalescing binary waveforms in all three regimes. We successfully detected a (fortuitous) 'chirp' signal caused by the varying spin rate of the spacecraft; this nicely served as a calibration of the data quality and as a test of our analysis procedures on real data. We did not detect any signals of astronomical origin in the millihertz band to an upper limit of about 7 x 10 exp -15 (rms amplitude). This is the first time spacecraft Doppler data have been analyzed for coalescing binary waveforms, and the upper limits reported here are the best to date for any waveform in the millihertz band.

  3. The upper atmosphere of Uranus

    NASA Technical Reports Server (NTRS)

    Strobel, Darrell F.; Yelle, Roger V.; Shemansky, Donald E.; Atreya, Sushil K.

    1991-01-01

    Voyager measurements of the upper atmosphere of Uranus are analyzed and developed. The upper atmosphere of Uranus is predominantly H2, with at most 10 percent He by volume, and the dominant constituent of the exosphere is H. The thermosphere is warm, with an asymptotic isothermal temperature of about 800 K. Atomic hydrogen at this temperature forms an extensive thermal corona and creates gas drag that severely limits the lifetime of small ring particles. The upper atmosphere emits copious amounts of UV radiation from pressures greater than 0.01 microbar. The depth of this emission level imposes a powerful constraint on permissible emission mechanisms. Electron excitation from a thin layer near the exobase appears to violate this constraint. Solar fluorescence is consistent with the observed trend in solar zenith-angle variation of the emissions and is absent from the night side of the planet. On Uranus, it accounts for the observed Lyman beta to H2 bands intensity ratio and an important fraction of the observed intensity (about 55 percent).

  4. High Speed Link Radiated Emission Reduction

    NASA Astrophysics Data System (ADS)

    Bisognin, P.; Pelissou, P.; Cissou, R.; Giniaux, M.; Vargas, O.

    2016-05-01

    To control the radiated emission of high-speed link and associated unit, the current approach is to implement overall harness shielding on cables bundles. This method is very efficient in the HF/ VHF (high frequency/ very high frequency) and UHF (ultra-high frequency) ranges when the overall harness shielding is properly bonded on EMC back-shell. Unfortunately, with the increasing frequency, the associated half wavelength matches with the size of Sub-D connector that is the case for the L band. Therefore, the unit connectors become the main source of interference emission. For the L-band and S-band, the current technology of EMC back-shell leaves thin aperture matched with the L band half wavelength and therefore, the shielding effectiveness is drastically reduced. In addition, overall harness shielding means significant increases of the harness mass.Airbus D&S Toulouse and Elancourt investigated a new solution to avoid the need of overall harness shielding. The objective is to procure EM (Electro-Magnetic) clean unit connected to cables bundles free of any overall harness shielding. The proposed solution is to implement EMC common mode filtering on signal interfaces directly on unit PCB as close as possible the unit connector.Airbus D&S Elancourt designed and manufactured eight mock-ups of LVDS (Low Voltage Differential Signaling) interface PCBs' with different solutions of filtering. After verification of the signal integrity, three mock-ups were retained (RC filter and two common mode choke coil) in addition to the reference one (without EMC filter).Airbus D&S Toulouse manufactured associated LVDS cable bundles and integrated the RX (Receiver) and TX (Transmitter) LVDS boards in shielded boxes.Then Airbus D&S performed radiated emission measurement of the LVDS links subassemblies (e.g. RX and TX boxes linked by LVDS cables) according to the standard test method. This paper presents the different tested solutions and main conclusions on the feasibility of such

  5. Metasurface Reflector (MSR) Loading for High Performance Small Microstrip Antenna Design

    PubMed Central

    Ahsan, Md Rezwanul; Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Ali, Mohd Tarmizi

    2015-01-01

    A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (ε r = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%), 467 to 606 MHz (29%) and 758 MHz to 1062 MHz (40%) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB) and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz) RFID, WiMAX (3.5/5.5 GHz) and WLAN (5.2/5.8 GHz) applications. PMID:26018795

  6. Metasurface Reflector (MSR) Loading for High Performance Small Microstrip Antenna Design.

    PubMed

    Ahsan, Md Rezwanul; Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Ali, Mohd Tarmizi

    2015-01-01

    A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (εr = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10 dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%), 467 to 606 MHz (29%) and 758 MHz to 1062 MHz (40%) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB) and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz) RFID, WiMAX (3.5/5.5 GHz) and WLAN (5.2/5.8 GHz) applications.

  7. Effect of solar radiation on severity of soybean rust.

    PubMed

    Young, Heather M; George, Sheeja; Narváez, Dario F; Srivastava, Pratibha; Schuerger, Andrew C; Wright, David L; Marois, James J

    2012-08-01

    Soybean rust (SBR), caused by Phakopsora pachyrhizi, is a damaging fungal disease of soybean (Glycine max). Although solar radiation can reduce SBR urediniospore survival, limited information is available on how solar radiation affects SBR progress within soybean canopies. Such information can aid in developing accurate SBR prediction models. To manipulate light penetration into soybean canopies, structures of shade cloth attenuating 30, 40, and 60% sunlight were constructed over soybean plots. In each plot, weekly evaluations of severity in lower, middle, and upper canopies, and daily temperature and relative humidity were recorded. Final plant height and leaf area index were also recorded for each plot. The correlation between amount of epicuticular wax and susceptibility of leaves in the lower, middle, and upper canopies was assessed with a detached leaf assay. Final disease severity was 46 to 150% greater in the lower canopy of all plots and in the middle canopy of 40 and 60% shaded plots. While daytime temperature within the canopy of nonshaded soybean was greater than shaded soybean by 2 to 3°C, temperatures recorded throughout typical evenings and mornings of the growing season in all treatments were within the range (10 to 28.5°C) for SBR development as was relative humidity. This indicates temperature and relative humidity were not limiting factors in this experiment. Epicuticular wax and disease severity in detached leaf assays from the upper canopy had significant negative correlation (P = 0.009, R = -0.84) regardless of shade treatment. In laboratory experiments, increasing simulated total solar radiation (UVA, UVB, and PAR) from 0.15 to 11.66 MJ m(-2) increased mortality of urediniospores from 2 to 91%. Variability in disease development across canopy heights in early planted soybean may be attributed to the effects of solar radiation not only on urediniospore viability, but also on plant height, leaf area index, and epicuticular wax, which influence

  8. Long-Range Self-Assembly via the Mutual Lorentz Force of Plasmon Radiation.

    PubMed

    Ji, Haojie; Trevino, Jacob; Tu, Raymond; Knapp, Ellen; McQuade, James; Yurkiv, Vitaliy; Mashayek, Farzad; Vuong, Luat T

    2018-04-11

    Long-range interactions often proceed as a sequence of hopping through intermediate, statistically favored events. Here, we demonstrate predictable mechanical dynamics of particles that arise from the Lorentz force between plasmons. Even if the radiation is weak, the nonconservative Lorentz force produces stable locations perpendicular to the plasmon oscillation; over time, distinct patterns emerge. Experimentally, linearly polarized light illumination leads to the formation of 80 nm diameter Au nanoparticle chains, perpendicularly aligned, with lengths that are orders of magnitude greater than their plasmon near-field interaction. There is a critical intensity threshold and optimal concentration for observing self-assembly.

  9. Extratropical influence of upper tropospheric water vapor on Greenhouse warming

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Hu, Hua

    1997-01-01

    Despite its small quantity, the importance of upper tropospheric water vapor is its ability to trap the longwave radiation emitted from the Earth's surface, namely the greenhouse effect. The greenhouse effect is defined quantitatively as the difference between the longwave flux emitted by the Earth's surface and the outgoing longwave radiation (OLR) flux emitted from the top of the atmosphere (TOA) (Raval and Ramanathan 1989).

  10. Reference ranges for midupper arm circumference, upper arm muscle area, and upper arm fat area in US children and adolescents aged 1-20 y.

    PubMed

    Addo, O Yaw; Himes, John H; Zemel, Babette S

    2017-01-01

    Midupper arm circumference (MUAC) has long been used in anthropometric assessments of nutritional status in field settings, especially in emergency situations, but percentile ranges for healthy, well-nourished children are currently unavailable. We developed reference curves for MUAC and derived measures of arm muscle area (AMA) and arm fat area (AFA) on the basis of the population used in the current CDC body mass index growth charts. We analyzed cross-sectional MUAC and triceps (triceps skinfold thickness) data from 32,952 US children aged 1-20 y. Generalized additive models for location, scale, and shape were used to calculate semiparametric smoothed percentiles and L, M, and S coefficients needed for z-score estimation by age and sex. Equations were developed with the use of the height-for-age z score (HAZ) to adjust for the associations of stature with upper arm measures. MUAC increased with age steadily throughout the growing period. For children <5 y old, lower percentile ranges varied markedly across age and sex such that the single cutoff (<11.5 or 12.5 cm) for field screening of acute malnutrition did not track along the same percentile. AFA and AMA growth patterns exhibited sex-specific trends including multiple distinct age-related inflections that were more pronounced in males for AFA-for-age than in females. HAZ and age were substantially and independently related with all arm measures. The new reference percentile ranges for midupper arm measures for healthy children provide a useful nutritional assessment tool in a wide variety of settings. Height status (HAZ) has complex independent associations with arm measures irrespective of the distributional ranking by age and sex. Prediction equations that account for these effects further extend the practical use of the new curves. © 2017 American Society for Nutrition.

  11. Bandwidth Enhancement of a Dual Band Planar Monopole Antenna Using Meandered Microstrip Feeding

    PubMed Central

    Ahsan, M. R.; Islam, M. T.; Habib Ullah, M.; Misran, N.

    2014-01-01

    A meandered-microstrip fed circular shaped monopole antenna loaded with vertical slots on a high dielectric material substrate (ε r = 15) is proposed in this paper. The performance criteria of the proposed antenna have been experimentally verified by fabricating a printed prototype. The experimental results show that the proposed antenna has achieved wider bandwidth with satisfactory gain by introducing meandered-microstrip feeding in assistant of partial ground plane. It is observed that, the −10 dB impedance bandwidth of the proposed antenna at lower band is 44.4% (600 MHz–1 GHz) and at upper band is 28% (2.25 GHz–2.95 GHz). The measured maximum gains of −1.18 dBi and 4.87 dBi with maximum radiation efficiencies have been observed at lower band and upper band, respectively. The antenna configuration and parametric study have been carried out with the help of commercially available computer-aided EM simulator, and a good accordance is perceived in between the simulated and measured results. The analysis of performance criteria and almost consistent radiation pattern make the proposed antenna a suitable candidate for UHF RFID, WiMAX, and WLAN applications. PMID:24723832

  12. Radiative flux opens new window on climate research

    NASA Technical Reports Server (NTRS)

    Pinker, R. T.; Laszlo, I.; Whitlock, C. H.; Charlock, T. P.

    1995-01-01

    For several decades, global satellite observations have been made of the rate at which electromagnetic energy (radiative flux) is emerging from the top of the atmosphere of our planet in the spectral range of about 0.2-50.0 microns. At the same time, models have been developed to infer the radiative flux at the surface from the values observed by the satellites at the upper boundary. The balance of incoming and outgoing radiative flux (radiation budget) at both boundaries, determines the net gain or loss of the radiative energy within an atmospheric column. Climate researchers can use the radiative flux as a tool to validate climate models, separate the radiative impact of clouds from surface and atmosphere contributions, and to understand the global hydrological cycle. When applied to physical processes occurring at the surface, information on the radiative flux has the potential to substantially advance our understanding of the transport of heat, moisture, and momentum across the surface/atmosphere interface. Geophysicists of many disciplines stand to benefit from efforts to improve the use of this latter untapped resource. Oceanographers can improve the representation of the selective absorption of radiation in the oceans; biologists and ecologists can improve their models for carbon dioxide exchange and biological heating in oceans; agronomists can model more realistically biomass and crop yields; and environmentalists can obtain better assessment of natural resources of radiation.

  13. Latitudinal distributions and composition of radiation on open drift shells in the altitude range 200 to 400 km

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsaplin, V.S.; Shavrin, P.I.; Savun, O.I.

    1973-01-01

    S>Translated from Kosm. Issled.; 11: No. 4, 563-573(1973). An account of ihe results of measurements made on the satellites Kosmos 138, Kosmos 137, and Kosmos 219 in 1966-1967 is given. The latitudinal distributions of radiation in different energy ranges in the region with h/sub min/< 0 were obtained. A relationship between the intensity of the soft component and the geomagnetic activity was found. Information regarding the composition of the rsdiation on open drift shells in a wide range of latitudes is derived from a comparison of the data of various detectors. The paper concludes with a brief review of ihemore » results of measurement of local radiation on different vehicles. (auth)« less

  14. Large dynamic range radiation detector and methods thereof

    DOEpatents

    Marrs, Roscoe E [Livermore, CA; Madden, Norman W [Sparks, NV

    2012-02-14

    According to one embodiment, a radiation detector comprises a scintillator and a photodiode optically coupled to the scintillator. The radiation detector also includes a bias voltage source electrically coupled to the photodiode, a first detector operatively electrically coupled to the photodiode for generating a signal indicative of a level of a charge at an output of the photodiode, and a second detector operatively electrically coupled to the bias voltage source for generating a signal indicative of an amount of current flowing through the photodiode.

  15. Translations on Telecommunications Policy, Research and Development, Number 27

    DTIC Science & Technology

    1978-01-19

    Pec [Italian name: Monte Forno] on UHF channel 47. This transmitter makes it possible for the program to be received in part of the upper Sava...inhabitants of Yerevan and the Ararat Valley to clearly receive two programs of Moscow television and two programs of Yerevan television, including

  16. Aerosols increase upper tropospheric humidity over the North Western Pacific

    NASA Astrophysics Data System (ADS)

    Riuttanen, Laura; Bister, Marja; John, Viju; Sundström, Anu-Maija; Dal Maso, Miikka; Räisänen, Jouni; de Leeuw, Gerrit; Kulmala, Markku

    2014-05-01

    Water vapour in the upper troposphere is highly important for the global radiative transfer. The source of upper tropospheric humidity is deep convection, and aerosol effects on them have got attention only recently. E.g., aerosol effects on deep convective clouds have been missing in general circulation models (Quaas et al., 2009). In deep convection, aerosol effect on cloud microphysics may lead to more ice precipitation and less warm rain (Khain et al., 2005), and thus more water vapour in upper troposphere (Bister & Kulmala, 2011). China outflow region over the Pacific Ocean was chosen as a region for a more detailed study, with latitudes 25-45 N and three longitude slots: 120-149 E, 150-179 E and 150-179 W. In this study, we used satellite measurements of aerosol optical depth (AOD) and upper tropospheric humidity (UTH). AOD was obtained from the MODIS instrument onboard Terra satellite, that crosses the equator southward at 10:30 AM local solar time (Remer et al., 2005). UTH was obtained from a microwave humidity sounder (MHS) onboard MetOp-A satellite, with passing time at 9:30 PM local solar time. It measures relative humidity of a layer extending approximately from 500 to 200 hPa. We binned the AOD and UTH data according to daily rainfall product 3B42 from Tropical Rainfall Measuring Mission (TRMM) satellite. Binning the data according to the amount of precipitation gives us a new way to account for the possible aerosol invigoration effect on convection and to alleviate the contamination and causality problems in aerosol indirect effect studies. In this study, we show for the first time, based on satellite data, that there is a connection between upper tropospheric humidity and aerosols. Anthropogenic aerosols from China increase upper tropospheric humidity, which causes a significant positive local radiative forcing in libRadtran radiative transfer model (Mayer & Kylling, 2005). References: Bister, M. & Kulmala, M. (2011). Atmos. Chem. Phys., 11, 4577

  17. Upper limits on resonance contributions to proton-proton elastic scattering in the c.m. mass range 2.05-2.85 GeV/ c2

    NASA Astrophysics Data System (ADS)

    Rohdjeß, H.; Altmeier, M.; Bauer, F.; Bisplinghoff, J.; Bollmann, R.; Büßer, K.; Busch, M.; Diehl, O.; Dohrmann, F.; Engelhardt, H. P.; Ernst, J.; Eversheim, P. D.; Eyser, K. O.; Felden, O.; Gebel, R.; Groß, A.; Groß-Hardt, R.; Hinterberger, F.; Langkau, R.; Lindlein, J.; Maier, R.; Mosel, F.; Prasuhn, D.; von Rossen, P.; Scheid, N.; Schulz-Rojahn, M.; Schwandt, F.; Schwarz, V.; Scobel, W.; Trelle, H.-J.; Ulbrich, K.; Weise, E.; Wellinghausen, A.; Woller, K.; Ziegler, R.

    2006-04-01

    Recently published excitation functions in proton-proton ( pp) elastic scattering observables in the laboratory energy range 0.5-2.5GeV provide an excellent data base to establish firm upper limits on the elasticities ηel = Γel/Γtot of possible isovector resonant contributions to the nucleon-nucleon ( NN) system. Such contributions have been predicted to arise from dibaryonic states, with c.m. masses between 2.1-2.9GeV/c2, but have not been confirmed experimentally. A method to determine quantitatively the maximum value of ηel compatible with experimental data is presented. We use energy-dependent phase shift fits to the pp data base to model the non-resonant interaction. Based upon the differential cross-section data measured by the EDDA Collaboration an unbiased statistical test is constructed to obtain upper limits on ηel, that exclude larger values with a 99% confidence level. Results in the c.m. mass range 2.05-2.85GeV/c2 and total widths of 10-100MeV/c2 in the partial waves 1 S 0, 1 D 2, 3 P 0, 3 P 1, and 3 F 3 are presented and discussed.

  18. 47 CFR 74.705 - TV broadcast analog station protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... from the authorized maximum radiated power (without depression angle correction), the horizontal... application for a new UHF low power TV or TV translator construction permit, a change of channel, or a major...

  19. 47 CFR 74.705 - TV broadcast analog station protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... from the authorized maximum radiated power (without depression angle correction), the horizontal... application for a new UHF low power TV or TV translator construction permit, a change of channel, or a major...

  20. 47 CFR 74.705 - TV broadcast analog station protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... from the authorized maximum radiated power (without depression angle correction), the horizontal... application for a new UHF low power TV or TV translator construction permit, a change of channel, or a major...

  1. 47 CFR 74.705 - TV broadcast analog station protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... from the authorized maximum radiated power (without depression angle correction), the horizontal... application for a new UHF low power TV or TV translator construction permit, a change of channel, or a major...

  2. 47 CFR 74.705 - TV broadcast analog station protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... from the authorized maximum radiated power (without depression angle correction), the horizontal... application for a new UHF low power TV or TV translator construction permit, a change of channel, or a major...

  3. An interferometric fiber optic hydrophone with large upper limit of dynamic range

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Kan, Baoxi; Zheng, Baichao; Wang, Xuefeng; Zhang, Haiyan; Hao, Liangbin; Wang, Hailiang; Hou, Zhenxing; Yu, Wenpeng

    2017-10-01

    Interferometric fiber optic hydrophone based on heterodyne detection is used to measure the missile dropping point in the sea. The signal caused by the missile dropping in the water will be too large to be detected, so it is necessary to boost the upper limit of dynamic range (ULODR) of fiber optic hydrophone. In this article we analysis the factors which influence the ULODR of fiber optic hydrophone based on heterodyne detection, the ULODR is decided by the sampling frequency fsam and the heterodyne frequency Δf. The sampling frequency and the heterodyne frequency should be satisfied with the Nyquist sampling theorem which fsam will be two times larger than Δf, in this condition the ULODR is depended on the heterodyne frequency. In order to enlarge the ULODR, the Nyquist sampling theorem was broken, and we proposed a fiber optic hydrophone which the heterodyne frequency is larger than the sampling frequency. Both the simulation and experiment were done in this paper, the consequences are similar: When the sampling frequency is 100kHz, the ULODR of large heterodyne frequency fiber optic hydrophone is 2.6 times larger than that of the small heterodyne frequency fiber optic hydrophone. As the heterodyne frequency is larger than the sampling frequency, the ULODR is depended on the sampling frequency. If the sampling frequency was set at 2MHz, the ULODR of fiber optic hydrophone based on heterodyne detection will be boosted to 1000rad at 1kHz, and this large heterodyne fiber optic hydrophone can be applied to locate the drop position of the missile in the sea.

  4. Occupant UV Exposure Measurements for Upper-Room Ultraviolet Germicidal Irradiation

    PubMed Central

    Milonova, Sonya; Rudnick, Stephen; McDevitt, James; Nardell, Edward

    2016-01-01

    The threshold limit value (TLV) guideline for ultraviolet (UV) radiation specifies that irradiance measurements to ensure occupant safety be taken over an angle of 80° at the sensor. The purpose of this study was to evaluate the effect of an 80° field of view (FOV) tube on lower room UV-C irradiation measurements. Measurements were made in an experimental chamber at a height of 1.73 m with and without an FOV tube. The FOV tube reduced the lower room irradiance readings by 18-34%, a statistically significant reduction compared to the bare sensor. An 80° FOV tube should be used for lower room irradiance measurements to comply with the TLV guideline. The resulting lower readings would allow more UV-C radiation in the upper room without compromising occupant safety. More UV-C radiation in the upper room could increase efficacy of UVGI systems for reducing transmission of airborne infectious diseases. In addition, recommendations are made to standardize lower room irradiance measurement techniques. PMID:27038734

  5. Generating circularly polarized radiation in the extreme ultraviolet spectral range at the free-electron laser FLASH

    NASA Astrophysics Data System (ADS)

    von Korff Schmising, Clemens; Weder, David; Noll, Tino; Pfau, Bastian; Hennecke, Martin; Strüber, Christian; Radu, Ilie; Schneider, Michael; Staeck, Steffen; Günther, Christian M.; Lüning, Jan; Merhe, Alaa el dine; Buck, Jens; Hartmann, Gregor; Viefhaus, Jens; Treusch, Rolf; Eisebitt, Stefan

    2017-05-01

    A new device for polarization control at the free electron laser facility FLASH1 at DESY has been commissioned for user operation. The polarizer is based on phase retardation upon reflection off metallic mirrors. Its performance is characterized in three independent measurements and confirms the theoretical predictions of efficient and broadband generation of circularly polarized radiation in the extreme ultraviolet spectral range from 35 eV to 90 eV. The degree of circular polarization reaches up to 90% while maintaining high total transmission values exceeding 30%. The simple design of the device allows straightforward alignment for user operation and rapid switching between left and right circularly polarized radiation.

  6. UV radiation impacts body weight, oxygen consumption, and shelter selection in the intertidal vertebrate Girella laevifrons.

    PubMed

    Pulgar, José; Waldisperg, Melany; Galbán-Malagón, Cristóbal; Maturana, Diego; Pulgar, Victor M; Aldana, Marcela

    2017-02-01

    The amount of ultraviolet (UV) radiation reaching the earth's surface has increased due to ozone layer depletion, and this fact represents an opportunity to evaluate the physiological and behavioral responses of animals to this global-scale stressor. The transitory fish Girella laevifrons inhabits pools in the upper intertidal zone, which is characterized by exposure to a wide range of stressors, including UV radiation. We documented the field magnitude and the impact of UV radiation on oxygen consumption, body mass variations, and shelter (rocky and algae) selection by G. laevifrons. UV-exposed animals showed increased oxygen consumption, slower body weight increase, and active rocky shelter selection. Control fish showed increased body weight and no evident shelter selection. The results indicated that UV exposure affects fish energetic balance and habitat selection to favor greater protection against radiation. Increased UV exposure in transitory intertidal animals at levels observed in upper intertidal pools may alter the residency time of fish before leaving for the subtidal zone. Therefore, UV-induced energetic changes may determine animal performance and ontogenetic physiological itineraries, whereas shelter quality might determine habitat use. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Monthly mean large-scale analyses of upper-tropospheric humidity and wind field divergence derived from three geostationary satellites

    NASA Technical Reports Server (NTRS)

    Schmetz, Johannes; Menzel, W. Paul; Velden, Christopher; Wu, Xiangqian; Vandeberg, Leo; Nieman, Steve; Hayden, Christopher; Holmlund, Kenneth; Geijo, Carlos

    1995-01-01

    This paper describes the results from a collaborative study between the European Space Operations Center, the European Organization for the Exploitation of Meteorological Satellites, the National Oceanic and Atmospheric Administration, and the Cooperative Institute for Meteorological Satellite Studies investigating the relationship between satellite-derived monthly mean fields of wind and humidity in the upper troposphere for March 1994. Three geostationary meteorological satellites GOES-7, Meteosat-3, and Meteosat-5 are used to cover an area from roughly 160 deg W to 50 deg E. The wind fields are derived from tracking features in successive images of upper-tropospheric water vapor (WV) as depicted in the 6.5-micron absorption band. The upper-tropospheric relative humidity (UTH) is inferred from measured water vapor radiances with a physical retrieval scheme based on radiative forward calculations. Quantitative information on large-scale circulation patterns in the upper-troposphere is possible with the dense spatial coverage of the WV wind vectors. The monthly mean wind field is used to estimate the large-scale divergence; values range between about-5 x 10(exp -6) and 5 x 10(exp 6)/s when averaged over a scale length of about 1000-2000 km. The spatial patterns of the UTH field and the divergence of the wind field closely resemble one another, suggesting that UTH patterns are principally determined by the large-scale circulation. Since the upper-tropospheric humidity absorbs upwelling radiation from lower-tropospheric levels and therefore contributes significantly to the atmospheric greenhouse effect, this work implies that studies on the climate relevance of water vapor should include three-dimensional modeling of the atmospheric dynamics. The fields of UTH and WV winds are useful parameters for a climate-monitoring system based on satellite data. The results from this 1-month analysis suggest the desirability of further GOES and Meteosat studies to characterize

  8. Upper cervical and upper thoracic thrust manipulation versus nonthrust mobilization in patients with mechanical neck pain: a multicenter randomized clinical trial.

    PubMed

    Dunning, James R; Cleland, Joshua A; Waldrop, Mark A; Arnot, Cathy F; Young, Ian A; Turner, Michael; Sigurdsson, Gisli

    2012-01-01

    Randomized clinical trial. To compare the short-term effects of upper cervical and upper thoracic high-velocity low-amplitude (HVLA) thrust manipulation to nonthrust mobilization in patients with neck pain. Although upper cervical and upper thoracic HVLA thrust manipulation and nonthrust mobilization are common interventions for the management of neck pain, no studies have directly compared the effects of both upper cervical and upper thoracic HVLA thrust manipulation to nonthrust mobilization in patients with neck pain. Patients completed the Neck Disability Index, the numeric pain rating scale, the flexion-rotation test for measurement of C1-2 passive rotation range of motion, and the craniocervical flexion test for measurement of deep cervical flexor motor performance. Following the baseline evaluation, patients were randomized to receive either HVLA thrust manipulation or nonthrust mobilization to the upper cervical (C1-2) and upper thoracic (T1-2) spines. Patients were reexamined 48-hours after the initial examination and again completed the outcome measures. The effects of treatment on disability, pain, C1-2 passive rotation range of motion, and motor performance of the deep cervical flexors were examined with a 2-by-2 mixed-model analysis of variance (ANOVA). One hundred seven patients satisfied the eligibility criteria, agreed to participate, and were randomized into the HVLA thrust manipulation (n = 56) and nonthrust mobilization (n = 51) groups. The 2-by-2 ANOVA demonstrated that patients with mechanical neck pain who received the combination of upper cervical and upper thoracic HVLA thrust manipulation experienced significantly (P<.001) greater reductions in disability (50.5%) and pain (58.5%) than those of the nonthrust mobilization group (12.8% and 12.6%, respectively) following treatment. In addition, the HVLA thrust manipulation group had significantly (P<.001) greater improvement in both passive C1-2 rotation range of motion and motor performance of

  9. 47 CFR 15.33 - Frequency range of radiated measurements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200... kHz, up to at least the frequency shown in this paragraph: (1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is...

  10. Solar Storm's Radiation at Martian Orbit and Surface

    NASA Image and Video Library

    2017-09-29

    Energetic particles from a large solar storm in September 2017 were seen both in Mars orbit and on the surface of Mars by NASA missions to the Red Planet. The horizontal axis for both parts of this graphic is the time from Sept. 10 to Sept. 15, 2017. The upper portion of this graphic shows the increase in protons in two ranges of energy levels (15- to-100 million electron volts and 80-to-220 million electron volts), as recorded by the Solar Energetic Particle instrument on NASA's on NASA's Mars Atmosphere and Volatile Evolution orbiter, or MAVEN. The lower portion shows the radiation dose on the Martian surface, in micrograys per day, as measured by the Radiation Assessment Monitor instrument on NASA' Curiosity Mars rover. Micrograys are unit of measurement for absorbed radiation dose. Note that only protons in the higher bracket of energy levels penetrate the atmosphere enough to be detected on the surface. https://photojournal.jpl.nasa.gov/catalog/PIA21856

  11. An Observational View of Relationships Between Moisture Aggregation, Cloud, and Radiative Heating Profiles

    NASA Astrophysics Data System (ADS)

    Lebsock, Matthew D.; L'Ecuyer, Tristan S.; Pincus, Robert

    Data from several coincident satellite sensors are analyzed to determine the dependence of cloud and precipitation characteristics of tropical regions on the variance in the water vapor field. Increased vapor variance is associated with decreased high cloud fraction and an enhancement of low-level radiative cooling in dry regions of the domain. The result is found across a range of sea surface temperatures and rain rates. This suggests the possibility of an enhanced low-level circulation feeding the moist convecting areas when vapor variance is large. These findings are consistent with idealized models of self-aggregation, in which the aggregation of convection is maintained by a combination of low-level radiative cooling in dry regions and mid-to-upper-level radiative warming in cloudy regions.

  12. Anatomically correct visualization of the human upper airway using a high-speed long range optical coherence tomography system with an integrated positioning sensor

    NASA Astrophysics Data System (ADS)

    Jing, Joseph C.; Chou, Lidek; Su, Erica; Wong, Brian J. F.; Chen, Zhongping

    2016-12-01

    The upper airway is a complex tissue structure that is prone to collapse. Current methods for studying airway obstruction are inadequate in safety, cost, or availability, such as CT or MRI, or only provide localized qualitative information such as flexible endoscopy. Long range optical coherence tomography (OCT) has been used to visualize the human airway in vivo, however the limited imaging range has prevented full delineation of the various shapes and sizes of the lumen. We present a new long range OCT system that integrates high speed imaging with a real-time position tracker to allow for the acquisition of an accurate 3D anatomical structure in vivo. The new system can achieve an imaging range of 30 mm at a frame rate of 200 Hz. The system is capable of generating a rapid and complete visualization and quantification of the airway, which can then be used in computational simulations to determine obstruction sites.

  13. Temperature Dependence of Power Reflectivity of the First-Wall Materials in the Synchrotron Radiation Range

    NASA Astrophysics Data System (ADS)

    Takada, Noriharu; Nagatsu, Masaaki; Shimada, Michiya

    1995-07-01

    The temperature dependence of power reflectivity in the synchrotron radiation range was measured for candidate first-wall materials of the fusion reactor, such as B4C-coated isotropic graphite, C/C composite material, silicon carbide (SiC), tungsten (W), molybdenum (Mo) and SUS-316. The measurements were carried out using a vacuum vessel with a pressure of about 3 mTorr to avoid oxidation. Distinct temperature dependence of reflectivity was observed only for B4C-coated isotropic graphite. For the other materials, power reflectivities were insensitive to temperature in the range from 300 K to ˜900 K. Theoretical analysis of the results is also presented.

  14. Predicted levels of human radiation tolerance extrapolated from clinical studies of radiation effects

    NASA Technical Reports Server (NTRS)

    Lushbaugh, C. C.

    1972-01-01

    Results of clinical studies of radiation effects on man are used to evaluate space radiation hazards encountered during manned space travel. Considered are effects of photons as well as of mixed fission neutrons and gamma irradiations in establishing body radiosensitivity and tolerance levels. Upper and lower dose-response-time relations for acute radiation syndromes in patients indicate that man is more than sufficiently radioresistant to make the risks of an early radiation effect during one short space mission intangibly small in relation to the other nonradiation risks involved.

  15. Comparison of upper arm and forearm blood pressure.

    PubMed

    Domiano, Kathy L; Hinck, Susan M; Savinske, Debra L; Hope, Kathryn L

    2008-11-01

    The upper arm is the primary site used to obtain a blood pressure measurement (BPM); however, when it is not possible to use the upper arm, the forearm is a commonly used alternate site. This study determines if there is a significant difference between upper arm and forearm BPMs among adults and examines the relationship of participant characteristics to the BPM difference. A convenience sample was recruited from a low-income, independent-living, 104-apartment complex in the Midwest. Of the 106 participants, 64% were female and 89% were White. Ages ranged from 20 to 85 years (M = 50.7). The investigators calculated the BMIs (range = 18 to 42, M = 29.3, SD = 5.4) for the 89% (n = 94) of participants who reported their weight. The forearm tended to have higher BPMs than the upper arm (M difference = 4.0 mm Hg systolic, 2.3 mm Hg diastolic). However, site differences were greatest for men, obese adults, and middle aged (36 to 65) adults.

  16. Anatomic Optical Coherence Tomography of Upper Airways

    NASA Astrophysics Data System (ADS)

    Chin Loy, Anthony; Jing, Joseph; Zhang, Jun; Wang, Yong; Elghobashi, Said; Chen, Zhongping; Wong, Brian J. F.

    The upper airway is a complex and intricate system responsible for respiration, phonation, and deglutition. Obstruction of the upper airways afflicts an estimated 12-18 million Americans. Pharyngeal size and shape are important factors in the pathogenesis of airway obstructions. In addition, nocturnal loss in pharyngeal muscular tone combined with high pharyngeal resistance can lead to collapse of the airway and periodic partial or complete upper airway obstruction. Anatomical optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images of the airway lumen without the use of ionizing radiation. In this chapter we describe the methods behind endoscopic OCT imaging and processing to generate full three dimensional anatomical models of the human airway which can be used in conjunction with numerical simulation methods to assess areas of airway obstruction. Combining this structural information with flow dynamic simulations, we can better estimate the site and causes of airway obstruction and better select and design surgery for patients with obstructive sleep apnea.

  17. Forearm versus upper arm grafts for vascular access.

    PubMed

    Gage, Shawn M; Lawson, Jeffrey H

    2017-03-06

    Forearm and upper arm arteriovenous grafts perform similarly in terms of patency and complications. Primary patency at 1 year for forearm arteriovenous grafts versus upper arm grafts ranges from 22%-50% versus 22%-42%, and secondary patency at 1 year ranges from 78%-89% versus 52%-67%), respectively. Secondary patency at 2 years, ranges from 30%-64% versus 35%-60% for forearm and upper arteriovenous graft, respectively. Ample pre-operative planning is essential to improved clinical success and the decision to place a graft at one location versus the other should be based solely on previous access history, physical exam, appropriate venous imaging, and other factors that make up the clinical picture. Operative implant strategies and risk of complications are very similar between the two configurations. Postoperative ischemia due to steal syndrome is a potential complication that requires immediate attention. Utilization of the proximal radial or ulnar artery for inflow for the graft can minimize risk of clinically relevant steal syndrome.

  18. Theoretical Study of Radiation from a Broad Range of Impurity Ions for Magnetic Fusion Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safronova, Alla

    Spectroscopy of radiation emitted by impurities plays an important role in the study of magnetically confined fusion plasmas. The measurements of these impurities are crucial for the control of the general machine conditions, for the monitoring of the impurity levels, and for the detection of various possible fault conditions. Low-Z impurities, typically present in concentrations of 1%, are lithium, beryllium, boron, carbon, and oxygen. Some of the common medium-Z impurities are metals such as iron, nickel, and copper, and high-Z impurities, such as tungsten, are present in smaller concentrations of 0.1% or less. Despite the relatively small concentration numbers, themore » aforementioned impurities might make a substantial contribution to radiated power, and also influence both plasma conditions and instruments. A detailed theoretical study of line radiation from impurities that covers a very broad spectral range from less than 1 Å to more than 1000 Å has been accomplished and the results were applied to the LLNL Electron Beam Ion Trap (EBIT) and the Sustained Spheromak Physics Experiment (SSPX) and to the National Spherical Torus Experiment (NSTX) at Princeton. Though low- and medium-Z impurities were also studied, the main emphasis was made on the comprehensive theoretical study of radiation from tungsten using different state-of-the-art atomic structure codes such as Relativistic Many-Body Perturbation Theory (RMBPT). The important component of this research was a comparison of the results from the RMBPT code with other codes such as the Multiconfigurational Hartree–Fock developed by Cowan (COWAN code) and the Multiconfiguration Relativistic Hebrew University Lawrence Atomic Code (HULLAC code), and estimation of accuracy of calculations. We also have studied dielectronic recombination, an important recombination process for fusion plasma, for variety of highly and low charged tungsten ions using COWAN and HULLAC codes. Accurate DR rate coefficients are

  19. Assessment of the effects of environmental radiation on wind chill equivalent temperatures.

    PubMed

    Shitzer, Avraham

    2008-09-01

    Combinations of wind-driven convection and environmental radiation in cold weather, make the environment "feel" colder. The relative contributions of these mechanisms, which form the basis for estimating wind chill equivalent temperatures (WCETs), are studied over a wide range of environmental conditions. Distinction is made between direct solar radiation and environmental radiation. Solar radiation, which is not included in the analysis, has beneficial effects, as it counters and offsets some of the effects due to wind and low air temperatures. Environmental radiation effects, which are included, have detrimental effects in enhancing heat loss from the human body, thus affecting the overall thermal sensation due to the environment. The analysis is performed by a simple, steady-state analytical model of human-environment thermal interaction using upper and lower bounds of environmental radiation heat exchange. It is shown that, over a wide range of relevant air temperatures and reported wind speeds, convection heat losses dominate over environmental radiation. At low wind speeds radiation contributes up to about 23% of the overall heat loss from exposed skin areas. Its relative contributions reduce considerably as the time of the exposure prolongs and exposed skin temperatures drop. At still higher wind speeds, environmental radiation effects become much smaller contributing about 5% of the total heat loss. These values fall well within the uncertainties associated with the parameter values assumed in the computation of WCETs. It is also shown that environmental radiation effects may be accommodated by adjusting reported wind speeds slightly above their reported values.

  20. An advanced generation land mobile satellite system and its critical technologies

    NASA Technical Reports Server (NTRS)

    Naderi, F.

    1982-01-01

    A conceptual design for a Land Mobile Satellite System (LMSS) for the 1990s is presented. LMSS involves small tranceivers accessing satellites directly, with ground reception through small car-top antennas. The satellite would have a large antenna and blanket coverage areas in the UHF. The call may originate from a home, be carried by wire to a gateway, transmitted to satellite on the S-band, converted to UHF on the satellite, and transmitted to the vehicle. The system design is constrained by the number of users in an area during the busiest hours, Shuttle storage, controllability factors, and the total area served. A 55-m antenna has been selected, with 87 spot beams and two 10 MHz UHF bands in the 806-890 MHz band. A 17 dB interbeam isolation level is required, implying that sufficient sub-bands can be generated to assure 8265 total channels. The mobile satellite (MSAT) would have an 83 m mast lower segment, a 34 m upper segment, and a second, 10 m antenna made of a deployable mesh. Various antenna function modes are considered.

