Sample records for uhmw-pe polytetrafluoroethylene ptfe

  1. EFFECTS OF TRITIUM EXPOSURE ON UHMW-PE, PTFE, AND VESPEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, E; Kirk Shanahan, K

    2006-05-31

    Samples of three polymers, Ultra-High Molecular Weight Polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE, also known as Teflon{reg_sign}), and Vespel{reg_sign} polyimide were exposed to 1 atmosphere of tritium gas at ambient temperature for varying times up to 2.3 years in closed containers. Sample mass and size measurements (to calculate density), spectra-colorimetry, dynamic mechanical analysis (DMA), and Fourier-transform infrared spectroscopy (FT-IR) were employed to characterize the effects of tritium exposure on these samples. Changes of the tritium exposure gas itself were characterized at the end of exposure by measuring total pressure and by mass spectroscopic analysis of the gas composition. None of the polymersmore » exhibited significant changes of density. The color of initially white UHMW-PE and PTFE dramatically darkened to the eye and the color also significantly changed as measured by colorimetry. The bulk of UHMW-PE darkened just like the external surfaces, however the fracture surface of PTFE appeared white compared to the PTFE external surfaces. The white interior could have been formed while the sample was breaking or could reflect the extra tritium dose at the surface directly from the gas. The dynamic mechanical response of UHMW-PE was typical of radiation effects on polymers- an initial stiffening (increased storage modulus) and reduction of viscous behavior after three months exposure, followed by lowering of the storage modulus after one year exposure and longer. The storage modulus of PTFE increased through about nine months tritium exposure, then the samples became too weak to handle or test using DMA. Characterization of Vespel{reg_sign} using DMA was problematic--sample-to-sample variations were significant and no systematic change with tritium exposure could be discerned. Isotopic exchange and incorporation of tritium into UHMW-PE (exchanging for protium) and into PTFE (exchanging for fluorine) was observed by FT-IR using an

  2. Phase dependent fracture and damage evolution of polytetrafluoroethylene (PTFE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, E. N.; Rae, P.; Orler, E. B.

    2004-01-01

    Compared with other polymers, polytetrafluoroethylene (PTFE) presents several advantages for load-bearing structural components including higher strength at elevated temperatures and higher toughness at lowered temperatures. Failure sensitive applications of PTFE include surgical implants, aerospace components, and chemical barriers. Polytetrafluoroethylene is semicrystalline in nature with their linear chains forming complicated phases near room temperature and ambient pressure. The presence of three unique phases near room temperature implies that failure during standard operating conditions may be strongly dependent on the phase. This paper presents a comprehensive and systematic study of fracture and damage evolution in PTFE to elicit the effects of temperature-inducedmore » phase on fracture mechanisms. The fracture behavior of PTFE is observed to undergo transitions from brittle-fracture below 19 C to ductile-fracture with crazing and some stable crack growth to plastic flow aver 30 C. The bulk failure properties are correlated to failure mechanisms through fractography and analysis of the crystalline structure.« less

  3. TRITIUM EFFECTS ON DYNAMIC MECHANICAL PROPERTIES OF POLYMERIC MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, E

    2008-11-12

    Dynamic mechanical analysis has been used to characterize the effects of tritium gas (initially 1 atm. pressure, ambient temperature) exposure over times up to 2.3 years on several thermoplastics-ultrahigh molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE), and Vespel{reg_sign} polyimide, and on several formulations of elastomers based on ethylene propylene diene monomer (EPDM). Tritium exposure stiffened the elastic modulus of UHMW-PE up to about 1 year and then softened it, and reduced the viscous response monotonically with time. PTFE initially stiffened, however the samples became too weak to handle after nine months exposure. The dynamic properties of Vespel{reg_sign} were not affected. Themore » glass transition temperature of the EPDM formulations increased approximately 4 C. following three months tritium exposure.« less

  4. Effect of simulation conditions on friction in polytetrafluoroethylene (PTFE)

    NASA Astrophysics Data System (ADS)

    Barry, Peter R.; Jang, Inkook; Perry, Scott S.; Sawyer, W. Gregory; Sinnott, Susan B.; Phillpot, Simon R.

    2007-12-01

    We report the results of molecular-dynamics simulations of friction at polytetrafluoroethylene (PTFE) interfaces and show that the calculated tribological properties are robust against significant changes in the sliding speed and the morphology of the polymer.

  5. ENVIRONMENTALLY-BENIGN POLYTETRAFLUOROETHYLENE (PTFE) COATINGS FOR MOLD RELEASE - PHASE II

    EPA Science Inventory

    GVD proposes to develop high performance, volatile organic compound (VOC)-free and perfluorooctanoic acid (PFOA)-free, non-stick mold release coatings based on its novel polytetrafluoroethylene (PTFE) fluoropolymer technology. Most commercial mold release agents make use of...

  6. Active screen cage pulsed dc discharge for implanting copper in polytetrafluoroethylene (PTFE)

    NASA Astrophysics Data System (ADS)

    Zaka-ul-Islam, Mujahid; Naeem, Muhammad; Shafiq, Muhammad; Sitara; Jabbar Al-Rajab, Abdul; Zakaullah, Muhammad

    2017-07-01

    Polymers such as polytetrafluoroethylene (PTFE) are widely used in artificial organs where long-term anti-bacterial properties are required to avoid bacterial proliferation. Copper or silver ion implantation on the polymer surface is known as a viable method to generate long-term anti-bacterial properties. Here, we have tested pulsed DC plasma with copper cathodic cage for the PTFE surface treatment. The surface analysis of the treated specimens suggests that the surface, structural properties, crystallinity and chemical structure of the PTFE have been changed, after the plasma treatment. The copper release tests show that copper ions are released from the polymer at a slow rate and quantity of the released copper increases with the plasma treatment time.

  7. Electrostatic Properties of PE and PTFE Subjected to Atmospheric Pressure Plasma Treatment; Correlation of Experimental Results with Atomistic Modeling

    NASA Technical Reports Server (NTRS)

    Trigwell, Steve; Boucher, Derrick; Calle, Carlos

    2006-01-01

    The use of an atmospheric pressure glow discharge (APGD) plasma was used at KSC to increase the hydrophilicity of spaceport materials to enhance their surface charge dissipation and prevent possible ESD in spaceport operations. Significant decreases in charge decay times were observed after tribocharging the materials using the standard KSC tribocharging test. The polarity and amount of charge transferred was dependent upon the effective work function differences between the respective materials. In this study, polyethylene (PE) and polytetrafluoroethylene (PTFE) were exposed to a He+O2 APGD. The pre and post treatment surface chemistry was analyzed by X-ray photoelectron spectroscopy and contact angle measurements. Semi-empirical and ab initio calculations were performed to correlate the experimental results with some plausible molecular and electronic structure features of the oxidation process. For the PE, significant surface oxidation was observed, as indicated by XPS showing C-O, C=O, and O-C=O bonding, and a decrease in the surface contact angle from 98.9 deg to 61.2 deg. For the PTFE, no C-O bonding appeared and the surface contact angle increased indicating the APGD only succeeded in cleaning the PTFE surface without affecting the surface structure. The calculations using the PM3 and DFT methods were performed on single and multiple oligomers to simulate a wide variety of oxidation scenarios. Calculated work function results suggest that regardless of oxidation mechanism, e.g. -OH, =0 or a combination thereof, the experimentally observed levels of surface oxidation are unlikely to lead to a significant change in the electronic structure of PE and that its increased hydrophilic properties are the primary reason for the observed changes in its electrostatic behavior. The calculations for PTFE argue strongly against significant oxidation of that material, as confirmed by the XPS results.

  8. Packing of poly(tetrafluoroethylene) in the liquid state: Molecular dynamics simulation and theory

    NASA Astrophysics Data System (ADS)

    Tsige, Mesfin; Curro, John G.; Grest, Gary S.

    2008-12-01

    Molecular dynamics simulations and polymer reference interaction site model theory calculations were carried out on the C48F98 oligomer of poly(tetrafluoroethylene) (PTFE) at 500 and 600 K. The exp-6 force field of Borodin, Smith, and Bedrov, was used in both the simulation and theory. The agreement between theory and simulation was equivalent to earlier studies on polyolefin melts. The intermolecular pair correlation functions of PTFE were shifted to larger distances relative to polyethylene (PE) due to the difference in the van der Waals radii of F and H atoms. A similar shift to lower wave vectors was found in the structure factor of PTFE relative to PE.

  9. Scalable bonding of nanofibrous polytetrafluoroethylene (PTFE) membranes on microstructures

    NASA Astrophysics Data System (ADS)

    Mortazavi, Mehdi; Fazeli, Abdolreza; Moghaddam, Saeed

    2018-01-01

    Expanded polytetrafluoroethylene (ePTFE) nanofibrous membranes exhibit high porosity (80%-90%), high gas permeability, chemical inertness, and superhydrophobicity, which makes them a suitable choice in many demanding fields including industrial filtration, medical implants, bio-/nano- sensors/actuators and microanalysis (i.e. lab-on-a-chip). However, one of the major challenges that inhibit implementation of such membranes is their inability to bond to other materials due to their intrinsic low surface energy and chemical inertness. Prior attempts to improve adhesion of ePTFE membranes to other surfaces involved surface chemical treatments which have not been successful due to degradation of the mechanical integrity and the breakthrough pressure of the membrane. Here, we report a simple and scalable method of bonding ePTFE membranes to different surfaces via the introduction of an intermediate adhesive layer. While a variety of adhesives can be used with this technique, the highest bonding performance is obtained for adhesives that have moderate contact angles with the substrate and low contact angles with the membrane. A thin layer of an adhesive can be uniformly applied onto micro-patterned substrates with feature sizes down to 5 µm using a roll-coating process. Membrane-based microchannel and micropillar devices with burst pressures of up to 200 kPa have been successfully fabricated and tested. A thin layer of the membrane remains attached to the substrate after debonding, suggesting that mechanical interlocking through nanofiber engagement is the main mechanism of adhesion.

  10. RADIOLYTIC GAS PRODUCTION RATES OF POLYMERS EXPOSED TO TRITIUM GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, E.

    Data from previous reports on studies of polymers exposed to tritium gas is further analyzed to estimate rates of radiolytic gas production. Also, graphs of gas release during tritium exposure from ultrahigh molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE, a trade name is Teflon®), and Vespel® polyimide are re-plotted as moles of gas as a function of time, which is consistent with a later study of tritium effects on various formulations of the elastomer ethylene-propylene-diene monomer (EPDM). These gas production rate estimates may be useful while considering using these polymers in tritium processing systems. These rates are valid at least formore » the longest exposure times for each material, two years for UHMW-PE, PTFE, and Vespel®, and fourteen months for filled and unfilled EPDM. Note that the production “rate” for Vespel® is a quantity of H{sub 2} produced during a single exposure to tritium, independent of length of time. The larger production rate per unit mass for unfilled EPDM results from the lack of filler- the carbon black in filled EPDM does not produce H{sub 2} or HT. This is one aspect of how inert fillers reduce the effects of ionizing radiation on polymers.« less

  11. Acquisition of reproducible transmission near-infrared (NIR) spectra of solid samples with inconsistent shapes by irradiation with isotropically diffused radiation using polytetrafluoroethylene (PTFE) beads.

    PubMed

    Lee, Jinah; Duy, Pham Khac; Yoon, Jihye; Chung, Hoeil

    2014-06-21

    A bead-incorporated transmission scheme (BITS) has been demonstrated for collecting reproducible transmission near-infrared (NIR) spectra of samples with inconsistent shapes. Isotropically diffused NIR radiation was applied around a sample and the surrounding radiation was allowed to interact homogeneously with the sample for transmission measurement. Samples were packed in 1.40 mm polytetrafluoroethylene (PTFE) beads, ideal diffusers without NIR absorption, and then transmission spectra were collected by illuminating the sample-containing beads using NIR radiation. When collimated radiation was directly applied, a small portion of the non-fully diffused radiation (NFDR) propagated through the void space of the packing and eventually degraded the reproducibility. Pre-diffused radiation was introduced by placing an additional PTFE disk in front of the packing to diminish NFDR, which produced more reproducible spectral features. The proposed scheme was evaluated by analyzing two different solid samples: density determination for individual polyethylene (PE) pellets and identification of mining locality for tourmalines. Because spectral collection was reproducible, the use of the spectrum acquired from one PE pellet was sufficient to accurately determine the density of nine other pellets with different shapes. The differentiation of tourmalines, which are even more dissimilar in appearance, according to their mining locality was also feasible with the help of the scheme.

  12. Measurement of the absolute reflectance of polytetrafluoroethylene (PTFE) immersed in liquid xenon

    NASA Astrophysics Data System (ADS)

    Neves, F.; Lindote, A.; Morozov, A.; Solovov, V.; Silva, C.; Bras, P.; Rodrigues, J. P.; Lopes, M. I.

    2017-01-01

    The performance of a detector using liquid xenon (LXe) as a scintillator is strongly dependent on the collection efficiency for xenon scintillation light, which in turn is critically dependent on the reflectance of the surfaces that surround the active volume. To improve the light collection in such detectors the active volume is usually surrounded by polytetrafluoroethylene (PTFE) reflector panels, used due to its very high reflectance—even at the short wavelength of scintillation light of LXe (peaked at 178 nm). In this work, which contributed to the overall R&D effort towards the LUX-ZEPLIN (LZ) experiment, we present experimental results for the absolute reflectance measurements of three different PTFE samples (including the material used in the LUX detector) immersed in LXe for its scintillation light. The obtained results show that very high bi-hemispherical reflectance values (>= 97%) can be achieved, enabling very low energy thresholds in liquid xenon scintillator-based detectors.

  13. Functional properties of poly(tetrafluoroethylene) (PTFE) gasket working in nuclear reactor conditions

    NASA Astrophysics Data System (ADS)

    Wyszkowska, Edyta; Leśniak, Magdalena; Kurpaska, Lukasz; Prokopowicz, Rafal; Jozwik, Iwona; Sitarz, Maciej; Jagielski, Jacek

    2018-04-01

    In this study structural and nanomechanical properties of polytetrafluoroethylene (PTFE) used as a gasket in the nuclear reactor have been deeply investigated. In order to reveal structural changes caused by long-term pressure, temperature and irradiation (possibly neutron and gamma), methods such as SEM, X-ray diffraction and Raman Spectroscopy have been used. Nanomechanical properties such as Young Modulus and hardness were investigated by means of the nanoindentation technique. Presented study confirmed the influence of working (radiative) environment on the functional properties of PTFE. The results of Raman spectroscopy and X-ray diffraction techniques revealed shift of the major band positions and band intensities increase. Moreover, changes of hardness and Young Modulus values of the irradiated material with respect to the virgin specimen have been recorded. This phenomenon can be attributed to the modifications in crystallinity of the material. Presented work suggest that morphology of the irradiated material altered from well-ordered parallel fibers to more dense and thicker ones.

  14. Novel Remanufacturing Process of Recycled Polytetrafluoroethylene(PTFE)/GF Laminate

    NASA Astrophysics Data System (ADS)

    Xi, Z.; Ghita, O. R.; Johnston, P.; Evans, K. E.

    2011-01-01

    Currently, the PTFE/GF laminate and PTFE PCB manufacturers are under considerable pressure to address the recycling issues due to Waste Electrical and Electronic Equipment (WEEE) Directive, shortage of landfill capacity and cost of disposal. This study is proposing a novel manufacture method for reuse of the mechanical ground PTFE/Glass fibre (GF) laminate and production of the first reconstitute PTFE/GF laminate. The reconstitute PTFE/GF laminate proposed here consists of a layer of recycled sub-sheet, additional layers of PTFE and PTFE coated glass cloth, also covered by copper foils. The reconstitute PTFE/GF laminate showed good dielectric properties. Therefore, there is potential to use the mechanical ground PTFE/GF laminate powder to produce reconstitute PTFE/GF laminate, for use in high frequencies PCB applications.

  15. Airborne nanoparticle concentrations in the manufacturing of polytetrafluoroethylene (PTFE) apparel.

    PubMed

    Vosburgh, Donna J H; Boysen, Dane A; Oleson, Jacob J; Peters, Thomas M

    2011-03-01

    One form of waterproof, breathable apparel is manufactured from polytetrafluoroethylene (PTFE) membrane laminated fabric using a specific process to seal seams that have been sewn with traditional techniques. The sealing process involves applying waterproof tape to the seam by feeding the seam through two rollers while applying hot air (600 °C). This study addressed the potential for exposure to particulate matter from this sealing process by characterizing airborne particles in a facility that produces more than 1000 lightweight PTFE rain jackets per day. Aerosol concentrations throughout the facility were mapped, breathing zone concentrations were measured, and hoods used to ventilate the seam sealing operation were evaluated. The geometric mean (GM) particle number concentrations were substantially greater in the sewing and sealing areas (67,000 and 188,000 particles cm⁻³)) compared with that measured in the office area (12,100 particles cm⁻³). Respirable mass concentrations were negligible throughout the facility (GM = 0.002 mg m⁻³) in the sewing and sealing areas). The particles exiting the final discharge of the facility's ventilation system were dominated by nanoparticles (number median diameter = 25 nm; geometric standard deviation of 1.39). The breathing zone particle number concentrations of the workers who sealed the sewn seams were highly variable and significantly greater when sealing seams than when conducting other tasks (p < 0.0001). The sealing workers' breathing zone concentrations ranged from 147,000 particles cm⁻³ to 798,000 particles cm⁻³, and their seam responsibility significantly influenced their breathing zone concentrations (p = 0.03). The finding that particle number concentrations were approximately equal outside the hood and inside the local exhaust duct indicated poor effectiveness of the canopy hoods used to ventilate sealing operations.

  16. Airborne Nanoparticle Concentrations in the Manufacturing of Polytetrafluoroethylene (PTFE) Apparel

    PubMed Central

    Vosburgh, Donna J.H.; Boysen, Dane A.; Oleson, Jacob J.; Peters, Thomas M.

    2016-01-01

    One form of waterproof, breathable apparel is manufactured from polytetrafluoroethylene (PTFE) membrane laminated fabric, using a specific process to seal seams that have been sewn with traditional techniques. The sealing process involves applying waterproof tape to the seam by feeding the seam through two rollers while applying hot air (600°C). This study addressed the potential for exposure to particulate matter from this sealing process, by characterizing airborne particles in a facility that produces over 1,000 lightweight PTFE rain jackets per day. Aerosol concentrations throughout the facility were mapped, breathing zone concentrations were measured, and hoods used to ventilate the seam sealing operation were evaluated. The geometric mean (GM) particle number concentrations were substantially greater in the sewing and sealing areas (67,000 and 188,000 particles cm−3) compared to that measured in the office area (12,100 particles cm−3). Respirable mass concentrations were negligible throughout the facility (GM=0.002 mg m−3 in the sewing and sealing areas). The particles exiting the final discharge of the facility's ventilation system were dominated by nanoparticles (number median diameter = 25 nm; geometric standard deviation of 1.39). The breathing zone particle number concentrations of the workers who sealed the sewn seams were highly variable and significantly greater when sealing seams than when conducting other tasks (p<0.0001). The sealing workers’ breathing zone concentrations ranged from 147,000 particles cm−3 to 798,000 particles cm−3, and their seam responsibility significantly influenced their breathing zone concentrations (p=0.03). The finding that particle number concentrations were approximately equal outside the hood and inside the local exhaust duct indicated poor effectiveness of the canopy hoods used to ventilate sealing operations. PMID:21347955

  17. Preparation Nano-Structure Polytetrafluoroethylene (PTFE) Functional Film on the Cellulose Insulation Polymer and Its Effect on the Breakdown Voltage and Hydrophobicity Properties

    PubMed Central

    Liu, Cong; Li, Yanqing; Liao, Ruijin; Liao, Qiang; Tang, Chao

    2018-01-01

    Cellulose insulation polymer is an important component of oil-paper insulation, which is widely used in power transformer. The weight of the cellulose insulation polymer materials is as high as tens of tons in the larger converter transformer. Excellent performance of oil-paper insulation is very important for ensuring the safe operation of larger converter transformer. An effective way to improve the insulation and the physicochemical property of the oil impregnated insulation pressboard/paper is currently a popular research topic. In this paper, the polytetrafluoroethylene (PTFE) functional film was coated on the cellulose insulation pressboard by radio frequency (RF) magnetron sputtering to improve its breakdown voltage and the hydrophobicity properties. X-ray photoelectron spectroscopy (XPS) results show that the nano-structure PTFE functional film was successfully fabricated on the cellulose insulation pressboard surface. The scanning electron microscopy (SEM) and X-ray diffraction (XRD) present that the nanoscale size PTFE particles were attached to the pressboard surface and it exists in the amorphous form. Atomic force microscopy (AFM) shows that the sputtered pressboard surface is still rough. The rough PTFE functional film and the reduction of the hydrophilic hydroxyl of the surface due to the shielding effect of PTFE improve the breakdown and the hydrophobicity properties of the cellulose insulation pressboard obviously. This paper provides an innovative way to improve the performance of the cellulose insulation polymer. PMID:29883376

  18. Preparation Nano-Structure Polytetrafluoroethylene (PTFE) Functional Film on the Cellulose Insulation Polymer and Its Effect on the Breakdown Voltage and Hydrophobicity Properties.

    PubMed

    Hao, Jian; Liu, Cong; Li, Yanqing; Liao, Ruijin; Liao, Qiang; Tang, Chao

    2018-05-21

    Cellulose insulation polymer is an important component of oil-paper insulation, which is widely used in power transformer. The weight of the cellulose insulation polymer materials is as high as tens of tons in the larger converter transformer. Excellent performance of oil-paper insulation is very important for ensuring the safe operation of larger converter transformer. An effective way to improve the insulation and the physicochemical property of the oil impregnated insulation pressboard/paper is currently a popular research topic. In this paper, the polytetrafluoroethylene (PTFE) functional film was coated on the cellulose insulation pressboard by radio frequency (RF) magnetron sputtering to improve its breakdown voltage and the hydrophobicity properties. X-ray photoelectron spectroscopy (XPS) results show that the nano-structure PTFE functional film was successfully fabricated on the cellulose insulation pressboard surface. The scanning electron microscopy (SEM) and X-ray diffraction (XRD) present that the nanoscale size PTFE particles were attached to the pressboard surface and it exists in the amorphous form. Atomic force microscopy (AFM) shows that the sputtered pressboard surface is still rough. The rough PTFE functional film and the reduction of the hydrophilic hydroxyl of the surface due to the shielding effect of PTFE improve the breakdown and the hydrophobicity properties of the cellulose insulation pressboard obviously. This paper provides an innovative way to improve the performance of the cellulose insulation polymer.

  19. Study of Abrasive Wear Volume Map for PTFE and PTFE Composites

    NASA Astrophysics Data System (ADS)

    Unal, H.; Sen, U.; Mimaroglu, A.

    2007-11-01

    The potential of this work is based on consideration of wear volume map for the evaluation of abrasive wear performance of polytetrafluoroethylene (PTFE) and PTFE composites. The fillers used in the composite are 25% bronze, 35% graphite and 17% glass fibre glass (GFR). The influence of filler materials, abrasion surface roughness and applied load values on abrasive wear performance of PTFE and PTFE composites were studied and evaluated. Experimental abrasive wear tests were carried out at atmospheric condition on pin-on-disc wear tribometer. Tests were performed under 4, 6, 8 and 10 N load values, travelling speed of 1 m/sec and abrasion surface roughness values of 5, 20 and 45 µm. Wear volume maps were obtained and the results showed that the lowest wear volume rate for PTFE is reached using GFR filler. Furthermore, the results also showed that the higher is the applied load and the roughness of the abrasion surface, the higher is the wear rate. Finally it is also concluded that abrasive wear process mechanism include ploughing and cutting mechanisms.

  20. Improved conductivity of carbon-nano-fiber (CNF)/polytetrafluoroethylene (PTFE) composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandra, Sarita; Kalra, G. S.; Pushkar, Vinay K.

    2016-05-23

    A series of CNF/PTFE composite loaded with different weight % of CNFs as 0.01, 0.02, 0.03, 0.05, 1, 2, 3, 4, 5 into PTFE is fabricated. In this work, the 5wt% heat-treated CNFs were used as filler in PTFE. Current-voltage (I-V) study of the samples confirmed the samples as conducting composite. In scanning electron microscope (SEM) study, the conducting CNFs channels were observed from upper surface to inside throughout the polymer matrix. A sintered composite of 5 wt% loading of CNFs showed an improved conductivity and SEM image exhibited a good binding of CNFs into PTFE.

  1. Method of radiation degradation of PTFE under vacuum conditions

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey

    2004-09-01

    A new method of radiation degradation of Polytetrafluoroethylene (PTFE) under vacuum conditions is considered in this report. The combination of glow gas discharge and electrical surface discharge (on surface and inside PTFE) increases the efficiency of thermal-radiation degradation. The main mechanism of this degradation method consists of the breaking of C-C and C-F bonds. The vacuum conditions allow decreasing of the concentration of toxic compounds, such as a HF. Experimental results for degradation of PTFE are presented.

  2. Antibiotic bonding to polytetrafluoroethylene with tridodecylmethylammonium chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, R.A.; Alcid, D.V.; Greco, R.S.

    Polytetrafluoroethylene (PTFE) treated with the cationic surfactant, triodecylmethylammonium chloride (TDMAC), binds /sup 14/C-penicillin (1.5 to 2 mg antibiotic/cm graft), whereas untreated PTFE or PTFE treated with anionic detergents shows little binding of antibiotic. TDMAC-treated PTFE concomitantly binds penicillin and heparin, generating a surface that potentially can resist both infection and thrombosis. The retention of these biologically active molecules is not due to passive entrapment in the PTFE but reflects an ionic interaction between the anionic ligands and surface-bound TDMAC. Penicillin bound to PTFE is not removed by exhaustive washing in aqueous buffers but is slowly released in the presence ofmore » plasma or when the PTFE is placed in a muscle pouch in the rat. Muscle tissue adjacent to the treated PTFE shows elevated levels of antibiotic following implantation. PTFE treated with TDMAC and placed in a muscle pouch binds /sup 14/C-penicillin when it is locally irrigated with antibiotic or when penicillin is administered intravenously. Thus, the TDMAC surface treated either in vitro or in vivo with penicillin provides an effective in situ source for the timed release of antibiotic.« less

  3. Scanning electron microscope study of polytetrafluoroethylene sliding on aluminum single crystals

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Buckley, D. H.

    1973-01-01

    Friction experiments were conducted in air with polytetrafluoroethylene (PTFE) sliding on aluminum single crystals. Mechanical scoring of the crystals with (110) and (100) orientations was observed with a single pass of the PTFE slider. No scoring was observed on the (111). The degree of scoring of the crystals is related to the hardness, with the hardest surface (111) showing no damage and the softest surface (110) showing the most severe scoring. Scoring is caused by work-hardened pieces of aluminum which, as a consequence of the adhesion between PTFE and aluminum, were pulled out of the bulk and became embedded in the PTFE polymer.

  4. Influence of epoxy, polytetrafluoroethylene (PTFE) and rhodium surface coatings on surface roughness, nano-mechanical properties and biofilm adhesion of nickel titanium (Ni-Ti) archwires

    NASA Astrophysics Data System (ADS)

    Asiry, Moshabab A.; AlShahrani, Ibrahim; Almoammar, Salem; Durgesh, Bangalore H.; Kheraif, Abdulaziz A. Al; Hashem, Mohamed I.

    2018-02-01

    Aim. To investigate the effect of epoxy, polytetrafluoroethylene (PTFE) and rhodium surface coatings on surface roughness, nano-mechanical properties and biofilm adhesion of nickel titanium (Ni-Ti) archwires Methods. Three different coated (Epoxy, polytetrafluoroethylene (PTFE) and rhodium) and one uncoated Ni-Ti archwires were evaluated in the present study. Surface roughness (Ra) was assessed using a non-contact surface profilometer. The mechanical properties (nano-hardness and elastic modulus) were measured using a nanoindenter. Bacterial adhesion assays were performed using Streptococcus mutans (MS) and streptococcus sobrinus (SS) in an in-vitro set up. The data obtained were analyzed using analyses of variance, Tukey’s post hoc test and Pearson’s correlation coefficient test. Result. The highest Ra values (1.29 ± 0.49) were obtained for epoxy coated wires and lowest Ra values (0.29 ± 0.16) were obtained for the uncoated wires. No significant differences in the Ra values were observed between the rhodium coated and uncoated archwires (P > 0.05). The highest nano-hardness (3.72 ± 0.24) and elastic modulus values (61.15 ± 2.59) were obtained for uncoated archwires and the lowest nano-hardness (0.18 ± 0.10) and elastic modulus values (4.84 ± 0.65) were observed for epoxy coated archwires. No significant differences in nano-hardness and elastic modulus values were observed between the coated archwires (P > 0.05). The adhesion of Streptococcus mutans (MS) to the wires was significantly greater than that of streptococcus sobrinus (SS). The epoxy coated wires demonstrated an increased adhesion of MS and SS and the uncoated wires demonstrated decreased biofilm adhesion. The Spearman correlation test showed that MS and SS adhesion was positively correlated with the surface roughness of the wires. Conclusion. The different surface coatings significantly influence the roughness, nano-mechanical properties and biofilm adhesion parameters of the archwires. The

  5. Reflectance of polytetrafluoroethylene for xenon scintillation light

    NASA Astrophysics Data System (ADS)

    Silva, C.; Pinto da Cunha, J.; Pereira, A.; Chepel, V.; Lopes, M. I.; Solovov, V.; Neves, F.

    2010-03-01

    Gaseous and liquid xenon particle detectors are being used in a number of applications including dark matter search and neutrino-less double beta decay experiments. Polytetrafluoroethylene (PTFE) is often used in these detectors both as electrical insulator and as a light reflector to improve the efficiency of detection of scintillation photons. However, xenon emits in the vacuum ultraviolet (VUV) wavelength region (λ ≃175 nm) where the reflecting properties of PTFE are not sufficiently known. In this work, we report on measurements of PTFE reflectance, including its angular distribution, for the xenon scintillation light. Various samples of PTFE, manufactured by different processes (extruded, expanded, skived, and pressed) have been studied. The data were interpreted with a physical model comprising both specular and diffuse reflections. The reflectance obtained for these samples ranges from about 47% to 66% for VUV light. Other fluoropolymers, namely, ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), and perfluoro-alkoxyalkane (PFA) were also measured.

  6. Direct glycerol fuel cell with polytetrafluoroethylene (PTFE) thin film separator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benipal, Neeva; Qi, Ji; Dalian Univ. of Technology, Dalian

    Here, anion-exchange membrane-based direct glycerol fuel cells (AEM-DGFCs) can yield high power density, however challenges exist in developing chemically stable AEMs. Here, we demonstrate a porous PTFE thin film, a well-known chemical, electro-chemical, and thermal robust material that can serve as a separator between anode and cathode, thus achieving high DGFC’s performance. A simple aqueous-phase reduction method was used to prepare carbon nanotube supported PdAg nanoparticles (PdAg/CNT) with an average particle size of 2.9 nm. A DGFC using a PTFE thin film without any further modification with PdAg/CNT anode catalyst exhibits a peak power density of 214.7 mW cm –2more » at 80 °C, about 22.6% lower than a DGFC using a state-of-the-art AEM. We report a 5.8% decrease and 11.1% decrease in cell voltage for a PTFE thin film and AEM; similarly, the cell voltage degradation rate decreases from 1.2 to 0.8 mV h –1 for PTFE thin film, while for AEM, it decreases from 9.6 to 3.0 mV h –1 over an 80 h durability test period. Transmission electron microscopy results indicate that the average particle size of PdAg/CNT increases from 2.9 to 3.7 nm after 80 h discharge; this suggests that PdAg particle growth may be the main reason for the performance drop.« less

  7. Direct glycerol fuel cell with polytetrafluoroethylene (PTFE) thin film separator

    DOE PAGES

    Benipal, Neeva; Qi, Ji; Dalian Univ. of Technology, Dalian; ...

    2017-01-04

    Here, anion-exchange membrane-based direct glycerol fuel cells (AEM-DGFCs) can yield high power density, however challenges exist in developing chemically stable AEMs. Here, we demonstrate a porous PTFE thin film, a well-known chemical, electro-chemical, and thermal robust material that can serve as a separator between anode and cathode, thus achieving high DGFC’s performance. A simple aqueous-phase reduction method was used to prepare carbon nanotube supported PdAg nanoparticles (PdAg/CNT) with an average particle size of 2.9 nm. A DGFC using a PTFE thin film without any further modification with PdAg/CNT anode catalyst exhibits a peak power density of 214.7 mW cm –2more » at 80 °C, about 22.6% lower than a DGFC using a state-of-the-art AEM. We report a 5.8% decrease and 11.1% decrease in cell voltage for a PTFE thin film and AEM; similarly, the cell voltage degradation rate decreases from 1.2 to 0.8 mV h –1 for PTFE thin film, while for AEM, it decreases from 9.6 to 3.0 mV h –1 over an 80 h durability test period. Transmission electron microscopy results indicate that the average particle size of PdAg/CNT increases from 2.9 to 3.7 nm after 80 h discharge; this suggests that PdAg particle growth may be the main reason for the performance drop.« less

  8. Adhesion and transfer of PTFE to metals studied by auger emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.; Buckley, D. H.

    1972-01-01

    The adhesion and transfer of polytetrafluoroethylene (PTFE) to metals in ultrahigh vacuum has been studied using Auger emission spectroscopy. The transfer was effected both by compressive static contact and by sliding contact. The transfer observed after static contact was independent of the chemical constitution of the substrate. Electron induced desorption of the fluorine in the transferred PTFE showed that the fluorine had no chemical interaction with the metal substrate. The coefficient of friction on metals was independent of the chemical constitution of the substrate. However, sliding PTFE on soft metals such as aluminum, generated wear fragments that lodged in the PTFE and machined the substrate.

  9. Improved adhesion of Ni films on X-ray damaged polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Pepper, S. V.

    1981-01-01

    The considered investigation shows that the adhesion of evaporated Ni on polytetrafluoroethylene (PTFE) is enhanced by irradiating the PTFE surface prior to evaporation. Evidence obtained with the aid of X-ray photoelectron spectroscopy is presented concerning the association of the enhanced adhesion with an interfacial chemical reaction. Evaporated Ni clearly adheres better to the X-ray damaged PTFE surface than to the undamaged surface. There is evidence that the improved adhesion is not related to the Ni-C bond, but rather to the NiF2. A possible mechanism which may be consistent with the data is the formation of a F-Ni-C complex, where C is a member of the polymer chain.

  10. Study on surface adhesion of Plasma modified Polytetrafluoroethylene hollow fiber membrane

    NASA Astrophysics Data System (ADS)

    Chen, Jiangrong; Zhang, Huifeng; Liu, Guochang; Guo, Chungang; Lv, Jinglie; Zhangb, Yushan

    2018-01-01

    Polytetrafluoroethylene (PTFE) is popular membrane material because of its excellent thermal stability, chemical stability and mechanical stability. However, the low surface energy and non-sticky property of PTFE present challenges for modification. In the present study, plasma treatment was performed to improve the surface adhesion of PTFE hollow fiber membrane. The effect of discharge voltage, treatment time on the adhesion of PTFE hollow fiber membrane was symmetrically evaluated. Results showed that the plasma treatment method contributed to improve the surface activity and roughness of PTFE hollow fiber membrane, and the adhesion strength depend significantly on discharge voltage, which was beneficial to seepage pressure of PTFE hollow fiber membrane module. The adhesion strength of PTFE membrane by plasma treated at 220V for 3min reached as high as 86.2 N, far surpassing the adhesion strength 12.7 N of pristine membrane. Furthermore, improvement of content of free radical and composition analysis changes of the plasma modified PTFE membrane were investigated. The seepage pressure of PTFE membrane by plasma treated at 220V for 3min was 0.375 MPa, which means that the plasma treatment is an effective technique to improve the adhesion strength of membrane.

  11. Impact Initiation of Rods of Pressed Polytetrafluoroethylene (PTFE) and Aluminum Powders

    NASA Astrophysics Data System (ADS)

    Mock, Willis, Jr.

    2005-07-01

    A gas gun has been used to investigate the shock initiation of rods consisting of a mixture of 74 wt % PTFE (28 μm particle size) and 26 wt % aluminum (5 μm particle size) powders. The 7.6 mm diameter by 51 mm long rods were fabricated from material that had been pressed and sintered to a full density of 2.27 gm/cm^ 3. The rods were sabot-launched into 4340 steel anvils at impact velocities ranging from 104 to 777 m/s. This corresponds to calculated impact stresses of 3.3 to 48 kbar. The experiments were carried out in a 50-100 mtorr vacuum. A framing camera was used to observe the time sequence of events. These include changes in rod shape, fracture, and the initiation and evolution of the reaction phenomena. Observation of first visible light after impact was taken as the initiation time. Initiation of the reaction occurred at discrete locations in the rod material. At low velocity, no initiation occurred. Above an initiation threshold, the initiation time dropped abruptly from 56 μs just above threshold to 4 μs at the highest impact velocity. Two experiments were performed for pure PTFE material for comparison with the PTFE/Al rods. The pure PTFE showed more extensive radial flow without obvious brittle fracture. For the 784 m/s impact experiment, small points of light were observed on the edge of the mushroomed portion of the rod about 20 μs after impact, suggesting the onset of chemical reaction.

  12. Computer Simulations of Polytetrafluoroethylene in the Solid State

    NASA Astrophysics Data System (ADS)

    Holt, D. B.; Farmer, B. L.; Eby, R. K.; Macturk, K. S.

    1996-03-01

    Force field parameters (Set I) for fluoropolymers were previously derived from MOPAC AM1 semiempirical data on model molecules. A second set (Set II) was derived from the AM1 results augmented by ab initio calculations. Both sets yield reasonable helical and phase II packing structures for polytetrafluoroethylene (PTFE) chains. However, Set I and Set II differ in the strength of van der Waals interactions, with Set II having deeper potential wells (order of magnitude). To differentiate which parameter set provides a better description of PTFE behavior, molecular dynamics simulations have been performed with Biosym Discover on clusters of PTFE chains which begin in a phase II packing environment. Added to the model are artificial constraints which allow the simulation of thermal expansion without having to define periodic boundary conditions for each specific temperature of interest. The preliminary dynamics simulations indicate that the intra- and intermolecular interactions provided by Set I are too weak. The degree of helical disorder and chain motion are high even at temperatures well below the phase II-phase IV transition temperature (19 C). Set II appears to yield a better description of PTFE in the solid state.

  13. Bovine and PTFE vascular graft results in hemodialysis patients.

    PubMed

    Sert, S; Demirogullari, B; Ziya Anadol, A; Guvence, N; Dalgic, A

    2000-01-01

    Purpose. There are many reports of patency periods, failure rates, thrombosis and infection attacks connected with vascular grafts. In this article, the results of polytetrafluoroethylene (PTFE) and Bovine grafts were compared in a forty-four month period. Methods. 61 vascular grafts (29 PTFE, 32 bovine) were placed in 49 patients. The grafts were compared in different ways, such as survival, complication rates and placement area using life survey analysis. Results. Mean survival time was 17 mo (SE +/- 2.8) for PTFE grafts and 11 mo (SE +/- 1.1) for bovine grafts. A failure rate of 34% due only to graft complications were found in PTFE and 25% in bovine grafts. All graft complications were seen in the first year. Comparison of the cumulative survival rates of the groups were found to be insignificant during the study period and the first year ( p>0.05). Regardless of the type, there was no signif-icant difference between the grafts placed in the forearm and the grafts in the thigh (p>0.05). Conclusions. There is no survival difference between PTFE and bovine grafts. First year of the grafts is important for developing complications.

  14. Anisotropic pyrochemical microetching of poly(tetrafluoroethylene) initiated by synchrotron radiation-induced scission of molecule bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, Akinobu, E-mail: yamaguti@lasti.u-hyogo.ac.jp, E-mail: utsumi@lasti.u-hyogo.ac.jp; Kido, Hideki; Utsumi, Yuichi, E-mail: yamaguti@lasti.u-hyogo.ac.jp, E-mail: utsumi@lasti.u-hyogo.ac.jp

    2016-02-01

    We developed a process for micromachining polytetrafluoroethylene (PTFE): anisotropic pyrochemical microetching induced by synchrotron X-ray irradiation. X-ray irradiation was performed at room temperature. Upon heating, the irradiated PTFE substrates exhibited high-precision features. Both the X-ray diffraction peak and Raman signal from the irradiated areas of the substrate decreased with increasing irradiation dose. The etching mechanism is speculated as follows: X-ray irradiation caused chain scission, which decreased the number-average degree of polymerization. The melting temperature of irradiated PTFE decreased as the polymer chain length decreased, enabling the treated regions to melt at a lower temperature. The anisotropic pyrochemical etching process enabledmore » the fabrication of PTFE microstructures with higher precision than simultaneously heating and irradiating the sample.« less

  15. Light scattering of semitransparent sintered polytetrafluoroethylene films.

    PubMed

    Li, Qinghe; Lee, Bong Jae; Zhang, Zhuomin M; Allen, David W

    2008-01-01

    Polytetrafluoroethylene (PTFE) is a strongly scattering material and has been regarded to have optical properties similar to biological tissues. In the present study, the bidirectional reflectance distribution function (BRDF) and the bidirectional transmittance distribution function (BTDF) of several PTFE films, with thicknesses from 0.11 to 10 mm, are measured using a laser scatterometer at the wavelength of 635 nm. The directional-hemispherical reflectance (R) and transmittance (T) were obtained by integrating BRDF and BTDF for normal incidence. Comparison of the ratio of the measured R and T with that calculated from the adding-doubling method allows the determination of the reduced scattering coefficient. Furthermore, the effect of surface scattering is investigated by measuring the polarization-dependent BRDF and BTDF at oblique incidence. By analyzing the measurement uncertainty of BTDF in the near-normal observation angles at normal incidence, the present authors found that the scattering coefficient of PTFE should exceed 1200 cm(-1), which is much greater than that of biological tissues. On the other hand, the absorption coefficient of PTFE must be less than 0.01 cm(-1), much smaller than that of biological tissues, a necessary condition to achieve R > or =0.98 with a 10-mm-thick slab.

  16. Fabrication of transparent superhydrophobic polytetrafluoroethylene coating

    NASA Astrophysics Data System (ADS)

    Alawajji, Raad A.; Kannarpady, Ganesh K.; Biris, Alexandru S.

    2018-06-01

    Polytetrafluoroethylene (PTFE) thin films were successfully deposited on glass substrates using pulsed laser deposition, with deposition times ranging from 30 to 120 minutes (min). The surface roughness of the films increased as deposition time increased, with micro/nanoscale roughness developing when deposition time increased over 60 min. This roughness made the surface superhydrophobic, having a contact angle of about 151.6°±1. UV-vis spectroscopic analysis of the PTFE films revealed that they were highly transparent, up to ∼90% in visible and near-infrared ranges. Furthermore, when the deposition time was increased-which increased the films' thickness-the films were able to absorb 80-90% of ultraviolet light in the wavelength range <300 nm. The researchers used an x-ray photoelectron spectrometer to find the chemical and elemental composition of the films' surfaces. Atomic force microscopy was used to determine the effect of surface roughness on the films' hydrophobicity. The fabricated superhydrophobic films have many potential practical uses, from self-cleaning materials to solar cell panel coatings. Additionally, the low dielectric properties of PTFE make the films' ideal for communication antenna coatings and similar applications.

  17. Graft Polymerization of Acrylic Acid on a Polytetrafluoroethylene Panel by an Inductively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Lan, Yan; You, Qingliang; Cheng, Cheng; Zhang, Suzhen; Ni, Guohua; Nagatsu, M.; Meng, Yuedong

    2011-02-01

    Surface modification on a polytetrafluoroethylene (PTFE) panel was performed with sequential nitrogen plasma treatments and surface-initiated polymerization. By introducing COO- groups to the surface of the PTFE panel through grafting polymerization of acrylic acid (AA), a transparent poly (acrylic acid) (PAA) membrane was achieved from acrylic acid solution. Grafting polymerization initiating from the active groups was achieved on the PTFE panel surface after the nitrogen plasma treatment. Utilizing the acrylic acid as monomers, with COO- groups as cross link sites to form reticulation structure, a transparent poly (acrylic acid) membrane with arborescent macromolecular structure was formed on the PTFE panel surface. Analysis methods, such as fourier transform infrared spectroscopy (FTIR), microscopy and X-ray photoelectron spectroscopy (XPS), were utilized to characterize the structures of the macromolecule membrane on the PTFE panel surface. A contact angle measurement was performed to characterize the modified PTFE panels. The surface hydrophilicities of modified PTFE panels were significantly enhanced after the plasma treatment. It was shown that the grafting rate is related to the treating time and the power of plasma.

  18. Adhesion and transfer of polytetrafluoroethylene to tungsten studied by field ion microscopy

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Buckley, D. H.

    1972-01-01

    Mechanical contacts between polytetrafluoroethylene (PTFE) and tungsten field ion tips were made in situ in the field ion microscope. Both load and force of adhesion were measured for varying contact times and for clean and contaminated tungsten tips. Strong adhesion between the PTFE and clean tungsten was observed at contact times greater than 2.5 min (forces of adhesion were greater than three times the load). For times less than 2.5 min, the force of adhesion was immeasurably small. The increase in adhesion with contact time after 2.5 min can be attributed to the increase in true contact area by creep of PTFE. No adhesion was measurable at long contact times with contaminated tungsten tips. Neon field ion micrographs taken after the contacts show many linear and branched arrays which appear to represent PTFE that remains adhered to the surface even at the high electric fields required for imaging.

  19. Creation and Validation of Sintered PTFE BRDF Targets & Standards.

    PubMed

    Durell, Christopher; Scharpf, Dan; McKee, Greg; L'Heureux, Michelle; Georgiev, Georgi; Obein, Gael; Cooksey, Catherine

    2015-09-21

    Sintered polytetrafluoroethylene (PTFE) is an extremely stable, near-perfect Lambertian reflecting diffuser and calibration standard material that has been used by national labs, space, aerospace and commercial sectors for over two decades. New uncertainty targets of 2 % on-orbit absolute validation in the Earth Observing Systems community have challenged the industry to improve is characterization and knowledge of almost every aspect of radiometric performance (space and ground). Assuming "near perfect" reflectance for angular dependent measurements is no longer going to suffice for many program needs. The total hemispherical spectral reflectance provides a good mark of general performance; but, without the angular characterization of bidirectional reflectance distribution function (BRDF) measurements, critical data is missing from many applications and uncertainty budgets. Therefore, traceable BRDF measurement capability is needed to characterize sintered PTFE's angular response and provide a full uncertainty profile to users. This paper presents preliminary comparison measurements of the BRDF of sintered PTFE from several laboratories to better quantify the BRDF of sintered PTFE, assess the BRDF measurement comparability between laboratories, and improve estimates of measurement uncertainties under laboratory conditions.

  20. Insensitive high-energy energetic structural material of tungsten-polytetrafluoroethylene-aluminum composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liu; Liu, Jinxu, E-mail: liujinxu@bit.edu.cn; Zhang, Xinbo

    2015-11-15

    Energetic structural material is a kind of materials that are inert under normal conditions but could produce exothermic chemical reaction when subjected to impact. This report shows a kind of energetic structural material of tungsten (W)-polytetrafluoroethylene (PTFE)-aluminum (Al) with density of 4.12 g/cm{sup 3}, excellent ductility and dynamic compressive strength of 96 MPa. Moreover, 50W-35PTFE-15Al (wt%) can exhibit a high reaction energy value of more than 2 times of TNT per unit mass and 5 times of TNT per unit volume, respectively, but with excellent insensitivity compared with traditional explosives. Under thermal conditions, the W-PTFE-Al composite can keep stable atmore » 773 K. Under impact loading, when the strain rate up to ∼4820 s{sup −1} coupled with the absorbed energy per unit volume of 120 J/cm{sup 3}, deflagration occurs and combustion lasts for 500 μs. During impact compressive deformation, the PTFE matrix is elongated into nano-fibers, thus significantly increases the reaction activity of W-PTFE-Al composites. The nano-fiber structure is necessary for the reaction of W-PTFE-Al composites. The formation of PTFE nano-fibers must undergo severe plastic deformation, and therefore the W-PTFE-Al composites exhibit excellent insensitivity and safety. Furthermore, the reaction mechanisms of W-PTFE-Al composites in argon and in air are revealed.« less

  1. Compressive Properties of PTFE/Al/Ni Composite Under Uniaxial Loading

    NASA Astrophysics Data System (ADS)

    Wang, Huai-xi; Li, Yu-chun; Feng, Bin; Huang, Jun-yi; Zhang, Sheng; Fang, Xiang

    2017-05-01

    To investigate the mechanical properties of pressed and sintered PTFE/Al/Ni (polytetrafluoroethylene/aluminum/nickel) composite, uniaxial quasi-static and dynamic compression experiments were conducted at strain rates from 10-2 to 3 × 103/s. The prepared samples were tested by an electrohydraulic press with 300 kN loading capacity and a split Hopkinson pressure bar (SHPB) device at room temperature. Experimental results show that PTFE/Al/Ni composite exhibits evident strain hardening and strain rate hardening. Additionally, a bilinear relationship between stress and {{log(}}\\dot{ɛ} ) is observed. The experimental data were fit to Johnson-Cook constitutive model, and the results are in well agreement with measured data.

  2. Thermal desorption study of physical forces at the PTFE surface

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Pepper, S. V.

    1987-01-01

    Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possible role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage.

  3. Thermal desorption study of physical forces at the PTFE surface

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Pepper, S. V.

    1985-01-01

    Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possibile role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage.

  4. Constitutive modeling of shock response of PTFE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Eric N; Reanyansky, Anatoly D; Bourne, Neil K

    2009-01-01

    The PTFE (polytetrafluoroethylene) material is complex and attracts attention of the shock physics researchers because it has amorphous and crystalline components. In turn, the crystalline component has four known phases with the high pressure transition to phase III. At the same time, as has been recently studied using spectrometry, the crystalline region is growing with load. Stress and velocity shock-wave profiles acquired recently with embedded gauges demonstrate feature that may be related to impedance mismatches between the regions subjected to some transitions resulting in density and modulus variations. We consider the above mentioned amorphous-to-crystalline transition and the high pressure Phasemore » II-to-III transitions as possible candidates for the analysis. The present work utilizes a multi-phase rate sensitive model to describe shock response of the PTFE material. One-dimensional experimental shock wave profiles are compared with calculated profiles with the kinetics describing the transitions. The objective of this study is to understand the role of the various transitions in the shock response of PTFE.« less

  5. Effect of X-ray flux on polytetrafluoroethylene in X-ray photoelectron spectroscopy

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Pepper, S. V.

    1982-01-01

    The effect of the X-ray flux in X-ray photoelectron spectroscopy (STAT) on the constitution of the polytetrafluoroethylene (PTFE) surface has been examined. The radiation dose rate for our specimen was about 10 to the 7th rad/s. The structure, magnitude and binding energy of the C(1s) and F(1s) features of the XPS spectrum and the mass spectrum of gaseous species evolved during irradiation are observed. The strong time dependence of these signals over a period of several hours indicated that the surface constitution of PTFE is greatly affected by this level of radiation dose. The results are consistent with the development of a heavily cross-linked or branched structure in the PTFE surface region and the evolution of short chain fragments into the gas phase.

  6. Magnetorheological fluid based on thixotropic PTFE-oil organogel

    NASA Astrophysics Data System (ADS)

    Zhang, Hansong; Yan, Hua; Hu, Zhide; Yang, Jianjian; Niu, Fanghao

    2018-04-01

    Polytetrafluoroethylene (PTFE) micropowders were employed in this work to fabricate PTFE-oil organogel, then carbonyl iron particles were dispersed in this thixotropic organogel to prepare magnetorheological fluids without any other additives. By performing a comparative investigation of MRFs' performances, enhanced magnetorheological response, suspension stability and tribological performance were obtained contrast to pure silicon oil based MRFs. The experimental results revealed a changeable viscosity of organogel, considerable increases in thixotropy also can be observed with the increase of PTFE content. Sedimentation tests demonstrated a much better suspension stability of MRFs based on organogel, suggesting that the internal network microstructures formed by hydrogen bonds between PTFE microparticles and oil molecular chains are likely to impose the gaps among magnetic particles thus hinder the particle aggregation and sedimentation. Moreover, a critical PTFE volume fraction about 4.7 vol% was recognized in this study, lower content organogels tended to display enhanced yield stresses contrast to pure silicon oil based MRFs while high content organogels showed slightly lower ones. It may suggest a compromise between nonmagnetic particle adsorption and the reinforcement effect of network microstructures. The adsorption is likely to decrease the saturation magnetization of carbonyl iron particles and to hinder the formation of field-induced chains, however, the reinforcement effect tends to strengthen these magnetic chains. Besides, the tribological tests confirmed the lubricant effects of PTFE-oil organogel by acquiring rather sharp decreases in friction coefficients of organogel based MRFs especially in the presence of magnetic field.

  7. Amphiphobic Polytetrafluoroethylene Membranes for Efficient Organic Aerosol Removal.

    PubMed

    Feng, Shasha; Zhong, Zhaoxiang; Zhang, Feng; Wang, Yong; Xing, Weihong

    2016-04-06

    Polytetrafluoroethylene (PTFE) membrane is an extensively used air filter, but its oleophilicity leads to severe fouling of the membrane surface due to organic aerosol deposition. Herein, we report the fabrication of a new amphiphobic 1H,1H,2H,2H-perfluorodecyl acrylate (PFDAE)-grafted ZnO@PTFE membrane with enhanced antifouling functionality and high removal efficiency. We use atomic-layer deposition (ALD) to uniformly coat a layer of nanosized ZnO particles onto porous PTFE matrix to increase surface area and then subsequently graft PFDAE with plasma. Consequently, the membrane surface showed both superhydrophobicity and oleophobicity with a water contact angle (WCA) and an oil contact angle (OCA) of 150° and 125°, respectively. The membrane air permeation rate of 513 (m(3) m(-2) h(-1) kPa(-1)) was lower than the pristine membrane rate of 550 (m(3) m(-2) h(-1) kPa(-1)), which indicates the surface modification slightly decreased the membrane air permeation. Significantly, the filtration resistance of this amphiphobic membrane to the oil aerosol system was much lower than the initial one. Moreover, the filter exhibited exceptional organic aerosol removal efficiencies that were greater than 99.5%. These results make the amphiphobic PTFE membranes very promising for organic aerosol-laden air-filtration applications.

  8. Tribological behavior of polytetrafluoroethylene coating reinforced with black phosphorus nanoparticles

    NASA Astrophysics Data System (ADS)

    Peng, Shiguang; Guo, Yue; Xie, Guoxin; Luo, Jianbin

    2018-05-01

    This study compares the tribological performance of polytetrafluoroethylene (PTFE) thin film coating reinforced with black phosphorus (BP) or ball-milled graphite (BMG) nanoparticles, so as to elucidate their mechanism of action under reciprocating sliding test conditions. PTFE coatings with 0.5 wt.% BMG (BMG/PTFE) and 0.5 wt.% BP (BP/PTFE) were prepared on GCr15 bearing steel disk by using a spin coater. The friction and wear tests were carried out by using the ball-on-disk tribometer under a normal load of 1 N (contact pressure: 780 MPa), a frequency of 2 Hz, and 4.2 mm sliding displacement amplitude. The surface roughness, wear volume and surface morphology of the coatings were characterized by the three-dimensional white light, and Energy Dispersive X-ray Detector (EDX) analysis coupled with environmental scanning electron microscope (ESEM). It is found that BP/PTFE coating has better anti-wear and anti-friction performances than those of pure PTFE or BMG/PTFE coating. The coating with BP nanoparticles shows excellent tribological properties with the wear volume decreased from 3.52 × 106 μm3 to 1.64 × 106 μm3 and the coefficient of friction (COF) decreased from 0.117 to 0.046. More importantly, the BP layer probably expands and absorbs much energy due to its negative Poisson's ratio phenomenon under reciprocating sliding, and effectively reducing furrow and adhesive wear.

  9. Manufacturing Technology of Composite Materials—Principles of Modification of Polymer Composite Materials Technology Based on Polytetrafluoroethylene

    PubMed Central

    Panda, Anton; Dyadyura, Kostiantyn; Valíček, Jan; Harničárová, Marta; Zajac, Jozef; Modrák, Vladimír; Pandová, Iveta; Vrábel, Peter; Nováková-Marcinčínová, Ema; Pavelek, Zdeněk

    2017-01-01

    The results of the investigations into the technological formation of new wear-resistant polymer composites based on polytetrafluoroethylene (PTFE) filled with disperse synthetic and natural compounds are presented. The efficiency of using PTFE composites reinforced with carbon fibers depends on many factors, which influence the significant improvement of physicomechanical characteristics. The results of this research allow stating that interfacial and surface phenomena of the polymer–solid interface and composition play a decisive role in PTFE composites properties. Fillers hinder the relative movement of the PTFE molecules past one another and, in this way, reduce creep or deformation of the parts, reducing the wear rate of parts used in dynamic applications as well as the coefficient of thermal expansion. The necessary structural parameters of such polymer composites are provided by regimes of process equipment. PMID:28772733

  10. Manufacturing Technology of Composite Materials-Principles of Modification of Polymer Composite Materials Technology Based on Polytetrafluoroethylene.

    PubMed

    Panda, Anton; Dyadyura, Kostiantyn; Valíček, Jan; Harničárová, Marta; Zajac, Jozef; Modrák, Vladimír; Pandová, Iveta; Vrábel, Peter; Nováková-Marcinčínová, Ema; Pavelek, Zdeněk

    2017-03-31

    The results of the investigations into the technological formation of new wear-resistant polymer composites based on polytetrafluoroethylene (PTFE) filled with disperse synthetic and natural compounds are presented. The efficiency of using PTFE composites reinforced with carbon fibers depends on many factors, which influence the significant improvement of physicomechanical characteristics. The results of this research allow stating that interfacial and surface phenomena of the polymer-solid interface and composition play a decisive role in PTFE composites properties. Fillers hinder the relative movement of the PTFE molecules past one another and, in this way, reduce creep or deformation of the parts, reducing the wear rate of parts used in dynamic applications as well as the coefficient of thermal expansion. The necessary structural parameters of such polymer composites are provided by regimes of process equipment.

  11. Multi-layer composite structure covered polytetrafluoroethylene for visible-infrared-radar spectral Compatibility

    NASA Astrophysics Data System (ADS)

    Qi, Dong; Cheng, Yongzhi; Wang, Xian; Wang, Fang; Li, Bowen; Gong, Rongzhou

    2017-12-01

    In this paper, a polytetrafluoroethylene (PTFE) top-covered multi-layer composite structure PTFE/H s/(Ge/ZnS)3 (H s represents the surface layer ZnS with various thicknesses) for spectral compatibility is proposed and investigated theoretically and experimentally. A substantial decline of glossiness from over 200 Gs to 74.2 Gs could be realized, due to high roughness and interface reflection of the 800 nm PTFE protection layer. In addition, similar to the structure of H s/(Ge/ZnS)3, the designed structure with a certain color exhibits ultra-low emissivity of average 0.196 at 8-14 µm and highly transparent performance of 96.45% in the radar frequency range of 2-18 GHz. Our design will provide an important reference for the practical applications of the spectral compatible multilayer films.

  12. Tribological interaction between polytetrafluoroethylene and silicon oxide surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uçar, A.; Çopuroğlu, M.; Suzer, S., E-mail: suzer@fen.bilkent.edu.tr

    2014-10-28

    We investigated the tribological interaction between polytetrafluoroethylene (PTFE) and silicon oxide surfaces. A simple rig was designed to bring about a friction between the surfaces via sliding a piece of PTFE on a thermally oxidized silicon wafer specimen. A very mild inclination (∼0.5°) along the sliding motion was also employed in order to monitor the tribological interaction in a gradual manner as a function of increasing contact force. Additionally, some patterns were sketched on the silicon oxide surface using the PTFE tip to investigate changes produced in the hydrophobicity of the surface, where the approximate water contact angle was 45°more » before the transfer. The nature of the transferred materials was characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). XPS results revealed that PTFE was faithfully transferred onto the silicon oxide surface upon even at the slightest contact and SEM images demonstrated that stable morphological changes could be imparted onto the surface. The minimum apparent contact pressure to realize the PTFE transfer is estimated as 5 kPa, much lower than reported previously. Stability of the patterns imparted towards many chemical washing processes lead us to postulate that the interaction is most likely to be chemical. Contact angle measurements, which were carried out to characterize and monitor the hydrophobicity of the silicon oxide surface, showed that upon PTFE transfer the hydrophobicity of the SiO{sub 2} surface could be significantly enhanced, which might also depend upon the pattern sketched onto the surface. Contact angle values above 100° were obtained.« less

  13. Blast Coating of Superelastic NiTi Wire with PTFE to Enhance Wear Properties

    NASA Astrophysics Data System (ADS)

    Dunne, Conor F.; Roche, Kevin; Twomey, Barry; Hodgson, Darel; Stanton, Kenneth T.

    2015-03-01

    This work investigates the deposition of polytetrafluoroethylene (PTFE) onto a superelastic NiTi wire using an ambient temperature-coating technique known as CoBlast. The process utilises a stream of abrasive (Al2O3) and a coating medium (PTFE) sprayed simultaneously at the surface of the substrate. Superelastic NiTi wire is used in guidewire applications, and PTFE coatings are commonly applied to reduce damage to vessel walls during insertion and removal, and to aid in accurate positioning by minimising the force required to advance, retract or rotate the wire. The CoBlast coated wires were compared to wire treated with PTFE only. The coated samples were examined using variety of techniques: X-ray diffraction (XRD), microscopy, surface roughness, wear testing and flexural tests. The CoBlast coated samples had an adherent coating with a significant resistance to wear compared to the samples coated with PTFE only. The XRD revealed that the process gave rise to a stress-induced martensite phase in the NiTi which may enhance mechanical properties. The study indicates that the CoBlast process can be used to deposit thin adherent coatings of PTFE onto the surface of superelastic NiTi.

  14. Spray-coating process in preparing PTFE-PPS composite super-hydrophobic coating

    NASA Astrophysics Data System (ADS)

    Weng, Rui; Zhang, Haifeng; Liu, Xiaowei

    2014-03-01

    In order to improve the performance of a liquid-floated rotor micro-gyroscope, the resistance of the moving interface between the rotor and the floating liquid must be reduced. Hydrophobic treatment can reduce the frictional resistance between such interfaces, therefore we proposed a method to prepare a poly-tetrafluoroethylene (PTFE)-poly-phenylene sulphide (PPS) composite super-hydrophobic coating, based on a spraying process. This method can quickly prepare a continuous, uniform PTFE-PPS composite super-hydrophobic surface on a 2J85 material. This method can be divided into three steps, namely: pre-treatment; chemical etching; and spraying. The total time for this is around three hours. When the PTFE concentration is 4%, the average contact angle of the hydrophobic coating surface is 158°. If silicon dioxide nanoparticles are added, this can further improve the adhesion and mechanical strength of the super-hydrophobic composite coating. The maximum average contact angle can reach as high as 164° when the mass fraction of PTFE, PPS and silicon dioxide is 1:1:1.

  15. Effect of through-plane polytetrafluoroethylene distribution in gas diffusion layers on performance of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Ito, Hiroshi; Iwamura, Takuya; Someya, Satoshi; Munakata, Tetsuo; Nakano, Akihiro; Heo, Yun; Ishida, Masayoshi; Nakajima, Hironori; Kitahara, Tatsumi

    2016-02-01

    This experimental study identifies the effect of through-plane polytetrafluoroethylene (PTFE) distribution in gas diffusion backing (GDB) on the performance of proton exchange membrane fuel cells (PEMFC). PTFE-drying under vacuum pressure created a relatively uniform PTFE distribution in GDB compared to drying under atmospheric pressure. Carbon paper samples with different PTFE distributions due to the difference in drying conditions were prepared and used for the cathode gas diffusion layer (GDL) of PEMFCs. Also investigated is the effect of MPL application on the performance for those samples. The current density (i) - voltage (V) characteristics of these PEMFCs measured under high relative humidity conditions clearly showed that, with or without MPL, the cell using the GDL with PTFE dried under vacuum condition showed better performance than that dried under atmospheric condition. It is suggested that this improved performance is caused by the efficient transport of liquid water through the GDB due to the uniform distribution of PTFE.

  16. On the surface trapping parameters of polytetrafluoroethylene block

    NASA Astrophysics Data System (ADS)

    Zhang, Guan-Jun; Yang, Kai; Zhao, Wen-Bin; Yan, Zhang

    2006-12-01

    Surface flashover phenomena under high electric field are closely related to the surface characteristics of a solid insulating material between energized electrodes. Based on measuring the surface potential decaying curve of polytetrafluoroethylene (PTFE) block charged by a needle-plane corona discharge, its surface trapping parameters are calculated with the isothermal current theory, and the correlative curve between the surface trap density and its energy level is obtained. The maximum density of electron traps and hole traps in the surface layer of PTFE presents a similar value of ∼2.7 × 1017 eV-1 m-3, and the energy level of its electron and hole traps is of about 0.85-1.0 eV and 0.80-0.90 eV, respectively. Via the X-ray photoelectron spectroscopy (XPS) technique, the F, C, K and O elements are detected on the surface of PTFE samples, and F shows a remarkable atom proportion of ∼73.3%, quite different from the intrinsic distribution corresponding to its chemical formula. The electron traps are attributed to quantities of F atoms existing on the surface of PTFE due to its molecular chain with C atoms surrounded by F atoms spirally. It is considered that the distortions of chemical and electronic structure on solid surface are responsible for the flashover phenomena occurring at a low applied voltage.

  17. Decomposition pathways of polytetrafluoroethylene by co-grinding with strontium/calcium oxides.

    PubMed

    Qu, Jun; He, Xiaoman; Zhang, Qiwu; Liu, Xinzhong; Saito, Fumio

    2017-06-01

    Waste polytetrafluoroethylene (PTFE) could be easily decomposed by co-grinding with inorganic additive such as strontium oxide (SrO), strontium peroxide (SrO 2 ) and calcium oxide (CaO) by using a planetary ball mill, in which the fluorine was transformed into nontoxic inorganic fluoride salts such as strontium fluoride (SrF 2 ) or calcium fluoride (CaF 2 ). Depending on the kind of additive as well as the added molar ratio, however, the reaction mechanism of the decomposition was found to change, with different compositions of carbon compounds formed. CO gas, the mixture of strontium carbonate (SrCO 3 ) and carbon, only SrCO 3 were obtained as reaction products respectively with equimolar SrO, excess SrO and excess SrO 2 to the monomer unit CF 2 of PTFE were used. Excess amount of CaO was needed to effectively decompose PTFE because of its lower reactivity compared with strontium oxide, but it promised practical applications due to its low cost.

  18. Femtosecond laser ablated durable superhydrophobic PTFE sheet for oil/water separation

    NASA Astrophysics Data System (ADS)

    Li, Wentao; Yang, Qing; Chen, Feng; Yong, Jiale; Fang, Yao; Huo, Jinglan

    2017-02-01

    Femtosecond laser microfabrication has been attracting increasing interest of researchers in recent years, and been applied on interface science to control the wettability of solid surfaces. Herein, we fabricate a kind of rough microstructures on polytetrafluoroethylene (PTFE) sheet by femtosecond laser. The femtosecond laser ablated surfaces show durable superhydrophobicity and ultralow water adhesion even after storing in a harsh environment for a long time, including strong acid, strong alkali, and high temperature. A penetrating microholes array was further generated on the rough superhydrophobic PTFE sheet by a subsequent mechanical drilling process. The as-prepared material was successfully applied in the field of oil/water separation due to the inverse superhydrophobicity and superoleophilicity.

  19. Creation and Validation of Sintered PTFE BRDF Targets & Standards

    PubMed Central

    Durell, Christopher; Scharpf, Dan; McKee, Greg; L’Heureux, Michelle; Georgiev, Georgi; Obein, Gael; Cooksey, Catherine

    2016-01-01

    Sintered polytetrafluoroethylene (PTFE) is an extremely stable, near-perfect Lambertian reflecting diffuser and calibration standard material that has been used by national labs, space, aerospace and commercial sectors for over two decades. New uncertainty targets of 2 % on-orbit absolute validation in the Earth Observing Systems community have challenged the industry to improve is characterization and knowledge of almost every aspect of radiometric performance (space and ground). Assuming “near perfect” reflectance for angular dependent measurements is no longer going to suffice for many program needs. The total hemispherical spectral reflectance provides a good mark of general performance; but, without the angular characterization of bidirectional reflectance distribution function (BRDF) measurements, critical data is missing from many applications and uncertainty budgets. Therefore, traceable BRDF measurement capability is needed to characterize sintered PTFE’s angular response and provide a full uncertainty profile to users. This paper presents preliminary comparison measurements of the BRDF of sintered PTFE from several laboratories to better quantify the BRDF of sintered PTFE, assess the BRDF measurement comparability between laboratories, and improve estimates of measurement uncertainties under laboratory conditions. PMID:26900206

  20. Adhesion and removal kinetics of Bacillus cereus biofilms on Ni-PTFE modified stainless steel.

    PubMed

    Huang, Kang; McLandsborough, Lynne A; Goddard, Julie M

    2016-01-01

    Biofilm control remains a challenge to food safety. A well-studied non-fouling coating involves codeposition of polytetrafluoroethylene (PTFE) during electroless plating. This coating has been reported to reduce foulant build-up during pasteurization, but opportunities remain in demonstrating its efficacy in inhibiting biofilm formation. Herein, the initial adhesion, biofilm formation, and removal kinetics of Bacillus cereus on Ni-PTFE-modified stainless steel (SS) are characterized. Coatings lowered the surface energy of SS and reduced biofilm formation by > 2 log CFU cm(-2). Characterization of the kinetics of biofilm removal during cleaning demonstrated improved cleanability on the Ni-PTFE coated steel. There was no evidence of biofilm after cleaning by either solution on the Ni-PTFE coated steel, whereas more than 3 log and 1 log CFU cm(-2) of bacteria remained on the native steel after cleaning with water and an alkaline cleaner, respectively. This work demonstrates the potential application of Ni-PTFE non-fouling coatings on SS to improve food safety by reducing biofilm formation and improving the cleaning efficiency of food processing equipment.

  1. Properties of carbon composite paper derived from coconut coir as a function of polytetrafluoroethylene content

    NASA Astrophysics Data System (ADS)

    Destyorini, Fredina; Indriyati; Indayaningsih, Nanik; Prihandoko, Bambang; Zulfia Syahrial, Anne

    2018-03-01

    The carbon composite papers were produced by utilizing carbon materials from coconut coir. In the present work, carbon composite papers (CCP) were prepared by mixing carbon materials in the form of powder and fibre with polymer (ethylene vinyl acetate and polyethylene glycol) in xylene at 100°C. Then, polytetrafluoroethylene (PTFE) with different content was used to treat the surface of CCP. The properties of PTFE-coated CCP were analysed by means of contact angle measurement, tensile testing, porosity, density, and electrical conductivity measurements. As expected, all CCP’s surfaces treated with PTFE were found to be hydrophobic with contact angle >120° and relatively constant during 60 minutes measurement. Furthermore, water contact angle, density, and mechanical properties of CCP generally increase with increasing PTFE content. However, the porosity and electrical conductivity of CCP decrease slightly as the PTFE content increased from 0 wt% to 30 wt%. Based on the observation and analysis, the optimum PTFE content on CCP was 20 %, in which the mechanical properties and hydrophobicity behaviour were improved significantly, but it was only caused a very small drop in porosity and electrical conductivity

  2. Fabrication of TiO2-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment

    NASA Astrophysics Data System (ADS)

    Qian, Yingjia; Chi, Lina; Zhou, Weili; Yu, Zhenjiang; Zhang, Zhongzhi; Zhang, Zhenjia; Jiang, Zheng

    2016-01-01

    Surface hydrophilic modification of polymer ultrafiltration membrane using metal oxide represents an effective yet highly challenging solution to improve water flux and antifouling performance. Via plasma-enhanced graft of poly acryl acid (PAA) prior to coating TiO2, we successfully fixed TiO2 functional thin layer on super hydrophobic polytetrafluoroethylene (PTFE) ultrafiltration (UF) membranes. The characterization results evidenced TiO2 attached on the PTFE-based UF membranes through the chelating bidentate coordination between surface-grafted carboxyl group and Ti4+. The TiO2 surface modification may greatly reduce the water contact angle from 115.8° of the PTFE membrane to 35.0° without degradation in 30-day continuous filtration operations. The novel TiO2/PAA/PTFE membranes also exhibited excellent antifouling and self-cleaning performance due to the intrinsic hydrophilicity and photocatalysis properties of TiO2, which was further confirmed by the photo-degradation of MB under Xe lamp irradiation.

  3. Pulmonary effects induced by ultrafine PTFE particles.

    PubMed

    Johnston, C J; Finkelstein, J N; Mercer, P; Corson, N; Gelein, R; Oberdörster, G

    2000-11-01

    PTFE (polytetrafluoroethylene) fumes consisting of large numbers of ultrafine (uf) particles and low concentrations of gas-phase compounds can cause severe acute lung injury. Our studies were designed to test three hypotheses: (i) uf PTFE fume particles are causally involved in the induction of acute lung injury, (ii) uf PTFE elicit greater pulmonary effects than larger sized PTFE accumulation mode particles, and (iii) preexposure to the uf PTFE fume particles will induce tolerance. We used uf Teflon (PTFE) fumes (count median particle size approximately 16 nm) generated by heating PTFE in a tube furnace to 486 degrees C to evaluate principles of ultrafine particle toxicity. Teflon fumes at ultrafine particle concentrations of 50 microg/m(3) were extremely toxic to rats when inhaled for only 15 min. We found that when generated in argon, the ultrafine Teflon particles alone are not toxic at these exposure conditions; neither were Teflon fume gas-phase constituents when generated in air. Only the combination of both phases when generated in air caused high toxicity, suggesting either the existence of radicals on the surface or a carrier mechanism of the ultrafine particles for adsorbed gas compounds. Aging of the fresh Teflon fumes for 3.5 min led to a predicted coagulation to >100 nm particles which no longer caused toxicity in exposed animals. This result is consistent with a greater toxicity of ultrafine particles compared to accumulation mode particles, although changes in particle surface chemistry during the aging process may have contributed to the diminished toxicity. Furthermore, the pulmonary toxicity of the ultrafine Teflon fumes could be prevented by adapting the animals with short 5-min exposures on 3 days prior to a 15-min exposure. Messages encoding antioxidants and chemokines were increased substantially in nonadapted animals, yet were unaltered in adapted animals. This study shows the importance of preexposure history for the susceptibility to acute

  4. Fluoropolymer Films Deposited by Argon Ion-Beam Sputtering of Polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Banks, Bruce A.; Kliss, Mark (Technical Monitor)

    1998-01-01

    The FT-IR, XPS and UV spectra of fluoropolymer films (SPTFE-I) deposited by argon ion-beam sputtering of polytetrafluoroethylene (PTFE) were obtained and compared with prior corresponding spectra of fluoropolymer films (SPTFE-P) deposited by argon rf plasma sputtering of PTFE. Although the F/C ratios for SPTFE-I and -P (1.63 and 1.51) were similar, their structures were quite different in that there was a much higher concentration of CF2 groups in SPTFE-I than in SPTFE-P, ca. 61 and 33% of the total carbon contents, respectively. The FT-IR spectra reflect that difference, that for SPTFE-I showing a distinct doublet at 1210 and 1150 per centimeter while that for SPTFE-P presents a broad, featureless band at ca. 1250 per centimeter. The absorbance of the 1210-per centimeter band in SPTFE-I was proportional to the thickness of the film, in the range of 50-400 nanometers. The SPTFE-I was more transparent in the UV than SPTFE-P at comparable thickness. The mechanism for SPTFE-I formation likely involves "chopping off" of oligomeric segments of PTFE as an accompaniment to "plasma" polymerization of TFE monomer or other fluorocarbon fragments generated in situ from PTFE on impact with energetic Ar ions. Data are presented for SPTFE-I deposits and the associated Ar(+) bombarded PTFE targets where a fresh target was used for each run or a single target was used for a sequence of runs.