  1. The C-patch - A small microstrip element

    NASA Astrophysics Data System (ADS)

    Kossiavas, G.; Papiernik, A.; Boisset, J. P.; Sauvan, M.

    1989-02-01

    A radiating element operating in the UHF and L-bands is presented. The element has dimensions smaller than those of conventional square or circular elements. For this type of antenna, good matching is obtained with a coaxial feed, and the omnidirectional radiation pattern is achieved using linear polarization. The bandwidth, however, remains somewhat narrow.

  2. Homodyne detection of short-range Doppler radar using a forced oscillator model

    NASA Astrophysics Data System (ADS)

    Kittipute, Kunanon; Saratayon, Peerayudh; Srisook, Suthasin; Wardkein, Paramote

    2017-03-01

    This article presents the homodyne detection in a self-oscillation system, which represented by a short-range radar (SRR) circuit, that is analysed using a multi-time forced oscillator (MTFO) model. The MTFO model is based on a forced oscillation perspective with the signal and system theory, a second-order differential equation, and the multiple time variable technique. This model can also apply to analyse the homodyne phenomenon in a difference kind of the oscillation system under same method such as the self-oscillation system, and the natural oscillation system with external forced. In a free oscillation system, which forced by the external source is represented by a pendulum with an oscillating support experiment, and a modified Colpitts oscillator circuit in the UHF band with input as a Doppler signal is a representative of self-oscillation system. The MTFO model is verified with the experimental result, which well in line with the theoretical analysis.

  3. Homodyne detection of short-range Doppler radar using a forced oscillator model

    PubMed Central

    Kittipute, Kunanon; Saratayon, Peerayudh; Srisook, Suthasin; Wardkein, Paramote

    2017-01-01

    This article presents the homodyne detection in a self-oscillation system, which represented by a short-range radar (SRR) circuit, that is analysed using a multi-time forced oscillator (MTFO) model. The MTFO model is based on a forced oscillation perspective with the signal and system theory, a second-order differential equation, and the multiple time variable technique. This model can also apply to analyse the homodyne phenomenon in a difference kind of the oscillation system under same method such as the self-oscillation system, and the natural oscillation system with external forced. In a free oscillation system, which forced by the external source is represented by a pendulum with an oscillating support experiment, and a modified Colpitts oscillator circuit in the UHF band with input as a Doppler signal is a representative of self-oscillation system. The MTFO model is verified with the experimental result, which well in line with the theoretical analysis. PMID:28252000

  4. Radiation Therapy for Primary Cutaneous Anaplastic Large Cell Lymphoma: An International Lymphoma Radiation Oncology Group Multi-institutional Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Million, Lynn, E-mail: lmillion@stanford.edu; Yi, Esther J.; Wu, Frank

    Purpose: To collect response rates of primary cutaneous anaplastic large cell lymphoma, a rare cutaneous T-cell lymphoma, to radiation therapy (RT), and to determine potential prognostic factors predictive of outcome. Methods and Materials: The study was a retrospective analysis of patients with primary cutaneous anaplastic large cell lymphoma who received RT as primary therapy or after surgical excision. Data collected include initial stage of disease, RT modality (electron/photon), total dose, fractionation, response to treatment, and local recurrence. Radiation therapy was delivered at 8 participating International Lymphoma Radiation Oncology Group institutions worldwide. Results: Fifty-six patients met the eligibility criteria, and 63 tumorsmore » were treated: head and neck (27%), trunk (14%), upper extremities (27%), and lower extremities (32%). Median tumor size was 2.25 cm (range, 0.6-12 cm). T classification included T1, 40 patients (71%); T2, 12 patients (21%); and T3, 4 patients (7%). The median radiation dose was 35 Gy (range, 6-45 Gy). Complete clinical response (CCR) was achieved in 60 of 63 tumors (95%) and partial response in 3 tumors (5%). After CCR, 1 tumor recurred locally (1.7%) after 36 Gy and 7 months after RT. This was the only patient to die of disease. Conclusions: Primary cutaneous anaplastic large cell lymphoma is a rare, indolent cutaneous lymphoma with a low death rate. This analysis, which was restricted to patients selected for treatment with radiation, indicates that achieving CCR was independent of radiation dose. Because there were too few failures (<2%) for statistical analysis on dose response, 30 Gy seems to be adequate for local control, and even lower doses may suffice.« less

  5. [A man with pain in his upper jaw].

    PubMed

    Jaspers, Gijs; van Gool, Lex

    2011-01-01

    A 66-year-old man came to the hospital with pain in the frontal left side of his upper jaw. Pressure along the left nostril could evoke a sharp pain, which radiated upwards. The patient had already consulted several specialists. After extended clinical and radiological investigation a mesiodens was found that gave pressure on the nasopalatine nerve.

  6. Investigation of Dynamic and Physical Processes in the Upper Troposphere and Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Pfister, Leonhard (Technical Monitor)

    2002-01-01

    Research under this Cooperative Agreement has been funded by several NASA Earth Science programs: the Atmospheric Effects of Radiation Program (AEAP), the Upper Atmospheric Research Program (UARP), and most recently the Atmospheric Chemistry and Modeling Assessment Program (ACMAP). The purpose of the AEAP was to understand the impact of the present and future fleets of conventional jet traffic on the upper troposphere and lower stratosphere, while complementary airborne observations under UARP seek to understand the complex interactions of dynamical and chemical processes that affect the ozone layer. The ACMAP is a more general program of modeling and data analysis in the general area of atmospheric chemistry and dynamics, and the Radiation Sciences program.

  7. Phase-slope and phase measurements of tunable CW-THz radiation with terahertz comb for wide-dynamic-range, high-resolution, distance measurement of optically rough object.

    PubMed

    Yasui, Takeshi; Fujio, Makoto; Yokoyama, Shuko; Araki, Tsutomu

    2014-07-14

    Phase measurement of continuous-wave terahertz (CW-THz) radiation is a potential tool for direct distance and imaging measurement of optically rough objects due to its high robustness to optical rough surfaces. However, the 2π phase ambiguity in the phase measurement of single-frequency CW-THz radiation limits the dynamic range of the measured distance to the order of the wavelength used. In this article, phase-slope measurement of tunable CW-THz radiation with a THz frequency comb was effectively used to extend the dynamic range up to 1.834 m while maintaining an error of a few tens µm in the distance measurement of an optically rough object. Furthermore, a combination of phase-slope measurement of tunable CW-THz radiation and phase measurement of single-frequency CW-THz radiation enhanced the distance error to a few µm within the dynamic range of 1.834 m without any influence from the 2π phase ambiguity. The proposed method will be a powerful tool for the construction and maintenance of large-scale structures covered with optically rough surfaces.

  8. Evaluation of the immediate effect of acupuncture on pain, cervical range of motion and electromyographic activity of the upper trapezius muscle in patients with nonspecific neck pain: study protocol for a randomized controlled trial.

    PubMed

    Calamita, Simone Aparecida Penimpedo; Biasotto-Gonzalez, Daniela Aparecida; De Melo, Nivea Cristina; dos Santos, Douglas Meira; de Lassa, Roberta; de Mendonça, Fabiana Sarilho; Oliveira, Claudia Santos; Amorim, César Ferreira; Gonzalez, Tabajara Oliveira; Fumagalli, Marco Antônio; de Gomes, Cid André Fidelis Paula; Politti, Fabiano

    2015-03-19

    Nonspecific neck pain can cause considerable suffering, possible disability and reductions in quality of life and productivity. The aim of the proposed study is to evaluate the immediate effect of acupuncture on pain, cervical range of motion and electromyographic activity of the upper trapezius muscle in patients with nonspecific neck pain. A total of 12 patients with nonspecific neck pain and 12 healthy subjects will be enrolled in a randomized, single-blind crossover study. Each subject will receive two forms of treatment in random order: a single session of traditional acupuncture (acupoints: triple energizer 5, 'Wai-guan' and large intestine 11, 'Qu-chi') and sham acupuncture. To eliminate carry-over treatment effects, a one-week wash-out period will be respected between sessions. Surface electromyography will be used to determine motor control in the upper trapezius muscle before and after treatment. The outcome measures in the group with neck pain will be a numerical pain rating scale (range: 0 (no pain) to 10 (maximum pain)), documentation of the pain area on a body chart and cervical range of motion. Comparisons before and after acupuncture treatment will demonstrate whether acupoints affect the activity of the upper trapezius muscle, pain and cervical range of motion. The purpose of this randomized clinical trial is to evaluate the immediate effect of acupuncture on pain, cervical range of motion and electromyographic activity of the upper trapezius muscle in patients with nonspecific neck pain. Data will be published after the study is completed. The study will support the practice of evidence-based physical therapy for individuals with nonspecific neck pain. This trial was registered with Clinicaltrials.gov (identifier: NCT0984021 ) on 7 November 2013 ( https://clinicaltrials.gov/ct2/show/NCT01984021 ).

  9. Risk of whole body radiation exposure and protective measures in fluoroscopically guided interventional techniques: a prospective evaluation.

    PubMed

    Manchikanti, Laxmaiah; Cash, Kim A; Moss, Tammy L; Rivera, Jose; Pampati, Vidyasagar

    2003-08-06

    BACKGROUND: Fluoroscopic guidance is frequently utilized in interventional pain management. The major purpose of fluoroscopy is correct needle placement to ensure target specificity and accurate delivery of the injectate. Radiation exposure may be associated with risks to physician, patient and personnel. While there have been many studies evaluating the risk of radiation exposure and techniques to reduce this risk in the upper part of the body, the literature is scant in evaluating the risk of radiation exposure in the lower part of the body. METHODS: Radiation exposure risk to the physician was evaluated in 1156 patients undergoing interventional procedures under fluoroscopy by 3 physicians. Monitoring of scattered radiation exposure in the upper and lower body, inside and outside the lead apron was carried out. RESULTS: The average exposure per procedure was 12.0 PlusMinus; 9.8 seconds, 9.0 PlusMinus; 0.37 seconds, and 7.5 PlusMinus; 1.27 seconds in Groups I, II, and III respectively. Scatter radiation exposure ranged from a low of 3.7 PlusMinus; 0.29 seconds for caudal/interlaminar epidurals to 61.0 PlusMinus; 9.0 seconds for discography. Inside the apron, over the thyroid collar on the neck, the scatter radiation exposure was 68 mREM in Group I consisting of 201 patients who had a total of 330 procedures with an average of 0.2060 mREM per procedure and 25 mREM in Group II consisting of 446 patients who had a total of 662 procedures with average of 0.0378 mREM per procedure. The scatter radiation exposure was 0 mREM in Group III consisting of 509 patients who had a total 827 procedures. Increased levels of exposures were observed in Groups I and II compared to Group III, and Group I compared to Group II.Groin exposure showed 0 mREM exposure in Groups I and II and 15 mREM in Group III. Scatter radiation exposure for groin outside the apron in Group I was 1260 mREM and per procedure was 3.8182 mREM. In Group II the scatter radiation exposure was 400 mREM and with

  10. Upper extremities flexibility comparisons of collegiate "soft" martial art practitioners with other athletes.

    PubMed

    Huang, C-C; Yang, Y-H; Chen, C-H; Chen, T-W; Lee, C-L; Wu, C-L; Chuang, S-H; Huang, M-H

    2008-03-01

    The aim of this study was to compare the flexibility of the upper extremities in collegiate students involved in Aikido (a kind of soft martial art attracting youth) training with those involved in other sports. Fifty freshmen with a similar frequency of exercise were divided into the Aikido group (n = 18), the upper-body sports group (n = 17), and the lower-body sports group (n = 15) according to the sports that they participated in. Eight classes of range of motion in upper extremities were taken for all subjects by the same clinicians. The Aikido group had significantly better flexibility than the upper-body sports group except for range of motion in shoulder flexion (p = 0.22), shoulder lateral rotation (p > 0.99), and wrist extension (p > 0.99). The Aikido group also had significantly better flexibility than the lower-body sports group (p < 0.01) and the sedentary group (p < 0.01) in all classes of range of motion. The upper-body sports group was significantly more flexible in five classes of range of motion and significantly tighter in range of motion of wrist flexion (p < 0.01) compared to the lower-body sports group. It was concluded that the youths participating in soft martial arts had good upper extremities flexibility that might not result from regular exercise alone.

  11. Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian pollution.

    PubMed

    Vernier, J-P; Fairlie, T D; Natarajan, M; Wienhold, F G; Bian, J; Martinsson, B G; Crumeyrolle, S; Thomason, L W; Bedka, K M

    2015-02-27

    Satellite observations have shown that the Asian Summer Monsoon strongly influences the upper troposphere and lower stratosphere (UTLS) aerosol morphology through its role in the formation of the Asian Tropopause Aerosol Layer (ATAL). Stratospheric Aerosol and Gas Experiment II solar occultation and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar observations show that summertime UTLS Aerosol Optical Depth (AOD) between 13 and 18 km over Asia has increased by three times since the late 1990s. Here we present the first in situ balloon measurements of aerosol backscatter in the UTLS from Western China, which confirm high aerosol levels observed by CALIPSO since 2006. Aircraft in situ measurements suggest that aerosols at lower altitudes of the ATAL are largely composed of carbonaceous and sulfate materials (carbon/sulfur elemental ratio ranging from 2 to 10). Back trajectory analysis from Cloud-Aerosol Lidar with Orthogonal Polarization observations indicates that deep convection over the Indian subcontinent supplies the ATAL through the transport of pollution into the UTLS. Time series of deep convection occurrence, carbon monoxide, aerosol, temperature, and relative humidity suggest that secondary aerosol formation and growth in a cold, moist convective environment could play an important role in the formation of ATAL. Finally, radiative calculations show that the ATAL layer has exerted a short-term regional forcing at the top of the atmosphere of -0.1 W/m 2 in the past 18 years. Increase of summertime upper tropospheric aerosol levels over Asia since the 1990s Upper tropospheric enhancement also observed by in situ backscatter measurements Significant regional radiative forcing of -0.1 W/m 2 .

  12. Young planets under extreme UV irradiation. I. Upper atmosphere modelling of the young exoplanet K2-33b

    NASA Astrophysics Data System (ADS)

    Kubyshkina, D.; Lendl, M.; Fossati, L.; Cubillos, P. E.; Lammer, H.; Erkaev, N. V.; Johnstone, C. P.

    2018-04-01

    The K2-33 planetary system hosts one transiting 5 R⊕ planet orbiting the young M-type host star. The planet's mass is still unknown, with an estimated upper limit of 5.4 MJ. The extreme youth of the system (<20 Myr) gives the unprecedented opportunity to study the earliest phases of planetary evolution, at a stage when the planet is exposed to an extremely high level of high-energy radiation emitted by the host star. We perform a series of 1D hydrodynamic simulations of the planet's upper atmosphere considering a range of possible planetary masses, from 2 to 40 M⊕, and equilibrium temperatures, from 850 to 1300 K, to account for internal heating as a result of contraction. We obtain temperature profiles mostly controlled by the planet's mass, while the equilibrium temperature has a secondary effect. For planetary masses below 7-10 M⊕, the atmosphere is subject to extremely high escape rates, driven by the planet's weak gravity and high thermal energy, which increase with decreasing mass and/or increasing temperature. For higher masses, the escape is instead driven by the absorption of the high-energy stellar radiation. A rough comparison of the timescales for complete atmospheric escape and age of the system indicates that the planet is more massive than 10 M⊕.

  13. Radiative Properties of Thin Films of Common Dielectric Materials in the IR Spectral Range of 1.5-14.2 μm: Application to Infrared Imaging

    NASA Astrophysics Data System (ADS)

    Bañobre, Asahel; Marthi, Sita Rajyalaxmi; Ravindra, N. M.

    2018-05-01

    To measure, map and control temperature, imaging of materials in a thermal furnace routinely utilizes non-contact sensors, such as pyrometers. These pyrometers require a pre-knowledge of the radiative properties of materials in the desired infrared range of wavelengths. In this study, radiative properties of some commonly used thin films of dielectric materials are investigated within the infrared (IR) spectral range of 1.5-14.2 μm. Radiative properties of aluminum oxide (Al2O3), silicon dioxide (SiO2), aluminum nitride (AlN) and silicon nitride (Si3N4) have been simulated and compared, utilizing a matrix method of representing the optical properties. The simulated results of the radiative properties show that Si3N4 is an excellent choice for the infrared radiation absorbing layer that is currently used in infrared uncooled detectors (microbolometers) because of its optical, mechanical and electrical properties. A case study of the radiative properties of an infrared uncooled microbolometer (Honeywell structure) is presented and discussed in the infrared spectral range of 8-14 μm. The results obtained serve as useful information for the design and fabrication of infrared imaging systems and components such as coatings, detectors, filters, lenses and waveguides.

  14. Radiobiological evaluation of simultaneously dose-escalated versus non-escalated intensity-modulated radiation therapy for patients with upper thoracic esophageal cancer.

    PubMed

    Huang, Bao-Tian; Wu, Li-Li; Guo, Long-Jia; Xu, Liang-Yu; Huang, Rui-Hong; Lin, Pei-Xian; Chen, Jian-Zhou; Li, De-Rui; Chen, Chuang-Zhen

    2017-01-01

    To compare the radiobiological response between simultaneously dose-escalated and non-escalated intensity-modulated radiation therapy (DE-IMRT and NE-IMRT) for patients with upper thoracic esophageal cancer (UTEC) using radiobiological evaluation. Computed tomography simulation data sets for 25 patients pathologically diagnosed with primary UTEC were used in this study. DE-IMRT plan with an escalated dose of 64.8 Gy/28 fractions to the gross tumor volume (GTV) and involved lymph nodes from 25 patients pathologically diagnosed with primary UTEC, was compared to an NE-IMRT plan of 50.4 Gy/28 fractions. Dose-volume metrics, tumor control probability (TCP), and normal tissue complication probability for the lung and spinal cord were compared. In addition, the risk of acute esophageal toxicity (AET) and late esophageal toxicity (LET) were also analyzed. Compared with NE-IMRT plan, we found the DE-IMRT plan resulted in a 14.6 Gy dose escalation to the GTV. The tumor control was predicted to increase by 31.8%, 39.1%, and 40.9% for three independent TCP models. The predicted incidence of radiation pneumonitis was similar (3.9% versus 3.6%), and the estimated risk of radiation-induced spinal cord injury was extremely low (<0.13%) in both groups. Regarding the esophageal toxicities, the estimated grade ≥2 and grade ≥3 AET predicted by the Kwint model were increased by 2.5% and 3.8%. Grade ≥2 AET predicted using the Wijsman model was increased by 14.9%. The predicted incidence of LET was low (<0.51%) in both groups. Radiobiological evaluation reveals that the DE-IMRT dosing strategy is feasible for patients with UTEC, with significant gains in tumor control and minor or clinically acceptable increases in radiation-induced toxicities.

  15. Wireless wearable range-of-motion sensor system for upper and lower extremity joints: a validation study.

    PubMed

    Kumar, Yogaprakash; Yen, Shih-Cheng; Tay, Arthur; Lee, Wangwei; Gao, Fan; Zhao, Ziyi; Li, Jingze; Hon, Benjamin; Tian-Ma Xu, Tim; Cheong, Angela; Koh, Karen; Ng, Yee-Sien; Chew, Effie; Koh, Gerald

    2015-02-01

    Range-of-motion (ROM) assessment is a critical assessment tool during the rehabilitation process. The conventional approach uses the goniometer which remains the most reliable instrument but it is usually time-consuming and subject to both intra- and inter-therapist measurement errors. An automated wireless wearable sensor system for the measurement of ROM has previously been developed by the current authors. Presented is the correlation and accuracy of the automated wireless wearable sensor system against a goniometer in measuring ROM in the major joints of upper (UEs) and lower extremities (LEs) in 19 healthy subjects and 20 newly disabled inpatients through intra (same) subject comparison of ROM assessments between the sensor system against goniometer measurements by physical therapists. In healthy subjects, ROM measurements using the new sensor system were highly correlated with goniometry, with 95% of differences < 20° and 10° for most movements in major joints of UE and LE, respectively. Among inpatients undergoing rehabilitation, ROM measurements using the new sensor system were also highly correlated with goniometry, with 95% of the differences being < 20° and 25° for most movements in the major joints of UE and LE, respectively.

  16. Communications Blackout Predictions for Atmospheric Entry of Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Morabito, David D.; Edquist, Karl T.

    2005-01-01

    The Mars Science Laboratory (MSL) is expected to be a long-range, long-duration science laboratory rover on the Martian surface. MSL will provide a significant milestone that paves the way for future landed missions to Mars. NASA is studying options to launch MSL as early as 2009. There are three elements to the spacecraft; carrier (cruise stage), entry vehicle, and rover. The rover will have a UHF proximity link as the primary path for EDL communications and may have an X-band direct-to-Earth link as a back-up. Given the importance of collecting critical event telemetry data during atmospheric entry, it is important to understand the ability of a signal link to be maintained, especially during the period near peak convective heating. The received telemetry during entry (or played back later) will allow for the performance of the Entry-Descent-Landing technologies to be assessed. These technologies include guided entry for precision landing, a new sky-crane landing system and powered descent. MSL will undergo an entry profile that may result in a potential communications blackout caused by ionized particles for short periods near peak heating. The vehicle will use UHF and possibly X-band during the entry phase. The purpose of this rep0rt is to quantify or bound the likelihood of any such blackout at UHF frequencies (401 MHz) and X-band frequencies (8.4 GHz). Two entry trajectory scenarios were evaluated: a stressful entry trajectory to quantify an upper-bound for any possible blackout period, and a nominal trajectory to quantify likelihood of blackout for such cases.

  17. A synchrotron-radiation-based variable angle ellipsometer for the visible to vacuum ultraviolet spectral range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neumann, M. D., E-mail: maciej.neumann@isas.de; Cobet, C.; Esser, N.

    2014-05-15

    A rotating analyzer spectroscopic polarimeter and ellipsometer with a wide-range θ-2θ goniometer installed at the Insertion Device Beamline of the Metrology Light Source in Berlin is presented. With a combination of transmission- and reflection-based polarizing elements and the inherent degree of polarization of the undulator radiation, this ellipsometer is able to cover photon energies from about 2 eV up to 40 eV. Additionally, a new compensator design based on a CaF{sub 2} Fresnel rhomb is presented. This compensator allows ellipsometric measurements with circular polarization in the vacuum ultraviolet spectral range and thus, for example, the characterization of depolarizing samples. The new instrumentmore » was initially used for the characterization of the polarization of the beamline. The technical capabilities of the ellipsometer are demonstrated by a cohesive wide-range measurement of the dielectric function of epitaxially grown ZnO.« less

  18. Application of a catalytic combustion sensor (Pellistor) for the monitoring of the explosiveness of a hydrogen-air mixture in the upper explosive limit range

    PubMed Central

    Krawczyk, M.; Namiesnik, J.

    2003-01-01

    A new technique is presented for continuous measurements of hydrogen contamination by air in the upper explosive limit range. It is based on the application of a catalytic combustion sensor placed in a cell through which the tested sample passes. The air content is the function of the quantity of formed heat during catalytic combustion of hydrogen inside the sensor. There is the possibility of using the method in industrial installations by using hydrogen for cooling electric current generators. PMID:18924620

  19. Generation of nonthermal continuum radiation in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Okuda, H.; Chance, M. S.; Ashour-Abdalla, M.; Kurth, W. S.

    1982-01-01

    Generation of electromagnetic continuum radiation from electrostatic fluctuations near the upper hybrid resonance frequency has been calculated by using cold plasma theory in an inhomogeneous plasma near the plasmapause. It is shown that both the polarization and the amplitude of electromagnetic radiation are in good quantitative agreement with spacecraft observations for nonthermal continuum radiation.

  20. Space Wire Upper Layer Protocols

    NASA Technical Reports Server (NTRS)

    Rakow, Glenn; Schnurr, Richard; Gilley, Daniel; Parkes, Steve

    2004-01-01

    This viewgraph presentation addresses efforts to provide a streamlined approach for developing SpaceWire Upper layer protocols which allows industry to drive standardized communication solutions for real projects. The presentation proposes a simple packet header that will allow flexibility in implementing a diverse range of protocols.

  1. On the chemistry of Jupiter's upper atmosphere

    USGS Publications Warehouse

    Saslaw, W.C.; Wildey, R.L.

    1967-01-01

    We conduct a first investigation into the ion-molecule chemistry of the upper Jovian atmosphere. Experimental results show that intense ultraviolet radiation reacts with the constituents of the Jovian atmosphere to produce C2H4, C2H6, C3H8, and higher polymers. The general procedure for calculating both equilibrium and nonequilibrium abundances of these products is formulated and applied to the case of the surface passage of a satellite shadow. A specific example is made of ethylene, for which an analytical approximation gives 1010 molecules in an atmospheric column of 1 cm2 cross section after a very rapid rise to equilibrium. Such a concentration of ethylene does not substantially affect the infrared radiation in the shadow. ?? 1967.

  2. Spinal fusion limits upper body range of motion during gait without inducing compensatory mechanisms in adolescent idiopathic scoliosis patients.

    PubMed

    Holewijn, R M; Kingma, I; de Kleuver, M; Schimmel, J J P; Keijsers, N L W

    2017-09-01

    Previous studies show a limited alteration of gait at normal walking speed after spinal fusion surgery for adolescent idiopathic scoliosis (AIS), despite the presumed essential role of spinal mobility during gait. This study analyses how spinal fusion affects gait at more challenging walking speeds. More specifically, we investigated whether thoracic-pelvic rotations are reduced to a larger extent at higher gait speeds and whether compensatory mechanisms above and below the stiffened spine are present. 18 AIS patients underwent gait analysis at increasing walking speeds (0.45 to 2.22m/s) before and after spinal fusion. The range of motion (ROM) of the upper (thorax, thoracic-pelvic and pelvis) and lower body (hip, knee and ankle) was determined in all three planes. Spatiotemporal parameters of interest were stride length and cadence. Spinal fusion diminished transverse plane thoracic-pelvic ROM and this difference was more explicit at higher walking speeds. Transversal pelvis ROM was also decreased but this effect was not affected by speed. Lower body ROM, step length and cadence remained unaffected. Despite the reduction of upper body ROM after spine surgery during high speed gait, no altered spatiotemporal parameters or increased compensatory ROM above or below the fusion (i.e. in the shoulder girdle or lower extremities) was identified. Thus, it remains unclear how patients can cope so well with such major surgery. Future studies should focus on analyzing the kinematics of individual spinal levels above and below the fusion during gait to investigate possible compensatory mechanisms within the spine. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Cloud and radiative heating profiles associated with the boreal summer intraseasonal oscillation

    NASA Astrophysics Data System (ADS)

    Kim, Jinwon; Waliser, Duane E.; Cesana, Gregory V.; Jiang, Xianan; L'Ecuyer, Tristan; Neena, J. M.

    2018-03-01

    The cloud water content (CW) and radiative heating rate (QR) structures related to northward propagating boreal summer intraseasonal oscillations (BSISOs) are analyzed using data from A-train satellites in conjunction with the ERA-Interim reanalysis. It is found that the northward movement of CW- and QR anomalies are closely synchronized with the northward movement of BSISO precipitation maxima. Commensurate with the northward propagating BSISO precipitation maxima, the CW anomalies exhibit positive ice (liquid) CW maxima in the upper (middle/low) troposphere with a prominent tilting structure in which the low-tropospheric (upper-tropospheric) liquid (ice) CW maximum leads (lags) the BSISO precipitation maximum. The BSISO-related shortwave heating (QSW) heats (cools) the upper (low) troposphere; the longwave heating (QLW) cools (heats) the upper (middle/low) troposphere. The resulting net radiative heating (QRN), being dominated by QLW, cools (heats) the atmosphere most prominently above the 200 hPa level (below the 600 hPa level). Enhanced clouds in the upper and middle troposphere appears to play a critical role in increasing low-level QLW and QRN. The vertically-integrated QSW, QLW and QRN are positive in the region of enhanced CW with the maximum QRN near the latitude of the BSISO precipitation maximum. The bottom-heavy radiative heating anomaly resulting from the cloud-radiation interaction may act to strengthen convection.

  4. Metal-ferroelectric-metal capacitor based persistent memory for electronic product code class-1 generation-2 uhf passive radio-frequency identification tag

    NASA Astrophysics Data System (ADS)

    Yoon, Bongno; Sung, Man Young; Yeon, Sujin; Oh, Hyun S.; Kwon, Yoonjoo; Kim, Chuljin; Kim, Kyung-Ho

    2009-03-01

    With the circuits using metal-ferroelectric-metal (MFM) capacitor, rf operational signal properties are almost the same or superior to those of polysilicon-insulator-polysilicon, metal-insulator-metal, and metal-oxide-semiconductor (MOS) capacitors. In electronic product code global class-1 generation-2 uhf radio-frequency identification (RFID) protocols, the MFM can play a crucial role in satisfying the specifications of the inventoried flag's persistence times (Tpt) for each session (S0-S3, SL). In this paper, we propose and design a new MFM capacitor based memory scheme of which persistence time for S1 flag is measured at 2.2 s as well as indefinite for S2, S3, and SL flags during the period of power-on. A ferroelectric random access memory embedded RFID tag chip is fabricated with an industry-standard complementary MOS process. The chip size is around 500×500 μm2 and the measured power consumption is about 10 μW.

  5. The oral health of upper income Americans.

    PubMed

    Bailit, Howard; Lim, Sungwoo; Ismail, Amid

    2016-06-01

    Limited information is available on the oral health status of upper income Americans (>400 percent of the FPL). They constitute 33 percent of the population and account for 53 percent of dental expenditures. Using 1999-2004 NHANES data, we examined differences in the mean number and percentage of decayed and filled permanent surfaces and missing teeth among age and family income groups. For upper income Americans, across age groups, the mean number of untreated decayed surfaces and missing teeth ranged from 0.2 to 0.5 and 2.6 to 3.3, respectively. The mean number of restored surfaces was low in children but extensive in adults. Income disparities increased with increasing age. Overall, upper income Americans have good oral health. Relatively few have untreated decayed surfaces or missing teeth. The reasons for the large number of restored surfaces in upper income adults require further research. Most upper income Americans are in good oral health, especially the 12-18 year cohort. As this group ages, the oral health of upper income adults is expected to improve. © 2015 American Association of Public Health Dentistry.

  6. PWR upper/lower internals shield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homyk, W.A.

    1995-03-01

    During refueling of a nuclear power plant, the reactor upper internals must be removed from the reactor vessel to permit transfer of the fuel. The upper internals are stored in the flooded reactor cavity. Refueling personnel working in containment at a number of nuclear stations typically receive radiation exposure from a portion of the highly contaminated upper intervals package which extends above the normal water level of the refueling pool. This same issue exists with reactor lower internals withdrawn for inservice inspection activities. One solution to this problem is to provide adequate shielding of the unimmersed portion. The use ofmore » lead sheets or blankets for shielding of the protruding components would be time consuming and require more effort for installation since the shielding mass would need to be transported to a support structure over the refueling pool. A preferable approach is to use the existing shielding mass of the refueling pool water. A method of shielding was devised which would use a vacuum pump to draw refueling pool water into an inverted canister suspended over the upper internals to provide shielding from the normally exposed components. During the Spring 1993 refueling of Indian Point 2 (IP2), a prototype shield device was demonstrated. This shield consists of a cylindrical tank open at the bottom that is suspended over the refueling pool with I-beams. The lower lip of the tank is two feet below normal pool level. After installation, the air width of the natural shielding provided by the existing pool water. This paper describes the design, development, testing and demonstration of the prototype device.« less

  7. Teleseismic array analysis of upper mantle compressional velocity structure. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Walck, M. C.

    1984-01-01

    Relative array analysis of upper mantle lateral velocity variations in southern California, analysis techniques for dense data profiles, the P-wave upper mantle structure beneath an active spreading center: the Gulf of California, and the upper mantle under the Cascade ranges: a comparison with the Gulf of California are presented.

  8. Inspiratory and expiratory aerosol deposition in the upper airway.

    PubMed

    Verbanck, S; Kalsi, H S; Biddiscombe, M F; Agnihotri, V; Belkassem, B; Lacor, C; Usmani, O S

    2011-02-01

    Aerosol deposition efficiency (DE) in the extrathoracic airways during mouth breathing is currently documented only for the inspiratory phase of respiration, and there is a need for quantification of expiratory DE. Our aim was to study both inspiratory and expiratory DE in a realistic upper airway geometry. This was done experimentally on a physical upper airway cast by scintigraphy, and numerically by computational fluid dynamic simulations using a Reynolds Averaged Navier?Stokes (RANS) method with a k-? SST turbulence model coupled with a stochastic Lagrangian approach. Experiments and simulations were carried out for particle sizes (3 and 6 μm) and flow rates (30 and 60 L/min) spanning the ranges of Stokes (Stk) and Reynolds (Re) number pertinent to therapeutic and environmental aerosols. We showed that inspiratory total deposition data obtained by scintigraphy fell onto a previously published deposition curve representative of a range of upper airway geometries. We also found that expiratory and inspiratory DE curves were almost identical. Finally, DE in different compartments of the upper airway model showed a very different distribution pattern of aerosol deposition during inspiration and expiration, with preferential deposition in oral and pharyngeal compartments, respectively. These compartmental deposition patterns were very consistent and only slightly dependent on particle size or flow rate. Total deposition for inspiration and expiration was reasonably well-mimicked by the RANS simulation method we employed, and more convincingly so in the upper range of the Stk and Re number. However, compartmental deposition patterns showed discrepancies between experiments and RANS simulations, particularly during expiration.

  9. Effects of upper ocean sound-speed structure on deep acoustic shadow-zone arrivals at 500- and 1000-km range.

    PubMed

    Van Uffelen, Lora J; Worcester, Peter F; Dzieciuch, Matthew A; Rudnick, Daniel L; Colosi, John A

    2010-04-01

    Deep acoustic shadow-zone arrivals observed in the late 1990s in the North Pacific Ocean reveal significant acoustic energy penetrating the geometric shadow. Comparisons of acoustic data obtained from vertical line arrays deployed in conjunction with 250-Hz acoustic sources at ranges of 500 and 1000 km from June to November 2004 in the North Pacific, with simulations incorporating scattering consistent with the Garrett-Munk internal-wave spectrum, are able to describe both the energy contained in and vertical extent of deep shadow-zone arrivals. Incoherent monthly averages of acoustic timefronts indicate that lower cusps associated with acoustic rays with shallow upper turning points (UTPs), where sound-speed structure is most variable and seasonally dependent, deepen from June to October as the summer thermocline develops. Surface-reflected rays, or those with near-surface UTPs, exhibit less scattering due to internal waves than in later months when the UTP deepens. Data collected in November exhibit dramatically more vertical extension than previous months. The depth to which timefronts extend is a complex combination of deterministic changes in the depths of the lower cusps as the range-average profiles evolve with seasonal change and of the amount of scattering, which depends on the mean vertical gradients at the depths of the UTPs.

  10. The GCOS Reference Upper-Air Network (GRUAN)

    NASA Astrophysics Data System (ADS)

    Vömel, H.; Berger, F. H.; Immler, F. J.; Seidel, D.; Thorne, P.

    2009-04-01

    While the global upper-air observing network has provided useful observations for operational weather forecasting for decades, its measurements lack the accuracy and long-term continuity needed for understanding climate change. Consequently, the scientific community faces uncertainty on such key issues as the trends of temperature in the upper troposphere and stratosphere or the variability and trends of stratospheric water vapour. To address these shortcomings, and to ensure that future climate records will be more useful than the records to date, the Global Climate Observing System (GCOS) program initiated the GCOS Reference Upper Air Network (GRUAN). GRUAN will be a network of about 30-40 observatories with a representative sampling of geographic regions and surface types. These stations will provide upper-air reference observations of the essential climate variables, i.e. temperature, geopotential, humidity, wind, radiation and cloud properties using specialized radiosondes and complementary remote sensing profiling instrumentation. Long-term stability, quality assurance / quality control, and a detailed assessment of measurement uncertainties will be the key aspects of GRUAN observations. The network will not be globally complete but will serve to constrain and adjust data from more spatially comprehensive global observing systems including satellites and the current radiosonde networks. This paper outlines the scientific rationale for GRUAN, its role in the Global Earth Observation System of Systems, network requirements and likely instrumentation, management structure, current status and future plans.

  11. Predicting commuter flows in spatial networks using a radiation model based on temporal ranges

    NASA Astrophysics Data System (ADS)

    Ren, Yihui; Ercsey-Ravasz, Mária; Wang, Pu; González, Marta C.; Toroczkai, Zoltán

    2014-11-01

    Understanding network flows such as commuter traffic in large transportation networks is an ongoing challenge due to the complex nature of the transportation infrastructure and human mobility. Here we show a first-principles based method for traffic prediction using a cost-based generalization of the radiation model for human mobility, coupled with a cost-minimizing algorithm for efficient distribution of the mobility fluxes through the network. Using US census and highway traffic data, we show that traffic can efficiently and accurately be computed from a range-limited, network betweenness type calculation. The model based on travel time costs captures the log-normal distribution of the traffic and attains a high Pearson correlation coefficient (0.75) when compared with real traffic. Because of its principled nature, this method can inform many applications related to human mobility driven flows in spatial networks, ranging from transportation, through urban planning to mitigation of the effects of catastrophic events.

  12. The burning issues of motor vehicle radiator scald injuries revisited - a fresh review and changing prevention strategies.

    PubMed

    Patel, J N; Tan, A; Frew, Q; Dziewulski, P

    2016-12-31

    A preventable subgroup of burn injuries is scalds sustained from motor vehicle radiators. This study was to determine changes in trends in epidemiology of such injuries and to discuss whether current and other prevention efforts proposed previously require reinforcement. We conducted a retrospective study (February 2007-August 2015) of all motor vehicle-related burn referrals to our regional burns service. 68 cases of motor vehicle radiator burns were identified. Male to female ratio was 65:3. Mean age was 35.1 (range = 9-71). Most cases occurred in the summer months (22/68 = 32.4%). 65 cases (95.6%) involved car radiators. 66% of injuries resulted from actively removing the pressure cap of an overheated radiator in the motor vehicle. Mean total burn surface area (%TBSA) was 2.1% (range = 0.5- 11%). The depths of burn injuries were mostly superficial partial thickness. Face, chest and upper limbs were the most common sites of injury. Mean healing time was 14.2 days (range = 4-60). Following the introduction of safety measures by vehicle manufacturers, motor vehicle radiator burns in this era are mostly minor injuries and can be potentially managed conservatively as an outpatient. This contrasts with findings from previous studies over a decade ago of larger, more significant injuries requiring admission and surgery. Whilst manufacturers have installed safety measures into the design of radiator caps, our findings suggest that re-educating the public to allow a period of cooling prior to opening caps should be reinforced.

  13. Exploring The Relation Between Upper Tropospheric (UT) Clouds and Convection

    NASA Astrophysics Data System (ADS)

    Stephens, G. L.; Stubenrauch, C.