  5. Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings

    NASA Astrophysics Data System (ADS)

    Jafari, R.; Menini, R.; Farzaneh, M.

    2010-12-01

    A superhydrophobic and icephobic surface were investigated on aluminum alloy substrate. Anodizing was used first to create a micro-nanostructured aluminum oxide underlayer on the alloy substrate. In a second step, the rough surface was coated with RF-sputtered polytetrafluoroethylene (PTFE or Teflon ®). Scanning electron microscopy images showed a " bird's nest"-like structure on the anodized surface. The RF-sputtered PTFE coating exhibited a high static contact angle of ˜165° with a very low contact angle hysteresis of ˜3°. X-ray photoelectron spectroscopy (XPS) results showed high quantities of CF 3 and CF 2 groups, which are responsible for the hydrophobic behavior of the coatings. The performance of this superhydrophobic film was studied under atmospheric icing conditions. These results showed that on superhydrophobic surfaces ice-adhesion strength was 3.5 times lower than on the polished aluminum substrate.

  6. Simulation of Particle Size Effect on Dynamic Properties and Fracture of PTFE-W-Al Composites

    NASA Astrophysics Data System (ADS)

    Herbold, E. B.; Cai, J.; Benson, D. J.; Nesterenko, V. F.

    2007-12-01

    Recent investigations of the dynamic compressive strength of cold isostatically pressed composites of polytetrafluoroethylene (PTFE), tungsten (W) and aluminum (Al) powders show significant differences depending on the size of metallic particles. The addition of W increases the density and changes the overall strength of the sample depending on the size of W particles. To investigate relatively large deformations, multi-material Eulerian and arbitrary Lagrangian-Eulerian methods, which have the ability to efficiently handle the formation of free surfaces, were used. The calculations indicate that the increased sample strength with fine metallic particles is due to the dynamic formation of force chains. This phenomenon occurs for samples with a higher porosity of the PTFE matrix compared to samples with larger particle size of W and a higher density PTFE matrix.

  7. Radiolytic preparation and characterization of hydrophilic poly(acrylonitrile-co-vinylsulfonate)-grafted porous poly(tetrafluoroethylene) substrates

    NASA Astrophysics Data System (ADS)

    Park, Byeong-Hee; Sohn, Joon-Yong; Shin, Junhwa

    2016-01-01

    In this study, a hydrophilic copolymer of acrylonitrile (AN) and sodium vinylsulfonate (SVS) was grafted into a highly hydrophobic porous poly(tetrafluoroethylene) (PTFE) substrate using a gamma-ray irradiation method and the grafted substrate was used as a substrate for impregnating a hydrophilic ionomer, Nafion. The results of FT-IR and TGA analysis of the prepared substrate showed that the SVS/AN monomers were successfully grafted into the porous PTFE film. The results of degree of grafting, elemental analyzer, and contact angle analysis showed that the hydrophilicity of the prepared PTFE-g-P(AN-co-VS) substrate was increased with an increase in the amount of SVS/AN graft copolymers. Also, the results of FE-SEM and Gurley number measurement showed that the pores in the substrate were reduced as the amount of SVS/AN copolymers grafted into the substrate increased. The prepared porous PTFE-g-P(AN-co-VS) substrate at an irradiation dose of 70 kGy was found to impregnate Nafion ionomer effectively compared to the original porous PTFE substrate. These results suggest that the prepared PTFE-g-P(AN-co-VS) substrate can be effectively used for the impregnation of polymer electrolyte (Nafion) to prepare a reinforced composite membrane.

  8. XPS study of the effect of hydrocarbon contamination on polytetrafluoroethylene (teflon) exposed to atomic oxygen

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Wydeven, Theodore; Cormia, Robert D.

    1991-01-01

    The presence of hydrocarbon contamination on the surface of polytetrafluoroethylene (PTFE) markedly affects the oxygen uptake, and hence the wettability, of this polymer when exposed to an oxygen plasma. As revealed by X-ray photoelectron spectroscopy (XPS) analysis, the oxygen-to-carbon ratio (O/C) for such a polymer can increase sharply, and correspondingly the fluorine-to-carbon ratio (F/C) can decrease sharply, at very short exposure times; at longer times, however, such changes in the O/C and F/C ratios reverse direction, and these ratios then assume values similar to those of the unexposed PTFE. The greater the extent of hydrocarbon contamination in the PTFE, the larger are the amplitudes of the 'spikes' in the O/C- and F/C-exposure time plots. In contrast, a pristine PTFE experiences a very small, monotonic increase of surface oxidation or O/C ratio with time of exposure to oxygen atoms, while the F/C ratio is virtually unchanged from that of the unexposed polymer (2.0). Unless the presence of adventitious hydrocarbon is taken into account, anomalous surface properties relating to polymer adhesion may be improperly ascribed to PTFE exposed to an oxygen plasma.

  9. Experimental Study on Reaction Characteristics of PTFE/Ti/W Energetic Materials under Explosive Loading

    PubMed Central

    Li, Yan; Jiang, Chunlan; Wang, Zaicheng; Luo, Puguang

    2016-01-01

    Metal/fluoropolymer composites represent a new category of energetic structural materials that release energy through exothermic chemical reactions initiated under shock loading conditions. This paper describes an experiment designed to study the reaction characteristics of energetic materials with low porosity under explosive loading. Three PTFE (polytetrafluoroethylene)/Ti/W mixtures with different W contents are processed through pressing and sintering. An inert PTFE/W mixture without reactive Ti particles is also prepared to serve as a reference. Shock-induced chemical reactions are recorded by high-speed video through a narrow observation window. Related shock parameters are calculated based on experimental data, and differences in energy release are discussed. The results show that the reaction propagation of PTFE/Ti/W energetic materials with low porosity under explosive loading is not self-sustained. As propagation distance increases, the energy release gradually decreases. In addition, reaction failure distance in PTFE/Ti/W composites is inversely proportional to the W content. Porosity increased the failure distance due to higher shock temperature. PMID:28774056

  10. Comparison between various densities of pore titanium meshes and e-polytetrafluoroethylene (ePTFE) membrane regarding bone regeneration induced by low intensity pulsed ultrasound (LIPUS) in rabbit nasal bone.

    PubMed

    Higuchi, Masatoshi; Moroi, Akinori; Yoshizawa, Kunio; Kosaka, Akihiko; Ikawa, Hiroumi; Iguchi, Ran; Saida, Yuriko; Hotta, Asami; Tsutsui, Takamitsu; Ueki, Koichiro

    2016-09-01

    The purpose of this study was to compare bone regenerative capability following use of polytetrafluoroethylene (ePTFE) membrane against that when various densities of pore titanium meshes are used with and without low intensity pulsed ultrasound (LIPUS). Adult male white rabbits were divided into 8 groups. In 4 groups, after incising along the nasal bone, four 3 × 8 mm bone defects were made in both sides and covered by an ePTFE membrane (group E: n = 15), a high density pore titanium mesh (group H: n = 15), a low density pore titanium mesh (group L: n = 15), and no mesh (control) (group C: n = 15). Furthermore, LIPUS was irradiated after surgery in 4 groups (groups EL, HL, LL and CL, in each n = 15). The rabbits were sacrificed at 1, 2 and 8 weeks postoperative, and formalin-fixed specimens were embedded in acrylic resin. The specimens were stained with hematoxylin and eosin. For immunohistochemical analysis, the specimens were treated with bone morphogenetic protein (BMP)-2 antibody. Group H had significantly higher values than groups L, E, and C regarding bone area ratio and labeling index of BMP-2 positive cells (P < 0.05). Furthermore, Group HL also had significantly higher values than the other groups regarding bone area ratio and labeling index of BMP-2 positive cells at 1, 2 and 8 weeks postoperative (P < 0.05). The results suggested that high density pore titanium mesh could induce new bone regeneration more than low density pore titanium mesh and ePTFE membrane. New bone formation may increase following LIPUS application. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  11. Rapid direct micromachining of PTFE using MeV ions in an oxygen rich atmosphere

    NASA Astrophysics Data System (ADS)

    Grime, G. W.; Sofield, C. J.; Gomez-Morilla, I.; Gwilliam, R.; Ynsa, M. D.; Enguita, O.

    2005-04-01

    We have investigated the mechanism of high rate erosion which is observed when polytetrafluoroethylene (PTFE) is exposed to MeV protons in an oxygen rich atmosphere (e.g. air). Using currents of the order of nA, it is possible to create holes with depths of millimetres and diameter defined by the beam area on the surface with exposure times of minutes. This is not observed in atmospheres of nitrogen, helium or argon nor in vacuum. We propose that the erosion is a result of the formation of a stable gaseous compound following beam induced decomposition of the PTFE (possibly an acyl fluoride) which does not re-deposit in the hole. We present the results of experiments leading to this hypothesis and propose a method for fabricating three-dimensional structures in PTFE with micrometre feature size. This process is the subject of an international patent application.

  12. Cell adhesion and proliferation on poly(tetrafluoroethylene) with plasma-metal and plasma-metal-carbon interfaces

    NASA Astrophysics Data System (ADS)

    Reznickova, Alena; Kvitek, Ondrej; Kolarova, Katerina; Smejkalova, Zuzana; Svorcik, Vaclav

    2017-06-01

    The aim of this article is to investigate the effect of the interface between plasma activated, gold and carbon coated poly(tetrafluoroethylene) (PTFE) on in vitro adhesion and spreading of mouse fibroblasts (L929). Surface properties of pristine and modified PTFE were studied by several experimental techniques. The thickness of a deposited gold film is an increasing function of the sputtering time, conversely thickness of carbon layer decreases with increasing distance between carbon source and the substrate. Because all the used surface modification techniques take place in inert Ar plasma, oxidized degradation products are formed on the PTFE surface, which affects wettability of the polymer surface. Cytocompatibility tests indicate that on samples with Au/C interface, the cells accumulate on the part of sample with evaporated carbon. Number of L929 cells proliferated on the studied samples is comparable to tissue culture polystyrene standard.

  13. Hyaluronic acid enhancement of expanded polytetrafluoroethylene for small diameter vascular grafts

    NASA Astrophysics Data System (ADS)

    Lewis, Nicole R.

    Cardiovascular disease is the leading cause of mortality and morbidity in the United States and other developed countries. In the United States alone, 8 million people are diagnosed with peripheral arterial disease per year and over 250,000 patients have coronary bypass surgery each year. Autologous blood vessels are the standard graft used in small diameter (<6mm) arterial bypass procedures. Synthetic small diameter grafts have had limited success. While polyethylene (Dacron) and expanded polytetrafluoroethylene (ePTFE) are the most commonly used small diameter synthetic vascular graft materials, there are significant limitations that make these materials unfavorable for use in the low blood flow conditions of the small diameter arteries. Specifically, Dacron and ePTFE grafts display failure due to early thrombosis or late intimal hyperplasia. With the shortage of tissue donors and the limited supply of autologous blood vessels available, there is a need for a small diameter synthetic vascular graft alternative. The aim of this research is to create and characterize ePTFE grafts prepared with hyaluronic acid (HA), evaluate thrombogenic potential of ePTFE-HA grafts, and evaluate graft mechanical properties and coating durability. The results in this work indicate the successful production of ePTFE-HA materials using a solvent infiltration technique. Surface interactions with blood show increased platelet adhesion on HA-modified surfaces, though evidence may suggest less platelet activation and erythrocyte lysis. Significant changes in mechanical properties of HA-modified ePTFE materials were observed. Further investigation into solvent selection, uniformity of HA, endothelialization, and dynamic flow testing would be beneficial in the evaluation of these materials for use in small diameter vascular graft bypass procedures.

  14. Inertial cavitation initiated by polytetrafluoroethylene nanoparticles under pulsed ultrasound stimulation.

    PubMed

    Jin, Qiaofeng; Kang, Shih-Tsung; Chang, Yuan-Chih; Zheng, Hairong; Yeh, Chih-Kuang

    2016-09-01

    Nanoscale gas bubbles residing on a macroscale hydrophobic surface have a surprising long lifetime (on the order of days) and can serve as cavitation nuclei for initiating inertial cavitation (IC). Whether interfacial nanobubbles (NBs) reside on the infinite surface of a hydrophobic nanoparticle (NP) and could serve as cavitation nuclei is unknown, but this would be very meaningful for the development of sonosensitive NPs. To address this problem, we investigated the IC activity of polytetrafluoroethylene (PTFE) NPs, which are regarded as benchmark superhydrophobic NPs due to their low surface energy caused by the presence of fluorocarbon. Both a passive cavitation detection system and terephthalic dosimetry was applied to quantify the intensity of IC. The IC intensities of the suspension with PTFE NPs were 10.30 and 48.41 times stronger than those of deionized water for peak negative pressures of 2 and 5MPa, respectively. However, the IC activities were nearly completely inhibited when the suspension was degassed or ethanol was used to suspend PTFE NPs, and they were recovered when suspended in saturated water, which may indicates the presence of interfacial NBs on PTFE NPs surfaces. Importantly, these PTFE NPs could sustainably initiate IC for excitation by a sequence of at least 6000 pulses, whereas lipid microbubbles were completely depleted after the application of no more than 50 pulses under the same conditions. The terephthalic dosimetry has shown that much higher hydroxyl yields were achieved when PTFE NPs were present as cavitation nuclei when using ultrasound parameters that otherwise did not produce significant amounts of free radicals. These results show that superhydrophobic NPs may be an outstanding candidate for use in IC-related applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Materials characterization and histological analysis of explanted polypropylene, PTFE, and PET hernia meshes from an individual patient

    PubMed Central

    Wood, A. J.; Cozad, M. J.; Grant, D. A.; Ostdiek, A. M.; Bachman, S. L.

    2014-01-01

    During its tenure in vivo, synthetic mesh materials are exposed to foreign body responses, which can alter physicochemical properties of the material. Three different synthetic meshes comprised of polypropylene, expanded polytetrafluoroethylene (ePTFE), and polyethylene terephthalate (PET) materials were explanted from a single patient providing an opportunity to compare physicochemical changes between three different mesh materials in the same host. Results from infrared spectroscopy demonstrated significant oxidation in polypropylene mesh while ePTFE and PET showed slight chemical changes that may be caused by adherent scar tissue. Differential scanning calorimetry results showed a significant decrease in the heat of enthalpy and melt temperature in the polypropylene mesh while the ePTFE and PET showed little change. The presence of giant cells and plasma cells surrounding the ePTFE and PET were indicative of an active foreign body response. Scanning electron micrographs and photo micrographs displayed tissue entrapment and distortion of all three mesh materials. PMID:23371769

  16. Surface energy changes produced by ultraviolet-ozone irradiation of poly(methylmethacrylate), polycarbone and polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Ponter, A. B.; Jones, W. R., Jr.; Jansen, R. H.

    1994-01-01

    Contact angles of water and methylene iodide were measured as a function of UV/O3 treatment time for three polymers: poly(methylmethacrylate) (PMMA), polycarbonate, and polytetrafluoroethylene (PTFE). Surface roughnesses were also measured. Surface free energies were then calculated using relationships developed by Kaelble and Neumann. The surface energy of polycarbonate was found to increase (60 percent) during UV/O3 treatment. However, calculations on PMMA were hampered by the formation of a water soluble surface product. On PTFE surfaces, the UV/O3 treatment etched the surface causing large increases in surface roughness, rendering contact angle measurements impossible. It is concluded that care must be taken in interpreting contact angle measurements and surface energy calculations on UV/O3 treated polymer surfaces.

  17. Controlled grafting of comb copolymer brushes on poly(tetrafluoroethylene) films by surface-initiated living radical polymerizations.

    PubMed

    Yu, W H; Kang, E T; Neoh, K G

    2005-01-04

    Surface modification of poly(tetrafluoroethylene) (PTFE) films by well-defined comb copolymer brushes was carried out. Peroxide initiators were generated directly on the PTFE film surface via radio frequency Ar plasma pretreatment, followed by air exposure. Poly(glycidyl methacrylate) (PGMA) brushes were first prepared by surface-initiated reversible addition-fragmentation chain transfer polymerization from the peroxide initiators on the PTFE surface in the presence of a chain transfer agent. Kinetics study revealed a linear increase in the graft concentration of PGMA with the reaction time, indicating that the chain growth from the surface was consistent with a "controlled" or "living" process. alpha-Bromoester moieties were attached to the grafted PGMA by reaction of the epoxide groups with 2-bromo-2-methylpropionic acid. The comb copolymer brushes were subsequently prepared via surface-initiated atom transfer radical polymerization of two hydrophilic vinyl monomers, including poly(ethylene glycol) methyl ether methacrylate and sodium salt of 4-styrenesulfonic acid. The chemical composition of the modified PTFE surfaces was characterized by X-ray photoelectron spectroscopy.

  18. Engineering based assessment for a shape design of a pediatric ePTFE pulmonary conduit valve.

    PubMed

    Tsuboko, Yusuke; Shiraishi, Yasuyuki; Yamada, Akihiro; Yambe, Tomoyuki; Miura, Hidekazu; Mura, Seitaro; Yamagishi, Masaaki

    2016-08-01

    The authors examined the hemodynamic characteristics of expanded polytetrafluoroethylene (ePTFE) pulmonary valved conduits quantitatively by our originally developed pediatric pulmonary mechanical circulatory system, in order to suggest the optimal shape design. The system consisted of pneumatically driven right atrium and ventricle model, a pulmonary valve chamber, and elastic pulmonary compliance model with peripheral vascular resistance units, a venous reservoir. We employed two different types of ePTFE valve and evaluated the relationship between the leaflets motion and hemodynamic characteristics by using a high-speed video camera. As a result, we successfully reproduced hemodynamic simulations in our pediatric pulmonary mock system. We confirmed that the presence of bulging sinuses in the pulmonary valved conduit reduced the transvalvular energy loss and increased the valve opening area during systolic period. Our engineering-based in vitro analysis could be useful for proposing a shape design optimization of sophisticated pediatric ePTFE pulmonary valve.

  19. Silicone-Polytetrafluoroethylene Composite Implants for Asian Rhinoplasty.

    PubMed

    Zelken, Jonathan A; Hong, Joon Pio; Chang, Chun-Shin; Hsiao, Yen-Chang

    2017-02-01

    Silicone and Gore-Tex implants are mainstays of Asian rhinoplasty. Silicone implants are inexpensive and wieldy, but may elicit a foreign-body reaction and are prone to migration. Gore-Tex implants are more biocompatible and capable of ingrowth but expensive. Silicone-polytetrafluoroethylene (PTFE) composites have a silicone core and PTFE liner. Composite implants have been marketed for several years, but are not yet established alternatives for rhinoplasty because of a lack of relevant reports. From February 2012 to June 2015, 177 Asian patients underwent primary (n = 63) or secondary (n = 114) rhinoplasty using an I-shaped composite implant. One hundred fifty-nine women and 18 men were 19 to 72 years old (mean, 34 years) at the time of surgery. Composite implants were 1.5 to 5 mm thick and 3.8 to 4.5 cm long. Autologous cartilage from the septum, concha, or both was used for tip refinement in every case. Glabellar augmentation was performed in 19 (10.7%) cases. Follow-up was 6.0 months (range, 1-36 months). There were 19 (10.7%) complications including malposition/deviation (4.5%), erythema (2.3%), and infection (1.1%). Four patients were unsatisfied, citing inadequate dorsal height correction. There was an 8.8% revision rate; 7 of 12 revisions were for malposition/deviation. We did not observe implant step-offs or extrusion. There were no differences in outcomes after primary or secondary rhinoplasty, although there was a trend toward higher infection rate after primary rhinoplasty (P = 0.06). I-shaped silicone-PTFE composite implants are feasible for both primary and secondary augmentation rhinoplasty in Asians. Early outcomes data suggest an overall complication rate that is comparable to PTFE alone.

  20. Robust Non-Wetting PTFE Surfaces by Femtosecond Laser Machining

    PubMed Central

    Liang, Fang; Lehr, Jorge; Danielczak, Lisa; Leask, Richard; Kietzig, Anne-Marie

    2014-01-01

    Nature shows many examples of surfaces with extraordinary wettability, which can often be associated with particular air-trapping surface patterns. Here, robust non-wetting surfaces have been created by femtosecond laser ablation of polytetrafluoroethylene (PTFE). The laser-created surface structure resembles a forest of entangled fibers, which support structural superhydrophobicity even when the surface chemistry is changed by gold coating. SEM analysis showed that the degree of entanglement of hairs and the depth of the forest pattern correlates positively with accumulated laser fluence and can thus be influenced by altering various laser process parameters. The resulting fibrous surfaces exhibit a tremendous decrease in wettability compared to smooth PTFE surfaces; droplets impacting the virgin or gold coated PTFE forest do not wet the surface but bounce off. Exploratory bioadhesion experiments showed that the surfaces are truly air-trapping and do not support cell adhesion. Therewith, the created surfaces successfully mimic biological surfaces such as insect wings with robust anti-wetting behavior and potential for antiadhesive applications. In addition, the fabrication can be carried out in one process step, and our results clearly show the insensitivity of the resulting non-wetting behavior to variations in the process parameters, both of which make it a strong candidate for industrial applications. PMID:25110862

  1. Jet blown PTFE for control of biocompatibility

    NASA Astrophysics Data System (ADS)

    Leibner, Evan Scott

    The development of fully hemocompatible cardiovascular biomaterials will have a major impact on the practice of modern medicine. Current artificial surfaces, unlike native vascular surfaces, are not able to control clot and thrombus formation. Protein interactions are an important component in hemocompatibility and can result in decreased patency due to thrombus formation or surface passivation which can improve endothelization. It is believed that controlling these properties, specifically the nanometer sizes of the fibers on the material's surface, will allow for better control of biological responses. The biocompatibility of Teflon, a widely used polymer for vascular grafts, would be improved with nanostructured control of surface features. Due to the difficultly in processing polytetrafluoroethylene (PTFE), it has not been possible to create nanofibrous PTFE surfaces. The novel technique of Jet Blowing allows for the formation of nanostructured PTFE (nPTFE). A systematic investigation into controlling polymer properties by varying the processing conditions of temperature, pressure, and gas used in the Jet Blowing allows for an increased understanding of the effects of plasticization on the material's properties. This fundamental understanding of the material science behind the Jet Blowing process has enabled control of the micro and nanoscale structure of nPTFE. While protein adsorption, a key component of biocompatibility, has been widely studied, it is not fully understood. Major problems in the field of biomaterials include a lack of standard protocols to measure biocompatibility, and inconstant literature on protein adsorption. A reproducible protocol for measuring protein adsorption onto superhydrophobic surfaces (ePTFE and nPTFE) has been developed. Both degassing of PBS buffer solutions and evacuation of the air around the expanded PTFE (ePTFE) prior to contact with protein solutions are essential. Protein adsorption experiments show a four

  2. Evaluation of a simple polytetrafluoroethylene (PTFE)-based membrane for blood-feeding of malaria and dengue fever vectors in the laboratory.

    PubMed

    Siria, Doreen J; Batista, Elis P A; Opiyo, Mercy A; Melo, Elizangela F; Sumaye, Robert D; Ngowo, Halfan S; Eiras, Alvaro E; Okumu, Fredros O

    2018-04-11

    Controlled blood-feeding is essential for maintaining laboratory colonies of disease-transmitting mosquitoes and investigating pathogen transmission. We evaluated a low-cost artificial feeding (AF) method, as an alternative to direct human feeding (DHF), commonly used in mosquito laboratories. We applied thinly-stretched pieces of polytetrafluoroethylene (PTFE) membranes cut from locally available seal tape (i.e. plumbers tape, commonly used for sealing pipe threads in gasworks or waterworks). Approximately 4 ml of bovine blood was placed on the bottom surfaces of inverted Styrofoam cups and then the PTFE membranes were thinly stretched over the surfaces. The cups were filled with boiled water to keep the blood warm (~37 °C), and held over netting cages containing 3-4 day-old inseminated adults of female Aedes aegypti, Anopheles gambiae (s.s.) or Anopheles arabiensis. Blood-feeding success, fecundity and survival of mosquitoes maintained by this system were compared against DHF. Aedes aegypti achieved 100% feeding success on both AF and DHF, and also similar fecundity rates (13.1 ± 1.7 and 12.8 ± 1.0 eggs/mosquito respectively; P > 0.05). An. arabiensis had slightly lower feeding success on AF (85.83 ± 16.28%) than DHF (98.83 ± 2.29%) though these were not statistically different (P > 0.05), and also comparable fecundity between AF (8.82 ± 7.02) and DHF (8.02 ± 5.81). Similarly, for An. gambiae (s.s.), we observed a marginal difference in feeding success between AF (86.00 ± 10.86%) and DHF (98.92 ± 2.65%), but similar fecundity by either method. Compared to DHF, mosquitoes fed using AF survived a similar number of days [Hazard Ratios (HR) for Ae. aegypti = 0.99 (0.75-1.34), P > 0.05; An. arabiensis = 0.96 (0.75-1.22), P > 0.05; and An. gambiae (s.s.) = 1.03 (0.79-1.35), P > 0.05]. Mosquitoes fed via this simple AF method had similar feeding success, fecundity and longevity. The method could potentially be used for laboratory colonization of mosquitoes

  3. Management of sepsis involving expanded polytetrafluoroethylene grafts for hemodialysis access.

    PubMed

    Bhat, D J; Tellis, V A; Kohlberg, W I; Driscoll, B; Veith, F J

    1980-04-01

    The incidence and management of infections in 80 polytetrafluoroethylene (PTFE) grafts is reviewed. In a follow-up period of 12 to 30 months, the overall incidence of infection was 19%. In functioning grafts the majority of infections occurred after dialysis puncture or reoperation. With appropriate management, by incision, drainage, and packing of wounds with povidone-iodine solution, it was possible, even in the face of positive blood cultures, to treat four of five localized infections successfully without loss of graft function. Prophylactic antibiotics may be useful in reducing the high incidence of infection associated with secondary operations.

  4. Effect of the PTFE content in the gas diffusion layer on water transport in polymer electrolyte fuel cells (PEFCs)

    NASA Astrophysics Data System (ADS)

    Mortazavi, Mehdi; Tajiri, Kazuya

    2014-01-01

    The dynamic behavior of a liquid water droplet emerging and detaching from the surface of the gas diffusion layer (GDL) is investigated. The droplet growth and detachment are studied for different polytetrafluoroethylene (PTFE) contents within the GDL and for different superficial gas velocities flowing in the gas channel. To simulate the droplet behavior in the cathode and anode of an operating polymer electrolyte fuel cell, separate experiments are conducted with air and hydrogen being supplied in the gas channel, respectively. Both the superficial gas velocity and the PTFE content within the GDL are found to impact the droplet detachment diameter. Increasing the superficial gas velocity increases the drag force applied on the droplet sitting on the GDL surface. It is observed that the droplet detaches at a smaller diameter for higher superficial gas velocities. The droplets also detach at smaller diameters from GDLs with a higher amount of PTFE. Such observation is justified according to two different points of view: (1) heterogeneous through-plane PTFE distribution through the GDL and (2) reduced GDL surface roughness caused by PTFE loading.

  5. Constitutive modeling of the dynamic-tensile-extrusion test of PTFE

    NASA Astrophysics Data System (ADS)

    Resnyansky, A. D.; Brown, E. N.; Trujillo, C. P.; Gray, G. T.

    2017-01-01

    Use of polymers in defense, aerospace and industrial applications under extreme loading conditions makes prediction of the behavior of these materials very important. Crucial to this is knowledge of the physical damage response in association with phase transformations during loading and the ability to predict this via multi-phase simulation accounting for thermodynamical non-equilibrium and strain rate sensitivity. The current work analyzes Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) experiments on polytetrafluoroethylene (PTFE). In particular, the phase transition during loading and subsequent tension are analyzed using a two-phase rate sensitive material model implemented in the CTH hydrocode. The calculations are compared with experimental high-speed photography. Deformation patterns and their link with changing loading modes are analyzed numerically and correlated to the test observations. It is concluded that the phase transformation is not as critical to the response of PTFE under Dyn-Ten-Ext loading as it is during the Taylor rod impact testing.

  6. Elucidation of atomic scale mechanisms for polytetrafluoroethylene tribology using molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Barry, Peter R.

    Polytetrafluoroethylene (PTFE) is a polymer that has been widely exploited commercially as a result of its low friction, 'non-stick' properties. The polymer has found usage as 'non-stick,' chemically resistant coatings for bearings, valves, rollers and pipe linings with applications in industries ranging from food and chemical processing to construction, automotive and aerospace. The major drawback of PTFE in low friction applications involves its excessive wear rate. For decades, scientists and engineers have sought to improve the polymer's wear resistance while maintaining its low sliding friction by reinforcing the polymer matrix with a host of filler materials ranging from fibril to particulate. In this study, a different approach is taken in which the atomic scale phenomena between two crystalline PTFE surfaces in sliding contact are examined. The goal is to obtain atomic-level insights into PTFE's low friction and high wear rate to aid in the designing of effective polymer based tribological composites for extreme condition applications. To accomplish this, several tribological conditions were varied. These included sliding direction of the two polymer surfaces with respect to their chain alignment, sliding velocity, degree of crystalline phase rigidity, interfacial contact pressure, sample temperature and the presence of fluorocarbon fluids between the two crystalline PTFE surfaces. From these studies, it was found that crystalline PTFE-PTFE sliding demonstrates friction anisotropy. Low friction and molecular wear was observed when sliding in the direction of the chain alignment with high friction and wear behavior dominating when sliding in a direction perpendicular to the chain alignment. For the range of cross-link density (average linear density of 6.2 to 11.1 A) and sliding rate (5 m/s to 20 m/s) explored, a significant change in friction behavior or wear mechanisms was not observed. Under conditions of increased normal load or low temperature however

  7. Ion-implanted polytetrafluoroethylene enhances Saccharomyces cerevisiae biofilm formation for improved immobilization

    PubMed Central

    Tran, Clara T. H.; Kondyurin, Alexey; Hirsh, Stacey L.; McKenzie, David R.; Bilek, Marcela M. M.

    2012-01-01

    The surface of polytetrafluoroethylene (PTFE) was modified using plasma immersion ion implantation (PIII) with the aim of improving its ability to immobilize yeast. The density of immobilized cells on PIII-treated and -untreated PTFE was compared as a function of incubation time over 24 h. Rehydrated yeast cells attached to the PIII-treated PTFE surface more rapidly, with higher density, and greater attachment strength than on the untreated surface. The immobilized yeast cells were removed mechanically or chemically with sodium hydroxide and the residues left on the surfaces were analysed with Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS). The results revealed that the mechanism of cell attachment on both surfaces differs and a model is presented for each. Rapid attachment on the PIII-treated surface occurs through covalent bonds of cell wall proteins and the radicals on the treated surface. In contrast, on the untreated surface, only physisorbed molecules were found in the residue and lipids were more highly concentrated than proteins. The presence of lipids in the residue was found to be a consequence of damage to the plasma membrane during the rehydration process and the increased cell stress was also apparent by the amount of Hsp12 in the protein residue. The immobilized yeast cells on PIII-treated PTFE were found to be as active as yeast cells in suspension. PMID:22696486

  8. Bioactive surface modifications on inner walls of poly-tetra-fluoro-ethylene tubes using dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Cho, Yong Ki; Park, Daewon; Kim, Hoonbae; Lee, Hyerim; Park, Heonyong; Kim, Hong Ja; Jung, Donggeun

    2014-03-01

    Bioactive surface modification can be used in a variety of medical polymeric materials in the fields of biochips and biosensors, artificial membranes, and vascular grafts. In this study, the surface modification of the inner walls of poly-tetra-fluoro-ethylene (PTFE) tubing was carried out to improve vascular grafts, which are made of biocompatible material for the human body in the medical field. Focus was centered on the cell attachment of the inner wall of the PTFE by sequential processes of hydrogen plasma treatment, hydrocarbon deposition, and reactive plasma treatment on the PFTE surface using micro plasma discharge. Micro plasma was generated by a medium-frequency alternating current high-voltage generator. The preliminary modification of PTFE was conducted by a plasma of hydrogen and argon gases. The hydrocarbon thin film was deposited on modified PTFE with a mixture of acetylene and argon gases. The reactive plasma treatment using oxygen plasma was done to give biocompatible functionality to the inner wall surface. The hydrophobic surface of bare PTFE is made hydrophilic by the reactive plasma treatment due to the formation of carbonyl groups on the surface. The reactive treatment could lead to improved attachment of smooth muscle cells (SMCs) on the modified PTFE tubing. Fourier transform infrared absorption spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and water contact angle measurement were used for the analysis of the surface modification. The SMC-attached PTFE tube developed will be applicable to in vitro human vasculature-mimetic model systems, and to medical vascular grafts.

  9. Shock, release and Taylor impact of the semicrystalline thermoplastic polytetrafluoroethylene

    NASA Astrophysics Data System (ADS)

    Bourne, N. K.; Brown, E. N.; Millett, J. C. F.; Gray, G. T.

    2008-04-01

    The high strain-rate response of polymers is a subject that has gathered interest over recent years due to their increasing engineering importance, particularly in load bearing applications subject to extremes of pressure and strain rate. The current work presents two specific sets of experiments interrogating the effect of dynamic, high-pressure loading in the regime of the phase II to phase III pressure-induced crystalline phase transition in polytetrafluoroethylene (PTFE). These are gas-gun driven plate- and Taylor impact. Together these experiments highlight several effects associated with the dynamic, pressure-induced phase transitions in PTFE. An elevated release wave speed shows evidence of a pressure-induced phase change at a stress commensurate with that observed statically. It is shown that convergence between analytic derivations of release wave speed and the data requires the phase II to III transition to occur. Taylor impact is an integrated test that highlights continuum behavior that has origin in mesoscale response. There is a rapid transition from ductile to brittle behavior observed that occurs at a pressure consistent with this phase transition.

  10. Removable polytetrafluoroethylene template based epitaxy of ferroelectric copolymer thin films

    NASA Astrophysics Data System (ADS)

    Xia, Wei; Chen, Qiusong; Zhang, Jian; Wang, Hui; Cheng, Qian; Jiang, Yulong; Zhu, Guodong

    2018-04-01

    In recent years ferroelectric polymers have shown their great potentials in organic and flexible electronics. To meet the requirements of high-performance and low energy consumption of novel electronic devices and systems, structural and electrical properties of ferroelectric polymer thin films are expected to be further optimized. One possible way is to realize epitaxial growth of ferroelectric thin films via removable high-ordered polytetrafluoroethylene (PTFE) templates. Here two key parameters in epitaxy process, annealing temperature and applied pressure, are systematically studied and thus optimized through structural and electrical measurements of ferroelectric copolymer thin films. Experimental results indicate that controlled epitaxial growth is realized via suitable combination of both parameters. Annealing temperature above the melting point of ferroelectric copolymer films is required, and simultaneously moderate pressure (around 2.0 MPa here) should be applied. Over-low pressure (around 1.0 MPa here) usually results in the failure of epitaxy process, while over-high pressure (around 3.0 MPa here) often results in residual of PTFE templates on ferroelectric thin films.

  11. Elevated cholinesterase activity and increased urinary excretion of inorganic fluorides in the workers producing fluorine-containing plastic (polytetrafluoroethylene)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baohui Xu; Jiusun Zhang; Guaogeng Mao

    1992-07-01

    Fluoropolymers are widely used in thermal and electrical industries. Polytetrafluoroethylene (PTFE) plastic is a typical one. During its production, workers are occupationally exposed to many organic fluorides, especially tetrafluoroethylene, chlorodifluoromethane, PTFE and its thermal decomposition products. Of these compounds, it has been documented that following inhalation of combustion products of PTFE the focal hemorrhages, edema, fibrin deposition in lungs and renal infarcts were observed in rats. Odum and Green have demonstrated a marked damage to proximal tubule of kidney with no effects on the liver in rats exposed to 6000 ppm tetrafluoroethylene for 6 hr. The investigations of the hazardsmore » of these compounds to workers have been mainly focused on acute toxicity. There have been some reports that polymers and its pyrolysis caused polymer fume fever and pulmonary edema. In practice, workers engaged in PTFE manufacture are chronically exposed to the above-mentioned chemicals, but little was known about the hazards ascribed to these chemicals. To clarify the influences of the exposed chemicals on health in PTFE production we conducted a mass survey investigation in a PTFE production factory. As a result, in addition to the nephrotoxicity characterized by elevated ALP and NAG activities in urine, more interestingly, we have also found a reversible increase in cholinesterase (ChE) activity and enhanced urinary excretion of inorganic fluorides in workers engaged in PTFE production. We report here these findings and discuss their physiological significance. 18 refs., 4 tabs.« less

  12. PolyDOPA Mussel-Inspired Coating as a Means for Hydroxyapatite Entrapment on Polytetrafluoroethylene Surface for Application in Periodontal Diseases.

    PubMed

    Nardo, Tiziana; Chiono, Valeria; Ciardelli, Gianluca; Tabrizian, Maryam

    2016-02-01

    Inert polytetrafluoroethylene (PTFE) membranes for periodontal regeneration suffer from weak osteoconductive properties. In this work, a strategy for hydroxyapatite (HAp) coating on PTFE films through an adhesive layer of self-polymerized 3,4-dihydroxy-DL-phenylalanine (polyDOPA) was developed to improve surface properties. Physico-chemical and morphological analysis demonstrated the deposition of polyDOPA and HAp, with an increase in surface roughness and wettability. A discontinuous coating was present after 14 days in PBS and MC3T3-E1 cells proliferation and adhesion were improved. Results confirmed the potential application of polyDOPA/HAp-coated films for periodontal disease treatments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Polytetrafluoroethylene Toxicosis in Recently Hatched Chickens (Gallus domesticus)

    PubMed Central

    Shuster, Katherine A; Brock, Kristie L; Dysko, Robert C; DiRita, Victor J; Bergin, Ingrid L

    2012-01-01

    Two groups of chickens (Gallus domesticus; White Leghorn; age, 4 d and 2 wk) housed in a university research vivarium were found dead or moribund without prior signs of illness. The overall mortality rates were 92.3% (60 of 65 birds) for the 4-d-old birds and 80% (8 of 10) for the 2-wk-old birds. All chicks were housed in brooders with heat lamps in a temperature- and humidity-controlled room. Primary gross findings were mild to moderate dehydration and hepatic lipidosis. The most consistent histologic findings were pulmonary hemorrhage and edema in all 7 of the 4-d-old birds evaluated and in all 4 of the 2-wk-old birds assessed. In addition, 1 of the 4-d-old birds had multifocal centrilobular hepatic necrosis. These findings suggested an inhaled toxicant and hypoxia, respectively. Inspection of the animal room revealed that approximately 50% of the heat lamp bulbs in the brooder cage were coated with polytetrafluoroethylene (PTFE). Two published case reports detail similar experiences in birds exposed to PTFE-coated heat-lamp bulbs. Birds are highly sensitive to inhaled toxicants owing to the high efficiency of their respiratory systems, and PTFE toxicosis is known to cause pulmonary edema and hemorrhage in pet birds after exposure to overheated nonstick cookware. In the present case, the bulbs were replaced, and no similar problems subsequently have been noted. This case illustrates the sensitivity of avian species to respiratory toxicants and serves as a reminder that toxicosis can be encountered even in the controlled environment of a laboratory vivarium. PMID:22330651

  14. Does expanded polytetrafluoroethylene mesh really shrink after laparoscopic ventral hernia repair?

    PubMed

    Carter, P R; LeBlanc, K A; Hausmann, M G; Whitaker, J M; Rhynes, V K; Kleinpeter, K P; Allain, B W

    2012-06-01

    The shrinkage of mesh has been cited as a possible explanation for hernia recurrence. Expanded polytetrafluoroethylene (ePTFE) is unique in that it can be visualized on computed tomography (CT). Some animal studies have shown a greater than 40% rate of contraction of ePTFE; however, very few human studies have been performed. A total of 815 laparoscopic incisional/ventral hernia (LIVH) repairs were performed by a single surgical group. DualMesh Plus (ePTFE) (WL Gore & Associates, Newark, DE) was placed in the majority of these patients using both transfascial sutures and tack fixation. Fifty-eight patients had postoperative CTs of the abdomen and pelvis with ePTFE and known transverse diameter of the implanted mesh. The prosthesis was measured on the CT using the AquariusNet software program (TeraRecon, San Mateo, CA), which outlines the mesh and calculates the total length. Data were collected regarding the original mesh size, known linear dimension of mesh, seroma formation, and time interval since mesh implantation in months. The mean shrinkage rate was 6.7%. The duration of implantation ranged from 6 weeks to 78 months, with a median of 15 months. Seroma was seen in 8.6% (5) of patients. No relationship was identified between the percentage of shrinkage and the original mesh size (P = 0.78), duration of time implanted (P = 0.57), or seroma formation (P = 0.074). In 27.5% (16) of patients, no shrinkage of mesh was identified. Of the patients who did experience mesh shrinkage, the range of shrinkage was 2.6-25%. Our results are markedly different from animal studies and show that ePTFE has minimal shrinkage after LIVH repair. The use of transfascial sutures in addition to tack fixation may have an implication on the mesh contraction rates.

  15. EPR/PTFE dosimetry for test reactor environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vehar, D.W.; Griffin, P.J.; Quirk, T.J.

    2011-07-01

    The use of Electron Paramagnetic Resonance (EPR) spectroscopy with materials such as alanine is well established as a technique for measurement of ionizing radiation absorbed dose in photon and electron fields such as Co-60, high-energy bremsstrahlung and electron-beam fields [1]. In fact, EPR/Alanine dosimetry has become a routine transfer standard for national standards bodies such as NIST and NPL. In 1992 the Radiation Metrology Laboratory (RML) at Sandia National Laboratories implemented EPR/Alanine capabilities for use in routine and calibration activities at its Co-60 and pulsed-power facilities. At that time it also investigated the usefulness of the system for measurement ofmore » absorbed dose in the mixed neutron/photon environments of reactors such as the Sandia Pulsed Reactor and the Annular Core Research Reactor used for hardness testing of electronics. The RML concluded that the neutron response of alanine was a sufficiently high fraction of the overall dosimeter response that the resulting uncertainties in the photon dose would be unacceptably large for silicon-device testing. However, it also suggested that non-hydrogenous materials such as polytetrafluoroethylene (PTFE) would exhibit smaller neutron response and might be useful in mixed environments. Preliminary research with PTFE in photon environments indicated considerable promise, but further development was not pursued at that time. Because of renewed interest in absorbed dose measurements that could better define the individual contributions of photon and neutron components to the overall dose delivered to a test object, the RML has re-initiated the development of an EPR/PTFE dosimetry system. This effort consists of three stages: 1) Identification of PTFE materials that may be suitable for dosimetry applications. It was speculated that the inconsistency of EPR signatures in the earlier samples may have been due to variability in PTFE manufacturing processes. 2) Characterization of

  16. Torsional Tribological Behavior and Torsional Friction Model of Polytetrafluoroethylene against 1045 Steel

    PubMed Central

    Wang, Shibo; Niu, Chengchao

    2016-01-01

    In this work, the plane-on-plane torsional fretting tribological behavior of polytetrafluoroethylene (PTFE) was studied. A model of a rigid, flat-ended punch acting on an elastic half-space was built according to the experimental conditions. The results indicate that the shape of T–θ curves was influenced by both the torsional angle and the normal load. The torsion friction torque and wear rate of PTFE exponentially decreased when the torsion angle rose. The torsional torque increased from 0.025 N·m under a normal load of 43 N to 0.082 N·m under a normal load of 123 N. With sequentially increasing normal load, the value of torque was maintained. With rising normal load, the wear mass loss of PTFE disks was increased and the wear rate was decreased. Good agreement was found with the calculated torque according to the model and the experimental torque except for that under a normal load of 163 N. The difference under a normal load of 163 N was caused by the coefficient of friction. Usually the coefficient of friction of a polymer decreases with increasing normal load, whereas a constant coefficient of friction was applied in the model. PMID:26799324

  17. The biomechanical effects of polytetrafluoroethylene suture augmentations in lateral-row rotator cuff repairs in an ovine model.

    PubMed

    Beimers, Lijkele; Lam, Patrick H; Murrell, George A C

    2014-10-01

    This study investigated the biomechanical effects of expanded polytetrafluoroethylene (ePTFE) suture augmentation patches in rotator cuff repair constructs. The infraspinatus tendon in 24 cadaveric ovine shoulders was repaired using an inverted horizontal mattress suture with 2 knotless bone anchors (ArthroCare, Austin, TX, USA) in a lateral-row configuration. Four different repair groups (6 per group) were created: (1) standard repair using inverted horizontal mattress sutures, (2) repair with ePTFE suture augmentations on the bursal side of the tendon, (3) repair with ePTFE suture augmentations on the articular side, and, (4) repair with ePTFE suture augmentations on both sides of the tendon. Footprint contact pressure, stiffness, and the load to failure of the repair constructs were measured. Repairs with ePTFE suture augmentations on the bursal side exerted significantly more footprint contact pressure (0.40 ± 0.01 MPa) than those on the articular side (0.34 ± 0.02 MPa, P = .04) and those on both sides (0.33 ± 0.02 MPa, P = .01). At 15 degrees of abduction, ePTFE-augmented repairs on the bursal side had higher footprint contact pressure (0.26 ± 0.03 MPa) compared with standard repairs (0.15 ± 0.02 MPa, P = .01) and with ePTFE-augmented repairs on the articular side (0.18 ± 0.02 MPa, P = .03). The ePTFE-augmented repairs on the bursal side demonstrated significantly higher failure loads (178 ± 18 N) than standard repairs (120 ± 17 N, P = .04). Inverted horizontal mattress sutures augmented with ePTFE patches on the bursal side of the tendon enhanced footprint contact pressures and the ultimate load to failure of lateral-row rotator cuff repairs in an ovine model. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  18. Combustion of PTFE: The Effects of Gravity and Pigmentation on Ultrafine Particle Generation

    NASA Technical Reports Server (NTRS)

    McKinnon, J. Thomas; Srivastava, Rajiv; Todd, Paul

    1997-01-01

    Ultrafine particles generated during polymer thermodegradation are a major health hazard, owing to their unique pathway of processing in the lung. This hazard in manned spacecraft is poorly understood, because the particulate products of polymer thermodegradation are generated under low gravity conditions. Particulate generated from the degradation of PolyTetraFluoroEthylene (PTFE), insulation coating for 20 AWG copper wire (representative of spacecraft application) under intense ohmic heating were studied in terrestrial gravity and microgravity. Microgravity tests were done in a 1.2-second drop tower at the Colorado School of Mines (CSM). Thermophoretic sampling was used for particulate collection. Transmission Electron Microscopy (TEM) and Scanning Transmission Electron Microscopy (STEM) were used to examine the smoke particulates. Image software was used to calculate particle size distribution. In addition to gravity, the color of PTFE insulation has an overwhelming effect on size, shape and morphology of the particulate. Nanometer-sized primary particles were found in all cases, and aggregation and size distribution was dependent on both color and gravity; higher aggregation occurred in low gravity. Particulates from white, black, red and yellow colored PTFE insulations were studied. Elemental analysis of the particulates shows the presence of inorganic pigments.

  19. Experimental Study on Impact-Induced Reaction Characteristics of PTFE/Ti Composites Enhanced by W Particles.

    PubMed

    Li, Yan; Wang, Zaicheng; Jiang, Chunlan; Niu, Haohao

    2017-02-13

    Metal/fluoropolymer composites are a category of energetic structural materials that release energy through exothermic chemical reactions initiated under highly dynamic loadings. In this paper, the chemical reaction mechanism of PTFE (polytetrafluoroethylene)/Ti/W composites is investigated through thermal analysis and composition analysis. These composites undergo exothermic reactions at 510 °C to 600 °C, mainly producing TiF x . The tungsten significantly reduces the reaction heat due to its inertness. In addition, the dynamic compression properties and impact-induced reaction behaviors of PTFE/Ti/W composites with different W content prepared by pressing and sintering are studied using Split Hopkinson Pressure Bar and high speed photography. The results show that both the mechanical strength and the reaction degree are significantly improved with the increasing strain rate. Moreover, as W content increases, the mechanical strength is enhanced, but the elasticity/plasticity is decreased. The PTFE/Ti/W composites tend to become more inert with the increasing W content, which is reflected by the reduced reaction degree and the increased reaction threshold for the impact ignition.

  20. Experimental Study on Impact-Induced Reaction Characteristics of PTFE/Ti Composites Enhanced by W Particles

    PubMed Central

    Li, Yan; Wang, Zaicheng; Jiang, Chunlan; Niu, Haohao

    2017-01-01

    Metal/fluoropolymer composites are a category of energetic structural materials that release energy through exothermic chemical reactions initiated under highly dynamic loadings. In this paper, the chemical reaction mechanism of PTFE (polytetrafluoroethylene)/Ti/W composites is investigated through thermal analysis and composition analysis. These composites undergo exothermic reactions at 510 °C to 600 °C, mainly producing TiFx. The tungsten significantly reduces the reaction heat due to its inertness. In addition, the dynamic compression properties and impact-induced reaction behaviors of PTFE/Ti/W composites with different W content prepared by pressing and sintering are studied using Split Hopkinson Pressure Bar and high speed photography. The results show that both the mechanical strength and the reaction degree are significantly improved with the increasing strain rate. Moreover, as W content increases, the mechanical strength is enhanced, but the elasticity/plasticity is decreased. The PTFE/Ti/W composites tend to become more inert with the increasing W content, which is reflected by the reduced reaction degree and the increased reaction threshold for the impact ignition. PMID:28772534

  1. Effect of gamma irradiation on the structural, mechanical and optical properties of polytetrafluoroethylene sheet

    NASA Astrophysics Data System (ADS)

    Mohammadian-Kohol, M.; Asgari, M.; Shakur, H. R.

    2018-04-01

    In this study, the effects of gamma radiation on the chemical structure, mechanical and optical properties of polytetrafluoroethylene (PTFE) sheet were investigated with various doses up to 12 kGy. The chemical changes in the structure were studied by FTIR spectroscopy. Also, effects of radiation on the different mechanical parameters such as Young's modulus, toughness, strain, and stress were studied at the maximum tolerable force and the fracture points. Furthermore, changing the various optical parameters such as absorption coefficient, Urbach energy, optical band gaps, refractive index, optical dispersion parameters and plasma resonance frequency were studied by UV-visible spectroscopy. Formation of a band at 1594 cm-1, which was belonged to double carbon bonds, indicated that chain-scission was occurred at 12 kGy gamma irradiation dose. As well, the mechanical results showed an increase in the elastic behavior of PTFE sheets and a decrease in the plastic behavior of it with absorbed dose increasing. Moreover, the results showed that gamma irradiation can effectively change the various optical properties of PTFE sheets due to different phenomena such as degradation of the main chains, occurring chain-scission, formation of free radicals and cross-linking in the polymer structure.

  2. Effect of shear stress on platelet adhesion to expanded polytetrafluoroethylene, a silicone sheet, and an endothelial cell monolayer.

    PubMed

    Furukawa, K S; Ushida, T; Sugano, H; Tamaki, T; Ohshima, N; Tateishi, T

    2000-01-01

    We visualized in real-time platelets adhering to the surface of three representative biomaterials, by using an apparatus consisting of a modified cone and plate rheometer combined with an upright epifluorescence microscope under two shear flows (0.1 and 5.0 dyne/cm2). The materials were expanded polytetrafluoroethylene (ePTFE), silicone sheet, and a monolayer of bovine endothelial cells (ECs) formed on glass, all of which are opaque materials used for artificial blood vessels and medical devices. According to quantitative analysis, the monolayer of ECs formed on glass had better blood compatibility than did either the ePTFE or the silicone sheet under shear flow conditions. Under a shear flow condition of 0.1 dyne/cm2, platelet adhesion was silicone sheet > ePTFE. In contrast, under a shear flow condition of 5.0 dyne/cm2, ePTFE > silicone sheet. These results indicate that the intensity of shear stress could modify the order of hemocompatibility of the materials. Therefore, direct observation of platelet adhesion under shear flow conditions is indispensable for testing and screening biomaterials and for providing a precise quantitative evaluation of platelet adhesion.

  3. Antifouling performance of polytetrafluoroethylene and polyvinylidene fluoride ultrafiltration membranes during alkali/surfactant/polymer flooding wastewater treatment: Distinctions and mechanisms.

    PubMed

    Zhu, Youbing; Yu, Shuili; Zhang, Bing; Li, Jianfeng; Zhao, Dongsheng; Gu, Zhengyang; Gong, Chao; Liu, Guicai

    2018-06-18

    Alkali/surfactant/polymer (ASP) flooding wastewater is highly caustic, and membrane fouling is the main obstacle during ASP ultrafiltration (UF) treatment. To maintain favorable filtration performance, polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) membranes were implemented here, and their antifouling properties and mechanisms were investigated based on the threshold flux theory. Compared with the PVDF membranes, the PTFE membranes exhibited superior antifouling properties with lower reductions in flux and smaller hydraulic resistance, and they presented a nearly identical pseudo-stable fouling rate at a later time point. In the fouling layers of the PTFE and PVDF membranes, anion polyacrylamide (APAM) was observed along with divalent/trivalent metal ions. The thermodynamic and molecular mechanisms of membrane fouling by APAM were elucidated using the Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory and atomic force microscopy (AFM), respectively. The calculated total interfacial free energy (mJ/m 2 ) of adhesion between the APAM and PTFE membranes was positive, and the value between the APAM and PVDF membranes was negative. Furthermore, the values and interaction distances of the measured intermolecular rupture and approaching forces were larger for APAM-PTFE than for APAM-PVDF. For the PTFE membranes, the positive free energies and smaller intermolecular interaction resulted in weaker APAM-PTFE adhesion and adsorption and therefore the lower levels of flux decline and the later achievement of the pseudo-stable fouling rate. Additionally, the total flux recoveries observed after physical cleaning reached 0.78-0.80 and 0.32-0.39 for the PTFE and PVDF membranes, respectively, which showed that the PTFE membranes can be cleaned easily. The PTFE membranes have considerable potential for extensive application in UF treatments for ASP wastewater. These results should promote understanding the essence of the threshold flux and the fouling

  4. Simulation of Particle Size Effect on Dynamic Properties and Fracture of PTFE-W-Al Composites

    NASA Astrophysics Data System (ADS)

    Herbold, Eric; Cai, Jing; Benson, David; Nesterenko, Vitali

    2007-06-01

    Recent investigations of the dynamic compressive strength of cold isostatically pressed (CIP) composites of polytetrafluoroethylene (PTFE), tungsten and aluminum powders show significant differences depending on the size of metallic particles. PTFE and aluminum mixtures are known to be energetic under dynamic and thermal loading. The addition of tungsten increases density and overall strength of the sample. Multi-material Eulerian and arbitrary Lagrangian-Eulerian methods were used for the investigation due to the complexity of the microstructure, relatively large deformations and the ability to handle the formation of free surfaces in a natural manner. The calculations indicate that the observed dependence of sample strength on particle size is due to the formation of force chains under dynamic loading in samples with small particle sizes even at larger porosity in comparison with samples with large grain size and larger density.

  5. A proton-exchange membrane prepared by the radiation grafting of styrene and silica into polytetrafluoroethylene films

    NASA Astrophysics Data System (ADS)

    Yu, Hongyan; Shi, Jianheng; Zeng, Xinmiao; Bao, Mao; Zhao, Xinqing

    2009-07-01

    A polytetrafluoroethylene (PTFE) based organic-inorganic hybrid proton-exchange membrane was prepared from simultaneous radiation grafting of styrene (St) into porous PTFE membrane with the in situ sol-gel reaction of tetraethoxysilane (TEOS) followed by sulfonation in fuming sulfonic acid. The effect of radiation on the sol-gel reaction was studied. The results show that radiation promotes the sol-gel reaction with the help of St at room temperature. Incorporated silica gel helps to produce higher degree of grafting (DOG). SEM analysis was conducted to confirm that the inorganic silicon oxide was introduced to produce hybrid membrane in this work. The proton conductivity of membrane evaluated using electrochemical impedance spectroscopy is much higher (14.3×10 -2 S cm -1) than that of Nafion ® 117 at temperature of 80 °C with acceptable water uptake 51 wt%.

  6. Relationship between flow and incidence of thrombosis in polytetrafluoroethylene vascular grafts in free microvascular flaps in lambs.

    PubMed

    Paloma, V; Lasso, J M; Bazán, A; Serra, J M

    1999-09-01

    We have done an experimental study in lambs in which we investigated the influence of flow rate on free microvascular flaps using polytetrafluoroethylene (PTFE) vascular grafts. We set up five surgical groups in which blood flow was progressively increased through the PTFE vascular graft. In group I (venous autograft) we observed just one vascular thrombosis which was located at the site of the anastomosis. In group II (PTFE 3 x 10 mm) all the microvascular flaps became necrosed after the third postoperative day. In group III (PTFE 3 x 10 mm) necrosis also developed in all cases, but the anastomoses remained permeable no longer than eight days. In group IV (3 x 15 mm) the permeability in the microvascular free flaps was about 40% after 21 days, and in group V (3 x 10 mm) it reached 70%. To match graft flow rates with flap survival we did a regression analysis of flow rates for groups II, III, and V and the corresponding survival periods for the flaps. There was a clear and highly significant relationship (r = 0.717, p = 0.0001). In conclusion, it is necessary to maintain blood flow through the prosthesis at a rate higher than the thrombogenic threshold. When the flow rate in the vessels through the PTFE grafts was higher, the viability of the flaps was better. The ideal surgical technique should always be based on an arteriovenous fistula distal to the PTFE vascular graft. It is necessary to maintain blood flow through a prosthesis at a rate higher than the thrombogenic threshold.

  7. Double-layered PTFE-covered nitinol stents: experience in 32 patients with malignant esophageal strictures.

    PubMed

    Park, Jung Gu; Jung, Gyoo-Sik; Oh, Kyung Seung; Park, Seon-Ja

    2010-08-01

    We evaluated the effectiveness of a double-layered polytetrafluoroethylene (PTFE)-covered nitinol stent in the palliative treatment of malignant esophageal strictures. A double-layered PTFE-covered nitinol stent was designed to reduce the propensity to migration of conventional covered stent. The stent consists of an inner PTFE-covered stent and an outer uncovered nitinol stent tube. With fluoroscopic guidance, the stent was placed in 32 consecutive patients with malignant esophageal strictures. During the follow-up period, the technical and clinical success rates, complications, and cumulative patient survival and stent patency were evaluated. Stent placement was technically successful in all patients, and no procedural complications occurred. After stent placement, the symptoms of 30 patients (94%) showed improvement. During the mean follow-up of 103 days (range, 9-348 days), 11 (34%) of 32 patients developed recurrent symptoms due to tumor overgrowth in five patients (16%), tumor ingrowth owing to detachment of the covering material (PTFE) apart from the stent wire in 3 (9%), mucosal hyperplasia in 2 (6%), and stent migration in 1 (3%). Ten of these 11 patients were treated by means of placing a second covered stent. Thirty patients died, 29 as a result of disease progression and 1 from aspiration pneumonia. The median survival period was 92 days. The median period of primary stent patency was 190 days. The double-layered PTFE-covered nitinol stent seems to be effective for the palliative treatment of malignant esophageal strictures. We believe that the double-layer configuration of this stent can contribute to decreasing the stent's migration rate.

  8. Off-normal deposition of PTFE thin films during 157-nm irradiation

    NASA Astrophysics Data System (ADS)

    George, Sharon R.; Langford, Stephen C.; Dickinson, J. Thomas

    2010-03-01

    Polytetrafluoroethylene (PTFE) is valued for its chemical stability, low surface energy, and insulating properties. The ablation of PTFE by F2 excimer lasers (157 nm photons) involves photochemical scission of C-C bonds along the polymer chain. Depending on the fluence, the fragment masses can range from 50 to 2000 amu. Gaussian beam profiles allow for the production of spatially non-uniform distributions of fragment masses, with the lighter fragments concentrated in the center of the laser spot. The resulting trajectories for the light fragments can be strongly forward directed, while the heavy fragments are directed more to the side, well away from the surface normal. We present experimental evidence for these angular distributions, and numerically simulate this behavior with a simple, two-component hydrodynamic model. Under the conditions of our work, most of the ablated mass appears as heavier fragments and can be collected on substrates mounted to the sides or above and below the laser spot. This geometry may have advantages in some applications of pulsed laser deposition.

  9. Comparison of the Surgical Outcomes of Dorsal Augmentation Using Expanded Polytetrafluoroethylene or Autologous Costal Cartilage.

    PubMed

    Joo, Yeon Hee; Jang, Yong Ju

    2016-09-01

    Dorsal augmentation material includes alloplastic implants and autologous tissues. However, there has been no comparison to date of dorsal augmentation using different materials performed by the same surgeon. To compare the aesthetic outcomes and complications of dorsal augmentation using expanded polytetrafluoroethylene (ePTFE) and autologous costal cartilage (ACC) in rhinoplasty. A retrospective review of the medical records of 244 patients who underwent dorsal augmentation performed by the same surgeon at the Asan Medical Center using ePTFE or ACC from March 1, 2003, through September 31, 2015. Patient demographics and surgical procedures were analyzed. The aesthetic outcomes were scored from 1 (worst) to 4 (best) by 3 otolaryngologists. Changes in dorsal height and radix height were measured by comparing preoperative and postoperative profile views. Postoperative complications were also evaluated. A total of 244 patients who underwent augmentation rhinoplasty were reviewed in this study, including 141 men (57.8%) and 103 women (42.2%). The ePTFE group included 176 patients, and the ACC group comprised 68 patients. In the ePTFE and ACC groups, 96 patients (54.5%) and 45 patients (66.2%) were male, respectively. The patient ages ranged from 11 to 69 years, with a mean (SD) age of 30.3 (11.49) years in the ePTFE group and 36.04 (12.65) years in the ACC group. The mean (SD) aesthetic outcome scores were comparable between the 2 groups: 2.99 (0.05) in the ePTFE group and 2.99 (0.06) in the ACC group (P = .93). The change of dorsal (2.64% in ePTFE group and 5.82% in ACC group) and radix (3.62% in ePTFE group and 3.77% in ACC group) heights were significantly increased after augmentation in both groups (P < .001) even though the dorsal height of the ACC group after augmentation showed a significantly greater increase compared to the ePTFE group (P < .001). However, the complication rate was significantly higher in the ACC group: 4.0% in ePTFE group and

  10. Thermal stability of electron-irradiated poly(tetrafluoroethylene) - X-ray photoelectron and mass spectroscopic study

    NASA Technical Reports Server (NTRS)

    Wheeler, Donald R.; Pepper, Stephen V.

    1990-01-01

    Polytetrafluoroethylene (PTFE) was subjected to 3 keV electron bombardment and then heated in vacuum to 300 C. The behavior of the material as a function of radiation dose and temperature was studied by X-ray photoelectron spectroscopy (XPS) of the surface and mass spectroscopy of the species evolved. Lightly damaged material heated to 300 C evolved saturated fluorocarbon species, whereas unsaturated fluorocarbon species were evolved from heavily damaged material. After heating the heavily damaged material, those features in the XPS spectrum that were associated with damage diminished, giving the appearance that the radiation damage had annealed. The observations were interpreted by incorporating mass transport of severed chain fragments and thermal decomposition of severely damaged material into the branched and cross-linked network model of irradiated PTFE. The apparent annealing of the radiation damage was due to covering of the network by saturated fragments that easily diffused through the decomposed material to the surface region upon heating.

  11. Stability of nonfouling electroless nickel-polytetrafluoroethylene coatings after exposure to commercial dairy equipment sanitizers.

    PubMed

    Huang, Kang; Goddard, Julie M

    2015-09-01

    Application of nonfouling coatings on thermal processing equipment can improve operational efficiency. However, to enable effective commercial translation, a need exists for more comprehensive studies on the stability of nonfouling coatings after exposure to different sanitizers. In the current study, the influence of different commercial dairy equipment sanitizers on the nonfouling properties of stainless steel modified with electroless Ni-polytetrafluoroethylene (PTFE) coatings was determined. Surface properties, such as dynamic contact angle, surface energy, surface morphology, and elemental composition, were measured before and after the coupons were exposed to the sanitizers for 168 cleaning cycles. The fouling behavior of Ni-PTFE-modified stainless steel coupons after exposure was also evaluated by processing raw milk on a self-fabricated benchtop-scale plate heat exchanger. The results indicated that peroxide sanitizer had only minor effect on the Ni-PTFE-modified stainless steel surface, whereas chlorine- and iodine-based sanitizers influenced the surface properties drastically. The coupons after 168 cycles of exposure to peroxide sanitizer accumulated the least amount of fouling material (4.44±0.24mg/cm(2)) compared with the coupons exposed to the other 3 sanitizers. These observations indicated that the Ni-PTFE nonfouling coating retained antifouling properties after 168 cycles of exposure to peroxide-based sanitizer, supporting their potential application as nonfouling coatings for stainless steel dairy processing equipment. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Examination of the suitability of alpha-tocopherol as a stabilizer for ultra-high molecular weight polyethylene used for articulating surfaces in joint endoprostheses.

    PubMed

    Wolf, C; Krivec, T; Blassnig, J; Lederer, K; Schneider, W

    2002-02-01

    The lifetime of articulating surfaces in joint endoprostheses made of ultra-high molecular weight polyethylene (UHMW-PE), especially of UHMW-PE-cups of hip-endoprostheses, is usually limited to 10-15 years due to material failure as a result of oxidation of the UHMW-PE in vivo. In this study the suitability of the natural antioxidant alpha-tocopherol (vitamin E) as a stabilizer for UHMW-PE in these applications was investigated. Specimens with 0.1%, 0.2%, 0.4% and 0.8% w/w alpha-tocopherol as well as unstabilized samples were sintered and sterilized with gamma-rays at 25 kGy in accordance with standard processing methods of cups for total hip-endoprostheses. These specimens were aged in pure oxygen at 70 degrees C and 5 bar as well as in aqueous H2O2 at 50 degrees C. The degree of oxidation was observed by means of FTIR-spectroscopy, DSC analysis and mechanical testing. The FTIR-measurements showed that alpha-tocopherol can prolong the lifetime of UHMW-PE in an oxidative environment by a factor of more than 2.5. In the mechanical tests no embrittlement could be observed with the stabilized samples. A comparison with the standard antioxidant system Irganox 1010/Irgafos 168 (Ciba-Geigy, Switzerland) was carried out and revealed that alpha-tocopherol can even exceed the stabilization effect of this widely-used antioxidant system.

  13. Assessing the Safety of Expanded Polytetrafluoroethylene Synthetic Grafts in Living Donor Liver Transplantation: Graft Migration Into Hollow Viscous Organs - Diagnosis and Treatment Options.

    PubMed

    Hsu, Shih-Chao; Thorat, Ashok; Yang, Horng-Ren; Poon, Kin-Shing; Li, Ping-Chun; Yeh, Chun-Chieh; Chen, Te-Hung; Jeng, Long-Bin

    2017-07-06

    BACKGROUND Our recent studies have highlighted the importance and safety of backtable venoplasty for middle hepatic vein (MHV) and inferior right hepatic veins (IRHV) reconstruction using expanded polytetrafluoroethylene (ePTFE) vascular grafts. In this study, we aim to analyze the complications associated with ePTFE graft use and discuss the management of the rare, but, potentially life threatening complications directly related to ePTFE conduits. MATERIAL AND METHODS From January 2012 to October 2015 a total of 397 patients underwent living donor liver transplantation (LDLT). The ePTFE vascular grafts were used during the backtable venoplasty for outflow reconstruction in 262 of the liver allografts. Recipients who developed ePTFE-related complications were analyzed. RESULTS ePTFE-related complications developed in 1.52% (4/262) of the patients. One patient (0.38%) developed complete thrombosis with sepsis at 24 months post-transplantation and died due to multiorgan failure. Three patients (1.1%) developed graft migration into the second portion of the duodenum, without overt peritonitis. Surgical exploration and ePTFE graft removal was done in all the patients. One patient died due to overwhelming sepsis. CONCLUSIONS ePTFE graft migration into the duodenum causing perforation is a new set of complications that has been recently described in LDLT and can be treated effectively by surgical removal of the infected vascular graft and duodenal perforation closure. Despite of such complications, in our experience, ePTFE use in LDLT continues to have wide safety margin, with a complication rate of only 1.52%.

  14. The effect of normal load on polytetrafluoroethylene tribology.

    PubMed

    Barry, Peter R; Chiu, Patrick Y; Perry, Scott S; Sawyer, W Gregory; Phillpot, Simon R; Sinnott, Susan B

    2009-04-08

    The tribological behavior of oriented poly(tetrafluoroethylene) (PTFE) sliding surfaces is examined as a function of sliding direction and applied normal load in classical molecular dynamics (MD) simulations. The forces are calculated with the second-generation reactive empirical bond-order potential for short-range interactions, and with a Lennard-Jones potential for long-range interactions. The range of applied normal loads considered is 5-30 nN. The displacement of interfacial atoms from their initial positions during sliding is found to vary by a factor of seven, depending on the relative orientation of the sliding chains. However, within each sliding configuration the magnitude of the interfacial atomic displacements exhibits little dependence on load over the range considered. The predicted friction coefficients are also found to vary with chain orientation and are in excellent quantitative agreement with experimental measurements.

  15. The effect of normal load on polytetrafluoroethylene tribology

    NASA Astrophysics Data System (ADS)

    Barry, Peter R.; Chiu, Patrick Y.; Perry, Scott S.; Sawyer, W. Gregory; Phillpot, Simon R.; Sinnott, Susan B.

    2009-04-01

    The tribological behavior of oriented poly(tetrafluoroethylene) (PTFE) sliding surfaces is examined as a function of sliding direction and applied normal load in classical molecular dynamics (MD) simulations. The forces are calculated with the second-generation reactive empirical bond-order potential for short-range interactions, and with a Lennard-Jones potential for long-range interactions. The range of applied normal loads considered is 5-30 nN. The displacement of interfacial atoms from their initial positions during sliding is found to vary by a factor of seven, depending on the relative orientation of the sliding chains. However, within each sliding configuration the magnitude of the interfacial atomic displacements exhibits little dependence on load over the range considered. The predicted friction coefficients are also found to vary with chain orientation and are in excellent quantitative agreement with experimental measurements.

  16. Prospective Randomized Trial of Carotid Endarterectomy With Polytetrafluoroethylene Versus Collagen-Impregnated Dacron (Hemashield) Patching: Late Follow-Up

    PubMed Central

    AbuRahma, Ali F.; Hopkins, Eric S.; Robinson, Patrick A.; Deel, John T.; Agarwal, Samir

    2003-01-01

    Objective To compare the late clinical outcome and incidence of recurrent stenosis after carotid endarterectomy (CEA) with polytetrafluoroethylene (PTFE) versus Hemashield patching. Summary Background Data Several randomized trials have confirmed the advantages of patching over primary closure when performing CEA. Methods Two hundred CEAs (180 patients) were randomized into 100 with PTFE patching and 100 with Hemashield. All patients underwent postoperative color duplex ultrasounds at 1, 6, and 12 months, and every year thereafter. The mean follow-up was 26 months. Kaplan-Meier analysis was used to estimate the risk of re-stenosis, stroke, and stroke-free survival. A multivariate analysis of various risk factors was also done. Results Demographic and clinical characteristics were similar in both groups. The incidence of all ipsilateral strokes (early and late) was 8% (7% perioperative) for Hemashield versus 0% for PTFE patching. Both groups had similar mortality rates. The cumulative stroke-free rates at 6, 12, 24, and 36 months were 93%, 93%, 93%, and 89% for Hemashield versus 100%, 100%, 100%, and 100% for PTFE patching. The cumulative stroke-free survival rates at 6, 12, 24, and 36 months were 90%, 89%, 87%, and 79% for Hemashield versus 98%, 98%, 92%, and 92% for PTFE patching. Kaplan-Meier analysis also showed that freedom from 50% or greater re-stenosis at 6, 12, 24, and 36 months was 89%, 81%, 73%, and 66% for Hemashield versus 100%, 100%, 100%, and 92% for PTFE. Similarly, the freedom from 70% or greater re-stenosis at 6, 12, 24, and 36 months was 93%, 91%, 86%, and 78% for Hemashield versus 100%, 100%, 100%, and 100% for PTFE. Univariate and multivariate analyses of demographic and preoperative risk factors showed that only Hemashield was significantly associated with a higher incidence of 70% or greater recurrent stenosis. Conclusions PTFE patching was superior to Hemashield in lowering the incidence of postoperative ipsilateral strokes and late recurrent

  17. Plasma-Functionalized Polytetrafluoroethylene Nanoparticles for Improved Wear in Lubricated Contact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Vinay; Timmons, Richard; Erdemir, Ali

    Plasma-functionalized polytetrafluoroethylene (PTFE) nanoparticles were employed to evaluate their utility in improving the lubrication property of a group III mineral oil with a significantly low amount of zinc dialkyl dithiophosphate (ZDDP). The particles were coated with two consecutive films; the initial coating contained silica to enhance amorphous glassy tribofilm formation, followed by a methacrylate film to protect the silica coating and enhance dispersibility in the oil. The functionalized nanoparticles were evaluated for their tribological performance using a high-frequency reciprocating rig, in a cylinder-on-flat configuration. The oil formulations containing ZDDP (350 ppm phosphorus level) and the functionalized nanoparticles resulted in dramaticmore » reductions in the friction coefficient and overall wear compared to the samples containing nonfunctionalized PTFE nanoparticles, ZDDP (350 ppm P), and samples devoid of nanoparticles but containing ZDDP with a 700 ppm P treat rate. XPS and XANES spectroscopy were employed to characterize the tribological films formed on the test samples. The samples with functionalized particles and ZDDP clearly exhibited tribofilms with Si- and F-doped polyphosphates of Zn coupled with the presence of ZnS at the metal-tribofilm interface. On the other hand, oils without the functionalized nanoparticles have oxides of Fe and to a lesser extent short-chain phosphates of Zn. The overall results suggest that the synergism between plasma-coated PTFE nanoparticles and ZDDP contributed to the development of protective tribofilms even at reduced amount of phosphorus in the oil. This new method of employing nanoparticles to deliver novel antifriction and antiwear chemistries at the tribological interfaces stands out as a promising approach to further reduce P levels in oils without compromising friction and wear performance.« less

  18. Dacron® vs. PTFE as bypass materials in peripheral vascular surgery – systematic review and meta-analysis

    PubMed Central

    Roll, Stephanie; Müller-Nordhorn, Jacqueline; Keil, Thomas; Scholz, Hans; Eidt, Daniela; Greiner, Wolfgang; Willich, Stefan N

    2008-01-01

    Background In peripheral vascular bypass surgery different synthetic materials are available for bypass grafting. It is unclear which of the two commonly used materials, polytetrafluoroethylene (PTFE) or polyester (Dacron®) grafts, is to be preferred. Thus, the aim of this meta-analysis and systematic review was to compare the effectiveness of these two prosthetic bypass materials (Dacron® and PTFE). Methods We performed a systematic literature search in MEDLINE, Cochrane-Library – CENTRAL, EMBASE and other databases for relevant publications in English and German published between 1999 and 2008. Only randomized controlled trials were considered for inclusion. We assessed the methodological quality by means of standardized checklists. Primary patency was used as the main endpoint. Random-effect meta-analysis as well as pooling data in life table format was performed to combine study results. Results Nine randomized controlled trials (RCT) were included. Two trials showed statistically significant differences in primary patency, one favouring Dacron® and one favouring PTFE grafts, while 7 trials did not show statistically significant differences between the two materials. Meta-analysis on the comparison of PTFE vs. Dacron® grafts yielded no differences with regard to primary patency rates (hazard ratio 1.04 (95% confidence interval [0.85;1.28]), no significant heterogeneity (p = 0.32, I2 = 14%)). Similarly, there were no significant differences with regard to secondary patency rates. Conclusion Systematic evaluation and meta-analysis of randomized controlled trials comparing Dacron® and PTFE as bypass materials for peripheral vascular surgery showed no evidence of an advantage of one synthetic material over the other. PMID:19099583

  19. Suspended polytetrafluoroethylene nanostructure electret film in dual variable cavities for self-powered micro-shock sensing

    NASA Astrophysics Data System (ADS)

    Zhu, Jianxiong; Chen, Cong; Guo, Xiaoyu

    2018-04-01

    We report a suspended polytetrafluoroethylene (PTFE) nanostructure electret film in dual variable cavities for a self-powered micro-shock sensing application. The prototype contained series variable air cavities, a suspended nanostructure PTFE electret film and independent electrode films. The charges on the suspended nanostructure PTFE electret film provided the electrostatic field around the electret film in the series variable air cavities. When the reported device was driven by a micro-shock pressure, the inducted electrostatic charges on both the top and bottom electrodes would vary as the micro-shock pressing or releasing. Experimental results showed that the maximum of a short-circuit current density (J sc ) and an open-circuit voltage (V oc ) reached 3 ± 0.1 nA cm‑2 and 3.6 ± 0.1 V, respectively. It was found that the parameter J sc was more advantageous in identifying stronger shocks (parameter acceleration a bigger than 0.1 m s‑2), whereas the parameter V oc was more sensitive for weaker shocks, such as acceleration a smaller than 0.1 m s‑2. Moreover, finger continuous micro-shock pressure taps application was used to demonstrate the mechanical energy conversion performance with 4.5 ± 0.2 V open-circuit voltages. The research on the nanostructure electret PTFE film in series dual variable air cavities not only gave us a fresh idea about the principle and design of the shocking sensor, but also provided an easy fabrication and a low cost shocking sensor for the Internet of Things (IoT) systems.

  20. Three-dimensional characterisation and simulation of deformation and damage during Taylor impact in PTFE

    NASA Astrophysics Data System (ADS)

    Resnyansky, A. D.; McDonald, S. A.; Withers, P. J.; Bourne, N. K.; Millett, J. C. F.; Brown, E. N.; Rae, P. J.

    2014-05-01

    The current work presents Taylor impact experiments interrogating the effect of dynamic, high-pressure loading on polytetrafluoroethylene (PTFE). In particular, X-ray microtomography has been used to characterise the damage imparted to cylindrical samples due to impact at different velocities. Distinct regions of deformation are present and controlled by fracture within the polymer, with the extent of the deformed region and increasing propagation of fractures from the impact face showing a clear trend with increasing impact velocity. A two-phase rate sensitive strength model is implemented in the CTH hydrocode and used for simulation of the problem. The high-pressure phase transition of PTFE into Phase III within the crystalline domains from the polymer at normal conditions is managed by suitable phase transition kinetics within the model. The experimental observations are discussed with respect to the multi-phase model hydrocode predictions of the shock response from Taylor impact simulations. The damage and its progress are shown to correlate well with the onset of the phase transition and its evolution following the impact velocity increase.

  1. Constitutive Modeling of the Dynamic-Tensile-Extrusion Test of PTFE

    NASA Astrophysics Data System (ADS)

    Resnyansky, Anatoly; Brown, Eric; Trujillo, Carl; Gray, George

    2015-06-01

    Use of polymers in the defence, aerospace and industrial application at extreme conditions makes prediction of behaviour of these materials very important. Crucial to this is knowledge of the physical damage response in association with the phase transformations during the loading and the ability to predict this via multi-phase simulation taking the thermodynamical non-equilibrium and strain rate sensitivity into account. The current work analyses Dynamic-Tensile-Extrusion (DTE) experiments on polytetrafluoroethylene (PTFE). In particular, the phase transition during the loading with subsequent tension are analysed using a two-phase rate sensitive material model implemented in the CTH hydrocode and the calculations are compared with experimental high-speed photography. The damage patterns and their link with the change of loading modes are analysed numerically and are correlated to the test observations.

  2. Comparative tensile strength study of the adhesion improvement of PTFE by UV photon assisted surface processing

    NASA Astrophysics Data System (ADS)

    Hopp, B.; Geretovszky, Zs.; Bertóti, I.; Boyd, I. W.

    2002-01-01

    Poly(tetrafluoroethylene) (PTFE) is notable for its non-adhesive and non-reactive properties. A number of technologies can potentially benefit from the application of PTFE, but these characteristics restrict the ability to structuring its surface. In this paper, we present results on two ultraviolet photon assisted treatments of PTFE. The originally poor adhesion was significantly improved by both 172 nm excimer lamp and 193 nm excimer laser assisted surface treatments. While Xe2∗ lamp irradiation, applied in a modest vacuum environment, was sufficient by itself to improve adhesion, the ArF laser process was only effective when the irradiated interface was in contact with 1,2-diaminoethane photoreagent. It was found that the tensile strength of an epoxy resin glued interface created on treated surfaces depended strongly on the applied number of laser pulses and lamp irradiation time. Laser treatment caused fast tensile strength increase during the first 50-500 pulses, while after this it saturates slowly at about 5.5 MPa in the 500-2500 pulse domain. The excimer lamp irradiation resulted in a maximum tensile strength of approximately 10 MPa after 2 min irradiation time which reduced to about 65% of the peak value at longer times.

  3. Smooth muscle cells improve endothelial cell retention on polytetrafluoroethylene grafts in vivo.

    PubMed

    Yu, Hong; Dai, Wangde; Yang, Zhe; Kirkman, Paul; Weaver, Fred A; Eton, Darwin; Rowe, Vincent L

    2003-09-01

    We investigated the influence of smooth muscle cells (SMC) on endothelial cell (EC) retention on polytetrafluoroethylene (PTFE) grafts and the effect of SMC seeding on intimal hyperplasia in vivo in a rabbit model. Fibronectin-coated PTFE grafts (4 mm diameter) were seeded with either EC alone, SMC alone, or SMC followed 24 hours later by EC. The grafts were connected to an extracorporal aortic shunt for 1 hour or were individually implanted for 1, 30, and 100 days into the infrarenal aorta as an end-to-side bypass graft. The number of retained cells was compared at 1 hour and at 1 day after implantation. Neointimal thickness was measured 30 and 100 days after implantation. After 1-hour exposure to blood flow, EC retention rate was greater (P <.005) if seeded on top of SMC (98% +/- 2%; n = 8) versus being seeded alone (65 +/- 11%; n = 8). SMC retention rate was 95 +/- 5% (n = 8) when seeded alone. Similar cell retention was obtained 1 day after implantation. After 30-day implantation the neointima was thicker in grafts seeded with EC and SMC (282 +/- 136 microm; n = 3) than with EC only (52 +/- 45 microm; n = 3; P <.001). However, the neointimal thickness for dual-cell-seeded grafts (126 +/- 60 microm; n = 3) was not significantly different (P =.09) from EC-seeded grafts (79 +/- 48 microm; n = 3) after 100-day implantation. EC retention on PTFE grafts in vivo is improved if seeded over a layer of SMC. Further studies are needed to determine whether overlying EC modulate proliferation of underlying SMC.

  4. Ionizing radiation effects on ISS ePTFE jacketed cable assembly

    NASA Astrophysics Data System (ADS)

    Koontz, S. L.; Golden, J. L.; Lorenz, M. J.; Pedley, M. D.

    2003-09-01

    Polytetrafluoroethylene (PTFE), which is susceptible to embrittlement by ionizing radiation, is used as a primary material in the Mobile Transporter's (MT) Trailing Umbilical System (TUS) cable on the International Space Station (ISS). The TUS cable provides power and data service between the ISS truss and the MT. The TUS cable is normally stowed in an uptake reel and is fed out to follow the MT as it moves along rails on the ISS truss structure. For reliable electrical and mechanical performance, TUS cable polymeric materials must be capable of >3.5% elongation without cracking or breaking. The MT TUS cable operating temperature on ISS is expected to range between -100°C and +130°C. The on-orbit functional life requirement for the MT TUS cable is 10 years. Analysis and testing were performed to verify that the MT TUS cable would be able to meet full-life mechanical and electrical performance requirements, despite progressive embrittlement by the natural ionizing radiation environment. Energetic radiation belt electrons (trapped electrons) are the principal contributor to TUS cable radiation dose. TUS cable specimens were irradiated, in vacuum, with both energetic electrons and gamma rays. Electron beam energy was chosen to minimize charging effects on the non-conductive ePTFE (expanded PTFE) targets. Tensile testing was then performed, over the expected range of operating temperatures, as a function of radiation dose. When compared to the expected in-flight radiation dose/depth profile, atomic oxygen (AO) erosion of the radiation damaged TUS cable jacket surfaces is more rapid than the development of radiation induced embrittlement of the same surfaces. Additionally, the layered construction of the jacket prevents crack growth propagation, leaving the inner layer material compliant with the design elongation requirements. As a result, the TUS cable insulation design was verified to meet performance life requirements.

  5. Conformational Characteristics of Poly(tetrafluoroethylene) (PTFE) Based Upon Ab Initio Electronic Structure Calculations on Model Molecules

    NASA Technical Reports Server (NTRS)

    Smith, Grant D.; Jaffe, R. L.; Yoon, D. Y.; Arnold, James O. (Technical Monitor)

    1994-01-01

    Conformational energy contours of perfluoroalkanes, determined from ab initio calculations, confirm the well-known spitting of trans states into two minima at plus or minus 17 degrees but also show that the gauche states split as well, with minima at plus or minus 124 degrees and plus or minus 84 in order to relieve steric crowding. The directions of such split distortions from the perfectly staggered states are strongly coupled for adjacent pairs of bonds in a manner identical to the intradyad pair for poly (isobutylene) chains. These conformational characteristics are fully represented by a six-state rotational isomeric state (RIS) model for PTFE comprised of t(+), t(-), g(sup +)+, g(sup +)-, g(sup -) + and g(sup -)-states, located at the split energy minima. The resultant 6 x 6 statistical weight matrix is described by first-order interaction parameters for the g+(+) (ca. 0.6 kcal/mol) and g+- (ca. 2.0 kcal/mol) states, and second order parameters for the g(sup +)+g(sup +)+ (ca 0.6 kcal/mol) and g(sup +)+g(sup -)+ (ca. 1.0 kcal/mol) states. This six-state RIS model, without adjustment of the geometric or energy parameters as determined from the ab initio calculations, predicts the unperturbed chain dimensions and the fraction of gauche bonds as a function of temperature for PTFE in good agreement with available experimental values.

  6. Use of the Viatorr Expanded Polytetrafluoroethylene-Covered Stent-Graft for Transjugular Intrahepatic Portosystemic Shunt Creation in Children: Initial Clinical Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mermuys, Koen; Maleux, Geert, E-mail: geert.maleux@uzleuven.be; Heye, Sam

    2008-07-15

    Four children, three boys and one girl, with a median age of 9 years 8 months, underwent transjugular intrahepatic portosystemic shunt creation with an expanded polytetrafluoroethylene (e-PTFE)-covered nitinol stent. The stent-graft was successfully placed in all four patients without any complication. Clinical and biochemical improvement was noted in all four patients during follow-up. Radiological follow-up with use of duplex ultrasound showed a recurrent stenosis of the shunt 180 days after stent-graft implantation in one patient. This was treated with placement of an additional stent-graft, re-expanding completely the recurrent stenosis. In the other three patients, the stent-graft remained fully patent untilmore » the end of the study or until orthotopic liver transplantation. These preliminary results suggest that use of the Viatorr ePTFE-covered stent-graft in children is safe and feasible, with potentially the same high patency rate and improved clinical outcome as reported in adult patients.« less

  7. Effect of substrate roughness on the apparent surface free energy of sputter deposited superhydrophobic polytetrafluoroethylene coatings: A comparison of experimental data with different theoretical models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selvakumar, N.; Barshilia, Harish C.; Rajam, K. S.

    2010-07-15

    We have studied the effect of substrate roughness on the wettability and the apparent surface free energy (SFE) of sputter deposited polytetrafluoroethylene (PTFE) coatings deposited on untreated glass (average roughness, R{sub a}=2.0 nm), plasma etched glass (R{sub a}=7.4 nm), and sandblasted glass (R{sub a}=4500 nm) substrates. The wettability of the PTFE coatings deposited on substrates with varying roughnesses was evaluated by measuring the apparent contact angle (CA) using a series of probe liquids from nonpolar aprotic to polar protic. The wettability measurements indicate that an apparent water CA of 152 deg. with a sliding angle of 8 deg. was achievedmore » for PTFE coatings deposited on a substrate with R{sub a}=4500 nm. The superhydrophobicity observed in these coatings is attributed to the presence of dual scale roughness, densely packed microstructure and the presence of CF{sub 3} groups. Unlike the bulk PTFE which is mainly dispersive, the sputter deposited PTFE coatings are expected to have some degree of polar component due to the plasma treatment. In order to calculate the dispersive SFE of PTFE coatings, we have used the Girifalco-Good-Fowkes (GGF) method and validated it with the Zisman model. Furthermore, the Owens-Wendt model has been used to calculate the dispersive and the polar components of the apparent SFE of the PTFE coatings. These results are further corroborated using the Fowkes method. Finally, an ''equation of state'' theory proposed by Neumann has been used to calculate the apparent SFE values of the PTFE coatings. The results indicate that the apparent SFE values of the PTFE coatings obtained from the Owens-Wendt and the Fowkes methods are comparable to those obtained from the Neumann's method. The analyses further demonstrate that the GGF and the Zisman methods underestimate the apparent SFE values of the sputter deposited PTFE coatings.« less

  8. Improved extraction of ePTFE and medical adhesive modified defibrillation leads from the coronary sinus and great cardiac vein.

    PubMed

    Wilkoff, Bruce L; Belott, Peter H; Love, Charles J; Scheiner, Avram; Westlund, Randy; Rippy, Marian; Krishnan, Mohan; Norlander, Barry E; Steinhaus, Bruce; Emmanuel, Janson; Zeller, Peter J

    2005-03-01

    Permanent leads with shocking coils for defibrillation therapy are sometimes implanted in the coronary sinus (CS) and great cardiac vein (GCV). These shocking coils, as documented by pathologic examination of animal investigations, often become tightly encapsulated by fibrosis and can be very difficult to remove. One of three configurations of the Guidant model 7109 Perimeter coronary sinus shocking lead was implanted into the distal portion of the GCV of 24 sheep for up to 14 months. Group 1 had unmodified coils (control), group 2 had coils backfilled with medical adhesive (MA), and Group 3 had coils coated with expanded polytetrafluoroethylene (ePTFE). Eighteen leads, three from each group at 6 and 14 months were transvenously extracted from the left jugular vein. The remaining six animals were not subject to extraction. All animals were euthanized for pathological and microscopic examination. All six of the control, three of the MA, and one of the ePTFE leads required the use of an electrosurgical dissection sheath (EDS) for extraction. Five control, two MA, and none of the ePTFE leads had significant fibrotic attachments to the shocking coils. Significant trauma was observed at necropsy for those leads requiring the use of the EDS for extraction. Tissue ingrowth is a major impediment to the removal of defibrillation leads implanted in the CS and GCV of sheep. Reduction of tissue ingrowth by coating the shocking coils with ePTFE or by backfilling with MA facilitates transvenous lead removal with reduced tissue trauma.

  9. Optimum concentration gradient of the electrocatalyst, Nafion® and poly(tetrafluoroethylene) in a membrane-electrode-assembly for enhanced performance of direct methanol fuel cells.

    PubMed

    Liu, Jing Hua; Jeon, Min Ku; Lee, Ki Rak; Woo, Seong Ihl

    2010-12-14

    A combinatorial library of membrane-electrode-assemblies (MEAs) which consisted of 27 different compositions was fabricated to optimize the multilayer structure of direct methanol fuel cells. Each spot consisted of three layers of ink and a gradient was generated by employing different concentrations of the three components (Pt catalyst, Nafion® and polytetrafluoroethylene (PTFE)) of each layer. For quick evaluation of the library, a high-throughput optical screening technique was employed for methanol electro-oxidation reaction (MOR) activity. The screening results revealed that gradient layers could lead to higher MOR activity than uniform layers. It was found that the MOR activity was higher when the concentrations of Pt catalyst and Nafion ionomer decreased downward from the top layer to the bottom layer. On the other hand, higher MOR activity was observed when PTFE concentration increased downward from the top to the bottom layer.

  10. Effect of Aluminum Particle Size on the Impact Initiation of Pressed Ptfe/al Composite Rods

    NASA Astrophysics Data System (ADS)

    Mock, Willis; Drotar, Jason T.

    2007-12-01

    A gas gun has been used to investigate the impact initiation of rods of a mixture of 72 wt% PTFE (polytetrafluoroethylene) and 28 wt% aluminum powders. The rods were sabot-launched in vacuum into steel anvils at impact velocities ranging from 468 to 969 m/s. A framing camera was used to observe the time sequence of events following impact. At the lowest impact stress of 25 kbar no light was observed. Above the initiation threshold, the initiation time dropped from 74 μs just above threshold to 14 μs at 64 kbar. These results are compared with earlier rod impact experiments for a similar material in which the only major difference is a smaller aluminum particle size.

  11. Annealing dependent evolution of columnar nanostructures in RF magnetron sputtered PTFE films for hydrophobic applications

    NASA Astrophysics Data System (ADS)

    Tripathi, S.; De, Rajnarayan; Maidul Haque, S.; Divakar Rao, K.; Misal, J. S.; Prathap, C.; Das, S. C.; Patidar, Manju M.; Ganesan, V.; Sahoo, N. K.

    2018-01-01

    Present communication focuses on a relatively less explored direction of producing rough polytetrafluoroethylene (PTFE) surfaces for possible hydrophobic applications. The experiments were carried out to make rough PTFE films without losing much of the transmission, which is an important factor while designing futuristic solar cell protection covers. After annealing temperature optimization, as grown RF magnetron sputtered PTFE films (prepared at 160 W RF power) were subjected to vacuum annealing at 200 °C for different time durations ranging from 1 to 4 h. The films show morphological evolution exhibiting formation and growth of columnar nanostructures that are responsible for roughening of the films due to annealing induced molecular migration and rearrangement. In agreement with this, qualitative analysis of corresponding x-ray reflectivity data shows modification in film thickness, which may again be attributed to the growth of columns at the expense of the atoms of remaining film molecules. However, the observations reveal that the film annealed at 200 °C for 2 h gives a combination of patterned columnar structures and reasonable transmission of >85% (in 500-1000 nm wavelength range), both of which are deteriorated when the films are annealed either at high temperature beyond 200 °C or for long durations >3 h. In addition, attenuated total reflection-Fourier transform infrared spectroscopy results reveal that the molecular bonds remain intact upon annealing at any temperature within the studied range indicating the stable nature of the films.

  12. Low-Thermal-Expansion Filled Polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Shapiro, Sanford S.

    1989-01-01

    PTFE made thermally compatible with aluminum without changing dielectric constant. Manufactured with fillers and pores to reduce coefficient of thermal expansion by factor of 6 to match aluminum. Material retains 2.1 dielectric constant of pure PTFE. Combines filler and micropore concepts. Particles and voids embedded in PTFE matrix function cooperatively. Particles take up compressive stress imposed by contracting PTFE, and voids take up expanding material. Increases dielectric constant, while voids reduce it.

  13. Influence of SiO2 Addition on Properties of PTFE/TiO2 Microwave Composites

    NASA Astrophysics Data System (ADS)

    Yuan, Ying; Wang, Jie; Yao, Minghao; Tang, Bin; Li, Enzhu; Zhang, Shuren

    2018-01-01

    Composite substrates for microwave circuit applications have been fabricated by filling polytetrafluoroethylene (PTFE) polymer matrix with ceramic powder consisting of rutile TiO2 ( D 50 ≈ 5 μm) partially substituted with fused amorphous SiO2 ( D 50 ≈ 8 μm) with composition x vol.% SiO2 + (50 - x) vol.% TiO2 ( x = 0, 3, 6, 9, 12), and the effects of SiO2 addition on characteristics such as the density, moisture absorption, microwave dielectric properties, and thermal properties systematically investigated. The results show that the filler was well distributed throughout the matrix. High dielectric constant ( ɛ r > 7.19) and extremely low moisture absorption (<0.02%) were obtained, resulting from the relatively high density of the composites. The ceramic particles served as barriers and improved the thermal stability of the PTFE polymer, retarding its decomposition. The temperature coefficient of dielectric constant ( τ ɛ ) of the composites shifted toward the positive direction (from - 309 ppm/°C to - 179 ppm/°C) as the SiO2 content was increased, while the coefficient of thermal expansion remained almost unchanged (˜ 35 ppm/°C).

  14. Immobilization of Ochrobactrum tritici As5 on PTFE thin films for arsenite biofiltration.

    PubMed

    Branco, Rita; Sousa, Tânia; Piedade, Ana P; Morais, Paula V

    2016-03-01

    Ochrobactrum tritici SCII24T bacteria is an environmental strain with high capacity to resist to arsenic (As) toxicity, which makes it able to grow in the presence of As(III). The inactivation of the two functional arsenite efflux pumps, ArsB and ACR3_1, resulted in the mutant O. tritici As5 exhibiting a high accumulation of arsenite. This work describes a method for the immobilization of the mutant cells O. tritici As5, on a commercial polymeric net after sputtered modified by the deposition of poly(tetrafluoroethylene) (PTFE) thin films, and demonstrates the capacity of immobilized cells to accumulate arsenic from solutions. Six different set of deposition parameters for PTFE thin films were developed and tested in vitro regarding their ability to immobilize the bacterial cells. The surface that exhibited a mild zeta potential value, hydrophobic characteristics, the lowest surface free energy but with a high polar component and the appropriate ratio of chemical reactive groups allowed cells to proliferate and to grow as a biofilm. These immobilized cells maintained their ability to accumulate the surrounding arsenite, making it a great arsenic biofilter to be used in bioremediation processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Particle size effect on strength, failure, and shock behavior in polytetrafluoroethylene-Al-W granular composite materials

    NASA Astrophysics Data System (ADS)

    Herbold, E. B.; Nesterenko, V. F.; Benson, D. J.; Cai, J.; Vecchio, K. S.; Jiang, F.; Addiss, J. W.; Walley, S. M.; Proud, W. G.

    2008-11-01

    The variation of metallic particle size and sample porosity significantly alters the dynamic mechanical properties of high density granular composite materials processed using a cold isostatically pressed mixture of polytetrafluoroethylene (PTFE), aluminum (Al), and tungsten (W) powders. Quasistatic and dynamic experiments are performed with identical constituent mass fractions with variations in the size of the W particles and pressing conditions. The relatively weak polymer matrix allows the strength and fracture modes of this material to be governed by the granular type behavior of agglomerated metal particles. A higher ultimate compressive strength was observed in relatively high porosity samples with small W particles compared to those with coarse W particles in all experiments. Mesoscale granular force chains of the metallic particles explain this unusual phenomenon as observed in hydrocode simulations of a drop-weight test. Macrocracks forming below the critical failure strain for the matrix and unusual behavior due to a competition between densification and fracture in dynamic tests of porous samples were also observed. Numerical modeling of shock loading of this granular composite material demonstrated that the internal energy, specifically thermal energy, of the soft PTFE matrix can be tailored by the W particle size distribution.

  16. Assessment of adhesion formation to intra-abdominal polypropylene mesh and polytetrafluoroethylene mesh.

    PubMed

    Matthews, Brent D; Pratt, Broc L; Pollinger, Harrison S; Backus, Charles L; Kercher, Kent W; Sing, R F; Heniford, B Todd

    2003-10-01

    The development of intra-abdominal adhesions, bowel obstruction, and enterocutaneous fistulas are potentially severe complications related to the intraperitoneal placement of prosthetic biomaterials. The purpose of this study was to determine the natural history of adhesion formation to polypropylene mesh and two types of polytetrafluoroethylene (ePTFE) mesh when placed intraperitoneally in a rabbit model that simulates laparoscopic ventral hernia repair. Thirty New Zealand white rabbits were used for this study. A 10-cm midline incision was performed for intra-abdominal access and a 2 cm x 2 cm piece of mesh (n = 60) was sewn to an intact peritoneum on each side of the midline. Two types of ePTFE mesh (Dual Mesh and modified Dual Mesh, W.L. Gore & Assoc., Flagstaff, AZ) and polypropylene mesh were compared. The rate of adhesion formation was evaluated by direct visualization using microlaparoscopy (2-mm endoscope/trocar) at 7 days, 3 weeks, 9 weeks, and 16 weeks after mesh implantation. Adhesions to the prosthetic mesh were scored for extent (%) using the Modified Diamond Scale (0 = 0%, 1 50%). At necropsy the mesh was excised en bloc with the anterior abdominal wall for histological evaluation of mesothelial layer growth. The mean adhesion score for the polypropylene mesh was significantly greater (P < 0.05) than Dual Mesh at 9 weeks and 16 weeks and modified Dual Mesh at 7 days, 9 weeks, and 16 weeks. Fifty-five percent (n = 11) of the polypropylene mesh had adhesions to small intestine or omentum at necropsy compared to 30% (n = 6) of the Dual Mesh and 20% (n = 4) of the modified Dual Mesh. There was a significantly greater percentage (P < 0.003) of ePTFE mesh mesothelialized at explant (modified Dual Mesh 44.2%; Dual Mesh 55.8%) compared to the polypropylene mesh (12.9%). Serial microlaparoscopic evaluation of intraperitoneally implanted polypropylene mesh and ePTFE mesh in a rabbit model revealed a progression of adhesions to

  17. Introduction of oxygen vacancies and fluorine into TiO{sub 2} nanoparticles by co-milling with PTFE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senna, Mamoru, E-mail: senna@applc.keio.ac.jp; Sepelak, Vladimir; Shi, Jianmin

    2012-03-15

    Solid-state processes of introducing oxygen vacancies and transference of fluorine to n-TiO{sub 2} nanoparticles by co-milling with poly(tetrafluoroethylene) (PTFE) powder were examined by diffuse reflectance spectroscopy (DRS) of UV, visual, near- and mid-IR regions, thermal analyses (TG-DTA), energy-dispersive X-ray spectroscopy (EDXS), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The broad absorption peak at around 8800 cm{sup -1} (1140 nm) was attributed to the change in the electronic states, viz. electrons trapped at the oxygen vacancies (Vo) and d-d transitions of titanium ions. Incorporation of fluorine into n-TiO{sub 2} was concentrated at the near surfacemore » region and amounted to ca. 40 at% of the total fluorine in PTFE, after co-milling for 3 h, as confirmed by the F1s XPS spectrum. The overall atomic ratio, F/Ti, determined by EDXS was 0.294. By combining these analytical results, a mechanism of the present solid state processes at the boundary between PTFE and n-TiO{sub 2} was proposed. The entire process is triggered by the partial oxidative decomposition of PTFE. This is accompanied by the abstraction of oxygen atoms from the n-TiO{sub 2} lattices. Loss of the oxygen atoms results in the formation of the diverse states of locally distorted coordination units of titania, i.e. TiO{sub 6-n}Vo{sub n}, located at the near surface region. This leads subsequent partial ligand exchange between F and O, to incorporate fluorine preferentially to the near surface region of n-TiO{sub 2} particles, where local non-crystalline states predominate. - Graphical abstract: Scheme of the reaction processes: (a) pristine mixture, (b) oxygen abstraction from TiO{sub 2} and (c) fluorine migration from PTFE to TiO{sub 2}. Highlights: Transfer of fluorine from PTFE to n-TiO{sub 2} in a dry solid state process was confirmed. Black-Right-Pointing-Pointer 40% of F in PTFE was incorporated to

  18. PTFE-nanocomposites structure and wear-resistance changing in various methods of structural modification

    NASA Astrophysics Data System (ADS)

    Mashkov, Yu K.; Ruban, A. S.; Rogachev, E. A.; Chemisenko, O. V.

    2018-01-01

    Conditions of polymer materials usage containing nanoelements as modifiers significantly affect the requirements for their physic-mechanical and tribological properties. However, the mechanisms of nanoparticles effect to the polymers tribotechnical properties have not been studied enough. The article aim is to analyze the results of studying polytetrafluoroethylene modified with cryptocrystalline graphite and silicon dioxide and to determine the effectiveness of the modification methods used and methods for further improving filled PTFE mechanical and tribotechnical properties. The effect of modifiers to PCM supramolecular structure was analyzed with SEM methods. The results of modifying the PCM samples surface by depositing a copper film with ion-vacuum deposition methods and changing the structural-phase composition and tribological characteristics are considered. The findings make possible to characterize the physicochemical processes under frictional interaction in metal polymer tribosystems.

  19. Epitaxy of Ferroelectric P(VDF-TrFE) Films via Removable PTFE Templates and Its Application in Semiconducting/Ferroelectric Blend Resistive Memory.

    PubMed

    Xia, Wei; Peter, Christian; Weng, Junhui; Zhang, Jian; Kliem, Herbert; Jiang, Yulong; Zhu, Guodong

    2017-04-05

    Ferroelectric polymer based devices exhibit great potentials in low-cost and flexible electronics. To meet the requirements of both low voltage operation and low energy consumption, thickness of ferroelectric polymer films is usually required to be less than, for example, 100 nm. However, decrease of film thickness is also accompanied by the degradation of both crystallinity and ferroelectricity and also the increase of current leakage, which surely degrades device performance. Here we report one epitaxy method based on removable poly(tetrafluoroethylene) (PTFE) templates for high-quality fabrication of ordered ferroelectric polymer thin films. Experimental results indicate that such epitaxially grown ferroelectric polymer films exhibit well improved crystallinity, reduced current leakage and good resistance to electrical breakdown, implying their applications in high-performance and low voltage operated ferroelectric devices. On the basis of this removable PTFE template method, we fabricated organic semiconducting/ferroelectric blend resistive films which presented record electrical performance with operation voltage as low as 5 V and ON/OFF ratio up to 10 5 .

  20. EFFECTS OF GAMMA IRRADIATION ON EPDM ELASTOMERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, E.

    Two formulations of EPDM elastomer, one substituting a UV stabilizer for the normal antioxidant in this polymer, and the other the normal formulation, were synthesized and samples of each were exposed to gamma irradiation in initially pure deuterium gas to compare their radiation stability. Stainless steel containers having rupture disks were designed for this task. After 130 MRad dose of cobalt-60 radiation in the SRNL Gamma Irradiation Facility, a significant amount of gas was created by radiolysis; however the composition indicated by mass spectroscopy indicated an unexpected increase in the total amount deuterium in both formulations. The irradiated samples retainedmore » their ductility in a bend test. No change of sample weight, dimensions, or density was observed. No change of the glass transition temperature as measured by dynamic mechanical analysis was observed, and most of the other dynamic mechanical properties remained unchanged. There appeared to be an increase in the storage modulus of the irradiated samples containing the UV stabilizer above the glass transition, which may indicate hardening of the material by radiation damage. Polymeric materials become damaged by exposure over time to ionizing radiation. Despite the limited lifetime, polymers have unique engineering material properties and polymers continue to be used in tritium handling systems. In tritium handling systems, polymers are employed mainly in joining applications such as valve sealing surfaces (eg. Stem tips, valve packing, and O-rings). Because of the continued need to employ polymers in tritium systems, over the past several years, programs at the Savannah River National Laboratory have been studying the effect of tritium on various polymers of interest. In these studies, samples of materials of interest to the SRS Tritium Facilities (ultra-high molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE, Teflon{reg_sign}), Vespel{reg_sign} polyimide, and the elastomer

  1. PTFE-based microreactor system for the continuous synthesis of full-visible-spectrum emitting cesium lead halide perovskite nanocrystals.

    PubMed

    Zhang, Chengxi; Luan, Weiling; Yin, Yuhang; Yang, Fuqian

    2017-01-01

    Colloidal perovskite nanocrystals comprised of all inorganic cesium lead halide (CsPbX 3 , X = Cl, Br, I or a mixture thereof) have potential as optical gain materials due to their high luminescence efficiency. In this work, cesium lead halide nanocrystals are continuously synthesized via a microreactor system consisting of poly(tetrafluoroethylene) (PTFE) capillaries. The synthesized nanocrystals possess excellent optical properties, including a full width at half maximum of 19-35 nm, high fluorescence quantum yield of 47.8-90.55%, and photoluminescence emission in the range of 450-700 nm. For the same precursor concentrations, the photoluminescence emission peak generally increases with increasing reaction temperature, revealing a controllable temperature effect on the photoluminescence characteristics of the synthesized nanocrystals. For quantum dots synthesized with a Br/I ratio of 1:3, a slight blue shift was observed for reaction temperatures greater than 100 °C. This PTFE-based microreactor system provides the unique capability of continuously synthesizing high-quality perovskite nanocrystals that emit over the full visible spectrum with applications ranging from displays and optoelectronic devices.

  2. PTFE-based microreactor system for the continuous synthesis of full-visible-spectrum emitting cesium lead halide perovskite nanocrystals

    PubMed Central

    Zhang, Chengxi; Yin, Yuhang

    2017-01-01

    Colloidal perovskite nanocrystals comprised of all inorganic cesium lead halide (CsPbX3, X = Cl, Br, I or a mixture thereof) have potential as optical gain materials due to their high luminescence efficiency. In this work, cesium lead halide nanocrystals are continuously synthesized via a microreactor system consisting of poly(tetrafluoroethylene) (PTFE) capillaries. The synthesized nanocrystals possess excellent optical properties, including a full width at half maximum of 19–35 nm, high fluorescence quantum yield of 47.8–90.55%, and photoluminescence emission in the range of 450–700 nm. For the same precursor concentrations, the photoluminescence emission peak generally increases with increasing reaction temperature, revealing a controllable temperature effect on the photoluminescence characteristics of the synthesized nanocrystals. For quantum dots synthesized with a Br/I ratio of 1:3, a slight blue shift was observed for reaction temperatures greater than 100 °C. This PTFE-based microreactor system provides the unique capability of continuously synthesizing high-quality perovskite nanocrystals that emit over the full visible spectrum with applications ranging from displays and optoelectronic devices. PMID:29259867

  3. Triboelectricity: macroscopic charge patterns formed by self-arraying ions on polymer surfaces.

    PubMed

    Burgo, Thiago A L; Ducati, Telma R D; Francisco, Kelly R; Clinckspoor, Karl J; Galembeck, Fernando; Galembeck, Sergio E

    2012-05-15

    Tribocharged polymers display macroscopically patterned positive and negative domains, verifying the fractal geometry of electrostatic mosaics previously detected by electric probe microscopy. Excess charge on contacting polyethylene (PE) and polytetrafluoroethylene (PTFE) follows the triboelectric series but with one caveat: net charge is the arithmetic sum of patterned positive and negative charges, as opposed to the usual assumption of uniform but opposite signal charging on each surface. Extraction with n-hexane preferentially removes positive charges from PTFE, while 1,1-difluoroethane and ethanol largely remove both positive and negative charges. Using suitable analytical techniques (electron energy-loss spectral imaging, infrared microspectrophotometry and carbonization/colorimetry) and theoretical calculations, the positive species were identified as hydrocarbocations and the negative species were identified as fluorocarbanions. A comprehensive model is presented for PTFE tribocharging with PE: mechanochemical chain homolytic rupture is followed by electron transfer from hydrocarbon free radicals to the more electronegative fluorocarbon radicals. Polymer ions self-assemble according to Flory-Huggins theory, thus forming the experimentally observed macroscopic patterns. These results show that tribocharging can only be understood by considering the complex chemical events triggered by mechanical action, coupled to well-established physicochemical concepts. Patterned polymers can be cut and mounted to make macroscopic electrets and multipoles.

  4. Use of DSC and DMA Techniques to Help Investigate a Material Anomaly for PTFE Used in Processing a Piston Cup for the Urine Processor Assembly (UPA) on International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Wingard, Doug

    2010-01-01

    Human urine and flush water are eventually converted into drinking water with the Urine Processor Assembly (UPA) aboard the International Space Station (ISS). This conversion is made possible through the Distillation Assembly (DA) of the UPA. One component of the DA is a molded circular piston cup made of virgin polytetrafluoroethylene (PTFE). The piston cup is assembled to a titanium component using eight fasteners and washers. Molded PTFE produced for spare piston cups in the first quarter of 2010 was different in appearance and texture, and softer than material molded for previous cups. For the suspect newer PTFE material, cup fasteners were tightened to only one-half the required torque value, yet the washers embedded almost halfway into the material. The molded PTFE used in the DA piston cup should be Type II, based on AMS 3667D and ASTM D4894 specifications. The properties of molded PTFE are considerably different between Type I and II materials. Engineers working with the DA thought that if Type I PTFE was molded by mistake instead of Type II material, that could have resulted in the anomalous material properties. Typically, the vendor molds flat sheet PTFE from the same material lot used to mold the piston cups, and tensile testing as part of quality control should verify that the PTFE is Type II material. However, for this discrepant lot of material, such tensile data was not available. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were two of the testing techniques used at the NASA/Marshall Space Flight Center (MSFC) to investigate the anomaly for the PTFE material. Other techniques used on PTFE specimens were: Shore D hardness testing, tensile testing on dog bone specimens and a qualitative estimation of porosity by optical and scanning electron microscopy.

  5. Impact Initiation of Rods of Pressed Polytetrafluoroethylene (PTFE) and Aluminum Powders

    NASA Astrophysics Data System (ADS)

    Mock, Willis, Jr.; Drotar, Jason T.

    2007-06-01

    A gas gun has been used to investigate the impact initiation of rods consisting of a mixture of 72 wt% PTFE (28 μm particle size) and 28 wt% aluminum (95 micron particle size) powders. The rods were 7.6 mm in diameter by 51 mm long, and were fabricated from material that had been pressed and sintered to a full density of 2.27 gm/cm^ 3. They were sabot-launched into steel anvils at impact velocities ranging from 468 to 970 m/sec. This corresponds to calculated initial impact stresses of 25 to 64 kbar, respectively. A framing camera was used to observe the time sequence of events. These include change in rod shape, fracture, and the initiation and evolution of the reaction phenomena. The time of observation of first light after impact was taken as the initiation time. Initiation occurred at discrete locations in the impacted material. At the lowest impact stress of 25 kbar no light was observed; this value was taken as the initiation threshold stress for this material. Above the initiation threshold, the initiation time dropped abruptly from 74 μs just above threshold to 14 μs at the highest impact velocity of 970 m/s. These results are compared with rod impact experiments for a similar material [1] in which the only major difference is a smaller aluminum particle size (9 micron). [1] W. Mock, Jr. and W. H. Holt, in Proc. APS Shock Compression of Condensed Matter--2005, p.1097.

  6. Characterization of the early pulmonary inflammatory response associated with PTFE fume exposure

    NASA Technical Reports Server (NTRS)

    Johnston, C. J.; Finkelstein, J. N.; Gelein, R.; Baggs, R.; Oberdorster, G.; Clarkson, T. W. (Principal Investigator)

    1996-01-01

    Heating of polytetrafluoroethylene (PTFE) has been described to release fumes containing ultrafine particles (approximately 18 nm diam). These fumes can be highly toxic in the respiratory tract inducing extensive pulmonary edema with hemorrhagic inflammation. Fischer-344 rats were exposed to PTFE fumes generated by temperatures ranging from 450 to 460 degrees C for 15 min at an exposure concentration of 5 x 10(5) particles/cm3, equivalent to approximately 50 micrograms/m3. Responses were examined 4 hr post-treatment when these rats demonstrated 60-85% neutrophils (PMNs) in their lung lavage. Increases in abundance for messages encoding the antioxidants manganese superoxide dismutase and metallothionein (MT) increased 15- and 40-fold, respectively. For messages encoding the pro- and anti-inflammatory cytokines: inducible nitric oxide synthase, interleukin 1 alpha, 1 beta, and 6 (IL-1 alpha, IL-1 beta, and IL-6), macrophage inflammatory protein-2, and tumor necrosis factor-alpha (TNF alpha) increases of 5-, 5-, 10-, 40-, 40-, and 15-fold were present. Vascular endothelial growth factor, which may play a role in the integrity of the endothelial barrier, was decreased to 20% of controls. In situ sections were hybridized with 33P cRNA probes encoding IL-6, MT, surfactant protein C, and TNF alpha. Increased mRNA abundance for MT and IL-6 was expressed around all airways and interstitial regions with MT and IL-6 demonstrating similar spatial distribution. Large numbers of activated PMNs expressed IL-6, MT, and TNF alpha. Additionally, pulmonary macrophages and epithelial cells were actively involved. These observations support the notion that PTFE fumes containing ultrafine particles initiate a severe inflammatory response at low inhaled particle mass concentrations, which is suggestive of an oxidative injury. Furthermore, PMNs may actively regulate the inflammatory process through cytokine and antioxidant expression.

  7. Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for oil/water separation: Separating oil from water and corrosive solutions

    NASA Astrophysics Data System (ADS)

    Yong, Jiale; Fang, Yao; Chen, Feng; Huo, Jinglan; Yang, Qing; Bian, Hao; Du, Guangqing; Hou, Xun

    2016-12-01

    Separating the mixture of water and oil by the superhydrophobic porous materials has attracted increasing research interests; however, the surface microstructures and chemical composition of those materials are easily destroyed in a harsh environment, resulting in materials losing the superhydrophobicity as well as the oil/water separation function. In this paper, a kind of rough microstructures was formed on polytetrafluoroethylene (PTFE) sheet by femtosecond laser treatment. The rough surfaces showed durable superhydrophobicity and ultralow water adhesion even after storing in various harsh environment for a long time, including strong acid, strong alkali, and high temperature. A micro-through-holes array was further generated on the rough superhydrophobic PTFE film by a subsequent mechanical drilling process. The resultant sample was successfully applied in the field of oil/water separation due to the inverse superhydrophobicity and superoleophilicity. The designed separation system is also very efficient to separate the mixtures of oil and corrosive acid/alkali solutions, exhibiting the strong potential for practical application.

  8. Dynamic bioactive stimuli-responsive polymeric surfaces

    NASA Astrophysics Data System (ADS)

    Pearson, Heather Marie

    This dissertation focuses on the design, synthesis, and development of antimicrobial and anticoagulant surfaces of polyethylene (PE), polypropylene (PP), and poly(tetrafluoroethylene) (PTFE) polymers. Aliphatic polymeric surfaces of PE and PP polymers functionalized using click chemistry reactions by the attachment of --COOH groups via microwave plasma reactions followed by functionalization with alkyne moieties. Azide containing ampicillin (AMP) was synthesized and subsequently clicked into the alkyne prepared PE and PP surfaces. Compared to non-functionalized PP and PE surfaces, the AMP clicked surfaces exhibited substantially enhanced antimicrobial activity against Staphylococcus aureus bacteria. To expand the biocompatibility of polymeric surface anticoagulant attributes, PE and PTFE surfaces were functionalized with pH-responsive poly(2-vinyl pyridine) (P2VP) and poly(acrylic acid) (PAA) polyelectrolyte tethers terminated with NH2 and COOH groups. The goal of these studies was to develop switchable stimuli-responsive polymeric surfaces that interact with biological environments and display simultaneous antimicrobial and anticoagulant properties. Antimicrobial AMP was covalently attached to --COOH terminal ends of protected PAA, while anticoagulant heparin (HEP) was attached to terminal --NH2 groups of P2VP. When pH < 2.3, the P2VP segments are protonated and extend, but for pH > 5.5, they collapse while the PAA segments extend. Such surfaces, when exposed to Staphylococcus aureus, inhibit bacterial growth due to the presence of AMP, as well as are effective anticoagulants due to the presence of covalently attached HEP. Comparison of these "dynamic" pH responsive surfaces with "static" surfaces terminated with AMP entities show significant enhancement of longevity and surface activity against microbial film formation. The last portion of this dissertation focuses on the covalent attachment of living T1 and Φ11 bacteriophages (phages) on PE and PTFE surface

  9. Oxygen Compatibility of Brass-Filled PTFE Compared to Commonly Used Fluorinated Polymers for Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Herald, Stephen D.; Frisby, Paul M.; Davis, Samuel Eddie

    2009-01-01

    Safe and reliable seal materials for high-pressure oxygen systems sometimes appear to be extinct species when sought out by oxygen systems designers. Materials that seal well are easy to find, but these materials are typically incompatible with oxygen, especially in cryogenic liquid form. This incompatibility can result in seals that leak, or much worse, seals that easily ignite and burn during use. Materials that are compatible with oxygen are easy to find, such as the long list of compatible metals, but these metallic materials are limiting as seal materials. A material that seals well and is oxygen compatible has been the big game in the designer's safari. Scientists at the Materials Combustion Research Facility (MCRF), part of NASA/Marshall Space Flight Center (MSFC), are constantly searching for better materials and processes to improve the safety of oxygen systems. One focus of this effort is improving the characteristics of polymers used in the presence of an oxygen enriched environment. Very few systems can be built which contain no polymeric materials; therefore, materials which have good impact resistance, low heat of combustion, high auto-ignition temperature and that maintain good mechanical properties are essential. The scientists and engineers at the Materials Combustion Research Facility, in cooperation with seal suppliers, are currently testing a new formulation of polytetrafluoroethylene (PTFE) with Brass filler. This Brass-filled PTFE is showing great promise as a seal and seat material for high pressure oxygen systems. Early research has demonstrated very encouraging results, which could rank this material as one of the best fluorinated polymers ever tested. This paper will compare the data obtained for Brass-filled PTFE with other fluorinated polymers, such as TFE-Teflon (PTFE) , Kel-F 81, Viton A, Viton A-500, Fluorel , and Algoflon . A similar metal filled fluorinated polymer, Salox-M , was tested in comparison to Brass-filled PTFE to

  10. The effect of addition of PTFE or urea on luminescence response of copper-doped lithium tetraborate

    NASA Astrophysics Data System (ADS)

    Iskandar, Ferry; Fajri, Annisa; Nuraeni, Nunung; Stavila, Erythrina; Aimon, Akfiny H.; Nuryadin, Bebeh W.

    2018-04-01

    Lithium tetraborate (Li2B4O7) is a promising material for application in personal dosimetry due to its tissue equivalent properties. The addition of copper as a dopant in Li2B4O7 is known to increase the sensitivity for both photoluminescent (PL) and thermoluminescent (TL) emission. Therefore, in this paper, synthesis of Li2B4O7:Cu is reported. The optimum synthesis condition was achieved using the solution-assisted method, followed by calcination at 700 °C for 2 h. The addition of 0.1 wt% Cu resulted in the highest PL and TL emissions. Further investigation of the influence of polytetrafluoroethylene (PTFE) or urea addition on the luminescence response of Li2B4O7:Cu is described. All samples were characterized by x-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometry, photoluminescence spectrofluorophotometer, thermoluminescence reader, scanning electron microscopy (SEM), and energy dispersive x-ray (EDX) spectroscopy. The addition of PTFE decreased the PL emission of the Li2B4O7:Cu but slightly increased its TL emission. Meanwhile, the addition of urea increased the luminescence emission for both PL and TL of the Li2B4O7:Cu.

  11. Conformational and orientational order and disorder in solid polytetrafluoroethylene

    NASA Astrophysics Data System (ADS)

    Sprik, Michiel; Rothlisberger, Ursula; Klein, Michael L.

    The low pressure phase diagram of solid polytetrafluoroethylene (PTFE/Teflon) has been investigated using constant temperature-constant pressure molecular dynamics techniques and a new all-atom potential model for fluorocarbons. The simulation was started in an ordered low temperature phase in which the molecules are parallel and have a helical conformation with a pitch of uniform magnitude and sign (chirality). In accordance with experiment, a transition to an orientationally disordered state is observed upon heating. The coherent helical winding of CF2 groups also disappears abruptly at the transition but short helical segments remain and become equally distributed between left and right chirality with increasing temperature. The orientational and conformational disorder is accompanied by translational diffusion along the chain direction. At a still higher temperature melting sets in. On cooling, the disordered solid phase is recovered and its structure is shown to be identical to that generated on heating. On further cooling, a spontaneous ordering transition is observed but the system fails to recover a uniform helical ground state. Instead, the high pressure ordered monoclinic all- trans (alkane-like) structure is obtained: an observation that indicates a deficiency in the potential model.

  12. Effect of Antithrombotic Agents on the Patency of PTFE-Covered Stents in the Inferior Vena Cava: An Experimental Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makutani, Shiro; Kichikawa, Kimihiko; Uchida, Hideo

    Purpose: To evaluate the efficacy of antithrombotic agents in the prevention of stenosis of polytetrafluoroethylene (PTFE)-covered stents in the venous system. Methods: Spiral Z stents covered with PTFE (PTFE-covered stents) were placed in the inferior vena cava (IVC) of 34 dogs. Nineteen dogs, used as a control group, were sacrificed at 2, 4, and 12 weeks. Fifteen dogs, previously given antithrombotic agents [cilostazol (n= 5), warfarin potassium (n= 5), cilostazol plus warfarin potassium (n= 5)] were sacrificed at 4 weeks, and then examined angiographically and histopathologically. The effect of the antithrombotic agents was compared between groups. Results: The patency ratemore » of the antithrombotic agent group was 93% (14/15), which was higher than the control group rate of 63% (12/19). The mean stenosis rate of the patent stent at both ends and at the midportion was lower at 4 weeks in the antithrombotic agent group than in the control group. In particular, the mean stenosis rate in the cilostazol plus warfarin potassium group was significantly lower than the control group (Tukey's test, p < 0.05). The mean neointimal thickness of the patent stent at both ends and at the midportion was thinner at 4 weeks in the antithrombotic agent group than in the control group. In particular, the thickness of the neointima in the cilostazol plus warfarin potassium group was significantly decreased when compared with the control group (Tukey's test p < 0.05). At 4 weeks, endothelialization in the antithrombotic agent group tended to be almost identical to that in the control group. Conclusion: The present study suggests that administration of an antithrombotic agent is an effective way of preventing the stenosis induced by a neointimal thickening of PTFE-covered stents in the venous system.« less

  13. Electric Charge Accumulation in Polar and Non-Polar Polymers under Electron Beam Irradiation

    NASA Astrophysics Data System (ADS)

    Nagasawa, Kenichiro; Honjoh, Masato; Takada, Tatsuo; Miyake, Hiroaki; Tanaka, Yasuhiro

    The electric charge accumulation under an electron beam irradiation (40 keV and 60 keV) was measured by using the pressure wave propagation (PWP) method in the dielectric insulation materials, such as polar polymeric films (polycarbonate (PC), polyethylene-naphthalate (PEN), polyimide (PI), and polyethylene-terephthalate (PET)) and non-polar polymeric films (polystyrene (PS), polypropylene (PP), polyethylene (PE) and polytetrafluoroethylene (PTFE)). The PE and PTFE (non-polar polymers) showed the properties of large amount of electric charge accumulation over 50 C/m3 and long saturation time over 80 minutes. The PP and PS (non-polar polymer) showed the properties of middle amount of charge accumulation about 20 C/m3 and middle saturation time about 1 to 20 minutes. The PC, PEN, PI and PET (polar polymers) showed the properties of small amount of charge accumulation about 5 to 20 C/m3 and within short saturation time about 1.0 minutes. This paper summarizes the relationship between the properties of charge accumulation and chemical structural formula, and compares between the electro static potential distribution with negative charged polymer and its chemical structural formula.

  14. Comparison of Polytetrafluoroethylene Flat-Sheet Membranes with Different Pore Sizes in Application to Submerged Membrane Bioreactor

    PubMed Central

    Nittami, Tadashi; Hitomi, Tetsuo; Matsumoto, Kanji; Nakamura, Kazuho; Ikeda, Takaharu; Setoguchi, Yoshihiro; Motoori, Manabu

    2012-01-01

    This study focused on phase separation of activated sludge mixed liquor by flat-sheet membranes of polytetrafluoroethylene (PTFE). A 20 liter working volume lab-scale MBR incorporating immersed PTFE flat-sheet membrane modules with different pore sizes (0.3, 0.5 and 1.0 μm) was operated for 19 days treating a synthetic wastewater. The experiment was interrupted twice at days 5 and 13 when the modules were removed and cleaned physically and chemically in sequence. The pure water permeate flux of each membrane module was measured before and after each cleaning step to calculate membrane resistances. Results showed that fouling of membrane modules with 0.3 μm pore size was more rapid than other membrane modules with different pore sizes (0.5 and 1.0 μm). On the other hand, it was not clear whether fouling of the 0.5 μm membrane module was more severe than that of the 1.0 μm membrane module. This was partly because of the membrane condition after chemical cleaning, which seemed to determine the fouling of those modules over the next period. When irreversible resistance (Ri) i.e., differences in membrane resistance before use and after chemical cleaning was high, the transmembrane pressure increased quickly during the next period irrespective of membrane pore size. PMID:24958174

  15. An in vitro study of cryopreserved and fresh human arteries: a comparison with ePTFE prostheses and human arteries studied non-invasively in vivo.

    PubMed

    Armentano, Ricardo L; Santana, Daniel Bia; Cabrera Fischer, Edmundo I; Graf, Sebastián; Cámpos, Héctor Pérez; Germán, Yanina Zócalo; Carmen Saldías, Maria Del; Alvarez, Inés

    2006-02-01

    The surgical options in arterial reconstruction are: the use of autologous arteries; autologous veins; or expanded polytetrafluoroethylene (ePTFE) grafts. However, the development of intimal hyperplasia when using veins or ePTFE grafts has been associated with graft failure. Since autologous arteries are not always available, the use of cryopreserved arteries has to be considered. The aims of this study were: (a) to compare the viscoelastic properties of stored cryopreserved arteries and fresh arteries by in vitro analysis; and (b) to compare the viscoelastic properties of arteries measured non-invasively in normotensive patients, with fresh arteries, cryopreserved arteries, and ePTFE segments. The viscoelastic studies were performed in normotensive patients using stress-strain analysis with non-invasive measurement of pressure and diameter in the common carotid artery, and in vitro measurements of pressure and diameter in arteries and prostheses. The in vitro studies showed that the elastic modulus (E), viscous modulus (eta), Stiffness Index (SI), Peterson modulus (Ep), and the pulse wave velocity (PWV) values for human cryopreserved carotid arteries were similar to the values obtained non-invasively in normotensive subjects (P>0.05) and to human fresh vessels (P>0.05). In vitro, the SI, Ep, PWV, and E values of ePTFE were significantly higher than the observed values in subjects and with fresh and cryopreserved arteries (P<0.05); on the other hand the ePTFE eta values were the lowest (P<0.05). We concluded that cryopreserved arteries have similar viscoelastic properties to those obtained in vivo in the arteries of normotensive subjects and in vitro in fresh arteries. Consequently, we conclude that the cryopreservation procedure does not modify the mechanical properties of the arterial wall.

  16. MALDI-TOF mass spectrometry imaging reveals molecular level changes in ultrahigh molecular weight polyethylene joint implants in correlation with lipid adsorption.

    PubMed

    Fröhlich, Sophie M; Archodoulaki, Vasiliki-Maria; Allmaier, Günter; Marchetti-Deschmann, Martina

    2014-10-07

    Ultrahigh molecular weight polyethylene (PE-UHMW), a material with high biocompatibility and excellent mechanical properties, is among the most commonly used materials for acetabular cup replacement in artificial joint systems. It is assumed that the interaction with synovial fluid in the biocompartment leads to significant changes relevant to material failure. In addition to hyaluronic acid, lipids are particularly relevant for lubrication in an articulating process. This study investigates synovial lipid adsorption on two different PE-UHMW materials (GUR-1050 and vitamin E-doped) in an in vitro model system by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry imaging (MSI). Lipids were identified by high performance thin layer chromatography (HP-TLC) and tandem mass spectrometry (MS/MS) analysis, with an analytical focus on phospholipids and cholesterol, both being species of high importance for lubrication. Scanning electron microscopy (SEM) analysis was applied in the study to correlate molecular information with PE-UHMW material qualities. It is demonstrated that lipid adsorption preferentially occurs in rough or oxidized polymer regions. Polymer modifications were colocalized with adsorbed lipids and found with high density in regions identified by SEM. Explanted, the in vivo polymer material showed comparable and even more obvious polymer damage and lipid adsorption when compared with the static in vitro model. A three-dimensional reconstruction of MSI data from consecutive PE-UHMW slices reveals detailed information about the diffusion process of lipids in the acetabular cup and provides, for the first time, a promising starting point for future studies correlating molecular information with commonly used techniques for material analysis (e.g., Fourier-transform infrared spectroscopy, nanoindentation).

  17. Use of PTFE Stent Grafts for Hemodialysis-related Central Venous Occlusions: Intermediate-Term Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundu, Sanjoy, E-mail: sanjoy_kundu40@hotmail.com; Modabber, Milad; You, John M.

    2011-10-15

    Purpose: To assess the safety and effectiveness of a polytetrafluoroethylene (PTFE) encapsulated nitinol stents (Bard Peripheral Vascular, Tempe, AZ) for treatment of hemodialysis-related central venous occlusions. Materials and Methods: Study design was a single-center nonrandomized retrospective cohort of patients from May 2004 to August 2009 for a total of 64 months. There were 14 patients (mean age 60 years, range 50-83 years; 13 male, 1 female). All patients had autogenous fistulas. All 14 patients had central venous occlusions and presented with clinical symptoms of the following: extremity swelling (14%, 2 of 14), extremity and face swelling (72%, 10 of 14),more » and face swelling/edema (14%, 2 of 14). There was evidence of access dysfunction with decreased access flow in 36% (5 of 14) patients. There were prior interventions or previous line placement at the site of the central venous lesion in all 14 patients. Results were assessed by recurrence of clinical symptoms and function of the access circuit (National Kidney Foundation recommended criteria). Results: Sixteen consecutive straight stent grafts were implanted in 14 patients. Average treated lesion length was 5.0 cm (range, 0.9-7 cm). All 14 patients had complete central venous occlusion (100% stenosis). The central venous occlusions were located as follows: right subclavian and brachiocephalic vein (21%, 3 of 14), right brachiocephalic vein (36%, 5 of 14), left brachiocephalic vein (36%, 5 of 14), and bilateral brachiocephalic vein (7%, 1 of 14). A total of 16 PTFE stent grafts were placed. Ten- or 12-mm-diameter PTFE stent grafts were placed. The average stent length was 6.1 cm (range, 4-8 cm). Technical (deployment), anatomic (<30% residual stenosis), clinical (resolution of symptoms), and hemodynamic (resolution of access dysfunction) success were 100%. At 3, 6, and 9 months, primary patency of the treated area and access circuit were 100% (14 of 14). Conclusions: This PTFE encapsulated stent

  18. Evaluation of the Mechanism of the Gold Cluster Growth during Heating of the Composite Gold-Polytetrafluoroethylene Thin Film.

    PubMed

    Grytsenko, Konstantin; Lozovski, Valeri; Strilchuk, Galyna; Schrader, Sigurd

    2012-11-07

    Nanocomposite films consisting of gold inclusions in the polytetrafluoroethylene (PTFE) matrix were obtained by thermal vacuum deposition. Annealing of the obtained films with different temperatures was used to measure varying of film morphologies. The dependence of optical properties of the films on their morphology was studied. It was established that absorption and profile of the nanocomposite film obtained by thermal vacuum deposition can be changed with annealing owing to the fact that different annealing temperatures lead to different average particle sizes. A method to calculate the optical properties of nanocomposite thin films with inclusions of different sizes was proposed. Thus, comparison of experimental optical spectra with the spectra obtained during the simulation enables estimating average sizes of inclusions. The calculations give the possibility of understanding morphological changes in the structures.

  19. Expanded polytetrafluoroethylene graft fistula for chronic hemodialysis.

    PubMed

    Tellis, V A; Kohlberg, W I; Bhat, D J; Driscoll, B; Veith, F J

    1979-01-01

    In a retrospective study of 66 PTFE arteriovenous fistulae and 71 BCH arteriovenous fistulae for dialysis access, PTFE had a higher patency rate than BCH at 12 months (62.4 versus 32.5%). PTFE was easier to work with and easier to handle in the face of infection. The lateral upper arm approach to placement of the PTFE graft is desirable in patients who have had multiple previous access procedures because this area is usually free from scarring, is distant from neurovascular structures, and provides a greater length of graft for needle punctures.

  20. Expanded polytetrafluoroethylene graft fistula for chronic hemodialysis.

    PubMed Central

    Tellis, V A; Kohlberg, W I; Bhat, D J; Driscoll, B; Veith, F J

    1979-01-01

    In a retrospective study of 66 PTFE arteriovenous fistulae and 71 BCH arteriovenous fistulae for dialysis access, PTFE had a higher patency rate than BCH at 12 months (62.4 versus 32.5%). PTFE was easier to work with and easier to handle in the face of infection. The lateral upper arm approach to placement of the PTFE graft is desirable in patients who have had multiple previous access procedures because this area is usually free from scarring, is distant from neurovascular structures, and provides a greater length of graft for needle punctures. Images Fig. 3. PMID:758853

  1. Improved recovery of Listeria monocytogenes from stainless steel and polytetrafluoroethylene surfaces using air/water ablation.

    PubMed

    Gião, M S; Blanc, S; Porta, S; Belenguer, J; Keevil, C W

    2015-07-01

    To develop a gentle ablation technique to recover Listeria monocytogenes biofilms from stainless steel (SS) and polytetrafluoroethylene (PTFE) surfaces by using compressed air and water injection. Biofilms were grown for 4, 24 and 48 h or 7 days and a compressed air and water flow at 2, 3 and 4 bars was applied for cell removal. Collected cells were quantified for total/dead by staining with SYTO 9/PI double staining and cultivable populations were determined by plating onto brain heart infusion (BHI) agar, while coupon surfaces also were stained with DAPI to quantify in situ the remaining cells. The recovery efficiency was compared to that of conventional swabbing. Results showed that the air/water ablation is able to collect up to 98·6% of cells from SS surfaces while swabbing only recovered 11·2% of biofilm. Moreover, air/water ablation recovered 99·9% of cells from PTFE surfaces. The high recovery rate achieved by this technique, along with the fact that cells were able to retain membrane integrity and cultivability, indicate that this device is suitable for the gentle recovery of viable L. monocytogenes biofilm cells. This work presents a highly efficient technique to remove, collect and quantify L. monocytogenes from surfaces commonly used in the food industry, which can thus serve as an important aid in verifying cleaning and sanitation as well as in reducing the likelihood of cross-contamination events. © 2015 The Society for Applied Microbiology.

  2. Initial deposition of calcium phosphate ceramic on polystyrene and polytetrafluoroethylene by rf magnetron sputtering deposition

    NASA Astrophysics Data System (ADS)

    Feddes, B.; Wolke, J. G. C.; Jansen, J. A.; Vredenberg, A. M.

    2003-03-01

    Calcium phosphate (CaP) coatings can be applied to improve the biological performance of polymeric medical implants. A strong interfacial bond between ceramic and polymer is required for clinical applications. Because the chemical structure of an interface plays an important role in the adhesion of a coating, we studied the formation of the interface between CaP and polystyrene (PS) and polytetrafluoroethylene (PTFE). The coating was deposited in a radio frequency (rf) magnetron sputtering deposition system. Prior to the deposition, some samples received an oxygen plasma pretreatment. We found that the two substrates show a strongly different reactivity towards CaP. On PS a phosphorus and oxygen enrichment is present at the interface. This is understood from POx complexes that are able to bind to the PS. The effects of the plasma pretreatment are overruled by the deposition process itself. On PTFE, a calcium enrichment and an absence of phosphorus is found at the interface. The former is the result of CaF2-like material being formed at the interface. The latter may be the result of phosphorus reacting with escaping fluorine to a PF3 molecule, which than escapes from the material as a gas molecule. We found that the final structure of the interface is mostly controlled by the bombardment of energetic particles escaping either from the plasma or from the sputtering target. The work described here can be used to understand and improve the adhesion of CaP coatings deposited on medical substrates.

  3. Characterization of plastic deformation and chemical reaction in titanium-polytetrafluoroethylene mixture

    NASA Astrophysics Data System (ADS)

    Davis, Jeffery Jon

    1998-09-01

    The subject of this dissertation is the deformation process of a single metal - polymer system (titanium - polytetrafluoroethylene) and how this process leads to initiation of chemical reaction. Several different kinds of experiments were performed to characterize the behavior of this material to shock and impact. These mechanical conditions induce a rapid plastic deformation of the sample. All of the samples tested had an initial porosity which increased the plastic flow condition. It is currently believed that during the deformation process two important conditions occur: removal of the oxide layer from the metal and decomposition of the polymer. These conditions allow for rapid chemical reaction. The research from this dissertation has provided insight into the complex behavior of plastic deformation and chemical reactions in titanium - polytetrafluoroethylene (PTFE, Teflon). A hydrodynamic computational code was used to model the plastic flow for correlation with the results from the experiments. The results from this work are being used to develop an ignition and growth model for metal/polymer systems. Three sets of experiments were used to examine deformation of the 80% Ti and 20% Teflon materials: drop- weight, gas gun, and split-Hopkinson pressure bar. Recovery studies included post shot analysis of the samples using x-ray diffraction. Lagrangian hydrocode DYNA2D modeling of the drop-weight tests was performed for comparison with experiments. One of the reactions know to occur is Ti + C → TiC (s) which results in an exothermic release. However, the believed initial reactions occur between Ti and fluorine which produces TixFy gases. The thermochemical code CHEETAH was used to investigate the detonation products and concentrations possible during Ti - Teflon reaction. CHEETAH shows that the Ti - fluorine reactions are thermodynamically favorable. This research represents the most comprehensive to date study of deformation induced chemical reaction in metal/polymers.

  4. X-ray photoelectron and mass spectroscopic study of electron irradiation and thermal stability of polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Wheeler, Donald R.; Pepper, Stephen V.

    1990-01-01

    Polytetrafluoroethylene (PTFE) was subjected to 3 keV electron bombardment and then heated in vacuum to 300 C. The behavior of the material as a function of radiation dose and temperature was studied by X-ray photoelectron spectroscopy (XPS) of the surface and mass spectroscopy of the species evolved. A quantitative comparison of the radiation dose rate with that in other reported studies showed that, for a given total dose, the damage observed by XPS is greater for higher dose rates. Lightly damaged material heated to 300 C evolved saturated fluorocarbon species, whereas unsaturated fluorocarbon species evolved from heavily damaged material. After heating the heavily damaged material, those features in the XPS that were associated with damage diminished, giving the appearance that the radiation damage annealed. The apparent annealing of the radiation damage was found to be due to the covering of the network by saturated fragments that easily diffused through the decomposed material to the surface region upon heating.

  5. Mechanical and chemical effects of ion-texturing biomedical polymers

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Cenkus, M. A.

    1979-01-01

    To determine whether sputter etching may provide substantial polymer surface texturing with insignificant changes in chemical and mechanical properties, an 8 cm beam diameter, electron bombardment, argon ion source was used to sputter etch (ion-texture process) nine biomedical polymers. The materials included silicone rubber, 32% carbon impregnated polyolefin, polyoxymethylene, polytetrafluoroethylene, ultrahigh molecular weight (UHMW) polyethylene, UHMW polyethylene with carbon fibers (10%), and several polyurethanes (bioelectric, segmented, and cross linked). Ion textured microtensile specimens of each material except UHMW polyethylene and UHMW polyethylene with 10% carbon fibers were used to determine the effect of ion texturing on tensile properties. Scanning electron microscopy was used to determine surface morphology changes, and electron spectroscopy for chemical analysis was used to analyze the near surface chemical changes that result from ion texturing. Ion energies of 500 eV with beam current densities ranging from 0.08 to 0.19 mA/sq cm were used to ion texture the various materials. Standard microtensile specimens of seven polymers were exposed to a saline environment for 24 hours prior to and during the tensile testing. The surface chemical changes resulting from sputter etching are minimal in spite of the often significant changes in the surface morphology.

  6. [Tribological properties of carbon fiber-reinforced plastic. Experimental and clinical results].

    PubMed

    Früh, H J; Ascherl, R; Hipp, E

    1997-02-01

    Wear of the articulating components (especially PE-UHMW) of total hip endoprostheses is the most important technical factor limiting the functional lifetime. To minimize wear debris, ceramic heads, according to ISO 6474 (Al2O3), have been used, from 1969 paired with Al2O3 and since 1975 paired with PE-UHMW. Al2O3 balls articulating with cups made from CFRP have been in clinical use since 1988. Laboratory experiments and in-vivo testing showed minimized wear debris and mild biological response to wear products using CFRP (carbon fiber reinforced plastic) instead of PE-UHMW as the cup material. The articulating surfaces of retrieved ceramic heads (Al2O3-Biolox) and cementless CFRP cups (carbon fiber reinforced plastic, Caproman) were compared using sphericity measurement techniques, scanning electron microscopy (SEM) and roughness measurements (including advanced roughness parameters Rvk or Rpk according to ISO 4287). Altogether, the first results of the clinical study showed that the combination Al2O3-ball/CFRP-cup came up to the expected lower wear rates compared with the conventional combinations. The wear rates are comparable with the combination Al2O3/Al2O3 without the material-related problems of ceramic components in all ceramic combinations.

  7. An automated baseline correction protocol for infrared spectra of atmospheric aerosols collected on polytetrafluoroethylene (Teflon) filters

    NASA Astrophysics Data System (ADS)

    Kuzmiakova, Adele; Dillner, Ann M.; Takahama, Satoshi

    2016-06-01

    A growing body of research on statistical applications for characterization of atmospheric aerosol Fourier transform infrared (FT-IR) samples collected on polytetrafluoroethylene (PTFE) filters (e.g., Russell et al., 2011; Ruthenburg et al., 2014) and a rising interest in analyzing FT-IR samples collected by air quality monitoring networks call for an automated PTFE baseline correction solution. The existing polynomial technique (Takahama et al., 2013) is not scalable to a project with a large number of aerosol samples because it contains many parameters and requires expert intervention. Therefore, the question of how to develop an automated method for baseline correcting hundreds to thousands of ambient aerosol spectra given the variability in both environmental mixture composition and PTFE baselines remains. This study approaches the question by detailing the statistical protocol, which allows for the precise definition of analyte and background subregions, applies nonparametric smoothing splines to reproduce sample-specific PTFE variations, and integrates performance metrics from atmospheric aerosol and blank samples alike in the smoothing parameter selection. Referencing 794 atmospheric aerosol samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011, we start by identifying key FT-IR signal characteristics, such as non-negative absorbance or analyte segment transformation, to capture sample-specific transitions between background and analyte. While referring to qualitative properties of PTFE background, the goal of smoothing splines interpolation is to learn the baseline structure in the background region to predict the baseline structure in the analyte region. We then validate the model by comparing smoothing splines baseline-corrected spectra with uncorrected and polynomial baseline (PB)-corrected equivalents via three statistical applications: (1) clustering analysis, (2) functional group quantification

  8. Thermodynamic properties and transport coefficients of a two-temperature polytetrafluoroethylene vapor plasma for ablation-controlled discharge applications

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Wang, Weizong; Yan, Joseph D.; Qi, Haiyang; Geng, Jinyue; Wu, Yaowu

    2017-10-01

    Ablation-controlled plasmas have been used in a range of technical applications where local thermodynamic equilibrium (LTE) is often violated near the wall due to the strong cooling effect caused by the ablation of wall materials. The thermodynamic and transport properties of ablated polytetrafluoroethylene (PTFE) vapor, which determine the flowing plasma behavior in such applications, are calculated based on a two-temperature model at atmospheric pressure. To our knowledge, no data for PTFE have been reported in the literature. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and the Guldberg-Waage equation according to van de Sanden et al’s derivation. The transport coefficients, including viscosity, thermal conductivity and electrical conductivity, are calculated with the most recent collision interaction potentials using Devoto’s electron and heavy-particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of the Chapman-Enskog method. Results are computed for different degrees of thermal non-equilibrium, i.e. the ratio of electron to heavy-particle temperatures, from 1 to 10, with electron temperature ranging from 300 to 40 000 K. Plasma transport properties in the LTE state obtained from the present work are compared with existing published results and the causes for the discrepancy analyzed. The two-temperature plasma properties calculated in the present work enable the modeling of wall ablation-controlled plasma processes.

  9. Sustained Thromboresistant Bioactivity with Reduced Intimal Hyperplasia of Heparin-Bonded Polytetrafluoroethylene Propaten Graft in a Chronic Canine Femoral Artery Bypass Model.

    PubMed

    Freeman, John; Chen, Aaron; Weinberg, Roy J; Okada, Tamuru; Chen, Changyi; Lin, Peter H

    2018-05-01

    Bypass graft thrombosis remains a significant mode of failure in prosthetic graft revascularization. The purpose of this investigation was to evaluate the long-term thromboresistant effect of heparin-bonded expanded polytetrafluoroethylene (ePTFE) graft using Carmeda BioActive Surface technology in a canine model. Bilateral femorofemoral artery bypass grafts with ePTFE grafts were performed in 25 adult grayhound dogs. In each animal, a heparin-bonded ePTFE graft (Propaten, WL Gore) was placed on one side, whereas a control nonheparin graft was placed on the contralateral side. The graft patency was assessed at 1, 6, 12, 18, and 24 months (n = 5 per group) following the bypass. Heparin bioactivity of the graft material was analyzed. The effect of intimal hyperplasia was also assessed. All bypass grafts were patent at 1 month. Significantly greater patency rates were noted in the Propaten group compared to the control group at 12, 18, and 24 months, which were 84%, 80%, and 80% vs. 55%, 35%, and 20%, respectively (P < 0.02). There was a significant reduction in the anastomotic neointimal area and neointimal cell proliferation in Propaten grafts compared with control grafts at all groups between 6 and 24 months (P < 0.05). Heparin bioactivity as measured by antithrombin binding assay was demonstrated in the Propaten graft between 1 and 24 months. Mean heparin activities on Propaten grafts ranged from 26.3 ± 6.4 pmol/cm 2 to 18.4 ± 8.7 pmol/cm 2 between 1 and 24 months, which were significantly greater than the control group (P < 0.001). Differences between mean heparin activities of explanted Propaten graft samples at the various time points were nonsignificant (P > 0.05). Heparin-bonded ePTFE graft provides a thromboresistant surface and reduced anastomotic intimal hyperplasia at 2 years. The stable heparin bioactivity of the Propaten graft confers an advantage in long-term graft patency. Copyright © 2017 The Author(s). Published by Elsevier Inc

  10. Full four-dimensional and reciprocal Mueller matrix bidirectional reflectance distribution function of sintered polytetrafluoroethylene.

    PubMed

    Germer, Thomas A

    2017-11-20

    We measured the Mueller matrix bidirectional reflectance distribution function (BRDF) of a sintered polytetrafluoroethylene (PTFE) sample over the scattering hemisphere for six incident angles (0°-75° in 15° steps) and for four wavelengths (351 nm, 532 nm, 633 nm, and 1064 nm). The data for each wavelength were fit to a phenomenological description for the Mueller matrix BRDF, which is an extension of the bidirectional surface scattering modes developed by Koenderink and van Doorn [J. Opt. Soc. Am. A.15, 2903 (1998)JOAOD60740-323210.1364/JOSAA.15.002903] for unpolarized BRDF. This description is designed to be complete, to obey the appropriate reciprocity conditions, and to provide a full description of the Mueller matrix BRDF as a function of incident and scattering directions for each wavelength. The description was further extended by linearizing the surface scattering mode coefficients with wavelength. This data set and its parameterization provides a comprehensive on-demand description of the reflectance properties for this commonly used diffuse reflectance reference material over a wide range of wavelengths.

  11. 76 FR 8774 - Granular Polytetrafluoroethylene Resin From Japan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-386 (Third Review)] Granular Polytetrafluoroethylene Resin From Japan AGENCY: United States International Trade Commission. ACTION: Termination of five... revocation of the antidumping duty order on granular polytetrafluoroethylene resin from Japan would be likely...

  12. Analysis and Design of a Long Range PTFE Substrate UHF RFID Tag for Cargo Container Identification

    NASA Astrophysics Data System (ADS)

    Petrariu, Adrian-Ioan; Popa, Valentin

    2016-01-01

    In this paper, a high-performances microstrip antenna for UHF (ultra high frequency) RFID (radio frequency identification) tag is designed, prototyped and tested. The antenna consists of two main components: a 1.52 mm RT/duroid 5880 laminate substrate on which the antenna is designed and a 10 mm polytetrafluoroethylene (PTFE) dielectric material placed as a separator between the antenna and the reference ground plane for the microstrip antenna. With this structure, the RFID tag can reach a maximum reading distance of 19 m, although the antenna has a compact size of 80 mm × 50 mm. The long reading distance is obtained by attaching to the antenna an RFID chip that can provide a reading sensitivity of -20.5 dBm. The high bandwidth from 677 MHz to 947 MHz measured at -10 dB, makes the tag being usable worldwide especially for cargo container identification, the main purpose of this research.