    2017-12-01

    The importance of knowing the vertical transports of water vapor and condensate by atmospheric moist convection cannot be overstated. Vertical convective transports have wide-ranging influences on the Earth system, shaping weather, climate, the hydrological cycle and the composition of the atmosphere. These transports also influence the upper tropospheric cloudiness that exerts profound effects on climate. Although there are presently no direct observations to quantify these transports on the large scale, and there are no observations to constrain model assumptions about them, it might be possible to derive useful observations proxies of these transports and their influence. This talk will present results derived from a large community effort that has developed important observations data records that link clouds and convection. Steps to use these observational metrics to examine the relation between convection, UT clouds in both cloud and global scale models are exemplified and important feedbacks between high clouds, radiation and convection will be elucidated.

  14. Absorption of the laser radiation by the laser plasma with gas microjet targets

    NASA Astrophysics Data System (ADS)

    Borisevichus, D. A.; Zabrodskii, V. V.; Kalmykov, S. G.; Sasin, M. E.; Seisyan, R. P.

    2017-01-01

    An upper limit of absorption of the laser radiation in the plasma produced in a gas jet Xe target with the average density of (3-6) × 1018 cm-3 and the effective diameter of 0.7 mm is found. It is equal to ≈50% and remains constant under any variation in this range of densities. This result contradicts both theoretical assessments that have predicted virtually complete absorption and results of earlier experiments with the laser spark in an unlimited stationary Xe gas with the same density, where the upper limit of absorption was close to 100%. An analysis shows that nonlinearity of absorption and plasma nonequilibrium lead to the reduction of the absorption coefficient that, along with the limited size of plasma, can explain the experimental results.

  15. Dosimetric Analysis of Radiation-induced Gastric Bleeding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Mary, E-mail: maryfeng@umich.edu; Normolle, Daniel; Pan, Charlie C.

    2012-09-01

    Purpose: Radiation-induced gastric bleeding has been poorly understood. In this study, we described dosimetric predictors for gastric bleeding after fractionated radiation therapy. Methods and Materials: The records of 139 sequential patients treated with 3-dimensional conformal radiation therapy (3D-CRT) for intrahepatic malignancies were reviewed. Median follow-up was 7.4 months. The parameters of a Lyman normal tissue complication probability (NTCP) model for the occurrence of {>=}grade 3 gastric bleed, adjusted for cirrhosis, were fitted to the data. The principle of maximum likelihood was used to estimate parameters for NTCP models. Results: Sixteen of 116 evaluable patients (14%) developed gastric bleeds at amore » median time of 4.0 months (mean, 6.5 months; range, 2.1-28.3 months) following completion of RT. The median and mean maximum doses to the stomach were 61 and 63 Gy (range, 46-86 Gy), respectively, after biocorrection of each part of the 3D dose distributions to equivalent 2-Gy daily fractions. The Lyman NTCP model with parameters adjusted for cirrhosis predicted gastric bleed. Best-fit Lyman NTCP model parameters were n=0.10 and m=0.21 and with TD{sub 50} (normal) = 56 Gy and TD{sub 50} (cirrhosis) = 22 Gy. The low n value is consistent with the importance of maximum dose; a lower TD{sub 50} value for the cirrhosis patients points out their greater sensitivity. Conclusions: This study demonstrates that the Lyman NTCP model has utility for predicting gastric bleeding and that the presence of cirrhosis greatly increases this risk. These findings should facilitate the design of future clinical trials involving high-dose upper abdominal radiation.« less

  16. Preliminary exploration of the measurement of walking speed for the apoplectic people based on UHF RFID.

    PubMed

    Huang Hua-Lin; Mo Ling-Fei; Liu Ying-Jie; Li Cheng-Yang; Xu Qi-Meng; Wu Zhi-Tong

    2015-08-01

    The number of the apoplectic people is increasing while population aging is quickening its own pace. The precise measurement of walking speed is very important to the rehabilitation guidance of the apoplectic people. The precision of traditional measuring methods on speed such as stopwatch is relatively low, and high precision measurement instruments because of the high cost cannot be used widely. What's more, these methods have difficulty in measuring the walking speed of the apoplectic people accurately. UHF RFID tag has the advantages of small volume, low price, long reading distance etc, and as a wearable sensor, it is suitable to measure walking speed accurately for the apoplectic people. In order to measure the human walking speed, this paper uses four reader antennas with a certain distance to reads the signal strength of RFID tag. Because RFID tag has different RSSI (Received Signal Strength Indicator) in different distances away from the reader, researches on the changes of RSSI with time have been done by this paper to calculate walking speed. The verification results show that the precise measurement of walking speed can be realized by signal processing method with Gaussian Fitting-Kalman Filter. Depending on the variance of walking speed, doctors can predict the rehabilitation training result of the apoplectic people and give the appropriate rehabilitation guidance.

  17. Performance Analysis of Effective Range and Orientation of UHF Passive RFID

    DTIC Science & Technology

    2008-03-01

    they can be found in the retail world as anti - theft devices . On the opposite end of the capacity realm, tags can include microprocessors and... theft or explosive devices set to detonate when in the presence of an American passport. Along with privacy risks, unsecure RFID tags in retail business...Thoughput for Unmodified Bluetooth Communication Devices ,” AFIT Thesis AFIT/GCS/ENG/03-08. 54 REPORT DOCUMENTATION

  18. Comparing upper tropospheric humidity data from microwave satellite instruments and tropical radiosondes

    NASA Astrophysics Data System (ADS)

    Moradi, Isaac; Buehler, Stefan A.; John, Viju O.; Eliasson, Salomon

    2010-12-01

    Atmospheric humidity plays an important role in the Earth's climate. Microwave satellite data provide valuable humidity observations in the upper troposphere with global coverage. In this study, we compare upper tropospheric humidity (UTH) retrieved from the Advanced Microwave Sounding Unit and the Microwave Humidity Sounder against radiosonde data measured at four of the central facilities of the Atmospheric Radiation Measurement program. The Atmospheric Radiative Transfer Simulator (ARTS) was used to simulate satellite brightness temperatures from the radiosonde profiles. Strong ice clouds were filtered out, as their influence on microwave measurements leads to incorrect UTH values. Day and night radiosonde profiles were analyzed separately to take into account the radiosonde radiation bias. The comparison between radiosonde and satellite is most meaningful for data in cloud-free, nighttime conditions and with a time difference of less than 2 hr. We found good agreement between the two data sets. The satellite data were slightly moister than the radiosonde data, with a mean difference of 1%-2.3% relative humidity (RH), depending on the radiosonde site. Monthly gridded data were also compared and showed a slightly larger mean difference of up to 3.3% RH, which can be explained by sampling issues.

  19. High-frequency (13.56-MHz) and ultrahigh-frequency (915-MHz) radio identification systems do not affect platelet activation and functions.

    PubMed

    Rogowska, Anna; Chabowska, Anna Małgorzata; Lipska, Alina; Boczkowska-Radziwon, Barbara; Bujno, Magdalena; Rusak, Tomasz; Dziemianczuk, Mateusz; Radziwon, Piotr

    2016-05-01

    In radiofrequency identification (RFID) systems used in labeling of blood components, blood cells are subjected to the direct influence of electromagnetic waves throughout the storage period. The aim of this study was to prove the safety of storage of platelet concentrates (PCs) in containers labeled with RFID tags. Ten pooled PCs obtained from 12 buffy coats each suspended in additive solution were divided into three separate containers that were assigned to three groups: control, PCs labeled with ultrahigh frequency (UHF) range tags and exposed to 915-MHz radio waves, and PCs labeled with high-frequency (HF) range tags and exposed to 13.56-MHz radio waves. PCs were stored at 20 to 24°C for 7 days. In vitro tests of platelet (PLT) function were performed on the first, fifth, and seventh days of storage. There were no significant differences in pH; hypotonic shock resistance; surface expression of CD62P, CD42a, or CD63; release of PLT-derived microparticles; PLT aggregation; and number of PLTs between PCs stored at a constant exposure to radio waves of two different frequencies and the control group on the first, fifth, and seventh days of storage. The results of the study indicate no impact of electromagnetic radiation generated in HF and UHF RFID systems and constant contact with the tags on the quality of stored PCs. © 2016 AABB.

  20. The Age of Upper Scorpius from Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    David, Trevor; Hillenbrand, Lynne

    2018-01-01

    The Upper Scorpius OB association is the nearest region of recent massive star formation and thus an important benchmark for investigations concerning astrophysical timescales. Classical estimates of the association age based on the kinematics of high-mass members and a Hertzsprung-Russell (H-R) diagram of the full stellar population established an age of 5 Myr. However, recent analyses based on the H-R diagram for intermediate- and high-mass members suggest an older age of 11 Myr. Importantly, the H-R diagram ages of stars in Upper Scorpius (and other clusters of a similar age) are mass-dependent, such that low-mass members appear younger than their high-mass counterparts. Here we report an age that is self-consistent in the mass range of 0.3–5 M⊙, and based on the fundamentally-determined masses and radii of eclipsing binaries (EBs). We present nine EBs in Upper Scorpius, four of which are newly reported here and all of which were discovered from K2 photometry. Joint fitting of the eclipse photometry and radial velocities from newly acquired Keck-I/HIRES spectra yields precise masses and radii for those systems that are spectroscopically double-lined. We identify one of the EB components as a slowly pulsating B-star. We use these EBs to develop an empirical mass-radius relation for pre-main-sequence stars, and to evaluate the predictions of widely-used stellar evolutionary models. Our results are consistent with previous studies that indicate most models underestimate the masses of low-mass stars by tens of percent based on H-R diagram analyses. Models including the effects of magnetic fields produce better agreement between the observed bulk and radiative parameters of these young, low-mass stars. From the orbital elements and photometrically inferred rotation periods, we consider the dynamical states of several binaries and compare with expectations from tidal dissipation theories.

  1. Z mode radiation in Jupiter's magnetosphere - The source of Jovian continuum radiation

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.; Kurth, W. S.; Moses, S. L.; Scarf, F. L.

    1990-01-01

    Observations of Z-mode waves in Jupiter's magnetosphere are analyzed. The assumption that the frequency of the intensity minimum, which isolates the signal, corresponds to the electron plasma frequency provides a consistent interpretation of all spectral features in terms of plasma resonances and cutoffs. It is shown that the continuum radiation is composed of both left-hand and right-hand polarized waves with distinct cutoffs observed at the plasma frequency and right-hand cutoff frequency, respectively. It is found that the Z-mode peak frequency lies close to the left-hand cutoff frequency, suggesting that the observed characteristics of the emission are the result of wave reflection at the cutoff layer. Another distinct emission occurring near the upper hybrid resonance frequency is detected simultaneously with the Z mode. The entire set of observations gives strong support to the linear mode theory of the conversion of upper hybrid waves to continuum radiation mediated by the Z mode via the Budden radio window mechanism.

  2. Origin and tectonic evolution of upper Triassic Turbidites in the Indo-Burman ranges, West Myanmar

    NASA Astrophysics Data System (ADS)

    Yao, Wei; Ding, Lin; Cai, Fulong; Wang, Houqi; Xu, Qiang; Zaw, Than

    2017-11-01

    The Pane Chaung Formation is exposed in the Indo-Burman Ranges, and has been involved in collision between the Indian Plate and West Burma Block. However, controversies exist over the provenance and paleogeographic reconstruction of the Pane Chaung Formation. This study presents new petrographical and detrital zircon Usbnd Pb ages and Hf isotopic data from the Pane Chaung Formation in Rakhine Yoma and Chin Hills, west Myanmar. The depositional age of the Pane Chaung Formation is Late Triassic, indicated by the Carnian-Norian Halobia fossils and maximum depositional ages between 233.0 ± 2.5 Ma and 206.2 ± 1.8 Ma. Upper Triassic sandstones contain 290-200 Ma detrital zircons, εHf(t) values of - 6 to 11 and TDMC of 1.6 to 0.6 Ga, interpreted to be derived from West Papua region. The most abundant zircon age population of 750-450 Ma is derived from Pan-African orogenic belts in Australia. Zircons of 1250-900 Ma age were derived from the Grenvillian orogen in Australia. Archean zircons are interpreted to be derived from the Yilgarn and Pilbara cratons in Western Australia. Detrital zircon ages of the Pane Chaung Formation are distinct from similar aged strata in Indochina and Sibumasu, but comparable to NW Australia (Carnarvon Basin) and Greater India (Langjiexue Formation). It is suggested that the Pane Chaung Formation was deposited in a Late Triassic submarine fan along the northern margin of Australia.

  3. 47 CFR 74.733 - UHF translator signal boosters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., vertical, or circular polarization of the electric field of the radiated signal may be employed. If the... signals of the parent translator without significantly altering any electrical characteristic of the...

  4. Microbes in the upper atmosphere and unique opportunities for astrobiology research.

    PubMed

    Smith, David J

    2013-10-01

    Microbial taxa from every major biological lineage have been detected in Earth's upper atmosphere. The goal of this review is to communicate (1) relevant astrobiology questions that can be addressed with upper atmosphere microbiology studies and (2) available sampling methods for collecting microbes at extreme altitudes. Precipitation, mountain stations, airplanes, balloons, rockets, and satellites are all feasible routes for conducting aerobiology research. However, more efficient air samplers are needed, and contamination is also a pervasive problem in the field. Measuring microbial signatures without false positives in the upper atmosphere might contribute to sterilization and bioburden reduction methods for proposed astrobiology missions. Intriguingly, environmental conditions in the upper atmosphere resemble the surface conditions of Mars (extreme cold, hypobaria, desiccation, and irradiation). Whether terrestrial microbes are active in the upper atmosphere is an area of intense research interest. If, in fact, microbial metabolism, growth, or replication is achievable independent of Earth's surface, then the search for habitable zones on other worlds should be broadened to include atmospheres (e.g., the high-altitude clouds of Venus). Furthermore, viable cells in the heavily irradiated upper atmosphere of Earth could help identify microbial genes or enzymes that bestow radiation resistance. Compelling astrobiology questions on the origin of life (if the atmosphere synthesized organic aerosols), evolution (if airborne transport influenced microbial mutation rates and speciation), and panspermia (outbound or inbound) are also testable in Earth's upper atmosphere.

  5. Expendable solid rocket motor upper stages for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Davis, H. P.; Jones, C. M.

    1974-01-01

    A family of expendable solid rocket motor upper stages has been conceptually defined to provide the payloads for the Space Shuttle with performance capability beyond the low earth operational range of the Shuttle Orbiter. In this concept-feasibility assessment, three new solid rocket motors of fixed impulse are defined for use with payloads requiring levels of higher energy. The conceptual design of these motors is constrained to limit thrusting loads into the payloads and to conserve payload bay length. These motors are combined in various vehicle configurations with stage components derived from other programs for the performance of a broad range of upper-stage missions from spin-stabilized, single-stage transfers to three-axis stabilized, multistage insertions. Estimated payload delivery performance and combined payload mission loading configurations are provided for the upper-stage configurations.

  6. Radiative properties of molecular nitrogen ions produced by helium Penning ionization and argon effects

    NASA Technical Reports Server (NTRS)

    Miller, George, III; Song, Kyo-Dong

    1994-01-01

    The development of hypersonic aerospace vehicles requires a better understanding on the thermal and chemical nonequilibrium kinetics of participating species in shock layers. The computational fluid dynamic (CFD) codes developed for such flowfields overestimate the radiation in the spectral region of 300 - 600 nm. A speculation for this overestimation is that inclusion of Ar, CO2, and H2O at the upper atmosphere flight region makes a significant impact on radiative kinetics of molecular nitrogen ions. To define the effects of minority species on the radiative kinetics of N2(+), an experimental setup was made by using the helium Penning ionization. The vibrational and rotational temperature were measured by mapping the vibrational and rotational distributions of N2(+) emission with high spectroscopic resolution and absolute intensity measurements. Measured vibrational temperatures were in the range from 18,000 to 36,000 K, and rotational temperatures were in the range from 300 to 370 K. The irradiance of 391.44 nm line and rotational and vibrational temperatures were analyzed to define argon and CO2 effects on the N2(+) emission. When Ar or CO2 is injected with N2, the rotational temperature did not change. The irradiances were reduced by 34 percent and 78 percent for the 50 percent of mixture of Ar and CO2, respectively. The vibrational temperatures were increased by 24.1 percent and 82.9 percent for the 50 percent of mixture of Ar and CO2, respectively. It appears that there are no significant effects from small concentrations of Ar and CO2 at the upper atmosphere flight region.

  7. Magnetic zenith effect in the ionospheric modification by an X-mode HF heater wave

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Haggstrom, I.; Rietveld, M. T.; Yeoman, T. K.

    2013-12-01

    We report experimental results aimed at an investigation of the magnetic zenith effect in the high latitude ionosphere F region from ionospheric modification by powerful HF heater wave with X-polarization. The ionospheric modification was produced by the HF heating facility at Tromsø (Norway) using the phased array with a narrow beam with of 6 degrees. Effective radiated power was varied between 450 and 1000 MW. The HF pump wave radiated in different directions relative to the magnetic field from 90 degrees (vertical) to 78 degrees (magnetic zenith) at frequencies near or above the ordinary-mode critical frequency. The response of the ionosphere plasma to the HF pump wave impact was checked by the UHF incoherent scatter radar located in the immediate vicinity of the HF heater. UHF radar was probing the plasma parameters, such as electron density and temperature (Ne and Te), HF-induced plasma and ion lines in the altitude range from 90 to 600 km. It was running in a scanning mode when UHF radar look angles were changed from 74 to 90 degrees by 1 or 2 degree step. It was clearly demonstrated that the strongest heater-induced effects took place in the magnetic field-aligned direction when HF pointing was also to the magnetic zenith. It was found that strong Ne enhancement of up to 80 % along magnetic field (artificial density ducts) were excited only under HF pumping towards magnetic zenith. The width of the artificial ducts comes to only 2 degrees. The Ne increases were accompanied by the Te enhancements of up to about 50 %. Less pronounced Te increases were also observed in the directions of 84 and 90 degrees. Strong Ne enhancements can be accompanied by excitation of strong HF-induced plasma and ion lines. Thus experimental results obtained points to the strong magnetic zenith effect due to self-focusing powerful HF radio wave with X-mode polarization.

  8. Radiological manifestations of radiation-induced injury to the normal upper gastrointestinal tract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, H.M.; Rogers, L.F.; Fletcher, G.H.

    1975-10-01

    Radiation-induced injury to the normal esophagus, stomach, and duodenum in patients with advanced cervical carcinoma who received high para-aortic lymph- node irradiation to an average tumor dose of 5,000 rads is discussed. Radiation esophagitis is usually the result of mediastinal irradiation for bronchogenic carcinoma. The most consistent radiological finding is abnormal motility, with esophageal stricture and/or ulceration occurring less frequently. Radiation gastritis is usually present as pyloric ulceration or irregular contractions of the antrum, simulating gastric carcinoma. Postbulbar duodenal mucosal thickening, ulceration, and strictures may occur. Pertinent clinical features, pathogenesis, and pathological correlations are discussed. (auth)

  9. Assessment of upper-ocean variability and the Madden-Julian Oscillation in extended-range air-ocean coupled mesoscale simulations

    NASA Astrophysics Data System (ADS)

    Hong, Xiaodong; Reynolds, Carolyn A.; Doyle, James D.; May, Paul; O'Neill, Larry

    2017-06-01

    Atmosphere-ocean interaction, particular the ocean response to strong atmospheric forcing, is a fundamental component of the Madden-Julian Oscillation (MJO). In this paper, we examine how model errors in previous Madden-Julian Oscillation (MJO) events can affect the simulation of subsequent MJO events due to increased errors that develop in the upper-ocean before the MJO initiation stage. Two fully coupled numerical simulations with 45-km and 27-km horizontal resolutions were integrated for a two-month period from November to December 2011 using the Navy's limited area Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®). There are three MJO events that occurred subsequently in early November, mid-November, and mid-December during the simulations. The 45-km simulation shows an excessive warming of the SSTs during the suppressed phase that occurs before the initiation of the second MJO event due to erroneously strong surface net heat fluxes. The simulated second MJO event stalls over the Maritime Continent which prevents the recovery of the deep mixed layer and associated barrier layer. Cross-wavelet analysis of solar radiation and SSTs reveals that the diurnal warming is absent during the second suppressed phase after the second MJO event. The mixed layer heat budget indicates that the cooling is primarily caused by horizontal advection associated with the stalling of the second MJO event and the cool SSTs fail to initiate the third MJO event. When the horizontal resolution is increased to 27-km, three MJOs are simulated and compare well with observations on multi-month timescales. The higher-resolution simulation of the second MJO event and more-realistic upper-ocean response promote the onset of the third MJO event. Simulations performed with analyzed SSTs indicate that the stalling of the second MJO in the 45-km run is a robust feature, regardless of ocean forcing, while the diurnal cycle analysis indicates that both 45-km and 27-km ocean resolutions

  10. Connecting Surface Emissions, Convective Uplifting, and Long-Range Transport of Carbon Monoxide in the Upper Troposphere: New Observations from the Aura Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    Jiang, Jonathan H.; Livesey, Nathaniel J.; Su, Hui; Neary, Lori; McConnell, John C.; Richards, Nigel A. D.

    2007-01-01

    Two years of observations of upper tropospheric (UT) carbon monoxide (CO) from the Aura Microwave Limb Sounder are analyzed; in combination with the CO surface emission climatology and data from the NCEP analyses. It is shown that spatial distribution, temporal variation and long-range transport of UT CO are closely related to the surface emissions, deep-convection and horizontal winds. Over the Asian monsoon region, surface emission of CO peaks in boreal spring due to high biomass burning in addition to anthropogenic emission. However, the UT CO peaks in summer when convection is strongest and surface emission of CO is dominated by anthropogenic source. The long-range transport of CO from Southeast Asia across the Pacific to North America, which occurs most frequently during boreal summer, is thus a clear imprint of Asian anthropogenic pollution influencing global air quality.

  11. 47 CFR 74.733 - UHF translator signal boosters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV.... Care shall be taken in the design of the apparatus to insure that out-of-band radiation is not...

  12. Communications Blackout Predictions for Atmospheric Entry of Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Morabito, David D.; Edquist, Karl

    2005-01-01

    The Mars Science Laboratory (MSL) is expected to be a long-range, long-duration science laboratory rover on the Martian surface. MSL will provide a significant milestone that paves the way for future landed missions to Mars. NASA is studying options to launch MSL as early as 2009. MSL will be the first mission to demonstrate the new technology of 'smart landers', which include precision landing and hazard avoidance in order to -land at scientifically interesting sites that would otherwise be unreachable. There are three elements to the spacecraft; carrier (cruise stage), entry vehicle, and rover. The rover will have an X-band direct-to-Earth (DTE) link as well as a UHF proximity link. There is also a possibility of an X-band proximity link. Given the importance of collecting critical event telemetry data during atmospheric entry, it is important to understand the ability of a signal link to be maintained, especially during the period near peak convective heating. The received telemetry during entry (or played back later) will allow for the performance of the Entry-Descent-Landing technologies to be assessed. These technologies include guided entry for precision landing, hazard avoidance, a new sky-crane landing system and powered descent. MSL will undergo an entry profile that may result in a potential communications blackout caused by ionized plasma for short periods near peak heating. The vehicle will use UHF and possibly X-band during the entry phase. The purpose of this report is to quantify or bound the likelihood of any such blackout at UHF frequencies (401 MHz) and X-band frequencies (8.4 GHz). Two entry trajectory scenarios were evaluated: a stressful entry trajectory to quantify an upper-bound for any possible blackout period, and a nominal likely trajectory to quantify likelihood of blackout for such cases.

  13. Late onset Pott's paraplegia in patients with upper thoracic sharp kyphosis.

    PubMed

    Zhang, Zhengfeng

    2012-02-01

    The purpose of this study was to determine the clinical results of patients with late onset upper thoracic sharp Pott's kyphosis and to predict the prognosis for Pott's paraplegics. The study included five patients who developed late onset upper thoracic (T1-T4) sharp Pott's kyphosis/kyphoscoliosis within a period from 19 to 37 years after the active disease was healed. The kyphosis angle of the patients ranged from 95° to 105°. Among them, three patients suffered onset of paraplegia ranging from 26 to 31 years after spinal tuberculosis was healed. The duration of neurological deterioration before surgery ranged from four to five years. All patients underwent decompressive surgery with an attempt to correct the curve. Neurological status was evaluated using the ASIA impairment classification and the motor score. Postoperatively, kyphosis correction ranged from 20° to 30° for five patients. No neurological deficit occurred in two patients with normal neurological status. Two ASIA D paraplegics remained unchanged after surgery and no further improvement was found at one year follow-up. One ASIA C paralysis deteriorated neurologically to ASIA B after surgery and persisted to a deterioration of neurological status at one year follow-up. Upper thoracic sharp Pott's kyphosis and neurological deficits occur progressively. The neurological recovery or improvement of Pott's paraplegics with upper thoracic severe sharp kyphosis results in poor prognosis after decompressive surgery.

  14. Non-LTE models of Titan's upper atmosphere

    NASA Technical Reports Server (NTRS)

    Yelle, Roger V.

    1991-01-01

    Models for the thermal structure of Titan's upper atmosphere, between 0.1 mbar and 0.01 nbar are presented. The calculations include non-LTE heating/cooling in the rotation-vibration bands of CH4, C2H2, and C2H6, absorption of solar IR radiation in the near-IR bands of CH4 and subsequent cascading to the nu-4 band of CH4, absorption of solar EUV and UV radiation, thermal conduction and cooling by HCN rotational lines. Unlike earlier models, the calculated exospheric temperature agrees well with observations, because of the importance of HCN cooling. The calculations predict a well-developed mesopause with a temperature of 135-140 K at an altitude of approximately 600 km and pressure of about 0.1 microbar. The mesopause is at a higher pressure than predicted by earlier calculations because non-LTE radiative transfer in the rotation-vibration bands of CH4, C2H2, and C2H6 is treated in an accurate manner. The accuracy of the LTE approximation for source functions and heating rates is discussed.

  15. Unstable behaviour of an upper ocean-atmosphere coupled model: role of atmospheric radiative processes and oceanic heat transport

    NASA Astrophysics Data System (ADS)

    Cohen-Solal, E.; Le Treut, H.

    We describe the initial bias of the climate simulated by a coupled ocean-atmosphere model. The atmospheric component is a state-of-the-art atmospheric general circulation model, whereas the ocean component is limited to the upper ocean and includes a mixed layer whose depth is computed by the model. As the full ocean general circulation is not computed by the model, the heat transport within the ocean is prescribed. When modifying the prescribed heat transport we also affect the initial drift of the model. We analyze here one of the experiments where this drift is very strong, in order to study the key processes relating the changes in the ocean transport and the evolution of the model's climate. In this simulation, the ocean surface temperature cools by 1.5°C in 20 y. We can distinguish two different phases. During the first period of 5 y, the sea surface temperatures become cooler, particularly in the intertropical area, but the outgoing longwave radiation at the top-of-the-atmosphere increases very quickly, in particular at the end of the period. An off-line version of the model radiative code enables us to decompose this behaviour into different contributions (cloudiness, specific humidity, air and surface temperatures, surface albedo). This partitioning shows that the longwave radiation evolution is due to a decrease of high level cirrus clouds in the intertropical troposphere. The decrease of the cloud cover also leads to a decrease of the planetary albedo and therefore an increase of the net short wave radiation absorbed by the system. But the dominant factor is the strong destabilization by the longwave cooling, which is able to throw the system out of equilibrium. During the remaining of the simulation (second phase), the cooling induced by the destabilization at the top-of-the-atmosphere is transmitted to the surface by various processes of the climate system. Hence, we show that small variations of ocean heat transport can force the model from a stable

  16. Multidecadal Changes in Near-Global Cloud Cover and Estimated Cloud Cover Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Norris, Joel

    2005-01-01

    The first paper was Multidecadal changes in near-global cloud cover and estimated cloud cover radiative forcing, by J. R. Norris (2005, J. Geophys. Res. - Atmos., 110, D08206, doi: lO.l029/2004JD005600). This study examined variability in zonal mean surface-observed upper-level (combined midlevel and high-level) and low-level cloud cover over land during 1971-1 996 and over ocean during 1952-1997. These data were averaged from individual synoptic reports in the Extended Edited Cloud Report Archive (EECRA). Although substantial interdecadal variability is present in the time series, long-term decreases in upper-level cloud cover occur over land and ocean at low and middle latitudes in both hemispheres. Near-global upper-level cloud cover declined by 1.5%-sky-cover over land between 1971 and 1996 and by 1.3%-sky-cover over ocean between 1952 and 1997. Consistency between EECRA upper-level cloud cover anomalies and those from the International Satellite Cloud Climatology Project (ISCCP) during 1984-1 997 suggests the surface-observed trends are real. The reduction in surface-observed upper-level cloud cover between the 1980s and 1990s is also consistent with the decadal increase in all-sky outgoing longwave radiation reported by the Earth Radiation Budget Satellite (EMS). Discrepancies occur between time series of EECRA and ISCCP low-level cloud cover due to identified and probable artifacts in satellite and surface cloud data. Radiative effects of surface-observed cloud cover anomalies, called "cloud cover radiative forcing (CCRF) anomalies," are estimated based on a linear relationship to climatological cloud radiative forcing per unit cloud cover. Zonal mean estimated longwave CCRF has decreased over most of the globe. Estimated shortwave CCRF has become slightly stronger over northern midlatitude oceans and slightly weaker over northern midlatitude land areas. A long-term decline in the magnitude of estimated shortwave CCRF occurs over low-latitude land and ocean

  17. Low simulated radiation limit for runaway greenhouse climates

    NASA Astrophysics Data System (ADS)

    Goldblatt, Colin; Robinson, Tyler D.; Zahnle, Kevin J.; Crisp, David

    2013-08-01

    The atmospheres of terrestrial planets are expected to be in long-term radiation balance: an increase in the absorption of solar radiation warms the surface and troposphere, which leads to a matching increase in the emission of thermal radiation. Warming a wet planet such as Earth would make the atmosphere moist and optically thick such that only thermal radiation emitted from the upper troposphere can escape to space. Hence, for a hot moist atmosphere, there is an upper limit on the thermal emission that is unrelated to surface temperature. If the solar radiation absorbed exceeds this limit, the planet will heat uncontrollably and the entire ocean will evaporate--the so-called runaway greenhouse. Here we model the solar and thermal radiative transfer in incipient and complete runaway greenhouse atmospheres at line-by-line spectral resolution using a modern spectral database. We find a thermal radiation limit of 282Wm-2 (lower than previously reported) and that 294Wm-2 of solar radiation is absorbed (higher than previously reported). Therefore, a steam atmosphere induced by such a runaway greenhouse may be a stable state for a planet receiving a similar amount of solar radiation as Earth today. Avoiding a runaway greenhouse on Earth requires that the atmosphere is subsaturated with water, and that the albedo effect of clouds exceeds their greenhouse effect. A runaway greenhouse could in theory be triggered by increased greenhouse forcing, but anthropogenic emissions are probably insufficient.

  18. Assessing the role of solar radiation in heating, photosynthesis, and photo-oxidation in upper Arctic Ocean waters via autonomous buoys

    NASA Astrophysics Data System (ADS)

    Hill, V. J.; Steele, M.; Light, B.

    2016-02-01

    As part of the Arctic Observing Network, a new ice-tethered buoy has been developed for monitoring the role of sunlight in regulating ocean temperature, phytoplankton growth, and carbon cycling. A 20 or 50 m string (depending on local bathymetry) supports sensors both within and below the ice for the hourly measurement of downwelling irradiance, temperature, Chlorophyll a, light backscattering, and dissolved organic material (DOM). Two buoys were deployed in March 2014 and two in March 2015. Because the buoys are engineered to survive melting out of first year ice, they have successfully provided complete seasonal records of water column warming, phytoplankton abundance and photo-oxidation patterns in the Pacific Arctic Region. The data collected will be used to determine whether reduced ice extent and thinner ice are driving increases in under ice warming, accelerating bottom ice ablation, increasing available photosynthetic radiation to support large under ice blooms, and to quantify photo-oxidation of the DOM pool. Observations so far have revealed strong under ice daily warming as high as ±0.5 °C driven by local solar radiation. Water column absorption was dominated by colored dissolved organic material which served to trap solar radiation in the upper water column. Chlorophyll concentrations observed in June and July indicated high phytoplankton abundance beneath the ice. Light intensity at this time was not sufficient to support growth rates high enough to produce the 8 to 10 mg m-3 of chlorophyll observed. We hypothesize that phytoplankton were advected under the ice from the ice edge. However, once there phytoplankton were able to sustain low growth rates leading to nutrient limitation before open water status was reached. Strong daily cycles of photo-oxidation have also been observed in the late summer that indicate the fast cycling of highly labile DOM in the open waters of the Pacific Arctic Region.

  19. UHF Radar observations at HAARP with HF pump frequencies near electron gyro-harmonics and associated ionospheric effects

    NASA Astrophysics Data System (ADS)

    Watkins, Brenton; Fallen, Christopher; Secan, James

    Results for HF modification experiments at the HAARP facility in Alaska are presented for experiments with the HF pump frequency near third and fourth electron gyro-harmonics. A UHF diagnostic radar with range resolution of 600 m was used to determine time-dependent altitudes of scattering from plasma turbulence during heating experiments. Experiments were conducted with multiple HF frequencies stepped by 20 kHz above and below the gyro-harmonic values. During times of HF heating the HAARP facility has sufficient power to enhance large-scale ionospheric densities in the lower ionosphere (about 150-200 km altitude) and also in the topside ionosphere (above about 350 km). In the lower ionosphere, time-dependent decreases of the altitude of radar scatter result from electron density enhancements. The effects are substantially different even for relatively small frequency steps of 20 kHz. In all cases the time-varying altitude decrease of radar scatter stops about 5-10 km below the gyro-harmonic altitude that is frequency dependent; we infer that electron density enhancements stop at this altitude where the radar signals stop decreasing with altitude. Experiments with corresponding total electron content (TEC) data show that for HF interaction altitudes above about 170 km there is substantial topside electron density increases due to upward electron thermal conduction. For lower altitudes of HF interaction the majority of the thermal energy is transferred to the neutral gas and no significant topside density increases are observed. By selecting an appropriate HF frequency a little greater than the gyro-harmonic value we have demonstrated that the ionospheric response to HF heating is a self-oscillating mode where the HF interaction altitude moves up and down with a period of several minutes. If the interaction region is above about 170 km this also produces a continuously enhanced topside electron density and upward plasma flux. Experiments using an FM scan with the HF

  20. Space Radiation Risks for Astronauts on Multiple International Space Station Missions

    PubMed Central

    Cucinotta, Francis A.

    2014-01-01

    Mortality and morbidity risks from space radiation exposure are an important concern for astronauts participating in International Space Station (ISS) missions. NASA’s radiation limits set a 3% cancer fatality probability as the upper bound of acceptable risk and considers uncertainties in risk predictions using the upper 95% confidence level (CL) of the assessment. In addition to risk limitation, an important question arises as to the likelihood of a causal association between a crew-members’ radiation exposure in the past and a diagnosis of cancer. For the first time, we report on predictions of age and sex specific cancer risks, expected years of life-loss for specific diseases, and probability of causation (PC) at different post-mission times for participants in 1-year or multiple ISS missions. Risk projections with uncertainty estimates are within NASA acceptable radiation standards for mission lengths of 1-year or less for likely crew demographics. However, for solar minimum conditions upper 95% CL exceed 3% risk of exposure induced death (REID) by 18 months or 24 months for females and males, respectively. Median PC and upper 95%-confidence intervals are found to exceed 50% for several cancers for participation in two or more ISS missions of 18 months or longer total duration near solar minimum, or for longer ISS missions at other phases of the solar cycle. However, current risk models only consider estimates of quantitative differences between high and low linear energy transfer (LET) radiation. We also make predictions of risk and uncertainties that would result from an increase in tumor lethality for highly ionizing radiation reported in animal studies, and the additional risks from circulatory diseases. These additional concerns could further reduce the maximum duration of ISS missions within acceptable risk levels, and will require new knowledge to properly evaluate. PMID:24759903

  1. Space radiation risks for astronauts on multiple International Space Station missions.

    PubMed

    Cucinotta, Francis A

    2014-01-01

    Mortality and morbidity risks from space radiation exposure are an important concern for astronauts participating in International Space Station (ISS) missions. NASA's radiation limits set a 3% cancer fatality probability as the upper bound of acceptable risk and considers uncertainties in risk predictions using the upper 95% confidence level (CL) of the assessment. In addition to risk limitation, an important question arises as to the likelihood of a causal association between a crew-members' radiation exposure in the past and a diagnosis of cancer. For the first time, we report on predictions of age and sex specific cancer risks, expected years of life-loss for specific diseases, and probability of causation (PC) at different post-mission times for participants in 1-year or multiple ISS missions. Risk projections with uncertainty estimates are within NASA acceptable radiation standards for mission lengths of 1-year or less for likely crew demographics. However, for solar minimum conditions upper 95% CL exceed 3% risk of exposure induced death (REID) by 18 months or 24 months for females and males, respectively. Median PC and upper 95%-confidence intervals are found to exceed 50% for several cancers for participation in two or more ISS missions of 18 months or longer total duration near solar minimum, or for longer ISS missions at other phases of the solar cycle. However, current risk models only consider estimates of quantitative differences between high and low linear energy transfer (LET) radiation. We also make predictions of risk and uncertainties that would result from an increase in tumor lethality for highly ionizing radiation reported in animal studies, and the additional risks from circulatory diseases. These additional concerns could further reduce the maximum duration of ISS missions within acceptable risk levels, and will require new knowledge to properly evaluate.

  2. Upper bounds on the photon mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Accioly, Antonio; Group of Field Theory from First Principles, Sao Paulo State University; Instituto de Fisica Teorica

    2010-09-15

    The effects of a nonzero photon rest mass can be incorporated into electromagnetism in a simple way using the Proca equations. In this vein, two interesting implications regarding the possible existence of a massive photon in nature, i.e., tiny alterations in the known values of both the anomalous magnetic moment of the electron and the gravitational deflection of electromagnetic radiation, are utilized to set upper limits on its mass. The bounds obtained are not as stringent as those recently found; nonetheless, they are comparable to other existing bounds and bring new elements to the issue of restricting the photon mass.

  3. Return glider radiosonde for in situ upper-air research measurements

    NASA Astrophysics Data System (ADS)

    Kräuchi, Andreas; Philipona, Rolf

    2016-06-01

    Upper-air balloon soundings for weather predictions have been made since the beginning of the 20th century. New radiosonde instruments for in situ humidity-, radiation- and gas-profile measurements in the troposphere and the lower stratosphere, were introduced in recent years for atmospheric research and climate monitoring, but such instruments are often expensive and it is desired they be reused on multiple flights. Recovering instruments that freely descend with parachutes is time consuming, sometimes difficult and even dangerous. Here, we introduce the return glider radiosonde (RGR), which enables flying and retrieving valuable in situ upper-air instruments. The RGR is lifted with weather balloons similar to traditional radiosondes to a preset altitude, at which time a release mechanism cuts the tether string, and a built-in autopilot flies the glider autonomously back to the launch site or a desired preprogrammed location. Once the RGR reaches the landing coordinates it circles down and releases a parachute 100 m above ground for landing. The motivation for this project was to measure radiation profiles throughout the atmosphere with the same instrument multiple times and with a rapid turn-around time. The paper describes technical aspects of the return glider radiosonde and the built-in radiation instruments and shows test flights up to 24 km altitude that are analyzed in terms of flight performance and maximal distances covered. Several successive flights measuring radiation profiles demonstrate the reliability and the operational readiness of the RGR, allowing new ways for atmospheric in situ research and monitoring with payloads up to several kg depending on the specific size of the glider.