  13. Electrode kinetics of ethanol oxidation on novel CuNi alloy supported catalysts synthesized from PTFE suspension

    NASA Astrophysics Data System (ADS)

    Sen Gupta, S.; Datta, J.

    An understanding of the kinetics and mechanism of the electrochemical oxidation of ethanol is of considerable interest for the optimization of the direct ethanol fuel cell. In this paper, the electro-oxidation of ethanol in sodium hydroxide solution has been studied over 70:30 CuNi alloy supported binary platinum electrocatalysts. These comprised mixed deposits of Pt with Ru or Mo. The electrodepositions were carried out under galvanostatic condition from a dilute suspension of polytetrafluoroethylene (PTFE) containing the respective metal salts. Characterization of the catalyst layers by scanning electron microscope (SEM)-energy dispersive X-ray (EDX) indicated that this preparation technique yields well-dispersed catalyst particles on the CuNi alloy substrate. Cyclic voltammetry, polarization study and electrochemical impedance spectroscopy were used to investigate the kinetics and mechanism of ethanol electro-oxidation over a range of NaOH and ethanol concentrations. The relevant parameters such as Tafel slope, charge transfer resistance and the reaction orders in respect of OH - ions and ethanol were determined.

  14. 21 CFR 878.3500 - Polytetrafluoroethylene with carbon fibers composite implant material.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Polytetrafluoroethylene with carbon fibers... Prosthetic Devices § 878.3500 Polytetrafluoroethylene with carbon fibers composite implant material. (a) Identification. A polytetrafluoroethylene with carbon fibers composite implant material is a porous device...

  15. Three-dimensional characterisation and simulation of deformation and damage during Taylor impact in PTFE

    NASA Astrophysics Data System (ADS)

    Resnyansky, A.; McDonald, S.; Withers, P.; Bourne, N.; Millett, J.; Brown, E.; Rae, P.

    2013-06-01

    Aerospace, defence and automotive applications of polymers and polymer matrix composites have placed these materials under increasingly more extreme conditions. It is therefore important to understand the mechanical response of these multi-phase materials under high pressures and strain rates. Crucial to this is knowledge of the physical damage response in association with the phase transformations during the loading and the ability to predict this via multi-phase simulation taking the thermodynamical non-equilibrium and strain rate sensitivity into account. The current work presents Taylor impact experiments interrogating the effect of dynamic, high-pressure loading on polytetrafluoroethylene (PTFE). In particular, X-ray microtomography has been used to characterise the damage imparted to cylindrical samples due to impact at different velocities. Distinct regions of deformation are present and controlled by fracture within the polymer, with the extent of the deformed region and increasing propagation of the fractures from the impact face showing a clear trend with increase in impact velocity. The experimental observations are discussed with respect to parallel multi-phase model predictions by CTH hydrocode of the shock response from Taylor impact simulations.

  16. A new modification of the individually designed polymer implant visible in X-ray for orbital reconstruction.

    PubMed

    Jazwiecka-Koscielniak, Ewa; Kozakiewicz, Marcin

    2014-10-01

    Orbital reconstruction makes higher demands on symmetry and axial precision than other parts of the skull, because the position of the eye globe determines proper vision. The aim of this study is to evaluate titanium surface marking of polymers (UHMW-PE and PA6) to check implants position in CT examination and clinical application of such modified individual implant. One hundred and twenty-four polymer blocks were prepared. New method of ultrasounds welding to connect the titanium markers to the polymer surface was developed and tested. Titanium marked polymer blocks were examined by CT to evaluate the quality of the cover. Then, two modified UHMW-PE individual implants were applied clinically and implant position was checked by CT. The biggest titanium cover was in PA6 [25 ± 18% of processed surface] and for UHMW-PE [19 ± 12%] without significance [p = 0.14]. Both covers were visible in CT. Clinical application revealed proper reconstruction, uneventful post-operational outcome and well visible surface of the implants in CT. The conducted tests make it possible to determine the suitability of ultrasonic technology for the deposition of titanium markers in polymer. The clinical use of modified individual implants allows to confirm the correct position of the implants because they are accurate visible in CT. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  17. Study of crosslinking onset and hydrogen annealing of ultra-high molecular weight polyethylene irradiated with high-energy protons

    NASA Astrophysics Data System (ADS)

    Wilson, John Ford

    1997-09-01

    Ultra high molecular weight polyethylene (UHMW-PE) is used extensively in hip and knee endoprostheses. Radiation damage from the sterilization of these endoprostheses prior to surgical insertion results in polymer crosslinking and decreased oxidative stability. The motivation for this study was to determine if UHMW-PE could be crosslinked by low dose proton irradiation with minimal radiation damage and its subsequent deleterious effects. I found that low dose proton irradiation and post irradiation hydrogen annealing did crosslink UHMW-PE and limit post irradiation oxidation. Crosslinking onset was investigated for UHMW-PE irradiated with 2.6 and 30 MeV H+ ions at low doses from 5.7 × 1011-2.3 × 1014 ions/cm2. Crosslinking was determined from gel permeation chromatography (GPC) of 1,2,4 trichlorobenzene sol fractions and increased with dose. Fourier transform infrared spectroscopy (FTIR) showed irradiation resulted in increased free radicals confirmed from increased carbonyl groups. Radiation damage, especially at the highest doses observed, also showed up in carbon double bonds and increased methyl end groups. Hydrogen annealing after ion irradiation resulted in 40- 50% decrease in FTIR absorption associated with carbonyl. The hydrogen annealing prevented further oxidation after aging for 1024 hours at 80oC. Hydrogen annealing was successful in healing radiation damage through reacting with the free radicals generated during proton irradiation. Polyethylenes, polyesters, and polyamides are used in diverse applications by the medical profession in the treatment of orthopedic impairments and cardiovascular disease and for neural implants. These artificial implants are sterilized with gamma irradiation prior to surgery and the resulting radiation damage can lead to accelerated deterioration of the implant properties. The findings in this study will greatly impact the continued use of these materials through the elimination of many problems associated with radiation

  18. Adhesive and morphological characteristics of surface chemically modified polytetrafluoroethylene films

    NASA Astrophysics Data System (ADS)

    Hopp, B.; Kresz, N.; Kokavecz, J.; Smausz, T.; Schieferdecker, H.; Döring, A.; Marti, O.; Bor, Z.

    2004-01-01

    In the present paper, we report an experimental determination of adhesive and topographic characteristics of chemically modified surface of polytetrafluoroethylene (PTFE) films. The surface chemistry was modified by ArF excimer laser irradiation in presence of triethylene-tetramine photoreagent. The applied laser fluence was varied in the range of 0.4-9 mJ/cm 2, and the number of laser pulses incident on the same area was 1500. To detect the changes in the adhesive features of the treated Teflon samples, we measured receding contact angle for distilled water and adhesion strength, respectively. It was found that the receding contact angle decreased from 96° to 30-37° and the adhesion strength of two-component epoxy glue to the treated sample surface increased from 0.03 to 9 MPa in the applied laser fluence range. Additionally, it was demonstrated that the adhesion of human cells to the modified Teflon samples is far better than to the untreated ones. The contact mode and pulsed force mode atomic force microscopic investigations of the treated samples demonstrated that the measured effective contact area of the irradiated films does not differ significantly from that of the original films, but the derived adhesion force is stronger on the modified samples than on the untreated ones. Hence, the increased adhesion of the treated Teflon films is caused by the higher surface energy.

  19. Reflectance measurements of PTFE, Kapton, and PEEK for xenon scintillation light for the LZ detector.

    NASA Astrophysics Data System (ADS)

    Arthurs, M.; Batista, E.; Haefner, J.; Lorenzon, W.; Morton, D.; Neff, A.; Okunawo, M.; Pushkin, K.; Sander, A.; Stephenson, S.; Wang, Y.; LZ Collaboration

    2017-01-01

    LZ (LUX-Zeplin) is an international collaboration that will look for dark matter candidates, WIMPs (Weakly Interacting Massive Particles), through direct detection by dual-phase time projection chamber (TPC) using liquid xenon. The LZ detector will be located nearly a mile underground at SURF, South Dakota, shielded from cosmic background radiation. Seven tons active mass of liquid xenon will be used for detecting the weak interaction of WIMPs with ordinary matter. Over three years of operation it is expected to reach the ultimate sensitivity of 2x10-48 cm2 for a WIMP mass of 50 GeV. As for many other rare event searches, high light collection efficiency is essential for LZ detector. Moreover, in order to achieve greater active volume for detection as well as reduce potential backgrounds, thinner detector walls without significant loss in reflectance are desired. Reflectance measurements of polytetrafluoroethylene (PTFE), Kapton, and PEEK for xenon scintillation light (178 nm), conducted at the University of Michigan using the Michigan Xenon Detector (MiX) will be presented. The University of Michigan, LZ Collaboration, The US Department of Energy.

  20. The effect of interstitial air on the in vitro thrombogenicity of ePTFE vascular grafts

    NASA Technical Reports Server (NTRS)

    Rashid, S. N.; Clark, H. G.; Vann, R. D.; Gerth, W. A.; Palmos, L. A.; Mikat, E. M.

    1992-01-01

    Gas trapped in the interstices of the biomaterials used for vascular prostheses causes thrombosis, and the process of eliminating this gas is known as denucleation. An apparatus was developed for testing in the in vitro effects of denucleation on 4 mm I.D. expanded polytetrafluoroethylene (ePTFE) Vitagraft (Johnson and Johnson). The apparatus was designed to ensure that neither the blood nor the grafts came in contact with air. Blood from a single donor was incubated with control and denucleated grafts for 5, 10, 15, 20, and 30 minutes. The thrombus volume in the graft lumen was measured with a computer assisted videometric system. Little thrombus formed by 5 or 10 minutes, but there was less thrombus in the denucleated graft than in the control graft at all times. The differences were statistically significant at 15 and 20 minutes (p < 0.05). Denucleation nearly doubled the thrombus formation time. Thrombus was more adherent to denucleated grafts than to control grafts. These results are consistent with in vivo observations in the rat where denucleation decreased thrombus formation and increased patency duration.

  1. Effects of nano-LaF3 on the friction and wear behaviors of PTFE-based bonded solid lubricating coatings under different lubrication conditions

    NASA Astrophysics Data System (ADS)

    Jia, Yulong; Wan, Hongqi; Chen, Lei; Zhou, Huidi; Chen, Jianmin

    2016-09-01

    Influence of nanometer lanthanum fluoride (nano-LaF3) on the tribological behaviors of polytetrafluoroethylene (PTFE) bonded solid lubricating coatings were investigated using a ring-on-block friction-wear tester under dry friction and RP-3 jet fuel lubrication conditions. The worn surfaces and transfer films formed on the counterpart steel rings were observed by scanning electron microscope (SEM) and optical microscope (OM), respectively. The microstructures of the nano-LaF3 modified coatings and the distribution states of nano-LaF3 were studied by field-emission scanning electron microscope (FESEM) and transmission electron microscopy (TEM), respectively. The results show that incorporation of nano-LaF3 improves the microhardness and the friction-reduced and anti-wear abilities of PTFE bonded solid lubricating coatings. The wear life of the modified coating is about 6 times longer than that of the coating without nano-LaF3 filler at a relatively low applied load (200 N) and rotary speed (1000 rev/min) under dry friction condition. The friction coefficient and wear life of the modified coating decrease with increase of applied load under dry friction, but the friction coefficient has hardly any variation and wear life decreases under RP-3 jet fuel lubrication condition. In addition, the friction coefficient of the modified coating reduces with the rotary speed increasing under dry sliding but has little change under RP-3 lubrication, the wear life increases firstly and then decreases. The results indicated that the wear failure mechanism is dominated by applied load, which plays an important role in guidance of application of nano-LaF3 modified PTFE bonded coating under different working environment.

  2. Excimer laser induced surface chemical modification of polytetrafluoroethylene

    NASA Astrophysics Data System (ADS)

    Révész, K.; Hopp, B.; Bor, Z.

    1997-02-01

    Polytetrafluoroethylene has a notoriously non adhesive and non reactive character. Its successful surface photochemical modification was performed by irradiating the polytetrafluoroethylene/liquid triethylamine interface with an ArF excimer laser (λ=193 nm). Due to the photochemical treatment the polytetrafluoroethylene surface became more hydrophilic. The water receding contact angle decreased from 94° to 43°. The reaction cross section was determined from the decrease of the contact angles. It was found to be as high as 6.4×10-18 cm2. XPS measurements evidenced the removal of fluorine from the polytetrafluoroethylene, incorporation of alkyl carbon and nitrogen. Photochemical dissociation path of the triethylamine makes probable that it bonded to the fluoropolymer backbone via the α-carbon atom of an ethyl group. A radical, or a photoinduced electron transfer mechanism was suggested to describe this reaction. A selective area electroless plating of silver was performed after pretreating the sample with patterned photomodification. The increased adhesion of the sample was proved by gluing with epoxy resin. As a result of the surface modification the tensile strength of gluing increased by 210× and reached 24% of the value characteristic for the bulk material.

  3. Coupling Sodium Dodecyl Sulfate–Capillary Polyacrylamide Gel Electrophoresis with MALDI-TOF-MS via a PTFE Membrane

    PubMed Central

    Lu, Joann J.; Zhu, Zaifang; Wang, Wei; Liu, Shaorong

    2011-01-01

    Sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis (PAGE) is a fundamental analytical technique for proteomic research, and SDS–capillary gel electrophoresis (CGE) is its miniaturized version. Compared to conventional slab-gel electrophoresis, SDS-CGE has many advantages such as increased separation efficiency, reduced separation time and automated operation. SDS-CGE is not widely accepted in proteomic research primarily due to the difficulties in identifying the well-resolved proteins. MALDI–TOF–MS is an outstanding platform for protein identifications. Coupling the two would solve the problem but is extremely challenging because the MS detector has no access to the SDS-CGE resolved proteins and the SDS interferes with MS detection. In this work we introduce an approach to address these issues. We discover that poly(tetrafluoroethylene) (PTFE) membranes are excellent materials for collecting SDS-CGE separated proteins. We demonstrate that we can wash off the SDS bound to the collected proteins and identify these proteins on-membrane with MALDI-TOF-MS. We also show that we can immunoblot and Coomassie-stain the proteins collected on these membranes. PMID:21309548

  4. Ultra high molecular weight polyethylene: Optical features at millimeter wavelengths

    NASA Astrophysics Data System (ADS)

    D'Alessandro, G.; Paiella, A.; Coppolecchia, A.; Castellano, M. G.; Colantoni, I.; de Bernardis, P.; Lamagna, L.; Masi, S.

    2018-05-01

    The next generation of experiments for the measurement of the Cosmic Microwave Background (CMB) requires more and more the use of advanced materials, with specific physical and structural properties. An example is the material used for receiver's cryostat windows and internal lenses. The large throughput of current CMB experiments requires a large diameter (of the order of 0.5 m) of these parts, resulting in heavy structural and optical requirements on the material to be used. Ultra High Molecular Weight (UHMW) polyethylene (PE) features high resistance to traction and good transmissivity in the frequency range of interest. In this paper, we discuss the possibility of using UHMW PE for windows and lenses in experiments working at millimeter wavelengths, by measuring its optical properties: emissivity, transmission and refraction index. Our measurements show that the material is well suited to this purpose.

  5. 78 FR 59653 - Notice of Scope Rulings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ... Administration, U.S. Department of Commerce, 14th Street and Constitution Avenue NW., Washington, DC 20230... polytetrafluoroethylene (PTFE) resin products made from raw, unfilled PTFE powder from Russia and the People's Republic of... the antidumping duty order; April 26, 2013 (preliminary). People's Republic of China A-570-967 and C...

  6. Proton exchange membranes prepared by grafting of styrene/divinylbenzene into crosslinked PTFE membranes

    NASA Astrophysics Data System (ADS)

    Li, Jingye; Ichizuri, Shogo; Asano, Saneto; Mutou, Fumihiro; Ikeda, Shigetoshi; Iida, Minoru; Miura, Takaharu; Oshima, Akihiro; Tabata, Yoneho; Washio, Masakazu

    2005-07-01

    Thin PTFE membranes were prepared by coating the PTFE dispersion onto the aluminum films. Thus the thin crosslinked PTFE (RX-PTFE) membranes were obtained by means of electron beam irradiation above the melting temperature of PTFE under oxygen-free atmosphere. The RX-PTFE membranes were pre-irradiated and grafted by styrene with or without divinylbenzene (DVB) in liquid phase. The existence of DVB accelerated the initial grafting rate. The styrene grafted RX-PTFE membranes are white colored, on the other hand, the styrene/DVB grafted RX-PTFE membranes are colorless. The proton exchange membranes (PEMs) were obtained by sulfonating the grafted membranes using chlorosulfonic acid. The ion exchange capacity (IEC) values of the PEMs ranging from 1.5 to 2.8 meq/g were obtained. The PEMs made from the styrene/DVB grafted membranes showed higher chemical stability than those of the styrene grafted membranes under oxidative circumstance.

  7. Facile fabrication and characterization of poly(tetrafluoroethylene)@polypyrrole/nano-silver composite membranes with conducting and antibacterial property

    NASA Astrophysics Data System (ADS)

    Shi, Zhiquan; Zhou, Hui; Qing, Xutang; Dai, Tingyang; Lu, Yun

    2012-06-01

    Porous poly(tetrafluoroethylene) (PTFE) membranes play an important role in air purification and separation engineering. To achieve the bi-functionality of conducting and antibacterial property, two kinds of poly(tetrafluoroethylene)@ polypyrrole/nano-silver composite membranes have been prepared. One involves hydrophobic polypyrrole/nano-silver composite with hollow capsule nanostructures immobilized on the surface of the PTFE membranes. The other is a type of composite membranes with polypyrrole/nano-silver composite wholly packed on the fibrils of the expand PTFE membrane to form core/shell coaxial cable structures. The structure and morphology of the two kinds of composite membranes have been characterized by FTIR, UV-vis, XRD, TGA and SEM measurements. Possible formation mechanisms of the hollow capsules and the core/shell nanocable structures have been discussed in detail. The antibacterial effects of composite membranes are also briefly investigated.

  8. Circularly Polarized S Band Dual Frequency Square Patch Antenna Using Glass Microfiber Reinforced PTFE Composite

    PubMed Central

    Samsuzzaman, M.; Islam, M. T.; Arshad, Haslina; Mandeep, J. S.; Misran, N.

    2014-01-01

    Circularly polarized (CP) dual frequency cross-shaped slotted patch antenna on 1.575 mm thick glass microfiber reinforced polytetrafluoroethylene (PTFE) composite material substrate is designed and fabricated for satellite applications. Asymmetric cross-shaped slots are embedded in the middle of the square patch for CP radiation and four hexagonal slots are etched on the four sides of the square patch for desired dual frequency. Different substrate materials have been analysed to achieve the desired operating band. The experimental results show that the impedance bandwidth is approximately 30 MHz (2.16 GHz to 2.19 GHz) for lower band and 40 MHz (3.29 GHz to 3.33 GHz) for higher band with an average peak gain of 6.59 dBiC and 5.52 dBiC, respectively. Several optimizations are performed to obtain the values of the antenna physical parameters. Moreover, the proposed antenna possesses compactness, light weight, simplicity, low cost, and circularly polarized. It is an attractive candidate for dual band satellite antennas where lower band can be used for uplink and upper band can be used for downlink. PMID:24982943

  9. Self-lubricating layer consist of polytetrafluoroethylene micropowders and fluorocarbon acrylate resin formation on surface of geotextile

    NASA Astrophysics Data System (ADS)

    Long, Xiaoyun; He, Lifen; Zhang, Yan; Ge, Mingqiao

    2018-04-01

    In this study, the self-lubricating layer consist of polytetrafluoroethylene (PTFE) micropowders and two types fluorocarbon acrylate resin were formed on the surface of geotextile, to improves the evenness and decreases the frictional angle value of geotextile surface. The surface and cross section morphology of geotextile were examined by scanning electron microscopy (SEM). It was determined that composite resin emulsion was evenly coated on the surface of geotextile, to form a even and complete self-lubricating layer, and it was strongly combined with the geotextile due to formation of the transition layer. The tensile fracture stress and strain values of samples were evaluated by mechanical properties measurement, the tensile fracture stress of the untreated and treated sample was approximately 5329 kN/m and 5452 kN/m while the elongation at the yield of them was approximately 85% to 83.9%, respectively. In addition, the frictional angle values of municipal solid waste (MSW)/geotextile interface was measured by the tilt table test, the values of untreated sample was 28.1° and 24.2° under the dry and moist condition, the values of treated sample was 16.2° and 9.8°, respectively.

  10. 21 CFR 878.3500 - Polytetrafluoroethylene with carbon fibers composite implant material.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... composite implant material. 878.3500 Section 878.3500 Food and Drugs FOOD AND DRUG ADMINISTRATION... Prosthetic Devices § 878.3500 Polytetrafluoroethylene with carbon fibers composite implant material. (a) Identification. A polytetrafluoroethylene with carbon fibers composite implant material is a porous device...

  11. Influence of gamma-irradiation sterilization and temperature on the fracture toughness of ultra-high-molecular-weight polyethylene.

    PubMed

    Pascaud, R S; Evans, W T; McCullagh, P J; FitzPatrick, D P

    1997-05-01

    Surface damage of the tibial plateau components of knee prostheses made from medical grade ultra-high-molecular-weight polyethylene (UHMW-PE) has been attributed to delamination wear caused by a fatigue fracture mechanism. It has been proposed that factors such as component design and method of sterilization contribute to such failure mechanisms. Understanding the fracture behaviour of UHMW-PE is therefore critical in optimizing the in vivo life-span of total joint components. The elastic-plastic fracture toughness parameter J was consequently determined for a commercial UHMW-PE at ambient and body temperatures, before and after gamma-irradiation sterilization in air at a minimum dose of 29 kGy. Both ductile stability theory and experimental data suggest that cracks propagate in a stable manner, although stability is affected by the sterilization process. Sterilization with gamma-irradiation results in a loss in fracture toughness JIc of 50% and a decrease in tearing modulus (Tm) of 30%. This dramatic reduction could result in a 50% decrease in the residual strength of the components, maximum permissible crack size under service loading and service life (assuming flaws such as fusion defects exist). The time required for a crack to grow from its original size to the maximum permissible size could be decreased by 30%, resulting in earlier failure. In terms of the design of joint replacement components the critical factor to envisage is the design stress level, which should be halved to account for the irradiation process. A scanning electron microscope study reveals that the material fails in layers parallel to the fracture surface.

  12. Low temperature synthesis of LnOF rare-earth oxyfluorides through reaction of the oxides with PTFE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutton, S.E., E-mail: sdutton@princeton.edu; Hirai, D.; Cava, R.J.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Low temperature synthesis of LnOF rare-earth oxyfluorides from Ln{sub 2}O{sub 3} and PTFE (CF{sub 2}). Black-Right-Pointing-Pointer Rhombohedral LnOF is the major phase and forms as nanocrystals, 29-103 nm. Black-Right-Pointing-Pointer Expected lanthanide contraction observed in lattice parameters and bond lengths. Black-Right-Pointing-Pointer TbOF orders antiferromagnetically at 10 K and has a metamagnetic transition at 1.8 T. Black-Right-Pointing-Pointer GdOF orders antiferromagnetically at 5 K, other LnOF are paramagnetic. -- Abstract: A low temperature solid-state synthesis route, employing polytetrafluoroethylene (PTFE) and the rare-earth oxides, for the formation of the LnOF rare-earth oxyfluorides (Ln = Y, La, Pr, Nd, Sm, Eu, Gd, Tb,more » Dy, Ho, Er), is reported. With the exception of LaOF, which forms in a tetragonal variant, rhomobohedral LnOF is found to be the major product of the reaction. In the case of PrOF, a transition from the rhombohedral to the cubic fluorite phase is observed on heating in air to 500 Degree-Sign C. X-ray diffraction shows the expected lanthanide contraction in the lattice parameters and bond lengths. Magnetic susceptibility measurements show antiferromagnetic-like ordering in TbOF, T{sub m} = 10 K, with a metamagnetic transition at a field {mu}{sub 0}H{sub t} = 1.8 T at 2 K. An antiferromagnetic transition, T{sub N} = 4 K, is observed in GdOF. Paramagnetic behavior is observed above 2 K in PrOF, NdOF, DyOF, HoOF and ErOF. The magnetic susceptibility of EuOF is characteristic of Van Vleck paramagnetism.« less

  13. Transjugular Intrahepatic Portosystemic Shunt Flow Reduction with Adjustable Polytetrafluoroethylene-Covered Balloon-Expandable Stents Using the “Sheath Control” Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blue, Robert C., E-mail: Robert.c.blue@gmail.com; Lo, Grace C.; Kim, Edward

    PurposeA complication of transjugular intrahepatic portosystemic shunts (TIPS) placement is refractory portosystemic encephalopathy (PSE) often requiring TIPS reduction. We report the results of a “sheath control technique” utilizing constraining sheaths during deployment of polytetrafluoroethylene (PTFE)-covered balloon-expandable stents, minimizing stent migration, and providing additional procedural control.MethodsTIPS reduction was performed in 10 consecutive patients for PSE using Atrium iCast covered stents (Atrium Maquet Getinge Group, Germany). Within the indwelling TIPS stent, a 9 mm × 59 mm iCast stent was deployed with 2 cm exposed from the sheath’s distal end and the majority of the stent within the sheath to create the distal hourglass shape. During balloonmore » retraction, the stent was buttressed by the sheath. The proximal portion of the stent was angioplastied to complete the hourglass configuration, and the central portion of the stent was dilated to 5 mm. Demographics, pre- and post-procedure laboratory values, and outcomes were recorded.ResultsTen patients underwent TIPS reduction with 100 % technical success. There was no stent migration during stent deployment. All patients experienced initial improvement of encephalopathy. One patient ultimately required complete TIPS occlusion for refractory PSE, and another developed TIPS occlusion 36 days post-procedure. There was no significant trend toward change in patients’ MELD scores immediately post-procedure or at 30 days (p = 0.46, p = 0.47, respectively).ConclusionTIPS reduction using Atrium iCast PTFE balloon-expandable stents using the “sheath control technique” is safe and effective, and minimizes the risk of stent migration.« less

  14. A Study on the Mechanical Properties and Impact-Induced Initiation Characteristics of Brittle PTFE/Al/W Reactive Materials.

    PubMed

    Ge, Chao; Maimaitituersun, Wubuliaisan; Dong, Yongxiang; Tian, Chao

    2017-04-26

    Polytetrafluoroethylene/aluminum/tungsten (PTFE/Al/W) reactive materials of three different component mass ratios (73.5/26.5/0, 68.8/24.2/7 and 63.6/22.4/14) were studied in this research. Different from the PTFE/Al/W composites published elsewhere, the materials in our research were fabricated under a much lower sintering temperature and for a much shorter duration to achieve a brittle property, which aims to provide more sufficient energy release upon impact. Quasi-static compression tests, dynamic compression tests at room and elevated temperatures, and drop weight tests were conducted to evaluate the mechanical and impact-induced initiation characteristics of the materials. The materials before and after compression tests were observed by a scanning electron microscope to relate the mesoscale structural characteristics to their macro properties. All the three types of materials fail at very low strains during both quasi-static and dynamic compression. The stress-strain curves for quasi-static tests show obvious deviations while that for the dynamic tests consist of only linear-elastic and failure stages typically. The materials were also found to exhibit thermal softening at elevated temperatures and were strain-rate sensitive during dynamic tests, which were compared using dynamic increase factors (DIFs). Drop-weight test results show that the impact-initiation sensitivity increases with the increase of W content due to the brittle mechanical property. The high-speed video sequences and recovered sample residues of the drop-weight tests show that the reaction is initiated at two opposite positions near the edges of the samples, where the shear force concentrates the most intensively, indicating a shear-induced initiation mechanism.

  15. A Study on the Mechanical Properties and Impact-Induced Initiation Characteristics of Brittle PTFE/Al/W Reactive Materials

    PubMed Central

    Ge, Chao; Maimaitituersun, Wubuliaisan; Dong, Yongxiang; Tian, Chao

    2017-01-01

    Polytetrafluoroethylene/aluminum/tungsten (PTFE/Al/W) reactive materials of three different component mass ratios (73.5/26.5/0, 68.8/24.2/7 and 63.6/22.4/14) were studied in this research. Different from the PTFE/Al/W composites published elsewhere, the materials in our research were fabricated under a much lower sintering temperature and for a much shorter duration to achieve a brittle property, which aims to provide more sufficient energy release upon impact. Quasi-static compression tests, dynamic compression tests at room and elevated temperatures, and drop weight tests were conducted to evaluate the mechanical and impact-induced initiation characteristics of the materials. The materials before and after compression tests were observed by a scanning electron microscope to relate the mesoscale structural characteristics to their macro properties. All the three types of materials fail at very low strains during both quasi-static and dynamic compression. The stress-strain curves for quasi-static tests show obvious deviations while that for the dynamic tests consist of only linear-elastic and failure stages typically. The materials were also found to exhibit thermal softening at elevated temperatures and were strain-rate sensitive during dynamic tests, which were compared using dynamic increase factors (DIFs). Drop-weight test results show that the impact-initiation sensitivity increases with the increase of W content due to the brittle mechanical property. The high-speed video sequences and recovered sample residues of the drop-weight tests show that the reaction is initiated at two opposite positions near the edges of the samples, where the shear force concentrates the most intensively, indicating a shear-induced initiation mechanism. PMID:28772812

  16. Fabrication and Characteristics of Al/PTFE Multilayers and Application in Micro-initiator

    NASA Astrophysics Data System (ADS)

    Zhang, Yuxin; Jiang, Hongchuan; Zhao, Xiaohui; Zhang, Wanli; Li, Yanrong

    2017-12-01

    In this paper, a micro-initiator was designed and fabricated by integrating Al/PTFE multilayers with a Cu film bridge. The regularity layer structure and interface composition of Al/PTFE multilayers was analysed by transmission electron microscope and X-ray photoelectron spectroscopy, respectively. The heat release reaction in Al/PTFE multilayers can be triggered with reaction temperature of 430 °C, and the overall heat of reaction is 3192 J/g. Al/PTFE multilayers with bilayer thickness of 200 nm was alternately deposited on a Cu film bridge to improve the electric explosion performances. Compared to Cu film bridge, the Al/PTFE/Cu integrated film bridge exhibits improved performances with longer explosion duration time, more violent explosion phenomenon and larger quantities of ejected product particles.

  17. Temperature-Dependent Friction and Wear Behavior of PTFE and MoS 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babuska, T. F.; Pitenis, A. A.; Jones, M. R.

    2016-06-16

    We present an investigation of the temperature-dependent friction behavior of PTFE, MoS 2, and PTFE-on- MoS 2. Friction behavior was measured while continuously varying contact temperature in the range -150 to 175°C while sliding in dry nitrogen, as well as for self-mated PTFE immersed in liquid nitrogen. These results contrast with previous reports of monotonic inverse temperature dependent friction behavior, as well as reported high-friction transitions and plateaus at temperatures below about -20°C that were not observed, providing new insights about the molecular mechanisms of macro-scale friction. The temperature-dependent friction behavior characteristic of self-mated PTFE was found also on themore » PTFE-on-MoS 2 sliding contact, suggesting that PTFE friction was defined by sub-surface deformation mechanisms and internal friction even when sliding against a lamellar lubricant with extremely low friction coefficient (μ ~ 0.02). The various relaxation temperatures of PTFE were found in the temperature-dependent friction behavior, showing excellent agreement with reported values acquired using torsional techniques measuring internal friction. Additionally, hysteresis in friction behavior suggests an increase in near-surface crystallinity at upon exceeding the high temperature relaxation, T α~ 116°C.« less

  18. Early experience with stretch polytetrafluoroethylene grafts for haemodialysis access surgery: results of a prospective randomised study.

    PubMed

    Tordoir, J H; Hofstra, L; Leunissen, K M; Kitslaar, P J

    1995-04-01

    The purpose of this study was to evaluate the results and complications of standard ePTFE versus stretch ePTFE AV fistulas. Prospective randomised trial. University Hospital. During a 2-year period 37 patients received 17 stretch and 20 standard ePTFE graft AV fistulas. Patients were evaluated for the occurrence of complications and graft patency. Regular Duplex scans were performed to detect stenoses in the fistula circuit. Thrombotic events occurred in 40% of the standard ePTFE grafts, compared to 12% of the stretch ePTFE prostheses (p < 0.001). The incidence of puncture complications was similar in both groups. The cumulative primary patency rate in the stretch ePTFE group was significantly higher compared to the standard ePTFE group (1-year patency rates of 59% and 29%, respectively; p < 0.01). No differences in the duration of puncture site bleeding were observed. Duplex scanning showed a significantly greater number of stenoses in the standard ePTFE grafts. The new stretch ePTFE prosthesis has better primary patency rates and less stenoses due to intimal hyperplasia as compared to standard ePTFE grafts.

  19. Comparison of a New Polytetrafluoroethylene-Covered Metallic Stent to a Noncovered Stent in Canine Ureters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Hwan-Hoon, E-mail: chungmic@korea.ac.kr; Lee, Seung Hwa; Cho, Sung Bum

    The aim of this study was to determine the feasibility of using a newly designed polytetrafluoroethylene (PTFE)-covered metallic stent in the ureter by comparing its effectiveness with that of the noncovered stent in a canine model. We placed 14 stents in the ureters of seven mongrel dogs that weighed 30-40 kg each. The covered and noncovered stents were deployed in the right and left ureters, respectively, of six dogs. In the seventh dog, a covered stent and a double-J catheter were inserted in the right ureter, and a covered stent only was inserted in the left ureter. The first sixmore » dogs were sacrificed at 5, 10, and 15 weeks after deployment of the stents (two for each follow-up period), and the seventh dog was sacrificed at 30 weeks. There was no migration or poor expansion of any of the stents observed on plain radiography. On intravenous pyelogram and retrograde pyelogram, all of the covered stents at each follow-up period had patent lumens at the stented segments without hydronephrosis, and the passage of contrast material through it was well preserved. The noncovered stents in the dogs sacrificed at 5 and 10 weeks and one of the two dogs sacrificed at 15 weeks showed near-complete occlusion of the stent lumen due to ingrowth of the soft tissue, and severe hydronephrosis was also noted. The noncovered stent in the other dog sacrificed at 15 weeks showed the passage of contrast material without hydronephrosis, but the lumen of the stent was still nearly occluded by the soft tissue. There was no evidence of hydronephrosis or passage disturbance of the contrast material in both ureters of the dog sacrificed at 30 weeks. We conclude that the newly designed PTFE-covered stent effectively prevented the luminal occlusion caused by urothelial hyperplasia compared to the near-total occlusion of the noncovered stents, and no migration of the covered stents was noted.« less

  20. Adhesion and transfer of polytetrafluorethylene to metals studied by Auger emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.; Buckley, D. H.

    1972-01-01

    The adhesion and transfer of polytetrafluoroethylene (PTFE) to metals in ultrahigh vacuum were studied. The transfer was effected both by compressive static contact and by sliding contact. The transfer observed after static contact was independent of the chemical constitution of the substrate. Electron-induced desorption of the fluorine in the transferred PTFE showed that the fluorine had no chemical interaction with the metal substrate. The coefficient of friction on metals was independent of the chemical constitution of the substrate. However, sliding PTFE on soft metals, such as aluminum, generated wear fragments that lodged in the PTFE and machined the substrate.

  1. Drop evaporation on superhydrophobic PTFE surfaces driven by contact line dynamics.

    PubMed

    Ramos, S M M; Dias, J F; Canut, B

    2015-02-15

    In the present study, we experimentally study the evaporation modes and kinetics of sessile drops of water on highly hydrophobic surfaces (contact angle ∼160°), heated to temperatures ranging between 40° and 70 °C. These surfaces were initially constructed by means of controlled tailoring of polytetrafluoroethylene (PTFE) substrates. The evaporation of droplets was observed to occur in three distinct phases, which were the same for the different substrate temperatures. The drops started to evaporate in the constant contact radius (CCR) mode, then switched to a more complex mode characterized by a set of stick-slip events accompanied by a decrease in contact angle, and finally shifted to a mixed mode in which the contact radius and contact angle decreased simultaneously until the drops had completely evaporated. It is shown that in the case of superhydrophobic surfaces, the energy barriers (per unit length) associated with the stick-slip motion of a drop ranges in the nJ m(-1) scale. Furthermore, analysis of the evaporation rates, determined from experimental data show that, even in the CCR mode, a linear relationship between V(2/3) and the evaporation time is verified. The values of the evaporation rate constants are found to be higher in the pinned contact line regime (the CCR mode) than in the moving contact line regime. This behavior is attributed to the drop's higher surface to volume ratio in the CCR mode. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Multidetector-Row Computed Tomography in the Evaluation of Transjugular Intrahepatic Portosystemic Shunt Performed with Expanded-Polytetrafluoroethylene-Covered Stent-Graft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fanelli, Fabrizio, E-mail: fabrizio.fanelli@uniroma1.it; Bezzi, Mario; Bruni, Antonio

    2011-02-15

    We assessed, in a prospective study, the efficacy of multidetector spiral computed tomography (MDCT) in the evaluation of transjugular intrahepatic portosystemic shunt (TIPS) patency in patients treated with the Viatorr (Gore, Flagstaff, AZ) expanded-polytetrafluoroethylene (e-PTFE)-covered stent-graft. Eighty patients who underwent TIPS procedure using the Viatorr self-expanding e-PTFE stent-graft were evaluated at follow-up of 1, 3, 6, and 12 months with clinical and laboratory tests as well as ultrasound-color Doppler (USCD) imaging. In case of varices, upper gastrointestinal endoscopy was also performed. In addition, the shunt was evaluated using MDCT at 6 and 12 months. In all cases of abnormal findingsmore » and discrepancy between MDCT and USCD, invasive control venography was performed. MDCT images were acquired before and after injection of intravenous contrast media on the axial plane and after three-dimensional reconstruction using different algorithms. MDCT was successfully performed in all patients. No artefacts correlated to the Viatorr stent-graft were observed. A missing correlation between UCSD and MDCT was noticed in 20 of 80 (25%) patients. Invasive control venography confirmed shunt patency in 16 (80%) cases and shunt malfunction in 4 (20%) cases. According to these data, MDCT sensitivity was 95.2%; specificity was 96.6%; and positive (PPV) and negative predictive values (NPV) were 90.9 and 98.2%, respectively. USCD sensitivity was 90%; specificity was 75%; and PPV and NPV were 54.5 and 95.7%, respectively. A high correlation (K value = 0.85) between MDCT and invasive control venography was observed. On the basis of these results, MDCT shows superior sensitivity and specificity compared with USCD in those patients in whom TIPS was performed with the Viatorr stent-graft. MDCT can be considered a valid tool in the follow-up of these patients.« less

  3. 21 CFR 878.4520 - Polytetrafluoroethylene injectable.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Polytetrafluoroethylene injectable. 878.4520 Section 878.4520 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4520...

  4. 21 CFR 878.4520 - Polytetrafluoroethylene injectable.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Polytetrafluoroethylene injectable. 878.4520 Section 878.4520 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4520...

  5. 21 CFR 878.4520 - Polytetrafluoroethylene injectable.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Polytetrafluoroethylene injectable. 878.4520 Section 878.4520 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4520...

  6. 21 CFR 878.4520 - Polytetrafluoroethylene injectable.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Polytetrafluoroethylene injectable. 878.4520 Section 878.4520 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4520...

  7. 21 CFR 878.4520 - Polytetrafluoroethylene injectable.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Polytetrafluoroethylene injectable. 878.4520 Section 878.4520 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4520...

  8. A computer simulation of the plasma leakage through a vascular prosthesis made of expanded polytetrafluoroethylene.

    PubMed

    Tabata, R; Kobayashi, T; Mori, A; Matsuno, S; Watarida, S; Onoe, M; Sugita, T; Shiraisi, S; Nojima, T

    1993-04-01

    We explored the blood-retaining mechanism of a vascular prosthesis made of expanded polytetrafluoroethylene through analysis of its structure and physicochemical properties. Plasma leakage through this vascular prosthesis was simulated by computer to explore its etiology. These examinations disclosed that leakage is dependent upon the inner pressure and the density of fibers. In other words, the study revealed that the mean distance between fibers constituting the wall of the expanded polytetrafluoroethylene vascular prosthesis is increased by tension (that is, inner pressure), resulting in an increased probability of leakage. It was additionally found that a thin membrane is formed on the polytetrafluoroethylene surface if blood in contact with the surface is dried. This membrane was found to reduce the water-repelling property of polytetrafluoroethylene and to make it impossible to preserve the inter-fiber liquid surface, thus causing leakage through the expanded polytetrafluoroethylene vascular prosthesis.

  9. Mitral Valve Repair Using ePTFE Sutures for Ruptured Mitral Chordae Tendineae: A Computational Simulation Study

    PubMed Central

    Rim, Yonghoon; Laing, Susan T.; McPherson, David D.; Kim, Hyunggun

    2013-01-01

    Mitral valve repair using expanded polytetrafluoroethylene (ePTFE) sutures is an established and preferred interventional method to resolve the complex pathophysiologic problems associated with chordal rupture. We developed a novel computational evaluation protocol to determine the effect of the artificial sutures on restoring mitral valve function following valve repair. A virtual mitral valve was created using three-dimensional echocardiographic data in a patient with ruptured mitral chordae tendineae. Virtual repairs were designed by adding artificial sutures between the papillary muscles and the posterior leaflet where the native chordae were ruptured. Dynamic finite element simulations were performed to evaluate pre- and post-repair mitral valve function. Abnormal posterior leaflet prolapse and mitral regurgitation was clearly demonstrated in the mitral valve with ruptured chordae. Following virtual repair to reconstruct ruptured chordae, the severity of the posterior leaflet prolapse decreased and stress concentration was markedly reduced both in the leaflet tissue and the intact native chordae. Complete leaflet coaptation was restored when four or six sutures were utilized. Computational simulations provided quantitative information of functional improvement following mitral valve repair. This novel simulation strategy may provide a powerful tool for evaluation and prediction of interventional treatment for ruptured mitral chordae tendineae. PMID:24072489

  10. 76 FR 42114 - Granular Polytetrafluoroethylene Resin From Italy: Continuation of Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... (``PTFE resin'') from Italy would likely lead to a continuation or recurrence of dumping and material... initiation of the third sunset review of the antidumping duty order on PTFE resin from Italy, pursuant to...

  11. Neointimal hyperplasia on a cell-seeded polytetrafluoroethylene graft is promoted by transfer of tissue plasminogen activator gene and inhibited by transfer of nitric oxide synthase gene.

    PubMed

    Yu, Hong; Dai, Wangde; Yang, Zhe; Romaguera, Rita L; Kirkman, Paul; Rowe, Vincent L

    2005-01-01

    The objective of this study was to examine the effect of tissue plasminogen activator (tPA) and endothelial nitric oxide synthase (eNOS) on thrombosis and neointimal hyperplasia on a polytetrafluoroethylene (PTFE) graft seeded with smooth muscle cells (SMCs). SMCs retrovirally transduced with tPA and eNOS genes were seeded on PTFE grafts and then implanted into the infrarenal rabbit aorta. Thrombosis and neointimal hyperplasia on the grafts were examined after 30 and 100 days of implantation. At 30 days of implantation, thrombus was observed on the luminal surface of both unseeded and SMC seeded control grafts, whereas grafts seeded with SMCs secreting tPA were nearly free of thrombus. At 100 days, the neointima on grafts seeded with tPA transduced SMCs was significantly thicker (925 +/- 150 microm, n = 5) than neointima on the other grafts (range, 132 to 374 microm; P < .001). Neointima thickness on grafts seeded with eNOS transduced SMCs (154 +/- 27 microm) was similar to that of unseeded grafts (132 +/- 16 microm, P > .05); both were thinner than those on grafts seeded with SMCs transduced with only lacZ gene (287 +/- 35 microm). The ratio of seeded cells in the neointima was significantly higher on SMC/tPA grafts (46% +/- 8%) than SMC/NOS grafts (21% +/- 6%, P < .05), indicating tPA transduced cells proliferated more than eNOS transduced cells. Engineered tPA expression in seeded SMCs causes significantly more neointimal hyperplasia, despite the favorable inhibition of luminal thrombus. eNOS expression in the seeded cells inhibits neointimal hyperplasia.

  12. A new method for the adjustment of neochordal length: the adjustable slip knot technique.

    PubMed

    Yano, Mitsuhiro; Sakaguchi, Syuuhei; Furukawa, Kohji; Nakamura, Eisaku

    2015-08-01

    The use of expanded polytetrafluoroethylene (ePTFE) sutures for the correction of mitral valve prolapse has become a standardized procedure. Adjustment of neochordal length is crucial to the efficacy of this technique. Various methods have been described for this purpose; however, the fine adjustment of neochordal length is technically challenging. We describe a simple and effective technique for the implantation of neochordae, which we have termed the 'adjustable slip knot technique'. The first step of this technique is reinforcement of the papillary muscle by a Teflon pledget with or without polytetrafluoroethylene (CV-4) loops. The second step is the formation of a neochordal loop by introducing an ePTFE suture between the affected mitral leaflet and the papillary muscle or ePTFE loops. The third step is the adjustment of the length of neochordae. The formation of a slip knot in one arm of the ePTFE suture is the pivot of this technique. The neochordal loop can be constricted by the application of tension to one arm of the suture. We applied this technique in 5 patients with satisfactory results. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  13. Performance of PTFE-lined composite journal bearings

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.; Williams, F. J.

    1982-01-01

    Plain cylindrical journal bearings consisting of aramid fiber reinforced epoxy outer shells and glass fiber reinforced PTFE lubricating liners were evaluated. All materials in these bearings are electrically nonconductive; thus eliminating the problem of galvanic corrosion sometimes encountered with metal bearings installed in dissimilar metal mountings. Friction and wear characteristics were determined for loads, temperatures, and oscillating conditions that are typical of current airframe bearing applications. Friction and wear characteristics were found to be compatible with most airframe bearing requirements from -23 C to 121 C. Contamination with MIL H-5606 hydraulic fluid increased wear of the PTFE liners at 121 C, but did not affect the structural integrity of the aramid/epoxy composite.

  14. The atomic nature of polymer-metal interactions in adhesion, friction and wear

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Brainard, W. A.

    1973-01-01

    Adhesion experiments with polytetra-fluoroethylene (PTFE) and polyimide contacting tungsten indicate that the polymers bond chemically to the clean metal surface. Polymer chain fragments which transfer to the surface of tungsten in field ion microscopy adhesion studies are highly oriented. Auger emission spectroscopy of PTFE transfer films to various metal surfaces indicates that the PTFE is bonded to the metal surface via the carbon atom. With PTFE in sliding contact with different orientations of aluminum, metal orientation is found to influence surfaces in sliding. The lowest friction and least amount of surface damage is detected on the highest atomic density (111) plane. The friction process itself can initiate polymer film formation from simple organic molecules.

  15. Pulse electrodeposition of self-lubricating Ni-W/PTFE nanocomposite coatings on mild steel surface

    NASA Astrophysics Data System (ADS)

    Sangeetha, S.; Kalaignan, G. Paruthimal; Anthuvan, J. Tennis

    2015-12-01

    Ni-W/PTFE nanocomposite coatings with various contents of PTFE (polytetafluoroethylene) particles were prepared by pulse current (PC) electrodeposition from the Ni-W plating bath containing self lubricant PTFE particles to be co-deposited. Co-deposited PTFE particulates were uniformly distributed in the Ni-W alloy matrix. The coatings were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDAX), X-ray Diffractometry (XRD) and Vicker's micro hardness tester. Tafel Polarization and electrochemical Impedance methods were used to evaluate the corrosion resistance behaviour of the nanocomposite coatings in 3.5% NaCl solution. It was found that, the Ni-W/PTFE nanocomposite coating has better corrosion resistance than the Ni-W alloy coating. Surface roughness and friction coefficient of the coated samples were assessed by Mitutoyo Surftest SJ-310 (ISO1997) and Scratch tester TR-101-M4 respectively. The contact angle (CA) of a water droplet on the surface of nanocomposite coating was measured by Optical Contact Goniometry (OCA 35). These results indicated that, the addition of PTFE in the Ni-W alloy matrix has resulted moderate microhardness, smooth surface, less friction coefficient, excellent water repellency and enhanced corrosion resistance of the nanocomposite coatings.

  16. Preparation and properties of polytetrafluoroethylene impregnated with rhenium oxides

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; Easter, R. W.

    1973-01-01

    The results of tests carried out to determine the properties of polytetrafluorethylene (PTFE) impregnated with rhenium oxides are presented. The tests included measurement of physical properties of the impregnated material and investigation of the effects of preparation process variables. Based on the latter tests a mechanism to describe the permeation process is postulated which identifies the rate controlling step to be diffusion of ReF6 molecules into the solid during the initial ReF6 soak. Physical property tests indicated that the electronic conductance is increased by many orders of magnitude while the desirable properties of the PTFE remain virtually unchanged.

  17. Polytetrafluoroethylene-jacketed stirrer modified with graphene oxide and polydopamine for the efficient extraction of polycyclic aromatic hydrocarbons.

    PubMed

    Zhang, Zinxin; Mwadini, Mwadini Ahmada; Chen, Zilin

    2016-10-01

    Steel stirrers jacketed with polytetrafluoroethylene can be regarded as an ideal substrate for stirrer bar sorptive extraction. However, it is still a great challenge to immobilize graphene onto a polytetrafluoroethylene stirrer due to the high chemical resistance of the surface of a polytetrafluoroethylene stirrer. We describe here a method to modify the surface of polytetrafluoroethylene stirrers with graphene. In this work, graphene was used as the sorbent due to its excellent adsorption capability for aromatic compounds, such as polycyclic aromatic compounds. Graphene was successfully immobilized onto polytetrafluoroethylene-stirrer by a bio-inspired polydopamine functionalization method. The graphene-modified polytetrafluoroethylene-stirrer shows good stability and tolerance to stirring, ultrasonication, strong acidic and basic solutions, and to organic solvents. The multilayer coating was characterized by scanning electronic microscopy and Fourier transform infrared spectroscopy. After the optimization of some experimental conditions, the graphene-modified polytetrafluoroethylene stirrer was used for the stirrer bar sorptive extraction of polycyclic aromatic hydrocarbons, in which the binding between the polycyclic aromatic hydrocarbons and the graphene layer was mainly based on π-π stacking and hydrophobic interactions. The graphene-modified polytetrafluoroethylene-stirrer-based stirrer bar sorptive extraction and high-performance liquid chromatography method was developed for the determination of polycyclic aromatic hydrocarbons with great extraction efficiency, with enrichment factors from 18 to 62. The method has low limits of detection of 1-5 pg/mL, wide linear range (5-100 and 10-200 pg/mL), good linearity (R ≥ 0.9957) and good reproducibility (RSD ≤ 6.45%). The proposed method has been applied to determine polycyclic aromatic hydrocarbons in real dust samples. Good recoveries were obtained, ranging from 88.53 to 109.43%. © 2016 WILEY-VCH Verlag

  18. XPS analysis of the effect of fillers on PTFE transfer film development in sliding contacts

    NASA Technical Reports Server (NTRS)

    Blanchet, T. A.; Kennedy, F. E.; Jayne, D. T.

    1993-01-01

    The development of transfer films atop steel counterfaces in contact with unfilled and bronze-filled PTFE has been studied using X-ray photoelectron spectroscopy. The sliding apparatus was contained within the vacuum of the analytical system, so the effects of the native oxide, hydrocarbon, and adsorbed gaseous surface layers of the steel upon the PTFE transfer behavior could be studied in situ. For both the filled and the unfilled PTFE, cleaner surfaces promoted greater amounts of transfer. Metal fluorides, which formed at the transfer film/counterface interface, were found solely in cases where the native oxide had been removed to expose the metallic surface prior to sliding. These fluorides also were found at clean metal/PTFE interfaces formed in the absence of frictional contact. A fraction of these fluorides resulted from irradiation damage inherent in XPS analysis. PTFE transfer films were found to build up with repeated sliding passes, by a process in which strands of transfer filled in the remaining counterface area. Under these reported test conditions, the transfer process is not expected to continue atop previously deposited transfer films. The bronze-filled composite generated greater amounts of transfer than the unfilled PTFE. The results are discussed relative to the observed increase in wear resistance imparted to PTFE by a broad range of inorganic fillers.

  19. Synthesis of superhydrophobic PTFE-like thin films by self-nanostructuration in a hybrid plasma process

    NASA Astrophysics Data System (ADS)

    Henry, Frédéric; Renaux, Fabian; Coppée, Séverine; Lazzaroni, Roberto; Vandencasteele, Nicolas; Reniers, François; Snyders, Rony

    2012-12-01

    Superhydrophobic poly(tetrafluoro-ethylene) (PTFE) like thin films were grown on silicon wafers using a plasma-based hybrid process consisting on sputtering a carbon target in an Ar/CF4 atmosphere. The influence of the bias voltage applied to the substrate (VBias) as well as of the gas mixture composition (%CF4) on the chemical composition, the wettability and the morphology of the deposited thin films were evaluated. The chemical composition measured by X-ray Photoelectron Spectroscopy (XPS) has revealed that the F/C atomic ratio is always lower than for conventional PTFE (F/C = 2) and that it decreases when VBias increases (from F/C = 1 for VBias = - 100 V to F/C = 0.75 for VBias = - 200 V). This behavior is associated with the preferential sputtering of the fluorine atoms during the plasma-assisted growth of the films. Consecutively, a self-nanostructuration enhanced when increasing VBias is observed. As a consequence, the water contact angle (WCA) measurements range from 70° up to 150° depending on (i) the fluorine concentration and (ii) on the magnitude of the nanostructuration. In addition, for the films presenting the highest WCAs, a small hysteresis between the advancing and receding WCAs is observed (< 10°) allowing these films to fulfill completely the requirements of superhydrophobicity. The nanostructuration is probably due to the chemical etching by fluorine atoms of the fluorinated group. In order to get more understanding on the wettability mechanisms of these surfaces, the topography of the films has been evaluated by atomic force microscopy (AFM). The data have revealed, for all films, a dense and regular structure composed by conic objects (AvH is their average height and AvD is the average distance between them) for which the dimensions increase with VBias. A correlation between AvH/AvD, defined as the "morphological ratio", with the WCA was established. Theoretical evaluations of the WCA using the Wenzel and Cassie equations with, as inputs

  20. Ion beam sputter etching and deposition of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.

    1978-01-01

    Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanism and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.

  1. Preparation and characterization of PTFE coating in new polymer quartz piezoelectric crystal sensor for testing liquor products

    NASA Astrophysics Data System (ADS)

    Gu, Yu; Li, Qiang

    2015-07-01

    A new method was developed based on the electron beam vacuum dispersion (EBVD) technology to prepare the PTFE polymer coating of the new polymer quartz piezoelectric crystal sensor for testing liquor products. The new method was applied in the new EBVD equipment which we designed. A real-time system monitoring the polymer coating’s thickness was designed for the new EBVD equipment according to the quartz crystal microbalance (QCM) principle, playing an important role in preparing stable and uniform PTFE polymer coatings of the same thickness. 30 pieces of PTFE polymer coatings on the surface of the quartz crystal basis were prepared with the PTFE polymer ultrafine powder (purity ≥ 99.99%) as the starting material. We obtained 30 pieces of new PTFE polymer sensors. By using scanning electron microscopy (SEM), the structure of the PTFE polymer coating’s column clusters was studied. One sample from the 30 pieces of new PTFE polymer sensors was analysed by SEM in four scales, i.e., 400×, 1000×, 10000×, and 25000×. It was shown that under the condition of high bias voltage and low bias current, uniformly PTFE polymer coating could be achieved, which indicates that the new EBVD equipment is suitable for mass production of stable and uniform polymer coating. Project supported by the National High Technology Research and Development Program of China (Grant No. 2013AA030901).

  2. Protein separation through preliminary experiments concerning pH and salt concentration by tube radial distribution chromatography based on phase separation multiphase flow using a polytetrafluoroethylene capillary tube.

    PubMed

    Kan, Hyo; Tsukagoshi, Kazuhiko

    2017-07-01

    Protein mixtures were separated using tube radial distribution chromatography (TRDC) in a polytetrafluoroethylene (PTFE) capillary (internal diameter=100µm) separation tube. Separation by TRDC is based on the annular flow in phase separation multiphase flow and features an open-tube capillary without the use of specific packing agents or application of high voltages. Preliminary experiments were conducted to examine the effects of pH and salt concentration on the phase diagram of the ternary mixed solvent solution of water-acetonitrile-ethyl acetate (8:2:1 volume ratio) and on the TRDC system using the ternary mixed solvent solution. A model protein mixture containing peroxidase, lysozyme, and bovine serum albumin was analyzed via TRDC with the ternary mixed solvent solution at various pH values, i.e., buffer-acetonitrile-ethyl acetate (8:2:1 volume ratio). Protein was separated on the chromatograms by the TRDC system, where the elution order was determined by the relation between the isoelectric points of protein and the pH values of the solvent solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Wetting of crystalline polymer surfaces: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Fan, Cun Feng; Caǧin, Tahir

    1995-11-01

    Molecular dynamics has been used to study the wetting of model polymer surfaces, the crystal surfaces of polyethylene (PE), poly(tetrafluoroethylene) (PTFE), and poly(ethylene terephthalate) (PET) by water and methylene iodide. In the simulation a liquid droplet is placed on a model surface and constant temperature, rigid body molecular dynamics is carried out while the model surface is kept fixed. A generally defined microscopic contact angle between a liquid droplet and a solid surface is quantitatively calculated from the volume of the droplet and the interfacial area between the droplet and the surface. The simulation results agree with the trend in experimental data for both water and methylene iodide. The shape of the droplets on the surface is analyzed and no obvious anisotropy of the droplets is seen in the surface plane, even though the crystal surfaces are highly oriented. The surface free energies of the model polymer surfaces are estimated from their contact angles with the two different liquid droplets.

  4. Effect of gamma radiation on dielectric and mechanical properties of modified fluoroplastic PTFE

    NASA Astrophysics Data System (ADS)

    Romanov, Boris; Kostromin, Valeriy; Bedenko, Sergey; Knyshev, Vladimir; Mukhnurov, Ilya; Matias, Rodrigo Roman

    2018-03-01

    The influence of gamma radiation on dielectric and mechanical characteristics of modified fluoroplast PTFE-4 MBK is considered in this paper. The material was exposed to Gamma-ray source GU-200 (Joint-stock company «Research Institute of Instruments», Lytkarino, Russia). The results of the research have shown that the relative permittivity and the tangent of the dielectric loss angle of PTFE-4 MBK samples at doses 4.105-1.106 Gy monotonically increase by 2.9 and 9.4%, respectively, compared to un-exposed material. The research of the mechanical properties of PTFE-4 MBK showed a maximum stress of up to 13.8 MPa and a maximum strain of 252% at doses of 8.104 Gy. It has been demonstrated that modified PTFE-4 MBK has good dielectric characteristics and withstanding high mechanical stress. We propose to use the results of the research for choosing cables and wiring location used in nuclear and space industry.

  5. Membrane Distillation of Meat Industry Effluent with Hydrophilic Polyurethane Coated Polytetrafluoroethylene Membranes

    PubMed Central

    Mostafa, M. G.; Zhu, Bo; Cran, Marlene; Dow, Noel; Milne, Nicholas; Desai, Dilip

    2017-01-01

    Meat rendering operations produce stick water waste which is rich in proteins, fats, and minerals. Membrane distillation (MD) may further recover water and valuable solids, but hydrophobic membranes are contaminated by the fats. Here, commercial hydrophobic polytetrafluorethylene (PTFE) membranes with a hydrophilic polyurethane surface layer (PU-PTFE) are used for the first time for direct contact MD (DCMD) on real poultry, fish, and bovine stick waters. Metal membrane microfiltration (MMF) was also used to capture fats prior to MD. Although the standard hydrophobic PTFE membranes failed rapidly, PU-PTFE membranes effectively processed all stick water samples to colourless permeate with sodium rejections >99%. Initial clean solution fluxes 5–6 L/m2/h declined to less than half during short 40% water recovery tests for all stick water samples. Fish stick water uniquely showed reduced fouling and up to 78% water recovery. Lost flux was easily restored by rinsing the membrane with clean water. MMF prior to MD removed 92% of fats, facilitating superior MD performance. Differences in fouling between stick waters were attributed to temperature polarisation from higher melt temperature fats and relative proportions to proteins. Hydrophilic coated MD membranes are applicable to stick water processing but further studies should consider membrane cleaning and longer-term stability. PMID:28961203

  6. Fractography can be used to analyze failure modes in polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Nerren, B. H.

    1969-01-01

    Fractographic principles used for analyzing failure in metals are applied to the analysis of the microstructure and fracture of polytetrafluoroethylene. This material is used as seals in cryogenic systems.

  7. Friction coefficient dependence on electrostatic tribocharging

    PubMed Central

    Burgo, Thiago A. L.; Silva, Cristiane A.; Balestrin, Lia B. S.; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers. PMID:23934227

  8. Teflon Examination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooraghi, A. A.; Seetho, I.; Smith, J.. A.

    2017-04-27

    In this document, we outline an experiment performed at LLNL to evaluate the radiation sensitivity of polytetrafluoroethylene (PTFE) and a PTFE isomer, fluorinated ethylene propylene (FEP). We demonstrate that PTFE, a material currently used for assessing MicroCT system stability, shows higher radiation-dependent change in x-ray attenuation than FEP. Specifically, for a dose of approximately 1.44 x 10 3 Gy, the linear attenuation coefficient (LAC) of PTFE changes by 0.8 ± 0.1 %. During the same irradiation period, the LAC for FEP changes by 0.02 ± 0.1 %, which is within the statistical uncertainty of the measurement. Due to its highermore » resistance to radiation damage, we recommend that LLNL and partner labs operating under the Department of Homeland Security’s Explosives Division (DHS EXD) transition to the use of FEP as a reference material in place of PTFE.« less

  9. Motion of single wandering diblock-macromolecules directed by a PTFE nano-fence: real time SFM observations.

    PubMed

    Gallyamov, Marat O; Qin, Shuhui; Matyjaszewski, Krzysztof; Khokhlov, Alexei; Möller, Martin

    2009-07-21

    Using SFM we have observed a peculiar twisting motion of diblock macromolecules pre-collapsed in ethanol vapour during their subsequent spreading in water vapour. The intrinsic asymmetry of the diblock macromolecules has been considered to be the reason for such twisting. Further, friction-deposited PTFE nano-stripes have been employed as nano-trails with the purpose of inducing lateral directed motion of the asymmetric diblock macromolecules under cyclic impact from the changing vapour surroundings. Indeed, some of the macromolecules have demonstrated a certain tendency to orient along the PTFE stripes, and some of the oriented ones have moved occasionally in a directed manner along the trail. However, it has been difficult to reliably record such directed motion at the single molecule level due to some mobility of the PTFE nano-trails themselves in the changing vapour environment. In vapours, the PTFE stripes have demonstrated a distinct tendency towards conjunction. This tendency has manifested itself in efficient expelling of groups of the mobile brush-like molecules from the areas between two PTFE stripes joining in a zip-fastener manner. This different kind of vapour-induced cooperative macromolecular motion has been reliably observed as being directed. The PTFE nano-frame experiences some deformation when constraining the spreading macromolecules. We have estimated the possible force causing such deformation of the PTFE fence. The force has been found to be a few pN as calculated by a partial contribution from every single molecule of the constrained group.

  10. Molecular level analyses of mechanical properties of PTFE sterilized by Co-60 γ-ray irradiation for clinical use

    NASA Astrophysics Data System (ADS)

    Furuta, Masakazu; Matsugaki, Aira; Nakano, Takayoshi; Hirata, Isao; Kato, Koichi; Oda, Takashi; Sato, Mamoru; Okazaki, Masayuki

    2017-10-01

    Recently, Co-60 gamma-ray irradiation has become markedly popular for the sterilization of biomedical materials, including expanded PTFE. However, its effect on the properties of PTFE has not been thoroughly examined. In this study, changes in the properties of PTFE before and after irradiation were analyzed physicochemically and discussed crystallographically. The tensile breaking strengths of PTFE decreased markedly on irradiation at 1 kGy, and were maintained at almost one fourth of the original value (44.3±2.5 N/mm2) ranging from 5 to 100 kGy. XPS analysis indicated that the atomic concentrations of carbon (C) and fluorine (F) of PTFE were not different among samples irradiated at various dosages. Raman spectra of PTFE showed a slight increase of the absorption peak intensity at 735 cm-1 in an irradiation dosage-dependent manner. X-ray diffraction showed that the crystal size of PTFE (56.7±1.0 nm) became smaller after radiation at 100 kGy (48.5±0.6 nm). These results are consistent with the above results of Raman analysis. It is suggested that the observed changes in the mechanical properties of PTFE may be due to nano-scale C-C bond scission by gamma ray irradiation, and not due to the formation of micro-scale cracks.

  11. Weathering of PGE sulfides and Pt-Fe alloys in the Freetown Layered Complex, Sierra Leone

    NASA Astrophysics Data System (ADS)

    Bowles, John F. W.; Suárez, Saioa; Prichard, Hazel M.; Fisher, Peter C.

    2017-12-01

    Fresh and weathered rocks and saprolite from Horizon B of the Freetown Layered Complex contain platinum-group minerals (PGM). The PGM in the fresh rocks are 1-7 μm across, including cooperite (PtS), isoferroplatinum (Pt3Fe), minor tetraferroplatinum (PtFe), tulameenite (Pt2FeCu), Os-bearing laurite (RuS2), and other base metal-sulfide (BMS)-bearing PGM. The weathered rocks contain fewer of those PGM but a high proportion of disordered Cu-(±Pd)-bearing Pt-Fe alloys. The saprolite hosts scarce, smaller (1-3 μm) ordered PtFe and disordered PtFe3. The Pt-Fe alloys became increasingly Fe rich as weathering proceeded. Pt-Fe oxides appeared during weathering. Copper sulfides associated with the primary PGM and cooperite (with <3% Pd) were destroyed to provide the minor Cu and Pd found in some of the disordered Pt-Fe alloys. Platinum- and Pd-bearing saprolites have retained the original rock fabric and, to a depth of about 2 m, surround residual rocks that show progressive weathering (corestones). Ground water passing through the saprolite has transported Pt and Pd (and probably Au) in solution down slope into saprolite over unmineralized rocks. Transport is marked by changes in the Pt/Pd ratio indicating that the metals have moved independently. Palladium is present in marginally higher concentrations in the deeper saprolite than in the corestones suggesting some retention of Pd in the deeper saprolite. Platinum and Pd are less concentrated in the upper saprolite than the deeper saprolite indicating surface leaching. Alteration occurred over a long period in an organic and microbial rich environment that may have contributed to the leaching and transport of PGE.

  12. High-tensile strength sticking induced by ArF excimer laser surface treatment of poly(tetrafluoroethylene)

    NASA Astrophysics Data System (ADS)

    Hopp, Bela; Revesz, K.; Bor, Zsolt

    1998-07-01

    A successful enhancement of sticking of PTFE is demonstrated using ArF excimer laser irradiation in the presence of novel photoreagents. The applied laser fluence was very low at the sample - photoreagent liquid interface compared to the energy density applied in earlier investigations. After the treatment the PTFE films were glued by epoxy resin. It was found that at low doses the tensile strength of the sticking increased rapidly with the UV pulse number and the reached a saturation value, which was 6.66 MPa for triethylamine, 5.56 MPa in the case of 1,2-diaminoethane and 4.64 MPa for triethylene-tetramine. These are around two hundred times higher than the value of the untreated surface. It was found that this procedure makes the metallization and painting of PTFE surface also possible. A photoinduced electron transfer mechanism was suggested to describe the photoreaction, which is responsible for the increase of adhesion features on PTFE surface.

  13. Passive, Low Cost Neutron Detectors for Neutron Diagnostics at the National Ignition Facility

    DTIC Science & Technology

    2013-03-01

    Facility PTFE Polytetrafluoroethylene TLD Thermoluminescent Dosimeter α Conversion Coefficient (Conversion...because they required a large investment in automated track counting equipment. Thermoluminescent dosimeters ( TLDs ) remained as a viable option. They...necessary to predict radiation damage to measurement electronics . Due to programmatic and facility limitations, traditional neutron measurement

  14. Process Development for the Fabrication of Spheroidal Microdevice Packages Utilizing MEMS Technologies

    DTIC Science & Technology

    2014-03-27

    in a thin conductive layer, the wafer surface can be made into the cathode while using a stainless steel plate as an anode. Bath temperature, voltage...beakers with polytetrafluoroethylene (PTFE) tools while under a fume hood, as HF is known to attack glass and polystyrene [62]. Additionally

  15. Efficient degradation of rhodamine B using modified graphite felt gas diffusion electrode by electro-Fenton process.

    PubMed

    Tian, Jiangnan; Olajuyin, Ayobami Matthew; Mu, Tingzhen; Yang, Maohua; Xing, Jianmin

    2016-06-01

    The electro-Fenton (EF) process treatment of 0.1-M (rhodamine B) RhB solution was studied with different graphite cathode materials, and graphite felt (GF) was selected as a promising material in further investigation. Then, the degradation performances of gas diffusion electrode (GDE) and graphite felt (GF) were compared, and GDE was confirmed to be more efficient in RhB removal. The operational parameters such as Fe(2+) dosage and current density were optimized, and comparison among different modified methods-polytetrafluoroethylene-carbon black (PTFE-CB), polytetrafluoroethylene-carbon nanotube (PTFE-CNT), electrodeposition-CB, and electrodeposition-CNT-showed 98.49 % RhB removal by PTFE-CB-modified cathode in 0.05 M Na2SO4 at a current density of 50 A/m(2) and an air flow rate of 1 L/min after 20 min. Meanwhile, after cathode modified by PTFE-CB, the mineralization efficiency and mineralization current efficiency performed absolutely better than the pristine one. Cyclic voltammograms, SEM images, contact angles, and BET surface area were carried out to demonstrate stronger current responses and higher hydrophilicity of GF after modified. The value of biochemical oxygen demand/chemical oxygen demand (BOD5/COD) increased from 0.049 to 0.331 after 90-min treatment, suggesting the solution was biodegradable, and the modified cathode was confirmed to be stable after ten circle runs. Finally, a proposed degradation pathway of RhB was put forward.

  16. Polymer/metal nanocomposite coating with antimicrobial activity against hospital isolated pathogen

    NASA Astrophysics Data System (ADS)

    Carvalho, D.; Sousa, T.; Morais, P. V.; Piedade, A. P.

    2016-08-01

    Nosocomial infections are considered an important problem in healthcare systems and are responsible for a high percentage of morbidity. Among the pathogenic microorganisms responsible for this situation Pseudomonas aeruginosa (P. aeruginosa) is consider one of the most hazardous also due to the fact that antibiotic resistant and multi-resistant organisms begin to emerge as the prevalent strains. In this work the surface of poly(tetrafluoroethylene) (PTFE) was modified by the deposition of PTFE thin films with and without silver. The hydrophobic characteristics of PTFE were attenuated by the co-deposition of PTFE and poly(amide) (PA) with and without silver. The results show that this hospital isolated bacteria is able to degrade PTFE as bulk material as well as some of the developed thin films. However, the combination of both polymer and metal induced the formation of a nanocomposite structure with antimicrobial properties against P. aeruginosa, assessed in three different biotic tests.

  17. Can Diastat Grafts Meet the Challenges of Daily Punctures?

    PubMed

    Chandran, Prem K G; Messer, Diane; Sidwell, Richard A; Stubbs, David H; Nish, Andrew D

    1997-01-01

    To determine whether Diastat grafts can meet the challenges of daily needle punctures required for home hemodialysis (HD), a retrospective analysis was performed on the experience with 47 grafts placed in 44 patients receiving HD three times a week. The control group consisted of 17 patients who received 17 stretch polytetrafluoroethylene (s-PTFE) grafts. Apart from their ability to better contain bleeding after needle withdrawal, in all measures of longevity the Diastat grafts were outperformed by the s-PTFE grafts. No more direct data exist to address the original challenge.

  18. Granulated lead oxides with teflon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nilsson, O.

    An improvement in the production of tube electrodes for lead storage batteries comprising mixing a small amount (0.1 to 3 weight percent) of polytetrafluoroethylene (Ptfe) with lead powder, the mixture is heated and shear stresses are applied thereto sufficient to convert substantially all of the ptfe in the mixture to fibrous form and to form a non-powdery dough. The dough is then granulated and the doughy granules about 100 mu to 500 mu in major dimension are used for filling tube elctrodes a lead-acid storage battery.

  19. Carbon protrusions on PTFE surface prepared by ion irradiation and chemical defluorination

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Iwaki, M.

    2006-01-01

    A surface of PTFE was covered with small protrusions by ion-beam irradiation. In this study, we converted PTFE protrusions into carbon protrusions by a defluorination (carbonization) process using sodium vapor. The morphology, composition and structure were analyzed by SEM-EDX, Raman spectroscopy and TEM. The irradiated PTFE sheets were packed in evacuated glass tubes with a sodium block and kept at 473 K for 2-48 h. The samples were then rinsed in HCl and distilled water to remove NaF precipitates. The EDX measurement showed that the NaF precipitates were completely removed by washing, and the percentage of carbon atoms was controlled from 60% to 99% by the treatment. Raman spectra showed that graphite structures grow during the defluorination process. TEM micrographs showed that the protrusions have a bubble structure and are covered with a thin wall. The carbonized protrusions were conductive and grew perpendicular to the substrate.

  20. Composites Based on Polytetrafluoroethylene and Detonation Nanodiamonds: Filler-Matrix Chemical Interaction and Its Effect on a Composite's Properties

    NASA Astrophysics Data System (ADS)

    Koshcheev, A. P.; Perov, A. A.; Gorokhov, P. V.; Zaripov, N. V.; Tereshenkov, A. V.; Khatipov, S. A.

    2018-06-01

    Specific properties of PTFE composites filled with ultradisperse detonation diamonds (UDDs) with different surface chemistries are studied. It is found for the first time that filler in the form of UDDs affects not only the rate of PTFE thermal decomposition in vacuum pyrolysis, but also the chemical composition of the products of degradation. The wear resistance of UDD/PTFE composites is shown to depend strongly on the UDD surface chemistry. The presence of UDDs in a PTFE composite is found to result in perfluorocarbon telomeres, released as a readily condensable fraction upon composite pyrolysis. The chemical interaction between PTFE and UDDs, characterized by an increase in the rate of gas evolution and a change in the desorbed gas's composition, is found to occur at temperature as low as 380°C. It is shown that the intensity of this interaction depends on the concentration of oxygen-containing surface groups, the efficiency of UDDs in terms of the composite's wear resistance being reduced due to the presence of these groups. Based on the experimental data, a conclusion is reached about the chemical interaction between UDDs and a PTFE matrix, its dependence on the nanodiamond surface chemistry, and its effect on a composite's tribology.

  1. 21 CFR 878.5035 - Nonabsorbable expanded polytetrafluoroethylene surgical suture.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nonabsorbable expanded polytetrafluoroethylene surgical suture. 878.5035 Section 878.5035 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...; Guidance for Industry and FDA.” See § 878.1(e) for the availability of this guidance document. [65 FR 20735...

  2. Histologic and biomechanical evaluation of a novel macroporous polytetrafluoroethylene knit mesh compared to lightweight and heavyweight polypropylene mesh in a porcine model of ventral incisional hernia repair

    PubMed Central

    Melman, L.; Jenkins, E. D.; Hamilton, N. A.; Bender, L. C.; Brodt, M. D.; Deeken, C. R.; Greco, S. C.; Frisella, M. M.

    2013-01-01

    Purpose To evaluate the biocompatibility of heavyweight polypropylene (HWPP), lightweight polypropylene (LWPP), and monofilament knit polytetrafluoroethylene (mkPTFE) mesh by comparing biomechanics and histologic response at 1, 3, and 5 months in a porcine model of incisional hernia repair. Methods Bilateral full-thickness abdominal wall defects measuring 4 cm in length were created in 27 Yucatan minipigs. Twenty-one days after hernia creation, animals underwent bilateral preperitoneal ventral hernia repair with 8 × 10 cm pieces of mesh. Repairs were randomized to Bard®Mesh (HWPP, Bard/Davol, http://www.davol.com), ULTRAPRO® (LWPP, Ethicon, http://www.ethicon.com), and GORE®INFINIT Mesh (mkPTFE, Gore & Associates, http://www.gore.com). Nine animals were sacrificed at each timepoint (1, 3, and 5 months). At harvest, a 3 × 4 cm sample of mesh and incorporated tissue was taken from the center of the implant site and subjected to uniaxial tensile testing at a rate of 0.42 mm/s. The maximum force (N) and tensile strength (N/cm) were measured with a tensiometer, and stiffness (N/mm) was calculated from the slope of the force-versus-displacement curve. Adjacent sections of tissue were stained with hematoxylin and eosin (H&E) and analyzed for inflammation, fibrosis, and tissue ingrowth. Data are reported as mean ± SEM. Statistical significance (P < 0.05) was determined using a two-way ANOVA and Bonferroni post-test. Results No significant difference in maximum force was detected between meshes at any of the time points (P > 0.05 for all comparisons). However, for each mesh type, the maximum strength at 5 months was significantly lower than that at 1 month (P < 0.05). No significant difference in stiffness was detected between the mesh types or between timepoints (P > 0.05 for all comparisons). No significant differences with regard to inflammation, fibrosis, or tissue ingrowth were detected between mesh types at any time point (P > 0.09 for all comparisons). However

  3. Histologic and biomechanical evaluation of a novel macroporous polytetrafluoroethylene knit mesh compared to lightweight and heavyweight polypropylene mesh in a porcine model of ventral incisional hernia repair.

    PubMed

    Melman, L; Jenkins, E D; Hamilton, N A; Bender, L C; Brodt, M D; Deeken, C R; Greco, S C; Frisella, M M; Matthews, B D

    2011-08-01

    To evaluate the biocompatibility of heavyweight polypropylene (HWPP), lightweight polypropylene (LWPP), and monofilament knit polytetrafluoroethylene (mkPTFE) mesh by comparing biomechanics and histologic response at 1, 3, and 5 months in a porcine model of incisional hernia repair. Bilateral full-thickness abdominal wall defects measuring 4 cm in length were created in 27 Yucatan minipigs. Twenty-one days after hernia creation, animals underwent bilateral preperitoneal ventral hernia repair with 8 × 10 cm pieces of mesh. Repairs were randomized to Bard(®)Mesh (HWPP, Bard/Davol, http://www.davol.com), ULTRAPRO(®) (LWPP, Ethicon, http://www.ethicon.com), and GORE(®)INFINIT Mesh (mkPTFE, Gore & Associates, http://www.gore.com). Nine animals were sacrificed at each timepoint (1, 3, and 5 months). At harvest, a 3 × 4 cm sample of mesh and incorporated tissue was taken from the center of the implant site and subjected to uniaxial tensile testing at a rate of 0.42 mm/s. The maximum force (N) and tensile strength (N/cm) were measured with a tensiometer, and stiffness (N/mm) was calculated from the slope of the force-versus-displacement curve. Adjacent sections of tissue were stained with hematoxylin and eosin (H&E) and analyzed for inflammation, fibrosis, and tissue ingrowth. Data are reported as mean ± SEM. Statistical significance (P < 0.05) was determined using a two-way ANOVA and Bonferroni post-test. No significant difference in maximum force was detected between meshes at any of the time points (P > 0.05 for all comparisons). However, for each mesh type, the maximum strength at 5 months was significantly lower than that at 1 month (P < 0.05). No significant difference in stiffness was detected between the mesh types or between timepoints (P > 0.05 for all comparisons). No significant differences with regard to inflammation, fibrosis, or tissue ingrowth were detected between mesh types at any time point (P > 0.09 for all comparisons). However, over time

  4. Experimental study of physical properties of artificial materials for the development of the tissue-engineered valvular heart apparatus in comparison with biological analogs

    NASA Astrophysics Data System (ADS)

    Chiryatyeva, Aleksandra; Trebushat, Dmitry; Prokhorokhin, Aleksei; Khakhalkin, Vladimir; Andreev, Mark; Novokhreschenov, Aleksei; Kretov, Evgeny

    2017-12-01

    Cardiovascular diseases are the leading cause of death worldwide. Valvular heart disease often requires valve repair or replacement. Today, surgery uses xenograft—porcine or bovine pericardium. However, bioprosthetic valves do not ensure sufficient durability. We investigated 0.6% glutaraldehyde-treated porcine pericardium to define its properties. Using a tensile test stand, we studied characteristics of the polymeric material—expanded polytetrafluoroethylene (ePTFE)—and compared it to xenopericardium. The artificial material provides a better durability; it has higher elastic modulus and ultimate tensile strength. However, ePTFE samples demonstrated direction anisotropy due to extrusion features. It requires the enhancement of quality of the ePTFE sheet or investigation of other polymeric materials to find the adequate replacement for bioprosthetic heart valves.

  5. Fluorocarbon Contamination from the Drill on the Mars Science Laboratory: Potential Science Impact on Detecting Martian Organics by Sample Analysis at Mars (SAM)

    NASA Technical Reports Server (NTRS)

    Eigenbrode, J. L.; McAdam, A.; Franz, H.; Freissinet, C.; Bower, H.; Floyd, M.; Conrad, P.; Mahaffy, P.; Feldman, J.; Hurowitz, J.; hide

    2013-01-01

    Polytetrafluoroethylene (PTFE or trade name: Teflon by Dupont Co.) has been detected in rocks drilled during terrestrial testing of the Mars Science Laboratory (MSL) drilling hardware. The PTFE in sediments is a wear product of the seals used in the Drill Bit Assemblies (DBAs). It is expected that the drill assembly on the MSL flight model will also shed Teflon particles into drilled samples. One of the primary goals of the Sample Analysis at Mars (SAM) instrument suite on MSL is to test for the presence of martian organics in samples. Complications introduced by the potential presence of PTFE in drilled samples to the SAM evolved gas analysis (EGA or pyrolysisquadrupole mass spectrometry, pyr-QMS) and pyrolysis- gas chromatography mass spectrometry (Pyr- GCMS) experiments was investigated.

  6. Use of high L.E.T. radiation to improve adhesion of metals to polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Pepper, S. V.

    1982-01-01

    MgK alpha X-rays (1254 eV) and 2 keV electrons irradiate the surface of polytetrafluoro ethylene (PTFE). The damage is confined to a few tenths of a micron below the surface, and the doses exceed 10 to the eight power rad. X-ray Photoelectron Spectroscopy (XPS) of the irradiated surfaces and mass spectroscopy of the gaseous products of irradiation indicate that the damaged layer is crosslinked or branched PTFE. After either type of irradiation, the surface has enhanced affinity for metals and a lower contact angle with hexadecane. Tape pull tests show that evaporated Ni and Au films adhere better to the irradiated surface. XPS shows the Ni interacts chemically with PTFE forming NiF2 and possibly NiC. However, the gold adhesion and contact angle results indicate that the interaction is, at least in part, chemically nonspecific. Decreased contact angles on FEP Teflon crystallized against gold were attributed to either the presence of a polar oxygen layer or increased physical forces due to greater density. In the case of irradiated PTFE, no oxygen on the surface was observed. The crosslinked structure might, however, have a greater density, thus accounting for the observed increase in adhesion and wettability.

  7. Deposition of PTFE thin films by ion beam sputtering and a study of the ion bombardment effect

    NASA Astrophysics Data System (ADS)

    He, J. L.; Li, W. Z.; Wang, L. D.; Wang, J.; Li, H. D.

    1998-02-01

    Ion beam sputtering technique was employed to prepare thin films of Polytetrafluroethylene (PTFE). Simultaneous ion beam bombardment during film growth was also conducted in order to study the bombardment effects. Infrared absorption (IR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis was used to evaluate the material's integrity. It was found that PTFE thin films could be grown at room temperature by direct sputtering of a PTFE target. The film's composition and structure were shown to be dependent on the sputtering energy. Films deposited by single sputtering at higher energy (˜1500 eV) were structurally quite similar to the original PTFE material. Simultaneous ion beam bombarding during film growth caused defluorination and structural changes. Mechanism for sputtering deposition of such a polymeric material is also discussed.

  8. VUV light reflectivity measurements from PTFE in Liquid Xenon for the LZ Dark Matter experiment

    NASA Astrophysics Data System (ADS)

    Pushkin, Kirill; LZ Collaboration

    2016-03-01

    The LUX-Zeplin (LZ) collaboration is the next generation of the experiment to search for Dark Matter in the Universe with a dual-phase detector based on liquid xenon (LXe) with a target mass of 7 ton. LXe dual phase detectors are very sensitive probes to search for WIMP dark matter interactions. The LZ collaboration is conducting R&D to study VUV light reflectivity from PTFE (Teflon) in LXe. Teflon is used in dual phase detectors both as an electrical insulator and as reflector of VUV scintillation light (~175 nm) to improve photon detection with photomultiplier tubes (PMTs). However, experimental data for the reflectance of VUV light from PTFE in LXe is not sufficiently conclusive. We present a new technique of measuring the light reflectivity from PTFE by varying the fractional area of the PMT in the detector. PTFE reflectivity measurements were performed as a function of Teflon wall thickness in the range of 2 mm to 9.5 mm. The method, apparatus and experimental results will be presented.

  9. Functional Dissection of the PE Domain Responsible for Translocation of PE_PGRS33 across the Mycobacterial Cell Wall

    PubMed Central

    Cascioferro, Alessandro; Donà, Valentina; Delogu, Giovanni; Palù, Giorgio; Bitter, Wilbert; Manganelli, Riccardo

    2011-01-01

    PE are peculiar exported mycobacterial proteins over-represented in pathogenic mycobacterial species. They are characterized by an N-terminal domain of about 110 amino acids (PE domain) which has been demonstrated to be responsible for their export and localization. In this paper, we characterize the PE domain of PE_PGRS33 (PERv1818c), one of the best characterized PE proteins. We constructed several mutated proteins in which portions of the PE domain were deleted or subjected to defined mutations. These proteins were expressed in different mycobacterial species and their localization was characterized. We confirmed that the PE domain is essential for PE_PGRS33 surface localization, and demonstrated that a PE domain lacking its first 30 amino acids loses its function. However, single amino acid substitutions in two regions extremely well conserved within the N-terminal domain of all PE proteins had some effect on the stability of PE_PGRS33, but not on its localization. Using Mycobacterium marinum we could show that the type VII secretion system ESX-5 is essential for PE_PGRS33 export. Moreover, in M. marinum, but not in Mycobacterium bovis BCG and in Mycobacterium tuberculosis, the PE domain of PE_PGRS33 is processed and secreted into the culture medium when expressed in the absence of the PGRS domain. Finally, using chimeric proteins in which different portions of the PERv1818c domain were fused to the N-terminus of the green fluorescent protein, we could hypothesize that the first 30 amino acids of the PE domain contain a sequence that allows protein translocation. PMID:22110736

  10. Anti-inflammatory and Antibacterial Effects of Covalently Attached Biomembrane-Mimic Polymer Grafts on Gore-Tex Implants.

    PubMed

    Jin, Young Ju; Kang, Sunah; Park, Pona; Choi, Dongkil; Kim, Dae Woo; Jung, Dongwook; Koh, Jaemoon; Jeon, Joohee; Lee, Myoungjin; Ham, Jiyeon; Seo, Ji-Hun; Jin, Hong-Ryul; Lee, Yan

    2017-06-07

    Expanded polytetrafluoroethylene (ePTFE), also known as Gore-Tex, is widely used as an implantable biomaterial in biomedical applications because of its favorable mechanical properties and biochemical inertness. However, infection and inflammation are two major complications with ePTFE implantations, because pathogenic bacteria can inhabit the microsized pores, without clearance by host immune cells, and the limited biocompatibility can induce foreign body reactions. To minimize these complications, we covalently grafted a biomembrane-mimic polymer, poly(2-methacryloyloxylethyl phosphorylcholine) (PMPC), by partial defluorination followed by UV-induced polymerization with cross-linkers on the ePTFE surface. PMPC grafting greatly reduced serum protein adsorption as well as fibroblast adhesion on the ePTFE surface. Moreover, the PMPC-grafted ePTFE surface exhibited a dramatic inhibition of the adhesion and growth of Staphylococcus aureus, a typical pathogenic bacterium in ePTFE implants, in the porous network. On the basis of an analysis of immune cells and inflammation-related factors, i.e., transforming growth factor-β (TGF-β) and myeloperoxidase (MPO), we confirmed that inflammation was efficiently alleviated in tissues around PMPC-grafted ePTFE plates implanted in the backs of rats. Covalent PMPC may be an effective strategy for promoting anti-inflammatory and antibacterial functions in ePTFE implants and to reduce side effects in biomedical applications of ePTFE.

  11. Fabricating PFPE Membranes for Microfluidic Valves and Pumps

    NASA Technical Reports Server (NTRS)

    Greer, Frank; White, Victor E.; Lee, Michael C.; Willis, Peter A.; Grunthaner, Frank J.; Rolland, Jason; Rolland, Jason

    2009-01-01

    A process has been developed for fabricating membranes of a perfluoropolyether (PFPE) and integrating them into valves and pumps in laboratory-on-achip microfluidic devices. Membranes of poly(tetrafluoroethylene) [PTFE] and poly(dimethylsilane) [PDMS] have been considered for this purpose and found wanting. By making it possible to use PFPE instead of PTFE or PDMS, the present process expands the array of options for further development of microfluidic devices for diverse applications that could include detection of biochemicals of interest, detection of toxins and biowarfare agents, synthesis and analysis of proteins, medical diagnosis, and synthesis of fuels.

  12. PTFE effect on the electrocatalysis of the oxygen reduction reaction in membraneless microbial fuel cells.

    PubMed

    Guerrini, Edoardo; Grattieri, Matteo; Faggianelli, Alessio; Cristiani, Pierangela; Trasatti, Stefano

    2015-12-01

    Influence of PTFE in the external Gas Diffusion Layer (GDL) of open-air cathodes applied to membraneless microbial fuel cells (MFCs) is investigated in this work. Electrochemical measurements on cathodes with different PTFE contents (200%, 100%, 80% and 60%) were carried out to characterize cathodic oxygen reduction reaction, to study the reaction kinetics. It is demonstrated that ORR is not under diffusion-limiting conditions in the tested systems. Based on cyclic voltammetry, an increase of the cathodic electrochemical active area took place with the decrease of PTFE content. This was not directly related to MFC productivity, but to the cathode wettability and the biocathode development. Low electrodic interface resistances (from 1 to 1.5 Ω at the start, to near 0.1 Ω at day 61) indicated a negligible ohmic drop. A decrease of the Tafel slopes from 120 to 80 mV during productive periods of MFCs followed the biological activity in the whole MFC system. A high PTFE content in the cathode showed a detrimental effect on the MFC productivity, acting as an inhibitor of ORR electrocatalysis in the triple contact zone.

  13. Solid spherical glass particle impingement studies of plastic materials

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Young, S. G.; Buckley, D. H.

    1983-01-01

    Erosion experiments on polymethyl methacrylate (PMMA), polycarbonate, and polytetrafluoroethylene (PTFE) were conducted with spherical glass beads impacting at normal incidence. Optical and scanning electron microscopic studies and surface profile measurements were made on specimens at predetermined test intervals. During the initial stage of damage to PMMA and polycarbonate, material expands or builds up above the original surface. However, this buildup disappears as testing progresses. Little or no buildup was observed on PTFE. PTFE is observed to be the most resistant material to erosion and PMMA the least. At low impact pressures, material removal mechanisms are believed to be similar to those for metallic materials. However, at higher pressures, surface melting is indicated at the center of impact. Deformation and fatigue appear to play major roles in the material removal process with possible melting or softening.

  14. Fluoropolymer Dynamics: Effects of Perfluoromethyl Branches

    NASA Astrophysics Data System (ADS)

    Eby, R. K.; Holt, D. B.; Farmer, B. L.; Adams, D. D.

    1997-03-01

    Previous simulations of polytetrafluoroethylene (PTFE) in the solid state showed that the interaction and movement of helix reversals plays an important role in the dynamic behavior of this important polymer. Copolymers of TFE and hexafluoropropylene (HFP), which can be viewed as PTFE with perfluoromethyl (PFM) group branch defects, is also widely used. Molecular mechanics and dynamics calculations have been performed with PTFE chain clusters containing PFM branches to investigate the effect of these defects on the local crystalline environment (and vice versa) and on the motions and interactions of helix reversals. Initial results indicate that helix reversals are attracted to sites of PFM branches in a chain. Such an interaction will impede the motions of helix reversals and have an impact on macroscopic mechanical properties such as resistance to plastic deformation under shear.

  15. Evaluation of the surface properties of PTFE foam coating filter media using XPS and contact angle measurements

    NASA Astrophysics Data System (ADS)

    Park, Byung Hyun; Lee, Myong-Hwa; Kim, Sang Bum; Jo, Young Min

    2011-02-01

    A newly developed PTFE foam coating filter was developed which can be used for hot gas cleaning at temperatures up to 250 °C. The emulsion-type PTFE was coated onto a woven glass fiber using a foam coating method. The filter surface was closely examined using X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The XPS results were used to determine the binding force between the carbon and fluorine of PTFE, which imparts coating stability to the filter medium. More than 95% of the bonds of the PTFE foam coating filter were between carbon and fluorine, and this filter demonstrated excellent hydrophobic and good oleophobic properties at the same time. The contact angles of liquid droplets on the filter surface were used to predict the potential wetability of the filter against water or oil. In addition, the very low surface free energy of the filter medium, which was evaluated using the Owens-Wendt method, demonstrates a very stable surface and a high de-dusting quality.

  16. AuNP-PE interface/phase and its effects on the tensile behaviour of AuNP-PE composites

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Wang, Ruijie; Wang, Chengyuan; Yu, Xiaozhu

    2018-06-01

    A comprehensive study was conducted for a gold nanoparticle (AuNP)-polyethylene (PE) composite. Molecular dynamic (MD) simulations were employed to construct the AuNP-PE systems, achieve their constitutive relations, and measure their tensile properties. Specifically, the AuNP-PE interface/phase was studied via the mass density profile, and its effect was evaluated by comparing the composite with a pure PE matrix. These research studies were followed by the study of the fracture mechanisms and the size and volume fraction effects of AuNPs. Efforts were also made to reveal the underlying physics of the MD simulations. In the present work, an AuNP-PE interface and a densified PE interphase were achieved due to the AuNP-PE van der Waals interaction. Such an interface/phase is found to enhance the Young's modulus and yield stress but decrease the fracture strength and strain.

  17. Preparation and characterization of hydrophobic P(TFE) blend electrospun gel polymer electrolyte fibrous membranes for Li-O2 battery

    NASA Astrophysics Data System (ADS)

    Padmaraj, O.; Suthanthiraraj, S. Austin

    2018-04-01

    A novel stable electrospun gel polymer electrolyte [(100-x)% P(VdF-co-HFP)+(x)% P(TFE), (x = 5, 10, 15, 20, 25 & 30)/1 M Li(CF3SO2)2N-] fibrous membranes with an addition of various concentrations of hydrophobic P(TFE) polymer were prepared by an electrospinning technique. All the prepared electrospun polymer blend fibrous membranes were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, high resolution scanning electron microscopy techniques and water contact angle measurements. The newly developed electrospun pure and hydrophobic P(TFE) blend fibrous membranes were activated into separator-cum gel polymer electrolyte fibrous membranes by soaking in an electrolyte solution contains 1 M Li(CF3SO2)2N- in EC: PC (1:1, v/v) in an argon filled glove box. Among the various concentrations of hydrophobic P(TFE) blend polymer fibrous membranes, the electrospun gel polymer blend electrolyte with 5% P(TFE) showed low crystallinity, high thermal stability, high electrolyte uptake, good hydrophobicity and high ionic conductivity (2.680×10-2 S cm-1) at room temperature.

  18. Diffusely reflecting paints including polytetrafluoroethylene and method of manufacture

    NASA Technical Reports Server (NTRS)

    Schutt, J. B.; Shai, M. C. (Inventor)

    1985-01-01

    The invention pertains to a high diffuse, reflective paint comprising an alcohol soluble binder, polytetrafluoroethylene (TFE) and an alcohol for coating a substrate and forming an optical reference with a superior Lambertian characteristic. A method for making the paint by first mixing the biner and alcohol, and thereafter by mixing in outgassed TFE is described. A wetting agent may be employed to aid the mixing process.

  19. RS3PE: Clinical and Research Development.

    PubMed

    Li, Hongbin; Altman, Roy D; Yao, Qingping

    2015-08-01

    Remitting seronegative symmetrical synovitis with pitting edema or RS3PE is a rare elderly-onset rheumatic syndrome. Although there are overlapping clinical manifestations between RS3PE, elderly-onset rheumatoid arthritis, and polymyalgia rheumatica, RS3PE has distinct characteristics. RS3PE can be associated with neoplasia and various rheumatic conditions, suggesting that it may be heterogeneous, and is considered as a paraneoplastic rheumatic disease. The pathogenesis of RS3PE may involve vascular endothelial growth factor and infection in RS3PE based upon limited data. Patients with RS3PE without concomitant malignancy respond well to small doses of glucocorticoids and carry good prognosis.

  20. 40 CFR Appendix Q to Part 50 - Reference Method for the Determination of Lead in Particulate Matter as PM10 Collected From...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....1.2) 46.2 mm diameter polytetrafluoroethylene (PTFE) filter for 24 hours using active sampling at... PM10 is performed on each individual 24-hour sample. Gravimetric mass analysis of PM10c filters is not... Pb in PM10 filters collected with the PM10c sampler. If these filters are analyzed for elements other...

  1. 40 CFR Appendix Q to Part 50 - Reference Method for the Determination of Lead in Particulate Matter as PM10 Collected From...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....1.2) 46.2 mm diameter polytetrafluoroethylene (PTFE) filter for 24 hours using active sampling at... PM10 is performed on each individual 24-hour sample. Gravimetric mass analysis of PM10c filters is not... Pb in PM10 filters collected with the PM10c sampler. If these filters are analyzed for elements other...

  2. 40 CFR Appendix Q to Part 50 - Reference Method for the Determination of Lead in Particulate Matter as PM10 Collected From...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....1.2) 46.2 mm diameter polytetrafluoroethylene (PTFE) filter for 24 hours using active sampling at... PM10 is performed on each individual 24-hour sample. Gravimetric mass analysis of PM10c filters is not... Pb in PM10 filters collected with the PM10c sampler. If these filters are analyzed for elements other...

  3. 40 CFR Appendix Q to Part 50 - Reference Method for the Determination of Lead in Particulate Matter as PM10 Collected From...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....1.2) 46.2 mm diameter polytetrafluoroethylene (PTFE) filter for 24 hours using active sampling at... PM10 is performed on each individual 24-hour sample. Gravimetric mass analysis of PM10c filters is not... Pb in PM10 filters collected with the PM10c sampler. If these filters are analyzed for elements other...

  4. 40 CFR Appendix Q to Part 50 - Reference Method for the Determination of Lead in Particulate Matter as PM10 Collected From...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....1.2) 46.2 mm diameter polytetrafluoroethylene (PTFE) filter for 24 hours using active sampling at... PM10 is performed on each individual 24-hour sample. Gravimetric mass analysis of PM10c filters is not... Pb in PM10 filters collected with the PM10c sampler. If these filters are analyzed for elements other...

  5. 21 CFR 872.3680 - Polytetrafluoroethylene (PTFE) vitreous carbon materials.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the sockets in which teeth are rooted) or intended to coat metal surgical implants to be placed in the alveoli (sockets in which the teeth are rooted) or the temporomandibular joints (the joint between the...

  6. 21 CFR 872.3680 - Polytetrafluoroethylene (PTFE) vitreous carbon materials.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the sockets in which teeth are rooted) or intended to coat metal surgical implants to be placed in the alveoli (sockets in which the teeth are rooted) or the temporomandibular joints (the joint between the...

  7. 21 CFR 872.3680 - Polytetrafluoroethylene (PTFE) vitreous carbon materials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the sockets in which teeth are rooted) or intended to coat metal surgical implants to be placed in the alveoli (sockets in which the teeth are rooted) or the temporomandibular joints (the joint between the...

  8. 21 CFR 872.3680 - Polytetrafluoroethylene (PTFE) vitreous carbon materials.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the sockets in which teeth are rooted) or intended to coat metal surgical implants to be placed in the alveoli (sockets in which the teeth are rooted) or the temporomandibular joints (the joint between the...

  9. 21 CFR 872.3680 - Polytetrafluoroethylene (PTFE) vitreous carbon materials.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the sockets in which teeth are rooted) or intended to coat metal surgical implants to be placed in the alveoli (sockets in which the teeth are rooted) or the temporomandibular joints (the joint between the...

  10. Friction and wear performance of some thermoplastic polymers and polymer composites against unsaturated polyester

    NASA Astrophysics Data System (ADS)

    Unal, H.; Mimaroglu, A.; Arda, T.

    2006-09-01

    Wear experiments have been carried out with a range of unfilled and filled engineering thermoplastic polymers sliding against a 15% glass fibre reinforced unsaturated polyester polymer under 20, 40 and 60 N loads and 0.5 m/s sliding speed. Pin materials used in this experimental investigation are polyamide 66 (PA 66), poly-ether-ether-ketone (PEEK) and aliphatic polyketone (APK), glass fibre reinforced polyamide 46 (PA 46 + 30% GFR), glass fibre reinforced polytetrafluoroethylene (PTFE + 17% GFR), glass fibre reinforced poly-ether-ether-ketone (PEEK + 20% GFR), glass fibre reinforced poly-phylene-sulfide (PPS + 30% GFR), polytetrafluoroethylene filled polyamide 66 (PA 66 + 10% PTFE) and bronze filled pofytetrafluoroethylene (PTFE + 25% bronze) engineering polymers. The disc material is a 15% glass fibre reinforced unsaturated polyester thermoset polymer produced by Bulk Moulding Compound (BMC). Sliding wear tests were carried out on a pin-on-disc apparatus under 0.5 m/s sliding speed and load values of 20, 40 and 60 N. The results showed that the highest specific wear rate is for PPS + 30% GFR with a value of 1 × 10 -11 m 2/N and the lowest wear rate is for PTFE + 17% GFR with a value of 9.41 × 10 -15 m 2/N. For the materials and test conditions of this investigation, apart from polyamide 66 and PA 46 + 30% GFR polymers, the coefficient of friction and specific wear rates are not significantly affected by the change in load value. For polyamide 66 and PA 46 + 30% GFR polymers the coefficient of friction and specific wear rates vary linearly with the variation in load values.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yang; Liu, Xiao Wei; Zhang, Hai Feng, E-mail: wy3121685@163.com

    In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE) coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM) together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic.

  12. Micro- and Nano-Scale Fabrication of Fluorinated Polymers by Direct Etching Using Focused Ion Beam

    NASA Astrophysics Data System (ADS)

    Fukutake, Naoyuki; Miyoshi, Nozomi; Takasawa, Yuya; Urakawa, Tatsuya; Gowa, Tomoko; Okamoto, Kazumasa; Oshima, Akihiro; Tagawa, Seiichi; Washio, Masakazu

    2010-06-01

    Micro- and nano-scale fabrications of various fluorinated polymers were demonstrated by direct maskless etching using a focused ion beam (FIB). The etching rates of perfluorinated polymers, such as poly(tetrafluoroethylene) (PTFE), poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP), poly(tetrafluoroethylene-co-perfluoroalkoxyvinylether) (PFA), were about 500-1000 times higher than those of partially fluorinated polymers, such as poly(tetrafluoroethylene-co-ethylene) (ETFE) and poly(vinilydene-fluoride) (PVdF). Controlled high quality and high aspect-ratio nanostructures of spin-coated cross-linked PTFE were obtained without solid debris. The height and diameter of the fibers were about 1.5 µm and 90 nm, respectively. Their aspect ratio was about 17.

  13. Micro- and Nano-Scale Fabrication of Fluorinated Polymers by Direct Etching Using Focused Ion Beam

    NASA Astrophysics Data System (ADS)

    Naoyuki Fukutake,; Nozomi Miyoshi,; Yuya Takasawa,; Tatsuya Urakawa,; Tomoko Gowa,; Kazumasa Okamoto,; Akihiro Oshima,; Seiichi Tagawa,; Masakazu Washio,

    2010-06-01

    Micro- and nano-scale fabrications of various fluorinated polymers were demonstrated by direct maskless etching using a focused ion beam (FIB). The etching rates of perfluorinated polymers, such as poly(tetrafluoroethylene) (PTFE), poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP), poly(tetrafluoroethylene-co-perfluoroalkoxyvinylether) (PFA), were about 500-1000 times higher than those of partially fluorinated polymers, such as poly(tetrafluoroethylene-co-ethylene) (ETFE) and poly(vinilydene-fluoride) (PVdF). Controlled high quality and high aspect-ratio nanostructures of spin-coated cross-linked PTFE were obtained without solid debris. The height and diameter of the fibers were about 1.5 μm and 90 nm, respectively. Their aspect ratio was about 17.

  14. Exploiting pattern transformation to tune phononic band gaps in a two-dimensional granular crystal.

    PubMed

    Göncü, F; Luding, S; Bertoldi, K

    2012-06-01

    The band structure of a two-dimensional granular crystal composed of silicone rubber and polytetrafluoroethylene (PTFE) cylinders is investigated numerically. This system was previously shown to undergo a pattern transformation with uniaxial compression by Göncü et al. [Soft Matter 7, 2321 (2011)]. The dispersion relations of the crystal are computed at different levels of deformation to demonstrate the tunability of the band structure, which is strongly affected by the pattern transformation that induces new band gaps. Replacement of PTFE particles with rubber ones reveals that the change of the band structure is essentially governed by pattern transformation rather than particles' mechanical properties.

  15. Tribological properties of glass fiber filled polytetrafluoroethylene sliding against stainless steel under dry and aqueous environments: enhanced tribological performance in sea water

    NASA Astrophysics Data System (ADS)

    Jebran Khan, Mohammad; Wani, M. F.; Gupta, Rajat

    2018-05-01

    The present study aims at investigating the tribological behavior of glass fiber filled PTFE on sliding against AISI 420 stainless steel in ambient air, distilled water and natural sea water. The friction and wear tests were carried out using a pin-on-disc configuration at room temperature on 25 wt% glass fiber filled PTFE at a normal load of 10 N. The glass fiber filled PTFE showed superior tribological performance in sea water compared to dry sliding and distilled water environment conditions. The lowest average coefficient of friction of 0.028 and lowest specific wear rate of 5.85 × 10‑6 mm3 Nm‑1 was observed under sea water environment. The worn surfaces were examined using Optical microscopy, SEM, EDS and Raman spectroscopy to reveal the wear mechanisms. It was revealed that the superior tribological performance of glass fiber filled PTFE in sea water is due to the formation of a lubricating film on the surface of glass fiber filled PTFE in sea water. The profilometric traces of the counterface after tribological tests were taken using an optical 3D surface profilometer to investigate the effect of indirect corrosive wear on the friction and wear of glass fiber filled PTFE under sea water environment.

  16. Omniphobic Membrane for Robust Membrane Distillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, SH; Nejati, S; Boo, C

    2014-11-01

    In this work, we fabricate an omniphobic microporous membrane for membrane distillation (MD) by modifying a hydrophilic glass fiber membrane with silica nanoparticles followed by surface fluorination and polymer coating. The modified glass fiber membrane exhibits an anti-wetting property not only against water but also against low surface tension organic solvents that easily wet a hydrophobic polytetrafluoroethylene (PTFE) membrane that is commonly used in MD applications. By comparing the performance of the PTFE and omniphobic membranes in direct contact MD experiments in the presence of a surfactant (sodium dodecyl sulfate, SDS), we show that SDS wets the hydrophobic PTFE membranemore » but not the omniphobic membrane. Our results suggest that omniphobic membranes are critical for MD applications with feed waters containing surface active species, such as oil and gas produced water, to prevent membrane pore wetting.« less

  17. Percutaneous bail-out treatment of vein graft rupture with a polytetrafluoroethylene-covered stent.

    PubMed

    Pavlidis, Antonios N; Karamasis, Grigorios V; Clapp, Brian R

    2013-12-01

    Vessel perforation is an undesirable and life-threatening complication during vein graft angioplasty. We report on a case of vein graft rupture during angioplasty, which was successfully managed with deployment of a polytetrafluoroethylene-covered stent.

  18. Alternative Fuels Compatibility with Army Equipment Testing - Alternative Fuels Material Compatibility Analysis

    DTIC Science & Technology

    2012-02-21

    Testing and Materials °C Celsius DiEGME Diethylene Glycol Monomethyl Ether EPDM Ethylene Propylene Diene Monomer FARE Forward Area Refueling...urethane class AU, polyether urethane class EU, EPDM , Viton®, fluorosilicone class FQ, polytetrafluoroethylene (PTFE), polyolefin and polyester...sleeve Material not provided AAFARS 4720-00-540-1368 Hose, nonmetallic Material not provided AAFARS 4720-01-218-6958 Hose, preformed Rubber

  19. Comparison of Temporary Open Arterial Revascularization Using Stent Grafts vs. Standard Vascular Shunts in a Porcine (Sus scrofa) Model

    DTIC Science & Technology

    2017-01-24

    Objectives: Open surgical reconstruction using expanded polytetrafluoroethylene stent grafts to create a sutureless anastomosis is an alternative to...French Argyle shunt was inserted into one randomly assigned artery, with a self-expanding ePTFE stent deployed in the other. Arterial flow measurements...for histopathology were obtained during the terminal procedure. Results: Angiography revealed no difference in patency at 72 hours. The stent grafts

  20. Permeation Testing of Materials With Chemical Agents or Simulants (Swatch Testing)

    DTIC Science & Technology

    2013-08-05

    through a protective clothing material on a molecular level. Permeation involves the following: (1) sorption of molecules of the chemical into the...de Nemours and Company, Wilmington, Delaware), Teflon perfluoro- alkoxy ( PFA ), and Teflon polytetrafluoroethylene (PTFE). c. In all cases, only...pamphlet PCM positive control material PFA perfluoroalkoxy pH negative ion activity POL petroleum, oil, and lubricants PQL program quantification

  1. Determinants of PE Teachers Career Intentions

    ERIC Educational Resources Information Center

    Mäkelä, Kasper; Hirvensalo, Mirja; Whipp, Peter R.

    2015-01-01

    One of the cause's célèbre in the field of education has been teacher attrition; Physical education (PE) is no different. Some PE teachers are leaving the profession because they encounter stress and dissatisfaction in their profession. The purpose of this study is to determine the aspects that keep PE teachers happy and remaining in the…

  2. Non-Specialist Teachers' Confidence to Teach PE: The Nature and Influence of Personal School Experiences in PE

    ERIC Educational Resources Information Center

    Morgan, Philip; Bourke, Sid

    2008-01-01

    Background: Over the past 20 years, a number of researchers have expressed concern over the lack of confidence and qualifications of primary school teachers to teach PE. Evidently, the influence of personal school PE experiences may play an important role in the development of teachers' confidence to appropriately teach PE. Most research that has…

  3. Low-Flammability PTFE for High-Oxygen Environments

    NASA Technical Reports Server (NTRS)

    Walle, E.; Fallon, B.; Sheppard, A.

    1986-01-01

    Modified forming process removes volatile combustible materials. Flammability of cable-wrapping tape reduced by altering tape-manufacturing process. In new manufacturing process, tape formed by proprietary process of screw extrusion, followed by washing in solvent and drying. Tape then wrapped as before. Spectrogram taken after extrusion, washing, and drying shows lower hydrocarbon content. PTFE formed by new process suited to oxygen-rich environments. Safe in liquid oxygen of Space Shuttle tank and in medical uses; thin-wall shrinkable tubing in hospital test equipment, surgical instruments, and implants.

  4. Heparin-bonded, expanded polytetrafluoroethylene-lined stent graft in the treatment of femoropopliteal artery disease: 1-year results of the VIPER (Viabahn Endoprosthesis with Heparin Bioactive Surface in the Treatment of Superficial Femoral Artery Obstructive Disease) trial.

    PubMed

    Saxon, Richard R; Chervu, Arun; Jones, Paul A; Bajwa, Tanvir K; Gable, Dennis R; Soukas, Peter A; Begg, Richard J; Adams, John G; Ansel, Gary M; Schneider, Darren B; Eichler, Charles M; Rush, Michael J

    2013-02-01

    To evaluate the performance of a heparin-bonded, expanded polytetrafluoroethylene (ePTFE)-lined nitinol endoprosthesis in the treatment of long-segment occlusive disease of the femoropopliteal artery (FPA) and to identify factors associated with loss of patency. In a single-arm, prospective, 11-center study (VIPER [Gore Viabahn Endoprosthesis with Heparin Bioactive Surface in the Treatment of Superficial Femoral Artery Obstructive Disease] trial), 119 limbs (113 patients; 69 men; mean age, 67 y), including 88 with Rutherford category 3-5 disease and 72 with Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II) C or D lesions of the FPA, underwent stent graft implantation. The mean lesion length was 19 cm; 56% of lesions were occlusions. Follow-up evaluations included color duplex ultrasonography in all patients, with patency defined as a peak systolic velocity ratio< 2.5. At 12 months, Rutherford category and ankle-brachial index (ABI) were significantly improved (mean category improvement, 2.4; ABI increased from 0.6±0.2 to 0.9±0.19; P<.0001). Primary and secondary patency rates were 73% and 92%. The primary patency for devices oversized<20% at the proximal landing zone was 88%, whereas the primary patency for devices oversized by>20% was 70% (P = .047). Primary patency was not significantly affected by device diameter (5 vs 6 vs 7 mm) or lesion length (≤20 cm vs>20 cm). The 30-day major adverse event rate was 0.8%. The heparin-bonded, ePTFE/nitinol stent graft provided clinical improvement and a primary patency rate of 73% at 1 year in the treatment of long-segment FPA disease. Careful sizing of the device relative to vessel landing zones is essential for achieving optimal outcomes. Copyright © 2013 SIR. Published by Elsevier Inc. All rights reserved.

  5. Tribo-characteristics of self-lubricating ball bearings for the LE-7 liquid hydrogen rocket-turbopump

    NASA Astrophysics Data System (ADS)

    Nosaka, Masataka; Oike, Mamoru; Kikuchi, Masataka; Kamijo, Kenjiro; Tajiri, Masanori

    1993-07-01

    The tribo characteristics of self-lubricating 40-mm-bore ball bearings with a retainer of glass cloth-polytetrafluoroethylene (PTFE) laminate, which has elliptical pockets with a large pocket clearance, were tested under thrust loads at speeds up to 50,000 rpm, 2 million DN, in liquid hydrogen (LH2) and in liquid nitrogen (LN2). During testing, the bearing torque, outer-race temperature, and electric resistance between the inner and outer races were monitored to verify the formation and rupture of a PTFE transfer film. Testing showed that the bearings having the elliptical retainer pockets were superior to the conventional bearings with circular pockets. It was determined that, at the maximum inner race spinning velocity of about 5 m/s, a PTFE transfer film could sustain the maximum Hertz stress, up to about 2000 N/sq mm, in LH2, without severe film rupture resulting in bearing seizure. In LN2, the critical load capacity of PTFE transfer film with bearing seizure was about 2700 N/sq mm.

  6. Initial bioadhesion on dental materials as a function of contact time, pH, surface wettability, and isoelectric point.

    PubMed

    Müller, Christine; Lüders, Anne; Hoth-Hannig, Wiebke; Hannig, Matthias; Ziegler, Christiane

    2010-03-16

    The adsorption of bovine serum albumin (BSA) on surfaces of dental enamel and of dental materials was investigated by scanning force spectroscopy. This method provides adhesion forces which can be measured as a function of contact time between protein and surface, pH, wettability, and isoelectric point of the surface. Whereas the chosen ceramic and composite materials resemble very well the adhesion on natural enamel, a much stronger adhesion was found for the more hydrophobic surfaces, that is, gold, titanium, poly(methyl methacrylate) (PMMA), and poly(tetrafluoroethylene) (PTFE). On hydrophilic surfaces, adhesion is mainly influenced by the electrostatic forces between protein and surface. However, the conformational change of BSA at pH values above pH 8 has to be taken into account. On the very hydrophobic PTFE surface, the special interface structure between PTFE and water plays an important role which governs BSA adhesion.

  7. Overall Quality Assurance Project Plan, Remedial Investigation/Feasibility Study Fort Sheridan, Illinois, Volume 1.

    DTIC Science & Technology

    1995-03-15

    billion volume ppm parts per million PT pole-mounted PTFE polytetrafluoro-ethylene PUF polyurethane foam PVC polyvinyl chloride QA quality assurance...and Illinois Environmental Protection Agency (IEPA) quality assurance (QA) objectives. The format of the OQAPP is based on "Interim Guidelines and...County. The till material deposited in the Fort Sheridan region has been classified as the Wadsworth Till Member of the Wedron Formation . This till

  8. JROTC as a Substitute for PE: Really?

    PubMed Central

    Lounsbery, Monica A. F.; Holt, Kathryn A.; Monnat, Shannon A.; McKenzie, Thomas L.; Funk, Brian

    2014-01-01

    Purpose Even though physical education (PE) is an evidence-based strategy for providing and promoting physical activity, alternative programs such as Junior Reserve Officer Training Corps (JROTC) are commonly substituted for PE in many states. The purpose of this study was to compare student physical activity and lesson contexts during high school PE and JROTC sessions. Method SOFIT (System for Observing Fitness Instruction Time) was used to assess PE and JROTC sessions (N=38 each) in 4 high schools that provided both programs. Data were analyzed using t-tests, negative binomial regression, and logistic regression. Results Students engaged in significantly more moderate to vigorous physical activity during PE than JROTC sessions and they were significantly less sedentary. Significant differences between the two program types were also found among lesson contexts. Conclusions PE and JROTC provide substantially different content and contexts and students in them engage in substantially different amounts of moderate to vigorous physical activity. Students in JROTC, and perhaps other alternative programs, are less likely to accrue health-supporting physical activity and engage in fewer opportunities to be physically fit and motorically skilled. Policies and practices for providing substitutions for PE should be carefully examined. PMID:25141093

  9. Ultrasonic imaging of seismic physical models using a fringe visibility enhanced fiber-optic Fabry-Perot interferometric sensor.

    PubMed

    Zhang, Wenlu; Chen, Fengyi; Ma, Wenwen; Rong, Qiangzhou; Qiao, Xueguang; Wang, Ruohui

    2018-04-16

    A fringe visibility enhanced fiber-optic Fabry-Perot interferometer based ultrasonic sensor is proposed and experimentally demonstrated for seismic physical model imaging. The sensor consists of a graded index multimode fiber collimator and a PTFE (polytetrafluoroethylene) diaphragm to form a Fabry-Perot interferometer. Owing to the increase of the sensor's spectral sideband slope and the smaller Young's modulus of the PTFE diaphragm, a high response to both continuous and pulsed ultrasound with a high SNR of 42.92 dB in 300 kHz is achieved when the spectral sideband filter technique is used to interrogate the sensor. The ultrasonic reconstructed images can clearly differentiate the shape of models with a high resolution.

  10. Electrostatic Properties of Polymers Subjected to Atmospheric Pressure Plasma Treatment; Correlation of Experimental Results with Atomistic Modeling

    NASA Technical Reports Server (NTRS)

    Trigwell, S.; Boucher, D.; Calle, C. I.

    2007-01-01

    this study, PE, PTFE, PS and PMMA were exposed to a He+O2, APGD and pre and post treatment surface chemistries were analyzed by X-ray photoelectron spectroscopy and contact angle measurements. Semi-empirical and ab-initio calculations were performed to correlate the experimental results with sonic plausible molecular and electronic structure features of the oxidation process. For the PE and PS, significant surface oxidation showing C-O, C=O, and O-C=O bonding, and a decrease in the surface contact angles was observed. For the PTFE and PM MA, little change in the surface composition was observed. The molecular modeling calculations were performed on single and multiple oligomers and showed regardless of oxidation mechanism, e.g. -OH, =O or a combination thereof, experimentally observed levels of surface oxidation were unlikely to lead to a significant change in the electronic structure of PE and PS, and that the increased hydrophilic properties are the primary reason for the observed changes in its electrostatic behavior. Calculations for PTFE and PMMA argue strongly against significant oxidation of those materials, as confirmed by the XPS results.

  11. Adhesion strength of a living cell to various substrates measured using a cup-attached atomic force microscopy chip

    NASA Astrophysics Data System (ADS)

    Kim, Hyonchol; Ishibashi, Kenta; Matsuo, Kosuke; Kira, Atsushi; Onomura, Yui; Okada, Tomoko; Nakamura, Chikashi

    2018-03-01

    Cell adhesion strengths to various substrates were quantitatively measured using atomic force microscopy (AFM). A cup-shaped metal hemisphere was attached to the apex of the AFM cantilever, the “cup-chip” approached a cell (FP10SC2) to pick it up, the captured cell approached any one of six different substrates [gold (Au), nickel (Ni), bovine serum albumin (BSA), an amino group (NH2), poly(tetrafluoroethylene) (PTFE), and structured PTFE (sPTFE)], and the cell adhesion strength at the initial contact period was evaluated by detaching the cell from the substrate. The results obtained showed that the force needed to detach the cell from the NH2 substrate was more than 3-fold larger than that of metal substrates (Au and Ni), more than 15-fold larger than that of biochemically treated substrates (BSA), and more than 20-fold larger than that of hydrophobic substrates (PTFE and sPTFE). Using differences in adhesion strengths, a cell on a sPTFE substrate was picked up using a BSA-coated cup-chip, placed on a NH2 substrate, repeating this cell manipulation five times, and line patterning of cells was achieved. These results indicate that measurements of cell adhesion strength are fundamental to fabricate desired cell networks and the cup-chip is a useful tool for achieving easy cell manipulation.

  12. No, Really: P.E. Online

    ERIC Educational Resources Information Center

    Stover, Del

    2005-01-01

    Because some students need to drop some extracurricular activities in order to enroll in a PE class, public schools have developed PE courses that can be fitted into students' tight schedules. These programs are popular because of convenience. Not only can workouts be scheduled as desired, but students can sweat it out almost anywhere: the local…

  13. Enhanced hydroxyl radical generation in the combined ozonation and electrolysis process using carbon nanotubes containing gas diffusion cathode.

    PubMed

    Wu, Donghai; Lu, Guanghua; Zhang, Ran; Lin, Qiuhong; Yan, Zhenhua; Liu, Jianchao; Li, Yi

    2015-10-01

    Combination of ozone together with electrolysis (ozone-electrolysis) is a promising wastewater treatment technology. This work investigated the potential use of carbon nanotube (CNT)-based gas diffusion cathode (GDC) for ozone-electrolysis process employing hydroxyl radicals (·OH) production as an indicator. Compared with conventional active carbon (AC)-polytetrafluoroethylene (PTFE) and carbon black (CB)-PTFE cathodes, the production of ·OH in the coupled process was improved using CNTs-PTFE GDC. Appropriate addition of acetylene black (AB) and pore-forming agent Na2SO4 could enhance the efficiency of CNTs-PTFE GDC. The optimum GDC composition was obtained by response surface methodology (RSM) analysis and was determined as CNTs 31.2 wt%, PTFE 60.6 wt%, AB 3.5 wt%, and Na2SO4 4.7 wt%. Moreover, the optimized CNT-based GDC exhibited much more effective than traditional Ti and graphite cathodes in Acid Orange 7 (AO7) mineralization and possessed the desirable stability without performance decay after ten times reaction. The comparison tests revealed that peroxone reaction was the main pathway of ·OH production in the present system, and cathodic reduction of ozone could significantly promote ·OH generation. These results suggested that application of CNT-based GDC offers considerable advantages in ozone-electrolysis of organic wastewater.

  14. Treatment of Malignant Biliary Obstruction with a PTFE-Covered Self-Expandable Nitinol Stent

    PubMed Central

    Kwak, Hyo-Sung; Jin, Gong-Yong; Lee, Seung-Ok; Chung, Gyung-Ho

    2007-01-01

    Objective We wanted to determine the technical and clinical efficacy of using a PTFE-covered self-expandable nitinol stent for the palliative treatment of malignant biliary obstruction. Materials and Methods Thirty-seven patients with common bile duct strictures caused by malignant disease were treated by placing a total of 37 nitinol PTFE stents. These stents were covered with PTFE with the exception of the last 5 mm at each end; the stent had an unconstrained diameter of 10 mm and a total length of 50-80 mm. The patient survival rate and stent patency rate were calculated by performing Kaplan-Meier survival analysis. The bilirubin, serum amylase and lipase levels before and after stent placement were measured and then compared using a Wilcoxon signed-rank test. The average follow-up duration was 27.9 weeks (range: 2-81 weeks). Results Placement was successful in all cases. Seventy-six percent of the patients (28/37) experienced adequate palliative drainage for the remainder of their lives. There were no immediate complications. Three patients demonstrated stent sludge occlusion that required PTBD (percutaneous transhepatic biliary drainage) irrigation. Two patients experienced delayed stent migration with stone formation at 7 and 27 weeks of follow-up, respectively. Stent insertion resulted in acute elevations of the amylase and lipase levels one day after stent insertion in 11 patients in spite of performing endoscopic sphincterotomy (4/6). The bilirubin levels were significantly reduced one week after stent insertion (p < 0.01). The 30-day mortality rate was 8% (3/37), and the survival rates were 49% and 27% at 20 and 50 weeks, respectively. The primary stent patency rates were 85%, and 78% at 20 and 50 weeks, respectively. Conclusion The PTFE-covered self-expandable nitinol stent is safe to use with acceptable complication rates. This study is similar to the previous studies with regard to comparing the patency rates and survival rates. PMID:17923784

  15. Comparison study of PE epitaxy on carbon nanotubes and graphene oxide and PE/graphene oxide as amphiphilic molecular structure for solvent separation

    NASA Astrophysics Data System (ADS)

    He, Linghao; Zheng, Xiaoli; Xu, Qun; Chen, Zhimin; Fu, Jianwei

    2012-03-01

    Carbon nanotubes (CNTs) and graphene nanosheets, as one-dimensional and two-dimensional carbon-based nanomaterials respectively, have different abilities to induce the polymer crystallization. In this study, hybrid materials, polyethylene (PE) decorating on CNTs and graphene oxide (GO), were prepared by a facile and efficient method using supercritical carbon dioxide (SC CO2) as anti-solvent. And the morphology and crystallization behavior of PE on CNTs and GO were investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectra, wide angle X-ray diffraction, and differential scanning calorimetry. Although both CNTs and GO could act as nucleating agents to induce PE epitaxial growth, CNTs were decorated by PE lamellar crystals forming nanohybrid "shish-kebab" (NHSK) structure, whereas GO sheets were only decorated with petal-like PE crystals. The varying morphologies of the nanohybrids depend on the PE epitaxy and the interactions between polymer chains and substrates. High surface curvature and the perfect ordered crystal structure of CNTs make PE crystals periodically grow on CNTs. While PE crystals grow and form multiple orientation-lamellae on GO due to the lattice matching and complex interactions between PE chains and GO. In addition, our experimental results show an interesting and evident stratification phenomenon for the PE/GO hybrid material, implying that GO decorated by PE have a screening function for the solvents. We anticipate that this work can widen the area of functionalization of carbon-based nanomaterials with a controlled means by an environmentally benign method, which are important for the functional design in nanodevice applications.

  16. Review of LOX Bearing and Seal Materials Tester (BSMT) radial load system

    NASA Technical Reports Server (NTRS)

    Dufrane, K. F.; Kannel, J. W.

    1984-01-01

    Problems concerning the bearings in the high pressure oxygen turbopumps (HPOTP) were investigated. The tasks involved: failure analyses, bearing dynamics calculations, lubrication studies, wear studies, and analyses of thermal transients. The radial load system on MSFC's bearing and seal tester used to study components for the HPOTP in liquid oxygen (LOX) is analyzed and the wear behavior of AISI 440C steel with polytetrafluoroethylene (PTFE) lubrication is studied.

  17. Composition analysis of a polymer electrolyte membrane fuel cell microporous layer using scanning transmission X-ray microscopy and near edge X-ray absorption fine structure analysis

    NASA Astrophysics Data System (ADS)

    George, Michael G.; Wang, Jian; Banerjee, Rupak; Bazylak, Aimy

    2016-03-01

    The novel application of scanning transmission X-ray microscopy (STXM) to the microporous layer (MPL) of a polymer electrolyte membrane fuel cell is investigated. A spatially resolved chemical component distribution map is obtained for the MPL of a commercially available SGL 25 BC sample. This is achieved with near edge X-ray absorption fine structure spectroscopic analysis. Prior to analysis the sample is embedded in non-reactive epoxy and ultra-microtomed to a thickness of 100 nm. Polytetrafluoroethylene (PTFE), carbon particle agglomerates, and supporting epoxy resin distributions are identified and reconstructed for a scanning area of 6 μm × 6 μm. It is observed that the spatial distribution of PTFE is strongly correlated to the carbon particle agglomerations. Additionally, agglomerate structures of PTFE are identified, possibly indicating the presence of a unique mesostructure in the MPL. STXM analysis is presented as a useful technique for the investigation of chemical species distributions in the MPL.

  18. Ion-exchange composite membranes pore-filled with sulfonated poly(ether ether ketone) and Engelhard titanosilicate-10 for improved performance of vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Lee, Yongkyu; Jeon, Jae-Deok; Kwak, Seung-Yeop

    2018-04-01

    A series of ion-exchange membranes for vanadium redox flow batteries (VRBs) are prepared by filling the pores of a poly(tetrafluoroethylene) (PTFE) substrate with sulfonated poly(ether ether ketone) (SPEEK) and microporous Engelhard titanosilicate-10 (ETS-10). The effects of ETS-10 incorporation and PTFE reinforcement on membrane properties and VRB single-cell performance are investigated using various characterization tools. The results show that these composite membranes exhibit improved mechanical properties and reduced vanadium-ion permeabilities owing to the interactions between ETS-10 and SPEEK, the suppressed swelling of PTFE, and the unique ETS-10 framework. The composite membrane with 3 wt% ETS-10 (referred to as "SE3/P") exhibits the best membrane properties and highest ion selectivity. The VRB system with the SE3/P membrane exhibits higher cell capacity, higher cell efficiency, and lower capacity decay than that with a Nafion membrane. These results indicate that this composite membrane has potential as an alternative to Nafion in VRB systems.

  19. Optical Waveguide Lightmode Spectroscopic Techniques for Investigating Membrane-Bound Ion Channel Activities

    PubMed Central

    Székács, Inna; Kaszás, Nóra; Gróf, Pál; Erdélyi, Katalin; Szendrő, István; Mihalik, Balázs; Pataki, Ágnes; Antoni, Ferenc A.; Madarász, Emilia

    2013-01-01

    Optical waveguide lightmode spectroscopic (OWLS) techniques were probed for monitoring ion permeation through channels incorporated into artificial lipid environment. A novel sensor set-up was developed by depositing liposomes or cell-derived membrane fragments onto hydrophilic polytetrafluoroethylene (PTFE) membrane. The fibrous material of PTFE membrane could entrap lipoid vesicles and the water-filled pores provided environment for the hydrophilic domains of lipid-embedded proteins. The sensor surface was kept clean from the lipid holder PTFE membrane by a water- and ion-permeable polyethylene terephthalate (PET) mesh. The sensor set-up was tested with egg yolk lecithin liposomes containing gramicidin ion channels and with cell-derived membrane fragments enriched in GABA-gated anion channels. The method allowed monitoring the move of Na+ and organic cations through gramicidin channels and detecting the Cl–-channel functions of the (α5β2γ2) GABAA receptor in the presence or absence of GABA and the competitive GABA-blocker bicuculline. PMID:24339925

  20. A Pilot Study of Open Venous Revascularization using Expandable PTFE Stent Grafts in a Porcine (Sus scrofa) Model

    DTIC Science & Technology

    2017-05-23

    expandable stent -grafts that are designed to expand within a vessel to cover an injury or open a blockage. Methods: 3 Yorkshire cross swine were...expandable PTFE stent graft was deployed into the vessel in an open direct fashion. The swine were awoken and allowed to ambulate. At 72 hours, conduit...hours, all stents were patent on venography. Conclusion: Direct site endovascular repair of venous injuries utilizing expandable PTFE stent grafts is a

  1. Mitral valve repair in dogs using an ePTFE chordal implantation device: a pilot study.

    PubMed

    Borgarelli, M; Lanz, O; Pavlisko, N; Abbott, J A; Menciotti, G; Aherne, M; Lahmers, S M; Lahmers, K K; Gammie, J S

    2017-06-01

    Mitral valve (MV) regurgitation due to degenerative MV disease is the leading cause of cardiac death in dogs. We carried out preliminary experiments to determine the feasibility and short-term effects of beating-heart MV repair using an expanded polytetrafluorethylene (ePTFE) chordal implantation device (Harpoon TSD-5) in dogs. This study involved six healthy purpose-bred Beagles (weight range 8.9-11.4 kg). Following a mini-thoracotomy performed under general anesthesia, the TSD-5 was used to place 1 or 2 artificial ePTFE cords on the anterior MV leaflet or the posterior MV leaflet via a left-ventricular transapical approach. The procedure was guided and monitored by transesophageal echocardiography. Postoperative antithrombotic treatment consisted of clopidogrel or a combination of clopidogrel and apixaban. Dogs were serially evaluated by transthoracic echocardiography at day 1, 7, 14, 21, and 30. The hearts were then examined for evaluation of tissues reactions and to detect signs of endothelialization. One or two chords were successfully implanted in five dogs. Four dogs completed the 30 days follow-up. One dog died intra-operatively because of aortic perforation. One dog died early post-operatively from a hemorrhagic pleural effusion attributed to overly aggressive antithrombotic treatment. One dog developed a thrombus surrounding both the knot and the synthetic cord. Postmortem exam confirmed secure placement of ePTFE knots in the mitral leaflets in all dogs and the presence of endothelialization of the knots and chords. These preliminary results demonstrate the feasibility of artificial chordal placement using an ePTFE cordal implantation device in dogs. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Passive PE Sampling in Support of In Situ Remediation of Contaminated Sediments: Standard Operating Procedure for PE Analysis

    DTIC Science & Technology

    2012-12-01

    4.5 Food-grade aluminum foil 4.6 Stainless steel forceps 4.7 Single-edge razor blades 4.8 Teflon (or similar non-contaminating material) cutting...handling PE to avoid cross-contaminating the PE. 6.3 Methylene chloride (pesticide grade) rinsed, stainless steel forceps and scissors are used...3.1 PE is susceptible to contamination from atmospheric and surfaces, and so it must be handled using clean techniques. 3.2 While the formation of

  3. Functional analyses of Populus euphratica brassinosteroid biosynthesis enzyme genes DWF4 (PeDWF4) and CPD (PeCPD) in the regulation of growth and development of Arabidopsis thaliana.

    PubMed

    Si, Jianping; Sun, Yan; Wang, L U; Qin, Ying; Wang, Chongying; Wang, Xinyu

    2016-12-01

    DWF4 and CPD are key brassinosteroids (BRs) biosynthesis enzyme genes. To explore the function of Populus euphratica DWF4 (PeDWF4) and CPD (PeCPD), Arabidopsis thaliana transgenic lines (TLs) expressing PeDWF4, PeCPD or PeDWF4 plus PeCPD, namely PeDWF4-TL, PeCPD-TL and PeCP/DW-TL, were characterized. Compared with wild type (WT), the changes of both PeDWF4-TL and PeCPD-TL in plant heights, silique and hypocotyls lengths and seed yields were similar, but in bolting time and stem diameters, they were opposite. PeCP/DW-TL was more in plant heights and the lengths of primary root, silique, and fruit stalk, but less in silique numbers and seed yields than either PeDWF4-TL or PeCPD-TL. PeDWF4 and PeCPD specially expressed in PeDWF4-TL or PeCPDTL, and the transcription level of PeDWF4 was higher than that of PeCPD. In PeCP/DW-TL, their expressions were all relatively reduced. Additionally, the expression of PeDWF4 and PeCPD differentially made the expression levels of AtDWF4, AtCPD, AtBR6OX2, AtFLC, AtTCP1 and AtGA5 change in the TLs. The total BRs contents were PeDWF4-TL greater than PeCP/DW-TL greater than WT greater than PeCPD-TL. These results imply that PeDWF4 is functionally not exactly the same as PeCPD and there may be a synergistic and antagonistic effects in physiology between both of them in the regulation of plant growth and development.

  4. RESPECT-ED: Rates of Pulmonary Emboli (PE) and Sub-Segmental PE with Modern Computed Tomographic Pulmonary Angiograms in Emergency Departments: A Multi-Center Observational Study Finds Significant Yield Variation, Uncorrelated with Use or Small PE Rates.

    PubMed

    Mountain, David; Keijzers, Gerben; Chu, Kevin; Joseph, Anthony; Read, Catherine; Blecher, Gabriel; Furyk, Jeremy; Bharat, Chrianna; Velusamy, Karthik; Munro, Andrew; Baker, Kylie; Kinnear, Frances; Mukherjee, Ahses; Watkins, Gina; Buntine, Paul; Livesay, Georgia; Fatovich, Daniel

    2016-01-01

    Overuse of CT Pulmonary Angiograms (CTPA) for diagnosing pulmonary embolism (PE), particularly in Emergency Departments (ED), is considered problematic. Marked variations in positive CTPA rates are reported, with American 4-10% yields driving most concerns. Higher resolution CTPA may increase sub-segmental PE (SSPE) diagnoses, which may be up to 40% false positive. Excessive use and false positives could increase harm vs. benefit. These issues have not been systematically examined outside America. To describe current yield variation and CTPA utilisation in Australasian ED, exploring potential factors correlated with variation. A retrospective multi-centre review of consecutive ED-ordered CTPA using standard radiology reports. ED CTPA report data were inputted onto preformatted data-sheets. The primary outcome was site level yield, analysed both intra-site and against a nominated 15.3% yield. Factors potentially associated with yield were assessed for correlation. Fourteen radiology departments (15 ED) provided 7077 CTPA data (94% ≥64-slice CT); PE were reported in 1028 (yield 14.6% (95%CI 13.8-15.4%; range 9.3-25.3%; site variation p <0.0001) with four sites significantly below and one above the 15.3% target. Admissions, CTPA usage, PE diagnosis rates and size of PE were uncorrelated with yield. Large PE (≥lobar) were 55% (CI: 52.1-58.2%) and SSPE 8.8% (CI: 7.1-10.5%) of positive scans. CTPA usage (0.2-1.5% adult attendances) was correlated (p<0.006) with PE diagnosis but not SSPE: large PE proportions. We found significant intra-site CTPA yield variation within Australasia. Yield was not clearly correlated with CTPA usage or increased small PE rates. Both SSPE and large PE rates were similar to higher yield historical cohorts. CTPA use was considerably below USA 2.5-3% rates. Higher CTPA utilisation was positively correlated with PE diagnoses, but without evidence of increased proportions of small PE. This suggests that increased diagnoses seem to be of

  5. RESPECT-ED: Rates of Pulmonary Emboli (PE) and Sub-Segmental PE with Modern Computed Tomographic Pulmonary Angiograms in Emergency Departments: A Multi-Center Observational Study Finds Significant Yield Variation, Uncorrelated with Use or Small PE Rates

    PubMed Central

    Chu, Kevin; Joseph, Anthony; Read, Catherine; Blecher, Gabriel; Furyk, Jeremy; Bharat, Chrianna; Velusamy, Karthik; Munro, Andrew; Baker, Kylie; Kinnear, Frances; Mukherjee, Ahses; Watkins, Gina; Buntine, Paul; Livesay, Georgia

    2016-01-01

    Introduction Overuse of CT Pulmonary Angiograms (CTPA) for diagnosing pulmonary embolism (PE), particularly in Emergency Departments (ED), is considered problematic. Marked variations in positive CTPA rates are reported, with American 4–10% yields driving most concerns. Higher resolution CTPA may increase sub-segmental PE (SSPE) diagnoses, which may be up to 40% false positive. Excessive use and false positives could increase harm vs. benefit. These issues have not been systematically examined outside America. Aims To describe current yield variation and CTPA utilisation in Australasian ED, exploring potential factors correlated with variation. Methods A retrospective multi-centre review of consecutive ED-ordered CTPA using standard radiology reports. ED CTPA report data were inputted onto preformatted data-sheets. The primary outcome was site level yield, analysed both intra-site and against a nominated 15.3% yield. Factors potentially associated with yield were assessed for correlation. Results Fourteen radiology departments (15 ED) provided 7077 CTPA data (94% ≥64-slice CT); PE were reported in 1028 (yield 14.6% (95%CI 13.8–15.4%; range 9.3–25.3%; site variation p <0.0001) with four sites significantly below and one above the 15.3% target. Admissions, CTPA usage, PE diagnosis rates and size of PE were uncorrelated with yield. Large PE (≥lobar) were 55% (CI: 52.1–58.2%) and SSPE 8.8% (CI: 7.1–10.5%) of positive scans. CTPA usage (0.2–1.5% adult attendances) was correlated (p<0.006) with PE diagnosis but not SSPE: large PE proportions. Discussion/ Conclusions We found significant intra-site CTPA yield variation within Australasia. Yield was not clearly correlated with CTPA usage or increased small PE rates. Both SSPE and large PE rates were similar to higher yield historical cohorts. CTPA use was considerably below USA 2.5–3% rates. Higher CTPA utilisation was positively correlated with PE diagnoses, but without evidence of increased proportions

  6. The effects of changing deposition conditions on the similarity of sputter-deposited fluorocarbon thin films to bulk PTFE

    NASA Astrophysics Data System (ADS)

    Zandona, Philip

    Solid lubrication of space-borne mechanical components is essential to their survival and the continued human exploration of space. Recent discoveries have shown that PTFE when blended with alumina nanofillers exhibits greatly improved physical performance properties, with wear rates being reduced by several orders of magnitude. The bulk processes used to produce the PTFE-alumina blends are limiting. Co-sputter deposition of PTFE and a filler material overcomes several of these limitations by enabling the reduction of particle size to the atomic level and also by allowing for the even coating of the solid lubricant on relatively large areas and components. The goal of this study was to establish a baseline performance of the sputtered PTFE films as compared to the bulk material, and to establish deposition conditions that would result in the most bulk-like film possible. In order to coax change in the structure of the sputtered films, sputtering power and deposition temperature were increased independently. Further, post-deposition annealing was applied to half of the deposited film in an attempt to affect change in the film structure. Complications in the characterization process due to increasing film thickness were also examined. Bulk-like metrics for characterization processes the included Fourier transform infrared spectroscopy (FTIR), X-ray spectroscopy (XPS), nanoindentation via atomic force microscopy, and contact angle of water on surface measurements were established. The results of the study revealed that increasing sputtering power and deposition temperature resulted in an increase in the similarity between the fluorocarbon films and the bulk PTFE, at a cost of affecting the potential of the film thicknesses, either by affecting the deposition process directly, or by decreasing the longevity of the sputtering targets.

  7. Determination of Diffusion Parameters of CO2 Through Microporous PTFE Using a Potentiometric Method

    NASA Astrophysics Data System (ADS)

    Tarsiche, I.; Ciurchea, D.

    Dk values at the diffusion of CO2 through microporous PTFE of 1 to 7 × 10- 7 cm2 s- 1 in the concentration range from 4 × 10- 4 to 0.22 g/l CO2 are determined using a simple, fast and reliable potentiometric method. The method is based on the least-squares fitting of the potential versus time response of a self made CO2 sensitive Severinghaus type sensor with PTFE as a gas-permeable membrane. The obtained results are in good agreement with other reported literature data, both experimental or calculated ones using molecular dynamics simulations. The proposed technique is very sensitive especially at low concentrations of gas and may be used for the study of other polymeric membranes too.

  8. Guided bone regeneration using nonexpanded polytetrafluoroethylene membranes in preparation for dental implant placements--a report of 420 cases.

    PubMed

    Barboza, Eliane Porto; Stutz, Bianca; Ferreira, Vinícius Farias; Carvalho, Waldimir

    2010-02-01

    The biologic principle of guided bone regeneration has been successfully used to prevent bone loss in extraction sites. This study comprises 420 cases of alveolar ridge maintenance in preparation for dental implant placements. Nonexpanded polytetrafluoroethylene membranes were positioned over all extraction sites and left intentionally exposed. Lyophilized mineralized bone allografts were used to prevent membrane collapse when buccal bone walls were lost. Membranes were removed at week 4. At the time of implant placements, all sites presented soft tissue compatibility with keratinized gingiva. The mucogingival junction position seemed to be preserved. Exposed nonexpanded polytetrafluoroethylene membranes associated, or not, with bone graft provide tissue formation suitable for implant placement.

  9. Spherical microglass particle impingement studies of thermoplastic materials at normal incidence

    NASA Technical Reports Server (NTRS)

    Veerabhadra Rao, P.; Buckley, D. H.

    1984-01-01

    Light optical and scanning electron microscope studies were conducted to characterize the erosion resistance of polymethyl methacrylate (PMMA), polycarbonate (PC), polytetrafluoroethylene (PTFE) and ultra-high-molecular-weight-polyethylene (UHMWPE). Erosion was caused by a jet of spherical micro-glass beads at normal impact. During the initial stages of damage, the surfaces of these materials were studied using a profilometer. Material buildup above the original surface was observed on PC and PMMA. As erosion progressed, this buildup disappeared as the pit became deeper. Little or no buildup was observed on PTFE and on UHMWPE. UHMWPE and PTFE are the most resistant materials and PMMA the least. Favorable properties for high erosion resistance seem to be high values of ultimate elongation, and strain energy and a low value of the modulus of elasticity. Erosion-rate-versus-time curves of PC and PTFE exhibit incubation, acceleration and steady state periods. A continuously increasing erosion rate period was observed however for PMMA instead of a steady state period. At early stages of damage and at low impact pressure material removal mechanisms appear to be similar to those for metallic materials.

  10. Spherical micro-glass particle impingement studies of thermoplastic materials at normal incidence

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Buckley, D. H.

    1983-01-01

    Light optical and scanning electron microscope studies were conducted to characterize the erosion resistance of polymethyl methacrylate (PMMA), polycarbonate (PC), polytetrafluoroethylene (PTFE) and ultra-high-molecular-weight-polyethylene (UHMWPE). Erosion was caused by a jet of spherical micro-glass beads at normal impact. During the initial stages of damage, the surfaces of these materials were studied using a profilometer. Material buildup above the original surface was observed on PC and PMMA. As erosion progressed, this buildup disappeared as the pit became deeper. Little or no buildup was observed on PTFE and on UHMWPE. UHMWPE and PTFE are the most resistant materials and PMMA the least. Favorable properties for high erosion resistance seem to be high values of ultimate elongation, and strain energy and a low value of the modulus of elasticity. Erosion-rate-versus-time curves of PC and PTFE exhibit incubation, acceleration and steady state periods. A continuously increasing erosion rate period was observed however for PMMA instead of a steady state period. At early stages of damage and at low impact pressure material removal mechanisms appear to be similar to those for metallic materials.

  11. Alkaline anion exchange membrane water electrolysis: Effects of electrolyte feed method and electrode binder content

    NASA Astrophysics Data System (ADS)

    Cho, Min Kyung; Park, Hee-Young; Lee, Hye Jin; Kim, Hyoung-Juhn; Lim, Ahyoun; Henkensmeier, Dirk; Yoo, Sung Jong; Kim, Jin Young; Lee, So Young; Park, Hyun S.; Jang, Jong Hyun

    2018-04-01

    Herein, we investigate the effects of catholyte feed method and anode binder content on the characteristics of anion exchange membrane water electrolysis (AEMWE) to construct a high-performance electrolyzer, revealing that the initial AEMWE performance is significantly improved by pre-feeding 0.5 M aqueous KOH to the cathode. The highest long-term activity during repeated voltage cycling is observed for AEMWE operation in the dry cathode mode, for which the best long-term performance among membrane electrode assemblies (MEAs) featuring polytetrafluoroethylene (PTFE) binder-impregnated (5-20 wt%) anodes is detected for a PTFE content of 20 wt%. MEAs with low PTFE content (5 and 9 wt%) demonstrate high initial performance, rapid performance decay, and significant catalyst loss from the electrode during long-term operation, whereas the MEA with 20 wt% PTFE allows stable water electrolysis for over 1600 voltage cycles. Optimization of cell operating conditions (i.e., operation in dry cathode mode at an optimum anode binder content following an initial solution feed) achieves an enhanced water splitting current density (1.07 A cm-2 at 1.8 V) and stable long-term AEMWE performance (0.01% current density reduction per voltage cycle).

  12. Improved performance of Mg-Y alloy thin film switchable mirrors after coating with a superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    La, Mao; Zhou, Huaijuan; Li, Ning; Xin, Yunchuan; Sha, Ren; Bao, Shanhu; Jin, Ping

    2017-05-01

    The magnesium based switchable mirrors can reversibly change their optical properties between the transparent and the reflective state as a result of hydrogenation and dehydrogenation. These films can potentially be applied as new energy-saving windows, by controlling the transmittance of solar radiation through the regulation of their reflective state. In this study, magnesium-yttrium (Mg-Y) alloy thin films were prepared using a DC magnetron sputtering method. However, the luminous transmittance in the transparent state and the switching durability of switchable mirrors are too poor to satisfy practical demands. In order to improve the films switching durability, luminous transmittance and the surface functionalization, polytetrafluoroethylene (PTFE) was coated with thermal vacuum deposition for use as the top layer of Mg-Y/Pd switchable mirrors. The PTFE layer had a porous network structure and exhibited a superhydrophobic surface with a water contact angle of approximately 152°. By characterization, PTFE thin films shows the excellent protection role against the oxidization of Mg, the switching durability of the films were improved 3 times, and also shows the antireflection role the luminous transmission of films was enhanced by 7% through the top covered with PTFE.

  13. Using Microporous Polytetrafluoroethylene Thin Sheets as a Flexible Solar Diffuser to Minimize Sunlight Glint to Cameras in Space

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2016-01-01

    An innovative design of using microporous PTFE thin sheets as a solar diffuser for MLI blankets or mechanical structure has been developed. It minimizes sunlight or stray-light glint to cameras when it is incident on these components in space. A microporous black PTFE thin sheet solar diffuser has been qualified for flight at NASA GSFC and installed to the TAGSAM arm MLI, OCAMS PolyCam sunshade MLI and SamCam motor riser MLI in the NASA OSIRIS-REx mission to meet the SamCam camera BRDF requirement.

  14. Using microporous polytetrafluoroethylene thin sheets as a flexible solar diffuser to minimize sunlight glint to cameras in space

    NASA Astrophysics Data System (ADS)

    Choi, Michael K.

    2016-09-01

    An innovative design of using microporous PTFE thin sheets as a solar diffuser for MLI blankets or mechanical structure has been developed. It minimizes sunlight or stray-light glint to cameras when it is incident on these components in space. A microporous black PTFE thin sheet solar diffuser has been qualified for flight at NASA GSFC and installed to the TAGSAM arm MLI, OCAMS PolyCam sunshade MLI and SamCam motor riser MLI in the NASA OSIRIS-REx mission to meet the SamCam camera BRDF requirement.