  4. A UHF RFID positioning system for use in warehouse navigation by employees with cognitive disability.

    PubMed

    Gunther, Eric J M; Sliker, Levin J; Bodine, Cathy

    2017-11-01

    Unemployment among the almost 5 million working-age adults with cognitive disabilities in the USA is a costly problem in both tax dollars and quality of life. Job coaching is an effective tool to overcome this, but the cost of job coaching services sums with every new employee or change of employment roles. There is a need for a cost-effective, automated alternative to job coaching that incurs a one-time cost and can be reused for multiple employees or roles. An effective automated job coach must be aware of its location and the location of destinations within the job site. This project presents a design and prototype of a cart-mounted indoor positioning and navigation system with necessary original software using Ultra High Frequency Radio Frequency Identification (UHF RFID). The system presented in this project for use within a warehouse setting is one component of an automated job coach to assist in the job of order filler. The system demonstrated accuracy to within 0.3 m under the correct conditions with strong potential to serve as the basis for an effective indoor navigation system to assist warehouse workers with disabilities. Implications for rehabilitation An automated job coach could improve employability of and job retention for people with cognitive disabilities. An indoor navigation system using ultra high frequency radio frequency identification was proposed with an average positioning accuracy of 0.3 m. The proposed system, in combination with a non-linear context-aware prompting system, could be used as an automated job coach for warehouse order fillers with cognitive disabilities.

  5. Upper tropospheric ice sensitivity to sulfate geoengineering

    NASA Astrophysics Data System (ADS)

    Visioni, Daniele; Pitari, Giovanni; Mancini, Eva

    2017-04-01

    In light of the Paris Agreement which aims to keep global warming under 2 °C in the next century and considering the emission scenarios produced by the IPCC for the same time span, it is likely that to remain below that threshold some kind of geoengineering technique will have to be deployed. Amongst the different methods, the injection of sulfur into the stratosphere has received much attention considering its effectiveness and affordability. Aside from the rather well established surface cooling sulfate geoengineering (SG) would produce, the investigation on possible side-effects of this method is still ongoing. For instance, some recent studies have investigated the effect SG would have on upper tropospheric cirrus clouds, expecially on the homogenous freezing mechanisms that produces the ice particles (Kuebbeler et al., 2012). The goal of the present study is to better understand the effect of thermal and dynamical anomalies caused by SG on the formation of ice crystals via homogeneous freezing by comparing a complete SG simulation with a RCP4.5 reference case and with a number of sensitivity studies where atmospheric temperature changes in the upper tropospheric region are specified in a schematic way as a function of the aerosol driven stratospheric warming and mid-lower tropospheric cooling. These changes in the temperature profile tend to increase atmospheric stabilization, thus decreasing updraft and with it the amount of water vapor available for homogeneous freezing in the upper troposphere. However, what still needs to be assessed is the interaction between this dynamical effect and the thermal effects of tropospheric cooling (which would increase ice nucleation rates) and stratospheric warming (which would probably extend to the uppermost troposphere via SG aerosol gravitational settling, thus reducing ice nucleation rates), in order to understand how they combine together. Changes in ice clouds coverage could be important for SG, because cirrus ice

  6. The thermal structure and energy balance of the Uranian upper atmosphere

    NASA Technical Reports Server (NTRS)

    French, R. G.; Dunham, E. W.; Allen, D. A.; Elias, J. H.; Frogel, J. A.; Elliot, J. L.; Liller, W.

    1983-01-01

    Uranus upper atmosphere occultation observations are reported for August 15-16, 1980, and April 26, 1981. Mean atmospheric light curves of 154 + or - 15 K and 132 + or - 15 K, respectively, are derived from the light curves. A comparison of all available Uranus occultation data since March 1977 suggests a significant mean atmospheric temperature change, with a typical 15 K/year variation. It is suggested that molecular and eddy diffusion, together with atmospheric dynamics, are potentially as important as radiation in the upper atmosphere heat balance of Uranus. The close agreement of occultation immersion and emersion temperatures further suggests that effective meridional transport occurs on Uranus.

  7. Dark photon search in the mass range between 1.5 and 3.4 GeV/c2

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Eren, E. E.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Geng, C.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Han, Y. L.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, H. P.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B. J.; Liu, C. X.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, R. Q.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Pu, Y. N.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ren, H. L.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, S. G.; Wang, W.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, H. W.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. H.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. N.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Li; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2017-11-01

    Using a data set of 2.93 fb-1 taken at a center-of-mass energy √{ s} = 3.773 GeV with the BESIII detector at the BEPCII collider, we perform a search for an extra U(1) gauge boson, also denoted as a dark photon. We examine the initial state radiation reactions e+e- →e+e-γISR and e+e- →μ+μ-γISR for this search, where the dark photon would appear as an enhancement in the invariant mass distribution of the leptonic pairs. We observe no obvious enhancement in the mass range between 1.5 and 3.4 GeV/c2 and set a 90% confidence level upper limit on the mixing strength of the dark photon and the Standard Model photon. We obtain a competitive limit in the tested mass range.

  8. Structure of the crust and upper mantle in the western United States

    USGS Publications Warehouse

    Pakiser, L.C.

    1963-01-01

    Seismic waves generated by underground nuclear and chemical explosions have been recorded in a network of nearly 2,000 stations in the western conterminous United States as a part of the VELA UNIFORM program. The network extends from eastern Colorado to the California coastline and from central Idaho to the border of the United States and Mexico. The speed of compressional waves in the upper-mantle rocks ranges from 7.7 km/sec in the southern part of the Basin and Range province to 8.2 km/sec in the Great Plains province. In general, the speed of compressional waves in the upper-mantle rocks tends to be nearly the same over large areas within individual geologic provinces. Measured crustal thickness ranges from less than 20 km in the Central Valley of California to 50 km in the Great Plains province. Changes in crustal thickness across provincial boundaries are not controlled by regional altitude above sea level unless the properties of the upper mantle are the same across those boundaries. The crust tends to be thick in regions where the speed of compressional waves in the upper-mantle rocks (and presumably the density) is high, and tends to be relatively thin where the speed of compressional waves in the upper-mantle rocks (and density) is lower. With in the Basin and Range province, crustal thickness seems to vary directly with regional altitude above sea level. Evidence that a layer of intermediate compressional-wave speed exists in the lower part of the crust has been accumulated from seismic waves that have traveled least-time paths, as well as secondary arrivals (particularly reflections). On a scale that includes many geologic provinces, isostatic compensation is related largely to variations in the density of the upper- mantle rocks. Within geologic provinces or adjacent provinces, isostatic compensation may be related to variations in the thickness of crustal layers. Regions of thick crust and dense upper mantle have been relatively stable in Cenozoic

  9. Upper tropospheric cloud systems determined from IR Sounders and their influence on the atmosphere

    NASA Astrophysics Data System (ADS)

    Stubenrauch, Claudia; Protopapadaki, Sofia; Feofilov, Artem; Velasco, Carola Barrientos

    2017-02-01

    Covering about 30% of the Earth, upper tropospheric clouds play a key role in the climate system by modulating the Earth's energy budget and heat transport. Infrared Sounders reliably identify cirrus down to an IR optical depth of 0.1. Recently LMD has built global cloud climate data records from AIRS and IASI observations, covering the periods from 2003-2015 and 2008-2015, respectively. Upper tropospheric clouds often form mesoscale systems. Their organization and properties are being studied by (1) distinguishing cloud regimes within 2° × 2° regions and (2) applying a spatial composite technique on adjacent cloud pressures, which estimates the horizontal extent of the mesoscale cloud systems. Convective core, cirrus anvil and thin cirrus of these systems are then distinguished by their emissivity. Compared to other studies of tropical mesoscale convective systems our data include also the thinner anvil parts, which make out about 30% of the area of tropical mesoscale convective systems. Once the horizontal and vertical structure of these upper tropospheric cloud systems is known, we can estimate their radiative effects in terms of top of atmosphere and surface radiative fluxes and by computing their heating rates.

  10. Radiative and Thermal Impacts of Smoke Aerosol Longwave Absorption during Fires in the Moscow Region in Summer 2010

    NASA Astrophysics Data System (ADS)

    Gorchakova, I. A.; Mokhov, I. I.; Anikin, P. P.; Emilenko, A. S.

    2018-03-01

    The aerosol longwave radiative forcing of the atmosphere and heating rate of the near-surface aerosol layer are estimated for the extreme smoke conditions in the Moscow region in summer 2010. Thermal radiation fluxes in the atmosphere are determined using the integral transmission function and semiempirical aerosol model developed on the basis of standard aerosol models and measurements at the Zvenigorod Scientific Station, Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences. The aerosol radiative forcing reached 33 W/m2 at the lower atmospheric boundary and ranged between-1.0 and 1.0 W/m2 at the upper atmospheric boundary. The heating rate of the 10-m atmospheric layer near surface was up to 0.2 K/h during the maximum smoke conditions on August 7-9. The sensitivity of the aerosol longwave radiative forcing to the changes in the aerosol absorption coefficient and aerosol optical thickness are estimated.

  11. Ground-Water Hydrology of the Upper Klamath Basin, Oregon and California

    USGS Publications Warehouse

    Gannett, Marshall W.; Lite, Kenneth E.; La Marche, Jonathan L.; Fisher, Bruce J.; Polette, Danial J.

    2007-01-01

    The upper Klamath Basin spans the California-Oregon border from the flank of the Cascade Range eastward to the Basin and Range Province, and encompasses the Klamath River drainage basin above Iron Gate Dam. Most of the basin is semiarid, but the Cascade Range and uplands in the interior and eastern parts of the basin receive on average more than 30 inches of precipitation per year. The basin has several perennial streams with mean annual discharges of hundreds of cubic feet per second, and the Klamath River at Iron Gate Dam, which represents drainage from the entire upper basin, has a mean annual discharge of about 2,100 cubic feet per second. The basin once contained three large lakes: Upper and Lower Klamath Lakes and Tule Lake, each of which covered areas of 100 to 150 square miles, including extensive marginal wetlands. Lower Klamath Lake and Tule Lake have been mostly drained, and the former lake beds are now cultivated. Upper Klamath Lake remains, and is an important source of irrigation water. Much of the wetland surrounding Upper Klamath Lake has been diked and drained, although efforts are underway to restore large areas. Upper Klamath Lake and the remaining parts of Lower Klamath and Tule Lakes provide important wildlife habitat, and parts of each are included in the Klamath Basin National Wildlife Refuges Complex. The upper Klamath Basin has a substantial regional ground-water flow system. The late Tertiary to Quaternary volcanic rocks that underlie the region are generally permeable, with transmissivity estimates ranging from 1,000 to 100,000 feet squared per day, and compose a system of variously interconnected aquifers. Interbedded with the volcanic rocks are late Tertiary sedimentary rocks composed primarily of fine-grained lake sediments and basin-filling deposits. These sedimentary deposits have generally low permeability, are not good aquifers, and probably restrict ground-water movement in some areas. The regional ground-water system is underlain

  12. Radiation Exposure of Abdominal Cone Beam Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sailer, Anna M., E-mail: anni.sailer@mumc.nl; Schurink, Geert Willem H., E-mail: gwh.schurink@mumc.nl; Wildberger, Joachim E., E-mail: j.wildberger@mumc.nl

    2015-02-15

    PurposeTo evaluate patients radiation exposure of abdominal C-arm cone beam computed tomography (CBCT).MethodsThis prospective study was approved by the institutional review board; written, informed consent was waived. Radiation exposure of abdominal CBCT was evaluated in 40 patients who underwent CBCT during endovascular interventions. Dose area product (DAP) of CBCT was documented and effective dose (ED) was estimated based on organ doses using dedicated Monte Carlo simulation software with consideration of X-ray field location and patients’ individual body weight and height. Weight-dependent ED per DAP conversion factors were calculated. CBCT radiation dose was compared to radiation dose of procedural fluoroscopy. CBCTmore » dose-related risk for cancer was assessed.ResultsMean ED of abdominal CBCT was 4.3 mSv (95 % confidence interval [CI] 3.9; 4.8 mSv, range 1.1–7.4 mSv). ED was significantly higher in the upper than in the lower abdomen (p = 0.003) and increased with patients’ weight (r = 0.55, slope = 0.045 mSv/kg, p < 0.001). Radiation exposure of CBCT corresponded to the radiation exposure of on average 7.2 fluoroscopy minutes (95 % CI 5.5; 8.8 min) in the same region of interest. Lifetime risk of exposure related cancer death was 0.033 % or less depending on age and weight.ConclusionsMean ED of abdominal CBCT was 4.3 mSv depending on X-ray field location and body weight.« less

  13. Quantitative measurement of natural radioactivity in some roofing tile materials used in upper Egypt.

    PubMed

    Uosif, M A M

    2013-09-01

    The quantitative measurement of radionuclides ((226)Ra, (232)Th and (40)K) in some roofing tile materials (granite, alabaster, marble, traditional and advanced ceramic) used in Upper Egypt is presented in this paper. Measurements were done by using gamma spectrometry (NaI (Tl) 3" × 3"). The values of concentration of natural radionuclides were in the following ranges: 12-78.9 Bq kg(-1) for (226)Ra, 8.4-113.1 Bq kg(-1) for (232)Th and 94.9-509 Bq kg(-1)for (40)K. The activity concentration index (I), the specific dose rates indoors ( ) and the annual effective dose (DE) due to gamma radiation were calculated for each investigated sample. The lowest value of I is 0.19 for alabaster, while the highest one is 0.88 for traditional and advanced ceramic. The ranges of DE are between 0.03 and 0.13 mSv, it is below the maximal permitted values, so that the examined materials could be used as roofing tiles in the construction of new buildings.

  14. Upper Limits of Predictability in Long-Range Climate/Hydrologic Forecasts

    NASA Technical Reports Server (NTRS)

    Koster, R. D.; Suarez, M. J.; Heiser, M.

    1998-01-01

    The accurate forecasting of el nino or la nina conditions in the tropical Pacific can potentially lead to valuable predictions of hydrological anomalies over land at seasonal to interannual timescales. Even with highly accurate earth system models, though, our ability to generate these continental forecasts will always be limited by the chaotic nature of the atmospheric circulation. The nature of this fundamental limitation is explored through the use of 16-member ensembles of multi-decade GCM simulations. In each simulation of the first ensemble, sea surface temperatures (SSTs) are given the same realistic interannual variations over a 45-year period, and land surface state is allowed to evolve with that of the atmosphere. Analysis of the results shows that the SSTs control the temporal organization of continental precipitation anomalies to a significant extent in the tropics and to a much smaller extent in midlatitudes. In each simulation of the second ensemble, we prescribe SSTs as before, but we also prescribe interannual variations in the low frequency component of evaporation efficiency over land. Thus, in the second ensemble, we effectively make the extreme assumption that surface boundary conditions across the globe are perfectly predictable, and we quantify the consistency with which the atmosphere (particularly precipitation) responds to these boundary conditions. The resulting "absolute upper limit" on the predictability of precipitation is found to be quite high in the tropics yet only moderate in many midlatitude regions.

  15. Upper Limit for Regional Sea Level Projections

    NASA Astrophysics Data System (ADS)

    Jevrejeva, Svetlana; Jackson, Luke; Riva, Riccardo; Grinsted, Aslak; Moore, John

    2016-04-01

    With more than 150 million people living within 1 m of high tide future sea level rise is one of the most damaging aspects of warming climate. The latest Intergovernmental Panel on Climate Change report (AR5 IPCC) noted that a 0.5 m rise in mean sea level will result in a dramatic increase the frequency of high water extremes - by an order of magnitude, or more in some regions. Thus the flood threat to the rapidly growing urban populations and associated infrastructure in coastal areas are major concerns for society. Hence, impact assessment, risk management, adaptation strategy and long-term decision making in coastal areas depend on projections of mean sea level and crucially its low probability, high impact, upper range. With probabilistic approach we produce regional sea level projections taking into account large uncertainties associated with Greenland and Antarctica ice sheets contribution. We calculate the upper limit (as 95%) for regional sea level projections by 2100 with RCP8.5 scenario, suggesting that for the most coastlines upper limit will exceed the global upper limit of 1.8 m.

  16. Hip and upper extremity kinematics in youth baseball pitchers.

    PubMed

    Holt, Taylor; Oliver, Gretchen D

    2016-01-01

    The purpose of this study was to examine the relationship between dynamic hip rotational range of motion and upper extremity kinematics during baseball pitching. Thirty-one youth baseball pitchers (10.87 ± 0.92 years; 150.03 ± 5.48 cm; 44.83 ± 8.04 kg) participated. A strong correlation was found between stance hip rotation and scapular upward rotation at maximum shoulder external rotation (r = 0.531, P = 0.002) and at ball release (r = 0.536, P = 0.002). No statistically significant correlations were found between dynamic hip rotational range of motion and passive hip range of motion. Hip range of motion deficits can constrain pelvis rotation and limit energy generation in the lower extremities. Shoulder pathomechanics can then develop as greater responsibility is placed on the shoulder to generate the energy lost from the proximal segments, increasing risk of upper extremity injury. Additionally, it appears that passive seated measurements of hip range of motion may not accurately reflect the dynamic range of motion of the hips through the progression of the pitch cycle.

  17. The burning issues of motor vehicle radiator scald injuries revisited – a fresh review and changing prevention strategies

    PubMed Central

    Patel, J.N.; Tan, A.; Frew, Q.; Dziewulski, P.

    2016-01-01

    Summary A preventable subgroup of burn injuries is scalds sustained from motor vehicle radiators. This study was to determine changes in trends in epidemiology of such injuries and to discuss whether current and other prevention efforts proposed previously require reinforcement. We conducted a retrospective study (February 2007-August 2015) of all motor vehicle-related burn referrals to our regional burns service. 68 cases of motor vehicle radiator burns were identified. Male to female ratio was 65:3. Mean age was 35.1 (range = 9-71). Most cases occurred in the summer months (22/68 = 32.4%). 65 cases (95.6%) involved car radiators. 66% of injuries resulted from actively removing the pressure cap of an overheated radiator in the motor vehicle. Mean total burn surface area (%TBSA) was 2.1% (range = 0.5- 11%). The depths of burn injuries were mostly superficial partial thickness. Face, chest and upper limbs were the most common sites of injury. Mean healing time was 14.2 days (range = 4-60). Following the introduction of safety measures by vehicle manufacturers, motor vehicle radiator burns in this era are mostly minor injuries and can be potentially managed conservatively as an outpatient. This contrasts with findings from previous studies over a decade ago of larger, more significant injuries requiring admission and surgery. Whilst manufacturers have installed safety measures into the design of radiator caps, our findings suggest that re-educating the public to allow a period of cooling prior to opening caps should be reinforced. PMID:28289357

  18. Defining the upper age limit of luminescence dating: A case study using long lacustrine records from Chew Bahir, Ethiopia

    NASA Astrophysics Data System (ADS)

    Chapot, Melissa S.; Roberts, Helen M.; Lamb, Henry F.; Schäbitz, Frank; Asrat, Asfawossen; Trauth, Martin H.

    2017-04-01

    Optically stimulated luminescence (OSL) dating is a family of numerical chronometric techniques applied to quartz or feldspar mineral grains to assess the time since these grains were last exposed to sunlight (i.e. deposited), based on the amount of energy they absorbed from ambient radiation during burial. The maximum limit of any OSL dating technique is not defined by a fixed upper age limit, but instead by the maximum radiation dose the sample can accurately record before the OSL signal saturates. The challenge is to assess this upper limit of accurate age determination without necessitating comparison to independent age control. Laboratory saturation of OSL signals can be observed using a dose response curve (DRC) plotting OSL signal intensity against absorbed laboratory radiation dose. When a DRC is fitted with a single saturating exponential, one of the equation's parameters can be used to define a pragmatic upper limit beyond which uncertainties become large and asymmetric (Wintle and Murray, 2006). However, many sub-samples demonstrate DRCs that are best defined by double saturating exponential equations, which cannot be used to define this upper limit. To investigate the reliability of luminescence ages approaching saturation, Chapot et al. (2012) developed the Natural DRC concept, which uses expected ages derived from independent age control, combined with sample-specific measurements of ambient radioactivity, to calculate expected doses of absorbed radiation during burial. Natural OSL signal intensity is then plotted against these expected doses and compared to laboratory-generated DRCs. Using this approach, discrepancies between natural and laboratory DRCs have been observed for the same mineral material as natural OSL signal intensities saturate at absorbed radiation doses lower than the pragmatic upper limit defined by laboratory DRCs, leading to increasing age underestimation with depth without a metric for questioning the age reliability. The

  19. Present state of knowledge of the upper atmosphere: An assessment report

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A program of research, technology, and monitoring of the phenomena of the upper atmosphere, to provide for an understanding of and to maintain the chemical and physical integrity of the Earth's upper atmosphere was developed. NASA implemented a long-range upper atmospheric science program aimed at developing an organized, solid body of knowledge of upper atmospheric processes while providing, in the near term, assessments of potential effects of human activities on the atmosphere. The effects of chlorofluorocarbon (CFC) releases on stratospheric ozone were reported. Issues relating the current understanding of ozone predictions and trends and highlights recent and future anticipated developments that will improve our understanding of the system are summarized.

  20. The SATRAM Timepix spacecraft payload in open space on board the Proba-V satellite for wide range radiation monitoring in LEO orbit

    NASA Astrophysics Data System (ADS)

    Granja, Carlos; Polansky, Stepan; Vykydal, Zdenek; Pospisil, Stanislav; Owens, Alan; Kozacek, Zdenek; Mellab, Karim; Simcak, Marek

    2016-06-01

    The Space Application of Timepix based Radiation Monitor (SATRAM) is a spacecraft platform radiation monitor on board the Proba-V satellite launched in an 820 km altitude low Earth orbit in 2013. The is a technology demonstration payload is based on the Timepix chip equipped with a 300 μm silicon sensor with signal threshold of 8 keV/pixel to low-energy X-rays and all charged particles including minimum ionizing particles. For X-rays the energy working range is 10-30 keV. Event count rates can be up to 106 cnt/(cm2 s) for detailed event-by-event analysis or over 1011 cnt/(cm2 s) for particle-counting only measurements. The single quantum sensitivity (zero-dark current noise level) combined with per-pixel spectrometry and micro-scale pattern recognition analysis of single particle tracks enables the composition (particle type) and spectral characterization (energy loss) of mixed radiation fields to be determined. Timepix's pixel granularity and particle tracking capability also provides directional sensitivity for energetic charged particles. The payload detector response operates in wide dynamic range in terms of absorbed dose starting from single particle doses in the pGy level, particle count rate up to 106-10 /cm2/s and particle energy loss (threshold at 150 eV/μm). The flight model in orbit was successfully commissioned in 2013 and has been sampling the space radiation field in the satellite environment along its orbit at a rate of several frames per minute of varying exposure time. This article describes the design and operation of SATRAM together with an overview of the response and resolving power to the mixed radiation field including summary of the principal data products (dose rate, equivalent dose rate, particle-type count rate). The preliminary evaluation of response of the embedded Timepix detector to space radiation in the satellite environment is presented together with first results in the form of a detailed visualization of the mixed radiation

  1. Upper limb function in Duchenne muscular dystrophy: 24 month longitudinal data.

    PubMed

    Pane, Marika; Coratti, Giorgia; Brogna, Claudia; Mazzone, Elena Stacy; Mayhew, Anna; Fanelli, Lavinia; Messina, Sonia; D'Amico, Adele; Catteruccia, Michela; Scutifero, Marianna; Frosini, Silvia; Lanzillotta, Valentina; Colia, Giulia; Cavallaro, Filippo; Rolle, Enrica; De Sanctis, Roberto; Forcina, Nicola; Petillo, Roberta; Barp, Andrea; Gardani, Alice; Pini, Antonella; Monaco, Giulia; D'Angelo, Maria Grazia; Zanin, Riccardo; Vita, Gian Luca; Bruno, Claudio; Mongini, Tiziana; Ricci, Federica; Pegoraro, Elena; Bello, Luca; Berardinelli, Angela; Battini, Roberta; Sansone, Valeria; Albamonte, Emilio; Baranello, Giovanni; Bertini, Enrico; Politano, Luisa; Sormani, Maria Pia; Mercuri, Eugenio

    2018-01-01

    The aim of the study was to establish 24 month changes in upper limb function using a revised version of the performance of upper limb test (PUL 2.0) in a large cohort of ambulant and non-ambulant boys with Duchenne muscular dystrophy and to identify possible trajectories of progression. Of the 187 patients studied, 87 were ambulant (age range: 7-15.8 years), and 90 non-ambulant (age range: 9.08-24.78). The total scores changed significantly over time (p<0.001). Non-ambulant patients had lower total scores at baseline (mean 19.7) when compared to the ambulant ones (mean 38.4). They also had also a bigger decrease in total scores over 24 months compared to the ambulant boys (4.36 vs 2.07 points). Multivariate model analysis showed that the Performance of Upper Limb changes reflected the entry level and ambulation status, that were independently associated to the slope of Performance of Upper Limb changes. This information will be of help both in clinical practice and at the time of designing clinical trials.

  2. Middle Triassic molluscan fossils of biostratigraphic significance from the Humboldt Range, northwestern Nevada

    USGS Publications Warehouse

    Silberling, Norman J.; Nichols, K.M.

    1982-01-01

    Cephalopods and bivalves of the genus Daonella occur at certain levels throughout the Middle Triassic section in the Humboldt Range, northwestern Nevada. These fossiliferous strata are assigned to the Fossil Hill Member and upper member of the Prida Formation, which here forms the oldest part of the Star Peak Group. The distribution and abundance of fossils within the section is uneven, partly because of original depositional patterns within the dominantly calcareous succession and partly because of diagenetic secondary dolomitization and hydrothermal metamorphism in parts of the range.Lower and middle Anisian fossil localities are restricted to the northern part of the range and are scattered, so that only three demonstrably distinct stratigraphic levels are represented. Cephalopods from these localities are characteristic of the Caurus Zone and typify the lower and upper parts of the Hyatti Zone, a new zonal unit whose faunas have affinity with those from the older parts of the Varium Zone in Canada.The upper Anisian and lowermost Ladinian, as exposed in the vicinity of Fossil Hill in the southern part of the range, are extremely fossiliferous. Cephalopod and Daonella shells form a major component of many of the limestone interbeds in the calcareous fine-grained clastic section here. Stratigraphically controlled bedrock collections representing at least 20 successive levels have been made from the Fossil Hill area, which is the type locality for the Rotelliformis, Meeki, and Occidentalis Zones of the upper Anisian and the Subasperum Zone of the lower Ladinian. Above the Subasperum Zone fossils are again scarce; upper Ladinian faunas representing the Daonella lommeli beds occur at only a few places in the upper member of the Prida Formation.Although unevenly fossiliferous, the succession of Middle Triassic cephalopod and Daonella faunas in the Humboldt Range is one of the most complete of any known in the world. Newly collected faunas from this succession provide

  3. Upper gastrointestinal alterations in kidney transplant candidates.

    PubMed

    Homse Netto, João Pedro; Pinheiro, João Pedro Sant'Anna; Ferrari, Mariana Lopes; Soares, Mirella Tizziani; Silveira, Rogério Augusto Gomes; Maioli, Mariana Espiga; Delfino, Vinicius Daher Alvares

    2018-05-14

    The incidence of gastrointestinal disorders among patients with chronic kidney disease (CKD) is high, despite the lack of a good correlation between endoscopic findings and symptoms. Many services thus perform upper gastrointestinal (UGI) endoscopy on kidney transplant candidates. This study aims to describe the alterations seen on the upper endoscopies of 96 kidney-transplant candidates seen from 2014 to 2015. Ninety-six CKD patients underwent upper endoscopic examination as part of the preparation to receive kidney grafts. The data collected from the patients' medical records were charted on Microsoft Office Excel 2016 and presented descriptively. Mean values, medians, interquartile ranges and 95% confidence intervals of the clinic and epidemiological variables were calculated. Possible associations between endoscopic findings and infection by H. pylori were studied. Males accounted for 54.17% of the 96 patients included in the study. Median age and time on dialysis were 50 years and 50 months, respectively. The most frequent upper endoscopy finding was enanthematous pangastritis (57.30%), followed by erosive esophagitis (30.20%). Gastric intestinal metaplasia and peptic ulcer were found in 8.33% and 7.30% of the patients, respectively. H. pylori tests were positive in 49 patients, and H. pylori infection was correlated only with non-erosive esophagitis (P = 0.046). Abnormal upper endoscopy findings were detected in all studied patients. This study suggested that upper endoscopy is a valid procedure for kidney transplant candidates. However, prospective studies are needed to shed more light on this matter.

  4. Radiation protection for manned space activities

    NASA Technical Reports Server (NTRS)

    Jordan, T. M.

    1983-01-01

    The Earth's natural radiation environment poses a hazard to manned space activities directly through biological effects and indirectly through effects on materials and electronics. The following standard practices are indicated that address: (1) environment models for all radiation species including uncertainties and temporal variations; (2) upper bound and nominal quality factors for biological radiation effects that include dose, dose rate, critical organ, and linear energy transfer variations; (3) particle transport and shielding methodology including system and man modeling and uncertainty analysis; (4) mission planning that includes active dosimetry, minimizes exposure during extravehicular activities, subjects every mission to a radiation review, and specifies operational procedures for forecasting, recognizing, and dealing with large solar flaes.

  5. Radiation and thyroid neoplasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConahey, W.M.; Hayles, A.B.

    1976-06-01

    It is now generally accepted that an association exists between external radiation administered to the head, neck, and upper thorax of infants, children, and adolescents and the subsequent development of neoplastic changes in the thyroid gland. Until recent years, external radiation was frequently administered to shrink an enlarged thymus or for the treatment of tonsillitis, adenoiditis, hearing loss, hemangioma, acne, tinea capitis, and other conditions. During the course of these treatments, the thyroid gland was exposed to scatter radiation. The use of external radiation therapy was then accepted practice, and its value was attested by many. Concern about the adversemore » effects was not initially appreciated, primarily because of the long periods of time between the radiation and the recognition of changes in the thyroid. The availability and effectiveness of other therapeutic measures and the growing concern about the delayed effects of radiation therapy when administered to the young for relatively benign conditions has, in recent years, largely eliminated use of this form of therapy, except in a few unusual conditions.« less

  6. Upgrades of DARWIN, a dose and spectrum monitoring system applicable to various types of radiation over wide energy ranges

    NASA Astrophysics Data System (ADS)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira; Shigyo, Nobuhiro; Watanabe, Fusao; Sakurai, Hiroki; Arai, Yoichi

    2011-05-01

    A dose and spectrum monitoring system applicable to neutrons, photons and muons over wide ranges of energy, designated as DARWIN, has been developed for radiological protection in high-energy accelerator facilities. DARWIN consists of a phoswitch-type scintillation detector, a data-acquisition (DAQ) module for digital waveform analysis, and a personal computer equipped with a graphical-user-interface (GUI) program for controlling the system. The system was recently upgraded by introducing an original DAQ module based on a field programmable gate array, FPGA, and also by adding a function for estimating neutron and photon spectra based on an unfolding technique without requiring any specific scientific background of the user. The performance of the upgraded DARWIN was examined in various radiation fields, including an operational field in J-PARC. The experiments revealed that the dose rates and spectra measured by the upgraded DARWIN are quite reasonable, even in radiation fields with peak structures in terms of both spectrum and time variation. These results clearly demonstrate the usefulness of DARWIN for improving radiation safety in high-energy accelerator facilities.

  7. SUMER: Solar Ultraviolet Measurements of Emitted Radiation

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, S. D.; Kuehne, M.; Lemaire, P.; Marsch, E.

    1992-01-01

    The experiment Solar Ultraviolet Measurements of Emitted Radiation (SUMER) is designed for the investigations of plasma flow characteristics, turbulence and wave motions, plasma densities and temperatures, structures and events associated with solar magnetic activity in the chromosphere, the transition zone and the corona. Specifically, SUMER will measure profiles and intensities of Extreme Ultraviolet (EUV) lines emitted in the solar atmosphere ranging from the upper chromosphere to the lower corona; determine line broadenings, spectral positions and Doppler shifts with high accuracy, provide stigmatic images of selected areas of the Sun in the EUV with high spatial, temporal and spectral resolution and obtain full images of the Sun and the inner corona in selectable EUV lines, corresponding to a temperature from 10,000 to more than 1,800,000 K.

  8. The NASA B-757 HIRF Test Series: Flight Test Results

    NASA Technical Reports Server (NTRS)

    Moeller, Karl J.; Dudley, Kenneth L.

    1997-01-01

    In 1995, the NASA Langley Research Center conducted a series of aircraft tests aimed at characterizing the electromagnetic environment (EME) in and around a Boeing 757 airliner. Measurements were made of the electromagnetic energy coupled into the aircraft and the signals induced on select structures as the aircraft was flown past known RF transmitters. These measurements were conducted to provide data for the validation of computational techniques for the assessment of electromagnetic effects in commercial transport aircraft. This paper reports on the results of flight tests using RF radiators in the HF, VHF, and UHF ranges and on efforts to use computational and analytical techniques to predict RF field levels inside the airliner at these frequencies.

  9. Radiation reabsorption in a laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Brunner, W.; John, R. W.; Paul, H.; Steudel, H.

    1988-11-01

    Taking into account the emission and absorption of resonance radiation in a recombining laser-produced plasma of intermediate density, the system of rate equations for the population densities coupled with the radiative transfer equation is approximately treated. In the case of spatially varying absorption, an approximate form of the rate equation determining the population density of the upper resonance level is derived. By applying this relation to an axially symmetric plasma, a simple formula that describes the effect of radiation reabsorption on the spatial behavior of the population density is obtained.

  10. An investigation of the processes controlling ozone in the upper stratosphere

    NASA Technical Reports Server (NTRS)

    Patten, Kenneth O., Jr.; Connell, Peter S.; Kinnison, Douglas E.; Wuebbles, Donald J.; Waters, Joe; Froidevaux, Lucien; Slanger, Tom G.

    1994-01-01

    Photolysis of vibrationally excited oxygen produced by ultraviolet photolysis of ozone in the upper stratosphere is incorporated into the Lawrence Livermore National Laboratory 2-D zonally averaged chemical-radiative-transport model of the troposphere and stratosphere. The importance of this potential contributor of odd oxygen to the concentration of ozone is evaluated based upon recent information on vibrational distributions of excited oxygen and upon preliminary studies of energy transfer from the excited oxygen. When the energy transfer rate constants of previous work are assumed, increases in model ozone concentrations of up to 40 percent in the upper stratosphere are found, and the ozone concentrations of the model agree with measurements, including data from the Upper Atmosphere Research Satellite. However, the increase is about 0.4 percent when the larger energy transfer rate constants suggested by more recent experimental work are applied in the model. This indicates the importance of obtaining detailed information on vibrationally excited oxygen properties to evaluation of this process for stratospheric modelling.

  11. Coherent Synchrotron Radiation for Rotational Spectroscopy: Application to the Rotational Spectrum of Propynal in the 200-750 GHz Range

    NASA Astrophysics Data System (ADS)

    Barros, J.; Roy, P.; Appadoo, D.; Naughton, D. Mc; Robertson, E.; Manceron, L.

    2013-06-01

    In storage rings, short electron bunches can produce an intense THz radiation called Coherent Synchrotron Radiation (CSR). The flux of this emission between 250 and 750 GHz (in the mW range, up the 10000 times the regular synchrotron emission) is very advantageous for broad band absorption spectroscopy, using interferometric techniques. This source is, however, inherently difficult to stabilize, and intensity fluctuations lead to artifacts on the FT-based measurements, which strongly limit the use of CSR in particular for high-resolution measurements. At SOLEIL however, by screening different currents and bunch lengths, we defined stable CSR conditions for which the signal-to-noise ratio (S/N) allows for measurements at high resolution. Moreover, we developed an artifact correction system, based on a simultaneous detection of the input and the output signals of the interferometer, which allows to further improve the S/N. For this purpose, the optics and electronics of two bolometers were matched. The stable CSR combined with this ingenious technique allowed us to record for the first time high-resolution FT spectra in the sub-THz range, with a S/N of 100 in a few hours. This enables many applications such as broadband rotational spectra in the THz range, studies of molecules with low frequency torsional modes, absolute intensities determinations, or studies of unstable species. Results obtained on Propynal illustrate these possibilities and enabled to improve significantly the ground state spectroscopic constants.

  12. Home-range and activity pattern of rehabilitated malayan sun bears (Helarctos malayanus) in the Tembat Forest Reserve, Terengganu

    NASA Astrophysics Data System (ADS)

    Abidin, Mohammad Kamaruddin Zainal; Mohammed, Ahmad Azhar; Nor, Shukor Md

    2018-04-01

    Re-introduction programme has been adopted in solving the conflict issues related with the Malayan sun bears in Peninsular Malaysia. Two rehabilitated sun bears (#1533 and #1532) were collared and released in Tembat Forest Reserve, Hulu Terengganu to study the home-range and activity pattern. Tracking of sun bear in wild have be conducted manually by using telemetry devices namely radio frequency systems and GPS-UHF download system. A total of 912 locations were recorded. The home range size (indicate by the size of convex polygon) of bear #1533 is larger than bear #1532, with value of 95% minimum convex polygon was 130 km2 compared to its counterpart was 33.28 km2. Bears moved to forest (primary and secondary) and oil palm area. Bear #1533 and #1532 were more active in daytime (diurnal) especially from sunrise to midday. Activity pattern of both rehabilitated bears suggested influence by their daily activity in captivity. This study has proposed two guidelines in re-introduction, 1) minimum distance between release site and possible conflict area is 10-13 km and 2) release during the bear's active time.

  13. Hydrogen Radicals, Nitrogen Radicals, and the Production of Ozone in the Middle and Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Bui, T. P.

    1997-01-01

    The concentrations of hydrogen radicals, OH and HO2, in the middle and upper troposphere were measured simultaneously with those of NO, O3,CO, H20, CH4, non-methane hydrocarbons, and with the ultraviolet and visible radiation field.

  14. Achievement of radiative feedback control for long-pulse operation on EAST

    NASA Astrophysics Data System (ADS)

    Wu, K.; Yuan, Q. P.; Xiao, B. J.; Wang, L.; Duan, Y. M.; Chen, J. B.; Zheng, X. W.; Liu, X. J.; Zhang, B.; Xu, J. C.; Luo, Z. P.; Zang, Q.; Li, Y. Y.; Feng, W.; Wu, J. H.; Yang, Z. S.; Zhang, L.; Luo, G.-N.; Gong, X. Z.; Hu, L. Q.; Hu, J. S.; Li, J.

    2018-05-01

    The active feedback control of radiated power to prevent divertor target plates overheating during long-pulse operation has been developed and implemented on EAST. The radiation control algorithm, with impurity seeding via a supersonic molecular beam injection (SMBI) system, has shown great success in both reliability and stability. By seeding a sequence of short neon (Ne) impurity pulses with the SMBI from the outer mid-plane, the radiated power of the bulk plasma can be well controlled, and the duration of radiative control (feedforward and feedback) is 4.5 s during a discharge of 10 s. Reliable control of the total radiated power of bulk plasma has been successfully achieved in long-pulse upper single null (USN) discharges with a tungsten divertor. The achieved control range of {{f}rad} is 20%–30% in L-mode regimes and 18%–36% in H-mode regimes. The temperature of the divertor target plates was maintained at a low level during the radiative control phase. The peak particle flux on the divertor target was decreased by feedforward Ne injection in the L-mode discharges, while the Ne pulses from the SMBI had no influence on the peak particle flux because of the very small injecting volume. It is shown that although the radiated power increased, no serious reduction of plasma-stored energy or confinement was observed during the control phase. The success of the radiation control algorithm and current experiments in radiated power control represents a significant advance for steady-state divertor radiation and heat flux control on EAST for near-future long-pulse operation.

  15. A geometrical upper bound on the inflaton range

    NASA Astrophysics Data System (ADS)

    Cicoli, Michele; Ciupke, David; Mayrhofer, Christoph; Shukla, Pramod

    2018-05-01

    We argue that in type IIB LVS string models, after including the leading order moduli stabilisation effects, the moduli space for the remaining flat directions is compact due the Calabi-Yau Kähler cone conditions. In cosmological applications, this gives an inflaton field range which is bounded from above, in analogy with recent results from the weak gravity and swampland conjectures. We support our claim by explicitly showing that it holds for all LVS vacua with h 1,1 = 3 obtained from 4-dimensional reflexive polytopes. In particular, we first search for all Calabi-Yau threefolds from the Kreuzer-Skarke list with h 1,1 = 2, 3 and 4 which allow for LVS vacua, finding several new LVS geometries which were so far unknown. We then focus on the h 1,1 = 3 cases and show that the Kähler cones of all toric hypersurface threefolds force the effective 1-dimensional LVS moduli space to be compact. We find that the moduli space size can generically be trans-Planckian only for K3 fibred examples.

  16. A Randomized Controlled Trial of Lorazepam to Reduce Liver Motion in Patients Receiving Upper Abdominal Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, Derek S.; Voncken, Francine E.M.; Tse, Regina V.

    2013-12-01

    Purpose: Reduction of respiratory motion is desirable to reduce the volume of normal tissues irradiated, to improve concordance of planned and delivered doses, and to improve image guided radiation therapy (IGRT). We hypothesized that pretreatment lorazepam would lead to a measurable reduction of liver motion. Methods and Materials: Thirty-three patients receiving upper abdominal IGRT were recruited to a double-blinded randomized controlled crossover trial. Patients were randomized to 1 of 2 study arms: arm 1 received lorazepam 2 mg by mouth on day 1, followed by placebo 4 to 8 days later; arm 2 received placebo on day 1, followed bymore » lorazepam 4 to 8 days later. After tablet ingestion and daily radiation therapy, amplitude of liver motion was measured on both study days. The primary outcomes were reduction in craniocaudal (CC) liver motion using 4-dimensional kV cone beam computed tomography (CBCT) and the proportion of patients with liver motion ≤5 mm. Secondary endpoints included motion measured with cine magnetic resonance imaging and kV fluoroscopy. Results: Mean relative and absolute reduction in CC amplitude with lorazepam was 21% and 2.5 mm respectively (95% confidence interval [CI] 1.1-3.9, P=.001), as assessed with CBCT. Reduction in CC amplitude to ≤5 mm residual liver motion was seen in 13% (95% CI 1%-25%) of patients receiving lorazepam (vs 10% receiving placebo, P=NS); 65% (95% CI 48%-81%) had reduction in residual CC liver motion to ≤10 mm (vs 52% with placebo, P=NS). Patients with large respiratory movement and patients who took lorazepam ≥60 minutes before imaging had greater reductions in liver CC motion. Mean reductions in liver CC amplitude on magnetic resonance imaging and fluoroscopy were nonsignificant. Conclusions: Lorazepam reduces liver motion in the CC direction; however, average magnitude of reduction is small, and most patients have residual motion >5 mm.« less

  17. Measurement of upper limits for Υ→γ+R decays

    NASA Astrophysics Data System (ADS)

    Rosner, J. L.; Adam, N. E.; Alexander, J. P.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Galik, R. S.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Jones, C. D.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Mahlke-Krüger, H.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Pivarski, J.; Riley, D.; Ryd, A.; Sadoff, A. J.; Schwarthoff, H.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Weinberger, M.; Athar, S. B.; Patel, R.; Potlia, V.; Yelton, J.; Rubin, P.; Cawlfield, C.; Eisenstein, B. I.; Karliner, I.; Kim, D.; Lowrey, N.; Naik, P.; Selen, M.; White, E. J.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.; Besson, D.; Henderson, S.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Lang, B. W.; Poling, R.; Scott, A. W.; Smith, A.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Ernst, J.; Ecklund, K. M.; Severini, H.; Love, W.; Savinov, V.; Aquines, O.; Li, Z.; Lopez, A.; Mehrabyan, S.; Mendez, H.; Ramirez, J.; Huang, G. S.; Miller, D. H.; Pavlunin, V.; Sanghi, B.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Coan, T. E.; Gao, Y. S.; Artuso, M.; Blusk, S.; Butt, J.; Li, J.; Menaa, N.; Moneti, G. C.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Sia, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Zhang, K.; Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Asner, D. M.; Edwards, K. W.; Briere, R. A.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.

    2007-12-01

    We report on a study of exclusive radiative decays Υ(nS)→γ+R (n=1, 2, 3), with R a narrow resonant hadronic state decaying into four or more charged particles (plus possible neutrals). Using data collected from the CLEO III detector at the Cornell Electron Storage Ring, we present upper limits of order 10-4 for such bottomonium two-body decays as a function of the mass MR recoiling opposite the photon.

  18. Analytical dependence of effective atomic number on the elemental composition of matter and radiation energy in the range 10-1000 keV

    NASA Astrophysics Data System (ADS)

    Eritenko, A. N.; Tsvetiansky, A. L.; Polev, A. A.

    2018-01-01

    In the present paper, a universal analytical dependence of effective atomic number on the composition of matter and radiation energy is proposed. This enables one to consider the case of a strong difference in the elemental composition with respect to their atomic numbers over a wide energy range. The contribution of photoelectric absorption and incoherent and coherent scattering during the interaction between radiation and matter is considered. For energy values over 40 keV, the contribution of coherent scattering does not exceed approximately 10% that can be neglected at a further consideration. The effective atomic numbers calculated on the basis of the proposed relationships are compared to the results of calculations based on other methods considered by different authors on the basis of experimental and tabulated data on mass and atomic attenuation coefficients. The examination is carried out for both single-element (e.g., 6C, 14Si, 28Cu, 56Ba, and 82Pb) and multi-element materials. Calculations are performed for W1-xCux alloys (x = 0.35; x = 0.4), PbO, ther moluminescent dosimetry compounds (56Ba, 48Cd, 41Sr, 20Ca, 12Mg, and 11Na), and SO4 in a wide energy range. A case with radiation energy between the K- and L1-absorption edges is considered for 82Pb, 74W, 56Ba, 48Cd, and 38Sr. This enables to substantially simplify the calculation of the atomic number and will be useful in technical and scientific fields related to the interaction between X-ray/gamma radiation and matter.

  19. Comparison of Paleogene paleogeography: Southern Coast Ranges and western Transverse Ranges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schussler, S.A.

    1991-02-01

    The paleogene stratigraphic sequence exposed in the southwestern San Rafael Mountains at the southern terminus of the Coast Ranges, consists of up to 850 m (2,800 ft) of the marine limestone, sandstone, and mudstone that lies with a unique depositional contact upon Franciscan Complex rocks. Lithofacies identified represent four sedimentary environments: (1) foreslope talus deposits of a neritic algal bank (Sierra Blanca limestone), (2) bathyal basin plain and outer submarine fan deposits (Juncal/Anita Formation and Cozy Dell Shale), (3) suprafan lobe deposits of a bathyal submarine fan (lower Mitilija Sandstone), and (4) sublittoral shelf deposits (upper Matilija Sandstone). Similarities betweenmore » paleogene rocks in the southwest San Rafael mountains and the western Santa Ynez Mountains of the Transverse Ranges, approximately 60 km (40 mi) to the west, suggest deposition in a similar paleogeographic setting. Paleomagnetic data suggests post-Paleogene clockwise rotations of the western Transverse Ranges of 90{degree}+. Counterclockwise rotation of the western Transverse Ranges by this amount aligns the similar depositional sequences of the western Transverse Ranges with the northwest-trending Paleogene forearc basin of the southern Coast Ranges and eliminates the necessity for an east-west-oriented Paleogene basin at the site of the present western Transverse Ranges.« less

  20. Neutron spectral measurements in the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Zobel, W.; Love, T. A.; Delorenzo, J. T.; Mcnew, C. O.

    1972-01-01

    An experiment to measure neutrons in the upper atmosphere was performed on a balloon flight from Palestine, Texas, at an altitude of about 32 km. The experimental arrangement is discussed briefly, and results of a preliminary analysis of the data for neutrons in the energy range 3 to 30 MeV are given.

  1. Large Scale Testing of a Foam/Multilayer Insulation Thermal Control System (TCS) for Cryogenic Upper Stages

    NASA Technical Reports Server (NTRS)

    Hastings, Leon; Martin, James

    1998-01-01

    The development of high energy cryogenic upper stages is essential for the efficient delivery of large payloads to various destinations envisioned in future programs. A key element in such upper stages is cryogenic fluid management (CFM) advanced development/technology. Due to the cost of and limited opportunities for orbital experiments, ground testing must be employed to the fullest extent possible. Therefore, a system level test bed termed the Multipurpose Hydrogen Test Bed (MHTB), which is representative in size and shape (3 meter diameter by 3 meter long with a volume of 18 cubic meters) of a fully integrated space transportation vehicle liquid hydrogen propellant tank has been established. To date, upper stage studies have often baselined the foam/multilayer insulation (FMLI) combination concept; however, hardware experience with the concept is minimal and was therefore selected for the MHTB. The foam element (isofoam SS-1 171 with an average thickness of 3.5 centimeters) is designed to protect against ground hold/ascent flight environments, and allows for the use of a dry nitrogen purge as opposed to the more complex/heavy helium purge subsystem normally required with MLI in cryogenic applications. The MLI (45 layers of Double Aluminized Mylar with Dacron spacers) provides protection in the vacuum environment of space and is designed for an on-orbit storage period of 45 days. Several unique features were incorporated in the MLI concept and included: variable density MLI (reduces weight and radiation losses by changing the layer density), larger but fewer DAM perforations for venting during ascent to orbit (reduces radiation losses), and roll wrap installation of the MLI with a commercially established process to lower assembly man-hours and reduce seam heat leak. Thermal performance testing of the MHTB TCS was conducted during three test series conducted between September 1995 and May 1996. Results for the ground hold portion of the tests were as expected

  2. The accuracy and precision of radiostereometric analysis in upper limb arthroplasty.

    PubMed

    Ten Brinke, Bart; Beumer, Annechien; Koenraadt, Koen L M; Eygendaal, Denise; Kraan, Gerald A; Mathijssen, Nina M C

    2017-06-01

    Background and purpose - Radiostereometric analysis (RSA) is an accurate method for measurement of early migration of implants. Since a relation has been shown between early migration and future loosening of total knee and hip prostheses, RSA plays an important role in the development and evaluation of prostheses. However, there have been few RSA studies of the upper limb, and the value of RSA of the upper limb is not yet clear. We therefore performed a systematic review to investigate the accuracy and precision of RSA of the upper limb. Patients and methods - PRISMA guidelines were followed and the protocol for this review was published online at PROSPERO under registration number CRD42016042014. A systematic search of the literature was performed in the databases Embase, Medline, Cochrane, Web of Science, Scopus, Cinahl, and Google Scholar on April 25, 2015 based on the keywords radiostereometric analysis, shoulder prosthesis, elbow prosthesis, wrist prosthesis, trapeziometacarpal joint prosthesis, humerus, ulna, radius, carpus. Articles concerning RSA for the analysis of early migration of prostheses of the upper limb were included. Quality assessment was performed using the MINORS score, Downs and Black checklist, and the ISO RSA Results - 23 studies were included. Precision values were in the 0.06-0.88 mm and 0.05-10.7° range for the shoulder, the 0.05-0.34 mm and 0.16-0.76° range for the elbow, and the 0.16-1.83 mm and 11-124° range for the TMC joint. Accuracy data from marker- and model-based RSA were not reported in the studies included. Interpretation - RSA is a highly precise method for measurement of early migration of orthopedic implants in the upper limb. However, the precision of rotation measurement is poor in some components. Challenges with RSA in the upper limb include the symmetrical shape of prostheses and the limited size of surrounding bone, leading to over-projection of the markers by the prosthesis. We recommend higher adherence to

  3. Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset

    NASA Astrophysics Data System (ADS)

    Lange, Stefan

    2018-05-01

    Many meteorological forcing datasets include bias-corrected surface downwelling longwave and shortwave radiation (rlds and rsds). Methods used for such bias corrections range from multi-year monthly mean value scaling to quantile mapping at the daily timescale. An additional downscaling is necessary if the data to be corrected have a higher spatial resolution than the observational data used to determine the biases. This was the case when EartH2Observe (E2OBS; Calton et al., 2016) rlds and rsds were bias-corrected using more coarsely resolved Surface Radiation Budget (SRB; Stackhouse Jr. et al., 2011) data for the production of the meteorological forcing dataset EWEMBI (Lange, 2016). This article systematically compares various parametric quantile mapping methods designed specifically for this purpose, including those used for the production of EWEMBI rlds and rsds. The methods vary in the timescale at which they operate, in their way of accounting for physical upper radiation limits, and in their approach to bridging the spatial resolution gap between E2OBS and SRB. It is shown how temporal and spatial variability deflation related to bilinear interpolation and other deterministic downscaling approaches can be overcome by downscaling the target statistics of quantile mapping from the SRB to the E2OBS grid such that the sub-SRB-grid-scale spatial variability present in the original E2OBS data is retained. Cross validations at the daily and monthly timescales reveal that it is worthwhile to take empirical estimates of physical upper limits into account when adjusting either radiation component and that, overall, bias correction at the daily timescale is more effective than bias correction at the monthly timescale if sampling errors are taken into account.

  4. Improved Statistical Model Of 10.7-cm Solar Radiation

    NASA Technical Reports Server (NTRS)

    Vedder, John D.; Tabor, Jill L.

    1993-01-01

    Improved mathematical model simulates short-term fluctuations of flux of 10.7-cm-wavelength solar radiation during 91-day averaging period. Called "F10.7 flux", important as measure of solar activity and because it is highly correlated with ultraviolet radiation causing fluctuations in heating and density of upper atmosphere. F10.7 flux easily measureable at surface of Earth.

  5. An upper limit for stratospheric hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Chance, K. V.; Traub, W. A.

    1984-01-01

    It has been postulated that hydrogen peroxide is important in stratospheric chemistry as a reservoir and sink for odd hydrogen species, and for its ability to interconvert them. The present investigation is concerned with an altitude dependent upper limit curve for stratospheric hydrogen peroxide, taking into account an altitude range from 21.5 to 38.0 km for January 23, 1983. The data employed are from balloon flight No. 1316-P, launched from the National Scientific Balloon Facility (NSBF) in Palestine, Texas. The obtained upper limit curve lies substantially below the data reported by Waters et al. (1981), even though the results are from the same latitude and are both wintertime measurements.

  6. [Corrective effects of electromagnetic radiation in a millimeter wavelength range on the parameters of oxidative stress after standard anti-helicobacterial therapy in patients with ulcer disease].

    PubMed

    Ivanishkina, E V; Podoprigorova, V G

    2012-01-01

    We assessed the possibilities of correction of oxidative stress parameters in the serum and gastroduodenal mucosa using electromagnetic radiation in a millimeter wavelength range in 127 patients with gastric and duodenal ulcer after eradication therapy. Control group included 230 healthy subjects. Parameter of lipid oxidation by free radicals were measured by direct methods (hemiluminescence and EPR-spectroscopy). The results show that standard eradication therapy does not influence parameters of oxidative stress. More pronounced effect of electromagnetic radiation in a millimeter wavelength range may be due to the correction of prooxidant-antioxidant and antioxidant disbalance. This observation provides pathogenetic substantiation for the inclusion of this physical method in modern therapeutic modalities.

  7. Upper temperature limits of tropical marine ectotherms: global warming implications.

    PubMed

    Nguyen, Khanh Dung T; Morley, Simon A; Lai, Chien-Houng; Clark, Melody S; Tan, Koh Siang; Bates, Amanda E; Peck, Lloyd S

    2011-01-01

    Animal physiology, ecology and evolution are affected by temperature and it is expected that community structure will be strongly influenced by global warming. This is particularly relevant in the tropics, where organisms are already living close to their upper temperature limits and hence are highly vulnerable to rising temperature. Here we present data on upper temperature limits of 34 tropical marine ectotherm species from seven phyla living in intertidal and subtidal habitats. Short term thermal tolerances and vertical distributions were correlated, i.e., upper shore animals have higher thermal tolerance than lower shore and subtidal animals; however, animals, despite their respective tidal height, were susceptible to the same temperature in the long term. When temperatures were raised by 1°C hour(-1), the upper lethal temperature range of intertidal ectotherms was 41-52°C, but this range was narrower and reduced to 37-41°C in subtidal animals. The rate of temperature change, however, affected intertidal and subtidal animals differently. In chronic heating experiments when temperature was raised weekly or monthly instead of every hour, upper temperature limits of subtidal species decreased from 40°C to 35.4°C, while the decrease was more than 10°C in high shore organisms. Hence in the long term, activity and survival of tropical marine organisms could be compromised just 2-3°C above present seawater temperatures. Differences between animals from environments that experience different levels of temperature variability suggest that the physiological mechanisms underlying thermal sensitivity may vary at different rates of warming.

  8. Upper lobe fibrosis: a novel manifestation of chronic allograft dysfunction in lung transplantation.

    PubMed

    Pakhale, Smita Sakha; Hadjiliadis, Denis; Howell, David N; Palmer, Scott M; Gutierrez, Carlos; Waddell, Thomas K; Chaparro, Cecilia; Davis, R Duane; Keshavjee, Shaf; Hutcheon, Michael A; Singer, Lianne G

    2005-09-01

    Lung transplantation is an established treatment modality for a number of chronic lung diseases. Long-term survival after lung transplantation is limited by chronic allograft dysfunction, usually manifested by bronchiolitis obliterans syndrome. We describe a case series with upper lobe fibrosis, a novel presentation of chronic allograft dysfunction. We reviewed lung transplants at the Toronto General Hospital and Duke University Hospital from 1990 to 2002 and identified patients with upper lobe fibrosis. Thirteen of 686 patients (6 women) developed upper lobe fibrosis (Toronto, 9; Duke, 4); 12 of 13 had bilateral transplants. The median age at diagnosis was 42 years (range, 19-70). Primary diagnoses were cystic fibrosis, 6; emphysema, 4; sarcoidosis, 1; and pulmonary fibrosis, 2 patients. Radiographic diagnosis was made at a median of 700 days post-transplant (range, 150-2,920). Pulmonary function tests demonstrated predominantly a progressively worsening restrictive pattern. Open lung biopsy specimens revealed dense interstitial fibrosis, with occasional features of obliterative bronchitis, bronchiolitis obliterans obstructive pneumonia, and aspiration. Nine patients died at a median follow-up of 2,310 days (range, 266-3,740), 8 due to respiratory failure. Upper lobe fibrosis is a novel presentation of chronic allograft dysfunction in lung transplant recipients and is differentiated from bronchiolitis obliterans syndrome on the basis of physiologic and radiologic findings.

  9. SUMER: Solar Ultraviolet Measurements of Emitted Radiation

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, M. C. E.; Lemaire, P.; Marsch, E.; Poland, A. I.

    1988-01-01

    The SUMER (solar ultraviolet measurements of emitted radiation) experiment is described. It will study flows, turbulent motions, waves, temperatures and densities of the plasma in the upper atmosphere of the Sun. Structures and events associated with solar magnetic activity will be observed on various spatial and temporal scales. This will contribute to the understanding of coronal heating processes and the solar wind expansion. The instrument will take images of the Sun in EUV (extreme ultra violet) light with high resolution in space, wavelength and time. The spatial resolution and spectral resolving power of the instrument are described. Spectral shifts can be determined with subpixel accuracy. The wavelength range extends from 500 to 1600 angstroms. The integration time can be as short as one second. Line profiles, shifts and broadenings are studied. Ratios of temperature and density sensitive EUV emission lines are established.

  10. Aerosol Absorption and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Stier, Philip; Seinfeld, J. H.; Kinne, Stefan; Boucher, Olivier

    2007-01-01

    We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006) significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the shortwave anthropogenic aerosol top-of-atmosphere (TOA) radiative forcing clear-sky from -0.79 to -0.53 W m(sup -2) (33%) and all-sky from -0.47 to -0.13W m(sup -2 (72%). Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19W m(sup -2) (36%) clear-sky and of 0.12W m(sup -2) (92%) all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05W m(sup -2) and a positive TOA forcing perturbation of 0

  11. Theoretical and practical aspects of application of a low-energy electromagnetic radiation of the extremely high-frequency range in medicine

    NASA Astrophysics Data System (ADS)

    Lyapina, Elena P.; Chesnokov, Igor A.; Bushuev, Nikolay A.; Kuzyutkina, Svetlana E.; Shuldjakov, Andrey A.

    2006-02-01

    The questions concerning the mechanism of action of a low-energy electromagnetic radiation of the extremely high frequency range (EMR EHF) are considered. Also the features of biological effects are considered in their application as therapeutic actions. As an example the advantages of EHF treatment of patients with chronic brucellosis are shown, the algorithm of a choice of the scheme of treatment using EMR EHF is offered.

  12. Large Abundances of Polycyclic Aromatic Hydrocarbons in Titan's Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Lopez-Puertas, M.; Dinelli, B. M.; Adriani, A.; Funke, B.; Garcia-Comas, M.; Moriconi, M. L.; D'Aversa, E.; Boersma, C.; Allamandola, L. J.

    2013-01-01

    In this paper, we analyze the strong unidentified emission near 3.28 micron in Titan's upper daytime atmosphere recently discovered by Dinelli et al.We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 micron. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) × 10(exp 4) particles / cubic cm. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is approx 430 u; the mean area is about 0.53 sq. nm; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.

  13. Effectiveness of a fine motor skills rehabilitation program on upper limb disability, manual dexterity, pinch strength, range of fingers motion, performance in activities of daily living, functional independency, and general self-efficacy in hand osteoarthritis: A randomized clinical trial.

    PubMed

    Pérez-Mármol, Jose Manuel; García-Ríos, Ma Carmen; Ortega-Valdivieso, María Azucena; Cano-Deltell, Enrique Elías; Peralta-Ramírez, María Isabel; Ickmans, Kelly; Aguilar-Ferrándiz, María Encarnación

    A randomized clinical trial. Rehabilitation treatments for improving fine motor skills (FMS) in hand osteoarthritis (HOA) have not been well explored yet. To assess the effectiveness of a rehabilitation program on upper limb disability, independence of activities of daily living (ADLs), fine motor abilities, functional independency, and general self-efficacy in older adults with HOA. About 45 adults (74-86 years) with HOA were assigned to an experimental group for completing an FMS intervention or a control group receiving conventional occupational therapy. Both interventions were performed 3 times/wk, 45 minutes each session, during 8 weeks. Upper limb disability, performance in ADLs, pinch strength, manual dexterity, range of fingers motion, functional independency, and general self-efficacy were assessed at baseline, immediately after treatment, and after 2 months of follow-up. FMS group showed significant improvements with a small effect size on manual dexterity (P ≤ .034; d ≥ 0.48) and a moderate-high effect on range of index (P ≤ .018; d ≥ 0.58) and thumb (P ≤ .027; d ≥ 0.39) motion. The control group showed a significant worse range of motion over time in some joints at the index (P ≤ .037; d ≥ 0.36) finger and thumb (P ≤ .017; d ≥ 0.55). A rehabilitation intervention for FMS may improve manual dexterity and range of fingers motion in HOA, but its effects on upper limb disability, performance in ADLs, pinch strength, functionality, and self-efficacy remain uncertain. Specific interventions of the hand are needed to prevent a worsening in range of finger motion. 1b. Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  14. Thermal radiative and thermodynamic properties of solid and liquid uranium and plutonium carbides in the visible-near-infrared range

    NASA Astrophysics Data System (ADS)

    Fisenko, Anatoliy I.; Lemberg, Vladimir F.

    2016-09-01

    The knowledge of thermal radiative and thermodynamic properties of uranium and plutonium carbides under extreme conditions is essential for designing a new metallic fuel materials for next generation of a nuclear reactor. The present work is devoted to the study of the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides at their melting/freezing temperatures. The Stefan-Boltzmann law, total energy density, number density of photons, Helmholtz free energy density, internal energy density, enthalpy density, entropy density, heat capacity at constant volume, pressure, and normal total emissivity are calculated using experimental data for the frequency dependence of the normal spectral emissivity of liquid and solid uranium and plutonium carbides in the visible-near infrared range. It is shown that the thermal radiative and thermodynamic functions of uranium carbide have a slight difference during liquid-to-solid transition. Unlike UC, such a difference between these functions have not been established for plutonium carbide. The calculated values for the normal total emissivity of uranium and plutonium carbides at their melting temperatures is in good agreement with experimental data. The obtained results allow to calculate the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides for any size of samples. Based on the model of Hagen-Rubens and the Wiedemann-Franz law, a new method to determine the thermal conductivity of metals and carbides at the melting points is proposed.

  15. Upper-air model of summer balance on Mount Rainier, USA

    NASA Astrophysics Data System (ADS)

    Rasmussen, L. A.; Wenger, J. M.

    In 2003-07 summer balance was measured at altitudes between 1700 and 3382 m a.s.l. on two glaciers on Mount Rainier, Washington State, USA (46.85° N, 121.72° W; 4400 m a.s.l.): south-facing Nisqually Glacier and east-northeast-facing Emmons Glacier. Upper-air temperatures at the nearest gridpoint in the NCEP/NCAR reanalysis database are used in a distributed (over altitude) positive-degree-day (PDD) model. For each glacier the model used the same coefficients at all altitudes, for all years. The rms model error was 0.65 (r2 = 0.87) and 0.78 m a-1 w.e. (r2 = 0.93) for Nisqually and Emmons Glaciers, respectively. Although PDD work generally uses different coefficients for snow and ice surfaces, and the duration of exposure of those surfaces varies with altitude, error in this single-coefficient model is nearly uncorrelated with altitude. Values of coefficients obtained are within the range of those found in other PDD work. The degree-day coefficient, however, differs markedly between the two glaciers, and is shown to be controlled by the difference between them in vertical gradient of measured summer balance. It is smaller for Nisqually Glacier, where solar radiation is a stronger contributor to melt; and larger for Emmons Glacier, where it is a weaker contributor. Over 1948-2007, when the model calibrated over 2003-07 was applied to the upper-air temperatures, estimated summer balance was ˜0.4 m a-1 less negative over 1962-83 than before and ˜0.6 m a-1 less negative than after, corresponding roughly with changes of the northeast Pacific sea-surface temperatures.

  16. Influence of impurity seeding on the plasma radiation in the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Liping, DONG; Yanmin, DUAN; Kaiyun, CHEN; Xiuda, YANG; Ling, ZHANG; Feng, XU; Jingbo, CHEN; Songtao, MAO; Zhenwei, WU; Liqun, HU

    2018-04-01

    Plasma radiation characteristics in EAST argon (Ar) gas and neon (Ne) gas seeding experiments are studied. The radiation profiles reconstructed from the fast bolometer measurement data by tomography method are compared with the ones got from the simulation program based on corona model. And the simulation results coincide roughly with the experimental data. For Ar seeding discharges, the substantial enhanced radiations can be generally observed in the edge areas at normalized radius ρ pol∼0.7–0.9, while the enhanced regions are more outer for Ne seeding discharges. The influence of seeded Ar gas on the core radiation is related to the injected position. In discharges with LSN divertor configuration, the Ar ions can permeate into the core region more easily when being injected from the opposite upper divertor ports. In USN divertor configuration, the W impurity sputtered from the upper divertor target plates are observed to be an important contributor to the increase of the core radiation no matter impurity seeding from any ports. The maximum radiated power fractions f rad (P rad/P heat) about 60%–70% have been achieved in the recent EAST experimental campaign in 2015–2016.

  17. Excitation and trapping of lower hybrid waves in striations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borisov, N.; Institute of Terrestrial Magnetism, Ionosphere and Radio Waves Propagation; Honary, F.

    2008-12-15

    The theory of lower hybrid (LH) waves trapped in striations in warm ionospheric plasma in the three-dimensional case is presented. A specific mechanism of trapping associated with the linear transformation of waves is discussed. It is shown analytically that such trapping can take place in elongated plasma depletions with the frequencies below and above the lower hybrid resonance frequency of the ambient plasma. The theory is applied mainly to striations generated artificially in ionospheric modification experiments and partly to natural plasma depletions in the auroral upper ionosphere. Typical amplitudes and transverse scales of the trapped LH waves excited in ionosphericmore » modification experiments are estimated. It is shown that such waves possibly can be detected by backscattering at oblique sounding in very high frequency (VHF) and ultra high frequency (UHF) ranges.« less

  18. The Response of the Ocean Thermal Skin Layer to Variations in Incident Infrared Radiation

    NASA Astrophysics Data System (ADS)

    Wong, Elizabeth W.; Minnett, Peter J.

    2018-04-01

    Ocean warming trends are observed and coincide with the increase in concentrations of greenhouse gases in the atmosphere resulting from human activities. At the ocean surface, most of the incoming infrared (IR) radiation is absorbed within the top micrometers of the ocean's surface where the thermal skin layer (TSL) exists. Thus, the incident IR radiation does not directly heat the upper few meters of the ocean. This paper investigates the physical mechanism between the absorption of IR radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that given the heat lost through the air-sea interface is controlled by the TSL, the TSL adjusts in response to variations in incident IR radiation to maintain the surface heat loss. This modulates the flow of heat from below and hence controls upper ocean heat content. This hypothesis is tested using the increase in incoming longwave radiation from clouds and analyzing vertical temperature profiles in the TSL retrieved from sea-surface emission spectra. The additional energy from the absorption of increasing IR radiation adjusts the curvature of the TSL such that the upward conduction of heat from the bulk of the ocean into the TSL is reduced. The additional energy absorbed within the TSL supports more of the surface heat loss. Thus, more heat beneath the TSL is retained leading to the observed increase in upper ocean heat content.

  19. RADIO RANGING DEVICE

    DOEpatents

    Bogle, R.W.

    1960-11-22

    A description is given of a super-regenerative oscillator ranging device provided with radiating and receiving means and being capable of indicating the occurrence of that distance between itself and a reflecting object which so phases the received echo of energy of a preceding emitted oscillation that the intervals between oscillations become uniform.

  20. Study for reducing lung dose of upper thoracic esophageal cancer radiotherapy by auto-planning: volumetric-modulated arc therapy vs intensity-modulated radiation therapy.

    PubMed

    Chen, Hua; Wang, Hao; Gu, Hengle; Shao, Yan; Cai, Xuwei; Fu, Xiaolong; Xu, Zhiyong

    2017-10-27

    This study aimed to investigate the dosimetric differences and lung sparing between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) in the treatment of upper thoracic esophageal cancer with T3N0M0 for preoperative radiotherapy by auto-planning (AP). Sixteen patient cases diagnosed with upper thoracic esophageal cancer T3N0M0 for preoperative radiotherapy were retrospectively studied, and 3 plans were generated for each patient: full arc VMAT AP plan with double arcs, partial arc VMAT AP plan with 6 partial arcs, and conventional IMRT AP plan. A simultaneous integrated boost with 2 levels was planned in all patients. Target coverage, organ at risk sparing, treatment parameters including monitor units and treatment time (TT) were evaluated. Wilcoxon signed-rank test was used to check for significant differences (p < 0.05) between datasets. VMAT plans (pVMAT and fVMAT) significantly reduced total lung volume treated above 20 Gy (V 20 ), 25 Gy (V 25 ), 30 Gy (V 30 ), 35 Gy (V 35 ), 40 Gy (V 40 ), and without increasing the value of V 10 , V 13 , and V 15 . For V 5 of total lung value, pVMAT was similar to aIMRT, and it was better than fVMAT. Both pVMAT and fVMAT improved the target dose coverage and significantly decreased maximum dose for the spinal cord, monitor unit, and TT. No significant difference was observed with respect to V 10 and V 15 of body. VMAT AP plan was a good option for treating upper thoracic esophageal cancer with T3N0M0, especially partial arc VMAT AP plan. It had the potential to effectively reduce lung dose in a shorter TT and with superior target coverage and dose homogeneity. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  1. Multifrequency Measurements of Radar Ground Clutter at 42 Sites. Volume 3: Appendix E

    DTIC Science & Technology

    1991-11-15

    pulse, horizontal polarization. E-33 76260-22 0 0 -10 + + X.0 Ox + IL 0 tD -20 0 U. 0 4w + RANGE POL. RES. (m) 150 H e -30 + 150 V 0so 0 15/36 H + 15/36...10 _ +. x U- 0 tD - 00. 2 Z + 4 0 x0 w 0 0+ 0 -30 VHF UHF L -X-BAND FREQUENCY (MHz) Figure E-53. Mean clutter strength versus frequency at Woking. For...76260-3 -10 RANGE POL. RES. (in) 150 H . 150 V 0 15/36 H + 15/36 V X -20 x ’U0 + U. 0 tD -30- 0 0+ IL.0 0 2 0 4w + x -40- VHF UHF L- S- X-BAND FREQUENCY

  2. Pedicled fat flap to increase lateral fullness in upper blepharoplasty.

    PubMed

    Sozer, Sadri O; Agullo, Francisco J; Palladino, Humberto; Payne, Phileemon E; Banerji, Soumo

    2010-03-01

    The eyelid of a young person can be distinguished by the lateral fullness of the upper eyelid. With aging, lateral fullness decreases. Volume restoration in the periorbital area has been previously addressed by fat draping and grafting. More recently, techniques for regaining lateral fullness of the upper eyelid have focused on fat grafting, although effective graft take, reabsorption, and irregularities have been a concern. To address these issues, the concept of pedicled fat draping in the upper eyelid was explored. In a retrospective study from June 2006 to August 2008, 31 patients underwent upper blepharoplasty with augmentation of the lateral fullness with a pedicled fat flap from the central fat pad. The fat from the central compartment was elevated, dissected, and then transposed to the lateral upper eyelid below the orbicularis muscle. All patients were women ranging in age from 43 to 68 years. Pre- and postoperative picture comparison demonstrated a more youthful appearance with increased lateral fullness of the upper eyelids. There were no cases of fat necrosis encountered. Increased volume remained stable over an average of one-year follow-up. No complications were recorded. Transposing a pedicled fat pad from the central compartment laterally has proven to be an effective technique for achieving predictable upper lateral eyelid fullness and thus achieving a long-lasting, more youthful appearance.

  3. Regional variations in upper mantle compressional velocities beneath southern California 1. Post-shock temperatures: Their experimental determination, calculation, and implications, 2.. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Raikes, S. A.

    1978-01-01

    The compressional velocity within the upper mantle beneath Southern California is investigated through observations of the dependence of teleseismic P-delays at all stations of the array on the distance and azimuth to the event. The variation of residuals with azimuth was found to be as large as 1.3 sec at a single station; the delays were stable as a function of time, and no evidence was found for temporal velocity variations related to seismic activity in the area. These delays were used in the construction of models for the upper mantle P-velocity structure to depths of 150 km, both by ray tracing and inversion techniques. The models exhibit considerable lateral heterogeneity including a region of low velocity beneath the Imperial Valley, and regions of increased velocity beneath the Sierra Nevada and much of the Transverse Ranges. The development is described of a technique for the experimental determination of post-shock temperatures, and its application to several metals and silicates shocked to pressures in the range 5 to 30 GPa. The technique utilizes an infra-red radiation detector to determine the brightness temperature of the free surface of the sample after the shock wave has passed through it.

  4. ON COMPUTING UPPER LIMITS TO SOURCE INTENSITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashyap, Vinay L.; Siemiginowska, Aneta; Van Dyk, David A.

    2010-08-10

    A common problem in astrophysics is determining how bright a source could be and still not be detected in an observation. Despite the simplicity with which the problem can be stated, the solution involves complicated statistical issues that require careful analysis. In contrast to the more familiar confidence bound, this concept has never been formally analyzed, leading to a great variety of often ad hoc solutions. Here we formulate and describe the problem in a self-consistent manner. Detection significance is usually defined by the acceptable proportion of false positives (background fluctuations that are claimed as detections, or Type I error),more » and we invoke the complementary concept of false negatives (real sources that go undetected, or Type II error), based on the statistical power of a test, to compute an upper limit to the detectable source intensity. To determine the minimum intensity that a source must have for it to be detected, we first define a detection threshold and then compute the probabilities of detecting sources of various intensities at the given threshold. The intensity that corresponds to the specified Type II error probability defines that minimum intensity and is identified as the upper limit. Thus, an upper limit is a characteristic of the detection procedure rather than the strength of any particular source. It should not be confused with confidence intervals or other estimates of source intensity. This is particularly important given the large number of catalogs that are being generated from increasingly sensitive surveys. We discuss, with examples, the differences between these upper limits and confidence bounds. Both measures are useful quantities that should be reported in order to extract the most science from catalogs, though they answer different statistical questions: an upper bound describes an inference range on the source intensity, while an upper limit calibrates the detection process. We provide a recipe for computing

  5. Preliminary stratigraphy and facies analysis of the Upper Cretaceous Kaguyak Formation, including a brief summary of newly discovered oil stain, upper Alaska Peninsula

    USGS Publications Warehouse

    Wartes, Marwan A.; Decker, Paul L.; Stanley, Richard G.; Herriott, Trystan M.; Helmold, Kenneth P.; Gillis, Robert J.