  15. The biodurability of covering materials for metallic stents in a bile flow phantom.

    PubMed

    Bang, Byoung Wook; Jeong, Seok; Lee, Don Haeng; Lee, Jung Il; Lee, Se Chul; Kang, Sung-Gwon

    2012-04-01

    Covered biliary metal stents have been introduced for the purpose of overcoming tumor ingrowth and treatment of benign biliary stricture. The aim of this study was to evaluate the biodurability of three commercially available biliary metal stent covering materials [e-PTFE (expanded polytetrafluoroethylene), silicone, and polyurethane] in a bile flow phantom. By operation of a peristaltic pump, human bile was circulated continuously in an experimental perfusion system containing covered metal stents. Each stent was removed, respectively, 1, 2, 4, and 6 months after bile exposure. We performed a gross inspection of the covered stents. The covering membrane was detached from the stent and observed by scanning electron microscopy (SEM). Finally, we measured tensile and tear strength of the membranes. Bile-staining of the membrane showed gradual progression after bile exposure; however, progress was the fastest in e-PTFE. SEM examination showed that the polyurethane surface was smooth, and the silicone surface was relatively smooth. However, e-PTFE had a rough and uneven surface. After bile exposure, there were no significant changes in polyurethane and silicone; however, biofilms and microcracks were observed in e-PTFE. In contrast to a gradual decrease of tensile/tear strength of polyurethane and silicone, those of e-PTFE showed a rapid reduction despite of the strongest baseline tensile and tear strength. e-PTFE tended to form biofilms more frequently than polyurethane and silicone during bile exposure. e-PTFE seemed to be less durable than silicone and polyurethane, however, as clinically applicable material because of strong absolute tensile/tear strengths.

  16. 76 FR 3614 - Granular Polytetrafluoroethylene Resin From Japan: Final Results of Sunset Review and Revocation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-588-707] Granular Polytetrafluoroethylene Resin From Japan: Final Results of Sunset Review and Revocation of Antidumping Duty Order AGENCY.... As a result, in accordance with 19 CFR 351.218(d)(1)(iii)(A), the Department determined that no...

  17. Tissue response to peritoneal implants

    NASA Technical Reports Server (NTRS)

    Picha, G. J.

    1980-01-01

    Peritoneal implants were fabricated from poly 2-OH, ethyl methacrylate (HEMA), polyetherurethane (polytetramethylene glycol 1000 MW, 1,4 methylene disocynate, and ethyl diamine), and untreated and sputter treated polytetrafluoroethylene (PTFE). The sputter treated PTFE implants were produced by an 8 cm diameter argon ion source. The treated samples consisted of ion beam sputter polished samples, sputter etched samples (to produce a microscopic surface cone texture) and surface pitted samples (produced by ion beam sputtering to result in 50 microns wide by 100 microns deep square pits). These materials were implanted in rats for periods ranging from 30 minutes to 14 days. The results were evaluated with regard to cell type and attachment kinetics onto the different materials. Scanning electron microscopy and histological sections were also evaluated. In general the smooth hydrophobic surfaces attracted less cells than the ion etched PTFE or the HEMA samples. The ion etching was observed to enhance cell attachment, multinucleated giant cell (MNGC) formation, cell to cell contact, and fibrous capsule formation. The cell responsed in the case of ion etched PTFE to an altered surface morphology. However, equally interesting was the similar attachment kinetics of HEMA verses the ion etched PTFE. However, HEMA resulted in a markedly different response with no MNGC's formation, minimal to no capsule formation, and sample coverage by a uniform cell layer.

  18. In vivo hair growth promotion effects of ultra-high molecular weight poly-γ-glutamic acid from Bacillus subtilis (Chungkookjang).

    PubMed

    Choi, Jae-Chul; Uyama, Hiroshi; Lee, Chul-Hoon; Sung, Moon-Hee

    2015-03-01

    We investigated the effect of ultra-high molecular weight poly-γ-glutamic acid (UHMW γ-PGA) on hair loss in vitro and in vivo. 5-Alpha reductase is an enzyme that metabolizes the male hormone testosterone into dihydrotestosterone. By performing an in vitro experiment to analyze the inhibitory effects of UHMW γ-PGA on 5-alpha reductase activity, we determined that UHMW γ-PGA did in fact inhibit 5-alpha reductase activity, indicating the use of UHMW γ-PGA as a potential 5-alpha reductase inhibitor in the treatment of men with androgenetic alopecia. To evaluate the promotion of hair growth in vivo, we topically applied UHMW γ-PGA and minoxidil on the shaved dorsal skin of telogenic C57BL/6 mice for 4 weeks. At 4 weeks, the groups treated with UHMW γ-PGA showed hair growth on more than 50% of the shaved skin, whereas the control group showed less hair growth. To investigate the progression of hair follicles in the hair cycle, hematoxylin and eosin staining was performed. Histological observations revealed that the appearance of hair follicles was earlier in the UHMW γ-PGA-treated group than in the control group. The number of hair follicles on the relative area of shaved skin in the UHMW γ-PGA-treated group was higher than that observed on the shaved skin in the control group. These results indicate that UHMW γ-PGA can promote hair growth by effectively inducing the anagen phase in telogenic C57BL/6 mice.

  19. Self-discharge performance of Ni-MH battery by using electrodes with hydrophilic/hydrophobic surface

    NASA Astrophysics Data System (ADS)

    Li, Xiaofeng; Wang, Xiaojie; Dong, Huichao; Xia, Tongchi; Wang, Lizhen; Song, Yanhua

    2013-12-01

    The polytetrafluoroethylene (PTFE) and carboxymethyl cellulose (CMC) film is separately coated on the surface of the metal hydride (MH) and Ni(OH)2 electrodes to obtain the electrodes with hydrophobic or hydrophilic surface. The effects of the surface treatment on the oxygen and hydrogen evolution from the electrodes are studied by using cyclic voltammetry tests. Although the positive and negative active materials of the Ni-MH batteries show a lower self-decomposition rate after the CMC treatment, the self-discharge rate of the batteries show little change. On the contrary, the self-discharge rate of the batteries decreases from 35.9% to 27.1% by using the PTFE-treated Ni(OH)2 electrodes, which might be related to the suppression of the reaction between NiOOH and H2 by the hydrophobic film.

  20. What Is the PE Password? Incorporating Vocabulary in Your Elementary PE Program

    ERIC Educational Resources Information Center

    Robelee, Margaret E.

    2016-01-01

    This article describes a novel program for third through fifth grade called "What is the PE Password?" that teaches vocabulary words and concepts without sacrificing activity time in order to support Common Core learning.

  1. Measurements of prompt radiation induced conductivity in Teflon (PTFE).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, E. Frederick; Zarick, Thomas Andrew; Sheridan, Timothy J.

    2013-05-01

    We performed measurements of the prompt radiation induced conductivity (RIC) in thin samples of Teflon (PTFE) at the Little Mountain Medusa LINAC facility in Ogden, UT. Three mil (76.2 microns) samples were irradiated with a 0.5 %CE%BCs pulse of 20 MeV electrons, yielding dose rates of 1E9 to 1E11 rad/s. We applied variable potentials up to 2 kV across the samples and measured the prompt conduction current. Details of the experimental apparatus and analysis are reported in this report on prompt RIC in Teflon.

  2. [RS3PE syndrome: presentation of two cases].

    PubMed

    Parra Ródenas, J V; Calvo Catalá, J; González-Cruz Cervellera, M I; Cervera Moscardó, J; Valero Prieto, I

    1996-12-01

    Recently, the syndrome of remitting seronegative symmetrical synovitis with pitting edema (RS3PE), has been proposed. The RS3PE syndrome has an acute onset, does not produce bony erosions, with a predilection for elderly patients and an excellent prognosis. This condition distinguishing if from rheumatoid arthritis and polymyalgia rheumatica. The purpose is to call attention to a benign forms of arthritis in aging patients. We report two cases of RS3PE syndrome.

  3. Measurement of complex terahertz dielectric properties of polymers using an improved free-space technique

    NASA Astrophysics Data System (ADS)

    Chang, Tianying; Zhang, Xiansheng; Yang, Chuanfa; Sun, Zhonglin; Cui, Hong-Liang

    2017-04-01

    The complex dielectric properties of non-polar solid polymer materials were measured in the terahertz (THz) band by a free-space technique employing a frequency-extended vector network analyzer (VNA), and by THz time-domain spectroscopy (TDS). Mindful of THz wave’s unique characteristics, the free-space method for measurement of material dielectric properties in the microwave band was expanded and improved for application in the THz frequency region. To ascertain the soundness and utility of the proposed method, measurements of the complex dielectric properties of a variety of polymers were carried out, including polytetrafluoroethylene (PTFE, known also by the brand name Teflon), polypropylene (PP), polyethylene (PE), and glass fiber resin (Composite Stone). The free-space method relies on the determination of electromagnetic scattering parameters (S-parameters) of the sample, with the gated-reflect-line (GRL) calibration technique commonly employed using a VNA. Subsequently, based on the S-parameters, the dielectric constant and loss characteristic of the sample were calculated by using a Newtonian iterative algorithm. To verify the calculated results, THz TDS technique, which produced Fresnel parameters such as reflection and transmission coefficients, was also used to independently determine the dielectric properties of these polymer samples, with results satisfactorily corroborating those obtained by the free-space extended microwave technique.

  4. 76 FR 12939 - Granular Polytetrafluoroethylene Resin From Italy: Final Results of Expedited Sunset Review of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... Polytetrafluoroethylene Resin From Italy: Final Results of Expedited Sunset Review of the Antidumping Duty Order AGENCY... resin'') from Italy. The Department has conducted an expedited sunset review of this order. As a result... lead to continuation or recurrence of dumping at the margins identified in the Final Results of Review...

  5. Pull-Through Technique for Recanalization of Occluded Portosystemic Shunts (TIPS): Technical Note and Review of the Literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Toshihiro, E-mail: toshihir@bf6.so-net.ne.jp; Guenther, Rolf W., E-mail: guenther@rad.rwth-aachen.de; Isfort, Peter, E-mail: isfort@hia.rwth-aachen.de

    Transjugular intrahepatic portosystemic shunt (TIPS) dysfunction is an important problem after creation of shunts. Most commonly, TIPS recanalization is performed via the jugular vein approach. Occasionally it is difficult to cross the occlusion. We describe a hybrid technique for TIPS revision via a direct transhepatic access combined with a transjugular approach. In two cases, bare metal stents or polytetrafluoroethylene (PTFE)-covered stent grafts had been placed in TIPS tract previously, and they were completely obstructed. The tracts were inaccessible via the jugular vein route alone. In each case, after fluoroscopy or computed tomography-guided transhepatic puncture of the stented segment of themore » TIPS, a wire was threaded through the shunt and snared into the right jugular vein. The TIPS was revised by balloon angioplasty and additional in-stent placement of PTFE-covered stent grafts. The patients were discharged without any complications. Doppler sonography 6 weeks after TIPS revision confirmed patency in the TIPS tract and the disappearance of ascites. We conclude that this technique is feasible and useful, even in patients with previous PTFE-covered stent graft placement.« less

  6. Magnetic strength and corrosion of rare earth magnets.

    PubMed

    Ahmad, Khalid A; Drummond, James L; Graber, Thomas; BeGole, Ellen

    2006-09-01

    Rare earth magnets have been used in orthodontics, but their corrosion tendency in the oral cavity limits long-term clinical application. The aim of this project was to evaluate several; magnet coatings and their effects on magnetic flux density. A total of 60 neodymium-iron-boron magnets divided into 6 equal groups--polytetrafluoroethylene-coated (PTFE), parylene-coated, and noncoated--were subjected to 4 weeks of aging in saline solution, ball milling, and corrosion testing. A significant decrease in magnet flux density was recorded after applying a protective layer of parylene, whereas a slight decrease was found after applying a protective layer of PTFE. After 4 weeks of aging, the coated magnets were superior to the noncoated magnets in retaining magnetism. The corrosion-behavior test showed no significant difference between the 2 types of coated magnets, and considerable amounts of iron-leached ions were seen in all groups. Throughout the processes of coating, soaking, ball milling, and corrosion testing, PTFE was a better coating material than parylene for preserving magnet flux density. However, corrosion testing showed significant metal leaching in all groups.

  7. Switchable Super-Hydrophilic/Hydrophobic Indium Tin Oxide (ITO) Film Surfaces on Reactive Ion Etching (RIE) Textured Si Wafer.

    PubMed

    Kim, Hwa-Min; Litao, Yao; Kim, Bonghwan

    2015-11-01

    We have developed a surface texturing process for pyramidal surface features along with an indium tin oxide (ITO) coating process to fabricate super-hydrophilic conductive surfaces. The contact angle of a water droplet was less than 5 degrees, which means that an extremely high wettability is achievable on super-hydrophilic surfaces. We have also fabricated a super-hydrophobic conductive surface using an additional coating of polytetrafluoroethylene (PTFE) on the ITO layer coated on the textured Si surface; the ITO and PTFE films were deposited by using a conventional sputtering method. We found that a super-hydrophilic conductive surface is produced by ITO coated on the pyramidal Si surface (ITO/Si), with contact angles of approximately 0 degrees and a resistivity of 3 x 10(-4) Ω x cm. These values are highly dependent on the substrate temperature during the sputtering process. We also found that the super-hydrophobic conductive surface produced by the additional coating of PTFE on the pyramidal Si surface with an ITO layer (PTFE/ITO/Si) has a contact angle of almost 160 degrees and a resistivity of 3 x 10(-4) Ω x cm, with a reflectance lower than 9%. Therefore, these processes can be used to fabricate multifunctional features of ITO films for switchable super-hydrophilic and super-hydrophobic surfaces.

  8. Three-dimensional phase segregation of micro-porous layers for fuel cells by nano-scale X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Andisheh-Tadbir, Mehdi; Orfino, Francesco P.; Kjeang, Erik

    2016-04-01

    Modern hydrogen powered polymer electrolyte fuel cells (PEFCs) utilize a micro-porous layer (MPL) consisting of carbon nanoparticles and polytetrafluoroethylene (PTFE) to enhance the transport phenomena and performance while reducing cost. However, the underlying mechanisms are not yet completely understood due to a lack of information about the detailed MPL structure and properties. In the present work, the 3D phase segregated nanostructure of an MPL is revealed for the first time through the development of a customized, non-destructive procedure for monochromatic nano-scale X-ray computed tomography visualization. Utilizing this technique, it is discovered that PTFE is situated in conglomerated regions distributed randomly within connected domains of carbon particles; hence, it is concluded that PTFE acts as a binder for the carbon particles and provides structural support for the MPL. Exposed PTFE surfaces are also observed that will aid the desired hydrophobicity of the material. Additionally, the present approach uniquely enables phase segregated calculation of effective transport properties, as reported herein, which is particularly important for accurate estimation of electrical and thermal conductivity. Overall, the new imaging technique and associated findings may contribute to further performance improvements and cost reduction in support of fuel cell commercialization for clean energy applications.

  9. Effect of hydrophobic additive on oxygen transport in catalyst layer of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Shunzhong; Li, Xiaohui; Wan, Zhaohui; Chen, Yanan; Tan, Jinting; Pan, Mu

    2018-03-01

    Oxygen transport resistance (OTR) is a critical factor influencing the performance of proton exchange membrane fuel cells (PEMFCs). In this paper, an effective method to reduce the OTR of catalyst layers (CLs) by introducing a hydrophobic additive into traditional CLs is proposed. A low-molecular-weight polytetrafluoroethylene (PTFE) is selected for its feasibility to prepare an emulsion, which is mixed with a traditional catalyst ink to successfully fabricate the CL with PTFE of 10 wt%. The PTFE film exists in the mesopores between the carbon particles. The limiting current of the hydrophobic CL was almost 4000 mA/cm2, which is 500 mA/cm2 higher than that of the traditional CL. PTFE reduces the OTR of the CL in the dry region by as much as 24 s/m compared to the traditional CL and expands the dry region from 2000 mA/cm2 in the traditional CL to 2500 mA/cm2. Furthermore, the CL with the hydrophobic agent can improve the oxygen transport in the wet region (>2000 mA/cm2) more effectively than that in the dry region. All these results indicate that the CL with the hydrophobic agent shows a superior performance in terms of optimizing water management and effectively reduces the OTR in PEMFCs.

  10. [Activity of amphotericin B and anidulafungin, alone and combined, against Candida tropicalis biofilms developed on Teflon® and titanium].

    PubMed

    Fernández-Rivero, Marcelo Ernesto; Del Pozo, José L; Valentín, Amparo; Fornes, Victoria; Molina de Diego, Araceli; Pemán, Javier; Cantón, Emilia

    Current therapeutic strategies have a limited efficacy against Candida biofilms that form on the surfaces of biomedical devices. Few studies have evaluated the activity of antifungal agents against Candida tropicalis biofilms. To evaluate the activity of amphotericin B (AMB) and anidulafungin (AND), alone and in combination, against C. tropicalis biofilms developed on polytetrafluoroethylene (teflon -PTFE) and titanium surfaces using time-kill assays. Assays were performed using the CDC Biofilm Reactor equipped with PTFE and titanium disks with C. tropicalis biofilms after 24h of maturation. The concentrations assayed were 40mg/l for AMB and 8mg/l for AND, both alone and combined. After 24, 48 and 72h of exposure to the antifungals, the cfu/cm 2 was determined by a vortexing-sonication procedure. AMB reduced biofilm viable cells attached to PTFE and titanium by ≥99% and AND by 89.3% on PTFE and 96.8% on titanium. The AMB+AND combination was less active than AMB alone, both on PTFE (decrease of cfu/cm 2 3.09 Log 10 vs. 1.08 when combined) and titanium (4.51 vs. 1.53 when combined), being the interaction irrelevant on both surfaces. AMB is more active than AND against C. tropicalis biofilms. Yeast killing rates are higher on titanium than on PTFE surfaces. The combination of AMB plus AND is less effective than AMB alone on both surfaces. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Removal of I, Rn, Xe and Kr from off gas streams using PTFE membranes

    DOEpatents

    Siemer, Darryl D.; Lewis, Leroy C.

    1990-01-01

    A process for removing I, R, Xe and Kr which involves the passage of the off gas stream through a tube-in-shell assembly, whereby the tubing is a PTFE membrane which permits the selective passages of the gases for removing and isolating the gases.

  12. Removal of I, Rn, Xe and Kr from off gas streams using PTFE membranes

    DOEpatents

    Siemer, Darryl D.; Lewis, Leroy C.

    1990-08-07

    A process for removing I, R, Xe and Kr which involves the passage of the off gas stream through a tube-in-shell assembly, whereby the tubing is a PTFE membrane which permits the selective passages of the gases for removing and isolating the gases.

  13. Salivary protein adsorption and Streptococccus gordonii adhesion to dental material surfaces.

    PubMed

    Schweikl, Helmut; Hiller, Karl-Anton; Carl, Ulrich; Schweiger, Rainer; Eidt, Andreas; Ruhl, Stefan; Müller, Rainer; Schmalz, Gottfried

    2013-10-01

    The initial adhesion of microorganisms to clinically used dental biomaterials is influenced by physico-chemical parameters like hydrophobicity and pre-adsorption of salivary proteins. Here, polymethyl methacrylate (PMMA), polyethylene (PE), polytetrafluoroethylene (PTFE), silicone (Mucopren soft), silorane-based (Filtek Silorane) and methacrylate-based (Tetric EvoCeram) dental composites, a conventional glassionomer cement as well as cobalt-chromium-molybdenum (Co28Cr6Mo) and titanium (Ti6Al4V) were tested for adsorption of salivary proteins and adhesion of Streptococcus gordonii DL1. Wettability of material surfaces precoated with salivary proteins or left in phosphate-buffered saline was determined by the measurement of water contact angles. Amounts of adsorbed proteins were determined directly on material surfaces after biotinylation of amino groups and detection by horseradish peroxidase-conjugated avidin-D. The same technique was used to analyze for the binding of biotinylated bacteria to material surfaces. The highest amount of proteins (0.18μg/cm(2)) adsorbed to hydrophobic PTFE samples, and the lowest amount (0.025μg/cm(2)) was detected on silicone. The highest number of S. gordonii (3.2×10(4)CFU/mm(2)) adhered to the hydrophilic glassionomer cement surface coated with salivary proteins, and the lowest number (4×10(3)CFU/mm(2)) was found on the hydrophobic silorane-based composite. Hydrophobicity of pure material surfaces and the number of attached microorganisms were weakly negatively correlated. No such correlation between hydrophobicity and the number of bacteria was detected when surfaces were coated with salivary proteins. Functional groups added by the adsorption of specific salivary proteins to material surfaces are more relevant for initial bacterial adhesion than hydrophobicity as a physical property. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Elementary Students' Construct of PE Teacher Credibility

    ERIC Educational Resources Information Center

    Ramos, Nilo O.; McCullick, Bryan A.

    2015-01-01

    The purpose of this study was to investigate elementary students' perceptions of PE teacher credibility. Eight high- and low-skilled students from grades 3 and 5 were selected from a school employing a PE teacher holding a National Board Certification. Data were collected in the school setting utilizing observations, field notes, an open-ended…

  15. Corrosion Chemistry in Inhibited HDA.

    DTIC Science & Technology

    1980-11-30

    mg HF. 200 B.1 Teflon PFA Reactor 201 (xviii) .. .. - i LIST OF MICROGRAPHS Micrograph Follows Page 4.1 A1/HDA x 1,000 80 4.2 A1/0.4 Wt % PF5 x 2,000...Ethylene Propylene copolymer Teflon PTFE Polytetrafluoroethylene Teflon PFA Perfluoroalkoxy fluorocarbon resin Spectroscopy IR (ir) Infra-red UV...fluoroplastic apparatus (to avoid any possible contamination by the reaction products of HF with glass). Iron powder (0.3g) was placed in a PFA screw-cap

  16. Investigation of PTFE transfer films by infrared emission spectroscopy and phase-locked ellipsometry

    NASA Technical Reports Server (NTRS)

    Lauer, James L.; Bunting, Bruce G.; Jones, William R., Jr.

    1987-01-01

    When a PTFE sheet was rubbed unidirectionally over a smooth surface of stainless steel an essentially monomolecular transfer film was formed. By ellipsometric and emission infrared spectroscopic techniques it was shown that the film was 10 to 15 A thick and birefringent. From the intensity differences of infrared bands obtained with a polarizer passing radiation polarized in mutually perpendicular planes, it was possible to deduce transfer film orientation with the direction of rubbing. After standing in air for several weeks the transfer films apparently increased in thickness by as much as threefold. At the same time both the index of refraction and the absorption index decreased. Examination of the surfaces by optical and electron microscopies showed that the films had become porous and flaky. These observations were consistent with previous tribological measurements. The coefficients of friction decreased with the formation of the transfer film but increased again as the film developed breaks. The applicability of the ellipsometric and polarized infrared emission techniques to the identification of monomolecular tribological transfer films of polymers such as PTFE has been demonstrated.

  17. Binder materials for the cathodes applied to self-stratifying membraneless microbial fuel cell.

    PubMed

    Walter, Xavier Alexis; Greenman, John; Ieropoulos, Ioannis

    2018-04-19

    The recently developed self-stratifying membraneless microbial fuel cell (SSM-MFC) has been shown as a promising concept for urine treatment. The first prototypes employed cathodes made of activated carbon (AC) and polytetrafluoroethylene (PTFE) mixture. Here, we explored the possibility to substitute PTFE with either polyvinyl-alcohol (PVA) or PlastiDip (CPD; i.e. synthetic rubber) as binder for AC-based cathode in SSM-MFC. Sintered activated carbon (SAC) was also tested due to its ease of manufacturing and the fact that no stainless steel collector is needed. Results indicate that the SSM-MFC having PTFE cathodes were the most powerful measuring 1617 μW (11 W·m -3 or 101 mW·m -2 ). SSM-MFC with PVA and CPD as binders were producing on average the same level of power (1226 ± 90 μW), which was 24% less than the SSM-MFC having PTFE-based cathodes. When balancing the power by the cost and environmental impact, results clearly show that PVA was the best alternative. Power wise, the SAC cathodes were shown being the less performing (≈1070 μW). Nonetheless, the lower power of SAC was balanced by its inexpensiveness. Overall results indicate that (i) PTFE is yet the best binder to employ, and (ii) SAC and PVA-based cathodes are promising alternatives that would benefit from further improvements. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Development of in situ time-resolved Raman spectroscopy facility for dynamic shock loading in materials

    NASA Astrophysics Data System (ADS)

    Chaurasia, S.; Rastogi, V.; Rao, U.; Sijoy, C. D.; Mishra, V.; Deo, M. N.

    2017-11-01

    The transient state of excitation and relaxation processes in materials under shock compression can be investigated by coupling the laser driven shock facility with Raman spectroscopy. For this purpose, a time resolved Raman spectroscopy setup has been developed to monitor the physical and the chemical changes such as phase transitions, chemical reactions, molecular kinetics etc., under shock compression with nanosecond time resolution. This system consist of mainly three parts, a 2 J/8 ns Nd:YAG laser system used for generation of pump and probe beams, a Raman spectrometer with temporal and spectral resolution of 1.2 ns and 3 cm-1 respectively and a target holder in confinement geometry assembly. Detailed simulation for the optimization of confinement geometry targets is performed. Time resolved measurement of polytetrafluoroethylene (PTFE) targets at focused laser intensity of 2.2 GW/cm2 has been done. The corresponding pressure in the Aluminum and PTFE are 3.6 and 1.7 GPa respectively. At 1.7 GPa in PTFE, a red shift of 5 cm-1 is observed for the CF2 twisting mode (291 cm-1). Shock velocity in PTFE is calculated by measuring rate of change of ratios of the intensity of Raman lines scattered from shocked volume to total volume of sample in the laser focal spot along the laser axis. The calculated shock velocity in PTFE is found to be 1.64 ± 0.16 km/s at shock pressure of 1.7 GPa, for present experimental conditions.

  19. Meaningful Experiences in PE for All Students: An Activist Research Approach

    ERIC Educational Resources Information Center

    Walseth, Kristin; Engebretsen, Berit; Elvebakk, Lisbeth

    2018-01-01

    Background and purpose: The research literature in physical education (PE) is placing a growing focus on the need for research that can illuminate not only the challenges PE faces but also how we can develop PE to meet the needs of all students. The activist approach aims to study future possibilities in PE, and the goal is for all young people…

  20. RS3PE revealing recurrent non-Hodgkin's lymphoma.

    PubMed

    Gisserot, Olivier; Crémades, Serge; Landais, Cécile; Leyral, Guénaelle; Bernard, Philippe; de Jauréguiberry, Jean-Pierre

    2004-09-01

    A patient meeting published criteria for remitting seronegative symmetrical synovitis with pitting edema (RS3PE) was found to have a synchronous recurrence of non-Hodgkin's malignant lymphoma. Reported cases of RS3PE associated with hematological malignancies and other forms of cancer are reviewed.

  1. Making the Case for Developing New PE-for-Health Pedagogies

    ERIC Educational Resources Information Center

    Armour, Kathleen; Harris, Jo

    2013-01-01

    This article argues for a new direction in research on health education within physical education (PE). Governments are increasingly looking to schools as a convenient form of public health investment. PE is implicated in health because of its core focus on physical activity, but there is little evidence to suggest that PE improves health…

  2. Stress Analysis and Fatigue Behaviour of PTFE-Bronze Layered Journal Bearing under Real-Time Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Duman, M. S.; Kaplan, E.; Cuvalcı, O.

    2018-01-01

    The present paper is based on experimental studies and numerical simulations on the surface fatigue failure of the PTFE-bronze layered journal bearings under real-time loading. ‘Permaglide Plain Bearings P10’ type journal bearings were experimentally tested under different real time dynamic loadings by using real time journal bearing test system in our laboratory. The journal bearing consists of a PTFE-bronze layer approximately 0.32 mm thick on the steel support layer with 2.18 mm thick. Two different approaches have been considered with in experiments: (i) under real- time constant loading with varying bearing widths, (ii) under different real-time loadings at constant bearing widths. Fatigue regions, micro-crack dispersion and stress distributions occurred at the journal bearing were experimentally and theoretically investigated. The relation between fatigue region and pressure distributions were investigated by determining the circumferential pressure distribution under real-time dynamic loadings for the position of every 10° crank angles. In the theoretical part; stress and deformation distributions at the surface of the journal bearing analysed by using finite element methods to determine the relationship between stress and fatigue behaviour. As a result of this study, the maximum oil pressure and fatigue cracks were observed in the most heavily loaded regions of the bearing surface. Experimental results show that PTFE-Bronze layered journal bearings fatigue behaviour is better than the bearings include white metal alloy.

  3. Selective protection of poly(tetra-fluoroethylene) from effects of chemical etching

    DOEpatents

    Martinez, Robert J.; Rye, Robert R.

    1991-01-01

    A photolithographic method for treating an article formed of polymeric material comprises subjecting portions of a surface of the polymeric article to ionizing radiation; and then subjecting the surface to chemical etching. The ionizing radiation treatment according to the present invention minimizes the effect of the subseuent chemical etching treatment. Thus, selective protection from the effects of chemical etching can be easily provided. The present invention has particular applicability to articles formed of fluorocarbons, such as PTFE. The ionizing radiation employed in the method may comprise Mg(k.alpha.) X-rays or lower-energy electrons.

  4. Pervaporation of model acetone-butanol-ethanol fermentation product solutions using polytetrafluoroethylene membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vrana, D.L.; Meagher, M.M.; Hutkins, R.W.

    1993-10-01

    A pervaporation apparatus was designed and tested in an effort to develop an integrated fermentation and product recovery process for acetone-butanol-ethanol(ABE) fermentation. A crossflow membrane module able to accommodate flat sheet hydrophobic membranes was used for the experiments. Permeate vapors were collected under vacuum and condensed in a dry ice/ethanol cold trap. The apparatus containing polytetrafluoroethylene membranes was tested using butanol-water and model solutions of ABE products. Parameters such as product concentration, component effect, temperature, and permeate side pressure were examined. 25 refs., 3 figs., 5 tabs.

  5. Urban Waters and the Caño Martín Peña (Martín Peña Channel, Puerto Rico)

    EPA Pesticide Factsheets

    The Martín Peña Channel Urban Waters Federal Partnership seeks to make significant contributions to the health and welfare of the eight communities that surround the Martín Peña Channel in San Juan, Puerto Rico.

  6. Use of Spectralon as a diffuse reflectance standard for in-flight calibration of earth-orbiting sensors

    NASA Technical Reports Server (NTRS)

    Bruegge, Carol J.; Stiegman, Albert E.; Rainen, Richard A.; Springsteen, Arthur W.

    1993-01-01

    Spectralon, a commercially available diffuse reflectance material made from polytetrafluoroethylene (PTFE), is being evaluated for the multiangle imaging spectroradiometer (MISR), currently under development for the Earth Observing System. Results of a series of environmental exposure tests indicate that no degradation of the optical properties was apparent following proton bombardment, and stability through UV illumination was satisfactory, provided simple cleaning and handling procedures were implemented. A buildup of several thousand volts of static charge was found to develop while simulating a rare pass through an auroral storm.

  7. Decontaminating materials used in ground water sampling devices: Organic contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, L.V.; Ranney, T.A.

    2000-12-31

    In these studies, the efficiency of various decontamination protocols was tested on small pieces of materials commonly used in ground water sampling devices. Three materials, which ranged in ability to sorb organic solutes, were tested: stainless steel (SS), rigid polyvinyl chloride (PVC), and polytetrafluoroethylene (PTFE). The test pieces were exposed to two aqueous test solutions: One contained three volatile organic compounds (VOCs) and one nitroaromatic compound, and the other contained four pesticides. Also, three types of polymetic tubing were exposed to pesticide solutions. Generally, the contact times were 10 minutes and 24 hours for sorption and desorption. The contaminants weremore » removed from the nonpermeable SS and the less-sorptive rigid PVC test pieces simply by washing with a hot detergent solution and rinsing with hot water. Additional treatment was required for the PTFE test pieces exposed to the VOCs and for the low-density polyethylene (LDPE) tubing exposed to the pesticide test solution. Solvent rinsing did not improve removal of the three VOCs form the PTFE and only marginally improved removal of the residual pesticides from the LDPE. However, a hot water and detergent wash and rinse followed by oven drying at approximately 105 C was effective for removing the VOCs from the PTFE and substantially reduced pesticide contamination from the LDPE.« less

  8. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation.

    PubMed

    An, Alicia Kyoungjin; Guo, Jiaxin; Jeong, Sanghyun; Lee, Eui-Jong; Tabatabai, S Assiyeh Alizadeh; Leiknes, TorOve

    2016-10-15

    This study investigated the applicability of membrane distillation (MD) to treat dyeing wastewater discharged by the textile industry. Four different dyes containing methylene blue (MB), crystal violet (CV), acid red 18 (AR18), and acid yellow 36 (AY36) were tested. Two types of hydrophobic membranes made of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) were used. The membranes were characterized by testing against each dye (foulant-foulant) and the membrane-dye (membrane-foulant) interfacial interactions and their mechanisms were identified. The MD membranes possessed negative charges, which facilitated the treatment of acid and azo dyes of the same charge and showed higher fluxes. In addition, PTFE membrane reduced the wettability with higher hydrophobicity of the membrane surface. The PTFE membrane evidenced especially its resistant to dye absorption, as its strong negative charge and chemical structure caused a flake-like (loose) dye-dye structure to form on the membrane surface rather than in the membrane pores. This also enabled the recovery of flux and membrane properties by water flushing (WF), thereby direct-contact MD with PTFE membrane treating 100 mg/L of dye mixtures showed stable flux and superior color removal during five days operation. Thus, MD shows a potential for stable long-term operation in conjunction with a simple membrane cleaning process, and its suitability in dyeing wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Modulation of the Activity of Mycobacterium tuberculosis LipY by Its PE Domain

    PubMed Central

    Garrett, Christopher K.; Broadwell, Lindsey J.; Hayne, Cassandra K.; Neher, Saskia B.

    2015-01-01

    Mycobacterium tuberculosis harbors over 160 genes encoding PE/PPE proteins, several of which have roles in the pathogen’s virulence. A number of PE/PPE proteins are secreted via Type VII secretion systems known as the ESX secretion systems. One PE protein, LipY, has a triglyceride lipase domain in addition to its PE domain. LipY can regulate intracellular triglyceride levels and is also exported to the cell wall by one of the ESX family members, ESX-5. Upon export, LipY’s PE domain is removed by proteolytic cleavage. Studies using cells and crude extracts suggest that LipY’s PE domain not only directs its secretion by ESX-5, but also functions to inhibit its enzymatic activity. Here, we attempt to further elucidate the role of LipY’s PE domain in the regulation of its enzymatic activity. First, we established an improved purification method for several LipY variants using detergent micelles. We then used enzymatic assays to confirm that the PE domain down-regulates LipY activity. The PE domain must be attached to LipY in order to effectively inhibit it. Finally, we determined that full length LipY and the mature lipase lacking the PE domain (LipYΔPE) have similar melting temperatures. Based on our improved purification strategy and activity-based approach, we concluded that LipY’s PE domain down-regulates its enzymatic activity but does not impact the thermal stability of the enzyme. PMID:26270534

  10. Tribological study on rapeseed oil with nano-additives in close contact sliding situation

    NASA Astrophysics Data System (ADS)

    Gupta, Rajeev Nayan; Harsha, A. P.; Singh, Sagar

    2018-02-01

    The present work deals with the tribological evaluation of three types of nano-additives, i.e., copper oxide (CuO; ≈ 151.2 nm), cerium oxide (CeO2; ≈ 80 nm) and polytetrafluoroethylene (PTFE; ≈ 90.4 nm) with rapeseed oil under steel-steel sliding contacts. The nano-additives concentrations in the base oil were 0.1, 0.25 and 0.5% w/v for the lubricant formulation. Further, the rapeseed oil was also epoxidized by a chemical method and the tribological behavior was compared with the base oil (unmodified oil) at similar nano-additives concentrations. The ASTM standards were followed for the study of wear preventive and extreme-pressure analysis of nanolubricants, and it was carried out using four-ball tester. In the antiwear test, CeO2 and PTFE nano-additives have shown the significant reduction in the wear scar diameter at the concentration of 0.1% w/v. In the extreme-pressure test, 0.5% w/v concentration was optimum for oxide nanoparticles; however, PTFE nanoparticles did not show positive effect with both the base oils. Different characterization techniques were employed to confirm the oil modification and for the study of the worn surfaces.

  11. Tribological and Mechanical Behaviors of Polyamide 6/Glass Fiber Composite Filled with Various Solid Lubricants

    PubMed Central

    Li, Duxin; Xie, Ying; Li, Wenjuan; You, Yilan; Deng, Xin

    2013-01-01

    The effects of polytetrafluoroethylene (PTFE), graphite, ultrahigh molecular weight polyethylene (UHMWPE), and their compounds on mechanical and tribological properties of glass-fiber-reinforced polyamide 6 (PA6/GF) were studied. The polymeric materials were blended using twin-screw extruder and subsequently injection molded for test samples. Mechanical properties were investigated in terms of hardness, tensile strength, and impact strength. Friction and wear experiments were run under ambient conditions at a rotating speed of 200 rpm and load of 100 N. The morphologies of the worn surfaces were also observed with scanning electron microscope. The results showed that graphite could increase the tensile strength of PA6/GF-15 composite, but the material became soft. Graphite/UHMWPE complex solid lubricants were effective in increasing the already high impact strength of PA6/GF-15 composite. 5% PTFE gave the maximum reduction in the coefficient of friction. However, PTFE/UHMWPE complex solid lubricants were the best choice for improving both friction and wear behaviors due to the lower friction coefficient and mass wear rate. Moreover, the worn surface of PA6 composites revealed that adhesive wear, abrasive wear, and fatigue wear occurred in this study. PMID:23766687

  12. Dilatation of aortic grafts over time: what to expect and when to be concerned.

    PubMed

    Schroeder, Torben V; Eldrup, Nikolaj; Just, Sven; Hansen, Marc; Nyhuus, Bo; Sillesen, Henrik

    2009-06-01

    Dilatation of aortic prosthetic grafts is commonly reported, but most reports are anecdotal, with little objective data in the literature. We performed a prospective trial of 303 patients who underwent prosthetic graft repair for aortic aneurysm or occlusive disease, randomizing patients between insertion of a woven polyester or expanded polytetrafluoroethylene (ePTFE) graft. Patients were followed with computed tomography and ultrasonography for up to 5 years in order to assess the frequency and magnitude of postoperative dilatation. Graft dilatation was documented in patients with polyester grafts at 12 months. Thereafter and up to 60 months, polyester grafts did not dilate further. After 5 years, polyester prostheses had dilated by 25% and ePTFE by 12.5%, as determined by computed tomography imaging. These observations suggest that dilatation of prosthetic grafts is more frequent with knitted polyester grafts compared with ePTFE. Dilatation occurs within the first year after implantation and can be, in part, explained by a discrepancy between the initial nominal graft diameter and its diameter after clamp release, probably due to an in vivo adaptation of the textile structure. Interestingly, graft dilatation did not appear to be associated with an increased frequency of graft-related complications.

  13. An integrated simulator of structure and anisotropic flow in gas diffusion layers with hydrophobic additives

    NASA Astrophysics Data System (ADS)

    Burganos, Vasilis N.; Skouras, Eugene D.; Kalarakis, Alexandros N.

    2017-10-01

    The lattice-Boltzmann (LB) method is used in this work to reproduce the controlled addition of binder and hydrophobicity-promoting agents, like polytetrafluoroethylene (PTFE), into gas diffusion layers (GDLs) and to predict flow permeabilities in the through- and in-plane directions. The present simulator manages to reproduce spreading of binder and hydrophobic additives, sequentially, into the neat fibrous layer using a two-phase flow model. Gas flow simulation is achieved by the same code, sidestepping the need for a post-processing flow code and avoiding the usual input/output and data interface problems that arise in other techniques. Compression effects on flow anisotropy of the impregnated GDL are also studied. The permeability predictions for different compression levels and for different binder or PTFE loadings are found to compare well with experimental data for commercial GDL products and with computational fluid dynamics (CFD) predictions. Alternatively, the PTFE-impregnated structure is reproduced from Scanning Electron Microscopy (SEM) images using an independent, purely geometrical approach. A comparison of the two approaches is made regarding their adequacy to reproduce correctly the main structural features of the GDL and to predict anisotropic flow permeabilities at different volume fractions of binder and hydrophobic additives.

  14. Improvement of barrier properties of rotomolded PE containers with nanoclay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamshidi, Shadi; Sundararaj, Uttandaraman, E-mail: u.sundararaj@ucalgary.ca

    Polyethylene (PE) is widely used to make bulk containers in rotational molding process. The challenge in this study is to improve permeation resistance of PE to hydrocarbon solvents and gases. Adding organomodified clay improves the thermal, barrier and mechanical properties of PE. In fact, clay layers create a tortuous path against the permeant, yielding better barrier properties. Due to the non-polar hydrophobic nature of PE and polar hydrophilic structure of clay minerals, the compatibilizer plays a crucial role to enhance the dispersion level of clay in the matrix. In this study High Density Polyethylene (HDPE) and Linear Low Density Polyethylenemore » (LLDPE) layered silicate nanocomposite were melt-compounded with two concentrations of organomodified clay (2 and 4 wt. %). The interaction between nanoclay, compatibilizer and rotomolding grade of PE were examined by using X-ray diffraction, transmission electron microscopy (TEM) and rheology test. Rheology was used to determine the performance of our material at low shear processing condition.« less

  15. Au-nanoparticles grafted on plasma treated PE

    NASA Astrophysics Data System (ADS)

    Švorčík, V.; Chaloupka, A.; Řezanka, P.; Slepička, P.; Kolská, Z.; Kasálková, N.; Hubáček, T.; Siegel, J.

    2010-03-01

    Polyethylene (PE) surface was treated with Ar plasma. Activated surface was grafted from methanol solution of 1,2-ethanedithiol. Then the sample was immersed into freshly prepared colloid solution of Au-nanoparticles. Finally Au layer was sputtered on the samples. Properties of the modified PE were studied using various methods: AFM, EPR, RBS and nanoindentation. It was shown that the plasma treatment results in degradation of polymer chain (AFM) and creation of free radicals by EPR. After grafting with dithiol, the concentration of free radicals declines. The presence of Au and S in the surface layer after the coating with Au-nanoparticles was proved by RBS. Plasma treatment changes PE surface morphology and increases surface roughness, too. Another significant change in surface morphology and roughness was observed after deposition of Au-nanoparticles. Nanoindentation measurements show that the grafting with Au-nanoparticles increases adhesion of subsequently sputtered Au layer.

  16. The New P.E.

    ERIC Educational Resources Information Center

    Vandertie, Joan; Corner, Amy B.; Corner, Kevin J.

    2012-01-01

    Marana Middle School in Tucson, Ariz., scrapped its traditional P.E. program that emphasized team sports and shifted to a program that focuses on lifetime fitness, student choice in activities, and nutrition and health education. The program also includes student leadership development and informal community service. As a result, Marana students…

  17. Reciprocating sliding wear evaluation of a polymeric/coating tribological system

    NASA Astrophysics Data System (ADS)

    Braza, J. F.; Furst, R. E.

    1993-04-01

    Reciprocating screening tests aimed at simulating a control bearing in a contaminated environment to discern the optimum polymeric/coating combination are described. The polymeric/coating systems were compared with the wear of a baseline phenolic impregnated polytetrafluoroethylene (PTFE) polyester woven fabric composite against an uncoated stainless steel substrate. The polymeric composites under consideration include a polyamide-imide (PAI), a polybenzimidazole, and an injection-moldable PEEK. Results indicate that the system of either PEEK or PAI with an E-Ni-PTFE- or TiN-coated substrate produced the best tribological system. These two composites also exhibited a significant improvement over the baseline fabric when tested against the high-velocity oxygen-fuel thermal spray coating. To discern better the optimum polymeric composite/coating system, full-scale testing must be conducted to study system dynamics, vibrations, counterface hardness and roughness, temperature, external environment and application specific conditions.

  18. The designing and implementation of PE teaching information resource database based on broadband network

    NASA Astrophysics Data System (ADS)

    Wang, Jian

    2017-01-01

    In order to change traditional PE teaching mode and realize the interconnection, interworking and sharing of PE teaching resources, a distance PE teaching platform based on broadband network is designed and PE teaching information resource database is set up. The designing of PE teaching information resource database takes Windows NT 4/2000Server as operating system platform, Microsoft SQL Server 7.0 as RDBMS, and takes NAS technology for data storage and flow technology for video service. The analysis of system designing and implementation shows that the dynamic PE teaching information resource sharing platform based on Web Service can realize loose coupling collaboration, realize dynamic integration and active integration and has good integration, openness and encapsulation. The distance PE teaching platform based on Web Service and the design scheme of PE teaching information resource database can effectively solve and realize the interconnection, interworking and sharing of PE teaching resources and adapt to the informatization development demands of PE teaching.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jung Gu; Jung, Gyoo-Sik, E-mail: gsjung@medimail.co.kr; Oh, Kyung Seung

    We evaluated the effectiveness of a double-layered polytetrafluoroethylene (PTFE)-covered nitinol stent in the palliative treatment of malignant esophageal strictures. A double-layered PTFE-covered nitinol stent was designed to reduce the propensity to migration of conventional covered stent. The stent consists of an inner PTFE-covered stent and an outer uncovered nitinol stent tube. With fluoroscopic guidance, the stent was placed in 32 consecutive patients with malignant esophageal strictures. During the follow-up period, the technical and clinical success rates, complications, and cumulative patient survival and stent patency were evaluated. Stent placement was technically successful in all patients, and no procedural complications occurred. Aftermore » stent placement, the symptoms of 30 patients (94%) showed improvement. During the mean follow-up of 103 days (range, 9-348 days), 11 (34%) of 32 patients developed recurrent symptoms due to tumor overgrowth in five patients (16%), tumor ingrowth owing to detachment of the covering material (PTFE) apart from the stent wire in 3 (9%), mucosal hyperplasia in 2 (6%), and stent migration in 1 (3%). Ten of these 11 patients were treated by means of placing a second covered stent. Thirty patients died, 29 as a result of disease progression and 1 from aspiration pneumonia. The median survival period was 92 days. The median period of primary stent patency was 190 days. The double-layered PTFE-covered nitinol stent seems to be effective for the palliative treatment of malignant esophageal strictures. We believe that the double-layer configuration of this stent can contribute to decreasing the stent's migration rate.« less

  20. Fracture and damage evolution of fluorinated polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, E. N.; Rae, P.; Orler, E. B.

    2004-01-01

    Fluoropolymers are often semi-crystalline in nature, with their linear chains forming complicated phases near room temperature and ambient pressure. The most widely used fluorocarbon polymer for engineering applications is polytetrafluoroethylene (PTFE), due to its extremely low coefficient of friction, outstanding resistance to corrosion, and excellent electrical properties. The phase structure of PTFE is complex with four well-characterized crystalline phases (three observed at atmospheric pressure) and substantial molecular motion well below the melting point. The first-order transition at 19 C between phases II and IV is an unraveling in the helical conformation. Further rotational disordering and untwisting of the helices occursmore » above 30 C giving way to phase I. The mechanical behavior, including fracture and damage evolution, of PTFE depends on the chain and segment motions dictated by crystalline phase microstructure. The presence of three unique phases at ambient pressure near room temperature implies that failure during standard operating conditions may be strongly dependent on the phase. This paper presents a preliminary study of fracture and damage evolution in PTFE with the effects of temperature-induced phase on fracture mechanisms. The quasi-static fracture of PTFE in the atmospheric pressure regime, over a range of temperatures, was found to be strongly phase dependent: phase II exhibits brittle-fracture, phase IV displays ductile-fracture with crazing and some stable crack growth, and plastic flow dominates phase 1. The bulk failure properties are correlated to failure mechanisms through fractography of the fracture surfaces (optical microscopy and scanning electron microscopy (SEM)).« less

  1. Adhesive interactions of geckos with wet and dry fluoropolymer substrates

    PubMed Central

    Stark, Alyssa Y.; Dryden, Daniel M.; Olderman, Jeffrey; Peterson, Kelly A.; Niewiarowski, Peter H.; French, Roger H.; Dhinojwala, Ali

    2015-01-01

    Fluorinated substrates like Teflon® (poly(tetrafluoroethylene); PTFE) are well known for their role in creating non-stick surfaces. We showed previously that even geckos, which can stick to most surfaces under a wide variety of conditions, slip on PTFE. Surprisingly, however, geckos can stick reasonably well to PTFE if it is wet. In an effort to explain this effect, we have turned our attention to the role of substrate surface energy and roughness when shear adhesion occurs in media other than air. In this study, we removed the roughness component inherent to commercially available PTFE and tested geckos on relatively smooth wet and dry fluoropolymer substrates. We found that roughness had very little effect on shear adhesion in air or in water and that the level of fluorination was most important for shear adhesion, particularly in air. Surface energy calculations of the two fluorinated substrates and one control substrate using the Tabor–Winterton approximation and the Young–Dupré equation were used to determine the interfacial energy of the substrates. Using these interfacial energies we estimated the ratio of wet and dry normal adhesion for geckos clinging to the three substrates. Consistent with the results for rough PTFE, our predictions show a qualitative trend in shear adhesion based on fluorination, and the quantitative experimental differences highlight the unusually low shear adhesion of geckos on dry smooth fluorinated substrates, which is not captured by surface energy calculations. Our work has implications for bioinspired design of synthetics that can preferentially stick in water but not in air. PMID:26109635

  2. A lightweight thermal heat switch for redundant cryocooling on satellites

    NASA Astrophysics Data System (ADS)

    Dietrich, M.; Euler, A.; Thummes, G.

    2017-04-01

    A previously designed cryogenic thermal heat switch for space applications has been optimized for low mass, high structural stability, and reliability. The heat switch makes use of the large linear thermal expansion coefficient (CTE) of the thermoplastic UHMW-PE for actuation. A structure model, which includes the temperature dependent properties of the actuator, is derived to be able to predict the contact pressure between the switch parts. This pressure was used in a thermal model in order to predict the switch performance under different heat loads and operating temperatures. The two models were used to optimize the mass and stability of the switch. Its reliability was proven by cyclic actuation of the switch and by shaker tests.

  3. Textile sensors for stab and cut detection

    NASA Astrophysics Data System (ADS)

    Graßmann, C.; Obermann, M.; Lempa, E.; Bache, T.; Siegel, P. K.; Freyer, T.; Paschko, S.; Beyer, T.; Kirsche, M.; Schwarz-Pfeiffer, A.

    2017-10-01

    Manufacturers are aiming for more flexible and lightweight protective clothing to increase wearing comfort. A cardigan with a knitted stab-resistant inlay and an alarm system is presented. The stab-resistant inlay is based on a multilayer ultra-high molecular weight poly ethylene (UHMW-PE) fabric. Stab resistance was evaluated according to the standard of the Association of Test Laboratories for Bullet, Stab or Pike Resistant Materials and Construction Standard (VPAM 2011). Furthermore sensors for the detection of cuts and pressure were integrated. Both sensors can trigger alarms if the wearer is attacked. Normal pressure occurring through leaning on a wall or sitting is filtered out and does not trigger an alarm.

  4. Effect of gamma and neutron irradiation on the mechanical properties of Spectralon™ porous PTFE

    DOE PAGES

    Gourdin, William H.; Datte, Philip; Jensen, Wayne; ...

    2016-07-21

    Here, we establish a correspondence between the mechanical properties (maximum load and failure elongation) of Spectralon™ porous PTFE irradiated with 14 MeV neutrons and 1.17 and 1.33 MeV gammas from a cobalt-60 source. From this correspondence we infer that the effects of neutrons and gammas on this material are approximately equivalent for a given absorbed dose.

  5. Amyloid arthropathy revealed by RS3PE syndrome.

    PubMed

    Magy, N; Michel, F; Auge, B; Toussirot, E; Wendling, D

    2000-01-01

    Amyloid arthropathy is a form of primary AL amyloidosis with a monoclonal component in the blood and/or urine, and RS3PE syndrome is acute edematous polysynovitis in subjects older than 60 years. A 74-year-old man was diagnosed with both disorders. He was admitted for benign acute polyarthritis of the hands and feet and reported carpal tunnel symptoms predominating on the right. A synovial biopsy at the right wrist disclosed deposits that stained with Congo red even after potassium permanganate treatment (positive Wright's test). Articular AL amyloidosis was diagnosed. The symptoms resolved under glucocorticoid therapy alone, casting some doubt on their relationship with the amyloidosis. Roentgenograms showed geodes, a feature not present in RS3PE. Whether RS3PE may be among the possible presentations of articular amyloidosis is discussed.

  6. Lamp system with conditioned water coolant and diffuse reflector of polytetrafluorethylene(PTFE)

    DOEpatents

    Zapata, Luis E.; Hackel, Lloyd

    1999-01-01

    A lamp system with a very soft high-intensity output is provided over a large area by water cooling a long-arc lamp inside a diffuse reflector of polytetrafluorethylene (PTFE) and titanium dioxide (TiO.sub.2) white pigment. The water is kept clean and pure by a one micron particulate filter and an activated charcoal/ultraviolet irradiation system that circulates and de-ionizes and biologically sterilizes the coolant water at all times, even when the long-arc lamp is off.

  7. MuPeXI: prediction of neo-epitopes from tumor sequencing data.

    PubMed

    Bjerregaard, Anne-Mette; Nielsen, Morten; Hadrup, Sine Reker; Szallasi, Zoltan; Eklund, Aron Charles

    2017-09-01

    Personalization of immunotherapies such as cancer vaccines and adoptive T cell therapy depends on identification of patient-specific neo-epitopes that can be specifically targeted. MuPeXI, the mutant peptide extractor and informer, is a program to identify tumor-specific peptides and assess their potential to be neo-epitopes. The program input is a file with somatic mutation calls, a list of HLA types, and optionally a gene expression profile. The output is a table with all tumor-specific peptides derived from nucleotide substitutions, insertions, and deletions, along with comprehensive annotation, including HLA binding and similarity to normal peptides. The peptides are sorted according to a priority score which is intended to roughly predict immunogenicity. We applied MuPeXI to three tumors for which predicted MHC-binding peptides had been screened for T cell reactivity, and found that MuPeXI was able to prioritize immunogenic peptides with an area under the curve of 0.63. Compared to other available tools, MuPeXI provides more information and is easier to use. MuPeXI is available as stand-alone software and as a web server at http://www.cbs.dtu.dk/services/MuPeXI .

  8. Factors Contributing to Pilot Valve Fuel Seal Extrusion in Orbiter PRCS Thrusters

    NASA Technical Reports Server (NTRS)

    Waller, J.M.; Saulsberry, R.L.; Albright, John D.

    2000-01-01

    Extrusion of the polytetrafluoroethylene (PTFE) pilot seal used in the monomethylhydrazine (fuel) valve of the Orbiter Primary Reaction Control System (PRCS) thrusters has been implicated in numerous on-orbit thruster failures and on-ground valve failures. Two extrusion mechanisms have been proposed, one or both may be occurring. The first mechanism is attributed to thermal expansion mismatch between adjacent PTFE and metal parts used in the fuel valve, and is referred to as thermal extrusion. The second mechanism is attributed to nitrogen tetroxide (oxidizer) leakage from the adjacent oxidizer valve on the same thruster during ground turnaround, and is referred to as oxidizer-induced extrusion. Model calculations of PTFE pilot seal in an exact pilot valve configuration show that extrusion can be caused by differential thermal expansion, without the intervening influence of oxidizer. Experimental data on semitrapped PTFE and TFM (modified PTFE) specimens simulating a fuel pilot valve configuration show that thermal extrusion 1) is incremental and irreversible, 2) increases with the size of the thermal excursion, 3) decreases with successive thermal cycling, and 4) is accompanied by gap formation. Both PTFE and TFM exhibit a higher affinity for oxidizer than fuel. The property changes associated with oxidizer uptake may explain why oxidizer seals do not exhibit extrusion. Impression replicas of fuel pilot seals removed from the Orbiter fleet show two types of extrusion: extrusion of the entire seal (loaded extrusion), or extrusion of non-sealing surface (unloaded extrusion). Both extrusion types may arise from differences in service history, rather than in failure mechanism. The plausibility oxidizer-induced extrusion was evaluated. Preliminary calculations suggest that enough energy, heat, or gas may be liberated under certain operational scenarios to cause catastrophic extrusion. However, given the lack of supporting data, conclusions implicating oxidizer leakage

  9. Global Gridded Emission Inventories of Pentabrominated Diphenyl Ether (PeBDE)

    NASA Astrophysics Data System (ADS)

    Li, Yi-Fan; Tian, Chongguo; Yang, Meng; Jia, Hongliang; Ma, Jianmin; Li, Dacheng

    2010-05-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants widely used in many everyday products such as cars, furniture, textiles, and other electronic equipment. The commercial PBDEs have three major technical mixtures: penta-(PeBDE), octa-(OBDE) and decabromodiphenyl ethers (DeBDE). PeBDE is a mixture of several BDE congeners, such as BDE-47, -99, and -100, and has been included as a new member of persistent organic pollutants (POPs) under the 2009 Stockholm Convention. In order to produce gridded emission inventories of PeBDE on a global scale, information of production, consumption, emission, and physiochemical properties of PeBDE have been searched for published papers, government reports, and internet publications. A methodology to estimate the emissions of PeBDE has been developed and global gridded emission inventories of 2 major congener in PeBDE mixture, BDE-47 and -99, on a 1 degree by 1degree latitude/longitude resolution for 2005 have been compiled. Using these emission inventories as input data, the Canadian Model for Environmental Transport of Organochlorine Pesticides (CanMETOP) model was used to simulate the transport of these chemicals and their concentrations in air were calculated for the year of 2005. The modeled air concentration of BDE-47 and -99 were compared with the monitoring air concentrations of these two congeners in the same year obtained from renowned international/national monitoring programs, such as Global Atmospheric Passive Sampling (GAPS), the Integrated Atmospheric Deposition Network (IADN), and the Chinese POPs Soil and Air Monitoring Program (SAMP), and significant correlations between the modeled results and the monitoring data were found, indicating the high quality of the produced emission inventories of BDE-47 and -99. Keywords: Pentabrominated Diphenyl Ether (PeBDE), Emission Inventories, Global, Model

  10. A bioactive metallurgical grade porous silicon-polytetrafluoroethylene sheet for guided bone regeneration applications.

    PubMed

    Chadwick, E G; Clarkin, O M; Raghavendra, R; Tanner, D A

    2014-01-01

    The properties of porous silicon make it a promising material for a host of applications including drug delivery, molecular and cell-based biosensing, and tissue engineering. Porous silicon has previously shown its potential for the controlled release of pharmacological agents and in assisting bone healing. Hydroxyapatite, the principle constituent of bone, allows osteointegration in vivo, due to its chemical and physical similarities to bone. Synthetic hydroxyapatite is currently applied as a surface coating to medical devices and prosthetics, encouraging bone in-growth at their surface and improving osseointegration. This paper examines the potential for the use of an economically produced porous silicon particulate-polytetrafluoroethylene sheet for use as a guided bone regeneration device in periodontal and orthopaedic applications. The particulate sheet is comprised of a series of microparticles in a polytetrafluoroethylene matrix and is shown to produce a stable hydroxyapatite on its surface under simulated physiological conditions. The microstructure of the material is examined both before and after simulated body fluid experiments for a period of 1, 7, 14 and 30 days using Scanning Electron Microscopy. The composition is examined using a combination of Energy Dispersive X-ray Spectroscopy, Thin film X-ray diffraction, Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy and the uptake/release of constituents at the fluid-solid interface is explored using Inductively Coupled Plasma-Optical Emission Spectroscopy. Microstructural and compositional analysis reveals progressive growth of crystalline, 'bone-like' apatite on the surface of the material, indicating the likelihood of close bony apposition in vivo.

  11. A group-level approach to analyzing participative ergonomics (PE) effectiveness: The relationship between PE dimensions and employee exposure to injuries.

    PubMed

    Morag, Ido; Luria, Gil

    2018-04-01

    Most studies concerned with participative ergonomic (PE) interventions, focus on organizational rather than group level analysis. By implementing an intervention at a manufacturing plant, the current study, utilizing advanced information systems, measured the effect of line-supervisor leadership on employee exposure to risks. The study evaluated which PE dimensions (i.e., extent of workforce involvement, diversity of reporter role types and scope of analysis) are related to such exposure at the group level. The data for the study was extracted from two separate computerized systems (workforce medical records of 791 employees and an intranet reporting system) during a two-year period. While the results did not confirm the effect of line-supervisor leadership on subordinates' exposure to risks, they did demonstrate relationships between PE dimensions and the employees' exposure to risks. The results support the suggested level of analysis and demonstrate that group-based analysis facilitates the assimilation of preventive interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Factors in electrode fabrication for performance enhancement of anion exchange membrane water electrolysis

    NASA Astrophysics Data System (ADS)

    Cho, Min Kyung; Park, Hee-Young; Choe, Seunghoe; Yoo, Sung Jong; Kim, Jin Young; Kim, Hyoung-Juhn; Henkensmeier, Dirk; Lee, So Young; Sung, Yung-Eun; Park, Hyun S.; Jang, Jong Hyun

    2017-04-01

    To improve the cell performance for alkaline anion exchange membrane water electrolysis (AEMWE), the effects of the amount of polytetrafluoroethylene (PTFE) non-ionomeric binder in the anode and the hot-pressing conditions during the fabrication of the membrane electrode assemblies (MEAs) on cell performances are studied. The electrochemical impedance data indicates that hot-pressing at 50 °C for 1 min during MEA construction can reduce the polarization resistance of AEMWE by ∼12%, and increase the initial water electrolysis current density at 1.8 V (from 195 to 243 mA cm-2). The electrochemical polarization and impedance results also suggest that the AEMWE performance is significantly affected by the content of PTFE binder in the anode electrode, and the optimal content is found to be 9 wt% between 5 and 20 wt%. The AEMWE device fabricated with the optimized parameters exhibits good water splitting performance (299 mA cm-2 at 1.8 V) without noticeable degradation in voltage cycling operations.

  13. X-Ray-Based Imaging for Characterizing Heterogeneous Gas Diffusion Layers for Polymer Electrolyte Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    George, Michael G.

    Characterization of gas diffusion layers (GDLs) for polymer electrolyte membrane (PEM) fuel cells informs modeling studies and the manufacturers of next generation fuel cell materials. Identifying the physical properties related to the primary functions of the modern GDL (thermal, electrical, and mass transport) is necessary for understanding the impact of GDL design choices. X-ray micro-computed tomographic reconstructions of GDLs were studied to isolate GDL surface morphologies. Surface roughness was measured for a wide variety of samples and a sensitivity study highlighted the scale-dependence of surface roughness measurements. Furthermore, a spatially resolved distribution map of polytetrafluoroethylene (PTFE) in the microporous layer (MPL), critical for water management and mass transport, was identified and the existence of PTFE agglomerations was highlighted. Finally, the impact of accelerated degradation on GDL wettability and water transport increases in liquid water accumulation and oxygen mass transport resistance were quantified as a result of accelerated GDL degradation.

  14. Transport stability of pesticides and PAHs sequestered in polyethylene passive sampling devices.

    PubMed

    Donald, Carey E; Elie, Marc R; Smith, Brian W; Hoffman, Peter D; Anderson, Kim A

    2016-06-01

    Research using low-density polyethylene (LDPE) passive samplers has steadily increased over the past two decades. However, such research efforts remain hampered because of strict guidelines, requiring that these samplers be quickly transported in airtight metal or glass containers or foil wrapped on ice. We investigate the transport stability of model pesticides and polycyclic aromatic hydrocarbons (PAHs) with varying physicochemical properties using polytetrafluoroethylene (PTFE) bags instead. Transport scenarios were simulated with transport times up to 14 days with temperatures ranging between -20 and 35 °C. Our findings show that concentrations of all model compounds examined were stable for all transport conditions tested, with mean recoveries ranging from 88 to 113 %. Furthermore, PTFE bags proved beneficial as reusable, lightweight, low-volume, low-cost alternatives to conventional containers. This documentation of stability will allow for more flexible transportation of LDPE passive samplers in an expanding range of research applications while maintaining experimental rigor.

  15. Transport stability of pesticides and PAHs sequestered in polyethylene passive sampling devices

    PubMed Central

    Donald, Carey E.; Elie, Marc R.; Smith, Brian W.; Hoffman, Peter D.; Anderson, Kim A.

    2016-01-01

    Research using low-density polyethylene (LDPE) passive samplers has steadily increased over the past two decades. However such research efforts remain hampered because of strict guidelines, requiring that these samplers be quickly transported in airtight metal or glass containers, or foil-wrapped on ice. We investigate the transport stability of model pesticides and polycyclic aromatic hydrocarbons (PAHs) with varying physicochemical properties using polytetrafluoroethylene (PTFE) bags instead. Transport scenarios were simulated with transport times up to 14 days with temperatures ranging between -20 and 35 degrees Celsius. Our findings show that concentrations of all model compounds examined were stable for all transport conditions tested, with mean recoveries ranging from 88% to 113%. Furthermore, PTFE bags proved beneficial as reusable, lightweight, low-volume, low-cost alternatives to conventional containers. This documentation of stability will allow for more flexible transportation of LDPE passive samplers in an expanding range of research applications while maintaining experimental rigor. PMID:26983811

  16. Structural-modification mechanism for polyimide-doped poly(tetrafluoroethylene)at subthreshold fluences using 248 nm radiation

    NASA Astrophysics Data System (ADS)

    Davis, C. R.; Snyder, R. W.; Egitto, F. D.; D'Couto, G. C.; Babu, S. V.

    1994-09-01

    Single-photon excimer laser ablation of neat poly(tetrafluoroethylene) (PTFE) is not observed at emissions in the 'quartz' UV, i.e., from about 190-380 nm. However, it has been successfully demonstrated that, when the fluoropolymer is doped with small quantities of polyimide (PI), ablation in the quartz UV, e.g., at 248 and 308 nm and pulse widths of about 25 ns, is readily achieved. When PI-PTFE blends are exposed to subthreshold fluences, considerable changes in surface topography occur although clearly defined structures, e.g., pits, are not formed. Using photoacoustic infrared spectroscopy to evaluate surface and bulk chemical changes to blends exposed to subthreshold excimer laser fluences, is less than 100 mJ/sq cm, it is shown that PI (1) is distributed throughout the bulk and resides at the surface and (2) is selectively absorbing the high-energy photons and as a result being preferentially removed from the surface.

  17. Linker-based GnRH-PE chimeric proteins inhibit cancer growth in nude mice.

    PubMed

    Ben-Yehudah, A; Yarkoni, S; Nechushtan, A; Belostotsky, R; Lorberboum-Galski, H

    1999-04-01

    Since the number of cancer-related deaths has not decreased in recent years, major efforts are being made to find new drugs for cancer treatment. In this report we introduce the gonadotropin releasing hormone-Pseudomonas exotoxin (GnRH-PE) based chimeric proteins L-GnRH-PE66 and L-GnRH-PE40. These proteins are composed of a GnRH moiety attached to modified forms of Pseudomonas exotoxin via a polylinker (gly4ser)2. The chimeric proteins L-GnRH-PE66 and L-GnRH-PE40 have the ability to target and kill adenocarcinoma cell lines in vitro, whereas non-adenocarcinoma cell lines are not affected. We demonstrate that L-GnRH-PE66 and L-GnRH-PE40 efficiently inhibit cancer growth. Nude mice were injected subcutaneously with the SW-48 adenocarcinoma cell line to produce xenograft tumours. When the tumours were established and visible, the animals were injected with chimeric proteins for 10 days. At the end of this period, a reduction of up to 3-fold in tumor size was obtained in the treated mice, as compared with the control group, which received equivalent amounts of GnRH; the difference was even greater 13 days after termination of treatment. Thus, the chimeric proteins L-GnRH-PE66 and L-GnRH-PE40 are promising candidates for treatment of a variety of adenocarcinomas and their use in humans should be considered.

  18. Miniaturized dual band multislotted patch antenna on polytetrafluoroethylene glass microfiber reinforced for C/X band applications.

    PubMed

    Islam, M T; Samsuzzaman, M

    2014-01-01

    This paper introduces a new configuration of compact, triangular- and diamond-slotted, microstrip-fed, low-profile antenna for C/X band applications on polytetrafluoroethylene glass microfiber reinforced material substrate. The antenna is composed of a rectangular-shaped patch containing eight triangles and two diamond-shaped slots and an elliptical-slotted ground plane. The rectangular-shaped patch is obtained by cutting two diamond slots in the middle of the rectangular patch, six triangular slots on the left and right side of the patch, and two triangular slots on the up and down side of the patch. The slotted radiating patch, the elliptical-slotted ground plane, and the microstrip feed enable the matching bandwidth to be widened. A prototype of the optimized antenna was fabricated on polytetrafluoroethylene glass microfiber reinforced material substrate using LPKF prototyping machine and investigated to validate the proposed design. The simulated results are compared with the measured data, and good agreement is achieved. The proposed antenna offers fractional bandwidths of 13.69% (7.78-8.91 GHz) and 10.35% (9.16-10.19 GHz) where S11 < -10 dB at center frequencies of 8.25 GHz and 9.95 GHz, respectively, and relatively stable gain, good radiation efficiency, and omnidirectional radiation patterns in the matching band.

  19. Hydroxyapatite promotes superior keratocyte adhesion and proliferation in comparison with current keratoprosthesis skirt materials.

    PubMed

    Mehta, J S; Futter, C E; Sandeman, S R; Faragher, R G A F; Hing, K A; Tanner, K E; Allan, B D S

    2005-10-01

    Published clinical series suggest the osteoodontokeratoprosthesis (OOKP) may have a lower extrusion rate than current synthetic keratoprostheses. The OOKP is anchored in the eye wall by autologous tooth. The authors' aim was to compare adhesion, proliferation, and morphology for telomerase transformed keratocytes seeded on calcium hydroxyapatite (the principal mineral constituent of tooth) and materials used in the anchoring elements of commercially available synthetic keratoprostheses. Test materials were hydroxyapatite, polytetrafluoroethylene (PTFE), polyhydroxyethyl methacrylate (HEMA), and glass (control). Cell adhesion and viability were quantified at 4 hours, 24 hours, and 1 week using a calcein-AM/EthD-1 viability/cytotoxicity assay. Focal contact expression and cytoskeletal organisation were studied at 24 hours by confocal microscopy with immunoflourescent labelling. Further studies of cell morphology were performed using light and scanning electron microscopy. Live cell counts were significantly greater on hydroxyapatite surfaces at each time point (p<0.04). Dead cell counts were significantly higher for PTFE at 7 days (p<0.002). ss(1) integrin expression was highest on hydroxyapatite. Adhesion structures were well expressed in flat, spread out keratocytes on both HA and glass. Keratocytes tended to be thinner and spindle shaped on PTFE. The relatively few keratocytes visible on HEMA test surfaces were rounded and poorly adherent. Keratocyte adhesion, spreading, and viability on hydroxyapatite test surfaces is superior to that seen on PTFE and HEMA. Improving the initial cell adhesion environment in the skirt element of keratoprostheses may enhance tissue integration and reduce device failure rates.

  20. Physicomechanical evaluation of polypropylene, polyester, and polytetrafluoroethylene meshes for inguinal hernia repair.

    PubMed

    Deeken, Corey R; Abdo, Michael S; Frisella, Margaret M; Matthews, Brent D

    2011-01-01

    For meshes to be used effectively for hernia repair, it is imperative that engineers and surgeons standardize the terminology and techniques related to physicomechanical evaluation of these materials. The objectives of this study were to propose standard techniques, perform physicomechanical testing, and classify materials commonly used for inguinal hernia repair. Nine meshes were evaluated: 4 polypropylene, 1 polyester, 1 polytetrafluoroethylene, and 3 partially absorbable. Physical properties were determined through image analysis, laser micrometry, and density measurements. Biomechanical properties were determined through suture retention, tear resistance, uniaxial, and ball burst testing with specimens tested in 2 different orientations. A 1-way ANOVA with Tukey's post-test or a t-test were performed, with p < 0.05. Significant differences were observed due to both mesh type and orientation. Areas of interstices ranged from 0.33 ± 0.01 mm² for ProLite (Atrium Medical Corp) and C-QUR Lite (Atrium Medical Corp) Large to 4.10 ± 0.06 mm² for ULTRAPRO (Ethicon), and filament diameters ranged from 99.00 ±8.1 μm for ProLite Ultra (Atrium Medical Corp) and C-QUR Lite Small to 338.8 ± 3.7 μm for Parietex Flat Sheet TEC (Covidien). These structural characteristics influenced biomechanical properties such as tear resistance and tensile strength. ProLite Ultra, C-QUR Lite Small, ULTRAPRO and INFINIT (WL Gore & Associates) did not resist tearing as effectively as the others. All meshes exhibited supraphysiologic burst strengths except INFINIT and ULTRAPRO. Significant differences exist between the physicomechanical properties of polypropylene, polyester, polytetrafluoroethylene, and partially absorbable mesh prostheses commonly used for inguinal hernia repair. Orientation of the mesh was also shown to be critical for the success of meshes, particularly those demonstrating anisotropy. Copyright © 2011 American College of Surgeons. Published by Elsevier Inc. All

  1. Engineering surfaces for bioconjugation: developing strategies and quantifying the extent of the reactions.

    PubMed

    Gauvreau, Virginie; Chevallier, Pascale; Vallières, Karine; Petitclerc, Eric; Gaudreault, René C; Laroche, Gaétan

    2004-01-01

    This study presents two-step and multistep reactions for modifying the surface of plasma-functionalized poly(tetrafluoroethylene) (PTFE) surfaces for subsequent conjugation of biologically relevant molecules. First, PTFE films were treated by a radiofrequency glow discharge (RFGD) ammonia plasma to introduce amino groups on the fluoropolymer surface. This plasma treatment is well optimized and allows the incorporation of a relative surface concentration of approximately 2-3.5% of amino groups, as assessed by chemical derivatization followed by X-ray photoelectron spectroscopy (XPS). In a second step, these amino groups were further reacted with various chemical reagents to provide the surface with chemical functionalities such as maleimides, carboxylic acids, acetals, aldehydes, and thiols, that could be used later on to conjugate a wide variety of biologically relevant molecules such as proteins, DNA, drugs, etc. In the present study, glutaric and cis-aconitic anhydrides were evaluated for their capability to provide carboxylic functions to the PTFE plasma-treated surface. Bromoacetaldehyde diethylacetal was reacted with the aminated PTFE surface, providing a diethylacetal function, which is a latent form of aldehyde functionality. Reactions with cross-linkers such as sulfo-succinimidyl derivatives (sulfo-SMCC, sulfo-SMPB) were evaluated to provide a highly reactive maleimide function suitable for further chemical reactions with thiolated molecules. Traut reagent (2-iminothiolane) was also conjugated to introduce a thiol group onto the fluoropolymer surface. PTFE-modified surfaces were analyzed by XPS with a particular attention to quantify the extent of the reactions that occurred on the polymer. Finally, surface immobilization of fibronectin performed using either glutaric anhydride or sulfo-SMPB activators demonstrated the importance of selecting the appropriate conjugation strategy to retain the protein biological activity.

  2. The long-term behavior of lightweight and heavyweight meshes used to repair abdominal wall defects is determined by the host tissue repair process provoked by the mesh.

    PubMed

    Pascual, Gemma; Hernández-Gascón, Belén; Rodríguez, Marta; Sotomayor, Sandra; Peña, Estefania; Calvo, Begoña; Bellón, Juan M

    2012-11-01

    Although heavyweight (HW) or lightweight (LW) polypropylene (PP) meshes are widely used for hernia repair, other alternatives have recently appeared. They have the same large-pore structure yet are composed of polytetrafluoroethylene (PTFE). This study compares the long-term (3 and 6 months) behavior of meshes of different pore size (HW compared with LW) and composition (PP compared with PTFE). Partial defects were created in the lateral wall of the abdomen in New Zealand White rabbits and then repaired by the use of a HW or LW PP mesh or a new monofilament, large-pore PTFE mesh (Infinit). At 90 and 180 days after implantation, tissue incorporation, gene and protein expression of neocollagens (reverse transcription-polymerase chain reaction/immunofluorescence), macrophage response (immunohistochemistry), and biomechanical strength were determined. Shrinkage was measured at 90 days. All three meshes induced good host tissue ingrowth, yet the macrophage response was significantly greater in the PTFE implants (P < .05). Collagen 1/3 mRNA levels failed to vary at 90 days yet in the longer term, the LW meshes showed the reduced genetic expression of both collagens (P < .05) accompanied by increased neocollagen deposition, indicating more efficient mRNA translation. After 90-180 days of implant, tensile strengths and elastic modulus values were similar for all 3 implants (P > .05). Host collagen deposition is mesh pore size dependent whereas the macrophage response induced is composition dependent with a greater response shown by PTFE. In the long term, macroporous meshes show comparable biomechanical behavior regardless of their pore size or composition. Copyright © 2012 Mosby, Inc. All rights reserved.