    2013-01-01

    The Alaska Division of Geological and Geophysical Surveys has an ongoing program aimed at evaluating the Mesozoic forearc stratigraphy, structure, and petroleum systems of lower Cook Inlet. Most of our field studies have focused on the Jurassic component of the petroleum system (this report). However, in late July and early August of 2012, we initiated a study of the stratigraphy and reservoir potential of the Upper Cretaceous Kaguyak Formation. The Kaguyak Formation is locally well exposed on the upper Alaska Peninsula (fig. 25) and was named by Keller and Reiser (1959) for a sequence of interbedded siltstone and sandstone of upper Campanian to Maastrichtian age that they estimated to be 1,450 m thick.Subsequent work by Detterman and Miller (1985) examined 900 m of section and interpreted the unit as the record of a prograding submarine fan.This interpretation of deep-water deposition contrasts with other Upper Cretaceous rocks exposed along the Alaska Peninsula and lower Cook Inlet that are generally described as nonmarine to shallow marine (Detterman and others, 1996; LePain and others, 2012).Based on foraminifera and palynomorphs from the COST No. 1 well, Magoon (1986) concluded that the Upper Cretaceous rocks were deposited in a variety of water depths and environments ranging from upper bathyal to nonmarine. During our recent fieldwork west and south of Fourpeaked Mountain, we similarly encountered markedly varying lithofacies in the Kaguyak Formation (fig. 25), and we also found oil-stained rocks that are consistent with the existence of an active petroleum system in Upper Cretaceous rocks on the upper Alaska Peninsula and in lower Cook Inlet. These field observations are summarized below.

  6. Effects of solar radiation on the Patagonian macroalga Enteromorpha linza (L.) J. Agardh-Chlorophyceae.

    PubMed

    Häder, D P; Lebert, M; Helbling, E W

    2001-09-01

    The photosynthetic performance of Enteromorpha linza (L.) J. Agardh-Chlorophyceae was determined with a portable PAM instrument in situ and under seminatural radiation conditions in Patagonia, Argentina. Solar radiation was measured in parallel with a three-channel radiometer, ELDONET (Real Time Computer, Möhrendorf, Germany), in three wavelength ranges, UV-B (280-315 nm), UV-A (315-400 nm), and PAR (400-700 nm). The effective photosynthetic quantum yield decreased after 15-min exposure to solar radiation when the thalli were kept in a fixed position but recovered in the subsequent shade conditions within several hours. A 30-min exposure of free floating thalli, however, caused less photoinhibition. The photosynthetic quantum yield of E. linza was also followed over whole days under clear sky, partly cloudy and rainy conditions in a large reservoir of water (free floating thalli) and in situ (thalli growing in rock pools). Most of the observed effect was due to visible radiation; however, the UV wavelength range, and especially UV-B, caused a significant reduction of the photosynthetic quantum yield. Fluence rate response curves indicated that the species is a typical shade plant which showed non-photochemical quenching at intermediate and higher irradiances. This is a surprising result since these algae are found in the upper eulittoral where they are exposed to high irradiances. Obviously they utilize light only during periods of low irradiances (morning, evening, high tide) while they shut down the electron transport chain during intensive exposure. Fast induction and relaxation kinetics have been measured in these algae for the first time and indicated a rapid adaptation of the photosynthetic capacity to the changing light conditions as well as a fast decrease of PS II fluorescence upon exposure to solar radiation. There was a strong bleaching of chlorophyll due to exposure to solar radiation but less drastic bleaching of carotenoids.

  7. Heat up and failure of BWR upper internals during a severe accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb, Kevin R.

    In boiling water reactors, the shroud dome, separators, and dryers above the core are made of approximately 100,000 kg of stainless steel. During a severe accident in which the coolant boils away and exothermic oxidation of zirconium occurs, gases (steam and hydrogen) are superheated in the core region and pass through the upper internals. In this scenario, the upper internals can also be heated by thermal radiation from the hot degrading core. Historically, models of the upper internals have been relatively simple in severe accident codes. The upper internals are typically modeled in MELCOR as two lumped volumes with simplifiedmore » heat transfer characteristics and no structural integrity considerations, and with limited ability to oxidize, melt, and relocate. The potential for and the subsequent impact of the upper internals to heat up, oxidize, fail, and relocate during a severe accident was investigated. A higher fidelity representation of the shroud dome, steam separators, and steam driers was developed in MELCOR v1.8.6 by extending the core region upwards. The MELCOR modeling effort entailed adding 45 additional core cells and control volumes, 98 flow paths, and numerous control functions. The model accounts for the mechanical loading and structural integrity, oxidation, melting, flow area blockage, and relocation of the various components. Consistent with a previous study, the results indicate that the upper internals can reach high temperatures during a severe accident sufficient to lose their structural integrity and relocate. Finally, the additional 100 metric tons of stainless steel debris influences the subsequent in-vessel and ex-vessel accident progression.« less

  8. Heat up and failure of BWR upper internals during a severe accident

    DOE PAGES

    Robb, Kevin R.

    2017-02-21

    In boiling water reactors, the shroud dome, separators, and dryers above the core are made of approximately 100,000 kg of stainless steel. During a severe accident in which the coolant boils away and exothermic oxidation of zirconium occurs, gases (steam and hydrogen) are superheated in the core region and pass through the upper internals. In this scenario, the upper internals can also be heated by thermal radiation from the hot degrading core. Historically, models of the upper internals have been relatively simple in severe accident codes. The upper internals are typically modeled in MELCOR as two lumped volumes with simplifiedmore » heat transfer characteristics and no structural integrity considerations, and with limited ability to oxidize, melt, and relocate. The potential for and the subsequent impact of the upper internals to heat up, oxidize, fail, and relocate during a severe accident was investigated. A higher fidelity representation of the shroud dome, steam separators, and steam driers was developed in MELCOR v1.8.6 by extending the core region upwards. The MELCOR modeling effort entailed adding 45 additional core cells and control volumes, 98 flow paths, and numerous control functions. The model accounts for the mechanical loading and structural integrity, oxidation, melting, flow area blockage, and relocation of the various components. Consistent with a previous study, the results indicate that the upper internals can reach high temperatures during a severe accident sufficient to lose their structural integrity and relocate. Finally, the additional 100 metric tons of stainless steel debris influences the subsequent in-vessel and ex-vessel accident progression.« less

  9. A New Orthodontic Appliance with a Mini Screw for Upper Molar Distalization

    PubMed Central

    2016-01-01

    The aim of this study is to present a new upper molar distalization appliance called Cise distalizer designed as intraoral device supported with orthodontic mini screw for upper permanent molar distalization. The new appliance consists of eight main components. In order to understand the optimum force level, the appliance under static loading is tested by using strain gage measurement techniques. Results show that one of the open coils produces approximately 300 gr distalization force. Cise distalizer can provide totally 600 gr distalization force. This range of force level is enough for distalization of upper first and second molar teeth. PMID:27528796

  10. High mortality of Red Sea zooplankton under ambient solar radiation.

    PubMed

    Al-Aidaroos, Ali M; El-Sherbiny, Mohsen M O; Satheesh, Sathianeson; Mantha, Gopikrishna; Agustī, Susana; Carreja, Beatriz; Duarte, Carlos M

    2014-01-01

    High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%, 21.6%, 7.2%, 3.2% and 0% of solar radiation). The maximum mortality rates under ambient solar radiation levels averaged (±standard error of the mean, SEM) 18.4±5.8% h(-1), five-fold greater than the average mortality in the dark for the eight taxa tested. The UV-B radiation required for mortality rates to reach ½ of maximum values averaged (±SEM) 12±5.6 h(-1)% of incident UVB radiation, equivalent to the UV-B dose at 19.2±2.7 m depth in open coastal Red Sea waters. These results confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean.

  11. Radiation characteristics of a source in a thin substrate mounted over a dielectric medium

    NASA Technical Reports Server (NTRS)

    Engheta, Nader; Elachi, Charles

    1988-01-01

    The radiation pattern of a line source is calculated for the case in which the source is lying on the top or the bottom surface of a lossless dielectric substrate that is mounted on the top of semiinfinite dielectric medium. It is found that in both cases the pattern along the interfaces has a null; that the pattern in the upper semiinfinite medium has a single lobe; and that the pattern in the lower semiinfinite medium has many lobes, the number of which varies with the substrate thickness. In both cases, the power radiated into the lower medium is more than that radiated into the upper medium. Applications of this calculation to remote sensing, microstrip antenna technology, and antenna arrays are discussed.

  12. Ionizing Radiation: The issue of radiation quality

    NASA Astrophysics Data System (ADS)

    Prise, Kevin; Schettino, Giuseppe

    Types of Ionising radiations are differentiated from each other by fundamental characteristics of their energy deposition patterns when they interact with biological materials. At the level of the DNA these non-random patterns drive differences in the yields and distributions of DNA damage patterns and specifically the production of clustered damage or complex lesions. The complex radiation fields found in space bring significant challenges for developing a mechanistic understanding of radiation effects from the perspective of radiation quality as these consist of a diverse range of particle and energy types unique to the space environment. Linear energy transfer, energy deposited per unit track length in units of keV per micron, has long been used as a comparator for different types of radiation but has limitations in that it is an average value. Difference in primary core ionizations relative to secondary delta ray ranges vary significantly with particle mass and energy leading to complex interrelationships with damage production at the cellular level. At the cellular level a greater mechanistic understanding is necessary, linking energy deposition patterns to DNA damage patterns and cellular response, to build appropriate biophysical models that are predictive for different radiation qualities and mixed field exposures. Defined studies using monoenergetic beams delivered under controlled conditions are building quantitative data sets of both initial and long term changes in cells as a basis for a great mechanistic understanding of radiation quality effects of relevance to not only space exposures but clinical application of ion-beams.

  13. Furniture dimensions and postural overload for schoolchildren's head, upper back and upper limbs.

    PubMed

    Batistão, Mariana Vieira; Sentanin, Anna Cláudia; Moriguchi, Cristiane Shinohara; Hansson, Gert-Åke; Coury, Helenice Jane Cote Gil; de Oliveira Sato, Tatiana

    2012-01-01

    The aim of this study was to evaluate how the fixed furniture dimensions match with students' anthropometry and to describe head, upper back and upper limbs postures and movements. Evaluation was performed in 48 students from a Brazilian state school. Furniture dimensions were measured with metric tape, movements and postures by inclinometers (Logger Tecknologi, Åkarp, Sweden). Seat height was high for 21% and low for 36% of the students; seat length was short for 45% and long for 9% and table height was high for 53% and low for 28%. Regression analysis showed that seat/popliteal height quotient is explained by 90th percentile of upper back inclination (β=0.410) and 90th percentile of right upper arm elevation (β=-0.293). For seat/thigh length quotient the significant variables were 90th percentile of upper back velocity (β=-0.282) and 90th percentile of right upper arm elevation (β=0.410). This study showed a relationship between furniture mismatch and postural overload. When the seat height is low students increase upper back left inclination and right upper arm elevation; when the seat is short students decrease the upper back flexion velocity and increase right upper arm elevation.

  14. Radiation dose to the esophagus from breast cancer radiation therapy, 1943-1996: an international population-based study of 414 patients.

    PubMed

    Lamart, Stephanie; Stovall, Marilyn; Simon, Steven L; Smith, Susan A; Weathers, Rita E; Howell, Rebecca M; Curtis, Rochelle E; Aleman, Berthe M P; Travis, Lois; Kwon, Deukwoo; Morton, Lindsay M

    2013-07-15

    To provide dosimetric data for an epidemiologic study on the risk of second primary esophageal cancer among breast cancer survivors, by reconstructing the radiation dose incidentally delivered to the esophagus of 414 women treated with radiation therapy for breast cancer during 1943-1996 in North America and Europe. We abstracted the radiation therapy treatment parameters from each patient's radiation therapy record. Treatment fields included direct chest wall (37% of patients), medial and lateral tangentials (45%), supraclavicular (SCV, 64%), internal mammary (IM, 44%), SCV and IM together (16%), axillary (52%), and breast/chest wall boosts (7%). The beam types used were (60)Co (45% of fields), orthovoltage (33%), megavoltage photons (11%), and electrons (10%). The population median prescribed dose to the target volume ranged from 21 Gy to 40 Gy. We reconstructed the doses over the length of the esophagus using abstracted patient data, water phantom measurements, and a computational model of the human body. Fields that treated the SCV and/or IM lymph nodes were used for 85% of the patients and delivered the highest doses within 3 regions of the esophagus: cervical (population median 38 Gy), upper thoracic (32 Gy), and middle thoracic (25 Gy). Other fields (direct chest wall, tangential, and axillary) contributed substantially lower doses (approximately 2 Gy). The cervical to middle thoracic esophagus received the highest dose because of its close proximity to the SCV and IM fields and less overlying tissue in that part of the chest. The location of the SCV field border relative to the midline was one of the most important determinants of the dose to the esophagus. Breast cancer patients in this study received relatively high incidental radiation therapy doses to the esophagus when the SCV and/or IM lymph nodes were treated, whereas direct chest wall, tangentials, and axillary fields contributed lower doses. Published by Elsevier Inc.

  15. Raman micro-spectroscopy analysis of human lens epithelial cells exposed to a low-dose-range of ionizing radiation.

    PubMed

    Allen, Christian Harry; Kumar, Achint; Qutob, Sami; Nyiri, Balazs; Chauhan, Vinita; Murugkar, Sangeeta

    2018-01-09

    Recent findings in populations exposed to ionizing radiation (IR) indicate dose-related lens opacification occurs at much lower doses (<2 Gy) than indicated in radiation protection guidelines. As a result, research efforts are now being directed towards identifying early predictors of lens degeneration resulting in cataractogenesis. In this study, Raman micro-spectroscopy was used to investigate the effects of varying doses of radiation, ranging from 0.01 Gy to 5 Gy, on human lens epithelial (HLE) cells which were chemically fixed 24 h post-irradiation. Raman spectra were acquired from the nucleus and cytoplasm of the HLE cells. Spectra were collected from points in a 3  ×  3 grid pattern and then averaged. The raw spectra were preprocessed and principal component analysis followed by linear discriminant analysis was used to discriminate between dose and control for 0.25, 0.5, 2, and 5 Gy. Using leave-one-out cross-validation accuracies of greater than 74% were attained for each dose/control combination. The ultra-low doses 0.01 and 0.05 Gy were included in an analysis of band intensities for Raman bands found to be significant in the linear discrimination, and an induced repair model survival curve was fit to a band-difference-ratio plot of this data, suggesting HLE cells undergo a nonlinear response to low-doses of IR. A survival curve was also fit to clonogenic assay data done on the irradiated HLE cells, showing a similar nonlinear response.

  16. Raman micro-spectroscopy analysis of human lens epithelial cells exposed to a low-dose-range of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Allen, Christian Harry; Kumar, Achint; Qutob, Sami; Nyiri, Balazs; Chauhan, Vinita; Murugkar, Sangeeta

    2018-01-01

    Recent findings in populations exposed to ionizing radiation (IR) indicate dose-related lens opacification occurs at much lower doses (<2 Gy) than indicated in radiation protection guidelines. As a result, research efforts are now being directed towards identifying early predictors of lens degeneration resulting in cataractogenesis. In this study, Raman micro-spectroscopy was used to investigate the effects of varying doses of radiation, ranging from 0.01 Gy to 5 Gy, on human lens epithelial (HLE) cells which were chemically fixed 24 h post-irradiation. Raman spectra were acquired from the nucleus and cytoplasm of the HLE cells. Spectra were collected from points in a 3  ×  3 grid pattern and then averaged. The raw spectra were preprocessed and principal component analysis followed by linear discriminant analysis was used to discriminate between dose and control for 0.25, 0.5, 2, and 5 Gy. Using leave-one-out cross-validation accuracies of greater than 74% were attained for each dose/control combination. The ultra-low doses 0.01 and 0.05 Gy were included in an analysis of band intensities for Raman bands found to be significant in the linear discrimination, and an induced repair model survival curve was fit to a band-difference-ratio plot of this data, suggesting HLE cells undergo a nonlinear response to low-doses of IR. A survival curve was also fit to clonogenic assay data done on the irradiated HLE cells, showing a similar nonlinear response.

  17. The dynamic range of LZ

    NASA Astrophysics Data System (ADS)

    Yin, J.

    2016-02-01

    The electronics of the LZ experiment, the 7-tonne dark matter detector to be installed at the Sanford Underground Research Facility (SURF), is designed to permit studies of physics where the energies deposited range from 1 keV of nuclear-recoil energy up to 3,000 keV of electron-recoil energy. The system is designed to provide a 70% efficiency for events that produce three photoelectrons in the photomultiplier tubes (PMTs). This corresponds approximately to the lowest energy threshold achievable in multi-tonne time-projection chambers, and drives the noise specifications for the front end. The upper limit of the LZ dynamic range is defined to accommodate the electroluminescence (S2) signals. The low-energy channels of the LZ amplifiers provide the dynamic range required for the tritium and krypton calibrations. The high-energy channels provide the dynamic range required to measure the activated Xe lines.

  18. Applying the technique of volume-modulated arc radiotherapy to upper esophageal carcinoma.

    PubMed

    Ma, Pan; Wang, Xiaozhen; Xu, Yingjie; Dai, Jianrong; Wang, Luhua

    2014-05-08

    This study aims to evaluate the possibility of using the technique of volume-modulated arc therapy (VMAT) to combine the advantages of simplified intensity-modulated radiation therapy (sIMRT) with that of regular intensity-modulated radiation therapy (IMRT) in upper esophageal cancer. Ten patients with upper esophageal carcinoma were randomly chosen in this retrospective study. sIMRT, IMRT, and VMAT plans were generated to deliver 60 Gy in 30 fractions to the planning target volume (PTV). For each patient, with the same clinical requirements (target dose prescription, and dose/dose-volume constraints to organs at risk (OARs)), three plans were designed for sIMRT (five equispaced coplanar beams), IMRT (seven equispaced coplanar beams), and VMAT (two complete arcs). Comparisons were performed for dosimetric parameters of PTV and of OARs (lungs, spinal cord PRV, heart and normal tissue (NT)). All the plans were delivered to a phantom to evaluate the treatment time. The Wilcoxon matched-pairs, signed-rank test was used for intragroup comparison. For all patients, compared to sIMRT plans, VMAT plans statistically provide: a) significant improvement in HI and CI for PTV; b) significant decrease in delivery time, lung V20, MLD, heart V30 and spinal cord PRV D1cc; c) significant increase in NT V5; and d) no significant reduction in lung V5, V10, and heart MD. For all patients, compared to IMRT plans, VMAT plans statistically provide: a) significant improvement in CI for PTV; b) significant decrease in delivery time, lung V20, MLD, NT and spinal cord PRV D1cc; c) significant increase in NT V5; and d) no significant reduction in HI for PTV, lung V5, V10, heart V30 and heart MD. For patients with upper esophageal carcinoma, using VMAT significantly reduces the delivery time and the dose to the lungs compared with IMRT, and consequently saves as much treatment time as sIMRT. Considering those significant advantages, compared to sIMRT and IMRT, VMAT is the first choice of

  19. Oxygen dependence of upper thermal limits in fishes.

    PubMed

    Ern, Rasmus; Norin, Tommy; Gamperl, A Kurt; Esbaugh, Andrew J

    2016-11-01

    Temperature-induced limitations on the capacity of the cardiorespiratory system to transport oxygen from the environment to the tissues, manifested as a reduced aerobic scope (maximum minus standard metabolic rate), have been proposed as the principal determinant of the upper thermal limits of fishes and other water-breathing ectotherms. Consequently, the upper thermal niche boundaries of these animals are expected to be highly sensitive to aquatic hypoxia and other environmental stressors that constrain their cardiorespiratory performance. However, the generality of this dogma has recently been questioned, as some species have been shown to maintain aerobic scope at thermal extremes. Here, we experimentally tested whether reduced oxygen availability due to aquatic hypoxia would decrease the upper thermal limits (i.e. the critical thermal maximum, CT max ) of the estuarine red drum (Sciaenops ocellatus) and the marine lumpfish (Cyclopterus lumpus). In both species, CT max was independent of oxygen availability over a wide range of oxygen levels despite substantial (>72%) reductions in aerobic scope. These data show that the upper thermal limits of water-breathing ectotherms are not always linked to the capacity for oxygen transport. Consequently, we propose a novel metric for classifying the oxygen dependence of thermal tolerance; the oxygen limit for thermal tolerance (P CT max ), which is the water oxygen tension (Pw O 2 ) where an organism's CT max starts to decline. We suggest that this metric can be used for assessing the oxygen sensitivity of upper thermal limits in water-breathing ectotherms, and the susceptibility of their upper thermal niche boundaries to environmental hypoxia. © 2016. Published by The Company of Biologists Ltd.

  20. Relationship between fish size and upper thermal tolerance

    USGS Publications Warehouse

    Recsetar, Matthew S.; Zeigler, Matthew P.; Ward, David L.; Bonar, Scott A.; Caldwell, Colleen A.

    2012-01-01

    Using critical thermal maximum (CTMax) tests, we examined the relationship between upper temperature tolerances and fish size (fry-adult or subadult lengths) of rainbow trout Oncorhynchus mykiss (41-200-mm TL), Apache trout O. gilae apache (40-220-mm TL), largemouth bass Micropterus salmoides (72-266-mm TL), Nile tilapia Oreochromis niloticus (35-206-mm TL), channel catfish Ictalurus punctatus (62-264 mm-TL), and Rio Grande cutthroat trout O. clarkii virginalis (36-181-mm TL). Rainbow trout and Apache trout were acclimated at 18°C, Rio Grande cutthroat trout were acclimated at 14°C, and Nile tilapia, largemouth bass, and channel catfish were acclimated at 25°C, all for 14 d. Critical thermal maximum temperatures were estimated and data were analyzed using simple linear regression. There was no significant relationship (P > 0.05) between thermal tolerance and length for Nile tilapia (P = 0.33), channel catfish (P = 0.55), rainbow trout (P = 0.76), or largemouth bass (P = 0.93) for the length ranges we tested. There was a significant negative relationship between thermal tolerance and length for Rio Grande cutthroat trout (R2 = 0.412, P 2 = 0.1374, P = 0.028); however, the difference was less than 1°C across all lengths of Apache trout tested and about 1.3°C across all lengths of Rio Grande cutthroat trout tested. Because there was either no or at most a slight relationship between upper thermal tolerance and size, management and research decisions based on upper thermal tolerance should be similar for the range of sizes within each species we tested. However, the different sizes we tested only encompassed life stages ranging from fry to adult/subadult, so thermal tolerance of eggs, alevins, and larger adults should also be considered before making management decisions affecting an entire species.

  1. Flood of June 8-9, 2008, Upper Iowa River, Northeast Iowa

    USGS Publications Warehouse

    Fischer, Edward E.; Eash, David A.

    2010-01-01

    Major flooding occurred June 8-9, 2008, in the Upper Iowa River Basin in northeast Iowa following severe thunderstorm activity over the region. About 7 inches of rain were recorded for the 48-hour period ending 4 p.m., June 8, at Decorah, Iowa; more than 7 inches of rain were recorded for the 48-hour period ending 7 a.m., June 8, at Dorchester, Iowa, about 17 miles northeast of Decorah. The maximum peak discharge measured in the Upper Iowa River was 34,100 cubic feet per second at streamgage 05387500 Upper Iowa River at Decorah, Iowa. This discharge is the largest discharge recorded in the Upper Iowa River Basin since streamgaging operations began in the basin in 1914. The flood-probability range of the peak discharge is 0.2 to 1 percent. High-water marks were measured at 15 locations along the Upper Iowa River between State Highway 26 near the mouth at the Mississippi River and U.S. Highway 63 at Chester, Iowa, a distance of 124 river miles. The high-water marks were used to develop a flood profile.

  2. Oncoplastic Surgery for Upper/Upper Inner Quadrant Breast Cancer.

    PubMed

    Lin, Joseph; Chen, Dar-Ren; Wang, Yu-Fen; Lai, Hung-Wen

    2016-01-01

    Tumors located in the upper/upper inner quadrant of the breast warrant more attention. A small lesion relative to the size of breast in this location may be resolved by performing a level I oncoplastic technique. However, a wide excision may significantly reduce the overall quality of the breast shape by distorting the visible breast line. From June 2012 to April 2015, 36 patients with breast cancer located in the upper/upper inner quadrant underwent breast-conservation surgery with matrix rotation mammoplasty. According to the size and location of the tumor relative to the nipple-areola complex, 11 patients underwent matrix rotation with periareolar de-epithelialization (donut group) and the other 25 underwent matrix rotation only (non-donut group). The cosmetic results were self-assessed by questionnaires. The average weights of the excised breast lumps in the donut and non-donut groups were 104.1 and 84.5 g, respectively. During the 3-year follow-up period, local recurrence was observed in one case and was managed with nipple-sparing mastectomy followed by breast reconstruction with prosthetic implants. In total, 31 patients (88.6%) ranked their postoperative result as either acceptable or satisfactory. The treated breasts were also self-evaluated by 27 patients (77.1%) to be nearly identical to or just slightly different from the untreated side. Matrix rotation is an easy breast-preserving technique for treating breast cancer located in the upper/upper inner quadrant of the breast that requires a relatively wide excision. With this technique, a larger breast tumor could be removed without compromising the breast appearance.

  3. Competition between Langmuir and upper-hybrid turbulence in a high-frequency-pumped ionosphere.

    PubMed

    Thidé, B; Sergeev, E N; Grach, S M; Leyser, T B; Carozzi, T D

    2005-12-16

    We show how the secondary escaping radiation, also known as stimulated electromagnetic emission (SEE), from the ionosphere irradiated by a high-intensity radio beam, can be used to study both reflection altitude ponderomotive parametric instabilities and upper-hybrid altitude thermal parametric instabilities. This has allowed us to observe the transfer of energy from smaller to higher sideband frequency offsets and to identify a new transient SEE feature.

  4. NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002-2010

    NASA Astrophysics Data System (ADS)

    Sinnhuber, Miriam; Berger, Uwe; Funke, Bernd; Nieder, Holger; Reddmann, Thomas; Stiller, Gabriele; Versick, Stefan; von Clarmann, Thomas; Maik Wissing, Jan

    2018-01-01

    winter, ranging from 10-50 % during solar maximum to 2-10 % during solar minimum. Ozone loss continues throughout polar summer after strong solar proton events in the Southern Hemisphere and after large sudden stratospheric warmings in the Northern Hemisphere. During mid-winter, the ozone loss causes a reduction of the infrared radiative cooling, i.e., a positive change of the net radiative heating (effective warming), in agreement with analyses of geomagnetic forcing in stratospheric temperatures which show a warming in the late winter upper stratosphere. In late winter and spring, the sign of the net radiative heating change turns to negative (effective cooling). This spring-time cooling lasts well into summer and continues until the following autumn after large solar proton events in the Southern Hemisphere, and after sudden stratospheric warmings in the Northern Hemisphere.

  5. Upper D region chemical kinetic modeling of LORE relaxation times

    NASA Astrophysics Data System (ADS)

    Gordillo-Vázquez, F. J.; Luque, A.; Haldoupis, C.

    2016-04-01

    The recovery times of upper D region electron density elevations, caused by lightning-induced electromagnetic pulses (EMP), are modeled. The work was motivated from the need to understand a recently identified narrowband VLF perturbation named LOREs, an acronym for LOng Recovery Early VLF events. LOREs associate with long-living electron density perturbations in the upper D region ionosphere; they are generated by strong EMP radiated from large peak current intensities of ±CG (cloud to ground) lightning discharges, known also to be capable of producing elves. Relaxation model scenarios are considered first for a weak enhancement in electron density and then for a much stronger one caused by an intense lightning EMP acting as an impulsive ionization source. The full nonequilibrium kinetic modeling of the perturbed mesosphere in the 76 to 92 km range during LORE-occurring conditions predicts that the electron density relaxation time is controlled by electron attachment at lower altitudes, whereas above 79 km attachment is balanced totally by associative electron detachment so that electron loss at these higher altitudes is controlled mainly by electron recombination with hydrated positive clusters H+(H2O)n and secondarily by dissociative recombination with NO+ ions, a process which gradually dominates at altitudes >88 km. The calculated recovery times agree fairly well with LORE observations. In addition, a simplified (quasi-analytic) model build for the key charged species and chemical reactions is applied, which arrives at similar results with those of the full kinetic model. Finally, the modeled recovery estimates for lower altitudes, that is <79 km, are in good agreement with the observed short recovery times of typical early VLF events, which are known to be associated with sprites.

  6. Shear wave velocity and attenuation in the upper layer of ocean bottoms from long-range acoustic field measurements.

    PubMed

    Zhou, Ji-Xun; Zhang, Xue-Zhen

    2012-12-01

    Several physics-based seabed geoacoustic models (including the Biot theory) predict that compressional wave attenuation α(2) in sandy marine sediments approximately follows quadratic frequency dependence at low frequencies, i.e., α(2)≈kf(n) (dB/m), n=2. A recent paper on broadband geoacoustic inversions from low frequency (LF) field measurements, made at 20 locations around the world, has indicated that the frequency exponent of the effective sound attenuation n≈1.80 in a frequency band of 50-1000 Hz [Zhou et al., J. Acoust. Soc. Am. 125, 2847-2866 (2009)]. Carey and Pierce hypothesize that the discrepancy is due to the inversion models' neglect of shear wave effects [J. Acoust. Soc. Am. 124, EL271-EL277 (2008)]. The broadband geoacoustic inversions assume that the seabottom is an equivalent fluid and sound waves interact with the bottom at small grazing angles. The shear wave velocity and attenuation in the upper layer of ocean bottoms are estimated from the LF field-inverted effective bottom attenuations using a near-grazing bottom reflection expression for the equivalent fluid model, derived by Zhang and Tindle [J. Acoust. Soc. Am. 98, 3391-3396 (1995)]. The resultant shear wave velocity and attenuation are consistent with the SAX99 measurement at 25 Hz and 1000 Hz. The results are helpful for the analysis of shear wave effects on long-range sound propagation in shallow water.

  7. Characterization of Upper Eyelid Tarsus and Lid Wiper Dimensions.

    PubMed

    Navascues-Cornago, Maria; Maldonado-Codina, Carole; Gupta, Ruchi; Morgan, Philip B

    2016-09-01

    To measure various dimensions of the upper tarsal plate and the area of upper lid wiper staining. The repeatability of the method of measurement was investigated. Thirty-five healthy non-contact lens wearers were enrolled. The following parameters were measured from digital images of the upper eyelid captured with a slitlamp camera: length, height, and total area of the tarsal plate and area of lid wiper staining (lissamine green). Measurements were performed in a randomized and masked fashion on two separate occasions by the same investigator using ImageJ (National Institutes of Health). Coefficients of repeatability (COR) were calculated. The dimensions (mean±SD) of the tarsal plate were 20.6±1.9 mm length, 7.9±0.8 mm height, and 103.3±18.8 mm total area. The area of lid wiper staining was 2.7±2.0 mm. No association was found between tarsal dimensions and lid wiper staining (all P>0.05). Image analysis COR values were 0.6 mm tarsal length, 0.1 mm tarsal height, 1.2 mm tarsal area, and 0.4 mm lid wiper staining. There was no significant difference between repeated measurements for any parameter (all P>0.05). Limits of agreement were narrow for all parameters, indicating good agreement between repeated measurements. This work has demonstrated that there is a wide range in the dimensions of the upper tarsal plate in an urban UK population. No association was found between the upper tarsal dimensions and lid wiper staining. ImageJ was shown to be a repeatable method to measure the dimensions of the upper tarsal plate and upper lid wiper staining.

  8. SU-E-J-146: A Research of PET-CT SUV Range for the Online Dose Verification in Carbon Ion Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, L; Hu, W; Moyers, M

    2015-06-15

    Purpose: Positron-emitting isotope distributions can be used for the image fusion of the carbon ion planning CT and online target verification PETCT, after radiation in the same decay period,the relationship between the same target volume and the SUV value of different every single fraction dose can be found,then the range of SUV for the radiation target could be decided.So this online range also can provide reference for the correlation and consistency in planning target dose verification and evaluation for the clinical trial. Methods: The Rando head phantom can be used as real body,the 10cc cube volume target contouring is done,beammore » ISO Center depth is 7.6cm and the 90 degree fixed carbon ion beams should be delivered in single fraction effective dose of 2.5GyE,5GyE and 8GyE.After irradiation,390 seconds later the 30 minutes PET-CT scanning is performed,parameters are set to 50Kg virtual weight,0.05mCi activity.MIM Maestro is used for the image processing and fusion,five 16mm diameter SUV spheres have been chosen in the different direction in the target.The average SUV in target for different fraction dose can be found by software. Results: For 10cc volume target,390 seconds decay period,the Single fraction effective dose equal to 2.5Gy,Ethe SUV mean value is 3.42,the relative range is 1.72 to 6.83;Equal to 5GyE,SUV mean value is 9.946,the relative range is 7.016 to 12.54;Equal or above to 8GyE,SUV mean value is 20.496,the relative range is 11.16 to 34.73. Conclusion: Making an evaluation for accuracy of the dose distribution using the SUV range which is from the planning CT with after treatment online PET-CT fusion for the normal single fraction carbon ion treatment is available.Even to the plan which single fraction dose is above 2GyE,in the condition of other parameters all the same,the SUV range is linearly dependent with single fraction dose,so this method also can be used in the hyper-fraction treatment plan.« less

  9. Status and risk of extinction for westslope cutthroat trout in the Upper River Basin, Montana

    Treesearch

    Bradley B. Shepard; Brian Sanborn; Linda Ulmer; Danny C. Lee

    1997-01-01

    Westslope cutthroat trout Oncorhynchus clarki lewisi now occupy less than 5% of the subspecies' historical range within the upper Missouri River drainage in Montana. We assessed the risk of extinction for 144 known populations inhabiting streams within federally managed lands in the upper Missouri River basin using a Bayesian...

  10. The influence of scapular depression on upper limb neurodynamic test responses

    PubMed Central

    Legakis, Allison; Boyd, Benjamin S

    2012-01-01

    Objectives Upper limb neurodynamic testing (ULNT) can be used clinically to assist in identifying neural tissue involvement in patients with upper quarter pain and dysfunction. Consideration for scapular positioning is a crucial component of ULNT standardization, as variations in positioning may dramatically impact sensory and motor responses. This study aimed to determine if there was a meaningful difference in test outcomes when the ULNT was performed in alternative scapular positions. Methods This cross-sectional study included 40 asymptomatic individuals. Repeated ULNT testing was performed on the dominant limb with the scapula blocked in neutral (ULNTb) and in scapular depression (ULNTd). Sensory responses, muscle activity, and range of motion outcomes were compared between the two test variations. Results Pre-positioning in scapular depression (ULNTd) led to reduced elbow extension range of motion, provoked greater upper trapezius muscle activity and an earlier onset and broader area of sensory responses compared to ULNTb. Discussion During ULNTb, the limbs were taken further into range and elicited reduced muscle activation and more localized sensory response providing a less vigorous version of the test. This study demonstrates that scapular positioning has a meaningful impact on ULNT test outcomes in healthy, asymptomatic individuals. The ULNTd can be considered a more vigorous version that may be appropriate when the cervical motions commonly utilized for structural differentiation are limited or contraindicated. PMID:23633886

  11. RF characteristics of the hoop column antenna for the land mobile satellite system mission

    NASA Astrophysics Data System (ADS)

    Foldes, P.

    1984-11-01

    A communication system using a satellite with a 118 meter diameter quad aperture antenna to provide telephone service to mobile users remotely located from the large metropolitan areas where the telephone companies are presently implementing their cellular system is described. In this system, which is compatible with the cellular system, the mobile user communicates with the satellite at UHF frequencies. The satellite connects him at S-Band, to the existing telephone network via a base station. The results of the RF definition work for the quad aperture antenna are presented. The elements of the study requirements for the LMSS are summarized, followed by a beam topology plan which satisfies the mission requirements with a practical and realiable configuration. The geometry of the UHF antenna and its radiation characteristics are defined. The various feed alternatives, and the S-band aperture are described.

  12. RF characteristics of the hoop column antenna for the land mobile satellite system mission

    NASA Technical Reports Server (NTRS)

    Foldes, P.

    1984-01-01

    A communication system using a satellite with a 118 meter diameter quad aperture antenna to provide telephone service to mobile users remotely located from the large metropolitan areas where the telephone companies are presently implementing their cellular system is described. In this system, which is compatible with the cellular system, the mobile user communicates with the satellite at UHF frequencies. The satellite connects him at S-Band, to the existing telephone network via a base station. The results of the RF definition work for the quad aperture antenna are presented. The elements of the study requirements for the LMSS are summarized, followed by a beam topology plan which satisfies the mission requirements with a practical and realiable configuration. The geometry of the UHF antenna and its radiation characteristics are defined. The various feed alternatives, and the S-band aperture are described.

  13. On the Climate Impacts of Upper Tropospheric and Lower Stratospheric Ozone

    NASA Astrophysics Data System (ADS)

    Xia, Yan; Huang, Yi; Hu, Yongyun

    2018-01-01

    The global warming simulations of the general circulation models (GCMs) are generally performed with different ozone prescriptions. We find that the differences in ozone distribution, especially in the upper tropospheric and lower stratospheric (UTLS) region, account for important model discrepancies shown in the ozone-only historical experiment of the Coupled Model Intercomparison Project Phase 5 (CMIP5). These discrepancies include global high cloud fraction, stratospheric temperature, and stratospheric water vapor. Through a set of experiments conducted by an atmospheric GCM with contrasting UTLS ozone prescriptions, we verify that UTLS ozone not only directly radiatively heats the UTLS region and cools the upper parts of the stratosphere but also strongly influences the high clouds due to its impact on relative humidity and static stability in the UTLS region and the stratospheric water vapor due to its impact on the tropical tropopause temperature. These consequences strongly affect the global mean effective radiative forcing of ozone, as noted in previous studies. Our findings suggest that special attention should be paid to the UTLS ozone when evaluating the climate effects of ozone depletion in the 20th century and recovery in the 21st century. UTLS ozone difference may also be important for understanding the intermodel discrepancy in the climate projections of the CMIP6 GCMs in which either prescribed or interactive ozone is used.

  14. Social Inequalities in the Allocation of Learning Support in a Swedish Upper Secondary School

    ERIC Educational Resources Information Center

    Johansson, Monica

    2017-01-01

    The upper secondary school is in Sweden practically mandatory even though attendance is voluntary and today almost all students in Sweden continue their studies at upper secondary school. But not all of them leave this school with a complete certificate of schooling as a result of experiencing a range of difficulties which may be due to cognitive,…

  15. Reliability of the mangled extremity severity score in combat-related upper and lower extremity injuries.

    PubMed

    Ege, Tolga; Unlu, Aytekin; Tas, Huseyin; Bek, Dogan; Turkan, Selim; Cetinkaya, Aytac

    2015-01-01

    Decision of limb salvage or amputation is generally aided with several trauma scoring systems such as the mangled extremity severity score (MESS). However, the reliability of the injury scores in the settling of open fractures due to explosives and missiles is challenging. Mortality and morbidity of the extremity trauma due to firearms are generally associated with time delay in revascularization, injury mechanism, anatomy of the injured site, associated injuries, age and the environmental circumstance. The purpose of the retrospective study was to evaluate the extent of extremity injuries due to ballistic missiles and to detect the reliability of mangled extremity severity score (MESS) in both upper and lower extremities. Between 2004 and 2014, 139 Gustillo Anderson Type III open fractures of both the upper and lower extremities were enrolled in the study. Data for patient age, fire arm type, transporting time from the field to the hospital (and the method), injury severity scores, MESS scores, fracture types, amputation levels, bone fixation methods and postoperative infections and complications retrieved from the two level-2 trauma center's data base. Sensitivity, specificity, positive and negative predictive values of the MESS were calculated to detect the ability in deciding amputation in the mangled limb. Amputation was performed in 39 extremities and limb salvage attempted in 100 extremities. The mean followup time was 14.6 months (range 6-32 months). In the amputated group, the mean MESS scores for upper and lower extremity were 8.8 (range 6-11) and 9.24 (range 6-11), respectively. In the limb salvage group, the mean MESS scores for upper and lower extremities were 5.29 (range 4-7) and 5.19 (range 3-8), respectively. Sensitivity of MESS in upper and lower extremities were calculated as 80% and 79.4% and positive predictive values detected as 55.55% and 83.3%, respectively. Specificity of MESS score for upper and lower extremities was 84% and 86.6%; negative

  16. Development of novel wireless sensor for food quality detection

    NASA Astrophysics Data System (ADS)

    Son Nguyen, Dat; Ngan Le, Nguyen; Phat Lam, Tan; Fribourg-Blanc, Eric; Chien Dang, Mau; Tedjini, Smail

    2015-12-01

    In this paper we present a wireless sensor for the monitoring of food quality. We integrate sensing capability into ultrahigh frequency (UHF) radio-frequency identification (RFID) tags through the relationship between the physical read-range and permittivity of the object we label with the RFID tags. Using the known variations of food permittivity as a function of time, we can detect the contamination time at which a food product becomes unacceptable for consumption based on the measurement of read-range with the as-designed sensing tags. This low-cost UHF RFID passive sensor was designed and experimentally tested on beef, pork, and cheese with the same storage conditions as in supermarkets. The agreement between the experimental and simulation results show the potential of this technique for practical application in food-quality tracking.

  17. Effect of radar frequency on the detection of shaped (low RCS) targets

    NASA Astrophysics Data System (ADS)

    Moraitis, D.; Alland, S.

    The use of shaping to reduce the radar cross-section (RCS) of aircraft and missiles can result in the RCS varying significantly with radar operating frequency. This RCS sensitivity to frequency should be considered when selecting radar frequency and should be accounted for when evaluating radar performance. A detection range increase for shaped (low RCS) targets of a factor of two or greater can be realized for lower frequency radar (e.g., UHF-Band or L-Band) when compared to higher frequency radar (C-Band or X-Band). For low flying (sea skimming) targets, the RCS variation with frequency for shaped (low RCS) targets neutralizes the advantage that higher radar frequencies realize in multipath propagation resulting in approximately the same detection range across the radar bands from UHF to X-Band.

  18. Ionizing radiation detector

    DOEpatents

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  19. Upper limb module in non-ambulant patients with spinal muscular atrophy: 12 month changes.

    PubMed

    Sivo, Serena; Mazzone, Elena; Antonaci, Laura; De Sanctis, Roberto; Fanelli, Lavinia; Palermo, Concetta; Montes, Jacqueline; Pane, Marika; Mercuri, Eugenio

    2015-03-01

    Recent studies have suggested that in non-ambulant patients affected by spinal muscular atrophy the Upper Limb Module can increase the range of activities assessed by the Hammersmith Functional Motor Scale Expanded. The aim of this study was to establish 12-month changes in the Upper Limb Module in a cohort of non-ambulant spinal muscular atrophy patients and their correlation with changes on the Hammersmith Functional Motor Scale Expanded. The Upper Limb Module scores ranged between 0 and 17 (mean 10.23, SD 4.81) at baseline and between 1 and 17 at 12 months (mean 10.27, SD 4.74). The Hammersmith Functional Motor Scale Expanded scores ranged between 0 and 34 (mean 12.43, SD 9.13) at baseline and between 0 and 34 at 12 months (mean 12.08, SD 9.21). The correlation betweeen the two scales was 0.65 at baseline and 0.72 on the 12 month changes. Our results confirm that the Upper Limb Module can capture functional changes in non-ambulant spinal muscular atrophy patients not otherwise captured by the other scale and that the combination of the two measures allows to capture changes in different subgroups of patients in whom baseline scores and functional changes may be influenced by several variables such as age. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Detailed observations of the source of terrestrial narrowband electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.

    1982-01-01

    Detailed observations are presented of a region near the terrestrial plasmapause where narrowband electromagnetic radiation (previously called escaping nonthermal continuum radiation) is being generated. These observations show a direct correspondence between the narrowband radio emissions and electron cyclotron harmonic waves near the upper hybrid resonance frequency. In addition, electromagnetic radiation propagating in the Z-mode is observed in the source region which provides an extremely accurate determination of the electron plasma frequency and, hence, density profile of the source region. The data strongly suggest that electrostatic waves and not Cerenkov radiation are the source of the banded radio emissions and define the coupling which must be described by any viable theory.

  1. Characterizing Total Radiation Belt Electron Content Using Van Allen Probes Data

    NASA Astrophysics Data System (ADS)

    Huang, C. L.; Spence, H. E.; Boyd, A. J.; Jordan, A.; Paulson, K. W.; Zhang, J.; Blake, J. B.; Kletzing, C.

    2014-12-01

    The comprehensive particle and wave measurements of the Van Allen Probes enable us to monitor the entire radiation belt near the equator from L-shells of 2.5 to 6. Using the particle measurements, we create an improved, high-level quantity representing the entire outer belt. This quantity, the total radiation belt electron content (TRBEC), is the half-orbit sum of outer belt electrons over the radiation belt energy ranges of importance and all pitch angles using data from RBSP-ECT instrument on board both spacecraft. The goal is to characterize statistically the dynamics of the entire radiation belt by comparing TRBEC with solar wind parameters, magnetospheric waves, and electron seed population. When comparing TRBEC with solar wind velocity, our result shows a triangle-distribution similar to that which Reeves et al. (2011) found using geosynchronous electron flux. We also correlate TRBEC with other solar wind parameters to identify which solar wind conditions effectively enhance or deplete radiation belt electrons. In addition, plasma waves in the inner magnetosphere, via wave-particle interaction, are key elements affecting the dynamics of the radiation belt. Therefore, we compare TRBEC with integrated EMIC and chorus (upper and lower bands) wave power calculated from EMFISIS wave measurements to determine the relative importance between each wave-particle process. Finally, we demonstrate the ~100 keV seed population's characteristics that correspond to the MeV population enhancement. While the gross features of the two populations are similar, the MeV population's dynamics lag behind those of the seed population by 5 to 60 hours, which implies the acceleration or loss processes vary by event.

  2. Peeling linear inversion of upper mantle velocity structure with receiver functions

    NASA Astrophysics Data System (ADS)

    Shen, Xuzhang; Zhou, Huilan

    2012-02-01

    A peeling linear inversion method is presented to study the upper mantle (from Moho to 800 km depth) velocity structures with receiver functions. The influences of the crustal and upper mantle velocity ratio error on the inversion results are analyzed, and three valid measures are taken for its reduction. This method is tested with the IASP91 and the PREM models, and the upper mantle structures beneath the stations GTA, LZH, and AXX in northwestern China are then inverted. The results indicate that this inversion method is feasible to quantify upper mantle discontinuities, besides the discontinuities between 3 h M ( h M denotes the depth of Moho) and 5 h M due to the interference of multiples from Moho. Smoothing is used to overcome possible false discontinuities from the multiples and ensure the stability of the inversion results, but the detailed information on the depth range between 3 h M and 5 h M is sacrificed.

  3. Upper Face: Clinical Anatomy and Regional Approaches with Injectable Fillers.

    PubMed

    Sykes, Jonathan M; Cotofana, Sebastian; Trevidic, Patrick; Solish, Nowell; Carruthers, Jean; Carruthers, Alastair; Moradi, Amir; Swift, Arthur; Massry, Guy G; Lambros, Val; Remington, B Kent

    2015-11-01

    The use of facial fillers has been rapidly increased as the range of injectable products and indications continues to expand. Complications may arise from improper placement or technique. This article highlights the importance of anatomic knowledge when using injectable fillers in the face. A detailed review of the clinical anatomy of the upper face is performed. Regional approaches are described using the applied anatomy to efficiently and safely augment the different subunits of the upper face. Key aspects of safe and successful injection of fillers in the upper face include a thorough knowledge of the location of fat compartments and neurovascular structures. Awareness of these structures enables the practitioner to maximize injections, while avoiding damage to important nerves and vessels. A detailed knowledge of the anatomy and properties of the product is paramount to maximize the efficacy while minimizing the risk of complications.

  4. Basal cell carcinoma of the eyelids and solar ultraviolet radiation exposure

    PubMed Central

    Lindgren, G.; Diffey, B.; Larko, O.

    1998-01-01

    AIMS—To compare the distribution of eyelid basal cell carcinoma (BCC) with the relative ultraviolet radiation (UVR) exposure to different sites on the eyelids.
METHODS—The location of BCC on the eyelids was allocated to one of seven regions. The UVR exposure was recorded with a polymer film attached to the eyelids at seven sites in a manikin and in human subjects.
RESULTS—Localisation of the 329 tumours was mainly on the lower eyelids (225 tumours), and the medial canthal regions (87 tumours). There was no association between UVR doses at the seven sites of the eyelids and the location of BCCs. The UVR exposure was similar on the upper and lower eyelids, while the number of tumours on the lower eyelids outnumbered the upper lids by a factor of 13 (17 upper, 225 lower)
CONCLUSION—UVR exposure only partially explains the aetiology of periorbital BCC.

 Keywords: polysulphone film; basal cell carcinoma; ultraviolet radiation; eyelid PMID:9930273

  5. Is Radiation Dangerous?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    Radiation is all around us, ranging from the non-dangerous to the lethal. In this video, Fermilab’s Dr. Don Lincoln talks about radiation and gives you the real deal on whether it is dangerous or not.

  6. Uncertainty in assessment of radiation-induced diffusion index changes in individual patients

    NASA Astrophysics Data System (ADS)

    Nazem-Zadeh, Mohammad-Reza; Chapman, Christopher H.; Lawrence, Theodore S.; Tsien, Christina I.; Cao, Yue

    2013-06-01

    The purpose of this study is to evaluate repeatability coefficients of diffusion tensor indices to assess whether longitudinal changes in diffusion indices were true changes beyond the uncertainty for individual patients undergoing radiation therapy (RT). Twenty-two patients who had low-grade or benign tumors and were treated by partial brain radiation therapy (PBRT) participated in an IRB-approved MRI protocol. The diffusion tensor images in the patients were acquired pre-RT, week 3 during RT, at the end of RT, and 1, 6, and 18 months after RT. As a measure of uncertainty, repeatability coefficients (RC) of diffusion indices in the segmented cingulum, corpus callosum, and fornix were estimated by using test-retest diffusion tensor datasets from the National Biomedical Imaging Archive (NBIA) database. The upper and lower limits of the 95% confidence interval of the estimated RC from the test and retest data were used to evaluate whether the longitudinal percentage changes in diffusion indices in the segmented structures in the individual patients were beyond the uncertainty and thus could be considered as true radiation-induced changes. Diffusion indices in different white matter structures showed different uncertainty ranges. The estimated RC for fractional anisotropy (FA) ranged from 5.3% to 9.6%, for mean diffusivity (MD) from 2.2% to 6.8%, for axial diffusivity (AD) from 2.4% to 5.5%, and for radial diffusivity (RD) from 2.9% to 9.7%. Overall, 23% of the patients treated by RT had FA changes, 44% had MD changes, 50% had AD changes, and 50% had RD changes beyond the uncertainty ranges. In the fornix, 85.7% and 100% of the patients showed changes beyond the uncertainty range at 6 and 18 months after RT, demonstrating that radiation has a pronounced late effect on the fornix compared to other segmented structures. It is critical to determine reliability of a change observed in an individual patient for clinical decision making. Assessments of the repeatability and

  7. Multi-model attribution of upper-ocean temperature changes using an isothermal approach.

    PubMed

    Weller, Evan; Min, Seung-Ki; Palmer, Matthew D; Lee, Donghyun; Yim, Bo Young; Yeh, Sang-Wook

    2016-06-01

    Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived.

  8. Multi-model attribution of upper-ocean temperature changes using an isothermal approach

    NASA Astrophysics Data System (ADS)

    Weller, Evan; Min, Seung-Ki; Palmer, Matthew D.; Lee, Donghyun; Yim, Bo Young; Yeh, Sang-Wook

    2016-06-01

    Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived.

  9. Profiling Transboundary Aerosols over Taiwan and Assessing Their Radiative Effects

    NASA Technical Reports Server (NTRS)

    Wang, Sheng-Hsiang; Lin, Neng-Huei; Chou, Ming-Dah; Tsay, Si-Chee; Welton, Ellsworth J.; Hsu, N. Christina; Giles, David M.; Liu, Gin-Rong; Holben, Brent N.

    2010-01-01

    A synergistic process was developed to study the vertical distributions of aerosol optical properties and their effects on solar heating using data retrieved from ground-based radiation measurements and radiative transfer simulations. Continuous MPLNET and AERONET observations were made at a rural site in northern Taiwan from 2005 to 2007. The aerosol vertical extinction profiles retrieved from ground-based lidar measurements were categorized into near-surface, mixed, and two-layer transport types, representing 76% of all cases. Fine-mode (Angstrom exponent, alpha, approx.1.4) and moderate-absorbing aerosols (columnar single-scattering albedo approx.0.93, asymmetry factor approx.0.73 at 440 nm wavelength) dominated in this region. The column-integrated aerosol optical thickness at 500 nm (tau(sub 500nm)) ranges from 0.1 to 0.6 for the near-surface transport type, but can be doubled in the presence of upper-layer aerosol transport. We utilize aerosol radiative efficiency (ARE; the impact on solar radiation per unit change of tau(sub 500nm)) to quantify the radiative effects due to different vertical distributions of aerosols. Our results show that the ARE at the top-of-atmosphere (-23 W/ sq m) is weakly sensitive to aerosol vertical distributions confined in the lower troposphere. On the other hand, values of the ARE at the surface are -44.3, -40.6 and -39.7 W/sq m 38 for near-surface, mixed, and two-layer transport types, respectively. Further analyses show that the impact of aerosols on the vertical profile of solar heating is larger for the near-surface transport type than that of two-layer transport type. The impacts of aerosol on the surface radiation and the solar heating profiles have implications for the stability and convection in the lower troposphere.

  10. Ares I Crew Launch Vehicle Upper Stage/Upper Stage Engine Element Overview

    NASA Technical Reports Server (NTRS)

    McArthur, J. Craig

    2008-01-01

    The Ares I upper stage is an integral part of the Constellation Program transportation system. The upper stage provides guidance, navigation and control (GN and C) for the second stage of ascent flight for the Ares I vehicle. The Saturn-derived J-2X upper stage engine will provide thrust and propulsive impulse for the second stage of ascent flight for the Ares I launch vehicle. Additionally, the upper stage is responsible for the avionics system of the the entire Ares I. This brief presentation highlights the requirements, design, progress and production of the upper stage. Additionally, test facilities to support J-2X development are discussed and an overview of the operational and manufacturing flows are provided. Building on the heritage of the Apollo and Space Shuttle Programs, the Ares I Us and USE teams are utilizing extensive lessons learned to place NASA and the US into another era of space exploration. The NASA, Boeing and PWR teams are integrated and working together to make progress designing and building the Ares I upper stage to minimize cost, technical and schedule risks.

  11. A kinematic model for the late Cenozoic development of southern California crust and upper mantle

    NASA Technical Reports Server (NTRS)

    Humphreys, Eugene D.; Hager, Bradford H.

    1990-01-01

    A model is developed for the young and ongoing kinematic deformation of the southern California crust and upper mantle. The kinematic model qualitatively explains both the overall seismic structure of the upper mantle and much of the known geological history of the late Cenozoic as consequences of ongoing convection beneath southern California. In this model, the high-velocity upper-mantle anomaly of the Transverse ranges is created through the convergence and sinking of the entire thickness of subcrustal lihtosphere, and the low-velocity upper-mantle anomaly beneath the Salton Trough region is attributed to high temperatures and 1-4 percent partial melt related to adiabatic decompression during mantle upwelling.

  12. The cat vertebral column: stance configuration and range of motion

    NASA Technical Reports Server (NTRS)

    Macpherson, J. M.; Ye, Y.; Peterson, B. W. (Principal Investigator)

    1998-01-01

    This study examined the configuration of the vertebral column of the cat during independent stance and in various flexed positions. The range of motion in the sagittal plane is similar across most thoracic and lumbar joints, with the exception of a lesser range at the transition region from thoracic-type to lumbar-type vertebrae. The upper thoracic column exhibits most of its range in dorsiflexion and the lower thoracic and lumbar in ventroflexion. Lateral flexion is limited to less than 5 degrees at all segments. The range in torsion is almost 180 degrees and occurs primarily in the midthoracic region, T4-T11. Contrary to the depiction in most atlases, the standing cat exhibits several curvatures, including a mild dorsiflexion in the lower lumbar segments, a marked ventroflexion in the lower thoracic and upper lumbar segments, and a profound dorsiflexion in the upper thoracic (above T9) and cervical segments. The curvatures are not significantly changed by altering stance distance but are affected by head posture. During stance, the top of the scapula lies well above the spines of the thoracic vertebrae, and the glenohumeral joint is just below the bodies of vertebrae T3-T5. Using a simple static model of the vertebral column in the sagittal plane, it was estimated that the bending moment due to gravity is bimodal with a dorsiflexion moment in the lower thoracic and lumbar region and a ventroflexion moment in the upper thoracic and cervical region. Given the bending moments and the position of the scapula during stance, it is proposed that two groups of scapular muscles provide the major antigravity support for the head and anterior trunk. Levator scapulae and serratus ventralis form the lateral group, inserting on the lateral processes of cervical vertebrae and on the ribs. The major and minor rhomboids form the medial group, inserting on the spinous tips of vertebrae from C4 to T4. It is also proposed that the hypaxial muscles, psoas major, minor, and quadratus

  13. Fermi-LAT upper limits on gamma-ray emission from colliding wind binaries

    DOE PAGES

    Werner, Michael; Reimer, O.; Reimer, A.; ...

    2013-07-09

    Here, colliding wind binaries (CWBs) are thought to give rise to a plethora of physical processes including acceleration and interaction of relativistic particles. Observation of synchrotron radiation in the radio band confirms there is a relativistic electron population in CWBs. Accordingly, CWBs have been suspected sources of high-energy γ-ray emission since the COS-B era. Theoretical models exist that characterize the underlying physical processes leading to particle acceleration and quantitatively predict the non-thermal energy emission observable at Earth. Furthermore, we strive to find evidence of γ-ray emission from a sample of seven CWB systems: WR 11, WR 70, WR 125, WRmore » 137, WR 140, WR 146, and WR 147. Theoretical modelling identified these systems as the most favourable candidates for emitting γ-rays. We make a comparison with existing γ-ray flux predictions and investigate possible constraints. We used 24 months of data from the Large Area Telescope (LAT) on-board the Fermi Gamma Ray Space Telescope to perform a dedicated likelihood analysis of CWBs in the LAT energy range. As a result, we find no evidence of γ-ray emission from any of the studied CWB systems and determine corresponding flux upper limits. For some CWBs the interplay of orbital and stellar parameters renders the Fermi-LAT data not sensitive enough to constrain the parameter space of the emission models. In the cases of WR140 and WR147, the Fermi -LAT upper limits appear to rule out some model predictions entirely and constrain theoretical models over a significant parameter space. A comparison of our findings to the CWB η Car is made.« less

  14. In vivo size and shape measurement of the human upper airway using endoscopic longrange optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Armstrong, Julian J.; Leigh, Matthew S.; Walton, Ian D.; Zvyagin, Andrei V.; Alexandrov, Sergey A.; Schwer, Stefan; Sampson, David D.; Hillman, David R.; Eastwood, Peter R.

    2003-07-01

    We describe a long-range optical coherence tomography system for size and shape measurement of large hollow organs in the human body. The system employs a frequency-domain optical delay line of a configuration that enables the combination of high-speed operation with long scan range. We compare the achievable maximum delay of several delay line configurations, and identify the configurations with the greatest delay range. We demonstrate the use of one such long-range delay line in a catheter-based optical coherence tomography system and present profiles of the human upper airway and esophagus in vivo with a radial scan range of 26 millimeters. Such quantitative upper airway profiling should prove valuable in investigating the pathophysiology of airway collapse during sleep (obstructive sleep apnea).

  15. A theory of Jovian decameter radiation

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Sharma, R. R.; Papadopoulos, K.; Ben-Ari, M.; Eviatar, A.

    1983-01-01

    A theory of the Jovian decameter radiation is presented based on the assumed existence of beams of energetic electrons in the inner Jovian magnetosphere. Beam-like electron distributions are shown to be unstable to the growth of both upper hybrid and lower hybrid electrostatic waves. The upconversion of these waves to fast extraordinary mode electromagnetic radiation is calculated by using a fluid model. Two possibilities are considered. First, a random phase approximation is made which leads to a very conservative estimate of intensity that can be expected in decameter radiation. The alternative possibility is also considered, viz, that the upconversion process is coherent. A comparison of both processes suggests that an incoherent interaction may be adequate to account for the observed intensity of decametric radiation, except perhaps near the peak of the spectrum (8 MHz). The coherent process is intrinsically more efficient and can easily produce the observed intensity near 8 MHz if only 0.01% of the energy in the beam is converted to electrostatic energy.

  16. [The "window" surgical exposure strategy of the upper anterior cervical retropharyngeal approach for anterior decompression at upper cervical spine].

    PubMed

    Wu, Xiang-Yang; Zhang, Zhe; Wu, Jian; Lü, Jun; Gu, Xiao-Hui

    2009-11-01

    To investigate the "window" surgical exposure strategy of the upper anterior cervical retropharyngeal approach for the exposure and decompression and instrumentation of the upper cervical spine. From Jan. 2000 to July 2008, 5 patients with upper cervical spinal injuries were treated by surgical operation included 4 males and 1 female with and average age of 35 years old ranging from 16 to 68 years. There were 2 cases of Hangman's fractures (type II ), 2 of C2.3 intervertebral disc displacement and 1 of C2 vertebral body tuberculosis. All patients underwent the upper cervical anterior retropharyngeal approach through the "window" between the hypoglossal nerve and the superior laryngeal nerve and pharynx and carotid artery. Two patients of Hangman's fractures underwent the C2,3 intervertebral disc discectomy, bone graft fusion and internal fixation. Two patients of C2,3 intervertebral disc displacement underwent the C2,3 intervertebral disc discectomy, decompression bone graft fusion and internal fixation. One patient of C2 vertebral body tuberculosis was dissected and resected and the focus and the cavity was filled by bone autografting. C1 anterior arch to C3 anterior vertebral body were successful exposed. Lesion resection or decompression and fusion were successful in all patients. All patients were followed-up for from 5 to 26 months (means 13.5 months). There was no important vascular and nerve injury and no wound infection. Neutral symptoms was improved and all patient got successful fusion. The "window" surgical exposure surgical technique of the upper cervical anterior retropharyngeal approach is a favorable strategy. This approach strategy can be performed with full exposure for C1-C3 anterior anatomical structure, and can get minimally invasive surgery results and few and far between wound complication, that is safe if corresponding experience is achieved.

  17. High Tc superconductors as thermal radiation shields

    NASA Astrophysics Data System (ADS)

    Zeller, A. F.

    1990-06-01

    The feasibility of using high-Tc superconductor films as IR-radiation shields for liquid-helium-temperature dewars is investigated. Calculations show that a Ba-Ca-Sr-Cu-O superconductor with Tc of 110 K, combined with a liquid-nitrogen temperature shield with an emissivity of 0.03 should produce an upper limit to the radiative heat transfer of 15 mW/sq m. The reduction of reflectivity depends on the field level and the extent of field penetration into the superconductor film, whose surface also would provide magnetic shielding for low magnetic fields. Such shields, providing both magnetic and thermal radiation shielding would be useful for spaceborne applications where exposure to the degrading effects of moist air would not be a problem.

  18. Radiation analysis devices, radiation analysis methods, and articles of manufacture

    DOEpatents

    Roybal, Lyle Gene

    2010-06-08

    Radiation analysis devices include circuitry configured to determine respective radiation count data for a plurality of sections of an area of interest and combine the radiation count data of individual of sections to determine whether a selected radioactive material is present in the area of interest. An amount of the radiation count data for an individual section is insufficient to determine whether the selected radioactive material is present in the individual section. An article of manufacture includes media comprising programming configured to cause processing circuitry to perform processing comprising determining one or more correction factors based on a calibration of a radiation analysis device, measuring radiation received by the radiation analysis device using the one or more correction factors, and presenting information relating to an amount of radiation measured by the radiation analysis device having one of a plurality of specified radiation energy levels of a range of interest.

  19. Rigidity spectrum of z greater than or equal to 3 cosmic-ray nuclei in the range 4-285 GV and a search for cosmic antimatter

    NASA Technical Reports Server (NTRS)

    Golden, R. L.; Adams, J. H., Jr.; Marar, T. M. K.; Deney, C. L.; Badhwar, G. D.; Heckman, H. H.; Lindstrom, P. J.

    1974-01-01

    A measurement, using the magnetic emulsion spectrometer system, of the differential rigidity spectrum of Z greater than or equal to 3 nuclei of the galactic cosmic radiation is presented. The system was flown on Aug. 22, 1969, from Palestine, Texas. The instrument floated above 125,000 feet for eight hours. The data in the rigidity range 8-285 GV can be represented by a power-law spectrum in rigidity, J(rho) = A rho to the minus gamma power, with the exponent gamma = 2.6 plus or minus 0.10. The spectrum in the range 15-285 GV is also described by the same exponent, gamma = 2.6 plus or minus 0.25. The data below 8 GV cannot be described by the same power law without invoking solar modulation. A set of nonunique parameters for modulation are given. Upper limit for the fraction of antimatter in the rigidity range 4-125 GV is .005 with 95% confidence limit.

  20. Preliminary research of a novel center-driven robot for upper extremity rehabilitation.

    PubMed

    Cao, Wujing; Zhang, Fei; Yu, Hongliu; Hu, Bingshan; Meng, Qiaoling

    2018-01-19

    Loss of upper limb function often appears after stroke. Robot-assisted systems are becoming increasingly common in upper extremity rehabilitation. Rehabilitation robot provides intensive motor therapy, which can be performed in a repetitive, accurate and controllable manner. This study aims to propose a novel center-driven robot for upper extremity rehabilitation. A new power transmission mechanism is designed to transfer the power to elbow and shoulder joints from three motors located on the base. The forward and inverse kinematics equations of the center-driven robot (CENTROBOT) are deduced separately. The theoretical values of the scope of joint movements are obtained with the Denavit-Hartenberg parameters method. A prototype of the CENTROBOT is developed and tested. The elbow flexion/extension, shoulder flexion/extension and shoulder adduction/abduction can be realized of the center-driven robot. The angles value of joints are in conformity with the theoretical value. The CENTROBOT reduces the overall size of the robot arm, the influence of motor noise, radiation and other adverse factors by setting all motors on the base. It can satisfy the requirements of power and movement transmission of the robot arm.

  1. Characterization of the upper pouch tracheo-oesophageal fistula in oesophageal atresia.

    PubMed

    Summerour, Virginia; Stevens, Paul S; Lander, Anthony D; Singh, Michael; Soccorso, Giampiero; Arul, G Suren

    2017-02-01

    A small proportion of infants with oesophageal atresia (OA) are thought to have a proximal tracheoesophageal fistula (TOF). Failure to recognize these can hamper mobilization of the upper pouch and lead to life-threatening episodes of aspiration once oral feeding starts. We reviewed our experience of upper pouch fistulae to identify characteristic features of proximal TOF. A retrospective review of TOF/OA patient notes and bronchoscopy photographs and videos, identified from our database from 01/01/2006 to 12/31/2015, was performed. Eight (6.1%) infants were identified (M:F 5:3) from a total population of 131 newly diagnosed TOF/OA infants during the period. Their median gestational age was 33 (range 28-39) weeks, and median birth weight was 1647g (range 1100-3400g). Five were initially diagnosed with pure OA and 3 with a distal TOF. All patients underwent rigid bronchoscopy at the initial surgery but only one proximal fistula was identified. The 7 missed proximal fistulae were subsequently found either during on-table oesophagograms for gap assessment (n=2), at the time of thoracotomy when mobilizing the upper pouch (n=3), or during subsequent bronchoscopy for symptoms post OA repair (n=2). Two patients needed a further operation to divide the fistula. Review of the bronchoscopy videos identified four characteristic differences between upper and lower pouch fistulae. Proximal fistulae are found just distal to the vocal cords, are very small, often no more than a pit, do not open and close with ventilation, and are best identified by insufflation of the esophagus. Upper pouch fistulae are relatively easy to miss because of different characteristics compared with H-type or distal fistulae that have not previously been mentioned in the literature. level IV. Copyright © 2016. Published by Elsevier Inc.

  2. Car radiator burns: a prevention issue.

    PubMed

    Rabbitts, Angela; Alden, Nicole E; Conlin, Tara; Yurt, Roger W

    2004-01-01

    Scald burns continue to be the major cause of injury to patients admitted to the burn center. Scald burns occurring from car radiator fluid comprise a significant subgroup. Although manufacturer warning labels have been placed on car radiators, these burns continue to occur. This retrospective review looks at all patients admitted to our burn center who suffered scald burns from car radiator fluid to assess the extent of this problem. During the study period, 86 patients were identified as having suffered scald burns as a result of contact with car radiator fluid. Seventy-one percent of the burn injuries occurred in the summer months. The areas most commonly burned were the head and upper extremities. Burn prevention efforts have improved greatly over the years; however, this study demonstrates that scald burns from car radiator fluid continue to cause physical, emotional, and financial devastation. The current radiator warning labels alone are not effective. The National Highway Traffic Safety Administration has proposed a new federal motor vehicle safety standard to aid in decreasing the number of scald burns from car radiators. The results of this study were submitted to the United States Department of Transportation for inclusion in a docket for federal legislation supporting these safety measures.

  3. A search for TeV gamma-ray emission from SNRs, pulsars and unidentified GeV sources in the Galactic plane in the longitude range between -2 deg and 85 deg.

    NASA Astrophysics Data System (ADS)

    Aharonian, F. A.; Akhperjanian, A. G.; Beilicke, M.; Bernloehr, K.; Bojahr, H.; Bolz, O.; Boerst, H.; Coarasa, T.; Contreras, J. L.; Cortina, J.; Denninghoff, S.; Fonseca, V.; Girma, M.; Goetting, N.; Heinzelmann, G.; Hermann, G.; Heusler, A.; Hofmann, W.; Horns, D.; Jung, I.; Kankanyan, R.; Kestel, M.; Kettler, J.; Kohnle, A.; Konopelko, A.; Kornmeyer, H.; Kranich, D.; Krawczynski, H.; Lampeitl, H.; Lopez, M.; Lorenz, E.; Lucarelli, F.; Mang, O.; Meyer, H.; Mirzoyan, R.; Moralejo, A.; Ona, E.; Panter, M.; Plyasheshnikov, A.; Puehlhofer, G.; Rauterberg, G.; Reyes, R.; Rhode, W.; Ripken, J.; Roehring, A.; Rowell, G. P.; Sahakian, V.; Samorski, M.; Schilling, M.; Siems, M.; Sobzynska, D.; Stamm, W.; Tluczykont, M.; Voelk, H. J.; Wiedner, C. A.; Wittek, W.

    2002-12-01

    Using the HEGRA system of imaging atmospheric Cherenkov telescopes, one quarter of the Galactic plane (-2o < l < 85o) was surveyed for TeV gamma-ray emission from point sources and moderately extended sources (φ <= 0.8o). The region covered includes 86 known pulsars (PSR), 63 known supernova remnants (SNR) and nine GeV sources, representing a significant fraction of the known populations. No evidence for emission of TeV gamma radiation was detected, and upper limits range from 0.15 Crab units up to several Crab units, depending on the observation time and zenith angles covered. The ensemble sums over selected SNR and pulsar subsamples and over the GeV-sources yield no indication of emission from these potential sources. The upper limit for the SNR population is 6.7% of the Crab flux and for the pulsar ensemble is 3.6% of the Crab flux.

  4. Effects of Lightning in the Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Sentman, Davis D.; Pasko, Victor P.; Morrill, Jeff S.

    2010-02-01

    AGU Chapman Conference on Effects of Thunderstorms and Lightning in the Upper Atmosphere; University Park, Pennsylvania, 10-14 May 2009; The serendipitous observation in 1989 of electrical discharge in the high atmosphere induced by thundercloud lightning launched a new field of geophysical investigation. From this single unexpected observation sprang a vigorous and fertile new research field that simultaneously encompasses geophysical disciplines that are normally pursued independently, such as meteorology and lightning, plasma and gas discharge physics, atmospheric chemistry, ionospheric physics, and energetic particle physics. Transient electrical discharge in the upper atmosphere spans the full range of altitudes between the tropopause and the ionosphere and takes a variety of forms that carry the whimsical names red sprites, blue jets, gigantic jets, elves (emissions of light and very low frequency perturbations from electromagnetic pulse sources), and sprite halos, collectively known as transient luminous events (TLEs). To date, TLEs have been observed from ground and airborne or spaceborne platforms above thunderstorm systems worldwide, and radio observations made concomitantly with optical observations have shown that they are produced by the transient far fields of thundercloud lightning. TLEs appear to be large-scale (tens of kilometers in dimension), upper atmospheric versions of conventional gas discharge akin to weakly ionized, collision-dominated systems found in laboratory discharge devices (millimeter-centimeter dimensions), with characteristic energies of a few electron volts. The dominant physical processes have been identified as described by the familiar kinetic theory of the photochemistry of the upper atmosphere, but with electric field-driven electron impact ionization playing the role of photolysis or energetic precipitating particle-induced ionization.

  5. Experimental observations of nonlinearly enhanced 2omega-UH electromagnetic radiation excited by steady-state colliding electron beams

    NASA Technical Reports Server (NTRS)

    Intrator, T.; Hershkowitz, N.; Chan, C.

    1984-01-01

    Counterstreaming large-diameter electron beams in a steady-state laboratory experiment are observed to generate transverse radiation at twice the upper-hybrid frequency (2omega-UH) with a quadrupole radiation pattern. The electromagnetic wave power density is nonlinearly enhanced over the power density obtained from a single beam-plasma system. Electromagnetic power density scales exponentially with beam energy and increases with ion mass. Weak turbulence theory can predict similar (but weaker) beam energy scaling but not the high power density, or the predominance of the 2omega-UH radiation peak over the omega-UH peak. Significant noise near the upper-hybrid and ion plasma frequencies is also measured, with normalized electrostatic wave energy density W(ES)/n(e)T(e) approximately 0.01.

  6. NASA's Upper Atmosphere Research Program (UARP) and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1997-1999

    NASA Technical Reports Server (NTRS)

    Kurylo, M. J.; DeCola, P. L.; Kaye, J. A.

    2000-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology development, and monitoring of the Earth's upper atmosphere, with emphasis on the upper troposphere and stratosphere. This program aims at expanding our chemical and physical understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Research Division in the Office of Earth Science at NASA. Significant contributions to this effort have also been provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aero-Space Technology. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper troposphere and the stratosphere and their control on the distribution of atmospheric chemical species such as ozone; assess possible perturbations to the composition of the atmosphere caused by human activities and natural phenomena (with a specific emphasis on trace gas geographical distributions, sources, and sinks and the role of trace gases in defining the chemical composition of the upper atmosphere); understand the processes affecting the distributions of radiatively active species in the atmosphere, and the importance of chemical-radiative-dynamical feedbacks on the meteorology and climatology of the stratosphere and troposphere; and understand ozone production, loss, and recovery in an atmosphere with increasing abundances of greenhouse gases. The current report is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported

  7. Radiative forcing from aircraft NOx emissions: Mechanisms and seasonal dependence

    NASA Astrophysics Data System (ADS)

    Stevenson, David S.; Doherty, Ruth M.; Sanderson, Michael G.; Collins, William J.; Johnson, Colin E.; Derwent, Richard G.

    2004-09-01

    A chemistry-climate model has been applied to study the radiative forcings generated by aircraft NOx emissions through changes in ozone and methane. Four numerical experiments, where an extra pulse of aircraft NOx was emitted into the model atmosphere for a single month (January, April, July, or October), were compared to a control experiment, allowing the aircraft impact to be isolated. The extra NOx produces a short-lived (few months) pulse of ozone that generates a positive radiative forcing. However, the NOx and O3 both generate OH, which leads to a reduction in CH4. A detailed analysis of the OH budget reveals the spatial structure and chemical reactions responsible for the generation of the OH perturbation. Methane's long lifetime means that the CH4 anomaly decays slowly (perturbation lifetime of 11.1 years). The negative CH4 anomaly also has an associated negative O3 anomaly, and both of these introduce a negative radiative forcing. There are important seasonal differences in the response of O3 and CH4 to aircraft NOx, related to the annual cycle in photochemistry; the O3 radiative forcing calculations also have a seasonal dependence. The long-term globally integrated annual mean net forcing calculated here is approximately zero, although earlier work suggests a small net positive forcing. The model design (e.g., upper tropospheric chemistry, convection parameterization) and experimental setup (pulse magnitude and duration) may somewhat influence the results: further work with a range of models is required to confirm these results quantitatively.

  8. Away from darkness: a review on the effects of solar radiation on heterotrophic bacterioplankton activity

    PubMed Central

    Ruiz-González, Clara; Simó, Rafel; Sommaruga, Ruben; Gasol, Josep M.

    2013-01-01

    Heterotrophic bacterioplankton are main consumers of dissolved organic matter (OM) in aquatic ecosystems, including the sunlit upper layers of the ocean and freshwater bodies. Their well-known sensitivity to ultraviolet radiation (UVR), together with some recently discovered mechanisms bacteria have evolved to benefit from photosynthetically available radiation (PAR), suggest that natural sunlight plays a relevant, yet difficult to predict role in modulating bacterial biogeochemical functions in aquatic ecosystems. Three decades of experimental work assessing the effects of sunlight on natural bacterial heterotrophic activity reveal responses ranging from high stimulation to total inhibition. In this review, we compile the existing studies on the topic and discuss the potential causes underlying these contrasting results, with special emphasis on the largely overlooked influences of the community composition and the previous light exposure conditions, as well as the different temporal and spatial scales at which exposure to solar radiation fluctuates. These intricate sunlight-bacteria interactions have implications for our understanding of carbon fluxes in aquatic systems, yet further research is necessary before we can accurately evaluate or predict the consequences of increasing surface UVR levels associated with global change. PMID:23734148

  9. Electromagnetic fields (UHF) increase voltage sensitivity of membrane ion channels; possible indication of cell phone effect on living cells.