  3. Impact of protein domains on PE_PGRS30 polar localization in Mycobacteria.

    PubMed

    De Maio, Flavio; Maulucci, Giuseppe; Minerva, Mariachiara; Anoosheh, Saber; Palucci, Ivana; Iantomasi, Raffaella; Palmieri, Valentina; Camassa, Serena; Sali, Michela; Sanguinetti, Maurizio; Bitter, Wilbert; Manganelli, Riccardo; De Spirito, Marco; Delogu, Giovanni

    2014-01-01

    PE_PGRS proteins are unique to the Mycobacterium tuberculosis complex and a number of other pathogenic mycobacteria. PE_PGRS30, which is required for the full virulence of M. tuberculosis (Mtb), has three main domains, i.e. an N-terminal PE domain, repetitive PGRS domain and the unique C-terminal domain. To investigate the role of these domains, we expressed a GFP-tagged PE_PGRS30 protein and a series of its functional deletion mutants in different mycobacterial species (Mtb, Mycobacterium bovis BCG and Mycobacterium smegmatis) and analysed protein localization by confocal microscopy. We show that PE_PGRS30 localizes at the mycobacterial cell poles in Mtb and M. bovis BCG but not in M. smegmatis and that the PGRS domain of the protein strongly contributes to protein cellular localization in Mtb. Immunofluorescence studies further showed that the unique C-terminal domain of PE_PGRS30 is not available on the surface, except when the PGRS domain is missing. Immunoblot demonstrated that the PGRS domain is required to maintain the protein strongly associated with the non-soluble cellular fraction. These results suggest that the repetitive GGA-GGN repeats of the PGRS domain contain specific sequences that contribute to protein cellular localization and that polar localization might be a key step in the PE_PGRS30-dependent virulence mechanism.

  4. Association between state physical education (PE) requirements and PE participation, physical activity, and body mass index change.

    PubMed

    Taber, Daniel R; Chriqui, Jamie F; Perna, Frank M; Powell, Lisa M; Slater, Sandy J; Chaloupka, Frank J

    2013-11-01

    To determine if state physical education (PE) laws are associated with student physical education attendance and physical activity (PA), and whether physical education and competitive food laws, in conjunction, are associated with lower BMI change. State laws regarding physical education time requirements and competitive foods in 2003 and 2006 were classified as strong, weak, or none, based on codified law ratings obtained from the Classification of Laws Associated with School Students. Laws were linked to student data on PE attendance and physical activity (8th grade, Spring 2007) and BMI change (5th-8th grade, 2004-2007), obtained from the Early Childhood Longitudinal Study (n=5510 students in 40 states). Girls reported 0.31 more days of activity (95% CI: 0.02, 0.61) and were more likely to attend physical education ≥ 3 days/week (74.1% versus 52.1%, difference=22.0, 95% CI: 2.1, 42.0) if they resided in states with strong physical education laws compared to no physical education laws. Weak physical education laws had modest associations with PE and activity, and there was no evidence that weak laws reduce BMI gain regardless of competitive food laws. Strong physical education laws with specific time requirements may increase physical education attendance and activity in girls. There is insufficient evidence that physical education laws reduce student weight gain. © 2013.

  5. "We Should Assess the Students in More Authentic Situations": Swedish PE Teacher Educators' Views of the Meaning of Movement Skills for Future PE Teachers

    ERIC Educational Resources Information Center

    Backman, Erik; Pearson, Phil

    2016-01-01

    The question of what knowledge a student of Physical Education (PE) needs to develop during PE teacher education (PETE) was recently discussed. One form of knowledge is the movement practices that students must meet during their education. Given the limited time, a delicate matter is whether to prioritize movement knowledge and consider it as…

  6. Comparison of Lyophilized Glutaraldehyde-Preserved Bovine Pericardium with Different Vascular Prostheses for Use as Vocal Cords Implants: Experimental Study

    PubMed Central

    Olmos-Zuñiga, J. Raúl; Jasso-Victoria, Rogelio; Gaxiola-Gaxiola, Miguel; Sotres-Vega, Avelina; Hernández-Jiménez, Claudia; Baltazares-Lipp, Matilde; Arredondo del Bosque, Fernando; Santillan-Doherty, Patricio

    2015-01-01

    This study compared the use of lyophilized glutaraldehyde-preserved bovine pericardium (LGPBP), polytetrafluoroethylene (PTFE), polyethylene terephthalate (PET), and Teflon felt (TF) as implants for vocal cords (VC) medialization and aimed to assess the endoscopic, macroscopic, and microscopic VC changes after medialization in a canine model. In 18 mongrel dogs, the right VC were medialized with LGPBP and the left were implanted as follows: Group I (n = 6): LGPBP and PTFE; Group II (n = 6): LGPBP and PET; Group III (n = 6): LGPBP and TF. Surgical handling of the implants was compared. Three months after surgery, macroscopic and microscopic changes of VC and implants were evaluated. LGPBP offered the best surgical handling (p = 0.005, Kruskal-Wallis). TF implants showed extrusion (p = 0.005, Kruskal-Wallis) and severe inflammation. All VC formed fibrous capsules around the implants; the ones developed by LGPBP implants were thinner (p = 0.001, ANOVA, Tukey). VC implanted with synthetic materials showed eosinophilic infiltration (p = 0.01, Kruskal-Wallis). We concluded that the LGPBP could be used as an implant for VC medialization because it is biocompatible, easy to handle and remove during surgical procedures, and nonabsorbable or extrudable and produces an inflammatory reaction similar to PTFE and PET. PMID:26075232

  7. The effect of microgeometry, implant thickness and polyurethane chemistry on the foreign body response to subcutaneous implants.

    PubMed

    Ward, W Kenneth; Slobodzian, Emily P; Tiekotter, Kenneth L; Wood, Michael D

    2002-11-01

    We addressed the effect of implant thickness, implant porosity, and polyurethane (PU) chemistry on angiogenesis and on the foreign body response in rats. The following materials were implanted subcutaneously for 7 weeks then excised for histologic analysis: a solid PU; a solid polyurethane with silicone and polyethylene oxide (PU-S-PEO); porous expanded polytetrafluoroethylene (ePTFE); and porous polyvinyl alcohol sponge (PVA). Two thicknesses of PU-S-PEO were compared: 300 microns (thin) and 2000 microns (thick). Foreign body capsule (FBC) thickness was much less in PU-S-PEO implants than in PU implants. In addition, FBC were thinner in thin implants than in thick implants. FBC was much more dense in solid implants than in porous implants. As compared with solid implants, porous implants (PVA and ePTFE) led to a marked increase in the number of microvessels that developed adjacent to the implant, as observed both with hematoxylin/eosin staining and with an immunohistochemical anti-endothelial stain. We conclude that the polyethylene oxide and silicone moieties in PU reduce the thickness of the subsequent FBC. In addition, thin implants lead to a thin FBC. Porous implants (PVA and ePTFE) cause more angiogenesis than solid implants. These results may have implications for the measurement of blood-derived analytes by biosensors.

  8. Nearly Perfect Durable Superhydrophobic Surfaces Fabricated by a Simple One-Step Plasma Treatment.

    PubMed

    Ryu, Jeongeun; Kim, Kiwoong; Park, JooYoung; Hwang, Bae Geun; Ko, YoungChul; Kim, HyunJoo; Han, JeongSu; Seo, EungRyeol; Park, YongJong; Lee, Sang Joon

    2017-05-16

    Fabrication of superhydrophobic surfaces is an area of great interest because it can be applicable to various engineering fields. A simple, safe and inexpensive fabrication process is required to fabricate applicable superhydrophobic surfaces. In this study, we developed a facile fabrication method of nearly perfect superhydrophobic surfaces through plasma treatment with argon and oxygen gases. A polytetrafluoroethylene (PTFE) sheet was selected as a substrate material. We optimized the fabrication parameters to produce superhydrophobic surfaces of superior performance using the Taguchi method. The contact angle of the pristine PTFE surface is approximately 111.0° ± 2.4°, with a sliding angle of 12.3° ± 6.4°. After the plasma treatment, nano-sized spherical tips, which looked like crown-structures, were created. This PTFE sheet exhibits the maximum contact angle of 178.9°, with a sliding angle less than 1°. As a result, this superhydrophobic surface requires a small external force to detach water droplets dripped on the surface. The contact angle of the fabricated superhydrophobic surface is almost retained, even after performing an air-aging test for 80 days and a droplet impacting test for 6 h. This fabrication method can provide superb superhydrophobic surface using simple one-step plasma etching.

  9. Immunolocalization of markers for bone formation during guided bone regeneration in osteopenic rats

    PubMed Central

    TERA, Tábata de Mello; NASCIMENTO, Rodrigo Dias; do PRADO, Renata Falchete; SANTAMARIA, Mauro Pedrine; JARDINI, Maria Aparecida Neves

    2014-01-01

    Objective The aim of this paper was to evaluate the repair of onlay autogenous bone grafts covered or not covered by an expanded polytetrafluoroethylene (e-PTFE) membrane using immunohistochemistry in rats with induced estrogen deficiency. Material and Methods Eighty female rats were randomly divided into two groups: ovariectomized (OVX) and with a simulation of the surgical procedure (SHAM). Each of these groups was again divided into groups with either placement of an autogenous bone graft alone (BG) or an autogenous bone graft associated with an e-PTFE membrane (BGM). Animals were euthanized on days 0, 7, 21, 45, and 60. The specimens were subjected to immunohistochemistry for bone sialoprotein (BSP), osteonectin (ONC), and osteocalcin (OCC). Results All groups (OVX+BG, OVX+BMG, SHAM+BG, and SHAM+BMG) showed greater bone formation, observed between 7 and 21 days, when BSP and ONC staining were more intense. At the 45-day, the bone graft showed direct bonding to the recipient bed in all specimens. The ONC and OCC showed more expressed in granulation tissue, in the membrane groups, independently of estrogen deficiency. Conclusions The expression of bone forming markers was not negatively influenced by estrogen deficiency. However, the markers could be influenced by the presence of the e-PTFE membrane. PMID:25591022

  10. Comparison of lyophilized glutaraldehyde-preserved bovine pericardium with different vascular prostheses for use as vocal cords implants: experimental study.

    PubMed

    Olmos-Zuñiga, J Raúl; Jasso-Victoria, Rogelio; Gaxiola-Gaxiola, Miguel; Sotres-Vega, Avelina; Hernández-Jiménez, Claudia; Baltazares-Lipp, Matilde; Arredondo del Bosque, Fernando; Santillan-Doherty, Patricio

    2015-01-01

    This study compared the use of lyophilized glutaraldehyde-preserved bovine pericardium (LGPBP), polytetrafluoroethylene (PTFE), polyethylene terephthalate (PET), and Teflon felt (TF) as implants for vocal cords (VC) medialization and aimed to assess the endoscopic, macroscopic, and microscopic VC changes after medialization in a canine model. In 18 mongrel dogs, the right VC were medialized with LGPBP and the left were implanted as follows: Group I (n = 6): LGPBP and PTFE; Group II (n = 6): LGPBP and PET; Group III (n = 6): LGPBP and TF. Surgical handling of the implants was compared. Three months after surgery, macroscopic and microscopic changes of VC and implants were evaluated. LGPBP offered the best surgical handling (p = 0.005, Kruskal-Wallis). TF implants showed extrusion (p = 0.005, Kruskal-Wallis) and severe inflammation. All VC formed fibrous capsules around the implants; the ones developed by LGPBP implants were thinner (p = 0.001, ANOVA, Tukey). VC implanted with synthetic materials showed eosinophilic infiltration (p = 0.01, Kruskal-Wallis). We concluded that the LGPBP could be used as an implant for VC medialization because it is biocompatible, easy to handle and remove during surgical procedures, and nonabsorbable or extrudable and produces an inflammatory reaction similar to PTFE and PET.

  11. Optimization of esterification of oleic acid and trimethylolpropane (TMP) and pentaerythritol (PE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmud, Hamizah Ammarah; Salimon, Jumat

    Vegetable oil (VO) is the most potential alternative to replace mineral oil for lubricant due to better lubricating properties and great physicochemical properties. Chemical modification has to be done to overcome low temperature performance and low oxidation instability due to the presence of β-hydrogen atoms of glycerol molecule. The optimization of esterification of oleic acid and polyhydric alcohol with sulfuric acid catalyst was carried out to find the optimum conditions with the highest yield. Reeaction variables such as; molar ratio, temperature, duration and catalyst concentration. Two types of polyhydric alcohol have been used; TMP and PE. The optimum results showedmore » oleic acid successfully converted 91.2% ester TMP and 92.7% ester PE at duration: 5 hours (Ester TMP), 6 hours (Ester PE); temperature: 150°C (ester TMP), 180°C (Ester PE); catalyst concentration: 1.5% (w/w); and mol ratio: 3.9:1 (ester TMP), 4.9:1 (ester PE). From the data obtained, mole ratio showed most influenced factors to the increasing yields of ester conversions.. The TMP/PE ester was confirmed using gas chromatography (GC-FID), Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR)« less

  12. Ignition of PTFE-lined flexible hoses by rapid pressurization with oxygen

    NASA Technical Reports Server (NTRS)

    Janoff, Dwight; Bamford, Larry J.; Newton, Barry E.; Bryan, Coleman J.

    1989-01-01

    A high-volume pneumatic-impact system has been used to test PTFE-lined stainless steel braided hoses, in order to characterize the roles played in the mechanism of oxygen-induced ignition by impact pressure, pressurization rate, and upstream and downstream volumes of the hose. Ignitions are noted to have occurred at impact pressures well below the working pressure of the hoses, as well as at pressurization rates easily obtainable through manual operation of valves. The use of stainless steel hardlines downstream of the hose prevented ignitions at all pressures and pressurization rates; internal observations have shown evidence of shock ionization in the oxygen prior to ignition.

  13. Ignition of PTFE-lined flexible hoses by rapid pressurization with oxygen

    NASA Astrophysics Data System (ADS)

    Janoff, Dwight; Bamford, Larry J.; Newton, Barry E.; Bryan, Coleman J.

    A high-volume pneumatic-impact system has been used to test PTFE-lined stainless steel braided hoses, in order to characterize the roles played in the mechanism of oxygen-induced ignition by impact pressure, pressurization rate, and upstream and downstream volumes of the hose. Ignitions are noted to have occurred at impact pressures well below the working pressure of the hoses, as well as at pressurization rates easily obtainable through manual operation of valves. The use of stainless steel hardlines downstream of the hose prevented ignitions at all pressures and pressurization rates; internal observations have shown evidence of shock ionization in the oxygen prior to ignition.

  14. PE38KDEL-loaded anti-HER2 nanoparticles inhibit breast tumor progression with reduced toxicity and immunogenicity.

    PubMed

    Gao, Jie; Kou, Geng; Wang, Hao; Chen, Huaiwen; Li, Bohua; Lu, Ying; Zhang, Dapeng; Wang, Shuhui; Hou, Sheng; Qian, Weizhu; Dai, Jianxin; Zhao, Jian; Zhong, Yanqiang; Guo, Yajun

    2009-05-01

    The clinical use of Pseudomonas exotoxin A (PE)-based immunotoxins is limited by the toxicity and immunogenicity of PE. To overcome the limitations, we have developed PE38KDEL-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles conjugated with Fab' fragments of a humanized anti-HER2 monoclonal antibody (rhuMAbHER2). The PE38KDEL-loaded nanoparticles-anti-HER2 Fab' bioconjugates (PE-NP-HER) were constructed modularly with Fab' fragments of rhuMAbHER2 covalently linked to PLGA nanoparticles containing PE38KDEL. Compared with nontargeted nanoparticles that lack anti-HER2 Fab', PE-NP-HER specifically bound to and were sequentially internalized into HER2 overexpressing breast cancer cells, which result in significant cytotoxicity in vitro. In HER2 overexpressing tumor xenograft model system, administration of PE-NP-HER showed a superior efficacy in inhibiting tumor growth compared with PE-HER referring to PE38KDEL conjugated directly to rhuMAbHER2. Moreover, PE-NP-HER was well tolerated in mice with a higher LD(50) (LD(50) of 6.86 +/- 0.47 mg/kg vs. 2.21 +/- 0.32 mg/kg for PE-NP-HER vs. PE-HER (mean +/- SD); n = 3), and had no influence on the plasma level of plasma alanine aminotransferase (ALT) of animals when injected at a dose of 1 mg/kg where PE-HER caused significant increase of serum ALT in the treated mice. Notably, PE-NP-HER was of low immunogenicity in development of anti-PE38KDEL neutralizing antibodies and was less susceptible to inactivation by anti-PE38KDEL antibodies compared with PE-HER. This novel bioconjugate, PE-NP-HER, may represent a useful strategy for cancer treatment.

  15. High contact angle hysteresis of superhydrophobic surfaces: Hydrophobic defects

    NASA Astrophysics Data System (ADS)

    Chang, Feng-Ming; Hong, Siang-Jie; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2009-08-01

    A typical superhydrophobic surface is essentially nonadhesive and exhibits very low water contact angle (CA) hysteresis, so-called Lotus effect. However, leaves of some plants such as scallion and garlic with an advancing angle exceeding 150° show very serious CA hysteresis. Although surface roughness and epicuticular wax can explain the very high advancing CA, our analysis indicates that the unusual hydrophobic defect, diallyl disulfide, is the key element responsible for contact line pinning on allium leaves. After smearing diallyl disulfide on an extended polytetrafluoroethylene (PTFE) film, which is originally absent of CA hysteresis, the surface remains superhydrophobic but becomes highly adhesive.

  16. A study of Na(x)Pt3O4 as an O2 electrode bifunctional electrocatalyst

    NASA Technical Reports Server (NTRS)

    Fielder, William L.; Singer, Joseph

    1991-01-01

    The present study suggests that polytetrafluoroethylene (PTFE) bonded Na(X)Pt3O4 gas porous diffusion electrodes may be a viable candidate for bifunctional O2 reduction and evolution activity. The electrodes exhibited Tafel slopes of about 0.06 V/decade for both O2 reduction an evolution. For O2 reduction, the 0.06 slope doubled to 0.12 V/decade at larger current densities. Preliminary stability testing at 24 C suggest that the Na(x)Pt3O4 electrodes were relatively stable at reducing and oxidizing potentials typically encountered at the O2 electrodes in a regenerative fuel cell.

  17. Production and crosslinking of multi-layer tubes (PE & metal) by E-beam

    NASA Astrophysics Data System (ADS)

    Zyball, Alfred

    2000-03-01

    Irradiation crosslinking of PE-tubes has been used for heating floors for about 25 years. Such tubes are also used today for drinking water supply. A further development has been the coating of such tubes with Ethylene-Vinyl-Alcohol-Copolymers (EVAL), in order to prevent oxygen diffusion into the water through the PE tube. For about 15 years composite tubes made of PE and aluminum have been available. These tubes are crosslinked with electron beams. The energy of the accelerated electrons must be adjusted for the particular tube configuration, so that the inner PE-layer will be crosslinked. This paper will concern itself with the manufacture and the crosslinking of composite tubes.

  18. Attitudes toward and Motivation for PE. Who Collects the Benefits of the Subject?

    ERIC Educational Resources Information Center

    Säfvenbom, Reidar; Haugen, Tommy; Bulie, Marte

    2015-01-01

    Background and purpose: Due to attitudinal and motivational aims in the national curriculum, and to lack of research on adolescents' experiences with physical education (PE) in Norway, the purposes of this study were to (1) attain data on attitudes toward PE and self-determined motivation for PE among a representative sample of adolescents (N =…

  19. Miniaturized Dual Band Multislotted Patch Antenna on Polytetrafluoroethylene Glass Microfiber Reinforced for C/X Band Applications

    PubMed Central

    Islam, M. T.; Samsuzzaman, M.

    2014-01-01

    This paper introduces a new configuration of compact, triangular- and diamond-slotted, microstrip-fed, low-profile antenna for C/X band applications on polytetrafluoroethylene glass microfiber reinforced material substrate. The antenna is composed of a rectangular-shaped patch containing eight triangles and two diamond-shaped slots and an elliptical-slotted ground plane. The rectangular-shaped patch is obtained by cutting two diamond slots in the middle of the rectangular patch, six triangular slots on the left and right side of the patch, and two triangular slots on the up and down side of the patch. The slotted radiating patch, the elliptical-slotted ground plane, and the microstrip feed enable the matching bandwidth to be widened. A prototype of the optimized antenna was fabricated on polytetrafluoroethylene glass microfiber reinforced material substrate using LPKF prototyping machine and investigated to validate the proposed design. The simulated results are compared with the measured data, and good agreement is achieved. The proposed antenna offers fractional bandwidths of 13.69% (7.78–8.91 GHz) and 10.35% (9.16–10.19 GHz) where S11 < −10 dB at center frequencies of 8.25 GHz and 9.95 GHz, respectively, and relatively stable gain, good radiation efficiency, and omnidirectional radiation patterns in the matching band. PMID:24987742

  20. Management of carotid Dacron patch infection: a case report using median sternotomy for proximal common carotid artery control and in situ polytetrafluoroethylene grafting.

    PubMed

    Illuminati, Giulio; Calio', Francesco G; D'Urso, Antonio; Ceccanei, Gianluca; Pacilè, Maria Antonietta

    2009-01-01

    We report on a 58-year-old male who presented with an enlarging cervical hematoma 3 months following carotid endarterectomy with Dacron patch repair, due to septic disruption of the Dacron patch secondary to presumed infection. The essential features of this case are the control of the proximal common carotid artery gained through a median sternotomy, because the patient was markedly obese with minimal thyromental distance, and the treatment consisting of in situ polytetrafluoroethylene bypass grafting, due to the absence of a suitable autogenous saphenous vein. Median sternotomy is rarely required in case of reintervention for septic false aneurysms and hematomas following carotid endarterectomy but should be considered whenever difficult control of the common carotid artery, when entering the previous cervicotomy, is anticipated. In situ polytetrafluoroethylene grafting can be considered if autogenous vein material is lacking.

  1. Remitting seronegative symmetrical synovitis with pitting edema (RS3PE) syndrome accompanied by Parkinson's disease.

    PubMed

    Ito, Eiichi; Okamoto, Hiroshi; Mochizuki, Atsuko; Ohara, Kuniko; Kato, Maiko; Terashima, Yutaka; Tanaka, Eiichi; Takagi, Kae; Uchiyama, Shinichiro; Iwata, Makoto

    2007-01-01

    We encountered two cases of RS3PE (remitting seronegative symmetrical synovitis with pitting edema) syndrome accompanied by Parkinson's disease (PD). Although the etiology of RS3PE syndrome is still unknown, several possible associations, such as malignancies and viral infections, have been reported; RS3PE syndrome is thought to be an autoimmune-mediated disorder. The present patients did not have any factors which are reported to be associated with RS3PE. Whether or not the complication of PD and RS3PE syndrome is incidental needs to be further examined, and we discuss here the possible cause of association between PD and RS3PE syndrome, including dopamine agonists one of the anti-PD medications.

  2. Nature of the Paleocene/Eocene (P/E) boundary in Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Obaidalla, Nageh A.; Abdel-Maksoud, Nasr A.; Hosny, Atef M.; Mahfouz, Kamel H.

    2017-12-01

    The P/E boundary is studied at eight stratigraphic sections in Sinai, Egypt, which are nearly distributed in a stratigraphic profile from north to south as follows: Al-Hasanah, Sudr Al-Hitan, Wadi Sudr, Al-Thamad, Abu Qada, Wadi Matulla, Wadi Nukhul and Wadi Feiran. This study includes field, litho- and bio-stratigraphic analyses that enabled to delineate several hiatuses which may be due to the occurrence of tectonic activity that may be related to the echo of the Syrian Arc Orogeny at the P/E boundary. Generally, in Egypt the P/E boundary is marked by the occurrence of distinctive five beds, named by El Dababiya Quarry Member. At Wadi Nukhul, Wadi Matulla and Wadi Feiran sections, El Dababiya Quarry Member is well represented and the P/E boundary is conformable and resembles the GSSP section. Although El Dababiya Quarry Member is represented at Al-Hasanah section, the P/E boundary is marked by the occurrence of a minor hiatus at the end of Paleocene. Moreover, at Al Thamad section, El Dababiya Quarry Member is partially represented. On the other hand, at Sudr Al-Hitan, Wadi Sudr and Abu Qada sections, El Dababiya Quarry Member is completely absent due to a major hiatus.

  3. RS3PE syndrome presenting as vascular endothelial growth factor associated disorder.

    PubMed

    Arima, K; Origuchi, T; Tamai, M; Iwanaga, N; Izumi, Y; Huang, M; Tanaka, F; Kamachi, M; Aratake, K; Nakamura, H; Ida, H; Uetani, M; Kawakami, A; Eguchi, K

    2005-11-01

    To characterise serum concentrations of various cytokines and detection by magnetic resonance imaging (MRI) of synovial hypervascularity in patients with remitting seronegative symmetrical synovitis with pitting oedema (RS3PE) syndrome before and after corticosteroid treatment. Vascular endothelial growth factor(165) (VEGF(165)), tumour necrosis factor alpha (TNFalpha), and interleukin 1beta (IL1beta) were measured by enzyme linked immunosorbent assay (ELISA) in serum samples from three patients with RS3PE syndrome. As controls, serum samples from 26 healthy volunteers, 12 patients with rheumatoid arthritis, 10 patients with systemic lupus erythematosus, 13 patients with polymyositis/dermatomyositis, 13 patients with vasculitis syndrome, and 6 patients with mixed connective tissue disease were also analysed. Synovial hypervascularity of patients with RS3PE syndrome was estimated by rate of enhancement (E-rate) in a dynamic MRI study. Serum concentrations of VEGF(165) (mean (SD) 2223.3 (156.3) pg/ml) were significantly higher in patients with active RS3PE syndrome than in controls before corticosteroid treatment. TNFalpha and IL1beta levels were similar in patients and controls. Synovial hypervascularity in affected joints and subcutaneous oedema decreased during corticosteroid treatment, in parallel with the fall in serum VEGF(165). VEGF promotes synovial inflammation and vascular permeability in patients with RS3PE syndrome, suggesting that RS3PE can be classified as a VEGF associated disorder.

  4. Pedagogies for Inclusion of Junior Primary Students with Disabilities in PE

    ERIC Educational Resources Information Center

    Overton, Hannah; Wrench, Alison; Garrett, Robyne

    2017-01-01

    Background: Laws and legislation have prompted movement from special education towards inclusive education, whereby students with disabilities are included in mainstream physical education (PE) classes. It is widely acknowledged that including students with disabilities in PE presents significant challenges in relation to meeting the diverse needs…

  5. Evaluation of transfer films of Salox M on 440C for HPOTP bearing cage applications, task 119

    NASA Technical Reports Server (NTRS)

    Barber, S. A.; Kannel, J. W.; Dufrane, K. F.

    1986-01-01

    The objective of the task was to evaluate the suitability of a bronze-filled polytetra fluoroethylene (Salox M) as the cage material in Space Shuttle Main Engine (SSME) high pressure oxygen turbo pump (HPOTP) bearings. The role of the cage pocket material will be to provide a transferred lubricating interface at the ball-race contact region. A series of experiments was conducted which involved block-on-ring tests (the block was the polytetrafluoroethylene (PTFE) -filled material and the ring was through-hardened 440C steel) and high speed traction tests of two 440C disks with one disk rubbed with a PTFE block to generate a transfer film. Measurements included post test visual observations of the condition of the 440C, wear rate measurements of the blocks, and traction measurements between the disks. It was observed that both Salox M and glass-filled PTFE (Armalon) transferred PTFE to 440C at cryogenic temperatures. Bronze is also transferred to uncoated 440C from the Salox M. At room temperature no PTFE transfer was observed in the high speed disk tests due to severe frictional heating, although bronze transfer still occurred with the bronze-PTFE Salox M material. Since the bearing will operate at cryogenic temperature, transfer films are very probable. Salox M wore slightly, although probably tolerably, more than glass-filled PTFE against 440C. However, Salox M is clearly less abrasive to 440C than is the glass-filled material. When the surface layer of PTFE is depleted from the glass-filled material, the glass fibers tend to seriously abrade the steel. This problem does not occur with Salox M. The surface roughness studies indicate that smooth balls are quite reasonable for transfer films. No significant difference in wear rates of the candidate cage materials was observed when the 440C surface finish was increased from 0.025 micron to 0.1 micron cla. At higher levels of roughness, the wear rate increased. Two surface coatings (MoS2 and TiN) were tested. The

  6. Microexplosions and ignition dynamics in engineered aluminum/polymer fuel particles

    DOE PAGES

    Rubio, Mario A.; Gunduz, I. Emre; Groven, Lori J.; ...

    2016-11-11

    Aluminum particles are widely used as a metal fuel in solid propellants. However, poor combustion efficiencies and two-phase flow losses result due in part to particle agglomeration. Engineered composite particles of aluminum (Al) with inclusions of polytetrafluoroethylene (PTFE) or low-density polyethylene (LDPE) have been shown to improve ignition and yield smaller agglomerates in solid propellants, recently. Reductions in agglomeration were attributed to internal pressurization and fragmentation (microexplosions) of the composite particles at the propellant surface. We explore the mechanisms responsible for microexplosions in order to better understand the combustion characteristics of composite fuel particles. Single composite particles of Al/PTFE andmore » Al/LDPE with diameters between 100 and 1200 µm are ignited on a substrate to mimic a burning propellant surface in a controlled environment using a CO 2 laser in the irradiance range of 78–7700 W/cm 2. Furthermore, the effects of particle size, milling time, and inclusion content on the resulting ignition delay, product particle size distributions, and microexplosion tendencies are reported. For example particles with higher PTFE content (30 wt%) had laser flux ignition thresholds as low as 77 W/cm 2, exhibiting more burning particle dispersion due to microexplosions compared to the other materials considered. Composite Al/LDPE particles exhibit relatively high ignition thresholds compared to Al/PTFE particles, and microexplosions were observed only with laser fluxes above 5500 W/cm 2 due to low LDPE reactivity with Al resulting in negligible particle self-heating. However, results show that microexplosions can occur for Al containing both low and high reactivity inclusions (LDPE and PTFE, respectively) and that polymer inclusions can be used to tailor the ignition threshold. Furthermore, this class of modified metal particles shows significant promise for application in many different energetic

  7. Attenuation Drift in the Micro-Computed Tomography System at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooraghi, Alex A.; Brown, William; Seetho, Isaac

    2016-01-12

    The maximum allowable level of drift in the linear attenuation coefficients (μ) for a Lawrence Livermore National Laboratory (LLNL) micro-computed tomography (MCT) system was determined to be 0.1%. After ~100 scans were acquired during the period of November 2014 to March 2015, the drift in μ for a set of six reference materials reached or exceeded 0.1%. Two strategies have been identified to account for or correct the drift. First, normalizing the 160 kV and 100 kV μ data by the μ of water at the corresponding energy, in contrast to conducting normalization at the 160 kV energy only, significantlymore » compensates for measurement drift. Even after the modified normalization, μ of polytetrafluoroethylene (PTFE) increases linearly with scan number at an average rate of 0.00147% per scan. This is consistent with PTFE radiation damage documented in the literature. The second strategy suggested is the replacement of the PTFE reference with fluorinated ethylene propylene (FEP), which has the same effective atomic number (Ze) and electron density (ρe) as PTFE, but is 10 times more radiation resistant. This is important as effective atomic number and electron density are key parameters in analysis. The presence of a material with properties such as PTFE, when taken together with the remaining references, allows for a broad range of the (Ze, ρe) feature space to be used in analysis. While FEP is documented as 10 times more radiation resistant, testing will be necessary to assess how often, if necessary, FEP will need to be replaced. As radiation damage to references has been observed, it will be necessary to monitor all reference materials for radiation damage to ensure consistent x-ray characteristics of the references.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubio, Mario A.; Gunduz, I. Emre; Groven, Lori J.

    Aluminum particles are widely used as a metal fuel in solid propellants. However, poor combustion efficiencies and two-phase flow losses result due in part to particle agglomeration. Engineered composite particles of aluminum (Al) with inclusions of polytetrafluoroethylene (PTFE) or low-density polyethylene (LDPE) have been shown to improve ignition and yield smaller agglomerates in solid propellants, recently. Reductions in agglomeration were attributed to internal pressurization and fragmentation (microexplosions) of the composite particles at the propellant surface. We explore the mechanisms responsible for microexplosions in order to better understand the combustion characteristics of composite fuel particles. Single composite particles of Al/PTFE andmore » Al/LDPE with diameters between 100 and 1200 µm are ignited on a substrate to mimic a burning propellant surface in a controlled environment using a CO 2 laser in the irradiance range of 78–7700 W/cm 2. Furthermore, the effects of particle size, milling time, and inclusion content on the resulting ignition delay, product particle size distributions, and microexplosion tendencies are reported. For example particles with higher PTFE content (30 wt%) had laser flux ignition thresholds as low as 77 W/cm 2, exhibiting more burning particle dispersion due to microexplosions compared to the other materials considered. Composite Al/LDPE particles exhibit relatively high ignition thresholds compared to Al/PTFE particles, and microexplosions were observed only with laser fluxes above 5500 W/cm 2 due to low LDPE reactivity with Al resulting in negligible particle self-heating. However, results show that microexplosions can occur for Al containing both low and high reactivity inclusions (LDPE and PTFE, respectively) and that polymer inclusions can be used to tailor the ignition threshold. Furthermore, this class of modified metal particles shows significant promise for application in many different energetic

  9. An alkali-metal ion extracted layered compound as a template for a metastable phase synthesis in a low-temperature solid-state reaction: preparation of brookite from K0.8Ti1.73Li0.27O4.

    PubMed

    Ozawa, Tadashi C; Sasaki, Takayoshi

    2010-03-15

    We have designed a new approach to synthesize brookite, i.e., to extract alkali-metal ions from K(0.8)Ti(1.73)Li(0.27)O(4) (KTLO) and to apply simultaneous heat treatment to the remaining lepidocrocite-type layers of TiO(6) octahedra. For the alkali-metal ion extraction and the simultaneous heat treatment, KTLO was heated at 400 degrees C with polytetrafluoroethylene (PTFE) in flowing Ar. PTFE has been found to be an effective agent to extract strongly electropositive alkali-metal ions from KTLO because of the strong electronegativity of F as its component. The product of this reaction consists of a mixture of brookite, K(2)CO(3), LiF, and PTFE derivatives, indicating the complete extraction of K(+) and Li(+) from KTLO and formation of brookite from the lepidocrocite-type layer of TiO(6) octahedra as a template. This brookite has a partial replacement of O(2-) with F(-) and/or slight oxygen deficiency; thus, its color is light-bluish gray. Fully oxidized brookite formation and complete decomposition of PTFE derivatives have been achieved by further heating in flowing air, and coproduced alkali-metal salts have been removed by washing in water. Powder X-ray diffraction, Raman spectroscopy, and chemical analysis results have confirmed that the final brookite product treated at 600 degrees C is single phase, and it is white. The method to extract alkali-metal ions from a crystalline material using PTFE is drastically different from the common methods such as soft-chemical and electrochemical reactions. It is likely that this new synthetic approach is applicable to other layered systems to prepare a diverse family of compounds, including novel metastable ones.

  10. Reflectivity Spectra for Commonly Used Reflectors

    NASA Astrophysics Data System (ADS)

    Janecek, Martin

    2012-06-01

    Monte Carlo simulations play an important role in developing and evaluating the performance of radiation detection systems. To accurately model a reflector in an optical Monte Carlo simulation, the reflector's spectral response has to be known. We have measured the reflection coefficient for many commonly used reflectors for wavelengths from 250 nm to 800 nm. The reflectors were also screened for fluorescence and angular distribution changes with wavelength. The reflectors examined in this work include several polytetrafluoroethylene (PTFE) reflectors, Spectralon, GORE diffuse reflector, titanium dioxide paint, magnesium oxide, nitrocellulose filter paper, Tyvek paper, Lumirror, Melinex, ESR films, and aluminum foil. All PTFE films exhibited decreasing reflectivity with longer wavelengths due to transmission. To achieve >;0.95 reflectivity in the 380 to 500 nm range, the PTFE films have to be at least 0.5 mm thick-nitrocellulose is a good alternative if a thin diffuse reflector is needed. Several of the reflectors have sharp declines in reflectivity below a cut-off wavelength, including TiO2 (420 nm), ESR film (395 nm), nitrocellulose (330 nm), Lumirror (325 nm), and Melinex (325 nm). PTFE-like reflectors were the only examined reflectors that had reflectivity above 0.90 for wavelengths below 300 nm. Lumirror, Melinex, and ESR film exhibited fluorescence. Lumirror and Melinex are excited by wavelengths between 320 and 420 nm and have their emission peaks located at 440 nm, while ESR film is excited by wavelengths below 400 nm and the emission peak is located at 430 nm. Lumirror and Melinex also exhibited changing angular distributions with wavelength.

  11. BIM LAU-PE: Seedlings in Microgravity

    NASA Astrophysics Data System (ADS)

    Gass, S.; Pennese, R.; Chapuis, D.; Dainesi, P.; Nebuloni, S.; Garcia, M.; Oriol, A.

    2015-09-01

    The effect of gravity on plant roots is an intensive subject of research. Sounding rockets represent a costeffective platform to study this effect under microgravity conditions. As part of the upcoming MASER 13 sounding rocket campaign, two experiments on Arabidopsis thaliana seedlings have been devised: GRAMAT and SPARC. These experiments are aimed at studying (1) the genes that are specifically switched on or off during microgravity, and (2) the position of auxin-transporting proteins during microgravity. To perform these experiments, RUAG Space Switzerland site of Nyon, in collaboration with the Swedish Space Corporation (SSC) and the University of Freiburg, has developed the BIM LAU-PE (Biolology In Microgravity Late Access Unit Plant Experiment). In the following an overview of the BIM LAU-PE design is presented, highlighting specific module design features and verifications performed. A particular emphasis is placed on the parabolic flight experiments, including results of the micro-g injection system validation.

  12. But I like PE: factors associated with enjoyment of physical education class in middle school girls.

    PubMed

    Barr-Anderson, Daheia J; Neumark-Sztainer, Dianne; Schmitz, Kathryn H; Ward, Dianne S; Conway, Terry L; Pratt, Charlotte; Baggett, Chris D; Lytle, Leslie; Pate, Russell R

    2008-03-01

    The current study examined associations between physical education (PE) class enjoyment and sociodemographic, personal, and perceived school environment factors among early adolescent girls. Participants included 1,511 sixth-grade girls who completed baseline assessments for the Trial of Activity in Adolescent Girls, with 50% indicating they enjoyed PE class a lot. Variables positively associated with PE class enjoyment included physical activity level, perceived benefits of physical activity, self-efficacy for leisure time physical activity, and perceived school climate for girls' physical activity as influenced by teachers, while body mass index was inversely associated with PE class enjoyment. After adjusting for all variables in the model, PE class enjoyment was significantly greater in Blacks than in Whites. In model testing, with mutual adjustment for all variables, self-efficacy was the strongest correlate of PE class enjoyment, followed by perceived benefits, race/ethnicity, and teachers' support for girls' physical activity, as compared to boys, at school. The overall model explained 11% of the variance in PE class enjoyment. Findings suggest that efforts to enhance girls' self-efficacy and perceived benefits and to provide a supportive PE class environment that promotes gender equality can potentially increase PE class enjoyment among young girls.

  13. Selective isolation of hydrophobin SC3 by solid-phase extraction with polytetrafluoroethylene microparticles and subsequent mass spectrometric analysis.

    PubMed

    Kupčík, Rudolf; Zelená, Miroslava; Řehulka, Pavel; Bílková, Zuzana; Česlová, Lenka

    2016-02-01

    Hydrophobins are small proteins that play a role in a number of processes during the filamentous fungi growth and development. These proteins are characterized by the self-assembly of their molecules into an amphipathic membrane at hydrophilic-hydrophobic interfaces. Isolation and purification of hydrophobins generally present a challenge in their analysis. Hydrophobin SC3 from Schizophyllum commune was selected as a representative of class I hydrophobins in this work. A novel procedure for selective and effective isolation of hydrophobin SC3 based on solid-phase extraction with polytetrafluoroethylene microparticles loaded in a small self-made microcolumn is reported. The tailored binding of hydrophobins to polytetrafluoroethylene followed by harsh elution conditions resulted in a highly specific isolation of hydrophobin SC3 from the model mixture of ten proteins. The presented isolation protocol can have a positive impact on the analysis and utilization of these proteins including all class I hydrophobins. Hydrophobin SC3 was further subjected to reduction of its highly stable disulfide bonds and to chymotryptic digestion followed by mass spectrometric analysis. The isolation and digestion protocols presented in this work make the analysis of these highly hydrophobic and compact proteins possible. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. RS3PE syndrome presenting as vascular endothelial growth factor associated disorder

    PubMed Central

    Arima, K; Origuchi, T; Tamai, M; Iwanaga, N; Izumi, Y; Huang, M; Tanaka, F; Kamachi, M; Aratake, K; Nakamura, H; Ida, H; Uetani, M; Kawakami, A; Eguchi, K

    2005-01-01

    Methods: Vascular endothelial growth factor165 (VEGF165), tumour necrosis factor α (TNFα), and interleukin 1ß (IL1ß) were measured by enzyme linked immunosorbent assay (ELISA) in serum samples from three patients with RS3PE syndrome. As controls, serum samples from 26 healthy volunteers, 12 patients with rheumatoid arthritis, 10 patients with systemic lupus erythematosus, 13 patients with polymyositis/dermatomyositis, 13 patients with vasculitis syndrome, and 6 patients with mixed connective tissue disease were also analysed. Synovial hypervascularity of patients with RS3PE syndrome was estimated by rate of enhancement (E-rate) in a dynamic MRI study. Results: Serum concentrations of VEGF165 (mean (SD) 2223.3 (156.3) pg/ml) were significantly higher in patients with active RS3PE syndrome than in controls before corticosteroid treatment. TNFα and IL1ß levels were similar in patients and controls. Synovial hypervascularity in affected joints and subcutaneous oedema decreased during corticosteroid treatment, in parallel with the fall in serum VEGF165. Conclusions: VEGF promotes synovial inflammation and vascular permeability in patients with RS3PE syndrome, suggesting that RS3PE can be classified as a VEGF associated disorder. PMID:16227418

  15. Concurrence of benign edematous polysynovitis in the elderly (RS3PE syndrome) and endometrial adenocarcinoma.

    PubMed

    Olivo, D; Mattace, R

    1997-01-01

    RS3PE Syndrome is an inflammatory disease which affects mainly males and responds, rapidly, to low dose steroids. We describe the concurrence of RS3PE, poorly responsive to low dose steroids, and endometrial adenocarcinoma. In this patient, clinical and laboratory signs of RS3PE disappeared after total hysterectomy. Patients with RS3PE, poorly responsive to low dose steroids, need an accurate clinical and laboratory evaluation before considering the disease as idiopathic.

  16. But I Like PE: Factors Associated With Enjoyment of Physical Education Class in Middle School Girls

    PubMed Central

    Barr-Anderson, Daheia J.; Neumark-Sztainer, Dianne; Schmitz, Kathryn H.; Ward, Dianne S.; Conway, Terry L.; Pratt, Charlotte; Baggett, Chris D.; Lytle, Leslie; Pate, Russell R.

    2008-01-01

    The current study examined associations between physical education (PE) class enjoyment and sociodemographic, personal, and perceived school environment factors among early adolescent girls. Participants included 1,511 sixth-grade girls who completed baseline assessments for the Trial of Activity in Adolescent Girls, with 50% indicating they enjoyed PE class a lot. Variables positively associated with PE class enjoyment included physical activity level, perceived benefits of physical activity, self-efficacy for leisure time physical activity, and perceived school climate for girls' physical activity as influenced by teachers, while body mass index was inversely associated with PE class enjoyment. After adjusting for all variables in the model, PE class enjoyment was significantly greater in Blacks than in Whites. In model testing, with mutual adjustment for all variables, self-efficacy was the strongest correlate of PE class enjoyment, followed by perceived benefits, race/ethnicity, and teacher's support for girls' physical activity, as compared to boys, at school. The overall model explained 11% of the variance in PE class enjoyment. Findings suggest that efforts to enhance girls' self-efficacy and perceived benefits and to provide a supportive PE class environment that promotes gender equality can potentially increase PE class enjoyment among young girls. PMID:18431947

  17. Integrative Properties of the Pe1 Neuron, a Unique Mushroom Body Output Neuron

    PubMed Central

    Rybak, Jürgen; Menzel, Randolf

    1998-01-01

    A mushroom body extrinsic neuron, the Pe1 neuron, connects the peduncle of the mushroom body (MB) with two areas of the protocerebrum in the honeybee brain, the lateral protocerebral lobe (LPL) and the ring neuropil around the α-lobe. Each side of the bee brain contains only one Pe1 neuron. Using a combination of intracellular recording and neuroanatomical techniques we analyzed its properties of integrative processing of the different sensory modalities. The Pe1 neuron responds to visual, mechanosensory, and olfactory stimuli. The responses are broadly tuned, consisting of a sustained increase of spike frequency to the onset and offset of light flashes, to horizontal and vertical movements of extended objects, to mechanical stimuli applied to the antennae or mouth parts, and to all olfactory stimuli tested (29 chemicals). These multisensory properties are reflected in its dendritic organization. Serial reconstructions of intracellularly stained Pe1 neurons using confocal microscopy reveal that the Pe1 neuron arborizes throughout all layers of MB peduncle with finger-like, vertically oriented dendrites. The peduncle of the MB is formed by the axons of Kenyon cells, whose dendritic inputs are organized in modality-specific subcompartments of the calyx region. The peduncular arborization indicates that the Pe1 neuron receives input from Kenyon cells of all calycal subcompartments. Because the Pe1 neuron changes its odor responses transiently as a consequence of olfactory learning, we hypothesize that the multimodal response properties might have a role in memory consolidation and help to establish contextual references in the long-term trace. PMID:10454378

  18. Pulsar Wind Nebulae inside Supernova Remnants as Cosmic-Ray PeVatrons

    NASA Astrophysics Data System (ADS)

    Ohira, Yutaka; Kisaka, Shota; Yamazaki, Ryo

    2018-07-01

    We propose that cosmic ray PeVatrons are pulsar wind nebulae (PWNe) inside supernova remnants (SNRs). The PWN initially expands into the freely expanding stellar ejecta. Then, the PWN catches up with the shocked region of the SNR, where particles can be slightly accelerated by the back and forth motion between the PWN and the SNR, and some particles diffuse into the PWN. Afterwards the PWN is compressed by the SNR, where the particles in the PWN are accelerated by the adiabatic compression. Using a Monte Carlo simulation, we show that particles accelerated by the SNR to 0.1 PeV can be reaccelerated to 1 PeV until the end of the PWN compression.

  19. Pulsar Wind Nebulae inside Supernova Remnants as Cosmic-Ray PeVatrons

    NASA Astrophysics Data System (ADS)

    Ohira, Yutaka; Kisaka, Shota; Yamazaki, Ryo

    2018-05-01

    We propose that cosmic-ray PeVatrons are pulsar wind nebulae (PWNe) inside supernova remnants (SNRs). The PWN initially expands into the freely expanding stellar ejecta. Then, the PWN catches up with the shocked region of the SNR, where particles can be slightly accelerated by the back and forth motion between the PWN and the SNR, and some particles diffuse into the PWN. Afterwards the PWN is compressed by the SNR, where the particles in the PWN are accelerated by the adiabatic compression. Using a Monte Carlo simulation, we show that particles accelerated by the SNR to 0.1 PeV can be reaccelerated to 1 PeV until the end of the PWN compression.

  20. Use of Mobile Testing System PeLe for Developing Language Skills

    ERIC Educational Resources Information Center

    Titova, Svetlana

    2015-01-01

    One of the objectives of this paper is to investigate the pedagogical impact of both the mobile testing system PeLe (Norway, HiST) and the enquiry-based learning approach on language skills development in the context of mobile-assisted learning. The research aims to work out a methodological framework of PeLe implementation into the language…

  1. New trend of radiation application to polymer modification — irradiation in oxygen free atmosphere and at elevated temperature

    NASA Astrophysics Data System (ADS)

    Seguchi, Tadao

    2000-03-01

    Polycarbosilane (PCS) fiber as a precursor for ceramic fiber of silicon carbide was cured by electron beam (EB) irradiation under oxygen free atmosphere. Oxygen content in the cured PCS fiber was scarce and the obtained silicon carbide (SiC) fiber with low oxygen content showed high heat resistance up to 1973 K and tensile strength of 3 GPa. Also, the EB cured PCS fiber with very low oxygen content could be converted to silicon nitride (Si 3N 4) fiber by the pyrolysis in NH 3 gas atmosphere, which was the new processing to produce Si 3N 4 fiber. The process of SiC fiber synthesis was developed to the commercial plant. The other application was the crosslinking of polytetrafluoroethylene (PTFE). PTFE, which had been recognized to be a typical chain scission polymer, could be induced to crosslinking by irradiation at the molten state in oxygen free atmosphere. The physical properties such as crystallinity, mechanical properties, etc. changed much by crosslinking, and the radiation resistance was much improved.

  2. Comparative study of photocatalytic oxidation on the degradation of formaldehyde and fuzzy mathematics evaluation of filters

    NASA Astrophysics Data System (ADS)

    Yu, Huili; Zhang, Jieting

    2012-04-01

    In this study, formaldehyde, one of the major volatile organic compounds, is chosen as the target pollutant. The polytetrafluoroethylene (PTFE) filter, a low cost and commonly used material in industry, is employed as the substrate for nano TiO2 photocatalyst coating at room temperature, which has been scarcely used compared to ceramics or glass beads. Furthermore, a specific experimental set-up that is similar to actual air purification system is developed for the testing. The degradation mechanisms of photolysis reaction, adsorption and photocatalytic oxidation reaction on volatile organic compounds are present respectively. The influences of three aspects mentioned above are compared by a serial of experimental data. The high efficiency of volatile organic compounds on the degradation of formaldehyde is assured. Furthermore, the purification characteristics of three kinds of activated carbon filters and PTFE filter with nano TiO2 are evaluated with the method of fuzzy mathematics. In the end, the result shows that the filter with nano TiO2 has the optimal comprehensive performances.

  3. Comparative study of photocatalytic oxidation on the degradation of formaldehyde and fuzzy mathematics evaluation of filters

    NASA Astrophysics Data System (ADS)

    Yu, Huili; Zhang, Jieting

    2011-11-01

    In this study, formaldehyde, one of the major volatile organic compounds, is chosen as the target pollutant. The polytetrafluoroethylene (PTFE) filter, a low cost and commonly used material in industry, is employed as the substrate for nano TiO2 photocatalyst coating at room temperature, which has been scarcely used compared to ceramics or glass beads. Furthermore, a specific experimental set-up that is similar to actual air purification system is developed for the testing. The degradation mechanisms of photolysis reaction, adsorption and photocatalytic oxidation reaction on volatile organic compounds are present respectively. The influences of three aspects mentioned above are compared by a serial of experimental data. The high efficiency of volatile organic compounds on the degradation of formaldehyde is assured. Furthermore, the purification characteristics of three kinds of activated carbon filters and PTFE filter with nano TiO2 are evaluated with the method of fuzzy mathematics. In the end, the result shows that the filter with nano TiO2 has the optimal comprehensive performances.

  4. Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics.

    PubMed

    D'Angelo, Francesco; Mics, Zoltán; Bonn, Mischa; Turchinovich, Dmitry

    2014-05-19

    Terahertz-range dielectric properties of the common polymers low-density polyethylene (LDPE), cyclic olefin/ethylene copolymer (TOPAS®), polyamide-6 (PA6), and polytetrafluoroethylene (PTFE or Teflon®) are characterized in the ultra-broadband frequency window 2-15 THz, using a THz time-domain spectrometer employing air-photonics for the generation and detection of single-cycle sub-50 fs THz transients. The time domain measurements provide direct access to both the absorption and refractive index spectra. The polymers LDPE and TOPAS® demonstrate negligible absorption and spectrally-flat refractive index across the entire spectroscopy window, revealing the high potential of these polymers for applications in THz photonics such as ultra-broadband polymer-based dielectric mirrors, waveguides, and fibers. Resonant high-frequency polar vibrational modes are observed and assigned in polymers PA6 and PTFE, and their dielectric functions in the complete frequency window 2-15 THz are theoretically reproduced. Our results demonstrate the potential of ultra-broadband air-photonics-based THz time domain spectroscopy as a valuable analytic tool for materials science.

  5. High-temperature supercapacitor with a proton-conducting metal pyrophosphate electrolyte

    PubMed Central

    Hibino, Takashi; Kobayashi, Kazuyo; Nagao, Masahiro; Kawasaki, Shinji

    2015-01-01

    Expanding the range of supercapacitor operation to temperatures above 100°C is important because this would enable capacitors to operate under the severe conditions required for next-generation energy storage devices. In this study, we address this challenge by the fabrication of a solid-state supercapacitor with a proton-conducting Sn0.95Al0.05H0.05P2O7 (SAPO)-polytetrafluoroethylene (PTFE) composite electrolyte and a highly condensed H3PO4 electrode ionomer. At a temperature of 200°C, the SAPO-PTFE electrolyte exhibits a high proton conductivity of 0.02 S cm−1 and a wide withstanding voltage range of ±2 V. The H3PO4 ionomer also has good wettability with micropore-rich activated carbon, which realizes a capacitance of 210 F g−1 at 200°C. The resulting supercapacitor exhibits an energy density of 32 Wh kg−1 at 3 A g−1 and stable cyclability after 7000 cycles from room temperature to 150°C. PMID:25600936

  6. Isothermal Ice Crystallization Kinetics in the Gas-Diffusion Layer of a Proton-Exchange-Membrane Fuel Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dursch, Thomas J.; Ciontea, Monica A.; Radke, Clayton J.

    2011-12-01

    Nucleation and growth of ice in the fibrous gas-diffusion layer (GDL) of a proton-exchange membrane fuel cell (PEMFC) are studied using isothermal differential scanning calorimetry (DSC). Isothermal crystallization rates and pseudo-steady-state nucleation rates are obtained as a function of subcooling from heat-flow and induction-time measurements. Kinetics of ice nucleation and growth are studied at two polytetrafluoroethylene (PTFE) loadings (0 and 10 wt %) in a commercial GDL for temperatures between 240 and 273 K. A nonlinear ice-crystallization rate expression is developed using Johnson–Mehl–Avrami–Kolmogorov (JMAK) theory, in which the heat-transfer-limited growth rate is determined from the moving-boundary Stefan problem. Induction timesmore » follow a Poisson distribution and increase upon addition of PTFE, indicating that nucleation occurs more slowly on a hydrophobic fiber than on a hydrophilic fiber. The determined nucleation rates and induction times follow expected trends from classical nucleation theory. Finally, a validated rate expression is now available for predicting ice-crystallization kinetics in GDLs.« less

  7. Template-based fluoroethylenepropylene piezoelectrets with tubular channels for transducer applications

    NASA Astrophysics Data System (ADS)

    Altafim, Ruy Alberto Pisani; Qiu, Xunlin; Wirges, Werner; Gerhard, Reimund; Altafim, Ruy Alberto Corrêa; Basso, Heitor Cury; Jenninger, Werner; Wagner, Joachim

    2009-07-01

    We describe the concept, the fabrication, and the most relevant properties of a piezoelectric-polymer system: Two fluoroethylenepropylene (FEP) films with good electret properties are laminated around a specifically designed and prepared polytetrafluoroethylene (PTFE) template at 300 °C. After removing the PTFE template, a two-layer FEP film with open tubular channels is obtained. For electric charging, the two-layer FEP system is subjected to a high electric field. The resulting dielectric barrier discharges inside the tubular channels yield a ferroelectret with high piezoelectricity. d33 coefficients of up to 160 pC/N have already been achieved on the ferroelectret films. After charging at suitable elevated temperatures, the piezoelectricity is stable at temperatures of at least 130 °C. Advantages of the transducer films include ease of fabrication at laboratory or industrial scales, a wide range of possible geometrical and processing parameters, straightforward control of the uniformity of the polymer system, flexibility, and versatility of the soft ferroelectrets, and a large potential for device applications e.g., in the areas of biomedicine, communications, production engineering, sensor systems, environmental monitoring, etc.

  8. Mechanical Thrombectomy of Occluded Hemodialysis Native Fistulas and Grafts Using a Hydrodynamic Thrombectomy Catheter: Preliminary Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahni, Vikram, E-mail: vassahni@hotmail.com; Kaniyur, Sunil; Malhotra, Anmol

    2005-12-15

    The purpose of this study was to evaluate the efficacy and safety of a new hydrodynamic percutaneous thrombectomy catheter in the treatment of thrombosed hemodialysis fistulas and grafts. Twenty-two patients (median age: 47 years; range: 31-79 years) underwent mechanical thrombectomy for thrombosed hemodialysis fistulas or polytetrafluoroethylene (PTFE) grafts. In all cases, an Oasis hydrodynamic catheter was used. Five patients had native fistulas and 17 had PTFE grafts. Six patients required repeat procedures. All patients with native fistulas and 15 of the 17 with PTFE grafts also underwent angioplasty of the venous limb following the thrombectomy. Major outcome measures included technicalmore » success, clinical success, primary and secondary patency, and complication rates. Twenty-eight procedures were performed in total. The technical success rate was 100% and 90% and clinical success was 86% and 76% for native fistulas and grafts, respectively. The primary patency at 6 months was 50% and 59% for fistulas and grafts, respectively, and the secondary patency at 6 months was 75% and 70% for fistulas and grafts, respectively. Two patients died of unrelated causes during the follow-up period. The Oasis catheter is an effective mechanical device for the percutaneous treatment of thrombosed hemodialysis access. Our initial success rate showed that the technique is safe in the treatment of both native fistulas and grafts.« less

  9. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to Maglev

    NASA Astrophysics Data System (ADS)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2014-11-01

    The REBCO coated conductor has been attracted attention because of its high current density in the presence of high magnetic field. If the coated conductor is applied to Maglev, the operational temperature of the on-board magnets will be over 40 K and energy consumption of cryocoolers will be reduced. That high operational temperature also means the absence of liquid helium. Therefore, reliable thermal coupling is desirable for cooling the coils. We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. While the PTFE tape prevents the performance degradation of the coil, the epoxy resin bonds the coil to cooling members. We carried out three experiments to confirm that the coil structure which we propose has robust thermal coupling without the degradation. First, thermal resistances of paraffin and epoxy were measured varying the temperature from room temperature to 10 K. The measurement result indicates that paraffin has a risk of losing thermal coupling during cooling down. In another experiment, PTFE (polytetrafluoroethylene) tape insulator prevented performance degradation of a small epoxy impregnated REBCO coil, while another REBCO coil with polyimide tape showed clear performance degradation. Finally, we produced a racetrack REBCO coil with the same outer dimension as a Maglev on-board magnet coil. Although the racetrack coil was installed in a GFRP coil case and tightly bonded to the case by epoxy impregnation, any performance degradation was not observed.

  10. Membrane distillation combined with an anaerobic moving bed biofilm reactor for treating municipal wastewater.

    PubMed

    Kim, Hyun-Chul; Shin, Jaewon; Won, Seyeon; Lee, Jung-Yeol; Maeng, Sung Kyu; Song, Kyung Guen

    2015-03-15

    A fermentative strategy with an anaerobic moving bed biofilm reactor (AMBBR) was used for the treatment of domestic wastewater. The feasibility of using a membrane separation technique for post-treatment of anaerobic bio-effluent was evaluated with emphasis on employing a membrane distillation (MD). Three different hydrophobic 0.2 μm membranes made of polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and polypropylene (PP) were examined in this study. The initial permeate flux of the membranes ranged from 2.5 to 6.3 L m(-2) h(-1) when treating AMBBR effluent at a temperature difference between the feed and permeate streams of 20 °C, with the permeate flux increasing in the order PP < PVDF < PTFE. The permeate flux of the PTFE membrane gradually decreased to 84% of the initial flux after the 45 h run for distillation, while a flux decline in MD with either the PVDF or PP membrane was not found under the identical distillation conditions. During long-term distillation with the PVDF membrane, total phosphorus was completely rejected and >98% rejection of dissolved organic carbon was also achieved. The characterization of wastewater effluent organic matter (EfOM) using an innovative suite of analytical tools verified that almost all of the EfOM was rejected via the PVDF MD treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A Modified Rabbit Ulna Defect Model for Evaluating Periosteal Substitutes in Bone Engineering: A Pilot Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Backly, Rania M.; IRCCS AOU San Martino–IST Istituto Nazionale per la Ricerca sul Cancro, Genova; Faculty of Dentistry, Alexandria University, Alexandria

    The present work defines a modified critical size rabbit ulna defect model for bone regeneration in which a non-resorbable barrier membrane was used to separate the radius from the ulna to create a valid model for evaluation of tissue-engineered periosteal substitutes. Eight rabbits divided into two groups were used. Critical defects (15 mm) were made in the ulna completely eliminating periosteum. For group I, defects were filled with a nanohydroxyapatite poly(ester urethane) scaffold soaked in PBS and left as such (group Ia) or wrapped with a tissue-engineered periosteal substitute (group Ib). For group II, an expanded-polytetrafluoroethylene (e-PTFE) (GORE-TEX{sup ®}) membranemore » was inserted around the radius then the defects received either scaffold alone (group IIa) or scaffold wrapped with periosteal substitute (group IIb). Animals were euthanized after 12–16 weeks, and bone regeneration was evaluated by radiography, computed microtomography (μCT), and histology. In the first group, we observed formation of radio-ulnar synostosis irrespective of the treatment. This was completely eliminated upon placement of the e-PTFE (GORE-TEX{sup ®}) membrane in the second group of animals. In conclusion, modification of the model using a non-resorbable e-PTFE membrane to isolate the ulna from the radius was a valuable addition allowing for objective evaluation of the tissue-engineered periosteal substitute.« less

  12. Improved Separators For Rechargeable Lithium Cells

    NASA Technical Reports Server (NTRS)

    Shen, David; Surampudi, Subbarao; Huang, Chen-Kuo; Halpert, Gerald

    1994-01-01

    Improved pairs of separators proposed for use in rechargeable lithium cells operating at ambient temperature. Block growth of lithium dendrites and help prevent short circuits. Each cell contains one separator made of microporous polypropylene placed next to anode, and one separator made of microporous polytetrafluoroethylene (PTFE) next to cathode. Separators increase cycle lives of secondary lithium cells. Cells to which concept applicable those of Li/TiS(2), Li/NbSe(3), Li/CoO(2), Li/MoS(2), Li/VO(x), and Li/MnO(2) chemical systems. Advantageous in spacecraft, military, communications, automotive, and other applications in which high energy density and rechargeability needed.

  13. Preliminary Evaluation of Greases for Space Mechanisms Using a Vacuum Spiral Orbit Tribometer

    NASA Technical Reports Server (NTRS)

    Marchetti, Mario; Jones, William R., Jr.; Street, Kenneth W.; Pepper, Stephen V.; Jansen, Mark J.

    2001-01-01

    Most currently used greases for space applications are based on perfluoropolyalkylethers (PFPE) and multiply alkylated cyclopentane (MAC) oils. Evaluation of the greases includes outgassing properties, rheological behavior, and particularly the ability to create EHL films under conditions as close as possible to an actual application. A spiral orbit tribometer (SOT) has been developed to conduct accelerated tests under realistic conditions. The SOT was employed to evaluate two greases used in space mechanisms: a PFPE oil with polytetrafluoroethylene (PTFE) thickener, and a multiply alkylated cyclopentane oil with n-octadecylterephthalamate soap. The results from the greases are in agreement with results previously obtained with the base oils.

  14. Impact of pe_pgrs33 Gene Polymorphisms on Mycobacterium tuberculosis Infection and Pathogenesis.

    PubMed

    Camassa, Serena; Palucci, Ivana; Iantomasi, Raffaella; Cubeddu, Tiziana; Minerva, Mariachiara; De Maio, Flavio; Jouny, Samuel; Petruccioli, Elisa; Goletti, Delia; Ria, Francesco; Sali, Michela; Sanguinetti, Maurizio; Manganelli, Riccardo; Rocca, Stefano; Brodin, Priscille; Delogu, Giovanni

    2017-01-01

    PE_PGRS33 is a surface-exposed protein of Mycobacterium tuberculosis ( Mtb ) which exerts its role in macrophages entry and immunomodulation. In this study, we aimed to investigate the polymorphisms in the pe_pgrs33 gene of Mtb clinical isolates and evaluate their impact on protein functions. We sequenced pe_pgrs33 in a collection of 135 clinical strains, genotyped by 15-loci MIRU-VNTR and spoligotyping and belonging to the Mtb complex (MTBC). Overall, an association between pe_pgrs33 alleles and MTBC genotypes was observed and a dN/dS ratio of 0.64 was obtained, suggesting that a purifying selective pressure is acting on pe_pgrs33 against deleterious SNPs. Among a total of 19 pe_pgrs33 alleles identified in this study, 5 were cloned and used to complement the pe_pgrs33 knock-out mutant strain of Mtb H37Rv ( Mtb Δ33) to assess the functional impact of the respective polymorphisms in in vitro infections of primary macrophages. In human monocyte-derived macrophages (MDMs) infection, large in-frame and frameshift mutations were unable to restore the phenotype of Mtb H37Rv, impairing the cell entry capacity of Mtb , but neither its intracellular replication rate nor its immunomodulatory properties. In vivo studies performed in the murine model of tuberculosis (TB) demonstrated that the Mtb Δ33 mutant strain was not impaired in the ability to infect and replicate in the lung tissue compared to the parental strain. Interestingly, Mtb Δ33 showed an enhanced virulence during the chronic steps of infection compared to Mtb H37Rv. Similarly, the complementation of Mtb Δ33 with a frameshift allele also resulted in a Mtb strain capable of causing a surprisingly enhanced tissue damage in murine lungs, during the chronic steps of infection. Together, these results further support the role of PE_PGRS33 in the pathogenesis and virulence of Mtb .

  15. Altered combustion characteristics of metallized energetics due to stable secondary material inclusion

    NASA Astrophysics Data System (ADS)

    Terry, Brandon C.

    Though metals and metalloids have been widely considered as reactive fuels, the ability to tune their ignition and combustion characteristics remains challenging. One means to accomplish this may be through low-level inclusion of secondary materials into the metallized fuel. While there are several potential methods to stably introduce secondary inclusion materials, this work focuses on the use of mechanical activation (MA) and metal alloys. Recent work has shown that low-level inclusion of fluoropolymers into aluminum particles can have a substantial effect on their combustion characteristics. The reflected shock ignition of mechanically activated aluminum/polytetrafluoroethylene (MA Al/PTFE) is compared to a physical mixture (PM) of Al/PTFE, neat spherical aluminum, and flake aluminum. It was found that the powders with higher specific surface areas ignited faster than the spherical particles of the same size, and had ignition delay times comparable to agglomerates of aluminum particles that were two orders of magnitude smaller in size. Flake aluminum powder had the same ignition delay as MA Al/PTFE, indicating that any initial aluminum/fluoropolymer reactions did not yield an earlier onset of aluminum oxidation. However, MA Al/PTFE did have a shorter total burn time. The PM of Al/PTFE powder had a shorter ignition delay than neat spherical aluminum due to the rapid decomposition of PTFE into reactive fluorocarbon compounds, but the subsequent fluorocarbon reactions also created a secondary luminosity profile that significantly increased the total burn time of the system. The explosive shock ignition of aluminum and aluminum-silicon eutectic alloy compacts was evaluated with and without polymer inclusions. A statistical analysis was completed, investigating the effects of: detonation train orientation (into or not into a hard surface); the high explosive driver; whether the metal/polymer system is mechanically activated; particle size; particle morphology

  16. Related Critical Psychometric Issues and Their Resolutions during Development of PE Metrics

    ERIC Educational Resources Information Center

    Fox, Connie; Zhu, Weimo; Park, Youngsik; Fisette, Jennifer L.; Graber, Kim C.; Dyson, Ben; Avery, Marybell; Franck, Marian; Placek, Judith H.; Rink, Judy; Raynes, De

    2011-01-01

    In addition to validity and reliability evidence, other psychometric qualities of the PE Metrics assessments needed to be examined. This article describes how those critical psychometric issues were addressed during the PE Metrics assessment bank construction. Specifically, issues included (a) number of items or assessments needed, (b) training…

  17. School PE through Internet Discussion Forums

    ERIC Educational Resources Information Center

    Lauritsalo, Kirsti; Sääkslahti, Arja; Rasku-Puttonen, Helena

    2015-01-01

    Background: Physical education is a subject that generates strong feelings and emotions, as can be seen in written accounts of PE experiences. It is also important to listen to students' voices in the research context. Nowadays, students can be listened to in a new way--through the Internet. Various discussion forums on the Internet make it…

  18. [Comparative study of PTFE grafts in forearm vs cuffed permanent catheters].

    PubMed

    Moyano, M J; Salgueira, M; Aresté, N; Escalera, B; del Toro, N; Jiménez-Víbora, E; Martínez-Puerto, A I; Molas, J R; Palma, A

    2006-01-01

    As is universally accepted the best form of permanent vascular access for haemodialysis is the native arteriovenous fistula. A second and third options are the politetrafluoroethylene (PTFE) AV grafts and the cuffed, tunneled, internal catheters. The overall performance and complications of catheters is clearly inferior to AV fistula. There are not many studies that compare permanent catheters to grafts in terms of functionality, survival and complications. We analyzed 81 vascular accesses carried out from october 99 to december 03 in 59 patients and during a follow-up period of 35 months. Two groups were considered. Group 1, catheters (n 42) and group 2, grafts (n 39). Clinical aspects, comorbidity index (Wright and Kanh), dialysis dose and complications and survival of the access were registered. Both groups were similar in age, sex, time on haemodialysis, number of previous accesses and hospitalization days. Cardiovascular morbidity and comorbidity index were significantly higher in patients with catheter. While blood flow during dialysis was higher in grafts both groups showed no significant differences in parameters of efficacy of dialysis (Kt/V, TAC BUN and PCRn). Serum albumin was lower in patients with catheter. The number of accesses that failed was higher in the graft group being thrombosis the main complication followed by infection. Kaplan-Meier curves showed better accumulated survival of permanent catheters versus grafts (61,4% vs 9,8% at 35 months). The most frequent complication of catheter was infection while in the case of grafts it was thrombosis followed by infection. Although they were placed in patients with higher comorbidity, cuffed, tunneled catheters showed less number of complications and better survival than PTFE grafts in our patients in haemodialysis. The main cause of failure of both vascular access was thrombosis followed by infection. The dose of dialysis obtained was no different in both groups. Cuffed, tunneled permanent catheters

  19. Antimicrobial (BN/PE) film combined with modified atmosphere packaging extends the shelf life of minimally processed fresh-cut iceberg lettuce.

    PubMed

    Kang, Sun-Chul; Kim, Min-Jeong; Park, In-Sik; Choi, Ung-Kyu

    2008-03-01

    This study was conducted to investigate the effect of modified atmosphere packaging (MAP) in combination with BN/PE film on the shelf life and quality of fresh-cut iceberg lettuce during cold storage. The total mesophilic population in the sample packed in BN/PE film under MAP conditions was dramatically reduced in comparison with that of PE film, PE film under MAP conditions, and BN/PE film. The O2 concentration in the BN/PE film under MAP conditions decreased slightly as the storage period progressed. The coloration of the iceberg lettuce progressed the slowest when it was packaged in BN/PE film under MAP conditions, followed by BN/PE film, PE film, and PE film under MAP conditions. The shelf life of fresh-cut iceberg lettuce packaged in the BN/PE film under MAP conditions was extended by more than 2 days at 10 degrees as compared with that of the BN/PE film in which the extension effect was more than 2 days longer than that of PE, PET, and OPP films.

  20. Rater reliability and concurrent validity of the Keyboard Personal Computer Style instrument (K-PeCS).

    PubMed

    Baker, Nancy A; Cook, James R; Redfern, Mark S

    2009-01-01

    This paper describes the inter-rater and intra-rater reliability, and the concurrent validity of an observational instrument, the Keyboard Personal Computer Style instrument (K-PeCS), which assesses stereotypical postures and movements associated with computer keyboard use. Three trained raters independently rated the video clips of 45 computer keyboard users to ascertain inter-rater reliability, and then re-rated a sub-sample of 15 video clips to ascertain intra-rater reliability. Concurrent validity was assessed by comparing the ratings obtained using the K-PeCS to scores developed from a 3D motion analysis system. The overall K-PeCS had excellent reliability [inter-rater: intra-class correlation coefficients (ICC)=.90; intra-rater: ICC=.92]. Most individual items on the K-PeCS had from good to excellent reliability, although six items fell below ICC=.75. Those K-PeCS items that were assessed for concurrent validity compared favorably to the motion analysis data for all but two items. These results suggest that most items on the K-PeCS can be used to reliably document computer keyboarding style.

  1. Targeting the Body and the Mind: Evaluation of a P.E. Curriculum Intervention for Adolescents

    ERIC Educational Resources Information Center

    Loukaitou-Sideris, Anastasia

    2015-01-01

    P.E. classes are often the only opportunity for inner-city youth to engage in physical activity, but budget cuts and pressure to perform well on standardized tests has made P.E. an afterthought for many school administrators. This study evaluated the effectiveness of a new P.E. curriculum in five Los Angeles inner-city schools. Interviews were…

  2. RS3PE presenting in a unilateral pattern: case report and review of the literature.

    PubMed

    Keenan, Robert T; Hamalian, Gareen M; Pillinger, Michael H

    2009-06-01

    To review the clinical features and pathophysiologic implications of remitting seronegative symmetrical synovitis with pitting edema (RS(3)PE) presenting in a unilateral manner. We identified and characterized an index case of RS(3)PE presenting in a unilateral pattern. We subsequently performed a systematic literature search to identify other reports of patients with unilateral RS(3)PE. The index case was a 76-year-old male with a prior history of right hemiparesis owing to a cerebrovascular accident 25 years prior, who developed a classic picture of RS(3)PE involving hand (metacarpophalageal and wrist joint) arthritis and dorsal pitting edema, accompanied by an elevated erythrocyte sedimentation rate, but only in the nonhemiparetic hand. The condition responded rapidly to low-dose prednisone. Our literature search identified 5 other cases of unilateral RS(3)PE, including 2 presented only in the Italian or German literature. Of the 5 cases, 2 were in patients with preexisting neurologic disease, in which the neurologically affected side was spared. One additional case initially presented as unilateral disease but rapidly progressed to bilaterality. Two cases presented in a fully unilateral manner despite no reported neurologic abnormalities on the unaffected sides. While RS(3)PE is almost always a symmetric disease of the upper extremities, it may rarely present in a unilateral fashion. The apparent ability of neuropathic changes to protect against the expression of RS(3)PE in an extremity suggests a role for neural and possibly other local factors in the genesis/modulation of the onset or maintenance of RS(3)PE.

  3. 27 The DiPEP (Diagnosis of PE in Pregnancy) study: can clinical assessment, d-dimer or chest x-ray be used to select pregnant or postpartum women with suspected PE for diagnostic imaging?