    PubMed

    Ketabi, N; Mobasheri, H; Faraji-Dana, R

    2015-03-01

    The effects of ultra high frequency (UHF) nonionizing electromagnetic fields (EMF) on the channel activities of nanopore forming protein, OmpF porin, were investigated. The voltage clamp technique was used to study the single channel activity of the pore in an artificial bilayer in the presence and absence of the electromagnetic fields at 910 to 990 MHz in real time. Channel activity patterns were used to address the effect of EMF on the dynamic, arrangement and dielectric properties of water molecules, as well as on the hydration state and arrangements of side chains lining the channel barrel. Based on the varied voltage sensitivity of the channel at different temperatures in the presence and absence of EMF, the amount of energy transferred to nano-environments of accessible groups was estimated to address the possible thermal effects of EMF. Our results show that the effects of EMF on channel activities are frequency dependent, with a maximum effect at 930 MHz. The frequency of channel gating and the voltage sensitivity is increased when the channel is exposed to EMF, while its conductance remains unchanged at all frequencies applied. We have not identified any changes in the capacitance and permeability of membrane in the presence of EMF. The effect of the EMF irradiated by cell phones is measured by Specific Absorption Rate (SAR) in artificial model of human head, Phantom. Thus, current approach applied to biological molecules and electrolytes might be considered as complement to evaluate safety of irradiating sources on biological matter at molecular level.

  10. Reliability of the mangled extremity severity score in combat-related upper and lower extremity injuries

    PubMed Central

    Ege, Tolga; Unlu, Aytekin; Tas, Huseyin; Bek, Dogan; Turkan, Selim; Cetinkaya, Aytac

    2015-01-01

    Background: Decision of limb salvage or amputation is generally aided with several trauma scoring systems such as the mangled extremity severity score (MESS). However, the reliability of the injury scores in the settling of open fractures due to explosives and missiles is challenging. Mortality and morbidity of the extremity trauma due to firearms are generally associated with time delay in revascularization, injury mechanism, anatomy of the injured site, associated injuries, age and the environmental circumstance. The purpose of the retrospective study was to evaluate the extent of extremity injuries due to ballistic missiles and to detect the reliability of mangled extremity severity score (MESS) in both upper and lower extremities. Materials and Methods: Between 2004 and 2014, 139 Gustillo Anderson Type III open fractures of both the upper and lower extremities were enrolled in the study. Data for patient age, fire arm type, transporting time from the field to the hospital (and the method), injury severity scores, MESS scores, fracture types, amputation levels, bone fixation methods and postoperative infections and complications retrieved from the two level-2 trauma center's data base. Sensitivity, specificity, positive and negative predictive values of the MESS were calculated to detect the ability in deciding amputation in the mangled limb. Results: Amputation was performed in 39 extremities and limb salvage attempted in 100 extremities. The mean followup time was 14.6 months (range 6–32 months). In the amputated group, the mean MESS scores for upper and lower extremity were 8.8 (range 6–11) and 9.24 (range 6–11), respectively. In the limb salvage group, the mean MESS scores for upper and lower extremities were 5.29 (range 4–7) and 5.19 (range 3–8), respectively. Sensitivity of MESS in upper and lower extremities were calculated as 80% and 79.4% and positive predictive values detected as 55.55% and 83.3%, respectively. Specificity of MESS score for

  11. The effects of ultraviolet-B radiation on freshwater invertebrates: Experiments with a solar simulator

    USGS Publications Warehouse

    Hurtubise, R.D.; Havel, J.E.; Little, E.E.

    1998-01-01

    There is concern that decreases in stratospheric ozone will lead to hazardous levels of ultraviolet-B (UV-B) radiation at the Earth's surface. In clear water, UV-B may penetrate to significant depths. The purpose of the current study was to compare the sensitivity of freshwater invertebrates to UV-B. We used a solar simulator, calibrated to match local ambient solar radiation, to expose five species of freshwater invertebrates to enhanced levels of UV-B radiation. UV-B measurements in a eutrophic pond revealed that 10% of the irradiance penetrated to 30-cm depth and 1% to 57-cm depth. The irradiance at the upper 5-20 cm was comparable to levels used in the simulator. Median lethal dose (LD50) values were determined for the cladocerans Ceriodaphnia reticulata, Scapholeberis kingii (two induced color morphs), and Daphnia magna; the ostracod Cyprinotus incongruens; and the amphipod Hyalella azteca. Among the species, 96-h LD50 estimates were quite variable, ranging from 4.2 to 84.0 ??W cm-2. These estimates indicated S. kingii to be highly sensitive and H. azteca, C. reticulata, and D. magna to be moderately sensitive, whereas the ostracod C. incongruens was very tolerant to UV-B radiation. Overall, this study suggests that, in shallow ponds without physical refuges, UV-B radiation would have the strongest effects upon cladocerans and amphipods occurring in the water column, whereas ostracods would be better protected.

  12. 47 CFR 15.202 - Certified operating frequency range.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Certified operating frequency range. 15.202 Section 15.202 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators § 15.202 Certified operating frequency range. Client devices that operate in a master...

  13. Time-Reversal Based Range Extension Technique for Ultra-Wideband (UWB) Sensors and Applications in Tactical Communications and Networking

    DTIC Science & Technology

    2009-10-16

    than 2 GHz ( HF , VHF, UHF and L bands), the rather low IF frequency image rejection is difficult to implement and image rejection mixer techniques are...energy of the signal in the integration window at the receiver should be maximized [4] [5] [6] [7]. For navigation and geolocation , the ultra short...vectors h/, hi/ hyv/, hf = [hjf h T f • • h T Nf] T (3.25) 20 CHAPTER 3. THEORETICAL WORK (U \\ -j \\hnf(fi-i)\\,i = l ,,,,. (h"^-lv^|/l„/(/i-i

  14. Upper limit set for level of lightning activity on Titan

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Kaiser, M. L.

    1990-01-01

    Because optically thick cloud and haze layers prevent lightning detection at optical wavelength on Titan, a search was conducted for lightning-radiated signals (spherics) at radio wavelengths using the planetary radioastronomy instrument aboard Voyager 1. Given the maximum ionosphere density of about 3000/cu cm, lightning spherics should be detectable above an observing frequency of 500 kHz. Since no evidence for spherics is found, an upper limit to the total energy per flash in Titan lightning of about 10 to the 6th J, or about 1000 times weaker than that of typical terrestrial lightning, is inferred.

  15. Consolidated Ground Segment Requirements for a UHF Radar for the ESSAS

    NASA Astrophysics Data System (ADS)

    Muller, Florent; Vera, Juan

    2009-03-01

    ESA has launched a nine months long study to define the requirements associated to the ground segment of a UHF (300-3000 MHz) radar system. The study has been awarded in open competition to a consortium led by Onera, associated to the Spanish companies Indra and its sub-contractor Deimos. After a phase of consolidation of the requirements, different monostatic and bistatic concepts of radars will be proposed and evaluated. Two concepts will be selected for further design studies. ESA will then select the best one, for detailed design as well as cost and performance evaluation. The aim of this paper is to present the results of the first phase of the study concerning the consolidation of the radar system requirements. The main mission for the system is to be able to build and maintain a catalogue of the objects in low Earth orbit (apogee lower than 2000km) in an autonomous way, for different sizes of objects, depending on the future successive development phases of the project. The final step must give the capability of detecting and tracking 10cm objects, with a possible upgrade to 5 cm objects. A demonstration phase must be defined for 1 m objects. These different steps will be considered during all the phases of the study. Taking this mission and the different steps of the study as a starting point, the first phase will define a set of requirements for the radar system. It was finished at the end of January 2009. First part will describe the constraints derived from the targets and their environment. Orbiting objects have a given distribution in space, and their observability and detectability are based on it. It is also related to the location of the radar system But they are also dependant on the natural propagation phenomenon, especially ionospheric issues, and the characteristics of the objects. Second part will focus on the mission itself. To carry out the mission, objects must be detected and tracked regularly to refresh the associated orbital parameters

  16. Ultra-High-Field Magnetic Resonance Spectroscopy in Psychiatry.

    PubMed

    Godlewska, Beata R; Clare, Stuart; Cowen, Philip J; Emir, Uzay E

    2017-01-01

    The advantages of ultra-high-field (UHF ≥ 7T) MR have been demonstrated in a variety of MR acquisition modalities. Magnetic resonance spectroscopy (MRS) can particularly benefit from substantial gains in signal-to-noise ratio (SNR) and spectral resolution at UHF, enabling the quantification of numerous metabolites, including glutamate, glutamine, glutathione, and γ-aminobutyric acid that are relevant to psychiatric disorders. The aim of this review is to give an overview about the advantages and advances of UHF MRS and its application to psychiatric disorders. In order to provide a practical guide for potential applications of MRS at UHF, a literature review is given, surveying advantages and disadvantages of MRS at UHF. Key concepts, emerging technologies, practical considerations, and applications of UHF MRS are provided. Second, the strength of UHF MRS is demonstrated using some examples of its application in psychiatric disorders.

  17. Ultra-High-Field Magnetic Resonance Spectroscopy in Psychiatry

    PubMed Central

    Godlewska, Beata R.; Clare, Stuart; Cowen, Philip J.; Emir, Uzay E.

    2017-01-01

    The advantages of ultra-high-field (UHF ≥ 7T) MR have been demonstrated in a variety of MR acquisition modalities. Magnetic resonance spectroscopy (MRS) can particularly benefit from substantial gains in signal-to-noise ratio (SNR) and spectral resolution at UHF, enabling the quantification of numerous metabolites, including glutamate, glutamine, glutathione, and γ-aminobutyric acid that are relevant to psychiatric disorders. The aim of this review is to give an overview about the advantages and advances of UHF MRS and its application to psychiatric disorders. In order to provide a practical guide for potential applications of MRS at UHF, a literature review is given, surveying advantages and disadvantages of MRS at UHF. Key concepts, emerging technologies, practical considerations, and applications of UHF MRS are provided. Second, the strength of UHF MRS is demonstrated using some examples of its application in psychiatric disorders. PMID:28744229

  18. Over-scanning in chest CT: Comparison of practice among six hospitals and its impact on radiation dose.

    PubMed

    Schwartz, Fides; Stieltjes, Bram; Szucs-Farkas, Zsolt; Euler, André

    2018-05-01

    Compare incidence of over-scanning in chest CT among six hospitals and impact on effective and organ effective radiation dose. Scout images of 600 chest CTs from six hospitals (A-F) were retrospectively reviewed using a radiation dose tracking software (RTS). Optimal scan range was determined and compared to the actual scan range. Incidence of cranial and caudal over-scanning was assessed and changes in total and organ effective dose were calculated. Descriptive statistics, Tukey- and Wilcoxon matched pairs test were applied. Simultaneous cranial and caudal over-scanning occurred in 29 of 600 scans (A = 0%, B = 1%, C = 12%, D = 3%, E = 11%, F = 2%). Effective radiation dose increased on average by 0.29 mSv (P < 0.001). Cranial over-scanning was observed in 45 of 600 scans (A = 0%, B = 8%, C = 2%, D = 15%, E = 17%, F = 3%) and increased organ effective dose by 0.35 mSv in the thyroid gland (P < 0.001). Caudal over-scanning occurred in 147 of 600 scans (A = 7%, B = 9%, C = 35%, D = 4%, E = 32%, F = 60%) and increased organ effective doses in the upper abdomen by up to 14% (P < 0.001 for all organs). Substantial differences in the incidence of over-scanning in chest CT exist among different hospitals. These differences result in excessive effective radiation dose and increased individual organ effective doses in patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Low Simulated Radiation Limit for Runaway Greenhouse Climates

    NASA Technical Reports Server (NTRS)

    Goldblatt, Colin; Robinson, Tyler D.; Zahnle, Kevin J.; Crisp, David

    2013-01-01

    Terrestrial planet atmospheres must be in long-term radiation balance, with solar radiation absorbed matched by thermal radiation emitted. For hot moist atmospheres, however, there is an upper limit on the thermal emission which is decoupled from the surface temperature. If net absorbed solar radiation exceeds this limit the planet will heat uncontrollably, the so-called \\runaway greenhouse". Here we show that a runaway greenhouse induced steam atmosphere may be a stable state for a planet with the same amount of incident solar radiation as Earth has today, contrary to previous results. We have calculated the clear-sky radiation limits at line-by-line spectral resolution for the first time. The thermal radiation limit is lower than previously reported (282 W/sq m rather than 310W/sq m) and much more solar radiation would be absorbed (294W/sq m rather than 222W/sq m). Avoiding a runaway greenhouse under the present solar constant requires that the atmosphere is subsaturated with water, and that cloud albedo forcing exceeds cloud greenhouse forcing. Greenhouse warming could in theory trigger a runaway greenhouse but palaeoclimate comparisons suggest that foreseeable increases in greenhouse gases will be insufficient to do this.

  20. The unrestricted local properties: application in nanoelectronics and for predicting radicals reactivity.

    PubMed

    Dral, Pavlo O

    2014-03-01

    The local electron affinity (EA(L)) and the local ionization energy (IE(L)) are successfully used for predicting properties of closed-shell species for drug design and for nanoelectronics. Here the respective unrestricted Hartree-Fock variants of EA(L) and IE(L), i.e., the unrestricted local electron affinity (UHF-EA(L)) and ionization energy (UHF-IE(L)), have been shown to be useful for predicting properties of open-shell species. UHF-EA(L) and UHF-IE(L) have been applied for explaining unique electronic properties of an exemplary nanomaterial carbon peapod. It is also demonstrated that UHF-EA(L) is useful for predicting and better understanding reactivity of radicals related to alkanes activation.

  1. Radiation Dose and Subsequent Risk for Stomach Cancer in Long-term Survivors of Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinerman, Ruth A., E-mail: kleinerr@mail.nih.gov; Smith, Susan A.; Holowaty, Eric

    2013-08-01

    Purpose: To assess the dose–response relationship for stomach cancer after radiation therapy for cervical cancer. Methods and Materials: We conducted a nested, matched case–control study of 201 cases and 378 controls among 53,547 5-year survivors of cervical cancer diagnosed from 1943 to 1995, from 5 international, population-based cancer registries. We estimated individual radiation doses to the site of the stomach cancer for all cases and to corresponding sites for the matched controls (overall mean stomach tumor dose, 2.56 Gy, range 0.03-46.1 and after parallel opposed pelvic fields, 1.63 Gy, range 0.12-6.3). Results: More than 90% of women received radiation therapy,more » mostly with external beam therapy in combination with brachytherapy. Stomach cancer risk was nonsignificantly increased (odds ratio 1.27-2.28) for women receiving between 0.5 and 4.9 Gy to the stomach cancer site and significantly increased at doses ≥5 Gy (odds ratio 4.20, 95% confidence interval 1.41-13.4, P{sub trend}=.047) compared with nonirradiated women. A highly significant radiation dose–response relationship was evident when analyses were restricted to the 131 cases (251 controls) whose stomach cancer was located in the middle and lower portions of the stomach (P{sub trend}=.003), whereas there was no indication of increasing risk with increasing dose for 30 cases (57 controls) whose cancer was located in the upper stomach (P{sub trend}=.23). Conclusions: Our findings show for the first time a significant linear dose–response relationship for risk of stomach cancer in long-term survivors of cervical cancer.« less

  2. Space Radiation Cancer Risks

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2007-01-01

    Space radiation presents major challenges to astronauts on the International Space Station and for future missions to the Earth s moon or Mars. Methods used to project risks on Earth need to be modified because of the large uncertainties in projecting cancer risks from space radiation, and thus impact safety factors. We describe NASA s unique approach to radiation safety that applies uncertainty based criteria within the occupational health program for astronauts: The two terrestrial criteria of a point estimate of maximum acceptable level of risk and application of the principle of As Low As Reasonably Achievable (ALARA) are supplemented by a third requirement that protects against risk projection uncertainties using the upper 95% confidence level (CL) in the radiation cancer projection model. NASA s acceptable level of risk for ISS and their new lunar program have been set at the point-estimate of a 3-percent risk of exposure induced death (REID). Tissue-averaged organ dose-equivalents are combined with age at exposure and gender-dependent risk coefficients to project the cumulative occupational radiation risks incurred by astronauts. The 95% CL criteria in practice is a stronger criterion than ALARA, but not an absolute cut-off as is applied to a point projection of a 3% REID. We describe the most recent astronaut dose limits, and present a historical review of astronaut organ doses estimates from the Mercury through the current ISS program, and future projections for lunar and Mars missions. NASA s 95% CL criteria is linked to a vibrant ground based radiobiology program investigating the radiobiology of high-energy protons and heavy ions. The near-term goal of research is new knowledge leading to the reduction of uncertainties in projection models. Risk projections involve a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. The current model for projecting space radiation

  3. Hydrogeologic evaluation of the Upper Floridan aquifer in the southwestern Albany area, Georgia

    USGS Publications Warehouse

    Warner, Debbie

    1997-01-01

    A cooperative study by the Albany Water, Gas, and Light Commission and the U.S. Geological Survey was conducted to evaluate the hydrogeology of the Upper Floridan aquifer in an area southwest of Albany and west of the Flint River in Dougherty County, Ga. The study area lies in the Dougherty Plain district of the Coastal Plain physiographic province. In this area, the Upper Floridan aquifer is comprised of the upper Eocene Ocala Limestone, confined below by the middle Eocene Lisbon Formation, and semiconfined above by the undifferentiated Quaternary overburden. The overburden ranges in thickness from about 30 to 50 feet and consists of fine to coarse quartz sand, clayey sand, sandy clay, and clay. The Upper Floridan aquifer has been subdivided into an upper water-bearing zone and a lower water-bearing zone based on differences in lithology and yield. In the study area, the upper water-bearing zone generally consists of dense, highly weathered limestone of low permeability and ranges in thickness from 40 to 80 feet. The lower water-bearing zone consists of hard, slightly weathered limestone that exhibits a high degree of secondary permeability that has developed along fractures and joints, and ranges in thickness from about 60 to 80 feet. Borehole geophysical logs and borehole video surveys indicate two areas of high permeability in the lower water-bearing zone-one near the top and one near the base of the zone. A wellfield consisting of one production well and five observation-well clusters (one deep, intermediate, and shallow well in each cluster) was constructed for this study. Spinner flowmeter tests were conducted in the production well between the depths of 110 and 140 feet below land surface to determine the relative percentages of water contributed by selected vertical intervals of the lower water-bearing zone. Pumping rates during these tests were 1,080, 2,200, and 3,400 gallons per minute. The results of these pumping tests show that the interval between

  4. Dynamics of the Upper Atmosphere X-ray Emission during the 23rd Solar Cycle

    NASA Astrophysics Data System (ADS)

    Pugacheva, Galina; Gusev, Anatoly; Martin, Inácio M.; Spjeldvik, Walther

    Long-term observations with the RPS-1instrument on the CORONAS-F satellite (July 2001 to December 2005) permitted the evaluation of the low energy 3.0-31.5 keV X-ray emission flux radiated by the upper nocturnal atmosphere. This emission mostly results from the bremsstrahlung radiation from magnetospheric electrons. The entire nocturnal atmosphere emits energy in the range of 3 to 5 keV, especially in the southern hemisphere, over the Pacific and Indian ocean areas. In the northern hemisphere, the brightest emission from the atmo-sphere is observed at high latitudes in the region of Earth's radiation belt (ERB). In lower northern latitudes, the X-ray emission intensity is rather weak especially during the summer, and on 5-8 keV maps there are regions where there are no discernible emissions. At energies higher than 8 keV, only areas over the South-Atlantic magnetic anomaly and ERB at high latitudes are distinctly observed. This emission is produced by X-rays arising from interactions of ERB particles, descending to the altitude of 500 km in their bounce motion with the am-bient atmospheric matter, and by direct ERB particles passing through the lateral walls and entrance window of the detector (electrons with energies higher than 100 keV and protons with energies higher than 3 MeV). In order to determine the source mechanisms of soft X-rays in the energy range 3 to 8 keV from regions in the ERB, we studied the relationship between the seasonal variation of the X-ray atmospheric radiation and phases of the solar activity cycle. The global monthly, six-monthly, and yearly-averaged X-ray flux distributions were statistically determined for the five-year duration of the CORONAS-F mission. From these distributions, it is possible to infer about the influence of the phase of the solar activity and seasonal effects on the fluxes with energy in the range of 3 to 8 keV. Analysis of these data revealed important regularities in the behavior of this emission. We noted that

  5. Measurements of the Magnetic Field of the Upper Chromosphere with Polarimetry

    NASA Technical Reports Server (NTRS)

    Rachmeler, Laurel; Mckenzie, David; Winebarger, Amy; Kobayashi, Ken; Ishikawa, Ryohko; Kubo, Masahito; Narukage, Noriyuki; Bueno, Trujillo, Javier; Auchere, Frederic

    2017-01-01

    A major remaining challenge for heliophysics is to decipher the magnetic structure of the chromosphere. The chromosphere is the critical interface between the Sun's photosphere and corona: it contains more mass than the entire interplanetary heliosphere, requires a heating rate that is larger than that of the corona, and mediates all the energy driving the solar wind, solar atmospheric heating and solar eruptions. While measurements of the magnetic field in the photosphere are routine, the chromosphere poses several extra challenges. The magnetically sensitive lines formed in the upper chromosphere are in the ultraviolet, so space-based observations are required. The lines are often formed over a range of heights, sampling different plasma which complicates the inversion process. These lines are sensitive to the magnetic field via polarized light that is created or modified through the Hanle and Zeeman effects. There are a few observations of these lines, and a significant challenge remains in extracting the magnetic field from the polarization measurements, as detailed model atmospheres with advanced radiative transfer physics are needed. Real progress is obtained by a simultaneous improvement in both the observational side and the modeling side. We present information on the CLASP (Chromospheric LAyer Spectro-Polarimeter) sounding rocket program, and future prospects for these types of measurements.

  6. Upper ocean moored current and density profiler applied to winter conditions near Bermuda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eriksen, C.C.; Dahlen, J.M.; Shillingford, J.T. Jr.

    1982-09-20

    A new moored instrument which makes repeated high vertical resolution profiles of current, temperature, and salinity in the upper ocean over extended periods was used to observe midwinter conditions near Bermuda. The operation and performance of the instrument, called the profiling current meter (PCM), in the surface wave environment of winter storms is reported here. The PCM profiles along the upper portion of a slightly subsurface mooring by adjusting its buoyancy under computer control. This design decouples the instrument from vertical motions of the mooring induced by surface waves, so that its electromagnetic current sensor operates in a favorable mean-to-fluctuatingmore » flow regime. Current, temperature, and electrical conductivity are (vector) averaged into contiguous preselected bins several meters wide over the possible profile range of 20- to 250-m depth. The PCM is capable of collecting 1000--4000 profiles in a 6- to 12-month period, depending on depth range and ambient currents. A variety of baroclinic motions are evident in the Bermuda observations. Upper ocean manifestations of both Kelvin and superinertial island-trapped waves dominate longshore currents. Vertical coherence of onshore current and temperature suggest that internal wave vertical wave number energy distribution is independent of frequency but modified by island bathymetry. Kinetic energy in shear integrated over a 115.6-m-thick layer in the upper ocean is limited to values less than or equal to the potential energy required to mix the existing stratification. Mixing events occur when kinetic energy associated with shear drives the bulk Richardson number (defined by the ratio of energy integrals over the range profiles) to unity, where it remains while shear and stratification disappear together.« less

  7. The Dynamic Range of LZ

    NASA Astrophysics Data System (ADS)

    Yin, Jun; LZ Collaboration

    2015-10-01

    The electronics of the LZ experiment, the 7-ton dark matter detector to be installed at the Sanford Underground Research Facility (SURF), is designed to provide a 70% efficiency for events that produce three photoelectrons in the photomultiplier tubes (PMTs). This corresponds approximately to the lowest energy threshold achievable in such a detector, and drives the noise specifications for the front end. The upper limit of the LZ dynamic range is defined by the electroluminescence (S2) signals. The low-energy channels of the LZ amplifiers provide the dynamic range required for the tritium and krypton calibrations. The high-energy channels provide the dynamic range required to measure the activated Xe lines. S2 signals induced by alpha particles from radon decay will saturate one or more channels of the top PMT array but techniques are being developed to recover the information lost due to saturation. This work was supported by the Department of Energy, Grant DE-SC0006605.

  8. Ground-Water Hydrology of the Upper Deschutes Basin, Oregon

    USGS Publications Warehouse

    Gannett, Marshall W.; Lite, Kenneth E.; Morgan, David S.; Collins, Charles A.

    2001-01-01

    The upper Deschutes Basin is among the fastest growing regions in Oregon. The rapid population growth has been accompanied by increased demand for water. Surface streams, however, have been administratively closed to additional appropriation for many years, and surface water is not generally available to support new development. Consequently, ground water is being relied upon to satisfy the growth in water demand. Oregon water law requires that the potential effects of ground-water development on streamflow be evaluated when considering applications for new ground-water rights. Prior to this study, hydrologic understanding has been insufficient to quantitatively evaluate the connection between ground water and streamflow, and the behavior of the regional ground-water flow system in general. This report describes the results of a hydrologic investigation undertaken to provide that understanding. The investigation encompasses about 4,500 square miles of the upper Deschutes River drainage basin.A large proportion of the precipitation in the upper Deschutes Basin falls in the Cascade Range, making it the principal ground-water recharge area for the basin. Water-balance calculations indicate that the average annual rate of ground- water recharge from precipitation is about 3,500 ft3/s (cubic feet per second). Water-budget calculations indicate that in addition to recharge from precipitation, water enters the ground-water system through interbasin flow. Approximately 800 ft3/s flows into the Metolius River drainage from the west and about 50 ft3/s flows into the southeastern part of the study area from the Fort Rock Basin. East of the Cascade Range, there is little or no ground-water recharge from precipitation, but leaking irrigation canals are a significant source of artificial recharge north of Bend. The average annual rate of canal leakage during 1994 was estimated to be about 490 ft3/s. Ground water flows from the Cascade Range through permeable volcanic rocks

  9. Characterization of Upper-Troposphere Water Vapor Measurements during AFWEX Using LASE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrare, Richard; Browell, E. V.; Ismail, S.

    Water vapor profiles from NASA's Lidar Atmospheric Sensing Experiment (LASE) system acquired during the ARM/FIRE Water Vapor Experiment (AFWEX) are used to characterize upper troposphere water vapor (UTWV) measured by ground-based Raman lidars, radiosondes, and in situ aircraft sensors over the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in northern Oklahoma. LASE was deployed from the NASA DC-8 aircraft and measured water vapor over the ARM SGP Central Facility (CF) site during seven flights between November 27 and December 10, 2000. Initially, the DOE ARM SGP Cloud and Radiation Testbed (CART) Raman lidar (CARL) UTWVmore » profiles were about 5-7% wetter than LASE in the upper troposphere, and the Vaisala RS80-H radiosonde profiles were about 10% drier than LASE between 8-12 km. Scaling the Vaisala water vapor profiles to match the precipitable water vapor (PWV) measured by the ARM SGP microwave radiometer (MWR) did not change these results significantly. By accounting for an overlap correction of the CARL water vapor profiles and by employing schemes designed to correct the Vaisala RS80-H calibration method and account for the time response of the Vaisala RS80H water vapor sensor, the average differences between the CARL and Vaisala radiosonde upper troposphere water vapor profiles are reduced to about 5%, which is within the ARM goal of mean differences of less than 10%. The LASE and DC-8 in situ Diode Laser Hygrometer (DLH) UTWV measurements generally agreed to within about 3 to 4%. The DC-8 in situ frost point cryogenic hygrometer and Snow White chilled mirror measurements were drier than the LASE, Raman lidars, and corrected Vaisala RS80H measurements by about 10-25% and 10-15%, respectively. Sippican (formerly VIZ manufacturing) carbon hygristor radiosondes exhibited large variabilities and poor agreement with the other measurements. PWV derived from the LASE profiles agreed to within about 3% on average

  10. How safe is safe enough? Radiation risk for a human mission to Mars.

    PubMed

    Cucinotta, Francis A; Kim, Myung-Hee Y; Chappell, Lori J; Huff, Janice L

    2013-01-01

    Astronauts on a mission to Mars would be exposed for up to 3 years to galactic cosmic rays (GCR)--made up of high-energy protons and high charge (Z) and energy (E) (HZE) nuclei. GCR exposure rate increases about three times as spacecraft venture out of Earth orbit into deep space where protection of the Earth's magnetosphere and solid body are lost. NASA's radiation standard limits astronaut exposures to a 3% risk of exposure induced death (REID) at the upper 95% confidence interval (CI) of the risk estimate. Fatal cancer risk has been considered the dominant risk for GCR, however recent epidemiological analysis of radiation risks for circulatory diseases allow for predictions of REID for circulatory diseases to be included with cancer risk predictions for space missions. Using NASA's models of risks and uncertainties, we predicted that central estimates for radiation induced mortality and morbidity could exceed 5% and 10% with upper 95% CI near 10% and 20%, respectively for a Mars mission. Additional risks to the central nervous system (CNS) and qualitative differences in the biological effects of GCR compared to terrestrial radiation may significantly increase these estimates, and will require new knowledge to evaluate.

  11. How Safe Is Safe Enough? Radiation Risk for a Human Mission to Mars

    PubMed Central

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; Chappell, Lori J.; Huff, Janice L.

    2013-01-01

    Astronauts on a mission to Mars would be exposed for up to 3 years to galactic cosmic rays (GCR) — made up of high-energy protons and high charge (Z) and energy (E) (HZE) nuclei. GCR exposure rate increases about three times as spacecraft venture out of Earth orbit into deep space where protection of the Earth's magnetosphere and solid body are lost. NASA's radiation standard limits astronaut exposures to a 3% risk of exposure induced death (REID) at the upper 95% confidence interval (CI) of the risk estimate. Fatal cancer risk has been considered the dominant risk for GCR, however recent epidemiological analysis of radiation risks for circulatory diseases allow for predictions of REID for circulatory diseases to be included with cancer risk predictions for space missions. Using NASA's models of risks and uncertainties, we predicted that central estimates for radiation induced mortality and morbidity could exceed 5% and 10% with upper 95% CI near 10% and 20%, respectively for a Mars mission. Additional risks to the central nervous system (CNS) and qualitative differences in the biological effects of GCR compared to terrestrial radiation may significantly increase these estimates, and will require new knowledge to evaluate. PMID:24146746

  12. A Three Degrees of Freedom Test-Bed for Nanosatellite and CubeSat Attitude Dynamics, Determination, and Control

    DTIC Science & Technology

    2009-12-01

    Tactical Imaging Nano-sat Yielding Small-Cost Operations and Persistent Earth-coverage UFO UHF Follow On UHF Ultra-High Frequency USCG United...replaced by UHF Follow On ( UFO ) satellites in the 1990s. The UFO satellites are being updated and scheduled for replacement by the Mobile User

  13. Radiation Dose to the Esophagus From Breast Cancer Radiation Therapy, 1943-1996: An International Population-Based Study of 414 Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamart, Stephanie, E-mail: stephanie.lamart@nih.gov; Stovall, Marilyn; Simon, Steven L.

    2013-07-15

    Purpose: To provide dosimetric data for an epidemiologic study on the risk of second primary esophageal cancer among breast cancer survivors, by reconstructing the radiation dose incidentally delivered to the esophagus of 414 women treated with radiation therapy for breast cancer during 1943-1996 in North America and Europe. Methods and Materials: We abstracted the radiation therapy treatment parameters from each patient’s radiation therapy record. Treatment fields included direct chest wall (37% of patients), medial and lateral tangentials (45%), supraclavicular (SCV, 64%), internal mammary (IM, 44%), SCV and IM together (16%), axillary (52%), and breast/chest wall boosts (7%). The beam typesmore » used were {sup 60}Co (45% of fields), orthovoltage (33%), megavoltage photons (11%), and electrons (10%). The population median prescribed dose to the target volume ranged from 21 Gy to 40 Gy. We reconstructed the doses over the length of the esophagus using abstracted patient data, water phantom measurements, and a computational model of the human body. Results: Fields that treated the SCV and/or IM lymph nodes were used for 85% of the patients and delivered the highest doses within 3 regions of the esophagus: cervical (population median 38 Gy), upper thoracic (32 Gy), and middle thoracic (25 Gy). Other fields (direct chest wall, tangential, and axillary) contributed substantially lower doses (approximately 2 Gy). The cervical to middle thoracic esophagus received the highest dose because of its close proximity to the SCV and IM fields and less overlying tissue in that part of the chest. The location of the SCV field border relative to the midline was one of the most important determinants of the dose to the esophagus. Conclusions: Breast cancer patients in this study received relatively high incidental radiation therapy doses to the esophagus when the SCV and/or IM lymph nodes were treated, whereas direct chest wall, tangentials, and axillary fields contributed

  14. Simulation Comparisons of Three Different Meander Line Dipoles

    DTIC Science & Technology

    2015-01-01

    Paez C I. Design formulas for a meandered dipole. IEEE Xplore Digital Library, 2014: n. pag. Web. 2 September 2014. 2. Nguyen, VH, Phan, HP, Hoang...MH. Improving radiation characteristics of UHF RFID antennas by zigzag structures. IEEE Xplore Digital Library, 2014: n. pag. Web. 2 September 2014...geometry-based, frequency-independent lumped element model. IEEE Xplore Digital Library, 2014: n. pag. Web. 2 September 2014. 5. Olaode OO, Palmer WD

  15. Upper GI Bleeding in Children

    MedlinePlus

    Upper GI Bleeding in Children What is upper GI Bleeding? Irritation and ulcers of the lining of the esophagus, stomach or duodenum can result in upper GI bleeding. When this occurs the child may vomit ...

  16. Measurement of microwave radiation from electron beam in the atmosphere

    NASA Astrophysics Data System (ADS)

    Ohta, I. S.; Akimune, H.; Fukushima, M.; Ikeda, D.; Inome, Y.; Matthews, J. N.; Ogio, S.; Sagawa, H.; Sako, T.; Shibata, T.; Yamamoto, T.

    2016-02-01

    We report the use of an electron light source (ELS) located at the Telescope Array Observatory in Utah, USA, to measure the isotropic microwave radiation from air showers. To simulate extensive air showers, the ELS emits an electron beam into the atmosphere and a parabola antenna system for the satellite communication is used to measure the microwave radiation from the electron beam. Based on this measurement, an upper limit on the intensity of a 12.5 GHz microwave radiation at 0.5 m from a 1018 eV air shower was estimated to be 3.96×10-16 W m-2 Hz-1 with a 95% confidence level.

  17. [Passive ranging of infrared target using oxygen A-band and Elsasser model].

    PubMed

    Li, Jin-Hua; Wang, Zhao-Ba; Wang Zhi

    2014-09-01

    Passive ranging method of short range and single band was developed based on target radiation and attenuation characteristic of oxygen spectrum absorption. The relation between transmittance of oxygen A band and range of measured target was analyzed. Radiation strength distribution of measured target can be obtained according to the distribution law of absorption coefficient with environmental parameters. Passive ranging mathematical model of short ranges was established using Elsasser model with Lorentz line shape based on the computational methods of band average transmittance and high-temperature gas radiation narrowband model. The range of measured object was obtained using transmittance fitting with test data calculation and theoretical model. Besides, ranging precision was corrected considering the influence of oxygen absorption with enviromental parameter. The ranging experiment platform was established. The source was a 10 watt black body, and a grating spectrometer with 17 cm(-1) resolution was used. In order to improve the light receiving efficiency, light input was collected with 23 mm calibre telescope. The test data was processed for different range in 200 m. The results show that the transmittance accuracy was better than 2.18% in short range compared to the test data with predicted value in the same conditions.

  18. Network Management System for Tactical Mobile Ad Hoc Network Segments

    DTIC Science & Technology

    2011-09-01

    Protocol UFO UHF Follow-On UHF Ultra High Frequency USB Universal Serial Bus VHF Very High Frequency VIRT Valuable Information at the Right Time...military satellite system known as the UHF Follow-on system ( UFO ) only provides capacity for 600 concurrent users. DoD users also have commercial

  19. Titan's Upper Atmosphere from Cassini/UVIS Solar Occultations

    NASA Astrophysics Data System (ADS)

    Capalbo, Fernando J.; Bénilan, Yves; Yelle, Roger V.; Koskinen, Tommi T.

    2015-12-01

    Titan’s atmosphere is composed mainly of molecular nitrogen, methane being the principal trace gas. From the analysis of 8 solar occultations measured by the Extreme Ultraviolet channel of the Ultraviolet Imaging Spectrograph (UVIS) on board Cassini, we derived vertical profiles of N2 in the range 1100-1600 km and vertical profiles of CH4 in the range 850-1300 km. The correction of instrument effects and observational effects applied to the data are described. We present CH4 mole fractions, and average temperatures for the upper atmosphere obtained from the N2 profiles. The occultations correspond to different times and locations, and an analysis of variability of density and temperature is presented. The temperatures were analyzed as a function of geographical and temporal variables, without finding a clear correlation with any of them, although a trend of decreasing temperature toward the north pole was observed. The globally averaged temperature obtained is (150 ± 1) K. We compared our results from solar occultations with those derived from other UVIS observations, as well as studies performed with other instruments. The observational data we present confirm the atmospheric variability previously observed, add new information to the global picture of Titan’s upper atmosphere composition, variability, and dynamics, and provide new constraints to photochemical models.

  20. Sedimentology and stratigraphy of the Kanayut Conglomerate, central and western Brooks Range, Alaska; report of 1981 field season

    USGS Publications Warehouse

    Nilsen, T.H.; Moore, T.E.

    1982-01-01

    The Upper Devonian and Lower Mississippian(?) Kanayut Conglomerate forms a major stratigraphic unit along the crest of the Brooks Range of northern Alaska. It crops out for an east-west distance of about 900 km and a north-south distance of about 65 km. The Kanayut is wholly allochthonous and has probably been transported northward on a series of thrust plates. The Kanayut is as thick as 2,600 m in the east-central Brooks Range. It thins and fines to the south and west. The Kanayut forms the middle part of the allochthonous sequence of the Endicott Group, an Upper Devonian and Mississippian clastic sequence underlain by platform limestones of the Baird Group and overlain by platform limestone, carbonaceous shale, and black chert of the Lisburne Group. The Kanayut overlies the marine Upper Devonian Noatak Sandstone or, where it is missing, the marine Upper Devonian Hunt Fork Shale. It is overlain by the marine Mississippian Kayak Shale. The Kanayut Conglomerate forms the fluvial part of a large, coarse-grained delta that prograded to the southwest in Late Devonian time and retreated in Early Mississippian time. Four sections of the Kanayut Conglomerate in the central Brooks Range and five in the western Brooks Range were measured in 1981. The sections from the western Brooks Range document the presence of fluvial cycles in the Kanayut as far west as the shores of the Chukchi Sea. The Kanayut in this area is generally finer grained than it is in the central and eastern Brooks Range, having a maximum clast size of 3 cm. It is probably about 300 m thick. The upper and lower contacts of the Kanayut are gradational. The lower Kanayut contains calcareous, marine-influenced sandstone within channel deposits, and the upper Kanayut contains probable marine interdistributary-bay shale sequences. The members of the Kanayut Conglomerate cannot be differentiated in this region. In the central Brooks Range, sections of the Kanayut Conglomerate at Siavlat Mountain and Kakivilak