    PubMed

    Goodacre, Steve; Horspool, Kimberley; Nelson-Piercy, Catherine; Knight, Marian; Shephard, Neil; Lecky, Fiona; Thomas, Steven; Hunt, Beverley; Fuller, Gordon

    2017-12-01

    To determine whether clinical features (in the form of a clinical decision rule) or d-dimer can be used to select pregnant or postpartum women with suspected PE for diagnostic imaging. Observational cohort study augmented with additional cases. Consultant-led maternity units participating in the UK Obstetric Surveillance System (UKOSS) and emergency departments and maternity units at eleven prospectively recruiting sites. 198 pregnant or postpartum women with diagnosed PE identified through UKOSS and 324 pregnant or postpartum women with suspected PE from prospectively recruiting sites. Data were collected relating to clinical features, elements of clinical decision rules, d-dimer measurements, diagnostic imaging, treatment for PE and adverse outcomes. Women were classified as having or not having PE on the basis of diagnostic imaging, treatment and subsequent adverse outcomes. Primary analysis was limited to women with conclusive diagnostic imaging. Secondary analyses included women with clinically diagnosed or ruled out PE. The primary analysis included 181 women with PE and 259 without. Most clinical features showed no association with PE. The only exceptions were number of previous pregnancies over 24 weeks (p=0.017), no varicose veins (p=0.045), no recent long haul travel (p=0.006), recent surgery including caesarean section (p=0.001), increased temperature (p=0.003), low oxygen saturation (p<0.001), PE-related chest x-ray abnormality (p=0.01) and other chest x-ray abnormality (p=0.001).Clinical decision rules had areas under the receiver-operator characteristic curve ranging from 0.577 to 0.732. No clinically useful threshold for decision-making was identified for any rule. The sensitivities and specificities of d-dimer were 88.4% and 8.8% using the standard laboratory threshold and 69.8% and 32.8% using a pregnancy-specific threshold. Clinical decision rules, d-dimer and chest x-ray should not be used to select pregnant or postpartum women with suspected PE

  4. The new geographic information system in ETVA VI.PE.

    NASA Astrophysics Data System (ADS)

    Xagoraris, Zafiris; Soulis, George

    2016-08-01

    ETVA VI.PE. S.A. is a member of the Piraeus Bank Group of Companies and its activities include designing, developing, exploiting and managing Industrial Areas throughout Greece. Inside ETVA VI.PE.'s thirty-one Industrial Parks there are currently 2,500 manufacturing companies established, with 40,000 employees and € 2.5 billion of invested funds. In each one of the industrial areas ETVA VI.PE guarantees the companies industrial lots of land (sites) with propitious building codes and complete infrastructure networks of water supply, sewerage, paved roads, power supply, communications, cleansing services, etc. The development of Geographical Information System for ETVA VI.PE.'s Industrial Parks started at the beginning of 1992 and consists of three subsystems: Cadastre, that manages the information for the land acquisition of Industrial Areas; Street Layout - Sites, that manages the sites sold to manufacturing companies; Networks, that manages the infrastructure networks (roads, water supply, sewerage etc). The mapping of each Industrial Park is made incorporating state-of-the-art photogrammetric, cartographic and surveying methods and techniques. Passing through the phases of initial design (hybrid GIS) and system upgrade (integrated Gis solution with spatial database), the system is currently operating on a new upgrade (integrated gIS solution with spatial database) that includes redesigning and merging the system's database schemas, along with the creation of central security policies, and the development of a new web GIS application for advanced data entry, highly customisable and standard reports, and dynamic interactive maps. The new GIS bring the company to advanced levels of productivity and introduce the new era for decision making and business management.

  5. SCoPE: an efficient method of Cosmological Parameter Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Santanu; Souradeep, Tarun, E-mail: santanud@iucaa.ernet.in, E-mail: tarun@iucaa.ernet.in

    Markov Chain Monte Carlo (MCMC) sampler is widely used for cosmological parameter estimation from CMB and other data. However, due to the intrinsic serial nature of the MCMC sampler, convergence is often very slow. Here we present a fast and independently written Monte Carlo method for cosmological parameter estimation named as Slick Cosmological Parameter Estimator (SCoPE), that employs delayed rejection to increase the acceptance rate of a chain, and pre-fetching that helps an individual chain to run on parallel CPUs. An inter-chain covariance update is also incorporated to prevent clustering of the chains allowing faster and better mixing of themore » chains. We use an adaptive method for covariance calculation to calculate and update the covariance automatically as the chains progress. Our analysis shows that the acceptance probability of each step in SCoPE is more than 95% and the convergence of the chains are faster. Using SCoPE, we carry out some cosmological parameter estimations with different cosmological models using WMAP-9 and Planck results. One of the current research interests in cosmology is quantifying the nature of dark energy. We analyze the cosmological parameters from two illustrative commonly used parameterisations of dark energy models. We also asses primordial helium fraction in the universe can be constrained by the present CMB data from WMAP-9 and Planck. The results from our MCMC analysis on the one hand helps us to understand the workability of the SCoPE better, on the other hand it provides a completely independent estimation of cosmological parameters from WMAP-9 and Planck data.« less

  6. BRDF Calibration of Sintered PTFE in the SWIR

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Butler, James J.

    2009-01-01

    Satellite instruments operating in the reflective solar wavelength region often require accurate and precise determination of the Bidirectional Reflectance Distribution Function (BRDF) of laboratory-based diffusers used in their pre-flight calibrations and ground-based support of on-orbit remote sensing instruments. The Diffuser Calibration Facility at NASA's Goddard Space Flight Center is a secondary diffuser calibration standard after NEST for over two decades, providing numerous NASA projects with BRDF data in the UV, Visible and the NIR spectral regions. Currently the Diffuser Calibration Facility extended the covered spectral range from 900 nm up to 1.7 microns. The measurements were made using the existing scatterometer by replacing the Si photodiode based receiver with an InGaAs-based one. The BRDF data was recorded at normal incidence and scatter zenith angles from 10 to 60 deg. Tunable coherent light source was setup. Broadband light source application is under development. Gray-scale sintered PTFE samples were used at these first trials, illuminated with P and S polarized incident light. The results are discussed and compared to empirically generated BRDF data from simple model based on 8 deg directional/hemispherical measurements.

  7. Characteristics of a non-volatile liquid propellant in liquid-fed ablative pulsed plasma thrusters

    NASA Astrophysics Data System (ADS)

    Ling, William Yeong Liang; Schönherr, Tony; Koizumi, Hiroyuki

    2017-02-01

    In the past several decades, the use of electric propulsion in spacecraft has experienced tremendous growth. With the increasing adoption of small satellites in the kilogram range, suitable propulsion systems will be necessary in the near future. Pulsed plasma thrusters (PPTs) were the first form of electric propulsion to be deployed in orbit, and are highly suitable for small satellites due to their inherent simplicity. However, their lifetime is limited by disadvantages such as carbon deposition leading to thruster failure, and complicated feeding systems required due to the conventional use of solid propellants (usually polytetrafluoroethylene (PTFE)). A promising alternative to solid propellants has recently emerged in the form of non-volatile liquids that are stable in vacuum. This study presents a broad comparison of the non-volatile liquid perfluoropolyether (PFPE) and solid PTFE as propellants on a PPT with a common design base. We show that liquid PFPE can be successfully used as a propellant, and exhibits similar plasma discharge properties to conventional solid PTFE, but with a mass bit that is an order of magnitude higher for an identical ablation area. We also demonstrate that the liquid PFPE propellant has exceptional resistance to carbon deposition, completely negating one of the major causes of thruster failure, while solid PTFE exhibited considerable carbon build-up. Energy dispersive X-ray spectroscopy was used to examine the elemental compositions of the surface deposition on the electrodes and the ablation area of the propellant (or PFPE encapsulator). The results show that based on its physical characteristics and behavior, non-volatile liquid PFPE is an extremely promising propellant for use in PPTs, with an extensive scope available for future research and development.

  8. Is remitting seronegative symmetrical synovitis with pitting edema (RS3PE) a subset of rheumatoid arthritis?

    PubMed

    Yao, Qingping; Su, Xiangqian; Altman, Roy D

    2010-08-01

    To contrast and compare the spectrum of remitting seronegative symmetrical synovitis with pitting edema (RS3PE) with rheumatoid arthritis (RA) using an illustrative case. The relevant English literature of RS3PE was searched using the keywords "RS3PE" alone and in combination with terms such as neoplasia and rheumatic disease. Original and review articles were reviewed and the clinical setting was exemplified with a case report. RS3PE initially was reported to represent a form of RA. However, RS3PE has clinical features that are different from both early- and late-onset RA, such as lack of bony erosions and rheumatoid factor. RS3PE is thought to involve vascular endothelial growth factor, suggesting an infectious etiology, generally has an excellent prognosis, and is associated with neoplasia not commonly seen in RA, and the RA associated human leukocyte antigen (HLA) DRB1 genotype is absent. Based on the clinical, laboratory, suspected infectious etiology, genetic differences, and types of associated malignancies, RS3PE appears to be a distinct entity rather than a subset of RA. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Syndrome of remitting seronegative symmetrical synovitis with pitting oedema (RS3PE).

    PubMed

    Kundu, A K

    2007-03-01

    RS3PE syndrome, often mimicking rheumatoid arthritis (RA) or polymyalgia rheumatica (PMR), has puzzled the rheumatologists until late'80s. Though the nature of the disease still remains illusive, the outcome is excellent. This present study analyzes the clinical, radiological and immunogenetical characteristics of five patients diagnosed with RS3PE syndrome, with review of literature.

  10. Adaption of a parallel-path poly(tetrafluoroethylene) nebulizer to an evaporative light scattering detector: Optimization and application to studies of poly(dimethylsiloxane) oligomers as a model polymer.

    PubMed

    Durner, Bernhard; Ehmann, Thomas; Matysik, Frank-Michael

    2018-06-05

    The adaption of an parallel-path poly(tetrafluoroethylene)(PTFE) ICP-nebulizer to an evaporative light scattering detector (ELSD) was realized. This was done by substituting the originally installed concentric glass nebulizer of the ELSD. The performance of both nebulizers was compared regarding nebulizer temperature, evaporator temperature, flow rate of nebulizing gas and flow rate of mobile phase of different solvents using caffeine and poly(dimethylsiloxane) (PDMS) as analytes. Both nebulizers showed similar performances but for the parallel-path PTFE nebulizer the performance was considerably better at low LC flow rates and the nebulizer lifetime was substantially increased. In general, for both nebulizers the highest sensitivity was obtained by applying the lowest possible evaporator temperature in combination with the highest possible nebulizer temperature at preferably low gas flow rates. Besides the optimization of detector parameters, response factors for various PDMS oligomers were determined and the dependency of the detector signal on molar mass of the analytes was studied. The significant improvement regarding long-term stability made the modified ELSD much more robust and saved time and money by reducing the maintenance efforts. Thus, especially in polymer HPLC, associated with a complex matrix situation, the PTFE-based parallel-path nebulizer exhibits attractive characteristics for analytical studies of polymers. Copyright © 2018. Published by Elsevier B.V.

  11. In vitro and in vivo evaluation of a small-caliber coaxial electrospun vascular graft loaded with heparin and VEGF.

    PubMed

    Hu, Yun-Tao; Pan, Xu-Dong; Zheng, Jun; Ma, Wei-Guo; Sun, Li-Zhong

    2017-08-01

    To date, clinically available expanded polytetrafluoro-ethylene (ePTFE) vascular grafts are suboptimal for reconstructing small caliber (D < 6 mm) arteries, owing to thrombosis in early and restenosis in late stage. Our aim in this preliminary study was to fabricate a nano-fibrous vascular graft which was biofunctionalized with VEGF 165 and heparin. The short term performance was evaluated both in vitro and in vivo. Four-mm caliber grafts were prepared by the coaxial-elctrospun technique, which consisted of poly(l-lactide-co-caprolactone) [P(LLA-CL)] collagen and elastin. Heparin and endothelial cell growth factor-165 (VEGF 165 ) were encapsulated in the core of the fibrous. Controlled release of the heparin and VEGF 165 were evaluated for 28 days. Endothelial cells were cultured on the electrospun grafts or ePTFE grafts as controls. The cellular adhesion, proliferation and morphology were examined. Electrospun or ePTFE grafts were randomly implanted into a rabbit infrarenal aortic replacement model (n = 30) for 28 days without any antiplatelet therapy. At the termination, all grafts were examined by Doppler ultrasound and then evaluated with histology and scanning electron microscopy. The cumulative release amount of heparin (6.93 ± 1.03 mg) and VEGF 165 (22.17 ± 5.56 μg) during 28 days were measured. Endothelial cells cultured on electrospun grafts showed significantly higher attachment efficiency and proliferation compared to the ePTFE ones (P < 0.001). At 2 h more ECs had attached to the P(LLA-CL)/Collagen/Elatin grafts (83.26 ± 8.02%) compared to P(LLA-CL) (67.07 ± 4.16%) and ePTFE (46.87 ± 8.85%). ECs proliferated faster on VEGF loaded grafts (O.D = 2.9 ± 1.2, n = 12) compared to ePTFE (O.D = 1.7 ± 1.0, n = 12). The patency was significantly higher in electrospun grafts (86.6%) than ePTFE grafts (40.0%) (P = 0.021). Correspondingly, the microscope images of electrospun implants showed little thrombus when compared with

  12. Bronchobiliary Fistula Treated by Self-expanding ePTFE-Covered Nitinol Stent-Graft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandini, Roberto; Konda, Daniel; Tisone, Giuseppe

    A 71-year-old man, who had undergone right hepatectomy extended to the caudate lobe with terminolateral Roux-en-Y left hepatojejunostomy for a Klatskin tumor, developed bilioptysis 3 weeks postoperatively due to bronchobiliary fistula. Percutaneous transhepatic cholangiography revealed a non-dilated biliary system with contrast medium extravasation to the right subphrenic space through a resected anomalous right posterior segmental duct. After initial unsuccessful internal-external biliary drainage, the fistula was sealed with a VIATORR covered self-expanding nitinol stent-graft placed with its distal uncovered region in the hepatojejunal anastomosis and the proximal ePTFE-lined region in the left hepatic duct. A 10-month follow-up revealed no recurrence ofmore » bilioptysis and confirmed the complete exclusion of the bronchobiliary fistula.« less

  13. [RS3PE syndrome: an acute edematous polyarthritis of the elderly with variable prognosis].

    PubMed

    Beyne-Rauzy, O; Revel, V; Desfossez, V; Bousquet, E; Nourhashemi, F; Adoue, D

    2001-06-01

    The RS3PE syndrome or subacute edematous polyarthritis of the elderly remains a doubtful entity. We report three cases that exhibited different courses: complete recovery, definite rheumatoid polyarthritis, and chronicity as a sign of myelodysplasic disease. These three different courses raise the question of whether RS3PE is a disease or a syndrome. Actually, the use of the term RS3PE syndrome should be restricted to cases with a favorable outcome. Definitive diagnosis thus cannot be reached before complete recovery.

  14. Functional dissection of protein domains involved in the immunomodulatory properties of PE_PGRS33 of Mycobacterium tuberculosis.

    PubMed

    Zumbo, Antonella; Palucci, Ivana; Cascioferro, Alessandro; Sali, Michela; Ventura, Marcello; D'Alfonso, Pamela; Iantomasi, Raffaella; Di Sante, Gabriele; Ria, Francesco; Sanguinetti, Maurizio; Fadda, Giovanni; Manganelli, Riccardo; Delogu, Giovanni

    2013-12-01

    PE_PGRSs are a large family of proteins identified in Mycobacterium tuberculosis complex and in few other pathogenic mycobacteria. The PE domain of PE_PGRS33 mediates localization of the protein on the mycobacterial cell surface, where the PGRS domain is available to interact with host components. In this study, PE_PGRS33 and its functional deletion mutants were expressed in M. smegmatis, and in vitro and in vivo assays were used to dissect the protein domains involved in the immunomodulatory properties of the protein. We demonstrate that PE_PGRS33-mediated secretion of TNF-α by macrophages occurs by extracellular interaction with TLR2. Our results also show that while the PGRS domain of the protein is required for triggering TNF-α secretion, mutation in the PE domain affects the pro-inflammatory properties of the protein. These results indicate that PE_PGRS33 is a protein with immunomodulatory activity and that protein stability and localization on the mycobacterial surface can affect these properties. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Possible Domain Formation In PE/PC Bilayers Containing High Cholesterol

    NASA Astrophysics Data System (ADS)

    Hein, Matthew; Hussain, Fazle; Huang, Juyang

    2015-03-01

    Cholesterol is a significant component of animal cell membranes, and its presence has the effects of not only adding rigidity to the lipid bilayer, but also leading to the formation of lipid domains. Two other lipids of interest are phosphatidylethanolamine (PE), which constitutes about 45 percent of the phospholipids found in human nervous tissues, and phosphatidylcholine (PC), which is found in every cell of the human body. The maximum solubility of cholesterol is the highest mole fraction of cholesterol that the lipid bilayer can retain, at which point cholesterol begins to precipitate out to form cholesterol monohydrate crystals. We have measured the maximum solubility of cholesterol in mixtures of 16:0-18:1PE and 16:0-18:1PC using a new light scattering technique, which utilizes the anisotropic nature of light scattering by cholesterol crystals. This new method is highly accurate and reproducible. Our results show that the maximum solubility of cholesterol increases linearly as a function of the molar ratio POPC/(POPE+POPC), which suggests possible domain formation in mixtures of PE and PC containing maximum amount of cholesterol.

  16. Physical Education Students' Ownership, Empowerment, and Satisfaction With PE and Physical Activity.

    PubMed

    Moore, E Whitney G; Fry, Mary D

    2017-12-01

    Individuals experiencing a highly caring, task-involving, and low ego-involving exercise climate have reported greater ownership in exercise class and empowerment to exercise in general. This study examined the relationship between ownership and empowerment in exercise, with 2 context-specific outcomes, satisfaction with physical education (PE) and physical activity, respectively. Given the mission of PE to foster individuals' lifelong physical activity habit, the perceptions of high school students were collected for this study. Ownership in exercise was hypothesized to be significantly, positively correlated with students reporting satisfaction in PE more than their satisfaction in physical activity, whereas empowerment in exercise was hypothesized to be more strongly, positively correlated with students' physical activity satisfaction. A second purpose of this study was to test the measurement quality of the updated Empowerment in Exercise Scale (EES; now 13 items). High school students (N = 502, 43% female) in a Midwestern U.S. school district completed a survey. Confirmatory factor analysis supported the internal measurement structure of the EES (λ = .62-.91; McDonald's omega = .89) across student gender (strong invariance). Additionally, the structural equation modeling analysis revealed only 1 parameter moderated by the students' gender (latent mean of ownership). The hypotheses were supported, such that ownership in exercise was more strongly correlated with PE satisfaction (r = .87) and empowerment in exercise had a stronger correlation with physical activity satisfaction (r = .92). These results support the beneficial effect a satisfying experience in PE can have on students' satisfaction with physical activity outside of school.

  17. Preliminary experiments to estimate the PE.MA.M (PElagic MArine Mesocosm) offshore behaviour

    NASA Astrophysics Data System (ADS)

    Albani, Marta; Piermattei, Viviana; Stefanì, Chiara; Marcelli, Marco

    2016-04-01

    The phytoplankton community is controlled not only by local environmental conditions but also by physical processes occurring on different temporal and spatial scales. Hydrodynamic local conditions play an important role in marine ecosystems. Several studies have shown that hydrodynamic conditions can influence the phytoplankton settling velocity, vertical and horizontal distribution and formation of cyanobacterial blooms. Mesocosms are useful structures to simulate marine environment at mesoscale resolution; allowing to closely approximate biotic or abiotic parameters of interest directly in nature. In this work an innovative structure named PE.MA.M (PElagic MArine Mesocosm) is presented and tested. Laboratory experiments have been conducted in order to observe seasonal variations of biomass behaviour in two different hydrodynamic conditions: outside as well as whithin the PE.MA.M. We have evaluated whether it is possible to isolate a natural system from external water mass hydrodynamic exchanges and to assume that phytoplankton cells' transition is limited at the net and sea interface. Preliminary experiments test the isolating capacity of the net, to determine the currents' attenuation rate and to estimate the possible PE.MA.M. offshore behaviour. In the first investigation, we monitored the diffusion of phytoplankton cells. The PE.MA.M. exterior and interior were simulated using a plexiglass tank divided into two half-tanks (Aout-Bin) by a septum consisting of a net like a PE.MA.M. The tank was filled up with 10 L of water and only the half-tank Aout was filled up with 10 ml of phytoplankton culture (Clorella sp.). We monitored the chlorophyll concentrations for 24 hours. The two tanks had similar concentrations after 4 hours (2.70322 mg/m³ Aout and 2.37245 mg/m3 Bin) and this constant relationship was maintened until the end of the test. In the second investigation we used clod cards to measure water motions.We conducted two experiments within tank, the first

  18. Swedish PE Teachers' Understandings of Legitimate Movement in a Criterion-Referenced Grading System

    ERIC Educational Resources Information Center

    Svennberg, Lena

    2017-01-01

    Background: Physical Education (PE) has been associated with a multi-activity model in which movement is related to sport discourses and sport techniques. However, as in many international contexts, the Swedish national PE syllabus calls for a wider and more inclusive concept of movement. Complex movement adapted to different settings is valued,…

  19. A polymer driveshaft for use in orbital and rotational atherectomy

    NASA Astrophysics Data System (ADS)

    Grothe, Preston Lee

    Driveshafts used in atherectomy medical devices are often comprised of coiled or braided metal wires. These constructions are designed to tolerate delivery through tortuous vessels and can endure high speed rotation used during activation of the atherectomy treatment. This research investigated polymer driveshaft designs, which were comprised of polymer inner and outer layers, and coiled or braided stainless steel wires. The polymer driveshaft materials included polyimide, nylon 12, and polytetrafluoroethylene (PTFE). Mechanical testing of polymer driveshafts was conducted to determine material response in bending, tension, compression, and torsion. The polymer driveshaft test results were then compared with current coiled metal wire driveshaft constructions. The investigation identified polymer driveshaft options that could feasibly work in an atherectomy application.

  20. A strip-shield improves the efficiency of a solenoid coil in probes for high-field solid-state NMR of lossy biological samples.

    PubMed

    Wu, Chin H; Grant, Christopher V; Cook, Gabriel A; Park, Sang Ho; Opella, Stanley J

    2009-09-01

    A strip-shield inserted between a high inductance double-tuned solenoid coil and the glass tube containing the sample improves the efficiency of probes used for high-field solid-state NMR experiments on lossy aqueous samples of proteins and other biopolymers. A strip-shield is a coil liner consisting of thin copper strips layered on a PTFE (polytetrafluoroethylene) insulator. With lossy samples, the shift in tuning frequency is smaller, the reduction in Q, and RF-induced heating are all significantly reduced when the strip-shield is present. The performance of 800MHz (1)H/(15)N and (1)H/(13)C double-resonance probes is demonstrated on aqueous samples of membrane proteins in phospholipid bilayers.

  1. Auger analysis of films formed on metals in sliding contact with halogenated polymers

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1974-01-01

    The use of Auger electron spectroscopy (AES) to search for transferred polymer must contend with the fact that there has been no published work on Auger analysis of polymers. Since this is a new area for AES, the Auger spectra of polymers and of halogenated polymers in particular is discussed. It is shown that the Auger spectra of halogenated polymers have certain characteristics that permit an assessment of whether a polymeric transfer film has been established by sliding contact. The discussion is general and the concepts should be useful in considering the Auger analysis of any polymer. The polymers chosen for this study are the halogenated polymers polytetrafluoroethylene (PTFE), polyvinyl chloride (PVC), and polychlorotrifluorethylene (PCTFE).

  2. Evaluation of pyrolysis and arc tracking on candidate wire insulation designs for space applications

    NASA Astrophysics Data System (ADS)

    Stueber, Thomas J.; Hammoud, Ahmad; Stavnes, Mark W.; Hrovat, Kenneth

    1994-05-01

    Polyimide wire insulation has been found to be vulnerable to pyrolization and arc tracking due to momentary short circuit arcing events. This report compares arc tracking susceptibility of candidate insulation configurations for space wiring applications. The insulation types studied in this report were gauge 20 (0.81 mm dia.) hybrid wiring constructions using polyimide, tetrafluoroethylene (TFE), cross-linked ethylene tetrafluoroethylene (XL-ETFE) and/or polytetrafluoroethylene (PTFE) insulations. These constructions were manufactured according to military wiring standards for aerospace applications. Arc track testing was conducted under DC bias and vacuum (10(exp -6) torr). The tests were conducted to compare the various insulation constructions in terms of their resistance to arc tracking restrike. The results of the tests are presented.

  3. Endovascular Treatment of a Giant Superior Mesenteric Artery Pseudoaneurysm Using a Nitinol Stent-Graft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandini, Roberto; Pipitone, Vincenzo; Konda, Daniel, E-mail: danielkonda@yahoo.com

    2005-01-15

    A 68-year-old woman presenting with gastrointestinal bleeding (hematocrit 19.3%) and in a critical clinical condition (American Society of Anesthesiologists grade 4) from a giant superior mesenteric artery pseudoaneurysm (196.0 x 131.4 mm) underwent emergency endovascular treatment. The arterial tear supplying the pseudoaneurysm was excluded using a 5.0 mm diameter and 31 mm long monorail expanded polytetrafluoroethylene (ePTFE)-covered self-expanding nitinol stent. Within 6 days of the procedure, a gradual increase in hemoglobin levels and a prompt improvement in the clinical condition were observed. Multislice CT angiograms performed immediately, 5 days, 30 days and 3 months after the procedure confirmed the completemore » exclusion of the pseudoaneurysm.« less

  4. Glucose Biosensor Based on a Glassy Carbon Electrode Modified with Polythionine and Multiwalled Carbon Nanotubes

    PubMed Central

    Tang, Wenwei; Li, Lei; Wu, Lujun; Gong, Jiemin; Zeng, Xinping

    2014-01-01

    A novel glucose biosensor was fabricated. The first layer of the biosensor was polythionine, which was formed by the electrochemical polymerisation of the thionine monomer on a glassy carbon electrode. The remaining layers were coated with chitosan-MWCNTs, GOx, and the chitosan-PTFE film in sequence. The MWCNTs embedded in FAD were like “conductive wires” connecting FAD with electrode, reduced the distance between them and were propitious to fast direct electron transfer. Combining with good electrical conductivity of PTH and MWCNTs, the current response was enlarged. The sensor was a parallel multi-component reaction system (PMRS) and excellent electrocatalytic performance for glucose could be obtained without a mediator. The glucose sensor had a working voltage of −0.42 V, an optimum working temperature of 25°C, an optimum working pH of 7.0, and the best percentage of polytetrafluoroethylene emulsion (PTFE) in the outer composite film was 2%. Under the optimised conditions, the biosensor displayed a high sensitivity of 2.80 µA mM−1 cm−2 and a low detection limit of 5 µM (S/N = 3), with a response time of less than 15 s and a linear range of 0.04 mM to 2.5 mM. Furthermore, the fabricated biosensor had a good selectivity, reproducibility, and long-term stability, indicating that the novel CTS+PTFE/GOx/MWCNTs/PTH composite is a promising material for immobilization of biomolecules and fabrication of third generation biosensors. PMID:24816121

  5. Glucose biosensor based on a glassy carbon electrode modified with polythionine and multiwalled carbon nanotubes.

    PubMed

    Tang, Wenwei; Li, Lei; Wu, Lujun; Gong, Jiemin; Zeng, Xinping

    2014-01-01

    A novel glucose biosensor was fabricated. The first layer of the biosensor was polythionine, which was formed by the electrochemical polymerisation of the thionine monomer on a glassy carbon electrode. The remaining layers were coated with chitosan-MWCNTs, GOx, and the chitosan-PTFE film in sequence. The MWCNTs embedded in FAD were like "conductive wires" connecting FAD with electrode, reduced the distance between them and were propitious to fast direct electron transfer. Combining with good electrical conductivity of PTH and MWCNTs, the current response was enlarged. The sensor was a parallel multi-component reaction system (PMRS) and excellent electrocatalytic performance for glucose could be obtained without a mediator. The glucose sensor had a working voltage of -0.42 V, an optimum working temperature of 25°C, an optimum working pH of 7.0, and the best percentage of polytetrafluoroethylene emulsion (PTFE) in the outer composite film was 2%. Under the optimised conditions, the biosensor displayed a high sensitivity of 2.80 µA mM(-1) cm(-2) and a low detection limit of 5 µM (S/N = 3), with a response time of less than 15 s and a linear range of 0.04 mM to 2.5 mM. Furthermore, the fabricated biosensor had a good selectivity, reproducibility, and long-term stability, indicating that the novel CTS+PTFE/GOx/MWCNTs/PTH composite is a promising material for immobilization of biomolecules and fabrication of third generation biosensors.

  6. Aerogel to simulate delamination and porosity defects in carbon-fiber reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Juarez, Peter; Leckey, Cara A. C.

    2018-04-01

    Representative defect standards are essential for the validation and calibration of new and existing inspection techniques. However, commonly used methods of simulating delaminations in carbon-fiber reinforced polymer (CFRP) composites do not accurately represent the behavior of the real-world defects for several widely-used NDE techniques. For instance, it is common practice to create a delamination standard by inserting Polytetrafluoroethylene (PTFE) in between ply layers. However, PTFE can transmit more ultrasonic energy than actual delaminations, leading to an unrealistic representation of the defect inspection. PTFE can also deform/wrinkle during the curing process and has a thermal effusivity two orders of magnitude higher than air (almost equal to that of a CFRP). It is therefore not effective in simulating a delamination for thermography. Currently there is also no standard practice for producing or representing a known porosity in composites. This paper presents a novel method of creating delamination and porosity standards using aerogel. Insertion of thin sheets of solid aerogel between ply layers during layup is shown to produce air-gap-like delaminations creating realistic ultrasonic and thermographic inspection responses. Furthermore, it is shown that depositing controlled amounts of aerogel powder can represent porosity. Micrograph data verifies the structural integrity of the aerogel through the composite curing process. This paper presents data from multiple NDE methods, including X-ray computed tomography, immersion ultrasound, and flash thermography to the effectiveness of aerogel as a delamination and porosity simulant.

  7. [RS3PE-syndrome].

    PubMed

    Segerer, S; Dietz-Laukemann, P; Schattenkirchner, M

    1999-02-01

    The RS3PE syndrome (Remitting Seronegative Symmetrical Synovitis with Pitting Edema) is a manifestation of rheumatoid arthritis in the elderly with a good prognosis. It usually presents as an acute, symmetric polysynovitis with edema of the dorsum of the hands and feet. Anti-inflammatory treatment with corticosteroids leads to prompt improvement. We describe the case of an 81 year old man with a primarily unilateral manifestation involving the right hand. A thrombosis of the axillary vein was suspected. Within a few days he developed a pitting edema of the dorsum of the other hand. Movement of both shoulders and wrists was painful. Low-dose corticosteroid therapy resulted in a rapid improvement of the edema and the inflammatory symptoms.

  8. Super-hydrophobic self-cleaning bead-like SiO2@PTFE nanofiber membranes for waterproof-breathable applications

    NASA Astrophysics Data System (ADS)

    Liang, Yueyao; Ju, Jingge; Deng, Nanping; Zhou, Xinghai; Yan, Jing; Kang, Weimin; Cheng, Bowen

    2018-06-01

    Superhydrophobic waterproof-breathable membranes, which possess a huge superiority in multi-functional applications including self-cleaning, anti-icing, anticorrosion and protective clothing, have aroused considerable attention owing to their excellent performance. Herein, the robust superhydrophobic microporous fibrous membranes were efficiently prepared via a facile and environmental-friendly electro-blown spinning (EBS) technique followed by calcination. Compared with hydrophobic pure PTFE fibrous membranes, the bead-like SiO2@PTFE nanofiber membranes (BLNFMs) exhibited superhydrophobic surface with the advancing water angle (θadv) and the water contact angle (WCA) up to 161° and 155°, respectively. The SiO2 nanoparticles were introduced as fillers which can alter the pore structure and form the multilevel rough surface. The BLNFMs could maintain superhydrophobic surface even after abrasion for 30 times or exposing to a strong corrosive solution with PH from 0 to 12 for 24 h. Besides, the BLNFMs were endowed with the modest vapor permeability (9.7 kg·m-2·d-1) and air permeability (7.2 mm·s-1) when the concentration of SiO2 nanoparticles reached to 7.3 wt%. In addition, a potential relationship among θadv, maximum pore size (dmax) and breathability (effective breathing area) was proposed in order to design the waterproof-breathable membranes with excellent properties. Furthermore, the superhydrophobic membranes with durable self-cleaning property provided the advantages of potential applications in the fields of membrane distillation, versatile protective clothing, etc.

  9. RS3PE revisited: a systematic review and meta-analysis of 331 cases.

    PubMed

    Karmacharya, Paras; Donato, Anthony A; Aryal, Madan R; Ghimire, Sushil; Pathak, Ranjan; Shah, Kalpana; Shrestha, Pragya; Poudel, Dilli; Wasser, Thomas; Subedi, Ananta; Giri, Smith; Jalota, Leena; Olivé, Alejandro

    2016-01-01

    Remitting seronegative symmetrical synovitis with pitting oedema (RS(3)PE) syndrome is a rare inflammatory arthritis, characterised by symmetrical distal synovitis, pitting oedema of the hands and feet, absence of rheumatoid factor, and favourable response to glucocorticoids. The aim of our study is to further delineate the clinical and laboratory features, and response to treatment. We performed a systematic electronic search of Medline, PubMed, EMBASE, ACR and EULAR databases for case reports, case series, and related articles of RS(3)PE. Statistical analysis was done comparing categorical variables with Chi-square tests and frequencies of means via t-tests. Binary logistic regression analysis was performed to identify predictors of erosions, recurrence, malignancy and rheumatologic disorders. 331 cases of RS(3)PE were identified from 121 articles. RS(3)PE was found in older patients (71±10.42 years) predominantly in males (n= 211, 63.36%), was symmetrical (n=297/311, 95.50%) involved the hands (n=294/311, 94.53%) A concurrent rheumatologic condition was reported in 22 cases (6.65%), and malignancy in 54 cases (16.31%). Radiographic joint erosions were found in 5.5%. Most patients responded to medium-dose glucocorticoids (16.12±9.5 mg/day). Patients with concurrent malignancy requiring non-significantly higher doses of prednisone (18.12 vs. 15.76 mg, p 0.304) and higher likelihood of recurrence of disease (OR 4.04, 95% CI 1.10-14.88, p=0.03). The symptoms and unique findings that make up RS(3)PE appear to represent a steroid-responsive disease that may be a harbinger of an underlying malignancy. More study is needed to understand the molecular origins of RS(3)PE in order to determine whether it is a separate disease process. Patients with concurrent cancer tend to have more severe presentations and higher rates of recurrence.

  10. Whole-School Management Issues Concerning the PE Department: "A Natural Division of Labour?"

    ERIC Educational Resources Information Center

    Williams, Gareth Mark; Williams, Dean

    2013-01-01

    Utilising the labour ideas of Adam Smith and Emile Durkheim as a theoretical basis, the main objective of this study was to investigate the perception that Heads of Physical Education (HoPE) face unique management and leadership challenges. Results showed that HoPE believe that they are overburdened with tasks primarily involving the delegation of…

  11. Source localization (LORETA) of the error-related-negativity (ERN/Ne) and positivity (Pe).

    PubMed

    Herrmann, Martin J; Römmler, Josefine; Ehlis, Ann-Christine; Heidrich, Anke; Fallgatter, Andreas J

    2004-07-01

    We investigated error processing of 39 subjects engaging the Eriksen flanker task. In all 39 subjects a pronounced negative deflection (ERN/Ne) and a later positive component (Pe) were observed after incorrect as compared to correct responses. The neural sources of both components were analyzed using LORETA source localization. For the negative component (ERN/Ne) we found significantly higher brain electrical activity in medial prefrontal areas for incorrect responses, whereas the positive component (Pe) was localized nearby but more rostral within the anterior cingulate cortex (ACC). Thus, different neural generators were found for the ERN/Ne and the Pe, which further supports the notion that both error-related components represent different aspects of error processing.

  12. Preparation Strategies of Osteopathic Medical Students for the COMLEX-USA Level 2-PE.

    PubMed

    Sandella, Jeanne M; Peters, Alex; Smith, Larissa L; Gimpel, John R

    2016-04-01

    Since 2002, osteopathic medical schools have made curricular changes to further enhance the clinical skills of their students, to prepare them for residency training, and to pass the Comprehensive Osteopathic Medical Licensing Examination-USA Level 2-Performance Evaluation (COMLEX-USA Level 2-PE). To report how students at osteopathic medical schools prepare for the COMLEX-USA Level 2-PE, and to investigate the effect of these techniques on examination performance. A standardized survey was given to students before the beginning of their examination to assess the preparation of osteopathic medical students for the COMLEX-USA Level 2-PE, such as coursework, orientation materials, and standardized patient (SP) encounters. Surveys that were completed by first-time test takers during the 2013-2014 and 2014-2015 test cycles were included in this study. Of 9120 surveys administered, 8733 were completed, achieving a response rate of 95.8%. Of those 8733 respondents, 8706 students (99.7%) reported having SP encounters during the first and second year of medical school, and 7379 (84%) reported having at least 1 SP encounter in years 3 and 4. Of 8733 students, 6079 (70%) reported receiving feedback from an osteopathic physician on their SP encounters, and 6049 (69%) and 6253 (72%) reported having viewed the COMLEX-USA Level 2-PE orientation video online and having read the examination's orientation guide, respectively. The largest difference in preparation between students who passed the COMLEX-USA Level 2-PE and students who did not was a prerequisite SP examination at their school, with 5574 students (68.9%) who passed reporting having participated compared with 364 students (56.5%) who failed. None of the differences in clinical skills training and test preparation was associated with statistically significant differences in pass or fail status. Osteopathic medical students use a variety of methods to enhance their clinical skills in preparation for the COMLEX-USA Level 2

  13. Novel Development of Remitting Seronegative Symmetrical Synovitis with Pitting Edema (RS3PE) Syndrome due to Insulin Therapy.

    PubMed

    Mainali, Naba Raj; Schmidt, Torrey R; Alweis, Richard; George, David L

    2014-01-01

    Male, 67 FINAL DIAGNOSIS: Remitting seronegative symmetrical synovitis with pitting edema (RS3PE) syndrome Symptoms: Bilateral wrist swelling Medication: - Clinical Procedure: - Specialty: Rheumatology. Unusual or unexpected effect of treatment. Remitting seronegative symmetrical synovitis with pitting edema (RS3PE) syndrome is a rare clinical entity characterized by the sudden onset of inflammatory arthritis and marked pitting edema on upper and lower extremities. RS3PE is considered a rheumatic process distinct from rheumatoid arthritis, which may occasionally represent a paraneoplastic syndrome. Herein, we describe a rare case of RS3PE associated with insulin therapy in a patient with no evidence of underlying malignancy. To the best of our knowledge, this is the first case report of RS3PE associated with insulin therapy. Physicians should look at the introduction of drugs as possible triggers for the development of RS3PE.

  14. TANAMI blazars in the IceCube PeV-neutrino fields

    DOE PAGES

    Krauß, F.

    2014-06-01

    The IceCube Collaboration has announced the discovery of a neutrino flux in excess of the atmospheric background. Owing to the steeply falling atmospheric background spectrum, events at PeV energies most likely have an extraterrestrial origin. We present the multiwavelength properties of the six radio-brightest blazars that are positionally coincident with these events using contemporaneous data of the TANAMI blazar sample, including high-resolution images and spectral energy distributions. Assuming the X-ray to γ-ray emission originates in the photoproduction of pions by accelerated protons, the integrated predicted neutrino luminosity of these sources is high enough to explain the two detected PeV events.

  15. Amelioration de l'adhesion de revetements organiques deposes par plasma froid sur polymeres pour applications biomedicales

    NASA Astrophysics Data System (ADS)

    Sbai, Marouan

    Plasma surface modification is commonly used in biomedical field, for example to enhance cell adhesion and growth surrounding the stent covers without affecting its bulk properties. Plasma polymer (PP) deposition used to create thin films rich in functional groups, e.g. primary amines, known to enhance the cellular response and allow grafting of biomolecules especially on stent grafts. Thin film adhesion to stent polymeric cover should be considered especially as they will evolve in a biological environment. The aim of this project is to evaluate the adhesion of PP on polytetrafluoroethylene (PTFE) and polyethyleneterephthalate (PET). Thereafter, an ammonia plasma treatment on PTFE is performed prior to deposition of PP to optimize the PP/PTFE adhesion. PP studied here (referred to as "LP") is prepared from a mixture of ethylene (C2H4) and ammonia (NH3). It is deposited on two supports, PET and PTFE. The interfacial adhesion between the LP coating and the substrate was evaluated by "Peel-test 180 °" according to ASTM F1842. Staining of the surface after peel test followed by an image analysis was performed to determine the percentage of removed coating. Adhesion optimization is done by varying operating plasma parameters such as power, pressure and pretreatment time. Chemical analyses and wettability of LP and pretreated surfaces in dry and wet conditions are characterized by XPS and contact angle measurements, respectively. The adhesion of LP/PET was excellent in a dry environment (<1%), but lower under wet conditions (4+/-6% and 44+/-7% as minimum and maximum values at 5min and 60min of immersion in deionized water, respectively). However, 56% to 75% of the LP is removed from virgin PTFE in a dry and wet environment, respectively; percentages can be substantially reduced by plasma pretreatment (0% and 8+/-3% in air and 30min in deionized water). Almost no delamination was observed with NH3 plasma pretreatment at 15s, 100 mTorr and 50W. N2 plasma pretreatment

  16. Physical Activity during Physical Education Lessons: A Qualitative Investigation of Australian PE Teacher Perceptions

    ERIC Educational Resources Information Center

    Bennie, Andrew; Langan, Edel

    2015-01-01

    School physical education (PE) experiences play a critical role in adolescents' physical activity (PA) levels. Teachers are crucial to students' initial experiences in PA; however, limited research has explored teachers' perspectives about PA during PE using in-depth qualitative research techniques. We conducted interviews with 25 current…

  17. Comprehensive mechanical characterization of PLA fabric combined with PCL to form a composite structure vascular graft.

    PubMed

    Li, Chaojing; Wang, Fujun; Douglas, Graeham; Zhang, Ze; Guidoin, Robert; Wang, Lu

    2017-05-01

    Vascular grafts made by tissue engineering processes are prone to buckling and twisting, which can impede blood flow and lead to collapse of the vessel. These vascular conduits may suffer not only from insufficient tensile strength, but also from vulnerabilities related to compression, torsion, and pulsatile pressurization. Aiming to develop a tissue engineering-inspired blood conduit, composite vascular graft (cVG) prototypes were created by combining a flexible polylactic acid (PLA) knitted fabric with a soft polycaprolactone (PCL) matrix. The graft is to be populated in-situ with cellular migration and proliferation into the device. Comprehensive characterizations probed the relationship between structure and mechanical properties of the different cVG prototypes. The composite grafts exhibited major improvements in mechanical characteristics compared to single-material devices, with particular improvement in compression and torsional resistance. A commercial expanded polytetrafluoroethylene (ePTFE) vascular graft was used as a control against the proposed composite vascular grafts. CVG devices showed high tensile strength, high bursting strength, and improved suture retention. Compression, elastic recovery, and compliance were similar to those for the ePTFE graft. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Single molecule atomic force microscopy and force spectroscopy of chitosan.

    PubMed

    Kocun, Marta; Grandbois, Michel; Cuccia, Louis A

    2011-02-01

    Atomic force microscopy (AFM) and AFM-based force spectroscopy was used to study the desorption of individual chitosan polymer chains from substrates with varying chemical composition. AFM images of chitosan adsorbed onto a flat mica substrate show elongated single strands or aggregated bundles. The aggregated state of the polymer is consistent with the high level of flexibility and mobility expected for a highly positively charged polymer strand. Conversely, the visualization of elongated strands indicated the presence of stabilizing interactions with the substrate. Surfaces with varying chemical composition (glass, self-assembled monolayer of mercaptoundecanoic acid/decanethiol and polytetrafluoroethylene (PTFE)) were probed with chitosan modified AFM tips and the corresponding desorption energies, calculated from plateau-like features, were attributed to the desorption of individual polymer strands. Desorption energies of 2.0±0.3×10(-20)J, 1.8±0.3×10(-20)J and 3.5±0.3×10(-20)J were obtained for glass, SAM of mercaptoundecanoic/dodecanethiol and PTFE, respectively. These single molecule level results can be used as a basis for investigating chitosan and chitosan-based materials for biomaterial applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Effective degradation of rhodamine B by electro-Fenton process, using ferromagnetic nanoparticles loaded on modified graphite felt electrode as reusable catalyst: in neutral pH condition and without external aeration.

    PubMed

    Tian, Jiangnan; Zhao, Jixiang; Olajuyin, Ayobami Matthew; Sharshar, Moustafa Mohamed; Mu, Tingzhen; Yang, Maohua; Xing, Jianmin

    2016-08-01

    Polytetrafluoroethylene/ferromagnetic nanoparticle/carbon black (PTFE/MNP/CB)-modified graphite felt (GF) was successfully applied as cathode for the mineralization of rhodamine B (RhB) in electro-Fenton (EF) process. The modified cathode showed high decolorization efficiency for RhB solution even in neutral pH condition and without external aeration, achieving nearly complete decolorization and 89.52 % total organic carbon (TOC) removal after 270-min oxidation with the MNP load 1.2 g at 50 A/m(2). Moreover, the operational parameters (current density, MNP load, initial pH, and airflow rate) were optimized. After that, adsorption isotherm was also conducted to compare the absorption quantity of CB and carbon nanotube (CNT). Then, the surface morphologies of MNPs were characterized by transmission electron microscope (TEM), energy-dispersive X-ray detector (EDX), and Fourier transform infrared spectroscopy (FTIR); and the modified cathode was characterized by SEM and contact angle. Finally, the stability and reusability of modified cathode were tested. Result uncovered that the PTFE/MNP/CB-modified cathode has the potential for industrial application and the solution after treatment was easily biodegradable.

  20. An experimental investigation of the effect of hydrophobicity on the rate of frost growth in laminar channel flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, J.M.; Storey, B.D.; Hoke, J.L.

    2000-07-01

    An experimental investigation of the effect of the substrate on frost growth rate is presented. Measurements of frost height as a function of time are presented for a flat, bare, horizontally oriented aluminum substrate and four coated substrates, two hydrophilic and two hydrophobic. The average frost growth rate on the hydrophilic coated aluminum substrate is 13% higher than the control substrate, while the frost growth rate on the hydrophilic kapton substrate is 4% higher. Frost grows on the hydrophobic substrates at a rate 19% and 3% lower than the reference substrate for the polytetrafluoroethylene (PTFE) coated steel and PTFE tape,more » respectively. Differences in the receding and advancing contact angles for these substrates do not fully explain the difference in growth rates. Differences in initial water deposition, freezing, and frost growth on hydrophilic and hydrophobic substrates are examined using confocal microscopy. On the basis of the microscopic observations, the authors hypothesize that the water coverage on the substrate before and after freezing can affect the thermal resistance of the mature frost layer. Differences in thermal resistance, in turn, affect the growth rate.« less

  1. Direct determination of trace refractory elements in human serum by ETV-ICP-MS with in-situ matrix removal.

    PubMed

    Li, Shengqing; Hu, Bin; Jiang, Zucheng; Chen, Rui

    2004-08-01

    A method for in-situ removal of matrix is proposed for direct determination of trace refractory elements in human serum by ETV-ICP-MS with the use of poly(tetrafluoroethylene) (PTFE) as fluorinating reagent. Attention has been paid to investigating the vaporization behavior both of refractory elements of interest and of matrix elements (Na, K, Ca, Mg, Cl, S, and P) in a graphite furnace with the PTFE modifier present or not. It was shown that potential interferences from the organic and inorganic matrices in the serum sample could be eliminated or reduced to a negligible level by appropriate dilution of the serum and deliberate optimization of the ETV temperature program. The proposed method has been applied to the direct simultaneous determination of V, Cr, Mo, Ba, La, Ce, and W in human serum. The limits of detection for fivefold diluted serum were 0.18 (V), 0.229 (Cr), 0.050 (Mo), 0.328 (Ba), 0.031 (La), 0.038 (Ce), and 0.019 ng mL(-1) (W), respectively, and the relative standard deviations of the method were in the range 4-15% (2 ng mL(-1) in serum, n=3).

  2. Development of bacterial biofilms in dairy processing lines.

    PubMed

    Austin, J W; Bergeron, G

    1995-08-01

    Adherence of bacteria to various milk contact sites was examined by scanning electron microscopy and transmission electron microscopy. New gaskets, endcaps, vacuum breaker plugs and pipeline inserts were installed in different areas in lines carrying either raw or pasteurized milk, and a routine schedule of cleaning-in-place and sanitizing was followed. Removed cleaned and sanitized gaskets were processed for scanning or transmission electron microscopy. Adherent bacteria were observed on the sides of gaskets removed from both pasteurized and raw milk lines. Some areas of Buna-n gaskets were colonized with a confluent layer of bacterial cells surrounded by an extensive amorphous matrix, while other areas of Buna-n gaskets showed a diffuse adherence over large areas of the surface. Most of the bacteria attached to polytetrafluoroethylene (PTFE or Teflon) gaskets were found in crevices created by insertion of the gasket into the pipeline. Examination of stainless steel endcaps, pipeline inserts, and PTFE vacuum breaker plugs did not reveal the presence of adherent bacteria. The results of this study indicate that biofilms developed on the sides of gaskets in spite of cleaning-in-place procedures. These biofilms may be a source of post-pasteurization contamination.

  3. Coupled Physics Environment (CouPE) library - Design, Implementation, and Release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahadevan, Vijay S.

    Over several years, high fidelity, validated mono-­physics solvers with proven scalability on peta-­scale architectures have been developed independently. Based on a unified component-­based architecture, these existing codes can be coupled with a unified mesh-­data backplane and a flexible coupling-­strategy-­based driver suite to produce a viable tool for analysts. In this report, we present details on the design decisions and developments on CouPE, an acronym that stands for Coupled Physics Environment that orchestrates a coupled physics solver through the interfaces exposed by MOAB array-­based unstructured mesh, both of which are part of SIGMA (Scalable Interfaces for Geometry and Mesh-­Based Applications) toolkit.more » The SIGMA toolkit contains libraries that enable scalable geometry and unstructured mesh creation and handling in a memory and computationally efficient implementation. The CouPE version being prepared for a full open-­source release along with updated documentation will contain several useful examples that will enable users to start developing their applications natively using the native MOAB mesh and couple their models to existing physics applications to analyze and solve real world problems of interest. An integrated multi-­physics simulation capability for the design and analysis of current and future nuclear reactor models is also being investigated as part of the NEAMS RPL, to tightly couple neutron transport, thermal-­hydraulics and structural mechanics physics under the SHARP framework. This report summarizes the efforts that have been invested in CouPE to bring together several existing physics applications namely PROTEUS (neutron transport code), Nek5000 (computational fluid-dynamics code) and Diablo (structural mechanics code). The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while

  4. RS3PE syndrome: an overview.

    PubMed

    Olivieri, I; Salvarani, C; Cantini, F

    2000-01-01

    More than ten years ago McCarty et al. described the RS3PE syndrome based on their study of 23 patients. Numerous additional cases have since been reported. In addition to the isolated or "pure" type which probably forms part of the clinical spectrum of polymyalgia rheumatica, inflammatory swelling with pitting edema of the dorsum of the hands and/or feet can be observed in different inflammatory rheumatic diseases as well as in haematological and solid malignancies.

  5. Percutaneous biliary covered stent insertion in patients with malignant duodenobiliary obstruction.

    PubMed

    Lee, Eunsol; Gwon, Dong Il; Ko, Gi-Young; Sung, Kyu-Bo; Yoon, Hyun-Ki; Shin, Ji Hoon; Kim, Jin Hyoung; Ko, Heung Kyu; Song, Ho-Young

    2015-02-01

    Although the use of polytetrafluoroethylene (PTFE)-covered biliary stents has proven to be feasible for the treatment of benign and malignant biliary disease, less is known regarding the outcomes of percutaneous placement of a covered stent in patients with malignant duodenobiliary obstruction. To investigate the technical and clinical efficacy of the percutaneous placement of a PTFE-covered biliary stent in patients with malignant duodenobiliary obstruction. From April 2007 to September 2012, the medical records of 45 consecutive patients with malignant duodenobiliary obstruction were retrospectively reviewed. All percutaneous biliary stent deployment was performed using PTFE-covered stents, whereas duodenal stent insertion was performed either fluoroscopically or endoscopically using covered or uncovered stents. Biliary stent deployment was technically successful in all patients. None of the stents migrated after deployment. Procedure-related minor complications, including self-limiting hemobilia, occurred in three (7%) patients. Successful internal drainage was achieved in 39 (87%) of the 45 patients. The median survival time after biliary stent placement was 62 days (95% confidence interval, 8-116 days), and the cumulative stent patency rates at 1, 3, 6, and 12 months were 96%, 92%, 75%, and 38%, respectively. The causes of biliary stent dysfunction included stent occlusion caused by a subsequently inserted duodenal stent (n = 7), food impaction (n = 3), and sludge incrustation (n = 1). One patient developed acute cholecystitis 131 days after biliary stent placement and underwent percutaneous transhepatic gallbladder drainage. Percutaneous insertion of a PTFE-covered stent is a safe and effective method for palliative treatment of patients with malignant duodenobiliary obstruction. If possible, subsequent biliary stent insertion is preferable in order to prevent possible biliary stent dysfunction caused by subsequent insertion of a duodenal stent.

  6. RAFT-Polymerization-Induced Self-Assembly and Reorganizations: Ultrahigh-Molecular-Weight Polymer and Morphology-Tunable Micro-/Nanoparticles in One Pot.

    PubMed

    Zhang, Xiao-Yun; Liu, Dong-Ming; Lv, Xin-Hu; Sun, Miao; Sun, Xiao-Li; Wan, Wen-Ming

    2016-11-01

    A one-pot method is introduced for the successful synthesis of narrow-distributed (Đ = 1.22) vinyl polymer with both ultrahigh molecular weight (UHMW) (M w = 1.31 × 10 6 g mol -1 ) and micro-/nanomorphology under mild conditions. The method involves the following four stages: homogeneous polymerization, polymerization-induced self-assembly (PISA), PISA and reorganization, and PISA and multiple reorganizations. The key points to the production of UHMW polystyrene are to minimize radical termination by segregating radicals in different nanoreactors and to ensure sufficient chain propagation by promoting further reorganizations of these reactors in situ. This method therefore endows polymeric materials with the outstanding properties of both UHMW and tunable micro-/nanoparticles under mild conditions in one pot. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Vacuum-based surface modification of organic and metallic substrates

    NASA Astrophysics Data System (ADS)

    Torres, Jessica

    Surface physico-chemical properties play an important role in the development and performance of materials in different applications. Consequently, understanding the chemical and physical processes involved during surface modification strategies is of great scientific and technological importance. This dissertation presents results from the surface modification of polymers, organic films and metallic substrates with reactive species, with the intent of simulating important modification processes and elucidating surface property changes of materials under different environments. The reactions of thermally evaporated copper and titanium with halogenated polytetrafluoroethylene (PTFE) and polyvinyl chloride (PVC) are used to contrast the interaction of metals with polymers. Results indicate that reactive metallization is thermodynamically favored when the metal-halogen bond strength is greater than the carbon-halogen bond strength. X-ray post-metallization treatment results in an increase in metal-halide bond formation due to the production of volatile halogen species in the polymer that react with the metallic overlayer. The reactions of atomic oxygen (AO) and atomic chlorine with polyethylene (PE) and self-assembled monolayers (SAMs) films were followed to ascertain the role of radical species during plasma-induced polymer surface modification. The reactions of AO with X-ray modified SAMs are initially the dominated by the incorporation of new oxygen containing functionality at the vacuum/film interface, leading to the production of volatile carbon containing species such as CO2 that erodes the hydrocarbon film. The reaction of atomic chlorine species with hydrocarbon SAMs, reveals that chlorination introduces C-Cl and C-Cl2 functionalities without erosion. A comparison of the reactions of AO and atomic chlorine with PE reveal a maximum incorporation of the corresponding C-O and C-Cl functionalities at the polymer surface. A novel method to prepare phosphorous

  8. Remitting seronegative symmetrical synovitis with pitting edema (RS3PE): a form of paraneoplastic polyarthritis?

    PubMed

    Sibilia, J; Friess, S; Schaeverbeke, T; Maloisel, F; Bertin, P; Goichot, B; Kuntz, J L

    1999-01-01

    To describe the clinical and laboratory features and outcome of 6 patients presenting with remitting seronegative symmetrical synovitis with pitting edema (RS3PE) revealing a solid tumor. Patients with RS3PE who presented with a solid tumor and who had been seen between January 1, 1994, and December 31, 1996, were included in a retrospective multicenter analysis. These patients fulfilled McCarty's description of RS3PE and the following criteria: (1) bilateral pitting edema of both hands, (2) sudden onset of polyarthritis, (3) age >50 years, and (4) absence of rheumatoid factor (RF). Six male patients with RS3PE are described, of mean age 74 years (range 72-78), presenting prostatic (n = 4), gastric (n = 1), and colic (n = 1) adenocarcinomas. The clini cal picture was characterized by the classical form of RS3PE syndrome and by a deterioration in general condition, sometimes with fever. All patients were negative for RF and antinuclear antibodies. In 2 cases of prostatic adenocarcinoma serum levels of interleukin 6 (IL-6) were high, but decreased with treatment. In these 6 patients, the articular manifestations regressed totally or partially in response to corticosteroids, sometimes at low doses, associated in most cases with specific antitumoral therapy. None displayed erosion or distal bone destruction. The mean survival following discovery of RS3PE was 11 months (range 6-18), 5 patients dying of metastatic dissemination of their cancer and the 6th of myocardial infarction. RS3PE is a heterogeneous syndrome that can reveal a solid tumor, notably an adenocarcinoma. There exist no specific criteria to define its forms, but this syndrome should be kept in mind in the face of a deterioration in general health. Although the pathogenic mechanism is unknown, this could involve a type of paraneoplastic polyarthritis linked to the synthesis of a factor such as IL-6.

  9. Effect of intensive plasma exchange (PE) in rapidly progressive crescentic glomerulonephritis (RPCGN).

    PubMed

    D'Amico, G; Sinico, R; Fornasieri, A; Ferrario, F; Colasanti, G; Porri, M T; Paracchini, M L; Gibelli, A

    1983-07-01

    Ten adult patients with RPCGN (crescents in greater than 70% of glomeruli), primary in 6 and associated with systemic diseases in 4, were treated with PE, associated with oral steroids (P) and cyclophosphamide (C) in all cases and with intravenous methylprednisolone pulses (MP) in 7 cases. Four out of ten patients were anuric and needed dialysis treatment at the start of treatment. Therapeutic benefit, i.e. reversal of the trend to further deterioration and substantial improvement of GFR, was achieved in 8 out of 10 patients (80%), including 2 of 4 anuric patients, and in 7 of those (8) who had still active cellular crescents (87.5%). Similar therapeutic benefit had been achieved only in 10% of a comparable population of 10 patients with RPCGN treated before 1980 with P and C, without PE or MP pulses. It is difficult to establish whether the better therapeutic results in the more recently treated group were due to PE or to MP pulses of to both the new approaches, even though the clinical improvement obtained in all the 3 patients treated with PE without concomitant MP suggest a specific beneficial role for PE. RPCGN is a catastrophic illness characterized by progressive deterioration of kidney function, resulting in oliguria and uremia, usually within weeks or months. The most consistent histopathologic finding is the presence of extensive glomerular crescents resulting from proliferation of the extracapillary epithelial cell lining of Bowman's capsule. It is apparent that RPCGN is not a homogeneous entity, clinically, histologically or immunohistologically, but rather a clinicopathologic syndrome, the features of which may be seen in a variety of systemic disorders, including SLE, polyarteritis nodosa, Wegener's granulomatosis, Henoch-Schönlein purpura, cryoglobulinemia, and subacute bacterial endocarditis.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Novel Development of Remitting Seronegative Symmetrical Synovitis with Pitting Edema (RS3PE) Syndrome due to Insulin Therapy

    PubMed Central

    Mainali, Naba Raj; Schmidt, Torrey R.; Alweis, Richard; George, David L.

    2014-01-01

    Patient: Male, 67 Final Diagnosis: Remitting seronegative symmetrical synovitis with pitting edema (RS3PE) syndrome Symptoms: Bilateral wrist swelling Medication: — Clinical Procedure: — Specialty: Rheumatology Objective: Unusual or unexpected effect of treatment Background: Remitting seronegative symmetrical synovitis with pitting edema (RS3PE) syndrome is a rare clinical entity characterized by the sudden onset of inflammatory arthritis and marked pitting edema on upper and lower extremities. RS3PE is considered a rheumatic process distinct from rheumatoid arthritis, which may occasionally represent a paraneoplastic syndrome. Case Report: Herein, we describe a rare case of RS3PE associated with insulin therapy in a patient with no evidence of underlying malignancy. Conclusions: To the best of our knowledge, this is the first case report of RS3PE associated with insulin therapy. Physicians should look at the introduction of drugs as possible triggers for the development of RS3PE. PMID:24696753

  11. Myelodysplastic syndrome precedes the onset of remitting seronegative symmetrical synovitis with pitting edema (RS3PE) syndrome.

    PubMed

    Matsunaga, Takafumi; Izumi, Yasumori; Iwanaga, Nozomi; Kawahara, Chieko; Shigemitsu, Yoshika; Yoshida, Shinichiro; Kawakami, Atsushi; Ogawa, Daisuke; Migita, Kiyoshi

    2015-01-01

    Remitting seronegative symmetrical synovitis with pitting edema (RS3PE) syndrome is characterized by symmetrical synovitis predominantly involving the wrists, and is associated with marked pitting edema of the dorsum of the hands. Although the etiology of RS3PE syndrome is still unknown, several putative associations with malignancies and hematological disorders have been reported. Myelodysplastic syndrome (MDS) is characterized by infective hematopoiesis with possible transformation to leukemia; however, an association between RS3PE syndrome and MDS has been rarely reported. Here, we describe a 67-year-old man with MDS with refractory anemia who developed RS3PE syndrome 3 months after the diagnosis of MDS. The patient presented with polyarthritis with pitting edema at the dorsum of the hands, the elevated serum levels of C-reactive protein and a proinflammatory cytokine, interleukin-6, and the elevated plasma levels of vascular endothelial growth factor (VEGF). VEGF has been shown to be involved in the pathogenesis of RS3PE syndrome. Treatment with low doses of corticosteroids resulted in the regression of polyarthritis and pitting edema of the dorsum of the hands, as well as a reduction in the elevated levels of plasma VEGF. Partial resolution of refractory anemia was also observed with steroid therapy. In summary, RS3PE syndrome developed shortly after MDS was identified in this patient. The sequence of clinical events suggests that MDS-mediated immunological abnormalities including inflammatory cytokine induction may be responsible for the association between MDS and RS3PE syndrome. Patients with RS3PE syndrome should be screened for hematological disorders that promote proinflammatory mediators.

  12. Visual colorimetry for trace antimony(V) by ion-pair solid-phase extraction with bis[2-(5-chloro-2-pyridylazo)-5-diethylaminophenolato]cobalt(III) on a PTFE type membrane filter.

    PubMed

    Mizuguchi, Hitoshi; Matsuda, Yuki; Mori, Takehito; Uehara, Atsushi; Ishikawa, Yuta; Endo, Masatoshi; Shida, Junichi

    2008-02-01

    A new visual colorimetry for trace antimony(V) based on ion-pair solid-phase extraction to a PTFE-type membrane filter with bis[2-(5-chloro-2-pyridylazo)-5-diethylaminophenolato]cobalt(III) ion ([Co(5-Cl-PADAP)(2)](+)) has been developed. Experiments showed that hexachloroantimonate(V) ion (SbCl(6)(-)) was adsorbed with [Co(5-Cl-PADAP)(2)](+) to the front surface of the PTFE filter. The adsorption of antimony(V) ion was promoted by the addition of lithium chloride as a source of chloride ion. The excess reagent of [Co(5-Cl-PADAP)(2)](+) was eluted by rinsing with a 10 wt% methanol aqueous solution. In this case, the slow rate of the hydrolysis reaction of SbCl(6)(-) and the difference of the hydrophobicity of the ion pairs were important for adsorption and separation with a PTFE-type membrane filter. The antimony(V) concentration was determined through a visual comparison with a standard series. The visual detection limit was 0.10 microg. The calibration curve assessed with the reflection spectrometric responses at 580 nm was linear in the concentration range of 0.10 - 1.2 microg (r = 0.996). The proposed method has been applied to the determination of sub-microgram levels of antimony(V) ion in water samples.

  13. [Seven cases of remitting seronegative symmetrical synovitis with pitting edema (RS3PE) syndrome].

    PubMed

    Takahashi, Kozo; Fujinaga, Hiroshi; Kobayashi, Motoo; Naito, Takero; Iida, Hiroyuki; Aoki, Shuichi

    2002-11-01

    Among the elderly patients with seronegative polyarthritis, McCarty et al. (1985) proposed a disease entity of "remitting seronegative symmetrical synovitis with pitting edema (RS3PE) syndrome", but only a few cases have been reported in Japan. Here we report 7 cases suspicious of RS3PE syndrome, 2 men and 5 women with an average age of 75.9 years, ranging from 67-82 years. Their common findings were (1) relatively acute onset, (2) polyarthritis, (3) pitting edema of the dorsum of both hands and both feet, and (4) negative rheumatoid factor and antinuclear antibody. McCarty et al. found that RS3 PE syndrome was more prevalent in men; however, in our experience, the opposite was observed. The clinical courses of all patients were good, and they were effectively treated either by small dosages of oral prednisolone, nonsteroidal antiinflammatory drugs, or Chinese herbal (Kampo) medicines. Since this syndrome might not be rare in Japan, it seems necessary to evaluate elderly patients with seronegative polyarthritis with pitting edema as RS3PE syndrome in their routine medical examinations.

  14. Detection of low-level PTFE contamination: An application of solid-state NMR to structure elucidation in the pharmaceutical industry.

    PubMed

    Pham, Tran N; Day, Caroline J; Edwards, Andrew J; Wood, Helen R; Lynch, Ian R; Watson, Simon A; Bretonnet, Anne-Sophie Z; Vogt, Frederick G

    2011-01-25

    We report a novel use of solid-state ¹⁹F nuclear magnetic resonance to detect and quantify polytetrafluoroethylene contamination from laboratory equipment, which due to low quantity (up to 1% w/w) and insolubility remained undetected by standard analytical techniques. Solid-state ¹⁹F NMR is shown to be highly sensitive to such fluoropolymers (detection limit 0.02% w/w), and is demonstrated as a useful analytical tool for structure elucidation of unknown solid materials. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. The "PE coach" smartphone application: an innovative approach to improving implementation, fidelity, and homework adherence during prolonged exposure.

    PubMed

    Reger, Greg M; Hoffman, Julia; Riggs, David; Rothbaum, Barbara O; Ruzek, Josef; Holloway, Kevin M; Kuhn, Eric

    2013-08-01

    Prolonged exposure (PE) is an empirically supported treatment that is being disseminated broadly to providers in the Department of Veterans Affairs and Department of Defense. Innovative methods are needed to support the implementation, dissemination, and patient and provider adherence to PE. The PE Coach is a smartphone application (app) designed to mitigate barriers to PE implementation. PE Coach is installed on the patient's phone and includes a range of capabilities for use during the PE session and after each session to support the treatment. Functions include the ability to audio record treatment sessions onto the patient's device, to construct the in vivo hierarchy on the device, to record completed homework exercises, to review homework adherence, and to track symptom severity over time. The app also allows sessions and homework to be scheduled directly in the app, populating the device calendar with patient reminder notifications. In the final session, a visual display of symptom improvement and habituation to items on the in vivo hierarchy is presented. These capabilities may significantly improve convenience, provider implementation and adherence, and patient compliance with treatment. Future research is needed to test whether PE Coach is useful and effective. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  16. Inhibitory effect of Paeonia lactiflora Pallas extract (PE) on poly (I:C)-induced immune response of epidermal keratinocytes.

    PubMed

    Choi, Mi-Ra; Choi, Dae-Kyoung; Sohn, Kyung-Cheol; Lim, Seul Ki; Kim, Dong-Il; Lee, Young Ho; Im, Myung; Lee, Young; Seo, Young-Joon; Kim, Chang Deok; Lee, Jeung-Hoon

    2015-01-01

    Epidermal keratinocytes provide protective role against external stimuli by barrier formation. In addition, kertinocytes exerts their role as the defense cells via activation of innate immunity. Disturbance of keratinocyte functions is related with skin disorders. Psoriasis is a common skin disease related with inflammatory reaction in epidermal cells. We attempted to find therapeutics for psoriasis, and found that Paeonia lactiflora Pallas extract (PE) has an inhibitory potential on poly (I:C)-induced inflammation of keratinocytes. PE significantly inhibited poly (I:C)-induced expression of crucial psoriatic cytokines, such as IL-6, IL-8, CCL20 and TNF-α, via down-regulation of NF-κB signaling pathway in human keratinocytes. In addition, PE significantly inhibited poly (I:C)-induced inflammasome activation, in terms of IL-1β and caspase-1 secretion. Finally, PE markedly inhibited poly (I:C)-increased NLRP3, an important component of inflammasome. These results indicate that PE has an inhibitory effect on poly (I:C)-induced inflammatory reaction of keratinocytes, suggesting that PE can be developed for the treatment of psoriasis.

  17. PeRL: a circum-Arctic Permafrost Region Pond and Lake database

    NASA Astrophysics Data System (ADS)

    Muster, Sina; Roth, Kurt; Langer, Moritz; Lange, Stephan; Cresto Aleina, Fabio; Bartsch, Annett; Morgenstern, Anne; Grosse, Guido; Jones, Benjamin; Sannel, A. Britta K.; Sjöberg, Ylva; Günther, Frank; Andresen, Christian; Veremeeva, Alexandra; Lindgren, Prajna R.; Bouchard, Frédéric; Lara, Mark J.; Fortier, Daniel; Charbonneau, Simon; Virtanen, Tarmo A.; Hugelius, Gustaf; Palmtag, Juri; Siewert, Matthias B.; Riley, William J.; Koven, Charles D.; Boike, Julia

    2017-06-01

    Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i.e., waterbodies with surface areas smaller than 1. 0 × 104 m2, have not been inventoried on global and regional scales. The Permafrost Region Pond and Lake (PeRL) database presents the results of a circum-Arctic effort to map ponds and lakes from modern (2002-2013) high-resolution aerial and satellite imagery with a resolution of 5 m or better. The database also includes historical imagery from 1948 to 1965 with a resolution of 6 m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology, and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada, and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1. 4 × 106 km2 across the Arctic, about 17 % of the Arctic lowland ( < 300 m a.s.l.) land surface area. PeRL waterbodies with sizes of 1. 0 × 106 m2 down to 1. 0 × 102 m2 contributed up to 21 % to the total water fraction. Waterbody density ranged from 1. 0 × 10 to 9. 4 × 101 km-2. Ponds are the dominant waterbody type by number in all landscapes representing 45-99 % of the total waterbody number. The implementation of PeRL size distributions in land surface models will greatly improve the investigation and projection of surface inundation and carbon fluxes in permafrost lowlands. Waterbody maps, study area boundaries, and maps of regional permafrost landscapes including

  18. CD4+ T Cells Recognizing PE/PPE Antigens Directly or via Cross Reactivity Are Protective against Pulmonary Mycobacterium tuberculosis Infection

    PubMed Central

    Sayes, Fadel; Pawlik, Alexandre; Frigui, Wafa; Gröschel, Matthias I.; Crommelynck, Samuel; Fayolle, Catherine; Cia, Felipe; Bancroft, Gregory J.; Bottai, Daria; Leclerc, Claude; Brosch, Roland; Majlessi, Laleh

    2016-01-01

    Mycobacterium tuberculosis (Mtb), possesses at least three type VII secretion systems, ESX-1, -3 and -5 that are actively involved in pathogenesis and host-pathogen interaction. We recently showed that an attenuated Mtb vaccine candidate (Mtb Δppe25-pe19), which lacks the characteristic ESX-5-associated pe/ppe genes, but harbors all other components of the ESX-5 system, induces CD4+ T-cell immune responses against non-esx-5-associated PE/PPE protein homologs. These T cells strongly cross-recognize the missing esx-5-associated PE/PPE proteins. Here, we characterized the fine composition of the functional cross-reactive Th1 effector subsets specific to the shared PE/PPE epitopes in mice immunized with the Mtb Δppe25-pe19 vaccine candidate. We provide evidence that the Mtb Δppe25-pe19 strain, despite its significant attenuation, is comparable to the WT Mtb strain with regard to: (i) its antigenic repertoire related to the different ESX systems, (ii) the induced Th1 effector subset composition, (iii) the differentiation status of the Th1 cells induced, and (iv) its particular features at stimulating the innate immune response. Indeed, we found significant contribution of PE/PPE-specific Th1 effector cells in the protective immunity against pulmonary Mtb infection. These results offer detailed insights into the immune mechanisms underlying the remarkable protective efficacy of the live attenuated Mtb Δppe25-pe19 vaccine candidate, as well as the specific potential of PE/PPE proteins as protective immunogens. PMID:27467705

  19. Expression of the phycoerythrin gene of Gracilaria lemaneiformis (Rhodophyta) in E. coli and evaluation of the bioactivity of recombinant PE

    NASA Astrophysics Data System (ADS)

    Wen, Ruobing; Sui, Zhenghong; Zhang, Xuecheng; Zhang, Shuang; Qin, Song

    2007-10-01

    Phycoerythrin (PE) is one of the most important proteins involved in light capturing during photosynthesis in red algae. Its potential biological activities had gained wide concerns. In the present study, tumor cytotoxic and hydroxyl radical assay were preformed to detect the bioactivity of recombinant PE. Recombinant plasmids pGEX-PE and pBGL were transformed into E. coli BL21 to make two recombinant strains BEX (pGEX-PE) and BGL (pBGL). PE expressing in BEX (pGEX-PE) was validated by SDS-PAGE and Western blotting analysis. SDS-PAGE analysis indicated that the PE-GST fusion protein was mostly inclusion bodies. Specific expression of PE was confirmed by Western blotting analysis. The recombinant E. coli BEX (pGEX-PE) cells were collected and sonicated. The supernatants were reserved for the tumor cytotoxic experiments. The result of tumor cytotoxic assay indicated that the supernatants containing PE had the activity of inhibiting the growth of Hela cells and with the increase of protein concentration, the inhibiting rate increased from 37.31% to 63.26%, which showed significant difference from the control. Hydroxyl radical scavenging effect was tested with supernatants of BEX (pGEX-PE) and BGL (pBGL) cell lysates treated with sonication and heating. For the sonication samples, the scavenging rates of the supernatants of BEX (pGEX-PE) and BGL (pBGL) cell lysates were significantly higher than the negative control BL21(pGEX-4T) ( P<0.02), and the scavenging rates increased slowly following the increase of the protein content. For the heating samples, except for the 0.2 mg mL-1 BGL (pBGL) products, the scavenging effects of the supernatants of BEX (pGEX-PE) and BGL (pBGL) cell lysates were stronger than that of negative control BL21(pGEX-4T). However, the effect intensity was not positively correlated with the increase of the protein concentration. Though a partially decreased hydroxyl radical scavenging activity was led by heating, the biological activity was still

  20. Performance of high speed ball bearings with lead plated retainers in liquid hydrogen for potential use in a radiation environment

    NASA Technical Reports Server (NTRS)

    Wisander, D. W.; Brewe, D. E.; Scibbe, H. W.

    1972-01-01

    Ball bearings (40-mm bore) with lead coated, aluminum-bronze retainers were operated successfully in liquid hydrogen at 30,000 rpm under a thrust load of 1780 newtons (400 lb) for running times up to 15 hours. The lead transfer films on the bearing surfaces prevented galling of bearing components. The lead coated retainers used in this investigation show promise for use in the high radiation environments, where polytetrafluoroethylene (PTFE) based materials are not suitable. Failure was a result of the loss of lead lubricant on the retainer-inner-land and ball-pocket surfaces. The longest bearing life (15 hr) was achieved with a lead coating thickness of 50 micrometers (0.002 in.) on the retainer. Other bearings had lives of 2 to 6 hours.